

Learning jQuery
Fourth Edition

Better interaction, design, and web development with
simple JavaScript techniques

Jonathan Chaffer

Karl Swedberg

BIRMINGHAM - MUMBAI

Learning jQuery
Fourth Edition

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First edition : July 2007

Second published: Feburary 2009

Third published: September 2011

Fourth published: June 2013

Production Reference: 1180613

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-314-5

www.packtpub.com

Cover Image by Karl Swedberg (kswedberg@gmail.com)

Credits

Authors
Jonathan Chaffer

Karl Swedberg

Reviewers
Kaiser Ahmed

Carlos Estebes

Alex Libby

Natalie MacLees

Acquisition Editor
Rukhsana Khambatta

Lead Technical Editor
Dayan Hyames

Technical Editors
Veena Pagare

Zafeer Rais

Kaustubh S. Mayekar

Project Coordinator
Leena Purkait

Proofreader
Paul Hindle

Indexer
Monica Ajmera Mehta

Graphics
Ronak Dhruv

Abhinash Sahu

Production Coordinator
Aditi Gajjar

Cover Work
Aditi Gajjar

Foreword

I feel honored knowing that Karl Swedberg and Jonathan Chaffer undertook the task
of writing Learning jQuery. As the first book about jQuery, it set the standard that
other jQuery—and really, other JavaScript books in general—have tried to match. It's
consistently been one of the top-selling JavaScript books since its release, in no small
part due to its quality and attention to detail.

I'm especially pleased that it was Karl and Jonathan who wrote the book since I
already knew them so well and knew that they would be perfect for the job. Being
part of the core jQuery team, I've had the opportunity to come to know Karl quite
well over the past couple of years, and especially within the context of his book-
writing effort. Looking at the end result, it's clear that his skills as both a developer
and a former English teacher were perfectly designed for this singular task.

I've also had the opportunity to meet both of them in person, a rare occurrence in
the world of distributed open source projects, and they continue to be upstanding
members of the jQuery community.

The jQuery library is used by so many different people in the jQuery community.
The community is full of designers, developers, people who have experience in
programming, and those who don't. Even within the jQuery team, we have people
from all backgrounds providing their feedback on the direction of the project. There
is one thing that is common across all of jQuery's users: we are a community of
developers and designers who want JavaScript development to be made simple.

It's almost a cliché, at this point, to say that an open source project is community-
oriented, or that a project wants to focus on helping new users get started. But it's
not just an empty gesture for jQuery; it's the liquid-oxygen fuel for the project. We
actually have more people in the jQuery team dedicated to managing the jQuery
community, writing documentation, or writing plugins than actually maintaining the
core code base. While the health of the library is incredibly important, the community
surrounding that code is the difference between a floundering, mediocre project, and
one that will match and exceed your every need.

How we run the project and how you use the code is fundamentally very different
from most open source projects—and most JavaScript libraries. The jQuery project
and community is incredibly knowledgeable; we understand what makes jQuery
a different programming experience and do our best to pass that knowledge on to
fellow users.

The jQuery community isn't something that you can read about to understand; it's
something that you actually have to participate in for it to fully sink in. I hope that
you'll have the opportunity to partake in it. Come join us in our forums, mailing
lists, and blogs and let us help guide through the experience of getting to
know jQuery better.

For me, jQuery is much more than a block of code. It's the sum of total experiences
that have transpired over the years in order to make the library happen. The
considerable ups and downs and the struggle of development together with the
excitement of seeing it grow and succeed. Growing close with its users and fellow
team members, understanding them and trying to grow and adapt.

When I first saw this book talk about jQuery and discuss it like a unified tool, as
opposed to the experiences that it's come to encapsulate for me, I was taken aback
and excited. Seeing how others learn, understand, and mold jQuery to fit them is
much of what makes the project so exhilarating.

I'm not the only one who enjoys jQuery on a level that is far different from a normal
tool-user relationship. I don't know if I can properly encapsulate why this is, but I've
seen it time and time again—the singular moment when a user's face lights up with
the realization of just how much jQuery will help them.

There is a specific moment where it just clicks for a jQuery user when they realize
that this tool that they were using was in fact much more than just a simple tool all
along—and suddenly their understanding of how to write dynamic web applications
completely shifts. It's an incredible thing and absolutely my favorite part of the
jQuery project.

I hope you'll have the opportunity to experience this sensation as well.

John Resig
Creator of jQuery

About the Authors

Jonathan Chaffer is a member of Rapid Development Group, a web development
firm located in Grand Rapids, Michigan. His work there includes overseeing and
implementing projects in a wide variety of technologies, with an emphasis in PHP,
MySQL, and JavaScript. He also leads on-site training seminars on the jQuery
framework for web developers.

In the open source community, he has been very active in the Drupal CMS project,
which has adopted jQuery as its JavaScript framework of choice. He is the creator of
the Content Construction Kit, a popular module for managing structured content on
Drupal sites. He is also responsible for major overhauls of Drupal's menu system and
developer API reference.

He lives in Grand Rapids with his wife, Jennifer.

I would like to thank Jenny for her tireless enthusiasm and support,
Karl for the motivation to continue writing when the spirit is weak,
and the Ars Technica community for constant inspiration toward
technical excellence. In addition, I'd like to thank Mike Henry and
the Twisted Pixel team for producing consistently entertaining
distractions in between writing sessions.

Karl Swedberg is a web developer at Fusionary Media in Grand Rapids, Michigan,
where he spends much of his time making cool things happen with JavaScript. As a
member of the jQuery team, he is responsible for maintaining the jQuery API site at
api.jquery.com. He is also a member of jQuery's Board of Advisors and a presenter
at workshops and conferences. When he isn't coding, he likes to hang out with his
family, roast coffee in his garage, and exercise at the local CrossFit gym.

I wish to thank my wife, Sara, and my two children, Benjamin and
Lucia, for all the joy that they bring into my life. Thanks also to
Jonathan Chaffer for his patience and his willingness to write this
book with me. Bryan, Steve, and Jack have supported me and given
me a paycheck for the past five years, and for that I am truly grateful.

Many thanks to John Resig for creating the world's greatest
JavaScript library and to Dave Methvin and the core developer team
for taking up the torch.

About the Reviewers

Alex Libby works in IT support. He has been involved in supporting end users
for the last 15 years in a variety of different environments and currently works
as a Technical Analyst supporting a medium-sized SharePoint estate for an
international parts distributor based in the U.K. Although Alex gets to play with
different technologies in his day job, his first true love has always been with the
open source movement, and in particular experimenting with CSS3, HTML5, and
jQuery. To date, Alex has written several books for Packt Publishing, including one
on HTML5 Video and another on jQuery Tools.

Carlos Estebes is the founder of Ehxioz (http://ehxioz.com/), a Los
Angeles-based software development startup that specializes in developing
modern web applications and utilizing the latest web development technologies
and methodologies. He has over 10 years of web development experience and
holds a B.Sc. in Computer Science from California State University, Los Angeles.

He previously collaborated with Packt Publishing as a technical reviewer in the
third edition of Learning jQuery and jQuery Hotshot.

Kaiser Ahmed is a professional web developer. He gained his B.Sc. from Khulna
University of Engineering and Technology (KUET) and M.Sc. in Computer Science
and Engineering from United International University, Dhaka. He is also a co-founder
of CyberXpress.Net Inc. (www.cyberxpress.net) based in Bangladesh.

He has been working as a Senior Software Developer at Krembo Interactive and
D1SH.COM CORP., Canada, for the last 2 years.

He has a wide breadth of technical skills, Internet knowledge, and experience across
the spectrum of online development in the service of building and improving online
properties for multiple clients. He enjoys creating site architecture and infrastructure,
backend development using open source toolsets (PHP, MySQL, Apache, Linux, and
others (that is, LAMP), frontend development with CSS and HTML/XHTML.

I want to thank my loving wife, Maria Akther, for her great support.

Natalie MacLees is a frontend web developer and UI designer, and is the
founder and principal of the interactive agency Purple Pen Productions. In 2012,
she published jQuery for Designers with Packt Publishing. She founded and runs the
jQuery LA Users' Group, and together with Noel Saw, she heads up the Southern
California WordPress User's Group, organizing WordPress meetups, help sessions,
and workshops. She makes her online home at nataliemac.com.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface	 1
Chapter 1: Getting Started	 7

What jQuery does	 8
Why jQuery works well	 9
Making our first jQuery-powered web page	 11

Downloading jQuery	 11
Deciding on the version of jQuery to use	 12
Setting up jQuery in an HTML document	 12
Adding our jQuery code	 15

Finding the poem text	 16
Injecting the new class	 16
Executing the code	 16

The finished product	 18
Plain JavaScript versus jQuery	 18
Using development tools	 19

Chrome Developer Tools	 20
Summary	 23

Chapter 2: Selecting Elements	 25
Understanding the DOM	 25
Using the $() function	 26
CSS selectors	 28

Styling list-item levels	 30
Attribute selectors	 31

Styling links	 32
Custom selectors	 34

Styling alternate rows	 35
Finding elements based on textual content	 38
Form selectors	 39

Table of Contents

[ii]

DOM traversal methods	 40
Styling specific cells	 42
Chaining	 44

Accessing DOM elements	 45
Summary	 46

Further reading	 46
Exercises	 47

Chapter 3: Handling Events	 49
Performing tasks on page load	 49

Timing of code execution	 49
Handling multiple scripts on one page	 51
Alternate syntax for .ready()	 52
Passing an argument to the .ready() callback	 52

Handling simple events	 53
A simple style switcher	 54
Enabling the other buttons	 56
Making use of the event handler context	 58
Consolidating code using the event context	 60
Shorthand events	 62
Showing and hiding advanced features	 62

Event propagation	 64
The journey of an event	 65
Side effects of event bubbling	 67

Altering the journey – the event object	 67
Event targets	 69
Stopping event propagation	 69
Preventing default actions	 70
Delegating events	 71
Using built-in event-delegation capabilities	 74

Removing an event handler	 74
Giving namespaces to event handlers	 75
Rebinding events	 76

Simulating user interaction	 78
Reacting to keyboard events	 79

Summary	 82
Further reading	 82

Exercises	 82
Chapter 4: Styling and Animating	 85

Modifying CSS with inline properties	 85
Setting computed style-property values	 88

Table of Contents

[iii]

Using vendor-specific style properties	 91
Hiding and showing elements	 91
Effects and duration	 94

Speeding in	 94
Fading in and fading out	 95
Sliding up and sliding down	 96
Toggling visibility	 97

Creating custom animations	 99
Building effects by hand	 100
Animating multiple properties at once	 101

Positioning with CSS	 103
Simultaneous versus queued effects	 105

Working with a single set of elements	 105
Bypassing the queue	 106
Queuing effects manually	 107

Working with multiple sets of elements	 109
Queuing with callbacks	 111

In a nutshell	 113
Summary	 114

Further reading	 114
Exercises	 114

Chapter 5: Manipulating the DOM	 115
Manipulating attributes and properties	 115

Non-class attributes	 116
Value callbacks	 118

DOM element properties	 120
The value of form controls	 121

DOM tree manipulation	 121
The $() function revisited	 122
Creating new elements	 122
Inserting new elements	 123
Moving elements	 124
Wrapping elements	 126

Explicit iteration	 127
Using inverted insertion methods	 129

Copying elements	 132
Cloning for pull quotes	 133

Content getter and setter methods	 136
DOM manipulation methods in a nutshell	 138
Summary	 139

Further reading	 139
Exercises	 140

Table of Contents

[iv]

Chapter 6: Sending Data with Ajax	 141
Loading data on demand	 142

Appending HTML	 143
Working with JavaScript objects	 146

Retrieving JSON	 147
Using global jQuery functions	 148
Executing a script	 152

Loading an XML document	 153
Choosing a data format	 156
Passing data to the server	 158

Performing a GET request	 158
Performing a POST request	 162
Serializing a form	 163

Delivering different content for Ajax requests	 166
Keeping an eye on the request	 167
Error handling	 170
Ajax and events	 172
Security limitations	 173

Using JSONP for remote data	 174
Exploring additional options	 176

The low-level Ajax method	 176
Modifying default options	 177
Loading parts of an HTML page	 177

Summary	 180
Further reading	 180

Exercises	 180
Chapter 7: Using Plugins	 181

Finding plugins and help	 181
Using a plugin	 182

Downloading and referencing the Cycle plugin	 182
Calling a plugin method	 183
Specifying plugin method parameters	 184
Modifying parameter defaults	 185

Other types of plugins	 186
Custom selectors	 186
Global function plugins	 187

The jQuery UI plugin library	 188
Effects	 189

Color animations	 189
Class animations	 190
Advanced easing	 191

Table of Contents

[v]

Additional effects	 191
Interaction components	 192
Widgets	 194
jQuery UI ThemeRoller	 197

The jQuery Mobile plugin library	 197
HTML5 custom data attributes	 198
Mobile navigation	 198
Delivering multiple pages in one document	 204
Interactive elements	 205

List views	 206
Toolbar buttons	 208

Advanced features	 209
Summary	 209
Exercises	 210

Chapter 8: Developing Plugins	 211
Using the dollar ($) alias in plugins	 211
Adding new global functions	 212

Adding multiple functions	 215
Extending the global jQuery object	 216
Isolating functions within namespaces	 217

Adding jQuery object methods	 218
Object method context	 219
Implicit iteration	 220
Enabling method chaining	 221

Providing flexible method parameters	 222
The options object	 223
Default parameter values	 224
Callback functions	 225
Customizable defaults	 227

Creating plugins with the jQuery UI widget factory	 229
Creating a widget	 229
Destroying widgets	 232
Enabling and disabling widgets	 233
Accepting widget options	 234
Adding submethods	 235
Triggering widget events	 236

Plugin design recommendations	 237
Distributing a plugin	 238

Summary	 238
Exercises	 239

Table of Contents

[vi]

Chapter 9: Advanced Selectors and Traversing	 241
Selecting and traversing revisited	 242

Dynamic table filtering	 243
Striping table rows	 246
Combining filtering and striping	 248
More selectors and traversal methods	 249

Customizing and optimizing selectors	 250
Writing a custom selector plugin	 250
Selector performance	 252

The Sizzle selector implementation	 253
Testing selector speed	 254

DOM traversal under the hood	 256
jQuery object properties	 256
The DOM element stack	 258
Writing a DOM traversal method plugin	 259
DOM traversal performance	 261

Improving performance using chaining	 261
Improving performance with caching	 262

Summary	 263
Further reading	 263

Exercises	 263
Chapter 10: Advanced Events	 265

Revisiting events	 265
Loading additional pages of data	 267
Displaying data on hovering	 269

Event delegation	 271
Using jQuery's delegation capabilities	 272
Choosing a delegation scope	 272
Delegating early	 273

Defining custom events	 274
Infinite scrolling	 276
Custom event parameters	 278

Throttling events	 279
Other ways to perform throttling	 280

Extending events	 281
More about special events	 284

Summary	 285
Further reading	 285
Exercises	 285

Table of Contents

[vii]

Chapter 11: Advanced Effects	 287
Animation revisited	 287
Observing and interrupting animations	 290

Determining the animation state	 290
Halting a running animation	 291

Caution when halting animations	 292
Using global effect properties	 292

Disabling all effects	 293
Defining effect durations	 293

Multiproperty easing	 296
Using deferred objects	 297

Animation promises	 298
Taking fine-grained control of animations	 301
Summary	 303

Further reading	 303
Exercises	 303

Chapter 12: Advanced DOM Manipulation	 305
Sorting table rows	 305

Sorting tables on the server	 306
Sorting tables using Ajax	 306
Sorting tables within the browser	 307

Moving and inserting elements revisited	 308
Adding links around existing text	 309
Sorting simple JavaScript arrays	 310
Sorting DOM elements	 310

Storing data alongside DOM elements	 312
Performing additional precomputation	 313
Storing non-string data	 314
Alternating sort directions	 317

Using HTML5 custom data attributes	 318
Sorting and building rows with JSON	 321

Modifying the JSON object	 323
Rebuilding content on demand	 324

Revisiting attribute manipulation	 325
Using shorthand element-creation syntax	 326
DOM manipulation hooks	 327

Writing a CSS hook	 328
Summary	 329

Further reading	 330
Exercises	 330

Table of Contents

[viii]

Chapter 13: Advanced Ajax	 331
Implementing progressive enhancement with Ajax	 331

Harvesting JSONP data	 334
Handling Ajax errors	 337
Using the jqXHR object	 339

Ajax promises	 339
Caching responses	 341

Throttling Ajax requests	 342
Extending Ajax capabilities	 343

Data type converters	 344
Adding Ajax prefilters	 349
Defining alternate transports	 350

Summary	 353
Further reading	 354

Exercises	 354
Appendix A: JavaScript Closures	 355

Creating inner functions	 355
Calling inner functions from elsewhere	 356
Understanding variable scope	 358

Handling interactions between closures	 360
Creating closures in jQuery	 361

Passing arguments to $(document).ready()	 362
Assigning event handlers	 362
Binding handlers in loops	 364
Giving names to functions	 366

Handling memory-leak hazards	 367
Avoiding accidental reference loops	 368
Managing loops between the DOM and JavaScript	 369

Disentangling reference loops with jQuery	 370
Summary	 371

Appendix B: Testing JavaScript with QUnit	 373
Downloading QUnit	 374
Setting up the document	 374
Organizing tests	 375
Adding and running tests	 376

Asynchronous testing	 379
Other types of tests	 380
Practical considerations	 380

Further reading	 381
Summary	 381

Table of Contents

[ix]

Appendix C: Quick Reference	 383
Selector expressions	 383

Simple CSS	 383
Position among siblings	 384
Position among matched elements	 384
Attributes	 385
Forms	 385
Miscellaneous selectors	 386

DOM traversal methods	 386
Filtering	 387
Descendants	 387
Siblings	 387
Ancestors	 388
Collection manipulation	 389
Working with selected elements	 389

Event methods	 390
Binding	 390
Shorthand binding	 391
Triggering	 392
Shorthand triggering	 393
Utility	 393

Effect methods	 393
Predefined effects	 393
Custom animations	 394
Queue manipulation	 394

DOM manipulation methods	 395
Attributes and properties	 395
Content	 396
CSS	 396
Dimensions	 397
Insertion	 397
Replacement	 398
Removal	 398
Copying	 399
Data	 399

Ajax methods	 399
Issuing requests	 399
Request monitoring	 400
Configuration	 400
Utilities	 401

Table of Contents

[x]

Deferred objects	 401
Object creation	 401
Methods of deferred objects	 401
Methods of promise objects	 402

Miscellaneous properties and functions	 403
Properties of the jQuery object	 403
Arrays and objects	 403
Object introspection	 403
Other	 404

Index	 405

Preface
In 2005, inspired by pioneers in the field such as Dean Edwards and Simon Willison,
John Resig put together a set of functions to make it easy to programmatically find
elements on a web page and assign behaviors to them. By the time he first publicly
announced his project in January 2006, he had added DOM modification and basic
animations. He gave it the name jQuery to emphasize the central role of finding or
querying parts of a web page and acting on them with JavaScript. Rapidly over the
years since then, jQuery has grown in its feature set, improved in its performance,
and gained widespread adoption by many of the most popular sites on the Internet.
While Resig has since stepped down from his role as lead developer of the project,
jQuery has blossomed, in true open source fashion, to the point where it now boasts
a top-notch core team headed by Dave Methvin, as well as a vibrant community of
thousands of additional JavaScript developers.

The jQuery JavaScript library can enhance your websites regardless of your
background. It provides a wide range of features, an easy-to-learn syntax, and robust
cross-platform compatibility in a single compact file. What's more, hundreds of
plugins have been developed to extend jQuery's functionality, making it an essential
tool for nearly every client-side scripting occasion.

Learning jQuery Fourth Edition provides a gentle introduction to jQuery concepts,
allowing you to add interactions and animations to your pages—even if previous
attempts at writing JavaScript have left you baffled. This book guides you past the
pitfalls associated with Ajax, events, effects, and advanced JavaScript language
features, and provides you with a brief reference to the jQuery library to return to
again and again.

Preface

[2]

What this book covers
Chapter 1, Getting Started, will get your feet wet with the jQuery JavaScript library.
The chapter begins with a description of jQuery and what it can do for you. It then
walks you through downloading and setting up the library, as well as writing your
first script.

Chapter 2, Selecting Elements, will teach how to use jQuery's selector expressions and
DOM traversal methods to find elements on the page, wherever they may be. You'll
use jQuery to apply styling to a diverse set of page elements, sometimes in a way
that pure CSS cannot.

Chapter 3, Handling Events, will walk you through jQuery's event-handling
mechanism to fire off behaviors when browser events occur. You'll see how
jQuery makes it easy to attach events to elements unobtrusively, even before the
page finishes loading. Also, you'll get an overview of deeper topics, such as event
bubbling, delegation, and namespacing.

Chapter 4, Styling and Animating, will introduce you to jQuery's animation techniques
and how to hide, show, and move page elements with effects that are both useful
and pleasing to the eye.

Chapter 5, Manipulating the DOM, will teach you how to change your page on
command. This chapter will also teach you how to alter the very structure of an
HTML document, as well as adding to its content on the fly.

Chapter 6, Sending Data with Ajax, will walk you through many ways in which
jQuery makes it easy to access server-side functionality without resorting to clunky
page refreshes. With the basic components of the library well in hand, you will be
ready to explore how the library can expand to fit your needs.

Chapter 7, Using Plugins, will show you how to find, install, and use plugins,
including the powerful jQuery UI and jQuery Mobile plugin libraries.

Chapter 8, Developing Plugins, will teach you how to take advantage of jQuery's
impressive extension capabilities to develop your own plugins from the ground up.
You'll create your own utility functions, add jQuery object methods, and discover the
jQuery UI widget factory. Next, you'll take a second tour through jQuery's building
blocks, learning more advanced techniques.

Chapter 9, Advanced Selectors and Traversing, will refine your knowledge of
selectors and traversals, gaining the ability to optimize selectors for performance,
manipulate the DOM element stack, and write plugins that expand selecting and
traversing capabilities.

Preface

[3]

Chapter 10, Advanced Events, will dive further into techniques such as delegation and
throttling that can greatly improve event-handling performance. You'll also create
custom and special events that add even more capabilities to the jQuery library.

Chapter 11, Advanced Effects, will fine-tune the visual effects of jQuery that can
be provided by crafting custom-easing functions and reacting to each step of an
animation. You'll gain the ability to manipulate animations as they occur and
schedule actions with custom queuing.

Chapter 12, Advanced DOM Manipulation, will provide you with more practice
modifying the DOM with techniques such as attaching arbitrary data to elements.
You'll also learn how to extend the way jQuery processes CSS properties on elements.

Chapter 13, Advanced Ajax, will help you achieve a greater understanding of Ajax
transactions, including the jQuery deferred object system for handling data that may
become available at a later time.

Appendix A, JavaScript Closures, will help you gain a solid understanding of closures
in JavaScript—what they are and how you can use them to your advantage.

Appendix B, Testing JavaScript with QUnit, will teach you about the QUnit library
for unit testing of JavaScript programs. This library will add to your toolkit for
developing and maintaining highly sophisticated web applications.

Appendix C, Quick Reference, will provide a glimpse of the entire jQuery library,
including every one of its methods and selector expressions. Its easy-to-scan format
is perfect for those moments when you know what you want to do, but you're just
unsure about the right method name or selector.

What you need for this book
In order to run the example code demonstrated in this book, you need a modern
web browser such as Google Chrome, Mozilla Firefox, Apple Safari, or Microsoft
Internet Explorer.

To experiment with the examples and to work on the chapter-ending exercises,
you will also need:

•	 A basic text editor
•	 Web development tools for the browser such as the Chrome Developer

Tools or Firebug (as described in the Using development tools section of
Chapter 1, Getting Started)

•	 The full code package for each chapter, which includes a copy of the
jQuery library (seen in the following Downloading the example code section)

Preface

[4]

Additionally, to run some of the Ajax examples in Chapter 6, Sending Data with Ajax
and beyond, you will need a PHP-enabled web server.

Who this book is for
This book is for web designers who want to create interactive elements for their
designs and for developers who want to create the best user interface for their web
applications. Basic JavaScript programming knowledge is required. You will need
to know the basics of HTML and CSS, and should be comfortable with the syntax
of JavaScript. Prior knowledge of jQuery is not assumed, nor is experience with any
other JavaScript libraries required.

By reading this book, you will become familiar with the functionality and syntax of
jQuery 1.10.x and jQuery 2.0.x, the latest versions at the time of writing.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "In addition, we can interact with this
console directly from our code, using the console.log() method."

A block of code is set as follows:

$(document).ready(function() {
 $('div.poem-stanza').addClass('highlight');
});

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

$('#switcher-narrow').bind('click', function() {
 $('body').removeClass().addClass('narrow');
});

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "The
Console tab will be of most frequent use to us while learning jQuery."

Preface

[5]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

In addition, the examples can be viewed in an interactive browser at http://book.
learningjquery.com/.

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Getting Started
Today's World Wide Web (WWW) is a dynamic environment and its users set a high
bar for both the style and function of sites. To build interesting and interactive sites,
developers are turning to JavaScript libraries such as jQuery to automate common
tasks and to simplify complicated ones. One reason the jQuery library is a popular
choice is its ability to assist in a wide range of tasks.

It can seem challenging to know where to begin because jQuery performs so
many different functions. Yet, there is a coherence and symmetry to the design
of the library; many of its concepts are borrowed from the structure of HTML and
Cascading Style Sheets (CSS). The library's design lends itself to a quick start for
designers with little programming experience, since many have more experience
with these technologies than they do with JavaScript. In fact, in this opening chapter
we'll write a functioning jQuery program in just three lines of code. On the other
hand, experienced programmers will also be aided by this conceptual consistency,
as we'll see in the later, more advanced chapters.

In this chapter, we will cover:

•	 The primary features of jQuery
•	 Setting up a jQuery code environment
•	 A simple working jQuery script example
•	 Reasons to choose the jQuery approach over

plain JavaScript code
•	 Common JavaScript development tools

Getting Started

[8]

What jQuery does
The jQuery library provides a general-purpose abstraction layer for common web
scripting, and is therefore useful in almost every scripting situation. Its extensible
nature means that we could never cover all the possible uses and functions in a
single book, as plugins are constantly being developed to add new abilities. The
core features, though, assist us in accomplishing the following tasks:

•	 Access elements in a document: Without a JavaScript library, web developers
often need to write many lines of code to traverse the Document Object Model
(DOM) tree and locate specific portions of an HTML document's structure.
With jQuery, developers have a robust and efficient selector mechanism at
their disposal, making it easy to retrieve the exact piece of the document that
needs to be inspected or manipulated.
$('div.content').find('p');

•	 Modify the appearance of a web page: CSS offers a powerful method of
influencing the way a document is rendered, but it falls short when not all
web browsers support the same standards. With jQuery, developers can
bridge this gap, relying on the same standards support across all browsers
In addition, jQuery can change the classes or individual style properties
applied to a portion of the document even after the page has been rendered.
$('ul > li:first').addClass('active');

•	 Alter the content of a document: Not limited to mere cosmetic changes,
jQuery can modify the content of a document itself with a few keystrokes.
Text can be changed, images can be inserted or swapped, lists can be
reordered, or the entire structure of the HTML can be rewritten and
extended—all with a single easy-to-use Application Programming
Interface (API).
$('#container').append('more');

•	 Respond to a user's interaction: Even the most elaborate and powerful
behaviors are not useful if we can't control when they take place. The jQuery
library offers an elegant way to intercept a wide variety of events, such as a
user clicking on a link, without the need to clutter the HTML code itself with
event handlers. At the same time, its event-handling API removes browser
inconsistencies that often plague web developers.
$('button.show-details').click(function() {
 $('div.details').show();
});

Chapter 1

[9]

•	 Animate changes being made to a document: To effectively implement
such interactive behaviors, a designer must also provide visual feedback
to the user. The jQuery library facilitates this by providing an array of
effects such as fades and wipes, as well as a toolkit for crafting new ones.
$('div.details').slideDown();

•	 Retrieve information from a server without refreshing a page: This code
pattern is known as Ajax, which originally stood for Asynchronous JavaScript
and XML, but has since come to represent a much greater set of technologies
for communicating between the client and the server. The jQuery library
removes the browser-specific complexity from this responsive, feature-rich
process, allowing developers to focus on the server-end functionality.
$('div.details').load('more.html #content');

•	 Simplify common JavaScript tasks: In addition to all of the document-
specific features of jQuery, the library provides enhancements to basic
JavaScript constructs such as iteration and array manipulation.

$.each(obj, function(key, value) {
 total += value;
});

Why jQuery works well
With the resurgence of interest in dynamic HTML comes a proliferation of JavaScript
frameworks. Some are specialized, focusing on just one or two of the tasks previously
mentioned. Others attempt to catalog every possible behavior and animation and serve
these all up prepackaged. To maintain the wide range of features outlined earlier while
remaining relatively compact, jQuery employs several strategies:

•	 Leverage knowledge of CSS: By basing the mechanism for locating
page elements on CSS selectors, jQuery inherits a terse yet legible way of
expressing a document's structure. The jQuery library becomes an entry
point for designers who want to add behaviors to their pages, because a
prerequisite for doing professional web development is knowledge of
CSS syntax.

•	 Support extensions: In order to avoid "feature creep", jQuery relegates
special-case uses to plugins. The method for creating new plugins is simple
and well-documented, which has spurred the development of a wide variety
of inventive and useful modules. Even most of the features in the basic
jQuery download are internally realized through the plugin architecture,
and can be removed if desired, yielding an even smaller library.

Getting Started

[10]

•	 Abstract away browser quirks: An unfortunate reality of web development is
that each browser has its own set of deviations from published standards. A
significant portion of any web application can be relegated to handling features
differently on each platform. While the ever-evolving browser landscape
makes a perfectly browser-neutral code base impossible for some advanced
features, jQuery adds an abstraction layer that normalizes the common tasks,
reducing the size of code while tremendously simplifying it.

•	 Always work with sets: When we instruct jQuery to find all elements with
the class collapsible and hide them, there is no need to loop through
each returned element. Instead, methods such as .hide() are designed
to automatically work on sets of objects instead of individual ones. This
technique, called implicit iteration, means that many looping constructs
become unnecessary, shortening code considerably.

•	 Allow multiple actions in one line: To avoid overuse of temporary
variables or wasteful repetition, jQuery employs a programming pattern
called chaining for the majority of its methods. This means that the result
of most operations on an object is the object itself, ready for the next action
to be applied to it.

These strategies keep the file size of the jQuery package small, while at the same
time providing techniques for keeping our custom code that uses the library
compact as well.

The elegance of the library comes about partly by design and partly due to the
evolutionary process spurred by the vibrant community that has sprung up around
the project. Users of jQuery gather to discuss not only the development of plugins,
but also enhancements to the core library. The users and developers also assist in
continually improving the official project documentation, which can be found at
http://api.jquery.com.

Despite all the efforts required to engineer such a flexible and robust system, the
end product is free for all to use. This open source project is licensed under the
MIT License to permit free use of jQuery on any site and facilitate its use within
proprietary software. If a project requires it, developers can relicense jQuery under
the GNU Public License for inclusion in other GNU-licensed open source projects.

Chapter 1

[11]

Making our first jQuery-powered web
page
Now that we have covered the range of features available to us with jQuery, we can
examine how to put the library into action. To get started, we need to download a
copy of jQuery.

Downloading jQuery
No installation is required. To use jQuery, we just need a publicly available
copy of the file, no matter whether that copy is on an external site or our own.
Since JavaScript is an interpreted language, there is no compilation or build phase
to worry about. Whenever we need a page to have jQuery available, we will simply
refer to the file's location from a <script> element in the HTML document.

The official jQuery website (http://jquery.com/) always has the most up-to-date
stable version of the library, which can be downloaded right from the home page of
the site. Several versions of jQuery may be available at any given moment; the most
appropriate for us as site developers will be the latest uncompressed version of the
library. This can be replaced with a compressed version in production environments.

As jQuery's popularity has grown, companies have made the file freely available
through their Content Delivery Networks (CDNs). Most notably, Google
(https://developers.google.com/speed/libraries/devguide), Microsoft
(http://www.asp.net/ajaxlibrary/cdn.ashx), and the jQuery project itself
(http://code.jquery.com) offer the file on powerful, low-latency servers
distributed around the world for fast download regardless of the user's location.
While a CDN-hosted copy of jQuery has speed advantages due to server distribution
and caching, using a local copy can be convenient during development. Throughout
this book, we'll use a copy of the file stored on our own system, which will allow us
to run our code whether we're connected to the Internet or not.

Getting Started

[12]

Deciding on the version of jQuery to use
Historically, this has been an easy question to answer. The best version of jQuery to
use is usually the most recent one. However, with the release of jQuery Version 2.0,
a small amount of extra consideration should be given to the decision. Version 2.0 of
jQuery no longer supports old versions of Internet Explorer (6, 7, and 8) in order to
provide faster, cleaner support for more modern browsers.

The jQuery development team knows that support for these older Internet Explorer
versions remains important, however. For this reason, the 1.x Versions of jQuery
continue to be actively developed and maintained. For our purposes in this book,
we will be using jQuery 1.10, which is appropriate for most projects. All of our
examples, though, should also work with jQuery 2.0.

For projects that include code written for versions of jQuery prior to
1.9, developers may choose to use the jQuery Migrate plugin (http://
jquery.com/upgrade-guide/1.9/#jquery-migrate-plugin) to
allow compatibility with jQuery 1.10

Setting up jQuery in an HTML document
There are three pieces to most examples of jQuery usage: the HTML document,
CSS files to style it, and JavaScript files to act on it. For our first example, we'll use a
page with a book excerpt that has a number of classes applied to portions of it. This
page includes a reference to the latest version of the jQuery library, which we have
downloaded, renamed jquery.js, and placed in our local project directory:

<!DOCTYPE html>

<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Through the Looking-Glass</title>

 <link rel="stylesheet" href="01.css">

 <script src="jquery.js"></script>
 <script src="01.js"></script>
 </head>

 <body>
 <h1>Through the Looking-Glass</h1>
 <div class="author">by Lewis Carroll</div>

Chapter 1

[13]

 <div class="chapter" id="chapter-1">
 <h2 class="chapter-title">1. Looking-Glass House</h2>
 <p>There was a book lying near Alice on the table,
 and while she sat watching the White King (for she
 was still a little anxious about him, and had the
 ink all ready to throw over him, in case he fainted
 again), she turned over the leaves, to find some
 part that she could read,
 "—for it's all in some language I don't know,"
 she said to herself.</p>
 <p>It was like this.</p>
 <div class="poem">
 <h3 class="poem-title">YKCOWREBBAJ</h3>
 <div class="poem-stanza">
 <div>sevot yhtils eht dna ,gillirb sawT'</div>
 <div>;ebaw eht ni elbmig dna eryg diD</div>
 <div>,sevogorob eht erew ysmim llA</div>
 <div>.ebargtuo shtar emom eht dnA</div>
 </div>
 </div>
 <p>She puzzled over this for some time, but at last
 a bright thought struck her.
 "Why, it's a Looking-glass book, of course! And if
 I hold it up to a glass, the words will all go the
 right way again."</p>
 <p>This was the poem that Alice read.</p>
 <div class="poem">
 <h3 class="poem-title">JABBERWOCKY</h3>
 <div class="poem-stanza">
 <div>'Twas brillig, and the slithy toves</div>
 <div>Did gyre and gimble in the wabe;</div>
 <div>All mimsy were the borogoves,</div>
 <div>And the mome raths outgrabe.</div>
 </div>
 </div>
 </div>
 </body>
</html>

Getting Started

[14]

Immediately following the normal HTML preamble, the stylesheet is loaded. For this
example, we'll use a simple one:

body {
 background-color: #fff;
 color: #000;
 font-family: Helvetica, Arial, sans-serif;
}
h1, h2, h3 {
 margin-bottom: .2em;
}
.poem {
 margin: 0 2em;
}
.highlight {
 background-color: #ccc;
 border: 1px solid #888;
 font-style: italic;
 margin: 0.5em 0;
 padding: 0.5em;
}

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

After the stylesheet is referenced, the JavaScript files are included. It is important
that the script tag for the jQuery library be placed before the tag for our custom
scripts; otherwise, the jQuery framework will not be available when our code
attempts to reference it.

Throughout rest of this book, only the relevant portions of HTML and
CSS files will be printed. The files in their entirety are available from the
book's companion website http://book.learningjquery.com.

Now we have a page that looks like this:

Chapter 1

[15]

We will use jQuery to apply a new style to the poem text.

This example is to demonstrate a simple use of jQuery. In
real-world situations, this type of styling could be performed
purely with CSS.

Adding our jQuery code
Our custom code will go in the second, currently empty, JavaScript file, which
we included from the HTML using <script src="01.js"></script>. For this
example, we only need three lines of code:

$(document).ready(function() {
 $('div.poem-stanza').addClass('highlight');
});

We'll next step through this script piece by piece to see how it works.

Getting Started

[16]

Finding the poem text
The fundamental operation in jQuery is selecting a part of the document. This is
done with the $() function. Typically, it takes a string as a parameter, which can
contain any CSS selector expression. In this case, we wish to find all of the <div>
elements in the document that have the poem-stanza class applied to them, so the
selector is very simple. However, we will cover much more sophisticated options
through the course of the book. We will walk through many ways of locating parts
of a document in Chapter 2, Selecting Elements.

When called, the $() function returns a new jQuery object instance, which is the
basic building block we will be working with from now on. This object encapsulates
zero or more DOM elements and allows us to interact with them in many different
ways. In this case, we wish to modify the appearance of these parts of the page and
we will accomplish this by changing the classes applied to the poem text.

Injecting the new class
The .addClass() method, like most jQuery methods, is named self-descriptively;
it applies a CSS class to the part of the page that we have selected. Its only parameter
is the name of the class to add. This method, and its counterpart, .removeClass(),
will allow us to easily observe jQuery in action as we explore the different selector
expressions available to us. For now, our example simply adds the highlight class,
which our stylesheet has defined as italicized text with a gray background and
a border.

Note that no iteration is necessary to add the class to all the poem stanzas. As we
discussed, jQuery uses implicit iteration within methods such as .addClass(),
so a single function call is all it takes to alter all the selected parts of the document.

Executing the code
Taken together, $() and .addClass() are enough for us to accomplish our goal of
changing the appearance of the poem text. However, if this line of code is inserted
alone in the document header, it will have no effect. JavaScript code is generally
run as soon as it is encountered in the browser, and at the time the header is being
processed, no HTML is yet present to style. We need to delay the execution of the
code until after the DOM is available for our use.

With the $(document).ready() construct, jQuery allows us to schedule function
calls for firing once the DOM is loaded—without necessarily waiting for images
to fully render. While this event scheduling is possible without the aid of jQuery,
$(document).ready() provides an especially elegant cross-browser solution that
includes the following features:

Chapter 1

[17]

•	 It uses the browser's native DOM-ready implementations when available
and adds a window.onload event handler as a safety net

•	 It allows for multiple calls to $(document).ready() and executes them
in the order in which they are called

•	 It executes functions passed to $(document).ready() even if it is called
after the browser event has already occurred

•	 It handles the event scheduling asynchronously to allow scripts to delay
if necessary

•	 It simulates a DOM-ready event in some older browsers by repeatedly
checking for the existence of a DOM method that typically becomes
available at the same time that the DOM as a whole is ready

The .ready() method's parameter can accept a reference to an already defined
function, as shown in the following code snippet:

function addHighlightClass() {
 $('div.poem-stanza').addClass('highlight');
}

$(document).ready(addHighlightClass);

Listing 1.1

However, as demonstrated in the original version of the script and repeated in
Listing 1.2, the method can also accept an anonymous function:

$(document).ready(function() {
 $('div.poem-stanza').addClass('highlight');
});

Listing 1.2

This anonymous function idiom is convenient in jQuery code for methods that
take a function as an argument when that function isn't reusable. Moreover,
the closure it creates can be an advanced and powerful tool. It may also have
unintended consequences and ramifications on memory use, however, if not
dealt with carefully. The topic of closures is discussed fully in Appendix A ,
JavaScript Closures.

Getting Started

[18]

The finished product
Now that our JavaScript is in place, the page looks like this:

The poem stanzas are now italicized and enclosed in boxes, as specified by
the 01.css stylesheet, due to the insertion of the highlight class by the
JavaScript code.

Plain JavaScript versus jQuery
Even a task as simple as this can be complicated without jQuery at our disposal.
In plain JavaScript, we could add the highlight class in this way:

window.onload = function() {
 var divs = document.getElementsByTagName('div');
 for (var i = 0; i < divs.length; i++) {
 if (hasClass(divs[i], 'poem-stanza')
 && !hasClass(divs[i], 'highlight')) {
 divs[i].className += ' highlight';

Chapter 1

[19]

 }
 }

 function hasClass(elem, cls) {
 var reClass = new RegExp(' ' + cls + ' ');
 return reClass.test(' ' + elem.className + ' ');
 }
};

Listing 1.3

Despite its length, this solution does not handle many of the situations that jQuery
takes care of for us in Listing 1.2, such as:

•	 Properly respecting other window.onload event handlers
•	 Acting as soon as the DOM is ready
•	 Optimizing element retrieval and other tasks with modern DOM methods

We can see that our jQuery-driven code is easier to write, simpler to read, and faster
to execute than its plain JavaScript equivalent.

Using development tools
As this code comparison has shown, jQuery code is typically shorter and clearer
than its basic JavaScript equivalent. However, this doesn't mean we will always write
code that is free from bugs, or that we will intuitively understand what is happening
on our pages at all times. Our jQuery coding experience will be much smoother with
the assistance of standard development tools.

High-quality development tools are available in all modern browsers. We can feel
free to use the environment that is most comfortable to us. Options include:

•	 Internet Explorer Developer Tools (http://msdn.microsoft.com/
en-us/library/dd565628.aspx)

•	 Safari Web Inspector (http://developer.apple.com/technologies/
safari/developer-tools.html)

•	 Chrome Developer Tools (https://developers.google.com/
chrome-developer-tools/)

•	 Firebug for Firefox (http://getfirebug.com/)
•	 Opera Dragonfly (http://www.opera.com/dragonfly/)

Getting Started

[20]

Each of these toolkits offers similar development features, including:

•	 Exploring and modifying aspects of the DOM
•	 Investigating the relationship between CSS and its effect on

page presentation
•	 Convenient tracing of script execution through special methods
•	 Pausing execution of running scripts and inspecting variable values

While the details of these features vary from one browser to the next, the general
concepts remain constant. In this book, some examples will require the use of one
of these toolkits; we will use Chrome Developer Tools for these demonstrations,
but development tools for other browsers are fine alternatives.

Chrome Developer Tools
Up-to-date instructions for accessing and using Chrome Developer Tools can
be found on the project's documentation pages at https://developers.google.
com/chrome-developer-tools/docs/overview. The tools are too involved to
explore in great detail here, but a survey of some of the most relevant features
will be useful to us.

Understanding these screenshots
Chrome Developer Tools is a quickly evolving project, so the
following screenshots may not exactly match your environment.

When Chrome Developer Tools is activated, a new panel appears offering
information about the current page. In the default Elements tab of this panel,
we can see a representation of the page structure on the left-hand side and details
of the selected element (such as the CSS rules that apply to it) on the right-hand
side. This tab is especially useful for investigating the structure of the page and
debugging CSS issues.

Chapter 1

[21]

The Sources tab allows us to view the contents of all loaded scripts on the page.
By right-clicking on a line number, we can set a breakpoint, set a conditional
breakpoint, or have the script continue to that line after another breakpoint is
reached. Breakpoints are effective ways to pause the execution of a script and
examine what occurs in a step-by-step fashion. On the right-hand side of the
page, we can enter a list of variables and expressions we wish to know the value
of at any time.

Getting Started

[22]

The Console tab will be of most frequent use to us while learning jQuery. A field at
the bottom of the panel allows us to enter any JavaScript statement, and the result of
the statement is then presented in the panel.

In this example, we perform the same jQuery selector as in Listing 1.2, but we are
not performing any action on the selected elements. Even so, the statement gives
us interesting information: we see that the result of the selector is a jQuery object
pointing to the two .poem-stanza elements on the page. We can use this console
feature to quickly try out jQuery code at any time, right from within the browser.

In addition, we can interact with this console directly from our code using the
console.log() method:

$(document).ready(function() {
 console.log('hello');
 console.log(52);
 console.log($('div.poem-stanza'));
});

Listing 1.4

This code illustrates that we can pass any kind of expression into the console.log()
method. Simple values such as strings and numbers are printed directly, and more
complicated values such as jQuery objects are nicely formatted for our inspection.

Chapter 1

[23]

This console.log()function (which works in each of the browser developer tools
we mentioned earlier) is a convenient alternative to the JavaScript alert() function,
and will be very useful as we test our jQuery code.

Summary
In this chapter, we have learned how to make jQuery available to JavaScript code
on our web page, use the $() function to locate a part of the page that has a given
class, call .addClass() to apply additional styling to this part of the page, and
invoke $(document).ready() to cause this code to execute upon the loading of
the page. We have also explored the development tools we will be relying on
when writing, testing, and debugging our jQuery code.

We now have an idea of why a developer would choose to use a JavaScript framework
rather than writing all code from scratch, even for the most basic tasks. We also have
seen some of the ways in which jQuery excels as a framework, why we might choose it
over other options, and in general which tasks jQuery makes easier.

The simple example we have been using demonstrates how jQuery works, but is not
very useful in real-world situations. In the next chapter, we will expand on the code
here by exploring jQuery's sophisticated selector language, finding practical uses for
this technique.

Selecting Elements
The jQuery library harnesses the power of Cascading Style Sheets (CSS) selectors to
let us quickly and easily access elements or groups of elements in Document Object
Model (DOM).

In this chapter, we will cover:

•	 The structure of the elements on a web page
•	 How to use CSS selectors to find elements on the page
•	 Custom jQuery extensions to the standard set of CSS selectors
•	 The DOM traversal methods, which provide greater flexibility for

accessing elements on the page

Understanding the DOM
One of the most powerful aspects of jQuery is its ability to make selecting elements
in the DOM easy. The DOM serves as the interface between JavaScript and a web
page; it provides a representation of the source HTML as a network of objects rather
than as plain text.

This network takes the form of a family tree of elements on the page. When we
refer to the relationships that elements have with one another, we use the same
terminology that we use when referring to family relationships: parents, children,
and so on. A simple example can help us understand how the family tree metaphor
applies to a document:

<html>
 <head>
 <title>the title</title>
 </head>
 <body>

Selecting Elements

[26]

 <div>
 <p>This is a paragraph.</p>
 <p>This is another paragraph.</p>
 <p>This is yet another paragraph.</p>
 </div>
 </body>
</html>

Here, <html> is the ancestor of all the other elements; in other words, all the other
elements are descendants of <html>. The <head> and <body> elements are not
only descendants, but children of <html> as well. Likewise, in addition to being
the ancestor of <head> and <body>, <html> is also their parent. The <p> elements
are children (and descendants) of <div>, descendants of <body> and <html>, and
siblings of each other.

HTML

DIV

P

HEAD BODY

TITLE

P P

To help visualize the family tree structure of the DOM, we can use a number
of software tools, such as the Firebug plugin for Firefox or the Web Inspector in
Safari or Chrome.

With this tree of elements at our disposal, we'll be able to use jQuery to efficiently
locate any set of elements on the page. Our tools to achieve this are jQuery selectors
and traversal methods.

Using the $() function
The resulting set of elements from jQuery's selectors and methods is always
represented by a jQuery object. Such a jQuery object is very easy to work with
when we want to actually do something with the things that we find on a page.
We can easily bind events to these objects and add slick effects to them, as well
as chain multiple modifications or effects together.

Chapter 2

[27]

Note that jQuery objects are different from regular DOM elements or
node lists, and as such do not necessarily provide the same methods
and properties for some tasks. In the final part of this chapter, we will
look at ways to directly access the DOM elements that are collected
within a jQuery object.

In order to create a new jQuery object, we use the $() function. This function typically
accepts a CSS selector as its sole parameter and serves as a factory returning a new
jQuery object pointing to the corresponding elements on the page. Just about anything
that can be used in a stylesheet can also be passed as a string to this function, allowing
us to apply jQuery methods to the matched set of elements.

Making jQuery play well with other JavaScript libraries
In jQuery, the dollar sign ($) is simply an alias for jQuery. Because
a $() function is very common in JavaScript libraries, conflicts could
arise if more than one of these libraries were being used in a given
page. We can avoid such conflicts by replacing every instance of $
with jQuery in our custom jQuery code. Additional solutions to this
problem are addressed in Chapter 10, Advanced Events.

The three primary building blocks of selectors are tag name, ID, and class. They can
be used either on their own or in combination with others. The following simple
examples illustrate how these three selectors appear in code:

Selector type CSS jQuery What it does
Tag name p { } $('p') This selects all paragraphs

in the document.
ID #some-id { } $('#some-id') This selects the single

element in the document
that has an ID of some-id.

Class .some-class
{ }

$('.some-
class')

This selects all elements in
the document that have a
class of some-class.

As mentioned in Chapter 1, Getting Started, when we call methods of a jQuery
object, the elements referred by the selector we passed to $() are looped through
automatically and implicitly. Therefore, we can usually avoid explicit iteration, such
as a for loop, that is so often required in DOM scripting.

Now that we have covered the basics, we're ready to start exploring some more
powerful uses of selectors.

Selecting Elements

[28]

CSS selectors
The jQuery library supports nearly all the selectors included in CSS specifications
1 through 3, as outlined on the World Wide Web Consortium's site: http://www.
w3.org/Style/CSS/specs. This support allows developers to enhance their websites
without worrying about which browsers might not understand more advanced
selectors, as long as the browsers have JavaScript enabled.

Progressive Enhancement
Responsible jQuery developers should always apply the concepts
of progressive enhancement and graceful degradation to their code,
ensuring that a page will render as accurately, even if not as beautifully,
with JavaScript disabled as it does with JavaScript turned on. We
will continue to explore these concepts throughout the book. More
information on progressive enhancement can be found at http://
en.wikipedia.org/wiki/Progressive_enhancement.

To begin learning how jQuery works with CSS selectors, we'll use a structure that
appears on many websites, often for navigation – the nested unordered list:

<ul id="selected-plays">
 Comedies

 As You Like It
 All's Well That Ends Well
 A Midsummer Night's Dream
 Twelfth Night

 Tragedies

 Hamlet
 Macbeth
 Romeo and Juliet

 Histories

 Henry IV (email)

 Part I
 Part II

Chapter 2

[29]

 Henry V
 Richard II

Downloadable code examples
As with many of the HTML, CSS, and JavaScript examples in this book,
the previous markup is merely a fragment of the complete document.
To experiment with the examples, we can download them from the
Packt Publishing website at http://www.packtpub.com/support.
In addition, the examples can be viewed in an interactive browser at
http://book.learningjquery.com/.

Notice that the first has an ID of selecting-plays, but none of the tags
have a class associated with them. Without any styles applied, the list looks like this:

The nested list appears as we would expect it to—a set of bulleted items arranged
vertically and indented according to their level.

Selecting Elements

[30]

Styling list-item levels
Let's suppose that we want the top-level items, and only the top-level
items—Comedies, Tragedies, and Histories—to be arranged horizontally.
We can start by defining a horizontal class in the stylesheet:

.horizontal {
 float: left;
 list-style: none;
 margin: 10px;
}

The horizontal class floats the element to the left-hand side of the one
following it, removes the bullet from it if it's a list item, and adds a 10-pixel
margin on all sides of it.

Rather than attaching the horizontal class directly in our HTML, we'll
add it dynamically to the top-level list items only, to demonstrate jQuery's
use of selectors:

$(document).ready(function() {
 $('#selected-plays > li').addClass('horizontal');
});

Listing 2.1

As discussed in Chapter 1, Getting Started, we begin the jQuery code by calling
$(document).ready(), which runs the function passed to it once the DOM
has been loaded, but not before.

The second line uses the child combinator (>) to add the horizontal class to all the
top-level items only. In effect, the selector inside the $() function is saying, "Find
each list item (li) that is a child (>) of the element with an ID of selected-plays
(#selected-plays)"

With the class now applied, the rules defined for that class in the stylesheet take
effect, which in this case means that the list items are arranged horizontally rather
than vertically. Now our nested list looks like this:

Chapter 2

[31]

Styling all the other items—those that are not in the top level—can be done in a
number of ways. Since we have already applied the horizontal class to the top-level
items, one way to select all sub-level items is to use a negation pseudo-class to identify
all list items that do not have a class of horizontal. Note the addition of the third line
of code:

$(document).ready(function() {
 $('#selected-plays > li').addClass('horizontal');
 $('#selected-plays li:not(.horizontal)').addClass('sub-
level');li:not(.horizontal)').addClass('sub-level');
});

Listing 2.2

This time we are selecting every list item () that:

•	 Is a descendant of the element with an ID of selected-plays
(#selected-plays)

•	 Does not have a class of horizontal (:not(.horizontal))

When we add the sub-level class to these items, they receive the shaded
background defined in the stylesheet:

.sub-level {
 background: #ccc;
}

Now the nested list looks like this:

Attribute selectors
Attribute selectors are a particularly helpful subset of CSS selectors. They allow us to
specify an element by one of its HTML attributes, such as a link's title attribute or
an image's alt attribute. For example, to select all images that have an alt attribute,
we write the following:

$('img[alt]')

Selecting Elements

[32]

Styling links
Attribute selectors accept a wildcard syntax inspired by regular expressions for
identifying the value at the beginning (^) or end ($) of a string. They can also take
an asterisk (*) to indicate the value at an arbitrary position within a string or an
exclamation mark (!) to indicate a negated value.

Let's say we want to have different styles for different types of links. We first define
the styles in our stylesheet:

a {
 color: #00c;
}
a.mailto {
 background: url(images/email.png) no-repeat right top;
 padding-right: 18px;
}
a.pdflink {
 background: url(images/pdf.png) no-repeat right top;
 padding-right: 18px;
}
a.henrylink {
 background-color: #fff;
 padding: 2px;
 border: 1px solid #000;
}

Then, we add the three classes—mailto, pdflink, and henrylink—to the
appropriate links using jQuery.

To add a class for all e-mail links, we construct a selector that looks for all
anchor elements (a) with an href attribute ([href]) that begins with mailto:
(^="mailto:"), as follows:

$(document).ready(function() {
 $('a[href^="mailto:"]').addClass('mailto');
});

Listing 2.3

Because of the rules defined in the page's stylesheet, an envelope image appears after
the mailto: link on the page.

Chapter 2

[33]

To add a class for all the links to PDF files, we use the dollar sign rather than the
caret symbol. This is because we're selecting links with an href attribute that ends
with .pdf:

$(document).ready(function() {
 $('a[href^="mailto:"]').addClass('mailto');
 $('a[href$=".pdf"]').addClass('pdflink');
});

Listing 2.4

The stylesheet rule for the newly added pdflink class causes an Adobe Acrobat icon
to appear after each link to a PDF document, as shown in the following screenshot:

Attribute selectors can be combined as well. We can, for example, add the class
henrylink to all links with an href value that both starts with http and contains
henry anywhere:

$(document).ready(function() {
 $('a[href^="mailto:"]').addClass('mailto');
 $('a[href$=".pdf"]').addClass('pdflink');
 $('a[href^="http"][href*="henry"]')
 .addClass('henrylink');
 });
});

Listing 2.5

Selecting Elements

[34]

With the three classes applied to the three types of links, we should see the following:

Note the PDF icon to the right-hand side of the Hamlet link, the envelope icon next to
the email link, and the white background and black border around the Henry V link.

Custom selectors
To the wide variety of CSS selectors, jQuery adds its own custom selectors. These
custom selectors enhance the already impressive capabilities of CSS selectors to
locate page elements in new ways.

Performance note
When possible, jQuery uses the native DOM selector engine of
the browser to find elements. This extremely fast approach is not
possible when custom jQuery selectors are used. For this reason, it
is recommended to avoid frequent use of custom selectors when a
native option is available and performance is very important.

Most of the custom selectors allow us to choose one or more elements from a
collection of elements that we have already found. The custom selector syntax is
the same as the CSS pseudo-class syntax, where the selector starts with a colon (:).
For example, to select the second item from a set of <div> elements with a class of
horizontal, we write this:

$('div.horizontal:eq(1)')

Note that :eq(1) selects the second item in the set because JavaScript array
numbering is zero-based, meaning that it starts with zero. In contrast, CSS is
one-based, so a CSS selector such as $('div:nth-child(1)') would select all
div selectors that are the first child of their parent. Because it can be difficult to
remember which selectors are zero-based and which are one-based, we should
consult the jQuery API documentation at http://api.jquery.com/category/
selectors/ when in doubt.

Chapter 2

[35]

Styling alternate rows
Two very useful custom selectors in the jQuery library are :odd and :even.
Let's take a look at how we can use one of them for basic table striping given
the following tables:

<h2>Shakespeare's Plays</h2>
<table>
 <tr>
 <td>As You Like It</td>
 <td>Comedy</td>
 <td></td>
 </tr>
 <tr>
 <td>All's Well that Ends Well</td>
 <td>Comedy</td>
 <td>1601</td>
 </tr>
 <tr>
 <td>Hamlet</td>
 <td>Tragedy</td>
 <td>1604</td>
 </tr>
 <tr>
 <td>Macbeth</td>
 <td>Tragedy</td>
 <td>1606</td>
 </tr>
 <tr>
 <td>Romeo and Juliet</td>
 <td>Tragedy</td>
 <td>1595</td>
 </tr>
 <tr>
 <td>Henry IV, Part I</td>
 <td>History</td>
 <td>1596</td>
 </tr>
 <tr>
 <td>Henry V</td>
 <td>History</td>
 <td>1599</td>
 </tr>
</table>

Selecting Elements

[36]

<h2>Shakespeare's Sonnets</h2>
<table>
 <tr>
 <td>The Fair Youth</td>
 <td>1–126</td>
 </tr>
 <tr>
 <td>The Dark Lady</td>
 <td>127–152</td>
 </tr>
 <tr>
 <td>The Rival Poet</td>
 <td>78–86</td>
 </tr>
</table>

With minimal styles applied from our stylesheet, these headings and tables appear
quite plain. The table has a solid white background, with no styling separating one
row from the next, as shown in the following screenshot:

Now we can add a style to the stylesheet for all the table rows and use an alt class
for the odd rows:

tr {
 background-color: #fff;
}
.alt {
 background-color: #ccc;
}

Chapter 2

[37]

Finally, we write our jQuery code, attaching the class to the odd-numbered table
rows (<tr> tags):

$(document).ready(function() {
 $('tr:even').addClass('alt');
});

Listing 2.6

But wait! Why use the :even selector for odd-numbered rows? Well, just as with
the :eq() selector, the :even and :odd selectors use JavaScript's native zero-based
numbering. Therefore, the first row counts as zero (even) and the second row counts
as one (odd), and so on. With this in mind, we can expect our simple bit of code to
produce tables that look like this:

Note that for the second table, this result may not be what we intend. Since the last
row in the Plays table has the alternate gray background, the first row in the Sonnets
table has the plain white background. One way to avoid this type of problem is to
use the :nth-child() selector instead, which counts an element's position relative to
its parent element rather than relative to all the elements selected so far. This selector
can take a number, odd, or even as its argument

$(document).ready(function() {
 $('tr:nth-child(odd)').addClass('alt');
});

Listing 2.7

Selecting Elements

[38]

As before, note that :nth-child() is the only jQuery selector that is one-based.
To achieve the same row striping as we did earlier—except with consistent
behavior for the second table—we need to use odd rather than even as the
argument. With this selector in place, both tables are now striped nicely, as
shown in the following screenshot:

Finding elements based on textual content
For one final custom-selector touch, let's suppose for some reason we want to
highlight any table cell that referred to one of the Henry plays. All we have to
do—after adding a class to the stylesheet to make the text bold and italicized
(.highlight {font-weight:bold; font-style: italic;})—is add a line
to our jQuery code using the :contains() selector:

$(document).ready(function() {
 $('tr:nth-child(odd)').addClass('alt');
 $('td:contains(Henry)').addClass('highlight');
});

Listing 2.8

Chapter 2

[39]

So, now we can see our lovely striped table with the Henry plays
prominently featured:

It's important to note that the :contains() selector is case sensitive.
Using $('td:contains(henry)') instead, without the uppercase
"H", would select no cells.

Admittedly, there are ways to achieve the row striping and text highlighting
without jQuery—or any client-side programming, for that matter. Nevertheless,
jQuery, along with CSS, is a great alternative for this type of styling in cases where
the content is generated dynamically and we don't have access to either the HTML
or server-side code.

Form selectors
The capabilities of custom selectors are not limited to locating elements based on
their position. For example, when working with forms, jQuery's custom selectors
and complementary CSS3 selectors can make short work of selecting just the
elements we need. The following table describes a handful of these form selectors:

Selector Match
:input Input, text area, select, and button elements
:button Button elements and input elements with a

type attribute equal to button
:enabled Form elements that are enabled
:disabled Form elements that are disabled

Selecting Elements

[40]

Selector Match
:checked Radio buttons or checkboxes that are checked
:selected Option elements that are selected

As with the other selectors, form selectors can be combined for greater specificity.
We can, for example, select all checked radio buttons (but not checkboxes) with
$('input[type="radio"]:checked') or select all password inputs and disabled
text inputs with $('input[type="password"], input[type="text"]:disabled').
Even with custom selectors, we can use the same basic principles of CSS to build the
list of matched elements.

We have only scratched the surface of available selector expressions
here. We will dive further into the topic in Chapter 9, Advanced
Selectors and Traversing.

DOM traversal methods
The jQuery selectors that we have explored so far allow us to select a set of elements
as we navigate across and down the DOM tree and filter the results. If this were
the only way to select elements, our options would be somewhat limited. There
are many occasions when selecting a parent or ancestor element is essential; that is
where jQuery's DOM traversal methods come into play. With these methods at our
disposal, we can go up, down, and all around the DOM tree with ease.

Some of the methods have a nearly identical counterpart among the selector
expressions. For example, the line we first used to add the alt class,
$('tr:even').addClass('alt'), could be rewritten with the .filter()
method as follows:

$('tr').filter(':even').addClass('alt');

For the most part, however, the two ways of selecting elements complement each
other. Also, the .filter() method in particular has enormous power because it can
take a function as its argument. The function allows us to create complex tests for
whether elements should be kept in the matched set. Let's suppose, for example, we
want to add a class to all external links:

a.external {
 background: #fff url(images/external.png) no-repeat 100% 2px;
 padding-right: 16px;
}

Chapter 2

[41]

jQuery has no selector for this sort of case. Without a filter function, we'd be forced to
explicitly loop through each element, testing each one separately. With the following
filter function, however, we can still rely on jQuery's implicit iteration and keep our
code compact:

$('a').filter(function() {
 return this.hostname && this.hostname != location.hostname;
}).addClass('external');

Listing 2.9

The second line filters the set of <a> elements by two criteria:

•	 They must have an href attribute with a domain name (this.hostname). We
use this test to exclude mailto links, for instance.

•	 The domain name that they link to (again, this.hostname) must not match
(!=) the domain name of the current page (location.hostname).

More precisely, the .filter() method iterates through the matched set of elements,
calling the function once for each and testing the return value. If the function returns
false, the element is removed from the matched set. If it returns true, the element
is kept.

With the .filter() method in place, the Henry V link is styled to indicate it
is external:

In the next section, we'll take another look at our striped table example to see what
else is possible with traversal methods.

Selecting Elements

[42]

Styling specific cells
Earlier, we added a highlight class to all cells containing the text Henry. To instead
style the cell next to each cell containing Henry, we can begin with the selector that
we have already written and simply call the .next() method on the result:

$(document).ready(function() {
 $('td:contains(Henry)').next().addClass('highlight');
});

Listing 2.10

The tables should now look like this:

The .next() method selects only the very next sibling element. To highlight all
of the cells following the one containing Henry, we could use the .nextAll()
method instead:

$(document).ready(function() {
 $('td:contains(Henry)').nextAll().addClass('highlight');
});

Listing 2.11

Chapter 2

[43]

Since the cells containing Henry are in the first column of the table, this code causes
the rest of the cells in these rows to be highlighted:

As we might expect, the .next() and .nextAll() methods have counterparts:
.prev() and .prevAll(). Additionally, .siblings() selects all other elements at
the same DOM level, regardless of whether they come before or after the previously
selected element.

To include the original cell (the one that contains Henry) along with the cells that
follow, we can add the .addBack() method:

$(document).ready(function() {
 $('td:contains(Henry)').nextAll().addBack()
 .addClass('highlight');
});

Listing 2.12

Selecting Elements

[44]

With this modification in place, all of the cells in the row get the styling offered by
the highlight class:

There are a multitude of selector and traversal-method combinations by which we
can select the same set of elements. Here, for example, is another way to select every
cell in each row where at least one of the cells contains Henry:

$(document).ready(function() {
 $('td:contains(Henry)').parent().children()
 .addClass('highlight');
});

Listing 2.13

Rather than traversing across to sibling elements, we travel up one level in the
DOM to the <tr> tag with .parent() and then select all of the row's cells with
.children().

Chaining
The traversal method combinations that we have just explored illustrate jQuery's
chaining capability. With jQuery, it is possible to select multiple sets of elements and
do multiple things with them, all within a single line of code. This chaining not only
helps keep jQuery code concise, but it also can improve a script's performance when
the alternative is to respecify a selector.

Chapter 2

[45]

How chaining works
Almost all jQuery methods return a jQuery object and so can have
more jQuery methods applied to the result. We will explore the inner
workings of chaining in Chapter 8, Developing Plugins.

It is also possible to break a single line of code into multiple lines for greater
readability. For example, a single chained sequence of methods could be written
in one line:

$('td:contains(Henry)').parent().find('td:eq(1)')
 .addClass('highlight').end().find('td:eq(2)')
 .addClass('highlight');

Listing 2.14

This same sequence of methods could also be written in seven lines:

$('td:contains(Henry)') // Find every cell containing "Henry"
 .parent() // Select its parent
 .find('td:eq(1)') // Find the 2nd descendant cell
 .addClass('highlight') // Add the "highlight" class
 .end() // Return to the parent of the cell containing "Henry"
 .find('td:eq(2)') // Find the 3rd descendant cell
 .addClass('highlight'); // Add the "highlight" class

Listing 2.15

The DOM traversal in this example is contrived and not recommended. There
are clearly simpler, more direct methods at our disposal. The point of the example
is simply to demonstrate the tremendous flexibility that chaining affords us.

Chaining can be like speaking a whole paragraph's worth of words in a single
breath—it gets the job done quickly, but it can be hard for someone else to
understand. Breaking it up into multiple lines and adding judicious comments
can save more time in the long run.

Accessing DOM elements
Every selector expression and most jQuery methods return a jQuery object. This
is almost always what we want because of the implicit iteration and chaining
capabilities that it affords.

