

JavaScriptTM

in 10 Simple Steps or Less

01 542419 FM.qxd 11/19/03 10:28 AM Page i

01 542419 FM.qxd 11/19/03 10:28 AM Page ii

JavaScriptTM

in 10 Simple Steps or Less

Arman Danesh

01 542419 FM.qxd 11/19/03 10:28 AM Page iii

JavaScriptTM in 10 Simple Steps or Less

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2004 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

Library of Congress Control Number: 2003114066

ISBN: 0-7645-4241-9

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1Q/QZ/RS/QT/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sec-
tions 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Cen-
ter, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher
for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd.,
Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, E-mail: permcoordinator@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or completeness of
the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a par-
ticular purpose. No warranty may be created or extended by sales representatives or written sales materials. The
advice and strategies contained herein may not be suitable for your situation. You should consult with a profes-
sional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other com-
mercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or to obtain technical support, please contact our
Customer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317)
572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Trademarks: Wiley, the Wiley Publishing logo, and related trade dress are trademarks or registered trademarks
of John Wiley & Sons, Inc. and/or its affiliates in the United States and other countries, and may not be used
without written permission. JavaScript is a trademark of Sun Microsystems, Inc. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc. is not associated with any product or vendor men-
tioned in this book.

01 542419 FM.qxd 11/19/03 10:28 AM Page iv

To my beloved Tahirih for her support and encouragement.

01 542419 FM.qxd 11/19/03 10:28 AM Page v

Credits

Acquisitions Editor
Jim Minatel

Development Editor
Sharon Nash

Production Editor
Felicia Robinson

Technical Editor
Will Kelly

Copy Editor
Joanne Slike

Editorial Manager
Kathryn Malm

Vice President & Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Robert Ipsen

Vice President and Publisher
Joseph B. Wikert

Project Coordinator
Courtney MacIntyre

Graphics and Production Specialists
Elizabeth Brooks, Joyce Haughey, Jennifer Heleine,
LeAndra Hosier, Heather Pope, Mary Gillot Virgin

Quality Control Technician
John Tyler Connoley, John Greenough,
Charles Spencer

Proofreading and Indexing
Sossity R. Smith, Johnna VanHoose

01 542419 FM.qxd 11/19/03 10:28 AM Page vi

About the Author

Arman Danesh is the Internet Coordinator for the Bahá’í International Community’s Office of Public
Information. In that capacity, he manages the development of numerous Web sites, including The Bahá’í
World (www.bahai.org), the official Web site of the Bahá’í Faith, and the Bahá’í World News Services
(www.bahaiworldnews.org), an online news service, both of which use JavaScript. Additionally, he is the
Technical Director for Juxta Publishing Limited (www.juxta.com). He has been working with JavaScript
since the mid-1990s and is the author of some of the earliest books on the subject, including Teach Yourself
JavaScript in a Week and JavaScript Developer’s Guide. Arman has authored more than 20 books on tech-
nology subjects, including ColdFusion MX Developer’s Handbook (Sybex), Mastering ColdFusion MX (Sybex),
SAIR Linux & Gnu Certified Administrator All-in-One Exam Guide (Osborne/McGraw-Hill), and Safe and
Secure: Secure Your Home Network and Protect Your Privacy Online (Sams). He is pursuing an advanced
degree in computer science at Simon Fraser University outside Vancouver, British Columbia.

01 542419 FM.qxd 11/19/03 10:28 AM Page vii

01 542419 FM.qxd 11/19/03 10:28 AM Page viii

Acknowledgments

The task of writing these long computer books is a daunting one, and it is a process that requires
significant contributions from many people who help these projects see their way to completion.

For this project, I need to thank the entire team, including Sharon Nash and Jim Minatel at Wiley, as
well as all the myriad others involved in preparing, designing, and producing the books there.

I also need to thank my family for their patience during the writing of the book. In particular, my wife,
Tahirih, and son, Ethan, deserve credit for tolerating the time I had to devote to the preparation of
this book.

01 542419 FM.qxd 11/19/03 10:28 AM Page ix

01 542419 FM.qxd 11/19/03 10:28 AM Page x

Contents

Credits vi

About the Author vii

Acknowledgments ix

Introduction xix

Part 1: JavaScript Basics 1
Task 1: Creating a script Block 2

Task 2: Hiding Your JavaScript Code 4

Task 3: Providing Alternatives to Your JavaScript Code 6

Task 4: Including Outside Source Code 8

Task 5: Commenting Your Scripts 10

Task 6: Writing a JavaScript Command 12

Task 7: Temporarily Removing a Command from a Script 14

Task 8: Using Curly Brackets 16

Task 9: Writing Output to the Browser 18

Task 10: Creating a Variable 20

Task 11: Outputting a Variable 22

Task 12: Creating a String 24

Task 13: Creating a Numeric Variable 26

Task 14: Performing Math 28

Task 15: Concatenating Strings 30

Task 16: Searching for Text in Strings 32

Task 17: Replacing Text in Strings 34

Task 18: Formatting Strings 36

Task 19: Applying Multiple Formatting Functions to a String 38

Task 20: Creating Arrays 40

Task 21: Populating an Array 42

Task 22: Sorting an Array 44

Task 23: Splitting a String at a Delimiter 46

Task 24: Calling Functions 48

01 542419 FM.qxd 11/19/03 10:28 AM Page xi

Task 25: Alerting the User 50

Task 26: Confirming with the User 52

Task 27: Creating Your Own Functions 54

Task 28: Passing an Argument to Your Functions 56

Task 29: Returning Values from Your Functions 58

Task 30: Passing Multiple Parameters to Your Functions 60

Task 31: Calling Functions from Tags 62

Task 32: Calling Your JavaScript Code after the Page Has Loaded 64

Task 33: Using for Loops 66

Task 34: Testing Conditions with if 68

Task 35: Using Short-Form Condition Testing 70

Task 36: Looping on a Condition 72

Task 37: Looping through an Array 74

Task 38: Scheduling a Function for Future Execution 76

Task 39: Scheduling a Function for Recurring Execution 78

Task 40: Canceling a Scheduled Function 80

Task 41: Adding Multiple Scripts to a Page 82

Task 42: Calling Your JavaScript Code after the Page Has Loaded 84

Task 43: Check If Java Is Enabled with JavaScript 86

Part 2: Outputting to the Browser 89
Task 44: Accessing the document Object 90

Task 45: Outputting Dynamic HTML 92

Task 46: Including New Lines in Output 94

Task 47: Outputting the Date to the Browser 96

Task 48: Outputting the Date and Time in a Selected Time Zone 98

Task 49: Controlling the Format of Date Output 100

Task 50: Customizing Output by the Time of Day 102

Task 51: Generating a Monthly Calendar 104

Task 52: Customizing Output Using URL Variables 106

Task 53: Dynamically Generating a Menu 108

Task 54: Replacing the Browser Document with a New Document 110

Task 55: Redirecting the User to a New Page 112

Task 56: Creating a “Page Loading ...” Placeholder 114

Part 3: Images and Rollovers 117
Task 57: Accessing an HTML-Embedded Image in JavaScript 118

Task 58: Loading an Image Using JavaScript 120

Task 59: Detecting MouseOver Events on Images 122

xii JavaScript in 10 Simple Steps or Less

01 542419 FM.qxd 11/19/03 10:28 AM Page xii

Task 60: Detecting Click Events on Images 124

Task 61: Switching an Image Programatically 126

Task 62: Using Multiple Rollovers in One Page 128

Task 63: Displaying a Random Image 130

Task 64: Displaying Multiple Random Images 132

Task 65: Using a Function to Create a Rollover 134

Task 66: Using a Function to Trigger a Rollover 136

Task 67: Using Functions to Create Multiple Rollovers in One Page 138

Task 68: Creating a Simple Rollover Menu System 140

Task 69: Creating a Slide Show in JavaScript 142

Task 70: Randomizing Your Slide Show 144

Task 71: Triggering Slide Show Transitions from Links 146

Task 72: Including Captions in a Slide Show 148

Task 73: Testing If an Image Is Loaded 150

Task 74: Triggering a Rollover in a Different Location with a Link 152

Task 75: Using Image Maps and Rollovers Together 154

Task 76: Generating Animated Banners in JavaScript 156

Task 77: Displaying a Random Banner Ad 158

Part 4: Working with Forms 161
Task 78: Preparing Your Forms for JavaScript 162

Task 79: Accessing Text Field Contents 164

Task 80: Dynamically Updating Text Fields 166

Task 81: Detecting Changes in Text Fields 168

Task 82: Accessing Selection Lists 170

Task 83: Programmatically Populating a Selection List 172

Task 84: Dynamically Changing Selection List Content 174

Task 85: Detecting Selections in Selection Lists 176

Task 86: Updating One Selection List Based on Selection in Another 178

Task 87: Using Radio Buttons instead of Selection Lists 180

Task 88: Detecting the Selected Radio Button 182

Task 89: Detecting Change of Radio Button Selection 184

Task 90: Updating or Changing Radio Button Selection 186

Task 91: Creating Check Boxes 188

Task 92: Detecting Check Box Selections 190

Task 93: Changing Check Box Selections 192

Task 94: Detecting Changes in Check Box Selections 194

Task 95: Verifying Form Fields in JavaScript 196

Task 96: Using the onSubmit Attribute of the Form Tag to Verify Form Fields 198

Contents xiii

01 542419 FM.qxd 11/19/03 10:28 AM Page xiii

Task 97: Verifying Form Fields Using INPUT TYPE=”button”
Instead of TYPE=”submit” 200

Task 98: Validating E-mail Addresses 202

Task 99: Validating Zip Codes 204

Task 100: Validating Phone Numbers 206

Task 101: Validating Credit Card Numbers 208

Task 102: Validating Selection List Choices 210

Task 103: Validating Radio Button Selections 212

Task 104: Validating Check Box Selections 214

Task 105: Validating Passwords 216

Task 106: Validating Phone Numbers with Regular Expressions 218

Task 107: Creating Multiple Form Submission Buttons Using
INPUT TYPE=”button” Buttons 220

Task 108: Reacting to Mouse Clicks on Buttons 222

Task 109: Using Graphical Buttons in JavaScript 224

Task 110: Controlling the Form Submission URL 226

Task 111: Validating a Numeric Text Field with Regular Expressions 228

Task 112: Encrypting Data before Submitting It 230

Task 113: Using Forms for Automatic Navigation Jumping 232

Part 5: Manipulating Browser Windows 235
Task 114: Using the Window Object 236

Task 115: Popping Up an Alert Dialog Box 238

Task 116: Popping Up Confirmation Dialog Boxes 240

Task 117: Popping Up JavaScript Prompts 242

Task 118: Creating New Browser Windows 244

Task 119: Opening a New Browser Window from a Link 246

Task 120: Setting the Size of New Browser Windows 248

Task 121: Setting the Location of New Browser Windows 250

Task 122: Controlling Toolbar Visibility for New Browser Windows 252

Task 123: Determining the Availability of Scroll Bars for New Browser Windows 254

Task 124: Restricting Resizing of New Browser Windows 256

Task 125: Loading a New Document into a Browser Window 258

Task 126: Controlling Window Scrolling from JavaScript 260

Task 127: Opening a Full-Screen Window in Internet Explorer 262

Task 128: Handling the Parent-Child Relationship of Windows 264

Task 129: Updating One Window’s Contents from Another 266

Task 130: Accessing a Form in Another Browser Window 268

Task 131: Closing a Window in JavaScript 270

Task 132: Closing a Window from a Link 272

xiv JavaScript in 10 Simple Steps or Less

01 542419 FM.qxd 11/19/03 10:22 PM Page xiv

Task 133: Creating Dependent Windows in Netscape 274

Task 134: Sizing a Window to Its Contents in Netscape 276

Task 135: Loading Pages into Frames 278

Task 136: Updating One Frame from Another Frame 280

Task 137: Sharing JavaScript Code between Frames 282

Task 138: Using Frames to Store Pseudo-Persistent Data 284

Task 139: Using One Frame for Your Main JavaScript Code 286

Task 140: Using a Hidden Frame for Your JavaScript Code 288

Task 141: Working with Nested Frames 290

Task 142: Updating Multiple Frames from a Link 292

Task 143: Dynamically Creating Frames in JavaScript 294

Task 144: Dynamically Updating Frame Content 296

Task 145: Referring to Unnamed Frames Numerically 298

Part 6: Manipulating Cookies 301
Task 146: Creating a Cookie in JavaScript 302

Task 147: Accessing a Cookie in JavaScript 304

Task 148: Displaying a Cookie 306

Task 149: Controlling the Expiry of a Cookie 308

Task 150: Using a Cookie to Track a User’s Session 310

Task 151: Using a Cookie to Count Page Access 312

Task 152: Deleting a Cookie 314

Task 153: Creating Multiple Cookies 316

Task 154: Accessing Multiple Cookies 318

Task 155: Using Cookies to Present a Different Home Page for New Visitors 320

Task 156: Creating a Cookie Function Library 322

Task 157: Allowing a Cookie to be Seen for all Pages in a Site 324

Part 7: DHTML and Style Sheets 327
Task 158: Controlling Line Spacing 328

Task 159: Determining an Object’s Location 330

Task 160: Placing an Object 332

Task 161: Moving an Object Horizontally 334

Task 162: Moving an Object Vertically 336

Task 163: Moving an Object Diagonally 338

Task 164: Controlling Object Movement with Buttons 340

Task 165: Creating the Appearance of Three-Dimensional Movement 342

Task 166: Centering an Object Vertically 344

Task 167: Centering an Object Horizontally 346

Contents xv

01 542419 FM.qxd 11/19/03 10:28 AM Page xv

Task 168: Controlling Line Height in CSS 348

Task 169: Creating Drop Shadows with CSS 350

Task 170: Modifying a Drop Shadow 352

Task 171: Removing a Drop Shadow 354

Task 172: Placing a Shadow on a Nonstandard Corner 356

Task 173: Managing Z-Indexes in JavaScript 358

Task 174: Setting Fonts for Text with CSS 360

Task 175: Setting Font Style for Text with CSS 362

Task 176: Controlling Text Alignment with CSS 364

Task 177: Controlling Spacing with CSS 366

Task 178: Controlling Absolute Placement with CSS 368

Task 179: Controlling Relative Placement with CSS 370

Task 180: Adjusting Margins with CSS 372

Task 181: Applying Inline Styles 374

Task 182: Using Document Style Sheets 376

Task 183: Creating Global Style Sheet Files 378

Task 184: Overriding Global Style Sheets for Local Instances 380

Task 185: Creating a Drop Cap with Style Sheets 382

Task 186: Customizing the Appearance of the First Line of Text 384

Task 187: Applying a Special Style to the First Line of Every Element on the Page 386

Task 188: Applying a Special Style to All Links 388

Task 189: Accessing Style Sheet Settings 390

Task 190: Manipulating Style Sheet Settings 392

Task 191: Hiding an Object in JavaScript 394

Task 192: Displaying an Object in JavaScript 396

Task 193: Detecting the Window Size 398

Task 194: Forcing Capitalization with Style Sheet Settings 400

Task 195: Detecting the Number of Colors 402

Task 196: Adjusting Padding with CSS 404

Part 8: Dynamic User Interaction 407
Task 197: Creating a Simple Pull-Down Menu 408

Task 198: Creating Two Pull-Down Menus 410

Task 199: Detecting and Reacting to Selections in a Pull-Down Menu 412

Task 200: Generating a Drop-Down Menu with a Function 414

Task 201: Placing Menu Code in an External File 416

Task 202: Inserting a Prebuilt Drop-Down Menu 418

Task 203: Creating a Floating Window 420

Task 204: Closing a Floating Window 422

xvi JavaScript in 10 Simple Steps or Less

01 542419 FM.qxd 11/19/03 10:28 AM Page xvi

Task 205: Resizing a Floating Window 424

Task 206: Moving a Floating Window 426

Task 207: Changing the Content of a Floating Window 428

Task 208: Detecting Drag and Drop 430

Task 209: Moving a Dragged Object in Drag and Drop 432

Task 210: Changing Cursor Styles 434

Task 211: Determining the Current Scroll Position 436

Task 212: Creating an Expanding/Collapsing Menu 438

Task 213: Creating a Highlighting Menu Using Just Text and CSS—No JavaScript 440

Task 214: Creating a Highlighting Menu Using Text, CSS, and JavaScript 442

Task 215: Placing Content Offscreen 444

Task 216: Sliding Content into View 446

Task 217: Creating a Sliding Menu 448

Task 218: Auto-Scrolling a Page 450

Part 9: Handling Events 453
Task 219: Responding to the onMouseOver Event 454

Task 220: Taking Action When the User Clicks on an Object 456

Task 221: Responding to Changes in a Form’s Text Field 458

Task 222: Responding to a Form Field Gaining Focus with onFocus 460

Task 223: Taking Action When a Form Field Loses Focus with onBlur 462

Task 224: Post-Processing Form Data with onSubmit 464

Task 225: Creating Code to Load When a Page Loads with onLoad 466

Task 226: Executing Code When a User Leaves a Page for Another 468

Task 227: Taking Action When a User Makes a Selection in a Selection List 470

Part 10: Bookmarklets 473
Task 228: Downloading and Installing Bookmarklets 474

Task 229: Checking Page Freshness with a Bookmarklet 476

Task 230: Checking for E-mail Links with a Bookmarklet 478

Task 231: E-mailing Selected Text with a Bookmarklet in Internet Explorer 480

Task 232: E-mailing Selected Text with a Bookmarklet in Netscape 482

Task 233: Displaying Images from a Page with a Bookmarklet 484

Task 234: Changing Background Color with a Bookmarklet 486

Task 235: Removing Background Images with a Bookmarklet 488

Task 236: Hiding Images with a Bookmarklet 490

Task 237: Hiding Banners with a Bookmarklet 492

Task 238: Opening All Links in a New Window with a Bookmarklet 494

Task 239: Changing Page Fonts with a Bookmarklet 496

Contents xvii

01 542419 FM.qxd 11/19/03 10:28 AM Page xvii

Task 240: Highlighting Page Links with a Bookmarklet 498

Task 241: Checking the Current Date and Time with a Bookmarklet 500

Task 242: Checking Your IP Address with a Bookmarklet 502

Task 243: Searching Yahoo! with a Bookmarklet in Internet Explorer 504

Task 244: Searching Yahoo! with a Bookmarklet in Netscape 506

Part 11: Cross-Browser Compatibility and Issues 509
Task 245: Detecting the Browser Type 510

Task 246: Detecting the Browser Version 512

Task 247: Browser Detection Using Object Testing 514

Task 248: Creating Browser Detection Variables 516

Task 249: Dealing with Differences in Object Placement in Newer Browsers 518

Task 250: Creating Layers with the div Tag 520

Task 251: Controlling Layer Placement in HTML 522

Task 252: Controlling Layer Size in HTML 524

Task 253: Controlling Layer Visibility in HTML 526

Task 254: Controlling Layer Ordering in HTML 528

Task 255: Changing Layer Placement and Size in JavaScript 530

Task 256: Changing Layer Visibility in JavaScript 532

Task 257: Changing Layer Ordering in JavaScript 534

Task 258: Fading Objects 536

Task 259: Creating a Page Transition in Internet Explorer 538

Task 260: Installing the X Cross-Browser Compatibility Library 540

Task 261: Showing and Hiding Elements with X 542

Task 262: Controlling Stacking Order with X 544

Task 263: Changing Text Color with X 546

Task 264: Setting a Background Color with X 548

Task 265: Setting a Background Image with X 550

Task 266: Repositioning an Element with X 552

Task 267: Sliding an Element with X 554

Task 268: Changing Layer Sizes with X 556

Appendix A: JavaScript Quick Reference 559

Appendix B: CSS Quick Reference 593

Index 601

xviii JavaScript in 10 Simple Steps or Less

01 542419 FM.qxd 11/19/03 10:28 AM Page xviii

Introduction

Since the mid-1990s when Netscape introduced version 2 of its flagship Netscape Navigator browser,
JavaScript has been part of the Web development landscape. Providing a mechanism to implement

dynamic interactivity in the browser, without connecting to the server, JavaScript is at the core of the
Dynamic HTML model, which allows today’s modern browsers to host sophisticated applications and
user interfaces.

This book is a recipe book that provides you with quick, digestible examples of how to perform specific
tasks using JavaScript. These tasks range from simple tasks such as displaying dynamic output in the
browser window to complex tasks such as creating a dynamic, interactive menu system.

This book isn’t a tutorial in JavaScript. It is designed to be a useful reference when you are actively
engaged in building your Web applications and need quick answers to the question “How do I do this in
JavaScript?” For most tasks of low and medium complexity, you will likely find an example in this book.
Completing complex tasks can often be achieved by combining more than one sample tasks from the
book.

tip
If you don’t have any experi-
ence with JavaScript, you will
probably want to supplement
this book with a tutorial intro-
duction to programming in
JavaScript. For instance, you
might consider JavaScript for
Dummies by Emily A. Vander
Veer (John Wiley & Sons,
0-7645-0633-1).

About the Book
This book is divided into 11 parts:

Part 1: JavaScript Basics
This part provides tasks that illustrate some fundamental JavaScript techniques and skills. If you have
never used JavaScript before, this part is for you. It provides examples that illustrate the basics of creating
scripts and using JavaScript.

Part 2: Outputting to the Browser
This part covers some core techniques for using JavaScript to generate dynamic output to the browser
window, including outputting dynamic values such as dates.

01 542419 FM.qxd 11/19/03 10:28 AM Page xix

Part 3: Images and Rollovers
Using JavaScript, you can manipulate images, producing effects such as rollover effects and random slide
shows. The tasks in this part illustrate techniques for working with images from JavaScript.

Part 4: Working with Forms
Forms involve more than just submitting data to the server. This part illustrates how to create dynamic
client-side forms in the browser and to build forms that work with the user without contacting the server.

Part 5: Manipulating Browser Windows
This part provides tasks that illustrate the creation and closing of windows, how to manage the attributes
of those windows, and how to work with frames. All these features are key to developing sophisticated
user interfaces with JavaScript.

Part 6: Manipulating Cookies
Normally, cookies are created by your server and sent to the browser for storage. The browser then sends
them back to the server when the user connects to that server. Now with JavaScript, you can create cook-
ies and access them later without any interaction with the server.

Part 7: DHTML and Style Sheets
JavaScript is part of a threesome that forms Dynamic HTML. The other parts are the Domain Object
Model and cascading style sheets. The tasks in this part show you how to work with the DOM and style
sheets.

Part 8: Dynamic User Interaction
This part provides tasks that illustrate some of the most popular uses of JavaScript for dynamic user
interaction—from creating pull-down menus to producing floating windows and handling drag-and-drop
user interaction.

Part 9: Handling Events
JavaScript is an event-driven scripting language. This means you don’t create linear programs but instead
can write your programs to respond to events. Events might be the user clicking on a button or the com-
pletion of a task by the browser, such as completing loading of the current document.

Part 10: Bookmarklets
Bookmarklets are an interesting application of JavaScript that combines JavaScript with the bookmarks
or favorites feature of browser. Bookmarklets are short, self-contained JavaScript scripts that perform
some useful task that you can add to your favorites or bookmarks and then run at any time by selecting
the relevant favorite or bookmark.

xx JavaScript in 10 Simple Steps or Less

01 542419 FM.qxd 11/19/03 10:28 AM Page xx

Part 11: Cross-Browser Compatibility and Issues
As JavaScript has become more advanced and its features have expanded, browser compatibility has
become an issue. As would be expected, different browser vendors have different ideas about the right
way to do things in their implementations of JavaScript. The result is a plethora of browsers with subtle
differences in the way JavaScript works. The tasks in this part provide you with some techniques for
handling these browser differences in your applications.

The appendices provide you quick references to JavaScript and cascading style sheets you can consult
in developing your applications when you need reminders of the correct property, method, or style
attribute name.

Finally, the complete source code for each task can be found on the companion Web site at www.wiley.
com/10stepsorless. This makes it easy for you to try the code illustrated in the task or adapt the code for
your own purposes.

Conventions Used in this Book
As you go through this book, you will find a few unique elements. We’ll describe those elements here so
that you’ll understand them when you see them.

Code
If a single line of code is too long to appear as one line in the printed book, we’ll add the following sym-
bol to indicate that the line continues: Æ

Text You Type and Text on the Screen
Whenever you are asked to type in text, the text you are to type appears in bold, like this:

Type in this address: 111 River Street.

When we are referring to URLs or other text you’ll see on the screen, we’ll use a monospace font,
like this:

Check out www.wiley.com.

Icons
A number of special icons appear in the margins of each task to provide additional information you might
find helpful.

Introduction xxi

note
The Note icon is used to provide
additional information or help in
working in JavaScript.

tip
The Tip icon is used to point out
an interesting idea or technique
that will save you time, effort,
money, or all three.

caution
The Caution icon is used to alert
you to potential problems that
you might run into when working
in JavaScript.

cross-reference
Although this book is divided
into tasks to make it easy to find
exactly what you’re looking for,
few tasks really stand completely
alone. The Cross-Reference icon
provides us the opportunity to
point out other tasks in the book
you might want to look at if
you’re interested in this task.

01 542419 FM.qxd 11/19/03 10:28 AM Page xxi

01 542419 FM.qxd 11/19/03 10:28 AM Page xxii

Part 1: JavaScript Basics
Task 1: Creating a script Block
Task 2: Hiding Your JavaScript Code
Task 3: Providing Alternatives to Your JavaScript Code
Task 4: Including Outside Source Code
Task 5: Commenting Your Scripts
Task 6: Writing a JavaScript Command
Task 7: Temporarily Removing a Command from a Script
Task 8: Using Curly Brackets
Task 9: Writing Output to the Browser
Task 10: Creating a Variable
Task 11: Outputting a Variable
Task 12: Creating a String
Task 13: Creating a Numeric Variable
Task 14: Performing Math
Task 15: Concatenating Strings
Task 16: Searching for Text in Strings
Task 17: Replacing Text in Strings
Task 18: Formatting Strings
Task 19: Applying Multiple Formatting Functions to a String
Task 20: Creating Arrays
Task 21: Populating an Array
Task 22: Sorting an Array
Task 23: Splitting a String at a Delimiter
Task 24: Calling Functions
Task 25: Alerting the User
Task 26: Confirming with the User
Task 27: Creating Your Own Functions
Task 28: Passing an Argument to Your Functions
Task 29: Returning Values from Your Functions
Task 30: Passing Multiple Parameters to Your Functions
Task 31: Calling Functions from Tags
Task 32: Calling Your JavaScript Code after the Page Has Loaded
Task 33: Using for Loops
Task 34: Testing Conditions with if
Task 35: Using Short-Form Condition Testing
Task 36: Looping on a Condition
Task 37: Looping through an Array
Task 38: Scheduling a Function for Future Execution
Task 39: Scheduling a Function for Recurring Execution
Task 40: Canceling a Scheduled Function
Task 41: Adding Multiple Scripts to a Page
Task 42: Calling Your JavaScript Code after the Page Has Loaded
Task 43: Check If Java Is Enabled with JavaScript

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 1

Creating a script Block

JavaScript is a dynamic scripting language that allows you to build interactivity
into otherwise static HTML pages. This is done by embedding blocks of

JavaScript code almost anywhere in your Web page.

To make this work, blocks of JavaScript code are delineated by opening and clos-
ing script tags:

<script ...>

JavaScript code goes here

</script>

The script tag takes one important attribute: language. This attribute speci-
fies what scripting language you are using. Typically, its value will be either
JavaScript or JavaScript1.0, JavaScript1.1, JavaScript1.2, and so
on. By specifying a specific JavaScript version number, you indicate to the
browser this script can only run on a browser that supports the specified version
of JavaScript. Without that, every JavaScript-capable browser will assume the
script is one it should try to run.

For instance, the following is an example of a complete script tag:

<script language=”JavaScript”>

JavaScript code goes here

</script>

The following steps outline how to create a simple HTML document with a sin-
gle embedded script block. The script is responsible for outputting the word
“Hello” to the user’s browser:

1. Open a new HTML document in your preferred HTML or text editor.

2. Create the body of the document with opening and closing body
tags:

<body>

</body>

3. Insert a script block in the body of the document:

<body>

<script>

</script>

</body>

notes
• For the purposes of sim-

plicity, you will use
JavaScript as the value of
the language attribute in all
script tags in this book.

• The current version of
JavaScript in the newest
browsers in JavaScript 1.5.

2 Part 1

Task 1

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 2

4. Specify JavaScript as the language for the script tag:

<body>

<script language=”JavaScript”>

</script>

</body>

5. Place any JavaScript code in the script block so that the final code
looks like Listing 1-1.

<body>

<script language=”JavaScript”>

document.write(“Hello”);

</script>

</body>

Listing 1-1: Creating a script block.

6. Save the file.

7. Open the file in your browser. You should see the word “Hello” in
your browser, as in Figure 1-1.

Figure 1-1: Script code can be placed anywhere in your document, including in
the body of the document.

JavaScript Basics 3

Task 1

cross-reference
• The JavaScript code here

uses document.write
to output text to the
browser window.
document.write is
covered in a little more
depth in Task 9 and in
greater depth in Task 45.

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 3

Hiding Your JavaScript Code

Task 1 showed how to embed JavaScript code in your document. For instance,
the following embeds one line of JavaScript code in the body of an HTML

document:

<body>

<script language=”JavaScript”>

document.write(“Hello”);

</script>

</body>

However, there is a fundamental problem with this code: If this page is opened in
a browser that doesn’t support JavaScript or if the user has disabled JavaScript in
his or her browser, the user may see the code itself, depending on the specific
browser he or she is using.

To address this issue, you need to use HTML comments inside the script block
to hide the code from these browsers.

HTML comments work like this:

<!-- One or more lines of comments go here -->

Used in the context of a JavaScript script, you would see the following:

<body>

<script language=”JavaScript”>

<!--

document.write(“Hello”);

// -->

</script>

</body>

The following steps show how to create a script block in the body of a document
that includes these comments:

1. Open a new HTML document in your preferred HTML or text editor.

2. Create the body of the document with opening and closing body tags:

<body>

</body>

3. Insert a script block in the body of the document:

<script>

</script>

notes
• Luckily, JavaScript uses dif-

ferent comment syntax
than HTML, so you can use
HTML comments to hide
JavaScript code without
preventing execution of that
code in browsers that sup-
port JavaScript.

• In the closing --> of the
introductory source code
(discussed in Step 5), you
see it is preceded by two
slashes. These indicate a
JavaScript comment.
What’s happening here is
that once the first line of
JavaScript appears in the
script block, all subsequent
lines are assumed to be
JavaScript code. The double
slash is a JavaScript com-
ment that hides the closing
HTML comment from being
processed as JavaScript;
otherwise, a JavaScript
error would occur, since the
browser would treat the
closing HTML comment as
JavaScript. JavaScript com-
ments are discussed in
Task 5.

4 Part 1

Task 2

02 542419 Ch01.qxd 11/26/03 11:30 AM Page 4

4. Specify JavaScript as the language for the script tag:

<script language=”JavaScript”>

5. Place opening and closing HTML comments in the script block:

<!--

// -->

6. Place any JavaScript code in the script block so that the final code
looks like Listing 2-1.

<body>

<script language=”JavaScript”>

<!--

document.write(“Hello”);

// -->

</script>

</body>

Listing 2-1: Creating a script block.

7. Save the file.

8. Open the file in a browser that supports JavaScript. You should see
the word “Hello” in your browser. Open it in a browser that doesn’t
support JavaScript, and you should see nothing, as in Figure 2-1.

Figure 2-1: Script code is hidden from non-JavaScript-capable browsers and is hidden
from display.

JavaScript Basics 5

Task 2

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 5

Providing Alternatives to Your
JavaScript Code

In Task 2 you saw how to hide JavaScript code from non-JavaScript browsers by
using HTML comments. The result is that browsers that don’t support

JavaScript see nothing at all where the script block normally would be. However,
there are cases where the purpose of the JavaScript code is essential to the page
and users of non-JavaScript capable browsers need to be told that they are miss-
ing this vital part of the page.

Luckily, there is a solution to this: the noscript tag. The noscript tag allows
you to specify HTML to display to the browser only for browsers that don’t sup-
port JavaScript. If a browser supports JavaScript, it will ignore the text in the
noscript block.

To use this, you simply place any HTML for non-JavaScript browsers between
opening and closing noscript tags. The following steps show how to embed a
script in the body of a document and provide alternative HTML to display for
non-JavaScript browsers:

1. Open a new HTML document in your preferred HTML or text editor.

2. Create the body of the document with opening and closing body
tags:

<body>

</body>

3. Insert a script block in the body of the document:

<script>

</script>

4. Specify JavaScript as the language for the script tag:

<script language=”JavaScript”>

5. Place opening and closing HTML comments in the script block:

<!--

// -->

note
• The noscript tag works

on a simple principle:
JavaScript-aware browsers
will recognize the tag and
will honor it by not display-
ing the text inside the
block. Older, non-JavaScript
browsers, on the other
hand, will not recognize the
tag as valid HTML. As
browsers are supposed to
do, they will just ignore the
tag they don’t recognize,
but all the content between
the opening and closing
tags will not be ignored
and, therefore, will be dis-
played in the browser.

6 Part 1

Task 3

caution
• It is important to consider

carefully if you want to
restrict use of your pages
to users with JavaScript-
capable browsers. However
small the percentage of
users with these older
browsers may be, you will
be excluding part of your
audience if you do this.

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 6

6. Place any JavaScript code in the script block:

document.write(“Hello”);

7. Add a noscript block immediately after the script block:

<noscript>

</noscript>

8. In the noscript block, place any text to display to the non-
JavaScript-capable browser:

<noscript>

Hello to the non-JavaScript browser.

</noscript>

9. Save the file.

10. Open the file in a browser that supports JavaScript. You should see
the word “Hello” in your browser. Open it in a browser that doesn’t
support JavaScript, and you should see the alternate message, as in
Figure 3-1.

Figure 3-1: Other browsers display the text in the noscript block.

JavaScript Basics 7

Task 3

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 7

Including Outside Source Code

As you begin to work more extensively with JavaScript, you will likely find that
there are cases where you are reusing identical JavaScript code on multiple

pages of a site. For instance, you might be creating a dynamic menu common to
all pages in JavaScript.

In these cases, you don’t want to be maintaining identical code in multiple
HTML files. Luckily, the script tag provides a mechanism to allow you to
store JavaScript in an external file and include it into your HTML files. In this
way you can build and maintain one JavaScript file containing the common code
and simply include it into multiple HTML files.

This is achieved using the src attribute of the script tag, which allows you to
specify a relative or absolute URL for a JavaScript file, as in the following:

<script language=”JavaScript” src=”filename.js”></script>

The following example uses this technique to include an external JavaScript file
in an HTML document:

1. In your editor, create a new file that will contain the JavaScript file’s
code.

2. In this file, enter any JavaScript code you want included in the
external JavaScript file:

// JavaScript Document

document.write(“Hello”);

3. Save the file as 4a.js and close the file.

4. In your editor, create a new file that will contain the HTML file.

5. Create the body of the document with opening and closing body tags:

<body>

</body>

6. In the body of the document, create a script block:

<body>

<script></script>

</body>

notes
• Even when there is no

JavaScript code in the
script block, you still need
to close the script tag.
Otherwise, all HTML code
following the script tag
will be seen by browsers as
JavaScript and not HTML.
This can cause errors in the
browser and will definitely
mean your pages will not
look the way you expect.

• Notice that this file has no
script tags. This will be
an external JavaScript and
not an HTML file. The
script tag is an HTML file
that marks the location of
JavaScript code. In a
JavaScript file, no such
markers are needed.

8 Part 1

Task 4

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 8

tip
• The convention is to use

the .js extension for
JavaScript files.

7. Specify JavaScript in the language attribute of the script tag:

<body>

<script language=”JavaScript”></script>

</body>

8. Use the src attribute of the script tag to include the JavaScript file
created earlier in Steps 1 to 3:

<body>

<script language=”JavaScript” src=”4a.js”></script>

</body>

9. Save the file and close it.

10. Open the HTML in your browser. The word “Hello” should appear
in the browser window, as illustrated in Figure 4-1.

Figure 4-1: Including an external script file.

JavaScript Basics 9

Task 4

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 9

Commenting Your Scripts

All the script examples seen in the previous tasks have been short. At most
they have been a couple of lines long. However, as your skills advance, you

will likely build long, complicated scripts. To ensure that your scripts can be
understood by other developers and also to help remind you of your own think-
ing when you return to your code after a period of time, you should insert com-
ments into the code that explain why the code is designed the way it is.

JavaScript provides two types of comments:

• Single-line comments that start anywhere in the line and continue to
the end of the line. Therefore, both of the following are valid single-
line comments:

// This is a comment

document.write(“Hello”); // This is a comment

• Multiline comments that start with /* and end with */. The follow-
ing is an example of a multiline comment:

/*

All of this

is a comment

*/

You can include as many or as few comments as you like in your JavaScript code.
The following example builds a simple HTML page with a JavaScript script con-
taining two comments:

1. Open a new HTML document in your preferred HTML or text
editor.

2. Create the body of the document with opening and closing body
tags:

<body>

</body>

3. Insert a script block in the body of the document:

<script>

</script>

4. Specify JavaScript as the language for the script tag:

<script language=”JavaScript”>

note
• In the second single line

comment example, the
comment starts at the
double slash so the
document.write
command is not part of
the comment.

10 Part 1

Task 5

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 10

tip
• Commenting your code is

considered good program-
ming practice regardless of
the language you are pro-
gramming in. Writing clear,
concise, meaningful com-
ments to describe your
code allows other develop-
ers you might work with to
understand your code.
Plus, they can help you as
well: If you come back to
your code after a long
absence they remind you
of the logic you used in
building your programs
or scripts.

5. Place any JavaScript code in the script block:

document.write(“Hello”);

6. Add a single-line comment before the document.write command:

// This is a one-line comment

document.write(“Hello”);

7. Add a multiline comment after the document.write command so
that the final script looks like Listing 5-1.

<body>

<script language=”JavaScript”>

// This is a one-line comment

document.write(“Hello”);

/*

This is a multiline

comment

*/

</script>

</body>

Listing 5-1: Using comments.

8. Save the file.

9. Open the file in your browser. You should see the word “Hello” in
your browser, as in Figure 5-1.

Figure 5-1: Only JavaScript code that is not part of a comment is executed.

JavaScript Basics 11

Task 5

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 11

Writing a JavaScript Command

In the previous tasks you have seen examples of JavaScript commands. All
JavaScript scripts are made up of a series of commands. In its most basic form, a

command is some set of JavaScript code ending with a semicolon. For instance,
all the following could be considered commands:

var a = “Yes”;

document.write(“Hello”);

result = window.confirm(a);

You can string these commands together in pretty much any way:

• Line-by-line:

var a = “Yes”;

document.write(“Hello”);

result = window.confirm(a);

• On the same line:

var a = “Yes”; document.write(“Hello”); result = Æ

window.confirm(a);

• Any combination:

var a = “Yes”; document.write(“Hello”);

result = window.confirm(a);

The following task illustrates a script with three commands:

1. Open a new HTML document in your preferred HTML or text
editor.

2. Create the body of the document with opening and closing body
tags:

<body>

</body>

3. Insert a script block in the body of the document:

<script>

</script>

4. Specify JavaScript as the language for the script tag:

<script language=”JavaScript”>

5. Place opening and closing HTML comments in the script block:

<!--

// -->

notes
• A JavaScript program, or a

script, is essentially a
series of commands exe-
cuted in sequence or fol-
lowing some specified
order.

• There is no particular for-
mat to the commands. They
might assign a value as in
the first example, they
might simply call a method
as in the second example,
or they might call a method
in order to assign a value
as in the third example.
Still, they are all JavaScript
commands.

12 Part 1

Task 6

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 12

6. Create the first command in the script block. Make sure the com-
mand ends with a semicolon:

document.write(“Hello”);

7. Create the second command, ending with a semicolon:

document.write(“Hello”);

document.write(“ there”);

8. Finally, add the third command to the script so that the final page
looks like Listing 6-1.

<body>

<script language=”JavaScript”>

<!--

document.write(“Hello”);

document.write(“ there”);

document.write(“.”);

// -->

</script>

</body>

Listing 6-1: Placing three commands in a script.

9. Save the file.

10. Open the file in a browser that supports JavaScript. You should see
the phrase “Hello there.” in your browser, as in Figure 6-1.

Figure 6-1: The three commands ran in sequence.

JavaScript Basics 13

Task 6

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 13

Temporarily Removing a Command
from a Script

Sometimes when you are working on some particularly complicated JavaScript
code or are facing a bug that you just can’t locate, you need to remove lines

of code one at a time until you identify the line of code that is causing you grief.

However, you don’t want to really delete the line, because once you’ve identified
and fixed the problem, you will need to re-create any lines you deleted. That’s
where comments come in.

By way of example, in the following code, the second line will not be executed
because the document.write command is after the double slash:

var myVariable = “Hello”;

//document.write(“Hello”);

In fact, if this code alone were executed by the browser, nothing would be dis-
played, since the only command for outputting anything to the browser is com-
mented out.

The following task starts with an existing script and shows the effects of com-
menting out portions of the script. This task starts with the script from Task 6.

1. Open the script from Task 6.

2. Comment out the second command by placing a double slash in
front of it:

document.write(“Hello”);

// document.write(“ there”);

document.write(“.”);

3. Save the file and open it in a browser. You should see just the word
“Hello .” as in Figure 7-1. Because of the comment, the second com-
mand will not execute.

4. Continue editing the file, and comment out the first command as
well:

// document.write(“Hello”);

// document.write(“ there”);

document.write(“.”);

notes
• Debugging is the act of

finding and eliminating
problems in your code;
these problems are known
as bugs and can range
from simple typographical
errors to obscure problems
in the logic of your scripts.

• Commenting out lines
of code is not the only
debugging technique.
There are numerous other
approaches to debugging,
including using tools
designed to help you
debug. These are advanced
subjects not covered in
this book.

14 Part 1

Task 7

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 14

Figure 7-1: The second command is commented out.

5. Save the file and open it in a browser. You should see just a dot, as in
Figure 7-2.

Figure 7-2: Two commands commented out.

6. Continue editing the file, and remove the two double slashes. Place
/* before the first command and */ after the last command:

/* document.write(“Hello”);

document.write(“ there”);

document.write(“.”);*/

7. Save the file and open it in a browser. You should see an empty win-
dow, because all the commands are now contained in a multiline
comment.

JavaScript Basics 15

Task 7

cross-reference
• Comments were introduced

in Task 5. They allow you to
hide parts of your script so
that they are not executed
as JavaScript.

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 15

Using Curly Brackets

In addition to simple commands that end with a semicolon, such as those you
saw in Task 7, JavaScript supports the notion of a compound command. A com-

pound command is a group of commands that together are treated as a single com-
mand and can be used wherever JavaScript calls for a single command.

As an example, consider a condition in JavaScript. You build a conditional opera-
tion in JavaScript as follows:

if (condition) command

The basic logic of this statement is this: If the condition is true, then execute the
command.

For the command, you have two choices: Use a single command ending in a
semicolon or use multiple commands bundled together as one.

With a single command, you might have the following:

if (condition) document.write(“Hello”);

Here, if the condition is true, then document.write is executed.

Similarly, the following example groups together three document.write com-
mands as a single compound command:

if (condition) {

document.write(“Hello”);

document.write(“ there”);

document.write(“.”);

}

The following example shows how to build a compound command using curly
brackets:

1. Open a new HTML document in your preferred HTML or text
editor.

2. Create the body of the document with opening and closing body
tags:

<body>

</body>

3. Insert a script block in the body of the document:

<script>

</script>

note
• The compound command

in the introductory source
code starts with a curly
bracket and ends with a
curly bracket. The entire
package from the opening
to the closing bracket is
considered a single com-
mand for the purposes of
such things as the if
statement.

16 Part 1

Task 8

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 16

4. Specify JavaScript as the language for the script tag:

<script language=”JavaScript”>

5. Place opening and closing HTML comments in the script block:

<!--

// -->

6. Create the first command in the script block. Make sure the com-
mand ends with a semicolon:

document.write(“Hello”);

7. Create the second command, ending a semicolon:

document.write(“Hello”);

document.write(“ there”);

8. Finally, place opening and closing curly brackets before and after the
two commands so that the final script looks like Listing 8-1:

<body>

<script language=”JavaScript”>

<!--

{

document.write(“Hello”);

document.write(“ there”);

}

// -->

</script>

</body>

Listing 8-1: A compound command built out of two commands.

9. Save the file.

10. Open the file in a browser that supports JavaScript. You should see
the phrase “Hello there” in your browser.

JavaScript Basics 17

Task 8

cross-reference
• Conditions and if state-

ments are introduced in
Task 34. We won’t look at
specific conditions here.

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 17

Writing Output to the Browser

One of the most practical aspects of JavaScript is the ability to output text and
HTML into the browser output stream from within your scripts so that the

text and HTML appears in the browser as if it were part of the actual HTML of
the document.

The key to this is the document.write method. The document.write
method outputs any text or HTML contained in its argument to the browser.
For instance, if you issue the following document.write command:

document.write(“Hello”);

the browser receives the following HTML and renders it:

Hello

An important point to remember is that document.write does not output any
end-of-line-type characters after the text it displays. This means that if you have
two document.write commands in a row, the output from those two com-
mands is right next to each other. To illustrate this, consider the following pair of
commands:

document.write(“Hello”);

document.write(“Good-bye”);

You might be inclined to think this will result in the following being sent to the
browser:

Hello

Good-bye

In reality, though, this is not the case. The following is sent:

HelloGood-bye

To solve this problem, the document object also includes the writeln method.
This method outputs the text followed by a new-line character. Consider the fol-
lowing JavaScript code:

document.writeln(“a”);

document.write(“b);

This would be sent to the browser as:

a

b

notes
• An argument is any value

passed to a method.
A method is a function
associated with an object;
when you use it, it performs
some specified function
based on the arguments
you provide. The document
object is an object associ-
ated with the current docu-
ment being rendered into
the browser window.

• It doesn’t matter that the
document.write com-
mands are on separate
lines. All that gets sent is
the text in the arguments,
and document.write
does nothing to create line
separations after the text
it outputs.

• If you look at the end of the
introductory material, you’ll
see that the key is that
document.writeln is
used to output the a.

18 Part 1

Task 9

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 18

The following task illustrates the use of the document.write and
document.writeln methods:

1. Open a new HTML document in your preferred HTML or text editor.

2. Create the body of the document with opening and closing body
tags, and inside it specify pre tags:

<body><pre>

</pre></body>

3. Insert a script block in the body of the document:

<script>

</script>

4. Specify JavaScript as the language for the script tag:

<script language=”JavaScript”>

5. Place opening and closing HTML comments in the script block:

<!--

// -->

6. Create a series of document.write and document.writeln com-
mands in the script block. The final page should look like Listing 9-1.

<body><pre>

<script language=”JavaScript”>

<!--

document.write(“He”);

document.writeln(“llo”);

document.write(“there”);

// -->

</script>

</pre></body>

Listing 9-1: Using document.write and document.writeln.

7. Save the file.

8. Open the file in a browser that supports JavaScript. You should see
the phrase “Hello there” in your browser.

JavaScript Basics 19

Task 9

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 19

Creating a Variable

Akey programming concept is the notion of a variable. Like many other pro-
gramming languages, JavaScript has variables. Variables can be thought of as

named containers. You can place data into these containers and then refer to the
data simply by naming the container. You create a variable by a simple assign-
ment operation:

variable name = some data;

For instance, you might create a variable named day and assign the value
Tuesday to it:

day = “Tuesday”;

As a matter of good programming practice, you will also want to declare your
variables the first time you use them. Declaring a variable helps the browser effi-
ciently and accurately process and manage your variables. To declare a variable,
simply use the JavaScript statement var:

var myVariable;

This declares a variable named myVariable but doesn’t assign any values to it.
You can proceed to assign a value to it in a subsequent JavaScript command:

var myVariable;

...

myVariable = “some value”;

If you want to declare a variable and assign a value to it right away, you can use a
shortcut to do this in one step:

var myVariable = “some value”;

You can also assign values to variables multiple times and each time the value of
the variable is replaced with the new value. For instance, consider the following:

var day = “Tuesday”;

day = “Thursday”;

day = “Monday”;

At the end of this code, the value of the day variable is Monday.

The following steps show the creation of an actual variable in the header of an
HTML document:

1. Create a new HTML document in your editor.

note
• In this script you are not

creating output to the
browser. You are only creat-
ing a variable (see Step 3).
The normal practice is to
put all your JavaScript
scripts in the header of
your HTML documents and
only place JavaScript code
required for generating out-
put to the browser in the
body of your document.

20 Part 1

Task 10

caution
• You need to be careful in

selecting variable names.
Names can include letters,
numbers, and the under-
score character (_). You
should also start the
names with a letter.

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 20

tip
• Although you can get away

without declaring variables,
it doesn’t hurt to do it and
it is good programming
practice (see introductory
paragraphs).

2. In the header of the document, create a script block:

<head>

<script language=”JavaScript”>

</script>

</head>

3. In the script block, create the variable named myVariable and
assign a value to it:

var myVariable = “Hello”;

4. Create a body for the document to display any HTML you want to
present in the browser. The final page looks like Listing 10-1.

<head>

<script language=”JavaScript”>

var myVariable = “Hello”;

</script>

</head>

<body>

We created a variable in the header.

</body>

Listing 10-1: Creating variables.

5. Save the file and close it.

6. Open the file in a browser. You should only see the body of the docu-
ment, as illustrated in Figure 10-1.

Figure 10-1: Creating a variable in JavaScript does not cause any output to be directed
to the browser.

JavaScript Basics 21

Task 10

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 21

Outputting a Variable

Variables, introduced in Task 10, are containers that hold values. You can use
them wherever you would normally use the same values. A perfect example of

this is text strings.

You can use the document.write method to output strings of text to the
browser, for instance. There is no reason why a string of text could not be
assigned to a variable and then the variable be used to output that text. You just
use the variable in place of the string of text as the argument to the
document.write method:

document.write(myVariable);

This will output the contents of the variable myVariable.

The following example shows how to set a variable and the output it in a script:

1. Open a new HTML document in your preferred HTML or text
editor.

2. Create the body of the document with opening and closing body
tags:

<body>

</body>

3. Insert a script block in the body of the document:

<body>

<script>

</script>

</body>

4. Specify JavaScript as the language for the script tag:

<body>

<script language=”JavaScript”>

</script>

</body>

5. Place opening and closing HTML comments in the script block:

<body>

<script language=”JavaScript”>

<!--

// -->

</script>

</body>

note
• Variables are named con-

tainers in which you can
store data. You can then
refer to that data in your
script by the name of the
container.