Selecting Elements

[46]

Still, there may be points in our code when we need to access a DOM element
directly. For example, we may need to make a resulting set of elements available to
another JavaScript library, or we might need to access an element's tag name, which
is available as a property of the DOM element. For these admittedly rare situations,
jQuery provides the .get() method. To access the first DOM element referred to by
a jQuery object, for example, we would use .get(0). So, if we want to know the tag
name of an element with an ID of my-element, we would write:

varmyTag = $('#my-element').get(0).tagName;

For even greater convenience, jQuery provides a shorthand for .get(). Instead
of writing the previous line, we can use square brackets immediately following
the selector:

varmyTag = $('#my-element')[0].tagName;

It's no accident that this syntax appears to treat the jQuery object as an array of DOM
elements; using the square brackets is like peeling away the jQuery layer to get at
the node list, and including the index (in this case, 0) is like plucking out the DOM
element itself.

Summary
With the techniques that we have covered in this chapter, we should now be able to
locate sets of elements on the page in a variety of ways. In particular, we learned how
to style top-level and sub-level items in a nested list by using basic CSS selectors, how
to apply different styles to different types of links by using attribute selectors, add
rudimentary striping to a table by using either the custom jQuery selectors :odd and
:even or the advanced CSS selector :nth-child(), and highlight text within certain
table cells by chaining jQuery methods.

So far, we have been using the $(document).ready() method to add a class to a
matched set of elements. In the next chapter, we'll explore ways in which to add a
class in response to a variety of user-initiated events.

Further reading
The topic of selectors and traversal methods will be explored in more detail in
Chapter 9, Advanced Selectors and Traversing. A complete list of jQuery's selectors
and traversal methods is available in Appendix C, Quick Reference, of this book and
in the official jQuery documentation at http://api.jquery.com/.

Chapter 2

[47]

Exercises
To complete these exercises, you will need the index.html file for this
chapter, as well as the finished JavaScript code as found in complete.js.
These files can be downloaded from the Packt Publishing web site at
http://www.packtpub.com/support.

Challenge exercises may require the use of the official jQuery documentation
at http://api.jquery.com/:

1.	 Add a class of special to all of the elements at the second level
of the nested list.

2.	 Add a class of year to all the table cells in the third column of a table.
3.	 Add the class special to the first table row that has the word Tragedy

in it.
4.	 Challenge: Select all the list items (s) containing

a link (<a>). Add the class afterlink to the sibling list items that follow
the ones selected.

5.	 Challenge: Add the class tragedy to the closest ancestor of
any .pdf link.

Handling Events
JavaScript has several built-in ways of reacting to user interaction and other events.
To make a page dynamic and responsive, we need to harness this capability so that
we can, at the appropriate times, use the jQuery techniques we have learned so far
and the other tricks we'll learn later. While we could do this with vanilla JavaScript,
jQuery enhances and extends the basic event-handling mechanisms to give them a
more elegant syntax while making them more powerful at the same time.

In this chapter, we will cover:

•	 Executing JavaScript code when the page is ready
•	 Handling user events, such as mouse clicks and keystrokes
•	 The flow of events through the document, and how to manipulate that flow
•	 Simulating events as if the user initiated them

Performing tasks on page load
We have already seen how to make jQuery react to the loading of a web page. The
$(document).ready() event handler can be used to fire off a function's worth of
code, but there's a bit more to be said about it.

Timing of code execution
In Chapter 1, Getting Started, we noted that $(document).ready() was jQuery's
primary way to perform tasks on page load. It is not, however, the only method at
our disposal. The native window.onload event can achieve a similar effect. While the
two methods are similar, it is important to recognize their difference in timing, even
though it can be quite subtle depending on the number of resources being loaded.

Handling Events

[50]

The window.onload event fires when a document is completely downloaded to the
browser. This means that every element on the page is ready to be manipulated by
JavaScript, which is a boon for writing feature-rich code without worrying about
load order.

On the other hand, a handler registered using $(document).ready() is invoked
when the DOM is completely ready for use. This also means that all elements are
accessible by our scripts, but does not mean that every associated file has been
downloaded. As soon as the HTML file has been downloaded and parsed into a
DOM tree, the code can run.

Style loading and code execution
To ensure that the page has also been styled before the JavaScript code
executes, it is good practice to place the <link rel="stylesheet">
and <style> tags prior to any <script> tags within the document's
<head> element.

Consider, for example, a page that presents an image gallery; such a page may have
many large images on it, which we can hide, show, move, and otherwise manipulate
with jQuery. If we set up our interface using the onload event, users will have to
wait until each and every image is completely downloaded before they can use those
features. Even worse, if behaviors are not yet attached to elements that have default
behaviors (such as links), user interactions could produce unintended outcomes.
However, when we use $(document).ready() for the setup, the interface is ready
to be used earlier with the correct behavior.

What is loaded and what is not?
Using $(document).ready() is almost always preferred over
using an onload handler, but we need to keep in mind that because
supporting files may not have loaded, attributes such as image height
and width are not necessarily available at this time. If these are needed,
we may at times also choose to implement an onload handler (or
more likely, use jQuery to bind a handler to the load event); the two
mechanisms can coexist peacefully.

Chapter 3

[51]

Handling multiple scripts on one page
The traditional mechanism for registering event handlers through JavaScript (rather
than adding handler attributes right in the HTML content) is to assign a function to
the DOM element's corresponding property. For example, suppose we had defined
the following function:

function doStuff() {
 // Perform a task...
}

We could then either assign it within our HTML markup:

<body onload="doStuff();">

Or, we could assign it from within JavaScript code:

window.onload = doStuff;

Both of these approaches will cause the function to execute when the page is
loaded. The advantage of the second is that the behavior is cleanly separated
from the markup.

Referencing versus calling functions
When we assign a function as a handler, we use the function name
but omit the trailing parentheses. With the parentheses, the function
is called immediately; without the parantheses, the name simply
identifies, or references, the function, and can be used to call it later.

With one function, this strategy works quite well. However, suppose we have a
second function as follows:

function doOtherStuff() {
 // Perform another task...
}

We could then attempt to assign this function to run on page load:

window.onload = doOtherStuff;

However, this assignment trumps the first one. The .onload attribute can only
store one function reference at a time, so we can't add to the existing behavior.

Handling Events

[52]

The $(document).ready() mechanism handles this situation gracefully. Each call
to the method adds the new function to an internal queue of behaviors; when the
page is loaded, all of the functions will execute. The functions will run in the order in
which they were registered.

To be fair, jQuery doesn't have a monopoly on workarounds to this
issue. We can write a JavaScript function that calls the existing onload
handler then calls a passed-in handler. This approach avoids conflicts
between rival handlers like $(document).ready() does, but lacks
some of the other benefits we have discussed. In modern browsers,
including Internet Explorer 9, the DOMContentLoaded event can be
triggered with the W3C standard document.addEventListener()
method. However, if we need to support older browsers as well,
jQuery 1.x versions handle the inconsistencies that these browsers
present so that we don't have to handle them ourselves.

Alternate syntax for .ready()
The $(document).ready() construct is actually calling the .ready() method on a
jQuery object we've constructed from the document DOM element. The $() function
provides a shortcut for us as this is a common task. When we pass in a function as
the argument to $(), jQuery performs an implicit call to .ready(). We normally
write this construct in the following way:

$(document).ready(function() {
 // Our code here...
});

However, we can choose to use the following shorter version instead:

$(function() {
 // Our code here...
});

While the latter syntax is shorter, the longer version makes code more descriptive
about what it is doing. For this reason, we will use the longer syntax throughout
this book.

Passing an argument to the .ready() callback
In some cases, it may prove useful to use more than one JavaScript library on the
same page. Since many libraries make use of the $ identifier (since it is short and
convenient), we need a way to prevent collisions between these uses.

Chapter 3

[53]

Fortunately, jQuery provides a method called jQuery.noConflict() to return
control of the $ identifier back to other libraries. Typical usage of jQuery
.noConflict() follows the following pattern:

<script src="prototype.js"></script>
<script src="jquery.js"></script>
<script>
 jQuery.noConflict();
</script>
<script src="myscript.js"></script>

First, the other library (Prototype in this example) is included. Then, jQuery itself is
included, taking over $ for its own use. Next, a call to .noConflict() frees up $, so
that control of it reverts to the first included library (Prototype). Now in our custom
script we can use both libraries—but whenever we want to use a jQuery method, we
need to write jQuery instead of $ as an identifier.

The .ready() method has one more trick up its sleeve to help us in this situation.
The callback function we pass to it can take a single parameter—the jQuery object
itself. This allows us to effectively rename it without fear of conflicts using the
following syntax:

jQuery(document).ready(function($) {
 // In here, we can use $ like normal!
});

Or we can use the shorter syntax we learned previously:

jQuery(function($) {
 // Code that uses $.
});

Handling simple events
There are many other times apart from the loading of the page at which we might
want to perform a task. Just as JavaScript allows us to intercept the page load
event with <body onload=""> or window.onload, it provides similar hooks for
user-initiated events such as mouse clicks (onclick), form fields being modified
(onchange), and windows changing size (onresize). When assigned directly to
elements in the DOM, these hooks have similar drawbacks to the ones we outlined for
onload. Therefore, jQuery offers an improved way of handling these events as well.

Handling Events

[54]

A simple style switcher
To illustrate some event handling techniques, suppose we wish to have a single page
rendered in several different styles based on user input. We will present buttons
that allow the user to toggle between a normal view, a view in which the text is
constrained to a narrow column, and a view with large print for the content area.

Progressive enhancement
In a real-world example, a good web citizen will employ the principle
of progressive enhancement here. In Chapter 5, Manipulating the DOM,
we will learn how we can inject content like this style switcher right
from our jQuery code, so that users without JavaScript available will
not see non-functional controls.

The HTML markup for the style switcher is as follows:

<div id="switcher" class="switcher">
 <h3>Style Switcher</h3>
 <button id="switcher-default">
 Default
 </button>
 <button id="switcher-narrow">
 Narrow Column
 </button>
 <button id="switcher-large">
 Large Print
 </button>
</div>

Downloadable code examples
As with many of the HTML, CSS, and JavaScript examples in this book,
the preceding markup is merely a fragment of the complete document.
To experiment with the examples, you can download them from the
Packt Publishing website at http://www.packtpub.com/support.
In addition, the examples can be viewed in an interactive browser at
http://book.learningjquery.com/.

Combined with the rest of the page's HTML markup and some basic CSS, we get a
page that looks like the following:

Chapter 3

[55]

To begin with, we'll make the Large Print button operate. We need a bit of CSS to
implement our alternative view of the page as follows:

body.large .chapter {
 font-size: 1.5em;
}

Our goal, then, is to apply the large class to the <body> tag. This will allow the
stylesheet to reformat the page appropriately. Using what we learned in Chapter 2,
Selecting Elements, we already know the statement needed to accomplish this:

$('body').addClass('large');

However, we want this to occur when the button is clicked, not when the page is
loaded as we have seen so far. To do this, we'll introduce the .on() method. This
method allows us to specify any DOM event and to attach a behavior to it. In this
case, the event is called click, and the behavior is a function consisting of our
previous one-liner:

$(document).ready(function() {
 $('#switcher-large').on('click', function() {
 $('body').addClass('large');
 });
});

Listing 3.1

Handling Events

[56]

Now when the button gets clicked on, our code runs and the text is enlarged:

That's all there is to binding a behavior to an event. The advantages we discussed
with the .ready() method apply here as well. Multiple calls to .on() coexist nicely,
appending additional behaviors to the same event as necessary.

This is not necessarily the most elegant or efficient way to accomplish this task. As
we proceed through this chapter, we will extend and refine this code into something
we can be proud of.

Enabling the other buttons
We now have a Large Print button that works as advertised, but we need to apply
similar handling to the other two buttons (Default and Narrow Column) to make
them perform their tasks. This is straightforward; we use .on() to add a click
handler to each of them, removing and adding classes as necessary. The new code
reads as follows:

$(document).ready(function() {
 $('#switcher-default').on('click', function() {
 $('body').removeClass('narrow');
 $('body').removeClass('large');
 });
 $('#switcher-narrow').on('click', function() {

Chapter 3

[57]

 $('body').addClass('narrow');
 $('body').removeClass('large');
 });
 $('#switcher-large').on('click', function() {
 $('body').removeClass('narrow');
 $('body').addClass('large');
 });
});

Listing 3.2

This is combined with a CSS rule for the narrow class:

body.narrow .chapter {
 width: 250px;
}

Now, after clicking the Narrow Column button, its corresponding CSS is applied
and the text gets laid out differently:

Clicking on Default removes both class names from the <body> tag, returning the
page to its initial rendering.

Handling Events

[58]

Making use of the event handler context
Our switcher is behaving correctly, but we are not giving the user any feedback
about which button is currently active. Our approach for handling this will be to
apply the selected class to the button when it is clicked, and to remove this class
from the other buttons. The selected class simply makes the button's text bold:

.selected {
 font-weight: bold;
}

We could accomplish this class modification as we did previously by referring to
each button by ID and applying or removing classes as necessary, but instead we'll
explore a more elegant and scalable solution that exploits the context in which event
handlers run.

When any event handler is triggered, the keyword this refers to the DOM element
to which the behavior was attached. Earlier we noted that the $() function could
take a DOM element as its argument; this is one of the key reasons why that facility
is available. By writing $(this) within the event handler, we create a jQuery object
corresponding to the element, and we can act on it just as if we had located it with
a CSS selector.

With this in mind, we can write the following:

$(this).addClass('selected');

Placing this line in each of the three handlers will add the class when a button
is clicked. To remove the class from the other buttons, we can take advantage of
jQuery's implicit iteration feature, and write:

$('#switcher button').removeClass('selected');

This line removes the class from every button inside the style switcher.

We should also add the class to the Default button when the document is ready.
So, placing these in the correct order, code is as follows:

$(document).ready(function() {
$('#switcher-default')
 .addClass('selected')
 .on('click', function() {
 $('body').removeClass('narrow');
 $('body').removeClass('large');
 $('#switcher button').removeClass('selected');

Chapter 3

[59]

 $(this).addClass('selected');
 });
 $('#switcher-narrow').on('click', function() {
 $('body').addClass('narrow');
 $('body').removeClass('large');
 $('#switcher button').removeClass('selected');
 $(this).addClass('selected');
 });
 $('#switcher-large').on('click', function() {
 $('body').removeClass('narrow');
 $('body').addClass('large');
 $('#switcher button').removeClass('selected');
 $(this).addClass('selected');
 });
});

Listing 3.3

Now the style switcher gives appropriate feedback.

Generalizing the statements by using the handler context allows us to be yet more
efficient. We can factor the highlighting routine out into a separate handler, as shown
in Listing 3.4, because it is the same for all three buttons:

$(document).ready(function() {
 $('#switcher-default')
 .addClass('selected')
 .on('click', function() {
 $('body').removeClass('narrow').removeClass('large');
 });
 $('#switcher-narrow').on('click', function() {
 $('body').addClass('narrow').removeClass('large');
 });
 $('#switcher-large').on('click', function() {
 $('body').removeClass('narrow').addClass('large');
 });
 $('#switcher button').on('click', function() {
 $('#switcher button').removeClass('selected');
 $(this).addClass('selected');
 });
});

Listing 3.4

Handling Events

[60]

This optimization takes advantage of three jQuery features we have already discussed.
First, implicit iteration is once again useful when we bind the same click handler to
each button with a single call to .on(). Second, behavior queuing allows us to bind
two functions to the same click event without the second overwriting the first. Lastly,
we're using jQuery's chaining capabilities to collapse the adding and removing of
classes into a single line of code each time.

Consolidating code using the event context
The code optimization we've just completed is an example of refactoring—modifying
existing code to perform the same task in a more efficient or elegant way. To explore
further refactoring opportunities, let's look at the behaviors we have bound to each
button. The .removeClass() method's parameter is optional; when omitted, it
removes all classes from the element. We can streamline our code a bit by exploiting
this as follows:

// work in progress
$(document).ready(function() {
 $('#switcher-default')
 .addClass('selected')
 .on('click', function() {
 $('body').removeClass();
 });
 $('#switcher-narrow').on('click', function() {
 $('body').removeClass().addClass('narrow');
 });
 $('#switcher-large').on('click', function() {
 $('body').removeClass().addClass('large');
 });
 $('#switcher button').on('click', function() {
 $('#switcher button').removeClass('selected');
 $(this).addClass('selected');
 });
});

Listing 3.5

Note that the order of operations has changed a bit to accommodate our more
general class removal; we need to execute .removeClass() first so that it doesn't
undo the call to .addClass(), which we perform in the same breath.

Chapter 3

[61]

We can only safely remove all classes because we are in charge of the
HTML in this case. When we are writing code for reuse (such as for a
plugin), we need to respect any classes that might be present and leave
them intact.

Now we are executing some of the same code in each of the buttons' handlers. This
can be easily factored out into our general button click handler:

$(document).ready(function() {
 $('#switcher-default').addClass('selected');
 $('#switcher button').on('click', function() {
 $('body').removeClass();
 $('#switcher button').removeClass('selected');
 $(this).addClass('selected');
 });
 $('#switcher-narrow').on('click', function() {
 $('body').addClass('narrow');
 });
 $('#switcher-large').on('click', function() {
 $('body').addClass('large');
 });
});

Listing 3.6

Note that we need to move the general handler above the specific ones now. The
.removeClass() call needs to happen before .addClass() executes, and we can
count on this because jQuery always triggers event handlers in the order in which
they were registered.

Finally, we can get rid of the specific handlers entirely by once again exploiting
event context. Since the context keyword this gives us a DOM element rather
than a jQuery object, we can use native DOM properties to determine the ID of the
element that was clicked. We can thus bind the same handler to all the buttons, and
within the handler perform different actions for each button:

$(document).ready(function() {
 $('#switcher-default').addClass('selected');
 $('#switcher button').on('click', function() {
 var bodyClass = this.id.split('-')[1];
 $('body').removeClass().addClass(bodyClass);
 $('#switcher button').removeClass('selected');
 $(this).addClass('selected');
 });
});

Listing 3.7

Handling Events

[62]

The value of the bodyClass variable will be default, narrow, or large, depending
on which button is clicked. Here, we are departing somewhat from our previous
code; in that we are adding a default class to <body> when the user clicks on
<button id="switcher-default">. While we do not need this class applied, it isn't
causing any harm either, and the reduction of code complexity more than makes up
for an unused class name.

Shorthand events
Binding a handler for an event (such as a simple click event) is such a common task
that jQuery provides an even terser way to accomplish it; shorthand event methods
work in the same way as their .on() counterparts with a couple fewer keystrokes.

For example, our style switcher could be written using .click() instead of .on()
as follows:

$(document).ready(function() {
 $('#switcher-default').addClass('selected');
 $('#switcher button').click(function() {
 var bodyClass = this.id.split('-')[1];
 $('body').removeClass().addClass(bodyClass);
 $('#switcher button').removeClass('selected');
 $(this).addClass('selected');
 });
});

Listing 3.8

Shorthand event methods such as the previous one exist for the other standard DOM
events such as blur, keydown, and scroll as well. Each shortcut method binds a
handler to the event with the corresponding name.

Showing and hiding advanced features
Suppose that we wanted to be able to hide our style switcher when it is not needed.
One convenient way to hide advanced features is to make them collapsible. We will
allow one click on the label to hide the buttons, leaving the label alone. Another click
on the label will restore the buttons. We need another class as follows to handle the
hidden buttons:

.hidden {
 display: none;
}

Chapter 3

[63]

We could implement this feature by storing the current state of the buttons in a
variable and checking its value each time the label is clicked to know whether to
add or remove the hidden class on the buttons. However, jQuery provides an easy
way for us to add or remove a class depending on whether that class is already
present—the .toggleClass() method.

$(document).ready(function() {
 $('#switcher h3').click(function() {
 $('#switcher button').toggleClass('hidden');
 });
});

Listing 3.9

After the first click, the buttons are all hidden:

And a second click returns them to visibility:

Once again, we rely on implicit iteration, this time to hide all the buttons in one fell
swoop without requiring an enclosing element.

Handling Events

[64]

Event propagation
In illustrating the ability of the click event to operate on normally non-clickable
page elements, we have crafted an interface that gives few hints that the style
switcher label—actually just an <h3> element—is actually a live part of the page
awaiting user interaction. To remedy this, we can give it a rollover state, making
it clear that it interacts in some way with the mouse:

.hover {
 cursor: pointer;
 background-color: #afa;
}

The CSS specification includes a pseudo-class called :hover, which allows a
stylesheet to affect an element's appearance when the user's mouse cursor hovers
over it. This would certainly solve our problem in this instance, but instead, we
will take this opportunity to introduce jQuery's .hover() method, which allows
us to use JavaScript to change an element's styling—and indeed, perform any
arbitrary action—both when the mouse cursor enters the element and when it
leaves the element.

The .hover() method takes two function arguments, unlike the simple event
methods we have so far encountered. The first function will be executed when the
mouse cursor enters the selected element, and the second is fired when the cursor
leaves. We can modify the classes applied to the buttons at these times to achieve a
rollover effect:

$(document).ready(function() {
 $('#switcher h3').hover(function() {
 $(this).addClass('hover');
 }, function() {
 $(this).removeClass('hover');
 });
});

Listing 3.10

We once again use implicit iteration and event context for short and simple code.
Now when hovering over the <h3> element, we see our class applied:

Chapter 3

[65]

The use of .hover() also means we avoid headaches caused by event propagation
in JavaScript. To understand this, we need to take a look at how JavaScript decides
which element gets to handle a given event.

The journey of an event
When an event occurs on a page, an entire hierarchy of DOM elements gets a chance
to handle the event. Consider a page model like the following:

<div class="foo">

 The quick brown fox jumps over the lazy dog.

 <p>
 How razorback-jumping frogs can level six piqued gymnasts!
 </p>
</div>

We then visualize the code as a set of nested elements:

Handling Events

[66]

For any event, there are multiple elements that could logically be responsible for
reacting. When the link on this page is clicked, for example, the <div>, , and
<a> elements should all get the opportunity to respond to the click. After all, these
three elements are all under the user's mouse cursor at the time. The <p> element, on
the other hand, is not part of this interaction at all.

One strategy for allowing multiple elements to respond to a user interaction is
called event capturing. With event capturing, the event is first given to the most all-
encompassing element, and then to progressively more specific ones. In our example,
this means that first the <div> element gets passed the event, then the
element, and finally the <a> element, as shown in the following figure:

Technically, in browser implementations of event capturing,
specific elements register to listen for events that occur among their
descendants. The approximation provided here is close enough for
our needs.

The opposite strategy is called event bubbling. The event gets sent to the most
specific element, and after this element has an opportunity to react, the event
bubbles up to more general elements. In our example, the <a> element would be
handed the event first, and then the and <div> elements in that order, as
shown in the following figure:

Chapter 3

[67]

Unsurprisingly, different browser developers originally decided on different models
for event propagation. The DOM standard that was eventually developed thus
specified that both strategies should be used: first the event is captured from general
elements to specific ones, and then the event bubbles back up to the top of the DOM
tree. Event handlers can be registered for either part of the process.

To provide consistent and easy-to-understand behavior, jQuery always registers
event handlers for the bubbling phase of the model. We can always assume that
the most specific element will get the first opportunity to respond to any event.

Side effects of event bubbling
Event bubbling can cause unexpected behavior, especially when the wrong element
responds to a mouseover or mouseout event. Consider a mouseout event handler
attached to the <div> element in our example. When the user's mouse cursor exits the
<div> element, the mouseout handler is run as anticipated. Since this is at the top of
the hierarchy, no other elements get the event. On the other hand, when the cursor
exits the <a> element, a mouseout event is sent to that. This event will then bubble up
to the element and then to the <div> element, firing the same event handler.
This bubbling sequence is likely not desired.

The mouseenter and mouseleave events, either bound individually or combined
in the .hover() method, are aware of these bubbling issues, and when we use them
to attach events, we can ignore the problems caused by the wrong element getting a
mouseover or mouseout event.

The mouseout scenario just described illustrates the need to constrain the scope of
an event. While .hover() handles this specific case, we will encounter other
situations in which we need to limit an event spatially (preventing the event from
being sent to certain elements) or temporally (preventing the event from being sent
at certain times).

Altering the journey – the event object
We have already seen one situation in which event bubbling can cause problems.
To show a case in which .hover() does not help our cause, we'll alter the collapsing
behavior that we implemented earlier.

Handling Events

[68]

Suppose we wish to expand the clickable area that triggers the collapsing or
expanding of the style switcher. One way to do this is to move the event handler
from the label, <h3>, to its containing <div> element. In Listing 3.9, we added a
click handler to #switcher h3; we will attempt this change by attaching the
handler to #switcher instead:

// Unfinished code
$(document).ready(function() {
 $('#switcher').click(function() {
 $('#switcher button').toggleClass('hidden');
 });
});

Listing 3.11

This alteration makes the entire area of the style switcher clickable to toggle its
visibility. The downside is that clicking on a button also collapses the style switcher
after the style on the content has been altered. This is due to event bubbling; the
event is first handled by the buttons, then passed up through the DOM tree until it
reaches the <div id="switcher"> element, where our new handler is activated and
hides the buttons.

To solve this problem, we need access to the event object. This is a DOM construct
that is passed to each element's event handler when it is invoked. It provides
information about the event, such as where the mouse cursor was at the time of the
event. It also provides some methods that can be used to affect the progress of the
event through the DOM.

Event object reference
For detailed information about jQuery's implementation of the event
object and its properties, see http://api.jquery.com/category/
events/event-object/.

To use the event object in our handlers, we only need to add a parameter to the
function:

$(document).ready(function() {
 $('#switcher').click(function(event) {
 $('#switcher button').toggleClass('hidden');
 });
});

Chapter 3

[69]

Note that we have named this parameter event because it is descriptive, not
because we need to. Naming it flapjacks or anything else for that matter would
work just as well.

Event targets
Now we have the event object available to us as the variable event within our
handler. The property event.target can be helpful in controlling where an event
takes effect. This property is a part of the DOM API, but is not implemented in some
older browser versions; jQuery extends the event object as necessary to provide the
property in every browser. With .target, we can determine which element in the
DOM was the first to receive the event. In the case of a click event, this will be the
actual item clicked on. Remembering that this gives us the DOM element handling
the event, we can write the following code:

// Unfinished code
$(document).ready(function() {
 $('#switcher').click(function(event) {
 if (event.target == this) {
 $('#switcher button').toggleClass('hidden');
 }
 });
});

Listing 3.12

This code ensures that the item clicked on was <div id="switcher">, not one of
its sub-elements. Now, clicking on buttons will not collapse the style switcher, but
clicking on the switcher's background will. However, clicking on the label, <h3>,
now does nothing, because it too is a sub-element. Instead of placing this check here,
we can modify the behavior of the buttons to achieve our goals.

Stopping event propagation
The event object provides the .stopPropagation() method, which can halt the
bubbling process completely for the event. Like .target, this method is a basic
DOM feature, but cannot be safely used as such in Internet Explorer 8 or older.
As long as we register all of our event handlers using jQuery, though, we can
use it with impunity.

Handling Events

[70]

We'll remove the event.target == this check we just added, and instead add
some code in our buttons' click handlers:

$(document).ready(function() {
$('#switcher').click(function(event) {
 $('#switcher button').toggleClass('hidden');
 });
});
$(document).ready(function() {
 $('#switcher-default').addClass('selected');
 $('#switcher button').click(function(event) {
 var bodyClass = this.id.split('-')[1];
 $('body').removeClass().addClass(bodyClass);
 $('#switcher button').removeClass('selected');
 $(this).addClass('selected');
 event.stopPropagation();
 });
});

Listing 3.13

As before, we need to add a parameter to the function we're using as the click
handler so we have access to the event object. Then, we simply call event
.stopPropagation() to prevent any other DOM element from responding to
the event. Now our click is handled by the buttons, and only the buttons; clicks
anywhere else on the style switcher will collapse or expand it.

Preventing default actions
If our click event handler was registered on a link element (<a>) rather than a
generic <button> element outside of a form, we would face another problem. When
a user clicks on a link, the browser loads a new page. This behavior is not an event
handler in the same sense as the ones we have been discussing; instead, this is the
default action for a click on a link element. Similarly, when the Enter key is pressed
while the user is editing a form, the submit event may be triggered on the form, but
then the form submission actually occurs after this.

If these default actions are undesired, calling .stopPropagation() on the event
will not help. These actions occur nowhere in the normal flow of event propagation.
Instead, the .preventDefault() method will serve to stop the event in its tracks
before the default action is triggered.

Chapter 3

[71]

Calling .preventDefault() is often useful after we have done some
tests on the environment of the event. For example, during a form
submission, we might wish to check that required fields are filled in and
prevent the default action only if they are not.

Event propagation and default actions are independent mechanisms; either of
them can be stopped while the other still occurs. If we wish to halt both, we can
return false at the end of our event handler, which is a shortcut for calling both
.stopPropagation() and .preventDefault() on the event.

Delegating events
Event bubbling isn't always a hindrance; we can often use it to great benefit. One
great technique that exploits bubbling is called event delegation. With it, we can
use an event handler on a single element to do the work of many.

In our example, there are just three <button> elements that have attached click
handlers. But what if there were many? This is more common than you might
think. Consider, for example, a large table of information in which each row has an
interactive item requiring a click handler. Implicit iteration makes assigning all of
these click handlers easy, but performance can suffer because of the looping being
done internally to jQuery, and because of the memory footprint of maintaining all
the handlers.

Instead, we can assign a single click handler to an ancestor element in the DOM. An
uninterrupted click event will eventually reach the ancestor due to event bubbling,
and we can do our work there.

As an example, let's apply this technique to our style switcher (even though the
number of items does not demand the approach). As seen in Listing 3.12 previously,
we can use the event.target property to check what element is under the mouse
cursor when the click event occurs.

$(document).ready(function() {
 $('#switcher').click(function(event) {
 if ($(event.target).is('button')) {
 var bodyClass = event.target.id.split('-')[1];
 $('body').removeClass().addClass(bodyClass);
 $('#switcher button').removeClass('selected');
 $(event.target).addClass('selected');
 event.stopPropagation();

Handling Events

[72]

 }
 });
});

Listing 3.14

We've used a new method here called .is(). This method accepts the selector
expressions we investigated in the previous chapter and tests the current jQuery
object against the selector. If at least one element in the set is matched by the
selector, .is()returns true. In this case, $(event.target).is('button') asks
whether the element clicked is a <button> element. If so, we proceed with the
previous code, with one significant alteration: the keyword this now refers to <div
id="switcher">, so every time we are interested in the clicked button, we must now
refer to it with event.target.

.is() and .hasClass()
We can test for the presence of a class on an element with .hasClass().
The .is() method is more flexible, however, and can test any selector
expression.

We have an unintentional side-effect from this code, however. When a button
is clicked now, the switcher collapses, as it did before we added the call to
.stopPropagation(). The handler for the switcher visibility toggle is now bound
to the same element as the handler for the buttons, so halting the event bubbling
does not stop the toggle from being triggered. To sidestep this issue, we can remove
the .stopPropagation() call and instead add another .is() test. Also, since we're
making the entire switcher <div> element clickable, we ought to toggle the hover
class while the user's mouse is over any part of it:

$(document).ready(function() {
 $('#switcher').hover(function() {
 $(this).addClass('hover');
 }, function() {
 $(this).removeClass('hover');
 });
});
$(document).ready(function() {
 $('#switcher').click(function(event) {
 if (!$(event.target).is('button')) {
 $('#switcher button').toggleClass('hidden');
 }
 });
});

Chapter 3

[73]

$(document).ready(function() {
 $('#switcher-default').addClass('selected');
 $('#switcher').click(function(event) {
 if ($(event.target).is('button')) {
 var bodyClass = event.target.id.split('-')[1];
 $('body').removeClass().addClass(bodyClass);
 $('#switcher button').removeClass('selected');
 $(event.target).addClass('selected');
 }
 });
});

Listing 3.15

This example is a bit overcomplicated for its size, but as the number of elements
with event handlers increases, so does event delegation's benefit. Also, we can avoid
some of the code repetition by combining the two click handlers and using a single
if-else statement for the .is() test:

$(document).ready(function() {
 $('#switcher-default').addClass('selected');
 $('#switcher').click(function(event) {
 if ($(event.target).is('button')) {
 var bodyClass = event.target.id.split('-')[1];
 $('body').removeClass().addClass(bodyClass);
 $('#switcher button').removeClass('selected');
 $(event.target).addClass('selected');
 } else {
 $('#switcher button').toggleClass('hidden');
 }
 });
});

Listing 3.16

While our code could still use some fine tuning, it is approaching a state at which
we can feel comfortable using it for what we set out to do. Nevertheless, for the sake
of learning more about jQuery's event handling, we'll back up to Listing 3.15 and
continue to modify that version of the code.

Event delegation is also useful in other situations we'll see later, such
as when new elements are added by DOM manipulation methods
(Chapter 5, Manipulating the DOM) or Ajax routines (Chapter 6, Sending
Data with Ajax).

Handling Events

[74]

Using built-in event-delegation capabilities
Because event delegation can be helpful in so many situations, jQuery includes a set
of tools to aid developers in using this technique. The .on() method we have already
discussed can perform event delegation when provided with appropriate parameters:

$('#switcher').on('click', 'button', function() {
 var bodyClass = event.target.id.split('-')[1];
 $('body').removeClass().addClass(bodyClass);
 $('#switcher button').removeClass('selected');
 $(this).addClass('selected');
});

Listing 3.17

When a selector expression is provided as the second argument to .on(), jQuery
binds the click handler to the #switcher object, but compares event.target
against the selector expression—in this case, 'button'. If it matches, jQuery maps
the this keyword to the matched element. Otherwise, the event handler is not
executed at all.

We'll fully examine this use of .on(), as well as the .delegate() and
.undelegate() methods, in Chapter 10, Advanced Events.

Removing an event handler
There are times when we will be done with an event handler we previously registered.
Perhaps the state of the page has changed such that the action no longer makes sense.
It is typically possible to handle this situation with conditional statements inside our
event handlers, but it may be more elegant to unbind the handler entirely.

Suppose that we want our collapsible style switcher to remain expanded whenever
the page is not using the normal style. While the Narrow Column or Large Print
button is selected, clicking on the background of the style switcher should do
nothing. We can accomplish this by calling the the .off() method to remove the
collapsing handler when one of the non-default style switcher buttons is clicked:

$(document).ready(function() {
 $('#switcher').click(function(event) {
 if (!$(event.target).is('button')) {
 $('#switcher button').toggleClass('hidden');
 }
 });

Chapter 3

[75]

 $('#switcher-narrow, #switcher-large').click(function() {
 $('#switcher').off('click');
 });
});

Listing 3.18

Now when a button such as Narrow Column is clicked, the click handler on the
style switcher <div> is removed, and clicking on the background of the box no
longer collapses it. However, the buttons don't work anymore! They are affected
by the click event of the style switcher <div> as well, because we rewrote the
button-handling code to use event delegation. This means that when we call
$('#switcher').off('click'), both behaviors are removed.

Giving namespaces to event handlers
We need to make our .off() call more specific so that it does not remove both
of the click handlers we have registered. One way of doing this is to use event
namespacing. We can introduce additional information when an event is bound
that allows us to identify that particular handler later. To use namespacing, we
need to return to the non-shorthand method of binding event handlers, the .on()
method itself.

The first parameter we pass to .on() is the name of the event we want to watch for.
We can use a special syntax here, though, that allows us to subcategorize the event:

$(document).ready(function() {
 $('#switcher').on('click.collapse', function(event) {
 if (!$(event.target).is('button')) {
 $('#switcher button').toggleClass('hidden');
 }
 });
 $('#switcher-narrow, #switcher-large').click(function() {
 $('#switcher').off('click.collapse');
 });
});

Listing 3.19

The .collapse suffix is invisible to the event handling system; click events are
handled by this function, just as if we wrote .on('click'). However, the addition
of the namespace means that we can unbind just this handler without affecting the
separate click handler we wrote for the buttons.

Handling Events

[76]

There are other ways of making our .off() call more specific, as we
will see in a moment. However, event namespacing is a useful tool in
our arsenal. It is especially handy in the creation of plugins, as we'll
see in later chapters.

Rebinding events
Now clicking on the Narrow Column or Large Print button causes the style switcher
collapsing functionality to be disabled. However, we want the behavior to return
when the Default button is pressed. To do this, we will need to rebind the handler
whenever Default is clicked.

First, we should give our handler function a name so that we can use it more than
once without repeating ourselves:

$(document).ready(function() {
 var toggleSwitcher = function(event) {
 if (!$(event.target).is('button')) {
 $('#switcher button').toggleClass('hidden');
 }
 };
 $('#switcher').on('click.collapse', toggleSwitcher);
});

Listing 3.20

Note that we are using a new syntax here for defining a function. Rather than use a
function declaration (defining the function by leading with the function keyword
and naming it), we use an anonymous function expression, assigning a no-name
function to a local variable. Aside from a couple of subtle differences that don't
apply in this case, the two syntaxes are functionally equivalent. Here, our use of
the function expression is a stylistic choice to make our event handlers and other
function definitions resemble each other more closely.

Also, recall that we are passing .on() a function reference as its second argument.
It is important to remember when referring to a function that we must omit
parentheses after the function name; parentheses would cause the function to be
called rather than referenced.

Now that the function can be referenced, we can bind it again later without repeating
the function definition:

// Unfinished code
$(document).ready(function() {

Chapter 3

[77]

 var toggleSwitcher = function(event) {
 if (!$(event.target).is('button')) {
 $('#switcher button').toggleClass('hidden');
 }
 };
 $('#switcher').on('click.collapse', toggleSwitcher);
 $('#switcher-narrow, #switcher-large').click(function() {
 $('#switcher').off('click.collapse');
 });
 $('#switcher-default').click(function() {
 $('#switcher')
 .on('click.collapse', toggleSwitcher);
 });
});

Listing 3.21

Now the toggle behavior is bound when the document is loaded, unbound when
Narrow Column or Large Print is clicked, and rebound when Normal is clicked
after that.

Since we have named the function, we no longer need to use namespacing. The
.off() method can take a function as a second argument; in this case, it unbinds
only that specific handler. However, we have run into another problem. Remember
that when a handler is bound to an event in jQuery, previous handlers remain in
effect. In this case, each time Normal is clicked, another copy of the toggleSwitcher
handler is bound to the style switcher. In other words, the function is called an extra
time for each additional click until the user clicks Narrow or Large Print, which
unbinds all of the toggleSwitcher handlers at once.

When an even number of toggleSwitcher handlers are bound, clicks on the style
switcher (but not on a button) appear to have no effect. In fact, the hidden class is
being toggled multiple times, ending up in the same state it was when it began. To
remedy this problem, we can unbind the handler when a user clicks on any button,
and rebind only after ensuring that the clicked button's ID is switcher-default:

$(document).ready(function() {
 var toggleSwitcher = function(event) {
 if (!$(event.target).is('button')) {
 $('#switcher button').toggleClass('hidden');
 }
 };
 $('#switcher').on('click', toggleSwitcher);
 $('#switcher button').click(function() {

Handling Events

[78]

 $('#switcher').off('click', toggleSwitcher);
 if (this.id == 'switcher-default') {
 $('#switcher').on('click', toggleSwitcher);
 }
 });
});

Listing 3.22

A shortcut is also available for the situation in which we want to unbind an event
handler immediately after the first time it is triggered. This shortcut, called .one(),
is used as follows:

$('#switcher').one('click', toggleSwitcher);

This would cause the toggle action to occur only once.

Simulating user interaction
At times, it is convenient to execute code that we have bound to an event, even if
the normal circumstances of the event are not occurring. For example, suppose we
wanted our style switcher to begin in its collapsed state. We could accomplish this by
hiding buttons from within the stylesheet, or by adding our hidden class or calling
the .hide() method from a $(document).ready() handler. Another way would
be to simulate a click on the style switcher so that the toggling mechanism we've
already established is triggered.

The .trigger() method allows us to do just this:

$(document).ready(function() {
 $('#switcher').trigger('click');
});

Listing 3.23

Now when the page loads, the switcher is collapsed just as if it had been clicked, as
shown in the following screenshot:

Chapter 3

[79]

If we were hiding content that we wanted people without JavaScript enabled to see,
this would be a reasonable way to implement graceful degradation.

The .trigger() method provides the same set of shortcut methods that .on() does.
When these shortcuts are used with no arguments, the behavior is to trigger the
action rather than bind it:

$(document).ready(function() {
 $('#switcher').click();
});

Listing 3.24

Reacting to keyboard events
As another example, we can add keyboard shortcuts to our style switcher. When the
user types the first letter of one of the display styles, we will have the page behave as
if the corresponding button was clicked. To implement this feature, we will need to
explore keyboard events, which behave a bit differently from mouse events.

There are two types of keyboard events: those that react to the keyboard directly
(keyup and keydown) and those that react to text input (keypress). A single
character entry event could correspond to several keys, for example, when the
Shift key in combination with the X key creates the capital letter X. While the
specifics of implementation differ from one browser to the next (unsurprisingly),
a safe rule of thumb is: if you want to know what key the user pushed, you should
observe the keyup or keydown event; if you want to know what character ended up
on the screen as a result, you should observe the keypress event. For this feature,
we just want to know when the user presses the D, N, or L key, so we will use keyup.

Next, we need to determine which element should watch for the event. This is a little
less obvious than with mouse events, where we have a visible mouse cursor to tell
us about the event's target. Instead, the target of a keyboard event is the element that
currently has the keyboard focus. The element with focus can be changed in several
ways, including using mouse clicks and pressing the Tab key. Not every element can
get the focus, either; only items that have default keyboard-driven behaviors such as
form fields, links, and elements with a .tabIndex property are candidates.

In this case, we don't really care what element has the focus; we want our switcher
to work whenever the user presses one of the keys. Event bubbling will once again
come in handy, as we can bind our keyup event to the document element and have
assurance that eventually any key event will bubble up to us.

Handling Events

[80]

Finally, we will need to know which key was pressed when our keyup handler gets
triggered. We can inspect the event object for this. The .which property of the event
contains an identifier for the key that was pressed, and for alphabetic keys, this
identifier is the ASCII value of the uppercase letter. With this information, we can now
create an object literal of letters and their corresponding buttons to click. When the
user presses a key, we'll see if its identifier is in the map, and if so, trigger the click:

$(document).ready(function() {
 var triggers = {
 D: 'default',
 N: 'narrow',
 L: 'large'
 };
 $(document).keyup(function(event) {
 var key = String.fromCharCode(event.which);
 if (key in triggers) {
 $('#switcher-' + triggers[key]).click();
 }
 });
});

Listing 3.25

Presses of these three keys now simulate mouse clicks on the buttons—provided that
the key event is not interrupted by features such as Firefox's search for text when I
start typing.

As an alternative to using .trigger() to simulate this click, let's explore how to
factor out code into a function so that more than one handler can call it in this case,
both click and keyup handlers. While not necessary in this case, this technique can
be useful in eliminating code redundancy:

$(document).ready(function() {
 // Enable hover effect on the style switcher
 $('#switcher').hover(function() {
 $(this).addClass('hover');
 }, function() {
 $(this).removeClass('hover');
 });
 // Allow the style switcher to expand and collapse
 var toggleSwitcher = function(event) {
 if (!$(event.target).is('button')) {
 $('#switcher button').toggleClass('hidden');
 }
 };

Chapter 3

[81]

 $('#switcher').on('click', toggleSwitcher);
 // Simulate a click so we start in a collapsed state
 $('#switcher').click();
 // The setBodyClass() function changes the page style
 // The style switcher state is also updated
 var setBodyClass = function(className) {
 $('body').removeClass().addClass(className);
 $('#switcher button').removeClass('selected');
 $('#switcher-' + className).addClass('selected');
 $('#switcher').off('click', toggleSwitcher);
 if (className == 'default') {
 $('#switcher').on('click', toggleSwitcher);
 }
 };
 // Begin with the switcher-default button "selected"
 $('#switcher-default').addClass('selected');
 // Map key codes to their corresponding buttons to click
 var triggers = {
 D: 'default',
 N: 'narrow',
 L: 'large'
 };
 // Call setBodyClass() when a button is clicked
 $('#switcher').click(function(event) {
 if ($(event.target).is('button')) {
 var bodyClass = event.target.id.split('-')[1];
 setBodyClass(bodyClass);
 }
 });
 // Call setBodyClass() when a key is pressed
 $(document).keyup(function(event) {
 var key = String.fromCharCode(event.keyCode);
 if (key in triggers) {
 setBodyClass(triggers[key]);
 }
 });
});

Listing 3.26

This final revision consolidates all the previous code examples of this chapter. We
have moved the entire block of code into a single $(document).ready() handler
and made our code less redundant.

Handling Events

[82]

Summary
The abilities we've discussed in this chapter allow us to react to various user-driven
and browser-initiated events. We have learned how to safely perform actions when
the page loads, how to handle mouse events such as clicking on links or hovering
over buttons, and how to interpret keystrokes.

In addition, we have delved into some of the inner workings of the event system,
and can use this knowledge to perform event delegation and to change the default
behavior of an event. We can even simulate the effects of an event as if the user
initiated it.

We can use these capabilities to build quite interactive pages. In the next chapter,
we'll learn how to provide visual feedback to the user during these interactions.

Further reading
The topic of event handling will be explored in more detail in Chapter 10, Advanced
Events. A complete list of jQuery's event methods is available in Appendix C, Quick
Reference, of this book, or in the official jQuery documentation at http://api.
jquery.com/.

Exercises
To complete these exercises, you will need the index.html file for this
chapter, as well as the finished JavaScript code as found in complete.js.
These files can be downloaded from the Packt Publishing website at
http://www.packtpub.com/support.

Challenge exercises may require the use of the official jQuery documentation at
http://api.jquery.com/.

1.	 When Charles Dickens is clicked, apply the selected style to it.
2.	 When a chapter title (<h3 class="chapter-title">) is double-clicked,

toggle the visibility of the chapter text.
3.	 When the user presses the right arrow key, cycle to the next body class.

The key code for the right arrow key is 39.

Chapter 3

[83]

4.	 Challenge: Use the console.log() function to log the coordinates of the
mouse as it moves across any paragraph. (Note: console.log() displays
its results via the Firebug extension for Firefox, Safari's Web Inspector, or
the Developer Tools in Chrome or Internet Explorer).

5.	 Challenge: Use .mousedown() and .mouseup() to track mouse events
anywhere on the page. If the mouse button is released above where it was
pressed, add the hidden class to all paragraphs. If it is released below where
it was pressed, remove the hidden class from all paragraphs.

Styling and Animating
If actions speak louder than words, then in the JavaScript world, effects make actions
speak louder still. With jQuery, we can easily add impact to our actions through a set
of simple visual effects and even craft our own more sophisticated animations.

The effects offered by jQuery supply simple visual flourishes that grant a sense of
movement and modernity to any page. However, apart from being mere decoration,
they can also provide important usability enhancements that help orient the user
when there is some change on a page (especially common in Ajax applications).

In this chapter, we will cover:

•	 Changing the styling of elements on the fly
•	 Hiding and showing elements with various built-in effects
•	 Creating custom animations of elements
•	 Sequencing effects to happen one after another

Modifying CSS with inline properties
Before we jump into the nifty jQuery effects, a quick look at CSS is in order. In
previous chapters, we have been modifying a document's appearance by defining
styles for classes in a separate stylesheet and then adding or removing those classes
with jQuery. Typically, this is the preferred process for injecting CSS into HTML
because it respects the stylesheet's role in dealing with the presentation of a page.
However, there may be times when we need to apply styles that haven't been or can't
easily be defined in a stylesheet. Fortunately, jQuery offers the .css() method for
such occasions.

Styling and Animating

[86]

This method acts as both a getter and a setter. To get the value of a single style
property, we simply pass the name of the property as a string and get a string in
return. To get the value of multiple style properties, we can pass the property names
as an array of strings to get an object of property-value pairs in return. Multiword
property names such as backgroundColor can be interpreted by jQuery when
in hyphenated CSS notation (background-color) or camel-cased DOM notation
(backgroundColor):

// Get a single property's value
.css('property')
// returns "value"

// Get multiple properties' values
.css(['property1', 'property-2'])
// returns {"property1": "value1", "property-2": "value2"}

For setting style properties, the .css() method comes in two flavors. One
flavor takes a single style property and its value and the other takes an object
of property-value pairs:

// Single property and its value
.css('property', 'value')

// Object of property-value pairs
.css({
 property1: 'value1',
 'property-2': 'value2'
})

These simple key-value collections, called object literals, are real JavaScript objects
that are created directly in code.

Object literal notation
In a property value, strings are enclosed in quotes as usual, but other
data types such as numbers do not require them. Since property names
are strings, they typically would be contained in quotes. However,
quotation marks are not required for property names if they are valid
JavaScript identifiers, such as when they are written in camel-cased
DOM notation.

We use the .css() method the same way we've been using .addClass(); we
apply it to a jQuery object, which in turn points to a collection of DOM elements.
To demonstrate this, we'll play with a style switcher similar to the one from
Chapter 3, Handling Events:

Chapter 4

[87]

 <div id="switcher">
 <div class="label">Text Size</div>
 <button id="switcher-default">Default</button>
 <button id="switcher-large">Bigger</button>
 <button id="switcher-small">Smaller</button>
</div>
<div class="speech">
 <p>Fourscore and seven years ago our fathers brought forth
 on this continent a new nation, conceived in liberty,
 and dedicated to the proposition that all men are created
 equal.</p>
 ...
</div>

Downloadable code examples
As with many of the HTML, CSS, and JavaScript examples in this book,
the previous markup is merely a fragment of the complete document.
To experiment with the examples, we can download them from the
Packt Publishing website at http://www.packtpub.com/support.
In addition, the examples can be viewed in an interactive browser at
http://book.learningjquery.com/.

By linking to a stylesheet with a few basic style rules, the page will initially look
like this:

Once we're done with our code, clicking on the Bigger and Smaller buttons will
increase or decrease the text size of <div class="speech">, while clicking on the
Default button will reset <div class="speech"> to its original text size.

Styling and Animating

[88]

Setting computed style-property values
If all we wanted was to change the font size a single time to a predetermined value,
we could still use the .addClass() method. But, let's suppose now that we want
the text to continue increasing or decreasing incrementally each time the respective
button is clicked. Although it might be possible to define a separate class for each
click and iterate through them, a more straightforward approach would be to
compute the new text size each time by getting the current size and increasing it
by a set factor (for example, 40 percent).

Our code will start with the $(document).ready() and
$('#switcher-large').click() event handlers:

$(document).ready(function() {
 $('#switcher-large').click(function() {
 });
});

Listing 4.1

Next, the font size can be easily discovered by using the .css() method:
$('div.speech').css('fontSize'). However, the returned value is a string,
containing both the numeric font size value and the units of that value (px). We'll
need to strip the unit label off in order to perform calculations with the numeric
value. Also, when we plan to use a jQuery object more than once, it's generally a
good idea to cache the selector by storing the resulting jQuery object in a variable.
We'll take care of these needs with the introduction of a couple of local variables:

$(document).ready(function() {
 var $speech = $('div.speech');
 $('#switcher-large').click(function() {
 var num = parseFloat($speech.css('fontSize'));
 });
});

Listing 4.2

The first line inside $(document).ready() now creates a variable containing a
jQuery object pointing to <div class="speech">. Notice the use of a dollar ($)
sign in the variable name, $speech. Since the dollar sign is a legal character in
JavaScript identifiers, we can use it as a reminder that the variable is storing a
jQuery object. Unlike in other programming languages such as PHP, the dollar
symbol holds no special significance in JavaScript, the language of jQuery.

Chapter 4

[89]

Inside the .click() handler, we use parseFloat() to get the font size property's
numeric value only. The parseFloat() function looks at a string from the left-hand
side to the right-hand side until it encounters a non-numeric character. The string
of digits is converted into a floating-point (decimal) number. For example, it would
convert the string '12' to the number 12. In addition, it strips non-numeric trailing
characters from the string, so '12px' becomes 12 as well. If the string begins with a
non-numeric character, parseFloat() returns NaN, which stands for Not a Number.

All that's left to do is to modify the parsed numeric value and to reset the font size
based on the new value. For our example, we'll increase the font size by 40 percent
each time the button is clicked. To achieve this, we'll multiply num by 1.4 and then
set the font size by concatenating num and 'px':

$(document).ready(function() {
 var $speech = $('div.speech');
 $('#switcher-large').click(function() {
 var num = parseFloat($speech.css('fontSize'));
 num *= 1.4;
 $speech.css('fontSize', num + 'px');
 });
});

Listing 4.3

Now when a user clicks on the Bigger button, the text becomes larger. Another click
and the text becomes larger:

To get the Smaller button to decrease the font size, we will divide rather than
multiply: —num /= 1.4. Better still, we'll combine the two into a single .click()
handler on all the <button> elements within <div id="switcher">. Then, after
finding the numeric value, we can either multiply or divide depending on the ID
of the button that was clicked. Listing 4.4 illustrates this.

$(document).ready(function() {
 var $speech = $('div.speech');
 $('#switcher button').click(function() {

Styling and Animating

[90]

 var num = parseFloat($speech.css('fontSize'));
 if (this.id == 'switcher-large') {
 num *= 1.4;
 } else if (this.id == 'switcher-small') {
 num /= 1.4;
 }
 $speech.css('fontSize', num + 'px');
 });
});

Listing 4.4

Recall from Chapter 3, Handling Events, that we can access the id property of the
DOM element referred to by this, which appears here inside the if and else if
statements. Here, it is more efficient to use this than to create a jQuery object just to
test the value of a property.

It would also be nice to have a way to return the font size to its initial value. To allow
the user to do so, we can simply store the font size in a variable immediately when
the DOM is ready. We can then restore this value whenever the Default button
is clicked. To handle this click event, we could add another else if statement.
Instead, though, we will use a switch statement, which is appropriate when we have
several cases to handle:

$(document).ready(function() {
 var $speech = $('div.speech');
 var defaultSize = $speech.css('fontSize');
 $('#switcher button').click(function() {
 var num = parseFloat($speech.css('fontSize'));
 switch (this.id) {
 case 'switcher-large':
 num *= 1.4;
 break;
 case 'switcher-small':
 num /= 1.4;
 break;
 default:
 num = parseFloat(defaultSize);
 }
 $speech.css('fontSize', num + 'px');
 });
});

Listing 4.5

Chapter 4

[91]

Here, we're still checking the value of this.id and changing the font size based
on it, but if its value is neither 'switcher-large' nor 'switcher-small', it will
default to the initial font size.

Using vendor-specific style properties
When browser vendors introduce experimental style properties, they often prefix the
property name until the browser's implementation aligns with the CSS specification.
When both the implementation and the specification are stable enough, vendors will
shed that prefix and allow the standard name to be used. In a stylesheet, therefore, it
is not uncommon to see a set of CSS declarations like the following:

-webkit-property-name: value;
-moz-property-name: value;
-ms-property-name: value;
-o-property-name: value;
property-name: value;

If we wanted to apply the same in JavaScript, we would need to test for the existence
of the DOM equivalent of these variations: propertyName, WebkitPropertyName,
msPropertyName, and so on. With jQuery, however, we can simply the standard
property name, like.css('propertyName', 'value'). If that name is not found as
a property of the style object, jQuery loops through the vendor prefixes behind the
scenes—Webkit, O, Moz, and ms—and uses the first one it does find as a property,
if any.

Hiding and showing elements
The basic .hide() and .show() methods, without any parameters, can be thought
of as smart shorthand methods for .css('display', 'string'), where 'string'
is the appropriate display value. The effect, as might be expected, is that the matched
set of elements will be immediately hidden or shown with no animation.

The .hide() method sets the inline style attribute of the matched set of elements
to display: none. The smart part here is that it remembers the value of the display
property—typically block, inline, or inline-block—before it was changed
to none. Conversely, the .show() method restores the display properties of the
matched set of elements to whatever they initially were before display: none
was applied.

Styling and Animating

[92]

The display property
For more information about the display property and how its values
are visually represented in a web page, visit the Mozilla Developer
Center at https://developer.mozilla.org/en-US/docs/CSS/
display and view examples at https://developer.mozilla.
org/samples/cssref/display.html.

This feature of .show() and .hide() is especially helpful when hiding elements
that have had their default display property overridden in a stylesheet. For example,
the element has the property display: list-item by default, but we might
want to change it to display: inline for a horizontal menu. Fortunately, using the
.show() method on a hidden element such as one of the tags would not merely
reset it to its default display: list-item, because that would put the tag on
its own line. Instead, the element is restored to its previous display: inline state,
thus preserving the horizontal design.

We can set up a quick demonstration of these two methods by working with a
second paragraph and adding a read more link after the first paragraph in the
example HTML:

<div class="speech">
 <p>Fourscore and seven years ago our fathers brought forth
 on this continent a new nation, conceived in liberty,
 and dedicated to the proposition that all men are
 created equal.
 </p>
 <p>Now we are engaged in a great civil war, testing whether
 that nation, or any nation so conceived and so dedicated,
 can long endure. We are met on a great battlefield of
 that war. We have come to dedicate a portion of that
 field as a final resting-place for those who here gave
 their lives that the nation might live. It is altogether
 fitting and proper that we should do this. But, in a
 larger sense, we cannot dedicate, we cannot consecrate,
 we cannot hallow, this ground.
 </p>
 read more
 ...
</div>

Chapter 4

[93]

When the DOM is ready, we select an element and call .hide() on it:

$(document).ready(function() {
 $('p').eq(1).hide();
});

Listing 4.6

The .eq() method is similar to the :eq() pseudo-class discussed in Chapter 2,
Selecting Elements. It returns a jQuery object pointing to a single element at the
provided zero-based index. In this case, the method selects the second paragraph
and hides it, so that the read more link appears immediately following the
first paragraph:

When the user clicks on read more at the end of the first paragraph, we call .show()
to display the second paragraph and .hide() to hide the clicked link:

$(document).ready(function() {
 $('p').eq(1).hide();
 $('a.more').click(function(event) {
 event.preventDefault();
 $('p').eq(1).show();
 $(this).hide();
 });
});

Listing 4.7

Styling and Animating

[94]

Note the use of .preventDefault() to keep the link from activating its default
action. Now the speech looks like this:

The .hide() and .show() methods are quick and useful, but they aren't very flashy.
To add some flair, we can give them a duration.

Effects and duration
When we include a duration (sometimes also referred to as a speed) with .show()
or .hide(), it becomes animated—occurring over a specified period of time. The
.hide(duration) method, for example, decreases an element's height, width,
and opacity simultaneously until all three reach zero, at which point the CSS rule
display: none is applied. The .show(duration) method will increase the element's
height from top to bottom, width from the left-hand side to the right-hand side, and
opacity from 0 to 1 until its contents are completely visible.

Speeding in
With any jQuery effect, we can use one of the two preset speeds, 'slow' or 'fast'.
Using .show('slow') makes the show effect complete in 600 milliseconds (0.6
seconds), .show('fast') in 200 milliseconds. If any other string is supplied, jQuery's
default animation duration of 400 milliseconds will be used. For even greater precision,
we can specify a number of milliseconds: for example, .show(850). Note that in this
case we are specifying a numeric value, so we do not use quotation marks.

Chapter 4

[95]

Let's include a speed in our example when showing the second paragraph of
Lincoln's Gettysburg Address:

$(document).ready(function() {
 $('p').eq(1).hide();
 $('a.more').click(function(event) {
 event.preventDefault();
 $('p').eq(1).show('slow');
 $(this).hide();
 });
});

Listing 4.8

When we capture the paragraph's appearance at roughly halfway through the effect,
we see the following:

Fading in and fading out
While the animated .show() and .hide() methods are certainly flashy, in practice,
they animate more properties than are useful. Fortunately, jQuery offers a couple
of other prebuilt animations for a more subtle effect. For example, to have the
whole paragraph appear just by gradually increasing the opacity, we can use
.fadeIn('slow') instead:

$(document).ready(function() {
 $('p').eq(1).hide();
 $('a.more').click(function(event) {

Styling and Animating

[96]

 event.preventDefault();
 $('p').eq(1).fadeIn('slow');
 $(this).hide();
 });
});

Listing 4.9

Now when we look at the paragraph during the effect, it looks like this:

The difference here is that the .fadeIn() effect starts by setting the dimensions of
the paragraph so that the contents can simply fade into it. To gradually decrease the
opacity we can use .fadeOut().

Sliding up and sliding down
The fading animations are very useful for items that are outside the flow of the
document. For example, these are typical effects to apply to "lightbox" elements
that are overlaid on the page. However, when an element is part of the document
flow, calling .fadeIn() on it causes the document to jump to provide the real estate
needed for the new element, which is not always aesthetically pleasing.

In these cases, jQuery's .slideDown() and .slideUp() methods are often the right
choice. These effects animate only the height of the selected elements. To have our
paragraph appear using a vertical slide effect, we can call .slideDown('slow'):

$(document).ready(function() {
 $('p').eq(1).hide();
 $('a.more').click(function(event) {
 event.preventDefault();

Chapter 4

[97]

 $('p').eq(1).slideDown('slow');
 $(this).hide();
 });
});

Listing 4.10

This time when we examine the paragraph at the animation's midpoint, we see
the following:

To reverse the effect, we would instead call .slideUp().

Toggling visibility
Sometimes we have a need to toggle the visibility of elements, rather than displaying
them once as we have done in the previous examples. This toggling can be achieved
by first checking the visibility of the matched elements and then calling the
appropriate method. Using the fade effects again, we can modify the example script
to look like this:

$(document).ready(function() {
 var $firstPara = $('p').eq(1);
 $firstPara.hide();
 $('a.more').click(function(event) {
 event.preventDefault();
 if ($firstPara.is(':hidden')) {
 $firstPara.fadeIn('slow');
 $(this).text('read less');
 } else {
 $firstPara.fadeOut('slow');
 $(this).text('read more');

Styling and Animating

[98]

 }
 });
});

Listing 4.11

As we did earlier in the chapter, we're caching our selector here to avoid repeated
DOM traversal. Notice too that we're no longer hiding the clicked link; instead, we're
changing its text.

To examine the text contained by an element and to change that text,
we're using the .text() method. We will delve into this method
more fully in Chapter 5, Manipulating the DOM.

Using an if-else statement is a perfectly reasonable way to toggle elements'
visibility. But with jQuery's compound effect methods, we can remove some
conditional logic from our code. jQuery provides a .toggle() method, which acts
like .show() and .hide(), and like them, it can be used with or without a duration
argument. Other compound methods include .fadeToggle() and .slideToggle(),
which show or hide elements using the corresponding effects. Here is what the script
looks like when we use the .slideToggle() method:

$(document).ready(function() {
 var $firstPara = $('p').eq(1);
 $firstPara.hide();
 $('a.more').click(function(event) {
 event.preventDefault();
 $firstPara.slideToggle('slow');
 var $link = $(this);
 if ($link.text() == 'read more') {
 $link.text('read less');
 } else {
 $link.text('read more');
 }
 });
});

Listing 4.12

To reduce repetition of $(this), we're storing the result in the $link variable for
performance and readability. Also, the conditional statement checks for the text of
the link rather than the visibility of the second paragraph, since we're only using it
to change the text.

Chapter 4

[99]

Creating custom animations
In addition to the prebuilt effect methods, jQuery provides a powerful .animate()
method that allows us to create our own custom animations with fine-grained control.
The .animate() method comes in two forms. The first takes up to four arguments:

•	 An object of style properties and values, which is similar to the .css()
argument discussed earlier in this chapter

•	 An optional duration, which can be one of the preset strings or a number
of milliseconds

•	 An optional easing type, which is an option that we will not use now, but
which we will discuss in it in Chapter 11, Advanced Effects

•	 An optional callback function, which will be discussed later in this chapter

All together, the four arguments look like this:

.animate({property1: 'value1', property2: 'value2'},
duration, easing, function() {
 alert('The animation is finished.');
 }
);

The second form takes two arguments: an object of properties and an object of options:

.animate({properties}, {options})

In effect, the second argument wraps up the second through fourth arguments of
the first form into another object and adds some more advanced options to the mix.
When we adjust the line breaks for readability, the second form looks like this:

.animate({
 property1: 'value1',
 property2: 'value2'
}, {
 duration: 'value',
 easing: 'value',
 specialEasing: {
 property1: 'easing1',
 property2: 'easing2'
 },
 complete: function() {
 alert('The animation is finished.');
 },

Styling and Animating

[100]

 queue: true,
 step: callback
});

For now, we'll use the first form of the .animate() method, but we'll return to the
second form later in the chapter when we discuss queuing effects.

Building effects by hand
We have already seen several prepackaged effects for showing and hiding elements.
To begin our discussion of the .animate() method, it will be useful to see how we
could achieve the same results by calling .slideToggle() using this lower-level
interface. Replacing the .slideToggle() line of the previous example with our
custom animation turns out to be quite simple:

$(document).ready(function() {
 var $firstPara = $('p').eq(1);
 $firstPara.hide();
 $('a.more').click(function(event) {
 event.preventDefault();
 $firstPara.animate({height: 'toggle'}, 'slow');
 var $link = $(this);
 if ($link.text() == 'read more') {
 $link.text('read less');
 } else {
 $link.text('read more');
 }
 });
});

Listing 4.13

This is not a perfect replacement for .slideToggle(); the actual
implementation also animates the margin and padding of elements.

As the example illustrates, the .animate() method provides convenient shorthand
values for CSS properties, such as 'show', 'hide', and 'toggle', to ease the process
when we want to emulate the behavior of prepackaged effect methods such as
.slideToggle().

Chapter 4

[101]

Animating multiple properties at once
With the .animate() method, we can modify any combination of properties
simultaneously. For example, to create a simultaneous sliding and fading effect when
toggling the second paragraph, we simply add the opacity property-value pair to the
properties object of .animate():

$(document).ready(function() {
 var $firstPara = $('p').eq(1);
 $firstPara.hide();
 $('a.more').click(function(event) {
 event.preventDefault();
 $firstPara.animate({
 opacity: 'toggle',
 height: 'toggle'
 }, 'slow');
 var $link = $(this);
 if ($link.text() == 'read more') {
 $link.text('read less');
 } else {
 $link.text('read more');
 }
 });
});

Listing 4.14

Additionally, we have not only the style properties used for the shorthand effect
methods at our disposal, but also numeric CSS properties such as left, top,
fontSize, margin, padding, and borderWidth. In Listing 4.5, we changed the text
size of the speech paragraphs. We could animate this increase or decrease in size by
simply substituting the .animate() method for the .css() method:

$(document).ready(function() {
 var $speech = $('div.speech');
 var defaultSize = $speech.css('fontSize');
 $('#switcher button').click(function() {
 var num = parseFloat($speech.css('fontSize'));
 switch (this.id) {
 case 'switcher-large':
 num *= 1.4;
 break;

Styling and Animating

[102]

 case 'switcher-small':
 num /= 1.4;
 break;
 default:
 num = parseFloat(defaultSize);
 }
 $speech.animate({fontSize: num + 'px'}, 'slow');
 });
});

Listing 4.15

The extra properties allow us to create much more complex effects, too. We can,
for example, move an item from the left-hand side of the page to the right-hand
side while increasing its height by 20 pixels and changing its border width to 5
pixels. We will illustrate this complicated set of property animations with the <div
id="switcher"> box. Here is what it looks like before we animate it:

With a flexible-width layout, we need to compute the distance that the box needs
to travel before it lines up at the right-hand side of the page. Assuming that the
paragraph's width is 100 percent, we can subtract the Text Size box's width from the
paragraph's width. We have the jQuery's.outerWidth() method at our disposal
to calculate these widths, including padding and border. We'll use this method to
compute the new left property of the switcher. For the sake of this example, we'll
trigger the animation by clicking on the Text Size label just above the buttons. Here
is what the code should look like:

$(document).ready(function() {
 $('div.label').click(function() {
 var paraWidth = $('div.speech p').outerWidth();
 var $switcher = $(this).parent();
 var switcherWidth = $switcher.outerWidth();
 $switcher.animate({
 borderWidth: '5px',

Chapter 4

[103]

 left: paraWidth - switcherWidth,
 height: '+=20px'
 }, 'slow');
 });
});

Listing 4.16

It is worth examining these animated properties in detail. The borderWidth property
is straightforward, as we are specifying a constant value with units, just as we would
in a stylesheet. The left property is a computed numeric value. The unit suffix
is optional on these properties; since we omit it here, px is assumed. Finally, the
height property uses a syntax we have not seen before. The += prefix on a property
value indicates a relative value. So, instead of animating the height to 20 pixels, the
height is animated to 20 pixels greater than the current height. Because of the special
characters involved, relative values must be specified as a string, so must be enclosed
in quotes.

Although this code successfully increases the height of the <div> tag and widens its
border, at the moment, the left position appears unchanged:

We still need to enable changing this box's position in the CSS.

Positioning with CSS
When working with .animate(), it's important to keep in mind the limitations that
CSS imposes on the elements that we wish to change. For example, adjusting the
left property will have no effect on the matching elements unless those elements
have their CSS position set to relative or absolute. The default CSS position for
all block-level elements is static, which accurately describes how those elements
will remain if we try to move them without first changing their position value.

Styling and Animating

[104]

For more information on absolute and relative positioning, see Joe
Gillespie's article Absolutely Relative at http://www.wpdfd.com/
issues/78/absolutely_relative/.

In our stylesheet, we could set <div id="switcher"> to be relatively positioned:

#switcher {
 position: relative;
}

Instead, though, let's practice our jQuery skills by altering this property through
JavaScript when needed:

$(document).ready(function() {
 $('div.label').click(function() {
 var paraWidth = $('div.speech p').outerWidth();
 var $switcher = $(this).parent();
 var switcherWidth = $switcher.outerWidth();
 $switcher.css({
 position: 'relative'
 }).animate({
 borderWidth: '5px',
 left: paraWidth - switcherWidth,
 height: '+=20px'
 }, 'slow');
 });
});

Listing 4.17

With the CSS taken into account, the result of clicking on Text Size after the
animation has completed will look like this:

Chapter 4

[105]

Simultaneous versus queued effects
The .animate() method, as we've just discovered, is very useful for creating
simultaneous effects affecting a particular set of elements. There may be times,
however, when we want to queue our effects to have them occur one after
the other.

Working with a single set of elements
When applying multiple effects to the same set of elements, queuing is easily achieved
by chaining those effects. To demonstrate this queuing, we'll revisit Listing 4.17 by
moving the Text Size box to the right-hand side, increasing its height and border
width. This time, however, we perform the three effects sequentially simply by placing
each in its own .animate() method and chaining the three together:

$(document).ready(function() {
 $('div.label').click(function() {
 var paraWidth = $('div.speech p').outerWidth();
 var $switcher = $(this).parent();
 var switcherWidth = $switcher.outerWidth();
 $switcher
 .css({position: 'relative'})
 .animate({left: paraWidth - switcherWidth}, 'slow')
 .animate({height: '+=20px'}, 'slow')
 .animate({borderWidth: '5px'}, 'slow');
 });
});

Listing 4.18

Recall that chaining permits us to keep all three .animate() methods on the
same line, but here we have indented them and put each on its own line for
greater readability.

We can queue any of the jQuery effect methods by chaining them, not just
.animate(). We could, for example, queue effects on <div id="switcher">
in the following order:

1.	 Fade its opacity to 0.5 with .fadeTo().
2.	 Move it to the right-hand side with .animate().
3.	 Fade it back in to full opacity with .fadeTo().
4.	 Hide it with .slideUp().
5.	 Show it once more with .slideDown().

Styling and Animating

[106]

All we need to do is chain the effects in the same order in our code:

$(document).ready(function() {
 $('div.label').click(function() {
 var paraWidth = $('div.speech p').outerWidth();
 var $switcher = $(this).parent();
 var switcherWidth = $switcher.outerWidth();
 $switcher
 .css({position: 'relative'})
 .fadeTo('fast', 0.5)
 .animate({left: paraWidth - switcherWidth}, 'slow')
 .fadeTo('slow', 1.0)
 .slideUp('slow')
 .slideDown('slow');
 });
});

Listing 4.19

Bypassing the queue
But what if we want to move the <div> tag to the right-hand side at the same
time as it fades to half opacity? If the two animations were occurring at the same
speed, we could simply combine them into a single .animate() method. But, in
this example, the fade is using the 'fast' speed while the move to the right-hand
side is using the 'slow' speed. Here is where the second form of the .animate()
method comes in handy:

$(document).ready(function() {
 $('div.label').click(function() {
 var paraWidth = $('div.speech p').outerWidth();
 var $switcher = $(this).parent();
 var switcherWidth = $switcher.outerWidth();
 $switcher
 .css({position: 'relative'})
 .fadeTo('fast', 0.5)
 .animate({
 left: paraWidth - switcherWidth
 }, {
 duration: 'slow',
 queue: false
 })
 .fadeTo('slow', 1.0)
 .slideUp('slow')

Chapter 4

[107]

 .slideDown('slow');
 });
});

Listing 4.20

The second argument, an options object, provides the queue option, which when set
to false makes the animation start simultaneously with the previous one.

Queuing effects manually
One final observation about queuing effects on a single set of elements is that
queuing does not automatically apply to other non-effect methods such as
.css(). So, let's suppose we wanted to change the background color of <div
id="switcher"> to red after the .slideUp() method, but before the slideDown()
method.

We could try doing it like this:

// Unfinished code
$(document).ready(function() {
 $('div.label').click(function() {
 var paraWidth = $('div.speech p').outerWidth();
 var $switcher = $(this).parent();
 var switcherWidth = $switcher.outerWidth();
 $switcher
 .css({position: 'relative'})
 .fadeTo('fast', 0.5)
 .animate({
 left: paraWidth - switcherWidth
 }, {
 duration: 'slow',
 queue: false
 })
 .fadeTo('slow', 1.0)
 .slideUp('slow')
 .css({backgroundColor: '#f00'})
 .slideDown('slow');
 });
});

Listing 4.21

However, even though the background-changing code is placed at the correct
position in the chain, it occurs immediately upon the click.

Styling and Animating

[108]

One way we can add non-effect methods to the queue is to use the appropriately
named .queue() method. Here is what it would look like in our example:

$(document).ready(function() {
 $('div.label').click(function() {
 var paraWidth = $('div.speech p').outerWidth();
 var $switcher = $(this).parent();
 var switcherWidth = $switcher.outerWidth();
 $switcher
 .css({position: 'relative'})
 .fadeTo('fast', 0.5)
 .animate({
 left: paraWidth - switcherWidth
 }, {
 duration: 'slow',
 queue: false
 })
 .fadeTo('slow', 1.0)
 .slideUp('slow')
 .queue(function(next) {
 $switcher.css({backgroundColor: '#f00'});
 next();
 })
 .slideDown('slow');
 });
});

Listing 4.22

When given a callback function, as it is here, the .queue() method adds the
function to the queue of effects to perform on the matched elements. Within the
function, we set the background color to red and then call next(), a function that
is passed as a parameter to our callback. Including this next() function call allows
the animation queue to pick up where it left off and complete the chain with the
following .slideDown('slow') line. If we hadn't called next(), the animation
would have stopped.

For more information and examples of .queue(), visit
http://api.jquery.com/category/effects/.

We'll discover another way to queue noneffect methods as we examine effects with
multiple sets of elements.

Chapter 4

[109]

Working with multiple sets of elements
Unlike with a single set of elements, when we apply effects to different sets, they
occur at virtually the same time. To see these simultaneous effects in action, we'll
slide one paragraph down while sliding another paragraph up. We'll be working
with paragraphs three and four of our sample document:

<p>Fourscore and seven years ago our fathers brought forth
 on this continent a new nation, conceived in liberty,
 and dedicated to the proposition that all men are
 created equal.</p>
<p>Now we are engaged in a great civil war, testing whether
 that nation, or any nation so conceived and so
 dedicated, can long endure. We are met on a great
 battlefield of that war. We have come to dedicate a
 portion of that field as a final resting-place for those
 who here gave their lives that the nation might live. It
 is altogether fitting and proper that we should do this.
 But, in a larger sense, we cannot dedicate, we cannot
 consecrate, we cannot hallow, this ground.</p>
read more
<p>The brave men, living and dead, who struggled here have
 consecrated it, far above our poor power to add or
 detract. The world will little note, nor long remember,
 what we say here, but it can never forget what they did
 here. It is for us the living, rather, to be dedicated
 here to the unfinished work which they who fought here
 have thus far so nobly advanced.</p>
<p>It is rather for us to be here dedicated to the great
 task remaining before us—that from these honored
 dead we take increased devotion to that cause for which
 they gave the last full measure of devotion—that
 we here highly resolve that these dead shall not have
 died in vain—that this nation, under God, shall
 have a new birth of freedom and that government of the
 people, by the people, for the people, shall not perish
 from the earth.</p>

To help us see what's happening during the effect, we'll give the third paragraph
a 1-pixel border and the fourth paragraph a gray background. We'll also hide the
fourth paragraph when the DOM is ready:

$(document).ready(function() {
 $('p').eq(2).css('border', '1px solid #333');
 $('p').eq(3).css('backgroundColor', '#ccc').hide();
});

Listing 4.23

Styling and Animating

[110]

Our sample document now displays the opening paragraph followed by the read
more link and the bordered paragraph:

Finally, we'll apply a click handler to the third paragraph so that when it is clicked,
the third paragraph will slide up (and eventually out of view) while the fourth
paragraph slides down (and into view):

$(document).ready(function() {
 $('p').eq(2)
 .css('border', '1px solid #333')
 .click(function() {
 $(this).slideUp('slow').next().slideDown('slow');
 });
 $('p').eq(3).css('backgroundColor', '#ccc').hide();
});

Listing 4.24

A screenshot of these two effects in mid-slide confirms that they do, indeed,
occur simultaneously:

The third paragraph, which started visible, is halfway through sliding up at the
same time as the fourth paragraph, which started hidden, is halfway through
sliding down.

Chapter 4

[111]

Queuing with callbacks
In order to allow queuing effects on different elements, jQuery provides a callback
function for each effect method. As we have seen with event handlers and with the
.queue() method, callbacks are simply functions passed as method arguments. In
the case of effects, they appear as the last argument of the method.

If we use a callback to queue the two slide effects, we can have the fourth paragraph
slide down before the third paragraph slides up. Let's first try moving the
.slideUp() call into the .slideDown() method's completion callback:

$(document).ready(function() {
 $('p').eq(2)
 .css('border', '1px solid #333')
 .click(function() {
 $(this).next().slideDown('slow', function() {
 $(this).slideUp('slow');
 });
 });
 $('p').eq(3).css('backgroundColor', '#ccc').hide();
 });

Listing 4.25

We do need to be careful here, however, about what is actually going to slide up. The
context of the function—the reserved word this—is different because the callback
is inside the .slideDown() method. Here, $(this) is no longer the third paragraph,
as it was directly within the click handler; rather, since the .slideDown() method
is being called on the result of $(this).next(), the callback within that method
now sees $(this) as the next sibling or the fourth paragraph. Therefore, if we put
$(this).slideUp('slow') inside the callback, as we have in Listing 4.25, we would
end up hiding the same paragraph that we had just made visible.

A simple way to keep the $(this) reference stable is to store it in a variable at the
beginning of the click handler, such as var $clickedItem = $(this).

Now, $clickedItem will refer to the third paragraph, both outside and inside the
effect method callback. Here is what the code looks like using our new variable:

$(document).ready(function() {
 $('p').eq(2)
 .css('border', '1px solid #333')
 .click(function() {
 var $clickedItem = $(this);

Styling and Animating

[112]

 $clickedItem.next().slideDown('slow', function() {
 $clickedItem.slideUp('slow');
 });
 });
 $('p').eq(3).css('backgroundColor', '#ccc').hide();
});

Listing 4.26

Using $clickedItem inside the .slideDown() callback relies
on the properties of closures. We'll be discussing this important yet
difficult-to-master topic in Appendix A, JavaScript Closures.

This time, a snapshot halfway through the effects will reveal that both the third and
the fourth paragraphs are visible; the fourth has finished sliding down and the third
is about to begin sliding up:

Now that we've discussed callbacks, we can return to the code from Listing 4.22,
in which we queued a background-color change near the end of a series of effects.
Instead of using the .queue() method, as we did then, we can simply use a
callback function:

$(document).ready(function() {
 $('div.label').click(function() {
 var paraWidth = $('div.speech p').outerWidth();
 var $switcher = $(this).parent();
 var switcherWidth = $switcher.outerWidth();
 $switcher

Chapter 4

[113]

 .css({position: 'relative'})
 .fadeTo('fast', 0.5)
 .animate({
 left: paraWidth - switcherWidth
 }, {
 duration: 'slow',
 queue: false
 })
 .fadeTo('slow', 1.0)
 .slideUp('slow', function() {
 $switcher.css({backgroundColor: '#f00'});
 })
 .slideDown('slow');
 });
});

Listing 4.27

Here again, the background color of <div id="switcher"> changes to red after it
slides up and before it slides back down. Note that when using an effect's completion
callback rather than .queue(), we don't need to worry about calling next() from
within the callback.

In a nutshell
With all the variations to consider when applying effects, it can become difficult
to remember whether the effects will occur simultaneously or sequentially. A brief
outline might help.

Effects on a single set of elements are:

•	 Simultaneous when applied as multiple properties in a single
.animate() method

•	 Queued when applied in a chain of methods, unless the queue option
is set to false

Effects on multiple sets of elements are:

•	 Simultaneous by default
•	 Queued when applied within the callback of another effect or within the

callback of the .queue() method

Styling and Animating

[114]

Summary
By using the effect methods that we have explored in this chapter, we should
now be able to modify inline style attributes from JavaScript, apply prepackaged
jQuery effects to elements, and create our own custom animations. In particular,
we learned how to incrementally increase and decrease text size by using either
the .css() or .animate() methods, gradually hide and show page elements by
modifying several attributes, and how to animate elements (simultaneously or
sequentially) in a number of ways.

In the first four chapters of this book, all of our examples have involved manipulating
elements that have been hardcoded into the page's HTML. In Chapter 5, Manipulating
the DOM, we will explore ways to manipulate the DOM directly, including using
jQuery to create new elements and insert them into the DOM wherever we choose.

Further reading
The topic of animation will be explored in more detail in Chapter 11, Advanced
Effects. A complete list of effect and styling methods is available in Appendix C,
Quick Reference, of this book, or in the official jQuery documentation at
http://api.jquery.com/.

Exercises
To complete these exercises, you will need the index.html file for this chapter as
well as the finished JavaScript code as found in complete.js. These files can be
downloaded from the Packt Publishing website at http://www.packtpub.com/
support.

The challenge exercise may require the use of the official jQuery documentation at
http://api.jquery.com/:

1.	 Alter the stylesheet to hide the contents of the page initially. When the page
is loaded, fade in the contents slowly.

2.	 Give each paragraph a yellow background only when the mouse is over it.
3.	 Make a click of the title (<h2>) and simultaneously fade it to 25 percent

opacity and grow its left-hand margin to 20px. Then, when this animation is
complete, fade the speech text to 50 percent opacity.

4.	 Challenge: React to presses of the arrow keys by smoothly moving the
switcher box 20 pixels in the corresponding direction. The key codes for the
arrow keys are: 37 (left), 38 (up), 39 (right), and 40 (down).

Manipulating the DOM
The Web experience is a partnership between web servers and web browsers.
Traditionally, it has been the domain of the server to produce an HTML document
that is ready for consumption by the browser. The techniques we have seen in this
book have shifted this arrangement slightly by using CSS techniques to alter the
appearance of that HTML document on the fly. To really flex our JavaScript muscles,
though, we'll need to learn to alter the document itself.

In this chapter, we will cover:

•	 Modifying the document using the interface provided by the Document
Object Model (DOM)

•	 Creating elements and text on a page
•	 Moving or deleting elements
•	 Transforming a document by adding, removing, or modifying attributes

and properties

Manipulating attributes and properties
Throughout the first four chapters of this book, we have been using the .addClass()
and .removeClass() methods to demonstrate how we can change the appearance
of elements on a page. Although we discuss these methods informally in terms
of manipulating the class attribute, jQuery actually modifies a DOM property
called className. The .addClass() method creates or adds to the property,
while .removeClass() deletes or shortens it. Add to these the .toggleClass()
method, which alternates between adding and removing class names, and we have
an efficient and robust way of handling classes. These methods are particularly
helpful in that they avoid adding a class if it already exists on an element (so we
don't end up with <div class="first first">, for example), and correctly
handle cases where multiple classes are applied to a single element, such as <div
class="first second">.

Manipulating the DOM

[116]

Non-class attributes
We may need to access or change several other attributes or properties from time
to time. For manipulating attributes such as id, rel, and href, jQuery provides the
.attr() and .removeAttr() methods. These methods make changing an attribute
a simple matter. In addition, jQuery lets us modify more than one attribute at a
time, similar to the way we worked with multiple CSS properties using the .css()
method in Chapter 4, Styling and Animating.

For example, we can easily set the id, rel, and title attributes for links all at once.
Let's start with some sample HTML:

<h1 id="f-title">Flatland: A Romance of Many Dimensions</h1>
<div id="f-author">by Edwin A. Abbott</div>
<h2>Part 1, Section 3</h2>
<h3 id="f-subtitle">
 Concerning the Inhabitants of Flatland
</h3>
<div id="excerpt">an excerpt</div>
<div class="chapter">
 <p class="square">Our Professional Men and Gentlemen are
 Squares (to which class I myself belong) and Five-Sided
 Figures or Pentagons
 .
 </p>
 <p class="nobility hexagon">Next above these come the
 Nobility, of whom there are several degrees, beginning at
 Six-Sided Figures, or Hexagons,
 and from thence rising in the number of their sides till
 they receive the honourable title of Polygonal,
 or many-Sided. Finally when the number of the sides
 becomes so numerous, and the sides themselves so small,
 that the figure cannot be distinguished from a circle, he
 is included in the Circular or Priestly order; and this is
 the highest class of all.
 </p>
 <p>It is a Law
 of Nature with us that a male child shall have
 one more side than his father, so
 that each generation shall rise (as a rule) one step in
 the scale of development and nobility. Thus the son of a

Chapter 5

[117]

 Square is a Pentagon; the son of a Pentagon, a Hexagon;
 and so on.
 </p>
<!-- . . . code continues . . . -->
</div>

Downloadable code examples
As with many of the HTML, CSS, and JavaScript examples in this
book, the previous markup is merely a fragment of the complete
document. To experiment with the examples, you can download
them from the Packt Publishing website at http://www.packtpub.
com/support. In addition, the examples can be viewed in an
interactive browser at http://book.learningjquery.com/.

Now we can iterate through each of the links inside <div class="chapter"> and
apply attributes to them one by one. If we need to set a single attribute value for
all of the links, we can do so with a single line of code within our $(document).
ready() handler:

$(document).ready(function() {
 $('div.chapter a').attr({rel: 'external'});
});

Listing 5.1

Much like the .css() method, .attr() can accept a pair of parameters, the first
specifying the attribute name and the second being its new value. More typically,
though, we supply an object of key-value pairs, as we have in Listing 5.1. The
following syntax allows us to easily expand our example to modify multiple
attributes at once:

$(document).ready(function() {
 $('div.chapter a').attr({
 rel: 'external',
 title: 'Learn more at Wikipedia'
 });
});

Listing 5.2

Manipulating the DOM

[118]

Value callbacks
The straightforward technique for passing .attr() a simple object of constants is
sufficient when we want the attribute or attributes to have the same value for each
matched element. Often, though, the attributes we add or change must have different
values each time. One common example is that for any given document, each id
value must be unique if we want our JavaScript code to behave predictably. To set
a unique id value for each link, we can harness another feature of jQuery methods
such as .css() and .each()—value callbacks.

A value callback is simply a function that is supplied instead of the value for an
argument. This function is then invoked once per element in the matched set.
Whatever data is returned from the function is used as the new value for the
attribute. For example, we can use the following technique to generate a different
id value for each element:

$(document).ready(function() {
 $('div.chapter a').attr({
 rel: 'external',
 title: 'Learn more at Wikipedia',
 id: function(index, oldValue) {
 return 'wikilink-' + index;
 }
 });
});

Listing 5.3

Each time our value callback is fired, it is passed a pair of parameters. The first is
an integer indicating the iteration count; we're using it here to give the first link an
id value of wikilink-0, the second wikilink-1, and so on. The second parameter,
which is unused in Listing 5.3, contains the value of the attribute prior
to modification.

We are using the title attribute to invite people to learn more about the linked
term at Wikipedia. In the HTML tags we have used so far, all of the links point to
Wikipedia. However, to account for other types of links, we should make the selector
expression a little more specific:

$(document).ready(function() {
 $('div.chapter a[href*="wikipedia"]').attr({
 rel: 'external',
 title: 'Learn more at Wikipedia',
 id: function(index, oldValue) {
 return 'wikilink-' + index;
 }

Chapter 5

[119]

 });
});

Listing 5.4

To complete our tour of the .attr() method, we'll enhance the title attribute
of these links to be more specific about the link destination. Once again, a value
callback is the right tool for the job:

$(document).ready(function() {
 $('div.chapter a[href*="wikipedia"]').attr({
 rel: 'external',
 title: function() {
 return 'Learn more about ' + $(this).text()
 + ' at Wikipedia.';
 },
 id: function(index, oldValue) {
 return 'wikilink-' + index;
 }
 });
});

Listing 5.5

This time we've taken advantage of the context of value callbacks. Just as with event
handlers, the keyword this points to the DOM element we're manipulating each
time the callback is invoked. Here, we're wrapping the element in a jQuery object so
that we can use the .text() method (introduced in Chapter 4, Styling and Animating)
to retrieve the textual content of the link. This makes each link title different from the
rest, as we can see in the following screenshot:

Manipulating the DOM

[120]

DOM element properties
As mentioned briefly previously, there is a subtle distinction between HTML
attributes and DOM properties. Attributes are the values given in quotation
marks in the HTML source for the page, while properties are the values as accessed
by JavaScript. We can observe attributes and properties easily in a developer tool
like Chrome's:

The Chrome Developer Tools' elements inspector shows us that the highlighted <p>
element has an attribute called class with the value square. In the right panel, we
can see that this element has a corresponding property called className with the
value square. This illustrates one of the rare situations in which an attribute and its
equivalent property have different names.

In most cases, attributes and properties are functionally interchangeable, and
jQuery takes care of the naming inconsistencies for us. However, at times we do
need to be mindful of the differences between the two. Some DOM properties, such
as nodeName, nodeType, selectedIndex, and childNodes, have no equivalent
attribute, and therefore are not accessible via .attr(). Moreover, data types may
differ: the checked attribute, for example, has a string value, while the checked
property has a Boolean value. For these Boolean attributes, it is best to test and set
the property rather than the attribute to ensure consistent cross-browser behavior.

We can get and set properties from jQuery using the .prop() method:

// Get the current value of the "checked" property
var currentlyChecked = $('.my-checkbox').prop('checked');

Chapter 5

[121]

// Set a new value for the "checked" property
$('.my-checkbox').prop('checked', false);

The .prop() method has all the same features as .attr(), such as accepting an
object of multiple values to set at the same time and taking value callback functions.

The value of form controls
Perhaps the most troublesome difference between attributes and properties arises
when trying to get or set the value of a form control. For text inputs, the value
attribute is equivalent to the defaultValue property, not the value property. For
select elements, the value is usually obtained via the element's selectedIndex
property or the selected property of its option elements.

Because of these discrepancies, we should avoid using .attr()—and, in the case of
select elements, even .prop()—to get or set form element values. Instead, we can
use the .val() method, which jQuery provides for these occasions:

// Get the current value of a text input
var inputValue = $('#my-input').val();
// Get the current value of a select list
var selectValue = $('#my-select').val();
//Set the value of a single select list
$('#my-single-select').val('value3');
// Set the value of a multiple select list
$('#my-multi-select').val(['value1', 'value2']);

As with .attr() and .prop(), .val() can take a function for its setter argument.
With its multi-purpose .val() method, jQuery yet again makes developing for the
web much easier.

DOM tree manipulation
The .attr() and .prop()methods are very powerful tools, and with them we can
make targeted changes to the document. We still haven't seen ways to change the
overall structure of the document though. To actually manipulate the DOM tree,
we'll need to learn a bit more about the function that lies at the very heart of the
jQuery library.

Manipulating the DOM

[122]

The $() function revisited
From the start of this book, we've been using the $() function to access elements in
a document. As we've seen, this function acts as a factory, producing new jQuery
objects that point to the elements described by CSS selectors.

This isn't all that the $() function can do, however. It also boasts a feature so
powerful that it can change not only the visual appearance but also the actual
contents of a page. Simply by passing a snippet of HTML code to the function, we
can create an entirely new DOM structure from thin air.

Accessibility reminder
We should keep in mind, once again, the inherent danger in making
certain functionality, visual appeal, or textual information available
only to those with web browsers capable of (and enabled for) using
JavaScript. Important information should be accessible to all, not just
people who happen to be using the right software.

Creating new elements
A feature commonly seen on FAQ pages is the back to top link that appears after
each question-and-answer pair. It could be argued that these links serve no semantic
purpose and therefore can be legitimately included via JavaScript as an enhancement
for a subset of the visitors to a page. For our example, we'll add a back to top link
after each paragraph, as well as the anchor to which the back to top links will take
us. To begin, we simply create the new elements:

// Unfinished code
$(document).ready(function() {
 $('back to top');
 $('');
});

Listing 5.6

We've created a back to top link in the first line of code and a target anchor for the
link in the second line. However, no back to top links appear on the page yet.

Chapter 5

[123]

While the two lines of code we've written do indeed create the elements, they don't yet
add the elements to the page. We need to tell the browser where these new elements
should go. To do that, we can use one of the many jQuery insertion methods.

Inserting new elements
The jQuery library has a number of methods available for inserting elements into
the document. Each one dictates the relationship the new content will have to the
existing content. For example, we will want our back to top links to appear after
each paragraph, so we'll use the appropriately-named .insertAfter() method to
accomplish this:

// Unfinished code
$(document).ready(function() {
 $('back to top').insertAfter('div.chapter p');
 $('');
});

Listing 5.7

So, now that we've actually inserted the links into the page (and into the DOM) after
each paragraph that appears within <div class="chapter">, the back to top links
will appear:

Manipulating the DOM

[124]

Note that the new links appear on their own line, not within the paragraph. This is
because the .insertAfter() method, and its counterpart .insertBefore(), add
content outside the specified element.

Unfortunately, the links won't work yet. We still need to insert the anchor with
id="top". This time, we'll use one of the methods that insert elements inside of
other elements.

$(document).ready(function() {
 $('back to top').insertAfter('div.chapter p');
 $('').prependTo('body');
});

Listing 5.8

This additional code inserts the anchor right at the beginning of the <body> tag; in
other words, at the top of the page. Now, with the .insertAfter() method for the
links and the .prependTo() method for the anchor, we have a fully functioning set
of back to top links for the page.

Once we add the corresponding .appendTo() method, we now have a complete set
of options for inserting new elements before and after other elements:

•	 .insertBefore() adds content outside of and before existing elements
•	 .prependTo() adds content inside of and before existing elements
•	 .appendTo() adds content inside of and after existing elements
•	 .insertAfter() adds content outside of and after existing elements

Moving elements
When adding the back to top links, we created new elements and inserted them on
the page. It's also possible to take elements from one place on the page and insert
them into another place. A practical application of this type of insertion is the dynamic
placement and formatting of footnotes. One footnote already appears in the original
Flatland text that we are using for this example, but we'll also designate a couple of
other portions of the text as footnotes for the purpose of this demonstration:

<p>How admirable is the Law of Compensation! <span
 class="footnote">And how perfect a proof of the natural
 fitness and, I may almost say, the divine origin of the

Chapter 5

[125]

 aristocratic constitution of the States of Flatland!
 By a judicious use of this Law of Nature, the Polygons and
 Circles are almost always able to stifle sedition in its
 very cradle, taking advantage of the irrepressible and
 boundless hopefulness of the human mind.…
</p>

Our HTML document contains three footnotes; the previous paragraph contains
one example. The footnote text is inside the paragraph text, set apart using <span
class="footnote">. By marking up the HTML document in this way, we
can preserve the context of the footnote. A CSS rule applied in the stylesheet italicizes
the footnotes, so an affected paragraph initially looks like the following:

Now we need to grab the footnotes and move them to the bottom of the document.
Specifically, we'll insert them in between <div class="chapter"> and <div
id="footer">.

Keep in mind that even in cases of implicit iteration, the order in which elements
are processed is precisely defined, starting at the top of the DOM tree and working
down. Since it's important to maintain the correct order of the footnotes in their
new place on the page, we should use .insertBefore('#footer'). This will
place each footnote directly before the <div id="footer"> element so that the first
footnote is placed between <div class="chapter"> and <div id="footer">, the
second footnote is placed between the first footnote and <div id="footer">, and
so on. Using .insertAfter('div.chapter'), on the other hand, would cause the
footnotes to appear in reverse order.

So far, our code looks like the following:

$(document).ready(function() {
 $('span.footnote').insertBefore('#footer');
});

Listing 5.9

Manipulating the DOM

[126]

The footnotes are in tags, which means they display inline by default, one
right after the other with no separation. However, we've anticipated this in the CSS,
giving span.footnote elements a display value of block when they are outside of
<div class="chapter">. So, the footnotes are now beginning to take shape:

The footnotes are in the proper position now, yet there is still a lot of work that can
be done to them. A more robust footnote solution should do the following:

1.	 Number each footnote.
2.	 Mark the location in the text from which each footnote is pulled using the

number of the footnote.
3.	 Create a link from the text location to its matching footnote, and from the

footnote back to the text location.

Wrapping elements
To number the footnotes, we could explicitly add numbers in the markup, but
here we can take advantage of the standard ordered list element that takes care
of numbering for us. To do this, we need to create a containing element
surrounding all of the footnotes and an element surrounding each one
individually. The wrapping methods will come to our rescue here.

When wrapping elements in another element, we need to be clear about whether we
want each element wrapped in its own container or all elements wrapped in a single
container. For our footnote numbering, we need both types of wrapper:

$(document).ready(function() {
 $('span.footnote')
 .insertBefore('#footer')

Chapter 5

[127]

 .wrapAll('<ol id="notes">')
 .wrap('');
});

Listing 5.10

Once we have inserted the footnotes before the footer, we wrap the entire set inside
a single element using .wrapAll(). We then proceed to wrap each individual
footnote inside its own element using .wrap(). We can see that this has created
properly-numbered footnotes:

Now we're ready to mark and number the place from which we're pulling the
footnote. To do this in a straightforward manner, though, we need to rewrite
our existing code without relying on implicit iteration.

Explicit iteration
The .each() method, which acts as an explicit iterator, is very similar to the
forEach array iterator that was recently added to the JavaScript language. The
.each() method can be employed when the code we want to use on each of the
matched elements is too complex for the implicit iteration syntax. It is passed a
callback function that will be called once for each element in the matched set.

$(document).ready(function() {
 var $notes = $('<ol id="notes">').insertBefore('#footer');
 $('span.footnote').each(function(index) {
 $(this).appendTo($notes).wrap('');
 });
});

Listing 5.11

Manipulating the DOM

[128]

The motivation for our change here will become clear shortly. First, we need to
understand the information that's provided to our .each() callback.

As with other callbacks we've seen, such as the value callbacks we worked with
earlier this chapter, the context keyword this points to the DOM element in
question. In Listing 5.11, we use the context to create a jQuery object pointing to a
single footnote, , then we append the element to the notes , and finally
wrap the footnote inside an element.

To mark the locations in the text from which the footnotes were pulled, we can take
advantage of the .each() callback's parameter. This parameter provides the iteration
count, starting at 0 and incrementing each time the callback is invoked. Therefore,
this counter will always be 1 less than number of the footnote. We'll account for this
fact when producing the appropriate labels in the text:

$(document).ready(function() {
var $notes = $('<ol id="notes">').insertBefore('#footer');
 $('span.footnote').each(function(index) {
 $('^{' + (index + 1) + '}').insertBefore(this);
 $(this).appendTo($notes).wrap('');
 });
});

Listing 5.12

Now, before each footnote is pulled out of the text to be placed at the bottom of the
page, we create a new <sup> element containing the footnote's number and insert it
into the text. The order of actions is important here: we need to make sure that the
marker is inserted before the footnote is moved, or else we lose track of its initial
position. Note also that the expression (index + 1) must be in parentheses so that it
is interpreted as addition, since + is also used for string concatenation in JavaScript.

Looking at our page again, now we can see footnote markers where the inline
footnotes used to be:

Chapter 5

[129]

Using inverted insertion methods
In Listing 5.12, we inserted content before an element then appended that same element
to another place in the document. Typically, when working with elements in jQuery,
we can use chaining to perform multiple actions succinctly and efficiently. We weren't
able to do that here, though, because this is the target of .insertBefore() and the
subject of .appendTo(). The inverted insertion methods will help us get around
this limitation.

Each of the insertion methods, such as .insertBefore() or .appendTo(), has a
corresponding inverted method. The inverted methods perform exactly the same
task as the standard ones, but the subject and target are reversed. For example:

$('<p>Hello</p>').appendTo('#container');

is the same as:

$('#container').append('<p>Hello</p>');

Using .before(), the inverted form of .insertBefore(), we can now re-factor our
code to exploit chaining:

$(document).ready(function() {
 var $notes = $('<ol id="notes">')
 .insertBefore('#footer');
 $('span.footnote').each(function(index) {
 $(this)
 .before('^{' + (index + 1) + '}')
 .appendTo($notes)
 .wrap('');
 });
});

Listing 5.13

Insertion method callbacks
The inverted insertion methods can accept a function as an argument,
much like .attr() and .css() can. This function is invoked once per
target element, and should return the HTML string to be inserted. We
could use this technique here, but since we will encounter several such
situations for each footnote, the single .each() call will end up being
the cleaner solution.

Manipulating the DOM

[130]

We're now ready to take care of the final step in our checklist: create a link from the
text location to its matching footnote, and from the footnote back to the text location.
We'll need four pieces of markup per footnote to achieve this: two links, one in
the text and one after the footnote, and two id attributes in those same locations.
Because the argument to the .before() method is about to get complex, this is a
good time to introduce a new notation for string creation.

In Listing 5.15, we prepare our footnote marker by using the + operator to concatenate
strings. This is a very useful technique, but for joining a large number of strings it can
start to look cluttered. Instead, we can use the array method .join() to construct the
larger string. The following statements have the same effect:

var str = 'a' + 'b' + 'c';
var str = ['a', 'b', 'c'].join('');

While it requires a few more characters to type in this example, the .join()
method can add clarity when otherwise addition mixed with string concatenation
would become confusing. Let's look at our code again, this time using .join() to
create the string:

$(document).ready(function() {
 var $notes = $('<ol id="notes">')
 .insertBefore('#footer');
 $('span.footnote').each(function(index) {
 $(this)
 .before([
 '<sup>',
 index + 1,
 '</sup>'
].join(''))
 .appendTo($notes)
 .wrap('');
 });
});

Listing 5.14

Notice that since each array entry is computed separately, we don't need parentheses
around index + 1 anymore.

Using this technique, we can augment the footnote marker with a link to the
bottom of the page as well as a unique id value. While we're at it, we'll also add
an id for the element so the link has a destination to point at, as shown in the
following code snippet:

Chapter 5

[131]

$(document).ready(function() {
 var $notes = $('<ol id="notes">')
 .insertBefore('#footer');
 $('span.footnote').each(function(index) {
 $(this)
 .before([
 '<a href="#footnote-',
 index + 1,
 '" id="context-',
 index + 1,
 '" class="context">',
 '<sup>',
 index + 1,
 '</sup>'
].join(''))
 .appendTo($notes)
 .wrap('<li id="footnote-' + (index + 1) + '">');
 });
});

Listing 5.15

With the additional markup in place, each footnote marker now links down to the
corresponding footnote at the bottom of the document. All that remains is to create a
link back from the footnote to its context. For this, we can employ the inverse of the
.appendTo() method, .append():

$(document).ready(function() {
 var $notes = $('<ol id="notes">')
 .insertBefore('#footer');
 $('span.footnote').each(function(index) {
 $(this)
 .before([
 '<a href="#footnote-',
 index + 1,
 '" id="context-',
 index + 1,
 '" class="context">',
 '<sup>',
 index + 1,
 '</sup>'
].join(''))
 .appendTo($notes)
 .append([
 ' (<a href="#context-',

Manipulating the DOM

[132]

 index + 1,
 '">context)'
].join(''))
 .wrap('<li id="footnote-' + (index + 1) + '">');
 });
});

Listing 5.16

Notice that the href tag points back to the id value of the corresponding marker. In
the following screenshot you can see the footnotes again, except this time with the
new link appended to each:

Copying elements
So far in this chapter we have inserted newly created elements, moved elements
from one location in the document to another, and wrapped new elements around
existing ones. Sometimes, though, we may want to copy elements. For example, a
navigation menu that appears in the page's header could be copied and placed in the
footer as well. Whenever elements can be copied to enhance a page visually, we have
an opportunity to use jQuery. After all, why write something twice and double our
chance of error when we can write it once and let jQuery do the heavy lifting?

For copying elements, jQuery's .clone() method is just what we need; it takes
any set of matched elements and creates a copy of them for later use. As in the case
of the $() function's element-creation process we explored earlier in this chapter,
the copied elements will not appear in the document until we apply one of the
insertion methods.

Chapter 5

[133]

For example, the following line creates a copy of the first paragraph inside <div
class="chapter">:

$('div.chapter p:eq(0)').clone();

This alone is not enough to change the content of the page. We can make the cloned
paragraph appear before <div class="chapter"> with an insertion method:

$('div.chapter p:eq(0)').clone().insertBefore('div.chapter');

This will cause the first paragraph to appear twice. So, to use a familiar analogy,
.clone() is related to the insertion methods just as copy is to paste.

Clone with events
The .clone() method, by default, does not copy any events
that are bound to the matching element or any of its descendants.
However, it can take a single Boolean parameter that, when set to true
(.clone(true)), clones events as well. This convenient event cloning
allows us to avoid having to deal with manually rebinding events, as
was discussed in Chapter 3, Handling Events.

Cloning for pull quotes
Many websites, like their print counterparts, use pull quotes to emphasize small
portions of text and attract the reader's eye. A pull quote is simply an excerpt from
the main document that is presented with a special graphical treatment alongside the
text. We can easily accomplish this embellishment with the .clone() method. First,
let's take another look at the third paragraph of our example text:

<p>
 It is a Law of Nature
 with us that a male child shall
 have one more side than his father,
 so that each generation shall rise (as a rule) one step in
 the scale of development and nobility. Thus the son of a
 Square is a Pentagon; the son of a Pentagon, a Hexagon; and
 so on.
</p>

Notice that the paragraph begins with . This is the
class we will be targeting for cloning. Once the copied text inside that tag is
pasted into another place, we need to modify its style properties to set it apart from
the rest of the text.

Manipulating the DOM

[134]

To accomplish this type of styling, we'll add a pulled class to the copied . In
our stylesheet, that class receives the following style rule:

.pulled {
 position: absolute;
 width: 120px;
 top: -20px;
 right: -180px;
 padding: 20px;
 font: italic 1.2em "Times New Roman", Times, serif;
 background: #e5e5e5;
 border: 1px solid #999;
 border-radius: 8px;
 box-shadow: 1px 1px 8px rgba(0, 0, 0, 0.6);
}

An element with this class is visually differentiated from the main content by applying
style rules for background, border, font, and so on. Most importantly, it's absolutely
positioned, 20 pixels above and 20 pixels to the right of the nearest (absolute or
relative) positioned ancestor in the DOM. If no ancestor has positioning (other than
static) applied, the pull quote will be positioned relative to the document <body>.
Because of this, we need to make sure in the jQuery code that the cloned pull quote's
parent element has position:relative set.

CSS position calculation
While the top positioning is fairly intuitive, it may not be clear at first
how the pull quote box will be located 20 pixels to the right of its
positioned parent. We derive the number first from the total width of
the pull-quote box, which is the value of the width property plus the
left and right padding, or 145px + 5px + 10px = 160px. We then
set the right property of the pull quote. A value of 0 would align
the pull quote's right side with that of its parent. Therefore, to place
its left side 20 pixels to the right of the parent, we need to move it in a
negative direction 20 pixels more than its total width, or -180px.

Now we can consider the jQuery code needed to apply this style. We'll start with
a selector expression to find all of the elements and
apply the position: relative style to each parent element as we just discussed:

$(document).ready(function() {
 $('span.pull-quote').each(function(index) {
 var $parentParagraph = $(this).parent('p');
 $parentParagraph.css('position', 'relative');

Chapter 5

[135]

 });
});

Listing 5.17

We'll be referring to the parent paragraph again later, so the $parentParagraph
variable will prove to improve performance and readability.

Next we need to create the pull quote itself, taking advantage of the CSS we've
prepared. We need to clone each tag, add the pulled class to the copy,
and insert it into the beginning of its parent paragraph:

$(document).ready(function() {
 $('span.pull-quote').each(function(index) {
 var $parentParagraph = $(this).parent('p');
 $parentParagraph.css('position', 'relative');
 var $clonedCopy = $(this).clone();
 $clonedCopy
 .addClass('pulled')
 .prependTo($parentParagraph);
 });
});

Listing 5.18

Once again, we're introducing a variable here ($clonedCopy) that will be useful later.

Because we're using absolute positioning for the pull quote, the placement of it
within the paragraph is irrelevant. As long as it remains inside the paragraph, it
will be positioned in relation to the top and the right of the paragraph, based on
our CSS rules.

The pull quote now appears alongside its originating paragraph, as intended:

This is a good start. For our next enhancement, we'll clean up the content of the pull
quotes a bit.

Manipulating the DOM

[136]

Content getter and setter methods
It would be nice to be able to modify the pull quote a bit by dropping some words
and replacing them with ellipses to keep the content brief. To demonstrate this, we
have wrapped a few words of the example text in a tag.

The easiest way to accomplish this replacement is to directly specify the new HTML
entity that is to replace the old one. The .html() method is perfect for our needs:

$(document).ready(function() {
 $('span.pull-quote').each(function(index) {
 var $parentParagraph = $(this).parent('p');
 $parentParagraph.css('position', 'relative');

 var $clonedCopy = $(this).clone();
 $clonedCopy
 .addClass('pulled')
 .find('span.drop')
 .html('…')
 .end()
 .prependTo($parentParagraph);
 });
});

Listing 5.19

The new lines in Listing 5.19 rely on the DOM traversal techniques we learned in
Chapter 2, Selecting Elements. We use .find() to search inside the pull quote for any
 elements, operate on them, and then return to the pull quote
itself by calling .end(). In between these methods, we invoke .html() to change the
content into an ellipsis (using the appropriate HTML entity).

When called without arguments, .html() returns a string representation of the
HTML entity inside the matched element. With an argument, the contents of the
element are replaced by the supplied HTML entity. We must take care to only
specify a valid HTML entity, escaping special characters properly when using
this technique.

The specified words have now been replaced by an ellipsis:

Chapter 5

[137]

Pull quotes typically do not retain their original font formatting, such as the boldfaced
one more side text in this example. What we really want to display is the text of <span
class="pull-quote"> stripped of any , , <a href>, or other inline tags.
To replace all of the pull-quote HTML entities with a stripped, text-only version, we
can employ the .html() method's companion method, .text().

Like .html(), the .text() method can either retrieve the content of the matched
element or replace its content with a new string. Unlike .html(), however, .text()
always gets or sets a plain text string. When .text() retrieves content, all of the
included tags are ignored, and HTML entities are translated into plain characters.
When it sets content, special characters such as < are translated into their HTML
entity equivalents:

$(document).ready(function() {
 $('span.pull-quote').each(function(index) {
 var $parentParagraph = $(this).parent('p');
 $parentParagraph.css('position', 'relative');
 var $clonedCopy = $(this).clone();
 $clonedCopy
 .addClass('pulled')
 .find('span.drop')
 .html('…')
 .end()
 .text($clonedCopy.text())
 .prependTo($parentParagraph);
 });
});

Listing 5.20

Manipulating the DOM

[138]

When this sneaky bit of code fetches the content of the pull quote with $clonedCopy
.text(), we get a plain string containing the text without tags. Therefore, when that
text is fed right back into .text(), the markup is removed and the bold text in our
example is no longer bold:

DOM manipulation methods in a nutshell
The extensive DOM manipulation methods that jQuery provides vary according to
their task and their target location. We haven't covered them all here, but most are
analogous to the ones we've seen, and more will be discussed in Chapter 12, Advanced
DOM Manipulation. The following outline can serve as a reminder of which method
we can use to accomplish which task:

•	 To create new elements from HTML, use the $() function
•	 To insert new elements inside every matched element, use the

following functions:
°° .append()

°° .appendTo()

°° .prepend()

°° .prependTo()

•	 To insert new elements adjacent to every matched element, use the
following functions:

°° .after()

°° .insertAfter()

°° .before()

°° .insertBefore()

Chapter 5

[139]

•	 To insert new elements around every matched element, use the
following functions:

°° .wrap()

°° .wrapAll()

°° .wrapInner()

•	 To replace every matched element with new elements or text, use the
following functions:

°° .html()

°° .text()

°° .replaceAll()

°° .replaceWith()

•	 To remove elements inside every matched element, use the
following function:

°° .empty()

•	 To remove every matched element and descendants from the document
without actually deleting them, use the following functions:

°° .remove()
°° .detach()

Summary
In this chapter, we have created, copied, reassembled, and embellished content
using jQuery's DOM modification methods. We've applied these methods to a
single web page, transforming a handful of generic paragraphs to a footnoted,
pull-quoted, linked, and stylized literary excerpt. This chapter has shown us just
how easy it is to add, remove, and rearrange the contents of a page with jQuery. In
addition, we have learned how to make any changes we want to the CSS and DOM
properties of page elements.

Next up, we'll take a round-trip journey to the server via jQuery's Ajax methods.

Further reading
The topic of DOM manipulation will be explored in more detail in Chapter 12,
Advanced DOM Manipulation. A complete list of DOM manipulation methods
is available in Appendix C, Quick Reference, of this book, or in the official jQuery
documentation at http://api.jquery.com/.

Manipulating the DOM

[140]

Exercises
To complete these exercises, you will need the index.html file for this
chapter as well as the finished JavaScript code as found in complete.js.
These files can be downloaded from the Packt Publishing web site at
http://www.packtpub.com/support.

The challenge exercises may require the use of the official jQuery
documentation at http://api.jquery.com/.

1.	 Alter the code that introduces the back to top links so that the links
only appear after the fourth paragraph.

2.	 When a back to top link is clicked, add a new paragraph after the link
containing the message You were here. Ensure that the link still works.

3.	 When the author's name is clicked, turn it bold (by adding an element,
rather than manipulating classes or CSS attributes).

4.	 Challenge: On a subsequent click of the bolded author's name, remove
the element that was added (thereby toggling between bold and
normal text).

5.	 Challenge: Add a class of inhabitants to each of the chapter's
paragraphs without calling .addClass(). Make sure to preserve
any existing classes.

Sending Data with Ajax
The term Asynchronous JavaScript and XML (Ajax) was coined by Jesse James
Garrett in 2005. Since then it has come to represent many different things, as the
term encompasses a group of related capabilities and techniques. At its most basic
level, an Ajax solution includes the following technologies:

•	 JavaScript: This is used to capture interactions with the user or other
browser-related events and to interpret the data from the server and
present it on the page

•	 XMLHttpRequest: This allows requests to be made to the server
without interrupting other browser tasks

•	 Textual data: The server provides data in a format such as XML, HTML,
or JSON

Ajax has been hailed as the savior of the web landscape, transforming static web
pages into interactive web applications. Unsurprisingly, browsers are not entirely
consistent with regard to their implementations of the XMLHttpRequest object, but
jQuery will assist us in taming this feature.

In this chapter, we will cover:

•	 Loading data from the server without a page refresh
•	 Sending data from JavaScript in the browser back to the server
•	 Interpreting data in a variety of formats, including HTML, XML,

and JSON
•	 Providing feedback to the user about the status of an Ajax request

Sending Data with Ajax

[142]

Loading data on demand
Underneath all the hype and trappings, Ajax is just a means of loading data from the
server to the web browser or client without a visible page refresh. This data can take
many forms, and we have many options for what to do with it when it arrives. We'll
see this by performing the same basic task in many ways.

We are going to build a page that displays entries from a dictionary, grouped by the
starting letter of the dictionary entry. The HTML defining the content area of the
page will look like this:

<div id="dictionary">
</div>

Yes, really! Our page will have no content to begin with. We are going to use
jQuery's various Ajax methods to populate this <div> tag with dictionary entries.

Downloadable code examples
As with many of the HTML, CSS, and JavaScript examples in this book,
the previous markup is merely a fragment of the complete document.
To experiment with the examples, we can download them from the
Packt Publishing website at http://www.packtpub.com/support.
In addition, the examples can be viewed in an interactive browser at
http://book.learningjquery.com/.

We're going to need a way to trigger the loading process, so we'll add some links for
our event handlers to latch onto:

<div class="letters">
 <div class="letter" id="letter-a">
 <h3>A</h3>
 </div>
 <div class="letter" id="letter-b">
 <h3>B</h3>
 </div>
 <div class="letter" id="letter-c">
 <h3>C</h3>
 </div>
 <div class="letter" id="letter-d">
 <h3>D</h3>
 </div>
 <!-- and so on -->
</div>

Chapter 6

[143]

These simple links will lead us to pages that list the dictionary entries for that letter.
We will use progressive enhancement to allow these links to instead manipulate the
page without a full page load.

With basic styling applied, this HTML will produce a page that looks like this:

Now we can focus on getting content onto the page.

Appending HTML
Ajax applications are often no more than a request for a chunk of HTML. This
technique, sometimes referred to as Asynchronous HTTP and HTML (AHAH), is
almost trivial to implement with jQuery. First, we need some HTML to insert, which
we'll place in a file called a.html alongside our main document. This secondary
HTML file begins as follows:

<div class="entry">
 <h3 class="term">ABDICATION</h3>
 <div class="part">n.</div>
 <div class="definition">
 An act whereby a sovereign attests his sense of the high
 temperature of the throne.
 <div class="quote">
 <div class="quote-line">Poor Isabella's Dead, whose
 abdication</div>
 <div class="quote-line">Set all tongues wagging in the
 Spanish nation.</div>
 <div class="quote-line">For that performance 'twere
 unfair to scold her:</div>
 <div class="quote-line">She wisely left a throne too
 hot to hold her.</div>
 <div class="quote-line">To History she'll be no royal

Sending Data with Ajax

[144]

 riddle —</div>
 <div class="quote-line">Merely a plain parched pea that
 jumped the griddle.</div>
 <div class="quote-author">G.J.</div>
 </div>
 </div>
</div>

<div class="entry">
 <h3 class="term">ABSOLUTE</h3>
 <div class="part">adj.</div>
 <div class="definition">
 Independent, irresponsible. An absolute monarchy is one
 in which the sovereign does as he pleases so long as he
 pleases the assassins. Not many absolute monarchies are
 left, most of them having been replaced by limited
 monarchies, where the sovereign's power for evil (and for
 good) is greatly curtailed, and by republics, which are
 governed by chance.
 </div>
</div>

The page continues with more entries in this HTML structure. Rendered on its own,
a.html is quite plain:

Chapter 6

[145]

Note that a.html is not a true HTML document; it contains no <html>, <head>, or
<body>, all of which are normally required. We usually call such a file a partial or
fragment; its only purpose is to be inserted into another HTML document, which
we'll accomplish now:

$(document).ready(function() {
 $('#letter-a a').click(function(event) {
 event.preventDefault();
 $('#dictionary').load('a.html');
 });
});

Listing 6.1

The .load() method does all the heavy lifting for us. We specify the target location
for the HTML snippet by using a normal jQuery selector, and then pass the URL
of the file to be loaded as a parameter to the method. Now, when the first link is
clicked, the file is loaded and placed inside <div id="dictionary">. The browser
will render the new HTML as soon as it is inserted.

Note that the HTML is now styled, whereas before it was plain. This is due to the
CSS rules in the main document; as soon as the new HTML snippet is inserted, the
rules apply to its elements as well.

When testing this example, the dictionary definitions will probably appear
instantaneously when the button is clicked. This is a hazard of working on our
applications locally; it is hard to account for delays or interruptions in transferring
documents across the network. Suppose we added an alert box to display after the
definitions are loaded:

$(document).ready(function() {
 $('#letter-a a').click(function(event) {
 event.preventDefault();

Sending Data with Ajax

[146]

 $('#dictionary').load('a.html');
 alert('Loaded!');
 });
});

Listing 6.2

We might assume from the structure of this code that the alert can only be displayed
after the load has been performed. JavaScript execution is usually synchronous,
working on one task after another in strict sequence.

However, when this particular code is tested on a production web server, the
alert will quite possibly have come and gone before the load has completed, due
to network lag. This happens because all Ajax calls are by default asynchronous.
Otherwise, we'd have to call it "Sjax", which hardly has the same ring to it.
Asynchronous loading means that once the HTTP request to retrieve the HTML
snippet is issued, script execution immediately resumes without waiting. Some
time later, the browser receives the response from the server and handles it. This is
generally the desired behavior; it is unfriendly to lock up the whole web browser
while waiting for data to be retrieved.

If actions must be delayed until the load has been completed, jQuery provides a
callback for this. We've already seen callbacks in Chapter 4, Styling and Animating,
using them to execute actions after an effect has completed. Ajax callbacks perform
a similar function, executing after data arrives from the server. We will use this
capability in our next example, as we learn how to read JSON data from the server.

Working with JavaScript objects
Pulling in fully formed HTML on demand is very convenient, but it means having to
transfer a lot of information about the HTML structure along with the actual content.
There are times when we would rather transfer as little data as possible and process
it after it arrives. In this case, we need to retrieve the data in a structure that we can
traverse with JavaScript.

With jQuery's selectors, we could traverse the HTML we get back and manipulate it,
but a more native JavaScript data format typically involves less data to transfer and
less code to process it.

Chapter 6

[147]

Retrieving JSON
As we have often seen, JavaScript objects are just sets of key-value pairs, and can
be defined succinctly using curly braces ({}). JavaScript arrays, on the other hand,
are defined on the fly with square brackets ([]) and have implicit keys, which are
incrementing integers. Combining these two concepts, we can easily express some
very complex and rich data structures.

The term JavaScript Object Notation (JSON) was coined by Douglas Crockford to
capitalize on this simple syntax. This notation can offer a concise alternative to the
bulky XML format:

{
 "key": "value",
 "key 2": [
 "array",
 "of",
 "items"
]
}

While based on JavaScript object literals and array literals, JSON is more prescriptive
about its syntax requirements and more restrictive about the values it allows. For
example, JSON specifies that all object keys, as well as all string values must be
enclosed in double quotes. Also, functions are not valid JSON values. Because of its
strictness, developers should avoid hand-editing JSON and instead rely on software
such as a server-side script to format it properly.

For information on JSON's syntax requirements, some of
its potential advantages and its implementations in many
programming languages, visit http://json.org/.
http://json.org/.

We can encode our data using this format in many ways. To illustrate one approach,
we'll place some dictionary entries in a JSON file that we'll call b.json:

[
 {
 "term": "BACCHUS",
 "part": "n.",
 "definition": "A convenient deity invented by the...",
 "quote": [
 "Is public worship, then, a sin,",
 "That for devotions paid to Bacchus",

Sending Data with Ajax

[148]

 "The lictors dare to run us in,",
 "And resolutely thump and whack us?"
],
 "author": "Jorace"
 },
 {
 "term": "BACKBITE",
 "part": "v.t.",
 "definition": "To speak of a man as you find him when..."
 },
 {
 "term": "BEARD",
 "part": "n.",
 "definition": "The hair that is commonly cut off by..."
 },
 ... file continues ...

To retrieve this data, we'll use the $.getJSON() method, which fetches the file and
processes it. When the data arrives from the server, it is simply a text string in JSON
format. The $.getJSON() method parses this string and provides the calling code
with the resulting JavaScript object.

Using global jQuery functions
To this point, all jQuery methods that we've used have been attached to a jQuery
object that we've built with the $() function. The selectors have allowed us to specify
a set of DOM nodes to work with, and the methods have operated on them in some
way. This $.getJSON() function, however, is different. There is no logical DOM
element to which it could apply; the resulting object has to be provided to the script,
not injected into the page. For this reason, getJSON() is defined as a method of the
global jQuery object (a single object called jQuery or $ defined once by the jQuery
library), rather than of an individual jQuery object instance (the object returned by
the $() function).

If JavaScript had classes like other object-oriented languages, we'd call $.getJSON()
a class method. For our purposes, we'll refer to this type of method as a global
function; in effect, they are functions that use the jQuery namespace so as not to
conflict with other function names.

To use this function, we pass it the filename as before:

// Unfinished code

Chapter 6

[149]

$(document).ready(function() {
 $('#letter-b a').click(function(event) {
 event.preventDefault();
 $.getJSON('b.json');
 });
});

Listing 6.3

This code has no apparent effect when we click on the link. The function call loads
the file, but we have not told JavaScript what to do with the resulting data. For this,
we need to use a callback function.

The $.getJSON() function takes a second argument, which is a function to be called
when the load is complete. As mentioned earlier, Ajax calls are asynchronous,
and the callback provides a way to wait for the data to be transmitted rather than
executing code right away. The callback function also takes an argument, which is
filled with the resulting data. So, we can write:

// Unfinished code
$(document).ready(function() {
 $('#letter-b a').click(function(event) {
 event.preventDefault();
 $.getJSON('b.json', function(data) {
 });
 });
});

Listing 6.4

Here we are using an anonymous function expression as our callback, as we
have done in the past to keep our jQuery code concise. A reference to a function
declaration could equally be provided as the callback.

Inside this function, we can use the data variable to traverse the JSON structure
as necessary. We'll need to iterate over the top-level array, building the HTML for
each item. We could do this with a standard for loop, but instead we'll introduce
another of jQuery's useful global functions, $.each(). We saw its counterpart, the
.each() method, in Chapter 5, Manipulating the DOM. Instead of operating on a
jQuery collection of DOM elements, this function takes an array or object as its first
parameter and a callback function as its second. Each time through the loop, the
current iteration index and the current item in the array or object are passed as two
parameters to the callback function.

Sending Data with Ajax

[150]

$(document).ready(function() {
 $('#letter-b a').click(function(event) {
 event.preventDefault();
 $.getJSON('b.json', function(data) {
 var html = '';
 $.each(data, function(entryIndex, entry) {
 html += '<div class="entry">';
 html += '<h3 class="term">' + entry.term + '</h3>';
 html += '<div class="part">' + entry.part + '</div>';
 html += '<div class="definition">';
 html += entry.definition;
 html += '</div>';
 html += '</div>';
 });
 $('#dictionary').html(html);
 });
 });
});

Listing 6.5

We use $.each() to examine each item in turn, building an HTML structure using
the contents of the entry object. Once all the HTML has been built for each entry, we
insert it into <div id="dictionary"> with .html(), replacing anything that may
have already been there.

Safe HTML
This approach presumes that the data is safe for HTML consumption;
it should not contain any stray < characters, for example.

All that's left is to handle the entries with quotations, which takes another
$.each() loop:

$(document).ready(function() {
 $('#letter-b a').click(function(event) {
 event.preventDefault();
 $.getJSON('b.json', function(data) {
 var html = '';
 $.each(data, function(entryIndex, entry) {
 html += '<div class="entry">';
 html += '<h3 class="term">' + entry.term + '</h3>';
 html += '<div class="part">' + entry.part + '</div>';
 html += '<div class="definition">';

Chapter 6

[151]

 html += entry.definition;
 if (entry.quote) {
 html += '<div class="quote">';
 $.each(entry.quote, function(lineIndex, line) {
 html += '<div class="quote-line">' + line + '</div>';
 });
 if (entry.author) {
 html += '<div class="quote-author">' + entry.author + '</
 div>';
 }
 html += '</div>';
 }
 html += '</div>';
 html += '</div>';
 });
 $('#dictionary').html(html);
 });
 });
});

Listing 6.6

With this code in place, we can click on the B link and confirm our results. The
dictionary entries are displayed on the right-hand side of the page, as expected:

The JSON format is concise, but not forgiving. Every bracket, brace, quote, and
comma must be present and accounted for, or the file will not load. In some cases, we
won't even get an error message; the script will just silently fail.

Sending Data with Ajax

[152]

Executing a script
Occasionally, we don't want to retrieve all the JavaScript we will need when the page
is first loaded. We might not know what scripts will be necessary until some user
interaction occurs. We could introduce the <script> tags on the fly when they are
needed, but a more elegant way to inject additional code is to have jQuery load the
.js file directly.

Pulling in a script is about as simple as loading an HTML fragment. In this case, we
use the $.getScript() function, which—like its siblings—accepts a URL locating
the script file:

$(document).ready(function() {
 $('#letter-c a').click(function(event) {
 event.preventDefault();
 $.getScript('c.js');
 });
});

Listing 6.7

In our last example, we needed to process the result data so that we could do
something useful with the loaded file. With a script file, though, the processing is
automatic; the script is simply run.

Scripts fetched in this way are run in the global context of the current page. This
means they have access to all globally defined functions and variables, notably
including jQuery itself. We can, therefore, mimic the JSON example to prepare and
insert HTML on the page when the script is executed, and place this code in c.js:

var entries = [
 {
 "term": "CALAMITY",
 "part": "n.",
 "definition": "A more than commonly plain and..."
 },
 {
 "term": "CANNIBAL",
 "part": "n.",
 "definition": "A gastronome of the old school who..."
 },
 {
 "term": "CHILDHOOD",
 "part": "n.",

Chapter 6

[153]

 "definition": "The period of human life intermediate..."
 }
 // and so on
];

var html = '';

$.each(entries, function() {
 html += '<div class="entry">';
 html += '<h3 class="term">' + this.term + '</h3>';
 html += '<div class="part">' + this.part + '</div>';
 html += '<div class="definition">' + this.definition + '</div>';
 html += '</div>';
});

$('#dictionary').html(html);

Now, clicking on the C link has the expected result, showing the appropriate
dictionary entries.

Loading an XML document
XML is part of the acronym Ajax, but we haven't actually loaded any XML yet.
Doing so is straightforward, and mirrors the JSON technique fairly closely. First,
we'll need an XML file, d.xml, containing some data we wish to display:

<?xml version="1.0" encoding="UTF-8"?>
<entries>
 <entry term="DEFAME" part="v.t.">
 <definition>
 To lie about another. To tell the truth about another.
 </definition>
 </entry>
 <entry term="DEFENCELESS" part="adj.">
 <definition>
 Unable to attack.
 </definition>
 </entry>
 <entry term="DELUSION" part="n.">
 <definition>
 The father of a most respectable family, comprising
 Enthusiasm, Affection, Self-denial, Faith, Hope,
 Charity and many other goodly sons and daughters.
 </definition>

Sending Data with Ajax

[154]

 <quote author="Mumfrey Mappel">
 <line>All hail, Delusion! Were it not for thee</line>
 <line>The world turned topsy-turvy we should see;
 </line>
 <line>For Vice, respectable with cleanly fancies,
 </line>
 <line>Would fly abandoned Virtue's gross advances.
 </line>
 </quote>
 </entry>
</entries>

This data could be expressed in many ways, of course, and some would more closely
mimic the structure we established for the HTML or JSON used earlier. Here, however,
we're illustrating some of the features of XML designed to make it more readable to
humans, such as the use of attributes for term and part rather than tags.

We'll start off our function in a familiar manner:

// Unfinished code
$(document).ready(function() {
 $('#letter-d a').click(function(event) {
 event.preventDefault();
 $.get('d.xml', function(data) {

 });
 });
});

Listing 6.8

This time, it's the $.get() function that does our work. In general, this function
simply fetches the file at the supplied URL and provides the plain text to the callback.
However, if the response is known to be XML because of its server-supplied MIME
type, the callback will be handed the XML DOM tree.

Fortunately, as we have already seen, jQuery has substantial DOM-traversing
capabilities. We can use the normal .find(), .filter(), and other traversal
methods on the XML document just as we would on HTML:

$(document).ready(function() {
 $('#letter-d a').click(function(event) {
 event.preventDefault();
 $.get('d.xml', function(data) {
 $('#dictionary').empty();

Chapter 6

[155]

 $(data).find('entry').each(function() {
 var $entry = $(this);
 var html = '<div class="entry">';
 html += '<h3 class="term">' + $entry.attr('term');
 html += '</h3>';
 html += '<div class="part">' + $entry.attr('part');
 html += '</div>';
 html += '<div class="definition">';
 html += $entry.find('definition').text();
 var $quote = $entry.find('quote');
 if ($quote.length) {
 html += '<div class="quote">';
 $quote.find('line').each(function() {
 html += '<div class="quote-line">';
 html += $(this).text() + '</div>';
 });
 if ($quote.attr('author')) {
 html += '<div class="quote-author">';
 html += $quote.attr('author') + '</div>';
 }
 html += '</div>';
 }
 html += '</div>';
 html += '</div>';
 $('#dictionary').append($(html));
 });
 });
 });
});

Listing 6.9

This has the expected effect when the D link is clicked:

Sending Data with Ajax

[156]

This is a new use for the DOM traversal methods we already know, shedding some
light on the flexibility of jQuery's CSS selector support. CSS syntax is typically used
to help beautify HTML pages, and thus selectors in standard .css files use HTML
tag names such as div and body to locate content. However, jQuery can use arbitrary
XML tag names, such as entry and definition, just as readily as the standard
HTML ones.

The advanced selector engine inside jQuery facilitates finding parts of the XML
document in much more complicated situations as well. For example, suppose we
wanted to limit the displayed entries to those that have quotes that in turn have
attributed authors. To do this, we can limit the entries to those with the nested
<quote> elements by changing entry to entry:has(quote). Then, we can further
restrict the entries to those with author attributes on the <quote> elements by
writing entry:has(quote[author]). The line in Listing 6.9 with the initial selector
now reads:

$(data).find('entry:has(quote[author])').each(function() {

This new selector expression restricts the returned entries correspondingly:

Choosing a data format
We have looked at four formats for our external data, each of which is handled by
jQuery's Ajax functions. We have also verified that all four can handle the task at
hand, loading information onto an existing page when the user requests it and not
before. How, then, do we decide which one to use in our applications?

Chapter 6

[157]

HTML snippets require very little work to implement. The external data can be loaded
and inserted into the page with one simple method that does not even require a
callback function. No traversal of the data is necessary for the straightforward task
of adding the new HTML into the existing page. On the other hand, the data is not
necessarily structured in a way that makes it reusable for other applications. The
external file is tightly coupled with its intended container.