22 Part 1

Task 11

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 22

6. Create a variable named myVariable and assign a text string to it:

<body>

<script language=”JavaScript”>

<!--

var myVariable = “Hello”;

// -->

</script>

</body>

7. Use document.write to output the content of the variable so that
the final code looks like Listing 11-1.

<body>

<script language=”JavaScript”>

<!--

var myVariable = “Hello”;

document.write(myVariable);

// -->

</script>

</body>

Listing 11-1: Outputting a variable.

8. Save the file.

9. Open the file in a browser that supports JavaScript. You should see
the word “Hello” in your browser, as in Figure 11-1.

Figure 11-1: The contents of the variable, not its name, are output.

JavaScript Basics 23

Task 11

cross-reference
• You will notice that there

are no quotation marks
around myVariable (see
introductory paragraphs).
As noted in Task 12, quota-
tion marks denote a string
of text; when outputting the
content of a variable, you
don’t use quotation marks.
Otherwise, the name of the
variable will be output
instead of the content.

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 23

Creating a String

When working with data and variables in JavaScript, you need to be aware of
the data types you are using. Different data types are managed in different

ways, and it is important to understand a few fundamental data types.

One such data type is a string. A string refers to any sequence of text that can
contain letters, numbers, and punctuation. When specifying a text string in
JavaScript, you need to enclose the string in single or double quotes. For
instance, the following are valid strings:

“Hello there”

‘My Phone number is 123-456-7890’

But the following are not valid text strings:

“Hello’

What is your name?

In the first case, the opening quote is a double quote, but the closing one is a sin-
gle quote; you can use either single or double quotes, but the opening and clos-
ing ones must match.

You use these strings in different contexts—for instance, as arguments to a func-
tion or method:

document.write(“This is a string”);

You also use them as values assigned to variables:

var aVar = “This is a string”;

In both these cases, failure to enclose the string in quotes will actually cause the
browser to display an error, because it will treat the string as JavaScript code and
the text in the string is not valid JavaScript code.

The following task shows the creation of a variable containing a string value in a
script:

1. Open a new HTML document in your preferred HTML or text
editor.

2. Create the body of the document with opening and closing body
tags:

<body>

</body>

note
• There are a number of

different data types in
JavaScript. The most
basic types are numbers
(numeric values), strings
(text), and boolean (binary,
either-or, values typically
represented as true/false
or 1/0).

24 Part 1

Task 12

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 24

3. Insert a script block in the body of the document:

<body>

<script>

</script>

</body>

4. Specify JavaScript as the language for the script tag:

<body>

<script language=”JavaScript”>

</script>

</body>

5. Place opening and closing HTML comments in the script block:

<body>

<script language=”JavaScript”>

<!--

// -->

</script>

</body>

6. Create a variable named myVariable and assign a text string to it:

<body>

<script language=”JavaScript”>

<!--

var myVariable = “Hello”;

// -->

</script>

</body>

7. Save the file and close it.

JavaScript Basics 25

Task 12

cross-reference
• Task 10 introduces the cre-

ation of variables.

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 25

Creating a Numeric Variable

When working with data and variables in JavaScript, you need to be aware of
the data types you are using. Different data types are managed in different

ways, and it is important to understand a few fundamental data types.

One such data type is a number. A number refers to any number, positive or nega-
tive, that contains only numbers, minus signs, and decimal points. When specify-
ing a number in JavaScript, you should not enclose the string in single or double
quotes; if you do, it will be treated as a text string and not a number. For
instance, the following are valid numbers:

100

-152.56

But the following are not valid text strings:

“250.3”

ab32

In the first case, the quotes make the value a text string, and in the second, the
letters mean this is not a valid numeric value.

You use these numbers in different contexts—for instance, as arguments to a
function or method:

document.write(375);

You also use them as values assigned to variables:

var aVar = 375;

The following task shows how to create a variable containing a numeric value in
a script:

1. Open a new HTML document in your preferred HTML or text editor.

2. Create the body of the document with opening and closing body
tags:

<body>

</body>

note
• There are a number of

different data types in
JavaScript. The most
basic types are numbers
(numeric values), strings
(text), and boolean (binary,
either-or, values typically
represented as true/false
or 1/0).

26 Part 1

Task 13

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 26

3. Insert a script block in the body of the document:

<body>

<script>

</script>

</body>

4. Specify JavaScript as the language for the script tag:

<body>

<script language=”JavaScript”>

</script>

</body>

5. Place opening and closing HTML comments in the script block:

<body>

<script language=”JavaScript”>

<!--

// -->

</script>

</body>

6. Create a variable named myVariable and assign a number to it:

<body>

<script language=”JavaScript”>

<!--

var myVariable = 100;

// -->

</script>

</body>

7. Save the file and close it.

JavaScript Basics 27

Task 13

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 27

Performing Math

When working with numeric values in JavaScript, you can perform mathemat-
ics with the numbers. Not only can you add, subtract, multiply, and divide

numbers, but you can also perform other advanced mathematical calculations.

The four basic mathematical operations are as follows:

• Addition: For instance, 10 + 20

• Subtraction: For instance, 20 – 10

• Multiplication: For instance, 10 * 20

• Division: For instance, 20 / 10

In addition, you can build complex mathematical expressions using combinations
of these operations. For instance, the following expression subtracts 10 from the
result of 100 divided by 5:

100 / 5 – 10

You can override the order of operation with parentheses. Consider the following
mathematical expression:

100 / (5 – 10)

This will calculate the value of 100 divided by the result of subtracting 10 from 5.

There are two important points to note about these sorts of mathematical
expressions:

• You can use them wherever JavaScript expects a single numeric value.
For instance, you can assign the results of an expression to a variable:

var myVariable = 100 / 5;

• You can use variables containing numeric values anywhere in your
mathematical expressions in place of actual numbers. For instance, if
thisVar is a variable with the value 5, then the results of the follow-
ing JavaScript code are the same as the preceding example:

var myVariable = 100 / thisVar;

The following task calculates and displays the result of adding 100 and 200
through the use of variables and mathematical operations:

1. Open a new HTML document in your preferred HTML or text editor.

2. Create the body of the document with opening and closing body
tags:

<body>

</body>

note
• In these types of complex

expressions, the operations
are evaluated in standard
mathematical order, so that
multiplication and division
are evaluated first, and
then addition and subtrac-
tion are performed.

28 Part 1

Task 14

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 28

tip
• Expressions are a powerful

programming concept
available in many lan-
guages, including
JavaScript. They can be
mathematical, as in this
task, or they can involve
any other data types such
as strings. At the core,
though, they are simple:
Expressions are specifica-
tions of one or more opera-
tions to perform on one or
more values; the complete
set of operations in the
expressions must ultimately
evaluate down to a single
value. This means expres-
sions can be used any-
where a discrete value
would be used.

3. Insert a script block in the body of the document:

<script language=”JavaScript”>

<!--

// -->

</script>

4. Create a variable named myVariable and assign the value 100 to it:

var myVariable = 100;

5. Create a second variable named anotherVariable and assign the
value 200 to it:

var anotherVariable = 200;

6. Add the values of myVariable and anotherVariable and assign
the results to a third variable named anotherVariable:

var finalResults = myVariable + anotherVariable;

7. Display the results so that the final page looks like Listing 14-1:

<body>

<script language=”JavaScript”>

<!--

var myVariable = 100;

var anotherVariable = 200;

var finalResults = myVariable + anotherVariable;

document.write(finalResults);

// -->

</script>

</body>

Listing 14-1: Performing mathematical operations.

8. Save the file and close it.

9. Open the file in a browser. You should see the number 300 displayed
in the browser.

JavaScript Basics 29

Task 14

cross-reference
• For examples of other

types of expressions that
are not mathematical, see
Task 15, which provides an
example of a string-based
expression.

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 29

Concatenating Strings

With text strings you cannot perform mathematical operations like those
described for numbers in Task 14. The most common operation performed

with text strings is concatenation. Concatenation refers to the act of combining
two text strings into one longer text string. For instance, the following combines
the strings “ab” and “cd” into the combined string “abcd”:

“ab” + “cd”

As with numeric mathematical operations, there are two points to note about
concatenation:

• You can use concatenation wherever JavaScript expects a single string
value. For instance, you can assign the results of a concatenation to a
variable:

var myVariable = “ab” + “cd”;

• You can use variables containing string values anywhere in your con-
catenation in place of actual strings. For instance, if thisVar is a
variable with the value “cd” then the results of the following
JavaScript code are the same as the preceding example:

var myVariable = “ab” + thisVar;

The following task concatenates two strings stored in variables and displays the
results:

1. Open a new HTML document in your preferred HTML or text
editor.

2. Create the body of the document with opening and closing body
tags:

<body>

</body>

3. Insert a script block in the body of the document:

<script language=”JavaScript”>

<!--

// -->

</script>

4. Create a variable named myVariable and assign the value “Hello”
to it:

var myVariable = “Hello”;

note
• When you are working with

strings, keep in mind that
the plus sign no longer has
its mathematical meaning;
instead, it indicates that
concatenation should be
performed.

30 Part 1

Task 15

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 30

tip
• These concatenation exam-

ples are expressions.
Expressions are a powerful
programming concept
available in many lan-
guages, including
JavaScript. They can be
mathematical, as in this
task, or they can involve
any other data types, such
as strings. At the core,
though, they are simple:
Expressions are specifica-
tions of one or more opera-
tions to perform on one or
more values; the complete
set of operations in the
expressions must ultimately
evaluate down to a single
value. This means expres-
sions can be used any-
where a discrete value
would be used.

5. Create a second variable named anotherVariable and assign the
value “there” to it:

var anotherVariable = “there”;

6. Concatenate the values of myVariable and anotherVariable,
along with a space between them, and assign the results to a third
variable named finalResults:

var finalResults = myVariable + “ “ + Æ

anotherVariable;

7. Display the results so that the final page looks like Listing 15-1.

<body>

<script language=”JavaScript”>

<!--

var myVariable = “Hello”;

var anotherVariable = “there”;

var finalResults = myVariable + “ “ + anotherVariable;

document.write(finalResults);

// -->

</script>

</body>

Listing 15-1: Using concatenation.

8. Save the file and close it.

9. Open the file in a browser. You should see the string “Hello there”
displayed in the browser as in Figure 15-1.

Figure 15-1: Displaying the results of concatenation.

JavaScript Basics 31

Task 15

cross-reference
• Anywhere you can use a

string, you can use a con-
catenation expression like
the examples in this task.
For instance, you can use a
concatenation expression
as an argument to the
document.write
method, which was
introduced in Task 9.

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 31

Searching for Text in Strings

When working with text strings, sometimes you need to determine if a string
contains some specific substring, and if it does, you need to determine

where in the string that substring occurs.

For instance, if you have the string “what is happening here” and you
search for the substring “is”, you want to know that the string contains “is” but
also where “is” occurs. You can perform this type of search with the search
method of the string object.

To perform this search is simple. If “what is happening here” is stored in
the variable testVariable, you would search for “is” with the following:

testVariable.search(“is”);

This method returns a numeric value indicating the position in the string where
it found “is”. In this case, that position is 5.

The following task searches for a substring in another string stored in a variable
and displays the position where that substring is found:

1. Open a new HTML document in your preferred HTML or text editor.

2. Create the body of the document with opening and closing body
tags:

<body>

</body>

3. Insert a script block in the body of the document:

<script language=”JavaScript”>

<!--

// -->

</script>

4. Create a variable named myVariable and assign the value “Hello
there” to it:

var myVariable = “Hello there”;

5. Create a second variable named therePlace and assign the results
of searching for “there” to it:

var therePlace = myVariable.search(“there”);

notes
• When you create a string

value, an object with prop-
erties and methods associ-
ated with the string is
created and you can
access these properties
and methods. Assuming
you have assigned the
string to a variable, you
access these as
variableName.
propertyName and
variableName.
methodName

• If you count, you will see
that “is” starts at the sixth
character in the string. But
JavaScript, like many pro-
gramming languages, starts
counting at zero, so the first
character is in position 0,
the second in position 1,
and so on. Therefore, the
sixth character is in posi-
tion 5, and this is the num-
ber returned by the
search method.

• If the substring is not
found, then the search
method returns -1 as the
position.

• The number 6 is displayed
(see Step 8), since “there”
starts at the seventh
character.

32 Part 1

Task 16

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 32

6. Display the results of the search so that the final page looks like
Listing 16-1.

<body>

<script language=”JavaScript”>

<!--

var myVariable = “Hello there”;

var therePlace = myVariable.search(“there”);

document.write(therePlace);

// -->

</script>

</body>

Listing 16-1: Searching for a substring.

7. Save the file and close it.

8. Open the file in a browser. You should see the number 6 displayed in
the browser as in Figure 16-1.

Figure 16-1: Displaying the results of searching for a substring.

JavaScript Basics 33

Task 16

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 33

Replacing Text in Strings

In Task 16 you saw that it is possible to search for text in strings. Sometimes,
though, you will want to search for, find, and replace text in a string. The

string object provides the replace method for just such purposes.

Consider a variable named thisVar containing the string “Today is
Monday”. You could search and replace “Monday” with “Friday” with the
following:

thisVar.replace(“Monday”,”Friday”);

When you use the replace method, the method returns a new string containing
the results of performing the replacement. The original string is not altered. For
instance, consider assigning the results of the replacement above to a new variable:

var newVar = thisVar.replace(“Monday”,”Friday”);

In this case, thisVar will continue to contain “Today is Monday” but
newVar will contain “Today is Friday”.

The following task creates a variable and assigns text to it, replaces that text with
new text, and then displays the results in a browser:

1. Open a new HTML document in your preferred HTML or text
editor.

2. Create the body of the document with opening and closing body
tags:

<body>

</body>

3. Insert a script block in the body of the document:

<script language=”JavaScript”>

<!--

// -->

</script>

4. Create a variable named myVariable and assign the value “Hello
there” to it:

var myVariable = “Hello there”;

note
• The replace method

works in pretty much the
same way as the search
method, except that you
must provide two strings as
arguments: The first is the
substring to search for,
while the second is the
substring to replace it with,
assuming the first substring
is found.

34 Part 1

Task 17

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 34

5. Create a second variable named newVariable and assign the results
of replacing “there” with “Arman” to it:

var newVariable = Æ

myVariable.replace(“there”,”Arman”);

6. Display the results of the search and replace so the final page looks
like Listing 17-1.

<body>

<script language=”JavaScript”>

<!--

var myVariable = “Hello there”;

var newVariable = Æ

myVariable.replace(“there”,”Arman”);

document.write(newVariable);

// -->

</script>

</body>

Listing 17-1: Search and replace in a string.

7. Save the file and close it.

8. Open the file in a browser. You should see the text “Hello Arman”
displayed in the browser as in Figure 17-1.

Figure 17-1: Displaying the results of searching for a substring and replacing it.

JavaScript Basics 35

Task 17

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 35

Formatting Strings

When you create a text string in JavaScript, a string object is associated
with that string. The string object provides a series of methods you can

use to adjust the format of the string. This can be useful when you want to dis-
play a string and quickly apply some formatting to it. The methods are as follows:

• big: Returns the string in big tags

• blink: Returns the string in blink tags

• bold: Returns the string in b tags

• fixed: Returns the string in tt tags (for fixed-width display)

• fontcolor: Returns the string in font tags with the color
attribute set to the color you specify as an argument

• fontsize: Returns the string in font tags with the size attribute
set to the size you specify as an argument

• italics: Returns the string in i tags

• small: Returns the string in small tags

• strike: Returns the string in strike tags (for a strikethrough
effect)

• sub: Returns the string in sub tags (for a subscript effect)

• sup: Returns the string in sup tags (for a superscript effect)

• toLowerCase: Returns the string with all lowercase characters

• toUpperCase: Returns the string with all upper case characters

Assuming you have assigned a string to a variable, you call these methods as follows:

variableName.big();

variableName.fontcolor(“red”);

variableName.toLowerCase();

etc.

The following task displays the same string using each of these methods:

1. Open a new HTML document in your preferred HTML or text editor.

2. Create the body of the document with opening and closing body
tags:

<body>

</body>

note
• Notice that each
document.write
method in the introductory
source code outputs the
string adjusted by one of
the formatting functions
and then displays a br tag
so that the browser will dis-
play each instance on sep-
arate lines. Without this, all
the instances would appear
on one continuous line.

36 Part 1

Task 18

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 36

3. Insert a script block in the body of the document:

<script language=”JavaScript”>

<!--

// -->

</script>

4. Create a variable named myVariable and assign the value “Hello
there” to it:

var myVariable = “Hello there”;

5. Use the document.write method to display the value of the variable
as altered by each of the formatting methods, as shown in Listing 18-1.

<body>

<script language=”JavaScript”>

<!--

var myVariable = “Hello there”;

document.write(myVariable.big() + “
”);

document.write(myVariable.blink() + “
”);

document.write(myVariable.bold() + “
”);

document.write(myVariable.fixed() + “
”);

document.write(myVariable.fontcolor(“red”) + “
”);

document.write(myVariable.fontsize(“18pt”) + “
”);

document.write(myVariable.italics() + “
”);

document.write(myVariable.small() + “
”);

document.write(myVariable.strike() + “
”);

document.write(myVariable.sub() + “
”);

document.write(myVariable.sup() + “
”);

document.write(myVariable.toLowerCase() + “
”);

document.write(myVariable.toUpperCase() + “
”);

// -->

</script>

</body>

Listing 18-1: Using string formatting functions.

6. Open the file in a browser. You should see the text “Hello there” dis-
played once for each of the formatting methods.

JavaScript Basics 37

Task 18

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 37

Applying Multiple Formatting Functions
to a String

In Task 18, you saw how to apply formatting functions to a string manually.
However, you can apply multiple formatting if you want. An obvious way to do

this is by assigning the new string to a variable at each step of the way:

var firstString = “My String”;

var secondString = firstString.bold();

var thirdString = secondString.toLowerCase();

etc.

You can shortcut this by relying on the fact that each of these formatting meth-
ods returns a string that is an object that, in turn, has its own set of formatting
methods that can be called. This allows you to string together the functions like
this:

var firstString = “My String”;

var finalString = firstString.bold().toLowerCase().fontcolor(“red”);

The end result of this is the following HTML stored in finalString:

my string

In the following task you take a string and apply bolding, italicization, coloring,
and sizing to it before displaying it:

1. Open a new HTML document in your preferred HTML or text editor.

2. Create the body of the document with opening and closing body
tags:

<body>

</body>

3. Insert a script block in the body of the document:

<script language=”JavaScript”>

<!--

// -->

</script>

4. Create a variable named myVariable and assign the value “Hello
there” to it:

var myVariable = “Hello there”;

note
• Assigning the new string to

a variable at each step
works, but it is cumber-
some and creates far more
variables than are needed.

38 Part 1

Task 19

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 38

5. Apply bolding, italicization, coloring, and sizing to the string and
assign the results to newVariable:

var newVariable = Æ

myVariable.bold().italics().fontcolor(“blue”).fontsizeÆ

(“24pt”);

6. Use the document.write method to display the final string so that
the final page looks like Listing 19-1.

<body>

<script language=”JavaScript”>

<!--

var myVariable = “Hello there”;

var newVariable = Æ

myVariable.bold().italics().fontcolor(“blue”).fontsizeÆ

(“24pt”);

document.write(newVariable);

// -->

</script>

</body>

Listing 19-1: Applying multiple styles.

7. Open the file in a browser. You should see the text “Hello there” dis-
played with the formatting applied as in Figure 19-1.

Figure 19-1: Displaying a string with multiple formats applied.

JavaScript Basics 39

Task 19

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 39

Creating Arrays

In addition to simple data types such as text strings and numbers, JavaScript sup-
ports a more complicated data type known as an array. An array is a collection

of individual values grouped together. An array essentially contains a series of
numbered containers into which you can place values. Each container can con-
tain a string, a number, or any other data type.

You refer to containers in the array as arrayName[0], arrayName[1],
arrayName[2], and so on. Each of these individual containers can be manipu-
lated and used just like a regular variable. You can imagine an array as illustrated
in Figure 20-1; here you see a set of boxes where each box is numbered and each
box has something inside it. The box numbers are the indexes for each box, and
the value inside is the value of each array entry.

Figure 20-1: Visualizing an array.

To create a new array, you create a new instance of the Array object:

var arrayName = new Array(number of elements);

The number of elements is just the initial number of elements in the array; you
can add more on the fly as you work with the array, but it is a good idea to initial-
ize the array with the likely number of elements you will use. The array is then
accessed through arrayName.

Contents of element 1

Contents of element 2

Contents of element 3

Contents of element 4

Contents of element 5

1

2

3

4

5

notes
• You probably noticed that

the first container is
numbered 0. Like many
programming languages,
JavaScript starts counting
at zero, so the first con-
tainer in an array is
numbered 0.

• The number representing
each container in an array
(such as 0, 1, or 2) is
known as the index.

• If you create an array with 5
elements, then the indexes
of the elements are 0, 1, 2,
3, and 4.

40 Part 1

Task 20

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 40

The following task creates an array in a script in the header of a document:

1. Open a new HTML document in your preferred HTML or text editor.

2. Create the head of the document with opening and closing head
tags:

<head>

</head>

3. Insert a script block in the head of the document:

<head>

<script language=”JavaScript”>

<!--

// -->

</script>

</head>

4. Create a variable named myArray and initialize it as a new array with
five elements:

<body>

<script language=”JavaScript”>

<!--

var myArray = new Array(5);

// -->

</script>

</body>

5. Save the file and close it.

JavaScript Basics 41

Task 20

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 41

Populating an Array

Task 21 showed you how to create an array. An array isn’t very useful, however,
unless you can populate its elements with values. You populate the elements

of an array by assigning values to the elements just as you assign values to normal
variables:

arrayName[0] = value 1;

arrayName[1] = value 2;

etc.

In addition, you can actually populate the array at the time you create it; instead
of specifying the number of elements to create in the array when you create it,
you can specify a comma-separated list of values for the elements of the array:

var arrayName = new Array(value 1, value 2, value 3, etc.)

The following task illustrates the creation of two arrays that will contain an iden-
tical set of five elements. The two arrays are created and populated using these
two different techniques.

1. Open a new HTML document in your preferred HTML or text
editor.

2. Create the head of the document with opening and closing head
tags:

<head>

</head>

3. Insert a script block in the head of the document:

<head>

<script language=”JavaScript”>

<!--

// -->

</script>

</head>

4. Create a variable named myArray and initialize it as a new array with
five elements:

var myArray = new Array(5);

note
• The numeric value for each

container in an array is
known as the index.

42 Part 1

Task 21

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 42

tips
• You don’t need to populate

the elements in order and
can leave elements empty.
For instance, you might
populate the fifth, first, and
second elements in an
array in that order and
leave the third and fourth
elements empty. That’s
just fine.

• You can also assign other
types of values to array ele-
ments other than strings.
We just happen to use
strings in this example. If
you want, you could assign
numbers or even other
arrays as values of an
array’s elements.

5. Assign values to the five elements:

myArray[0] = “First Entry”;

myArray[1] = “Second Entry”;

myArray[2] = “Third Entry”;

myArray[3] = “Fourth Entry”;

myArray[4] = “Fifth Entry”;

6. Create a second array named anotherArray and assign five values to
it at the time it is created. The final script should look like Listing 21-1.

<head>

<script language=”JavaScript”>

<!--

var myArray = new Array(5);

myArray[0] = “First Entry”;

myArray[1] = “Second Entry”;

myArray[2] = “Third Entry”;

myArray[3] = “Fourth Entry”;

myArray[4] = “Fifth Entry”;

var anotherArray = new Array(“First Entry”,”Second Æ

Entry”,”Third Entry”,”Fourth Entry”,”Fifth Entry”);

// -->

</script>

</head>

Listing 21-1: Two methods for creating arrays.

7. Save the file and close it.

JavaScript Basics 43

Task 21

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 43

Sorting an Array

Once you have populated an array as outlined in Task 21, you might find it
useful to sort the elements in the array. Sometimes you will want to output

the elements of the array in the order in which they were created and added to
the array, but at others times you will want them sorted.

The array object provides a sort method that does just this: It returns a comma-
separated list of the elements in sorted order. Sorting is performed in ascending
order alphabetically or numerically as appropriate.

To use the method, simply call it:

arrayName.sort();

The following task creates an array with five elements and then displays the ele-
ments in sorted order:

1. Open a new HTML document in your preferred HTML or text
editor.

2. Create the body of the document with opening and closing body
tags:

<body>

</body>

3. Insert a script block in the body of the document:

<script language=”JavaScript”>

<!--

// -->

</script>

4. Create a variable named myArray, and initialize it as a new array
with five elements:

var myArray = new Array(5);

5. Assign values to the five elements:

myArray[0] = “z”;

myArray[1] = “c”;

myArray[2] = “d”;

myArray[3] = “a”;

myArray[4] = “q”;

note
• Notice that in Step 6 the
myArray.sort method
is used as the argument for
the document.write
method. The latter expects
a string value as an argu-
ment, and the former
returns just that: a string
containing a sorted list of
elements.

44 Part 1

Task 22

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 44

cross-reference
• The techniques for creating

an array are discussed in
Task 20. Creating an array
is the first step toward pop-
ulating an array with val-
ues, which is the subject
of Task 21.

6. Use the document.write method and the sort method to output the
sorted list of elements so that the final script looks like Listing 22-1.

<body>

<script language=”JavaScript”>

<!--

var myArray = new Array(5);

myArray[0] = “z”;

myArray[1] = “c”;

myArray[2] = “d”;

myArray[3] = “a”;

myArray[4] = “q”;

document.write(myArray.sort());

// -->

</script>

</body>

Listing 22-1: Displaying a sorted array.

7. Save the file and close it.

8. Open the file in a browser, and you should see a comma-separated
list of elements sorted in alphabetical order, as in Figure 22-1.

Figure 22-1: Displaying a sorted list of elements from the array.

JavaScript Basics 45

Task 22

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 45

Splitting a String at a Delimiter

In programming, it is not uncommon to deal with data represented in delimited
lists. A delimited list is typically a string that contains a number of substrings

separated by a specific character; each of the substrings is an element in the list.

For instance, the following string has three elements separated by commas:

“First element,Second element,Third element”

The string object provides the split method, which you can use to split a
string into elements at a specified delimiter. These elements are then placed in an
array, and that array is returned by the method.

For instance, consider the following:

var thisVar = “First element,Second element,Third element”;

var anotherVar = thisVar.split(“,”);

anotherVar is now an array containing three elements.

The following task illustrates this by splitting a string containing a list into its
component elements and then outputting those elements from the resulting
array:

1. Open a new HTML document in your preferred HTML or text editor.

2. Create the body of the document with opening and closing body
tags:

<body>

</body>

3. Insert a script block in the body of the document:

<script language=”JavaScript”>

<!--

// -->

</script>

4. Create a variable named myVariable and assign a comma-
separated text string to it:

var myVariable = “a,b,c,d”;

note
• Notice in Step 8 that the

letters have no spaces or
other separators between
them. This is because
the document.write
method does not insert any
type of separator after the
text it outputs, and you
have not added any HTML
to create the separation.

46 Part 1

Task 23

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 46

5. Use the split method to split the string at the commas and assign the
resulting array to the variable stringArray:

var stringArray = myVariable.split(“,”);

6. Use the document.write method to output the elements of the
array so that the final script looks like Listing 23-1.

<body>

<script language=”JavaScript”>

<!--

var myVariable = “a,b,c,d”;

var stringArray = myVariable.split(“,”);

document.write(stringArray[0]);

document.write(stringArray[1]);

document.write(stringArray[2]);

document.write(stringArray[3]);

// -->

</script>

</body>

Listing 23-1: Splitting a list into an array.

7. Save the file and close it.

8. Open the file in a browser, and you should see the text “abcd”, as in
Figure 23-1.

Figure 23-1: Displaying elements from an array built from a comma-separated list.

JavaScript Basics 47

Task 23

cross-reference
• The creation and popula-

tion of arrays is discussed
in Task 20 and 21.

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 47

Calling Functions

In many tasks throughout the book, you will see examples of calling functions
or methods. A function is a self-contained procedure or operation that you

can invoke by name. In invoking it, you can provide data to the function (known
as arguments), and then the function, in turn, can return a result based on its
operations.

To call a function, you simply use the following form:

functionName(argument 1, argument 2, etc.);

If a function expects no arguments, you still need the parentheses:

functionName();

Also, if a function returns a value, you can use that function call wherever you
would use any other text or numeric value. For instance, you can assign the value
to a variable:

var variableName = functionName();

Similarly, you could use the results of one function as an argument to another
function:

function1Name(function2Name());

The following task calls the JavaScript Escape function and then displays the
results that are retuned in the browser:

1. Open a new HTML document in your preferred HTML or text
editor.

2. Create the body of the document with opening and closing body
tags:

<body>

</body>

3. Insert a script block in the body of the document:

<body>

<script language=”JavaScript”>

<!--

// -->

</script>

</body>

notes
• Methods are the same as

functions except that they
are associated with specific
objects. Calling them and
using them is technically
the same.

• When embedding functions
as the arguments to other
functions, take care with
the parentheses to make
sure each opening paren-
thesis is closed by a clos-
ing one. A common mistake
is to omit a closing paren-
thesis, which will cause
errors in the browser and,
at times, can be hard to
identify when you try to
debug you code.

• The Escape function takes
a text string as an argu-
ment and returns it in URL-
encoded format. In
URL-encoded format, spe-
cial characters that are
invalid in URLs (such as
spaces and some punctua-
tion) are converted into
special code.

48 Part 1

Task 24

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 48

4. Call the Escape function and pass a text string as an argument.
Assign the string that is returned to the myVariable variable:

<head>

<script language=”JavaScript”>

<!--

var myVariable = Escape(“This is a test.”);

// -->

</script>

</head>

5. Use the document.write method to output the value of
myVariable so that the final script looks like Listing 24-1.

<body>

<script language=”JavaScript”>

<!--

var myVariable = Escape(“This is a test.”);

document.write(myVariable);

// -->

</script>

</body>

Listing 24-1: Escaping a text string.

6. Save the file and close it.

7. Open the file in a browser, and you should see the text string in its
URL-encoded representation as in Figure 24-1.

Figure 24-1: A URL-encoded text string.

JavaScript Basics 49

Task 24

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 49

Alerting the User

The window object provides the alert method, which allows you to display a
simple dialog box containing a text message followed by a single button the

user can use to acknowledge the message and close the dialog box.

Figure 25-1 illustrates an alert dialog box in Microsoft Internet Explorer; Figure
25-2 shows the same dialog box in Netscape.

Figure 25-1: An alert dialog box in Internet Explorer.

Figure 25-2: An alert dialog box in Netscape.

The following steps show how to display an alert dialog box:

1. Open a new HTML document in your preferred HTML or text editor.

2. Create the header of the document with opening and closing header
tags:

<head>

</head>

notes
• The dialog boxes created

by the window.alert
method are quite generic
and have clear indications
that they come from the
current Web page (Internet
Explorer places its name in
the title bar, and Netscape
clearly says “JavaScript
Application”). This is done
for security: You can’t pop
up a dialog box with this
method that represents
itself as anything but the
result of a JavaScript
script running in the
current page.

• When the alert dialog box
displays (see Step 4), inter-
action with the browser
window is blocked until the
user closes the dialog box
by clicking the button in
the dialog box.

50 Part 1

Task 25

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 50

3. Insert a script block in the header of the document:

<head>

<script language=”JavaScript”>

<!--

// -->

</script>

</head>

4. Call the window.alert method to display a message in a dialog box:

<head>

<script language=”JavaScript”>

<!--

window.alert(“Hello”);

// -->

</script>

</head>

5. Save the file and close it.

6. Open the file in a browser, and you should see a dialog box like the
one in Figure 25-3.

Figure 25-3: Displaying an alert dialog box.

JavaScript Basics 51

Task 25

cross-reference
• Alert dialog boxes are the

simplest you can create
with JavaScript. There is no
real user interaction; there
is just text and a single
button for closing the dia-
log box. This makes them
good for displaying mes-
sages to the user. The next
task illustrates how to cre-
ate a slightly more compli-
cated dialog box with two
buttons: one to accept and
one to cancel.

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 51

Confirming with the User

In addition to the alert method discussed in Task 25, the window object
also provides the confirm method, which allows you to display a dialog

box containing a text message followed by two buttons the user can use to
acknowledge or reject the message and close the dialog box. Typically these
buttons are labeled OK and Cancel.

Figure 26-1 illustrates a confirmation dialog box in Microsoft Internet Explorer;
Figure 26-2 shows the same dialog box in Netscape.

Figure 26-1: A confirmation dialog box in Internet Explorer.

Figure 26-2: A confirmation dialog box in Netscape.

The following steps show how to display a confirmation dialog box and then dis-
play the user’s selection in the browser:

1. Open a new HTML document in your preferred HTML or text editor.

2. Create the body of the document with opening and closing body tags:

<body>

</body>

3. Insert a script block in the body of the document:

<body>

<script language=”JavaScript”>

<!--

// -->

</script>

</body>

notes
• The dialog boxes created

by the window.confirm
method are quite generic
and have clear indications
that they come from the
current Web page (Internet
Explorer places its name in
the title bar and Netscape
clearly says “JavaScript
Application”). This is done
for security: You can’t pop
up a dialog box with this
method that represents
itself as anything but the
result of a JavaScript
script running in the
current page.

• The window.confirm
method returns a value:
true if the user clicks on OK
or false if the user clicks on
Cancel (see Step 4).

52 Part 1

Task 26

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 52

4. Call the window.confirm method to display a message in a dialog
box; assign the selection of the user, which is returned by the
method, to the result variable:

<body>

<script language=”JavaScript”>

<!--

var result = window.confirm(“Click OK to continue”);

// -->

</script>

</body>

5. Save the file and close it.

6. Open the file in a browser, and you should see a dialog box like the
one in Figure 26-3.

Figure 26-3: Displaying a confirmation dialog box.

7. If you click on OK, you should see “true” in the browser window as
in Figure 26-4.

Figure 26-4: Displaying the user’s selection in the browser window.

JavaScript Basics 53

Task 26

cross-reference
• Confirmation dialog boxes

only provide primitive user
interaction; they don’t let
users enter any data. Task
117 illustrates how to cre-
ate a slightly more compli-
cated dialog box with a text
entry field for the user to
enter data.

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 53

Creating Your Own Functions

Not only does JavaScript have a large body of built-in functions and methods,
it also allows you to create your own functions. Creating a function is fairly

straightforward:

function functionName() {

Your function code goes here

}

The code in the function can be any valid JavaScript code that you would use
elsewhere in your scripts.

The following task creates a function that outputs “Hello” to the browser and the
proceeds to call that function in order to display the text:

1. Open a new HTML document in your preferred HTML or text
editor.

2. Create the header of the document with opening and closing head
tags:

<head>

</head>

3. Insert a script block in the header of the document:

<script language=”JavaScript”>

<!--

// -->

</script>

4. Create a function named hello that takes no arguments:

function head() {

}

5. In the function, use document.write to output “Hello” to the
browser:

document.write(“Hello”);

6. Create the body of the document with opening and closing body
tags:

<body>

</body>

notes
• The advantage here is that

if you have tasks or opera-
tions that will be repeated
multiple times in your
application, you can
encapsulate it in a function
once and then call the
function multiple times
instead of repeating the
code multiple times in your
application.

• Typically, you will not use a
function just to display a
dialog box. You want to
build functions to perform
more complex tasks that
you will need to repeat
multiple times in your
application. This is just
used to illustrate the cre-
ation of a function.

54 Part 1

Task 27

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 54

7. Insert a script block in the body of the document:

<script language=”JavaScript”>

<!--

// -->

</script>

8. In the script block, call the hello function so that the final page
looks like Listing 27-1.

<head>

<script language=”JavaScript”>

<!--

function head() {

document.write(“Hello”);

}

// -->

</script>

</head>

<body>

<script language=”JavaScript”>

<!--

hello();

// -->

</script>

</body>

Listing 27-1: Creating and calling your own function.

9. Save the file.

10. Open the file in a browser, and you should see “Hello” in the
browser.

JavaScript Basics 55

Task 27

cross-reference
• Functions perform opera-

tions on data and return
the results of those opera-
tions. That means you will
want to pass data to your
functions (this is outlined
in Task 28) and return the
results of the function’s
processing (this is outlined
in Task 29).

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 55

Passing an Argument to Your Functions

Task 27 showed you how to create a function, but the function created in that
task did not accept any arguments. To create a function that accepts argu-

ments, you must specify names for each argument in the argument definition:

function functionName(argumentName1,argumentName2,etc.) {

Your function code goes here

}

The following task creates a function that accepts a single numeric argument,
squares that number, and outputs the result:

1. Open a new HTML document in your preferred HTML or text editor.

2. Create the header of the document with opening and closing head tags:

<head>

</head>

3. Insert a script block in the header of the document:

<script language=”JavaScript”>

<!--

// -->

</script>

4. Create a function named square that takes one argument named
number:

function square(number) {

}

5. In the function, square the number and assign the results to a vari-
able, and then use document.write to output that result:

var result = number * number;

document.write(result);

6. Create the body of the document with opening and closing body tags:

<body>

</body>

56 Part 1

Task 28

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 56

tips
• The argument names in the

introductory paragraph
should appear in the order
in which the arguments will
be provided when the func-
tion is being called. The list
of names essentially cre-
ates variables accessible
only inside the function,
and it is through these vari-
ables that you can access
and work with the argu-
ment data provided when
the function is called.

• To make effective use of
functions, you need to be
sensitive to the logic of
your application. Functions
are useful for encapsulat-
ing program logic that you
will repeat multiple times.
For instance, if you will be
squaring numbers at sev-
eral points in your script,
you might want to consider
a function for squaring
numbers. If you do this in
only one place, a function
is not necessary.

7. Insert a script block in the body of the document:

<script language=”JavaScript”>

<!--

// -->

</script>

8. In the script block, call the square function and pass in a value of
100 so that the final page looks like Listing 28-1.

<head>

<script language=”JavaScript”>

<!--

function square(number) {

var result = number * number;

document.write(result);

}

// -->

</script>

</head>

<body>

<script language=”JavaScript”>

<!--

square(100);

// -->

</script>

</body>

Listing 28-1: Creating and calling your own function with a single argument.

9. Save the file.

10. Open the file in a browser, and you should see 10000 in the browser.

JavaScript Basics 57

Task 28

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 57

Returning Values from Your Functions

In Task 28, you created a function that squares numbers and then outputs the
result.

The problem with this function is that it isn’t very practical. Instead of outputting
the result of the operation, what you really want to do is return the result so
that the result can be assigned to a variable or used in a mathematical expression.

To do this, you use the return command as the last command in a function:

function functionName() {

some code

return value;

}

To illustrate this, the following task creates a function for squaring numbers that
returns the result instead of outputting it. The function is then called, the result
is stored in a variable, and then that variable is used to output the results:

1. Open a new HTML document in your preferred HTML or text editor.

2. Create the header of the document with opening and closing head tags:

<head>

</head>

3. Insert a script block in the header of the document:

<script language=”JavaScript”>

<!--

// -->

</script>

4. Create a function named square that takes one argument named

function square(number) {

}

5. In the function, square the number and assign the results to a vari-
able; then use return to return that result:

var result = number * number;

return result;

note
• The value being returned

can be a text string, a num-
ber, a variable that con-
tains a value, or even a
mathematical expression.
Basically, anything that you
could envisage assigning to
a variable can be returned
from a function.

58 Part 1

Task 29

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 58

tip
• To make effective use of

functions, you need to be
sensitive to the logic of
your application. Functions
are useful for encapsulat-
ing program logic that you
will repeat multiple times.
For instance, if you will be
squaring numbers at sev-
eral points in your script,
you might want to consider
a function for squaring
numbers. If you do this in
only one place, a function
is not necessary.

6. Create the body of the document with opening and closing body tags:

<body>

</body>

7. Insert a script block in the body of the document:

<script language=”JavaScript”>

<!--

// -->

</script>

8. In the script block, call the square function, pass in a value of 10,
and assign the results to the variable mySquare. Next, output that
with document.write so that the final page looks like Listing 29-1.

<head>

<script language=”JavaScript”>

<!--

function square(number) {

var result = number * number;

return result;

}

// -->

</script>

</head>

<body>

<script language=”JavaScript”>

<!--

var mySquare = square(10);

document.write(mySquare);

// -->

</script>

</body>

Listing 29-1: Creating and calling your own function, which returns a result.

9. Save the file.

10. Open the file in a browser, and you should see 100 in the browser.

JavaScript Basics 59

Task 29

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 59

Passing Multiple Parameters
to Your Functions

In Tasks 28 and 29, you created functions that took single arguments. You also
can create functions that take multiple arguments. To do so, you must specify

names for each argument in the argument definition:

function functionName(argumentName1,argumentName2,etc.) {

Your function code goes here

}

The following task creates a function that accepts two numeric arguments, multi-
plies them, and returns the result:

1. Open a new HTML document in your preferred HTML or text editor.

2. Create the header of the document with opening and closing head tags:

<head>

</head>

3. Insert a script block in the header of the document:

<script language=”JavaScript”>

<!--

// -->

</script>

4. Create a function named multiple that takes two arguments named
number1 and number2:

function multiple(number1,number2) {

}

5. In the function, multiply the numbers and assign the results to a vari-
able; then use return to output that result:

var result = number1 * number2;

return result;

note
• These names should be in

the order in which the argu-
ments will be provided
when the function is being
called. The list of names
essentially creates vari-
ables accessible only
inside the function, and it
is through these variables
that you can access and
work with the argument
data provided when the
function is called.

60 Part 1

Task 30

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 60

tip
• To make effective use of

functions, you need to be
sensitive to the logic of
your application. Functions
are useful for encapsulat-
ing program logic that you
will repeat multiple times.
For instance, if you will be
multiplying numbers at sev-
eral points in your script,
you might want to consider
a function for squaring
numbers (of course,
JavaScript provides multi-
plication capabilities for
you—this is just an exam-
ple). If you do this in only
one place, a function is
not necessary.

6. Create the body of the document with opening and closing body tags.

7. Insert a script block in the body of the document.

8. In the script block, call the multiply function and pass in the values
10 and 20; assign the result that is returned to a variable, and then
output that variable so that the final page looks like Listing 30-1.

<head>

<script language=”JavaScript”>

<!--

function multiple(number1,number2) {

var result = number1 * number2;

return result;

}

// -->

</script>

</head>

<body>

<script language=”JavaScript”>

<!--

var result = multiply(10,20);

document.write(result);

// -->

</script>

</body>

Listing 30-1: Creating and calling your own function with multiple arguments.

9. Save the file.

10. Open the file in a browser, and you should see 200 in the browser.

JavaScript Basics 61

Task 30

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 61

Calling Functions from Tags

One of the benefits of JavaScript is to be able to tie interactivity to elements of
the HTML page. One way you can do this is to set up links in HTML that

actually trigger calls to JavaScript functions when the link is clicked.

There are two ways to do this:

1. Use the onClick attribute of the a tag to call the function:

Link text

2. Use a javascript: URL in the href attribute of the a tag to call
the function:

Link text

The following task illustrates these two methods of calling a function from a link
by creating a function that displays an alert dialog box to the user and then pro-
viding two separate links for the user to use to call the function:

1. Open a new HTML document in your preferred HTML or text editor.

2. Create the header of the document with opening and closing head tags:

<head>

</head>

3. Insert a script block in the header of the document:

<script language=”JavaScript”>

<!--

// -->

</script>

4. Create a function named hello that takes no arguments:

function hello() {

}

5. In the function, use the window.alert method to display an alert
dialog box:

window.alert(“Hello”);

notes
• onClick is an event han-

dler; this means it speci-
fied JavaScript code to
execute when an event
occurs. In this case, the
event that must occur is
the click event: The user
must click on the link.

• The question of which tech-
nique to use really
depends on your circum-
stance and needs. For
instance, with onClick
you can also specify a URL
to follow when the link is
clicked so the JavaScript
can be executed and then
the link will be followed.
You can’t do that with the
javascript: URL
approach.

62 Part 1

Task 31

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 62

6. Create the body of the document with opening and closing body tags.

7. In the final page create two links that call the hello function using
onClick and the javascript: URL techniques so that the final
page looks like Listing 31-1.

<head>

<script language=”JavaScript”>

<!--

function hello() {

window.alert(“Hello”);

}

// -->

</script>

</head>

<body>

Call hello() from Æ

onClick.Æ

Æ

Cal hello() from href.

</body>

Listing 31-1: Calling a function from a link.

8. Save the file.

9. Open the file in a browser, and you should see two links in the
browser.

10. Click on either link and you should see a dialog box.

JavaScript Basics 63

Task 31

cross-reference
• The process of creating

functions is discussed in
Tasks 27 to 30.

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 63

Calling Your JavaScript Code
after the Page Has Loaded

Sometimes you will want to execute JavaScript code only once the HTML
page has fully loaded.

Doing this requires two steps:

1. Place the code you want to execute after the page has completed
loading into a function.

2. Use the onLoad attribute of the body tag to call the function.

This results in code like the following:

<head>

<script language=”JavaScript”>

function functionName() {

Code to execute when the page finishes loading

}

</script>

</head>

<body onLoad=”functionName();”>

Body of the page

</body>

The following task creates a function that displays a welcome message in a dialog
box and then only invokes that function once the page has completed loading:

1. Open a new HTML document in your preferred HTML or text editor.

2. Create the header of the document with opening and closing head tags.

3. Insert a script block in the header of the document:

<head>

<script language=”JavaScript”>

<!--

// -->

</script>

</head>

note
• In Step 7 onLoad is an

event handler; this means
it specified JavaScript code
to execute when an event
occurs. In this case, the
event that must occur is
the completion of loading
of the document.

64 Part 1

Task 32

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 64

tip
• You might want to wait for

a page to load before exe-
cuting your code, because
your code relies on certain
page elements being ren-
dered or just because you
don’t want a certain effect
to occur too early.

4. Create a function named hello that takes no arguments:

function hello() {

}

5. In the function, use the window.alert method to display an alert
dialog box:

window.alert(“Hello”);

6. Create the body of the document with opening and closing body tags.

7. In the body tag, use the onLoad attribute to call the hello function:

<body onLoad=”hello();”>

8. In the body of the page, place any HTML or text that you want in
the page so that the final page looks like Listing 32-1.

<head>

<script language=”JavaScript”>

<!--

function hello() {

window.alert(“Hello”);

}

// -->

</script>

</head>

<body onLoad=”hello();”>

The page’s content.

</body>

Listing 32-1: Using onLoad to call a function after the page loads.

9. Save the file.

10. Open the file in a browser, and you should see the page’s content, as
well as the alert dialog box.

JavaScript Basics 65

Task 32

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 65

Using for Loops

Sometimes you will not want your code to proceed in a straight, linear fashion.
In these situations you will want to make use of flow control techniques to

adjust the way that the processing of your code proceeds. One such technique is
looping, which allows you to specify that a section of code repeats one or more
times before proceeding with the rest of your script.

Typically, loops are created with a for statement:

for (conditions controlling the loop) command

The command, of course, can be a single command or multiple commands com-
bined with curly brackets:

for (conditions controlling the loop) {

JavaScript command

JavaScript command

etc.

}

Typically, for loops use an index variable to count, and on each iteration of the
loop, the index variable’s value changes (usually incrementing) until the index
variable reaches some limit value. For instance, the following loop counts from 1
to 10 using the variable i as the index variable:

for (i = 1; i <= 10; i ++) {

Code to execute in the loop

}

Condition controlling the loop breaks down into three parts separated by
semicolons:

1. The first part specifies the initial value of the index variable. This will
be the value on the first iteration of the loop.

2. The second part specifies the condition that the index variable must
meet for the next iteration of the loop to occur. Basically, this test
occurs before each iteration of the loop, including the first.

3. The third part indicates how to change the value of the index variable
at the end of each iteration of the loop. In this case, the index vari-
able is incremented by one.

Inside the body of the loop, the index variable is available and will contain the
appropriate value for the current iteration.

66 Part 1

Task 33

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 66

To illustrate this, the following steps use a for loop to count from 1 to 10 and
display the numbers to the browser:

1. Create a new HTML document in your preferred editor.

2. In the body of the document, create a script block.

3. In the script block, create a for loop:

for () {

}

4. Use the appropriate conditions to count from 1 to 10 in the loop,
using i as the index variable:

for (i = 1; i <= 10; i++) {

}

5. In the loop, display the current value of the index variable followed
by a br tag so each number displays in a separate line in the browser.
The final page should look like Listing 33-1.

<body>

<script>

<!--

for (i = 1; i <= 10; i++) {

document.write(i + “
”);

}

// -->

</script>

</body>

Listing 33-1: Using a for loop.

6. Save the file and close it.

7. Open the file in a browser, and you should see the numbers 1 to 10
on separate lines.

JavaScript Basics 67

Task 33

cross-references
• Loop-based flow control,

such as that created with a
for loop, is not the only
type of flow control. Another
type of flow control is con-
ditional branching, such as
is illustrated in Task 34.

• The loops created with the
for command are typically
called index-based loops.
Another form of looping is
condition-based looping,
which is discussed in
Task 36.

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 67

Testing Conditions with if

As mentioned in the previous task, sometimes you will not want your code to
proceed in a straight, linear fashion. In these situations you will want to make

use of flow control techniques to adjust the way that processing of your code pro-
ceeds. One such technique is conditional branching looping, which allows you to
specify that a certain section of code executes only when a certain condition
exists.

Conditional branching is performed with the if statement:

if (condition) command

The command, of course, can be a single command or multiple commands com-
bined with curly brackets:

if (condition) {

JavaScript command

JavaScript command

etc.

}

To illustrate the effective use of if statements, the following presents a dialog
box asking the user to click on OK or Cancel, and then tests the user’s response
and displays an appropriate message in the browser window:

1. Create a new HTML document in your preferred editor.

2. In the body of the document, create a script block.

3. In the script block, use the window.confirm method to ask the user
to click on OK or Cancel and to store the result in a variable named
userChoice.

var userChoice = window.confirm(“Choose OK or Æ

Cancel”);

4. Create an if statement to test if the value of userChoice is true.
If it is, the user has clicked on OK, and you need to display an appro-
priate message in the browser:

if (userChoice == true) {

document.write(“OK”);

}

5. Create an if statement to test if the value of userChoice is false.
If it is, the user has clicked on Cancel, and you need to display an

notes
• The condition is any

expression or value that
evaluates down to true or
false. Typically this means
performing some type of
comparison operation,
such as testing equality
(myVariable ==
“Hello”), testing magni-
tude (myVariable <=
20), or testing inequality
(myVariable != 100).

• The window.confirm
method returns true if the
user clicks on OK and
false if the user clicks on
Cancel (see Step 4).