JSON files are structured for simple reuse. They are compact and easy to read. The
data structure must be traversed to pull out the information and present it on the
page, but this can be done with standard JavaScript techniques. Since modern
browsers parse the files natively with a single call to JSON.parse(), reading in a
JSON file is extremely fast. Errors in the JSON file can cause silent failure or even
side effects on the page, so the data must be crafted carefully by a trusted party.

JavaScript files offer the ultimate in flexibility, but are not really a data storage
mechanism. Since the files are language-specific, they cannot be used to provide
the same information to disparate systems. Instead, the ability to load a JavaScript
file means that behaviors that are rarely needed can be factored out into external
files, reducing code size unless and until it is needed.

While XML has fallen out of favor in the JavaScript community, with most developers
preferring JSON, it is still so common that providing data in this format makes it very
likely that the data can be reused elsewhere. Indeed, many web services, such as Yahoo
Weather (http://developer.yahoo.com/weather/), export XML representations
of their data, which has allowed many interesting mashups of their data to arise. The
XML format is somewhat bulky, and can be a bit slower to parse and manipulate than
other options.

With these characteristics in mind, it is typically easiest to provide external data
as HTML snippets, as long as the data is not needed in other applications as
well. In cases where the data will be reused but the other applications can also be
influenced, JSON is often a good choice due to its performance and size. When the
remote application is not known, XML may provide the greatest assurance that
interoperability will be possible.

More than any other consideration, we should determine if the data is already
available. If it is, chances are that it's in one of these formats to begin with, so the
decision may be made for us.

Sending Data with Ajax

[158]

Passing data to the server
Our examples to this point have focused on the task of retrieving static data files
from the web server. However, the Ajax technique really comes into its own only
when the server can dynamically shape the data based on input from the browser.
We're helped along by jQuery in this task as well; all of the methods we've covered
so far can be modified so that data transfer becomes a two-way street.

Interacting with server-side code
Since demonstrating these techniques requires interaction with the
web server, we'll need to use server-side code for the first time here.
The examples given will use the PHP scripting language, which is
very widely used as well as freely available. We will not cover how
to set up a web server with PHP here; beginners should consider
a package such as XAMPP, which can be found at http://www.
apachefriends.org/en/xampp.html, to get started quickly.

Performing a GET request
To illustrate the communication between client (using JavaScript) and server (using
PHP in our example), we'll write a script that only sends one dictionary entry to the
browser on each request. The entry chosen will depend on a parameter sent from the
browser. Our script will pull its data from an internal data structure like this:

<?php
$entries = array(
 'EAVESDROP' => array(
 'part' => 'v.i.',
 'definition' => 'Secretly to overhear a catalogue of the
 crimes and vices of another or yourself.',
 'quote' => array(
 'A lady with one of her ears applied',
 'To an open keyhole heard, inside,',
 'Two female gossips in converse free —',
 'The subject engaging them was she.',
 '"I think," said one, "and my husband thinks',
 'That she\'s a prying, inquisitive minx!"',
 'As soon as no more of it she could hear',
 'The lady, indignant, removed her ear.',
 '"I will not stay," she said, with a pout,',
 '"To hear my character lied about!"',
),
 'author' => 'Gopete Sherany',
),

Chapter 6

[159]

 'EDIBLE' => array(
 'part' => 'adj.',
 'definition' => 'Good to eat, and wholesome to digest, as
 a worm to a toad, a toad to a snake, a snake to a pig,
 a pig to a man, and a man to a worm.',
),
// and so on
);
?>

In a production version of this example, the data would probably be stored in a
database and loaded on demand. Since the data is a part of the script here, the code
to retrieve it is quite straightforward. We examine the data that has been posted and
call a function that returns the HTML snippet to display:

<?php
if (isset($entries[strtoupper($_REQUEST['term'])])) {
 $term = strtoupper($_REQUEST['term']);
 $entry = $entries[$term];
 echo build_entry($term, $entry);
} else {
 echo '<div>Sorry, your term was not found.</div>';
}

function build_entry($term, $entry) {
 $html = '<div class="entry">';
 $html .= '<h3 class="term">';
 $html .= $term;
 $html .= '</h3>';

 $html .= '<div class="part">';
 $html .= $entry['part'];
 $html .= '</div>';

 $html .= '<div class="definition">';
 $html .= $entry['definition'];
 if (isset($entry['quote'])) {
 foreach ($entry['quote'] as $line) {
 $html .= '<div class="quote-line">'. $line .'</div>';
 }
 if (isset($entry['author'])) {
 $html .= '<div class="quote-author">'.
 $entry['author'] .'</div>';
 }
 }

Sending Data with Ajax

[160]

 $html .= '</div>';

 $html .= '</div>';
 return $html;
}
?>

Now, requests to this script, which we'll call e.php, will return the HTML snippet
corresponding to the term that was sent in the GET parameters. For example, when
accessing the script with e.php?term=eavesdrop, we get back:

Once again, we note the lack of formatting we saw with earlier HTML snippets,
because CSS rules have not been applied.

Since we're showing how data is passed to the server, we will use a different method
to request entries than the solitary buttons we've been relying on so far. Instead,
we'll present a list of links for each term, and cause a click on any of them to load the
corresponding definition. The HTML we'll add for this looks like the following:

<div class="letter" id="letter-e">
 <h3>E</h3>

 Eavesdrop
 Edible
 Education
 Eloquence
 Elysium
 Emancipation

 Emotion
 Envelope

Chapter 6

[161]

 Envy
 Epitaph
 Evangelist

</div>

Now we need to get our JavaScript code to call the PHP script with the right
parameters. We could do this with the normal .load() mechanism, appending
the query string right to the URL and fetching data with addresses such as
e.php?term=eavesdrop directly. Instead, though, we can have jQuery construct
the query string based on an object we provide to the $.get() function.

$(document).ready(function() {
 $('#letter-e a').click(function(event) {
 event.preventDefault();
 var requestData = {term: $(this).text()};
 $.get('e.php', requestData, function(data) {
 $('#dictionary').html(data);
 });
 });
});

Listing 6.10

Now that we have seen other Ajax interfaces that jQuery provides, the operation of this
function seems familiar. The only difference is the second parameter, which allows us
to supply an object containing keys and values that become part of the query string. In
this case, the key is always term, but the value is taken from the text of each link. Now,
clicking on the first link in the list causes its definition to appear:

Sending Data with Ajax

[162]

All the links here have addresses given, even though we are not using them in the
code. This provides an alternative method of navigating the information for users
who have JavaScript turned off or unavailable (a form of progressive enhancement).
To prevent the links from being followed normally when clicked, we invoke the
.preventDefault() method.

Return false or prevent default?
When writing the click handlers in this chapter, we have chosen
to pass the event object into the handler and use event
.preventDefault() rather than ending the handler with
return false. This practice is recommended when the default
action would otherwise reload the page or load another page. If
our click handler, for example, contains a JavaScript error, calling
.preventDefault() on the handler's first line (before the error is
encountered) ensures that the form will not be submitted, and our
browser's error console will properly report the error. Remember
from Chapter 3, Handling Events, that return false calls both
event.preventDefault() and event.stopPropagation().
If we wanted to stop the event from bubbling, we would need to call
the latter as well.

Performing a POST request
HTTP requests using the POST method are almost identical to those using GET. One
of the most visible differences is that GET places its arguments in the query string
portion of the URL, whereas POST requests do not. However, in Ajax calls, even
this distinction is invisible to the average user. Generally, the only reason to choose
one method over the other is to conform to the norms of the server-side code, or to
provide for large amounts of transmitted data; GET has a more stringent limit. We
have coded our PHP example to cope equally well with either method, so we can
change from GET to POST simply by changing the jQuery function we call:

$(document).ready(function() {
 $('#letter-e a').click(function(event) {
 event.preventDefault();
 var requestData = {term: $(this).text()};
 $.post('e.php', requestData, function(data) {
 $('#dictionary').html(data);
 });
 });
});

Listing 6.11

Chapter 6

[163]

The arguments are the same, and the request will now be made via POST. We can
further simplify the code by using the .load() method, which uses POST by default
when it is supplied with a simple object containing data to pass along:

$(document).ready(function() {
 $('#letter-e a').click(function(event) {
 event.preventDefault();
 var requestData = {term: $(this).text()};
 $('#dictionary').load('e.php', requestData);
 });
});

Listing 6.12

This cut-down version functions the same way when a link is clicked. The dictionary
entry appears on the right-hand side of the page, as before:

Serializing a form
Sending data to the server often involves the user filling out forms. Rather than
relying on the normal form submission mechanism, which will load the response
in the entire browser window, we can use jQuery's Ajax toolkit to submit the form
asynchronously and place the response inside the current page.

To try this out, we'll need to construct a simple form:

<div class="letter" id="letter-f">
 <h3>F</h3>
 <form action="f.php">

Sending Data with Ajax

[164]

 <input type="text" name="term" value="" id="term" />
 <input type="submit" name="search" value="search"
 id="search" />
 </form>
</div>

This time, we'll return a set of entries from the server by using PHP to search
for the supplied search term as a substring of a dictionary term. We'll use our
build_entry() function from e.php to return the data in the same format as
before, but we'll modify the logic somewhat in f.php:

<?php
$output = array();
foreach ($entries as $term => $entry) {
 if (strpos($term, strtoupper($_REQUEST['term'])) !== FALSE) {
 $output[] = build_entry($term, $entry);
 }
}

if (!empty($output)) {
 echo implode("\n", $output);
} else {
 echo '<div class="entry">Sorry, no entries found for ';
 echo '' . $_REQUEST['term'] . '.';
 echo '</div>';
}
?>

The call to strpos() scans the word for the supplied search string. Now we can
react to a form submission and craft the proper query parameters by traversing
the DOM tree:

$(document).ready(function() {
 $('#letter-f form').submit(function(event) {
 event.preventDefault();
 $.get('f.php', {'term': $('input[name="term"]').val()},
 function(data) {
 $('#dictionary').html(data);
 });
 });
});

Listing 6.13

Chapter 6

[165]

This code has the intended effect, but searching for input fields by name and
appending them to a map one by one is cumbersome. In particular, this approach
does not scale well as the form becomes more complex. Fortunately, jQuery offers a
shortcut for this often-used idiom. The .serialize() method acts on a jQuery object
and translates the matched DOM elements into a query string that can be passed
along with an Ajax request. We can generalize our submission handler as follows:

$(document).ready(function() {
 $('#letter-f form').submit(function(event) {
 event.preventDefault();
 var formValues = $(this).serialize();
 $.get('f.php', formValues, function(data) {
 $('#dictionary').html(data);
 });
 });
});

Listing 6.14

Now the same script will work to submit the form, even as the number of fields
increases. When we perform a search for fid, for example, the terms containing
that substring are displayed as shown in the following screenshot:

Sending Data with Ajax

[166]

Delivering different content for
Ajax requests
When returning HTML data, we have shown how the document fragments appear
unstyled if we actually let the browser go to the page rather than use JavaScript.
To provide a better experience than this to users without JavaScript, we can
conditionally load a complete document with the <html>, <head>, and <body>
elements and all that they contain. To do so, we can take advantage of a request
header that jQuery sends along with every Ajax request. In our server-side code
(PHP in this case), we just need to look for the X-Requested-With header. If it is set
and has a value of XMLHttpRequest, we only deliver the fragment; otherwise, we
deliver the full document. A basic implementation in PHP might look like this:

<?php
$ajax = isset($_SERVER['HTTP_X_REQUESTED_WITH']) &&
 $_SERVER['HTTP_X_REQUESTED_WITH'] == 'XMLHttpRequest';

if (!$ajax):
// Show <head> and start of <body> for non-Ajax
?>
 <!DOCTYPE HTML>
 <html lang="en">
 <head>
 <!-- title, meta, link elements -->
 </head>
 <body>
 <!-- page heading, form, etc. -->
<?php
endif;

// show entry information for both Ajax and non-Ajax

if (!$ajax):
// Close open <div>s, <body>, and <html> for non-Ajax
?>

</body>
</html>

<?php endif; ?>

Now we have a true example of progressive enhancement, in that those without
JavaScript have a usable form with styled results and those with JavaScript have an
enhanced experience.

Chapter 6

[167]

This kind of setup in a server script allows for even more dramatic differences in the
data that is returned. For example, we could return JSON data for Ajax requests and
HTML for others:

<?php
$ajax = isset($_SERVER['HTTP_X_REQUESTED_WITH']) &&
$_SERVER['HTTP_X_REQUESTED_WITH'] == 'XMLHttpRequest';

// Set the $entries array

if ($ajax) {
 header('Content-type: application/json');
 echo json_encode($entries);
}
else {
 // Print the full HTML document
}

This means less data to transfer, but requires building the HTML once the data is
received, as we did in Listing 6.9.

Keeping an eye on the request
So far, it has been sufficient for us to make a call to an Ajax method and patiently
await the response. At times, though, it is handy to know a bit more about the HTTP
request as it progresses. If such a need arises, jQuery offers a suite of functions that
can be used to register callbacks when various Ajax-related events occur.

The .ajaxStart() and .ajaxStop() methods are two examples of these observer
functions. When an Ajax call begins with no other transfer in progress, the
.ajaxStart() callback is fired. Conversely, when the last active request ends, the
callback attached with .ajaxStop() will be executed. All of the observers are global,
in that they are called when any Ajax communication occurs, regardless of what
code initiates it. And all of them, like the .ready() method, can only be bound to
$(document).

We can use these methods to provide some feedback to the user in the case of a
slow network connection. The HTML for the page can have a suitable loading
message appended:

<div id="loading">
 Loading...
</div>

Sending Data with Ajax

[168]

This message is just a piece of arbitrary HTML; it could include an animated
GIF image as a loading indicator, for instance. In this case, we'll add a few simple
styles to the CSS file so that when the message is displayed, the page will look like
the following:

In keeping with the spirit of progressive enhancement, however, we won't put this
HTML markup directly on the page. It's only relevant for us when JavaScript is
available, so we will insert it using jQuery:

$(document).ready(function() {
 $('<div id="loading">Loading...</div>')
 .insertBefore('#dictionary')
});

Our CSS file will give this <div> a display: none; style declaration so that the
message is initially hidden. To display it at the right time, we just register it as an
observer with .ajaxStart():

$(document).ready(function() {
 var $loading = $('<div id="loading">Loading...</div>')
 .insertBefore('#dictionary');

 $(document).ajaxStart(function() {
 $loading.show();
 });
});

We can chain the hiding behavior right onto this.

$(document).ready(function() {
 var $loading = $('<div id="loading">Loading...</div>')

Chapter 6

[169]

 .insertBefore('#dictionary');

 $(document).ajaxStart(function() {
 $loading.show();
 }).ajaxStop(function() {
 $loading.hide();
 });
});

Listing 6.15

We now have our loading feedback.

Once again, note that these methods have no association with the particular ways in
which the Ajax communications begin. The .load() attached to the A link and the
.getJSON() method attached to the B link both cause these actions to occur.

In this case, this global behavior is desirable. If we need to get more specific,
though, we have a few options at our disposal. Some of the observer methods, such
as .ajaxError(), send their callback a reference to the XMLHttpRequest object.
This can be used to differentiate one request from another and provide different
behaviors. Other more specific handling can be achieved by using the low-level
$.ajax() function, which we'll discuss a bit later.

The most common way of interacting with the request is the success callback, which
we have already covered. We have used this in several of our examples to interpret
the data coming back from the server and to populate the page with the results.
It can be used for other feedback too, of course. Consider once again our .load()
example from Listing 6.1:

$(document).ready(function() {
 $('#letter-a a').click(function(event) {
 event.preventDefault();
 $('#dictionary').load('a.html');
 });
});

We can create a small enhancement here by making the loaded content fade into
view rather than appear suddenly. The .load() method can take a callback to be
fired on completion:

$(document).ready(function() {
 $('#letter-a a').click(function(event) {
 event.preventDefault();
 $('#dictionary').hide().load('a.html', function() {
 $(this).fadeIn();

Sending Data with Ajax

[170]

 });
 });
});

Listing 6.16

First, we hide the target element and then initiate the load. When the load is
complete, we use the callback to show the newly populated element by fading it in.

Error handling
So far, we have only dealt with successful responses to Ajax requests, loading the
page with new content when everything goes as planned. Responsible developers,
however, should account for the possibility of network or data errors and report
them appropriately. Developing Ajax applications in a local environment can
lull developers into a sense of complacency since, aside from a possible mistyped
URL, Ajax errors just don't happen locally. The Ajax convenience methods such as
$.get() and .load() do not provide an error callback argument themselves, so we
need to look elsewhere for a solution to this problem.

Aside from using the global .ajaxError() method, we can react to errors by
capitalizing on jQuery's deferred object system. We will discuss deferred objects
more fully in Chapter 11, Advanced Effects, but for now we'll simply note that we
can chain .done(), .always(), and .fail() methods to any Ajax function except
.load(), and use these methods to attach the relevant callbacks. For example, if we
take the code from Listing 6.16 and change the URL to one that doesn't exist, we can
test the .fail() method:

$(document).ready(function() {
 $('#letter-e a').click(function(event) {
 event.preventDefault();
 var requestData = {term: $(this).text()};
 $.get('z.php', requestData, function(data) {
 $('#dictionary').html(data);
 }).fail(function(jqXHR) {
 $('#dictionary')
 .html('An error occurred: ' + jqXHR.status)
 .append(jqXHR.responseText);
 });
 });
});

Listing 6.17

Chapter 6

[171]

Now, clicking on any of the links for terms beginning with E will produce an error
message. The exact content of jqXHR.responseText will vary depending on the
server configuration:

The .status property contains a numeric code provided by the server. These codes
are defined in the HTTP specification, and when a .fail() handler is triggered, they
will represent an error condition such as:

Response code Description
400 Bad request
401 Unauthorized
403 Forbidden
404 Not found
500 Internal server error

A complete list of response codes can be found on the W3C's site:
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html.

We will examine error handling more closely in Chapter 13, Advanced Ajax.

Sending Data with Ajax

[172]

Ajax and events
Suppose we wanted to allow each dictionary term name to control the
display of the definition that follows; clicking on the term name would show
or hide the associated definition. With the techniques we have seen so far, this
should be pretty straightforward:

// Unfinished code
$(document).ready(function() {
 $('h3.term').click(function() {
 $(this).siblings('.definition').slideToggle();
 });
});

Listing 6.18

When a term is clicked, this code finds siblings of the element that have a class of
definition, and slides them up or down as appropriate.

All seems in order, but a click does nothing with this code. Unfortunately, the terms
have not yet been added to the document when we attach the click handlers. Even
if we managed to attach click handlers to these items, once we clicked on a different
letter the handlers would no longer be attached.

This is a common problem with areas of a page populated by Ajax. A popular
solution is to rebind handlers each time the page area is refreshed. This can be
cumbersome, however, as the event-binding code needs to be called each time
anything causes the DOM structure of the page to change.

An often superior alternative was introduced in Chapter 3, Handling Events. We can
implement event delegation, actually binding the event to an ancestor element that
never changes. In this case, we'll attach the click handler to the <body> element,
using .on() to catch our clicks that way:

$(document).ready(function() {
 $('body').on('click', 'h3.term', function() {
 $(this).siblings('.definition').slideToggle();
 });
});

Listing 6.19

When used this way, the .on() method tells the browser to observe all clicks
anywhere in the document. If (and only if) the clicked element matches the h3.term
selector, then the handler is executed. Now the toggling behavior will take place on
any term, even if it is added by a later Ajax transaction.

Chapter 6

[173]

Security limitations
For all its utility in crafting dynamic web applications, XMLHttpRequest (the
underlying browser technology behind jQuery's Ajax implementation) is subject to
strict boundaries. To prevent various cross-site scripting attacks, it is not generally
possible to request a document from a server other than the one that hosts the
original page.

This is typically a positive situation. For example, it is possible to parse incoming
JSON data by calling eval() (unlike jQuery.parseJSON(), which uses safer
techniques). If malicious code were present in the file, it would be executed by the
eval() call. The JavaScript security model limits the risk here by requiring that the
requested file reside on the same server as the web page itself, which is presumably
trusted data.

There are many cases in which it would be beneficial to load data from a third-party
source. There are several ways to work around the security limitations and allow this
to happen.

One method is to rely on the server to load the remote data and then provide it
when requested by the client. This is a very powerful approach as the server can
perform pre-processing on the data as needed. For example, we could load XML files
containing RSS news feeds from several sources, aggregate them into a single feed on
the server, and publish this new file for the client when it is requested.

To load data from a remote location without server involvement, we have to get a
bit sneakier. A popular approach for the case of loading foreign JavaScript files is
injecting the <script> tags on demand. Since jQuery can help us insert new DOM
elements, it is simple to do this:

$(document.createElement('script'))
 .attr('src', 'http://example.com/example.js')
 .appendTo('head');

In fact, the $.getScript() method will automatically adapt to this technique if it
detects a remote host in its URL argument, so even this is handled for us.

The browser will execute the loaded script, but there is no mechanism to retrieve
results from the script. For this reason, the technique requires cooperation from the
remote host. The loaded script must take some action, such as setting a global variable
that has an effect on the local environment. Services, which publish scripts that are
executable in this way, will also provide an API to interact with the remote script.

Sending Data with Ajax

[174]

Another option is to use the <iframe> HTML tag to load remote data. This element
allows any URL to be used as the source for its data fetching, even if it does not
match the host page's server. The data can be loaded and easily displayed on
the current page. Manipulating the data, however, typically requires the same
cooperation needed for the <script> tag approach; scripts inside the <iframe>
tags need to explicitly provide the data to objects in the parent document.

Cross-origin resource sharing
A more recent technique that has been drafted into a W3C
specification is Cross-Origin Resource Sharing (CORS). This
technique requires sending a custom HTTP header from one domain
that the other domain expects. The receiving domain must send
back an Access-Control-Allow-Origin response header to the
requester saying that the domain is accepted. For more information
about CORS, visit http://www.w3.org/TR/cors/.http://
www.w3.org/TR/cors/.

Using JSONP for remote data
The idea of using the <script> tags to fetch JavaScript files from a remote source can
be adapted to pull in JSON files from another server as well. To do this, we need to
slightly modify the JSON file on the server. There are several mechanisms for doing
this, one of which is directly supported by jQuery: JSON with padding or JSONP.

The JSONP file format consists of a standard JSON file that has been wrapped in
parentheses and prepended with an arbitrary text string. This string, the padding,
is determined by the client requesting the data. Because of the parentheses, the client
can either cause a function to be called or a variable to be set depending on what is
sent as the padding string.

A PHP implementation of the JSONP technique is quite simple:

<?php
 print($_GET['callback'] .'('. $data .')');
?>

Here, $data is a variable containing a string representation of a JSON file. When this
script is called, the callback query string parameter is prepended to the resulting file
that gets returned to the client.

To demonstrate this technique, we need to only slightly modify our earlier JSON
example in Listing 6.6 to call this remote data source instead. The $.getJSON()
function makes use of a special placeholder character, ?, to achieve this:

Chapter 6

[175]

$(document).ready(function() {
 var url = 'http://examples.learningjquery.com/jsonp/g.php';
 $('#letter-g a').click(function(event) {
 event.preventDefault();
 $.getJSON(url + '?callback=?', function(data) {
 var html = '';
 $.each(data, function(entryIndex, entry) {
 html += '<div class="entry">';
 html += '<h3 class="term">' + entry.term + '</h3>';
 html += '<div class="part">' + entry.part + '</div>';
 html += '<div class="definition">';
 html += entry.definition;
 if (entry.quote) {
 html += '<div class="quote">';
 $.each(entry.quote, function(lineIndex, line) {
 html += '<div class="quote-line">' + line +
 '</div>';
 });
 if (entry.author) {
 html += '<div class="quote-author">' +
 entry.author + '</div>';
 }
 html += '</div>';
 }
 html += '</div>';
 html += '</div>';
 });
 $('#dictionary').html(html);
 });
 });
});

Listing 6.20

We normally would not be allowed to fetch JSON from a remote server (examples.
learningjquery.com in this case). However, since this file is set up to provide its
data in the JSONP format, we can obtain the data by appending a query string to
our URL, using ? as a placeholder for the value of the callback argument. When
the request is made, jQuery replaces the ? placeholder for us, parses the result, and
passes it to the success function as data, just as if this were a local JSON request.

Note that the same security cautions hold here as before; whatever the server decides
to return to the browser will execute on the user's computer. The JSONP technique
should only be used with data coming from a trusted source.

Sending Data with Ajax

[176]

Exploring additional options
The Ajax toolbox provided by jQuery is stocked well. We've covered several of the
available options, but we've just scratched the surface. While there are too many
variants to cover here, we will give an overview of some of the more prominent
ways to customize Ajax communications.

The low-level Ajax method
We have seen several methods that all initiate Ajax transactions. Internally, jQuery
maps each of these methods onto variants of the $.ajax() global function. Rather
than presuming one particular type of Ajax activity, this function accepts an object
containing options that can be used to customize its behavior.

Our first example, Listing 6.1, loaded an HTML snippet using $('#dictionary')
.load('a.html'). This action could instead be accomplished with $.ajax()
as follows:

$.ajax({
 url: 'a.html',
 success: function(data) {
 $('#dictionary').html(data);
 }
});

Listing 6.21

We see here that $.ajax() takes a single object as its argument (or optionally a
URL string as its first argument and an object as its second). This settings object
has over 30 possible options, offering a great deal of flexibility. A few of the special
capabilities that come with using a low-level $.ajax() call include:

•	 Preventing the browser from caching responses from the server; this can be
useful if the server produces its data dynamically

•	 Suppressing the global handlers (such as ones registered with
$.ajaxStart()) that are normally triggered by all Ajax interactions

•	 Providing a username and password for authentication with the remote host

For details on using these and other options, consult the online jQuery API reference
(http://api.jquery.com/jQuery.ajax).

Chapter 6

[177]

Modifying default options
The $.ajaxSetup() function allows us to specify default values for each of the
options used when Ajax methods are called. It takes an object with options identical
to the ones available to $.ajax() itself and causes these values to be used on all
subsequent Ajax requests unless overridden.

$.ajaxSetup({
 url: 'a.html',
 type: 'POST',
 dataType: 'html'
});

$.ajax({
 type: 'GET',
 success: function(data) {
 $('#dictionary').html(data);
 }
});

Listing 6.22

This sequence of operations behaves the same as our preceding $.ajax()
example. Note that the URL of the request is specified as a default value by the
$.ajaxSetup() call, so it does not have to be provided when $.ajax() is invoked.
In contrast, the type parameter is given a default value of POST, but this can still be
overridden in the $.ajax() call to GET.

Loading parts of an HTML page
The first and simplest Ajax technique we discussed was fetching an HTML snippet
and placing it on a page. Sometimes, though, the server already provides the HTML
we need, but it is surrounded by an HTML page we do not want. We already saw
how the server can be set up to deliver different content for Ajax requests. When it is
inconvenient to make the server provide the data in the format we desire, jQuery can
help us on the client end.

Consider a case like our first example, but in which the document containing the
dictionary definitions is a complete HTML page called h.html:

<html lang="en">
 <head>
 <meta charset="utf-8"/>
 <title>The Devil's Dictionary: H</title>

Sending Data with Ajax

[178]

 <link rel="stylesheet" href="dictionary.css"
 media="screen" />
 </head>
 <body>
 <div id="container">
 <div id="header">
 <h2>The Devil's Dictionary: H</h2>
 <div class="author">by Ambrose Bierce</div>
 </div>

 <div id="dictionary">
 <div class="entry">
 <h3 class="term">HABEAS CORPUS</h3>
 <div class="part">n.</div>
 <div class="definition">
 A writ by which a man may be taken out of jail
 when confined for the wrong crime.
 </div>
 </div>

 <div class="entry">
 <h3 class="term">HABIT</h3>
 <div class="part">n.</div>
 <div class="definition">
 A shackle for the free.
 </div>
 </div>
 </div>

 </div>
 </body>
</html>

We can load the whole document into our page using the technique from Listing 6.1:

// Unfinished code
$(document).ready(function() {
 $('#letter-h a').click(function(event) {
 event.preventDefault();
 $('#dictionary').load('h.html');
 });
});

Listing 6.23

Chapter 6

[179]

This produces a strange effect due to the pieces of the HTML page we don't want
to include. The loaded content includes the page title and author name, which is
therefore repeated on the page:

To remove these extraneous bits, we can use another feature of the .load() method.
When specifying the URL of the document to load, we can also provide a jQuery
selector expression. If present, this expression is used to locate a portion of the
loaded document. Only the matched part of the document is inserted into the page.
In this case, we can use this technique to pull only the dictionary entries from the
document and insert them:

$(document).ready(function() {
 $('#letter-h a').click(function(event) {
 event.preventDefault();
 $('#dictionary').load('h.html .entry');
 });
});

Listing 6.24

Now the irrelevant portions of the document are excluded from the page:

Sending Data with Ajax

[180]

Summary
We have learned that the Ajax methods provided by jQuery can help us to load data
in several different formats from the server without a page refresh. We can execute
scripts from the server on demand and send data back to the server.

We've also learned how to deal with common challenges of asynchronous loading
techniques, such as keeping handlers bound after a load has occurred and loading
data from a third-party server.

This concludes our tour of the basic components of the jQuery library. Next, we'll
look at how these features can be expanded upon easily using jQuery plugins.

Further reading
The topic of Ajax will be explored in more detail in Chapter 13, Advanced Ajax. A
complete list of Ajax methods is available in Appendix C, Quick Reference, of this
book or in the official jQuery documentation at http://api.jquery.com/.

Exercises
To complete these exercises, you will need the index.html file for this
chapter, as well as the finished JavaScript code as found in complete.js.
These files can be downloaded from the Packt Publishing website at
http://www.packtpub.com/support.

The challenge exercise may require the use of the official jQuery documentation at
http://api.jquery.com/:

1.	 When the page loads, pull the body content of exercises-content.html
into the content area of the page.

2.	 Rather than displaying the whole document at once, create tooltips for the
letters in the left-hand column by loading just the appropriate letter's content
from exercises-content.html when the user's mouse is over the letter.

3.	 Add error handling for this page load, displaying the error message in the
content area. Test this error handling code by changing the script to request
does-not-exist.html rather than exercises-content.html.

4.	 Here's a challenge. When the page loads, send a JSONP request to GitHub
and retrieve a list of repositories for a user. Insert the name and URL of each
repository into the content area of the page. The URL to retrieve the jQuery
project's repositories is https://api.github.com/users/jquery/repos.

Using Plugins
Throughout the first six chapters of this book, we have examined jQuery's core
components. Doing this has illustrated many of the ways in which the jQuery library
can be used to accomplish a wide variety of tasks. Yet as powerful as the library is
at its core, its elegant plugin architecture has allowed developers to extend jQuery,
making it even more feature-rich.

The growing jQuery community has created hundreds of plugins—from small
selector helpers to full-scale user-interface widgets. We will now learn how to tap
into this vast resource.

In this chapter, we will cover:

•	 Downloading and setting up plugins
•	 Calling jQuery methods provided by plugins
•	 Finding elements using custom selectors defined by jQuery plugins
•	 Adding sophisticated user interface behaviors using jQuery UI
•	 Implementing mobile-friendly features using jQuery Mobile

Finding plugins and help
The jQuery website provides a large repository of plugins at http://plugins.
jquery.com/. Many of the plugins listed in this Plugin Registry have links to
demos, example code, and tutorials to help us get started. The plugins referenced
from this registry are all managed in the GitHub (http://github.com/) code
repository. Because GitHub tracks how many developers have "starred" and forked
a repository, we can get a sense of a plugin's quality, or at least popularity, as this
information is conveniently presented in the sidebar of the plugin's page on the
Plugin Registry.

Using Plugins

[182]

If we can't find the answers to all of our questions in the Plugin Registry, GitHub,
the author's website, or the plugin's comments, we can always turn to the jQuery
community for assistance. The jQuery forums include a dedicated area for discussion
on using plugins at http://forum.jquery.com/using-jquery-plugins. Many of
the plugin authors are frequent contributors to the forums and are eager to help with
any problems that new users might face.

Using a plugin
Using a jQuery plugin is very straightforward. We need to simply obtain the plugin
code, reference the plugin from our HTML, and invoke the new capabilities from our
own scripts.

We can easily demonstrate these tasks using the jQuery Cycle plugin. This plugin,
by Mike Alsup, allows us to quickly transform a static set of page elements into
an interactive slideshow. Like many popular plugins, it can handle complex,
advanced needs well, but can also hide this complexity when our requirements
are more straightforward.

Downloading and referencing the Cycle
plugin
We can find the Cycle plugin using the jQuery Plugin Registry, or on the plugin's
home page at http://www.malsup.com/jquery/cycle/. This page directs us to the
download instructions, which yield an archive containing both the full Cycle plugin
and the smaller Cycle Lite. For our purposes here, we'll use the full version in the file
called jquery.cycle.all.js.

Once we have the plugin in our site's directory, we can reference it in the document,
making sure that it appears after the main jQuery source file and before our scripts
that need to use the plugin:

<head>
 <meta charset="utf-8">
 <title>jQuery Book Browser</title>
 <link rel="stylesheet" href="07.css" type="text/css" />
 <script src="jquery.js"></script>
 <script src="jquery.cycle.all.js"></script>
 <script src="07.js"></script>
</head>

Chapter 7

[183]

We have now loaded our first plugin. As we can see, this is no more complicated than
setting up jQuery itself. The plugin's capabilities are now ours to use in our scripts.

Calling a plugin method
The Cycle plugin operates on any set of sibling elements on a page. To show it in
action, we'll set up some simple HTML containing book cover images and related
information in a list, adding it to the body of our HTML document as follows:

<ul id="books">

 <img src="images/jq-game.jpg" alt="jQuery Game Development
 Essentials" />
 <div class="title">jQuery Game Development Essentials</div>
 <div class="author">Salim Arsever</div>

 <img src="images/jqmobile-cookbook.jpg" alt="jQuery Mobile
 Cookbook" />
 <div class="title">jQuery Mobile Cookbook</div>
 <div class="author">Chetan K Jain</div>

 ...

Some light styling in our CSS file presents the book covers one after the other as
shown in the following screenshot:

Using Plugins

[184]

The Cycle plugin will work its magic on this list, transforming it into an attractive
animated slideshow. This transformation can be invoked by calling the .cycle()
method on the appropriate container in the DOM as follows:

$(document).ready(function() {
 $('#books').cycle();
});

Listing 7.1

This syntax could hardly be more simple. As we would with any built-in jQuery
method, we apply .cycle() to a jQuery object instance, which in turn points to the
DOM elements we want to manipulate. Even without providing any arguments to it,
.cycle() does a lot of work for us. The styles on the page are altered to present only
one list item at a time, and a new item is shown using a cross-fading transition every
four seconds:

This simplicity is typical of well-written jQuery plugins. A straightforward method
call is all it takes to achieve professional and useful results. However, again like
many other plugins, Cycle offers a large number of options for customizing and fine-
tuning its behavior.

Specifying plugin method parameters
Passing parameters to plugin methods is no different than doing so with native jQuery
methods. In many cases, parameters are passed as a single object of key-value pairs
(as we saw with $.ajax() in Chapter 6, Sending Data with Ajax). The choices of options
to provide can be quite daunting; .cycle() alone has over 50 potential configuration
options. The documentation for each plugin details the effect of each option, often with
detailed examples.

Chapter 7

[185]

The Cycle plugin allows us to alter the speed and style of the animation between
slides, affect how and when slide transitions are triggered, and react to completed
animations using callbacks. To demonstrate some of these capabilities, we'll provide
three simple options to the method call from Listing 7.1 as follows:

$(document).ready(function() {
 $('#books').cycle({
 timeout: 2000,
 speed: 200,
 pause: true
 });
});

Listing 7.2

The timeout option specifies the number of milliseconds to wait between each
slide transition (2000). In contrast, speed determines the number of milliseconds
the transitions themselves will take (200). When set to true, the pause option causes
the slideshow to suspend itself when the mouse is inside the cycling region, which
is especially useful when the cycling items are clickable.

Modifying parameter defaults
The Cycle plugin is able to do an impressive task even with no supplied
arguments. To accomplish this, it needs a sensible set of defaults to use when
options are not supplied.

A common pattern, and the one followed by Cycle, is to gather all of the defaults into
a single object. In the case of Cycle, the $.fn.cycle.defaults object contains all of
the default options. When a plugin collects its defaults in a publicly-visible location
like this, we can alter them in our own scripts. This can make our code more concise
when calling the plugin multiple times since we don't have to specify the new value
for the option each time. Redefining the defaults is simple, as can be seen in the
following code:

$.fn.cycle.defaults.timeout = 10000;
$.fn.cycle.defaults.random = true;

$(document).ready(function() {
 $('#books').cycle({
 timeout: 2000,
 speed: 200,

Using Plugins

[186]

 pause: true
 });
});

Listing 7.3

Here we've set two defaults, timeout and random, prior to invoking .cycle(). Since
we declare a value of 2000 for timeout in our .cycle() call, our new default of 10000
will be ignored. On the other hand, the new default of true for random does take
effect, causing the slides to transition in a random order.

Other types of plugins
Plugins need not be limited to providing additional jQuery methods. They can extend
the library in many ways, and even alter the functionality of existing features.

Plugins can change the way other parts of the jQuery library operate. Some offer new
animation easing styles, for instance, or trigger additional jQuery events in response
to user actions. The Cycle plugin offers such an enhancement by adding a new
custom selector.

Custom selectors
Plugins that add custom selector expressions increase the capabilities of jQuery's
built-in selector engine, so that we can find elements on the page in new ways.
Cycle adds a custom selector of this kind, which gives us an opportunity to
explore this capability.

Cycle's slideshows can be paused and resumed by calling .cycle('pause')
and .cycle('resume') respectively. We can easily add buttons that control
the slideshow, as shown in the following code:

$(document).ready(function() {
 var $books = $('#books');
 var $controls = $('<div id="books-controls"></div>');
 $controls.insertAfter($books);
 $('<button>Pause</button>').click(function(event) {
 event.preventDefault();
 $books.cycle('pause');
 }).appendTo($controls);
 $('<button>Resume</button>').click(function(event) {
 event.preventDefault();

Chapter 7

[187]

 $books.cycle('resume');
 }).appendTo($controls);
});

Listing 7.4

Now, suppose that we want our Resume button to resume any paused Cycle
slideshow on the page, in the case there were more than one. We want to find
all the elements on the page that are paused slideshows and resume
them all. Cycle's custom :paused selector allows us to do this easily:

$(document).ready(function() {
 $('<button>Resume</button>').click(function(event) {
 event.preventDefault();
 $('ul:paused').cycle('resume');
 }).appendTo($controls);
});

Listing 7.5

With Cycle loaded, $('ul:paused') will create a jQuery object referencing all of
the paused slideshows on the page so that we can interact with them at will. Selector
extensions such as this that are provided by plugins can be freely combined with
any of the standard jQuery selectors. We can easily see that, with the choice of
appropriate plugins, jQuery can be molded into the shape that best suits us.

Global function plugins
Many popular plugins provide new global functions within the jQuery namespace.
This pattern is common when plugins supply features that are not related to the
DOM elements on the page and thus are not good candidates for standard jQuery
methods. For example, the Cookie plugin (https://github.com/carhartl/
jquery-cookie) offers an interface for reading and writing cookie values on a page.
This functionality is provided through the $.cookie() function, which can get or set
individual cookies.

Let's say, for example, that we want to remember when users press our slideshow's
Pause button so that we can keep it paused if they leave the page and return to it
later. After loading the Cookie plugin, reading a cookie is as simple as using the
cookie's name as the sole argument as shown in the following code:

if ($.cookie('cyclePaused')) {
 $books.cycle('pause');
}

Listing 7.6

Using Plugins

[188]

Here, we look for the existence of a cyclePaused cookie; it doesn't matter what the
value is for our purpose. If the cookie exists, the cycle will pause. When we insert
this conditional pause immediately after the call to .cycle(), the slideshow keeps
the first image visible until the user at some point presses the Resume button.

Of course, because we haven't set the cookie yet, the slideshow is still cycling
through the images. Setting a cookie is as simple as getting its value; we just
supply a string for the second argument as follows:

var $controls = $('<div id="books-controls"></div>')
 .insertAfter($books);
$('<button>Pause</button>').click(function(event) {
 event.preventDefault();
 $books.cycle('pause');
 $.cookie('cyclePaused', 'y');
}).appendTo($controls);
$('<button>Resume</button>').click(function(event) {
 event.preventDefault();
 $('ul:paused').cycle('resume');
 $.cookie('cyclePaused', null);
}).appendTo($controls);

Listing 7.7

The cookie is set to y when the Pause button is pressed, and it is deleted by passing
null when the Resume button is pressed. By default, the cookie remains for the
duration of the session (generally until the browser tab is closed). Also by default,
the cookie is associated with the page on which it was set. To change these default
settings we can supply an options object for the function's third argument. This is a
pattern typical to jQuery plugins as well as jQuery core functions.

For example, to make the cookie available throughout the site and have it expire after
seven days, we can call the function with $.cookie('cyclePaused', 'y', {path:
'/', expires: 7}). For information on these and other options available when
calling $.cookie(), we can refer to the documentation for the plugin.

The jQuery UI plugin library
While most plugins, such as Cycle and Cookie, focus on a single task, jQuery UI
tackles a wide variety of challenges. In fact, while the jQuery UI code may often
be packaged as a single file, it is actually a comprehensive suite of related plugins.

Chapter 7

[189]

The jQuery UI team has created a number of core interaction components and
full-fledged widgets to help make the web experience more like that of a desktop
application. Interaction components include methods for dragging, dropping,
sorting, selecting, and resizing items. The current stable of widgets includes buttons,
accordions, datepickers, dialogs, and so on. Additionally, jQuery UI provides an
extensive set of advanced effects to supplement the core jQuery animations.

The full UI library is too extensive to be adequately covered within this chapter;
indeed, there are entire books devoted to the subject. Fortunately, a major focus of
the project is consistency among its features, so exploring a couple of pieces in detail
will serve to get us started in using the rest of them as needed.

Downloads, documentation, and demos of all the jQuery UI modules are available
at http://jqueryui.com/. The download page offers a combined download with
all the features baked in, or a customizable download that can contain just the
functionality we need. The downloadable ZIP file also contains a stylesheet and
images which we need to include when we use jQuery UI's interaction components
and widgets.

Effects
The effects module of jQuery UI consists of a core and a set of independent
effect components. The core file provides animations for colors and classes, as well
as advanced easing.

Color animations
With jQuery UI's core effects component linked into the document, the .animate()
method is extended to accept additional style properties, such as borderTopColor,
backgroundColor, and color. For example, we can now gradually change an
element from white text on a black background to black text on a light gray
background as follows:

$books.hover(function() {
 $books.find('.title').animate({
 backgroundColor: '#eee',
 color: '#000'
 }, 1000);
}, function() {
 $books.find('.title').animate({
 backgroundColor: '#000',
 color: '#fff'
 }, 1000);
});

Listing 7.8

Using Plugins

[190]

Now when the mouse cursor enters the book slideshow region of the page,
the book title's text color and background color both smoothly animate over
a period of one second (1000 ms):

Class animations
The three CSS class methods that we have worked with in previous
chapters—.addClass(), .removeClass(), and .toggleClass()—are
extended by jQuery UI to take an optional second argument for the
animation duration. When this duration is specified, the page behaves
as if we had called .animate() and directly specified all of the style
attributes that change as a result of applying the class to the element:

$(document).ready(function() {
 $('h1').click(function() {
 $(this).toggleClass('highlighted', 'slow');
 });
});

Listing 7.9

By executing the code in Listing 7.9, we've caused a click on the page header to
add or remove the highlighted class. Since we specified a slow speed, though,
the resulting color, border, and margin changes animate into place rather than
immediately taking effect:

Chapter 7

[191]

Advanced easing
When we instruct jQuery to perform an animation over a specified duration, it does
not do so at a constant rate. If, for example, we call $('#my-div').slideUp(1000),
we know it will take a full second for the height of the element to reach zero;
however, at the beginning and end of that second the height will be changing slowly,
and in the middle it will be changing quickly. This rate alteration, called easing,
helps the animation to appear smooth and natural.

Advanced easing functions vary this acceleration and deceleration curve to provide
distinctive results. For example, the easeInExpo function grows exponentially,
ending an animation at many times the speed at which it started. We can specify a
custom easing function in any of the core jQuery animation methods or jQuery UI
effect methods. This can be done by either adding an argument or adding an option
to a settings object, depending on the syntax being used.

To see this in action, we can provide easeInExpo as the easing style for the
.toggleClass() method we just introduced in Listing 7.9 as follows:

$(document).ready(function() {
 $('h1').click(function() {
 $(this).toggleClass('highlighted', 'slow', 'easeInExpo');
 });
});

Listing 7.10

Now whenever the header is clicked, the styles modified by toggling the class
attribute begin appearing very gradually, then accelerate and complete the
transition abruptly.

View easing functions in action
Demonstrations of the full set of easing functions are available at
http://api.jqueryui.com/easings/.

Additional effects
The individual effect files included in jQuery UI add various transitions, some of
which can be quite a bit more complex than the simple sliding and fading animations
offered by jQuery itself. These effects are invoked by calling the .effect() method,
which is added by jQuery UI. Effects that cause an element to be hidden or shown
can instead be invoked using .show(), .hide(), and .toggle(), if desired.

Using Plugins

[192]

The effects supplied by jQuery UI can serve a number of purposes. Some, like
transfer and size, are useful when elements are to change shape and position.
Others, such as explode and puff, offer attractive hiding animations. Still others,
including pulsate and shake, call attention to an element.

View effects in action
All of the jQuery UI effects are showcased at
http://jqueryui.com/effect/#default.

The shake behavior is particularly nice for reinforcing that an action is not currently
applicable. We could make use of this effect on our page when the Resume button
would have no effect:

$('<button>Resume</button>').click(function(event) {
 event.preventDefault();
 var $paused = $('ul:paused');
 if ($paused.length) {
 $paused.cycle('resume');
 }
 else {
 $(this).effect('shake', {
 distance: 10
 });
 }
}).appendTo($controls);

Listing 7.11

Our new code checks the length of $('ul:paused') to determine if there are
any paused slideshows to resume. If so, it calls Cycle's resume action as before;
otherwise, the shake effect is performed. We see here that shake, as with the other
effects, has options available to fine-tune its appearance. Here we set the distance
of the effect to a smaller number than the default, to make the button rapidly shake
back and forth when clicked.

Interaction components
The next major feature of the jQuery UI is its interaction components, which are a set
of behaviors that can be combined with custom code to produce complex interactive
applications. One such component, for example, is Resizable, which can allow the
user to change the size of any element with natural dragging movements.

Chapter 7

[193]

Applying an interaction to an element is as simple as calling the method that
bears its name. For instance, we can make the book titles resizable with a call
to .resizable() as follows:

$books.find('.title').resizable();

Listing 7.12

With jQuery UI's CSS file referenced in the document, this code will add a resizing
handle to the bottom-right corner of the title box. Dragging this box
alters the region's width and height as shown in the following screenshot:

As by now we might expect, these methods can be customized with a host of
options. If, say, we wish to constrain the resizing to only happen vertically, we
can accomplish that by specifying which drag handle should be added as follows:

$books.find('.title').resizable({
 handles: 's'
});

Listing 7.13

With a drag handle only on the south (bottom) side of the region, only the height of
the region can be altered:

Using Plugins

[194]

Other interaction components
Other jQuery UI interactions include Draggable, Droppable, and
Sortable. Like Resizable, they are highly configurable. We can view
demos of all of them and their configuration options at
http://jqueryui.com/.

Widgets
In addition to these building-block interaction components, jQuery UI includes a
handful of robust user interface widgets that appear and function out of the box like
the full-fledged elements we are accustomed to seeing in desktop applications. Some
of these are quite simple. The Button widget, for example, enhances buttons and
links on the page with attractive styling and rollover states.

Granting this appearance and behavior to all button elements on the page is
extremely simple:

$(document).ready(function() {
 $('button').button();
});

Listing 7.14

When the stylesheet for the jQuery UI Smoothness theme is referenced, the buttons
take on a glossy, beveled appearance:

As with other UI widgets and interactions, Button accepts several options. We may
wish to provide appropriate icons for our two buttons, for example; the Button widget
comes with a large number of predefined icons that we can employ. To do so, we could
separate our .button() call into two, and specify an icon for each as follows:

$('<button>Pause</button>').click(function(event) {
 // ...
}).button({
 icons: {primary: 'ui-icon-pause'}
}).appendTo($controls);
$('<button>Resume</button>').click(function(event) {
 // ...
}).button({

Chapter 7

[195]

 icons: {primary: 'ui-icon-play'}
}).appendTo($controls);

Listing 7.15

The primary icons that we specified correspond to standard class names in jQuery
UI's theme framework. By default, primary icons are displayed to the left of the
button text while secondary icons are displayed to the right:

On the other hand, other widgets are much more sophisticated. The Slider widget
introduces a brand new form element, similar to an HTML5 range element but
cross-compatible with all popular browsers. This requires a greater degree of
customization and sophistication, as shown in the following code:

$('<div id="slider"></div>').slider({
 min: 0,
 max: $('#books li').length - 1
}).appendTo($controls);

Listing 7.16

A call to .slider() transforms a simple <div> element into a slider widget.
The widget can be controlled by dragging or by pressing the arrow keys, to
aid in accessibility:

In Listing 7.16 we've specified a minimum value of 0 for the slider, and a maximum
of the index of the last book in our slideshow. We can use this as a manual control
for the slideshow, by sending messages back and forth between the slideshow and
slider when their respective states change.

To react to the slider's value changing, we can bind a handler to a custom event
that is triggered by sliders. This event, slide, is not a native JavaScript event, but
acts like one in our jQuery code. However, observing these events is so common
that instead of calling .on() explicitly, we can just add our event handler to the
.slider() call itself, as shown in the following code:

$('<div id="slider"></div>').slider({
 min: 0,
 max: $('#books li').length - 1,

Using Plugins

[196]

 slide: function(event, ui) {
 $books.cycle(ui.value);
 }
}).appendTo($controls);

Listing 7.17

Whenever the slide callback is invoked, its ui parameter is populated with
information about the widget, including its current value. By passing this value
along to the Cycle plugin, we can manipulate the current slide being shown.

We also need to update the slider widget whenever the slideshow advances to
another slide. To communicate in this direction we can use Cycle's before callback,
which is triggered before each slide transition:

$(document).ready(function() {
 var $books = $('#books').cycle({
 timeout: 2000,
 speed: 200,
 pause: true,
 before: function() {
 $('#slider')
 .slider('value', $('#books li').index(this));
 }
 });
});

Listing 7.18

Inside the before callback, we call the .slider() method again. This time, we call
it with value as its first parameter to set the new slider value. In jQuery UI parlance,
we call value a method of slider, even though it is invoked by calling the .slider()
method, not by its own dedicated method name.

Other widgets
Other jQuery UI widgets include Datepicker, Dialog, Tabs, and
Accordion. Each widget has several associated options, events, and
methods. For a full list, visit http://jqueryui.com/.

Chapter 7

[197]

jQuery UI ThemeRoller
One of the most exciting features of the jQuery UI library is ThemeRoller, a web-
based interactive theme engine for the UI widgets. ThemeRoller makes creating
highly customized, professional-looking elements quick and easy. The buttons and
slider that we just created have the default theme applied to them; this theme will be
output from ThemeRoller if no custom settings are supplied:

Generating a completely different set of styles is a simple matter of visiting
http://jqueryui.com/themeroller/, modifying the various options as desired,
and pressing the Download Theme button. A .zip file of stylesheets and images
can then be unpacked into your site directory. For example, by choosing a few
different colors and textures, we can within minutes create a new, coordinated
look for our buttons, icons, and slider, as shown in the following screenshot:

The jQuery Mobile plugin library
We have seen how jQuery UI can assist us in assembling the user interface
features needed for even a complex web application. The challenges it overcomes
are varied and complex. A different set of hurdles exists, however, when preparing
our pages for elegant presentation and interaction on mobile devices. To create
a website or application for modern smart phones and tablets, we can turn to the
jQuery Mobile project.

Like jQuery UI, jQuery Mobile consists of a suite of related components that can
be used a la carte but which work together seamlessly. The framework provides
an Ajax-driven navigation system, mobile-optimized interactive elements, and
advanced touch event handlers. Again, as with jQuery UI, exploring all the
features of jQuery Mobile is a daunting task, so instead we will provide some
simple examples and refer to the online documentation for more details.

Using Plugins

[198]

Downloads, documentation, and demos for jQuery Mobile are
available at http://jquerymobile.com/.
Our jQuery Mobile example will use Ajax technology, so web server
software will be required in order to try these examples. More
information is available in Chapter 6, Sending Data with Ajax.

HTML5 custom data attributes
The code examples we've seen so far in this chapter have all used JavaScript APIs
exposed by plugins in order to summon up the plugin functionality. We've seen
jQuery object methods, global functions, and custom selectors as some ways that
plugins offer their services to our scripts. The jQuery Mobile library has these entry
points as well, but the most common way of interacting with it is instead via HTML5
data-* attributes.

The HTML5 specification allows us to insert any attribute we want into an element,
so long as the attribute is prefixed by data-. Such attributes are completely ignored
when rendering the page, but are available to us in our jQuery scripts. When
we include jQuery Mobile on a page, the script scans the page for some data-*
attributes, and adds mobile-friendly features to the corresponding elements.

The jQuery Mobile library looks for a few specific custom data
attributes. We will examine more general ways of using this feature in
our own scripts in Chapter 12, Advanced DOM Manipulation.

Because of this design choice, we will be able to demonstrate some powerful
features of jQuery Mobile here without writing any JavaScript code ourselves.

Mobile navigation
One of the most prominent features of jQuery Mobile is its ability to simply
transform the behavior of links on a page into Ajax-powered navigation. This
transformation adds simple animation to the process, while preserving standard
browser history navigation. To see this in action, we'll start with a document that
presents links to information about several books (the same content we used for
building a slideshow earlier) as follows:

Chapter 7

[199]

<!DOCTYPE html>
<html>
<head>
 <title>jQuery Book Browser</title>
 <link rel="stylesheet" href="booklist.css" type="text/css" />
 <script src="jquery.js"></script>
</head>
<body>

<div>
 <div>
 <h1>Selected jQuery Books</h1>
 </div>

 <div>

 jQuery Game Development
 Essentials
 jQuery Mobile
 Cookbook
 jQuery for
 Designers
 jQuery Hotshot
 jQuery UI Cookbook
 Creating Mobile Apps with
 jQuery Mobile
 Drupal 7 Development by
 Example
 WordPress Mobile
 Applications with PhoneGap

 </div>
</div>

</body>
</html>

In the downloadable code package for this chapter, the finished
HTML example page can be found in the file called mobile.html.

Using Plugins

[200]

So far we have not introduced jQuery Mobile at all, and the page is rendered in the
default browser style, as we would expect. This is shown in the following screenshot:

Our next step is to change the <head> section of the document so that it references
jQuery Mobile and its stylesheet as follows:

<head>
 <title>jQuery Book Browser</title>
 <meta name="viewport"
 content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="booklist.css"
 type="text/css" />
 <link rel="stylesheet"
 href="jquery.mobile/jquery.mobile.css" type="text/css" />

Chapter 7

[201]

 <script src="jquery.js"></script>
 <script src="jquery.mobile/jquery.mobile.js"></script>
</head>

Note that we have also introduced a <meta> element defining the viewport of the
page. This declaration tells mobile browsers to scale the content of the document in
such a way that it completely fills the width of the device. The jQuery Mobile styles
are now applied to our document, displaying a larger sans-serif font and updating
colors and spacing, as shown in the following screenshot:

To properly handle navigation, jQuery Mobile needs to understand the structure
of our page. We provide this information by using the data-role attribute:

<div data-role="page">
 <div data-role="header">
 <h1>Selected jQuery Books</h1>
 </div>

 <div data-role="content">

 jQuery Game Development
 Essentials
 jQuery Mobile
 Cookbook

Using Plugins

[202]

 jQuery for
 Designers
 jQuery Hotshot
 jQuery UI Cookbook
 Creating Mobile Apps with
 jQuery Mobile
 Drupal 7 Development by
 Example
 WordPress Mobile
 Applications with PhoneGap

 </div>
</div>

Now when the page loads, jQuery Mobile notices that we have a page header,
and renders a standard-looking mobile header bar across the top of the page:

Chapter 7

[203]

When the text is too long for the header bar, jQuery Mobile truncates it and adds
an ellipsis at the end. In this case, we can rotate the mobile device to its landscape
orientation to see the full title:

More importantly, this is all that is required in order to produce Ajax navigation.
On the pages linked to from this list, we use similar markup:

<div data-role="page">
 <div data-role="header">
 <h1>WordPress Mobile Applications with PhoneGap</h1>
 </div>
 <div data-role="content">
 <img src="images/wp-mobile-apps.jpg" alt="WordPress Mobile
 Applications with PhoneGap" />
 <div class="title">WordPress Mobile Applications with
 PhoneGap</div>
 <div class="author">Yuxian Eugene Liang</div>
 </div>
</div>

Using Plugins

[204]

When the link to this page is clicked on, jQuery Mobile loads the page with an
Ajax call, grabs the portion of the document marked with data-role="page",
and displays this content using a fading transition:

Delivering multiple pages in one document
In addition to offering Ajax functionality for loading other documents, jQuery
Mobile provides the tools to deliver the same user experience even if all the content
is contained within a single document. To implement this, we simply link the
anchors within the page using standard # notation, and mark those sections of the
page with data-role="page" just as if they were in separate documents, as follows:

<div data-role="page">
 <div data-role="header">
 <h1>Selected jQuery Books</h1>
 </div>

 <div data-role="content">

 jQuery Game Development
 Essentials
 jQuery Mobile
 Cookbook

Chapter 7

[205]

 jQuery for
 Designers
 jQuery Hotshot
 jQuery UI Cookbook
 Creating Mobile Apps with jQuery
 Mobile
 Drupal 7 Development by
 Example
 WordPress Mobile
 Applications with PhoneGap

 </div>
</div>

<div id="jq-game" data-role="page">
 <div data-role="header">
 <h1>jQuery Game Development Essentials</h1>
 </div>
 <div data-role="content">
 <img src="images/jq-game.jpg" alt="jQuery Game Development
 Essentials" />
 <div class="title">jQuery Game Development Essentials</div>
 <div class="author">Salim Arsever</div>
 </div>
</div>

We can freely choose between these two techniques at our convenience. Placing
content in separate documents allows us to defer the loading of information until
it is needed, at the cost of some higher overhead due to multiple page requests.

Interactive elements
The bulk of the features offered by jQuery Mobile are specific interactive elements
for use on a page. These elements enhance basic web page functionality, making
page components more user-friendly for a touch interface. Among these elements
are accordion-style collapsible sections, toggle switches, sliding panels, and
responsive tables.

There is considerable overlap between the user interface elements
offered by jQuery UI and jQuery Mobile. It is not recommended to
use the two libraries together on the same page, but because the most
important widgets are offered by both, there is rarely a need to do so.

Using Plugins

[206]

List views
Due to their small, vertical screen layouts, smart phone applications are often heavily
list-driven. We can use jQuery Mobile to easily enhance the lists on our pages to
behave much more like these common native app elements. Once again, we simply
introduce HTML5 custom data attributes:

<ul data-role="listview" data-inset="true">
 jQuery Game Development
 Essentials
 jQuery Mobile Cookbook
 jQuery for Designers
 jQuery Hotshot
 jQuery UI Cookbook
 Creating Mobile Apps with jQuery
 Mobile
 Drupal 7 Development by Example
 WordPress Mobile Applications
 with PhoneGap

Adding data-role="listview" tells jQuery Mobile to make the links within
this list large and easy to activate with a finger in a touch interface, while data-
inset="true" gives the list a nice border to separate it from surrounding content.
The result is a familiar, native-looking control, as follows:

Chapter 7

[207]

Now we have large touch targets, but we can go a step further. List views like this in
mobile apps are often paired with search fields to narrow down the items in the list.
We can add such a field by introducing the data-filter attribute as follows:

<ul data-role="listview" data-inset="true" data-filter="true">

The result is a rounded input box with an appropriate icon, placed above the list:

Not only does this search field look native, but it behaves correctly too, even though
we have added no code of our own:

Using Plugins

[208]

Toolbar buttons
Another user interface element enhanced by jQuery Mobile is the simple button. Just
as jQuery UI allows us to standardize button appearances, jQuery Mobile increases
the size and modifies the appearance of buttons to optimize them for touch input.

In some cases, jQuery Mobile even creates appropriate buttons for us where before
there were none. For instance, there are often buttons in the toolbar of a mobile
app. One standard button is the Back button in the upper-left corner of the screen,
allowing the user to navigate up one level. If we add a data-add-back-btn attribute
to our page <div> elements, we can have this feature without any scripting work:

<div data-role="page" data-add-back-btn="true">

Once this attribute has been added, a standard Back button is added to the toolbar
of each page we navigate to:

Chapter 7

[209]

A complete listing of HTML5 data attributes for initializing
and configuring jQuery Mobile widgets can be found at
http://jquerymobile.com/.

Advanced features
As our mobile pages require more customized design elements and more complex
interactions, jQuery Mobile provides robust tools to help us create them. All of the
features are documented on the jQuery Mobile site (http://jquerymobile.com/).
While these features are both too advanced and too numerous to discuss here in
detail, a few deserve brief mention:

•	 Mobile-friendly events: When jQuery Mobile is referenced on a page, our
jQuery code has access to a number of special events including tap, taphold,
and swipe. Handlers for these events can be bound with the same .on()
method as for any other event. With taphold and swipe in particular, their
default configurations, which include touch duration, can be modified
by accessing properties of the $.event.special.taphold and $.event.
special.swipe objects. In addition to touch-based events, jQuery Mobile
provides special events that react to scrolling, orientation change, and
various stages of its page navigation, as well as a set of virtualized mouse
events that react to both mouse and touch.

•	 Theming: As with jQuery UI, jQuery Mobile offers a ThemeRoller
(http://jquerymobile.com/themeroller/) for customizing the
look and feel of widgets.

•	 PhoneGap integration: Sites built with jQuery Mobile are easy to convert to
native mobile applications using PhoneGap (Cordova), with access to mobile
device APIs (such as camera, accelerometer, and geolocation) and app stores.
The $.support.cors and $.mobile.allowCrossDomainPages properties
can even allow access to pages not contained within the application, such as
those on a remote server.

Summary
In this chapter we have examined ways in which we can incorporate third-party
plugins into our web pages. We've looked closely at the Cycle plugin, jQuery UI, and
jQuery Mobile, and in the process have learned the patterns that we will encounter
time and again in other plugins. In the next chapter, we'll take advantage of jQuery's
plugin architecture to develop a few different types of plugins of our own.

Using Plugins

[210]

Exercises
To complete the following exercises, you will need the index.html file for
this chapter, as well as the finished JavaScript code as found in complete.js.
These files can be downloaded from the Packt Publishing website at
http://www.packtpub.com/support.

1.	 Increase the cycle transition duration to half a second, and change the
animation such that each slide fades out before the next one fades in.
Refer to the Cycle documentation to find the appropriate option to
enable this.

2.	 Set the cyclePaused cookie to persist for 30 days.
3.	 Constrain the title box to resize only in ten pixel increments.
4.	 Make the slider animate smoothly from one position to the next as the

slideshow advances.
5.	 Instead of letting the slideshow loop forever, cause it to stop after the last

slide is shown. Disable the buttons and slider when this happens.
6.	 Create a new jQuery UI theme that has a light blue widget background and

dark blue text and apply the theme to our sample document.
7.	 Modify the HTML in mobile.html so that the list view is divided up by

the first letters of the book titles. See the jQuery Mobile documentation
for data-role="list-divider" for details.

Developing Plugins
The available third-party plugins provide a bevy of options for enhancing our coding
experience, but sometimes we need to reach a bit farther. When we write code that
could be reused by others or even just ourselves, we may want to package it up as
a new plugin. Fortunately, the process of developing a plugin is not much more
involved than writing the code that uses it.

In this chapter, we will cover:

•	 Adding new global functions within the jQuery namespace
•	 Adding jQuery object methods that allow us to act on DOM elements
•	 Creating sophisticated plugins using the jQuery UI widget factory
•	 Distributing completed plugins to the world

Using the dollar ($) alias in plugins
When we write jQuery plugins, we of course must assume that the jQuery library is
loaded. We cannot assume, however, that the dollar ($) alias is available. Recall from
Chapter 3, Handling Events, that the $.noConflict() method can relinquish control
of this shortcut. To account for this, our plugins should always call jQuery methods
using the full jQuery name or internally define $ themselves.

Especially in longer plugins, many developers find that the lack of the dollar ($)
shortcut makes code more difficult to read. To combat this, the shortcut can be
locally defined for the scope of the plugin by defining a function and immediately
invoking it. This syntax for defining and invoking a function at once, often referred
to as an Immediately Invoked Function Expression (IIFE), looks like this:

(function($) {
 // Code goes here
})(jQuery);

Developing Plugins

[212]

The wrapping function takes a single parameter to which we pass the global jQuery
object. The parameter is named $, so within the function we can use the dollar ($)
alias with no conflicts.

Adding new global functions
Some of the built-in capabilities of jQuery are provided via what we have been
calling global functions. As we've seen, these are actually methods of the jQuery
object, but practically speaking, they are functions within a jQuery namespace.

A prime example of this technique is the $.ajax() function. Everything that
$.ajax() does could be accomplished with a regular global function called ajax(),
but this approach would leave us open for function name conflicts. By placing the
function within the jQuery namespace, we only have to worry about conflicts with
other jQuery methods. This jQuery namespace also signals to those who might use
the plugin that the jQuery library is required.

Many of the global functions provided by the core jQuery library are utility methods;
that is, they provide shortcuts for tasks that are frequently needed, but not difficult
to do by hand. The array-handling functions $.each(), $.map(), and $.grep() are
good examples of these. To illustrate the creation of such utility methods, we'll add
two trivial functions to their number.

To add a function to the jQuery namespace, we can just assign the new function as
a property of the jQuery object:

(function($) {
 $.sum = function(array) {
 // Code goes here
 };
})(jQuery);

Listing 8.1

Now, in any code that uses this plugin, we can write:

$.sum();

This will work just like a basic function call, and the code inside the function will
be executed.

This sum method will accept an array, add the values in the array together, and
return the result. The code for our plugin is quite brief:

(function($) {
 $.sum = function(array) {

Chapter 8

[213]

 var total = 0;

 $.each(array, function(index, value) {
 value = $.trim(value);
 value = parseFloat(value) || 0;

 total += value;
 });
 return total;
 };
})(jQuery);

Listing 8.2

Note that here, we have used the $.each() method to iterate over the array's values.
We could certainly use a simple for() loop here, but since we can be assured that
the jQuery library has been loaded before our plugin, we can use the syntax we've
grown comfortable with. Also, a nice feature of $.each() is that its first parameter
can also accept an object.