68 Part 1

Task 34

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 68

appropriate message in the browser. The final page should look like
Listing 34-1.

<body>

<script>

<!--

var userChoice = window.confirm(“Choose OK or Æ

Cancel”);

if (userChoice == true) {

document.write(“OK”);

}

if (userChoice == false) {

document.write(“Cancel”);

}

// -->

</script>

</body>

Listing 34-1: Using window.confirm.

6. Save the file and close it.

7. Open the file in a browser. You should see a confirmation dialog box
like the one in Figure 34-1.

Figure 34-1: Letting the user choose between OK and Cancel.

8. Click on OK or Cancel, and an appropriate message should display
in the browser window.

JavaScript Basics 69

Task 34

cross-reference
• Refer to Task 26 for a dis-

cussion of the window.
confirm method.

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 69

Using Short-Form Condition Testing

JavaScript provides a short-form method of testing a condition and then
returning a value based on that condition. It is useful when you want to assign

a value to a variable: If a condition is true, it gets one value; otherwise, it gets
another value.

This type of short-cut evaluation and assignment looks like the following:

var myVar = (condition) ? value to assign if condition is true : Æ

value to assign if condition is false;

The key syntactical components of this are as follows:

• The condition must evaluate to true or false just like for an if state-
ment (as mentioned in Task 34).

• The question mark indicates this is short-form condition testing.

• The colon separates the value to return if the condition is true from
the value to return in a false condition. The value for true is always
on the left of the colon.

To illustrate effective use of short-form condition testing, the following presents
a dialog box asking the user to click on OK or Cancel and stores the choice in a
variable. Based on that a second variable is created with an output message
dependant on the user’s choice; this is done with short-form testing. Finally, the
message is displayed to the user.

1. Create a new HTML document in your preferred editor.

2. In the body of the document, create a script block.

3. In the script block, use the window.confirm method to ask the user
to click on OK or Cancel and store the result in a variable named
userChoice:

var userChoice = window.confirm(“Choose OK or Æ

Cancel”);

4. Use short-form condition testing on the value of userChoice to
assign either “OK” or “Cancel” to a new variable called result:

var result = (userChoice == true) ? “OK” : “Cancel”;

note
• The window.confirm

method returns true
if the user clicks on OK and
false if the user clicks
on Cancel.

70 Part 1

Task 35

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 70

5. Display the value of result so that the final page looks like
Listing 35-1.

<body>

<script>

<!--

var userChoice = window.confirm(“Choose OK or Æ

Cancel”);

var result = (userChoice == true) ? “OK” : “Cancel”;

document.write(result);

// -->

</script>

</body>

Listing 35-1: Using short-form conditional testing.

6. Save the file and close it.

7. Open the file in a browser. You should see a confirmation dialog box.

8. Click on OK or Cancel, and an appropriate message should display
in the browser window. Figure 35-1 shows the message that appears
when the user clicks on Cancel.

Figure 35-1: Clicking on Cancel.

JavaScript Basics 71

Task 35

cross-reference
• You could achieve results

identical to the introductory
source code with an if
statement (discussed in
Task 34). This is just a
more compact way to make
a decision when assigning
a value.

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 71

Looping on a Condition

In Task 33 you saw an example of a for loop; this loop was used for counting.
Another useful type of loop is a conditional loop. The form of the loop is simple:

while (condition) command

The command, of course, can be a single command or multiple commands com-
bined with curly brackets so that you get the following:

while (condition) {

JavaScript command

JavaScript command

etc.

}

This task illustrates this by repeatedly presenting a dialog box asking the user to
click OK or Cancel until such a time as the user clicks on OK:

1. Create a new HTML document in your preferred editor.

2. In the body of the document, create a script block.

3. In the script block, use the window.confirm method to ask the user
to click on OK or Cancel, and store the result in a variable named
result:

var result = window.confirm(“Choose OK or Cancel”);

4. Create a while loop:

while () {

}

5. As the condition for the loop, test if the user clicked on Cancel by
comparing result to false:

while (result == false) {

}

6. Inside the loop, call window.confirm again, and save the user’s
selection in result:

while (result == false) {

result = window.confirm(“Choose OK or Cancel”);

}

notes
• A conditional loop contin-

ues as long as a single
condition is true; once the
condition becomes false,
the loop ends.

• The condition must evalu-
ate to true or false. Before
each iteration of the loop,
the condition is tested;
if it is true, another
iteration of the loop
happens. Otherwise,
the looping stops.

72 Part 1

Task 36

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 72

7. After the loop, output a message indicating the user finally clicked on
OK. The final page should look like Listing 36-1.

<body>

<script>

<!--

var result = window.confirm(“Choose OK or Cancel”);

while (result == false) {

result = window.confirm(“Choose OK or Cancel”);

}

document.write(“You finally chose OK!”);

// -->

</script>

</body>

Listing 36-1: Using a conditional loop.

8. Save the file and close it.

9. Open the file in a browser. You should see a confirmation dialog box.

10. The dialog box will keep reappearing until the user clicks on OK,
and then a message will be displayed in the browser as illustrated in
Figure 36-1.

Figure 36-1: Clicking on OK.

JavaScript Basics 73

Task 36

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 73

Looping through an Array

Task 22 introduced the notion of an array: a set of numbered containers for
storing values. Sometimes you will want to be able to loop through each ele-

ment in the array. This can be done using a for loop so that the index variable of
the loop matches one of the array indexes for each iteration through the loop.
for loops were illustrated in Task 33.

To do this, you want to be able to dynamically determine the length of the array
so that you can set the conditions for the for loop. You do this with the length
property of the array object. The following loop, for instance, loops through
each of the indexes from the myArray array:

for (i = 0; i < myArray.length; i++)

The following task creates an array and then loops through it to display each
element of the array in the browser window:

1. Create a new HTML document in your preferred editor.

2. In the body of the document, create a script block:

<body>

<script>

<!--

// -->

</script>

</body>

3. In the script block, create a new three-element array named
myArray:

var myArray = new Array(3);

4. Populate the elements of the array:

myArray[0] = “Item 0”;

myArray[1] = “Item 1”;

myArray[2] = “Item 2”;

5. Create a for loop to loop through the array:

for (i = 0; i < myArray.length; i++) {

}

notes
• Notice that you start count-

ing at 1. This is because
the first index is 0 in any
array. Similarly, you test for
i being less than (not less
than or equal to) the length
of the array. This is because
if the length of the array is
5, then the last index is 4.
If you tested for being less
than or equal to the length
of the array, then the loop
would count to 5 and not
stop at 4 as it should.

• Notice in Step 6 the use of
the variable i for the index
of myArray in the loop.
This works because i
is being used to count
through valid index values
for the loop.

74 Part 1

Task 37

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 74

6. In the loop, display the current element of the array to the browser
window with document.write. The final page should look like
Listing 37-1.

<body>

<script>

<!--

var myArray = new Array(3);

myArray[0] = “Item 0”;

myArray[1] = “Item 1”;

myArray[2] = “Item 2”;

for (i = 0; i < myArray.length; i++) {

document.write(myArray[i] + “
”);

}

// -->

</script>

</body>

Listing 37-1: Looping through an array.

7. Save the file and close it.

8. Open the file in a browser, and a list of the elements should be dis-
played as in Figure 37-1.

Figure 37-1: Looping through an array to display its elements.

JavaScript Basics 75

Task 37

cross-reference
• The document.write

method, which is used to
display output to the
browser, is covered in
Task 9.

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 75

Scheduling a Function for
Future Execution

Sometimes you will want to execute a function in an automated, scheduled
way. JavaScript provides the ability to schedule execution of a function at a

specified time in the future. When the appointed time arrives, the function auto-
matically executes without any user intervention.

Scheduling is done with the window.setTimeout method:

window.setTimeout(“function to execute”,schedule time);

The function to execute is specified as if you were calling the function normally
but in a text string; the text string contains the actual text of the command to exe-
cute. The schedule time specifies the number of milliseconds to wait before exe-
cuting the function. For instance, if you want to wait 10 seconds before executing
the function, you need to specify 10000 milliseconds.

To illustrate this, the following script creates a function that displays an alert dia-
log box and then schedules it to execute five second later:

1. Create a new HTML document in your preferred editor.

2. In the header of the document, create a script block:

<head>

<script>

<!--

// -->

</script>

</head>

3. In the script block, create a function named hello that takes no
arguments:

<head>

<script>

<!--

function hello() {

}

// -->

</script>

</head>

note
• The argument specifying

the function to execute
should be specified as a
text string, and the string
should include the com-
plete call to the function
including any arguments
being passed to the
function.

76 Part 1

Task 38

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 76

4. In the function, use window.alert to display a dialog box:

<head>

<script>

<!--

function hello() {

window.alert(“Hello”);

}

// -->

</script>

</head>

5. After the function, schedule the function to execute five seconds in
the future:

<head>

<script>

<!--

function hello() {

window.alert(“Hello”);

}

window.setTimeout(“hello()”,5000);

// -->

</script>

</head>

6. Save the file and close it.

7. Open the file in a browser. Wait five seconds, and then an alert dialog
box should appear, as in Figure 38-1.

Figure 38-1: Scheduling a function to execute.

JavaScript Basics 77

Task 38

cross-reference
• The process of creating

functions is discussed in
Tasks 27 to 30.

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 77

Scheduling a Function for
Recurring Execution

Task 38 showed you how to schedule a function for a single automatic execu-
tion in the future. But what if you wanted to schedule the same function to

execute repeatedly at set intervals?

To do this, you need to do two things:

• As the last command in the function, use window.setTimeout to
reschedule the function execute again.

• Use window.setTimeout outside the function to schedule initial exe-
cution of the function.

The results look something like this:

function functionName() {

some JavaScript code

window.setTimeout(“functionName()”,schedule time);

}

window.setTimeout(“functionName()”,schedule time);

To illustrate this, the following script creates a function that displays an alert dia-
log box and then schedules it to execute every five seconds:

1. Create a new HTML document in your preferred editor.

2. In the header of the document, create a script block.

3. In the script block, create a function named hello that takes no
arguments:

function hello() {

}

4. In the function use window.alert to display a dialog box:

function hello() {

window.alert(“Hello”);

}

5. Complete the function by using window.setTimeout to schedule
the function to run every five seconds:

function hello() {

window.alert(“Hello”);

window.setTimeout(“hello()”,5000);

}

note
• The alert dialog boxes will

appear every five seconds
indefinitely (see Step 8). To
get out of this, simply close
the browser window in one
of the intervals between
dialog boxes.

78 Part 1

Task 39

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 78

6. After the function, schedule the function to execute five seconds in
the future. The final page should look like Listing 39-1.

<head>

<script>

<!--

function hello() {

window.alert(“Hello”);

window.setTimeout(“hello()”,5000);

}

window.setTimeout(“hello()”,5000);

// -->

</script>

</head>

Listing 39-1: Scheduling a function to execute.

7. Save the file and close it.

8. Open the file in a browser. Wait five seconds, and then an alert dialog
box should appear, as in Figure 39-1. After you close the dialog box,
another should reappear after five seconds. This should continue
indefinitely.

Figure 39-1: Scheduling a function to execute.

JavaScript Basics 79

Task 39

cross-reference
• Task 25 discusses the use

of the window.alert
method to display dialog
boxes.

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 79

Canceling a Scheduled Function

In Task 38 you saw how to schedule a function for future execution using win-
dow.setTimeout. Using a related method, window.clearTimeout, you can

cancel a scheduled execution event before it occurs.

When you create a scheduled event, the window.setTimeout method returns a
pointer to that event. You can then use the pointer to cancel the scheduled event.
You simply pass that pointer to window.clearTimeout:

var pointer = window.setTimeout(...);

window.clearTimeout(pointer);

The following task illustrates this by creating a function and scheduling it to exe-
cute five seconds after the page loads, but then immediately canceling that sched-
uled execution so that nothing happens:

1. Create a new HTML document in your preferred editor.

2. In the header of the document, create a script block:

<head>

<script>

<!--

// -->

</script>

</head>

3. In the script block, create a function named hello that takes no
arguments:

function hello() {

}

4. In the function use window.alert to display a dialog box:

window.alert(“Hello”);

5. After the function, schedule the function to execute five seconds in
the future, and save the pointer in a variable:

var myTimeout = window.setTimeout(“hello()”,5000);

note
• Just why would you want to

cancel a scheduled func-
tion call? There are a
number of reasons. For
instance, you may want to
use the scheduled function
as a form of countdown.
The user, for instance, may
have a certain number of
seconds to perform a task
on the page before the
page is cleared. You can
schedule a function call to
clear the page and then
cancel it if the user per-
forms the desired action.

80 Part 1

Task 40

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 80

6. Cancel the scheduled event so that the final page looks like
Listing 40-1.

<head>

<script>

<!--

function hello() {

window.alert(“Hello”);

}

var myTimeout = window.setTimeout(“hello()”,5000);

window.clearTimeout(myTimeout);

// -->

</script>

</head>

Listing 40-1: Canceling a scheduled event.

7. Save the file and close it.

8. Open the file in a browser. Nothing should appear except a blank
browser window, as in Figure 40-1.

Figure 40-1: Scheduling a function to execute and then canceling it.

JavaScript Basics 81

Task 40

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 81

Adding Multiple Scripts to a Page

JavaScript integrates into your HTML documents in a flexible way. In fact,
there is nothing preventing you from having multiple script blocks wherever

you need them in the header and body of your document. The script blocks will
be processed by the browser in order with the rest of the HTML in the page.

The following task illustrates two script blocks in a single document:

1. Create a new HTML document.

2. In the body of the document, create a script block:

<body>

<script language=”JavaScript”>

<!--

// -->

</script>

</body>

3. In the script block, output some text with document.write:

document.write(“The first script”);

4. After the script block, place some regular HTML code:

<hr>

5. Create another script block:

<script language=”JavaScript”>

<!--

// -->

</script>

6. In the second script block, output some more text so that the final
page looks like Listing 41-1.

7. Save the file and close it.

82 Part 1

Task 41

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 82

tip
• You can actually include

more than two script blocks
in a page; there is no limit.
The limits are practical
more than anything else.
Ideally, you want to group
as much of your code
together as possible in the
header of your document in
functions. Having lots of
script blocks makes it
harder to follow the logic of
your application and debug
and manage your code.

<body>

<script language=”JavaScript”>

<!--

document.write(“The first script”);

// -->

</script>

<hr>

<script language=”JavaScript”>

<!--

document.write(“The second script”);

// -->

</script>

</body>

Listing 41-1: Multiple scripts in a page.

8. Open the file in a browser. You should see the results of both scripts,
as illustrated in Figure 41-1.

Figure 41-1: Using multiple script blocks.

JavaScript Basics 83

Task 41

cross-reference
• All scripts need to be con-

tained in a script block.
Task 1 introduces the cre-
ation and use of a script
block.

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 83

Calling Your JavaScript Code
after the Page Has Loaded

Sometimes you will want to execute JavaScript code only when the user tries
to leave your page. You might want to do this because you want to bid the

user farewell or remind the user he or she is leaving your site.

Doing this requires two steps:

• Place the code you want to execute after the page has completed
loading into a function.

• Use the onUnload attribute of the body tag to call the function.

This results in code like the following:

<head>

<script language=”JavaScript”>

function functionName() {

Code to execute when the page finishes loading

}

</script>

</head>

<body onUnload=”functionName();”>

Body of the page

</body>

The following task creates a function that displays a goodbye message in a dialog
box and then only invokes that function when the user leaves the page:

1. Open a new HTML document in your preferred HTML or text editor.

2. Create the header of the document with opening and closing head tags.

3. Insert a script block in the header of the document.

4. Create a function named bye that takes no arguments:

function bye() {

}

note
• onUnload is an event

handler; this means it
specified JavaScript code
to execute when an event
occurs. In this case, the
event that must occur is
the user navigating to
another page.

84 Part 1

Task 42

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 84

5. In the function, use the window.alert method to display an alert
dialog box:

window.alert(“Farewell”);

6. Create the body of the document with opening and closing body tags.

7. In the body tag, use the onUnload attribute to call the bye function:

<body onUnload=”bye();”>

8. In the body of the page, place any HTML or text that you want in
the page so that the final page looks like Listing 42-1.

<head>

<script language=”JavaScript”>

<!--

function bye() {

window.alert(“Farewell”);

}

// -->

</script>

</head>

<body onUnload=”bye();”>

The page’s content.

</body>

Listing 42-1: Using onUnload to call a function after the user leaves a page.

9. Save the file.

10. Open the file in a browser, and you should see the page’s content.
Navigate to another site and you should see the farewell dialog box.

JavaScript Basics 85

Task 42

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 85

Check If Java Is Enabled
with JavaScript

Sometimes it is useful to know whether or not Java is enabled and to use that
information in composing your pages. For instance, based on that informa-

tion, you could dynamically adjust the content of your page to include or not
include Java-based content.

Luckily, JavaScript provides a simple mechanism for determining this: the navi-
gator.javaEnabled method. This method returns true if Java is enabled in
the browser and false otherwise.

The following task displays a message in the browser window indicating whether
or not Java is enabled:

1. Create a new HTML document.

2. In the body of the document, create a script block:

<body>

<script language=”JavaScript”>

<!--

// -->

</script>

</body>

3. In the script block, call navigator.javaEnabled and assign the
results to a variable:

<body>

<script language=”JavaScript”>

<!--

var haveJava = navigator.javaEnabled();

// -->

</script>

</body>

note
• Why might you want to test

if Java is enabled in the
browser? One reason would
be if you plan to output
HTML code to embed a
Java applet in the browser:
By testing first, you could
output alternate HTML if
the browser doesn’t
support Java.

86 Part 1

Task 43

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 86

4. Use document.write to display a relevant message to the user:

<body>

<script language=”JavaScript”>

<!--

var haveJava = navigator.javaEnabled();

document.write(“Java is enabled: “ + haveJava);

// -->

</script>

</body>

5. Save the file and close it.

6. Open the file in a browser. You should see an appropriate message
based on the Java status in your browser. In Figure 43-1, Java is
enabled.

Figure 43-1: Testing if Java is enabled.

JavaScript Basics 87

Task 43

cross-reference
• As an example of a case

where it might be useful to
test if Java is enabled, see
Task 243, which uses Java
to obtain the IP address of
the user’s computer.

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 87

02 542419 Ch01.qxd 11/19/03 10:01 AM Page 88

Part 2: Outputting to the Browser
Task 44: Accessing the document Object

Task 45: Outputting Dynamic HTML

Task 46: Including New Lines in Output

Task 47: Outputting the Date to the Browser

Task 48: Outputting the Date and Time in a Selected Time Zone

Task 49: Controlling the Format of Date Output

Task 50: Customizing Output by the Time of Day

Task 51: Generating a Monthly Calendar

Task 52: Customizing Output Using URL Variables

Task 53: Dynamically Generating a Menu

Task 54: Replacing the Browser Document with a New Document

Task 55: Redirecting the User to a New Page

Task 56: Creating a “Page Loading ...” Placeholder

03 542419 Ch02.qxd 11/19/03 10:01 AM Page 89

Accessing the document Object

The document object is an extremely powerful and important object in
JavaScript that allows you to output data to the browser’s document stream,

as well as to access elements in the current document rendered in the browser.
Using this object, you can generate dynamic output in your document, and you
can manipulate the state of the document once rendered. The document object
provides a lot of information, methods, and access to objects reflecting the cur-
rent document, including the following:

• Arrays containing anchors, applets, embedded objects, forms, layers,
links, and plug-ins from the current document.

• Properties providing information about the current page, including
link colors, page background color, associated cookies, the domain of
the page, the modification date, the referring document, the title, and
the URL of the current document.

• Methods to allow outputting text to the document stream, events to
handle events, and an event to return text currently selected in the
document.

The following example illustrates a simple use of the document object by dis-
playing the domain of the current page in a dialog box:

1. Create a script block with opening and closing script tags:

<script language=”JavaScript”>

</script>

2. Assign the current URL to a temporary variable called myURL with
the following command:

<script language=”JavaScript”>

var myURL = document.URL;

</script>

note
• The window.alert

method takes a single
string as an argument; the
string should be the mes-
sage you want to be dis-
played in the dialog box. In
this case, the URL of the
current document is what
you want to display, and
this has been placed in
the myURL variable so
you can just pass that vari-
able as an argument to
the method.

90 Part 2

Task 44

03 542419 Ch02.qxd 11/19/03 10:01 AM Page 90

3. Include the window.alert method to display a dialog box:

<script language=”JavaScript”>

var myURL = document.URL;

window.alert();

</script>

4. Pass the myURL variable to window.alert as its argument so that
the final script looks like Listing 44-1.

<script language=”JavaScript”>

var myURL = document.URL;

window.alert(myURL);

</script>

Listing 44-1: A script to display the current URL.

5. Save the script in an HTML file, and open the HTML in your
browser. You should see a dialog box like Figure 44-1.

Figure 44-1: Displaying the current URL in a dialog box.

Outputting to the Browser 91

Task 44

cross-references
• The creation of variables,

including the appropriate
selection of variable
names, is discussed in
Task 10.

• The window.alert
method displays a dialog
box with a single text mes-
sage and a single button to
dismiss the dialog box. This
method is discussed in
Task 25.

03 542419 Ch02.qxd 11/19/03 10:01 AM Page 91

Outputting Dynamic HTML

Whenever you need to output dynamic HTML content into your document
stream, you can do this using the document.write method. This method

allows you to specify any text to be included in the document stream rendered by
the browser.

The concept is simple. Consider the following simple partial HTML document:

<p>The following value is dynamic output from JavaScript:</p>

<script language=”JavaScript”>

document.write(“<p>Dynamic Content</p>”);

</script>

<p>Thus ends the dynamic output example.</p>

The result is that the browser will render output as if the following plain HTML
source code had been sent to the browser:

<p>The following value is dynamic output from JavaScript:</p>

<p>Dynamic Content</p>

<p>Thus ends the dynamic output example.</p>

Using the document.write method, you can output any dynamic strings gen-
erated in HTML to the document stream. The following example outputs the
referring page, the domain of the current document, and the URL of the current
document using properties of the document object to obtain those values:

1. Start a script block with the script tag:

<script language=”JavaScript”>

2. Display an introductory message using document.write:

document.write(“<p>Here’s some information about this Æ

document:</p>”);

3. Output a ul tag to start an unordered list:

document.write(“”);

4. Output the referring document as a list entry:

document.write(“Referring Document: “ + Æ

document.referrer + “”);

notes
• In this task you see

uses of concatenation.
Concatenation is the act of
combining one or more
strings into one long string
using the + operator.

• The document.write
method takes a single
argument. This argument
must be a string. The con-
catenation operation used
in Steps 4 and 5 evaluates
down to a single string so
the entire concatenation
expression can be passed
as an argument to
document.write.

92 Part 2

Task 45

03 542419 Ch02.qxd 11/19/03 10:01 AM Page 92

5. Output the domain of the current document as a list entry:

document.write(“Domain: “ + document.domain + Æ

“”);

6. Output the URL of the current document as a list entry:

document.write(“URL: “ + document.URL + “”);

7. Close the script by outputting a closing ul tag; the resulting script
should look like Listing 45-1.

<script language=”JavaScript”>

document.write(“<p>Here’s some information about this Æ

document:</p>”);

document.write(“”);

document.write(“Referring Document: “ + Æ

document.referrer + “”);

document.write(“Domain: “ + document.domain + Æ

“”);

document.write(“URL: “ + document.URL + “”);

document.write(“”);

</script>

Listing 45-1: A script to dynamic information in the document stream.

8. Save the script in an HTML file, and open the file in a browser. The
result should look like Figure 45-1.

Figure 45-1: Dynamic content displayed in the browser.

Outputting to the Browser 93

Task 45

cross-reference
• The document.write

method is used to output
content to the browser win-
dow from within your
JavaScript script. The
method is introduced in
Task 9.

03 542419 Ch02.qxd 11/19/03 10:01 AM Page 93

Including New Lines in Output

The document.write method is useful, but on occasion, it has limitations. In
particular, the document.write method doesn’t output new-line characters

at the end of each string it outputs.

Consider the following JavaScript extract:

document.write(“a”);

document.write(“b”);

In essence, this is the same as the following HTML code:

ab

Notice that the “b” is on the same line as the “a”, although they are output in two
document.write commands on separate lines of the JavaScript code. This means
the output is displayed without a space between the letters, as in Figure 46-1.

Figure 46-1: document.write does
not output new-line characters

Of course, this is a little different than if you had the HTML on two separate
lines as:

a

b

In this case, the new line after the first line of code would be rendered as a space
by the browser.

This problem becomes more acute in blocks of preformatted text (text inside pre
tags).

To rectify the problem, the document object also offers the document
.writeln method. This method is exactly the same as the document.write
method, except that it outputs a new-line character to the browser at the end of
the string. This means that the following code

document.writeln(“a”);

document.writeln(“b”);

is essentially the same as the following HTML code:

a

b

notes
• Normally, the fact that
document.write does-
n’t output a new-line char-
acter doesn’t have much, if
any, impact on your code.
After all, new-line charac-
ters in standard HTML don’t
actually get rendered in the
browser. Still, this doesn’t
mean that you can simply
ignore the lack of new-line
characters.

• In preformatted blocks of
code, new-line characters
are actually rendered as
new-line characters. This
means that if you expect
that placing two output
lines in document.
write commands on sep-
arate lines will cause them
to render on separate lines,
you will be surprised by the
results.

94 Part 2

Task 46

03 542419 Ch02.qxd 11/19/03 10:01 AM Page 94

tip
• You need to be careful

using document.write
and document.
writeln. In particular, if
the string passed as an
argument is contained in
double quotes, then you
can’t just include double
quotes in the string. You
would need to escape the
double quote in the string
as \”. If you don’t do this,
the double quote will end
the string and everything
after it will not be consid-
ered part of the argument,
causing JavaScript to gen-
erate an error message.
The same applies if you
enclose the string in
single quotes: You need
to escape single quotes
in the string as \’.

This is useful in situations where new lines are important and you want to ensure
that a new line is output at the end of each line of text displayed through
JavaScript.

To illustrate the use of document.writeln, the following example is a variation
of the example in Task 45, except that the data is output as preformatted text
using the document.writeln method:

1. Start a script block with the script tag:

<script language=”JavaScript”>

2. Display an introductory message using document.write:

document.writeln(“<p>Here’s some information about this Æ

document:</p>”);

3. Output a pre tag to start a section of preformatted text:

document.writeln(“<pre>”);

4. Output the referring document:

document.writeln(“ Referring Document: “ + Æ

document.referrer);

5. Output the domain of the current document:

document.writeln(“ Domain: “ + document.domain);

6. Output the URL of the current document:

document.writeln(“ URL: “ + document.URL);

7. Close the script by outputting a closing pre tag followed by a closing
script tag:

document.writeln(“</pre>”);

</script>

8. Save the script in an HTML file, and open the file in a browser. The
result is as shown in Figure 46-2.

Figure 46-2: Dynamic content displayed in the browser in a preformatted text block.

Outputting to the Browser 95

Task 46

03 542419 Ch02.qxd 11/19/03 10:01 AM Page 95

Outputting the Date to the Browser

Using document.write and document.writeln becomes useful when
there is a genuine need to display dynamic content in the browser that can-

not be pregenerated but must be generated at the time the document is to be dis-
played.

A good example of this is displaying the current date and time within a page. For
instance, a site that delivers time-sensitive news probably wants people to know
that the news on the site is up-to-date as of the current time and could do that by
always displaying the current time in the page.

Luckily, JavaScript provides a Date object with which you can quickly and easily
obtain the current date and then output that date to the browser. Basic use of the
Date object for these purposes is straightforward, and the following script can be
inserted in an HTML file wherever you want to display the current date and
time:

1. Start a script block with the script tag:

<script language=”JavaScript”>

2. Create a new Date object and assign it to the variable thisDate:

<script language=”JavaScript”>

var thisDate = new Date();

3. Display the date using the toString method of the Date object:

<script language=”JavaScript”>

var thisDate = new Date();

document.write(thisDate.toString());

4. Close the script with a closing script tag; the final source code for
this script should look like Listing 47-1.

<script language=”JavaScript”>

var thisDate = new Date();

document.write(thisDate.toString());

</script>

Listing 47-1: A script for displaying the current date.

notes
• The Date method used

here is known as a con-
structor method. Most
objects have a constructor
method that creates a new
instance of the object.
Here, using the Date con-
structor method with no
arguments results in a
Date object with the date
set to the current date
and time.

• The toString method of
the Date object returns
the current date and time
in a standard format as a
string. You don’t have
any direct control of that
formatting.

96 Part 2

Task 47

03 542419 Ch02.qxd 11/19/03 10:01 AM Page 96

5. Include this script anywhere in an HTML document that you want
to display the current date. For instance, Listing 47-2 is a simple
HTML document that includes the script; when displayed in the
browser, this page looks like Figure 47-1.

<html>

<body>

<p>

The current date is:

<script language=”JavaScript”>

var thisDate = new Date();

document.write(thisDate.toString());

</script>

</p>

</body>

</html>

Listing 47-2: Including the script in the body of a document.

Figure 47-1: The date displayed in an HTML document.

Outputting to the Browser 97

Task 47

03 542419 Ch02.qxd 11/19/03 10:01 AM Page 97

Outputting the Date and Time
in a Selected Time Zone

Using Greenwich Mean Time (also known as Universal Time Coordinate) as a
common starting point, you can create a script that will always be able to dis-

play the time in your time zone regardless of the time zone of the user’s com-
puter. This is made possible because of two facts:

• The Date object can tell you the offset of the user’s time zone from
GMT time. So, if the user is five hours earlier than GMT, you can
find this out.

• You know your offset from GMT when you write your script.

Combining these, you can always calculate the number of hours’ difference
between your time zone and the user’s time zone and can adjust the time from
the user’s time zone to yours before manipulating that data or displaying it for
the user.

Doing this requires the use of two methods of the Date object:

• getTimezoneOffset: This method returns the number of minutes’
difference between the current browser’s time zone and GMT time.

• setHours: This method is used to determine the hours part of the
time in the current Date object. Using this you could reset the time
to the time in your time zone.

The following script displays the current time in Central European Time (two
hours later than Greenwich Mean Time). This will work regardless of the time
zone of the user’s computer.

1. Start a script block with the script tag:

<script language=”JavaScript”>

2. Set the time zone offset from GMT in the myOffset variable. This
value should be the number of hours’ change needed to change the
target time zone into GMT. For the case of Central European Time,
which in the summer is two hours later than GMT, this means a
value of -2 to indicate that it is necessary to move two hours back
from CET to reach GMT:

var myOffset = -2;

3. Create a new Date object with the current date and time, and assign
it to the currentDate variable:

var currentDate = new Date();

notes
• By default, when you out-

put the time, JavaScript
uses the current local time
and time zone of the
browser for all its time gen-
eration and manipulation.
This can cause problems,
however. Consider, for
instance, the case where
you want to present infor-
mation about whether your
support desk is opened or
closed. Ideally, you want to
do this based on the time
where your company is
located and not the user’s
time. However, you can’t
predetermine the time zone
the user will be in when you
write your scripts.

• As an example of calculat-
ing the time zone offset,
consider the following
example: If the user is in
Pacific Time in North
America and is seven
hours earlier than GMT,
userOffset will be 7
and userOffset less
myOffset will be 7 – (-2),
or 9, which is the number of
hours’ difference between
Pacific Time and CET.
Similarly, if the user is in
Israel’s time zone, which is
three hours later than GMT,
then userOffset will be
-3 and the difference will
be -3 – (-2), or -1

98 Part 2

Task 48

03 542419 Ch02.qxd 11/19/03 10:01 AM Page 98

tip
• To make this script in

Listing 48-1 display the
time and date in a time
zone other than Central
Europe, just change the
value of myOffset
appropriately.

4. Use getTimezoneOffset to extract the offset for the user’s time
zone; since this will be in minutes and this script is going to work in
hours, this value should be divided by 60. The final value is stored in
the userOffset variable:

var userOffset = currentDate.getTimezoneOffset()/60;

5. Calculate the time zone difference between the target time zone and
the user’s time zone, and assign the number of hours’ difference to
the variable timeZoneDifference.:

var timeZoneDifference = userOffset - myOffset;

6. Reset the hours part of the time using the setHours method. The
new time should be the current hours (using getHours) plus the
time zone difference. Luckily, using setHours like this will accom-
modate cases where the time zone difference pushes the date into the
previous or next day and will adjust the date accordingly.

currentDate.setHours(currentDate.getHours() + Æ

timeZoneDifference);

7. Display the current date and time in the browser window with the
document.write method:

document.write(“The time and date in Central Europe is: Æ

“ + currentDate.toLocaleString());

8. Close the script block with a closing script tag. The final script
looks like Listing 48-1.

<script language=”JavaScript”>

var myOffset = -2;

var currentDate = new Date();

var userOffset = currentDate.getTimezoneOffset()/60;

var timeZoneDifference = userOffset - myOffset;

currentDate.setHours(currentDate.getHours() + Æ

timeZoneDifference);

document.write(“The time and date in Central Europe is: Æ

“ + currentDate.toLocaleString());

</script>

Listing 48-1: A script for displaying the date in another time zone.

9. Save the script in an HTML file and open that file in a browser to
see the date and time in Central Europe displayed, as in Figure 48-1.

Figure 48-1: Displaying the date and time in Central Europe.

Outputting to the Browser 99

Task 48

03 542419 Ch02.qxd 11/19/03 10:01 AM Page 99

Controlling the Format of Date Output

In addition to the toString method, the Date object also offers the following
methods for quickly outputting the current date and time:

• toGMTString: Returns the time as a string converted to Greenwich
Mean Time. The results look like this:

Thu, 17 Apr 2003 17:47:44 UTC

• toLocaleString: Returns the time as a string using the date for-
matting conventions of the current locale. The results look like this
in Canada:

April 17, 2003 10:47:44 AM

• toUTCString: Returns the time as a string converted to Universal
Time. The results look like this in North America:

Thu, 17 Apr 2003 17:47:44 UTC

In addition, the Date object has a series of methods to return specific informa-
tion about the current date that you can then combine into a fully customizable
presentation of the date and time:

• getDate: Returns the current day of the month as a number

• getDay : Returns the current day of the week as a number between 0
(Sunday) and 6 (Saturday)

• getFullYear: Returns the four-digit year

• getHours: Returns the hour from the current time as a number
between 0 and 23

• getMinutes: Returns the minutes from the current time as a num-
ber between 0 and 59

• getMonth: Returns the current month as a number between 0
(January) and 11 (December)

Using these methods, for instance, it is possible to output the current date in a
custom form such as:

22:00 on 2003/4/15

The following code outputs the date in just this way:

1. Start a script block with the script tag:

<script language=”JavaScript”>

2. Create a new Date object and assign it to the variable thisDate:

var thisDate = new Date();

notes
• UTC stands for Coordinated

Universal Time or Universal
Time Coordinate. UTC is the
same as Greenwich Mean
Time but has become the
preferred name for this
default standard time zone.

• Using the JavaScript
event model, you can run
JavaScript code when a
user clicks on an object.
This is done using the
onClick event handler.
The onClick event han-
dler is commonly used with
form buttons and links, but
you can apply it to other
objects as well.

100 Part 2

Task 49

03 542419 Ch02.qxd 11/19/03 10:01 AM Page 100

3. Build a string containing the time by using the getHours and
getMinutes methods; this string is assigned to the variable
thisTimeString:

var thisTimeString = thisDate.getHours() + “:” + Æ

thisDate.getMinutes();

4. Build a string containing the date by using the getFullYear,
getMonth, and getDate methods; this string is assigned to the vari-
able thisDateString:

var thisDateString = thisDate.getFullYear() + “/” + Æ

thisDate.getMonth() + “/” + thisDate.getDate();

5. Display the date and time to the browser using the
document.write method:

document.write(thisTimeString + “ on “ + thisDateString);

6. Close the script with a closing script tag. The final source code looks
like Listing 49-1.

<script language=”JavaScript”>

var thisDate = new Date();

var thisTimeString = thisDate.getHours() + “:” + Æ

thisDate.getMinutes();

var thisDateString = thisDate.getFullYear() + “/” + Æ

thisDate.getMonth() + “/” + thisDate.getDate();

document.write(thisTimeString + “ on “ + thisDateString);

</script>

Listing 49-1: A script for displaying the current date in a custom format.

7. Include the script in an HTML document where you want to display
the date, and then open that document in a Web browser. The date
displays as shown in Figure 49-1.

Figure 49-1: The custom formatted date displayed in a Web browser.

Outputting to the Browser 101

Task 49

03 542419 Ch02.qxd 11/19/03 10:01 AM Page 101

Customizing Output by the Time of Day

Rather than just presenting this time information to the user and trusting the
user not to attempt to use the chat application during the time in question,

you can customize the output of the relevant support page based on the time of
day so that a link to the chat application only appears during the appropriate
hours of the day.

The following example is a script that could be included in such an application.
Between 9 A.M. and 5 P.M. on weekdays, a link to the chat application is displayed
to the user, but outside those hours, a notice indicating that live Web support is
closed is presented.

1. Start a script block with the script tag:

<script language=”JavaScript”>

2. Create a new Date object and assign it to a variable named
thisDate:

var thisDate = new Date();

3. Test the current date to see if it represents a weekday and is in the
correct time range using an if statement (refer to Task 34 for an
introduction to the if statement):

if ((thisDate.getDate() >= 1 && thisDate.getDate() <= 6) Æ

&& (thisDate.getHours() >= 9 && thisDate.getHours() <= Æ

15)) {

4. Display the HTML for the case where the support desk is open:

document.write(“The support desk is open. Click <a Æ

href=’http://my.url/’>here for live Web support.”);

5. Use the else statement to provide an alternative action:

} else {

6. Display HTML for the case where the support desk is closed:

document.write(“The support desk is closed now. Come Æ

back between 9 a.m. and 5 p.m. Monday to Friday.”);

7. Close the if block with a closing curly bracket:

}

8. Close the script block with a closing script tag. The final code
should look like the following:

<script language=”JavaScript”>

var thisDate = new Date();

notes
• Some sites will customize

the output of their Web
pages based on the current
time of day. A common
example of this is a site
that offers live Web support
in the form of some type of
chat application. It is likely
that this service will only
be offered during certain
hours of the day.

• The conditional expression
in this if statement is
quite complicated. It con-
tains two boolean subex-
pressions that are joined
by an AND operator. The
first subexpression tests
if the current date is a
weekday; the second
makes sure the time is
between 9 A.M. and 5 P.M.

102 Part 2

Task 50

03 542419 Ch02.qxd 11/19/03 10:01 AM Page 102

if ((thisDate.getDate() >= 1 && thisDate.getDate() <= Æ

6) && (thisDate.getHours() >= 9 && thisDate.getHours() Æ

<= 15)) {

document.write(“The support desk is open. Click <a Æ

href=’http://my.url/’>here for live Web support.”);

} else {

document.write(“The support desk is closed now. Æ

Come back between 9 a.m. and 5 p.m. Monday to Friday.”);

}

</script>

9. Include this script in an HTML document, and open the document
in a browser. Between 9 A.M. and 5 P.M. on weekdays, you should see
the message shown in Figure 50-1. At other times you will see the
message shown in Figure 50-2.

Figure 50-1: When the support desk is open, users can link to live Web support.

Figure 50-2: When the support desk is closed, users are told when to return.

Outputting to the Browser 103

Task 50

03 542419 Ch02.qxd 11/19/03 10:01 AM Page 103

Generating a Monthly Calendar

It is simple to leverage the Date object, using looping (as discussed in Task 33)
and the output capabilities of the document.write method to generate a

calendar for the current month.

Use the following steps to create a script to generate a calendar in a table in your
documents:

1. In a script block, create an array containing the names of months:

var months = new Array();

months[0] = “January”; months[1] = “Feburary”;

months[2] = “March”; months[3] = “April”;

months[4] = “May”; months[5] = “June”;

months[6] = “July”; months[7] = “August”;

months[8] = “September”; months[9] = “October”;

months[10] = “November”; months[11] = “December”;

2. Create a new Date object for the current date, and store it in the
currentDate variable. Take the month from the current date and
store it in the currentMonth variable; then set the day of the month
to the first day using the setDate method of the Date object:

var currentDate = new Date();

var currentMonth = currentDate.getMonth();

currentDate.setDate(1);

3. Output the top of the table plus the first row, which contains the day
of the month. The second row of the table, after the month name,
should be column headers indicating the days of the week:

document.write(“<table border=1 cellpadding=3 Æ

cellspacing=0>”);

document.write(“<tr>”);

document.write(“<td colspan=7 align=’center’>” + Æ

months[currentMonth] + “</td>”);

document.write(“<tr>”);

document.write(“<td align=’center’>S</td>”);

document.write(“<td align=’center’>M</td>”);

document.write(“<td align=’center’>T</td>”);

document.write(“<td align=’center’>W</td>”);

document.write(“<td align=’center’>T</td>”);

document.write(“<td align=’center’>F</td>”);

document.write(“<td align=’center’>S</td>”);

document.write(“</tr>”);

notes
• In many applications,

you will want to display a
monthly calendar. You might
use this simply to display
the current month so the
user can type in the current
date. You might choose to
display event information
inside the calendar. In any
case, there is some basic
JavaScript logic you can use
to render a monthly calen-
dar in a table without having
to manually code the calen-
dar for a specific month.

• The setDate method of
the Date object is related
to the getDate method.
Where getDate returns
the current day of the
month as a number, the
setDate method resets
the day of the month; you
provide the numeric value
of the day of the month as
an argument to the method.

• The day of the month is
selected by using the value
of the currentMonth
variable as the index for
the months array.

• If the first day of the month
is not Sunday, then you
need to display blank table
cells for the days prior to
the first day of the month in
the first row of table dates
in the table. To do this,
make sure the current day
is not a Sunday, and if it is
not, loop from 0 to the day
before the current day of the
week and display an empty
table cell for each day.

• The while loop should
continue as long as the cur-
rent date being processed is
in the month being displayed
(which is stored in the
currentMonth variable).

104 Part 2

Task 51

03 542419 Ch02.qxd 11/19/03 10:01 AM Page 104

tip
• Since the getMonths

method of the Date object
returns 0 for January, 1 for
February, and so on,
January is placed at index
0 in the array, February at
index 1, and so on up to
the 11th place in the array,
which holds December.

4. The next step is to handle the case where the first day of the month is
not a Sunday. The result, for instance, is a first row of the table dates
like the one illustrated in Figure 51-1, when the first day of the
month falls on a Tuesday:

if (currentDate.getDay() != 0) {

document.write(“<tr>”);

for (i = 0; i < currentDate.getDay(); i++) {

document.write(“<td> </td>”);

}

}

Figure 51-1: Blank table cells may be needed to pad the first row of the month.

5. The next step is a while loop to display each day’s individual cell:

while (currentDate.getMonth() == currentMonth) {

6. Inside the loop, check if the current date is a Sunday, and if it is, then
start a new row with a tr tag. Next, display a cell with the current
date. If the current date is a Saturday, finish the row with a closing
tr tag. Finally, add one to the value of the current day of the month
using setDate to move to the next day.

while (currentDate.getMonth() == currentMonth) {

if (currentDate.getDay == 0) {

document.write(“<tr>”);

}

document.write(“<td align=’center’>” + Æ

currentDate.getDate() + “</td>”);

if (currentDate.getDay() == 6) {

document.write(“</tr>”);

}

currentDate.setDate(currentDate.getDate() + 1);

}

7. After all the days have been displayed, you need to see if any more
empty cells are necessary to complete the last row of the table. This
is done with another for loop:

for (i = currentDate.getDay(); i <= 6; i++) {

document.write(“<td> </td>”);

}

8. Finally, close the table by outputting a closing table tag. When the
script is executed, you will see the current month’s calendar displayed
in your browser.

document.write(“</table>”);

Outputting to the Browser 105

Task 51

cross-reference
• An array is a variable that

contains one or more con-
tainers into which you can
store individual values.
Typically, these containers
are numbered sequentially,
starting with the first con-
tainer, which is numbered
zero. Arrays are introduced
in Task 20.

03 542419 Ch02.qxd 11/19/03 10:01 AM Page 105

Customizing Output Using
URL Variables

When you build a URL for a page, you can add a series of name-value pairs
to the end of the URL in the following form:

http://my.url/somepage.html?name1=value1&name2=value2&...

Essentially, these parameters are like variables: named containers for values.
In JavaScript, the document object provides the URL property that contains the
entire URL for your document, and using some manipulation on this property,
you can extract some or all of the URL parameters contained in the URL. The
following code displays all URL parameters for the current document:

1. In a script block in the body of a document, separate the current
document’s URL at the question mark and store the two parts in the
array urlParts:

var urlParts = document.URL.split(“?”);

2. Split the part of the URL to the right of the question mark into one
or more parts at the ampersand. This places each name-value pair
into an array entry in the parameterParts array.

var parameterParts = urlParts[1].split(“&”);

3. Output the HTML code to set up a table and display column headers
for the table using the document.write method:

document.write(“<table border=1 cellpadding=3 Æ

cellspacing=0>”);

document.write(“<tr>”);

document.write(“<td>Name</td><td>Æ

Value</td>”);

4. Start a for loop that loops through each element in the
parameterParts array. This means the loop should start at 0 and
count up to one less than the length of the array; this is because in an
array of 10 elements, the first index is 0 and the last index is 9.

for (i = 0; i < parameterParts.length; i ++) {

5. Output HTML to start a table row for each name-value pair:

document.write(“<tr>”);

6. Separate the name-value pair at the equal sign, and store the results
in the pairParts array. The first entry (at index 0) contains the
name of the pair, and the second entry (at index 1) contains the value
of the entry:

var pairParts = parameterParts[i].split(“=”);

note
• The logic of the code in this

task is simple: Split the
string at the question mark,
take the part to the right of
the question mark and split
it at each ampersand, and
then take each of the
resulting substrings and
split them at the equal sign
to split the URL parameters
between their name and
value parts. Using the
split method of the
string object helps
make this process easy.

106 Part 2

Task 52

caution
• The code in this task will

only work properly if there
is at least one URL para-
meter passed to the script.
When doing this, keep a
couple points in mind:
First, you must access the
file through a Web server
and not open it as a local
file, and second, you must
include at least one name-
value pair after the ques-
tion mark in the URL.

03 542419 Ch02.qxd 11/19/03 10:01 AM Page 106

tips
• One of the powerful fea-

tures of any dynamic pro-
gramming language for
Web pages, including
JavaScript, is the ability to
pass data between pages
and then act on that data
in the target pages. One of
the most common ways to
pass data between pages
is to use URL parameters.

• Not all characters are valid
in URLs. For instance,
spaces are not allowed. To
handle this, URL parameter
values are escaped where
these special characters
are replaced with codes;
for instance, spaces
become %20. To really work
with your URL parameters,
you will want to unencode
the values of each parame-
ter to change these special
codes back to the correct
characters. The unescape
function returns a string
unencoded in this way.

• To separate the URL at the
question mark, use the
split method of the
string object, which will
return the part to the left of
the question mark as the
first entry (entry 0) in the
array and the part to the
right of the question mark
that contains the URL para-
meters as the second entry
in the array (entry 1).

7. Display the name and value in table cells. Make sure the value of the
pair is unencoded with the unescape function:

document.write(“<td>” + pairParts[0] + “</td>”);

document.write(“<td>” + unescape(pairParts[1]) + “</td>”);

8. Output HTML to close the table row, and close the loop with a clos-
ing curly bracket:

document.write(“</tr>”);

}

9. Output HTML to complete the table, and then close the script
with a closing script tag. The final source code should look like
Listing 52-1, and when viewed in the browser, if the URL has para-
meters, they will be displayed in a table like the one illustrated in
Figure 52-1.

<script language=”JavaScript”>

var urlParts = document.URL.split(“?”);

var parameterParts = urlParts[1].split(“&”);

document.write(“<table border=1 cellpadding=3 Æ

cellspacing=0>”);

document.write(“<tr>”);

document.write(“<td>Name</td><td>Æ

Value</td>”);

for (i = 0; i < parameterParts.length; i ++) {

document.write(“<tr>”);

var pairParts = parameterParts[i].split(“=”);

document.write(“<td>” + pairParts[0] + “</td>”);

document.write(“<td>” + unescape(pairParts[1]) + Æ

“</td>”);

document.write(“</tr>”);

}

document.write(“</table>”);

</script>

Listing 52-1: A script to display URL parameters in a table.

Figure 52-1: Displaying URL parameters as name-value pairs in a table.

Outputting to the Browser 107

Task 52

03 542419 Ch02.qxd 11/19/03 10:01 AM Page 107

Dynamically Generating a Menu

To illustrate some of the power of dynamic output combine with URL parame-
ters, this task shows how to build a simple menu system. In this example, a

single JavaScript page handles a menu of five choices and renders appropriate
output for each of the five choices.

This script assumes that the user’s current selection is passed to the script
through the URL parameter named choice. The actual practical implementa-
tion is as follows; this code assumes the script is in a file called menu.html:

1. Start a script block with the script tag:

<script language=”JavaScript”>

2. Create a variable called choice to hold the user’s selection; by
default, the value is zero, which indicates no selection:

var choice = 0;

3. Split the URL into the array urlParts at the question mark:

var urlParts = document.URL.split(“?”);

4. Use the if statement to check if, in fact, there are any URL parame-
ters. If there are, then the length of the urlParts array should be
greater than 1:

if (urlParts.length > 1) {

5. Split the list of URL parameters into their parts, and check if the pair
is named choice; if it is, store the value of the pair in the choice
array created earlier:

var parameterParts = urlParts[1].split(“&”);

for (i = 0; i < parameterParts.length; i++) {

var pairParts = parameterParts[i].split(“=”);

var pairName = pairParts[0];

var pairValue = pairParts[1];

if (pairName == “choice”) {

choice = pairValue;

}

}

6. Close the if statement with a closing curly bracket:

}

notes
• The logic of the script is

straightforward. Extract the
choice parameter from the
document’s URL. Next, dis-
play a menu of five
choices; the choices
should be clickable links,
except for the current
selected choice. Finally,
display the content for the
selected choice; if this is
the first visit to the page,
no choice is selected and
no content other than the
menu in the previous step
should be displayed.

• To extract the choice URL
parameter, simply extract
the name and value into
the variables pairName
and pairValue. Check if
pairName is the choice
URL parameter, and
if it is, assign the value of
pairValue to the
choice variable.

• For each menu entry you
need to check if the vari-
able choice indicates
that selection. If it does,
display the menu entry as
regular text; otherwise,
make a link back to the
same page, with the URL
parameter choice set
appropriately.

108 Part 2

Task 53

03 542419 Ch02.qxd 11/19/03 10:01 AM Page 108

tip
• When working with

JavaScript that manipulates
URL parameters, you must
be accessing the page
through a Web server using
a URL such as http://
my.url/test.html
and not directly using a
local file path such as
c:\myfiles\test.
html. URL parameters are
not available with file path
access to files.