To test our plugins, we'll build a simple table with an inventory of groceries:

<table id="inventory">
 <thead>
 <tr class="one">
 <th>Product</th> <th>Quantity</th> <th>Price</th>
 </tr>
 </thead>
 <tfoot>
 <tr class="two" id="sum">
 <td>Total</td> <td></td> <td></td>
 </tr>
 <tr id="average">
 <td>Average</td> <td></td> <td></td>
 </tr>
 </tfoot>
 <tbody>
 <tr>
 <td><a href="spam.html" data-tooltip-text="Nutritious and
 delicious!">Spam</td> <td>4</td> <td>2.50</td>
 </tr>
 <tr>
 <td><a href="egg.html" data-tooltip-text="Farm fresh or
 scrambled!">Egg</td> <td>12</td> <td>4.32</td>
 </tr>

Developing Plugins

[214]

 <tr>
 <td><a href="gourmet-spam.html" data-tooltip-text="Chef
 Hermann's recipe.">Gourmet Spam</td> <td>14</td> <td>7.89
 </td>
 </tr>
 </tbody>
</table>

Downloadable code examples
As with many of the HTML, CSS, and JavaScript examples in this book,
the previous markup is merely a fragment of the complete document.
To experiment with the examples, we can download them from the
Packt Publishing website at http://www.packtpub.com/support.
In addition, the examples can be viewed in an interactive browser at
http://book.learningjquery.com/.

Now we'll write a short script that populates the appropriate table footer cell with
the sum of all quantities:

$(document).ready(function() {
 var $inventory = $('#inventory tbody');
 var quantities = $inventory.find('td:nth-child(2)')
 .map(function(index, qty) {
 return $(qty).text();
 }).get();

 var sum = $.sum(quantities);
 $('#sum').find('td:nth-child(2)').text(sum);
});

Listing 8.3

A look at the rendered HTML page verifies that our plugin is working correctly:

Chapter 8

[215]

Adding multiple functions
If our plugin needs to provide more than one global function, we could declare
them independently. Here we'll revise our plugin, adding a function to compute
the average of an array of numbers:

(function($) {
 $.sum = function(array) {
 var total = 0;

 $.each(array, function(index, value) {
 value = $.trim(value);
 value = parseFloat(value) || 0;

 total += value;
 });
 return total;
 };
 $.average = function(array) {
 if ($.isArray(array)) {
 return $.sum(array) / array.length;
 }
 return '';
 };
})(jQuery);

Listing 8.4

For convenience and brevity, we're using the $.sum() plugin to assist us in
returning the value for $.average(). To decrease the chance of errors, we also
check the argument to make sure it is an array before computing the average.

Now that a second method is defined, we can call it in the same fashion:

$(document).ready(function() {
 var $inventory = $('#inventory tbody');
 var prices = $inventory.find('td:nth-child(3)')
 .map(function(index, qty) {
 return $(qty).text();
 }).get();

 var average = $.average(prices);
 $('#average').find('td:nth-child(3)').text(average.toFixed(2));
});

Listing 8.5

Developing Plugins

[216]

The average now appears in the third column:

Extending the global jQuery object
We can also employ an alternate syntax in defining our functions using the
$.extend() function:

(function($) {
 $.extend({
 sum: function(array) {
 var total = 0;

 $.each(array, function(index, value) {
 value = $.trim(value);
 value = parseFloat(value) || 0;

 total += value;
 });
 return total;
 },
 average: function(array) {
 if ($.isArray(array)) {
 return $.sum(array) / array.length;
 }
 return '';
 }
 });
})(jQuery);

Listing 8.6

When called this way, $.extend() adds or replaces properties of the global jQuery
object. This, therefore, produces the same results as the previous technique.

Chapter 8

[217]

Isolating functions within namespaces
Our plugin now creates two separate global functions within the jQuery namespace.
We risk a different kind of namespace pollution here, though; we could still have a
conflict with function names defined in other jQuery plugins. To avoid this, it is best
to encapsulate all the global functions for a given plugin into a single object:

(function($) {
 $.mathUtils = {
 sum: function(array) {
 var total = 0;

 $.each(array, function(index, value) {
 value = $.trim(value);
 value = parseFloat(value) || 0;

 total += value;
 });
 return total;
 },
 average: function(array) {
 if ($.isArray(array)) {
 return $.mathUtils.sum(array) / array.length;
 }
 return '';
 }
 };
})(jQuery);

Listing 8.7

This pattern essentially creates another namespace for our global functions, called
jQuery.mathUtils. Though we will still informally call these functions global, they
are now methods of the mathUtils object, which is itself a property of the global
jQuery object. We, therefore, have to include the plugin name in our function calls:

$.mathUtils.sum(sum);
$.mathUtils.average(average);

With this technique (and a sufficiently unique plugin name), we are protected from
namespace collisions in our global functions. We now have the basics of plugin
development in our bag of tricks. After saving our functions in a file called jquery
.mathutils.js, we can include this script and use the functions from other scripts
on the page.

Developing Plugins

[218]

Choosing a namespace
For functions that are solely for personal use, it often makes more sense
to place them within our own project's global namespace. So, instead of
using jQuery, we may instead choose to expose one global object of our
own. We could, for example, have a global object called ljQ and define
the ljQ.mathUtils.sum() and ljQ.mathUtils.average() methods
instead of $.mathUtils.sum() and $.mathUtils.average(). This
way we completely remove the chance of namespace collisions with third-
party plugins that we choose to include.

So we've now seen the namespace protection and guaranteed library availability
that jQuery plugins grant. These are just organizational benefits, though. To really
tap into the power of jQuery plugins, we need to learn how to create new methods
on individual jQuery object instances.

Adding jQuery object methods
Most of jQuery's built-in functionality is provided through its object instance
methods, and this is where plugins shine as well. Whenever we would write
a function that acts on part of the DOM, it is probably appropriate instead to
create an instance method.

We have seen that adding global functions requires extending the jQuery object
with new methods. Adding instance methods is similar, but we instead extend the
jQuery.fn object:

jQuery.fn.myMethod = function() {
 alert('Nothing happens.');
};

The jQuery.fn object is an alias to jQuery.prototype,
provided for conciseness.

We can then call this new method from our code after using any selector expression:

$('div').myMethod();

Our alert is displayed (once for each <div> in the document) when we invoke the
method. We might as well have written a global function, though, as we haven't
used the matched DOM nodes in any way. A reasonable method implementation
acts on its context.

Chapter 8

[219]

Object method context
Within any plugin method, the keyword this is set to the current jQuery object.
Therefore, we can call any built-in jQuery method on this or extract its DOM nodes
and work on them. To examine what we can do with object context, we'll write a
small plugin to manipulate the classes on the matched elements.

Our new method will take two class names and swap which class is applied to
each element with every invocation. While jQuery UI has a robust .switchClass()
method that even permits animating the class change, we'll provide a simple
implementation for demonstration purposes:

// Unfinished code
(function($) {
 $.fn.swapClass = function(class1, class2) {
 if (this.hasClass(class1)) {
 this.removeClass(class1).addClass(class2);
 }
 else if (this.hasClass(class2)) {
 this.removeClass(class2).addClass(class1);
 }
 };
})(jQuery);

$(document).ready(function() {
 $('table').click(function() {
 $('tr').swapClass('one', 'two');
 });
});

Listing 8.8

In our plugin, we first test for the presence of class1 on the matched element and
substitute class2 if it is found. Otherwise, we test for class2 and switch in class1
if necessary. If neither class is currently present, we do nothing.

In the code that uses the plugin, we bind a click handler to the table, calling
.swapClass() on every row when the table is clicked. We'd expect this to change
the class of the header row from one to two and to change the class of the sum row
from two to one.

Developing Plugins

[220]

However, we observe a different result:

Every row has received the two class. To fix this, we need to correctly handle
jQuery objects with multiple selected elements.

Implicit iteration
We need to remember that a jQuery selector expression can always match zero,
one, or multiple elements. We must allow for any of these scenarios when designing
a plugin method. In this case, we are calling .hasClass(), which only examines the
first matched element. Instead, we need to check each element independently and act
on it.

The easiest way to guarantee proper behavior regardless of the number of matched
elements is to always call .each() on the method context; this enforces implicit
iteration, which is important for maintaining consistency between plugin and built-
in methods. Within the .each() call, this refers to each DOM element in turn so we
can adjust our code to separately test for and apply classes to each matched element:

(function($) {
 $.fn.swapClass = function(class1, class2) {
 this.each(function() {
 var $element = $(this);
 if ($element.hasClass(class1)) {
 $element.removeClass(class1).addClass(class2);
 }
 else if ($element.hasClass(class2)) {
 $element.removeClass(class2).addClass(class1);
 }
 });
 };
})(jQuery);

Listing 8.9

Chapter 8

[221]

The meaning of "this"
Caution: The keyword this refers to a jQuery object within the object
method's body, but refers to a DOM element within the .each()
invocation.

Now when we click on the table, the classes are switched without affecting the rows
that have neither class applied:

Enabling method chaining
In addition to implicit iteration, jQuery users should be able to rely on chaining
behavior. This means that we need to return a jQuery object from all plugin methods,
unless the method is clearly intended to retrieve a different piece of information. The
returned jQuery object is usually just the one provided as this. If we use .each() to
iterate over this, we can just return its result:

(function($) {
 $.fn.swapClass = function(class1, class2) {
 return this.each(function() {
 var $element = $(this);
 if ($element.hasClass(class1)) {
 $element.removeClass(class1).addClass(class2);
 }
 else if ($element.hasClass(class2)) {
 $element.removeClass(class2).addClass(class1);
 }
 });
 };
})(jQuery);

Listing 8.10

Developing Plugins

[222]

Previously, when we called .swapClass(), we had to start a new statement to do
anything else with the elements. With the return statement in place, though, we
can freely chain our plugin method with built-in methods.

Providing flexible method parameters
In Chapter 7, Using Plugins, we saw some plugins that can be fine-tuned to do exactly
what we want through the use of parameters. We saw that a cleverly constructed
plugin helps us by providing sensible defaults that can be independently overridden.
When we make our own plugins, we should follow this example by keeping the user
in mind.

To explore the various ways in which we can let a plugin's user customize its behavior,
we need an example that has several settings that can be tweaked and modified. As
our example, we'll replicate a feature of CSS by using a more brute-force JavaScript
approach—an approach that is more suitable for demonstration than for production
code. Our plugin will simulate a shadow on an element by creating a number of copies
that are partially transparent overlaid in different positions on the page:

(function($) {
 $.fn.shadow = function() {
 return this.each(function() {
 var $originalElement = $(this);
 for (var i = 0; i < 5; i++) {
 $originalElement
 .clone()
 .css({
 position: 'absolute',
 left: $originalElement.offset().left + i,
 top: $originalElement.offset().top + i,
 margin: 0,
 zIndex: -1,
 opacity: 0.1
 })
 .appendTo('body');
 }
 });
 };
})(jQuery);

Listing 8.11

Chapter 8

[223]

For each element this method is called on, we make a number of clones of the
element, adjusting their opacity. These clones are positioned absolutely at varying
offsets from the original element. For the moment, our plugin takes no parameters,
so calling the method is simple:

$(document).ready(function() {
 $('h1').shadow();
});

This method call produces a very simple shadow effect on the header text:

Next we can introduce some flexibility to the plugin method. The operation of the
method relies on several numeric values that the user might want to modify. We
can turn these into parameters so they can be changed on demand.

The options object
We have seen many examples in the jQuery API of options objects being provided
as parameters of methods such as .animate() and $.ajax(). This can be a much
friendlier way to expose options to a plugin user than the simple parameter list we
just used with the .swapClass() plugin. An object literal provides a visual label for
each parameter and also makes the order of the parameters irrelevant. In addition,
any time we can mimic the jQuery API in our plugins, we should do so. This will
increase consistency, and therefore ease of use:

(function($) {
 $.fn.shadow = function(options) {
 return this.each(function() {
 var $originalElement = $(this);
 for (var i = 0; i < options.copies; i++) {
 $originalElement
 .clone()
 .css({

Developing Plugins

[224]

 position: 'absolute',
 left: $originalElement.offset().left + i,
 top: $originalElement.offset().top + i,
 margin: 0,
 zIndex: -1,
 opacity: options.opacity
 })
 .appendTo('body');
 }
 });
 };
})(jQuery);

Listing 8.12

The number of copies made and their opacity are now customizable. Within
our plugin, each value is accessed as a property of the options argument to
the function.

Calling this method now requires us to provide an object containing the
option values:

$(document).ready(function() {
 $('h1').shadow({
 copies: 3,
 opacity: 0.25
 });
});

The configurability is an improvement, but we now have to provide both options
every time. Next we'll take a look at how we can allow our plugin users to omit
either option.

Default parameter values
As the number of parameters for a method grows, it becomes less likely that we will
always want to specify each one. A sensible set of default values can make a plugin
interface much more usable. Fortunately, using an object to pass in our parameters
helps with this task as well; it is simple to omit any item from the object and replace
it with a default:

(function($) {
 $.fn.shadow = function(opts) {

Chapter 8

[225]

 var defaults = {
 copies: 5,
 opacity: 0.1
 };
 var options = $.extend(defaults, opts);

 // ...
 };
})(jQuery);

Listing 8.13

Here, we have defined a new object, called defaults, within our method definition.
The utility function $.extend() lets us take the opts object provided as an argument
and use it to override the items in defaults, leaving omitted items alone.

We still call our method using an object literal, but now we can specify only the
parameters that need to take different values than their defaults:

$(document).ready(function() {
 $('h1').shadow({
 copies: 3
 });
});

Unspecified parameters use their default values. The $.extend() method even
accepts null values, so if the default parameters are all acceptable, our method
can be called very easily without producing JavaScript errors:

$(document).ready(function() {
 $('h1').shadow();
});

Callback functions
Of course, some method parameters can be quite a bit more complicated than
a simple numeric value. One common parameter type we have seen frequently
throughout the jQuery API is the callback function. The callback function can
lend a large amount of flexibility to a plugin without requiring a great deal of
preparation when creating the plugin.

Developing Plugins

[226]

To employ a callback function in our method, we need to simply accept the function
object as a parameter and call that function wherever appropriate in our method
implementation. As an example, we can extend our text shadow method to allow
the user to customize the position of the shadow relative to the text:

(function($) {
 $.fn.shadow = function(opts) {
 var defaults = {
 copies: 5,
 opacity: 0.1,
 copyOffset: function(index) {
 return {x: index, y: index};
 }
 };
 var options = $.extend(defaults, opts);

 return this.each(function() {
 var $originalElement = $(this);
 for (var i = 0; i < options.copies; i++) {
 var offset = options.copyOffset(i);
 $originalElement
 .clone()
 .css({
 position: 'absolute',
 left: $originalElement.offset().left + offset.x,
 top: $originalElement.offset().top + offset.y,
 margin: 0,
 zIndex: -1,
 opacity: options.opacity
 })
 .appendTo('body');
 }
 });
 };
})(jQuery);

Listing 8.14

Each slice of the shadow has a different offset from the original text. Previously,
this offset has simply been equal to the index of the copy. Now, though, we're
calculating the offset using the copyOffset() function, which is an option that
the user can override. So, for example, we could provide negative values for the
offset in both dimensions:

Chapter 8

[227]

$(document).ready(function() {
 $('h1').shadow({
 copyOffset: function(index) {
 return {x: -index, y: -2 * index};
 }
 });
});

This will cause the shadow to be cast up and to the left-hand side rather than down
and to the right-hand side:

The callback allows simple modifications to the shadow's direction, or much more
sophisticated positioning if the plugin user supplies the appropriate callback. If the
callback is not specified, then the default behavior is once again used.

Customizable defaults
We can improve the experience of using our plugins by providing reasonable default
values for our method parameters, as we have seen. However, sometimes it can be
difficult to predict what a reasonable default value will be. If a script author needs
to call our plugin multiple times with a different set of parameters than we set as
the defaults, the ability to customize these defaults could significantly reduce the
amount of code that needs to be written.

To make the defaults customizable, we need to move them out of our method
definition and into a location that is accessible by outside code:

(function($) {
 $.fn.shadow = function(opts) {
 var options = $.extend({}, $.fn.shadow.defaults, opts);
 // ...
 };

 $.fn.shadow.defaults = {

Developing Plugins

[228]

 copies: 5,
 opacity: 0.1,
 copyOffset: function(index) {
 return {x: index, y: index};
 }
 };
})(jQuery);

Listing 8.15

The defaults are now in the namespace of the shadow plugin, and can be directly
referred to with $.fn.shadow.defaults. Our call to $.extend() had to change
to accommodate this as well. Since we are now reusing the same defaults object
for every call to .shadow(), we can't allow $.extend() to modify it. Instead, we
provide an empty object {} as the first argument to $.extend(), and it is this new
object that gets modified.

Now, code that uses our plugin can change the defaults that all subsequent calls
to .shadow() will use. Options can also still be supplied at the time the method
is invoked:

$(document).ready(function() {
 $.fn.shadow.defaults.copies = 10;
 $('h1').shadow({
 copyOffset: function(index) {
 return {x: -index, y: index};
 }
 });
});

This script will create a shadow using 10 copies of the element, because that is the
new default value, but will also cast the shadow to the left-hand side and down due
to the copyOffset callback that is provided along with the method call:

Chapter 8

[229]

Creating plugins with the jQuery UI
widget factory
As we saw in Chapter 7, Using Plugins, jQuery UI houses an assortment of
widgets—plugins that present a particular kind of UI element, such as a button
or slider. These widgets present a very consistent API to JavaScript programmers.
This consistency makes the job of learning to use one a snap. When a plugin we're
writing will create a new user interface element, extending the jQuery UI library
with a widget plugin is often the right choice.

A widget is an intricate piece of functionality, but fortunately we are not left
completely to our own devices in creating one. The jQuery UI core contains a
factory method called $.widget(), which does a great deal of the work for us.
Using this factory will help ensure that our code meets the API standards enjoyed
by the users of all jQuery UI widgets.

Plugins we create using the widget factory have many nice features. We get all of
these perks (and more) with very little effort on our part:

•	 The plugin becomes stateful, meaning that we can examine, alter, or even
completely reverse the effects of the plugin after it has been applied

•	 User-supplied options are merged with customizable default
options automatically

•	 Multiple plugin methods are seamlessly combined into a single jQuery
method, accepting a string to identify which submethod is being called

•	 Custom event handlers triggered by the plugin get access to the widget
instance's data

In fact, these advantages are so nice that we may wish to use the widget factory to
construct any suitably complex plugin, UI-related or otherwise.

Creating a widget
For our example, we'll craft a plugin that adds custom tooltips to elements. A simple
tooltip implementation creates a <div> container for each element on the page that
gets a tooltip and positions that container next to the element when the mouse cursor
hovers over the target.

Developing Plugins

[230]

In recent versions, the jQuery UI library contains its own built-in tooltip
widget that is more advanced than the one we'll develop here. Our new
widget will override the built-in .tooltip() method, which is not
something we would likely do in a real project, but it will allow us to
demonstrate several important concepts without needless complexity.

A jQuery UI plugin is created by the widget factory each time $.widget() is called.
This function accepts the name of the widget and an object containing widget
properties. The name of the widget must be namespaced; we'll use the namespace
ljq and the plugin name tooltip. As a result, our plugin will be invoked by calling
.tooltip() on a jQuery object.

The first widget property we'll define is ._create():

(function($) {
 $.widget('ljq.tooltip', {
 _create: function() {
 this._tooltipDiv = $('<div></div>')
 .addClass('ljq-tooltip-text ' +
 'ui-widget ui-state-highlight ui-corner-all')
 .hide().appendTo('body');
 this.element
 .addClass('ljq-tooltip-trigger')
 .on('mouseenter.ljq-tooltip',
 $.proxy(this._open, this))
 .on('mouseleave.ljq-tooltip',
 $.proxy(this._close, this));
 }
 });
})(jQuery);

Listing 8.16

This property is a function that will be invoked by the widget factory whenever
.tooltip() is called, once per matched element in the jQuery object.

Widget properties, such as _create, which begin with an underscore,
are considered private. We will discuss public functions later.

Inside this creation function, we set up our tooltip for future displaying. To do this,
we make the new <div> element and add it to the document. We're storing the
created element in this._tooltipDiv for later use.

Chapter 8

[231]

In the context of our function, this refers to the current widget instance and we
can add whatever properties we want to this object. The object has some built-in
properties that can be handy for us as well; in particular, this.element gives us
a jQuery object pointing to the element that was originally selected.

We use this.element to bind the mouseenter and mouseleave handlers to the
tooltip trigger element. We need these handlers to open the tooltip when the mouse
begins hovering over the trigger and to close it when the mouse leaves. Note that
the events are namespaced with the name of our plugin. As we discussed in Chapter
3, Handling Events, namespacing makes it easier for us to add and remove event
handlers without stepping on the toes of other code that also wants to bind handlers
to the elements.

These .on() calls contain another feature that is new to us: the event handlers are
passed through the $.proxy() function. This function changes what this refers to
in a method, so that in this case we can easily refer to the widget instance within the
._open() method.

Next, we need to define the ._open() and ._close() methods that we bound to the
mouseenter and mouseleave handlers:

(function($) {
 $.widget('ljq.tooltip', {
 _create: function() {
 // ...
 },

 _open: function() {
 var elementOffset = this.element.offset();
 this._tooltipDiv.css({
 position: 'absolute',
 left: elementOffset.left,
 top: elementOffset.top + this.element.height()
 }).text(this.element.data('tooltip-text'));
 this._tooltipDiv.show();
 },

	 _close: function() {
 this._tooltipDiv.hide();
 }
 });
})(jQuery);

Listing 8.17

Developing Plugins

[232]

The ._open() and ._close() methods themselves are fairly self-explanatory.
These are not special names, but rather illustrate that we can create whatever private
functions we need within our widget so long as their names begin with underscores.
When the tooltip is opened, we position it with CSS and show it; when it is closed,
we simply hide it.

During the opening process, we need to populate the tooltip with information.
We're using the .data() method for this, which can get and set arbitrary data
associated with any element. In this case, we are using the method's capability to
read HTML5 data attributes to fetch the value of the data-tooltip-text attribute
of each element.

With our plugin in place, the code $('a').tooltip() will cause a tooltip to be
displayed when the mouse is over any anchor:

The plugin thus far is not very long, but densely packed with sophisticated concepts.
To make this sophistication pay off, the first thing we can do is to make our widget
stateful. The widget's state will allow users to enable and disable it as needed or even
destroy it entirely after creation.

Destroying widgets
We've seen that the widget factory creates a new jQuery method, in our case called
.tooltip(), that can be called with no arguments to apply the widget to a set of
elements. There's much more that this method can do, though. When we give this
method a string argument, it calls the submethod with the appropriate name.

One of the built-in submethods is called destroy. Calling .tooltip('destroy')
will remove the tooltip widget from the page. The widget factory does most of the
work, but if we have modified parts of the document inside ._create() (as we
have here by creating the tooltip text <div>), we need to clean up after ourselves:

Chapter 8

[233]

(function($) {
 $.widget('ljq.tooltip', {
 _create: function() {
 // ...
 },

 destroy: function() {
 this._tooltipDiv.remove();
 this.element
 .removeClass('ljq-tooltip-trigger')
 .off('.ljq-tooltip');
 $.Widget.prototype.destroy.apply(this, arguments);
 },

 _open: function() {
 // ...
 },

 _close: function() {
 // ...
 }
 });
})(jQuery);

Listing 8.18

This new code is added as a new property of the widget. The function then undoes
the modifications we performed, then calls the prototype's version of destroy so that
the automatic cleanup occurs.

Note that destroy is not preceded with an underscore; this is a public
submethod that we can call with .tooltip('destroy').

Enabling and disabling widgets
In addition to being destroyed completely, any widget can be temporarily disabled
and later re-enabled. The built-in submethods, enable and disable, assist us by
setting the value of this.options.disabled to true or false as appropriate. All
we have to do to support these submethods is to check this value before our widget
takes any action:

_open: function() {
 if (!this.options.disabled) {

Developing Plugins

[234]

 var elementOffset = this.element.offset();
 this._tooltipDiv.css({
 position: 'absolute',
 left: elementOffset.left,
 top: elementOffset.top + this.element.height()
 }).text(this.element.data('tooltip-text'));
 this._tooltipDiv.show();
 }
},

Listing 8.19

With this extra check in place, the tooltips stop displaying once
.tooltip('disable') is called and display once again after .tooltip('enable')
is invoked.

Accepting widget options
Now it's time to make our widget customizable. As we saw when constructing the
.shadow() plugin, it's friendly to provide a customizable set of defaults for a widget,
and then to override those defaults with options the user specifies. Nearly all of
the work in this process is performed by the widget factory. All we need to do is to
provide an options property:

options: {
 offsetX: 10,
 offsetY: 10,
 content: function() {
 return $(this).data('tooltip-text');
 }
},

Listing 8.20

The options property is a plain object. All the valid options for our widget should
be represented, so that none of them are mandatory for the user to provide. Here
we're supplying x and y coordinates for the tooltip relative to its trigger element,
as well as a function that generates the tooltip text for each element.

The only piece of our code that needs to examine these options is ._open():

_open: function() {
 if (!this.options.disabled) {
 var elementOffset = this.element.offset();
 this._tooltipDiv.css({
 position: 'absolute',

Chapter 8

[235]

 left: elementOffset.left + this.options.offsetX,
 top: elementOffset.top + this.element.height()
 + this.options.offsetY
 }).text(this.options.content.call(this.element[0]));
 this._tooltipDiv.show();
 }
},

Listing 8.21

Inside a submethod such as _open, we can access these properties using
this.options. We will always get the correct value for the option this way: the
default value or the overridden value if the user has provided one.

We can still add our widget without arguments, such as .tooltip(), and get the
default behavior. Now we can supply options that override the default behavior:
.tooltip({offsetX: -10, offsetX: 25}). The widget factory even lets us
change these options after the widget is instantiated: .tooltip('option',
'offsetX', 20). The next time the option is accessed, we will see the new value.

Reacting to option changes
If we need to immediately react to an option change, we can add
a _setOption function to our widget that handles the change and
then calls the default implementation of _setOption.

Adding submethods
The built-in submethods are convenient, but often we will want to expose
more hooks to the users of our plugin, as we've done with the built-in destroy
submethod. We've already seen how to create new private functions inside our
widget. Creating public functions (submethods) is just the same, except that the
widget property names do not begin with an underscore. We can use this to create
submethods that manually open and close the tooltip quite simply:

open: function() {
 this._open();
},
close: function() {
 this._close();
},

Listing 8.22

Developing Plugins

[236]

That's it! By adding public submethods that call the private functions, we can now
open a tooltip with .tooltip('open') and close it with .tooltip('close'). The
widget factory even takes care of details for us like ensuring that chaining continues
to work even if we don't return anything from our submethod.

Triggering widget events
A great plugin not only extends jQuery, but also offers plenty of opportunities for
other code to extend the plugin itself. One simple way to offer this extensibility is to
support a set of custom events related to the plugin. The widget factory makes this
process straightforward:

_open: function() {
 if (!this.options.disabled) {
 var elementOffset = this.element.offset();
 this._tooltipDiv.css({
 left: elementOffset.left + this.options.offsetX,
 top: elementOffset.top + this.element.height()
 + this.options.offsetY
 }).text(this.options.content.call(this.element[0]));
 this._tooltipDiv.show();
 this._trigger('open');
 }
},
_close: function() {
 this._tooltipDiv.hide();
 this._trigger('close');
}

Listing 8.23

Calling this._trigger() in one of our functions allows code to listen for the
new custom event. The event's name will be prefixed with our widget name,
so we don't have to worry much about conflicts with other events. If we call this._
trigger('open') in our tooltip's opening function, for example, the event called
tooltipopen will be issued each time the tooltip opens. We can listen for
this event by calling .on('tooltipopen') on the element.

This only scratches the surface of what's possible with a full-fledged widget plugin,
but gives us the tools we need to build a widget that has the features and conforms
to the standards that jQuery UI users have come to expect.

Chapter 8

[237]

Plugin design recommendations
Now that we have examined common ways to extend jQuery and jQuery UI by
creating plugins, we can review and supplement what we've learned with a list
of recommendations:

•	 Protect the dollar ($) alias from potential interference from other libraries
by using jQuery instead or passing $ into an immediately invoked function
expression (IIFE), so that it can be used as a local variable.

•	 Whether extending the jQuery object with $.myPlugin or the jQuery
prototype with $.fn.myPlugin, add no more than one property to the $
namespace. Additional public methods and properties should be added to
the plugin's namespace (for example, $.myPlugin.publicMethod or $.fn.
myPlugin.pluginProperty).

•	 Provide an object containing default options for the plugin: $.fn.myPlugin.
defaults = {size: 'large'}.

•	 Allow the plugin user to optionally override any of the default settings for
all subsequent calls to the method ($.fn.myPlugin.defaults.size =
'medium';) or for a single call ($('div').myPlugin({size: 'small'});).

•	 In most cases when extending the jQuery prototype ($.fn.myPlugin), return
this to allow the plugin user to chain additional jQuery methods to it (for
example, $('div').myPlugin().find('p').addClass('foo')).

•	 When extending the jQuery prototype ($.fn.myPlugin), enforce implicit
iteration by calling this.each().

•	 Employ callback functions when appropriate to allow for flexible
modification of the plugin's behavior without having to change the
plugin's code.

•	 If the plugin calls for user interface elements or needs to track elements' state,
create it with the jQuery UI widget factory.

•	 Maintain a set of automated unit tests for the plugin with a testing
framework such as QUnit to ensure that it works as expected. See
Appendix B, Testing JavaScript with QUnit,for more information about QUnit.

•	 Use a version control system such as Git to track revisions to the code.
Consider hosting the plugin publicly on GitHub (http://github.com/) and
allowing others to contribute.

•	 If making the plugin available for others to use, make the licensing terms
clear. Consider using the MIT license, which jQuery also uses.

Developing Plugins

[238]

Distributing a plugin
By following the previous recommendations, we can produce a clean, maintainable
plugin that follows time-tested conventions. If it performs a useful, reusable task,
we may want to share it with the jQuery community.

In addition to properly preparing plugin code as defined earlier, we should be sure
to adequately document the operation of the plugin prior to distribution. We can
choose a documentation format that suits our style, but may want to consider a
standard such as JSDoc (described at http://usejsdoc.org/). Several automatic
documentation generators, including docco (http://jashkenas.github.com/
docco/) and dox (https://github.com/visionmedia/dox) are available, but
using them requires initial setup of dependencies such as Node.js that can be quite
advanced. Regardless of format, we must ensure that our documentation covers
every parameter and option available for use with our plugin's methods.

Plugin code and documentation can be hosted anywhere; GitHub (http://github.
com/) is a popular and free option. To publicize our GitHub-hosted work, we
can submit information about it to the official jQuery Plugin Registry at http://
plugins.jquery.com/.

Instructions for providing information about the plugin and publishing it to the
registry can be found at http://plugins.jquery.com/docs/publish/. The process
can be daunting at first, as it involves adding a post-receive hook to our GitHub
repository, creating a JSON-formatted manifest file, and pushing a tagged version of
the plugin to the remote repository. Nevertheless, the instructions are detailed and
clear, and further help is available on the #jquery-content IRC channel on freenode
(http://freenode.net) or by e-mailing plugins@jquery.com.

Summary
In this chapter, we have seen how the functionality that is provided by the jQuery
core need not limit the library's capabilities. In addition to the readily available
plugins we explored in Chapter 7, Using Plugins, we now know how to extend the
menu of features ourselves.

The plugins we've created contain various features, including global functions
that use the jQuery library, new methods of the jQuery object for acting on DOM
elements, and sophisticated jQuery UI widgets. With these tools at our disposal,
we can shape jQuery—and our own JavaScript code—into whatever form we desire.

Chapter 8

[239]

Exercises
To complete these exercises, you will need the index.html file for this chapter,
as well as the finished JavaScript code as found in complete.js. These files
can be downloaded from the Packt Publishing website at http://www.packtpub.
com/support.

The challenge exercises may require the use of the official jQuery documentation at
http://api.jquery.com/.

1.	 Create new plugin methods called .slideFadeIn() and .slideFadeOut(),
combining the opacity animations of .fadeIn() and .fadeOut() with the
height animations of .slideDown() and .slideUp().

2.	 Extend the customizability of the .shadow() method so that the z-index of
the cloned copies can be specified by the plugin user.

3.	 Add a new submethod called isOpen to the tooltip widget. This submethod
should return true if the tooltip is currently displayed and false otherwise.

4.	 Add code that listens for the tooltipopen event that our widget fires and
logs a message to the console.

5.	 Challenge: Provide an alternative content option for the tooltip widget that
fetches the content of the page that an anchor's href points to via Ajax, and
displays that content as the tooltip text.

6.	 Challenge: Provide a new effect option for the tooltip widget that, if
specified, applies the named jQuery UI effect (such as explode) to the
showing and hiding of the tooltip.

Advanced Selectors and
Traversing

In January 2009, jQuery's creator John Resig introduced a new open source JavaScript
project called Sizzle. A standalone CSS selector engine, Sizzle was written to allow
any JavaScript library to adopt it with little or no modification to its codebase. In fact,
jQuery has been using Sizzle as its own selector engine ever since version 1.3.

Sizzle is the component within jQuery that is responsible for parsing the CSS selector
expressions we put into the $() function. It determines which native DOM methods
to use as it builds a collection of elements that we can then act on with other jQuery
methods. The combination of Sizzle and jQuery's set of traversal methods makes
jQuery an extremely powerful tool for finding elements on the page.

In Chapter 2, Selecting Elements, we looked at each of the basic types of selectors and
traversal methods so that we have a roadmap of what's available to us in the jQuery
library. In this more advanced chapter, we will cover:

•	 Using selectors to find and filter data in various ways
•	 Writing plugins that add new selectors and DOM traversal methods
•	 Optimizing our selector expressions for better performance
•	 Understanding some of the inner workings of the Sizzle engine

Advanced Selectors and Traversing

[242]

Selecting and traversing revisited
To kick off this more in-depth look into selectors and traversing, we'll build a
script that will provide yet more selecting and traversing examples to inspect.
For our sample, we'll build an HTML document containing a list of news items.
We'll place those items in a table so that we can experiment with selecting rows
and columns in several ways:

<div id="topics">
 Topics:
 All
 Community
 Conferences
 <!-- continued... -->
</div>
<table id="news">
 <thead>
 <tr>
 <th>Date</th>
 <th>Headline</th>
 <th>Author</th>
 <th>Topic</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <th colspan="4">2011</th>
 </tr>
 <tr>
 <td>Apr 15</td>
 <td>jQuery 1.6 Beta 1 Released</td>
 <td>John Resig</td>
 <td>Releases</td>
 </tr>
 <tr>
 <td>Feb 24</td>
 <td>jQuery Conference 2011: San Francisco Bay Area</td>
 <td>Ralph Whitbeck</td>
 <td>Conferences</td>
 </tr>
 <!-- continued... -->
 </tbody>
</table>

Chapter 9

[243]

Downloadable code examples
As with many of the HTML, CSS, and JavaScript examples in this book,
the preceding markup is merely a fragment of the complete document.
To experiment with the examples, you can download them from the
Packt Publishing website at http://www.packtpub.com/support.
In addition, the examples can be viewed in an interactive browser at
http://book.learningjquery.com/.

From this code fragment, we can see the structure of the document. The table has
four columns, representing date, headline, author, and topic, but some table rows
contain a subheading of a calendar year instead of those four items:

Between the title and the table, there is a set of links representing each of the
news topics in the table. For our first task, we'll change the behavior of these links
to perform filtering of the table "in place" rather than requiring navigation to
different pages.

Dynamic table filtering
In order to use the topic links to filter the table, we need to defeat their default
linking behavior. We should also give the user some feedback about the currently
selected topic:

$(document).ready(function() {
 $('#topics a').click(function(event) {
 event.preventDefault();
 $('#topics a.selected').removeClass('selected');

Advanced Selectors and Traversing

[244]

 $(this).addClass('selected');
 });
});

Listing 9.1

We remove the selected class from all the topic links when one is clicked, then
add the selected class to the new topic. The .preventDefault() statement
prevents the link from being followed.

Next we need to actually perform the filtering operation. As a first pass at
this problem, we can hide every row of the table that doesn't contain the text
of the topic:

$(document).ready(function() {
 $('#topics a').click(function(event) {
 event.preventDefault();
 var topic = $(this).text();

 $('#topics a.selected').removeClass('selected');
 $(this).addClass('selected');

 $('#news tr').show();
 if (topic != 'All') {
 $('#news tr:has(td):not(:contains("' + topic + '"))')
 .hide();
 }
 });
});

Listing 9.2

We're now storing the text of the link in the variable topic so that we can compare
it against the text in the table itself. First we show all the table rows, and then if the
topic is not All, we hide the irrelevant ones. The selector we're using for this process
is a little complex, though:

#news tr:has(td):not(:contains("topic"))

The selector starts straightforwardly, with #news tr locating all of the rows in the
table. We then filter this element set using the :has() custom selector. This selector
winnows the currently selected elements down to those that contain the specified
descendant. In this case, we're eliminating the header rows (such as the calendar
years) from consideration, since they do not contain <td> cells.

Chapter 9

[245]

Once we have found the rows of the table where the actual content lies, we need to
find out which ones relate to the selected topic. The :contains() custom selector
matches just the elements that have the given text string somewhere inside them;
wrapping this in a :not() selector then gives us all the rows that don't have the topic
string so we can hide them.

This code works well enough, unless the topic happens to appear as part of a news
headline, for instance. We also need to take care of the eventuality that one topic is a
substring of another. To handle these cases, we will need to execute a little code for
each of the rows:

$(document).ready(function() {
 $('#topics a').click(function(event) {
 event.preventDefault();
 var topic = $(this).text();
 $('#topics a.selected').removeClass('selected');
 $(this).addClass('selected');
 $('#news').find('tr').show();
 if (topic != 'All') {
 $('#news').find('tr:has(td)').not(function() {
 return $(this).children(':nth-child(4)').text() == topic;
 }).hide();
 }
 });
});

Listing 9.3

This new code eliminates some of the complex selector expression text by adding
DOM traversal methods. The .find() method acts just like the space previously
separating #news and tr, but the .not() method is doing something that :not()
can't accomplish. Just as we saw with the .filter() method back in Chapter 2,
Selecting Elements, .not() can accept a callback function invoked once per element to
be tested. If that function returns true, the element is excluded from the result set.

Selectors versus traversal methods
The choice of using a selector or its equivalent traversal method has
performance ramifications as well. We'll explore this choice in more
detail later in this chapter.

Advanced Selectors and Traversing

[246]

Inside the .not() method's filtering function, we examine the child elements of the
row to find the fourth one (which is the cell in the Topic column). A simple check
of the text of this cell tells us whether the row should be hidden. Only the matching
rows are displayed:

Striping table rows
In Chapter 2, Selecting Elements, one of our selector examples illustrated the ways in
which we can apply alternating row colors to a table. We saw that the :even and
:odd custom selectors can make short work of this task, and that the CSS-native
:nth-child() pseudo-class can accomplish it as well:

$(document).ready(function() {
 $('#news').find('tr:nth-child(even)').addClass('alt');
});

Listing 9.4

This straightforward selector finds every other table row, and since each year's news
articles reside in their own <tbody> element, the alternation starts over again with
each section.

Chapter 9

[247]

For a more complicated row-striping challenge, we can attempt to give the alt class
to sets of two rows at a time. The first two rows will receive the class, then the next
two will not, and so on. To achieve this, we will need to revisit filtering functions:

$(document).ready(function() {
 $('#news tr').filter(function(index) {
 return (index % 4) < 2;
 }).addClass('alt');
});

Listing 9.5

In our .filter() examples in Chapter 2, Selecting Elements, as well as the .not()
example in Listing 9.3, our filtering functions examined each element (held in the
keyword this) to determine whether to include it in the result set. Here, though,
we don't need information about the element to determine if it should be included.
Instead, we need to know its position within the original set of elements. This
information is passed as an argument to the function, and we're calling it index.

The index parameter now holds the zero-based position of the element. With
this, we can use the modulo operator (%) to determine whether we are in a pair
of elements that should receive the alt class or not. Now we have stripes of two
rows throughout the table.

There are a couple of loose ends to clean up, however. Because we're no longer
using the :nth-child() pseudo-class, the alternation does not begin again within
each <tbody>. Also, we should be skipping table header rows for a consistent
appearance. These goals can be achieved by making a couple of small modifications:

$(document).ready(function() {
 $('#news tbody').each(function() {
 $(this).children().has('td').filter(function(index) {
 return (index % 4) < 2;
 }).addClass('alt');
 });
});

Listing 9.6

Advanced Selectors and Traversing

[248]

To treat each group of rows independently, we can loop over the <tbody> elements
with an .each() call. Within the loop, we then exclude subheading rows just as we
did in Listing 9.3, using .has(). This results in a table striped in sets of two rows:

Combining filtering and striping
Our advanced table striping now works nicely, but behaves strangely when the
topic filter is used. For the two functions to play together well, we need to re-stripe
the table each time a filter is used. We will also need to consider whether rows are
currently hidden when calculating where to apply the alt class:

$(document).ready(function() {
 function stripe() {
 $('#news').find('tr.alt').removeClass('alt');
 $('#news tbody').each(function() {
 $(this).children(':visible').has('td')
 .filter(function(index) {
 return (index % 4) < 2;
 }).addClass('alt');
 });
 }
 stripe();
 $('#topics a').click(function(event) {
 event.preventDefault();
 var topic = $(this).text();
 $('#topics a.selected').removeClass('selected');
 $(this).addClass('selected');
 $('#news').find('tr').show();
 if (topic != 'All') {
 $('#news').find('tr:has(td)').not(function() {
 return $(this).children(':nth-child(4)').text() == topic;
 }).hide();

Chapter 9

[249]

 }
 stripe();
 });
});

Listing 9.7

Combining the filtering code from Listing 9.3 with our row striping routine, this
script now defines a function called stripe() that is called once when the document
is loaded, and again each time a topic link is clicked. Within the function, we take
care of removing the alt class from rows that no longer need it, as well as limiting
the selected rows to those that are currently shown. We accomplish this with the
:visible pseudo-class, which (along with its counterpart :hidden) respects whether
elements are hidden for a variety of reasons, including having a display value of
none or width and height values of 0.

We can now filter the rows of our table while preserving our row striping:

More selectors and traversal methods
Even after all the examples we've seen, we have not come close to exploring every
way to find elements on a page using jQuery. There are dozens of selectors and DOM
traversal methods available to us, and each has a particular utility we may need to
call upon.

To find the appropriate selector or method for our needs, many resources are
available to us. The quick reference at the end of this book lists each selector and
method with a very brief description of each. For lengthier descriptions and usage
examples, though, we will need a more thorough guide, such as the online jQuery
API reference. This site lists all the selectors at http://api.jquery.com/category/
selectors/, and the traversal methods at http://api.jquery.com/category/
traversing/.

Advanced Selectors and Traversing

[250]

Customizing and optimizing selectors
The many techniques we've seen give us a tool chest that can be used to find any
page element we want to work with. The story doesn't end here though; there is
much to learn about performing our element-finding tasks efficiently. This efficiency
can take the form of both code that is easier to write and read, and code that executes
more quickly inside the web browser.

Writing a custom selector plugin
One way to improve legibility is to encapsulate code snippets in reusable
components. We do this all the time by creating functions. In Chapter 8, Developing
Plugins, we expanded this idea by crafting jQuery plugins that added methods
to jQuery objects. This isn't the only way plugins can help us reuse code, though.
Plugins can also provide additional selector expressions, such as the :paused
selector that Cycle gave us in Chapter 7, Using Plugins.

The easiest type of selector expression to add is a pseudo-class. This is an expression
that starts with a colon, such as :checked or :nth-child(). To illustrate the process
of creating a selector expression, we'll build a pseudo-class called :group(). This
new selector will encapsulate the code we used to find table rows to stripe back in
Listing 9.6.

When using a selector expression to find elements, jQuery looks for instructions
in an internal object called expr. The values in this object behave much like the
filtering functions that we pass to .filter() or .not(), containing JavaScript
code that causes each element to be contained in the result set if and only if
the function returns true. We can add new expressions to this object using the
$.extend() function:

(function($) {
 $.extend($.expr[':'], {
 group: function(element, index, matches, set) {
 var num = parseInt(matches[3], 10);
 if (isNaN(num)) {
 return false;
 }
 return index % (num * 2) <num;
 }
 });
})(jQuery);

Listing 9.8

Chapter 9

[251]

This code tells jQuery that group is a valid string that can follow a colon in a selector
expression, and that when it is encountered, the given function should be called to
determine whether the element should be included in the result set.

The function that is evaluated here is passed four parameters:

•	 element: The DOM element under consideration. This is needed for most
selectors, but not ours.

•	 index: The index of the DOM element within the result set.
•	 matches: An array containing the result of the regular expression that was

used to parse this selector. Typically, matches[3] is the only relevant item in
the array; in a selector of the form :group(2), the matches[3] item contains
2, the text within the parentheses.

•	 set: The entire set of DOM elements matched up to this point. This
parameter is rarely needed.

Pseudo-class selectors need to use the information contained in these four arguments
to determine whether or not the element belongs in the result set. In this case, index
and matches are all that we require.

With the new :group selector, we now have a flexible way to select alternating
groups of elements. For example, we could combine the selector expression and
.filter() function from Listing 9.5 into a single selector expression: $('#news
tr:group(2)'). Or we could preserve the per-section behavior from Listing 9.7,
and use :group() as an expression within a .filter() call. We can even change
the number of rows to group by simply changing the number within the parentheses:

$(document).ready(function() {
 function stripe() {
 $('#news').find('tr.alt').removeClass('alt');
 $('#news tbody').each(function() {
 $(this).children(':visible').has('td')
 .filter(':group(3)').addClass('alt');
 });
 }
 stripe();
});

Listing 9.9

Advanced Selectors and Traversing

[252]

Now we can see that the row striping alternates by groups of three:

Selector performance
In planning any web development project, we need to keep in mind the time it takes
to create the site, the ease and speed with which we can maintain our code, and the
performance of the site as users interact with it. Often the first two of these concerns
are more important than the third. Especially with client-side scripting, developers
can easily fall into the traps of premature optimization and micro-optimization.
These pitfalls can cause us to spend countless hours tweaking our code to shave
milliseconds off of JavaScript execution time, even when there was no noticeable
performance lag in the first place.

A good rule of thumb is to consider developers' time more valuable
than the computer's time, unless we notice slowness in our application.

Even when performance is an issue, pinpointing the bottlenecks in our jQuery code
can be difficult. As we hinted at earlier in this chapter, some selectors are generally
faster than others, and moving part of a selector to a traversal method can help speed
up the time it takes to find elements on the page. Selector and traversal performance
is therefore often a good place to start examining our code to reduce the amount of
delay that users may experience when interacting with the page.

Any decrees made about the relative speed of selectors and traversal
methods are likely to become outdated with the release of newer, faster
browsers and clever speed tweaks introduced in newer jQuery versions.
In matters of performance, it is a good idea to routinely question our
assumptions and to optimize code after performing measurements using
a tool such as jsPerf (http://jsperf.com).

Chapter 9

[253]

With this in mind, we'll examine a couple of simple guidelines for producing
optimized jQuery selector code.

The Sizzle selector implementation
As noted in the beginning of this chapter, when we pass a selector expression
into the $() function, jQuery's Sizzle implementation parses the expression and
determines how to gather the elements represented by it. In its basic form, Sizzle
applies the most efficient native DOM method that the browser supports to obtain
a nodeList, a native array-like object of DOM elements that jQuery ultimately
converts to a true array and adds to the jQuery object. The following is a list of
DOM methods that jQuery uses internally, along with the recent browser versions
that support them:

Method Selects Supported by
.getElementById() The unique element with an

ID that matches the given
string

All browsers

.getElementsByTagName() All elements with a tag
name that matches the given
string.

All browsers

.getElementsByClassName() All elements that have
one of their class names
matching the given string.

IE9+, Firefox 3+,
Safari 4+, Chrome 4+,
and Opera 10+

.querySelectorAll() All elements that match the
given selector expression.

IE8+, Firefox 3.5+,
Safari 3+, Chrome 4+,
and Opera 10+

If a part of the selector expression cannot be handled by one of these methods,
Sizzle falls back to looping through each element that has already been collected
and testing each one against the expression part. If no part of the selector expression
can be handled by a DOM method, Sizzle starts with a collection of all elements in
the document, represented by document.getElementsByTagName('*'), and loops
through each one in turn.

This looping and testing of each element is much more costly in terms of performance
than any of the native DOM methods. Fortunately, the most recent versions of all
modern desktop browsers include the native .querySelectorAll() method, and
Sizzle uses it when it can't use the other even speedier native methods—with one
exception. When the selector expression contains a custom jQuery selector such as
:eq() or :odd or :even that has no CSS counterpart, Sizzle has no choice but to loop
and test.

Advanced Selectors and Traversing

[254]

Testing selector speed
To get an idea of the performance difference between .querySelectorAll() and
the "loop-and-test" procedure, consider a document in which we wish to select all
the <input type="text"> elements. We could write the selector expression in one
of two ways: $('input[type="text"]'), which uses a CSS attribute selector, and
$('input:text'), which uses a custom jQuery selector. To test just the portions of
the selectors we are interested in here, we will remove the input parts and compare
the speeds of $('[type="text"]') and $(':text'). The JavaScript benchmarking
site http://jsperf.com/ lets us make this comparison, yielding dramatic results.

In jsPerf tests, each test case is cycled to see how many times it can be completed
in a certain amount of time, so the higher the number, the better. When tested in
modern browsers that support .querySelectorAll() (Chrome 26, Firefox 20,
and Safari 6), the selector that can take advantage of it is remarkably faster than
the custom jQuery selector:

Figure 9.1

However, in a browser that does not support .querySelectorAll(), such as IE 7,
the two selectors perform almost identically. In this case, both selectors force jQuery
to loop through every element on the page and test each one individually:

Chapter 9

[255]

Figure 9.2

The performance difference between a selector that uses a native method and one
that doesn't is also apparent when we look at $('input:eq(1)') and $('input')
.eq(1):

Figure 9.3

Advanced Selectors and Traversing

[256]

While the raw number of operations per second varies greatly from browser to
browser, all of the tested browsers show a significant performance boost when we
move the custom :eq() selector out into the .eq() method. Using the simple input
tag name as the argument for the $() function allows for a quick lookup, and the
.eq() method then simply calls an array function to retrieve the second element in
the jQuery collection.

As a general rule of thumb, we should prefer selectors that are part of the CSS
specification over jQuery's custom selectors whenever possible. Still, before
changing our selectors, it makes sense to first confirm that there is a need to
increase performance, and then test just how much the change would boost
performance with a benchmarking tool such as http://jsperf.com.

DOM traversal under the hood
In Chapter 2, Selecting Elements, and again at the beginning of this chapter, we looked
at ways of traveling from one set of DOM elements to another by calling DOM
traversal methods. Our (far from exhaustive) survey of such methods included
simple ways to reach neighboring cells, such as .next() and .parent(), and
more complex avenues of combining selector expressions, such as .find() and
.filter(). By now, we should have a fairly strong grasp of these ways of getting
from one DOM element to another step-by-step.

Each time we take one of these steps, though, jQuery takes note of our travels,
laying down a trail of breadcrumbs we can follow back home if needed. A couple
of the methods we briefly touched on in that chapter, .end() and .addBack(), take
advantage of this record-keeping. To be able to get the most out of these methods,
and in general to write efficient jQuery code, we need to understand a bit more about
how the DOM traversal methods do their jobs.

jQuery object properties
As we know, we typically construct a jQuery object instance by passing a selector
expression to the $() function. Within the resulting object, there lies an array structure
containing references to each DOM element that matched that selector. What we
haven't seen, though, are the other properties hidden in the object. Such properties
include .context, a reference to the DOM node from which the search began (usually
document), and .selector, a record of the selector expression that created the object.
These two properties come into play when using .on() to perform event delegation,
which we touched on in Chapter 3, Handling Events, and will investigate further in
Chapter 10, Advanced Events. When a DOM traversal method is called, though, a third
property comes into play: .prevObject holds a reference to the jQuery object the
traversal method was called upon.

Chapter 9

[257]

To see this in action, we can highlight an arbitrary cell of our table and examine
those properties:

$(document).ready(function() {
 var $cell = $('#release');
 $cell.addClass('highlight');
 console.log($cell.context);
 console.log($cell.selector);
 console.log($cell.prevObject);
});

Listing 9.10

This snippet will highlight the single selected cell, as shown in the
following screenshot:

Three messages are also logged to the console:

Expression Logged value
$cell.context Document

$cell.selector #release

$cell.prevObject undefined

We can see that .context is the document object, .selector is the exact string that
we passed to the object, and .prevObject is undefined since this is a newly-created
object. If we add a traversal method to the mix, though, things get more interesting:

$(document).ready(function() {
 var $cell = $('#release').nextAll();
 $cell.addClass('highlight');
 console.log($cell.context);
 console.log($cell.selector);
 console.log($cell.prevObject);
});

Listing 9.11

Advanced Selectors and Traversing

[258]

This change alters which cells are highlighted, as shown in the following screenshot:

The log messages also change as a result of the .nextAll() call:

Expression Logged value
$cell.context Document

$cell.selector #release.nextAll()

$cell.prevObject [td]

Now the two cells following the one we initially selected are highlighted. Within the
jQuery object, .context still points to the document object, but .selector has been
modified to reflect our call to .nextAll(), and .prevObject refers to the original
jQuery object instance before the call to .nextAll().

The DOM element stack
Since each jQuery object instance has a .prevObject property pointing to the
previous one, we have a linked list structure that implements a stack. Each
traversal method call finds a new set of elements and pushes this set onto the stack.
This is only useful if we can do something with this stack, which is where
the .end() and .addBack() methods come into play.

The .end() method simply pops one element off the end of the stack, which is
the same as fetching the value of the .prevObject property. We saw an example
of this in Chapter 2, Selecting Elements, and we will see more later in this chapter.
For a more interesting example, though, we'll investigate how .addBack()
manipulates the stack:

$(document).ready(function() {
 $('#release').nextAll().addBack().addClass('highlight');
});

Listing 9.12

Chapter 9

[259]

Once again, the highlighted cells have changed:

When .addBack() is called, jQuery looks back one step on the stack and combines
the two element sets. In our example, this means that the highlighted cells include
both the two cells found by the .nextAll() call and the original cell located using
the selector. This new, merged element set is then pushed onto the stack.

This kind of stack manipulation can definitely be useful. To make sure these
techniques work when they are needed, each traversal method implementation
must properly update the stack; this means that we need to understand some of
the system's inner workings if we want to provide traversal methods of our own.

Writing a DOM traversal method plugin
Like any other jQuery object method, traversal methods can be added to jQuery by
adding properties to $.fn. We saw in Chapter 8, Developing Plugins, that new jQuery
methods we define should operate on the matched set of elements and then return
the jQuery object so that users can chain on additional methods. When we create
DOM traversal methods, the process is similar, but the jQuery object we return needs
to point to a new set of matched elements.

As an example, we'll build a plugin that finds all of the table cells in the same
column as a given cell. First we'll look at the plugin code in its entirety, then
examine it piece-by-piece to understand how it works:

(function($) {
 $.fn.column = function() {
 var $cells = $();
 this.each(function() {
 var $td = $(this).closest('td, th');
 if ($td.length) {
 var colNum = $td[0].cellIndex + 1;
 var $columnCells = $td
 .closest('table')
 .find('td, th')

Advanced Selectors and Traversing

[260]

 .filter(':nth-child(' + colNum + ')');
 $cells = $cells.add($columnCells);
 }
 });
 return this.pushStack($cells);
 };
})(jQuery);

Listing 9.13

Our .column() method could be called on a jQuery object pointing to zero, one,
or more DOM elements. To account for all of these possibilities, we use the .each()
method to loop over the elements, adding the columns of cells one by one into the
variable $cells. This $cells variable starts out as an empty jQuery object, but then
is expanded with the .add() method to point to more and more DOM elements
as needed.

This explains the outer loop of the function; inside the loop, we need to understand
how $columnCells gets populated with the DOM elements in the table column.
First, we get a reference to the table cell being examined. We want to allow the
.column() method to be called on table cells or on elements inside table cells. The
.closest() method takes care of this for us; it travels up the DOM tree until it finds
an element matching the selector we provide. This method will prove very useful to
us in event delegation, which we'll revisit in Chapter 10, Advanced Events.

With our table cell in hand, we find its column number using the DOM .cellIndex
property. This gives us a zero-based index of the cell's column; we add 1 to this
number since we'll be using it in a one-based context later. Then, from the cell,
we travel up to the nearest <table> element, back down to the <td> and <th>
elements, and filter these cells down to the appropriate column with an :nth-
child() selector expression.

Handling nested tables
The plugin we're writing is limited to simple, non-nested tables due
to the .find('td, th') call. To support nested tables, we would
need to determine whether <tbody> tags are present and move up
and down the DOM tree by the appropriate amount, which would
add more complexity than is appropriate for this example.

Once we've found all the cells in the column or columns, we need to return
the new jQuery object. We could just return $cells from our method, but this
wouldn't properly respect the DOM element stack. Instead, we pass $cells to
the .pushStack() method and return the result. This method accepts an array of
DOM elements and adds them to the stack, so that later calls to methods such as
.addBack()and .end() behave correctly.

Chapter 9

[261]

To see our plugin in action, we can react to clicks on cells and highlight the
corresponding column:

$(document).ready(function() {
 $('#news td').click(function() {
 $('#news td.active').removeClass('active');
 $(this).column().addClass('active');
 });
});

Listing 9.14

The active class is added to the selected column, resulting in different shading
when, for instance, one of the author's names is clicked:

DOM traversal performance
The rule of thumb about selector performance applies equally to DOM traversal
performance: we should prioritize ease of code writing and code maintenance
when possible, only sacrificing legibility for optimization when performance is
a measurable problem. Again, sites such as http://jsperf.com/ are helpful in
determining the best approach given several options.

While premature optimization should be avoided, it is good practice to minimize
repetition of selectors and traversal methods. As these can be potentially expensive
tasks, the fewer times we do them, the better. Two strategies for avoiding this
repetition are chaining and object caching.

Improving performance using chaining
We have used chaining many times now, and it has allowed us to keep our code
concise. There can be a performance benefit to chaining as well, however, if it allows
us to reduce repetition.

Advanced Selectors and Traversing

[262]

Our stripe() function from Listing 9.9 located the element with ID news twice: once
to remove the alt class from rows that no longer needed it, and once to apply that
class to the new set of rows. Using chaining, we can combine these two thoughts into
one and prevent this repetition:

$(document).ready(function() {
 function stripe() {
 $('#news')
 .find('tr.alt').removeClass('alt').end()
 .find('tbody').each(function() {
 $(this).children(':visible').has('td')
 .filter(':group(3)').addClass('alt');
 });
 }
 stripe();
});

Listing 9.15

In order to merge the two uses of $('#news'), we once again exploit the DOM
element stack within the jQuery object. The first call to .find() pushes the table
rows onto the stack, but then .end() pops this off the stack so that the next .find()
call is operating on the news table once again. This kind of clever manipulation of the
stack is a handy way of avoiding selector duplication.

Improving performance with caching
Caching is simply storing the result of an operation so that it can be used multiple
times without running the operation again. In the context of selector and traversal
performance, we can use caching by storing a jQuery object in a variable for later use
rather than creating a new one.

Returning to our example, we can rewrite the stripe() function to avoid selector
duplication with caching rather than chaining:

$(document).ready(function() {
 var $news = $('#news');
 function stripe() {
 $news.find('tr.alt').removeClass('alt');
 $news.find('tbody').each(function() {
 $(this).children(':visible').has('td')
 .filter(':group(3)').addClass('alt');
 });

Chapter 9

[263]

 }
 stripe();
});

Listing 9.16

The two operations are separate JavaScript statements once again, rather than
being chained together. We're still executing the $('#news') selector only once,
though, by storing the result in $news. This caching approach is a little more
verbose than chaining, since we need to separately create the variable storing
the jQuery object. On the other hand, it has the advantage of allowing the two
uses of the selected elements to be far apart in the code if we need them to be.
Also, since we can cache the selected elements outside the stripe() function,
the selector doesn't need to be re-run each time the function is called.

Because selecting elements on the page by ID is extremely fast, neither of these
examples will have a big performance impact, and in practice, we'd choose the
approach that seemed the most legible and maintainable. These techniques are
useful tools, though, when performance is found to be a concern.

Summary
In this chapter, we've delved deeper into jQuery's extensive capabilities for
finding elements in a document. We've looked at some of the details of how
the Sizzle selector engine works, and the implications this has on designing
effective and efficient code. In addition, we have explored the ways in which
we can extend and enhance jQuery's selectors and DOM traversal methods.

Further reading
A complete list of selectors and traversal methods is available in Appendix C,
Quick Reference, of this book, or in the official jQuery documentation at
http://api.jquery.com/.

Exercises
To complete these exercises, you will need the index.html file for this
chapter, as well as the finished JavaScript code as found in complete.js.
These files can be downloaded from the Packt Publishing web site at
http://www.packtpub.com/support.

Advanced Selectors and Traversing

[264]

The challenge exercises may require the use of the official jQuery documentation at
http://api.jquery.com/.

1.	 Modify the table row striping routine so that it gives no class to the first row,
a class of alt to the second row, and a class of alt-2 to the third row. Repeat
this pattern for every set of three rows in a section.

2.	 Create a new selector plugin called :containsExactly() that selects elements
with text content that exactly matches what is put inside the parentheses.

3.	 Use this new :containsExactly() selector to rewrite the filtering code
from Listing 9.3.

4.	 Create a new DOM traversal plugin method called .grandparent()
that moves from an element or elements to their grandparent elements
in the DOM.

5.	 Challenge: Using http://jsperf.com/, paste in the content of index.html
and compare the performance of finding the closest ancestor table element of
<td id="release"> using the following:

°° The .closest() method
°° The .parents() method, limiting the result to the first table found

6.	 Challenge: Using http://jsperf.com/, paste in the content of index.html
and compare the performance of finding the final <td> element in each row
using the following:

°° The :last-child pseudo-class
°° The :nth-child() pseudo-class
°° The .last() method within each row (using .each() to loop over

the rows)
°° The :last pseudo-class within each row (using .each() to loop

over the rows)

Advanced Events
To build interactive web applications, we need to observe the user's activities and
respond to them. We have seen that jQuery's event system can make this task easy,
and in the chapters so far we have used this event system many times.

In Chapter 3, Handling Events, we touched upon a number of features that jQuery
provides for reacting to events. In this more advanced chapter, we will cover:

•	 Event delegation, and the challenges it presents
•	 Performance pitfalls associated with certain events, and how to

address them
•	 Custom events that we define ourselves
•	 The special event system that jQuery uses internally for

sophisticated interactions

Revisiting events
For our sample document, we will create a simple photo gallery. The gallery will
display a set of photos with an option to display additional photos upon the click of
a link. We'll also use jQuery's event system to display textual information about each
photo when the cursor is over it. The HTML that defines the gallery is as follows:

<div id="container">
 <h1>Photo Gallery</h1>

 <div id="gallery">
 <div class="photo">

 <div class="details">
 <div class="description">The Cuillin Mountains,
 Isle of Skye, Scotland.</div>

Advanced Events

[266]

 <div class="date">12/24/2000</div>
 <div class="photographer">Alasdair Dougall</div>
 </div>
 </div>
 <div class="photo">

 <div class="details">
 <div class="description">Mt. Ruapehu in summer</div>
 <div class="date">01/13/2005</div>
 <div class="photographer">Andrew McMillan</div>
 </div>
 </div>
 <div class="photo">

 <div class="details">
 <div class="description">midday sun</div>
 <div class="date">04/26/2011</div>
 <div class="photographer">Jaycee Barratt</div>
 </div>
 </div>
 <!-- Code continues -->
 </div>
 More Photos
</div>

Downloadable code examples
As with many of the HTML, CSS, and JavaScript examples in this
book, the previous markup is merely a fragment of the complete
document. To experiment with the examples, we can download them
from the Packt Publishing website at http://www.packtpub.com/
support. In addition, the examples can be viewed in an interactive
browser at http://book.learningjquery.com/.

When we apply styles to the photos, arranging them into rows of three will make
the gallery look like the following screenshot:

Chapter 10

[267]

Loading additional pages of data
By now, we are experts at the common task of reacting to a click on a page element.
When the More Photos link is clicked on, we need to perform an Ajax request for the
next set of photos and append them to <div id="gallery"> as follows:

$(document).ready(function() {
 var pageNum = 1;
 $('#more-photos').click(function(event) {
 event.preventDefault();
 var $link = $(this);
 var url = $link.attr('href');
 if (url) {
 $.get(url, function(data) {
 $('#gallery').append(data);
 });
 pageNum++;
 if (pageNum < 20) {
 $link.attr('href', 'pages/' + pageNum + '.html');

Advanced Events

[268]

 }
 else {
 $link.remove();
 }
 }
 });
});

Listing 10.1

We also need to update the destination of the More Photos link to point to the next
page of photos:

$(document).ready(function() {
 var pageNum = 1;
 $('#more-photos').click(function(event) {
 event.preventDefault();
 var $link = $(this);
 var url = $link.attr('href');
 if (url) {
 $.get(url, function(data) {
 $('#gallery').append(data);
 });
 pageNum++;
 if (pageNum < 20) {
 $link.attr('href', 'pages/' + pageNum + '.html');
 }
 else {
 $link.remove();
 }
 }
 });
});

Listing 10.2

Our .click() handler now uses the pageNum variable to track the next page of
photos to request, and uses this to build the new href value for the link. Since
pageNum is defined outside the function, its value persists between the clicks of
the link. We remove the link once we have reached the last page of photos.

Chapter 10

[269]

Progressive enhancement
Our example is constructed to work offline without a web server. In
a practical implementation, the data would likely be delivered from
a database. With server-side code, we would deliver an entire HTML
page when a set of photos is requested normally by the browser,
and only the HTML fragment with the photo markup when an Ajax
request is made. This way, we would have an interface that is friendly
to clients with or without JavaScript being available.
We should also consider using the HTML5 history API to allow
the user to bookmark our Ajax-loaded content. We can learn about
this API at Dive into HTML5 (http://diveintohtml5.info/
history.html) and implement it quite easily using the History
plugin (https://github.com/browserstate/history.js).

Displaying data on hovering
The next feature we want to provide on this page is to display the details relating
to each photo when the user's mouse is in that area of the page. For our first pass at
displaying this information, we can use the .hover() method:

$(document).ready(function() {
 $('div.photo').hover(function() {
 $(this).find('.details').fadeTo('fast', 0.7);
 }, function() {
 $(this).find('.details').fadeOut('fast');
 });
});

Listing 10.3

When the cursor enters a photo's boundary, the associated information fades in to 70
percent opacity, and when it leaves, the information fades back out:

Advanced Events

[270]

There are, of course, multiple ways to perform this task. Since a portion of each
handler is the same, it's possible to combine the two handlers to reduce code
duplication. We can bind a handler to both mouseenter and mouseleave at
the same time by separating the event names with a space, as follows:

$(document).ready(function() {
 $('div.photo').on('mouseenter mouseleave', function(event) {
 var $details = $(this).find('.details');
 if (event.type == 'mouseenter') {
 $details.fadeTo('fast', 0.7);
 } else {
 $details.fadeOut('fast');
 }
 });
});

Listing 10.4

With the same handler bound to both events, we check for the event's type to
determine whether to fade the details in or out. The code locating <div>,
however, is the same for both events, so we can write it just once.