7. The next step is to display the menu itself. This requires five if
statements: one for each menu entry. Each if statement looks like
the following, adjusted for a particular choice and the appropriate
output for that choice. The result is a menu that might look like
Figure 53-1.

if (choice == 1) {

document.write(“Choice 1
”);

} else {

document.write(“Æ

Choice 1
”);

}

Figure 53-1: The menu as displayed when no choice is selected.

8. Display a divider to separate the menu from the body text of the page
using the document.write method:

document.write(“<hr>”);

9. Use five if statements, which test the value of the choice variable to
display the appropriate body content. Each if statement should look
like the following but be adjusted for the appropriate choice value
and output:

if (choice == 1) {

document.write(“Body content for choice 1”);

}

10. Close the script with a closing script tag; when viewed in a
browser, a page might look like Figure 53-2:

</script>

Figure 53-2: A completed page with Choice 3 selected.

Outputting to the Browser 109

Task 53

cross-reference
• Refer to Task 52 for a

discussion of how to split
a URL into its parts
and extract the name-
value pairs of the URL
parameters.

03 542419 Ch02.qxd 11/19/03 10:01 AM Page 109

Replacing the Browser Document
with a New Document

You can replace the browser document with a new document by using two
main methods of the document object:

• document.open: Opens a new document stream

• document.close: Closes a document stream opened by
document.open

To use these methods, you use a structure like the following:

document.open();

One or more document.write or document.writeln commands

document.close();

The following example creates a page with a JavaScript function that displays a
new document using document.open and document.close. The user can
click on a link to trigger the function and display the new page without accessing
the server.

1. Start a script block with the script tag:

<script language=”JavaScript”>

2. Start a new function called newDocument:

function newDocument() {

3. Open a new document stream with document.open:

document.open();

4. Write out the content of the new document:

document.write(“<p>This is a New Document.</p>”);

5. Close the document stream with document.close:

document.close();

6. Close the function with a closing curly bracket:

}

7. Close the script with a closing script tag:

</script>

note
• In addition to outputting

content into the current
document stream that
the browser is rendering,
you can also use the
document object to
replace the currently dis-
played object with new
content without sending
the user to the server for
the new document.

110 Part 2

Task 54

03 542419 Ch02.qxd 11/19/03 10:01 AM Page 110

8. In the body of the HTML document, include a link with an onClick
event handler that calls the newDocument function; a sample final
page is shown in Listing 54-1.

<head>

<script language=”JavaScript”>

function newDocument() {

document.open();

document.write(“<p>This is a New Document.</p>”);

document.close();

}

</script>

</head>

<body>

<p>This is the original document.</p>

<p>Display New Æ

Document</p>

</body

Listing 54-1: This code displays a second document stream to the browser.

9. Open the document in a browser. Initially you will see the body text
of the HTML document as in Figure 54-1. After clicking on the link,
you should see the content output by the newDocument function.

Figure 54-1: The original HTML page.

Outputting to the Browser 111

Task 54

cross-reference
• Event handlers are

discussed in Part 9. The
onClick event handlers
are introduced in Task 220.

03 542419 Ch02.qxd 11/19/03 10:01 AM Page 111

Redirecting the User to a New Page

Unlike the document.URL property, which is static, the window.location
property allows you to actually reset the location associated with a window

and effectively redirect users to a new URL.

For instance, consider the following simple page:

<head>

<script language=”JavaScript”>

window.location = “http://www.yahoo.com/”;

</script>

</head>

<body>

<p>You are here now</p>

</body>

In this case, the text “You are here now” will not even display in the browser;
as soon as the page loads, the user will immediately be directed to the Yahoo!
Web site.

The following script leverages the window.location property to allow users
to enter the location they would like to visit in a form field and then takes them
there when they click on the Go button:

1. Start a form with the form tag. This form will never be submitted
anywhere, so it doesn’t actually need method or action attributes:

<form>

2. Create a text box named url:

Enter a URL: <input type=”text” name=”url”>

3. Create a button with the label “Go”. This form control should be
of type button and not type submit, since the button is not being
used to submit the form anywhere:

<input type=”button” value=”Go”>

4. Add an onClick attribute to the button’s tag. The value of this
attribute is HTML code to assign the value stored in the url text
field to the window.location property:

<input type=”button” value=”Go” onClick=”window.location Æ

= this.form.url.value”>

5. Close the form with a closing form tag so that the complete form
looks like the following:

<form>

Enter a URL: <input type=”text” name=”url”>

notes
• The window object pro-

vides properties and meth-
ods for manipulating the
current window. One of
the properties is the
location property,
which contains the URL of
the document displayed in
the current window.

• The onClick attribute
takes as its value
JavaScript code to execute
when the user clicks on
the button.

112 Part 2

Task 55

03 542419 Ch02.qxd 11/19/03 10:01 AM Page 112

tip
• In an event handler used

for a form such as
onClick, you can refer
to the current form as
this.form. That means
this.form.url refers to
the text field named url,
and this.form.url.
value refers to the text
entered in the url text
field.

<input type=”button” value=”Go” Æ

onClick=”window.location = this.form.url.value”>

</form>

6. Store the form in an HTML file, and open that file in a Web
browser. You will see a form.

7. Enter a URL in the form’s text field, as illustrated in Figure 55-1.

Figure 55-1: Entering a URL in the form.

8. Click on the Go button, and you will be redirected to the URL you
entered, as shown in Figure 55-2.

Figure 55-2: Redirecting to the new URL.

Outputting to the Browser 113

Task 55

cross-reference
• This task accesses data in

forms and uses event han-
dlers. Part 4 of the book
addresses working with
forms, while Part 9 dis-
cusses event handlers.

03 542419 Ch02.qxd 11/19/03 10:01 AM Page 113

Creating a “Page Loading ...”
Placeholder

This task looks at how to create a “page loading” placeholder that pops up in a
separate window while the main document is loading. When the main docu-

ment finishes loading, the placeholder window will close.

This task uses two methods of the window object plus one event handler:

• window.open: Opens a new window and loads a document in
that window

• window.close: Closes a window

• onLoad: Used in the body tag to trigger JavaScript to execute when
a document continues loading

The following steps create the placeholder window:

1. Create an HTML file to serve as the content of the “page loading”
placeholder window. Any content you want the user to see in that
window should be placed in this file. Name the file holder.html.
The following is a simple file that tells the user the main page is
loading:

<html>

<head>

<title>Page Loading ...</title>

</head>

<body>

Page Loading ... Please Wait

</body>

</html>

2. Create the HTML file for your main document in the same direc-
tory. For this task, the file is named mainpage.html. A simple
mainpage.html file might look like this:

<html>

<head>

<title>The Main Page</title>

</head>

<body>

<p>This is the main page</p>

</body>

</html>

notes
• Some sites create “page

loading” placeholder
pages. These are typically
used when loading a page
that will take a long time to
load either because of the
amount of content being
loaded or, more commonly
in the case of dynamic
content, when processing
the page for delivery to the
user will take a long time.

• You can use a number of
strategies for creating a
“page loading” placeholder.
Such strategies can involve
content being pushed from
the server, or they can be
entirely implemented in
JavaScript on the client.
This task takes the latter
approach.

114 Part 2

Task 56

03 542419 Ch02.qxd 11/19/03 10:01 AM Page 114

tip
• This type of placeholder

doesn’t make much sense
for a document as short as
mainpage.html. In this
case, the placeholder will
appear and disappear
almost immediately. You
really need a long, compli-
cated HTML document or a
dynamic document that
takes time to generate to
make this type of place-
holder worthwhile.

3. In mainpage.html, add a script block to the header of the
document:

<script language=”JavaScript”>

</script>

4. In the script block, open a new window with window.open.
This method takes three arguments: the file to load in the window,
the name of the window, and a series of parameters that define the
features of the window—in this case, the width and height of the
window are set to 200 pixels. The method returns a reference to
the window’s objects so that it is possible to manipulate the window
later. This reference is stored in the variable placeHolder:

var placeHolder = window.open(“holder.html”,”Æ

holderWindow,”width=200,height=200”);

5. Add an onLoad attribute to the body tag:

<body onLoad=””>

6. As the value of the onLoad attribute, use placeHolder.close().
This closes the placeholder window once the main document finishes
loading. The final mainpage.html code looks like Listing 56-1.

<html>

<head>

<script language=”JavaScript”>

var placeHolder = Æ

window.open(“holder.html”,”placeholder”,”width=200,Æ

height=200”);

</script>

<title>The Main Page</title>

</head>

<body onLoad=”placeHolder.close()”>

<p>This is the main page</p>

</body>

</html>

Listing 56-1: Integrating the placeholder code into an HTML document.

7. Make sure holder.html and mainpage.html are in the same
directory and then load mainpage.html in your browser window.
A window with the contents of holder.html should appear above
the main window and then disappear as soon as the main window
finishes loading.

Outputting to the Browser 115

Task 56

03 542419 Ch02.qxd 11/19/03 10:01 AM Page 115

03 542419 Ch02.qxd 11/19/03 10:01 AM Page 116

Part 3: Images and Rollovers
Task 57: Accessing an HTML-Embedded Image in JavaScript

Task 58: Loading an Image Using JavaScript

Task 59: Detecting MouseOver Events on Images

Task 60: Detecting Click Events on Images

Task 61: Switching an Image Programatically

Task 62: Using Multiple Rollovers in One Page

Task 63: Displaying a Random Image

Task 64: Displaying Multiple Random Images

Task 65: Using a Function to Create a Rollover

Task 66: Using a Function to Trigger a Rollover

Task 67: Using Functions to Create Multiple Rollovers in One Page

Task 68: Creating a Simple Rollover Menu System

Task 69: Creating a Slide Show in JavaScript

Task 70: Randomizing Your Slide Show

Task 71: Triggering Slide Show Transitions from Links

Task 72: Including Captions in a Slide Show

Task 73: Testing if an Image Is Loaded

Task 74: Triggering a Rollover in a Different Location with a Link

Task 75: Using Image Maps and Rollovers Together

Task 76: Generating Animated Banners in JavaScript

Task 77: Displaying a Random Banner Ad

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 117

Accessing an HTML-Embedded
Image in JavaScript

JavaScript makes it easy to access and manipulate images in your HTML pages.
Accessing images in JavaScript is done through the Image object. An Image

object is created for each image you include in your HTML code. You either
access these Image objects through the images array of the document object or
directly by name.

If you specify a name for an image using the name attribute of the img tag, then
you can directly refer to the image as document.imageName. For example, con-
sider the following image in your HTML document:

You could refer to this in JavaScript with document.myImage.

Each Image object has numerous properties that can be used to access informa-
tion about an image. These include height (the height of the image in pixels),
width (the width of the image in pixels), src (the value of the src attribute of
the img tag), hspace (the size of horizontal image padding in pixels), and
vspace (the size of vertical image padding in pixels).

The following task illustrates how to use these properties to display an image and
then provide links to display the height and width of the image in dialog boxes:

1. Use an img tag to include an image in the page; name the image
myImage using the name attribute:

2. Include a link for displaying the width, and add an onClick event
handler to the a tag; this event handler will use the window.alert
method to display the image’s width in a dialog box. Notice how the
image’s width is obtained by referring to document.myImage
.width:

<a href=”#” onClick=”window.alert(document.myImage.width)Æ

”>Width

3. Include a link for displaying the height, and add an onClick event
handler to the a tag; this event handler will use the window.alert
method to display the image’s height in a dialog box. Notice how the
image’s height is obtained by referring to document.myImage
.height. Add any necessary HTML for your preferred layout, and
your final code might look something like the following:

<a href=”#” onClick=”window.alert(document.myImage.width)Æ

”>Width

note
• The images array contains

one entry for image in the
order in which the images
are specified in your code.
Therefore, the first image’s
object is document.
images[0], the second is
document.images[1],
and so on.

118 Part 3

Task 57

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 118

<a href=”#” onClick=”window.alert(document.myImage.height)

”>Height

4. Save the code in an HTML file, and open it in a Web browser; you
should see a page with links for displaying the width and height.

5. Click on the Width link, and the dialog box in Figure 57-1 appears.

Figure 57-1: Displaying an image’s width.

6. Click on the Height link, and the dialog box in Figure 57-2 appears.

Figure 57-2: Displaying an image’s height.

Images and Rollovers 119

Task 57

tip
• By using JavaScript’s ability

to manipulate images, you
can achieve many different
effects. These include
dynamically changing
images on the fly to create
a slide show, creating
mouse rollover effects on
images, and even generat-
ing animated images or
banners using JavaScript.

cross-reference
• The window.alert

method (see Step 2) dis-
plays a dialog box with a
single text message and a
single button to dismiss the
dialog box. It takes a single
string as an argument,
which should be the mes-
sage to be displayed in the
dialog box. This method is
discussed in Task 25.

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 119

Loading an Image Using JavaScript

In addition to creating Image objects by loading an image in HTML, you can
create an Image object programmatically in JavaScript. Loading an image in

JavaScript is a two-step process:

1. Create an Image object and assign it to a variable:

var myImage = new Image;

2. Assign a source image URL to the src attribute of the object:

myImage.src = “image URL goes here”;

The following task illustrates the programmatic loading of an image by loading
an image in this way and then providing links to display the height and width of
the image in dialog boxes as in Task 57:

1. Create a script block with opening and closing script tags.

2. In the script, create a new Image object named myImage:

myImage = new Image;

3. Load the image by assigning its URL to the src attribute of
myImage:

myImage.src = “image1.jpg”;

4. In the body of the page’s HTML, include a link for displaying the
width and add an onClick event handler to the a tag; this event
handler will use the window.alert method to display the image’s
width in a dialog box. The image’s width is obtained by referring to
document.myImage.width:

<a href=”#” onClick=”window.alert(document.myImage.width)Æ

”>Width

5. Include a link for displaying the height, and add an onClick event
handler to the a tag; this event handler will use the window.alert
method to display the image’s height in a dialog box. The image’s
width is obtained by referring to document.myImage.height. The
final page should look like the following:

<script language=”JavaScript”>

myImage = new Image;

myImage.src = “Tellers1.jpg”;

</script>

<body>

120 Part 3

Task 58

caution
• As mentioned in Task 57,

the images array contains
one entry for image in the
order in which the images
are specified in your code.
Therefore, the first image’s
object is document.
images[0], the second is
document.images[1],
and so on. This only applies
to images in your HTML
document. Image objects
created in JavaScript as
shown in this task do not
appear in the images array.

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 120

<a href=”#” onClick=”window.alert(myImage.width)Æ

”>Width

<a href=”#” onClick=”window.alert(myImage.height)Æ

”>Height

</body>

6. Save the code in an HTML file, and open the file in your browser;
the page with two links should appear, but the image itself won’t be
displayed, as shown in Figure 58-1.

Figure 58-1: Displaying Width and Height links.

7. Click on the Width link, and a dialog box like the one in Figure 58-2
appears, showing the width of the image. Click on the Height link,
and a dialog box for displaying the image’s height appears.

Figure 58-2: Displaying an image’s width.

Images and Rollovers 121

Task 58

cross-reference
• Task 57 discusses the

loading of images in HTML
and then accessing those
images from JavaScript.

tip
• You could create an Image

object in JavaScript when
you want to load an image
without displaying it and
then use that image later
in your scripts. As an exam-
ple, you might use the
image in a slide show or
as the rollover image when
the mouse moves over
an image.

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 121

Detecting MouseOver Events on Images

Using the onMouseOver event handler, you can detect when the mouse
pointer is over an image. You can then trigger actions to occur only when the

mouse moves into the space occupied by the image. Typically, this is used to cre-
ate rollover effects, as shown in the following tasks.

To specify an event handler, you need to use the onMouseOver attribute of the
img tag to specify JavaScript to execute when the mouse rolls over the image.
For example:

In the case where you are using an image as a link—for instance, an image serving
as a button in a menu—you typically place the onMouseOver attribute in the a
tag that encompasses the img tag:

The following shows the use of onMouseOver in both the img and a tags and
causes an appropriate message to display in a dialog box when the mouse pointer
moves over an image:

1. In the body of your document, place an img tag to display the first
image:

2. Add an onMouseOver attribute to the img tag:

3. As the value for the onMouseOver attribute, use the window.alert
method to display a message when the mouse pointer moves over the
image:

<img src=”image1.jpg” onMouseOver=”window.alert(‘Over Æ

the Image’);”>

4. Add a second img tag to display another image:

5. Place opening and closing a tags around the second image; no URL
needs to be specified, and you should add an onMouseOver attribute
to the a tag. As the value for the onMouseOver attribute, use the
window.alert method again to display a message when the mouse
pointer moves over the second image. The resulting code should
look like this:

notes
• In this example, the

JavaScript code is executed
when the mouse pointer
moves over anything inside
the opening and closing a
tags; in this case, only the
image is inside the a block.

• The onMouseOver event
is often used for rollover
effects. If you are using an
images as a menu button
and want to display an
alternate highlight image
when the mouse is over the
button, you will use
onMouseOver. In these
cases, the image will be
part of a link and you will
use onMouseOver in the
a tag. This is the most com-
mon way the
onMouseOver event is
used, and it is rarely used
in the img tag itself.

• The onMouseOver event
is available in the a tag on
any JavaScript-capable
browser but is only avail-
able for the img tag in
newer browsers (Netscape
6 and above or Internet
Explorer 4 and above).

122 Part 3

Task 59

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 122

<body>

<img src=”image1.jpg” onMouseOver=”alert(‘Over the Æ

Image’);”>

<a href=”#” onMouseOver=”window.alert(‘Over the Æ

Link’);”>

</body>

6. Save the code to an HTML file, and open the file in a browser. The
page will look like Figure 59-1.

Figure 59-1: Displaying two images.

7. Move the mouse pointer over the first image, and a dialog box like
Figure 59-2 appears. Move the mouse over the send image, and a
dialog box indicating you are over the link appears.

Figure 59-2: Displaying a dialog box when the mouse moves over an image.

Images and Rollovers 123

Task 59

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 123

Detecting Click Events on Images

In much the same way as code can be specified to respond to onMouseOver
events (see Task 59), you can specify action to take only when the user clicks

on an image. This is done with the onClick event handler of the img tag or the
a tag, depending on the situation.

You can specify an onClick attribute of the img tag:

In the case where you are using an image as a link, as in an image serving as a
button in a menu, you typically place the onClick attribute in the a tag that
encompasses the img tag:

The following shows the use of onClick in both the img and a tags and causes
an appropriate message to display in a dialog box when the mouse clicks on an
image:

1. In the body of your document, place an img tag to display the first
image:

2. Add an onClick attribute to the img tag:

3. As the value for the onClick attribute, use the window.alert
method to display a message when the mouse pointer moves over the
image:

<img src=”image1.jpg” onClick=”window.alert(Clicked on Æ

the Image’);”>

4. Add a second img tag to display another image:

5. Place opening and closing a tags around the second image; no URL
needs to be specified, and you should add an onClick attribute to
the a tag. As the value for the onClick attribute, use the
window.alert method again to display a message when the mouse
pointer moves over the second image. The resulting code should
look like this:

<body>

<img src=”image1.jpg” onClick=”window.alert(‘Click Æ

on the Image’);”>

notes
• In this example, the

JavaScript code is executed
when the mouse pointer
clicks on anything inside
the opening and closing a
tags; in this case, only the
image is inside the a block.

• The onClick event is
available in the a tag on
any JavaScript-capable
browser but is only avail-
able for the img tag in
newer browsers (Netscape
6 and above or Internet
Explorer 4 and above).

124 Part 3

Task 60

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 124

<a href=”#” onClick=”window.alert(‘Clicked on the Æ

Link’);”>

</body>

6. Save the code to an HTML file, and open the file in a browser. The
page will look like Figure 60-1.

Figure 60-1: Displaying two images.

7. Click on the first image, and a dialog box indicating you clicked on
the image without the link appears.

8. Click on the second image, and a dialog box like Figure 60-2 appears.

Figure 60-2: Displaying a dialog box when the mouse clicks on an image link.

Images and Rollovers 125

Task 60

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 125

Switching an Image Programatically

This task illustrates how to combine the JavaScript-based loading of images
with the onMouseOver event handler to create a rollover effect. This rollover

effect is typically used in the context of image-based buttons, as well as menus
containing menu items built out of images.

Consider Figure 61-1. Here a single image is displayed in a Web page and the
mouse pointer is not over the image. When the mouse pointer moves over the
image, a rollover image replaces the original image, as in Figure 61-2. When the
mouse pointer moves off the image, the image returns to the original illustrated
in Figure 61-1.

Figure 61-1: When the mouse pointer is not over an image, the original image is
displayed.

Figure 61-2: When the mouse pointer is over an image, an alternate image is
displayed.

The principle of producing rollover effects in JavaScript is straightforward and
involves three key pieces:

• Specify the default image in your img tag.

• Create two Image objects; in one load the default image, and in the
other load the rollover image.

• Specify onMouseOver and onMouseOut event handlers to manage
changing the displayed image as the mouse moves onto the image or
off the image.

notes
• In producing these rollover

effects, keep in mind that
an image and its alternate
rollover image should usu-
ally have the same width
and height in terms of the
number of pixels.
Otherwise, one of two prob-
lems arises. First, if you
don’t force images to a
specific size using the
width and height attrib-
utes of the img tag, then
the space taken by the
image can change as the
mouse rolls over the image,
causing elements on the
page around the image to
move. Second, if you force
the image to a specific
size, one of the two images
will need to be distorted
to match the size of the
other image.

• The onMouseOver event
handler is similar to the
onMouseOut event han-
dler. It allows the program-
mer to specify JavaScript
code to execute when the
mouse pointer leaves the
area occupied by a page
element such as an image
where onMouseOver
specified code to execute
when the mouse pointer
entered the space occu-
pied by a page element.

126 Part 3

Task 61

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 126

The following steps outline how to create a simple rollover effect for a single
image in a page:

1. In the header of your page, create a script block with opening and
closing script tags.

2. In the script, create an Image object named rollImage, and load
the alternate, rollover image into it by assigning the image to the src
property of the rollImage object:

rollImage = new Image;

rollImage.src = “rollImage1.jpg”;

3. In the script, create an Image object named defaultImage, and
load the default image to display into it.

4. In the body of your script, place the default image with an img tag.
Use attributes of the tag to control the size and border of the image
as desired, and use the name attribute to assign the name myImage to
the image.

5. Wrap the img tag in opening and closing a tags, and specify the
URL where you want users to be directed when they click on the
image in the href attribute of the a tag. Add an onMouseOver
attribute to the a tag, and use this to display the rollover image to the
myImage object. This will cause the rollover image to be displayed
when the mouse moves over the image. Also add an onMouseOut
attribute to the a tag, and use this to display the default image when
the mouse moves off the image. The final script should look like this:

<head>

<script language=”JavaScript”>

rollImage = new Image;

rollImage.src = “rollImage1.jpg”;

defaultImage = new Image;

defaultImage.src = “image1.jpg”;

</script>

</head>

<body>

<a href=”myUrl” onMouseOver=”document.myImage.src = Æ

rollImage.src;”

onMouseOut=”document.myImage.src = defaultImage.src;”>

<img src=”image1.jpg” name=”myImage” width=100 Æ

height=100 border=0>

</body>

7. Save the code in an HTML file, and load it in a browser. When the
mouse rolls over the image, the rollover effect should replace it with
the rollover image and then switch it back to the default image when
the mouse pointer leaves the space occupied by the image.

Images and Rollovers 127

Task 61

tip
• The rollover effect is

designed to provide context
to users, allowing them to
know that the image con-
stitutes a clickable element
and showing users exactly
what they are clicking on
(especially in the case of
numerous images in close
proximity to each other in a
complex layout).

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 127

Using Multiple Rollovers in One Page

Building on the rollover effect illustrated in Task 61, this task shows how the
principle can be extended to support multiple rollovers in a single page. This

is useful when you are building a menu out of rollover images.

The following steps illustrate the creation of two rollover images on a single page:

1. In a script block in the header of a new page, create an Image object
named rollImage1, and load the alternate rollover image for the
first image into it by assigning the image to the src property of the
rollImage1 object. Also create an Image object named
defaultImage1, and load the default image for the first image into
it by assigning the image to the src property of the
defaultImage1 object:

rollImage1 = new Image; rollImage1.src = “rollImage1.jpg”;

defaultImage1 = new Image; defaultImage1.src = Æ

“image1.jpg”;

2. Repeat the process for the second image by creating and loading
rollImage2 and defaultImage2 so that the resulting script is as
follows:

rollImage2 = new Image; rollImage2.src = “rollImage2.jpg”;

defaultImage2 = new Image; defaultImage2.src = Æ

“image2.jpg”;

3. In the body of your script, place the two default images with img
tags; use attributes of the tags to control the size and border of the
image as desired, and use the name attribute to assign the names
myImage1 and myImage2 to the images:

<img src=”image1.jpg” name=”myImage1” width=100 Æ

height=100 border=0>

<img src=”image2.jpg” name=”myImage2” width=100 Æ

height=100 border=0>

4. Wrap each img tag in opening and closing a tags, and specify the
URL where you want the users to be directed when they click on the
image in the href attribute of the a tag. Add an onMouseOver
attribute to each a tag, and use this to display the rollover images.
This will cause the rollover image to be displayed when the mouse
moves over the relevant image. Also add an onMouseOut attribute to
each a tag, and use this to display the default image when the mouse
moves off the relevant image. The final script should look like this:

<head>

<script language=”JavaScript”>

rollImage1 = new Image; rollImage1.src = Æ

“Tellers1.jpg”;

defaultImage1 = new Image; defaultImage1.src = Æ

“lotus.jpg”;

rollImage2 = new Image; rollImage2.src = “hedi.jpg”;

notes
• In their most basic form,

multiple rollover effects
require that each image
have a unique name, each
default image have a
uniquely named Image
object, and each rollover
image have a uniquely
named Image object.

• The onMouseOver event
handler is similar to the
onMouseOut event han-
dler. It allows the program-
mer to specify JavaScript
code to execute when the
mouse pointer leaves the
area occupied by a page
element such as an image
where onMouseOver
specified code to execute
when the mouse pointer
entered the space occu-
pied by a page element
(see Step 4).

• In producing these rollover
effects, keep in mind that
an image and its alternate
rollover image should usu-
ally have the same width
and height in terms of the
number of pixels; other-
wise, one of two problems
arises. First, if you don’t
force images to a specific
size using the width and
height attributes of the
img tag, then the space
taken by the image can
change as the mouse rolls
over the image, causing
elements on the page
around the image to move.
Second, if you force the
image to a specific size,
one the two images will
need to be distorted to
match the size of the other
image (see Figures).

128 Part 3

Task 62

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 128

defaultImage2 = new Image; defaultImage2.src = Æ

“ArcRV1.1.jpg”;

</script>

</head>

<body>

<a href=”#” onMouseOver=”document.myImage1.src = Æ

rollImage1.src;”

onMouseOut=”document.myImage1.src = Æ

defaultImage1.src;”>

<img src=”lotus.jpg” name=”myImage1” width=100 Æ

height=100 border=0>

<a href=”#” onMouseOver=”document.myImage2.src = Æ

rollImage2.src;”

onMouseOut=”document.myImage2.src = Æ

defaultImage2.src;”>

<img src=”ArcRV1.1.jpg” name=”myImage2” width=100 Æ

height=100 border=0>

</body>

5. Save the code in an HTML file and load it in a browser. Two possible
states exist: when the mouse is not over an image (Figure 62-1) and
when the mouse is over the first image (Figure 62-2).

Figure 62-1: The mouse is not over any image.

Figure 62-2: The mouse is over the first image.

Images and Rollovers 129

Task 62

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 129

Displaying a Random Image

One application of the combination of JavaScript and images is to load a ran-
dom image in a location on the page rather than the same image every time.

One approach to this is to display the image entirely using JavaScript. That is,
you need to use JavaScript to specify a list of possible images, select one at ran-
dom, and then generate the img tag to display that image.

The script created in the following steps illustrates this process:

1. Create a script block with opening and closing script tags; the
script block should be in the body of your HTML document where
you want the image to be displayed:

<script language=”JavaScript”>

</script>

2. In the script, create an array named imageList:

var imageList = new Array;

3. Create an entry in the array for each image you want to make avail-
able for random selection. For instance, if you have four images,
assign the path and names of those images to the first four entries in
the array:

imageList[0] = “image1.jpg”;

imageList[1] = “image2.jpg”;

imageList[2] = “image3.jpg”;

imageList[3] = “image4.jpg”;

4. Create a variable named imageChoice:

var imageChoice;

5. Assign a random number to imageChoice using the Math.random
method, which returns a random number from 0 to 1 (that is, the
number will be greater than or equal to 0 but less than 1):

var imageChoice = Math.random();

6. Extend the expression assigned to imageChoice by multiplying the
random number by the number of entries in the imageList array to
produce a number greater than or equal to 0 but less than 4:

var imageChoice = Math.random() * imageList.length;

7. Extend the expression assigned to imageChoice further by remov-
ing any part after the decimal point with the Math.floor method;
the result is an integer from 0 to one less than the number of entries
in the array—in this case that means an integer from 0 to 3:

var imageChoice = Math.floor(Math.random() * Æ

imageList.length);

notes
• Each slot in an array is

numbered; numbering
starts at zero. This means
an array with four entries
has entries numbered
0 to 3.

• The Math object provides
a number of useful meth-
ods for working with num-
bers and mathematical
operations.

• The length property of an
Array object provides the
number of entries in an
array. That means if an
array has four entries num-
bered 0 to 3, then the
length property of that
array has a value of 4.

• Math.floor performs a
function similar to rounding
in that it removes the deci-
mal part of a number. The
difference is that the result
of rounding can be the next
highest or next lowest inte-
ger value, depending on
the size of the decimal por-
tion of the number. With
Math.floor the result is
always the next lowest inte-
ger. Therefore, rounding
2.999 would result in the
integer 3, but applying
Math.floor to the same
number would result in the
integer 2.

• Notice how the img tag is
built out of two strings
combined with an array
variable; the combining is
done with plus signs. When
you are working with string
values, plus signs perform
concatenation of strings,
as discussed in Task 15.
Concatenation means
that “ab” + “cd” results
in “abcd”.

130 Part 3

Task 63

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 130

8. Use the document.write method to place an img tag in the
HTML data stream sent to the browser. As the value of the src
attribute of img tag, the random image is specified as
imageList[imageChoice]. The final script looks like this:

<script language=”JavaScript”>

var imageList = new Array;

imageList[0] = “image1.jpg”;

imageList[1] = “image2.jpg”;

imageList[2] = “image3.jpg”;

imageList[3] = “image4.jpg”;

var imageChoice = Math.floor(Math.random() * Æ

imageList.length);

document.write(‘<img src=”’ + imageList[imageChoice] Æ

+ ‘“>’);

</script>

9. Save the code in an HTML file, and display the file in a browser.
A random image is displayed, as in Figure 63-1. Reloading the file
should result in a different image, as illustrated in Figure 63-2
(although there is always a small chance the same random number
will be selected twice in a row).

Figure 63-1: Displaying a random image.

Figure 63-2: Reloading the page will usually result in a different random image.

Images and Rollovers 131

Task 63

cross-references
• An array is a data type that

contains multiple, num-
bered slots into which you
can place any value. See
Task 20. for a discussion
of arrays.

• The document.write
method is introduced in
Task 45. It allows
JavaScript code to generate
output that forms part of
the HTML rendered by the
browser.

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 131

Displaying Multiple Random Images

The process of displaying a random image in a Web page can easily be extended
to displaying multiple random images out of the same set of random images.

The result is a script like the following, which displays three random images:

1. In a script block in the header of a new document, create an array
named imageList:

var imageList = new Array;

2. Create an entry in the array for each image you want to make avail-
able for random selection. For instance, the following specifies the
path to four images:

imageList[0] = “image1.jpg”;

imageList[1] = “image2.jpg”;

imageList[2] = “image3.jpg”;

imageList[3] = “image4.jpg”;

3. Create a function called showImage with the function keyword:

function showImage() {

}

4. In the function, create a variable named imageChoice. Assign a ran-
dom number to imageChoice using the Math.random method,
which returns a random number from 0 to 1 (that is, the number will
be greater than or equal to 0 but less than 1). Extend the expression
assigned to imageChoice by multiplying the random number by the
number of entries in the imageList array to produce a number
greater than or equal to zero but less than 4:

var imageChoice = Math.random() * imageList.length;

5. Extend the expression assigned to imageChoice further by remov-
ing any part after the decimal point with the Math.floor method.
The result is an integer from 0 to one less than the number of entries
in the array—in this case that means an integer from 0 to 3:

var imageChoice = Math.floor(Math.random() * Æ

imageList.length);

6. Use the document.write method to place an img tag in the
HTML data stream sent to the browser. As the value of the src
attribute of img tag, the random image is specified as
imageList[imageChoice]. The final function looks like this:

function showImage() {

var imageChoice = Math.floor(Math.random() * Æ

imageList.length);

document.write(‘<img src=”’ + imageList[imageChoice] Æ

+ ‘“>’);

}

notes
• Displaying multiple random

images requires some
rethinking of the script. Two
script blocks are now
needed: a script block in
the document header that
defines the array of images
available and a function for
displaying a single random
image, along with a script
block in the body of the
text wherever a random
image needs to be dis-
played. This separation of
scripts, as well as the addi-
tion of a function, makes
the code much more gen-
eral-purpose than the code
illustrated in Task 63.

• Math.floor performs a
function similar to rounding
in that it removes the deci-
mal part of a number. The
difference is that the result
of rounding can be the next
highest or next lowest inte-
ger value, depending on
the size of the decimal por-
tion of the number. With
Math.floor the result is
always the next lowest inte-
ger. Therefore, rounding
2.999 would result in the
integer 3, but applying
Math.floor to the same
number would result in the
integer 2.

132 Part 3

Task 64

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 132

7. In the body of the document, create a script block wherever you want
to place a random image, and then invoke the showImage function
there. You can invoke multiple showImage functions in the same
script block. The following page shows how to display three random
images in a row. Typically, the results will look like Figure 64-1.
Depending on how many images are available in your array and how
many random images you are displaying, there is always a chance that
you will see repeat images as in Figure 64-2.

<head>

<script language=”JavaScript”>

var imageList = new Array;

imageList[0] = “Tellers1.jpg”;

imageList[1] = “lotus.jpg”;

imageList[2] = “hedi.jpg”;

imageList[3] = “ArcRV1.1.jpg”;

function showImage() {

var imageChoice = Math.floor(Math.random() * Æ

imageList.length);

document.write(‘<img src=”’ + Æ

imageList[imageChoice] + ‘“>’);

}

</script>

</head>

<body>

<script language=”JavaScript”>

showImage();

showImage();

showImage();

</script>

</body>

Figure 64-1: Displaying three random images.

Figure 64-2: Images may repeat.

Images and Rollovers 133

Task 64

cross-reference
• An array is a data type that

contains multiple, num-
bered slots into which you
can place any value. See
Task 20 for a discussion
of arrays.

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 133

Using a Function to Create a Rollover

This task shows how to encapsulate the creation of Image objects for a rollover
image into a function. The following steps show how to create the necessary

function and use it to create a rollover effect for an image:

1. In the header of the document, create a script block with opening
and closing script tags:

<script language=”JavaScript”>

</script>

2. In the script, create two variables: a source and a replacement con-
taining the values 0 and 1, respectively. These variables allow the
Image objects of each rollover array to be referred to by name:
source for the default image and replacement for the rollover
image.

var source = 0;

var replacement = 1;

3. Create a function named createRollOver with the function key-
word. This function should take two parameters—originalImage,
containing the path and name of the default image, and
replacementImage, containing the path and name of the rollover
image:

function createRollOver(originalImage,replacementImage) {

}

4. In the function, create an array named imageArray:

var imageArray = new Array;

5. Create a new Image object in the first element of the array, using
source to specify the index, and assign originalImage as the
source of that image:

imageArray[source] = new Image;

imageArray[source].src = originalImage;

6. Create a new Image object in the second element of the array, using
replacement to specify the index, and assign replacementImage
as the source of that image:

imageArray[replacement] = new Image;

imageArray[replacement].src = replacementImage;

7. Return the array as the value returned by the function:

return imageArray;

notes
• The task of code creation,

code management, and
code accuracy becomes
increasingly daunting as the
number of rollover images
in a document increases. At
some point the task of
ensuring bug-free code and
debugging becomes prob-
lematic. The approach in
this task is aimed at miti-
gating this to a degree.

• Tasks 67 and 68 show how
to combine these functions
into a single system.

• Array elements can contain
simple data types, such as
numbers or strings, or com-
plex data types, such as
objects. When an array entry
contains an object, the
properties of that object are
referred to with the notation
arrayName- [index]
.propertyName.

• The basis of the technique
used here is to create an
array of Image objects for
each rollover image; each
array will have two entries:
one containing the Image
object for the default image
and the other containing
the Image object for the
replacement image. This
combines related Image
objects into a single vari-
able (which contains the
array) that can be easily
accessed and referred to
in a consistent way.

• When then mouse
moves over the image,
rollImage1-
[replacement] contains
the appropriate Image
object, while rollImage1
[source] contains the
Image object for when the
mouse is not over the image.

134 Part 3

Task 65

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 134

8. After the function, invoke the createRollOver function to create
the necessary rollover array, and assign the array returned by the func-
tion to rollImage1. The final script looks like this:

<script language=”JavaScript”>

var source = 0;

var replacement = 1;

function createRollOver(originalImage,replacementÆ

Image) {

var imageArray = new Array;

imageArray[source] = new Image;

imageArray[source].src = originalImage;

imageArray[replacement] = new Image;

imageArray[replacement].src = replacementImage;

return imageArray;

}

var rollImage1 = createRollOver(“image1.jpg”,”Æ

rollImage1.jpg”);

</script>

9. In the body of the HTML, use the img tag to place the image, name
the image myImage1 with the name attribute, and place the image
in an a block. The a tag must have onMouseOver and onMouseOut
attributes that assign the appropriate images based on the mouse
movement. The resulting source code for the body of the document
looks like this:

<body>

<a href=”#” onMouseOver=”document.myImage1.src = Æ

rollImage1[replacement].src;”

onMouseOut=”document.myImage1.src = Æ

rollImage1[source].src;”>

<img src=”image1.jpg” width=100 name=”myImage1” Æ

border=0>

</body>

10. Save the HTML file and open it in a browser. The default image is
displayed as in Figure 65-1. Move the mouse over the image to see
the rollover image.

Figure 65-1: When the mouse pointer is not over the image, the original image
is displayed.

Images and Rollovers 135

Task 65

cross-reference
• This task and Task 66 illus-

trate how to encapsulate
two pieces of rollover func-
tionality: the creation of the
rollover Image objects and
the handling of image
switches in event handlers.

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 135

Using a Function to Trigger a Rollover

In addition to creating a function to handle the creation of rollover Image
objects, you can encapsulate the code for handling the actual switching of

images in rollovers within an event handler. This task extends the example
illustrated in Task 65 and adds a function for this purpose.

The following steps show how to add the function to the code from Task 65 and
build and trigger rollovers using both functions:

1. In a script block in the header of a new document, create two
variables—a source and a replacement containing the values 0 and 1,
respectively. These variables allow the Image objects of each rollover
array to be referred to by name—source for the default image and
replacement for the rollover image.

var source = 0;

var replacement = 1;

2. Create a function named createRollOver in the same way as in
Task 65:

function createRollOver(originalImage,replacementImage) {

var imageArray = new Array;

imageArray[source] = new Image;

imageArray[source].src = originalImage;

imageArray[replacement] = new Image;

imageArray[replacement].src = replacementImage;

return imageArray;

}

3. Create a function named roll with the function keyword. This
function takes two parameters—targetImage, which will be the
Image object associated with the img tag for the image in question,
and displayImage, which will be the Image object for the image to
display:

function roll(targetImage,displayImage) {

}

4. In the function, assign the image from displayImage to the image
location associated with targetImage so that the final function
looks like this:

function roll(targetImage,displayImage) {

targetImage.src = displayImage.src;

}

5. After the roll function, invoke the createRollOver function to
create the necessary rollover array and assign the array returned by
the function to rollImage1. The final script looks like this:

var rollImage1 = createRollOver(“image1.jpg”,”Æ

rollImage1.jpg”);

notes
• The function developed in

this task is a general-pur-
pose function: It can be
used to perform image
switches either when the
mouse moves onto or off
an image.

• This task may seem to be
more complex and use
more source code than was
used in Task 61 to create a
rollover for a single image.
This is an accurate percep-
tion; however, the benefit
of this module code broken
into functions is that it
becomes easier to handle
multiple rollovers, and code
for creating and triggering
each rollover becomes
noticeably simpler.

• The task of code creation,
code management, and
code accuracy becomes
increasingly daunting as
the number of rollover
images in a document
increases. At some point,
the task of ensuring bug-
free code and debugging
becomes problematic. The
approach in this task is
aimed at mitigating this to
a degree.

136 Part 3

Task 66

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 136

6. In the body of the HTML, create an image with the img tag and
name the image myImage1:

7. Surround the image with opening and closing a tags:

<img src=”image1.jpg” width=100 name=”myImage1” Æ

border=0>

8. Specify the onMouseOver and onMouseOut attributes of the a tag.
These use the roll function to handle the switching of images.

<a href=”#” onMouseOver=”roll(myImage1,rollImage1Æ

[replacement])”Æ

onMouseOut=”roll(myImage1, rollImage1 [source])”>

<img src=”image1.jpg” width=100 name=”myImage1” Æ

border=0>

9. Save the HTML file and open it in a browser. The default image is
displayed as in Figure 66-1. Move the mouse over the image to see
the rollover image, as in Figure 66-2.

Figure 66-1: When the mouse pointer is not over the image, the original image
is displayed.

Figure 66-2: When the mouse pointer is over the image, the rollover image is displayed.

Images and Rollovers 137

Task 66

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 137

Using Functions to Create Multiple
Rollovers in One Page

The real benefits of using functions for rollovers become apparent when you
try to create multiple rollover effects in a page. The following example shows

how to use the functions created in Tasks 65 and 66 to create two rollover images
in the same document:

1. In the script block in the header of a new document, create two
variables—a source and a replacement containing the values 0 and 1,
respectively. These variables allow the Image objects of each rollover
array to be referred to by name: source for the default image and
replacement for the rollover image:

var source = 0;

var replacement = 1;

2. Create a function named createRollOver in the same way as in
Task 65:

function createRollOver(originalImage,replacementImage) {

var imageArray = new Array;

imageArray[source] = new Image;

imageArray[source].src = originalImage;

imageArray[replacement] = new Image;

imageArray[replacement].src = replacementImage;

return imageArray;

}

3. Create a function named roll in the same way as in Task 66:

function roll(targetImage,displayImage) {

targetImage.src = displayImage.src;

}

4. After the roll function, invoke the createRollOver function
twice to create the arrays for the two rollovers. The results are
returned and stored in rollImage1 and rollImage2:

var rollImage1 = createRollOver(“image1.jpg”,”Æ

rollImage1.jpg”);

var rollImage2 = createRollOver(“image2.jpg”,”Æ

rollImage2.jpg”);

5. In the body of the document, create an image with the img tag for
the first rollover, and enclose it in opening and closing a tags; use the
roll function to specify appropriate image switches for the
onMouseOver and onMouseOut event handlers of the a tag, and
name the image myImage1 with the name attribute of the img tag:

<a href=”#” onMouseOver=”roll(myImage1,rollImage1Æ

[replacement])”Æ

onMouseOut=”roll(myImage1,rollImage1[source])”>

note
• This task may seem to be

more complex and use
more source code than was
used in Task 61 to create a
rollover for a single image.
This is an accurate percep-
tion; however, the benefit of
this module code broken
into functions is that it
becomes easier to handle
multiple rollovers, and code
for creating and triggering
each rollover becomes
noticeably simpler.

138 Part 3

Task 67

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 138

<img src=”Tellers1.jpg” width=100 name=”myImage1” Æ

border=0>

6. In the body of the document, create an image with the img tag for
the second rollover, and enclose it in opening and closing a tags; use
the roll function to specify appropriate image switches for the
onMouseOver and onMouseOut event handlers of the a tag, and
name the image myImage1 with the name attribute of the img tag.
The final script should look like this:

<a href=”#” Æ

onMouseOver=”roll(myImage2,rollImage2[replacement])”Æ

onMouseOut=”roll(myImage2,rollImage2[source])”>

<img src=”lotus.jpg” width=100 name=”myImage2” Æ

border=0>

7. Save the HTML file and open it in a browser. Two images are dis-
played. When the mouse pointer is not over either image, the default
images are displayed, as in Figure 67-1. Move the mouse pointer over
the first image to display the first rollover, as in Figure 67-2, and
move over the second image to display the second rollover.

Figure 67-1: The mouse is not over any image.

Figure 67-2: The mouse is over the first image.

Images and Rollovers 139

Task 67

tip
• The rollover effect is

designed to provide context
to users, allowing them to
know that the image con-
stitutes a clickable element
and showing users exactly
what they are clicking on
(especially in the case of
numerous images in close
proximity to each other in a
complex layout).

cross-reference
• Tasks 65 and 66 show how

to use functions to modu-
larize and simplify the code
for creating and triggering
rollover effects.

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 139

Creating a Simple Rollover
Menu System

You have seen how moving the core rollover logic into functions can facilitate
the creation of multiple rollover images. To fully leverage this, you should

place the functions in a separate JavaScript file that can then be included in any
document you build.

The following example illustrates how to take the functions used in Task 67,
move them to an external JavaScript file, and then build a page that uses the
file to create two rollover images in a page:

1. In a blank text file, create a JavaScript script, but without using script
tags to open and close the script. Start the script by creating the
source and replacement variables:

var source = 0;

var replacement = 1;

2. Create a function named createRollOver, as in Task 65:

function createRollOver(originalImage,replacementImage) {

var imageArray = new Array;

imageArray[source] = new Image;

imageArray[source].src = originalImage;

imageArray[replacement] = new Image;

imageArray[replacement].src = replacementImage;

return imageArray;

}

3. Create a function named roll in the same way as in Task 66:

function roll(targetImage,displayImage) {

targetImage.src = displayImage.src;

}

4. Save the file as rollover.js.

5. In a new text file, include the rollover.js file by using the src
attribute of the script tag; place this script tag in the document
header:

<script language=”JavaScript” src=”rollover.js”></script>

6. Create a second script block in the document header.

notes
• Moving the functions to an

outside file allows you to
reuse the code in any
page—and it vastly simpli-
fies the pages that do
use rollovers by removing
the function code from
those pages.

• The .js file extension is
the standard extension for
JavaScript files; you should
use this extension for any
files designed to contain
JavaScript to be included in
other HTML documents.

140 Part 3

Task 68

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 140

7. In this script, invoke the createRollOver function twice to create
the arrays for the two rollovers. Assign the resulting arrays to
rollImage1 and rollImage2:

<script language=”JavaScript”>

var rollImage1 = createRollOver(“image1.jpg”,”Æ

rollImage1.jpg”);

var rollImage2 = createRollOver(“image2.jpg”,”Æ

rollImage2.jpg”);

</script>

8. In the body of the document, create an image with the img tag for
the second rollover, and enclose it in opening and closing a tags.
Use the roll function to specify appropriate image switches for the
onMouseOver and onMouseOut event handlers of the a tag, and
name the image myImage1 with the name attribute of the img tag.
The final script should look like this:

<body>

<a href=”#” onMouseOver=”roll(myImage1,rollImage1Æ

[replacement])”Æ

onMouseOut=”roll(myImage1,rollImage1[source])”>

<img src=”image1.jpg” width=100 name=”myImage1” Æ

border=0>

<a href=”#” onMouseOver=”roll(myImage2,rollImage2Æ

[replacement])”Æ

onMouseOut=”roll(myImage2,rollImage2[source])”>

<img src=”image2.jpg” width=100 name=”myImage2” Æ

border=0>

</body>

9. Save the HTML file and open it in a browser. When the mouse
pointer is not over either image, the default images are displayed as
in Figure 68-1.

Figure 68-1: The mouse is not over any image.

Images and Rollovers 141

Task 68

cross-reference
• Task 4 discusses the use

of the src attribute to
include outside JavaScript
files in your HTML pages.

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 141

Creating a Slide Show in JavaScript

In addition to rollover effects for images, another popular use of JavaScript with
images is to create slide shows in HTML pages. These slide shows can be auto-

matic or manually controlled by the user.

This task illustrates the creation of an automatic slide show in which the image
transitions happen every three seconds. The result is a slide show that starts on
an initial image and then switches every three seconds. The third image is dis-
played after the slide show has been running for six seconds.

The following steps create the specified automatic slide show:

1. In a script block in the header of a new HTML document, create an
array named imageList; this array will hold the Image objects for
the slide show:

var imageList = new Array;

2. Create a new element of the array for each slide show image and
assign the path and filename of the image to the src attribute of the
object:

imageList[0] = new Image;

imageList[0].src = “image1.jpg”;

imageList[1] = new Image;

imageList[1].src = “image2.jpg”;

imageList[2] = new Image;

imageList[2].src = “image3.jpg”;

imageList[3] = new Image;

imageList[3].src = “image4.jpg”;

3. Create a function named slideShow that takes a single parameter
named imageNumber: the number of the image to display. This
number is the index of a given image in the imageList array, and
the function will display the image and then schedule the display of
the next image to occur three seconds later.

function slideShow(imageNumber) {

}

4. In the function, display the image specified in imageNumber in the
place of the image named slideShow:

document.slideShow.src = imageList[imageNumber].src;

5. Increment imageNumber by one:

imageNumber += 1;

6. Use an if statement to test if the new image number indicates there
is another image to display; that is, imageNumber should be less than
the length of the imageList array after being incremented:

if (imageNumber < imageList.length) {

}

notes
• The length property of an
Array object provides the
number of entries in an
array. That means if an
array has four entries num-
bered 0 to 3, then the
length property of that
array has a value of 4
(see Step 6).

• The window.
setTimeout method
takes two parameters: a
function to call and a time
in milliseconds. The func-
tion schedules an auto-
matic call to the specified
function after the specified
number of milliseconds
have elapsed. 3000 mil-
liseconds is the same as
3 seconds (see Step 7).

• The onLoad event handler
of the body tag is used to
specify JavaScript to exe-
cute when an HTML docu-
ment finishes its initial
loading (see Step 8).

142 Part 3

Task 69

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 142

7. Inside the if block, use the window.setTimeout method to sched-
ule a call to the slideShow function with the new value of
imageNumber passed as a parameter. This will display the next
image in three seconds:

window.setTimeout(“slideShow(“ + imageNumber + “)”,3000);

8. Add an onLoad event handler to the body tag, and call slideShow
with a parameter value of zero (for the first slide) from inside the
event handler:

<body onLoad=”slideShow(0)”>

9. In the body of the document, display the first image of the slide show
with an img tag, and use the name attribute to name the image
slideShow. The final page should look like Listing 69-1.