This example is admittedly a little contrived, since the shared code in this instance
is so brief. In other cases, though, this technique can significantly reduce code
complexity. If we had chosen to add a class on mouseenter and remove it on
mouseleave, for example, rather than animate opacity, we could have taken
care of it with a single statement inside the handler, as follows:

$(this).find('.details')
 .toggleClass('entered', event.type == 'mouseenter');

In any case, our script is now working as intended, except that we haven't
accounted for the additional photos that we load when the user clicks the More
Photos link. As we noted in Chapter 3, Handling Events, event handlers are only
attached to the elements that are there when we make the .on() call. Elements
added later, such as from an Ajax call, won't have the behavior. We saw that two
approaches to addressing this issue are to "rebind" event handlers after the new
content is introduced, or to initially bind the handlers to a containing element
instead and rely on event bubbling. The second approach, event delegation, is
the one we'll pursue here.

Chapter 10

[271]

Event delegation
Recall that to implement event delegation by hand, we check the target property
of the event object to see if it matches the element that we want to trigger the
behavior. The event target represents the innermost, or most deeply nested,
element that is receiving the event. With our sample HTML this time, however,
we're presented with a new challenge. The <div class="photo"> elements are
unlikely to be the event target since they contain other elements, such as the
image itself and the image details.

What we need is the .closest() method, which works its way up the DOM from
parent to parent until it finds an element that matches a given selector expression. If
no elements are found, it acts like any other DOM traversal method, returning a new
empty jQuery object. We can use .closest() to find <div class="photo"> from
any element it contains as follows:

// Unfinished code
$(document).ready(function() {
 $('#gallery').on('mouseover mouseout', function(event) {
 var $target = $(event.target).closest('div.photo');
 var $details = $target.find('.details');
 var $related = $(event.relatedTarget)
 .closest('div.photo');

 if (event.type == 'mouseover' && $target.length) {
 $details.fadeTo('fast', 0.7);
 } else if (event.type == 'mouseout' && !$related.length) {
 $details.fadeOut('fast');
 }
 });
});

Listing 10.5

Note that we also needed to change the event types from mouseenter and mouseleave
to mouseover and mouseout, because the former types are only triggered when
the mouse first enters the gallery <div> and finally leaves it, we need the handlers
to be fired whenever the mouse enters any of the photos within that wrapping
<div>. But the latter types introduce yet another in that the detail <div> will fade
in and out repeatedly unless we include an additional check for the event object's
relatedTarget property. Even with the additional code, repeated quick mouse
movements over and out of photos are handled unsatisfactorily, leaving an occasional
detail <div> visible when it should have faded out.

Advanced Events

[272]

Using jQuery's delegation capabilities
Event delegation can be frustratingly difficult to manage by hand when tasks
become more complex. Fortunately, jQuery's .on() method has delegation built
into it, which can smooth over the rough spots for us. Using this capability, our
code can return to the simplicity it had in Listing 10.4:

$(document).ready(function() {
 $('#gallery').on('mouseenter mouseleave', 'div.photo',
 function(event) {
 var $details = $(this).find('.details');
 if (event.type == 'mouseenter') {
 $details.fadeTo('fast', 0.7);
 } else {
 $details.fadeOut('fast');
 }
 });
});

Listing 10.6

The selector, #gallery, remains the same as in Listing 10.5, but the event types
return to the mouseenter and mouseleave of Listing 10.4. When we pass in 'div.
photo' as the second argument to .on(), jQuery maps the this keyword to the
element(s) matched by that selector within '#gallery'.

Some developers prefer to use the .delegate() and
.undelegate() methods, which offer a slightly different syntax for
the same capability we are seeing here.

Choosing a delegation scope
Because all of the photo elements we are dealing with are contained inside <div
id="gallery">, we have used #gallery as our delegation scope in the previous
example. However, any element that is an ancestor of all of the photos could be
used as this scope. For example, we could bind our handler to document, which
is the common ancestor of everything on the page:

$(document).ready(function() {
 $(document).on('mouseenter mouseleave', 'div.photo',
 function(event) {
 var $details = $(this).find('.details');
 if (event.type == 'mouseenter') {
 $details.fadeTo('fast', 0.7);

Chapter 10

[273]

 } else {
 $details.fadeOut('fast');
 }
 });
});

Listing 10.7

It can be convenient to attach event handlers directly to document when setting up
event delegation. Since all page elements descend from document, we don't need
to worry about picking the right container. However, this convenience comes at a
potential performance cost.

In a DOM of deeply nested elements, relying on events to bubble all the way up
a multitude of ancestor elements could be costly. Regardless of which elements
we are actually observing (by passing in their selector as the second argument of
.on()), if we bind our handler to document then an event happening anywhere on
the page needs to be examined. In Listing 10.6, for example, whenever the mouse
enters any element on the page, jQuery needs to check to see if it is entering a <div
class="photo"> element or not. This can grow costly on large pages, especially if
delegation is used a lot. By being more specific in our delegation context, this work
can be reduced.

Delegating early
Despite these efficiency concerns, there are reasons we may yet choose to use
document as our delegation context. In general, we can only bind event handlers
once the DOM elements they are attached to are loaded, which is why we typically
place our code inside $(document).ready(). However, the document element is
available immediately, so we don't need to wait for the whole DOM to be ready
before we bind to it. Even if the script is referenced in the <head> of the document,
as it is in our example, we can call .on() right away, as follows:

(function($) {
 $(document).on('mouseenter mouseleave', 'div.photo',
 function(event) {
 var $details = $(this).find('.details');
 if (event.type == 'mouseenter') {
 $details.fadeTo('fast', 0.7);
 } else {
 $details.fadeOut('fast');
 }
 });
})(jQuery);

Figure 10.8

Advanced Events

[274]

Because we're not waiting for the entire DOM to be ready, we can be assured that
the mouseenter and mouseleave behaviors will apply to all <div class="photo">
elements as soon as they are rendered on the page.

To see the benefit of this technique, consider a click handler directly bound to a
link. Suppose this handler performs some actions, and also prevents the default
action of the link (navigating to another page). If we were to wait until the whole
document was ready, we would run the risk of the user clicking that link before the
handler was registered and thereby leaving the current page rather than getting the
enhanced treatment provided by the script. In contrast, binding a delegated event
handler to document gives us the benefit of binding the event early without the cost
of having to scan through a complex DOM structure.

Immediately invoked function expression
In place of $(document).ready(), we're using an immediately
invoked function expression (IIFE) to act as a closure, as discussed in
Chapter 8, Developing Plugins. This allows us to avoid potential naming
conflicts with other scripts when we define variables and functions
inside of it (since variables are scoped within functions).

Defining custom events
The events that get triggered naturally by the DOM implementations of browsers
are crucial to any interactive web application. However, we aren't limited to this
set of events in our jQuery code. We can freely add our own custom events to the
repertoire. We saw this briefly in Chapter 8, Developing Plugins, when we saw how
jQuery UI widgets trigger events, but we will investigate here how we can create
and use custom events, even when not writing a plugin.

Custom events must be triggered manually by our code. In a sense, they are like
regular functions that we define, in that we can cause a block of code to be executed
when we invoke it from another place in the script. The .on() call for a custom
event behaves like a function definition, while the .trigger() call acts like a
function invocation.

However, event handlers are decoupled from the code that triggers them. This
means that we can trigger events at any time, without knowing in advance what
will happen when we do. A regular function call causes a single piece of code to be
executed. A custom event, however, could have no handlers, one handler, or many
handlers bound to it. In any case, all of the bound handlers will be executed when
the event is triggered.

Chapter 10

[275]

To illustrate this, we can revise our Ajax loading feature to use a custom event. We
will trigger a nextPage event whenever the user requests more photos, and bind
handlers that watch for this event and perform the work previously done by the
.click() handler:

$(document).ready(function() {
 $('#more-photos').click(function(event) {
 event.preventDefault();
 $(this).trigger('nextPage');
 });
});

Listing 10.9

The .click() handler now does very little work itself. It triggers the custom
event and also prevents the default link behavior by calling .preventDefault().
The heavy lifting is transferred to the new event handlers for the nextPage event,
as follows:

(function($) {
 $(document).on('nextPage', function() {
 var url = $('#more-photos').attr('href');
 if (url) {
 $.get(url, function(data) {
 $('#gallery').append(data);
 });
 }
 });

 var pageNum = 1;
 $(document).on('nextPage', function() {
 pageNum++;
 if (pageNum < 20) {
 $('#more-photos').attr('href', 'pages/' + pageNum + '.html');
 }
 else {
 $('#more-photos').remove();
 }
 });
})(jQuery);

Listing 10.10

Advanced Events

[276]

Our code really hasn't changed much since its first expression in Listing 10.2.
The largest difference is that we've split what was once a single function into two.
This is simply to illustrate that a single event trigger can cause multiple bound
handlers to fire. Clicking on the More Photos link results in the next group of
pictures being appended and the link's href attribute being updated, as shown
in the following screenshot:

With the code change in Listing 10.10 we are also illustrating another application of
event bubbling. The nextPage handlers could be bound to the link that triggers the
event, but we would need to wait to do this until the DOM was ready. Instead, we
are binding the handlers to the document itself, which is available immediately, so
we can do the binding outside of $(document).ready(). This is, in fact, the same
principle we took advantage of in Listing 10.8 when we moved the .on() method
outside of $(document).ready(). The event bubbles up and, so long as another
handler doesn't stop the event propagation, our handlers will be fired.

Infinite scrolling
Just as multiple event handlers can react to the same triggered event, the same event
can be triggered in multiple ways. We can demonstrate this by adding an infinite
scrolling feature to our page. This popular technique lets the user's scroll bar manage
the loading of content, fetching additional content whenever the user reaches the end
of what has been loaded thus far.

We'll begin with a simple implementation, then improve it in successive examples.
The basic idea is to observe the scroll event, measure the current scroll bar position
when scrolling occurs, and load new content if needed. The following code will
trigger the nextPage event we defined in Listing 10.10:

Chapter 10

[277]

(function($) {
 function checkScrollPosition() {
 var distance = $(window).scrollTop() + $(window).height();
 if ($('#container').height() <= distance) {
 $(document).trigger('nextPage');
 }
 }

 $(document).ready(function() {
 $(window).scroll(checkScrollPosition).trigger('scroll');
 });
})(jQuery);

Listing 10.11

The checkScrollPosition() function we've introduced here is set as a handler for
the window's scroll event. This function computes the distance from the top of the
document to the bottom of the window and then compares this distance to the total
height of the main container in the document. As soon as these reach equality, we
need to fill the page with additional photos, so we trigger the nextPage event.

As soon as we bind the scroll handler, we immediately trigger it with a call to
.trigger('scroll'). This kick-starts the process, so that if the page is not initially
filled with photos, an Ajax request is made right away to append more photos:

Advanced Events

[278]

Custom event parameters
When we define functions, we can set up any number of parameters to be filled with
argument values when we actually call the function. Similarly, when triggering a
custom event, we may want to pass along additional information to any registered
event handlers. We can accomplish this by using custom event parameters.

The first parameter defined for any event handler, as we've seen, is the DOM event
object as enhanced and extended by jQuery. Any additional parameters we define
are available for our discretionary use.

To see this in action, we'll add a new option to the nextPage event from Listing 10.10,
allowing us to scroll the page down to display the newly-added content:

(function($) {
 $(document).on('nextPage', function(event, scrollToVisible) {
 var url = $('#more-photos').attr('href');
 if (url) {
 $.get(url, function(data) {
 var $data = $(data).appendTo('#gallery');
 if (scrollToVisible) {
 var newTop = $data.offset().top;
 $(window).scrollTop(newTop);
 }
 checkScrollPosition();
 });
 }
 });
});

Listing 10.12

We have now added a scrollToVisible parameter to the event callback. The
value of this parameter determines whether we perform the new functionality,
which entails measuring the position of the new content and scrolling to it.
Measurement is easy using the .offset() method, which returns the top
and left coordinates of the new content. To move down the page, we call the
.scrollTop() method.

Now we need to pass an argument into the new parameter. All that is required
is providing an extra value when invoking the event using .trigger(). When
newPage is triggered via scrolling, we don't want the new behavior to occur, as the
user is already manipulating the scroll position directly. When the More Photos link
is clicked, on the other hand, we want the newly-added photos to be displayed on
screen, so we will pass a value of true to the handler:

Chapter 10

[279]

$(document).ready(function() {
 $('#more-photos').click(function() {
 $(this).trigger('nextPage', [true]);
 return false;
 });

 $(window).scroll(checkScrollPosition).trigger('scroll');
});

Listing 10.13

In the call to .trigger(), we are now providing an array of values to pass to event
handlers. In this case, the value of true will be given to the scrollToVisible
parameter of the event handler in Listing 10.12.

Note that custom event parameters are optional on both sides of the transaction.
We have two calls to .trigger('nextPage') in our code, only one of which
provides argument values; when the other is called, this does not result in an error,
but rather each parameter in the handler has the value undefined. Similarly, the
lack of a scrollToVisible parameter in one of our .on('nextPage') calls is not
an error; if a parameter does not exist when an argument is passed, that argument is
simply ignored.

Throttling events
A major issue with the infinite scrolling feature as we've implemented it in Listing
10.10 is its performance impact. While our code is brief, the checkScrollPosition()
function does need to do some work to measure the dimensions of the page and
window. This effort can accumulate rapidly, because in some browsers the scroll
event is triggered repeatedly during the scrolling of the window. The result of this
combination could be choppy or sluggish performance.

Several native events have the potential for frequent triggering. Common culprits
include scroll, resize, and mousemove. To account for this, we will implement
event throttling. This technique involves limiting our expensive calculations so that
they only occur after some of the event occurrences, rather than each one. We can
update our code from Listing 10.13 to implement this technique as follows:

$(document).ready(function() {
 var timer = 0;
 $(window).scroll(function() {
 if (!timer) {
 timer = setTimeout(function() {
 checkScrollPosition();

Advanced Events

[280]

 timer = 0;
 }, 250);
 }
 }).trigger('scroll');
});

Listing 10.14

Rather than setting checkScrollPosition() directly as the scroll event
handler, we are using the JavaScript setTimeout function to defer the call by
250 milliseconds. More importantly, we are checking for a running timer first
before doing any work. Since checking the value of a simple variable is extremely
fast, most of the calls to our event handler will return almost immediately. The
checkScrollPosition() call will only happen when a timer completes, which will
at most be every 250 milliseconds.

We can easily adjust the setTimeout() value to a comfortable number that strikes a
reasonable compromise between instant feedback and low performance impact. Our
script is now a good web citizen.

Other ways to perform throttling
The throttling technique we've implemented is efficient and simple, but it is not
the only solution. Depending on the performance characteristics of the action being
throttled and typical interaction with the page, we may for instance want to institute
a single timer for the page rather than create one when an event begins:

$(document).ready(function() {
 var scrolled = false;
 $(window).scroll(function() {
 scrolled = true;
 });
 setInterval(function() {
 if (scrolled) {
 checkScrollPosition();
 scrolled = false;
 }
 }, 250);
 checkScrollPosition();
});

Listing 10.15

Chapter 10

[281]

Unlike our previous throttling code, this polling solution uses a single call to the
JavaScript setInterval() function to begin checking the state of the scrolled
variable every 250 milliseconds. Any time a scroll event occurs, scrolled is set to
true, ensuring that the next time the interval passes, checkScrollPosition() will
be called. The result is similar to that of Listing 10.14.

A third solution for limiting the amount of processing performed
during frequently-repeated events is debouncing. This technique,
named after the post-processing required to handle repeated signals
sent by electrical switches, ensures that only a single, final event is
acted upon even when many have occurred. We will see an example
of this technique in Chapter 13, Advanced Ajax.

Extending events
Some events, such as mouseenter and ready, are designated as special events
by the jQuery internals. These events use the elaborate event extension framework
offered by jQuery. Such events get the opportunity to take action at various times
in the life cycle of an event handler. They may react to handlers being bound or
unbound, and they can even have preventable default behaviors like clicked links
or submitted forms do. The event extension API lets us create sophisticated new
events that act much like native DOM events.

The throttling behavior we implemented for scrolling in Listing 10.13 is useful,
and we may want to generalize it for use in other projects. We can accomplish
this by creating a new event that encapsulates the throttling technique within
the special event hooks.

To implement special behavior for an event, we add a property to the $
.event.special object. This added property, which is itself an object, has
our event name as its key. It can contain callbacks called at many different
specific times in an event's life cycle, including the following:

•	 add is called every time a handler for this event is bound
•	 remove is called every time a handler for the event is unbound
•	 setup is called when a handler is bound for the event, but only if no

other handlers for that event are bound to the element
•	 teardown is the converse of setup, called when the last handler for the

event is unbound from an element
•	 _default becomes the default behavior of the event, called unless the

default action is prevented by an event handler

Advanced Events

[282]

These callbacks can be used in some very creative ways. A fairly common scenario,
which we'll explore in our example code, is to automatically trigger the event in
response to some browser condition. It would be wasteful to monitor the state and
trigger events if no handlers are listening for the event, so we can use the setup
callback to initiate this work only when needed:

(function($) {
 $.event.special.throttledScroll = {
 setup: function(data) {
 var timer = 0;
 $(this).on('scroll.throttledScroll', function(event) {
 if (!timer) {
 timer = setTimeout(function() {
 $(this).triggerHandler('throttledScroll');
 timer = 0;
 }, 250);
 }
 });
 },
 teardown: function() {
 $(this).off('scroll.throttledScroll');
 }
 };
})(jQuery);

Listing 10.16

For our scroll throttling event, we need to bind a regular scroll handler that
uses the same setTimeout technique as the one we developed in Listing 10.14.
Whenever a timer completes, the custom event will be triggered. Since we only
need one timer per element, the setup callback will serve our needs. By supplying a
custom namespace for the scroll handler, we can easily remove the handler when
teardown is called.

To use this new behavior, all we have to do is bind handlers to the throttledScroll
event. This greatly simplifies the event binding code, and gives us a nicely reusable
throttling mechanism, as follows:

(function($) {
 $.event.special.throttledScroll = {
 setup: function(data) {
 var timer = 0;
 $(this).on('scroll.throttledScroll', function(event) {
 if (!timer) {
 timer = setTimeout(function() {

Chapter 10

[283]

 $(this).triggerHandler('throttledScroll');
 timer = 0;
 }, 250);
 }
 });
 },
 teardown: function() {
 $(this).off('scroll.throttledScroll');
 }
 };

 $(document).on('mouseenter mouseleave', 'div.photo',
 function(event) {
 var $details = $(this).find('.details');
 if (event.type == 'mouseenter') {
 $details.fadeTo('fast', 0.7);
 } else {
 $details.fadeOut('fast');
 }
 });

 $(document).on('nextPage', function(event, scrollToVisible) {
 var url = $('#more-photos').attr('href');
 if (url) {
 $.get(url, function(data) {
 var $data = $(data).appendTo('#gallery');
 if (scrollToVisible) {
 var newTop = $data.offset().top;
 $(window).scrollTop(newTop);
 }
 checkScrollPosition();
 });
 }
 });

 var pageNum = 1;
 $(document).on('nextPage', function() {
 pageNum++;
 if (pageNum < 20) {
 $('#more-photos').attr('href', 'pages/' + pageNum +
 '.html');
 }
 else {
 $('#more-photos').remove();

Advanced Events

[284]

 }
 });

 function checkScrollPosition() {
 var distance = $(window).scrollTop() + $(window).height();
 if ($('#container').height() <= distance) {
 $(document).trigger('nextPage');
 }
 }

 $(document).ready(function() {
 $('#more-photos').click(function(event) {
 event.preventDefault();
 $(this).trigger('nextPage', [true]);
 });

 $(window)
 .on('throttledScroll', checkScrollPosition)
 .trigger('throttledScroll');
 });
})(jQuery);

Listing 10.17

More about special events
While this chapter covers advanced techniques for dealing with events, the event
extension API is very advanced indeed, and a detailed investigation is beyond the
scope of this book. The previous throttledScroll example covers the simplest and
most common usage of the facility. Other possible applications include the following:

•	 Modifying the event object, so that event handlers have different information
available to them

•	 Causing events that occur in one place in the DOM to trigger behaviors
associated with different elements

•	 Reacting to new and browser-specific events that are not standard DOM
events, and allowing jQuery code to react to them as if they are standard

•	 Changing the way event bubbling and delegation are handled

Many of these tasks can be quite complicated. For an in-depth take on the
possibilities offered by the event extension API, we can investigate the jQuery
Learning Center's documentation at http://learn.jquery.com/events/event-
extensions/.

Chapter 10

[285]

Summary
The jQuery event system can be very powerful if we choose to leverage it fully.
In this chapter, we have seen several aspects of the system, including event
delegation methods, custom events, and the event extension API. We have also
found ways of sidestepping pitfalls associated with delegation and with events
that are triggered frequently.

Further reading
A complete list of event methods is available in Appendix C, Quick Reference, of
this book, or in the official jQuery documentation at http://api.jquery.com/.

Exercises
To complete these exercises, you will need the index.html file for this chapter,
as well as the finished JavaScript code as found in complete.js. These files
can be downloaded from the Packt Publishing website at http://www.packtpub.
com/support.

The following challenge exercise may require the use of the official jQuery
documentation at http://api.jquery.com/.

1.	 When the user clicks on a photo, add or remove the selected class on the
photo <div>. Make sure this behavior works even for photos added later
using the Next Page link.

2.	 Add a new custom event called pageLoaded that fires when a new set of
images has been added to the page.

3.	 Using the nextPage and pageLoaded handlers, show a Loading message at
the bottom of the page only while a new page is being loaded.

4.	 Bind a mousemove handler to photos that logs the current mouse position
(using console.log()).

5.	 Revise this handler to perform the logging no more than five times a second.
6.	 Challenge: Create a new special event named tripleclick that fires when

the mouse button is clicked on three times within 500 milliseconds. To test
the event, bind a tripleclick handler to the <h1> element which hides and
reveals the contents of <div id="gallery">.

Advanced Effects
Since learning about jQuery's animation capabilities, we have found many uses for
them. We can hide and reveal objects on the page with ease, we can gracefully resize
elements, and we can smoothly reposition items. This effects library is very versatile,
however, and contains even more techniques and specialized abilities than we have
seen so far.

In Chapter 4, Styling and Animating, we learned about jQuery's basic animation
capabilities. In this more advanced chapter, we will cover:

•	 Ways to gather information about the state of animations
•	 Methods for interrupting active animations
•	 Global effect options that can affect all animations on the page at once
•	 Deferred objects, which allow us to act once animations have concluded
•	 Easing, which alters the rate at which animations occur

Animation revisited
To refresh our memories about jQuery's effect methods and set up a baseline from
which to build in this chapter, we will start with a simple hover animation. Using a
document with a number of photo thumbnails on it, we will make each photo "grow"
slightly when the user's mouse is over it, and shrink back to its original size when the
mouse leaves. The HTML tags we'll use also contain some textual information that is
hidden for now, which we will use later in the chapter:

<div class="team">
 <div class="member">

 <div class="name">Rey Bango</div>
 <div class="location">Florida</div>

Advanced Effects

[288]

 <p class="bio">Rey Bango is a consultant living in South Florida,
 specializing in web application development...</p>
 </div>
 <div class="member">

 <div class="name">Scott González</div>
 <div class="location">North Carolina</div>
 <div class="position">jQuery UI Development Lead</div>
 <p class="bio">Scott is a web developer living in Raleigh, NC...
 </p>
 </div>
 <!-- Code continues ... -->
</div>

Downloadable code examples
As with many of the HTML, CSS, and JavaScript examples in this book,
the preceding markup is merely a fragment of the complete document.
To experiment with the examples, you can download them from the
Packt Publishing website at http://www.packtpub.com/support.
In addition, the examples can be viewed in an interactive browser at
http://book.learningjquery.com/.

The text associated with each image is initially hidden by the CSS by moving each
<div> to the left of its overflow: hidden container:

.member {
 position: relative;
 overflow: hidden;
}

.member div {
 position: absolute;
 left: -300px;
 width: 250px;
}

The HTML and CSS together produce a vertically-arranged list of images:

Chapter 11

[289]

To alter the size of the image, we will increase its height and width from 75 pixels to
85 pixels. At the same time, to keep the image centered, we will decrease its padding
from 5 pixels to 0 pixels:

$(document).ready(function() {
 $('div.member').on('mouseenter mouseleave', function(event) {
 var size = event.type == 'mouseenter' ? 85 : 75;
 var padding = event.type == 'mouseenter' ? 0 : 5;
 $(this).find('img').animate({
 width: size,
 height: size,
 paddingTop: padding,
 paddingLeft: padding
 });
 });
});

Listing 11.1

Here we repeat a pattern we saw in Chapter 10, Advanced Events, because much
of the work we are performing when the mouse enters the region is the same as
when it leaves; we are combining the handlers for mouseenter and mouseleave
into one function rather than calling .hover() with two separate callbacks. Inside
this joint handler, we determine the values of size and padding based on which
of the two events is being triggered, and pass these property values on to the
.animate() method.

Advanced Effects

[290]

Now when the mouse cursor is over an image, it is slightly larger than the rest:

Observing and interrupting animations
Our basic animation already reveals a problem. As long as there is enough time
for the animation to complete after each mouseenter or mouseleave event, the
animations proceed as intended. When the mouse cursor moves rapidly and the
events are triggered quickly, however, we see that the images also grow and shrink
repeatedly, well after the last event is triggered. This occurs because, as discussed
in Chapter 4, Styling and Animating, animations on a given element are added to a
queue and called in order. The first animation is called immediately, completes in
the allotted time, and then is shifted off of the queue, at which point the next
animation becomes first in line, is called, completes, is shifted, and so on until the
queue is empty.

There are many cases in which this animation queue, known within jQuery as fx,
causes desirable behavior. In the case of hover actions such as ours, though, it needs
to be circumvented.

Determining the animation state
One way to avoid the undesirable queuing of animations is to employ jQuery's
custom :animated selector. Inside the mouseenter/mouseleave event handler, we
can use the selector to check the image and see if it is currently being animated:

$(document).ready(function() {
 $('div.member').on('mouseenter mouseleave', function(event) {
 var $image = $(this).find('img');

Chapter 11

[291]

 if (!$image.is(':animated') || event.type == 'mouseleave') {
 var size = event.type == 'mouseenter' ? 85 : 75;
 var padding = event.type == 'mouseenter' ? 0 : 5;
 $image.animate({
 width: size,
 height: size,
 paddingTop: padding,
 paddingLeft: padding
 });
 }
 });
});

Listing 11.2

When the user's mouse enters the member <div>, the image will only animate if
it isn't already being animated. When the mouse leaves, the animation will occur
regardless of its state because we always want it to ultimately restore the image to
its original dimensions and padding.

We've successfully avoided the runaway animations that occur in Listing 11.1, but
the animations still need improvement. When the mouse quickly enters and leaves
the <div> tag, the image still has to complete the entire mouseenter animation
(growing) before it starts the mouseleave animation (shrinking). This is not ideal,
for sure, but the test of the :animated pseudo-class has introduced an even greater
problem: if the mouse enters the <div> tag while the image is shrinking, the image
will fail to grow again. Only a subsequent mouseleave and mouseenter animation
after the animation has stopped will execute another animation. While using the
:animated selector can be useful in some situations, here it doesn't help enough.

Halting a running animation
Fortunately, jQuery has a method to help us with both of the problems evident in
Listing 11.2. The .stop() method can halt an animation in its tracks. To employ it,
we can return the code to the way it was in Listing 11.1 and simply insert .stop()
between .find() and .animate():

$(document).ready(function() {
 $('div.member').on('mouseenter mouseleave', function(event) {
 var size = event.type == 'mouseenter' ? 85 : 75;
 var padding = event.type == 'mouseenter' ? 0 : 5;
 $(this).find('img').stop().animate({
 width: size,
 height: size,
 paddingTop: padding,

Advanced Effects

[292]

 paddingLeft: padding
 });
 });
});

Listing 11.3

It's worth noting that we stop the current animation before proceeding with the new
one. Now when the mouse enters and leaves repeatedly, the undesirable effect of our
previous attempts is gone. The current animation always completes immediately, so
there is never more than one in the fx queue. When the mouse finally rests, the final
animation completes, so the image is either fully grown (mouseenter) or restored to
its original dimensions (mouseleave) depending on the last triggered event.

Caution when halting animations
Because the .stop() method by default halts animations at their current position, it
can lead to surprising results when used with shorthand animation methods. Before
animating, these shorthand methods determine the final value and then animate to
that value. For example, if .slideDown() is halted with .stop() midway through
its animation and then .slideUp() is called, the next time .slideDown() is called
on the element, it will only slide down to the height at which it stopped the previous
time. To mitigate this type of problem, the .stop() method can accept two Boolean
(true/false) arguments, the second of which is known as goToEnd. If we set this
argument to true, the current animation not only stops, but also jumps immediately
to the final value. Still, the goToEnd feature can make the animation look "jerky,"
so a better solution might be to store the final value in a variable and animate to it
explicitly using .animate() rather than rely on jQuery to determine that value.

Another jQuery method, .finish(), is available for halting
animations. It's similar to .stop(true, true) in that it clears
all queued animations and jumps the current animation to the final
value. However, unlike .stop(true, true), it jumps all the queued
animations to their final values as well.

Using global effect properties
The effects module in jQuery includes a handy $.fx object that we can access when
we want to change characteristics of our animations across the board. Although
some of this object's properties are undocumented and intended for use solely
within the library itself, others are provided as tools for globally altering the way
our animations run. In the following examples, we'll take a look at a few of the
documented properties.

Chapter 11

[293]

Disabling all effects
We have already discussed a way to halt animations that are currently running, but
what if we need to disable all animations entirely? We may, for example, wish to
provide animations by default, but disable those animations for low-resource devices
such as feature phones in which animations could look choppy, or for users who find
animations distracting. To do so, we can simply set the $.fx.off property to true.
For our demonstration, we will display a previously hidden button to allow the user
to toggle animations on and off:

 $('#fx-toggle').show().on('click', function() {
 $.fx.off = !$.fx.off;
 });

Listing 11.4

The hidden button is displayed between the introductory paragraph and the
subsequent images:

When the user clicks on the button to toggle animations off, subsequent
animations such as our growing and shrinking images will occur instantaneously
(with a duration of 0 milliseconds), and any callback functions will be called
immediately thereafter.

Defining effect durations
Another property of the $.fx object is speeds. This property is an object itself,
consisting of three properties, as evidenced by the jQuery core file:

speeds: {
 slow: 600,
 fast: 200,
 // Default speed
 _default: 400
}

Advanced Effects

[294]

We've already learned that all of jQuery's animation methods provide an optional
speed, or duration, argument. Looking at the $.fx.speeds object, we see that the
strings slow and fast map up to 600 milliseconds and 200 milliseconds respectively.
Each time an animation method is called, jQuery goes through the following steps to
determine the duration of the effect, in this order:

1.	 It checks if $.fx.off is true. If so, it sets the duration to 0.
2.	 It checks if the duration passed is a number. If so, it sets the duration to that

number of milliseconds.
3.	 It checks if the duration pass matches one of the property keys of the $.fx.

speeds object. If so, it sets the duration to the value of the property.
4.	 If the duration is not set by any of the above checks, it sets the duration to the

value of $.fx.speeds._default.

Given this information, we now know that passing any string duration other
than slow or fast will result in a duration of 400 milliseconds. We can also see
that adding our own custom speed is as easy as adding another property to
$.fx.speeds. If we write $.fx.speeds.crawl = 1200, for example, we can use
'crawl' for any animation method's speed argument to run the animation for 1200
milliseconds, like so:

$(someElement).animate({width: '300px'}, 'crawl');

Although typing 'crawl' is no easier than typing 1200, custom speeds can come
in handy in larger projects when a number of animations that share a certain speed
need to change. In such cases, we could just change the value of $.fx.speeds.crawl
rather than search throughout the project for 1200 and replace each one only if it
represents an animation speed.

While custom speeds can be useful, perhaps even more useful is the ability to change
the default speed. We can do this by setting the _default property:

$.fx.speeds._default = 250;

Listing 11.5

Now that we have defined a new faster default speed, any new animations we add
will use it unless we override their durations. To see this at work, we will introduce
another interactive element to the page. When the user clicks on one of the portraits,
we want to display the details associated with that person. We will create the illusion
of the details unfolding from the portrait by moving them out from under the portrait
into their final positions:

$(document).ready(function() {
 function showDetails() {

Chapter 11

[295]

 $(this).find('div').css({
 display: 'block',
 left: '-300px',
 top: 0
 }).each(function(index) {
 $(this).animate({
 left: 0,
 top: 25 * index
 });
 });
 }
 $('div.member').click(showDetails);
});

Listing 11.6

When a member is clicked, we use the showDetails() function as a handler. This
function first sets the detail <div> elements in their starting positions, underneath
the member's portrait. Then it animates each of the elements into its final position.
By calling .each(), we can calculate a separate final top position for each element.

After the animation, the detail text is visible:

Since the .animate() method calls are made on different elements, they happen
simultaneously rather than being queued. And, since the calls do not specify a
duration, they all use the new default duration of 250 milliseconds.

When another member is clicked, we want to hide the previously displayed one.
We can easily track which details are currently on the screen with the use of a class:

var $member = $(this);
if ($member.hasClass('active')) {
 return;
}

Advanced Effects

[296]

$('div.member.active')
 .removeClass('active')
 .children('div').fadeOut();
$member.addClass('active');

Listing 11.7

This new code, placed at the beginning of showDetails(), adds an active class to
members that are clicked. By finding this class, we can easily locate the elements that
are visible and fade them away. We can also use the class to return without taking
action if the clicked member is already active.

Note that our .fadeOut() call also uses the faster 250 millisecond duration we've
defined. The defaults apply to jQuery's pre-packaged effects just as they do to
custom .animate() calls.

Multiproperty easing
The showDetails() function almost accomplishes the unfolding effect we set out to
achieve, but because the top and left properties are animating at the same rate, it
looks more like a sliding effect. We can subtly alter the effect by changing the easing
equation to easeInQuart for the top property only, causing the element to follow a
curved path rather than a straight one. Remember, however, that using any easing
other than swing or linear requires a plugin, such as the effects core of jQuery UI
(http://jqueryui.com/).

$member.find('div').css({
 display: 'block',
 left: '-300px',
 top: 0
}).each(function(index) {
 $(this).animate({
 left: 0,
 top: 25 * index
 }, {
 duration: 'slow',
 specialEasing: {
 top: 'easeInQuart'
 }
 });
});

Listing 11.8

Chapter 11

[297]

The specialEasing option allows us to set a different acceleration curve for each
property that is being animated. Any properties that aren't included in the option
will use the easing option's equation if it is provided or the default swing equation
if not.

We now have an attractive animation presenting most of the details associated
with a team member. We aren't yet displaying a member's biography, however.
Before we do this, we need to take a small digression to talk about jQuery's
deferred object mechanism.

Using deferred objects
At times we come across situations in which we want to act when a process
completes, but we don't necessarily know how long the process will take or
even if it will be successful. To handle these cases, jQuery offers us deferred
objects. A deferred object encapsulates an operation that takes some time
to complete.

A new deferred object can be created at any time by calling the $.Deferred()
constructor. Once we have such an object, we can perform long-lasting operations
and then call the .resolve() or .reject() methods on the object to indicate
the operation was successful or unsuccessful. It is somewhat unusual to do this
manually, however. Typically, rather than creating our own deferred objects by
hand, jQuery or its plugins will create the object and take care of resolving or
rejecting it. We just need to learn how to use the object that is created.

Rather than detailing how the $.Deferred() constructor operates,
we will focus here on how jQuery effects take advantage of deferred
objects. In Chapter 13, Advanced Ajax, we will further explore deferred
objects in the context of Ajax requests.

Every deferred object makes a promise to provide data to other code. This promise
is represented as another object with its own set of methods. From any deferred
object, we can obtain its promise object by calling its .promise() method. Then,
we can call methods of the promise to attach handlers that are executed when the
promise is fulfilled:

•	 The .done() method attaches a handler that is called when the deferred
object is resolved successfully

•	 The .fail() method attaches a handler that is called when the deferred
object is rejected

Advanced Effects

[298]

•	 The .always() method attaches a handler that is called when the deferred
object completes its task, either by being resolved or by being rejected

These handlers are much like the callbacks we provide to .on(), in that they are
functions called when some event happens. We can also attach multiple handlers
to the same promise and all will be called at the appropriate time. There are a few
important differences, however. Promise handlers will only ever be called once;
the deferred object cannot resolve a second time. A promise handler will also be
called immediately if the deferred object is already resolved at the time we attach
the handler.

In Chapter 6, Sending Data with Ajax, we saw a very simple example of how jQuery's
Ajax system uses deferred objects. Now we will put this powerful tool to use once
again by investigating the deferred objects that jQuery's animation system creates.

Animation promises
Every jQuery collection has a set of deferred objects associated with it tracking
the status of queued operations on the elements in the collection. By calling the
.promise() method on the jQuery object, we get a promise object that is resolved
when a queue completes. In particular, we can use this promise to take action upon
the completion of all of the animations running on any of the matched elements.

Just as we have a showDetails() function to display the member name and location
information, we can write a showBio() function for bringing the biographical
information into view. But first, we'll append a new <div> tag to the <body> tag
and set up two options objects:

var $movable = $('<div id="movable"></div>')
 .appendTo('body');
var bioBaseStyles = {
 display: 'none',
 height: '5px',
 width: '25px'
},
bioEffects = {
 duration: 800,
 easing: 'easeOutQuart',
 specialEasing: {
 opacity: 'linear'
 }
};

Listing 11.9

Chapter 11

[299]

This new movable <div> element is the one that we will actually animate after
injecting it with a copy of a biography. Having a wrapper element like this is
particularly useful when animating an element's width and height. We can set
its overflow property to hidden and set an explicit width and height for the
biographies within it to avoid the continual reflowing of text that would have
occurred if we had instead animated the biography <div> elements themselves.

We'll use the showBio() function to determine what the movable <div>'s starting
and ending styles should be based on the member that is clicked. Note that we're
using the $.extend() method to merge the set of base styles that remain constant
with the top and left properties that vary depending on the member's position.
Then, it's just a matter of using .css() to set the starting styles and .animate()
for the ending styles:

function showBio() {
 var $member = $(this).parent(),
 $bio = $member.find('p.bio'),
 startStyles = $.extend(bioBaseStyles, $member.offset()),
 endStyles = {
 width: $bio.width(),
 top: $member.offset().top + 5,
 left: $member.width() + $member.offset().left - 5,
 opacity: 'show'
 };
 $movable
 .html($bio.clone())
 .css(startStyles)
 .animate(endStyles, bioEffects)
 .animate({height: $bio.height()}, {easing: 'easeOutQuart'});
}

Listing 11.10

We're queuing two .animate() methods so that the biography first flies from the left
as it grows wider and fully opaque, and then slides down to its full height once
it is in position.

In Chapter 4, Styling and Animating, we saw that callback functions in jQuery's
animation methods are called when the animation completes for each element in the
collection. We want to show the member's biography after the other <div> elements
appear. Before jQuery introduced the .promise() method, this would have been an
onerous task, requiring us to count down from the total number of elements each
time the callback was executed until the last time, at which point we could execute
the code to animate the biography.

Advanced Effects

[300]

Now we can simply chain the .promise() and .done() methods to the .each()
method inside our showDetails() function:

function showDetails() {
 var $member = $(this).parent();
 if ($member.hasClass('active')) {
 return;
 }
 $movable.fadeOut();
 $('div.member.active')
 .removeClass('active')
 .children('div').fadeOut();
 $member.addClass('active');
 $member.find('div').css({
 display: 'block',
 left: '-300px',
 top: 0
 }).each(function(index) {
 $(this).animate({
 left: 0,
 top: 25 * index
 }, {
 duration: 'slow',
 specialEasing: {
 top: 'easeInQuart'
 }
 });
 }).promise().done(showBio);
}

Listing 11.11

The .done() method takes a reference to our showBio() function as its argument.
Now a click on an image brings all of that member's information into view with an
attractive animation sequence:

Chapter 11

[301]

Notice that we also slipped in $movable.fadeOut() near the top of the function.
This has no visible effect the first time showDetails() is called, but in subsequent
calls, it nicely fades the currently visible biography away along with the other
information before the new information is animated into view.

Taking fine-grained control of animations
Even as we've looked at a number of advanced features, jQuery's effects module
offers much more to explore. A rewrite of this module for jQuery 1.8 introduced
a number of ways for advanced developers to fine tune various effects and even
change the underlying engine that drives the animations. For example, in addition
to offering options such as duration and easing, the .animate() method provides
a couple of callback options that let us inspect and modify an animation each step of
the way:

$('#mydiv').animate({
 height: '200px',
 width: '400px'
}, {
 step: function(now, tween) {
 // monitor height and width
 // adjust tween properties
 },
 progress: function(animation, progress, remainingMs) {
 }
});

The step() function, which is called roughly once every 13 milliseconds for each
animated property during the animation, allows us to adjust properties of the
tween object such as the end value, the type of easing, or the actual property being
animated based on the current value of a property via the passed now argument.
A complex demonstration might, for example, use the step() function to detect a
collision between two moving elements and adjust their trajectories on impact.

Advanced Effects

[302]

The progress() function is similarly called multiple times throughout the lifecycle
of an animation:

•	 It differs from step() in that it is called only once per element at each step,
regardless of how many properties are being animated

•	 It makes available different aspects of the animation, including the
animation's promise object, the progress, which is a number between 0 and 1,
and the number of milliseconds remaining in the animation

All of jQuery's animations use a JavaScript timer function called setTimeout()
to repeatedly call functions—every 13 milliseconds by default—and change the
style properties during each tick. Some modern browsers, however, provide a new
requestAnimationFrame() function that has advantages over setTimeout(),
including increased precision (and therefore perceived smoothness of animations)
and improved battery consumption for mobile devices.

While setTimeout() typically runs in any browser tab whether it is the active tab
or not, requestAnimationFrame() pauses unless the page is visible and thereby
consumes less power. Corey Frang, who led jQuery's animation rewrite, authored a
short plugin that replaces setTimeout() with requestAnimationFrame() when it's
available. The plugin, which modifies two methods of the $.fx object, .timer() and
.stop(), is available for free download at https://github.com/gnarf37/jquery-
requestAnimationFrame/.

The requestAnimationFrame() approach to animations is usually
preferable to setTimeout(). However, because of potential conflicts
when the two are used in the same code, requestAnimationFrame()
is not implemented in the jQuery core library.

At the lowest level of jQuery's animation system lie its $.Animation() and
$.Tween() functions. These functions and their corresponding objects can be used to
tweak every possible aspect of an animation. For example, we can use $.Animation
to create an animation prefilter. One such prefilter could take a particular action
at the end of an animation based on the existence of a property passed to the
.animate() method's options object:

$.Animation.prefilter(function(element, properties, options) {
 if (options.removeAfter) {
 this.done(function () {
 $(element).remove();
 });
 }
});

Chapter 11

[303]

With this code in place, calling $('#my-div').fadeOut({removeAfter: true})
would automatically remove <div> from the DOM after it has finished fading out.

Summary
In this chapter, we have further investigated several techniques that can assist
us in crafting beautiful animations that are helpful to our users. We can now
individually control the acceleration and deceleration of each property we are
animating, and halt these animations individually or globally if needed. We
learned about the properties jQuery's effects library defines internally, and how
to change some of them to suit our needs. We made our first foray into the jQuery
deferred object system, which we will explore further in Chapter 13, Advanced
Ajax, and we got a taste of the many opportunities for fine tuning that jQuery's
animation system affords to advanced programmers.

Further reading
A complete list of effect and animation methods is available in Appendix C,
Quick Reference, of this book, or in the official jQuery documentation at
http://api.jquery.com/.

Exercises
To complete these exercises, you will need the index.html file for this
chapter, as well as the finished JavaScript code as found in complete.js.
These files can be downloaded from the Packt Publishing website at
http://www.packtpub.com/support.

The challenge exercises may require the use of the official jQuery documentation at
http://api.jquery.com/.

1.	 Define a new animation speed constant called zippy and apply this to the
biography display effect.

2.	 Change the easing of the horizontal movement of member details so that
they bounce into place.

3.	 Add a second deferred callback function to the promise that adds a
highlight class to the current member's location <div>.

4.	 Challenge: Add a delay of two seconds before animating the biography. Use
the jQuery .delay() method.

5.	 Challenge: When the active photo is clicked, collapse the bio details. Stop
any running animation before doing so.

Advanced DOM Manipulation
Throughout this book, we have used jQuery's powerful DOM manipulation
methods to alter the content of the document. We have now seen several ways
in which we can insert new content, move existing content around, or remove
content altogether. We also know how to alter the attributes and properties of
elements to suit our needs.

In Chapter 5, Manipulating the DOM, we were introduced to these important
techniques. In this more advanced chapter, we will cover:

•	 Sorting page elements using .append()
•	 Attaching custom data to elements
•	 Reading HTML5 data attributes
•	 Creating elements from JSON data
•	 Extending the DOM manipulation system using CSS hooks

Sorting table rows
The majority of the topics we're investigating in this chapter can be demonstrated
through sorting the rows of a table. This common task is a very useful way to assist
users in quickly finding the information they need. There are, naturally, a number
of ways in which the task can be accomplished.

Advanced DOM Manipulation

[306]

Sorting tables on the server
A common solution for data sorting is to perform it on the server. Data in tables
often comes from a database, which means that the code that pulls it out of the
database can request it in a given sort order (using, for example, the SQL language's
ORDER BY clause). If we have server-side code at our disposal, it is straightforward to
begin with a reasonable default sort order.

Sorting is most useful, though, when the user can determine the sort order. A
common user interface for this is to make the table headers (<th>) of sortable
columns into links. These links can go to the current page, but with a query string
appended indicating the column to sort by, as shown in the following code snippet:

<table id="my-data">
 <thead>
 <tr>
 <th class="name">
 Name
 </th>
 <th class="date">
 Date
 </th>
 </tr>
 </thead>
 <tbody>
 ...
 </tbody>
</table>

The server can react to the query string parameter by returning the database contents
in a different order.

Sorting tables using Ajax
This setup is simple, but requires a page refresh for each sort operation. As we have
seen, jQuery allows us to eliminate such page refreshes by using Ajax methods. If we
have the column headers set up as links as before, we can add jQuery code to change
those links into Ajax requests:

$(document).ready(function() {
 $('#my-data th a').click(function(event) {
 event.preventDefault();
 $('#my-data tbody').load($(this).attr('href'));
 });
});

Chapter 12

[307]

Now when the anchors are clicked, jQuery sends an Ajax request to the server for
the same page. When jQuery is used to make a page request using Ajax, it sets
the X-Requested-With HTTP header to XMLHttpRequest so that the server can
determine that an Ajax request is being made. The server code can be written to
send back only the content of the <tbody> element itself and not the surrounding
page when this parameter is present. This way we can use the response to replace
the content of the existing <tbody> element.

This is an example of progressive enhancement. The page works perfectly well
without any JavaScript at all, as the links for server-side sorting are still present.
When JavaScript is available, however, we hijack the page request and allow the
sort to occur without a full page load.

Sorting tables within the browser
There are times, though, when we either don't want to wait for server responses
when sorting, or don't have a server-side scripting language available to us. A viable
alternative in this case can be to perform the sorting entirely on the browser using
JavaScript client-side scripting and jQuery's DOM manipulation methods.

In order to demonstrate the various techniques in this chapter, we will set up three
separate jQuery sorting mechanisms. Each will accomplish the same goal, but in a
unique way. Our examples will sort the table using:

•	 Data extracted from the content of the HTML
•	 HTML5 custom data attributes
•	 A JSON representation of the table data

The tables that we'll be sorting will have different HTML structures to accommodate
the varying JavaScript techniques, but each contains columns listing books, their
author names, release dates, and prices. The first table has this simple structure:

<table id="t-1" class="sortable">
 <thead>
 <tr>
 <th></th>
 <th class="sort-alpha">Title</th>
 <th class="sort-alpha">Author(s)</th>
 <th class="sort-date">Publish Date</th>
 <th class="sort-numeric">Price</th>
 </tr>
 </thead>
 <tbody>
 <tr>

Advanced DOM Manipulation

[308]

 <td></td>
 <td>Drupal 7</td>
 <td>David Mercer</td>
 <td>September 2010</td>
 <td>$44.99</td>
 </tr>
 <!-- code continues -->
 </tbody>
</table>

Downloadable code examples
As with many of the HTML, CSS, and JavaScript examples in this book,
the previous markup is merely a fragment of the complete document.
To experiment with the examples, you can download them from the
Packt Publishing website at http://www.packtpub.com/support.
In addition, the examples can be viewed in an interactive browser at
http://book.learningjquery.com/.

Before we enhance the table with JavaScript, the first few rows look like this:

Moving and inserting elements revisited
Over the course of the coming examples, we will build a flexible sorting mechanism
that works on each of the columns. To do this, we will use the jQuery DOM
manipulation methods to insert some new elements and move other existing
elements to new homes. We will start with the most straightforward piece of the
puzzle: linking the table headers.

Chapter 12

[309]

Adding links around existing text
We'd like to turn the table headers into links that sort the data by their respective
columns. We can use jQuery's .wrapInner() method to add them; we recall from
Chapter 5, Manipulating the DOM, that .wrapInner() places a new element (in this
case an <a> element) inside the matched element, but around child elements:

$(document).ready(function() {
 var $table1 = $('#t-1');
 var $headers = $table1.find('thead th').slice(1);
 $headers
 .wrapInner('')
 .addClass('sort');
});

Listing 12.1

We skipped the first <th> element of each table (using .slice()) because it contains
no text other than white space, as there is no need to either label or sort the cover
photos. We then added a class of sort to the remaining <th> elements so we can
distinguish them in our CSS from their non-sortable counterparts. Now the header
rows look like so:

This is an example of progressive enhancement's counterpart, graceful degradation.
Unlike the Ajax solution discussed earlier, this technique cannot function without
JavaScript; we are assuming the server has no scripting language available to it for
the purposes of this example. Since JavaScript is required for the sort to work, we are
adding the sort class and the anchors through code only, thereby making sure that
the interface indicates that sorting is possible only if the script can run. And since
we're actually creating links rather than simply adding visual styles to indicate that
the headers can be clicked, we provide the added benefit of accessibility for users
who need to navigate to the headers with the keyboard (by pressing the Tab key).
The page degrades into one that is still functional, albeit without sorting available.

Advanced DOM Manipulation

[310]

Sorting simple JavaScript arrays
To perform the sort, we will be taking advantage of JavaScript's built-in .sort()
method. It does an in-place sort on an array, and can take a comparator function
as an argument. This function compares two items in the array and should return
a positive or negative number depending on which item should come first in the
sorted array.

For example, take a simple array of numbers:

var arr = [52, 97, 3, 62, 10, 63, 64, 1, 9, 3, 4];

We can sort this array by calling arr.sort(). After this, the items are in the
following order:

[1, 10, 3, 3, 4, 52, 62, 63, 64, 9, 97]

By default, as we see here, the items are sorted lexicographically (in alphabetical
order). In this case, it might make more sense to sort the items numerically. To do
this, we can supply a comparator function to the .sort() method:

arr.sort(function(a,b) {
 if (a < b) {
 return -1;
 }
 if (a > b) {
 return 1;
 }
 return 0;
});

This function returns a negative number if a should come first in the sorted
array, a positive number if b should come first, and zero if the order of the items
does not matter. With this information in hand, the .sort() method can sequence
the items appropriately:

[1, 3, 3, 4, 9, 10, 52, 62, 63, 64, 97]

We will next apply this .sort() method to our table rows.

Sorting DOM elements
Let's perform a sort on the Title column of the table. Note that while we added the
sort class to it and the others, this column's header cell already has a sort-alpha
class provided by the HTML. The other header cells received similar treatment
depending on the type of sorting for each, but for now we'll focus on the Title
header, which requires a straightforward alphabetic sort:

Chapter 12

[311]

$headers.on('click', function(event) {
 event.preventDefault();
var column = $(this).index();
var rows = $table1.find('tbody > tr').get();
 rows.sort(function(a, b) {
 var keyA = $(a).children('td').eq(column).text();
keyA = $.trim(keyA).toUpperCase();
var keyB = $(b).children('td').eq(column).text();
 keyB = $.trim(keyB).toUpperCase();
 if (keyA < keyB) return -1;
 if (keyA > keyB) return 1;
 return 0;
 });

 $.each(rows, function(index, row) {
 $table1.children('tbody').append(row);
 });
});

Listing 12.2

Once we have found the index of the clicked header cell, we retrieve an array of all
the data rows. This is a great example of how .get() is useful in transforming a
jQuery object into an array of DOM nodes; even though jQuery objects act like arrays
in many respects, they don't have all of the native array methods available, such as
.pop() or .shift().

Internally, jQuery actually does define a few methods that act
like native array methods. For example, .sort(), .push(), and
.splice() are methods of jQuery objects. However, since these
methods are for internal use and not publicly documented, we
cannot rely on them behaving in expected ways in our own code,
and should thus avoid calling them on jQuery objects.

Now that we have an array of DOM nodes, we can sort them, but to do this we need
to write an appropriate comparator function. We want to sort the rows according
to the textual contents of the relevant table cells, so this will be the information
the comparator function will examine. We know which cell to look at because we
captured the column index with the .index() call. We use jQuery's $.trim()
function to strip out leading and trailing white space, and then we convert the text to
uppercase because string comparisons in JavaScript are case-sensitive while our sort
should be case-insensitive. We store the key values in variables to avoid redundant
calculations, compare them, and return 1 or -1, just as we did when sorting a simple
array of numbers before.

Advanced DOM Manipulation

[312]

Our array is now sorted, but note that the call to .sort() has not changed the DOM
itself. To do this, we need to call DOM manipulation methods to move the rows
around. We do this one row at a time, reinserting each into the table as we loop
through them. Since .append() does not clone nodes, this moves them rather than
copying them. Our table is now sorted:

Storing data alongside DOM elements
Our code works, but it is quite slow. The culprit is the comparator function, which is
performing a fair amount of work. This comparator will be called many times during
the course of a sort, which means that every extra moment it spends on processing
will be magnified.

Array sorting performance
The actual sort algorithm used by JavaScript is not defined by the
standard. It may be a simple sort like a bubble sort (worst case of
Θ(n2) in computational complexity terms) or a more sophisticated
approach like quick sort (which is Θ(n log n) on average). It is safe to
say, though, that doubling the number of items in an array will more
than double the number of times the comparator function is called.

The remedy for our slow comparator is to pre-compute the keys for the comparison.
We can do most of the expensive work in an initial loop and store the result with
jQuery's .data() method, which sets or retrieves arbitrary information associated
with page elements. Then we can simply examine the keys within the comparator
function, and our sort is markedly faster:

$headers.on('click', function(event) {
 event.preventDefault();

Chapter 12

[313]

 var column = $(this).index();
 var rows = $table1.find('tbody > tr').each(function() {
 var key = $(this).children('td').eq(column).text();
 $(this).data('sortKey', $.trim(key).toUpperCase());
 }).get();
 rows.sort(function(a, b) {
 var keyA = $(a).data('sortKey');
 var keyB = $(b).data('sortKey');
 if (keyA < keyB) return -1;
 if (keyA > keyB) return 1;
 return 0;
 });
 $.each(rows, function(index, row) {
 $table1.children('tbody').append(row);
 });
});

Listing 12.3

The .data() method, paired with its complement .removeData(), provides a
data storage mechanism that is a convenient alternative to expando properties,
or non-standard properties added directly to DOM elements. Using .data()
instead of expando properties avoids potential problems with memory leaks in
older versions of Internet Explorer.

Performing additional precomputation
Now we want to apply the same kind of sorting behavior to the Author(s)
column of our table. Because its table header cell has the sort-alpha class, the
Author(s) column can be sorted with our existing code. Ideally, though, authors
should be sorted by last name, not first. Since some books have multiple authors,
and some authors have middle names or initials listed, we need outside guidance
to determine what part of the text to use as our sort key. We can supply this
guidance by wrapping the relevant part of the cell in a tag:

<td>David Mercer</td>

Now we have to modify our sorting code to take this tag into account without
disturbing the existing behavior for the Title column, which is already working
well. By prepending the marked sort key to the key we have previously calculated,
we can sort first on the last name if it is called out, but on the whole string as
a fallback:

var rows = $table1.find('tbody > tr').each(function() {
 var $cell = $(this).children('td').eq(column);

Advanced DOM Manipulation

[314]

 var key = $cell.find('span.sort-key').text() + ' ';
 key += $.trim($cell.text()).toUpperCase();
 $(this).data('sortKey', key);
}).get();

Listing 12.4

Sorting by the Author(s) column now uses the provided key, thereby sorting by
last name:

If two last names are identical, the sort uses the entire string as a tiebreaker
for positioning.

Storing non-string data
Our user should be able to sort not just by the Title and Author(s) columns,
but the Publish Date and Price columns as well. Since we streamlined our
comparator function, it can handle all kinds of data, but first the computed keys
will need to be adjusted for other data types. For example, in the case of prices, we
need to strip off the leading $ character and parse the rest so that we can compare
them numerically:

var key = parseFloat($cell.text().replace(/^[^\d.]*/, ''));
if (isNaN(key)) {
 key = 0;
}

The regular expression used here removes any leading characters other than
numbers and decimal points, passing the result on to parseFloat(). The result of
parseFloat() then needs to be checked, because if no number can be extracted from
the text, NaN (Not a Number) is returned. This can wreak havoc on .sort(), so we
set any non-number to 0.

Chapter 12

[315]

For the date cells, we can use the JavaScript Date object:

var key = Date.parse('1 ' + $cell.text());

The dates in this table contain a month and year only; Date.parse() requires a
fully-specified date. To accommodate this, we prepend the string with 1, so that
September 2010 becomes 1 September 2010. Now that we have a complete date,
Date.parse() can convert it into a timestamp, which can be sorted using our
normal comparator.

We can place these expressions into three separate functions, so that later we can call
the appropriate one based on the class applied to the table header:

$headers
 .each(function() {
 var keyType = this.className.replace(/^sort-/,'');
 $(this).data('keyType', keyType);
 })
 .wrapInner('')
 .addClass('sort');
var sortKeys = {
 alpha: function($cell) {
 var key = $cell.find('span.sort-key').text() + ' ';
 key += $.trim($cell.text()).toUpperCase();
 return key;
 },
 numeric: function($cell) {
 var num = $cell.text().replace(/^[^\d.]*/, '');
 var key = parseFloat(num);
 if (isNaN(key)) {
 key = 0;
 }
 return key;
 },
 date: function($cell) {
 var key = Date.parse('1 ' + $cell.text());
 return key;
 }
};

Listing 12.5

Advanced DOM Manipulation

[316]

We've modified the script a bit to store keyType data for each column header cell
based on its class name before we add the sort class. We strip off the sort- portion
of the class so that we're left with alpha, numeric, or date. By making each sort
function a method of the sortKeys object, we can use array notation and pass in the
value of the header cell's keyType data to call the appropriate function.

Typically when we call methods, we use dot notation. This is, in fact, the way
we call methods of the jQuery object throughout this book. For example, to add a
class of bar to <div class="foo">, we write $('div.foo').addClass('bar').
Because JavaScript allows properties and methods to be represented in either dot
or array notation, we could also write it as $('div.foo')['addClass']('bar').
It doesn't make much sense to do this most of the time, but it can be a great way
to conditionally call methods without using a bunch of if statements. For our
sortKeys object, we could call the alpha method like sortKeys.alpha($cell) or
sortKeys['alpha']($cell) or, if the method name is stored in a keyType variable,
sortKeys[keyType]($cell). We'll use this third variation inside the click handler:

$headers.on('click', function(event) {
 event.preventDefault();
 var $header = $(this),
 column = $header.index(),
 keyType = $header.data('keyType');
 if (!$.isFunction(sortKeys[keyType])) {
 return;
 }
 var rows = $table1.find('tbody > tr').each(function() {
 var $cell = $(this).children('td').eq(column);
 $(this).data('sortKey', sortKeys[keyType]($cell));
 }).get();
 rows.sort(function(a, b) {
 var keyA = $(a).data('sortKey');
 var keyB = $(b).data('sortKey');
 if (keyA < keyB) return -1;
 if (keyA > keyB) return 1;
 return 0;
 });
 $.each(rows, function(index, row) {
 $table1.children('tbody').append(row);
 });
});

Listing 12.6

Chapter 12

[317]

To be safe and avoid JavaScript errors, we also made sure that the sortKeys[keyType]
method exists before continuing on. We can now sort by Publish Date or Price as well:

Alternating sort directions
Our final sorting enhancement is to allow for both ascending and descending sort
orders. When the user clicks on a column that is already sorted, we want to reverse
the current sort order.

To reverse a sort, all we have to do is to invert the values returned by our
comparator. We can do this with a simple sortDirection variable:

if (keyA < keyB) return -sortDirection;
if (keyA > keyB) return sortDirection;
return 0;

If sortDirection equals 1, then the sort will be the same as before. If it equals -1,
the sort will be reversed. By combining this concept with some classes to keep track
of the current sort order of a column, achieving alternating sort directions is simple:

 $headers.on('click', function(event) {
 event.preventDefault();
 var $header = $(this),
 column = $header.index(),
 keyType = $header.data('keyType'),
 sortDirection = 1;
 if (!$.isFunction(sortKeys[keyType])) {
 return;
 }
 if ($header.hasClass('sorted-asc')) {
 sortDirection = -1;

Advanced DOM Manipulation

[318]

 }
 var rows = $table1.find('tbody > tr').each(function() {
 var $cell = $(this).children('td').eq(column);
 $(this).data('sortKey', sortKeys[keyType]($cell));
 }).get();
 rows.sort(function(a, b) {
 var keyA = $(a).data('sortKey');
 var keyB = $(b).data('sortKey');
 if (keyA < keyB) return -sortDirection;
 if (keyA > keyB) return sortDirection;
 return 0;
 });
 $headers.removeClass('sorted-asc sorted-desc');
 $header.addClass(sortDirection == 1 ? 'sorted-asc'
 : 'sorted-desc');
 $.each(rows, function(index, row) {
 $table1.children('tbody').append(row);
 });
 });
});

Listing 12.7

As a side benefit, since we use classes to store the sort direction, we can style the
column headers to indicate the current order:

Using HTML5 custom data attributes
So far, we've been relying on the content within the table cells to determine the sort
order. While we've managed to sort the rows correctly by manipulating that content,
we can make our code more efficient by outputting more HTML from the server in
the form of HTML5 data-* attributes. The second table in our example page includes
these attributes:

Chapter 12

[319]

<table id="t-2" class="sortable">
 <thead>
 <tr>
 <th></th>
 <th data-sort='{"key":"title"}'>Title</th>
 <th data-sort='{"key":"authors"}'>Author(s)</th>
 <th data-sort='{"key":"publishedYM"}'>Publish Date</th>
 <th data-sort='{"key":"price"}'>Price</th>
 </tr>
 </thead>
 <tbody>
 <tr data-book='{"img":"2862_OS.jpg",
 "title":"DRUPAL 7","authors":"MERCER DAVID",
 "published":"September 2010","price":44.99,
 "publishedYM":"2010-09"}'>
 <td></td>
 <td>Drupal 7</td>
 <td>David Mercer</td>
 <td>September 2010</td>
 <td>$44.99</td>
 </tr>
 <!-- code continues -->
 </tbody>
</table>

Notice that each <th> element (except the first) has a data-sort attribute and each
<tr> element has a data-book attribute. We first saw custom data attributes in
Chapter 7, Using Plugins, where we provided information in attributes for plugin
code to use. Here, we will use jQuery to access the attribute values ourselves. To
retrieve the value, we pass the part of the attribute's name after data- to the .data()
method. For example, we write $('th').first().data('sort') to get the value of
the first <th> element's data-sort attribute.

When we use the .data()method to get the value of a data attribute, jQuery converts
the value to a number, array, object, Boolean, or null if it determines that it is one
of those types. Objects must be denoted using JSON syntax, as we are doing here.
Because the JSON format requires double quotes for its keys and string values, we
need to use single quotes to surround the attribute value:

<th data-sort='{"key":"title"}'>

Since jQuery converts this JSON string to an object for us, getting at the values we
want is simple. To get the value of the key property, for example, we write:

$('th').first().data('sort').key

Advanced DOM Manipulation

[320]

Once a custom data attribute is retrieved in this way, the data is stored internally by
jQuery and the HTML data-* attribute itself is no longer accessed or modified.

One great benefit of using data attributes here is that the stored values can be
different from the table cell content. In other words, all of the work that we had to do
in the first table to finesse the sorting—converting strings to upper case, changing the
date format, converting the price to a number—is already taken care of. This allows
us to write much simpler and more efficient sorting code:

$(document).ready(function() {
 var $table2 = $('#t-2');
 var $headers = $table2.find('thead th').slice(1);
 $headers
 .wrapInner('')
 .addClass('sort');
 var rows = $table2.find('tbody > tr').get();
 $headers.on('click', function(event) {
 event.preventDefault();
 var $header = $(this),
 sortKey = $header.data('sort').key,
 sortDirection = 1;
 if ($header.hasClass('sorted-asc')) {
 sortDirection = -1;
 }
 rows.sort(function(a, b) {
 var keyA = $(a).data('book')[sortKey];
 var keyB = $(b).data('book')[sortKey];
 if (keyA < keyB) return -sortDirection;
 if (keyA > keyB) return sortDirection;
 return 0;
 });
 $headers.removeClass('sorted-asc sorted-desc');
 $header.addClass(sortDirection == 1 ? 'sorted-asc'
 : 'sorted-desc');
 $.each(rows, function(index, row) {
 $table2.children('tbody').append(row);
 });
 });
});

Listing 12.8

Chapter 12

[321]

The simplicity of this approach is clear: the sortKey variable is set with $header
.data('sort').key and is then used to compare the rows' sort values with $(a)
.data('book')[sortKey] and $(a).data('book')[sortKey]. The efficiency
is evident in that there is no need to loop through the rows first and call one
of the sortKeys functions each time before calling the sort function. With
this combination of simplicity and efficiency, we've also improved the code's
performance and made it easier to maintain.

Sorting and building rows with JSON
So far in this chapter, we have been moving in the direction of outputting more
and more information from the server into HTML so that our client-side scripts can
remain as lean and efficient as possible. Now let's consider a different scenario, one
in which a whole new set of information is displayed when JavaScript is available.
Increasingly, full-fledged web applications are relying on JavaScript to deliver
content as well as manipulate it once it arrives. In our third table sorting example,
we'll do the same.