<head>

<script language=”JavaScript”>

var imageList = new Array;

imageList[0] = new Image;

imageList[0].src = “image1.jpg”;

imageList[1] = new Image;

imageList[1].src = “image2.jpg”;

imageList[2] = new Image;

imageList[2].src = “image3.jpg”;

imageList[3] = new Image;

imageList[3].src = “image4.jpg”;

function slideShow(imageNumber) {

document.slideShow.src = Æ

imageList[imageNumber].src;

imageNumber += 1;

if (imageNumber < imageList.length) {

window.setTimeout(“slideShow(“ + imageNumber Æ

+ “)”,3000);

}

}

</script>

</head>

<body onLoad=”slideShow(0)”>

</body>

Listing 69-1: Creating a slide show.

Images and Rollovers 143

Task 69

tip
• The principle of creating a

slide show is simple. First,
load all the images into
Image objects. Next, dis-
play the first image with an
img tag. Finally, rotate the
images with JavaScript until
the slide show is complete.

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 143

Randomizing Your Slide Show

A s an extension to the slide show created in Task 69, this task shows how to
produce a randomized slide show. The slide show continues to display ran-

dom images for the list of available images as long as the page is being displayed
in the browser.

The following steps create just such a random slide show:

1. In a script block in the header of a new document, create an array
named imageList; this array will hold the Image objects for the
slide show:

var imageList = new Array;

2. Create a new element of the array for each slide show image, and
assign the path and filename of the image to the src attribute of the
object:

imageList[0] = new Image;

imageList[0].src = “image1.jpg”;

imageList[1] = new Image;

imageList[1].src = “image2.jpg”;

imageList[2] = new Image;

imageList[2].src = “image3.jpg”;

imageList[3] = new Image;

imageList[3].src = “image4.jpg”;

3. Create a function named slideShow that takes a single parameter
named imageNumber: the number of the image to display. This
number is the index of a given image in the imageList array, and
the function will display the image and then schedule the display of
the next image to occur three seconds later.

function slideShow(imageNumber) {

}

4. In the function, display the image specified in imageNumber in the
place of the image named slideShow:

document.slideShow.src = imageList[imageNumber].src;

5. Create a variable named imageChoice, and assign it a random num-
ber from 0 to the last index in the imageList array by using
Math.floor, Math.random and imageList.length:

var imageChoice = Math.floor(Math.random() * Æ

imageList.length);

6. Use the window.setTimeout method to schedule a call to the
slideShow function with the value of imageChoice passed as a
parameter. This will display the next random image in three seconds:

window.setTimeout(“slideShow(“ + imageChoice + “)”,3000);

note
• The window.
setTimeout method
takes two parameters: a
function to call and a time
in milliseconds. The func-
tion schedules an auto-
matic call to the specified
function after the specified
number of milliseconds
have elapsed. 3000 mil-
liseconds is the same as
3 seconds (see Step 6).

• The onLoad event handler
of the body tag is used to
specify JavaScript to exe-
cute when an HTML docu-
ment finishes its initial
loading (see Step 7).

144 Part 3

Task 70

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 144

7. Add an onLoad event handler to the body tag, and call slideShow
with a parameter value of zero (for the first slide) from inside the
event handler:

<body onLoad=”slideShow(0)”>

8. In the body of the document, display the first image of the slide show
with an img tag, and use the name attribute to name the image
slideShow. The final page should look like this:

<head>

<script language=”JavaScript”>

var imageList = new Array;

imageList[0] = new Image;

imageList[0].src = “image1.jpg”;

imageList[1] = new Image;

imageList[1].src = “image2.jpg”;

imageList[2] = new Image;

imageList[2].src = “image3.jpg”;

imageList[3] = new Image;

imageList[3].src = “image4.jpg”;

function slideShow(imageNumber) {

document.slideShow.src = Æ

imageList[imageNumber].src;

var imageChoice = Math.floor(Math.random() * Æ

imageList.length);

window.setTimeout(“slideShow(“ + imageChoice Æ

+ “)”,3000);

}

</script>

</head>

<body onLoad=”slideShow(0)”>

</body>

9. Save the page in an HTML file, and open it in a browser to display a
slide show like the one in Figure 70-1.

Figure 70-1: A random slide show.

Images and Rollovers 145

Task 70

cross-reference
• The technique in this task

actually produces a simpler
script than in Task 69,
since it is no longer neces-
sary to check if you have
run out of images before
displaying a new image.
Instead, you simply keep
choosing a random image
and displaying it.

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 145

Triggering Slide Show Transitions
from Links

Another useful extension of the slide show illustrated in Task 69 is to allow
the user to move the slide show forward and backward by clicking on links

instead of automating the transition of slides as in Tasks 69 and 70. The result
is a slide show presentation that looks something like Figure 71-1.

Figure 71-1: Controlling a slide show with links in the document.

The following example creates a slide show application with these manual links
for the user to control the progression of the slides:

1. In a script block in the header of a new document, create an array
named imageList; this array will hold the Image objects for the
slide show:

var imageList = new Array;

2. Create an a variable named currentSlide, and set its default value
to 0; this variable will be used to track the slide the user is currently
viewing:

var currentSlide = 0;

3. Create a new element of the array for each slide show image, and
assign the path and filename of the image to the src attribute of the
object:

imageList[0] = new Image;

imageList[0].src = “image1.jpg”;

imageList[1] = new Image;

imageList[1].src = “image2.jpg”;

etc.

4. Create a function named nextSlide with the function keyword;
this function will be invoked when the user wants to move forward to
the next slide:

function nextSlide() {

}

notes
• Providing slide show con-

trol links requires an
adjustment of the logic of
the previous slide show
application. Two functions
are used: nextSlide to
switch to the next slide and
previousSlide to
switch to the previous
slide. The slide show will
also use links in the body
of the document to invoke
the previousSlide and
nextSlide functions.

• There are two ways to
invoke JavaScript code
when the user clicks on
the link. The first is using
javascript:
JavaScript Code as the
URL. The second is using
the onClick attribute of
the a tag. The first method
is a good technique when
you have a single function
call to make and there is
no need to follow a real
URL when the link is
clicked by the user.

146 Part 3

Task 71

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 146

5. In the function, use an if statement to check whether or not the user
is already at the last slide. This is done by comparing the value stored
in currentSlide plus 1 (for the next slide) to the length of the
imageList array. If this is not the last slide, then there is another
slide and you increment currentSlide:

if (currentSlide + 1 < imageList.length) {

currentSlide += 1;

document.slideShow.src = imageList[currentSlide].src;

}

6. Create a function named previousSlide with the function key-
word; this function will be invoked when the user wants to move
back to the previous slide:

function previousSlide() {

}

7. In the function, use an if statement to check whether or not the user
is already at the first slide. This is done by comparing the value
stored in currentSlide less 1 (for the previous slide) to zero:

if (currentSlide - 1 >= 0) {

}

8. If the previous slide is greater than or equal to zero, then the user has
another slide to see and that slide is displayed and the current
Slide value is reduced by one:

currentSlide -= 1;

document.slideShow.src = imageList[currentSlide].src;

9. In the body of the document, create two links for the previous
and next slide, and in the href attribute, use javascript
:previousSlide() and javascript:nextSlide() to invoke
the appropriate functions when the user clicks on the links. Finally,
include an img tag that displays the first image from the slide show
with the name slideShow specified with the name attribute.

Images and Rollovers 147

Task 71

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 147

Including Captions in a Slide Show

In addition to rotating the images when a user clicks on a link, you can also
display and rotate captions associated with the images.

This task builds on the manually controlled slide show from Task 71 and adds
a caption so that the slide show looks like Figure 72-1. When the user changes
images, the caption will change to match.

Figure 72-1: Displaying a caption with an image.

The following steps add the caption to the slide show as outlined previously:

1. In a script block in the header of a new document, create an array
named imageList; this array will hold the Image objects for the
slide show. At the same time, create an array named captionList
to hold the corresponding captions:

var imageList = new Array;

var captionList = new Array;

2. Create an a variable named currentSlide and set its default value
to 0; this variable will be used to track the slide the user is viewing:

var currentSlide = 0;

3. Create a new element of the imageList array for each slide show
image, and assign the path and filename of the image to the src
attribute of the object. At the same time, assign a relevant caption to
the appropriate entry in the captionList array:

imageList[0] = new Image;

imageList[0].src = “image1.jpg”;

captionList[0] = “Caption 1”;

imageList[1] = new Image;

imageList[1].src = “image2.jpg”;

captionList[1] = “Caption 2”;

etc.

note
• This task provides a simple

example of one way to
rotate captions with
images: by displaying the
caption in a form’s text
field. This technique is uni-
versal and works on most
browsers where techniques
to dynamically replace
HTML text directly are
harder to perform in a truly
browser-agnostic way.

148 Part 3

Task 72

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 148

4. Create the nextSlide function as outlined in Task 71:

function nextSlide() {

if (currentSlide + 1 < imageList.length) {

currentSlide += 1;

document.slideShow.src = imageList[currentSlide].src;

}

}

5. In the if block, assign the appropriate caption to the caption text
field to go along with the image:

function nextSlide() {

if (currentSlide + 1 < imageList.length) {

currentSlide += 1;

document.slideShow.src = imageList[currentSlide].src;

document.captionForm.caption.value = Æ

captionList[currentSlide];

}

}

6. Create the previousSlide function as outlined in Task 71, and add
the same command as in the nextSlide function to handle captions.
The final script should be as follows:

function previousSlide() {

if (currentSlide - 1 >= 0) {

currentSlide -= 1;

document.slideShow.src = imageList[currentSlide].src;

document.captionForm.caption.value = Æ

captionList[currentSlide];

}

}

7. In the body of the document, add the previous and next links and the
image itself as in Task 71:

< PREV |

NEXT >

8. Add a form to the document and name the form captionForm. In
the form, create a multiline text field named caption, and display
the caption for the initial image in the text field:

<form name=”captionForm”>

<textarea name=”caption” rows=3 cols=40>Caption Æ

1</textarea>

</form>

Images and Rollovers 149

Task 72

cross-reference
• Accessing form text fields

and changing their values
is done by assigning strings
to document.formName
.textFieldName. Refer
to Task 79 for examples
of this.

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 149

Testing If an Image Is Loaded

Sometimes when you load an image, either through the img tag or in
JavaScript by creating an Image object, the loading of the image can take a

long time. In these circumstances, you may want to prevent certain actions from
occurring if the appropriate images have not yet loaded.

For instance, in a slide show, it might be appropriate to skip an image if it is not
fully loaded when the user tries to display it. Similarly, it might be better to dis-
able rollover effects until all relevant images have successfully loaded so that
rollovers don’t cause switches to incomplete or unloaded images.

This task illustrates the use of the complete property of the Image object by
extending the random slide show from Task 70 so that the slide show doesn’t
start until all the images have fully loaded.

The following steps create this slide show application:

1. In a script block in the header of a new document, create an array
named imageList; this array will hold the Image objects for the
slide show. Load all the images into the array:

var imageList = new Array;

imageList[0] = new Image;

imageList[0].src = “image1.jpg”;

imageList[1] = new Image;

imageList[1].src = “image2.jpg”;

imageList[2] = new Image;

imageList[2].src = “image3.jpg”;

imageList[3] = new Image;

imageList[3].src = “image4.jpg”;

imageList[0] = new Image;

imageList[0].src = “image1.jpg”;

imageList[1] = new Image;

imageList[1].src = “image2.jpg”;

imageList[2] = new Image;

imageList[2].src = “image3.jpg”;

imageList[3] = new Image;

imageList[3].src = “image4.jpg”;

2. In the same way as in Task 70, create a function named slideShow
that takes a single parameter named imageNumber, displays the
specified image, randomly chooses another image, and then sched-
ules a call to slideShow to display that image in three seconds:

function slideShow(imageNumber) {

document.slideShow.src = imageList[imageNumber].src;

var imageChoice = Math.floor(Math.random() * Æ

imageList.length);

notes
• It is possible to test if an

image has finished loading
by checking the value of
the complete property of
the relevant Image object.
If the value is true, then
the image has finished
loading.

• You can prevent the slide
show from starting too
early by adding a function
to check if all the images
have loaded. If all are
loaded, the slide show
starts. Otherwise, the func-
tion schedules a call to
itself one second later to
run the check again. This
function is then called
when the document has
loaded to begin checking
image loading status until
images have loaded and
the slide show can begin.

150 Part 3

Task 73

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 150

window.setTimeout(“slideShow(“ + imageChoice + Æ

“)”,3000);

}

3. Create a function named checkImages with the function keyword:

function checkImages() {

}

4. In the function create a variable called result and set it to false:

var result = false;

5. In the function, create a for loop to loop through the imageList
array:

for (i = 0; Ii < imageList.length; i++) {

}

6. In the loop, check if that image has completed loading, and if it has,
make sure the result is true. This can be done by combining the
current value of result with the value of the complete property
of the related Image object using a boolean OR operation:

for (i = 0; i < imageList.length; i++) {

result = (result || imageList[i].complete);

}

7. Test the result in an if statement, and if the result is true, call the
slideShow function to start the show; otherwise, use the window.
setTimeout method to call the checkImages function in one
second to perform the check again:

if (result) {

slideShow(0);

} else {

window.setTimeout(“checkImages()”,1000);

}

8. In the body of the document, display the initial image with the img
tag, and then set the onLoad attribute of the body tag to call the
checkImages function:

<body onLoad=”checkImages()”>

</body>

Images and Rollovers 151

Task 73

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 151

Triggering a Rollover in a
Different Location with a Link

Rollovers are typically triggered when a user moves the mouse over the image
itself; all the examples of rollovers seen so far have worked this way. But

there is nothing to prevent rollover effects to be displayed in a different place
than where the mouse movement is detected.

For instance, it is possible to trap the mouse moving over a link but use this event
to switch an image in a different location on the page.

This example shows how to trigger an image switch when the user moves the
mouse pointer over a separate link:

1. In a script block in the header of a new document, create an Image
object named originalImage and load the default image for the
rollover into the object:

var originalImage = new Image;

originalImage.src = “image1.jpg”;

2. Create an Image object named replacementImage, and load the
rollover image for the rollover into the object. The final script block
should look like this:

<script language=”JavaScript”>

var originalImage = new Image;

originalImage.src = “image1.jpg”;

var replacementImage = new Image;

replacementImage.src = “rollImage1.jpg”;

</script>

3. In the body of the document, create a link that will be used for trig-
gering the rollover; it doesn’t matter what URL is specified for the
purposes of triggering the rollover:

ROLLOVER THIS TEXT

4. Add an onMouseOver attribute to the a tag, and switch the myImage
object to the image in the replacementImage object; this will trig-
ger the rollover when the mouse moves over the link:

<a href=”#” onMouseOver=”document.myImage.src = Æ

replacementImage.src;”>ROLLOVER THIS TEXT

5. Add an onMouseOut attribute to the a tag, and switch the myImage
object to the image in the originalImage object; this will return
the image to the original state when the mouse moves off the link:

<a href=”#” onMouseOver=”document.myImage.src = Æ

replacementImage.src;”

onMouseOut=”document.myImage.src = Æ

originalImage.src;”>ROLLOVER THIS TEXT

note
• The onMouseOver event

handler is similar to the
onMouseOut event han-
dler. It allows the program-
mer to specify JavaScript
code to execute when the
mouse pointer leaves the
area occupied by a page
element, such as an image
where onMouseOver
specified code to execute
when the mouse pointer
entered the space occu-
pied by a page
element (see Step 4).

152 Part 3

Task 74

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 152

6. Add an img tag to the body, and display the default image. Name the
image myImage with the name attribute. The final page should look
like this:

<head>

<script language=”JavaScript”>

var originalImage = new Image;

originalImage.src = “image1.jpg”;

var replacementImage = new Image;

replacementImage.src = “rollimage1.jpg”;

</script>

</head>

<body>

<a href=”#” onMouseOver=”document.myImage.src = Æ

replacementImage.src;”

onMouseOut=”document.myImage.src = Æ

originalImage.src;”>ROLLOVER THIS TEXT

</body>

7. Save the page in an HTML file, and open the file in a browser. This
displays a page like Figure 74-1. When the mouse moves over the
link, the rollover image will be displayed as in Figure 74-2.

Figure 74-1: Initially, the default image is displayed.

Figure 74-2: When the mouse moves over the link, the rollover image is displayed.

Images and Rollovers 153

Task 74

tip
• The rollover effect is

designed to provide context
to users, allowing them to
know that the image con-
stitutes a clickable element
and showing users exactly
what they are clicking on
(especially in the case of
numerous images in close
proximity to each other in a
complex layout).

cross-reference
• The basics of creating an

image rollover effect is out-
lined in Task 61.

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 153

Using Image Maps and
Rollovers Together

Rollovers can also be used with image maps. For instance, in Figure 75-1, an
image is used to create a complex graphical menu. The individual ovals are

specified in an image map and, therefore, are clickable links.

When rollovers are used with the image map, whenever the user rolls over the
first oval, the image map is replaced with an alternate image highlighting that
oval and providing descriptive text, as in Figure 75-2.

Figure 75-1: The initial image map.

Figure 75-2: The rollover image for when the mouse pointer is over the first oval in
the image map.

notes
• Image maps allow you to

specify multiple links for a
single image by creating a
map block and then using
one or more area tags to
specify geographic shapes
to serve as links.

• The combination of rollover
effects with image maps
allows the creation of com-
plex graphical menus made
out of a single image. When
the user rolls over part of
the image specified in an
image map, it is possible to
swap the image for an
alternate, effectively creat-
ing a rollover effect in an
image map.

154 Part 3

Task 75

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 154

The following steps create a rollover effect on an image map:

1. In a script block in the header of a new document, create an Image
object named originalImage, and load the default image for the
rollover into the object:

var originalImage = new Image;

originalImage.src = “image1.jpg”;

2. Create an Image object named replacementImage, and load the
rollover image for the rollover into the object. The final script block
should look like this:

var replacementImage = new Image;

replacementImage.src = “rollImage1.jpg”;

3. In the header of the document, create an image map block with
opening and closing map tags. Specify the name of the image map as
imageMap with the name attribute of the map tag:

<map name=”imageMap”>

</map>

4. Use an area tag to specify a rectangular block for a link in the image
map; use the shape attribute with the value rect and the coords
attribute to specify the coordinates of the rectangle:

<area shape=”rect” coords=”0,0,100,100”>

5. Add an onMouseOver attribute to the area tag to replace the image
named myImage with replacementImage when the mouse rolls
over the specified area. Also add an onMouseOut attribute to the
area tag to replace the image named myImage with the
originalImage image when the mouse rolls over the specified area:

<area shape=”rect” coords=”0,0,100,100”

onMouseOver=”document.myImage.src = Æ

replacementImage.src;”

onMouseOut=”document.myImage.src = originalImage.src;”>

6. In the body of the document, display the default image using an img
tag and name the image myImage with the name attribute. Use the
usemap attribute to associate the image with the imageMap image
map:

<img src=”image1.jpg” width=200 name=”myImage” Æ

usemap=”#imageMap”>

7. Save the code in an HTML file, and open it in a browser. When the
mouse moves over the 100-pixel-wide and 100-pixel-deep square in
the top-left corner of the image, the entire image map is replaced by
the rollover image. When the mouse moves out of this area, the orig-
inal image is displayed.

Images and Rollovers 155

Task 75

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 155

Generating Animated Banners
in JavaScript

Many of the banner ads you see on the Web are animated. Sometimes these
are done with animated GIF files, which provide a simple way to generate

an animated image without resorting to any custom code.

However, GIFs have their limitations, not least of which they are not well suited
to displaying photographic-style images with high color depth. That’s when
JPEG images come in handy. The problem is that JPEG images cannot be
animated.

Using JavaScript you can animate a JPEG-based banner in much the same way
that a slide show allows multiple images to be displayed. This is done by creating
one JPEG image for each frame of the animation and then rotating them using
JavaScript.

This task shows how you can create an animated banner with JavaScript and
provide control over the amount of time between each frame transition:

1. In a script block in the header of a new document, create two arrays:
imageList to hold the individual Image objects for the frames of
the banner and transitionList to hold a list of transition times in
milliseconds, specifying how long to wait after displaying one frame
before displaying the next:

var imageList = new Array;

var transitionList = new Array;

2. Populate the imageList array with Image objects for the frames,
and specify transition times in the transitionList array:

imageList[0] = new Image;

imageList[0].src = “frame1.jpg”;

transitionList[0] = 2000;

imageList[1] = new Image;

imageList[1].src = “frame2.jpg”;

transitionList[1] = 500;

imageList[2] = new Image;

imageList[2].src = “frame3.jpg”;

transitionList[2] = 5000;

imageList[3] = new Image;

imageList[3].src = “frame4.jpg”;

transitionList[3] = 3000;

3. Create a rotateBanner function that takes a single parameter
frameNumber to indicate the frame that needs to be displayed:

function rotateBanner(frameNumber) {

}

note
• The window.
setTimeout method
takes two parameters: a
function to call and a time
in milliseconds. The func-
tion schedules an auto-
matic call to the specified
function after the specified
number of milliseconds
have elapsed. 3000 mil-
liseconds is the same as 3
seconds (see Step 7).

• The onLoad event handler
of the body tag is used to
specify JavaScript to exe-
cute when an HTML docu-
ment finishes its initial
loading (see Step 9).

156 Part 3

Task 76

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 156

4. In the function, display the specified frame in the place of the Image
object named banner:

document.banner.src = imageList[frameNumber].src;

5. Next, increment the frame number and assign it to a new variable
called imageChoice:

var imageChoice = frameNumber + 1;

6. Check the value of imageChoice. If it is the same as the length of
the imageList array, reset it to 0. This way the banner will rotate
when it hits the last frame:

if (imageChoice == imageList.length) Æ

{ imageChoice = 0; }

7. As the last step of the function, schedule the rotateBanner func-
tion to run again after the appropriate display specified in the
transitionList array:

window.setTimeout(“rotateBanner(“ + imageChoice + Æ

“)”,transitionList[frameNumber]);

8. In the body of the document, display the first frame of the image
with the img tag, and name the image banner:

9. In the body tag, specify the onLoad attribute to invoke
rotateBanner when the document loads, passing a value of 0 to the
rotateBanner function:

<body onLoad=”rotateBanner(0)”>

10. Save the code in an HTML, and open the file in a browser to see an
animated banner as in Figure 76-1.

Figure 76-1: Displaying rotating JPEG banners with JavaScript.

Images and Rollovers 157

Task 76

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 157

Displaying a Random Banner Ad

One application of the combination of JavaScript and images is to load a ran-
dom image in a location on the page rather than the same image every time.

You can apply this to presenting random banner ads that link to the appropriate
site for the ad. To do this you need to use JavaScript to specify both the location
of the images and URLs associated with the images. With this data you can select
one at random and display it.

The script created in the following steps illustrates this process:

1. Create a script block with opening and closing script tags; the
script block should be in the body of your HTML document where
you want the image to be displayed:

<script language=”JavaScript”>

</script>

2. In the script, create an array named imageList:

var imageList = new Array;

3. Create an entry in the array for each banner’s image you want to
make available for random selection. For instance, if you have four
images, assign the path and names of those images to the first four
entries in the array:

imageList[0] = “banner1.jpg”;

imageList[1] = “banner2.jpg”;

imageList[2] = “banner3.jpg”;

imageList[3] = “banner4.jpg”;

4. Create another array to hold the URLs for each banner. The indexes
in this array should correspond to the imageList array:

var urlList = new Array;

urlList[0] = “http://some.host/”;

urlList[1] = “http://another.host/”;

urlList[2] = “http://somewhere.else/”;

urlList[3] = “http://right.here/”;

5. Create a variable named imageChoice:

var imageChoice;

6. Assign a random number to imageChoice using the Math.random
method, which returns a random number from 0 to 1 (that is, the
number will be greater than or equal to 0 but less than 1):

var imageChoice = Math.random();

7. Extend the expression assigned to imageChoice by multiplying the
random number by the number of entries in the imageList array to
produce a number greater than or equal to 0 but less than 4:

var imageChoice = Math.random() * imageList.length;

notes
• Each slot in an array is

numbered; numbering
starts at zero. This means
an array with four entries
has entries numbered
0 to 3.

• The Math object provides
a number of useful meth-
ods for working with num-
bers and mathematical
operations.

• The length property of an
Array object provides the
number of entries in an
array. That means if an
array has four entries num-
bered 0 to 3, then the
length property of that
array has a value of 4.

• Math.floor performs a
function similar to rounding
in that it removes the deci-
mal part of a number. The
difference is that the result
of rounding can be the next
highest or next lowest inte-
ger value, depending on
the size of the decimal por-
tion of the number. With
Math.floor the result is
always the next lowest inte-
ger. Therefore, rounding
2.999 would result in the
integer 3. but applying
Math.floor to the same
number would result in the
integer 2.

• Notice how the output is
built out of multiple strings
combined with an array
variable; the combining is
done with plus signs. When
you are working with string
values, plus signs perform
concatenation of strings, as
discussed in Task 15.
Concatenation means
that “ab” + “cd” results
in “abcd”.

158 Part 3

Task 77

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 158

8. Extend the expression assigned to imageChoice further by remov-
ing any part after the decimal point with the Math.floor method;
the result is an integer from 0 to one less than the number of entries
in the array—in this case that means an integer from 0 to 3:

var imageChoice = Math.floor(Math.random() * Æ

imageList.length);

9. Use the document.write method to place an img tag surrounded
by an a tag in the HTML data stream sent to the browser. As the
value of the src attribute of img tag, the random image is specified
as imageList[imageChoice], and as the value of the href
attribute of the a tag, use urlList[imageChoice]. The final script
looks Listing 77-1.

<script language=”JavaScript”>

var imageList = new Array;

imageList[0] = “image1.jpg”;

imageList[1] = “image2.jpg”;

imageList[2] = “image3.jpg”;

imageList[3] = “image4.jpg”;

var urlList = new Array;

urlList[0] = “http://some.host/”;

urlList[1] = “http://another.host/”;

urlList[2] = “http://somewhere.else/”;

urlList[3] = “http://right.here/”;

var imageChoice = Math.floor(Math.random() * Æ

imageList.length);

document.write(‘<a href=”’ + urlList[imageChoice] + Æ

‘“>’);

</script>

Listing 77-1: Displaying a random banner ad.

10. Save the code in an HTML file, and display the file in a browser.
A random banner is displayed. Reloading the file should result in a
different banner (although there is always a small chance the same
random number will be selected twice in a row).

Images and Rollovers 159

Task 77

cross-references
• An array is a data type that

contains multiple, num-
bered slots into which you
can place any value. See
Task 20 for a discussion
of arrays.

• The document.write
method is introduced in
Task 45. It allows
JavaScript code to generate
output that forms part of
the HTML rendered by the
browser.

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 159

04 542419 Ch03.qxd 11/19/03 10:00 AM Page 160

Part 4: Working with Forms
Task 78: Preparing Your Forms for JavaScript
Task 79: Accessing Text Field Contents
Task 80: Dynamically Updating Text Fields
Task 81: Detecting Changes in Text Fields
Task 82: Accessing Selection Lists
Task 83: Programmatically Populating a Selection List
Task 84: Dynamically Changing Selection List Content
Task 85: Detecting Selections in Selection Lists
Task 86: Updating One Selection List Based on Selection in Another
Task 87: Using Radio Buttons instead of Selection Lists
Task 88: Detecting the Selected Radio Button
Task 89: Detecting Change of Radio Button Selection
Task 90: Updating or Changing Radio Button Selection
Task 91: Creating Check Boxes
Task 92: Detecting Check Box Selections
Task 93: Changing Check Box Selections
Task 94: Detecting Changes in Check Box Selections
Task 95: Verifying Form Fields in JavaScript
Task 96: Using the onSubmit Attribute of the Form Tag to Verify Form

Fields
Task 97: Verifying Form Fields Using INPUT TYPE=”button” Instead

of TYPE=”submit”
Task 98: Validating E-mail Addresses
Task 99: Validating Zip Codes
Task 100: Validating Phone Numbers
Task 101: Validating Credit Card Numbers
Task 102: Validating Selection List Choices
Task 103: Validating Radio Button Selections
Task 104: Validating Check Box Selections
Task 105: Validating Passwords
Task 106: Validating Phone Numbers with Regular Expressions
Task 107: Creating Multiple Form Submission Buttons using INPUT

TYPE=”button” Buttons
Task 108: Reacting to Mouse Clicks on Buttons
Task 109: Using Graphical Buttons in JavaScript
Task 110: Controlling the Form Submission URL
Task 111: Validating a Numeric Text Field with Regular Expressions
Task 112: Encrypting Data before Submitting It
Task 113: Using Forms for Automatic Navigation Jumping

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 161

Preparing Your Forms for JavaScript

In JavaScript, you can access and manipulate the content and state of fields in
forms on the page. To do this, you need to give some attention to the minimum

requirements needed to make your forms easily accessible in JavaScript.
Primarily, you must focus on providing names for your forms and elements. The
following steps walk you through the process of naming your forms and elements
so you can access them using JavaScript:

1. Create a new document in your preferred editor.

2. Create a form in the body of the document. Add an input text field, a
selection list, and a command button to your form:

<body>

<form method=”post” action=”target.html”>

<input type=”text”>

<select>

<option value=”1”>First Choice</option>

<option value=”2”>Second Choice</option>

</select>

<input type=”submit” value=”Submit Me”>

</form>

</body>

This form is shown in Figure 78-1.

Figure 78-1: A standard HTML form.

notes
• To access a field in a form,

you can use the following
reference in JavaScript:

document.forms[0].
elements[0]

Each form in your docu-
ment is contained in the
forms array in the order it
appears in your document.
The elements array, simi-
larly, has one entry for each
field in a given form in
the order the fields appear
in the form.

• If the form is not named,
then each form is accessible
in the document.forms
array, so that the first
form in the document is
document.forms
[0], the second is
document.forms[1],
and so on.

• If the field is not named,
then each field in the
form is accessible in the
document.formName.e
lements array, so that the
first field in the form is
document.formName.
elements[0], the second
is document.formName.
elements[1], and so on.

• Most of the tasks in this part
use the name attribute to
manipulate the contents of
a form.

162 Part 4

Task 78

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 162

tips
• Naming fields and forms

makes them much easier
to refer to and ensures you
are referring to the correct
fields in your code.

• When naming forms and
the elements within your
forms, you should use
descriptive names.

3. Name the form by adding a name attribute. The following code
names the form thisform. As shown in bold, the name attribute is
added within the form tag:

<body>

<form method=”post” action=”target.html” Æ

name=”thisForm”>

<input type=”text”>

<select>

<option value=”1”>First Choice</option>

<option value=”2”>Second Choice</option>

</select>

<input type=”submit” value=”Submit Me”>

</form>

</body>

4. Name the elements within the form. Just like naming the form, this
is done by adding an attribute called name to each field’s tag. This
attribute is then set to the name of the element as shown in Listing
78-1. Once you’ve assigned the name attributes, your form is ready to
be easily used with JavaScript.

<body>

<form method=”post” action=”target.html” name=”thisForm”>

<input type=”text” name=”myText”>

<select name=”mySelect”>

<option value=”1”>First Choice</option>

<option value=”2”>Second Choice</option>

</select>

<input type=”submit” value=”Submit Me”>

</form>

</body>

Listing 78-1: A JavaScript-ready form.

Working with Forms 163

Task 78

cross-reference
• Task 79 shows you how to

access a text field using
the assigned name.

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 163

Accessing Text Field Contents

When you create an HTML form, you are creating a series of objects, which
can be accessed from within JavaScript. The form itself is an object, and

then each of the fields in the form is represented by an object in JavaScript.
Using these objects, you can access the values stored in form fields such as text
input fields.

You can check the text that is displayed in a text input field—whether it is text
that is a part of the form or text that a user has entered. To be able to access a
field in JavaScript, use the following steps:

1. Create a new document in your preferred editor.

2. In the body of the document, create the form named myForm that
contains a text input field named myText:

<body>

<form name=”myForm”>

<input type=”text” name=”myText”>

</form>

</body>

3. Create a link in your form. This link is used to display the value of the
text input element in a dialog box. Specify # as the URL for the link:

<body>

<form name=”myForm”>

<input type=”text” name=”myText”>

</form>

Check Text Field

</body>

4. Use the onClick event handler in the link element to specify
JavaScript code to execute when the user clicks on the link. To access
a form field, you use the following syntax:

document.formName.fieldName

This references the object associated with the field. The object has
several properties, including:

• name: The name of the field (as specified in the name attribute)

• value: The text displayed in the field

• form: A reference to the form object for the form in which the
field exists

notes
• The following is the mini-

mum HTML required to cre-
ate a text field:

<input type=”text”>

Notice the use of # as the
URL in the example. When
using the onClick event
handler to trigger the open-
ing of a new window, you
don’t want to cause click-
ing on the link to change
the location of the current
window; this is a simple
way to avoid this.

• If the form is not named,
then each form is accessi-
ble in the document.
forms array, so that the
first form in the document
is document.forms[0],
the second is document.
forms[1], and so on.

• If the field is not named,
then each field in the
form is accessible in the
document.formName.
elements array, so that
the first field in the form is
document.formName.
elements[0], the
second is document.
formName.elements[1],
and so on.

164 Part 4

Task 79

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 164

tips
• Naming forms and fields

makes it much easier to
refer to them and ensures
you are referring to the cor-
rect fields in your code.

• In the listing in Step 4,
change document.
myForm.myText.value
to document.myForm.
myText.name. You’ll see
the result is that the name
of the text input field is dis-
played instead of the value.

Therefore, the property document.formName.formField.value
would contain a string of text as displayed in the field.

In this example, document.myForm.myText.value would repre-
sent the text in the text input field, so this is passed as an argument to
window.alert. The result is that the text in the myText text input
box is displayed in a dialog box. Listing 79-1 shows the complete list-
ing with the JavaScript added.

<body>

<form name=”myForm”>

<input type=”text” name=”myText”>

</form>

<a href=”#” onClick=”window.alertÆ

(document.myForm.myText.value);”>Check Text Field

</body>

Listing 79-1: Accessing the value of a form text field.

5. Save the file and close it.

6. Open the file in your browser. Enter some text in the text field, and
then click the link to see that text displayed in a dialog box, as illus-
trated in Figure 79-1.

Figure 79-1: Displaying the text field’s value.

Working with Forms 165

Task 79

cross-references
• See Task 200 to learn

more about the onClick
event handler.

• For more information on
naming elements and
forms, see Task 78.

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 165

Dynamically Updating Text Fields

Using JavaScript, you can change the values in a text input field. The easiest time
to make this update is when a user does something on your form. This task

shows you how to dynamically update the text that is displayed in a text input field:

1. Create a new document in your preferred editor.

2. Create a form in the body of your document. Name your form myForm.

3. Add two text input fields to your form. Name one myText, which
will be used to enter text. Call the other copyText. It will have its
value dynamically changed. The following is the completed form:

<body>

<form name=”myForm”>

Enter some Text: <input type=”text” Æ

name=”myText”>

Copy Text: <input type=”Text” name=”copyText”>

</form>

</body>

4. Create a link that will be used to dynamically change the text. The
user can enter text into the myText field and then click on the link to
copy that text into the second text field; the copying is done with
JavaScript. Although a link is used in this example, you could just as
easily use a button click or any other event to dynamically change the
text. Specify # as the URL for the link.

5. Add an onClick event handler to the link. This will specify the
JavaScript code to execute when the user clicks on the link. The
property document.formName.formField.value contains
the value of a field in the form of a string of text. If you assign a value
to the value property, the new value will be displayed in the text
field. In this case, the value from the myText field will be assigned to
the copyText field. This is done by assigning document.myForm.
myText.value to document.myForm.copyText.value. Listing
80-1 shows the final form with the link and JavaScript added. Figure
80-1 shows the form.

<body>

<form name=”myForm”>

Enter some Text: <input type=”text” name=”myText”>

Copy Text: <input type=”text” name=”copyText”>

</form>

(continued)

notes
• Notice the use of # as the

URL in the example. When
using the onClick event
handler to trigger the open-
ing of a new window, you
don’t want to cause click-
ing on the link to change
the location of the current
window; this is a simple
way to avoid this.

• If the form is not named,
then each form is accessi-
ble in the document.
forms array, so that
the first form in the
document is document.
forms[0], the second is
document.forms[1],
and so on.

• If the field is not named,
then each field in the
form is accessible in the
document.formName.
elements array, so that
the first field in the form is
document.formName.
elements[0], the sec-
ond is document.
formName.elements[1],
and so on.

166 Part 4

Task 80

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 166

tip
• Naming forms and fields

makes it much easier to
refer to them and ensures
you are referring to the cor-
rect fields in your code.

<a href=”#” onClick=”document.myForm.copyText.value =

document.myForm.myText.value;”>Copy Text Field

</body>

Listing 80-1: Assigning a value to a form text field.

Figure 80-1: A form with two text fields.

6. Save the file and close it.

7. Open the file in your browser. You should see the form and link as
shown in Figure 80-1. Enter some text in the first text field, and then
click the link to see the text copied and displayed in the second field,
as illustrated in Figure 80-2.

Figure 80-2: Assigning text to a text field.

Working with Forms 167

Task 80

cross-reference
• For more information on

naming elements and
forms, see Task 78.

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 167

Detecting Changes in Text Fields

When you create an HTML form, you are creating a series of objects that
can be accessed from within JavaScript. Using these objects, you can detect

changes in form fields such as text input fields.

This task shows you how to react to a change in a text input field. Text input
fields are created with the input tag and by setting the type attribute equal to
text. To make the field accessible in JavaScript, it is also best to assign a name to
the field with the name attribute:

<input type=”text” name=”myField”>

You can specify code to execute when a change occurs in the field with the
onChange event handler:

<input type=”text” name=”myField” onChange=”JavaScript code to Æ

execute when the value of the field changes”>

The following steps create a form with a text field. When a change is detected
in the field, a dialog box is displayed telling the user the value in the field.

1. Create a new document in your preferred editor.

2. In the body of the document, create a form named myForm.

<body>

<form name=”myForm”>

</form>

</body>

3. In the form, create a text input field with the name myText:

<body>

<form name=”myForm”>

Enter some Text: <input type=”text” name=”myText”>

</form>

</body>

4. Assign an onChange event handler to the field. The handler should
display this.value in a dialog box with the window.alert
method. The final page should look like Listing 81-1.

5. Save the file and close it.

6. Open the file in your browser. You should see the form as in
Figure 81-1.

7. Enter some text in the text field and then click outside the field to
remove focus from the field. You should see the dialog box shown in
Figure 81-2.

notes
• For the detection of the

change to occur, most
browsers (including all the
major ones) don’t actually
consider a change to have
occurred until the focus
leaves the field (such as
when the user clicks in
another field in the form). If
the user didn’t do this, then
every time he or she typed
a character, the code in the
onChange event handler
would execute. Instead, the
code only executes when a
change has occurred and
focus has left the field.

• When working in the event
handler of a form field, the
this keyword refers to the
object associated with the
field itself, which allows you
to use this.value
instead of document.
myForm.myText.value
to refer to the text field’s
value in the onChange
event handler (see Step 4).

168 Part 4

Task 81

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 168

<body>

<form name=”myForm”>

Enter some Text: <input type=”text” name=”myText” Æ

onChange=”window.alert(this.value);”>

</form>

</body>

Listing 81-1: Detecting changes in text fields.

Figure 81-1: A form with a text field.

Figure 81-2: Detecting change in the text field.

Working with Forms 169

Task 81

cross-reference
• Learn about naming fields

in Task 78.

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 169

Accessing Selection Lists

When you create an HTML form, you are creating a series of objects that
can be accessed from within JavaScript. The form itself is an object, and

then each form field is represented by an object in JavaScript. Using these
objects, you can access the values stored in form fields such as selection lists.
This task shows you how to check the current selection in a selection list.

The following steps create a form with a single selection list and then provide a
link the user can click to display the value of the currently selected option in a
dialog box. JavaScript is used to display this information in the dialog box.

1. Create a new document in your preferred editor.

2. In the body of the document, create a form named myForm.

3. In the form, create a selection list named mySelect and add a num-
ber of options:

<body>

<form name=”myForm”>

<select name=”mySelect”>

<option value=”First Choice”>1</option>

<option value=”Second Choice”>2</option>

<option value=”Third Choice”>3</option>

</select>

</form>

</body>

4. After the form, create a link with # as the URL. The link will be used
to display the form field’s selected value in a dialog box:

<body>

<form name=”myForm”>

<select name=”mySelect”>

<option value=”First Choice”>1</option>

<option value=”Second Choice”>2</option>

<option value=”Third Choice”>3</option>

</select>

</form>

Check Selection List

</body>

5. Use the onClick event handler to specify JavaScript code to execute
when the user clicks on the link. In this case, document.myForm.
mySelect.value, which represents the value of the selection
option in the list, is passed as an argument to window.alert in

notes
• Selection lists are created

with the select tag. You
populate the list with the
option tag:

<select name=
”myField”>

<option
value=”a”>A

<option
value=”b”>B

etc.

</select>

<select>

</select>

Notice the use of # as the
URL in the example.When
using the onClick event
handler to trigger the open-
ing of a new window, you
don’t want to cause clicking
on the link to change the
location of the current win-
dow; this is a simple way to
avoid this.

• Remember that with selec-
tion lists, the text displayed
for an option in the list is
different than the value
associated with the option.
The value property of a
selection list’s object is
associated with the value,
and not the display text, of
the currently selected
option in the list.

170 Part 4

Task 82

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 170

order to display the text in a dialog box. The final page looks like
Listing 82-1.

<body>

<form name=”myForm”>

<select name=”mySelect”>

<option value=”First Choice”>1</option>

<option value=”Second Choice”>2</option>

<option value=”Third Choice”>3</option>

</select>

</form>

<a href=”#” onClick=”window.alert(document.Æ

myForm.mySelect.value);”>Check Selection List

</body>

Listing 82-1: Accessing the value of a selected option in a selection list.

6. Save the file and close it.

7. Open the file in your browser. You should see the form and link as in
Figure 82-1.

Figure 82-1: A form with a selection list.

8. Select an option from the selection list and then click the link to see
the value of that selection displayed in a dialog box.

Working with Forms 171

Task 82

cross-references
• Task 83 shows you how to

programmatically populate
a selection list.

• Task 85 shows you how to
detect when a selection is
made in a selection list.

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 171

Programmatically Populating a
Selection List

You can dynamically add entries to a selection list through JavaScript without
ever using an option tag in HTML to create the selection entry. The prin-

ciple is simple. The selection list object has a length property indicating the
number of entries in the selection list. Increasing this value by 1 creates an empty
entry at the end of the list, as illustrated in Figure 83-1.

Figure 83-1: Adding a new entry to a selection list.

Once the new entry is created, you use the options property of the selection list
to assign display text and a value to the new entry. This property is an array con-
taining one object for each element in the array. Each of these objects has a text
and a value property. To populate an entry with values, you would use the
following:

document.formName.selectionObject.options[index of new entry].text Æ

= “Display text”;

document.formName.selectionObject.options[index of new entry].Æ

value = “Entry value”;

The following task creates a form with a selection list with two entries and is
immediately followed by JavaScript code to create a third element in the list:

1. Create a new document in your preferred editor.

2. In the body of the document, create a form named myForm that
contains a selection list named mySelect with three options:

<form name=”myForm”>

<select name=”mySelect”>

<option value=”First Choice”>1</option>

notes
• A key point here: The
length property contains
the number of elements in
the list. For instance, if
there are three elements,
then the value is 3. But, the
options array, like all
arrays, starts counting at
zero. So, the index of that
last, third element is 2. You
need to keep this in mind
when working with selec-
tion lists dynamically from
JavaScript.

• The use of the short-form
++ operator increases the
operand before it by one.
For instance a++ is the
same as a = a + 1.

• A text property is used to
hold the text that will be
displayed on the form. The
value property is used to
hold the value of the entry.

172 Part 4

Task 83

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 172

<option value=”Second Choice”>2</option>

</select>

</form>

3. After the form, create a script.

4. In the script, add one to the length of the selection list:

<script language=”JavaScript”>

document.myForm.mySelect.length++;

</script>

5. In the script, set the display text for the new entry:

document.myForm.mySelect.options[document.myForm.Æ

mySelect.length - 1].text = “3”;

6. Set the display value for the new entry. The final page looks like
Listing 83-1.

<body>

<form name=”myForm”>

<select name=”mySelect”>

<option value=”First Choice”>1</option>

<option value=”Second Choice”>2</option>

</select>

</form>

<script language=”JavaScript”>

document.myForm.mySelect.length++;

document.myForm.mySelect.options[document.myForm.mySelect.Æ

length - 1].text = “3”;

document.myForm.mySelect.options[document.myForm.mySelect.Æ

length - 1].value = “Third Choice”;

</script>

</body>

Listing 83-1: Dynamically adding an entry to a selection list.

7. Save the file and open it in a browser. Expand the selection list, and
you see three entries.

Working with Forms 173

Task 83

cross-references
• The ++ operators is one

form of mathematical oper-
ation you can do with
JavaScript. For more on
mathematical
operations, see Task 14.

• Task 37 shows you how to
loop through an array.

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 173

Dynamically Changing Selection
List Content

Acommon feature in some interactive Web forms is to change the contents of
a selection list dynamically. This allows you to create intelligent forms in

which a user’s actions can determine what should appear in a selection list.

This is easy to do in JavaScript. The selection list object has a length property
indicating the number of entries in the selection list. You can reset this number
to the length needed based on a user’s choice in another list and then populate
each entry in the options array appropriately.

The following steps create a form with a selection list followed by a link. When
the user clicks the link, the contents of the selection list changes.

1. In the header of a new selection list, create a script with a function
called changeList. This function populates a selection list with new
options. It takes as an argument the object associated with the selec-
tion list to change:

<script language=”JavaScript”>

function changeList(list) {

}

</script>

2. In the function, set the length of the list to 3:

list.length = 3;

3. Create three entries in the list:

function changeList(list) {

list.length = 3;

list.options[0].text = “First List 1”;

list.options[0].value = “First Value 1”;

list.options[1].text = “First List 2”;

list.options[1].value = “First Value 2”;

list.options[2].text = “First List 3”;

list.options[2].value = “First Value 3”;

}

4. In the body of the document, create a form named myForm that con-
tains a selection list named mySelect with two options:

<body>

<form name=”myForm”>

<select name=”mySelect”>

<option value=”1”>First Choice</option>

<option value=”2”>Second Choice</option>

</select>

</form>

</body>

notes
• You use the options

property of the selection
list to assign display text
and a value to the new
entry. This property is an
array containing one object
for each element in the
array. Each of these objects
has a text and a value
property.

• To populate an entry with
values, you would use the
following:

document.formName.
selectionObject.opt
ions[index of new
entry].text =
“Display text”;

document.formName.
selectionObject.
options[index of
new entry].value =
“Entry value”;

• A key point here: The
length property contains
the number of elements in
the list. For instance, if there
are four elements, then the
value is 4. But the
options array, like all
arrays, starts counting at
zero. So, the index of that
last, fourth element is 3. You
need to keep this in mind
when working with selection
lists dynamically from
JavaScript.

• Notice the use of # as the
URL in the example. When
using the onClick event
handler to trigger the open-
ing of a new window, you
don’t want to cause click-
ing on the link to change
the location of the current
window; this is a simple
way to avoid this.

174 Part 4

Task 84

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 174

5. After the form, create a link the user will use to change the items in
the selection list. The link should include an onClick event handler.
The onClick event handler will call changeList and pass the
selection list object to the function:

<body>

<form name=”myForm”>

<select name=”mySelect”>

<option value=”1”>First Choice</option>

<option value=”2”>Second Choice</option>

</select>

</form>

<a href=”#” onClick=”changeListÆ

(document.myForm.mySelect);”>Change the List

</body>

6. Save the file and open it in a browser. The list appears, as illustrated
in Figure 84-1.

Figure 84-1: A selection list.

7. Click on the link, and the list changes to the new entries.

Working with Forms 175

Task 84

cross-references
• Task 83 shows you how to

add a selection item to an
existing selection list.

• See Task 87 to learn how
to use a group of radio
buttons instead of a
selection list.

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 175

Detecting Selections in Selection Lists

When you create an HTML form, you are creating a series of objects that
can be accessed from within JavaScript. The form itself is an object, and

then each form field is represented by an object in JavaScript. Using these
objects, you can detect selections made in form fields such as selection lists.

This task shows you how to react to the user selecting an option in a selection list
that was created with the select tag. You can specify code to execute when a
selection occurs in the field with the onChange event handler:

<select name=”myField” onChange=”JavaScript code to execute when the Æ
value of the field changes”>

The following steps create a form with a selection list. When a new selection is
detected in the field, a dialog box is displayed that tells the user the value of the
selected option.

1. Create a new document in your preferred editor.

2. In the body of the document, create a form named myForm:

<body>

<form name=”myForm”>

</form>

</body>

3. In the form, create a selection list with the name mySelect that is
populated with some options:

<body>

<form name=”myForm”>

<select name=”mySelect”>

<option value=”First Choice”>1</option>

<option value=”Second Choice”>2</option>

<option value=”Third Choice”>3</option>

</select>

</form>

</body>

4. Assign an onChange event handler to the field; the handler should
display this.value in a dialog box with the window.alert
method. The final page should look like Listing 85-1.

<body>

<form name=”myForm”>

<select name=”mySelect” onChange=”Æ

window.alert(this.value);”>

<option value=”First Choice”>1</option>

(continued)

notes
• Unlike with text fields (see

Task 82), the browser will
respond to selections as
soon as they occur. This
means as soon as the user
finishes selecting an
option, the code specified
in the onChange event
handler will execute. The
only time this doesn’t hap-
pen is if the user reselects
the value that was already
selected.

• When working in the event
handler of a form field, the
this keyword refers to the
object associated with the
field itself, which allows you
to use this.value
instead of document.
myForm.mySelect.val
ue to refer to the selection
list’s selected value in the
onChange event handler.

176 Part 4

Task 85

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 176

<option value=”Second Choice”>2</option>

<option value=”Third Choice”>3</option>

</select>

</form>

</body>

Listing 85-1: Detecting new selections in selection lists.

5. Save the file and close it.

6. Open the file in your browser. You should see the form as in
Figure 85-1.

Figure 85-1: A form with a selection list.

7. Make a new selection in the list, and you should see the dialog box
shown in Figure 85-2.

Figure 85-2: Detecting new selections.