We'll start by writing two functions: buildRow(), which builds the HTML for a
single table row, and buildRows(), which uses $.map() to loop through all of the
rows in the dataset, calling buildRow() for each one:

function buildRow(row) {
 var authors = [];
 $.each(row.authors, function(index, auth) {
 authors[index] = auth.first_name + ' ' + auth.last_name;
 });
 var html = '<tr>';
 html += '<td></td>';
 html += '<td>' + row.title + '</td>';
 html += '<td>' + authors.join(', ') + '</td>';
 html += '<td>' + row.published + '</td>';
 html += '<td>$' + row.price + '</td>';
 html += '</tr>';
 return html;
}
function buildRows(rows) {
 var allRows = $.map(rows, buildRow);
 return allRows.join('');
}

Listing 12.9

Advanced DOM Manipulation

[322]

For our purposes, we could get by with a single function to handle both tasks,
but by using two separate functions, we leave open the possibility of building
and inserting a single row at some other point. These functions will get their data
from the response to an Ajax request:

$.getJSON('books.json', function(json) {
 $(document).ready(function() {
 var $table3 = $('#t-3');
 $table3.find('tbody').html(buildRows(json));
 });
});

Listing 12.10

A few things are worth pointing out in this code. First, notice that the functions
are defined outside of $(document).ready(). By waiting for the callback function
of $.getJSON() to call $(document).ready(), we give the part of our code that
doesn't rely on the DOM a head start.

Also worth noting is that we need to treat the authors data differently because
it comes from the server as an array of objects with first_name and last_name
properties, while everything else arrives as a string or a number. We loop through
the array of authors—even though for most rows the array consists of only one—and
concatenate the first name and the last. After the $.each() loop, we join the array
values with a comma and a space to end up with a nicely formatted list of names.

The buildRow() function assumes that the text we're getting from the JSON file is
safe for consumption. Since we're concatenating , <td>, and <tr> tags along
with the text content into a single text string, we need to be sure that the text content
has no unescaped <, >, or & characters. One way to ensure HTML-safe strings is to
process them on the server, converting all instances of < to <, > to >, and &
to &.

Although we are lovingly crafting our table rows by hand with
these two functions, JavaScript template systems such as Mustache
(https://github.com/janl/mustache.js) and Handlebars
(http://handlebarsjs.com/) could do a lot of the string processing
and concatenation for us. Using templates can be especially beneficial as
the size and complexity of a project grows.

Chapter 12

[323]

Modifying the JSON object
The work we're doing with the authors array is fine if we only plan to call the
buildRows() function once. However, since we intend to call it each time the
rows are sorted, it's a good idea to have the author information formatted ahead
of time. While we're at it, we can format the title and the author information for
sorting as well. Unlike the second table, in which each row had sortable data in
the data-book attribute and display data in the table cells, the JSON data we're
retrieving for the third table comes in only one flavor. Still, by writing one more
function, we can include modified values for sorting and displaying before we
ever get to the table building functions:

function prepRows(rows) {
 $.each(rows, function(i, row) {
 var authors = [],
 authorsFormatted = [];
 rows[i].titleFormatted = row.title;
 rows[i].title = row.title.toUpperCase();
 $.each(row.authors, function(j, auth) {
 authors[j] = auth.last_name + ' ' + auth.first_name;
 authorsFormatted[j] = auth.first_name + ' '
 + auth.last_name;
 });
 rows[i].authorsFormatted = authorsFormatted.join(', ');
 rows[i].authors = authors.join(' ').toUpperCase();
 });
 return rows;
}

Listing 12.11

By passing our JSON data through this function, we add two properties to each
row's object: authorsFormatted and titleFormatted. These properties will be
used for the displayed table contents, preserving the original authors and title
properties for sorting. The properties used for sorting are also converted to upper
case to make the sort operation case insensitive.

When we call this prepRows() function immediately inside the $.getJSON()
callback function, we store the returned value of the modified JSON object in the
rows variable and use that one for sorting and building. This means that we also
need to change the buildRow() function to take advantage of the simplicity that
our advance preparation has afforded it:

function buildRow(row) {
 var html = '<tr>';

Advanced DOM Manipulation

[324]

 html += '<td></td>';
 html += '<td>' + row.titleFormatted + '</td>';
 html += '<td>' + row.authorsFormatted + '</td>';
 html += '<td>' + row.published + '</td>';
 html += '<td>$' + row.price + '</td>';
 html += '</tr>';
 return html;
}
$.getJSON('books.json', function(json) {
 $(document).ready(function() {
 var $table3 = $('#t-3');
 var rows = prepRows(json);
 $table3.find('tbody').html(buildRows(rows));
 });
});

Listing 12.12

Rebuilding content on demand
Now that we've prepared the content for both sorting and displaying, we're ready
to once again implement the column heading modification and the sorting routine:

$.getJSON('books.json', function(json) {
 $(document).ready(function() {
 var $table3 = $('#t-3');
 var rows = prepRows(json);
 $table3.find('tbody').html(buildRows(rows));
 var $headers = $table3.find('thead th').slice(1);
 $headers
 .wrapInner('')
 .addClass('sort');
 $headers.on('click', function(event) {
 event.preventDefault();
 var $header = $(this),
 sortKey = $header.data('sort').key,
 sortDirection = 1;
 if ($header.hasClass('sorted-asc')) {
 sortDirection = -1;
 }
 rows.sort(function(a, b) {
 var keyA = a[sortKey];
 var keyB = b[sortKey];
 if (keyA < keyB) return -sortDirection;

Chapter 12

[325]

 if (keyA > keyB) return sortDirection;
 return 0;
 });
 $headers.removeClass('sorted-asc sorted-desc');
 $header.addClass(sortDirection == 1 ? 'sorted-asc'
: 'sorted-desc');
 $table3.children('tbody').html(buildRows(rows));
 });
 });
});

Listing 12.13

The code inside the click handler is nearly identical to the handler for the second
table in Listing 12.8. The one notable difference is that here we insert elements into the
DOM only once per sort. In tables one and two, even after our other optimizations,
we sorted the actual DOM elements and then looped through them one-by-one,
appending each one in turn to arrive at the new order. For example, in Listing 12.8,
table rows are reinserted in a loop like so:

$.each(rows, function(index, row) {
 $table2.children('tbody').append(row);
});

This type of repetitive DOM insertion can be quite costly from a performance
perspective, especially with a large number of rows. Compare that with our latest
approach in Listing 12.13:

$table3.children('tbody').html(buildRows(rows));

The buildRows() function returns a string of HTML representing the rows and
inserts it in one fell swoop, replacing the rows instead of moving the existing
ones around.

Revisiting attribute manipulation
By now, we are very used to getting and setting values that are associated with
DOM elements. We have done this with simple methods like .attr(), .prop(),
and .css(), convenient shorthands such as .addClass(), .css(), and .val(),
and complex bundles of behavior such as .animate(). Even the simple methods,
though, do quite a bit of work for us behind the scenes. We can get yet more utility
out of them if we better understand what they do.

Advanced DOM Manipulation

[326]

Using shorthand element-creation syntax
We often create new elements in our jQuery code by providing an HTML string
to the $() function or to DOM insertion functions. For example, we create a quite
large HTML fragment in Listing 12.9 in order to produce many DOM elements. This
technique is fast and concise. There are circumstances when it is not ideal, however;
we might, for instance, want to escape special characters from text before it is used,
or apply style rules that are browser-dependent. In these cases, we can create the
element and then chain on additional jQuery methods to alter it, as we have done
many times in the past. In addition to this standard technique, the $() function itself
provides an alternative syntax to achieve the same result.

Suppose we want to introduce headings prior to each of the tables in our document.
We can use an .each() loop to iterate over the tables and create an appropriately-
named heading prior to each one:

$(document).ready(function() {
 $('table').each(function(index) {
 var $table = $(this);
 $('<h3></h3>', {
 id: 'table-title-' + index,
 'class': 'table-title',
 text: 'Table ' + (index + 1),
 data: {'index': index},
 click: function(event) {
 event.preventDefault();
 $table.fadeToggle();
 },
 css: {glowColor: '#00ff00'}
 }).insertBefore($table);
 });
});

Listing 12.14

Providing an options object as the second argument to the $() function has the same
effect as first creating the element then passing that object to the .attr() method. As
we know, this method lets us set DOM attributes such as the id value of the element
and its class.

The rest of the options in our example, however, might be a little confusing at first.
We are specifying:

•	 The text inside the element
•	 Custom additional data

Chapter 12

[327]

•	 A click handler
•	 An object containing CSS properties

These are not DOM attributes, yet they get set all the same. The shorthand $()
syntax is able to handle these because it first checks to see if a jQuery method exists
with the given name, and if so, it calls it instead of setting the attribute of that name.

Because jQuery gives methods precedence over attribute names,
we must take care in cases where meaning might be ambiguous; for
example, the size attribute of <input> elements, which cannot be set
this way because a .size() method also exists.

This shorthand $() syntax, along with the .attr() function, can handle even more
features through the use of hooks.

DOM manipulation hooks
Many jQuery methods that get and set properties can be extended for special cases
by defining the appropriate hooks. These hooks are arrays in the jQuery namespace
with names such as $.cssHooks and $.attrHooks. In general, hooks are objects
holding a get method that retrieves the requested value and a set method that
provides a new value.

Hook types include:

Hook type Method altered Example usage
$.attrHooks .attr() Prevents the type attribute of an

element from being changed.
$.cssHooks .css() Provides special handling for

opacity in Internet Explorer.
$.propHooks .prop() Corrects the behavior of the

selected property in Safari.
$.valHooks .val() Allows radio buttons and checkboxes

to report a consistent value across
browsers.

Usually the work performed by these hooks is completely hidden to us, and we can
receive their benefits without thinking much about what is going on. Sometimes,
though, we might want to extend the behavior of jQuery's methods by adding hooks
of our own.

Advanced DOM Manipulation

[328]

Writing a CSS hook
The code in Listing 12.14 injects a CSS property called glowColor onto the page. This
has no effect on the page at the moment, as such a property does not exist. Instead,
we are going to extend $.cssHooks to add support for this newly-invented property.
We will add a soft glow around the text using the CSS3 text-shadow property when
glowColor is set on an element. Since text-shadow is not supported in Internet
Explorer before version 10, we will implement the glow there using Microsoft's
proprietary filter property:

(function($) {
 var div = document.createElement('div');
 $.support.textShadow = div.style.textShadow === '';
 $.support.filter = div.style.filter === '';
 div = null;
 if ($.support.textShadow) {
 $.cssHooks.glowColor = {
 set: function(elem, value) {
 if (value == 'none') {
 elem.style.textShadow = '';
 }
 else {
 elem.style.textShadow = '0 0 2px ' + value;
 }
 }
 };
 }
 else {
 $.cssHooks.glowColor = {
 set: function(elem, value) {
 if (value == 'none') {
 elem.style.filter = '';
 }
 else {
 elem.style.zoom = 1;
 elem.style.filter =
 'progid:DXImageTransform.Microsoft' +
 '.Glow(Strength=2, Color=' + value + ');';
 }
 }
 };
 }
})(jQuery);

Listing 12.15

Chapter 12

[329]

A hook consists of a get method and a set method for an element. To keep our
example as brief and simple as possible, we are only defining set at this time. We
run some feature compatibility tests before defining any hooks. If text-shadow is
supported by the browser, we define a version of the hook that uses that property.
If not, we check for support for DirectX filters and use those if possible. If neither
are available, the hook is not defined at all, so glowColor will do nothing.

With this hook in place, we now have a 2 pixel soft green glow around the
heading text:

While the new hook works as advertised, it lacks many features that we might
expect. Some of these shortcomings include:

•	 The size of the glow is not customizable
•	 The effect is mutually exclusive with other uses of text-shadow or filter
•	 The get callbacks are unimplemented, so we cannot test for the current value

of the property
•	 The property cannot be animated

With enough work and additional code, we could surmount all of these
obstacles. In practice, we do not often have to define our own hooks, however;
skilled plugin developers have created hooks for a wide variety of needs,
including most CSS3 properties.

Finding hooks
The plugin landscape changes rapidly, so new hooks will crop up
all the time, and we cannot hope to list them all here. For a sampling
of what is possible, see Brandon Aaron's collection of CSS hooks at
https://github.com/brandonaaron/jquery-cssHooks.

Summary
In this chapter, we have solved a common problem—sorting a data table—in three
different ways, comparing the benefits of each approach. In doing so, we practiced
the DOM modification techniques we learned earlier and explored the .data()
method for getting and setting data associated with any DOM element or attached
using HTML5 data attributes. We also pulled back the curtain on several DOM
modification routines, learning how to extend them for our own purposes.

Advanced DOM Manipulation

[330]

Further reading
A complete list of DOM manipulation methods is available in Appendix C,
Quick reference, of this book, or in the official jQuery documentation at
http://api.jquery.com/.

Exercises
To complete these exercises, you will need the index.html file for this
chapter, as well as the finished JavaScript code as found in complete.js.
These files can be downloaded from the Packt Publishing website at
http://www.packtpub.com/support.

The challenge exercise may require the use of the official jQuery documentation at
http://api.jquery.com/.

1.	 Modify the key computation for the first table so that titles and authors
are sorted by length rather than alphabetically.

2.	 Use the HTML5 data in the second table to compute the sum of all of the
book prices, and insert this sum into the heading for that column.

3.	 Change the comparator used for the third table so that titles containing
the word jQuery come first when sorted by title.

4.	 Challenge: Implement the get callback for the glowColor CSS hook.

Advanced Ajax
Many web applications require frequent network communication. Using jQuery, our
web pages can exchange information with the server without requiring new pages to
be loaded in the browser. These Ajax techniques are very useful, and include some of
the most sophisticated things we can do with jQuery.

In Chapter 6, Sending Data with Ajax, we learned simple ways to interact with the
server asynchronously. In this more advanced chapter, we will cover:

•	 Error-handling techniques for dealing with network interruptions
•	 The interactions between Ajax and the jQuery deferred object system
•	 Caching and throttling techniques for reducing network traffic
•	 Ways to extend the inner workings of the Ajax system using transports,

prefilters, and data type converters

Implementing progressive enhancement
with Ajax
Throughout this book, we have encountered the concept of progressive
enhancement. To reiterate, this philosophy ensures a positive user experience
for all users by mandating that a working product be put in place first before
additional embellishments are added for users with modern browsers.

Ajax-heavy applications run a particular risk of being unusable without
JavaScript enabled. To combat this, we can initially construct a traditional
client-server page architecture using forms and then change these forms to
be more efficient if JavaScript is there to help us.

Advanced Ajax

[332]

As an example, we'll build a form that searches the jQuery API documentation. Since
a form already exists for this purpose on the jQuery site, we can piggyback on that
form for our own purposes:

<form id="ajax-form" action="http://api.jquery.com/" method="get">
 <fieldset>
 <div class="text">
 <label for="title">Search</label>
 <input type="text" id="title" name="s">
 </div>

 <div class="actions">
 <button type="submit">Request</button>
 </div>
 </fieldset>
</form>

Downloadable code examples
As with many of the HTML, CSS, and JavaScript examples in this book,
the preceding markup is merely a fragment of the complete document.
To experiment with the examples, we can download them from the
Packt Publishing website at http://www.packtpub.com/support.
In addition, the examples can be viewed in an interactive browser at
http://book.learningjquery.com/.

The search form is a normal form element with a text input and a submit button
labeled Request:

When the Request button of this form is clicked, the form submits as
normal; the user's browser is directed to http://api.jquery.com/ and the
results are displayed:

Chapter 13

[333]

When JavaScript is available, we want to load this content into the #response
container of our search page rather than leaving the page. If the data were stored on
the same server as our search form, we could harvest the relevant portion of the page
using the .load() method:

$(document).ready(function() {
 var $ajaxForm = $('#ajax-form'),
 $response = $('#response');

 $ajaxForm.on('submit', function(event) {
 event.preventDefault();
 $response.load('http://api.jquery.com/ #content',
 $ajaxForm.serialize());
 });
});

Listing 13.1

However, since the API site is under a different hostname, the default cross-domain
policy of the browser will not allow this transaction to take place. Instead, we'll use a
service on http://book.learningjquery.com/ that exposes this API data in JSONP
format. This format is cross-domain friendly, so it is perfect for our use.

Advanced Ajax

[334]

Harvesting JSONP data
In Chapter 6, Sending Data with Ajax, we saw that JSONP is simply JSON with an
added layer of server behavior allowing requests to be made from a different site.
When a request is made for the JSONP data, a special query string parameter is
provided that allows the requesting script to harvest the data. This parameter can
be called anything the JSONP server wishes; in the case of the jQuery API site, the
parameter uses the default name, callback.

Because the default callback name is used, the only setup required to make a
JSONP request is to declare to jQuery that jsonp is the data type we are expecting:

$(document).ready(function() {
 var $ajaxForm = $('#ajax-form'),
 $response = $('#response');

 $ajaxForm.on('submit', function(event) {
 event.preventDefault();

 $.ajax({
 url: 'http://book.learningjquery.com/api/',
 dataType: 'jsonp',
 data: {
 title: $('#title').val()
 },
 success: function(data) {
 console.log(data);
 }
 });
 });
});

Listing 13.2

Now we can inspect the JSON data in the console. The data in this case is an array of
objects, each describing a jQuery method:

{
 "url": "http://api.jquery.com/innerWidth/",
 "name": "innerWidth",
 "title": ".innerWidth()",
 "type": "method",
 "signatures": [
 {
 "added": "1.2.6"
 }

Chapter 13

[335]

],
 "desc": "Get the current computed width for the first element in the
set of matched elements, including padding but not border.",
 "longdesc": "<p>This method returns the width of the element,
including left and right padding, in pixels.</p>\n<p>This method
is not applicable to <code>window</code> and <code>document</code>
objects; for these, use <code>.width()</
code> instead.</p>\n<p class=\"image\"><imgsrc=\"/images/0042_04_05.
png\"/></p>",
 "categories": [
 "CSS",
 "Dimensions",
 "Manipulation > Style Properties",
 "Version > Version 1.2.6"
],
 "download": ""
}

All of the data we need to display about a method is included in this object. We
simply need to format it appropriately for display. Creating the HTML for an item is
somewhat involved, so we'll break that step out into its own helper function:

var buildItem = function(item) {
 var title = item.name,
 args = [],
 output = '';

 if (item.type == 'method' || !item.type) {
 if (item.signatures[0].params) {
 $.each(item.signatures[0].params, function(index, val) {
 args.push(val.name);
 });
 }
 title = (/^jQuery|deferred/).test(title) ? title : '.' + title;
 title += '(' + args.join(', ') + ')';
 } else if (item.type == 'selector') {
 title += ' selector';
 }
 output += '<h3>' + title + '</h3>';
 output += '<div>' + item.desc + '</div>';
 output += '';

 return output;
};

Listing 13.3

Advanced Ajax

[336]

The buildItem() function converts the JSON object into an HTML list item. We
have to handle the possibility of multiple method arguments and multiple function
signatures, so we use loops and .join() calls to handle these situations. Once this
is done, we create a link to the main documentation followed by the item description.

Now we have a function that creates the HTML for a single item. When our Ajax call
completes, we'll need to call this function on every returned object and display all of
the results:

$(document).ready(function() {
 var $ajaxForm = $('#ajax-form'),
 $response = $('#response'),
 noresults = 'There were no search results.';

 var response = function(json) {
 var output = '';
 if (json && json.length) {
 output += '';
 $.each(json, function(index, val) {
 output += buildItem(val);
 });
 output += '';
 } else {
 output += noresults;
 }

 $response.html(output);
 };

 $ajaxForm.on('submit', function(event) {
 event.preventDefault();

 $.ajax({
 url: 'http://book.learningjquery.com/api/',
 dataType: 'jsonp',
 data: {
 title: $('#title').val()
 },
 success: response
 });
 });
});

Listing 13.4

Chapter 13

[337]

We've pulled the success handler out of the $.ajax() options so that we can
reference it by its variable name. Even though we often use inline anonymous
functions in these situations for code brevity, there is nothing stopping us from
separating and labeling functions to make our code clearer.

Now that we have a functional success handler, performing a search nicely presents
the results in a column next to our form:

Handling Ajax errors
Introducing any kind of network interaction into an application brings along
some degree of uncertainty. The user's connection could drop in the middle of an
operation or a temporary server issue could interrupt communications. Because of
these reliability concerns, we should always plan for the worst case and prepare for
error scenarios.

The $.ajax() function can take a callback function named error to be called in
these situations. In this callback, we should provide some kind of feedback to the
user indicating that an error has occurred:

$(document).ready(function() {
 var $ajaxForm = $('#ajax-form'),
 $response = $('#response'),
 noresults = 'There were no search results.',
 failed = 'Sorry, but the request could not ' +
 'reach its destination. Try again later.';

 $ajaxForm.on('submit', function(event) {
 event.preventDefault();

 $.ajax({
 url: 'http://book.learningjquery.com/api/',
 dataType: 'jsonp',

Advanced Ajax

[338]

 data: {
 title: $('#title').val()
 },
 success: response,
 error: function() {
 $response.html(failed);
 }
 });
 });
});

Listing 13.5

The error callback can be triggered for a number of reasons. Among these are:

•	 The server returned an error status code, such as 403 Forbidden, 404 Not
Found, or 500 Internal Server Error.

•	 The server returned a redirection status code, such as 301 Moved
Permanently. An exception is 304 Not Modified, which does not trigger
an error because the browser can handle this condition correctly.

•	 The data returned by the server could not be parsed as specified (for
example, it is not valid JSON data when dataType is json).

•	 The .abort() method is called on the XMLHttpRequest object.

Detecting and responding to these conditions is important in providing the best
possible user experience. We saw in Chapter 6, Sending Data with Ajax, that the
error code, if any, is provided to us in the .status property of the jqXHR object
that is passed to the error callback. We can use the value of jqXHR.status to react
differently to different kinds of errors if that is appropriate.

However, the server errors are only useful when they are actually observed. Some
errors are immediately detected, but other conditions can cause a long delay between
the request and eventual error response.

When a reliable server timeout mechanism is not available, we can enforce our
own client-side request timeout. By providing a time in milliseconds to the timeout
option, we tell $.ajax() to trigger .abort() on its own if that amount of time
elapses before a response is received:

$.ajax({
 url: 'http://book.learningjquery.com/api/',
 dataType: 'jsonp',
 data: {
 title: $('#title').val()
 },

Chapter 13

[339]

 timeout: 15000,
 success: response,
 error: function() {
 $response.html(failed);
 }
});

Listing 13.6

With the timeout in place, we can be assured that within 15 seconds either the data
will be loaded or the user will receive an error message.

Using the jqXHR object
When an Ajax request is made, jQuery determines the best mechanism available for
retrieving the data. This transport could be the standard XMLHttpRequest object, the
Microsoft ActiveX XMLHTTP object or a <script> tag.

Because the transport used can vary from request to request, we need a common
interface in order to interact with the communication. The jqXHR object provides this
interface for us: it is a wrapper for the XMLHttpRequest object when that transport
is used, and in other cases, it simulates XMLHttpRequest as best it can. Among the
properties and methods it exposes are:

•	 .responseText or .responseXML containing the returned data
•	 .status and .statusText containing a status code and description
•	 .setRequestHeader() to manipulate the HTTP headers sent with the

request
•	 .abort() to prematurely halt the transaction

This jqXHR object is returned from all the jQuery's Ajax methods, so we can store the
result if we need access to any of these properties or methods.

Ajax promises
Perhaps a more important aspect of jqXHR than the XMLHttpRequest interface,
however, is that it also acts as a promise. In Chapter 11, Advanced Effects, we learned
about deferred objects, which allow us to set callbacks to be fired when certain
operations complete. An Ajax call is an example of such operation, and the jqXHR
object provides the methods we expect from a deferred object's promise.

Using the promise's methods, we can rewrite our $.ajax() call to replace the
success and error callbacks with an alternate syntax:

Advanced Ajax

[340]

$.ajax({
 url: 'http://book.learningjquery.com/api/',
 dataType: 'jsonp',
 data: {
 title: $('#title').val()
 },
 timeout: 15000
})
.done(response)
.fail(function() {
 $response.html(failed);
});

Listing 13.7

At first glance, calling .done() and .fail() doesn't seem any more useful than
the callback syntax we used previously. However, the promise methods offer
several advantages. First, the methods can be called multiple times to add more
than one handler if desired. Second, if we store the result of the $.ajax() call in
a variable, we can attach the handlers later if that makes our code structure more
readable. Third, the handlers will be invoked immediately if the Ajax operation
is already complete when they are attached. Finally, we should not discount the
readability advantage of using a syntax that is consistent with other parts of the
jQuery library.

As another example of using the promise methods, we can add a loading indicator
when a request is made. Since we want to hide the indicator when the request
completes successfully or otherwise, the .always() method will come in handy:

$ajaxForm.on('submit', function(event) {
 event.preventDefault();

 $response.addClass('loading').empty();

 $.ajax({
 url: 'http://book.learningjquery.com/api/',
 dataType: 'jsonp',
 data: {
 title: $('#title').val()
 },
 timeout: 15000
 })
 .done(response)
 .fail(function() {
 $response.html(failed);
 })

Chapter 13

[341]

 .always(function() {
 $response.removeClass('loading');
 });
});

Listing 13.8

Before we issue the $.ajax() call, we add the loading class to the response
container. Once the load is complete, we remove it again. In this way, we have
further enhanced the user experience.

To really get a grasp of how the promise behavior can help us, though, we need to
look at what we can do if we store the result of our $.ajax() call in a variable for
later use.

Caching responses
If we need to use the same piece of data repeatedly, it is wasteful to make an Ajax
request each time. To prevent this, we can cache the returned data in a variable.
When we need to use some data, we can check to see if the data is already in the
cache. If so, we act on this data. If not, we need to make an Ajax request, and in its
.done() handler, we store the data in the cache and act on the returned data.

This is a lot of steps. If we exploit the properties of promises, it can be quite simple:

var api = {};

$ajaxForm.on('submit', function(event) {
 event.preventDefault();

 $response.empty();

 var search = $('#title').val();
 if (search == '') {
 return;
 }

 $response.addClass('loading');

 if (!api[search]) {
 api[search] = $.ajax({
 url: 'http://book.learningjquery.com/api/',
 dataType: 'jsonp',
 data: {
 title: search
 },

Advanced Ajax

[342]

 timeout: 15000
 });
 }
 api[search].done(response).fail(function() {
 $response.html(failed);
 }).always(function() {
 $response.removeClass('loading');
 });
});

Listing 13.9

We've introduced a new variable named api to hold the jqXHR objects we create.
This variable is an object with keys corresponding to the searches being performed.
When the form is submitted, we look to see if there is already a jqXHR object stored
for that key. If not, we do the query as before, storing the resulting object inside api.

The .done(), .fail(), and .always() handlers are then attached to the jqXHR
object. Note that this happens regardless of whether an Ajax request was made.
There are two possible situations to consider here.

First, the Ajax request might be sent if it hasn't before. This is just like the previous
behavior: the request is issued and we use the promise methods to attach handlers
to the jqXHR object. When a response comes back from the server, the appropriate
callbacks are fired and the result is printed to the screen.

On the other hand, if we have performed this search in the past, the jqXHR object
is already stored in api. In this case, no new search is performed, but we still call
the promise methods on the stored object. This attaches new handlers to the object,
but since the deferred object has already been resolved, the relevant handlers are
fired immediately.

The jQuery deferred object system handles all the hard work for us. With a couple of
lines of code, we have eliminated duplicated network requests from the application.

Throttling Ajax requests
An increasingly common feature of searches is to display a dynamic list of results
as the user is typing. We can emulate this "live search" feature for our jQuery API
search by binding a handler to the keyup event:

$('#title').on('keyup', function(event) {
 $ajaxForm.triggerHandler('submit');
});

Listing 13.10

Chapter 13

[343]

Here, we simply trigger the form's submit handler whenever the user types
something in the Search field. This could have the effect of sending many requests
across the network in rapid succession, depending on the speed at which the user
types. This behavior could bog down JavaScript's performance; it could clog the
network connection, and the server might not be able to handle that kind of demand.

We're already limiting the number of requests with the request caching that we've just
put in place. We can further ease the burden on the server, however, by throttling the
requests. In Chapter 10, Advanced Events, we introduced the concept of throttling when
we created a special throttledScroll event to reduce the number of times the native
scroll event is fired. In this case, we want to make a similar reduction in activity; this
time with the keyup event:

var searchTimeout,
 searchDelay = 300;

$('#title').on('keyup', function(event) {
 clearTimeout(searchTimeout);
 searchTimeout = setTimeout(function() {
 $ajaxForm.triggerHandler('submit');
 }, searchDelay);
});

Listing 13.11

Our technique here, sometimes referred to as debouncing, is a bit different from the
one we used in Chapter 10, Advanced Events. Whereas in that example we needed our
scroll handler to take effect multiple times as scrolling continued; here we only
need the keyup behavior to happen one time after typing has ceased. To do this, we
keep track of a JavaScript timer that starts whenever the user presses a key. Each
keystroke resets that timer, so only once the user stops typing for the designated
amount of time (300 milliseconds) does the submit handler get triggered and the
Ajax request performed.

Extending Ajax capabilities
The jQuery Ajax framework is powerful, as we've seen, but even so there are times
when we might want to change the way it behaves. Unsurprisingly, it offers multiple
hooks that can be used by plugins to give the framework brand new capabilities.

Advanced Ajax

[344]

Data type converters
In Chapter 6, Sending Data with Ajax, we saw that the $.ajaxSetup() function allows
us to change the defaults used by $.ajax(), thus potentially affecting many Ajax
operations with a single statement. This same function can also be used to add to the
range of data types that $.ajax() can request and interpret.

As an example, we can add a converter that understands the YAML data
format. YAML (http://www.yaml.org/) is a popular data representation with
implementations in many programming languages. In our case, script needs
to interact with an alternative format such as this; jQuery allows us to build
compatibility for them it into the native Ajax functions.

A simple YAML file containing jQuery method categories and subcategories looks
like this:

Ajax:
- Global Ajax Event Handlers
- Helper Functions
- Low-Level Interface
- Shorthand Methods
Effects:
- Basics
- Custom
- Fading
- Sliding

We can wrap jQuery around an existing YAML parser such as Diogo Costa's
(http://code.google.com/p/javascript-yaml-parser/) to make $.ajax()
speak this language as well.

Defining a new Ajax data type involves passing three properties to $.ajaxSetup():
accepts, contents, and converters. The accepts property adds headers to be
sent to the server, declaring to the server that particular MIME types are understood
by our script. The contents property handles the other side of the transaction,
providing a regular expression that is matched against the response MIME type to
attempt to autodetect the data type from this metadata. Finally, converters contains
the actual functions that parse the returned data:

$.ajaxSetup({
 accepts: {
 yaml: 'application/x-yaml, text/yaml'
 },
 contents: {
 yaml: /yaml/
 },

Chapter 13

[345]

 converters: {
 'text yaml': function(textValue) {
 console.log(textValue);
 return '';
 }
 }
});

$.ajax({
 url: 'categories.yml',
 dataType: 'yaml'
});

Listing 13.12

The partial implementation in Listing 13.12 uses $.ajax() to read in the YAML file,
and declares its data type as yaml. Because the incoming data is parsed as text,
jQuery needs a way to convert one data type to the other. The converters key of
'text yaml' tells jQuery that this conversion function will accept data that has been
received as text and reinterpret it as yaml.

Inside the conversion function, we are simply logging out the contents of the text to
ensure that the function is called correctly. To actually perform the conversion, we
need to load the third-party YAML parsing library (yaml.js) and call its methods:

$.ajaxSetup({
 accepts: {
 yaml: 'application/x-yaml, text/yaml'
 },
 contents: {
 yaml: /yaml/
 },
 converters: {
 'text yaml': function(textValue) {
 var result = YAML.eval(textValue);
 var errors = YAML.getErrors();
 if (errors.length) {
 throw errors;
 }
 return result;
 }
 }
});

$.getScript('yaml.js').done(function() {

Advanced Ajax

[346]

 $.ajax({
 url: 'categories.yml',
 dataType: 'yaml'
 }).done(function (data) {
 var cats = '';
 $.each(data, function(category, subcategories) {
 cats += '' + category + '';
 });

 $(document).ready(function() {
 var $cats = $('#categories').removeClass('hide');
 $('', {
 html: cats
 }).appendTo($cats);
 });
 });
});

Listing 13.13

The yaml.js file includes an object named YAML with .eval() and .getErrors()
methods. We use these methods to parse the incoming text and return the result,
which is a JavaScript object containing all of the categories.yml file's data in an
easily traversable structure. Since the file we're loading contains categories of jQuery
methods, we use the parsed structure to print out the top-level categories and later
will allow the user to filter their search results by clicking on the categories:

Chapter 13

[347]

Note that when we insert the category names, we need to wrap that portion of the
code in a $(document).ready() call. The Ajax operations may run immediately,
without access to the DOM, but once we have a result from them, we need to
wait until the DOM is available before proceeding. Structuring our code in this
way allows the work to be performed as early as possible, improving the user's
perception of the page's loading time.

Next, we need to handle clicks on the category links:

$(document).on('click', '#categories a', function(event) {
 event.preventDefault();
 $(this).parent().toggleClass('active')
 .siblings('.active').removeClass('active');
 $('#ajax-form').triggerHandler('submit');
});

Listing 13.14

By binding our click handler to document and relying on event delegation, we
avoid some costly repetition and we also can run the code right away, without
concerning ourselves with waiting for the Ajax call to complete.

Inside the handler, we make sure the right category is highlighted and then trigger
the submit handler on the form. We haven't yet made the form understand our
category list, but the highlighting works already:

Finally, we need to update the form's submit handler to respect the active category if
there is one:

$ajaxForm.on('submit', function(event) {
 event.preventDefault();

 $response.empty();

Advanced Ajax

[348]

 var title = $('#title').val(),
 category = $('#categories').find('li.active').text(),
 search = category + '-' + title;
 if (search == '-') {
 return;
 }

 $response.addClass('loading');

 if (!api[search]) {
 api[search] = $.ajax({
 url: 'http://book.learningjquery.com/api/',
 dataType: 'jsonp',
 data: {
 title: title,
 category: category
 },
 timeout: 15000
 });
 }
 api[search].done(response).fail(function() {
 $response.html(failed);
 }).always(function() {
 $response.removeClass('loading');
 });
});

$('#title').on('keyup', function(event) {
 clearTimeout(searchTimeout);
 searchTimeout = setTimeout(function() {
 $ajaxForm.triggerHandler('submit');
 }, searchDelay);
});

Listing 13.15

Instead of simply fetching the value of the search field, now we retrieve the text of
the active category as well, passing both pieces of information on through the Ajax
call. We also change the search variable to contain both the category and the title.
This way, our cache of search results correctly distinguishes searches on the same
text in different categories.

We can now view all methods in a category by clicking on that category's name or
use the category list to filter the results we obtain by typing in the search field.

Chapter 13

[349]

Anytime we have the need to support new data types not already handled by
jQuery, we can define them in a similar fashion to this YAML example. We can thus
shape jQuery's Ajax library to our specific project's needs.

Adding Ajax prefilters
The $.ajaxPrefilter() function can add prefilters, which are callback functions
that allow us to manipulate requests before they are sent. Prefilters are invoked
before $.ajax() changes or uses any of its options, so they are a good place to
change the options or act on new custom options.

Prefilters can also manipulate the data type of the request by simply returning the
name of the new data type to use. In our YAML example, we specified yaml as the
data type because we didn't want to rely on the server supplying the correct MIME
type for the response. We could, though, provide a prefilter that ensures the data
type is yaml if the corresponding file extension (.yml) is in the URL we request:

$.ajaxPrefilter(function(options) {
 if (/\.yml$/.test(options.url)) {
 return 'yaml';
 }
});

Listing 13.16

A short regular expression tests whether .yml is at the end of options.url and, if
so, defines the data type as yaml. With this prefilter in place, our Ajax call to fetch the
YAML document no longer needs to explicitly define its data type.

Advanced Ajax

[350]

Defining alternate transports
We've seen that jQuery uses XMLHttpRequest, ActiveX, or <script> tags as
appropriate to handle Ajax transactions. If we wish, we can further extend this
arsenal with new transports.

A transport is an object that handles the actual transmission of Ajax data. New
transports are defined as factory functions that return an object with the .send()
and .abort() methods. The .send() method is responsible for issuing the request,
handling the response and sending the data back through a callback function. The
.abort() method should stop the request immediately.

A custom transport can, for example, use elements to fetch external data. This
allows image loading to be handled in the same way as other Ajax requests, which
can help make our code more internally consistent. The JavaScript required to create
such a transport is a little involved, so we will look at the finished product and then
discuss its components:

$.ajaxTransport('img', function(settings) {
 var $img, img, prop;
 return {
 send: function(headers, complete) {
 function callback(success) {
 if (success) {
 complete(200, 'OK', {img: img});
 } else {
 $img.remove();
 complete(404, 'Not Found');
 }
 }

 $img = $('', {
 src: settings.url
 });
 img = $img[0];
 prop = typeof img.naturalWidth === 'undefined' ? 'width' :
 'naturalWidth';
 if (img.complete) {
 callback(!!img[prop]);
 } else {
 $img.on('load error', function(event) {
 callback(event.type == 'load');
 });
 }

Chapter 13

[351]

 },
 abort: function() {
 if ($img) {
 $img.remove();
 }
 }
 };
});

Listing 13.17

When defining a transport, we first pass a data type name into $.ajaxTransport().
This tells jQuery when to use our transport rather than the built-in mechanisms.
Then, we provide a function that returns the new transport object containing the
appropriate .send() and .abort() methods.

For our img transport, the .send() method needs to create a new
element, which we give a src attribute. The value of this attribute comes
from settings.url, which jQuery passes along from the $.ajax() call. The
browser will react to the creation of this element by loading the referenced
image file, so we just need to detect when this load has completed and fire the
completion callback.

Correctly detecting the completion of an image load is tricky if we want to handle a
wide variety of browsers and versions. In some browsers, we can simply attach load
and error event handlers to the image element. In others, though, when the image is
cached, load and error are not triggered as expected.

See Lucas Smith's blog article, Is My Image Loaded? at http://www.
verious.com/tool/is-my-image-loaded/ for more details about
browser inconsistencies regarding image loading.

Our code in Listing 13.17 handles these unusual browser behaviors by examining
the values of the .complete, .width, and .naturalWidth properties as appropriate
for each browser. Once we have detected that the image load has either successfully
completed or failed, we call the callback() function, which in turn calls the
complete() function that was passed to .send(). This allows $.ajax() to react to
the image load.

Handling aborted loads is much simpler. Our .abort() method simply needs to
clean up after .send() by removing the element if it has been created.

Advanced Ajax

[352]

Next, we need to write the $.ajax() call that uses our new transport:

$(document).ready(function() {
 $.ajax({
 url: 'missing.jpg',
 dataType: 'img'
 }).done(function(img) {
 $('<div></div>', {
 id: 'picture',
 html: img
 }).appendTo('body');
 }).fail(function(xhr, textStatus, msg) {
 $('<div></div>', {
 id: 'picture',
 html: textStatus + ': ' + msg
 }).appendTo('body');
 });
});

Listing 13.18

To use a particular transport, $.ajax() needs to be given a corresponding dataType
value. Then, the success and failure handlers need to take into account the kind of
data that is passed to them. Our img transport returns an DOM element when
it is successful, so our .done() handler uses this element as the HTML contents of a
newly created <div> element that is inserted into the document.

However, in this case, the specified image file (missing.jpg) does not actually exist.
We take into account such a possibility with an appropriate .fail() handler, which
inserts an error message into the <div> where the image would otherwise go:

We can correct this error by referencing an image that does exist:

$(document).ready(function() {
 $.ajax({

Chapter 13

[353]

 url: 'sunset.jpg',
 dataType: 'img'
 }).done(function(img) {
 $('<div></div>', {
 id: 'picture',
 html: img
 }).appendTo('body');
 }).fail(function(xhr, textStatus, msg) {
 $('<div></div>', {
 id: 'picture',
 html: textStatus + ': ' + msg
 }).appendTo('body');
 });
});

Listing 13.19

Now our transport is able to successfully load the image and we see this result on
the page:

Creating a new transport is an unusual need, but even in this case, jQuery's Ajax
functionality can be bent to our needs.

Summary
In this final chapter, we have taken an in-depth look at jQuery's Ajax framework.
We can now craft a seamless user experience on a single page, fetching external
resources when needed with proper attention to error handling, caching, and
throttling. We explored details of the inner operations of the Ajax framework,
including promises, transports, prefilters, and converters. We also learned how to
extend these mechanisms to serve the needs of our scripts.

Advanced Ajax

[354]

Further reading
A complete list of Ajax methods is available in Appendix C, Quick Reference, of this
book or in the official jQuery documentation at http://api.jquery.com/.

Exercises
To complete these exercises, you will need the index.html file for this
chapter, as well as the finished JavaScript code as found in complete.js.
These files can be downloaded from the Packt Publishing website at
http://www.packtpub.com/support.

The challenge exercises may require the use of the official jQuery documentation
at http://api.jquery.com/:

1.	 Alter the buildItem() function so that it includes the long description
of each jQuery method it displays.

2.	 Here's a challenge for you. Add a form to the page that points to a
Flickr public photo search (http://www.flickr.com/search/) and
make sure it has <input name="q"> and a submit button. Use progressive
enhancement to retrieve the photos from Flickr's JSONP feed service at
http://api.flickr.com/services/feeds/photos_public.gne instead
and insert them into the content area of the page. When sending data to
this service, use tags instead of q and set format to json. Also note that
rather than callback, the service expects the JSONP callback name to be
jsoncallback.

3.	 Here's another challenge for you. Add error handling for the Flickr
request in case it results in parsererror. Test it by setting the JSONP
callback name back to callback.

JavaScript Closures
Throughout this book, we have seen many jQuery methods that take functions as
parameters. Our examples have thus created, called, and passed around functions
time and again. While usually we can do this with only a cursory understanding of
the inner JavaScript mechanics at work, at times side effects of our actions can seem
strange if we do not have knowledge of the language's features. In this appendix, we
will cover:

•	 JavaScript's ability to define functions within other functions
•	 Ways in which function objects can be passed around
•	 The scope of variables defined inside and outside functions
•	 Common problems caused by variable scoping and closures
•	 How jQuery constructs interact with function definitions
•	 Memory issues that can be caused by the interactions between functions

Creating inner functions
JavaScript is fortunate to number itself among the programming languages that
support inner function declarations. Many traditional programming languages, such
as C, collect all functions in a single top-level scope. Languages with inner functions,
on the other hand, allow us to gather small utility functions where they are needed,
avoiding namespace pollution.

An inner function is simply a function that is defined inside of another function.
For example:

function outerFn() {
 function innerFn() {
 }
}

Listing A.1

JavaScript Closures

[356]

Here, innerFn() is an inner function, contained within the scope of outerFn(). This
means that a call to innerFn() is valid within outerFn(), but not outside of it. The
following code results in a JavaScript error:

function outerFn() {
 console.log('Outer function');
 function innerFn() {
 console.log('Inner Function');
 }
}
console.log('innerFn():');
innerFn();

Listing A.2

We can successfully run the code, though, by calling innerFn() from within
outerFn():

function outerFn() {
 console.log('Outer function');
 function innerFn() {
 console.log('Inner function');
 }
 innerFn();
}
console.log('outerFn():');
outerFn();

Listing A.3

This results in the following output:

outerFn():
Outer function
Inner function

This technique is especially handy for small, single-purpose functions. For example,
algorithms that are recursive, but have a nonrecursive API wrapper, are often best
expressed with an inner function as a helper.

Calling inner functions from elsewhere
The plot thickens when function references come into play. Some languages, such
as Pascal, allow the use of inner functions for the purpose of code hiding only; those
functions are forever entombed within their parent functions. JavaScript, on the other
hand, allows us to pass functions around just as if they were any other kind of data.
This means inner functions can escape their captors.

Appendix A

[357]

The escape route can wind in many different directions. For example, suppose the
function is assigned to a global variable:

var globalVar;

function outerFn() {
 console.log('Outer function');
 function innerFn() {
 console.log('Inner function');
 }
 globalVar = innerFn;
}
console.log('outerFn():');
outerFn();
console.log('globalVar():');
globalVar();

Listing A.4

The call to outerFn() after the function definition modifies the global variable
globalVar. It is now a reference to innerFn(). This means that the later call to
globalVar() operates just as an inner call to innerFn() would, and the print
statements are reached:

outerFn():
Outer function
globalVar():
Inner function

Note that a call to innerFn() from outside of outerFn() still results in an error.
Though the function has escaped by way of the reference stored in the global
variable, the function name is still trapped inside the scope of outerFn().

A function reference can also find its way out of a parent function through a
return value:

function outerFn() {
 console.log('Outer function');
 function innerFn() {
 console.log('Inner function');
 }
 return innerFn;
}
console.log('var fnRef = outerFn():');

JavaScript Closures

[358]

var fnRef = outerFn();
console.log('fnRef():');
fnRef();

Listing A.5

Here, there is no global variable modified inside outerFn(). Instead, outerFn()
returns a reference to innerFn(). The call to outerFn() results in this reference,
which is stored and called itself in turn, triggering the message again:

var fnRef = outerFn():
Outer function
fnRef():
Inner function

The fact that inner functions can be invoked through a reference even after the
function has gone out of scope means that JavaScript needs to keep referenced
functions available as long as they could possibly be called. Each variable that
refers to the function is tracked by the JavaScript runtime, and once the last has
gone away, the JavaScript garbage collector comes along and frees up that bit
of memory.

Understanding variable scope
Inner functions can of course have their own variables, which are restricted
in scope to the function itself:

function outerFn() {
 function innerFn() {
 var innerVar = 0;
 innerVar++;
 console.log('innerVar = ' + innerVar);
 }
 return innerFn;
}
var fnRef = outerFn();
fnRef();
fnRef();
var fnRef2 = outerFn();
fnRef2();
fnRef2();

Listing A.6

Appendix A

[359]

Each time this inner function is called, through a reference or otherwise, a new
variable innerVar is created, incremented, and displayed:

innerVar = 1
innerVar = 1
innerVar = 1
innerVar = 1

Inner functions can reference global variables in the same way as any other
function can:

var globalVar = 0;
function outerFn() {
 function innerFn() {
 globalVar++;
 console.log('globalVar = ' + globalVar);
 }
 return innerFn;
}
var fnRef = outerFn();
fnRef();
fnRef();
var fnRef2 = outerFn();
fnRef2();
fnRef2();

Listing A.7

Now our function will consistently increment the variable with each call:

globalVar = 1
globalVar = 2
globalVar = 3
globalVar = 4

But what if the variable is local to the parent function? Since the inner function
inherits its parent's scope, this variable can be referenced too:

function outerFn() {
 var outerVar = 0;
 function innerFn() {
 outerVar++;
 console.log('outerVar = ' + outerVar);
 }
 return innerFn;
}

JavaScript Closures

[360]

var fnRef = outerFn();
fnRef();
fnRef();
var fnRef2 = outerFn();
fnRef2();
fnRef2();

Listing A.8

Now our function calls have more interesting behavior:

outerVar = 1
outerVar = 2
outerVar = 1
outerVar = 2

This time we get a mix of the two earlier effects. The calls to innerFn() through each
reference increment outerVar independently. Note that the second call to outerFn()
is not resetting the value of outerVar, but rather creating a new instance of outerVar
bound to the scope of the second function call. The upshot of this is that after the
previous calls, another call to fnRef() will print the value 3, and a subsequent call to
fnRef2() will also print 3. The two counters are completely separate.

When a reference to an inner function finds its way outside of the scope in which
the function was defined, this creates a closure on that function. We call variables
that are neither parameters nor local to the inner function's free variables, and the
environment of the outer function call closes them. Essentially, the fact that the
function refers to a local variable in the outer function grants the variable a stay of
execution. The memory is not released when the function completes, as it is still
needed by the closure.

Handling interactions between closures
When more than one inner function exists, closures can have effects that are not as
easy to anticipate. Suppose we pair our incrementing function with another function,
this time incrementing by two:

function outerFn() {
 var outerVar = 0;
 function innerFn1() {
 outerVar++;
 console.log('(1) outerVar = ' + outerVar);
 }
 function innerFn2() {
 outerVar += 2;

Appendix A

[361]

 console.log('(2) outerVar = ' + outerVar);
 }
 return {'fn1': innerFn1, 'fn2': innerFn2};
}
var fnRef = outerFn();
fnRef.fn1();
fnRef.fn2();
fnRef.fn1();
var fnRef2 = outerFn();
fnRef2.fn1();
fnRef2.fn2();
fnRef2.fn1();

Listing A.9

We return references to both functions, using an object to do so (this illustrates
another way in which a reference to an inner function can escape its parent).
Both functions are called through the references:

(1) outerVar = 1
(2) outerVar = 3
(1) outerVar = 4
(1) outerVar = 1
(2) outerVar = 3
(1) outerVar = 4

The two inner functions refer to the same local variable, so they share the same
closing environment. When innerFn1() increments outerVar by 1, this sets the new
starting value of outerVar when innerFn2() is called and vice versa. Once again,
we see that any subsequent call to outerFn() creates new instances of these closures
with a new closing environment to match. Those familiar with object-oriented
programming will note that we have in essence created a new object, with the free
variables acting as instance variables and the closures acting as instance methods.
The variables are also private, as they cannot be directly referenced outside of their
enclosing scope, enabling true object-oriented data privacy.

Creating closures in jQuery
The methods we have seen throughout the jQuery library often take at least one
function as a parameter. For convenience, we often use anonymous functions so
that we can define the function behavior right when it is needed. This means that
functions are rarely in the top-level namespace; they are usually inner functions,
which means they can quite easily create closures.

JavaScript Closures

[362]

Passing arguments to $(document).ready()
Nearly all the code we write using jQuery ends up getting placed inside a function
passed as an argument to $(document).ready(). We do this to guarantee that
the DOM has loaded before the code is run, which is usually a requirement for
interesting jQuery code. When a function is created and passed to .ready(), a
reference to the function is stored as part of the global jQuery object. This
reference is then called at a later time when the DOM is ready.

We usually place the $(document).ready() construct at the top level of the code
structure, so this function is not really part of a closure. However, since our code is
usually written inside this function, everything else is an inner function:

$(document).ready(function() {
 var readyVar = 0;
 function innerFn() {
 readyVar++;
 console.log('readyVar = ' + readyVar);
 }
 innerFn();
 innerFn();
});

Listing A.10

This looks like many of our earlier examples, except that in this case the outer
function is the callback passed to $(document).ready(). Since innerFn() is
defined inside of it and refers to readyVar which is in the scope of the callback
function, innerFn() and its environment create a closure. We can see this by
noting that the value of readyVar persists between calls to the function:

readyVar = 1
readyVar = 2

The fact that most jQuery code is inside a function body is useful, because this can
protect against some namespace collisions. For example, it is this feature that allows
us to use jQuery.noConflict() to free up the $ shortcut for other libraries while
still being able to define the shortcut locally for use within our .ready() handler.

Assigning event handlers
The $(document).ready() construct usually wraps the rest of our code,
including the assignment of event handlers. Since handlers are functions,
they become inner functions. Since those inner functions are stored and
called later, they can create closures.

Appendix A

[363]

A simple click handler can illustrate this:

$(document).ready(function() {
 var counter = 0;
 $('#button-1').click(function(event) {
 event.preventDefault();
 counter++;
 console.log('counter = ' + counter);
 });
});

Listing A.11

Because the variable counter is declared inside of the .ready() handler, it is
only available to the jQuery code inside this block and not to outside code. It can
be referenced by the code in the click handler, however, which increments and
displays the variable's value. Because a closure is created, the same instance of
counter is referenced each time the link is clicked. This means that the messages
display a continuously incrementing set of values, not just 1 each time:

counter = 1
counter = 2
counter = 3

Event handlers can share their closing environments, just like other functions can:

$(document).ready(function() {
 var counter = 0;
 $('#button-1').click(function(event) {
 event.preventDefault();
 counter++;
 console.log('counter = ' + counter);
 });
 $('#button-2').click(function(event) {
 event.preventDefault();
 counter--;
 console.log('counter = ' + counter);
 });
});

Listing A.12

JavaScript Closures

[364]

Since both the functions reference the same counter variable, the incrementing
and decrementing operations of the two links affect the same value rather than
being independent:

counter = 1
counter = 2
counter = 1
counter = 0

Binding handlers in loops
Looping constructs can pose interesting challenges due to the way closures operate.
Consider a scenario in which we create elements in a loop and bind behaviors to
those elements based on the loop's index:

$(document).ready(function() {
 for (var i = 0; i < 5; i++) {
 $('<div>Print ' + i + '</div>')
 .click(function() {
 console.log(i);
 }).insertBefore('#results');
 }
});

Listing A.13

The variable i is set to the numbers 0 through 4 in turn and a new <div> element is
created each time. The elements each have a unique text label as we would expect:

Print 0
Print 1
Print 2
Print 3
Print 4

We might anticipate that clicking on an item would cause the corresponding number
to be logged to the console. However, the click handlers always print the number 5
instead. Each click handler's reference to i is the same, even though the value of i
is different at the time the handler is bound. The variable is the same one and so the
final value of i (5) is fetched when the click actually happens.

Appendix A

[365]

We can get around this problem in a number of ways. First, we could replace the for
loop with the jQuery $.each() function:

$(document).ready(function() {
 $.each([0, 1, 2, 3, 4], function(index, value) {
 $('<div>Print ' + value + '</div>')
 .click(function() {
 console.log(value);
 }).insertBefore('#results');
 });
});

Listing A.14

Function parameters are like variables defined within functions: the variable value is
actually a different variable each time through the loop. Because of this, each click
handler is pointing to a different value variable, which in turn means that click
handlers on the elements print numbers corresponding to the element labels.

We can also exploit the same properties of function parameters to solve this problem
without calling $.each(). Inside the for loop, we can define and execute a new
function that takes care of separating the values of i apart into distinct variables:

$(document).ready(function() {
 for (var i = 0; i < 5; i++) {
 (function(value) {
 $('<div>Print ' + value + '</div>')
 .click(function() {
 console.log(value);
 }).insertBefore('#results');
 })(i);
 }
});

Listing A.15

In Chapter 8, Developing Plugins, we were introduced to this construct, called an
immediately invoked function expression (IIFE), as a means of redefining the $
alias for the jQuery object after $.noConflict() has been called. Here, we use it to
pass in i as a parameter named value that is distinct for each click handler.

JavaScript Closures

[366]

Finally, we can use a feature of the jQuery event system to solve the problem a
different way. The .on() method accepts an object parameter that is passed
along to the event handler as event.data:

$(document).ready(function() {
 for (var i = 0; i < 5; i++) {
 $('<div>Print ' + i + '</div>')
 .on('click', {value: i}, function(event) {
 console.log(event.data.value);
 }).insertBefore('#results');
 }
});

Listing A.16

In this case, i is provided as data to the .on() method and can be retrieved inside
the handler by inspecting event.data.value. Once again, since event is a function
parameter, it is a unique entity each time a handler is invoked.

Giving names to functions
These examples have used anonymous functions, as has been our custom in jQuery
code. This makes no difference in the construction of closures; closures can come
from named or anonymous functions. For example, we can write an anonymous
function to report the index of an <input> button within a jQuery object:

$(document).ready(function() {
 $('input').each(function(index) {
 $(this).click(function(event) {
 event.preventDefault();
 console.log('index = ' + index);
 });
 });
});

Listing A.17

Because the innermost function is defined within the .each() callback, this code
actually creates as many functions as there are buttons. Each of these functions is
attached as a click handler to one of the buttons. The functions have index in their
closing environment, since it is a parameter to the .each() callback. This behaves
the same way as if the click handler were written as a named function:

$(document).ready(function() {
 $('input').each(function(index) {
 function clickHandler(event) {

Appendix A

[367]

 event.preventDefault();
 console.log('index = ' + index);
 }

 $(this).click(clickHandler);
 });
});

Listing A.18

The version with the anonymous function is just a bit shorter. The position of this
named function is still relevant. The following code will trigger a JavaScript error
whenever a button is clicked:

$(document).ready(function() {
 function clickHandler(event) {
 event.preventDefault();
 console.log('index = ' + index);
 }

 $('input').each(function(index) {
 $(this).click(clickHandler);
 });
});

Listing A.19

The error is triggered because index is not found in the closing environment of
clickHandler(). It remains a free variable, and so is undefined in this context.

Handling memory-leak hazards
JavaScript manages its memory using a technique known as garbage collection.
This is in contrast to low-level languages such as C, which require programmers to
explicitly reserve blocks of memory and free them when they are no longer being
used. Other languages such as Objective-C assist the programmer by implementing
a reference-counting system, which allows the user to note how many pieces of the
program are using a particular piece of memory so it can be cleaned up when no
longer used. JavaScript is a high-level language, on the other hand, and generally
takes care of this bookkeeping behind the scenes.

JavaScript Closures

[368]

Whenever a new memory-resident item such as an object or function comes into
being in JavaScript code, a chunk of memory is set aside for this item. As the object
gets passed around to functions and assigned to variables, more pieces of code begin
to point to the object. JavaScript keeps track of these pointers, and when the last one
is gone, the memory taken by the object is released. Consider a chain of pointers:

A B C

Here, object A has a property that points to B and B has a property that points to C.
Even if object A here is the only one that is a variable in the current scope, all three
objects must remain in memory because of the pointers to them. When A goes out
of scope, however (such as at the end of the function it was declared in), then it can
be released by the garbage collector. Now B has nothing pointing to it, so it can be
released, and finally C can be released as well.

More complicated arrangements of references can be harder to deal with:

A B C

Now we've added a property to object C that refers back to B. In this case, when A
is released, B still has a pointer to it from C. This reference loop needs to be handled
specially by JavaScript, which must notice that the entire loop is isolated from the
variables that are in scope.

Avoiding accidental reference loops
Closures can cause reference loops to be inadvertently created. Since functions
are objects that must be kept in memory, any variables they have in their closing
environment are also kept in memory. Consider the following code:

function outerFn() {
 var outerVar = {};
 function innerFn() {
 console.log(outerVar);
 }

Appendix A

[369]

 outerVar.fn = innerFn;
 return innerFn;
};

Listing A.20

Here, an object called outerVar is created and referenced from within the inner
function innerFn(). Then, a property of outerVar that points to innerFn() is
created and innerFn() is returned. This creates a closure on innerFn() that
refers to outerVar, which in turn refers back to innerFn().

Scenarios such as this can keep variables in memory longer than desired, but are fairly
easy to notice. Sometimes, though, the loop can be even more insidious than this:

function outerFn() {
 var outerVar = {};
 function innerFn() {
 console.log('hello');
 }
 outerVar.fn = innerFn;
 return innerFn;
};

Listing A.21

Here, we've changed innerFn() so that it no longer refers to outerVar. However,
this does not break the loop! Even though outerVar is never referred to from
innerFn(), it is still in the closing environment of innerFn(). All variables in the
scope of outerFn() are implicitly referred to by innerFn() due to the closure. So,
closures make it easy to accidentally create these loops.

Managing loops between the DOM and
JavaScript
All of this is generally not an issue because JavaScript is able to detect these loops
and clean them up when they become orphaned. Older versions of Internet Explorer,
however, have difficulty handling one particular class of reference loops. When a
loop contains both DOM elements and regular JavaScript objects, Internet Explorer
cannot release either one because they are handled by different memory managers.
These loops are never freed until the browser is closed, which can eat up a great deal
of memory over time. A common cause of such a loop is a simple event handler:

$(document).ready(function() {
 var button = document.getElementById('button-1');
 button.onclick = function() {

JavaScript Closures

[370]

 console.log('hello');
 return false;
 };
});

Listing A.22

When the click handler is assigned, this creates a closure with button in the closing
environment. But button now contains a reference back to the closure—the onclick
property itself. Thus, the resulting loop can't be released by Internet Explorer even
when we navigate away from the page.

To release the memory, we'd need to break the loop, such as by getting rid of the
onclick property before the window is closed (taking care not to introduce a new
loop between the window and its onunload hander). Alternatively, we could rewrite
the code to avoid the closure:

function hello() {
 console.log('hello');
 return false;
}
$(document).ready(function() {
 var button = document.getElementById('button-1');
 button.onclick = hello;
});

Listing A.23

Since the hello() function no longer closes over button, the reference only goes one
way (from button to hello) and there is no loop, and therefore no memory leak.

Disentangling reference loops with jQuery
Now let's write the same code, but using normal jQuery constructs:

$(document).ready(function() {
 var $button = $('#button-1');
 $button.click(function(event) {
 event.preventDefault();
 console.log('hello');
 });
});

Listing A.24

Appendix A

[371]

Even though a closure is still created causing the same kind of loop as before, we do
not get an IE memory leak from this code. Fortunately for us, jQuery is aware of the
potential leaks and manually releases all the event handlers that it assigns. As long
as we faithfully adhere to using jQuery's event-binding methods for our handlers, we
need not fear leaks caused by this particular common idiom.

This doesn't mean we're completely out of the woods. We must continue to take care
when we're performing other tasks with DOM elements. Attaching JavaScript objects
to DOM elements can still cause memory leaks in older Internet Explorer versions;
jQuery just helps make this situation far less prevalent.

Because of this, jQuery gives us another tool to help avoid these leaks. In Chapter
12, Advanced DOM Manipulation, we saw that the .data() method allows us
to attach information to DOM elements in much the same way as we can with
expando properties. Since this data is not stored directly as an expando (jQuery
uses an internal map to store the data using IDs it creates), the reference loop
is never formed and we sidestep the memory leak issue. Whenever an expando
seems like a convenient data storage mechanism, we should consider .data() a
safer alternative.

Summary
JavaScript closures are a powerful language feature. They are often quite useful in
hiding variables from other code so that we don't tread on variable names being used
elsewhere. Due to jQuery's frequent reliance on functions as method arguments, they
can also be inadvertently created quite often. Understanding them allows us to write
more efficient and concise code, and with a bit of care and the use of jQuery's built-in
safeguards, we can avoid the memory-related pitfalls they can introduce.

Testing JavaScript with QUnit
Throughout this book we've written a lot of JavaScript code, and we've seen
the many ways in which jQuery helps us write this code with relative ease. Yet
whenever we've added a new feature, we've had to take the extra step of manually
checking our web page to ensure that everything is working as expected. While this
process may work for simple tasks, as projects grow in size and complexity, manual
testing can become quite onerous. New requirements can introduce "regression
bugs" that break parts of the script that previously worked well. It's far too easy to
miss these bugs that don't specifically relate to the latest code changes because we
naturally only test for what we've just done.

What we need instead is an automated system that runs our tests for us. The
QUnit testing framework is just such a system. While there are many other testing
frameworks, and they all have their own benefits, we recommend QUnit for most
jQuery projects because it is written and maintained by the jQuery project. In fact,
jQuery itself uses QUnit (running over 6,500 tests!). In this appendix, we will cover:

•	 How to set up the QUnit testing framework within a project
•	 Unit test organization to aid in code coverage and maintenance
•	 The various types of tests available with QUnit
•	 Common practices for ensuring that tests are reliable indicators of

successful code
•	 Suggestions for other types of testing beyond what QUnit offers

Testing JavaScript with QUnit

[374]

Downloading QUnit
The QUnit framework can be downloaded from the official QUnit website at
http://qunitjs.com/. There we can find links to the stable version (currently
1.11.0) as well as a development version (qunit-git). Both versions include a
stylesheet in addition to the JavaScript file for formatting the test output.

Setting up the document
Once we have the QUnit files in place, we can set up the test HTML document. In
a typical project, this file would be named index.html and placed in the same test
subfolder as qunit.js and qunit.css. For this demonstration, however, we'll put
it in the parent directory.

The <head> element of the document contains a <link> tag for the CSS file and
<script> tags for jQuery, QUnit, the JavaScript we'll be testing (B.js), and the
tests themselves (test/test.js). The <body> tag consists of two main elements
for running and displaying the results of the tests.

To demonstrate QUnit, we'll use portions of Chapter 2, Selecting Elements, and
Chapter 6, Sending Data with Ajax:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Appendix B Tests</title>
 <link rel="stylesheet" href="qunit.css" media="screen">
 <script src="jquery.js"></script>
 <script src="test/qunit.js"></script>
 <script src="B.js"></script>
 <script src="test/test.js"></script>
</head>
<body>
 <div id="qunit"></div>
 <div id="qunit-fixture">
 <!-- Test Markup Goes Here -->
 </div>
</body>
</html>

Since Chapter 2, Selecting Elements, code that we'll test depends on the DOM, we want
the test markup to match what we're using on the actual page. We can simply copy
and paste the HTML content that we used in Chapter 2, Selecting Elements, which
should replace the <!-- Test Markup Goes Here --> comment.

Appendix B

[375]

Organizing tests
QUnit provides two levels of test grouping named after their respective function
calls: module() and test(). The module is like a general category under which
the tests will be run; the test is actually a set of tests; the function takes a callback in
which all of that test's specific unit tests are run. We'll group our tests by the chapter
topic, placing the code in our test/test.js file:

module('Selecting');
test('Child Selector', function() {
 ok(true, 'Placeholder is entered');
});
test('Attribute Selectors', function() {
 ok(true, 'Placeholder is entered');
});
module('Ajax');

Listing B.1

It's not necessary to set up the file with this test structure, but it's good to have
some overall structure in mind. In addition to the module() and test() grouping,
we added a placeholder assertion within each test. Failing to have at least one
assertion per test causes QUnit to throw an error.

Notice that our modules and tests do not need to be placed inside a $(document).
ready() call because QUnit by default waits until the window has loaded before it
begins running the tests. With this very simple setup, loading the test HTML results
in a page that looks like:

Note that the module name is light blue and the test name is darker blue. Clicking
on either one will expand the results of that set of tests, which are collapsed by
default when all the tests with the set pass. The Ajax module does not appear yet
because we haven't written any tests for it.

Testing JavaScript with QUnit

[376]

Adding and running tests
In test-driven development, we write tests before writing code. This way, we can
observe when a test fails, add new code, and then see that the test passes, verifying
that our change has the intended effect.

Let's start by testing the child selector that we used in Chapter 2, Selecting Elements,
to add a horizontal class to all elements that are children of <ul
id="selected-plays">:

test('Child Selector', function() {
 expect(1);
 var topLis = $('#selected-plays > li.horizontal');
 equal(topLis.length, 3, 'Top LIs have horizontal class');
});

Listing B.2

Here we've actually introduced two tests. We begin with the expect() test, which
tells QUnit how many tests we expect to run in this set. Then, because we're testing
our ability to select elements on the page, we use the equal() test to compare the
number of top-level elements against the number 3. If the two are equal, the
test is successful and is added to the number of passed tests. If not, the test fails:

Of course, the test fails because we have not yet written the code to add the
horizontal class. It is simple to add that code, though. We do so in the main
script file for the page, which we called B.js:

Appendix B

[377]

$(document).ready(function() {
 $('#selected-plays > li').addClass('horizontal');
});

Listing B.3

When we run the test now, it gives the result in the following screenshot:

Now the Selecting: Child Selector test shows the numbers 0, 1, 1 in parentheses,
indicating that no tests failed, one test passed, and the total number of tests is one. We
can take the testing a step further now by adding a couple of attribute selector tests:

module('Selecting', {
 setup: function() {
 this.topLis = $('#selected-plays > li.horizontal');
 }
});
test('Child Selector', function() {
 expect(1);
 equal(this.topLis.length, 3,
 'Top LIs have horizontal class');
});
test('Attribute Selectors', function() {
 expect(2);
 ok(this.topLis.find('.mailto').length == 1, 'a.mailto');
 equal(this.topLis.find('.pdflink').length, 1, 'a.pdflink');
});

Listing B.4

Testing JavaScript with QUnit

[378]

Here we've introduced another type of test: ok(). This one takes two arguments: an
expression that should evaluate to true if successful, and a description. Also note
that we've moved the local topLis variable out of the Child Selector test, where it
was in Listing B.2, and into the module's setup() callback function. The module()
function takes an optional second argument, which is a plain object that can include
a setup() and a teardown() function. Within these functions, we can use the this
keyword to assign variables once for all of a module's tests.

Again, the new tests will fail without corresponding working code:

Here we can see the difference in test failure output between the ok() test, which
only shows the test's label (a.mailto) and source, and the equal() test, which also
details the expected result. Because it provides more information for test failures,
the equal() test is typically preferred over the ok() test.

Let's include the necessary code:

$(document).ready(function() {
 $('#selected-plays > li').addClass('horizontal');
 $('a[href^="mailto:"]').addClass('mailto');
 $('a[href$=".pdf"]').addClass('pdflink');
});

Listing B.5

The two tests now pass, as we can see by expanding the set:

Although on failure the equal() test presented more information than the ok() test,
on success both tests simply display the label.

Appendix B

[379]

Asynchronous testing
Testing asynchronous code such as Ajax requests presents an additional challenge.
The rest of the tests must pause while the asynchronous test occurs, and then
they must begin again when it is complete. This type of scenario is by now very
familiar; we have seen such asynchronous operations in effects queues, Ajax
callback functions, and promise objects. In QUnit, we use a special test set called
asyncTest(). It looks just like the regular test() set except that it will pause the
running of tests until we resume them with a call to the special start() function:

asyncTest('JSON', function() {
 $.getJSON('b.json', function(json, textStatus) {
 // add tests here
 }).always(function() {
 start();
 });
});

Listing B.6

Here we're simply requesting JSON from b.json and allowing the tests to continue
once the request has completed, whether it succeeds or fails, by calling start()
inside the .always() callback function. For the actual tests, we're going to check the
textStatus value to ensure that the request is successful and check the value of one
of the objects within the response JSON array:

asyncTest('JSON', function() {
 expect(2);
 var backbite = {
 "term": "BACKBITE",
 "part": "v.t.",
 "definition": "To speak of a man as you find him when he can't
find you."
 };
 $.getJSON('b.json', function(json, textStatus) {
 equal(textStatus, 'success', 'Request successful');
 deepEqual(json[1], backbite,
 'result array matches "backbite" map');
 }).always(function() {
 start();
 });
});

Listing B.7

Testing JavaScript with QUnit

[380]

For testing the response value, we use yet another test function: deepEqual().
Normally when two objects are compared, they are considered not equal unless
they actually refer to the same location in memory. If we want to compare the object
contents instead, deepEqual() meets the need. This function walks through two
objects to ensure that they have the same properties and that those properties have
the same values.

Other types of tests
QUnit comes with a number of other test functions as well. Some, such as
notEqual() and notDeepEqual(), are simply the inverses of functions we've
used, while others such as strictEqual() and throws() have more distinct uses.
More information about these functions, as well as details and additional examples
regarding QUnit in general, are available on the QUnit website (http://qunitjs.
com/) as well as the QUnit API site (http://api.qunitjs.com/).

Practical considerations
The examples in this appendix have been necessarily simple. In practice, we can
write tests that ensure the correct operation of quite complicated behaviors.

Ideally, we keep our tests as brief and simple as possible, even when the behaviors
they are testing are intricate. By writing tests for a few specific scenarios, we can
build reasonable certainty that we are fully testing the behavior even though we
do not have a test for every possible set of inputs.

However, it is possible that an error is observed in our code even though we have
written tests for it. When tests pass and yet an error occurs, the correct response
is not to immediately fix the problem, but rather to first write a new test for the
behavior that fails. This way, we can not only verify that the problem is solved
when we correct the code, but also introduce an additional test that will help us
avoid regressions in the future.

QUnit can be used for functional testing in addition to unit testing. While unit tests
are designed to confirm the correct operation of code units (methods and functions),
functional tests are written to ensure appropriate interface responses to user input.
For example, in Chapter 12, Advanced DOM Manipulation, we implemented a table-
sorting behavior. We could write a unit test for a sorting method, verifying that once
the method is called the table is sorted. Alternatively, a functional test could simulate
a user's click on a table heading and then observe the result to check that the table is
indeed sorted.

Appendix B

[381]

Functional testing frameworks that work alongside QUnit, such as
dominator.js (http://mwbrooks.github.io/dominator.js/)
and FuncUnit (http://funcunit.com/), can help make writing
functional tests and simulating events much easier. To further automate
tests in a variety of browsers, the Selenium (http://seleniumhq.
org/) suite can be used in conjunction with these frameworks.

To ensure consistent results for our tests, we need to work with sample data that
is reliable and unchanging. When testing jQuery code that is applied to a dynamic
site, it can be beneficial to capture and store a static version of the page to run tests
against. This approach also isolates your code's components, making it easier to
determine whether errors are caused by server-side or browser-side code.

Further reading
These considerations are certainly not an exhaustive list. Test-driven development
is a deep topic, and a short appendix is not enough to cover it fully. Some online
resources containing more information on the topic include:

•	 Introduction to unit testing (http://qunitjs.com/intro/)
•	 QUnit Cookbook (http://qunitjs.com/cookbook/)
•	 The jQuery Test-Driven Development article by Elijah Manor (http://msdn.

microsoft.com/en-us/scriptjunkie/ff452703.aspx)
•	 The Unit Testing Best Practices article by Bob McCune (http://www.

bobmccune.com/2006/12/09/unit-testing-best-practices/)

Many books on the topic also exist, such as Test Driven Development: By Example,
Kent Beck, The Addison Wesley Signature Series and Test-Driven JavaScript Development,
Christian Johansen, Addison Wesley.

Summary
Writing tests with QUnit can be an effective aid in keeping our jQuery code clean
and maintainable. We've seen just a few ways that we can implement tests in a
project to ensure that our code is functioning the way we intend it to. By testing
small, discrete units of code, we can mitigate some of the problems that occur
when projects become more complex. At the same time, we can more efficiently
test for regressions throughout a project, saving us valuable programming time.

Quick Reference
This appendix is intended to be a quick reference for the jQuery API, including its
selector expressions and methods. A more detailed discussion of each method and
selector is available on the jQuery documentation site, http://api.jquery.com.

Selector expressions
The jQuery factory function $() is used to find elements on the page to work with.
This function takes a string composed of CSS-like syntax, called a selector expression.
Selector expressions are discussed in detail in Chapter 2, Selecting Elements.

Simple CSS
Selector Matches
* All elements.
#id The element with the given ID.
element All elements of the given type.
.class All elements with the given class.
a, b Elements that are matched by a or b.
a b Elements b that are descendants of a.
a > b Elements b that are children of a.
a + b Elements b that immediately follow a.
a ~ b Elements b that are siblings of a and follow a.

Quick Reference

[384]

Position among siblings
Selector Matches
:nth-child(index) Elements that are the index child of their parent

element (1-based).
:nth-child(even) Elements that are an even child of their parent

element (1-based).
:nth-child(odd) Elements which are an odd child of their parent

element (1-based).
:nth-child(formula) Elements that are the nth child of their parent

element (1-based). Formulas are of the form
an+b for integers a and b.

:nth-last-child() The same as :nth-child(), but counting from
the last element to the first.

:first-child Elements that are the first child of their parent.
:last-child Elements that are the last child of their parent.
:only-child Elements that are the only child of their parent.
:nth-of-type() The same as :nth-child(), but only counting

elements of the same element name.
:nth-last-of-type() The same as :nth-last-child(), but only

counting elements of the same element name.
:first-of-type Elements which are the first child of the same

element name among their siblings.
:last-of-type Elements that are the last child of the same

element name among their siblings.
:only-of-type() Elements that are the only child of the same

element name among their siblings.

Position among matched elements
Selector Matches
:first The first element in the result set.
:last The last element in the result set.
:not(a) All elements in the result set that are not

matched by a.
:even Even elements in the result set (0-based).
:odd Odd elements in the result set (0-based).

Appendix C

[385]

Selector Matches
:eq(index) A numbered element in the result set (0-based).
:gt(index) All elements in the result set after (greater than)

the given index (0-based).
:lt(index) All elements in the result set before (less than)

the given index (0-based).

Attributes
Selector Matches
[attr] Elements that have the attribute attr.
[attr="value"] Elements whose attr attribute is value.
[attr!="value"] Elements whose attr attribute is not value.
[attr^="value"] Elements whose attr attribute begins with value.
[attr$="value"] Elements whose attr attribute ends with value.
[attr*="value"] Elements whose attr attribute contains the

substring value.
[attr~="value"] Elements whose attr attribute is a space-delimited

set of strings, one of which is value.
[attr|="value"] Elements whose attr attributes is either equal to

value or begins with value followed by a hyphen.

Forms
Selector Matches
:input All <input>, <select>, <textarea>, and

<button> elements.
:text The <input> elements with type="text".
:password The <input> elements with type="password".
:file The <input> elements with type="file".
:radio The <input> elements with type="radio".
:checkbox The <input> elements with type="checkbox".
:submit The <input> elements with type="submit".
:image The <input> elements with type="image".

Quick Reference

[386]

Selector Matches
:reset The <input> elements with type="reset".
:button The <input> elements with type="button" and

<button> elements.
:enabled Enabled form elements.
:disabled Disabled form elements.
:checked Checked checkboxes and radio buttons.
:selected Selected <option> elements.

Miscellaneous selectors
Selector Matches
:root The root element of the document.
:header Header elements (for example, <h1>, <h2>).
:animated Elements with an animation in progress.
:contains(text) Elements containing the given text.
:empty Elements with no child nodes.
:has(a) Elements containing a descendant element matching a.
:parent Elements that have child nodes.
:hidden Elements that are hidden, either through CSS or because

they are <input type="hidden" />.
:visible The inverse of :hidden.
:focus The element that has the keyboard focus.
:lang(language) Elements with the given language code (either due to a

lang attribute on the element or an ancestor, or a <meta>
declaration).

:target Whichever element is targeted by the URI's fragment
identifier, if any.

DOM traversal methods
After creating a jQuery object using $(), we can alter the set of matched elements
we are working with by calling one of these DOM traversal methods. DOM traversal
methods are discussed in detail in Chapter 2, Selecting Elements.

Appendix C

[387]

Filtering
Traversal method Returns a jQuery object containing…
.filter(selector) Selected elements that match the given selector.
.filter(callback) Selected elements for which the callback

function returns true.
.eq(index) The selected element at the given 0-based index.
.first() The first selected element.
.last() The final selected element.
.slice(start, [end]) Selected elements in the given range of 0-based

indices.
.not(selector) Selected elements that do not match the given

selector.
.has(selector) Selected elements that have a descendant

matching selector.

Descendants
Traversal method Returns a jQuery object containing…
.find(selector) Descendant elements that match the selector.
.contents() Child nodes (including text nodes).
.children([selector]) Child nodes, optionally filtered by a selector.

Siblings
Traversal method Returns a jQuery object containing…
.next([selector]) The sibling immediately following each selected

element, optionally filtered by a selector.
.nextAll([selector]) All siblings following each selected element,

optionally filtered by a selector.
.nextUntil([selector],
[filter])

All siblings following each selected element up
to and not including the first element matching
selector, optionally filtered by an additional
selector.

.prev([selector]) The sibling immediately preceding each selected
element, optionally filtered by a selector.

Quick Reference

[388]

Traversal method Returns a jQuery object containing…
.prevAll([selector]) All siblings preceding each selected element,

optionally filtered by a selector.
.prevUntil([selector],
[filter])

All siblings preceding each selected element up
to and not including the first element matching
selector, optionally filtered by an additional
selector.

.siblings([selector]) All siblings, optionally filtered by a selector.

Ancestors
Traversal method Returns a jQuery object

containing…
.parent([selector]) The parent of each selected

element, optionally filtered by a
selector.

.parents([selector]) All ancestors, optionally filtered by
a selector.

.parentsUntil([selector], [filter]) All ancestors of each selected
element up to and not including
the first element matching
selector, optionally filtered by
an additional selector.

.closest(selector) The first element that matches the
selector, starting at the selected
element and moving up through
its ancestors in the DOM tree.

.offsetParent() The positioned parent, either
relative or absolute of the first
selected element.

Appendix C

[389]

Collection manipulation
Traversal method Returns a jQuery object containing…
.add(selector) The selected elements, plus any additional

elements that match the given selector.
.addBack() The selected elements, plus the previous set of

selected elements on the internal jQuery stack.
.end() The previous set of selected elements on the

internal jQuery stack.
.map(callback) The result of the callback function when called

on each selected element.
.pushStack(elements) The specified elements.

Working with selected elements
Traversal method Description
.is(selector) Determines whether any matched element is

matched by the given selector expression.
.index() Gets the index of the matched element in

relation to its siblings.
.index(element) Gets the index of the given DOM node within

the set of matched elements.
$.contains(a, b) Determines whether DOM node b contains

DOM node a.
.each(callback) Iterates over the matched elements, executing

callback for each element.
.length Gets the number of matched elements.
.get() Gets an array of DOM nodes corresponding to

the matched elements.
.get(index) Gets the DOM node corresponding to the

matched element at the given index.
.toArray() Gets an array of DOM nodes corresponding to

the matched elements.

Quick Reference

[390]

Event methods
To react to user behavior, we need to register our handlers using these event
methods. Note that many DOM events only apply to certain element types;
these subtleties are not covered here. Event methods are discussed in detail in
Chapter 3, Handling Events.

Binding
Event method Description
.ready(handler) Binds handler to be called when

the DOM and CSS are fully loaded.
.on(type, [selector], [data],
handler)

Binds handler to be called when
the given type of event is sent to the
element. If selector is provided,
performs event delegation.

.on(events, [selector], [data]) Binds multiple handlers for events
as specified in the events object
parameter.

.off(type, [selector], [handler]) Removes bindings on the element.

.bind(type, [data], handler) Binds handler to be called when
the given type of event is sent to
the element. In general, use .on()
instead.

.one(type, [data], handler) Binds handler to be called when
the given type of event is sent to the
element. Removes the binding when
the handler is called.

.unbind([type], [handler]) Removes the bindings on the
element (for an event type, a
particular handler, or all bindings).

.delegate(selector, type, [data],
handler)

Binds handler to be called when
the given type of event is sent to
a descendant element matching
selector.

.delegate(selector, handlers) Binds a collection of handlers to
be called when the given types of
events are sent to a descendant
element matching selector.

Appendix C

[391]

Event method Description
.undelegate(selector, type,
[handler])

Removes the bindings on the
element previously bound with
.delegate().

Shorthand binding
Event method Description
.blur(handler) Binds handler to be called when the element

loses keyboard focus.
.change(handler) Binds handler to be called when the element's

value changes.
.click(handler) Binds handler to be called when the element is

clicked.
.dblclick(handler) Binds handler to be called when the element is

double-clicked.
.error(handler) Binds handler to be called when the element

receives an error event (browser-dependent).
.focus(handler) Binds handler to be called when the element

gains keyboard focus.
.focusin(handler) Binds handler to be called when the element,

or a descendant, gains keyboard focus.
.focusout(handler) Binds handler to be called when the element,

or a descendant, loses keyboard focus.
.keydown(handler) Binds handler to be called when a key is

pressed and the element has keyboard focus.
.keypress(handler) Binds handler to be called when a keystroke

occurs and the element has keyboard focus.
.keyup(handler) Binds handler to be called when a key is

released and the element has keyboard focus.
.load(handler) Binds handler to be called when the element

finishes loading.
.mousedown(handler) Binds handler to be called when the mouse

button is pressed within the element.
.mouseenter(handler) Binds handler to be called when the mouse

pointer enters the element. Not affected by event
bubbling.

Quick Reference

[392]

Event method Description
.mouseleave(handler) Binds handler to be called when the mouse

pointer leaves the element. Not affected by
event bubbling.

.mousemove(handler) Binds handler to be called when the mouse
pointer moves within the element.

.mouseout(handler) Binds handler to be called when the mouse
pointer leaves the element.

.mouseover(handler) Binds handler to be called when the mouse
pointer enters the element.

.mouseup(handler) Binds handler to be called when the mouse
button is released within the element.

.resize(handler) Binds handler to be called when the element is
resized.

.scroll(handler) Binds handler to be called when the element's
scroll position changes.

.select(handler) Binds handler to be called when text in the
element is selected.

.submit(handler) Binds handler to be called when the form
element is submitted.

.unload(handler) Binds handler to be called when the element is
unloaded from memory.

.hover(enter, leave) Binds enter to be called when the mouse enters
the element, and leave to be called when the
mouse leaves it.

Triggering
Event method Description
.trigger(type, [data]) Triggers handlers for the event on the

element and executes the default action
for the event.

.triggerHandler(type, [data]) Triggers handlers for the event on the
element without executing any default
actions.

Appendix C

[393]

Shorthand triggering
Event method Description
.blur() Triggers the blur event.
.change() Triggers the change event.
.click() Triggers the click event.
.dblclick() Triggers the dblclick event.
.error() Triggers the error event.
.focus() Triggers the focus event.
.keydown() Triggers the keydown event.
.keypress() Triggers the keypress event.
.keyup() Triggers the keyup event.
.select() Triggers the select event.
.submit() Triggers the submit event.

Utility
Event method Description
$.proxy(fn, context) Creates a new function that executes with the

given context.

Effect methods
These effect methods may be used to perform animations on DOM elements.
The effect methods are discussed in detail in Chapter 4, Styling and Animating.

Predefined effects
Effect method Description
.show() Displays the matched elements.
.hide() Hides the matched elements.
.show(speed, [callback]) Displays the matched elements by animating

height, width, and opacity.

Quick Reference

[394]

Effect method Description
.hide(speed, [callback]) Hides the matched elements by animating

height, width, and opacity.
.toggle([speed], [callback]) Displays or hides the matched elements.
.slideDown([speed],
[callback])

Displays the matched elements with a sliding
motion.

.slideUp([speed], [callback]) Hides the matched elements with a sliding
motion.

.slideToggle([speed],
[callback])

Displays or hides the matched elements with a
sliding motion.

.fadeIn([speed], [callback]) Displays the matched elements by fading them
to opaque.

.fadeOut([speed], [callback]) Hides the matched elements by fading them to
transparent.

.fadeToggle([speed],
[callback])

Displays or hides the matched elements with a
fading animation.

.fadeTo(speed, opacity,
[callback])

Adjusts the opacity of the matched elements.

Custom animations
Effect method Description
.animate(properties, [speed],
[easing], [callback])

Performs a custom animation of the
specified CSS properties.

.animate(properties, options) A lower-level interface to .animate(),
allowing control over the animation queue.

Queue manipulation
Effect method Description
.queue([queueName]) Retrieves the queue of functions on the first

matched element.
.queue([queueName], callback) Adds callback to the end of the queue.
.queue([queueName], newQueue) Replaces the queue with a new one.
.dequeue([queueName]) Executes the next function on the queue.
.clearQueue([queueName]) Empties the queue of all pending functions.

Appendix C

[395]

Effect method Description
.stop([clearQueue],
[jumpToEnd])

Stops the currently running animation, then
starts queued animations, if any.

.finish([queueName]) Stops the currently running animation and
immediately advances all queued animations
to their target values.

.delay(duration, [queueName]) Waits duration milliseconds before executing
the next item in the queue.

.promise([queueName],
[target])

Returns a promise object to be resolved once
all queued actions on the collection have
finished.

DOM manipulation methods
The DOM manipulation methods are discussed in detail in Chapter 5, Manipulating
the DOM.

Attributes and properties
Manipulation method Description
.attr(key) Gets the attribute named key.
.attr(key, value) Sets the attribute named key to value.
.attr(key, fn) Sets the attribute named key to the result of fn

(called separately on each matched element).
.attr(obj) Sets attribute values given as key-value pairs.
.removeAttr(key) Removes the attribute named key.
.prop(key) Gets the property named key.
.prop(key, value) Sets the property named key to value.
.prop(key, fn) Sets the property named key to the result of fn

(called separately on each matched element).
.prop(obj) Sets property values given as key-value pairs.
.removeProp(key) Removes the property named key.
.addClass(class) Adds the given class to each matched element.
.removeClass(class) Removes the given class from each matched

element.

Quick Reference

[396]

Manipulation method Description
.toggleClass(class) Removes the given class if present, and adds it if

not, for each matched element.
.hasClass(class) Returns true if any of the matched elements has

the given class.
.val() Gets the value attribute of the first matched

element.
.val(value) Sets the value attribute of each element to value.

Content
Manipulation method Description
.html() Gets the HTML content of the first matched

element.
.html(value) Sets the HTML content of each matched element

to value.
.text() Gets the textual content of all matched elements

as a single string.
.text(value) Sets the textual content of each matched element

to value.

CSS
Manipulation method Description
.css(key) Gets the CSS attribute named key.
.css(key, value) Sets the CSS attribute named key to value.
.css(obj) Sets CSS attribute values given as

key-value pairs.

Appendix C

[397]

Dimensions
Manipulation method Description
.offset() Gets the top and left pixel coordinates of the

first matched element, relative to the viewport.
.position() Gets the top and left pixel coordinates of the

first matched element, relative to the element
returned by .offsetParent().

.scrollTop() Gets the vertical scroll position of the first
matched element.

.scrollTop(value) Sets the vertical scroll position of all matched
elements to value.

.scrollLeft() Gets the horizontal scroll position of the first
matched element.

.scrollLeft(value) Sets the horizontal scroll position of all matched
elements to value.

.height() Gets the height of the first matched element.

.height(value) Sets the height of all matched elements to
value.

.width() Gets the width of the first matched element.

.width(value) Sets the width of all matched elements to
value.

.innerHeight() Gets the height of the first matched element,
including padding, but not border.

.innerWidth() Gets the width of the first matched element,
including padding, but not border.

.outerHeight(includeMargin) Gets the height of the first matched element,
including padding, border, and optional margin.

.outerWidth(includeMargin) Gets the width of the first matched element,
including padding, border, and optional margin.

Insertion
Manipulation method Description
.append(content) Inserts content at the end of the interior of

each matched element.
.appendTo(selector) Inserts the matched elements at the end of the

interior of the elements matched by selector.

Quick Reference

[398]

Manipulation method Description
.prepend(content) Inserts content at the beginning of the interior

of each matched element.
.prependTo(selector) Inserts the matched elements at the beginning

of the interior of the elements matched by
selector.

.after(content) Inserts content after each matched element.

.insertAfter(selector) Inserts the matched elements after each of the
elements matched by selector.

.before(content) Inserts content before each matched element.

.insertBefore(selector) Inserts the matched elements before each of the
elements matched by selector.

.wrap(content) Wraps each of the matched elements within
content.

.wrapAll(content) Wraps all of the matched elements as a single
unit within content.

.wrapInner(content) Wraps the interior contents of each of the
matched elements within content.

Replacement
Manipulation method Description
.replaceWith(content) Replaces the matched elements with

content.
.replaceAll(selector) Replaces the elements matched by selector

with the matched elements.

Removal
Manipulation method Description
.empty() Removes the child nodes of each matched

element.
.remove([selector]) Removes the matched nodes (optionally filtered

by selector) from the DOM.
.detach([selector]) Removes the matched nodes (optionally filtered

by selector) from the DOM, preserving
jQuery data attached to them.

Appendix C

[399]

Manipulation method Description
.unwrap() Removes the element's parent.

Copying
Manipulation method Description
.clone([withHandlers],
[deepWithHandlers])

Makes a copy of all matched elements,
optionally also copying event handlers.

Data
Manipulation method Description
.data(key) Gets the data item named key associated with

the first matched element.
.data(key, value) Sets the data item named key associated with

each matched element to value.
.removeData(key) Removes the data item named key associated

with each matched element.

Ajax methods
We can retrieve information from the server without requiring a page refresh by
calling one of these Ajax methods. Ajax methods are discussed in detail in Chapter 6,
Sending Data with Ajax.

Issuing requests
Ajax method Description
$.ajax([url], options) Makes an Ajax request using the provided

set of options. This is a low-level method
that is often called via other convenience
methods.

.load(url, [data],
[callback])

Makes an Ajax request to url and places
the response into the matched elements.

$.get(url, [data],
[callback], [returnType])

Makes an Ajax request to url using the
GET method.

Quick Reference

[400]

Ajax method Description
$.getJSON(url, [data],
[callback])

Makes an Ajax request to url, interpreting
the response as a JSON data structure.

$.getScript(url, [callback]) Makes an Ajax request to url, executing
the response as JavaScript.

$.post(url, [data],
[callback], [returnType])

Makes an Ajax request to url using the
POST method.

Request monitoring
Ajax method Description
.ajaxComplete(handler) Binds handler to be called when any

Ajax transaction completes.
.ajaxError(handler) Binds handler to be called when any

Ajax transaction completes with an error.
.ajaxSend(handler) Binds handler to be called when any

Ajax transaction begins.
.ajaxStart(handler) Binds handler to be called when any

Ajax transaction begins, and no others
are active.

.ajaxStop(handler) Binds handler to be called when any
Ajax transaction ends, and no others are
still active.

.ajaxSuccess(handler) Binds handler to be called when any
Ajax transaction completes successfully.

Configuration
Ajax method Description
$.ajaxSetup(options) Sets default options for all

subsequent Ajax transactions.
$.ajaxPrefilter([dataTypes],
handler)

Modifies the options on each Ajax
request before it is processed by
$.ajax().

$.ajaxTransport(transportFunct
ion)

Defines a new transport mechanism
for Ajax transactions.

Appendix C

[401]

Utilities
Ajax method Description
.serialize() Encodes the values of a set of form controls into

a query string.
.serializeArray() Encodes the values of a set of form controls into

a JavaScript data structure.
$.param(obj) Encodes an arbitrary object of key-value pairs

into a query string.
$.globalEval(code) Evaluates the given JavaScript string in the

global context.
$.parseJSON(json) Converts the given JSON string into a JavaScript

object.
$.parseXML(xml) Converts the given XML string into an XML

document.
$.parseHTML(html) Converts the given HTML string into a set of

DOM elements.

Deferred objects
Deferred objects and their promises allow us to react to the completion of long-
running tasks with a convenient syntax. They are discussed in detail in Chapter 11,
Advanced Effects.

Object creation
Function Description
$.Deferred([setupFunction]) Returns a new deferred object.
$.when(deferreds) Returns a promise object to be resolved when

the given deferred objects are resolved.

Methods of deferred objects
Method Description
.resolve([args]) Sets the state of the object to resolved.

Quick Reference

[402]

Method Description
.resolveWith(context,
[args])

Sets the state of the object to resolved while
making the keyword this refer to context
within callbacks.

.reject([args]) Sets the state of the object to rejected.

.rejectWith(context, [args]) Sets the state of the object to rejected while
making the keyword this refer to context
within callbacks.

.notify([args]) Executes any progress callbacks.

.notifyWith(context, [args]) Executes any progress callbacks while making
the keyword this refer to context.

.promise([target]) Returns a promise object corresponding to this
deferred object.

Methods of promise objects
Method Description
.done(callback) Executes callback when the object is

resolved.
.fail(callback) Executes callback when the object is

rejected.
.always(callback) Executes callback when the object is

resolved or rejected.
.then(doneCallbacks,
failCallbacks)

Executes doneCallbacks when the object
is resolved, or failCallbacks when the
object is rejected.

.progress(callback) Executes callback each time the object
receives a progress notification.

.isRejected() Returns true if the object has been rejected.

.isResolved() Returns true if the object has been
resolved.

.state() Returns 'pending', 'resolved', or
'rejected' depending on the current
state.

.pipe([doneFilter],
[failFilter])

Returns a new promise object which is
resolved when the original promise is,
optionally after filtering the object's status
through a function.

Appendix C

[403]

Miscellaneous properties and functions
These utility methods do not fit neatly into the previous categories, but are often very
useful when writing scripts using jQuery.

Properties of the jQuery object
Property Description
$.support Returns an object containing properties

indicating whether the browser supports
various features and standards.

Arrays and objects
Function Description
$.each(collection, callback) Iterates over collection, executing

callback for each item.
$.extend(target, addition, ...) Modifies the object target by

adding properties from the other
supplied objects.

$.grep(array, callback,
[invert])

Filters array by using callback as
a test.

$.makeArray(object) Converts object into an array.
$.map(array, callback) Constructs a new array consisting of

the result of callback being called
on each item.

$.inArray(value, array) Determines whether value is in
array.

$.merge(array1, array2) Combines the contents of array1
and array2.

$.unique(array) Removes any duplicate DOM
elements from array.

Object introspection
Function Description
$.isArray(object) Determines whether object is a true JavaScript

array.

Quick Reference

[404]

Function Description
$.isEmptyObject(object) Determines whether object is empty.
$.isFunction(object) Determines whether object is a function.
$.isPlainObject(object) Determines whether object was created as an

object literal or with new Object.
$.isNumeric(object) Determines whether object is a numeric scalar

value.
$.isWindow(object) Determines whether object represents a

browser window.
$.isXMLDoc(object) Determines whether object is an XML node.
$.type(object) Gets the JavaScript class of object.

Other
Function Description
$.trim(string) Removes whitespace from the ends of string.
$.noConflict([removeAll]) Reverts $ to its pre-jQuery definition.
$.noop() A function that does nothing.
$.now() The current time in milliseconds since the epoch.
$.holdReady(hold) Stops the ready event from being triggered, or

releases this hold.

Index
Symbols
$.ajax() call 340, 352
$.ajax() function 212, 337
$.ajax() option 337
$.ajaxPrefilter() function 349
$.ajaxSetup() function 177
$.ajax([url], options) method 399
$.attrHooks hook 327
$.average() 215
$cells variable 260
$.contains(a, b) method 389
$.cookie() function 187
$.cssHooks hook 327
$data 174
$.Deferred() constructor 297
$.Deferred([setupFunction]) function 401
$(document).ready()

about 16
arguments passing to 362

$(document).ready() call 347
$(document).ready() event handler 49, 50
$(document).ready() method 46
$.each(collection, callback) function 403
$.each() loop 322, 365
$.each() method 213
$eq() pseudo-class 93
$.event.special object 281
$.extend() function 250
$.extend(target, addition, ...) function 403
$.fn.cycle.defaults object 185
$() function

about 52, 122, 241
using 26, 27

$.get() function 154
$.getJSON() callback function 323

$.getJSON() function 174
$.getJSON() method 148, 149
$.getJSON(url, [data], [callback])

method 400
$.getScript() method 173
$.getScript(url, [callback]) method 400
$.get(url, [data], [callback], [returnType])

method 399
$.grep(array, callback, [invert])

function 403
$.holdReady(hold) function 404
$.inArray(value, array) function 403
$.isArray(object) function 403
$.isEmptyObject(object) function 404
$.isFunction(object) function 404
$.isNumeric(object) function 404
$.isPlainObject(object) function 404
$.isWindow(object) function 404
$.isXMLDoc(object) function 404
$.makeArray(object) function 403
$.map(array, callback) function 403
$.merge(array1, array2) function 403
$.mobile.allowCrossDomainPages

property 209
$.noConflict() method 211
$.noConflict([removeAll]) function 404
$.noop() function 404
$.now() function 404
$.propHooks hook 327
$.proxy(fn, context) method 393
$.proxy() function 231
$.sum() plugin 215
$.support.cors property 209
$.support property 403
$.trim() function 311
$.trim(string) function 404

[406]

$.type(object) function 404
$.unique(array) function 403
$.valHooks hook 327
$.when(deferreds) function 401
.abort() method
.addBack() method 350, 351, 389
.addClass(class) method 395
.addClass() method 16, 61, 86, 88, 115
.add(selector) method 389
.after(content) method 398
.ajaxComplete(handler) method 400
.ajaxError(handler) method 400
.ajaxSend(handler) method 400
.ajaxStart(handler) method 400
.ajaxStart() method 167
.ajaxStop(handler) method 400
.ajaxStop() method 167
.ajaxSuccess(handler) method 400
.always() callback function 379
.always(callback) method 402
.always() handler 342
:animated selector 290, 386
.animate() method 99, 295, 302
.animate(properties, options) method 394
.animate(properties, [speed], [easing],

[callback]) method 394
.append(content) method 397
.appendTo() method 124
.appendTo(selector) method 397
[attr^="value"] 385
[attr!="value"] 385
[attr:="value"] 385
[attr="value"] 385
[attr|="value"] 385
[attr~="value"] 385
[attr$="value"] 385
.attr() function 327
.attr(key, fn) method 395
.attr(key) method 395
.attr(key, value) method 395
.attr() method 117, 119, 121, 327
.attr(obj) method 395
[attr] selector 385
.before(content) method 398
.before() method 130
.bind(type, [data], handler) method 390
.blur(handler) method 391

.blur() method 393
<body> element 26
:button selector 39, 386
.change(handler) method 391
.change() method 393
:checkbox selector 385
:checked selector 40, 386
.children([selector]) method 387
.class selector 383
.clearQueue([queueName]) method 394
.click() handler 89, 275
.click(handler) method 391
.click() method 393
.clone([withHandlers],

[deepWithHandlers]) method 399
._close() method 232
.closest() method 260, 264, 271
.closest(selector) method 388
.collapse suffix 75
.complete properties 351
:contains() custom selector 245
:containsExactly() selector 264
:contains(text) selector 386
.contents() method 387
.css(key) method 396
.css(key, value) method 396
.css() method 85, 86, 88, 117, 327
.css(obj) method 396
.data(key) method 399
.data(key, value) method 399
.data() method 232, 312, 313, 371
.dblclick(handler) method 391
.dblclick() method 393
_default 281
.delay(duration, [queueName]) method 395
.delay.promise([queueName], [target])

method 395
.delegate() method 272
.delegate(selector, handlers) method 390
.delegate(selector, type, [data], handler)

method 390
.dequeue([queueName]) method 394
.detach([selector]) method 398
:disabled selector 39, 386
.done(callback) method 402
.done() handler 341, 342
.each() callback 366

[407]

.each(callback) method 389

.empty() method 398
:empty selector 386
:enabled selector 39, 386
.end() method 258, 389
:eq(index) selector 385
.eq() method 93, 256
.error(handler) method 391
.error() method 393
:even selector 46, 384
.fadeIn() effect 96
.fadeIn([speed], [callback]) method 394
.fadeOut() effect 96
.fadeOut([speed], [callback]) method 394
.fadeToggle([speed], [callback]) method 394
.fadeTo(speed, opacity, [callback])

method 394
.fail(callback) method 402
.fail() handler 342
.fail() method 170, 297
:file selector 385
.filter() method 40, 41, 245
.find() method 245
.find(selector) method 387
.finish([queueName]) method 395
:first-child selector 384
:first-of-type selector 384
:first selector 384
.focus(handler) method 391
.focusin(handler) method 391
.focus() method 393
.focusout(handler) method 391
:focus selector 386
.getElementById() method 253
.getElementsByClassName() method 253
.getElementsByTagName() method 253
.get(index) method 389
.getJSON() method 169
.get() method 46, 389
:gt(index) selector 385
:has(a) selector 386
.hasClass(class) method 396
.hasClass() method 220
:has() custom selector 244
<head> element 26
:header selector 386
.height() method 397

:hidden selector 386
.hide(duration) method 94
.hide() method 91-93, 393
.hide(speed, [callback]) method 394
.hover() 67
.hover(enter, leave) method 392
.hover() method 64, 269
<html> element 26
.html() method 136, 396
.html(value) method 396
#id selector 383
:image selector 385
.index() call 311
.index(element) method 389
.index() method 389
.innerHeight() method 397
.innerWidth() method 397
<input> button 366
:input selector 39
.insertAfter() method 124
.insertAfter(selector) method 398
.insertBefore() method 124
.insertBefore(selector) method 398
.isRejected() method 402
.isResolved() method 402
.is(selector) method 389
.join() call 336
.keydown(handler) method 391
.keydown() method 393
.keypress(handler) method 391
.keypress() method 393
.keyup(handler) method 391
.keyup() method 393
:lang(language) selector 386
:last-child pseudo-class 264
:last-child selector 384
.last() method 264
:last-of-type selector 384
:last pseudo-class 264
:last selector 384
.length method 389
.load(handler) method 391
.load() method 145, 169, 179
.load(url, [data], [callback]) method 399
:lt(index) selector 385
.map(callback) method 389
.mousedown() event 83

[408]

.mousedown(handler) method 391

.mouseenter(handler) method 391

.mouseleave(handler) method 392

.mousemove(handler) method 392

.mouseout(handler) method 392

.mouseover(handler) method 392

.mouseup() event 83

.mouseup(handler) method 392

.naturalWidth properties 351

.nextAll() method 43

.nextAll([selector]) method 387

.next() method 42

.next([selector]) method 387

.nextUntil([selector], [filter]) method 387
:not(a) selector 384
.notify([args]) method 402
.not() method 245, 246
:nth-child(even) selector 384
:nth-child(formula) selector 384
:nth-child(index) selector 384
:nth-child(odd) selector 384
:nth-child() pseudo-class 247, 264
:nth-child() selector 46
:nth-last-child() selector 384
:nth-last-of-type() selector 384
:nth-of-type() selector 384
:odd selector 384
:odd selector 46
.offset() method 278, 397
.offsetParent() method 388
.off(type, [selector], [handler]) method 390
.on() call 274
.one(type, [data], handler) method 390
.on(events, [selector], [data]) method 390
.onload attribute 51
:only-child selector 384
:only-of-type() selector 384
.on() method 55, 172, 209
.on(type, [selector], [data], handler) method

390
._open() method 232
.outerHeight(includeMargin) method 397
.outerWidth(includeMargin) method 397
:parent selector 386
.parent([selector]) method 388
.parents() method 264
.parents([selector]) method 388

.parentsUntil([selector], [filter]) method 388
:password selector 385
.pipe([doneFilter], [failFilter]) method 402
.position() method 397
.prepend(content) method 398
.prependTo() method 124
.prependTo(selector) method 398
.prevAll() method 43
.prevAll([selector]) method 388
.preventDefault() method 94
.preventDefault() statement 244
.prev() method 43
.prevObject property 258
.prev([selector]) method 387
.prevUntil([selector], [filter]) method 388
.progress(callback) method 402
.promise([target]) method 402
.prop(key, fn) method 395
.prop(key) method 395
.prop(key, value) method 395
.prop() method 121, 327
.prop(obj) method 395
.pushStack(elements) method 389
.querySelectorAll() method 253
.queue() method 111
.queue([queueName], callback) method 394
.queue([queueName]) method 394
.queue([queueName], newQueue) method

394
:radio selector 385
.ready() callback

argument, passing to 53
.ready() handler 363
.ready(handler) method 390
.ready() method

about 17, 53
alternate syntax for 52

.reject() method 297

.rejectWith(context, [args]) method 402

.removeAttr(key) method 395

.removeClass(class) method 395

.removeClass() method 16, 60, 61, 115

.removeData(key) method 399

.removeData() method 313

.removeProp(key) method 395

.remove([selector]) method 398

.replaceAll(selector) method 398

[409]

.replaceWith(content) method 398
:reset selector 386
.resize(handler) method 392
.resolve([args]) method 401
.resolve() method 297
.resolveWith(context, [args]) method 402
.responseText 339
.responseXML 339
:root selector 386
.scroll(handler) method 392
.scrollLeft() method 397
.scrollLeft(value) method 397
.scrollTop() method 278, 397
.scrollTop(value) method 397
:selected selector 386
:selected selector 40
.select(handler) method 392
.select() method 393
.send() method 350, 351
.serialize() method 165
.setRequestHeader() 339
.shadow() plugin 234
.show(duration) method 94
.show() method 91, 92, 93, 393
.show(speed, [callback]) method 393
.siblings() method 43
.slideDown() method 96, 97, 111
.slideDown([speed], [callback]) method 394
.slider() method 196
.slideToggle() method 98, 100
.slideToggle([speed], [callback])

method 394
.slideUp() method 96, 97
.slideUp([speed], [callback]) method 394
.sort() call 312
.sort() method 310
.state() method 402
.status property 338, 339
.statusText 339
.stop([clearQueue], [jumpToEnd])

method 395
.stop() method 292
.stopPropagation() method 69, 70
.submit() method 393
:submit selector 385
.swapClass() method 219
.switchClass() method 219

:target selector 386
.text() method 98, 119, 137, 396
:text selector 385
.text(value) method 396
.then(doneCallbacks, failCallbacks)

method 402
.toArray() method 389
.toggleClass(class) method 396
.toggleClass() method 63, 115, 191
.toggle([speed], [callback]) method 394
.trigger() call 274
.triggerHandler(type, [data]) method 392
.trigger() method 79
.trigger(type, [data]) method 392
.unbind([type], [handler]) method 390
.undelegate() method 272
.undelegate(selector, type, [handler])

method 391
.unload(handler) method 392
.unwrap() method 399
.val() method 327, 396
.val(value) method 396
:visible selector 386
.which property 80
.width() method 397
.width properties 351
.width(value) method 397
.wrap(content) method 398
.wrapInner(content) method 398
.wrapInner() method 309

A
a + b selector 383
a > b selector 383
a ~ b selector 383
a b selector 383
a, b selector 383
accepts property 344
add 281
advanced easing function 191
a.html 143, 145
Ajax

about 9, 141, 339-341
alternate transports, defining 350-352
and events 172
data type converters 344-349

[410]

errors, handling 337-339
prefilters, adding 349
progressive enhancement,

implementing 331-336
used, for sorting sorting 306, 307

Ajax methods
configuring 400
requests, issuing 399, 400
requests, monitoring 400
utilities 401

Ajax requests
different context, delivering 166, 167
throttling 342

alt attribute 31
always() method 298
ancestors 388
animations

about 287-290
CSS, positioning with 103, 104
custom animations, creating 99, 100
effects, building by hand 100
fine-grained control, taking 301, 302
halting animations, caution 292
multiple properties, animating at once 101,

102, 103
observing 290, 291
running animation, halting 291, 292
state, determining 290

anonymous function expression 76
Application Programming Interface (API) 8
array-handling functions 212
array notation 316
arrays and objects 403
arr.sort() method 310
asterisk (*) 32
Asynchronous HTTP and HTML

(AHAH) 143
Asynchronous JavaScript and XML. See

Ajax
Asynchronous testing 379
asyncTest() 379
attributes

about 385
non-class attributes 116, 117
shorthand element-creation syntax,

using 326
attribute selectors

about 31
links, styling 32, 33

B
back to top link 122
beginning (^) 32
behavior queuing 60
binding 390
binding handlers

in loops 364, 366
bodyClass variable 62
bubble sort 312
bubbles up 66
buildItem() function 336
buildRow() function 322, 323
buildRows() function 321
built-in event-delegation

delegation capabilities, using 74

C
caching

used, for improving DOM traversal
performance 262, 263

callback() function 226, 351
Cascading Style Sheets. See CSS
chaining

about 44
used, for improving DOM traversal

performance 261, 262
checkScrollPosition() function 277-280
Chrome Developer Tools

about 20, 22, 120
console.log() function 23
Console tab 22
Elements tab 20
JavaScript alert() function 23
Sources tab 21
URL 19, 20

class animations 190
class selector 27
click handler 325, 363, 366, 370
closures

$(document).ready(), arguments passing
to 362

about 360, 361
creating, in jQuery 361

[411]

event handlers, assigning 362, 363
handlers, binding in loops 364-366
names, assigning to functions 366

code example
URL, for downloading 29

color animations 189, 190
comparator function 310
computed style property values

setting 88-91
console.log() function 23, 83
console.log() method 22
Console tab 22
content

abou 396
getter method 136, 137
setter method 136, 137

Content Delivery Networks (CDNs) 11
contents property 344
copying 399
copyOffset callback 228
copyOffset() function 226
counter variable 364
CSS

about 7, 25, 396
modifying, with inline properties 85-87
vendor-specific style properties, using 91

CSS hook
URL 329
writing 328, 329

CSS selector engine 241
CSS selectors

about 28, 29
list-item levels, styling 30

custom events
.offset() method 278
.scrollTop() method 278
defining 274-276
infinite scrolling 276, 277
parameters 278, 279
scrollToVisible parameter 278, 279

custom selectors
about 34, 186, 187
alternate rows, styling 35-38
form selectors 39
textual content based elements, finding 38,

39
Cycle plugin 182, 184

D
data

about 399
format, selecting 156, 157
form, serializing 163-165
GET request, performing 158-162
loading, on demand 142, 143
passing, to server 158
POST request, performing 162

deepEqual() function 380
Default button 90
defaultValue property 121
Deferred objects

animation promises 298-301
methods 401, 402
object, creation 401
promise objects, methods 402
using 297, 298

descendants 387
development tools

using 19, 20
Dimensions 397
docco

URL 238
document

changes, animating 9
content, altering 8
elements, accessing 8
setting up 374

document.addEventListener() method 52
Document Object Model. See DOM
dollar ($) alias

using, in plugins 211, 212
DOM

$() function, using 26, 27
<body> element 26
<head> element 26
<html> element 26
about 25, 26
element properties 120, 121
elements, accessing 45, 46
loops between, managing 369, 370
manipulation hooks 327
manipulation, methods 138, 139
specific cells, styling 42-44
traversal methods 40, 41

[412]

DOMContentLoaded event 52
DOM elements

sorting 310-312
dominator.js

URL 381
DOM manipulation methods

attributes and properties 395, 396
content 396
copying 399
CSS 396
data 399
dimensions 397
insertion 397, 398
removal 398
replacement 398

DOM traversal
about 256
DOM element stack 258, 259
jQuery object, properties 256-258
method, writing 259-261
performance 261
performance improving, caching

used 262, 263
performance improving, chaining

used 261, 262
plugin, writing 259-261

DOM traversal methods
about 386
ancestors 388
collection manipulation 389
descendants 387
filtering 387
selected element 389
siblings 387

DOM tree manipulation
$() function 122
about 121
elements, moving 124-126
elements, wrapping 126, 127
explicit iterator 127, 128
inverted insertion methods 129-132
new elements, creating 122, 123
new elements, inserting 123, 124

done() method 297
dot notation 316
Download Theme button 197
dox

URL 238
duration 94
dynamic table filtering 243, 244

E
effect methods

about 111
custom animations 394
Predefined effects 393
queue manipulation 394, 395

effects
disabling 293
duration, defining 293-296

element parameter 251
elements

copying 132, 133
creating 122, 123
hiding 91-94
inserting 123, 124
JavaScript arrays, sorting 310
links, adding around existing text 309
moving 124-126
showing 91-94
wrapping 126, 127

element selector 383
elements, multiple set

about 109, 110
callbacks, queuing with 111-113
effects 113

elements, single set
about 105
effects 113
effects, queuing manually 107, 108
queue, bypassing 106

Elements tab 20
end ($) 32
equal() test 376, 378
error

handling 170, 171
eval() call 173
event bubbling 66, 67

side effects 67
event capturing 66
event context 60, 61
event delegation 71-73, 271
event handler

[413]

about 74, 362, 363
context, using 58, 60
events, rebinding 76, 77
namespaces, giving 75

event methods
about 390
bindings 390
Shorthand binding 391, 392
Shorthand triggering 393
triggering 392
utility 393

event namespacing 75
event object

.stopPropagation() method 69
about 67, 69
built-in event-delegation capabilities,

using 74
default actions, preventing 70, 71
event delegation 71-73
event targets 69
using, in handlers 68

events
about 265
additional data pages, adding 267-269
and Ajax 172
custom events, defining 274, 276
data, displaying on hover 269, 270
delegation 271
extending 281, 282
journey 65, 66
propogation 64, 65
special events 284
throttling 279, 280
throttling, ways 280

events delegation
early delegating 273, 274
jQuery's delegation capabilities, using 272
scope, selecting 272, 273

event targets 69
exclamation mark (!) 32
expando properties 313
expect() test 376
explicit iterator 127, 128
expr object 250

F

factory method 229
fading in 95, 96
fading out 95, 96
fast speed 94
filtering

about 387
and striping, combining 248, 249
functions 247

Firebug for Firefox
URL 19

fnRef() 360
for loop 365
for() loop 213
forms

about 385, 386
serializing 163, 164

form selectors
:button 39
:checked 40
:disabled 39
:enabled 39
:input 39
:selected 40

functional testing 380
function declaration 76
function reference 76
functions

adding, to jQuery namespace 212
names, giving 366, 367

FuncUnit
URL 381

G
get method 329
GET request

performing 158, 160-162
getter method 136, 137
GitHub

URL 181, 238
global .ajaxError() method 170
global effect properties

using 292
global functions

about 187
adding 212-214
global jQuery object, extending 216

[414]

isolating, within namespaces 217, 218
multiple functions, adding 215

global jQuery functions
using 148, 149

global jQuery object
extending 216

glowColor property 328
graceful degradation 309

H
hooks

finding 329
horizontal class 376
HTML

appending 143-146
HTML5

custom data attributes 198
custom data attributes, using 318-321

HTML5 data-* attributes 318, 320
HTML document

jQuery, setting up 12-14
HTML page

parts, loading 177-179

I
ID selector 27
if-else statement 98
image

size, altering 289
img transport 352
immediately invoked function expression

(IIFE) 274, 365
implicit iteration 60
index parameter 247, 251
inline properties

CSS, modifying with 85-87
innerFn() 356
inner functions

callng, from elsewhere 356-358
creating 355, 356
fnRef() 360
innerFn() 356
outerFn() 356
variable function 358-360

insertion 397
interaction components 193

Internet Explorer Developer Tools
URL 19

inverted insertion methods 129-132
Invoked Function Expression (IIFE) 211

J
JavaScript

about 49, 141
loops between, managing 369, 370
versus jQuery 18, 19

JavaScript alert() function 23
JavaScript arrays

sorting 310
JavaScript Object Notation. See JSON
JavaScript objects

about 146
global jQuery functions, using 148, 149
JSON, retrieving 147, 148
script, executing 152

JavaScript tasks 9
jQuery

about 8
API documentation, URL 34
closures, creating 361
code, adding 15
documentation, URL 46, 47, 82, 83
document changes, animating 9
document content, altering 8
downloading 11
elements in document, accessing 8
features 8, 9
information, retrieving from server 9
JavaScript tasks, simplifying 9
project documentation, URL 10
setting up, in HTML document 12-14
user interaction, responding to 8
versions 12
versus JavaScript 18, 19
web page appearance, modifying 8
website, URL 11
working 9, 10

jQuery $.each() function 365
jQuery code

executing 16, 17
new class, injecting 16
poem text, finding 16

[415]

jQuery Learning Center's
documentation, URL 284

jQuery Migrate plugin
URL 12

jQuery Mobile plugin library
.on() method 209
about 197
advanced features 209
HTML 5, custom data attributes 198
interactive elements 205
list views 206, 207
mobile navigation 198-203
multiple pages, delivering in one

document 204, 205
PhoneGap integration 209
theming 209
toolbar buttons 208

jQuery namespace
about 212
function, adding to 212

jQuery.noConflict() 52
jQuery object

properties 403
jQuery object methods

adding 218
chaining, enabling 221, 222
context 219, 220
implicit iteration 220, 221

jQuery Plugin Registry
URL 238

jQuery UI modules
URL 189

jQuery UI plugin library
about 188, 189
additional effects 191
advanced easing function 191
class animations 190
color animations 189, 190
effects 189
interaction components 192-194
jQuery UI ThemeRoller 197
widgets 194, 195

jQuery UI ThemeRoller 197
jQuery UI widget factory

submethods, adding 235
used, for creating plugins 229
widget, creating 229-232

widget events, triggering 236
widget options, accepting 234, 235
widgets, destroying 232, 233
widgets, disabling 233
widgets, enabling 233

jqXHR object
using 339

JSDoc
URL 238

JSON
content, rebuilding on demand 324, 325
object, modifying 323
retrieving 147, 148
rows, building 321, 322
rows, sorting 321, 322

JSONP
data 334-337
using, for remote data 174

jsPerf
URL 252

K
keyboard events 79

L
lexicographically 310
links

adding, around existing text 309
class, adding for e-mail links 32
styling 32

Listing 10.13 281
list-item levels

styling 30
list views 206, 207
loops

between DOM, managing 369, 370
between JavaScript, managing 369, 370
binding handlers 364, 365

low-level Ajax method 176

M
manipulation hooks, DOM

$.attrHooks hook 327
$.cssHooks hook 327
$.propHooks hook 327

[416]

$.valHooks hook 327
about 327

matches parameter 251
mathUtils object 217
memory leak hazards

handling 367, 368
micro-optimization 252
miscellaneous selectors 386
mobile navigation 198, 200, 201
module 375
mouseenter event 67, 271
mouseleave event 67, 271, 290
mouseout event 67, 271
mouseover event 271
Multiproperty easing 296, 297

N
next() function 108
nextPage event 275
nextPage handler 276
non-class attributes

about 116, 117
value callbacks 118, 119

non-string data
storing 314-316

Not a Number (NaM) 314
notDeepEqual() function 380
notEqual() function 380

O
object introspection 403, 404
object literal 80
onclick property 370
onload event 50
onload handler 50, 52
onunload hander 370
Opera Dragonfly

URL 19
options object 223, 224
options property 234
outerFn() 356

P
page

load task, performing 49, 50

multiple scripts on one page, handling 51
parseFloat() function 89, 314
Pause button 188
pdflink class 33
PhoneGap integration 209
photo gallery

creating 265, 266
plugins

about 181-186
callback functions 225-227
custom selectors 186, 187
Cycle plugin 182
defaults, customizable 227, 228
design, recommendations 237
distributing 238
dollar ($) alias, using 211, 212
global function plugins 187, 188
method, calling 183, 184
method parameters, specifying 184
options object 223, 224
parameter defaults, modifying 185, 186
parameter values 224, 225
using 182

POST request
performing 162

prefilters, Ajax
abou 302
adding 349

premature optimization 252
prepRows() function 323
progress() function 302
progressive enhancement

URL 28
promise objects

method 402
pseudo-class 250
pull quotes

cloning for 133-135

Q
queued effects

versus simultaneous effects 105
quick sort 312
QUnit

document, setting up 374
URL, for downloading 374

[417]

website, URL 380
QUnit Cookbook

URL 381

R
refactoring 60
reference loops

about 368, 369
with jQuery 370

removal 398
remove 281
replacement 398
requestAnimationFrame() approach 302
Request button 332
rows

building, with JSON 321, 322
sorting, with JSON 321, 322

S
Safari Web Inspector

URL 19
scroll handler 282
scrollToVisible parameter 278, 279
selected class 58
selectedIndex property 121
selector expressions

about 383
attributes 385
forms 385
matched elements, positions among 384
miscellaneous selectors 386
siblings, positions among 384
Simple CSS 383

selectors
customizing 250
custom selector plugin, writing 250, 251
optimizing 250
performance 252
The Sizzle selector implementation 253
speed, testing 254-256

Selenium
URL 381

server
data, passing to 158

setInterval() function 281
set method 329

set parameter 251
setter method 136, 137
setup 281
setup callback 282
setup() callback function 378
shake behavior 192
Shorthand binding 391, 392
shorthand element-creation syntax

using 326, 327
shorthand events 62
Shorthand triggering 393
showBio() function 298, 299
showDetails() function 296, 298, 300
siblings 387
simple events

about 53
event handler context, using 58, 59
other buttons, enabling 56, 57
switcher 54-56

simultaneous effects
queued effects 105

Sizzle
about 241
selector implementation 253

Sjax 146
slide callback 196
slow speed 94
Smaller button 89
sort-alpha class 310
sort class 310
sortDirection variable 317, 318
sorting

tables, Ajax used 306, 307
tables, on server 306
tables, within browser 307, 308

Sources tab 21
specialEasing option 297
speed. See also duration
speed

about 94
fast speed 94
including, in example 95
slow speed 94

stack 258
step() function 301
strictEqual() function 380
stripe() 249

[418]

striping
and filtering, combining 248, 249

submit(handler) method 392
sum method 212

T
table rows

striping 246, 247
tables

on server, sorting 306
sorting, Ajax used 306, 307
sorting, within browser 307, 308
within browser, sorting 307, 308

tag name selector 27
teardown 281, 282
tests

adding 376-378
Asynchronous testing 379, 380
organizing 375
running 376-378
types 380

textual content
based elements, finding 38, 39

theming 209
this keyword 221
throws() function 380
timeout option 185
timestamp 315
title attribute 31, 118
toggleSwitcher handler 77
toggling

visibility 97, 98
traversal. See DOM traversal
traversal methods, DOM

chaining 44
specific cells, styling 42-44

trigerring 392

U
unit testing 380

URL 381
user interaction

about 78, 79
responding to 8

V

value callbacks 118, 119
variable scope 358, 359
vendor-specific style properties

using 91

W
web page

appearance, modifying 8
widget

about 229
creating 229-231
destroying 232, 233
disabling 233
enabling 233
events, trigerring 236
options, accepting 234, 235
submethods, adding 235

widgets 194-196
window.onload event 49, 50
World Wide Web. See WWW
wrapping methods 126
WWW

about 7
URL 28

X
XAMPP

URL 158
XML document

loading 153-156
XMLHttpRequest object 141, 339

Y
Yahoo Weather

URL 157
YAML

URL 344
YAML file 344
yaml.js file 346

Thank you for buying
Learning jQuery Fourth Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

jQuery Mobile Web Development
Essentials
ISBN: 978-1-849517-263- Paperback: 246 pages

Learn to use the touch-optimized, croess device,
cross-platform jQM web framework for smartphones
and tablets

1.	 Create websites that work beautifully on a wide
range of mobile devices with jQuery mobile

2.	 Learn to prepare your jQuery mobile project by
learning through three sample applications

3.	 Packed with easy to follow examples and
clear explanations of how to easily build
mobile-optimized websites

jQuery Tools UI Library
ISBN: 978-1-84951-780-5 Paperback: 112 pages

Learn jQuery Tools with clear, practical examplers
and get inspiration for developing your own ideas
with the library

1.	 Learn how to use jQuery Tools, with clear,
practical projects that you can use today in
your websites

2.	 Learn how to use useful tools such as Overlay,
Scrollable, Tabs and Tooltips

3.	 Full of practical examples and illustrations,
with code that you can use in your own
projects, straight from the book

Please check www.PacktPub.com for information on our titles

jQuery for Designers: Beginner’s
Guide
ISBN: 978-1-84951-670-9 Paperback: 332 pages

An approchable introduction to wec design in jQuery
for non-programmers

1.	 Enhance the user experience of your site by
adding useful jQuery features

2.	 Learn the basics of adding impressive jQuery
effects and animations even if you've never
written a line of JavaScript

3.	 Easy step-by-step approach shows you
everything you need to know to get started
improving your website with jQuery

jQuery UI 1.8: The User Interface
Library for jQuery
ISBN: 978-1-84951-652-5 Paperback: 424 pages

Build highly interactive web application with
ready-to-use widgets from the jQuery Users
Interface Library

1.	 Packed with examples and clear explanations
of how to easily design elegant and powerful
front-end interfaces for your web applications

2.	 A section covering the widget factory including
an in-depth example on how to build a custom
jQuery UI widget

3.	 Updated code with significant changes and
fixes to the previous edition

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
	What jQuery does
	Why jQuery works well
	Making our first jQuery-powered web page
	Downloading jQuery
	Deciding on the version of jQuery to use
	Setting up jQuery in an HTML document
	Adding our jQuery code
	Finding the poem text
	Injecting the new class
	Executing the code

	The finished product

	Plain JavaScript versus jQuery
	Using development tools
	Chrome Developer Tools

	Summary

	Chapter 2: Selecting Elements
	Understanding the DOM
	Using the $() function
	CSS selectors
	Styling list-item levels

	Attribute selectors
	Styling links

	Custom selectors
	Styling alternate rows
	Finding elements based on textual content
	Form selectors

	DOM traversal methods
	Styling specific cells
	Chaining

	Accessing DOM elements
	Summary
	Further reading

	Exercises

	Chapter 3: Handling Events
	Performing tasks on page load
	Timing of code execution
	Handling multiple scripts on one page
	Alternate syntax for .ready()
	Passing an argument to the .ready() callback

	Handling simple events
	A simple style switcher
	Enabling the other buttons
	Making use of the event handler context
	Consolidating code using the event context
	Shorthand events
	Showing and hiding advanced features

	Event propagation
	The journey of an event
	Side effects of event bubbling

	Altering the journey – the event object
	Event targets
	Stopping event propagation
	Preventing default actions
	Delegating events
	Using built-in event-delegation capabilities

	Removing an event handler
	Giving namespaces to event handlers
	Rebinding events

	Simulating user interaction
	Reacting to keyboard events

	Summary
	Further reading

	Exercises

	Chapter 4: Styling and Animating
	Modifying CSS with inline properties
	Setting computed style-property values
	Using vendor-specific style properties

	Hiding and showing elements
	Effects and duration
	Speeding in
	Fading in and fading out
	Sliding up and sliding down
	Toggling visibility

	Creating custom animations
	Building effects by hand
	Animating multiple properties at once
	Positioning with CSS

	Simultaneous versus queued effects
	Working with a single set of elements
	Bypassing the queue
	Queuing effects manually

	Working with multiple sets of elements
	Queuing with callbacks

	In a nutshell

	Summary
	Further reading

	Exercises

	Chapter 5: Manipulating the DOM
	Manipulating attributes and properties
	Non-class attributes
	Value callbacks

	DOM element properties
	The value of form controls

	DOM tree manipulation
	The $() function revisited
	Creating new elements
	Inserting new elements
	Moving elements
	Wrapping elements
	Explicit iteration

	Using inverted insertion methods

	Copying elements
	Cloning for pull quotes

	Content getter and setter methods
	DOM manipulation methods in a nutshell
	Summary
	Further reading

	Exercises

	Chapter 6: Sending Data with Ajax
	Loading data on demand
	Appending HTML
	Working with JavaScript objects
	Retrieving JSON
	Using global jQuery functions
	Executing a script

	Loading an XML document

	Choosing a data format
	Passing data to the server
	Performing a GET request
	Performing a POST request
	Serializing a form

	Delivering different content for
Ajax requests
	Keeping an eye on the request
	Error handling
	Ajax and events
	Security limitations
	Using JSONP for remote data

	Exploring additional options
	The low-level Ajax method
	Modifying default options
	Loading parts of an HTML page

	Summary
	Further reading

	Exercises

	Chapter 7: Using Plugins
	Finding plugins and help
	Using a plugin
	Downloading and referencing the Cycle plugin
	Calling a plugin method
	Specifying plugin method parameters
	Modifying parameter defaults

	Other types of plugins
	Custom selectors
	Global function plugins

	The jQuery UI plugin library
	Effects
	Color animations
	Class animations
	Advanced easing
	Additional effects

	Interaction components
	Widgets
	jQuery UI ThemeRoller

	The jQuery Mobile plugin library
	HTML5 custom data attributes
	Mobile navigation
	Delivering multiple pages in one document
	Interactive elements
	List views
	Toolbar buttons

	Advanced features

	Summary
	Exercises

	Chapter 8: Developing Plugins
	Using the dollar ($) alias in plugins
	Adding new global functions
	Adding multiple functions
	Extending the global jQuery object
	Isolating functions within namespaces

	Adding jQuery object methods
	Object method context
	Implicit iteration
	Enabling method chaining

	Providing flexible method parameters
	The options object
	Default parameter values
	Callback functions
	Customizable defaults

	Creating plugins with the jQuery UI widget factory
	Creating a widget
	Destroying widgets
	Enabling and disabling widgets
	Accepting widget options
	Adding submethods
	Triggering widget events

	Plugin design recommendations
	Distributing a plugin

	Summary
	Exercises

	Chapter 9: Advanced Selectors and Traversing
	Selecting and traversing revisited
	Dynamic table filtering
	Striping table rows
	Combining filtering and striping
	More selectors and traversal methods

	Customizing and optimizing selectors
	Writing a custom selector plugin
	Selector performance
	The Sizzle selector implementation
	Testing selector speed

	DOM traversal under the hood
	jQuery object properties
	The DOM element stack
	Writing a DOM traversal method plugin
	DOM traversal performance
	Improving performance using chaining
	Improving performance with caching

	Summary
	Further reading

	Exercises

	Chapter 10: Advanced Events
	Revisiting events
	Loading additional pages of data
	Displaying data on hovering

	Event delegation
	Using jQuery's delegation capabilities
	Choosing a delegation scope
	Delegating early

	Defining custom events
	Infinite scrolling
	Custom event parameters

	Throttling events
	Other ways to perform throttling

	Extending events
	More about special events

	Summary
	Further reading
	Exercises

	Chapter 11: Advanced Effects
	Animation revisited
	Observing and interrupting animations
	Determining the animation state
	Halting a running animation
	Caution when halting animations

	Using global effect properties
	Disabling all effects
	Defining effect durations

	Multiproperty easing
	Using deferred objects
	Animation promises

	Taking fine-grained control of animations
	Summary
	Further reading

	Exercises

	Chapter 12: Advanced DOM Manipulation
	Sorting table rows
	Sorting tables on the server
	Sorting tables using Ajax
	Sorting tables within the browser

	Moving and inserting elements revisited
	Adding links around existing text
	Sorting simple JavaScript arrays
	Sorting DOM elements

	Storing data alongside DOM elements
	Performing additional precomputation
	Storing non-string data
	Alternating sort directions

	Using HTML5 custom data attributes
	Sorting and building rows with JSON
	Modifying the JSON object
	Rebuilding content on demand

	Revisiting attribute manipulation
	Using shorthand element-creation syntax
	DOM manipulation hooks
	Writing a CSS hook

	Summary
	Further reading

	Exercises

	Chapter 13: Advanced Ajax
	Implementing progressive enhancement with Ajax
	Harvesting JSONP data

	Handling Ajax errors
	Using the jqXHR object
	Ajax promises
	Caching responses

	Throttling Ajax requests
	Extending Ajax capabilities
	Data type converters
	Adding Ajax prefilters
	Defining alternate transports

	Summary
	Further reading

	Exercises

	Appendix A: JavaScript Closures
	Creating inner functions
	Calling inner functions from elsewhere
	Understanding variable scope

	Handling interactions between closures
	Creating closures in jQuery
	Passing arguments to $(document).ready()
	Assigning event handlers
	Binding handlers in loops
	Giving names to functions

	Handling memory-leak hazards
	Avoiding accidental reference loops
	Managing loops between the DOM and JavaScript
	Disentangling reference loops with jQuery

	Summary

	Appendix B: Testing JavaScript with QUnit
	Downloading QUnit
	Setting up the document
	Organizing tests
	Adding and running tests
	Asynchronous testing

	Other types of tests
	Practical considerations
	Further reading

	Summary

	Appendix C: Quick Reference
	Selector expressions
	Simple CSS
	Position among siblings
	Position among matched elements
	Attributes
	Forms
	Miscellaneous selectors

	DOM traversal methods
	Filtering
	Descendants
	Siblings
	Ancestors
	Collection manipulation
	Working with selected elements

	Event methods
	Binding
	Shorthand binding
	Triggering
	Shorthand triggering
	Utility

	Effect methods
	Predefined effects
	Custom animations
	Queue manipulation

	DOM manipulation methods
	Attributes and properties
	Content
	CSS
	Dimensions
	Insertion
	Replacement
	Removal
	Copying
	Data

	Ajax methods
	Issuing requests
	Request monitoring
	Configuration
	Utilities

	Deferred objects
	Object creation
	Methods of deferred objects
	Methods of promise objects

	Miscellaneous properties and functions
	Properties of the jQuery object
	Arrays and objects
	Object introspection
	Other

	Index