Working with Forms 177

Task 85

cross-references
• To make the field accessi-

ble in JavaScript, it is also
best to assign a name to
the field with the name
attribute. See Task 78 for
information on naming
fields.

• See Task 88 to learn how
to use a group of radio
buttons instead of a
selection list.

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 177

Updating One Selection List Based
on Selection in Another

Acommon feature in some interactive Web forms is for selections in one selec-
tion list to cause dynamic entries to appear in the second. This allows you to

create intelligent forms in which a user’s choice in one selection list can determine
the available choices in a second selection list.

The following steps create a form with two selection lists. Based on the user’s
selection in the first list, a different set of items is displayed in the second list.

1. In the header of a new selection list, create a script that has a function
called firstList. This function will populate the second list with
an appropriate set of items. This function will execute if the user
selects the first option in the first selection list. It takes as an argu-
ment the object associated with the second selection list.

2. In the function, set the length of the list to 3.

3. Create three entries in the list to complete the function:

function firstList(list) {

list.length = 3;

list.options[0].text = “First List 1”;

list.options[0].value = “First Value 1”;

list.options[1].text = “First List 2”;

list.options[1].value = “First Value 2”;

list.options[2].text = “First List 3”;

list.options[2].value = “First Value 3”;

}

4. Create a second function named secondList. This function works
the same as firstList, except that it creates a different set of
entries for when the user chooses the second option in the first selec-
tion list:

function secondList(list) {

list.length = 3;

list.options[0].text = “Second List 1”;

list.options[0].value = “Second Value 1”;

list.options[1].text = “Second List 2”;

list.options[1].value = “Second Value 2”;

list.options[2].text = “Second List 3”;

list.options[2].value = “Second Value 3”;

}

5. Create a third function named updateSecondSelect. It takes a
form object as an argument and is called when the user makes a

notes
• A key point here: The
length property contains
the number of elements in
the list. For instance, if
there are four elements,
then the value is 4. But the
options array, like all
arrays, starts counting at
zero. So, the index of that
last, fourth element is 3.
You need to keep this in
mind when working with
selection lists dynamically
from JavaScript.

• You use the options
property of the selection list
to assign display text and a
value to the new entry.

• The selectedIndex
property of a selection list’s
object indicates the index
of the currently selected
item in the list. The first
item has an index 0, the
second item an index 1,
and so on.

• You use the options
property of the selection
list to assign display text
and a value to the new
entry. This property is an
array containing one object
for each element in the
array. Each of these objects
has a text and a value
property.

• To populate an entry with
values, you would use the
following:

document.formName.
selectionObject.
options[index of
new entry].text =
“Display text”;

document.formName.
selectionObject.
options[index of
new entry].value =
“Entry value”;

178 Part 4

Task 86

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 178

selection in the first selection list. This function checks the selection
that has been made and calls either firstList or secondList.

6. In the function, check if the first option is selected. If so, call
firstList; if not, call secondList:

function updateSecondSelect(thisForm) {

if (thisForm.firstSelect.selectedIndex == 0) {

firstList(thisForm.secondSelect);

} else {

secondList(thisForm.secondSelect);

}

}

7. Create a form to use your functions. In the body of the document,
create a form with two selection lists named firstSelect and
secondSelect. Populate the first list with two entries, and leave
the second list blank. In the body tag, use the onLoad event
handler to call firstList to populate the second list initially,
and in the first select tag, use the onChange event handler
to call updateSecondSelect:

<body onLoad=”firstList(document.myForm.secondSelect);”>

<form name=”myForm”>

<select name=”firstSelect” onChange=

“updateSecondSelect(this.form);”>

<option value=”1”>First Choice</option>

<option value=”2”>Second Choice</option>

</select>

<select name=”secondSelect”>

</select>

</form>

<script language=”JavaScript”>

document.myForm.mySelect.length = firstList.length;

document.myForm.mySelect.options = firstList;

</script>

</body>

8. Save the file and open it in a browser. You now see two lists. The first
has the first option selected, and the second displays the appropriate
list for the first option.

9. Select the second option in the first list. You see the second list change.

Working with Forms 179

Task 86

cross-reference
• Task 83 shows you how to

add a selection item to an
existing selection list.

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 179

Using Radio Buttons instead of
Selection Lists

Typically, selection lists, such as drop-down lists, are used to allow users to
make a single selection from a list of options. However, selection lists are not

the only choice of form fields available. If you plan to ask the user to make a sin-
gle selection from a group of options, you can also use radio buttons. Radio but-
tons display a series of check box-like buttons; however, only one in a group can
be selected at any time.

To create a group of radio buttons, do the following:

1. To create a radio buttons, start by creating an input tag, using
radio as the value of the type attribute:

<input type=”radio”>

2. Create a radio button for each option in the group:

<input type=”radio” value=”1”> Option 1

<input type=”radio” value=”2”> Option 2

<input type=”radio” value=”3”> Option 3

3. Now assign a common name to all the input tags for your group of
radio buttons. This common name allows the browser to associate
the buttons and to ensure that the user can only select one of the
radio buttons in the group:

<input type=”radio” name=”myField”> Option 1

<input type=”radio” name=”myField”> Option 2

<input type=”radio” name=”myField”> Option 3

If you assign different names to each input tag, then the radio but-
tons are no longer a group and the user could easily select all three
options, as shown in Figure 87-1.

Figure 87-1: Selecting multiple radio buttons if the name is specified incorrectly.

notes
• Which type of form field to

use depends on the context
in which the field will be
used. It is common to use
radio buttons to provide
selections from a small
group of simple options;
you often see radio buttons
for choosing from pairs
of options such as
Male/Female, Yes/No, or
True/False. By comparison,
selection lists allow users
to choose from long lists of
options, such as choosing
a state or country.
Displaying these longer
lists as radio buttons would
make inefficient use of lim-
ited screen space.

• In option lists, you specify
any text to display next to
the button’s input tag.
The text to display is not
inherent to the input tag.

• Notice the checked
attribute; this indicates that
this radio button will be ini-
tially selected when the
form is displayed.

180 Part 4

Task 87

caution
• Just as with selection lists,

each option has text that is
displayed next to the but-
ton and a value, specified
with the value attribute. It
is the value and not the
text that is tracked and
manipulated from within
JavaScript and submitted
when you submit the form
(see Step 8).

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 180

4. Compare the use of radio buttons to a selection list. The remaining
steps show you how to create a form that displays both a selection list
and a set of radio buttons that show the same options. You’ll see how
these can be used interchangeably.

5. In a form, create a selection list named mySelect:

<select name=”mySelect”>

</select>

6. Populate the list with some options:

<select name=”mySelect”>

<option value=”Y”>Yes</option>

<option value=”N”>No</option>

</select>

7. Create a radio button for the Yes option in a radio group named
myRadio:

<input type=”radio” name=”myRadio” value=”Y” checked> Yes

8. Create a second radio button for the No option in the same group:

<input type=”radio” name=”myRadio” value=”Y” checked> Yes

<input type=”radio” name=”myRadio” value=”N”> No

9. Save the form in an HTML file.

10. Open the file in the form. You now see the same choices presented as
a selection list and as a pair of radio buttons, as in Figure 87-2.

Figure 87-2: Selection lists and radio buttons can often be used for the same tasks.

Working with Forms 181

Task 87

cross-reference
• See Task 82 for a quick

overview of selection lists.

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 181

Detecting the Selected Radio Button

When you create an HTML form, you are creating a series of objects that
can be accessed from within JavaScript. The form itself is an object, and an

object in JavaScript also represents each form field. Using these objects, you can
access the selected radio button in a group of radio buttons.

This task shows you how to check which radio button the user has selected. To
access the radio button group, you use this syntax:

document.formName.groupName

This references the object associated with the radio button group. This object is
actually an array containing an entry for each button in the group, and each of
these entries has several properties, including two critical ones for this task:

• checked: Indicates if the radio button is currently selected

• value: Reflects the value of the value attribute for the radio button

Therefore, the property document.formName.formField[0].value would
contain the value of the first radio button in a radio button group.

The following steps create a form with a group of radio buttons. The value of the
currently selected radio button is displayed by clicking a link that is provided.

1. In the header of a new HTML document, create a script block with a
function named whichButton that takes no arguments:

<script language=”JavaScript”>

function whichButton() {

}

</script>

2. In the function, create a variable named buttonValue that is ini-
tially an empty string:

var buttonValue = “”;

3. Loop through the document.myForm.myRadio array of radio but-
ton objects:

for (i = 0; i < document.myForm.myRadio.length; i++) {

}

4. In the loop, check if the current radio button item is selected:

if (document.myForm.myRadio[i].checked) {

}

notes
• The checked property has

a value of true if it is cur-
rently selected and false
if it is not.

• Radio button groups are
created through a series of
input tags with the same
name and the type speci-
fied as radio:

<input type=”radio”

name=”myField”

value=”1”>
Option 1

<input type=”radio”

name=”myField”

value=”2”>
Option 2

• Arrays have a property
called length that returns
the number of items in an
array, and it is used in this
loop. Since arrays are zero-
indexed, an array with
length 5 (which contains
five elements) would con-
tain elements with indexes
from 0 to 4. This is why you
loop until i is less than,
and not less than or equal
to, the length of the array.

• The checked property of a
radio button object is either
true or false, which
makes it sufficient as a con-
dition for an if statement.

• Remember, the browser will
only allow a single radio
button in the group to be
selected. This means that
the if statement will be
true only once and
buttonValue will only
ever be assigned the value
of the single, selected radio
button.

182 Part 4

Task 88

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 182

5. If the current button is checked, assign its value to buttonValue:

buttonValue = document.myForm.myRadio[i].value;

6. After the loop, return the value of buttonValue. Listing 88-1 pre-
sents the completed function.

<script language=”JavaScript”>

function whichButton() {

var buttonValue = “”;

for (i = 0; i < document.myForm.myRadio.length; i++) {

if (document.myForm.myRadio[i].checked) {

buttonValue = document.myForm.myRadio[i].value;

}

}

return buttonValue;

}

</script>

Listing 88-1: The whichButton function.

7. In the body of the document, create a form named myForm that will
call your function. This should have a radio button group named
myRadio and a link. The link should use an onClick event handler
to display the result of calling whichButton in an alert dialog box.
The final form should look like Listing 88-2.

<body>

<form name=”myForm”>

<input type=”radio” name=”myRadio”

value=”First Button”> Button 1

<input type=”radio” name=”myRadio”

value=”Second Button”> Button 2

</form>

Æ

Which Radio Button?

</body>

Listing 88-2: Detecting the selected radio button.

8. Save the file and open the file in your browser. You should see the
form and link.

9. Select a radio button, and click the link to see the value displayed.

Working with Forms 183

Task 88

cross-reference
• For more information on

using radio buttons, see
Task 87

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 183

Detecting Change of Radio
Button Selection

When you create an HTML form, you are creating a series of objects that
can be accessed from within JavaScript. The form itself is an object, and

then an object in JavaScript represents each form field. Using these objects, you
can make changes in the selection of a radio button in a group of radio buttons.

This task shows you how to react to the user selecting a new radio button. To
detect selection of a radio button, you can use the onClick event handler in
each of the radio buttons in your group:

<input type=”radio” name=”myField” value=”1” onClick=”JavaScript Æ

code”> Option 1

<input type=”radio” name=”myField” value=”2” onClick=”JavaScript Æ

code”> Option 2

The following steps create a form with a group of radio buttons and then display
an appropriate dialog box when the user selects each radio button. JavaScript is
used to display these dialog boxes.

1. Create a new document in your preferred editor.

2. In the body of the document, create a form named myForm:

<body>

<form name=”myForm”>

</form>

</body>

3. Create a group of radio buttons called myRadio:

<body>

<form name=”myForm”>

<input type=”radio” name=”myRadio”

value=”First Button”> Button 1

<input type=”radio” name=”myRadio”

value=”Second Button”> Button 2

</form>

</body>

4. Add an onClick event handler to each of the first radio buttons. Use
the event handlers to display a dialog box when the user selects that
radio button. The final page looks like Listing 89-1.

<body>

<form name=”myForm”>

<input type=”radio” name=”myRadio”

value=”First Button”

(continued)

notes
• Radio button groups are

created through a series of
input tags with the same
name and the type speci-
fied as radio:

<input type=”radio”

name=”myField”

value=”1”>
Option 1

<input type=”radio”

name=”myField”

value=”2”>
Option 2

• Arrays have a property
called length that returns
the number of items in an
array, and it is used in this
loop. Since arrays are zero-
indexed, an array with
length 5 (which contains
five elements) would con-
tain elements with indexes
from 0 to 4. This is why you
loop until i is less than,
and not less than or equal
to, the length of the array.

184 Part 4

Task 89

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 184

onClick=”window.alert(‘First Button selected’);”>Button Æ

1

<input type=”radio” name=”myRadio”

value=”Second Button” Æ

onClick=”window.alert(‘Second Button selected’);”>Button 2

</form>

</body>

Listing 89-1: Responding to Selection of a Radio Button.

5. Save the file and close it.

6. Open the file in a browser, and you should see the form with radio
buttons, as in Figure 89-1.

Figure 89-1: A form
with radio buttons.

7. Click on one of the radio buttons to see the associated dialog box, as
in Figure 89-2.

Figure 89-2: Reacting to the
selection of a radio button.

Working with Forms 185

Task 89

cross-references
• See Task 81 to learn how

to detect changes in text
fields. Task 94 shows how
to detect changes in check
boxes.

• For more information on
using radio buttons, see
Task 87.

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 185

Updating or Changing Radio
Button Selection

When you create an HTML form, you are creating a series of objects that
can be accessed from within JavaScript. The form itself is an object, and

then an object in JavaScript represents each form field. Using these objects, you
can dynamically select a radio button in a group of radio buttons.

This task shows you how to select a radio button based on another action that
occurs. To access the radio button group, you use the following syntax:

document.formName.groupName

This references the object associated with the radio button group. This object is
actually an array containing an entry for each button in the group, and each of
these entries has several properties, including two critical ones for this task:

• checked: Indicates if the radio button is currently selected

• value: Reflects the value of the value attribute for the radio button

Therefore, the property document.formName.formField[0].value would
contain the value of the first radio button in a radio button group.

The following steps create a form with a pair of radio buttons and then provide
two links the user can click to select the radio buttons without actually clicking
directly on the radio buttons. Selecting the radio buttons is done with JavaScript.

1. In the header of a new HTML document, create a script block with a
function named selectButton that takes a single argument con-
taining the index of a specific radio button in the group.

2. In the function, set the checked property of the radio button to
true:

<script language=”JavaScript”>

function selectButton(button) {

document.myForm.myRadio[button].checked = true;

}

</script>

3. In the body of the document, create a form named myForm with a
radio button group named myRadio:

<form name=”myForm”>

<input type=”radio” name=”myRadio”

value=”First Button”> Button 1

<input type=”radio” name=”myRadio”

value=”Second Button”> Button 2

</form>

4. After the form, create a link that uses an onClick event handler to
call the selectButton function to select the first radio button:

notes
• If the form is not named,

then each form is accessi-
ble in the document.
forms array, so that the
first form in the document
is document.forms[0],
the second is document.
forms[1], and so on.
However, naming forms
makes it much easier to
refer to them and ensures
you are referring to the cor-
rect form in your code.

• If the field is not named,
then each field in the
form is accessible in the
document.formName.
elements array, so that
the first field in the form is
document.formName.
elements[0], the
second is document.
formName.elements[1],
and so on. However, nam-
ing fields makes it much
easier to refer to them and
ensures you are referring
to the correct fields in
your code

• The checked property has
a value of true if it is cur-
rently selected and false
if it is not.

• Remember, the browser will
only allow a single radio
button in the group to be
selected. When you set the
checked property of one
radio button to true, all
other buttons in the group
are automatically deselected.

• Remember, arrays are zero-
indexed, so the first radio
button has an index of 0.

186 Part 4

Task 90

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 186

Select First Æ

Radio Button

5. Create another link for selecting the second radio button so that the
final page looks like Listing 90-1.

<head>

<script language=”JavaScript”>

function selectButton(button) {

document.myForm.myRadio(button).checked = true;

}

</script>

</head>

<body>

<form name=”myForm”>

<input type=”radio” name=”myRadio”

value=”First Button”> Button 1

<input type=”radio” name=”myRadio”

value=”Second Button”> Button 2

</form>

Select First Æ

Radio Button

Select Second Æ

Radio Button

</body>

Listing 90-1: Selecting Radio Buttons from Links.

6. Save the file and open the file in your browser. You should see the
form and links as in Figure 90-1.

Figure 90-1: A form with radio buttons.

7. Select either link to select a radio button.

Working with Forms 187

Task 90

cross-reference
• See Task 84 to learn how

to update options in a
selection list. Task 93
shows how to change a
check box’s selection.

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 187

Creating Check Boxes

Similar to radio buttons, check boxes allow yes/no-type selections: Either the
box is checked or it is not. Unlike radio buttons, however, groups of check

boxes are not mutually exclusive: None can be selected, all can be selected, or any
subset can be selected.

Check boxes are often used to allow users to make selections in a long list where
they can choose any number of options. These lists look like Figure 91-1.

Figure 91-1: Using check boxes for long lists.

Check boxes are created with the input tag using checkbox as the value of the
type attribute:

<input type=”checkbox”>

You can set whether a check box is selected (checked) by setting a checked prop-
erty. Setting this property to true will check the box.

The following steps display a form with a series of check boxes in a list:

1. Create a new document in your editor.

2. In the body of the document, create a form:

<body>

<form>

</form>

</body>

3. In the form create a series of check boxes:

<body>

<form>

notes
• With check boxes, you

specify any text to display
next to the check box’s
input tag. The text to dis-
play is not inherent
to the input tag.

• Just as with radio button,
each check box has text
that is displayed next to
the button and a value,
specified with the value
attribute. It is the value and
not the text that is tracked
and manipulated from
within JavaScript and sub-
mitted when you submit
the form.

188 Part 4

Task 91

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 188

<input type=”checkbox” value=”1”> First Choice

<input type=”checkbox” value=”2”> Second Choice

<input type=”checkbox” value=”3”> Third Choice

</form>

</body>

4. Set the checked property so that the third option is selected by
default. The final page looks like Listing 91-1.

<body>

<form>

<input type=”checkbox” value=”1”> First Choice

<input type=”checkbox” value=”2”> Second Choice

<input type=”checkbox” value=”3” checked = “true”> Æ

Third Choice

</form>

</body>

Listing 91-1: A series of check boxes.

5. Save the file and close it.

6. Open the file in the form, and check boxes in a list appear, as shown
in Figure 91-2.

Figure 91-2: The form with a series of check boxes.

Working with Forms 189

Task 91

cross-reference
• Tasks 92, 93, and 94 show

you how to use JavaScript
to manipulate check boxes.

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 189

Detecting Check Box Selections

When you create an HTML form, you are creating a series of objects that
can be accessed from within JavaScript. The form itself is an object, and

then an object in JavaScript represents each form field. Using these objects, you
can access the selection status of check boxes.

This task shows you how to check selection status of a check box. To access the
check box, you use the following syntax:

document.formName.fieldName

This references the object associated with the check box, which has several prop-
erties, including

• checked: Indicates if the check box is currently selected

• value: Reflects the value of the value attribute for the check box

Therefore, the property document.formName.formField.value would con-
tain the value of a check box.

The following steps create a form with a check box and a link. The user can click
the link to display the status of the check box selection in a dialog box. JavaScript
is used to display this information in the dialog box:

1. Create a new document in your preferred editor.

2. In the body of your document, create a form named myForm:

3. In the form create a check box named myCheck:

<input type=”checkbox” name=”myCheck”

value=”My Check Box”> Check Me

4. After the form create a link with the href attribute set to #. The
user will use the link to check the status of the check box:

Am I Checked?

5. Set the onClick event handler of the link to display the current
selection status by checking the checked property of the checkbox
object. The final page will look like Listing 92-1.

6. Save the file and close it.

7. Open the file in your browser, and the form and link appears, as
shown in Figure 92-1.

8. Click on the link to see the current selection status in a dialog box, as
shown in Figure 92-2.

notes
• The checked property has

a value of true if it is cur-
rently selected and false
if it is not.

• Notice the use of # as the
URL in the example. When
using the onClick event
handler to trigger the open-
ing of a new window, you
don’t want to cause click-
ing on the link to change
the location of the current
window; this is a simple
way to avoid this.

• The argument to window.
alert requires some
attention. This argument is
actual a short form condi-
tional test of the form
condition ? value
to return if true :
value to return if
false. This means if the
checked property is true,
then “Yes” is displayed in
the dialog box; otherwise,
“No” is displayed in the
dialog box. The checked
property of a radio button
object is either true or
false, which makes it suf-
ficient as a condition for
the short form conditional
test used in the win-
dow.alert method.

190 Part 4

Task 92

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 190

<body>

<form name=”myForm”>

<input type=”checkbox” name=”myCheck”

value=”My Check Box”> Check Me

</form>

<a href=”#” onClick=”window.alert(document.Æ

myForm.myCheck.checked ? ‘Yes’ : ‘No’);”>Am I Checked?

</body>

Listing 92-1: Checking a check box’s selection status.

Figure 92-1: A form with a check box.

Figure 92-2: Displaying the check box’s selection status.

Working with Forms 191

Task 92

cross-reference
• See Task 91 for more infor-

mation on check boxes.

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 191

Changing Check Box Selections

When you create an HTML form, you are creating a series of objects that
can be accessed from within JavaScript. The form itself is an object and

then an object in JavaScript represents each form field. Using these objects you
can change the selection status of check box.

This task shows you how to control selection status of a check box. To access the
check box, you use the following syntax:

document.formName.fieldName

This references the object associated with the check box that has several proper-
ties including:

• checked: Indicates if the check box is currently selected

• value: Reflects the value of the value attribute for the check box

Therefore, the property document.formName.formField.value would con-
tain the value of a check box.

The following steps create a form with a check box. A link is provided that the
user can click to check or uncheck the check box. JavaScript is used to change the
selection status of the check box.

1. Create a new document in your preferred editor.

2. In the body of your document, create a form named myForm:

<body>

<form name=”myForm”>

</form>

</body>

3. In the form, create a check box named myCheck:

<input type=”checkbox” name=”myCheck”

value=”My Check Box”> Check Me

4. After the form, create a link with the href attribute set to #. The
user will use the link to select the check box:

Check the box

5. Set the onClick event handler of the link to assign true to the
checked property of the check box:

<a href=”#” onClick=”document.myForm.myCheck.checked = Æ

true;”>Check the box

notes
• The checked property has

a value of true if it is cur-
rently selected and false
if it is not.

• Notice the use of # as the
URL in the example. When
using the onClick event
handler to trigger the open-
ing of a new window, you
don’t want to cause click-
ing on the link to change
the location of the current
window; this is a simple
way to avoid this.

• If the field is not named,
then each field in the
form is accessble in the
document.formName.
elements array, so that
the first field in the form is
document.formName.
elements[0], the
second is document.
formName.elements[1],
and so on. However, nam-
ing fields makes it much
easier to refer to them and
ensures you are referring
to the correct fields in
your code.

• If the form is not named,
then each form is accessi-
ble in the document.
forms array, so that the
first form in the document
is document.forms[0],
the second is document.
forms[1], and so on.
However, naming forms
makes it much easier to
refer to them and ensures
you are referring to the cor-
rect form in your code.

192 Part 4

Task 93

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 192

6. Create a similar, second link to uncheck the check box but (set
checked to false instead of true). The final page will look like
Listing 93-1.

<body>

<form name=”myForm”>

<input type=”checkbox” name=”myCheck”

value=”My Check Box”> Check Me

</form>

<a href=”#” onClick=”document.myForm.myCheck.checked Æ

= true;”>Check the box

<a href=”#” onClick=”document.myForm.myCheck.checked Æ

= false;”>Uncheck the box

</body>

Listing 93-1: Controlling a check box’s selection status.

7. Save the file and close it.

8. Open the file in your browser, and the form and links appear, as illus-
trated in Figure 93-1.

Figure 93-1: A form with a check box.

9. Click on the first link to select the check box. Click on the second
link to unselect the check box.

Working with Forms 193

Task 93

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 193

Detecting Changes in Check
Box Selections

When you create an HTML form, you are creating a series of objects that
can be accessed from within JavaScript. The form itself is an object, and

then an object in JavaScript represents each form field. Using these objects, you
can detect changes in the selection of a check box.

This task shows you how to react to the user clicking on a check box. Check
boxes are created with input tags, with the type specified as checkbox:

<input type=”checkbox” name=”myField”

value=”Some Value”> Check box text

To detect selection of a check box, you can use the onClick event handler:

<input type=”checkbox” name=”myField” value=”Some Value” Æ

onClick=”JavaScript code to execute when the user clicks on the Æ

checkbox”> Check box text

The following steps create a form with a checkbox. A dialog box is displayed each
time the user clicks on the check box. JavaScript is used to display these dialog
boxes.

1. Create a new document in your preferred editor.

2. In the body of the document, create a form named myForm:

<body>

<form name=”myForm”>

</form>

</body>

3. Create a group of check box named myCheck:

<body>

<form name=”myForm”>

<input type=”checkbox” name=”myCheck”

value=”My Check Box”> Check Me

</form>

</body>

4. Add an onClick event handler to check box, and use it to display a
dialog box when the user clicks the check box:

<body>

<form name=”myForm”>

notes
• The checked property has

a value of true if it is cur-
rently selected and false
if it is not.

• The window.alert()
method displays a dialog
box. The value passed to
this method will be dis-
played in the dialog box.

194 Part 4

Task 94

caution
• Note in Step 4 that the

value passed to the
window.alert()
method is surrounded by
single quotes rather than
double quotes. This is
because this method is
surrounded in double
quotes for the onClick
event. If you use double
quotes, you will not get the
expected results.

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 194

<input type=”checkbox” name=”myCheck” value=”My Æ

Check Box” onClick=”window.alert(‘You clicked the check Æ

box’);”> Check Me

</form>

</body>

5. Save the file and close it.

6. Open the file in a browser, and you should see the form with the
check box, as in Figure 94-1.

Figure 94-1: A form with a check box.

7. Click on the check box to see the associated dialog box, as in
Figure 94-2.

Figure 94-2: Reacting to the user clicking on the check box.

Working with Forms 195

Task 94

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 195

Verifying Form Fields in JavaScript

One of the main applications of JavaScript is to perform validation of the data
entered into a form. One approach to form validation is to check the data

entered in a field when the user attempts to move out of the field. Until valid data
is entered, you prevent the user from leaving the field. The approach is simple:

• In the form field you want to validate, use the onBlur event handler
to call a JavaScript function to test your form field.

• In the function, check the validity of the data entered. If the data is
not valid, then inform the user and force the focus back to the field.

The following steps provide an example of this type of validation:

1. Create a script block in the header of a new HTML document that
contains a function called checkField. The function takes the form
field’s object as an argument:

<script language=”JavaScript”>

function checkField(field) {

}

</script>

2. In the function, check if the field is empty:

if (field.value == “”) {

}

3. If the field doesn’t contain text, alert the user to enter text:

window.alert(“You must enter a value in the field”);

4. If the field contains no text, reset the focus to the field:

field.focus();

5. In the body of the document, create a form named myForm:

6. In the form, create a text field named myField and a submit button:

<form name=”myForm” action=”target.html”>

Text Field: <input type=”text” name=”myField”>

<input type=”submit”>

</form>

7. In the onBlur event handler of the text field, call the checkField
function so that the final page looks like Listing 95-1.

8. Save the file with the name target.html and close it.

9. Open the file in a browser. The form in Figure 95-1 appears.

notes
• This process relies on the
focus method available
for form field objects. This
method sets mouse focus
into a field that did not
have focus before.

• The field that “has focus” is
the field that is currently
active. A field is often given
focus when the user clicks
on it or tabs to it. In this
task you see how to force
the focus to go to a
specific field.

• Notice that this is passed
as the argument to the
checkField function. In
the event handlers for a
form field, this refers to
the object for the form
field itself.

196 Part 4

Task 95

caution
• Field-level validation strat-

egy is fine if there are only
one or two fields to validate
in a form. This type of vali-
dation can quickly get in
the way of the user effi-
ciently completing the
form if you are using a
large form where the user
may jump around while
filling in the data.

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 196

<head>

<script language=”JavaScript”>

function checkField(field) {

if (field.value == “”) {

window.alert(“You must enter a value in the field”);

field.focus();

}

}

</script>

</head>

<body>

<form name=”myForm” action=”target.html”>

Text Field: <input type=”text” name=”myField”

onBlur=”checkField(this)”>

<input type=”submit”>

</form>

</body>

Listing 95-1: Validating a form field when the user leaves the field.

Figure 95-1: A form with a text field.

10. Click into the text field and then try to click outside the field without
entering any text. An alert appears, warning you to enter text in the
field, as shown in Figure 95-2, and then focus is returned to the field.

Figure 95-2: Forcing the user to enter text in a field.

Working with Forms 197

Task 95

cross-reference
• In Tasks 98 through 106

you learn how to validate
specific types of informa-
tion such as e-mail
addresses (Task 98),
phone numbers (Task
100), and passwords
(Task 105).

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 197

Using the onSubmit Attribute of the
Form Tag to Verify Form Fields

One of the main applications of JavaScript is to perform validation of the data
entered in forms. One approach to form validation is to check the data

entered in a form when the user attempts to submit the form. The approach is
simple:

• In the form you want to validate, use the onSubmit event handler to
call a JavaScript function to test your form when it is submitted.

• In the function, check the validity of the data entered in the form.
If the data is not valid, then inform the user and cancel the form
submission.

The following task provides an example of this type of validation. If the user
attempts to submit the form without entering text in a single text field, the
user will be informed that he or she must enter text or the submission will be
canceled.

1. In the header of a new HTML document, create a script block with a
function called checkForm that receives the form’s object
(formObj):

function checkForm(formObj) {

}

2. In the function, create a variable named formOK that is set to true:

var formOK = true;

3. In the function, check if the field is the empty string:

if (formObj.myField.value == “”) {

}

4. If the field contains no text, alert the user that he or she must enter
text to continue. Return focus to the field and set formOK to false:

window.alert(“You must enter a value in the field”);

formObj.myField.focus();

formOK = false;

5. Return the value of formOK from the function:

return formOK;

6. In the body of the document, create a form named myForm that has a
text field named myField: and a submit button:

7. In the onSubmit event handler of the form, call the checkForm
function. The final page looks like Listing 96-1.

notes
• This process relies on the

fact that if the JavaScript
code in the onSubmit
event handler returns false,
the submission itself is
canceled.

• Notice that this is passed
as the argument to the
checkForm function. In
the event handlers for a
form tag, this refers to
the object for the form
itself.

• The onSubmit event han-
dler used here requires
attention. Instead of simply
calling checkForm, you
return the value returned by
checkForm. Since
checkForm returns true
if the form is OK and
false otherwise; this
allows you to cancel sub-
mission if the form is not
OK and allows it to con-
tinue if the form is OK.

• This process relies on the
focus method available
for form field objects. This
method sets mouse focus
into a field that did not
have focus before.

• The field that “has focus” is
the field that is currently
active. A field is often given
focus when the user clicks
on it or tabs to it. In this
task you see how to force
the focus to go to a spe-
cific field.

• Setting the formOK field
equal to true assumes
that the form is OK to
submit.

198 Part 4

Task 96

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 198

<head>

<script language=”JavaScript”>

function checkForm(formObj) {

var formOK = true;

if (formObj.myField.value == “”) {

window.alert(“You must enter a value in the field”);

formObj.myField.focus();

formOK = false;

}

return formOK;

}

</script>

</head>

<body>

<form name=”myForm” action=”target.html” onSubmit=”Æ

return checkForm(this);”>

Text Field: <input type=”text” name=”myField”>

<input type=”submit”>

</form>

</body>

Listing 96-1: Validating a form when the user submits it.

8. Save the file with the name target.html and close it.

9. Open the file in a browser, and the form in Figure 96-1 appears.

Figure 96-1: A form with a text field.

10. Try to submit the form without entering any text. You see an alert,
and then focus will be returned to the field.

Working with Forms 199

Task 96

cross-reference
• Task 95 shows how to vali-

date a single field when the
user moves away from it.

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 199

Verifying Form Fields Using INPUT
TYPE=”button” Instead of
TYPE=”submit”

One of the main applications of JavaScript is to perform validation of the data
entered in forms. One approach is to check the data entered when the user

attempts to submit the form, but to not use any actual submit buttons. The
approach is simple:

• In the form you want to validate, use a regular button instead of a
submit button to control form submission.

• In the onClick event handler of the button, call a JavaScript func-
tion to test your form when it is submitted.

• In the function, check the validity of the data entered by the user in
the form. If the data isn’t valid, inform the user; otherwise, submit
the form.

The following task provides an example of this type of validation. If the user
attempts to submit the form without entering text in a text field, an alert will
state that text must be entered in the field; otherwise, the form is submitted.

1. In the header of a new HTML document, create a script block with a
function called checkForm that receives the form’s object (formObj):

function checkForm(formObj) {

}

2. In the function, create a variable named formOK that is set to true:

var formOK = true;

3. In the function, check to see if the text entered is the empty string:

if (formObj.myField.value == “”) {

}

4. If the field is empty, alert the user that he or she must enter text to
continue and then return mouse focus to the field, and set formOK to
false:

window.alert(“You must enter a value in the field”);

formObj.myField.focus();

formOK = false;

5. Check to see if formOK is true, and if it is, submit the form:

if (formOK) { formObj.submit(); };

notes
• Setting the formOK field

equal to true assumes
that the form is OK to
submit.

• This process relies on the
submit method of form
objects, which allows you
to trigger submission of a
form from JavaScript.

• The formOK variable will
contain true or false;
used by itself, it is a per-
fectly valid condition for an
if statement.

• Notice that this.form is
passed as the argument to
the checkForm function.
In the event handlers for
fields in a form, this
refers to the object for the
fields themselves, and form
fields have a form
property referring to the
form object containing
the fields.

200 Part 4

Task 97

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 200

6. In the body of the document, create a form named myForm with a
text field named myField and a regular button—not a submit
button:

<form name=”myForm” action=”target.html”>

Text Field: <input type=”text” name=”myField”>

<input type=”button” value=”Submit”>

</form>

7. In the onClick event handler of the button, call the checkForm
function. The final page looks like Listing 97-1.

<head>

<script language=”JavaScript”>

function checkForm(formObj) {

var formOK = true;

if (formObj.myField.value == “”) {

window.alert(“You must enter a value in the field”);

formObj.myField.focus();

formOK = false;

}

if (formOK) { formObj.submit(); }

}

</script>

</head>

<body>

<form name=”myForm” action=”target.html”>

Text Field: <input type=”text” name=”myField”>

<input type=”button” value=”Submit”

onClick=”checkForm(this.form);”>

</form>

</body>

Listing 97-1: Validating a form when the user submits it.

8. Save the file with the name target.html and close it.

9. Open the file in a browser.

10. Try to submit the form without entering any text. An alert appears,
and then focus is returned to the field.

Working with Forms 201

Task 97

cross-reference
• Task 96 shows how to do

validation on a submitted
form using a submit
button.

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 201

Validating E-mail Addresses

When validating information on a form, you may want to test if the text in a
text field conforms to a format of a valid e-mail address. This task illus-

trates how to do this. The method of validating an e-mail address that is used
applies the following logic:

• Check if the e-mail address is empty; if it is, the field is not valid.

• Check for illegal characters, and if they occur, the field is not valid.

• Check if the @ symbol is missing; if it is, the field is not valid.

• Check for the occurrence of a dot; if there is none, the field isn’t valid.

• Otherwise, the field is valid.

The following steps create a form with a single field for entering an e-mail
address. When the user submits the form, the field is validated prior to submis-
sion. If validation fails, the user is informed and submission is canceled.

1. In the header of a new HTML document, create a script block con-
taining the function checkEmail that receives a text string.

2. In the function, check if the e-mail address has no length, and if it
does, inform the user and return false from the function.

3. Next, check if the following illegal characters exist: /, :, ,, or ;. If
any of these characters exist, inform the user and return false.

4. Next, check if the @ symbol exists. If not, inform the user and return
false.

5. Now check if a dot exists. If not, inform the user and return false:

6. Finally, return true from the function if the e-mail address passed all
the tests so that the complete function looks like Listing 98-1.

7. Create another function named checkForm that takes a form object
as an argument. The function should call checkEmail and pass it
the value of the field containing the e-mail address and then return
the result returned by the checkEmail function:

function checkForm(formObj) {

return checkEmail(formObj.myField.value); }

8. In the body of the document, create a form that contains a field for
entering the e-mail address and uses the onSubmit event handler to
call the checkForm function:

<body>

<form name=”myForm” action=”target.html”

onSubmit=”return checkForm(this);”>

E-mail: <input type=”text” name=”myField”>

<input type=”submit”>

</form>

</body>

notes
• There are other errors you

could also check for, such
as two @ symbols or a mis-
placed dot.

• Strings have a length
property that returns the
number of characters in the
string. If the string is empty,
the length will be zero.

• The return command can
be used anywhere in a
function to cease process-
ing the function and return
a value.

• The indexOf method of
string objects returns the
character position of a
specified string within the
larger string. If the string
does not occur, the index is
returned as -1.

• The validation is divided into
two functions so it can be
extended to a form with mul-
tiple fields. For instance, you
could validate multiple
e-mail address fields by call-
ing checkEmail multiple
times from checkForm or
could perform other types of
validation by adding other
functions and calling them
from checkForm. From the
form, though, you still only
call checkForm.

• Notice that this is passed
as the argument to the
checkForm function. In
the event handlers for a
form tag, this refers to
the object for the form itself.

202 Part 4

Task 98

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 202

function checkEmail(email) {

if (email.length == 0) {

window.alert(“You must provide an e-mail address.”);

return false;

}

if (email.indexOf(“/”) > -1) {

window.alert(“E-mail address has invalid character: /”);

return false;

}

if (email.indexOf(“:”) > -1) {

window.alert(“E-mail address has invalid character: :”);

return false;

}

if (email.indexOf(“,”) > -1) {

window.alert(“E-mail address has invalid character: ,”);

return false;

}

if (email.indexOf(“;”) > -1) {

window.alert(“E-mail address has invalid character: ;”);

return false;

}

if (email.indexOf(“@”) < 0) {

window.alert(“E-mail address is missing @”);

return false;

}

if (email.indexOf(“\.”) < 0) {

window.alert(“E-mail address is missing .”);

return false;

}

return true;

}

Listing 98-1: Function for validating an e-mail address.

9. Save the file with the name target.html, and open it in a browser.

10. Try to submit the form without a valid e-mail address and you should
see an appropriate error message.

Working with Forms 203

Task 98

cross-reference
• Tasks 95, 96, and 97 illus-

trate how to do a very sim-
plistic form of form
validation.

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 203

Validating Zip Codes

In some cases when validating a form, you may want to test if the text in a text
field conforms to a format of a zip code. This task illustrates how to validate a

zip code, using the following logic:

• Check if the zip code is empty; if it is, the field is not valid.

• Remove any dashes from the zip code.

• Check the length of the zip code; if it is not 5 or 9, the field isn’t
valid.

• Check for any nonnumeric characters; if any occur, the field is not
valid.

• Otherwise, the field is valid.

The following steps create a form with a single field for entering a zip code.
When the user submits the form, the field is validated prior to submission, and if
validation fails, the user is informed and submission is canceled.

1. In the header of a new HTML document, create a script block with a
function called checkZip that takes a text string as an argument.

2. In the function check if the zip code has no length, and if it does,
inform the user and return false from the function.

3. Next, remove any dashes from the zip code.

4. Next, check if the length of the zip code is either 5 or 9 characters. If
not, inform the user and return false from the function:

5. Now check if any character is not a number. If any character is not a
number, inform the user and return false. To test for nonnumeric
characters, loop through each character in the string and test it.

6. Finally, return true from the function if the zip code passed all the
tests. The complete function should look like Listing 99-1.

7. Create another function named checkForm that receives a form
object. The function should call checkZip, and pass it the value of
the field containing the zip code, and then return the result returned
by the checkZip function:

function checkForm(formObj) {

return checkZip(formObj.myField.value);

}

notes
• If your form is going to be

used by people from coun-
tries other than the United
States, you will want to
apply different rules. For
example, many countries
allow for characters in zip
codes, as well as for
lengths other than 5 and
9 digits.

• Strings have a length
property that returns the
number of characters in the
string. If the string is empty,
the length will be zero.

• The return command
can be used anywhere in a
function to cease process-
ing the function and return
a value.

• Strings have a replace
method that takes the
string, searches for speci-
fied text (the first argu-
ment) and replaces it with
specified text (the second
argument), and returns the
resulting string.

• The charAt method
returns the character at the
specified index location in a
string object.

• The onSubmit event han-
dler used here requires
attention. Instead of simply
calling checkForm, you
return the value returned
by checkForm. Since
checkForm returns true
if the form is OK and
false otherwise, this
allows you to cancel sub-
mission if the form is not
OK and allows it to con-
tinue if the form is OK.

204 Part 4

Task 99

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 204

tip
• You could validate multiple

zip codes fields by calling
checkZip multiple times
from checkForm, or you
could perform other types
of validation by adding
other functions and calling
them from checkForm.
From the form, though, you
still only call checkForm.

function checkZip(zip) {

if (zip.length == 0) {

window.alert(“You must provide a ZIP code.”);

return false;

}

zip = zip.replace(“-”,””);

if (zip.length != 5 && zip.length != 9) {

window.alert(“ZIP codes must take the form 12345 or Æ

12345-6789”);

return false;

}

for (i=0; i<zip.length; i++) {

if (zip.charAt(i) < “0” || zip.charAt(i) > “9”) {

window.alert(“ZIP codes must only contain numbers.”);

return false;

}

}

return true;

}

Listing 99-1: Validating ZIP Codes.

8. In the body of the document, create a form that contains a field for
entering the zip code and uses the onSubmit event handler to call
the checkForm function:

<body>

<form name=”myForm” action=”target.html”

onSubmit=”return checkForm(this);”>

ZIP: <input type=”text” name=”myField”>

<input type=”submit”>

</form>

</body>

9. Save the file as target.html and open it in a browser.

10. Try to submit the form without a valid zip code, and you should see
an appropriate error message.

Working with Forms 205

Task 99

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 205

Validating Phone Numbers

In some cases when validating a form, you may want to test if the text in a text
field conforms to a format of a valid phone number. This task illustrates how to

validate a phone number using the following logic:

• Check if the phone number is empty; if it is, the field is not valid.

• Remove phone number punctuation (parentheses, dashes, spaces, and
dots).

• Check the length of the phone number; if it is not 10 digits, the field
is not valid.

• Check for nonnumeric characters; if any occur, the field is not valid.

• Otherwise, the field is valid.

The following steps create a form with a single field for entering a phone num-
ber. When the user submits the form, the field is validated prior to submission.
If validation fails, the user is informed and submission is canceled.

1. In the header of a new HTML document, create a script block con-
taining the function checkPhone that receives a text string.

2. In the function, check if the phone number has no length. If it has no
length, inform the user and return false from the function.

3. Next, remove any phone number punctuation from the phone num-
ber. Specifically, remove dashes, spaces, parentheses, and dots.

4. Next, check if the length of the phone number is 10 characters. If
not, inform the user and return false from the function.

5. Now check if any character is not a number. If any character is not a
number, inform the user and return false from the function. To test
for nonnumeric characters, loop through each character in the string
and test it individually.

6. Finally, return true from the function if the phone number passed
all the tests. The complete function looks like Listing 100-1.

7. Create another function named checkForm that takes a form object
as an argument. The function should call checkPhone, pass it the
value of the field containing the phone number, and then return the
result returned by the checkPhone function:

function checkForm(formObj) {

return checkPhone(formObj.myField.value); }

notes
• Strings have a length

property that returns the
number of characters in the
string. If the string is empty,
the length will be zero.

• The return command
can be used anywhere in a
function to cease process-
ing the function and return
a value.

• Strings have a replace
method that takes the
string, searches for speci-
fied text (the first argu-
ment) and replaces it with
specified text (the second
argument), and returns the
resulting string.

• The charAt method
returns the character at the
specified index location in
a string object.

• The onSubmit event han-
dler used here requires
attention. Instead of simply
calling checkForm, you
return the value returned
by checkForm. Since
checkForm returns true
if the form is OK and
false otherwise, this
allows you to cancel sub-
mission if the form is not
OK and allows it to con-
tinue if the form is OK.

206 Part 4

Task 100

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 206

tip
• You could validate multiple

phone number fields by
calling checkPhone mul-
tiple times from
checkForm, or you could
perform other types of vali-
dation by adding other
functions and calling them
from checkForm. From
the form, though, you still
only call checkForm.

function checkPhone(phone) {

if (phone.length == 0) {

window.alert(“You must provide a phone number.”);

return false;

}

phone = phone.replace(“-”,””);

phone = phone.replace(“ “,””);

phone = phone.replace(“(“,””);

phone = phone.replace(“)”,””);

phone = phone.replace(“.”,””);

if (phone.length != 10) {

window.alert(“Phone numbers must only include a Æ

3-digit area code and a 7-digit phone number.”);

return false;

}

for (i=0; i<phone.length; i++) {

if (phone.charAt(i) < “0” || phone.charAt(i) > “9”) {

window.alert(“Phone numbers must only contain Æ

numbers.”);

return false;

}

}

return true;

}

Listing 100-1: The function to validate a phone number.

8. In the body of the document, create a form that contains a field for
entering the phone number and uses the onSubmit event handler to
call the checkForm function:

<body>

<form name=”myForm” action=”target.html” Æ

onSubmit=”return checkForm(this);”>

Phone: <input type=”text” name=”myField”>

<input type=”submit”>

</form>

</body>

9. Save the file as target.html and open it in a browser.

10. Try to submit the form without a valid phone number, and you
should see an appropriate error message.

Working with Forms 207

Task 100

cross-reference
• Task 106 shows how to vali-

date a phone number a dif-
ferent way—it uses regular
expressions.

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 207

Validating Credit Card Numbers

This task illustrates how to validate a credit card number by the following logic:

• Check if the credit card number is empty; if it is, the field is not valid.

• Remove any spaces.

• Check the length of the credit card number; valid lengths are dis-
cussed in this task. If the length is wrong, the field is not valid.

• Check for nonnumeric characters; if any occur, the field is not valid.

• Otherwise, the field is valid.

The following steps create a form with a single field for entering a credit card
number. When the user submits the form, the field is validated prior to submis-
sion. If validation fails, the user is informed and submission is canceled.

1. In the header of a new HTML document, create a script block with a
function checkCreditCard that takes a text string as an argument.

2. In the function, check if the credit card number has no length. If it
has no length, inform the user and return false from the function.

3. Next, remove any spaces from the credit card number.

4. Now check if the length of the credit card number is appropriate for
the type of card. If not, inform the user and return false.

5. Next, check if any character is not a number. If any character isn’t,
inform the user and return false. To test for nonnumerics, loop
through each character in the string and test it individually.

6. Finally, return true from the function if the credit card number
passed all the tests. The complete function looks like Listing 101-1.

7. Create another function named checkForm that receives a form
object. The function should call checkCreditCard, pass it the
value of the field containing the credit card number, and then return
the result returned by the checkCreditCard function:

function checkForm(formObj) {

return checkCreditCard(formObj.myField.value); }

8. Create a form that contains a field for entering the credit card num-
ber and uses the onSubmit event handler to call the checkForm
function:

<body>

<form name=”myForm” action=”target.html”

onSubmit=”return checkForm(this);”>

Credit Card: <input type=”text” name=”myField”>

<input type=”submit”>

</form>

</body>

notes
• The length of a credit card

number is dependent on the
type of card. The type of
card depends on the start-
ing digits in the number as
follows. Visa cards start with
the digit 4 and have 13 or
16 digits. MasterCard cards
start with 51, 52, 53, 54, or
55 and have 16 digits.
American Express cards
start with 34 or 37 and have
15 digits.

• The return command can
be used anywhere in a
function to cease process-
ing the function and return
a value.

• Strings have a replace
method that takes the string,
searches for specified text
(the first argument) and
replaces it with specified text
(the second argument), and
returns the resulting string.

• The charAt method
returns the character at the
specified index location in a
string object.

• The onSubmit event han-
dler used here requires
attention. Instead of simply
calling checkForm, you
return the value returned by
checkForm. Since
checkForm returns true
if the form is OK and
false otherwise, this
allows you to cancel sub-
mission if the form is not
OK and allows it to con-
tinue if the form is OK.

208 Part 4

Task 101

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 208

tip
• You could validate

multiple phone number
fields by calling
checkCreditCard mul-
tiple times from
checkForm, or you could
perform other types of vali-
dation by adding other
functions and calling them
from checkForm. From
the form, though, you still
only call checkForm.

function checkCreditCard(card) {

if (card.length == 0) {

window.alert(“You must provide a credit card number.”);

return false;

}

card = card.replace(“ “,””);

if (card.substring(0,1) == “4”) {

if (card.length != 13 && card.length != 16) {

window.alert(“Not enough digits in Visa number.”);

return false;

}

} else if (card.substring(0,1) == “5” && Æ

(card.substring(1,2) >= “1” && card.substring(1,2) <= “5”))

{

if (card.length != 16) {

window.alert(“Not enough digits in MasterCard.”);

return false;

}

} else if (card.substring(0,1) == “3” && Æ

(card.substring(1,2) == “4” || card.substring(1,2) == “7”))

{

if (card.length != 15) {

window.alert(“Not enough digits in American Expr.”);

return false;

}

} else {

window.alert(“This is not a valid card number.”);

return false;

}

for (i=0; i<card.length; i++) {

if (card.charAt(i) < “0” || card.charAt(i) > “9”) {

window.alert(“CCard must only contain numbers.”);

return false;

}

}

return true;

}

Listing 101-1: The completed credit card validation function.

9. Save the file with the name target.html and open it in a browser.

10. Try to submit the form without a valid credit card number, and you
should see an appropriate error message.

Working with Forms 209

Task 101

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 209

Validating Selection List Choices

In some cases when validating a form, you may want to test if the user has made
a selection in a selection list.

A common approach to selection lists is to have a blank first element so as not to
force the user into a default selection and then have the user choose one of the
other options. Sometimes you will want to ensure the user has chosen one of
those options instead of leaving the blank first choice selected.

The following steps create a form with a single selection list. When the user sub-
mits the form, the field is validated prior to submission, and if validation fails, the
user is informed and submission is canceled.

1. In the header of a new HTML document, create a script block con-
taining the function checkList that receives a text string:

function checkList(selection) {

}

2. In the function, check if the selected item’s value has no length. If it
has no length, inform the user and return false from the function:

if (selection.length == 0) {

window.alert(“You must select from the list.”);

return false;

}

3. Finally, return true from the function if the selected item passed the
test so that the complete function looks like Listing 102-1.

function checkList(selection) {

if (selection.length == 0) {

window.alert(“You must make a selection from the Æ

list.”);

return false;

}

return true;

}

Listing 102-1: The completed checkList function.

4. Create another function named checkForm that takes a form object
as an argument. The function should call checkList, pass it the
value of the selected item in the selection list, and then return the
result returned by the checkList function:

function checkForm(formObj) {

return checkList(formObj.myField.value);

}

notes
• Strings have a length

property that returns the
number of characters in the
string. If the string is empty,
the length will be zero.

• The return command
can be used anywhere in a
function to cease process-
ing the function and return
a value.

• The validation is divided into
two functions so it can be
extended to a form with
multiple fields. For instance,
you could validate multiple
selection lists by calling
checkList multiple times
from checkForm, or you
could perform other types of
validation by adding other
functions and calling them
from checkForm. From the
form, though, you still only
call checkForm.

• Notice that this is passed
as the argument to the
checkForm function. In
the event handlers for a
form tag, this refers to
the object for the form
itself.

• Instead of simply calling
checkForm, you return
the value returned by
checkForm. Since
checkForm returns true
if the form is OK and
false otherwise, this
allows you to cancel sub-
mission if the form is not
OK and allows it to con-
tinue if the form is OK.

210 Part 4

Task 102

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 210

5. Create a form that contains a selection list and uses the onSubmit
event handler to call the checkForm function:

<body>

<form name=”myForm” action=”target.html” Æ

onSubmit=”return checkForm(this);”>

Choose:

<select name=”myField”>

<option value=””></option>

<option value=”1”>One</option>

<option value=”2”>Two</option>

<option value=”3”>Three</option>

</select>

<input type=”submit”>

</form>

</body>

6. Save the file as target.html and open it in a browser. The form in
Figure 102-1 appears.

Figure 102-1: A form with a selection list.

7. Try to submit the form without choosing from the selection list. You
should see an appropriate error message, as in Figure 102-2.

Figure 102-2: Validating the user’s selection.

Working with Forms 211

Task 102

cross-reference
• To see other ways of work-

ing with selection lists, see
Tasks 82 through 86.

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 211

Validating Radio Button Selections

In some cases when validating a form, you may want to test if the user has made
a selection in a radio button group. A common approach to radio button groups

is to have a radio button already selected by default. Sometimes you will want to
ensure the user has chosen one of the options. The following steps create a form
with a radio button group:

1. In the header of a new HTML document, create a script block con-
taining the function checkRadio that takes a radio button:

function checkRadio(buttons) {

}

2. In the function, create a variable named radioEmpty that is
assigned the value true. This assumes the user has not selected
a radio button:

var radioEmpty = true;

3. Check each radio button to see if it is selected, and adjust the value of
radioEmpty accordingly:

for (i=0; i<buttons.length; i++) {

if (buttons[i].checked) {

radioEmpty = false;

}

}

4. Check the value of radioEmpty, and if it is true, inform the user
and return false from the function:

if (radioEmpty) {

window.alert(“You must select from the radio Æ

buttons.”);

return false;

}

5. Finally, return true from the function if the selected item passed the
test so that the complete function looks like Listing 103-1.

6. Create another function named checkForm that receives a form
object. The function calls checkRadio and passes it the value of the
selected radio button. The checkRadio function returns the result:

function checkForm(formObj) {

return checkRadio(formObj.myField.value);

}

7. Create a form that contains a radio button group and that uses the
onSubmit event handler to call the checkForm function:

<body>

<form name=”myForm” action=”target.html”

onSubmit=”return checkForm(this);”>

Choose:

notes
• The return command

can be used anywhere in a
function to cease process-
ing the function and return
a value.

• The validation is divided into
two functions so it can be
extended to a form with
multiple fields. For instance,
you could validate multiple
radio button groups by call-
ing checkRadio multiple
times from checkForm, or
you could perform other
types of validation by adding
other functions and calling
them from checkForm.
From the form, though, you
still only call checkForm.

• Notice that this is passed
as the argument to the
checkForm function. In
the event handlers for a
form tag, this refers to
the object for the form
itself.

• The onSubmit event han-
dler used here requires
attention. Instead of simply
calling checkForm, you
return the value returned by
checkForm. Since
checkForm returns true
if the form is OK and
false otherwise, this
allows you to cancel sub-
mission if the form is not
OK and allows it to con-
tinue if the form is OK.

212 Part 4

Task 103

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 212

<input type=”radio” name=”myField” value=”1”> 1

<input type=”radio” name=”myField” value=”2”> 2

<input type=”radio” name=”myField” value=”3”> 3

<input type=”submit”>

</form>

</body>

function checkRadio(buttons) {

var radioEmpty = true;

for (i=0; i<buttons.length; i++) {

if (buttons[i].checked) {

radioEmpty = false;

}

}

if (radioEmpty) {

window.alert(“You must select from the radio buttons.”);

return false;

}

return true;

}

Listing 103-1: The complete checkRadio function.

8. Save the file and open it in a browser. Figure 103-1 shows the form.

Figure 103-1: A form with radio buttons.

9. Try to submit the form without choosing a radio button, and you
should see an appropriate error message.

Working with Forms 213

Task 103

cross-reference
• Tasks 88, 89, and 90 show

you how to work with radio
buttons in JavaScript.

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 213

Validating Check Box Selections

In some cases when validating a form, you may want to test if the user has
selected a check box. A common approach used by forms is to have the user

select an optional item with a check box, and if they select the check box, require
them to fill in an additional text field.

The following steps create a form with a check box and a text field. When the
user submits the form, a check is made prior to submission to see if the text field
is filled in if the check box is selected; if validation fails, the user is informed and
submission is canceled.

1. In a new HTML document, create a script block containing the
function checkCheckbox that receives a check box object:

function checkCheckbox(check) {

}

2. In the function, check if the check box is checked or not:

if (check.checked) {

}

3. If the check box is checked, check the length of the text field’s text. If
the length is 0, inform the user and return false from the function:

if (check.checked) {

if (check.form.myText.value.length == 0) {

window.alert(“You have checked the check box; you Æ

must provide your name.”);

return false;

}

}

4. Finally, return true from the function if the form passed the test so
that the complete function looks like this:

function checkCheckbox(check) {

if (check.checked) {

if (check.form.myText.value.length == 0) {

window.alert(“You have checked the check box; Æ

you must provide your name.”);

return false;

}

}

return true;

}

5. Create another function named checkForm that receives a form
object. The function should call checkCheckbox and pass it the
check box object. The checkCheckbox function should return the
following result:

notes
• The checked property can

be either true or false,
which makes it a perfectly
valid condition for an if
statement.

• Strings have a length
property that returns the
number of characters in the
string. If the string is empty,
the length will be zero.

• The return command can
be used anywhere in a
function to cease process-
ing the function and return
a value.

• The validation is divided into
two functions so it can be
extended to a form with
multiple fields. For instance,
you could perform other
types of validation by
adding other functions and
calling them from
checkForm. From the
form, though, you still only
call checkForm.

• Notice that this is passed
as the argument to the
checkForm function. In
the event handlers for a
form tag, this refers to
the object for the form
itself.

• The onSubmit event han-
dler used here requires
attention. Instead of simply
calling checkForm, you
return the value returned by
checkForm. Since
checkForm returns true
if the form is OK and
false otherwise, this
allows you to cancel sub-
mission if the form is not
OK and allows it to con-
tinue if the form is OK.

214 Part 4

Task 104

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 214

function checkForm(formObj) {

return checkRadio(formObj.myCheck);

}

6. Create a form containing a check box and a text field. Use the
onSubmit event handler to call the checkForm function:

<body>

<form name=”myForm” action=”target.html”

onSubmit=”return checkForm(this);”>

<input type=”checkbox” name=”myCheck”

value=”Checked”> Check Here

If checked, enter your name:

<input type=”text” name=”myText”>

<input type=”submit”>

</form>

</body>

7. Save the file and open it in a browser. The form in Figure 104-1
appears.

Figure 104-1: A form with a check box and text field.

8. Select the check box and try to submit the form without entering any
text in the text field. You should see an appropriate error message, as
in Figure 104-2.

Figure 104-2: Validating the user’s selection.

Working with Forms 215

Task 104

cross-reference
• Tasks 91 through 94 pre-

sent a number of ways to
work with check boxes.

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 215

Validating Passwords

In some cases when validating a form, you may want to test the password pro-
vided by the user. A common approach is to ask the user to specify a password

of a certain length twice to ensure he or she has entered it correctly.

The following creates a form with two password fields. A check is made when the
user submits to see if the two entered fields match and are at least six characters.
If the checks fail, the user is informed and submission is canceled.

1. In the header of a new HTML document, create a script block con-
taining the function checkPassword that receives two text strings:

function checkPassword(password,confirm) {

}

2. In the function, check if the passwords match, and if not, inform the
user and return false from the function:

if (password != confirm) {

window.alert(“Passwords don’t match.”);

return false;

}

3. Next, check if the length of the string is fewer than six characters; if
it is, inform the user and return false from the function:

if (password.length < 6) {

window.alert(“Passwords must be 6 or more characters);

return false;

}

4. Finally, return true from the function if the password passed the
tests so that the complete function looks like this:

function checkPassword(password,confirm) {

if (password != confirm) {

window.alert(“Passwords don’t match.”);

return false;

}

if (password.length < 6) {

window.alert(“Passwords must be 6 or more Æ

characters);

return false;

}

}

5. Create another function named checkForm that takes a form object
as an argument. The function should call checkPassword and pass
it both passwords, and then return the result returned by the
checkPassword function:

notes
• The return command can

be used anywhere in a
function to cease process-
ing the function and return
a value.

• Strings have a length
property that returns the
number of characters in the
string.

• The validation is divided into
two functions so it can be
extended to a form with
multiple fields. For instance,
you could perform other
types of validation by
adding other functions and
calling them from
checkForm. From the
form, though, you still only
call checkForm.

• Notice that this is passed
as the argument to the
checkForm function. In
the event handlers for a
form tag, this refers to
the object for the form itself.

• The onSubmit event han-
dler used here requires
attention. Instead of simply
calling checkForm, you
return the value returned by
checkForm. Since
checkForm returns true
if the form is OK and
false otherwise, this
allows you to cancel sub-
mission if the form is not
OK and allows it to con-
tinue if the form is OK.

216 Part 4

Task 105

caution
• Shorter passwords are

easier to guess than
longer ones.

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 216

function checkForm(formObj) {

return checkPassword(formObj.myPassword.value,

formObj.myConfirm.value);

}

6. Create a form that contains two password fields and uses the
onSubmit event handler to call the checkForm function:

<body>

<form name=”myForm” action=”target.html”

onSubmit=”return checkForm(this);”>

Enter Password: <input type=”password”

name=”myPassword”>

Confirm Password: <input type=”password”

name=”myConfirm”>

<input type=”submit”>

</form>

</body>

7. Save the file and open it in a browser. The form in Figure 105-1
appears.

Figure 105-1: A form with two password fields.

8. Enter two mismatched passwords and submit the form. You should
see an appropriate error message, as in Figure 105-2.

Figure 105-2: Validating the user’s selection.

Working with Forms 217

Task 105

cross-reference
• Passwords are sometimes

stored in cookies on the
users’ machines so that
they don’t have to enter
them every time the come
to a site. To learn how to
create cookies, see
Task 146.

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 217

Validating Phone Numbers with
Regular Expressions

In Task 100 you saw an example of how to validate a phone number in JavaScript.
At the core was the checkPhone function. Unfortunately, this function shows

a long, complex, and roundabout way to validate a phone number. It does have
the benefit of using only a small set of simple, common JavaScript commands and
constructs such as if statements and for loops, but it requires too many steps
and, therefore, is prone to error: If you get the logic wrong, the validation will be
incorrect.

Using regular expressions, you can greatly simplify the amount of code needed
for this task. Regular expressions provide a powerful extension of the wildcard
concept to allow you to specify text patterns and search for matches for those
patterns. Unfortunately, regular expressions are an advanced topic beyond the
scope of this task, but I will show you how to perform phone number validation
using regular expressions.

Use of the regular expression is simple once you have created it. You will use it in
the following format:

var someString =”string to test”;

var regularExpression = /pattern to match/modifiers;

if (regularExpression.test(someString)) {

Code to execute if there is a match;

}

The following steps create a form with a field to enter a phone number that is
validated with regular expressions:

1. In the header of a new HTML document, create a script block con-
taining the function checkPhone that returns a text string:

function checkPhone(phone) {

}

2. In the function, create a regular expression for matching against a
phone number. Enter the following exactly as it is presented:

var check = /^\({0,1}[0-9]{3}\){0,1}[\-\.]{0,1}[0-9]{3}Æ

[\-\.]{0,1}[0-9]{4}$/;

3. Next, test for a failure to match this pattern against the phone num-
ber. Notice that the result returned by the test method is negated.
In this way, the if statement is true only when no match is found:

if (!check.test(phone)) {

}

notes
• Regular expressions are

powerful but require you to
have a lot of experience to
become comfortable with
them and master them. You
can find an introductory
tutorial on regular expres-
sions at http://www.
linuxpcug.org/lesso
ns/regex.htm.

• When you assign a regular
expression to a variable,
you are creating a regular
expression object. This
object has a test method
that allows you to test the
expression against a string
that is provided as an argu-
ment to the method. The
method returns true if
there is a match and
false otherwise.

• The validation is divided
into two functions so it can
be extended to a form with
multiple fields. For instance,
you could validate multiple
phone number fields by
calling checkPhone
multiple times from
checkForm or could per-
form other types of valida-
tion by adding other
functions and calling them
from checkForm. From
the form, though, you still
only call checkForm.

• Notice that this is passed
as the argument to the
checkForm function. In
the event handlers for a
form tag, this refers to
the object for the form itself.

218 Part 4

Task 106

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 218

tip
• The regular expression for

validating a phone number
is as follows:

/^\({0,1}[0-9]
{3}\){0,1}[\-\.]
{0,1}[0-9]{3}
[\-\.]{0,1}[0-9]
{4}$/

4. If no match is found, inform the user and return false from the
function:

if (!check.test(phone)) {

window.alert(“You must provide a valid phone number.”);

return false;

}

5. Finally, return true from the function if the phone number passed
the test so that the complete function looks like this:

function checkPhone(phone) {

var check = /^\({0,1}[0-9]{3}\){0,1}[\-\.]Æ

{0,1}[0-9]{3}[\-\.]{0,1}[0-9]{4}$/;

if (!check.test(phone)) {

window.alert(“Provide a valid phone number.”);

return false;

}

return true;

}

6. Create another function named checkForm that takes a form object
as an argument. The function should call checkPhone and pass it
the value of the field containing the phone number and then return
the result returned by the checkPhone function:

function checkForm(formObj) {

return checkPhone(formObj.myField.value);

}

7. In the body of the document, create a form that contains a field for
entering the phone number and uses the onSubmit event handler to
call the checkForm function:

<body>

<form name=”myForm” action=”target.html”

onSubmit=”return checkForm(this);”>

Phone: <input type=”text” name=”myField”>

<input type=”submit”>

</form>

</body>

8. Save the file as target.html and open it in a browser.

9. Try to submit the form without a valid phone number, and you
should see an appropriate error message.

Working with Forms 219

Task 106

cross-references
• In Task 100 you saw an

example of how to validate
a phone number in
JavaScript without using
regular expressions.

• Task 111 shows how to use
regular expressions to vali-
date numeric values.

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 219

Creating Multiple Form Submission
Buttons Using INPUT TYPE=
”button” Buttons

On some Web sites you will see a form with multiple buttons that appear to be
submission buttons. A common example of this is a login form: One button

logs the user in, one button creates a new user account using the username
entered by the user, and the third e-mails the user’s password to the user in case
he or she has forgotten it.

In all cases, the same form is being used, but the form is being submitted to a dif-
ferent URL.

By default, submit buttons always submit the form to the URL specified in the
action attribute of the form tag regardless of how many appear in the form.
The way around this is to use regular buttons for the extra buttons and to use the
onClick event handlers for these buttons to reset the target URL for the form
and then submit the form.

Form objects have an action property that indicates the URL where the form
will be submitted. You can change this URL by assigning a new URL to the
property:

document.formName.action = “new URL”;

Form objects also have the submit method, which submits the form just as if the
user had clicked on a submit button.

The following steps use these principles to create a login form with three buttons
just like the one described previously:

1. Create a new document in your preferred browser.

2. In the body of the document, create a form; as the action, specify the
page where the form should be submitted if the user is logging in:

<body>

<form name=”myForm” action=”login.html”>

</form>

</body>

3. In the form create a username field:

Username: <input type=”text” name=”username”>

4. In the form create a password field:

Password: <input type=”password” Æ

name=”password”>

note
• The onClick method can

be used with the different
HTML form controls to do
something if the user has
clicked on it. Here you use
it with plain buttons that,
without the event handler,
would not perform
any action.

220 Part 4

Task 107

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 220

5. Create a submit button for the login process:

<input type=”button” value=”Login” Æ

onClick=”this.form.submit();”>

6. Create a regular button for users who want to register new accounts:

<input type=”button” value=”Register”>

7. In the onClick event handler for the button, set the action URL to
the register page and then submit the form:

<input type=”button” value=”Register” Æ

onClick=”this.form.action = ‘register.html’; Æ

this.form.submit();”>

8. Create a regular button for users who want to retrieve their
passwords:

<input type=”button” value=”Retrieve Password”>

9. In the onClick event handler for the button, set the action URL to
the page for retrieving passwords and then submit the form. The
final page looks like Listing 107-1.

<body>

<form name=”myForm” action=”login.html”>

Username: <input type=”text” name=”username”>

Password: <input type=”password” name=”password”>

<input type=”button” value=”Login” Æ

onClick=”this.form.submit();”>

<input type=”button” value=”Register” Æ

onClick=”this.form.action = ‘register.html’; Æ

this.form.submit();”>

<input type=”button” value=”Retrieve Password” Æ

onClick=”this.form.action = ‘password.html’; Æ

this.form.submit();”>

</form>

</body>

Listing 107-1: Multiple buttons for submitting a form.

10. Save the file and open it in your browser. You should see a form with
multiple buttons for submitting to different pages.

Working with Forms 221

Task 107

cross-references
• The onClick method is

used with many of the
tasks in this section.

• Task 105 shows you how to
validate a password using
JavaScript.

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 221

Reacting to Mouse Clicks on Buttons

Acommon use of JavaScript, as evidenced by many of the tasks in this section
of the book, is to perform JavaScript tasks when the user clicks on a form

button. You do this using the onClick event handler of a form button:

<input type=”button” value=”Button Label”

onClick=”JavaScript code to execute when the user clicks the Æ

button”>

This task illustrates using the onClick event by creating a form with a button.
When the user clicks on the button, a dialog box is displayed informing the user
that he or she has clicked on the button.

1. Create a new HTML document in your preferred editor.

2. Create a form in the body of the document:

<body>

<form name=”myForm” action=”target.html”>

</form>

</body>

3. In the form, create a regular button:

<body>

<form name=”myForm” action=”target.html”>

<input type=”button” value=”Click Me”>

</form>

</body>

4. In the button, use an onClick event handler to display an alert dia-
log box when the user clicks on the button:

<body>

<form name=”myForm” action=”target.html”>

<input type=”button” value=”Click Me”

onClick=”window.alert(‘You clicked the button.’);”>

</form>

</body>

note
• The onClick method can

be used with the different
HTML form controls to do
something if the user has
clicked on it.

222 Part 4

Task 108

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 222

5. Save the file as target.html and close it.

6. Open the file in a browser, and a button appears, as shown in
Figure 108-1.

Figure 108-1: A button in a form.

7. Click on the button, and the dialog box in Figure 108-2 appears.

Figure 108-2: Reacting when the user clicks on the button.

Working with Forms 223

Task 108

cross-references
• The onClick method is

used with many of the
tasks in this section.

• You can alert a user as a
response to an onClick
event. See Task 25 for
more information on
alerting a user.

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 223

Using Graphical Buttons in JavaScript

HTML provides a form element type called image that lets you place images
within a form as elements. You can apply event handlers to these images to

make them a dynamic, integral part of your forms. To include an image in a form
as a form element, use the image value for the type attribute of the input tag:

<input type=”image” src=”path to image”>

As with other form buttons, you can specify event handlers in image buttons.
For instance, the following button uses an onClick event handler to specify
JavaScript code to execute when the user clicks on the image:

<input type=”image” src=”path to image” onClick=”JavaScript code Æ

to execute”>

To illustrate the user of graphical buttons, the following form uses an image as a
submit button. When the user clicks the button, an alert dialog box is displayed
before the form is submitted.

1. Create or select an image file you will use for the image button.

2. Create a new HTML document in your preferred editor.

3. In the body of the document, create a form.

4. Place any fields you want in the form; do not include a submit
button:

<body>

<form name=”myForm” action=”login.html”>

Username: <input type=”text” name=”username”>

Password: <input type=”password”

name=”password”>

</form>

</body>

5. Create an image tag that references the image from Step 1 earlier:

<body>

<form name=”myForm” action=”login.html”>

Username: <input type=”text” name=”username”>

Password: <input type=”password”

name=”password”>

<input type=”image” src=”login.gif” value=”Login”>

</form>

</body>

6. Use an onClick event handler for the image to display a dialog box
when the user clicks on the image:

<body>

<form name=”myForm” action=”login.html”>

notes
• By default, these image

buttons function as submit
buttons: They will submit
the form just as if you had
used <input type=
”submit”> instead.

• While you can use any
image format, JPG, GIF, and
PNG are the most portable.

224 Part 4

Task 109

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 224

tip
• You can create images to be

used as buttons in any
graphical program. This
includes Microsoft Paint.

Username: <input type=”text” name=”username”>

Password: <input type=”password” name=”password”>

<input type=”image” src=”login.gif” value=”Login” Æ

onClick=”window.alert(‘You clicked on the image.’);”>

</form>

</body>

7. Save the file as login.html and close it.

8. Open the file in a browser. The form in Figure 109-1 appears,
including the image button.

Figure 109-1: A form with an image button for submission.

9. Click on the image and the dialog box in Figure 109-2 appears.

Figure 109-2: Reacting to users clicking on the image.

Working with Forms 225

Task 109

cross-reference
• See Task 60 to learn how

to detect clicks on an
image in a form versus
using an image as a
button.

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 225

Controlling the Form Submission URL

When you create a form in HTML, you specify what page the form should
be submitted to with the action property of the form tag:

<form action=”URL to submit the form to”>

This is reflected in JavaScript as the action property of the form object:

document.formName.action

You can change this target URL dynamically at any point by assigning a new
URL to this property:

document.formName.action = “new URL”;

The following task creates a form as well as a link. If the link is clicked, the target
action URL of the form is changed. When the user submits the form, the target
URL is displayed in a dialog box before the form is submitted.

1. Create a form named myForm in a new document:

<body>

<form name=”myForm” action=”target.html”>

</form>

</body>

2. In the form, create any fields you need, as well as a submit button:

<body>

<form name=”myForm” action=”target.html”>

Enter Some Text: <input type=”text”

name=”myField”>

<input type=”submit”>

</form>

</body>

3. In the submit button, use the onClick event handler to display the
action URL in a dialog box before submitting the form:

<input type=”submit” onClick=”Æ

window.alert(this.form.action);”>

4. After the form, create a link that targets # as the URL:

Change Form Action Target

note
• Notice the use of # as the

URL in the example. When
using the onClick event
handler to trigger the open-
ing of a new window, you
don’t want to cause click-
ing on the link to change
the location of the current
window; this is a simple
way to avoid this (see
Step 5).

226 Part 4

Task 110

caution
• In the example, the form is

directed, or redirected, to
either target.html or
alternate.html. If
these forms don’t exist, you
will get an error or a blank
screen. You can change
these URLs to any other
URL (see Figure 110-1).

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 226

5. Use an onClick event handler to change the target URL when the
link is clicked. The complete page is presented in Listing 110-1.

<body>

<form name=”myForm” action=”target.html”>

Enter Some Text: <input type=”text” Æ

name=”myField”>

<input type=”submit” Æ

onClick=”window.alert(this.form.action);”>

</form>

<a href=”#” onClick=”document.myForm.action = Æ

‘alternate.html’;”>Change Form Action Target

</body>

Listing 110-1: The completed page.

6. Save the file and close it.

7. Open the file in a browser and you now see the form you created.

8. Submit the form without clicking on the link. It will submit to the
original URL, as illustrated in Figure 110-1.

Figure 110-1: Submitting the form to the original URL.

9. Reload the file in a browser. Click on the link and then submit the
form, and the form will submit to the new URL.

Working with Forms 227

Task 110

cross-reference
• Learn more about submit-

ting forms in Task 224.

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 227

Validating a Numeric Text Field with
Regular Expressions

Sometimes you will have a form where you need to limit the text entered into
a text field to only particular characters. For instance, you might want to

limit the text to numbers. Using regular expressions, you can easily perform this
check when the user submits the form.

Regular expressions provide a powerful extension of the wildcard concept to
allow you to specify text patterns and search for matches for those patterns.
Unfortunately, regular expressions are an advanced topic beyond the scope of this
book; however, this task shows how to perform number validation using regular
expressions.

The following steps create a form with a field to enter a phone number that is
validated with regular expressions:

1. In the header of a new HTML document, create a script block con-
taining the function checkNumber that receives a text string:

<script language=”JavaScript”>

function checkNumber(number) {

}

</script>

2. In the function, create a regular expression for matching against a
numeric value:

var check = /^[0-9]+\.?[0-9]+$/;

3. Next, test for a failure to match this pattern against the number:

if (!check.test(number)) {

}

4. If no match is found, inform the user and return false from the
function:

if (!check.test(number)) {

window.alert(“You must provide a valid number.”);

return false;

}

5. Finally, return true from the function if the number passed the test,
so that the complete function looks like this:

function checkNumber(number) {

var check = /^[0-9]+\.?[0-9]+$/;

if (!check.test(number)) {

window.alert(“You must provide a valid number.”);

notes
• When you assign a regular

expression to a variable,
you are creating a regular
expression object. This
object has a test method
that allows you to test the
expression against a string
that is provided as an argu-
ment to the method. The
method returns true if
there is a match and
false otherwise.

• The regular expression for
validating a numeric value
is as follows:

/^[0-9]+\.?
[0-9]+$/;

• Regular expressions are
powerful but require you to
have a lot of experience to
become comfortable with
them and master them. You
can find an introductory
tutorial on regular expres-
sions at http://www.
linuxpcug.org/
lessons/regex.htm.

• Notice that you negate the
result returned by the
test method. In this way,
the if statement is true
only when no match is
found.

228 Part 4

Task 111

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 228

return false;

}

return true;

}

6. Create another function named checkForm that takes a form object
as an argument. The function should call checkNumber and pass it
the value of the field containing the number and then return the
result returned by the checkNumber function:

function checkForm(formObj) {

return checkNumber(formObj.myField.value);

}

7. Create a form that contains a field for entering the phone number
and uses the onSubmit event handler to call the checkForm
function:

<body>

<form name=”myForm” action=”target.html”

onSubmit=”return checkForm(this);”>

Enter a number: <input type=”text”

name=”myField”>

<input type=”submit”>

</form>

</body>

8. Save the file and open it in a browser. The form in Figure 111-1
appears.

Figure 111-1: A form with a text field.

9. Try to submit the form without a valid number, and you should see
an appropriate error message.

Working with Forms 229

Task 111

cross-reference
• Task 106 presents the

code for using regular
expressions to validate a
phone number.

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 229

Encrypting Data before Submitting It

By encrypting the data in a form before submitting it across the Internet, you
add a small layer of privacy to the data being transmitted. This can be

achieved in JavaScript if desired by passing each form field through an encryption
function before submitting the form. The principle is simple:

1. In the form tag, use onSubmit to call the encryption function
before submitting the form.

2. The encryption form should work through each field in the form and
encrypt the value of each field.

The encryption process can use the elements property of the form tag to easily
access all the fields in a form without knowing what those fields will be in
advance. This property is an array containing one entry for each object in the
form. Therefore, the first field in the form can be referenced as:

document.formName.elements[0]

The following task creates a form, which is encrypted using a simple algorithm
before it is transmitted. The encryption algorithm simply converts each letter in
the form’s fields to their numeric Unicode equivalents:

1. In the header of a new HTML document, create a script block with a
function named encrypt. This function should take a text string as a
single argument. This string will be encrypted:

<script language=”JavaScript”>

function encrypt(item) {

}

</script>

2. In the function, create a variable named newItem that will hold the
encrypted string. Initially this should be an empty string:

var newItem = “”;

3. Loop through each character in the original text string:

for (i=0; i < item.length; i++) {

}

4. For each character in the string, use the charCodeAt method of the
string object to obtain the numerical Unicode representation of
the letter and add it to the newItem string. Note that a dot is added
after each character. This separates the characters cleanly to make it
easier to decrypt later.

notes
• Strings have a length

property that returns the
number of characters in the
string. If the string is empty,
the length will be zero.

• The charCodeAt method
returns the Unicode repre-
sentation of the character
specified by an index in
the string.

• Arrays have a property
called length that returns
the number of items in an
array, and it is used in this
loop. Since arrays are zero-
indexed, an array with
length 5 (which contains
five elements) would con-
tain elements with indexes
from 0 to 4. This is why you
loop until i is less than,
and not less than or equal
to, the length of the array.

• The keyword this is used
to pass the form to the
function. In event handlers
of the form itself, this
refers to the object for the
form itself.

• An alert has been added to
the onSubmit event han-
dler so that you can see
the value of the encrypted
text field before submitting
the form. This allows you to
check if the encryption is
working. You wouldn’t
include this in a live
application.

230 Part 4

Task 112

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 230

tips
• The idea of encrypting data

in JavaScript has limited
utility in terms of security.
Because JavaScript code
can be read by the user by
viewing the source code in
your browser, anyone can
determine how you are
encrypting the form and
can easily decrypt the
data. However, this
approach does provide a
veil of privacy; after the
user submits the form, the
data that is transmitted
across the Internet is not
immediately apparent to
anyone intercepting data as
it flows across the Internet.
This can be helpful in some
applications.

• This isn’t real encryption;
instead, it is just illustrative
of how to tie an encryption
function into a form sub-
mission process. To imple-
ment another encryption
algorithm would require you
to write your own encryp-
tion function and then call
that function when needed.

5. Return the encrypted string from the function. The encrypt func-
tion should look like the following:

function encrypt(item) {

var newItem = “”;

for (i=0; i < item.length; i++) {

newItem += item.charCodeAt(i) + “.”;

}

return newItem;

}

6. Create a second function named encryptForm that takes a form
object as an argument.

7. In the function, loop through the elements array. For each element,
encrypt the value of the field with the encrypt function, and store the
result back into the field’s value:

function encryptForm(myForm) {

for (i=0; i < myForm.elements.length; i++) {

myForm.elements[i].value =

encrypt(myForm.elements[i].value);

}

}

8. In the body of the document, create a form with any needed fields.
Use the onSubmit event handler to submit the form to the
encryptForm function:

<form name=”myForm” action=”target.html” onSubmit=”Æ

encryptForm(this); window.alert(this.myField.value);”>

Enter Some Text: <input type=”text” name=”myField”>

<input type=”submit”>

</form>

9. Save the file and open it in a browser.

10. Click on the submit button. The form is encrypted, and the
encrypted value of the field is displayed in a dialog box before the
form is submitted.

Working with Forms 231

Task 112

cross-reference
• Notice the short form con-

catenation operator being
used here: +=. Using a +=
b is the same as a = a +
b. For more on doing math
in JavaScript, see Task 14

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 231

Using Forms for Automatic
Navigation Jumping

Sometimes you will see form selection lists used as a mechanism for providing
navigation to different URLs for a page. The drop-down list will include

multiple URLs, as shown in Figure 113-1. When the user selects an entry in the
list, the browser is automatically sent to that URL.

Figure 113-1: A selection list for navigating to URLs.

This navigation is achieved using two principles:

• The onChange event handler can detect changes in the selected item
in a selection list.

• Setting window.location to a new URL redirects the browser.

The following task shows how to build a simple selection list with URLs.
JavaScript code will redirect the user to the selected URL.

1. Create a form in the body of a new document.

2. Create a selection list with the URLs you want to allow the user to
navigate to:

<select name=”url”>

<option></option>

<option value=”http://www.juxta.com/”>Æ

www.juxta.com

<option value=”http://www.anis.cc/”>www.anis.cc

<option value=”http://www.hatcher.org/”>Æ

www.hatcher.org

</select>

notes
• The value of window.
location determines
what window will be
opened when it is called.
Setting this to the value of
a URL causes the specified
URL to be opened. Setting
the value to # causes the
current window to be used.

• An alternative to jumping to
a new URL at the time the
selection list changes is to
use the selection list in
combination with a button.
When the user clicks the
button, the browser would
jump to the URL that is cur-
rently selected in the list.

232 Part 4

Task 113

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 232

3. Use the onChange event handler of the select tag to redirect the
browser to the URL of the selected entry (the URL is the value of
each entry). Listing 113-1 shows the code.

<body>

<form>

Select a Site:

<select name=”url” onChange=”window.location = Æ

this.value;”>

<option></option>

<option value=”http://www.juxta.com/”>www.juxta.com

<option value=”http://www.anis.cc/”>www.anis.cc

<option value=”http://www.hatcher.org/”>Æ

www.hatcher.org

</select>

</form>

</body>

Listing 113-1: The selection list with URLs.

4. Save the file and close it.

5. Open the file in your browser. A selection list appears, as illustrated
in Figure 113-2.

Figure 113-2: Using a selection list for user navigation.

6. Select an entry from the list. The browser is redirected to that site.

Working with Forms 233

Task 113

cross-references
• Task 227 shows how to

take other actions when a
user makes a selection.

• See Task 121 for more
information on setting the
location of a new browser
window.

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 233

05 542419 Ch04.qxd 11/19/03 10:00 AM Page 234

Part 5: Manipulating Browser Windows
Task 114: Using the Window Object

Task 115: Popping Up an Alert Dialog Box

Task 116: Popping Up Confirmation Dialog Boxes

Task 117: Popping Up JavaScript Prompts

Task 118: Creating New Browser Windows

Task 119: Opening a New Browser Window from a Link

Task 120: Setting the Size of New Browser Windows

Task 121: Setting the Location of New Browser Windows

Task 122: Controlling Toolbar Visibility for New Browser Windows

Task 123: Determining the Availability of Scroll Bars for New Browser
Windows

Task 124: Restricting Resizing of New Browser Windows

Task 125: Loading a New Document into a Browser Window

Task 126: Controlling Window Scrolling from JavaScript

Task 127: Opening a Full-Screen Window in Internet Explorer

Task 128: Handling the Parent-Child Relationship of Windows

Task 129: Updating One Window’s Contents from Another

Task 130: Accessing a Form in Another Browser Window

Task 131: Closing a Window in JavaScript

Task 132: Closing a Window from a Link

Task 133: Creating Dependent Windows in Netscape

Task 134: Sizing a Window to Its Contents in Netscape

Task 135: Loading Pages into Frames

Task 136: Updating One Frame from Another Frame

Task 137: Sharing JavaScript Code between Frames

Task 138: Using Frames to Store Pseudo-Persistent Data

Task 139: Using One Frame for Your Main JavaScript Code

Task 140: Using a Hidden Frame for Your JavaScript Code

Task 141: Working with Nested Frames

Task 142: Updating Multiple Frames from a Link

Task 143: Dynamically Creating Frames in JavaScript

Task 144: Dynamically Updating Frame Content

Task 145: Referring to Unnamed Frames Numerically

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 235

Using the Window Object

The window object provides access to properties and methods that can be used
to obtain information about open windows, as well as to manipulate these

windows and even open new windows.

This object offers properties that allow you to access frames in a window, access
the window’s name, manipulate text in the status bar, and check the open or
closed state of the window. The methods allow the user to display a variety of
dialog boxes, as well as to open new windows and close open windows.

Among the features of the window object are the following:

• Creating alert dialog boxes

• Creating confirmation dialog boxes

• Creating dialog boxes that prompt the user to enter information

• Opening pages in new windows

• Determining window sizes

• Controlling scrolling of the document displayed in the window

• Scheduling the execution of functions

The window object can be referred to in several ways:

• Using the keyword window or self to refer to the current window
where the JavaScript code is executing. For instance, window.alert
and self.alert refer to the same method.

• Using the object name for another open window. For instance, if a
window is associated with an object named myWindow,
myWindow.alert would refer to the alert method in that window.

The following steps illustrate how to access the window object by changing the
text displayed in the current window’s status bar:

1. In the body of the document, create a script block with opening and
closing script tags:

<script language=”JavaScript”>

</script>

2. In the script block, access the window.status property:

<script language=”JavaScript”>

window.status

</script>

3. Assign new text to display to the window.status property in the
same way as assigning a text string to a variable, so that the final doc-
ument looks like Listing 114-1.

note
• The window.status

property reflects the current
text in the status bar at the
bottom of the current win-
dow. By assigning a new
text string to this property,
you can override the
default text displayed
in the status bar with
your own text.

236 Part 5

Task 114

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 236

<body>

<script language=”JavaScript”>

window.status = “A new status message”;

</script>

</body>

Listing 114-1: Displaying text in the status bar.

4. Save the file.

5. Open the page in a browser. A blank HTML page appears with
“A new status message” displayed in the status bar, as illustrated
in Figure 114-1.

Figure 114-1: Displaying custom text in the status bar.

Manipulating Browser Windows 237

Task 114

cross-reference
• The various types of dialog

boxes are discussed in
Tasks 25, 26, and 117.

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 237

Popping Up an Alert Dialog Box

The window object provides the alert method, which allows you to display
a simple dialog box containing a text message followed by a single button the

user can use to acknowledge the message and close the dialog box.

Figure 115-1 illustrates an alert dialog box in Microsoft Internet Explorer;
Figure 115-2 shows the same dialog box in Netscape.

Figure 115-1: An alert dialog box in Internet Explorer.

Figure 115-2: An alert dialog box in Netscape.

Creating alert dialog boxes is one of many features of the window object, which
can also be used to create confirmation and prompting dialog boxes, as well as
other capabilities. These include the following:

• Opening pages in new windows

• Determining window sizes

• Controlling scrolling of the document displayed in the window

• Scheduling the execution of functions

The following steps show how to display two alert dialog boxes in succession:

1. In the body of a new HTML document, create a script block with
opening and closing script tags:

<script language=”JavaScript”>

</script>

2. Use the window.alert method to display the first dialog box:

window.alert(“This is a dialog box”);

3. Use the window.alert method to display the second dialog box, so
that the final script looks like this:

<script language=”JavaScript”>

window.alert(“This is a dialog box”);

notes
• The window.alert

method takes one argu-
ment: a text string contain-
ing the text to display in the
dialog box. You can pass
this in as a literal string or
as any expression that eval-
uates to a string.

• When the alert dialog box
displays, interaction with
the browser window is
blocked until the user
closes the dialog box by
clicking the button in the
dialog box.

238 Part 5

Task 115

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 238

window.alert(“This is another dialog box”);

</script>

4. Save the file.

5. Open the file in a Web browser. The first dialog box, shown in
Figure 115-3, appears. Once the user closes the first dialog box, the
second, shown in Figure 115-4, is displayed.

Figure 115-3: The first dialog box.

Figure 115-4: The second dialog box.

Manipulating Browser Windows 239

Task 115

cross-reference
• The scheduling of auto-

matic execution of a func-
tion is discussed in Tasks
38, 39, and 40.

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 239

Popping Up Confirmation Dialog Boxes

In addition to the alert method discussed in Task 115, the window object also
provides the confirm method, which allows you to display a dialog box con-

taining a text message followed by two buttons the user can use to acknowledge
the message or reject it and close the dialog box. Typically these buttons are
labeled OK and Cancel.

Figure 116-1 illustrates a confirmation dialog box in Microsoft Internet Explorer;
Figure 116-2 shows the same dialog box in Netscape.

Figure 116-1: A confirmation dialog box in Internet Explorer.

Figure 116-2: A confirmation dialog box in Netscape.

The following steps show how to display a confirmation dialog box, and then
based on the user’s choice, display the choice in the body of the page:

1. In the body of a new HTML document, create a script block with
opening and closing script tags:

<script language=”JavaScript”>

</script>

2. Use the window.confirm method to display the first dialog box;
the value returned by the dialog box is stored in the variable
userChoice:

var userChoice = window.confirm(“Click OK or Cancel”);

3. Use an if statement to test the user’s response to the dialog box by
checking the userChoice variable:

if (userChoice) {

4. If the user has selected the OK button, display an appropriate mes-
sage using the document.write method:

document.write(“You chose OK”);

notes
• The window.confirm

method returns a value:
true if the user clicks on
OK or false if the user
clicks on Cancel. This
makes it easy to test the
user’s response to the dia-
log box.

• if statements require an
expression that evaluates
to true or false. Here,
userChoice is a variable
that will be either true or
false, since that is the
value returned by the con-
firm method. This means
the expression can simply
be the variable name itself.

240 Part 5

Task 116

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 240

5. If the user has selected the Cancel button, display an appropriate
message. The final page should look like this:

<body>

<script language=”JavaScript”>

var userChoice = window.confirm(“Click OK or Æ

Cancel”);

if (userChoice) {

document.write(“You chose OK”);

} else {

document.write(“You chose Cancel”);

}

</script>

</body>

6. Save the file and open it in a browser. The browser displays a confir-
mation dialog box like Figure 116-3. Based on the user’s selection in
the dialog box, the browser window will contain an appropriate mes-
sage, as in Figure 116-4, where the user selected the OK button.

Figure 116-3: The confirmation dialog box.

Figure 116-4: The user selected OK.

Manipulating Browser Windows 241

Task 116

cross-reference
• The window object is

introduced in Task 114.

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 241

Popping Up JavaScript Prompts

In addition to the alert method discussed in Task 115 and the confirm
method discussed in Task 116, the window object also provides the prompt

method, which allows you to display a dialog box containing a text message fol-
lowed by a text field, where the user can provide some input before closing the
dialog box.

Figure 117-1 illustrates a prompt dialog box in Microsoft Internet Explorer;
Figure 117-2 shows the same dialog box in Netscape.

Figure 117-1: A prompt dialog box in Internet Explorer.

Figure 117-2: A prompt dialog box in Netscape.

The window.prompt method takes two arguments: The first is the text message
to display, and the second is the default text to display in the text field. If you
want the text field to be empty, simply use an empty string. For instance, the fol-
lowing example of the window.prompt method displays the dialog box illustrated
in Figure 117-1:

window.prompt(“Enter a value from 1 to 10”,””);

The following steps show how to use a prompt dialog box to ask the user to enter
his or her name and then display the name in the body of the HTML page:

1. In the body of a new HTML document, create a script block with
opening and closing script tags:

<script language=”JavaScript”>

</script>

2. Use the window.prompt method to display the dialog box; the value
returned by the dialog box is stored in the variable userName:

var userName = window.prompt(“Please Enter Your

Name”,”Enter Your Name Here”);

3. Display the user’s name using the document.write method, so that
the final page looks like the following:

notes
• The window.prompt

method returns the value
entered by the user in the
text field in the dialog box.
By storing the result
returned by the method in
a variable, you can use the
value later in the page.

• The document.write
method expects a single
string as an argument. In
this example, two strings
are concatenated (or com-
bined) into a single string
using the + operator.

242 Part 5

Task 117

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 242

<body>

<script language=”JavaScript”>

var userName = window.prompt(“Please Enter Your Æ

Name”,”Enter Your Name Here”);

document.write(“Your Name is “ + userName);

</script>

</body>

4. Save the file.

5. Open the file in a browser. A prompt dialog box appears, as shown in
Figure 117-3. After the user enters his or her name, it is displayed in
the browser window, as in Figure 117-4.

Figure 117-3: Prompting the user to enter his or her name.

Figure 117-4: Displaying the user’s name.

Manipulating Browser Windows 243

Task 117

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 243

Creating New Browser Windows

The window object provides the open method, which can be used to open a
new browser window and display a URL in that window. In its most basic

form, the open method works as follows:

window.open(url,window name);

Here, the URL is a text string of a relative or absolute URL to display in the
window. The window name is a name for the window that can be used later in
the target attribute of the a tag to direct a link to that window.

Opening new windows is one of many features of the window object, which can
also be used for several other purposes:

• Displaying a variety of dialog boxes

• Determining window sizes

• Controlling scrolling of the document displayed in the window

• Scheduling the execution of functions

The following steps illustrate how to open a window with JavaScript. The main
document will open in the current browser window, and the new window will
open and display another URL:

1. In the header of a new HTML document, create a script block:

<head>

<script language=”JavaScript”>

</script>

</head>

2. In the script block, use the window.open method to display the
URL of your choice in a new window, and name the window
myNewWindow:

<head>

<script language=”JavaScript”>

window.open(“http://www.bahai.org/”,”myNewWindow”);

</script>

</head>

3. In the body of the document, enter any HTML or text you want to
be displayed in the initial window, so that the final page looks like
Listing 118-1.

note
• The window.open

method can actually take
two arguments or three
arguments. For basic use,
two arguments suffice.
Advanced use such as con-
trolling the size of a window
when it opens relies on a
third argument. This task
illustrates basic use of the
method.

244 Part 5

Task 118

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 244

<head>

<script language=”JavaScript”>

window.open(“http://www.bahai.org/”,”myNewWindow”);

</script>

</head>

<body>

The site has opened in a new window.

</body>

Listing 118-1: Opening a new window.

4. Save the file.

5. Open the file in a browser. The page displays, and then a new window
opens to display the URL specified in the window.open method, as
illustrated in Figure 118-1.

Figure 118-1: Opening a new window.

Manipulating Browser Windows 245

Task 118

tip
• Remember, you can’t con-

trol the size of the new win-
dow using the technique
from this task. Typically, the
new window will be the
same size as the initial win-
dow opened in your
browser.

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 245

Opening a New Browser Window
from a Link

One application of the window.open method described in Task 118 is to use
it to open a new window when a user clicks on a link. Although it is possible

to do this by simply specifying a new window name in the target attribute of
the a tag, there may be reasons why this is insufficient. For instance, you may
need to programmatically build the URL that needs to be displayed in a new
window, and this is easier to achieve in JavaScript at the time the user clicks on
the link.

To do this, you can use the window.open command in the onClick event han-
dler of the a tag:

Link text

The following task illustrates how to open a window from a link using JavaScript:

1. In the body of a new HTML document, create a link:

<body>

Click here to open a site in a new Æ

window

</body>

2. Use # as the URL for the link in the a tag:

<body>

Click here to open a site in a new Æ

window

</body>

3. Specify an onClick attribute to call the window.open method to
open the desired URL:

<body>

<a href=”#”

onClick=’window.open(“http://www.ca.bahai.org/”,”Æ

newWindow”);’>Click here

to open a site in a new window

</body>

4. Save the file.

5. Open the file in a browser. Initially, the page with the link displays, as
in Figure 119-1. When the user clicks on the link, a new window is
displayed with the specified URL, as in Figure 119-2.

notes
• Notice the use of # as the

URL in the example. When
using the onClick event
handler to trigger the open-
ing of a new window, you
don’t want to cause click-
ing on the link to change
the location of the current
window; this is a simple
way to avoid this.

• The window.open
method can actually take
two arguments or three
arguments. For basic use,
two arguments suffice.
Advanced use such as con-
trolling the size of a window
when it opens relies on a
third argument. This task
illustrates basic use of the
method.

246 Part 5

Task 119

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 246

Figure 119-1: Displaying a link to open a new window.

Figure 119-2: Opening a new window when the user clicks the link.

Manipulating Browser Windows 247

Task 119

tip
• Remember, you can’t con-

trol the size of the new win-
dow using the technique
from this task. Typically, the
new window will be the
same size as the initial win-
dow opened in your
browser.

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 247

Setting the Size of New
Browser Windows

When using the window.open method, introduced in Task 118, you can
actually control a number of aspects of the appearance and behavior of the

window. Among the features that can be controlled is the size of the window at
the time the window.open method opens it.

To control these features, the window.open method takes an optional third
argument. The argument takes this form:

“property name=value,property name=value,etc.”

For instance, the following example would create a window that is 500 pixels
wide and 200 pixels deep, as shown in Figure 120-1:

window.open(“http://www.onecountry.org/”,”myNewWindow”,”width=500,Æ

height=200”);

Figure 120-1: Controlling the height and width of a new window.

The following task illustrates the use of the height and width properties of
new windows to open a new window that is exactly 300 pixels wide and 300 pixels
tall:

1. In the header of a new HTML document, create a script block:

<script language=”JavaScript”>

</script>

2. In the script block, use the window.open method to display the
URL of your choice in a new window, and name the window
myNewWindow. Use the height and width properties to control the
size of the window and set it to 300 by 300 pixels:

<script language=”JavaScript”>

window.open(“http://www.bahai.org/”,”myNewWindow”,”Æ

height=300,width=300”);

</script>

notes
• This argument is a text

string that contains a list of
values separated by com-
mas. These values allow
you to set properties of the
window that is being
opened.

• To control the size of the
window, you need to set the
height and the width
property values by assign-
ing a number of pixels to
each of them.

• The window.open
method can actually take
two arguments or three
arguments. For basic use,
two arguments suffice.
Advanced use such as con-
trolling the size of a window
when it opens relies on a
third argument. Task 118
illustrates the two-argu-
ment form of the method.

248 Part 5

Task 120

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 248

3. In the body of the document, include any HTML or text you want to
display in the initial window, so that the final document looks like
Listing 120-1.

<head>

<script language=”JavaScript”>

window.open(“http://www.juxta.com/”,”newWindow”,”Æ

height=300,width=300”);

</script>

</head>

<body>

The new window is 300 by 300 pixels.

</body>

Listing 120-1: Controlling the size of a new window.

4. Save the file.

5. Open the file in a browser. The new window opens at the specified
size, as in Figure 120-2.

Figure 120-2: Opening a 300-by-300-pixel window.

Manipulating Browser Windows 249

Task 120

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 249

Setting the Location of New
Browser Windows

When using the window.open method, introduced in Task 118, you can
actually control a number of aspects of the appearance and behavior of

the window. Among the features that can be controlled is the placement on the
screen of the window at the time the window.open method opens it.

To control the placement, the window.open method takes an optional third
argument. The argument takes the following form:

“property name=value,property name=value,etc.”

To control placement of the window, you set different properties for different
browsers. For Internet Explorer, you set the top and left properties. For
Netscape, you set the screenX and screenY properties. For instance, the fol-
lowing places a new window 200 pixels in from the left of the screen and 100 pix-
els down from the top of the screen, as illustrated in Figure 121-1:

window.open(“http://www.juxta.com/”,”myNewWindow”,”width=300,Æ

height=200,left=200,screenX=200,top=100,screenY=100”);

Figure 121-1: Controlling the placement of a new window.

The following task illustrates the use of these properties of new windows to open
a new window that is exactly 400 pixels away from the top and left of the screen:

notes
• This argument is a text

string that contains a list of
values separated by com-
mas. These values allow
you to set properties of the
window being opened.

• The window.open
method can actually take
two arguments or three
arguments. For basic use,
two arguments suffice.
Advanced use such as con-
trolling the size of a window
when it opens relies on a
third argument. Task 118
illustrates the two-argu-
ment form of the method.

250 Part 5

Task 121

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 250

1. In the header of a new HTML document, create a script block:

<script language=”JavaScript”>

</script>

2. In the script block use the window.open method to display the URL
of your choice in a new window, and name the window
myNewWindow. Use the top, left, screenX, and screenY proper-
ties to control the position of the window and set it to 400 pixels
from the left and top sides of the screen:

<script language=”JavaScript”>

window.open(“http://www.juxta.com/”,”newWindow”,”Æ

height=300,width=500,screenX=400,screenY=400,top=400,Æ

left=400”);

</script>

3. In the body of the document, include any HTML or text you want to
display in the initial window, so that the final document looks like
Listing 121-1.

<head>

<script language=”JavaScript”>

window.open(“http://www.juxta.com/”,”newWindow”,”Æ

height=300,width=500,screenX=400,screenY=400,top=400,Æ

left=400”);

</script>

</head>

<body>

The new window is 400 pixels from the top-left corner Æ

of the screen.

</body>

Listing 121-1: Controlling placement of a new window.

4. Save the file.

5. Open the file in a browser. The new window opens at the specified
location

Manipulating Browser Windows 251

Task 121

cross-reference
• Notice the use of the
width and height prop-
erties to control the size of
the window. These proper-
ties are discussed in
Task 120.

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 251

Controlling Toolbar Visibility for
New Browser Windows

When using the window.open method, introduced in Task 118, you can
actually control a number of aspects of the appearance and behavior of the

window. Among the features that can be controlled is whether the toolbar of the
window is displayed when it is opened.

To control the size of the window, you need to set the toolbar property value
by assigning a yes or no value to it. For instance, the following example creates a
window with no toolbar:

window.open(“http://www.bahai.org/”,”myNewWindow”,”toolbar=no”);

The following steps show how to create a page with two links. Both links open
the same page in a new window, but one link opens the new window with no
toolbar and the other opens it with a toolbar.

1. In the body of a new HTML document, create a link for opening a
new window without a toolbar:

Click here for a window without a toolbar

2. Use # as the URL in the a tag:

Click here for a window without a toolbar

3. Use the onClick attribute to call the window.open method to open
a URL of your choice, and specify toolbar=no in the third argument:

<a href=’#’ Æ

onClick=’window.open(“http://www.juxta.com/”,”Æ

newWindow1”,”toolbar=no”);’>Click here for a window Æ

without a toolbar

4. Create another link for opening a new window with a toolbar:

Click here for a window with a toolbar

5. Use # as the URL in the a tag:

Click here for a window with a toolbar

6. Use the onClick attribute to call the window.open method to open
a URL of your choice, and specify toolbar=yes in the third argu-
ment. The final document should look like Listing 122-1.

note
• Notice the use of # as the

URL (see Step 2). When
using the onClick event
handler to trigger the open-
ing of a new window, you
don’t want to cause click-
ing on the link to change
the location of the current
window; this is a simple
way to avoid this.

252 Part 5

Task 122

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 252

<body>

<a href=’#’ onClick=’window.open(“http://www.juxta.com/Æ

”,”newWindow1”,”toolbar=no”);’>Click here for a window Æ

without a toolbar

<p>

<a href=’#’ onClick=’window.open(“http://www.juxta.com/”,”Æ

newWindow2”,”toolbar=yes”);’>Click here for a window Æ

with a toolbar

</body>

Listing 122-1: Controlling the appearance of the toolbar in new windows.

7. Save the file and open it in a browser. When the user clicks on the
first link, a new window with no toolbar will open, as in Figure 122-1.
When the user clicks on the second link, a new window with a tool-
bar will open.

Figure 122-1: Opening a window with no toolbar.

Manipulating Browser Windows 253

Task 122

tip
• There is no reason you can-

not combine the toolbar
property with other win-
dow.open properties,
such as the width and
height properties (Task
120) or the scrollbars
property (Task 123). In
order to focus strictly on
the effect of the toolbar
property, this task doesn’t
combine properties.

cross-reference
• To control features of the

new window, the win-
dow.open method takes
an optional third argument.
This argument is a text
string that contains a list of
values separated by com-
mas. These values allow
you to set properties of the
window that is being
opened. The syntax of this
string of text is described in
Task 120.

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 253

Determining the Availability of Scroll
Bars for New Browser Windows

When using the window.open method, introduced in Task 118, you can
actually control a number of aspects of the appearance and behavior of the

window. Among the features that can be controlled is whether the scroll bars of
the window are displayed when it is opened.

To control these features, the window.open method takes an optional third
argument. This argument is a text string that contains a list of values separated
by commas. These values allow you to set properties of the window that is being
opened.

To control the size of the window, you need to set the scrollbars property
value by assigning a yes or no value to it. For instance, the following example
creates a window with no scroll bars:

window.open(“http://www.bahai.org/”,”myNewWindow”,”scrollbars=no”);

The following steps show how to create a page with two links. Both links open
the same page in a small new window, but one link opens the new window with
no scroll bars and the other opens it with scroll bars.

1. In the body of a new HTML document, create a link for opening a
new window without a toolbar:

Click here for a window without scrollbars

2. Use # as the URL in the a tag:

Click here for a window without scrollbars

3. Use the onClick attribute to call the window.open method to open
a URL of your choice, and specify scrollbars=no in the third
argument:

<a href=’#’ Æ

onClick=’window.open(“http://www.juxta.com/”,”Æ

newWindow1”,”scrollbars=no,width=300,height=300”);’>Æ

Click here for a window without scrollbars

4. Create another link for opening a new window with scroll bars:

Click here for a window with scrollbars

5. Use # as the URL in the a tag:

Click here for a window with scrollbars

6. Use the onClick attribute to call the window.open method to open
a URL of your choice, and specify scrollbars=yes in the third
argument. The final document should look like Listing 123-1.

note
• When a window is opened

with no scroll bars, the con-
tent of the window cannot
be scrolled by the user.

254 Part 5

Task 123

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 254

<body>

<a href=’#’ onClick=’window.open(“http://www.juxta.com/Æ

”,”newWindow1”,”scrollbars=no,width=300,height=300”);’>Æ

Click here for a window without scrollbars

<p>

<a href=’#’ Æ

onClick=’window.open(“http://www.juxta.com/”,”newWindow2Æ

”,”scrollbars=yes,width=300,height=300”);’>Click here Æ

for a window with scrollbars

</body>

Listing 123-1: Controlling the appearance of scroll bars in new windows.

7. Save the file and open it in a browser. When the user clicks on the
first link, a new window with no scroll bars will open, as in Figure
123-1. When the user clicks on the second link, a new window with
scroll bars will open.

Figure 123-1: Opening a window with no scroll bars.

Manipulating Browser Windows 255

Task 123

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 255

Restricting Resizing of New
Browser Windows

When using the window.open method, introduced in Task 118, you can
actually control a number of aspects of the appearance and behavior of the

window. Among the features that can be controlled is whether the window can be
resized by the user after it is opened.

To control these features, the window.open method takes an optional third
argument. This argument is a text string that contains a list of values separated
by commas. These values allow you to set properties of the window that is being
opened.

To control the size of the window, you need to set the resizable property value
by assigning a yes or no value to it. For instance, the following example creates a
window that cannot be resized:

window.open(“http://www.bahai.org/”,”myNewWindow”,”resizable=no”);

The following steps show how to create a page with two links. Both links open
the same page in a small new window, but one link opens the new window so that
it cannot be resized and the other opens it so that it is resizable.

1. In the body of a new HTML document, create a link for opening a
new window without a toolbar:

Click here for a window which cannot be

resized

2. Use # as the URL in the a tag:

Click here for a window which cannot be

resized

3. Use the onClick attribute to call the window.open method to open
a URL of your choice, and specify resizable=no in the third
argument:

<a href=’#’ Æ

onClick=’window.open(“http://www.juxta.com/”,”Æ

newWindow1”,”resizable=no,width=300,height=300”);’>Æ

Click here for a window which cannot be resized

4. Create another link for opening a new window that can be resized:

Click here for a window which can be Æ

resized

5. Use # as the URL in the a tag:

Click here for a window which can be Æ

resized

note
• When a window cannot be

resized, the user will not be
able to grab and drag any
of the edges or corners of
the window. The mouse cur-
sor should not change to
resizing arrows when over
the edges or corners of the
window.

256 Part 5

Task 124

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 256

6. Use the onClick attribute to call the window.open method to open
a URL of your choice, and specify resizable=yes in the third
argument. The final document should look like Listing 124-1.

<body>

<a href=’#’ onClick=’window.open(“http://www.juxta.com/Æ

”,”newWindow1”,”resizable=no,width=300,height=300”);’>Æ

Click here for a window which cannot be resized

<p>

<a href=’#’ Æ

onClick=’window.open(“http://www.juxta.com/”,”newWindow2Æ

”,”resizable=yes,width=300,height=300”);’>Click here Æ

for a window which can be resized

</body>

Listing 124-1: Controlling the resizing of new windows.

7. Save the file and open it in a browser. When the user clicks on the
first link, a new window that cannot be resized will open, as in Figure
124-1. When the user clicks on the second link, a new window that is
resizable will open.

Figure 124-1: Opening a nonresizable window.

Manipulating Browser Windows 257

Task 124

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 257

Loading a New Document
into a Browser Window

Typically, you use an a tag when you want a user to load a new document in
the current browser window. However, there are times when a simple a tag is

not enough. In particular, you may need to dynamically determine which page
should be loaded into the browser at the time the user clicks the link. To do this,
you want to use JavaScript at the time the user clicks on a link by using the
onClick attribute of the a tag to set the document.location property to a
new URL. For example:

link text

Using JavaScript to redirect the user’s browser, this task shows how to build a
simple page that takes the user to a new page when he or she clicks on a link:

1. In the body of a new HTML document, create a link:

Open New Document

2. Use # as the URL in the a tag:

Click here for a window which cannot be

resized

3. Add an onClick event handler to the a tag. In the event handler, use
JavaScript to assign the URL of the new document to the document.
location property. The final document should look like this:

<body>

<a href=”#” onClick=”document.location = Æ

‘125a.html’;”>Open New Document

</body>

4. Save the file and close it.

5. Create a new file containing the HTML for the second page the user
will visit when he or she clicks on the link in the first document:

<body>

This is a new document.

</body>

6. Save this file in the location specified by the URL in Step 3.

7. Open the first file in a browser. The browser displays a page with a
link, as illustrated in Figure 125-1.

note
• The document.loca-
tion property reflects the
URL of the currently loaded
document. By changing the
value of this property to
another URL, you cause
the browser window to
redirect to the new URL
and display it.

258 Part 5

Task 125

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 258

Figure 125-1: Displaying a JavaScript-based link.

8. Click on the link. The window updates to display the second page, as
illustrated in Figure 125-2.

Figure 125-2: Directing the user to a new page using JavaScript.

Manipulating Browser Windows 259

Task 125

cross-reference
• The document object is

introduced and discussed
in Task 44.

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 259

Controlling Window Scrolling
from JavaScript

Controlling the scroll position of a document requires a different method
depending on the browser being used. In Internet Explorer, the scroll posi-

tion is controlled with the document.body.scrollTop property. The property
specifies the number of pixels down the document to place the scroll bar. The
property is set with the following:

document.body.scrollTop = number of pixels;

In Netscape, the scroll position is similarly set in pixels, but the property that
controls this is the window.pageYOffset property:

window.pageYOffset = number of pixels;

To illustrate this, the following steps show how to automatically scroll down the
page by 200 pixels once the page loads:

1. In a script in the header of a new document, create a function named
scrollDocument that takes no arguments:

function scrollDocument() {

}

2. In the function statement, use an if statement to test if the
document.all object exists:

if (document.all) {

}

3. If the browser is Internet Explorer, set
document.body.scrollTop to 200 pixels:

if (document.all) {

document.body.scrollTop = 200;

}

4. If the browser is not Internet Explorer, set window.pageYOffset
to 200 pixels, so that the final function looks like the following:

if (document.all) {

document.body.scrollTop = 200;

} else {

window.pageYOffset = 200;

}

5. In the body tag, use the onLoad event handler to call the
scrollDocument function:

<body onLoad=”scrollDocument();”>

notes
• Using JavaScript, it is pos-

sible to control the vertical
scroll position. That is, you
can control which portion
of a long document is visi-
ble in the current window.

• As an example of control-
ling the scroll position, con-
sider the case where the
page is 1000 pixels deep.
In this case, setting
document.body.
scrollTop to 500 would
scroll to halfway through
the document.

• The document.all
object exists in Internet
Explorer but not in
Netscape. Testing for the
existence of the object is a
quick, easy way to see if
the user’s browser is
Internet Explorer.

• In an if statement, you
can test for the existence of
an object simply by making
the conditional expression
the name of the object.

260 Part 5

Task 126

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 260

6. In the body of the document, place your page content; there should
be sufficient content to not fit in a single browser screen. The final
page should look like Listing 126-1.

<html>

<head>

<script language=”JavaScript”>

function scrollDocument() {

if (document.all) {

document.body.scrollTop = 200;

} else {

window.pageYOffset = 200;

}

}

</script>

</head>

<body onLoad=”scrollDocument();”>

<p>

Put lots of text here.

Put lots of text here.

Put lots of text here.

etc.

</p>

</body>

</html>

Listing 126-1: Automatically scrolling a document.

7. Save the file and open it in a browser. The page should display and
automatically jump down by 200 pixels, as shown in Figure 126-1.

Figure 126-1: Scrolling down 200 pixels on loading.

Manipulating Browser Windows 261

Task 126

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 261

Opening a Full-Screen Window
in Internet Explorer

Internet Explorer supports some interesting additional properties you can use
when opening new windows with the window.open method. One such prop-

erty allows for the creation of a full-screen window.

Typically, when you open a window with window.open, the new window is the
same size as the window that opened it and, at a minimum, has a title bar. When
you open a full-size window, it will have no window controls except scroll bars if
needed and will fill the entire display.

To create a full-size window in Internet Explorer, you need to use the
fullScreen property when opening the window:

window.open(“URL”,”window name”,”fullScreen=yes”);

Unlike other window.open properties thath work in Internet Explorer and
Netscape, this property is available only in Internet Explorer browsers.

This task illustrates the use of the fullScreen property by creating a page with
a link in it that the user can use to open a full-screen window:

1. Create a new HTML document.

2. In the body of the document, create a link that will be used for open-
ing the full-screen window:

<body>

Open a full-screen window

</body>

3. In the onClick event handler of the a tag, call the window.open
method to open the new window. Make sure you specify the
fullScreen property for the window:

<body>

<a href=”#” Æ

onClick=”window.open(‘http://www.juxta.com/’,’newWindowÆ

’,’fullScreen=yes’);”>Open a full-screen window

</body>

4. Save the file and close it.

5. Open the file in Internet Explorer. A window with a link appears, as
in Figure 127-1.

note
• This task only works in

Internet Explorer. The win-
dow will open in Netscape
but will not display the win-
dow normally.

262 Part 5

Task 127

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 262

Figure 127-1: Displaying a link to open a full-screen window.

6. Click on the link, and the new full-screen window displays, as in
Figure 127-2. You can close the new window with Alt+F4.

Figure 127-2: Opening a full-screen window.

Manipulating Browser Windows 263

Task 127

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 263

Handling the Parent-Child
Relationship of Windows

When the window.open method is used to open a new window from
JavaScript, a relationship exists between the original window and the new

window so that it is possible to refer to both windows from within JavaScript.

To do this, simply assign the object returned from the window.open method to
a variable:

var newWindow = window.open(URL,window name);

Once this is done, newWindow refers to the window object for the new window.

At the same time, in the new window the window.opener property references
the window object of the original window where window.open was called.

To illustrate this, the following example opens a new window from the first page
and then provides links so that you can close the new window from the original
window or close the original window from the new window:

1. In a script block in the header of a new document, open the second
document in a new window and assign the object that is returned to
the newWindow object. The final script looks like this:

<script language=”JavaScript”>

var newWindow = window.open(“128a.html”,”newWindow”);

</script>

2. In the body of the document, create a link for closing the new
window:

Close the new window

3. In the onClick event handler for the link, call the close method of
the newWindow object:

Close the new Æ

window

4. Save the file and close it.

5. In a second new file, create a link in the body for closing the original
window:

Close the original window

note
• The principle in this task is

straightforward. First, con-
sider the original window
where the window.open
method is called. This
method returns a window
object that can be stored in
a variable and then used to
reference the new window
from JavaScript code in the
original window.

264 Part 5

Task 128

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 264

6. In the onClick event handler for the link, call the close method of
the window.opener object:

Close the Æ

original window

7. Save the file at the location specified in the window.open method in
Step 2.

8. Open the first file in the browser. The second new window automati-
cally opens. The first window contains a link to close the new win-
dow, as in Figure 128-1. The second window contains a link to close
the original window, as in Figure 128-2.

Figure 128-1: The original window.

Figure 128-2: The new window.

9. Click on the link in the first window, and the new window closes.
Click on the link in the new window, and the original window closes.

Manipulating Browser Windows 265

Task 128

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 265

Updating One Window’s Contents
from Another

A s mentioned in Task 128, when the window.open method is used to open
a new window from JavaScript, a relationship exists between the original

window and the new window so that it is possible to refer to both windows from
within JavaScript.

For instance, it is possible for the original window, where the window.open
method is called, to access the window object for the new window. This is made
possible because the method returns a window object that can be stored in a
variable and then used to reference the new window from JavaScript code in
the original window. To do this, simply assign the object returned from the
window.open method to a variable:

var newWindow = window.open(URL,window name);

This task illustrates how to open a new window with no page loaded and then to
populate that window with content that is all created by JavaScript code in the
original window.

1. In the header of a new HTML document, create a script block with
opening and closing script tags:

<script language=”JavaScript”>

</script>

2. In the script, open a new window with no page loaded initially and
store the object returned in the newWindow variable:

var newWindow = window.open(“”,”newWindow”);

3. Open a new document stream in the new window with the
document.open method:

newWindow.document.open();

4. Output the desired content to the new window with the document.
write method:

newWindow.document.write(“This is a new window”);

5. Close the document stream in the new window with the document.
close method. The final script should look like Listing 129-1.

266 Part 5

Task 129

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 266

<head>

<script language=”JavaScript”>

var newWindow = window.open(“”,”newWindow”);

newWindow.document.open();

newWindow.document.write(“This is a new window”);

newWIndow.document.close();

</script>

</head>

<body>

This is the original window.

</body>

Listing 129-1: Writing a document stream to a new window.

6. Save the file and close it.

7. Load the file in a browser. The new window automatically opens, and
the text specified in the JavaScript code is displayed in the new win-
dow, as illustrated in Figure 129-1.

Figure 129-1: The new window’s content comes from JavaScript in the original window.

Manipulating Browser Windows 267

Task 129

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 267

Accessing a Form in Another
Browser Window

When you are opening a new window in JavaScript, it is possible for the
original window, where the window.open method is called, to access the

window object for the new window. To do this, simply assign the object returned
from the window.open method to a variable:

var newWindow = window.open(URL,window name);

Using this new object, you can access any part of the window or document in the
new window just as you would access the original window or document.

This task illustrates how to open a new window containing a form and then pro-
vide a link in the original window, which displays the content of a field in the
form in a dialog box:

1. In the body of a new HTML document, create a form and name the
form myForm with the name attribute of the form tag:

<form name=”myForm”>

</form>

2. In the form, create a text field and name the field myField:

<form name=”myForm”>

<input type=”text” name=”myField”>

</form>

3. Save the file and close it.

4. In another new HTML file, create a script in the header of the file:

<script language=”JavaScript”>

</script>

5. In the script, use the window.open method to open the previous
document in a new window; make sure to specify the URL for the
file created in the previous steps and assign the object returned to the
newWindow variable:

<script language=”JavaScript”>

var newWindow = window.open(“130a.html”,”newWindow”);

</script>

6. In the body of the document, create a link for accessing the value of
the form field in the new window:

Check Form Field in New Window

notes
• Accessing the window

object for a new window is
made possible because the
window.open method
returns a window object
that can be stored in a
variable and then used to
reference the new window
from JavaScript code in the
original window.

• The value of a form text
field is contained in the
value property of the
field’s object. Hence,
the reference to
myField.value here.

268 Part 5

Task 130

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 268

7. Use the onClick event handler of the a tag to call the
window.alert method:

Check Form Field Æ

in New Window

8. As the value to display in the alert dialog box, provide the value of
the myField text field in the myForm form in the new window, so
that the final page looks like this:

<a href=”#” Æ

onClick=”window.alert(newWindow.document.myForm.myField.Æ

value);”>Check Form Field in New Window

<head>

<script language=”JavaScript”>

var newWindow = Æ

window.open(“130a.html”,”newWindow”);

</script>

</head>

<body>

<a href=”#” Æ

onClick=”window.alert(newWindow.document.myForm.myField.Æ

value);”>Check Form Field in New Window

</body>

9. Save the file and open it in a browser. The first window containing
the link is displayed and the second window containing the form
automatically opens.

10. Enter some text in the form in the new window, and then click on the
link in the new window. An alert dialog box is displayed, containing
the text you entered in the text field.

Manipulating Browser Windows 269

Task 130

cross-reference
• As mentioned in Task 128,

when the window.open
method is used to open a
new window from
JavaScript, a relationship
exists between the original
window and the new win-
dow, so that it is possible
to refer to both windows
from within JavaScript.

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 269

Closing a Window in JavaScript

E very browser window has a window object associated with it. As mentioned
in Task 114, this object offers properties that allow you to access frames in a

window, access the window’s name, manipulate text in the status bar, and check
the open or closed state of the window. The methods allow you to display a vari-
ety of dialog boxes, as well as to open new windows and close open windows.

Among the features of the window object are the following:

• Creating alert dialog boxes

• Creating confirmation dialog boxes

• Creating dialog boxes that prompt the user to enter information

• Opening pages in new windows

• Determining window sizes

• Controlling scrolling of the document displayed in the window

• Scheduling the execution of functions

The window object can be referred to in several ways:

• Using the keyword window or self to refer to the current window
where the JavaScript code is executing. For instance, window.alert
and self.alert refer to the same method.

• Using the object name for another open window. For instance, if a
window is associated with an object named myWindow, myWindow.
alert would refer to the alert method in that window.

Closing a window is straightforward; just call the close method. For instance:

self.close();

This task illustrates this by creating a page that simply closes the current window
as soon as the page is opened:

1. Create a new HTML document.

2. In the header of the document, create a script block with opening
and closing script tags:

<script lanauge=”JavaScript”>

</script>

3. In the script call the window.close method. The page should look
like Listing 131-1.

270 Part 5

Task 131

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 270

<head>

<script lanauge=”JavaScript”>

window.close();

</script>

</head>

<body>

This page will be closed before you see this.

</body>

Listing 131-1: Closing a window as soon as the document loads.

4. Save the file and close it.

5. Open the file in a browser window; the window closes immediately.

Manipulating Browser Windows 271

Task 131

cross-reference
• The various types of dialog

boxes are discussed in
Tasks 25, 26, and 117.

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 271

Closing a Window from a Link

E very browser window has a window object associated with it. As mentioned
in Task 114, this object offers properties that allow you to access frames in a

window, access the window’s name, manipulate text in the status bar, and check
the open or closed state of the window. The methods allow you to display a vari-
ety of dialog boxes, as well as to open new windows and close open windows.

Among the features of the window object are the following:

• Creating alert dialog boxes

• Creating confirmation dialog boxes

• Creating dialog boxes that prompt the user to enter information

• Opening pages in new windows

• Determining window sizes

• Controlling scrolling of the document displayed in the window

• Scheduling the execution of functions

The window object can be referred to in several ways:

• Using the keyword window or self to refer to the current window
where the JavaScript code is executing. For instance, window.alert
and self.alert refer to the same method.

• Using the object name for another open window. For instance, if a
window is associated with an object named myWindow, myWindow.
alert would refer to the alert method in that window.

Sometimes Web pages include a link on the page so that the user can close the
page by clicking on the link, as opposed to using the window’s own controls for
closing the window. This is especially common in cases where a Web site pops up
a new window for some specific purpose and wants to allow the user to close that
new window easily. Figure 132-1 illustrates a window with this type of link from
the Internet.

Figure 132-1: Offering a close link inside a window.

272 Part 5

Task 132

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 272

Providing such a “close window” link is easy to do using a javascript: URL
in a link to call the window.close method:

The following steps show how to create a simple page with a link to close the
window:

1. Create a new HTML document.

2. In the body of the document, create a link for closing the window.

3. Use a javascript: URL in the href attribute of the a tag to call
the window.close method when the user clicks on the link, so that
the final page looks like Listing 132-1.

<body>

Close this Æ

Window

</body>

Listing 132-1: Closing a window from a link.

4. Save the file and open it in a browser. A page containing a link like
the one in Figure 132-2 is displayed.

Figure 132-2: Offering a close link inside a window.

5. Click on the link and the window closes.

Manipulating Browser Windows 273

Task 132

cross-reference
• The scheduling of auto-

matic execution of a func-
tion is discussed in Tasks
38, 39, and 40.

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 273

Creating Dependent Windows
in Netscape

Netscape 7 (and Mozilla, on which it is built) supports some interesting addi-
tional properties you can use when opening new windows with the window.

open method. One such property allows for the creation of dependent windows.

Typically, when you open a window with window.open, the new window is
essentially independent of the window that opened it. You can minimize the win-
dows independently, and more important, you can close windows independently.
For instance, if you close the original window that issued the window.open
command, the new window continues to stay open.

Things work differently with dependent windows, however. When you open
a dependent window, its state is tied to the state of the window that opened it:
Minimize the original window and the new window minimizes with it; close the
original window and the new window closes with it.

Dependent windows allow you to create multiwindow applications in JavaScript
in much the same way that traditional Windows or Macintosh applications may
have multiple associated windows. You could use dependent windows to display
control panels, data entry forms, and other tools associated with an application
running in the main window, and then close them all by closing the main window.

Of course, you need to consider the fact that dependent windows don’t exist in
Internet Explorer, so this solution will only be of use in Netscape browsers.

To create a dependent window in Netscape, you need to use the dependent prop-
erty when opening the window:

window.open(“URL”,”window name”,”dependent”);

This task illustrates the principle by creating a page with a link in it that the user
can use to create a dependent window:

1. Create a new HTML document.

2. In the body of the document create a link that will be used for open-
ing the dependent window:

Open a dependent window

3. In the onClick event handler of the a tag, call the window.open
method to open the new window. Make sure you specify the
dependent property for the window:

<a href=”#” Æ

onClick=”window.open(‘http://www.juxta.com/’,’newWindowÆ

’,’width=300,height=300,dependent’);”>Open a dependent Æ

window

note
• This task only works in

Netscape 7. The window
will open in Internet
Explorer but will not display
the dependent properties
described here.

274 Part 5

Task 133

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 274

4. Save the file and close it.

5. Open the file in Netscape. A window with a link appears, as in Figure
133-1. Click on the link, and the new window displays, as in Figure
133-2. Minimize the original window, and you see the new window
minimize with it. Close the original window, and you see the new
window close with it.

Figure 133-1: Displaying a link to open a dependent window.

Figure 133-2: Opening a dependent window.

Manipulating Browser Windows 275

Task 133

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 275

Sizing a Window to Its Contents
in Netscape

Netscape 7 (and Mozilla, on which it is built) supports some interesting addi-
tional methods you can use with windows. One such method allows for the

resizing of windows based on the content they contain.

Using this capability, you can reduce the size of the window to the content it
contains when you can’t be sure how much space the content will take up until it
renders. This is useful when you want content to be perfectly framed in the win-
dow but can’t predict, for instance, the size of fonts the user may be using in his
or her browser.

Of course, you need to consider the fact that this window-resizing capability
doesn’t exist in Internet Explorer, so this solution will only be of use in Netscape
browsers.

To resize window in this way with Netscape, use the sizeToContent method of
the window object:

window.sizeToContent();

This task illustrates this method by creating a page that includes a link the user
can use to call the sizeToContent method:

1. Create a new HTML document.

2. In the body of the document, create a link that will be used for resiz-
ing the window:

 Resize window to the content

3. In the onClick event handler of the a tag, call the
window.sizeToContent method to resize the window:

Resize Æ

window to the content

4. Add any content to be displayed in the document. The final docu-
ment could look like this:

<body>

Resize Æ

window to the content

<p>

Put some content here for testing.

</body>

note
• This task only works in

Netscape 7.

276 Part 5

Task 134

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 276

5. Save the file and close it.

6. Open the file in Netscape. A window with a link appears, as shown in
Figure 134-1. Click on the link and the window resizes to the con-
tent, as in Figure 134-2.

Figure 134-1: Displaying a link to resize the window.

Figure 134-2: Resizing the window to its content.

Manipulating Browser Windows 277

Task 134

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 277

Loading Pages into Frames

HTML offers a concept called frames that allows you to divide the available
space in a given window into subpanels into which you can load different

documents.

To create frames, you use the frameset and frame tags:

<frameset rows=”50%,*”>

<frame src=”frame1.html”>

<frame src=”frame2.html”>

</frameset>

This creates a window with two horizontal frames of equal size.

The window object provides a way for you to access these frames in JavaScript.
Each frame is associated with an object. These objects are in the window.
frames array, so that the first array specified in your frameset code is
window.frames[0], the second is window.frames[1], and so on.

In addition, frames can be named using the name attribute of the frame tag, as
in the following:

<frameset rows=”50%,*”>

<frame src=”frame1.html” name=”frame1”>

<frame src=”frame2.html” name=”frame2”>

</frameset>

Here, the frame objects can be referenced as window.frame1 and
window.frame2.

The following example builds a frameset with two columns in a window. The
right-hand frame is initially blank, while the left-hand frame contains JavaScript
code to load a new document in the right-hand frame.

1. Create a new HTML document to hold the frameset, and create a
frameset block with the cols attribute set to create two equal-
sized columns:

<frameset cols=”50%,*”>

2. In the frameset, create a frame tag to load the left-hand frame with
the document containing the code to load a new document in the
right-hand frame:

<frame name=”frame1” src=”135a.html”>

notes
• Frames often used for navi-

gation purposes in which a
navigational menu can be
loaded into a frame at the
left or top of a window and
the other frame can be
used for page content. In
this way, the navigational
menu never needs to be
reloaded and only the page
content frame updates as
users make selections in
the menu.

• The rows attribute of the
frameset tag indicates
the window is being divided
into rows. The value of the
attribute is a comma-sepa-
rated list of row sizes speci-
fied either as a percentage
of the window size or in pix-
els. The * indicates that the
frame in question can take
up the remainder of the
window.

• The frame object is much
like a window object, and
a frame can contain the
same objects as a window.
For instance, just as a
window object can con-
tain a document and
document object, so
can a frame object.

• The parent.frame2.
document.location
reference works like this:
From inside the current
frame, parent refers to
the window object of the
window that contains the
frameset. Within that win-
dow object, frame2
refers to the right-hand
frame, and within that
document.location is
the URL of the document
loaded in that frame.

278 Part 5

Task 135

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 278

3. In the frameset, create a second frame tag to load a blank page in the
right-hand frame, so that the entire document looks like this:

<frameset cols=”50%,*”>

<frame name=”frame1” src=”135a.html”>

<frame name=”frame2” src=”about:blank”>

</frameset>

4. Save the file and close it. Create a new HTML document, and in the
header, create a script block.

5. In the script block, set the document location of the right-hand
frame to the URL of the new document to load in the right-hand
frame:

parent.frame2.document.location = “135b.html”;

6. Provide any relevant text in the body of the document and save the
file. The page should look like Listing 135-1.

<head>

<script language=”JavaScript”>

parent.frame2.document.location = “135b.html”;

</script>

</head>

<body>

This is frame 1.

</body>

Listing 135-1: Accessing the right-hand frame from the left frame.

7. Save the file in the correct location for the URL specified in the left
frame in Step 3 earlier and close it. Open a new HTML file, and place
the content to be loaded in the right-hand frame, as in Listing 135-2.

<body>

This is frame 2.

</body>

Listing 135-2: The final content of the right-hand frame.

8. Save the file so that it is in the correct location for the URL specified
in Step 5 earlier and close it.

9. Load the frameset file. The page loads and the code in the left-hand
frame loads the second file into the right-hand frame, so that the
final window looks like Figure 135-1.

Figure 135-1: Loading a frame with JavaScript.

Manipulating Browser Windows 279

Task 135

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 279

Updating One Frame from
Another Frame

A s outlined in Task 135, HTML offers a concept called frames that allows you
to divide the available space in a given window into subpanels into which

you can load different documents. To create frames, you use the frameset and
frame tags:

<frameset rows=”50%,*”>

<frame src=”frame1.html”>

<frame src=”frame2.html”>

</frameset>

This creates a window with two horizontal frames of equal size.

The window object provides a way for you to access these frames in JavaScript.
Each frame is associated with an object. These objects are in the window.frames
array, so that the first array specified in your frameset code is window.
frames[0], the second is window.frames[1], and so on. In addition, frames
can be named using the name attribute of the frame tag, as in the following:

<frameset rows=”50%,*”>

<frame src=”frame1.html” name=”frame1”>

<frame src=”frame2.html” name=”frame2”>

</frameset>

Here, the frame objects can be referenced as window.frame1 and
window.frame2.

The following example builds a frameset with two columns in a window. The
right-hand frame is initially blank, while the left-hand frame contains JavaScript
code to write content directly into the right-hand frame.

1. Create a new HTML document to hold the frameset, and create a
frameset block with the cols attribute set to create two equal-
sized columns:

<frameset cols=”50%,*”>

2. In the frameset, create a frame tag to load the left-hand frame with
the document that will write output to the right-hand frame:

<frame name=”frame1” src=”136a.html”>

3. In the frameset, create a second frame tag to load a blank page in the
right-hand frame, so that the entire document looks like this:

<frameset cols=”50%,*”>

<frame name=”frame1” src=”136a.html”>

<frame name=”frame2” src=”about:blank”>

</frameset>

notes
• The rows attribute of the
frameset tag indicates
the window is being divided
into rows. The value of the
attribute is a comma-sepa-
rated list of row sizes speci-
fied either as a percentage
of the window size or in pix-
els. The * indicates that the
frame in question can take
up the remainder of the
window.

• The frame object is much
like a window object, and
a frame can contain the
same objects as a window.
For instance, just as a
window object can contain
a document and docu-
ment object, so can a
frame object.

• The parent.frame2.
document.open refer-
ence works like this: From
inside the current frame,
parent refers to the
window object of the win-
dow that contains the
frameset. Within that
window object, frame2
refers to the right frame,
and within that, docu-
ment.open is the method
used to open a document
output stream in the frame.

280 Part 5

Task 136

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 280

4. Save the file and close it. Create a new HTML document, and in the
header, create a script block.

5. In the script block, open a document output stream in the right-hand
frame:

parent.frame2.document.open();

6. Using the document.write method, output any desired content for
the second window:

parent.frame2.document.write(“This is frame 2”);

7. Close the document stream, so that the script looks like this:

<script language=”JavaScript”>

parent.frame2.document.open();

parent.frame2.document.write(“This is frame 2”);

parent.frame2.document.close();

</script>

8. In the body of the document, place any content for the left-hand
frame. The final page should look like Listing 136-1.

<head>

<script language=”JavaScript”>

parent.frame2.document.open();

parent.frame2.document.write(“This is frame 2”);

parent.frame2.document.close();

</script>

</head>

<body>

This is frame 1.

</body>

Listing 136-1: Writing output to another frame.

9. Save the file in the location specified for the left-hand frame in Step 3
and close it.

10. Load the frameset in a browser. The right-hand frame initially loads
blank, and then immediately the left frame writes output into the
frame, so that the final window looks like Figure 136-1.

Figure 136-1: Writing output into another frame.

Manipulating Browser Windows 281

Task 136

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 281

Sharing JavaScript Code
between Frames

A s outlined in Task 135, HTML offers a concept called frames that allows you
to divide the available space in a given window into subpanels into which

you can load different documents.

To create frames, you use the frameset and frame tags:

<frameset rows=”50%,*”>

<frame src=”frame1.html”>

<frame src=”frame2.html”>

</frameset>

This creates a window with two horizontal frames of equal size.

The window object provides a way for you to access these frames in JavaScript.
Each frame is associated with an object. These objects are in the window.frames
array, so that the first array specified in your frameset code is window.
frames[0], the second is window.frames[1], and so on.

In addition, frames can be named using the name attribute of the frame tag, as
in the following:

<frameset rows=”50%,*”>

<frame src=”frame1.html” name=”frame1”>

<frame src=”frame2.html” name=”frame2”>

</frameset>

Here, the frame objects can be referenced as window.frame1 and
window.frame2.

The following example builds a frameset with two columns in a window. The
left-hand frame contains JavaScript code to display a dialog box. The right-hand
frame calls the code in the left-hand frame in order to display the dialog box.

1. Create a new HTML document to hold the frameset, and create a
frameset block with the cols attribute set to create two equal-
sized columns:

<frameset cols=”50%,*”>

2. In the frameset, create a frame tag to load the left-hand frame with
the document containing the JavaScript code to display a dialog box:

<frame name=”frame1” src=”137a.html”>

notes
• The rows attribute of the
frameset tag indicates
the window is being divided
into rows. The value of the
attribute is a comma-sepa-
rated list of row sizes speci-
fied either as a percentage
of the window size or in pix-
els. The * indicates that the
frame in question can take
up the remainder of the
window.

• The frame object is much
like a window object, and
a frame can contain the
same objects as a window.
For instance, just as a
window object can
contain a document and
document object, so
can a frame object.

• The parent.frame1
.doAlert reference
works like this: From inside
the current frame, parent
refers to the window
object of the window, which
contains the frameset.
Within that window
object, frame1 refers to
the right frame, and within
that, doAlert is the func-
tion in the script block of
that document.

282 Part 5

Task 137

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 282

3. In the frameset, create a second frame tag to load the document that
calls the dialog box code in the right-hand frame, so that the entire
document looks like this:

<frameset cols=”50%,*”>

<frame name=”frame1” src=”137a.html”>

<frame name=”frame2” src=”137b.html”>

</frameset>

4. Save the file and close it. Create a new HTML document, and in the
header, create a script block.

5. In the script block, create a function called doAlert that takes no
arguments:

function doAlert() {

}

6. In the function, display a dialog box with your preferred message:

function doAlert() {

window.alert(“Frame 2 is loaded”);

}

7. In the body of the document, place any output desired for the left
frame, and save the file in the location specified for the left-hand
frame in Step 2.

8. In a new HTML document, use the onLoad event handler of the
body tag to call the doAlert method in the left-hand frame:

<body onLoad=”parent.frame1.doAlert();”>

This is frame 2.

</body>

9. Save the file in the location indicated for the right-hand frame in
Step 2 and close it.

10. Open the frameset. The two frames load as illustrated in Figure 137-1,
and then the dialog box shown in Figure 137-2 appears immediately.

Figure 137-1: Two frames.

Figure 137-2: Calling between frames to display a dialog box.

Manipulating Browser Windows 283

Task 137

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 283

Using Frames to Store
Pseudo-Persistent Data

Normally, if you store a variable using JavaScript code in a given document in
a frame, when the user leaves that document and navigates to another in the

frame, the variables are lost.

However, consider a frameset with two frames. In this case, there are three docu-
ments: the frameset document and the two documents loaded in each frame. No
matter how the user navigates within the two documents, the frameset document
continues to exist. Referring to variables in the frameset from code in the individ-
ual frames is straightforward:

parent.variableName

This example illustrates the use of persistent variables in the frameset document
by creating a frameset in which you define a variable. In the left-hand frame, you
display a document that simply outputs the persistent variable using JavaScript.
In the right-hand frame, you display a document with a link that will take the
user to another document that outputs the persistent variable:

1. Create a new HTML document to hold the frameset. Start the
document with a script block, and set a variable named
persistentVariable with the text of your choice in the script:

<script language=”JavaScript”>

var persistentVariable = “This is a persistent value”;

</script>

2. Following the script, create a frameset with two vertical frames. Load
a document in the left-hand frame and a document in the right-hand
frame; you will create those documents later. The final page looks
like this:

<script language=”JavaScript”>

var persistentVariable = “This is a persistent value”;

</script>

<frameset cols=”50%,*”>

<frame name=”frame1” src=”138a.html”>

<frame name=”frame2” src=”138b.html”>

</frameset>

3. Save the file and close it. Create a new HTML file for loading in the
left frame. In the body of the document, create a script and use the
document.write method to output the value of
persistentVariable in the frameset:

<body>

This is frame 1. The persistent variable contains:

<p>

notes
• When you are working with

frames, it is often useful to
be able to store informa-
tion in JavaScript variables
in such a way that the vari-
ables continue to be avail-
able even as users navigate
between documents in any
of the frames in the window.

• Luckily with frames, you
have a document that con-
tinues to exist even when
the user navigates between
documents in the individ-
ual frames. That persistent
document is the frameset
document itself.

• Since the frameset
document is an HTML
document, you can use
JavaScript in that docu-
ment like any other and,
therefore, can create vari-
ables there that will not be
affected by navigation
within the individual
frames.

284 Part 5

Task 138

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 284

<script language=”JavaScript”>

document.write(parent.persistentVariable);

</script>

</body>

4. Save the file in the location specified in the frameset for the left-hand
frame and close it. Create a new HTML file for initial loading in the
right-hand frame. The body of the document should simply contain a
link to a third document:

<body>

This is frame 2.

Click here to load a new Æ

document in this frame

</body>

5. Save the file in the location specified in the frameset for the right-
hand frame and close it. Create a new HTML for to be displayed
when the user clicks on the link in the right-hand frame. The body of
the document should look similar to the document loaded in the left-
hand frame and display the persistent variable using the
document.write method:

<body>

This is a new document in frame 2. The persistent Æ

variable contains:

<p>

<script language=”JavaScript”>

document.write(parent.persistentVariable);

</script>

</body>

6. Save the file in the location indicated in the link in Step 4, and then
close the file.

7. Open the frameset in a browser. Initially, the persistent variable is
displayed in the left-hand frame and a link appears in the right-hand
frame. When the user clicks on the link in the right-hand frame, the
value of the variable will be displayed there as well, as illustrated in
Figure 138-1.

Figure 138-1: The variable is still accessible after navigating in one of the frames.

Manipulating Browser Windows 285

Task 138

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 285

Using One Frame for Your
Main JavaScript Code

A s outlined in Task 135, HTML offers a concept called frames that allows you
to divide the available space in a given window into subpanels into which

you can load different documents. Referring to functions in documents from
other frames is easy:

parent.frameName.variableName

This example illustrates two frames. The left-hand frame contains two JavaScript
functions, as well as links so the user can call the functions. The right-hand frame
just contains two links so the user can call the functions from there as well.

1. Create a new HTML document to hold the frameset, and create a
frameset block with the cols attribute set to create two equal-
sized columns:

<frameset cols=”50%,*”>

2. In the frameset, create a frame tag to load the left-hand frame with
the document containing the JavaScript code containing the functions:

<frame name=”frame1” src=”139a.html”>

3. In the frameset, create a second frame tag to load the document for
the right-hand frame:

<frameset cols=”50%,*”>

<frame name=”frame1” src=”139a.html”>

<frame name=”frame2” src=”139b.html”>

</frameset>

4. Save the file and close it. Create a new HTML document, and in the
header, create a script block.

5. In the script block, create a function called firstFunction that
takes no arguments.

6. In the function, use window.alert to display to users that they have
called the first function:

function firstFunction() {

window.alert(“This is the first function”);

}

7. Create a second function called secondFunction that is similar to
the first:

function secondFunction() {

window.alert(“This is the second function”);

}

notes
• When you are working with

frames, it is often useful to
be able to consolidate all
your JavaScript functions in
one frame that will not
change so they are easily
accessible at all times. For
instance, it is not uncom-
mon to place all the
JavaScript functions in the
same frame as the naviga-
tion menu, which typically
will not change while the
user is at the site.

• The parent.frame1.
functionName reference
works like this: From inside
the current frame, parent
refers to the window
object of the window, which
contains the frameset.
Within that window object,
frame1 refers to the left-
hand frame, and within
that, functionName is
the function to invoke.

286 Part 5

Task 139

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 286

8. In the body of the document, create links that use the onClick event
handler to call the functions, and then save the file in the location
specified in the frameset for the left-hand frame:

<body>

First Æ

Function

<p>

Second Æ

Function

</body>

9. Create a new HTML file that simply contains two links that use the
onClick event handler to call the two functions in the left-hand
frame, and then save the file in the location specified for the right-
hand frame in the frameset:

<body>

<a href=”#” Æ

onClick=”parent.frame1.firstFunction();”>First Æ

Function

<p>

<a href=”#” Æ

onClick=”parent.frame1.secondFunction();”>Second Æ

Function

</body>

10. Open the frameset in the browser. Links appear in both frames, as
illustrated in Figure 139-1. Click on the first link in the left-hand
frame, and the relevant dialog box appears, as shown in Figure 139-2.
Similarly, click on the second link in the right-hand frame, and the
dialog box from the second function appears.

Figure 139-1: Displaying links to call functions in the left-hand frame.

Figure 139-2: Calling a function in the left frame from a link in the left-hand frame.

Manipulating Browser Windows 287

Task 139

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 287

Using a Hidden Frame for
Your JavaScript Code

Sometimes you will want to use an additional “hidden” frame to store a docu-
ment containing nothing but your JavaScript code. Creating a hidden frame

is easy. Simply specify 0 pixels as the width or height of the frame in the cols or
rows attribute of the frameset tag:

<frameset cols=”0,50%,*”>

<frame ...>

<frame ...>

<frame ...>

</frameset>

In this example, the first frame is effectively hidden.

This task is a variation of Task 139 in that the JavaScript functions are moved to
a third hidden frame and the left-hand and right-hand frames continue to offer
links to allow the user to call the functions:

1. Create a new HTML document to hold the frameset, and create a
frameset block with the cols attribute set to create two equal-
sized columns:

<frameset cols=”0,50%,*”>

2. In the frameset, create a frame tag to load the hidden frame with the
document containing the JavaScript code containing the functions:

<frame name=”codeFrame” src=”140code.html”>

3. In the frameset, create second and third frame tags to load the docu-
ments for the visible left-hand and right-hand frames:

<frameset cols=”0,50%,*”>

<frame name=”codeFrame” src=”140code.html”>

<frame name=”frame1” src=”140a.html”>

<frame name=”frame2” src=”140b.html”>

</frameset>

4. Save the file and close it. Create a new HTML document, and in the
header, create a script block.

5. In the script block, create a function called firstFunction that
takes no arguments.

6. In the function, use window.alert to display to users that they have
called the first function:

function firstFunction() {

window.alert(“This is the first function”);

}

notes
• As mentioned in Task 139,

at times you will want to
place all your JavaScript
code in one frame and
then access it from all your
frames. However, if you
cannot be certain a user
will not navigate out of the
document in the frame
containing the JavaScript
code, you could lose
access to your JavaScript
code.

• The parent.
codeFrame.function
Name reference works like
this: From inside the cur-
rent frame, parent refers
to the window object of
the window that contains
the frameset. Within
that window object,
codeFrame refers to the
hidden frame, and within
that, functionName is
the function to invoke.

288 Part 5

Task 140

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 288

7. Create a second function called secondFunction that is similar to
the first. Save the file in the location indicated in the frameset for the
code document:

function secondFunction() {

window.alert(“This is the second function”);

}

8. Create a new document for the left-hand frame, and in the body of
the document, create links that use the onClick event handler to
call the functions, and then save the file in the location specified in
the frameset for the visible left-hand frame:

<body>

<a href=”#” Æ

onClick=”onClick=”parent.codeFrame.firstFunction();”>Æ

First Function

<p>

<a href=”#” Æ

onClick=”onClick=”parent.codeFrame.secondFunction();”>Æ

Second Function

</body>

9. Create another new HTML file that looks the same as the document
for the left-hand frame, and then save the file in the location specified
for the visible right-hand frame in the frameset.

10. Open the frameset in the browser. Links appear in both frames, as
illustrated in Figure 140-1. Click on the first link in the left-hand
frame, and the relevant dialog box appears, as shown in Figure 140-2.
Similarly, click on the second link in the right-hand frame, and the
dialog box from the second function appears.

Figure 140-1: Displaying links to call functions in the hidden frame.

Figure 140-2: Calling a function in the hidden frame from a link in the left-hand frame.

Manipulating Browser Windows 289

Task 140

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 289

Working with Nested Frames

A ll the examples of frames in this part of the book have dealt with a single
layer of frames. That is, the window is either divided into rows or columns

and that’s it. But it is possible to nest framesets. For instance, start by considering
a simple frameset:

<frameset cols=”50%,*”>

<frame src=”frame1.html” name=”frame1”>

<frame src=”frame2.html” name=”frame2”>

</frameset>

This creates two simple vertical frames. But what if you wanted the right-hand
frame to be further divided into two horizontal frames? This could be done by
making frame2.html into a frameset itself:

<frameset rows=”50%,*”>

<frame src=”subframe1.html” name=”subframe1”>

<frame src=”subframe2.html” name=”subframe2”>

</frameset>

Once you start to nest framesets in this way, the job of cross-referencing between
frames using JavaScript is more complicated than you saw in simple one-level
framesets. For instance, to refer to subframe2 from frame1, you would use the
following:

parent.frame2.subframe2

This task illustrates the steps to create a nested frame layout like the one
described previously. In subframe2, you will place a function called doAlert,
and then you will provide a link in frame1 for the user to invoke that function.

1. Create a new document for the top-level frameset. In that document
create a frameset with two vertical frames named frame1 and
frame2:

<frameset cols=”50%,*”>

<frame src=”frame1.html” name=”frame1”>

<frame src=”frame2.html” name=”frame2”>

</frameset>

2. Save the file and close it.

3. Create a new document for frame1.html. In that document, place a
link in the body of the document that calls the doAlert function in
subframe2:

<body>

This is frame1.

<a href=”#” Æ

onClick=”parent.frame2.subframe2.doAlert();”>Click to Æ

see alert from subframe2.

</body>

290 Part 5

Task 141

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 290

4. Save the file and close it.

5. Create a new document for frame2.html. In that document, create
a frameset for the nested horizontal frames in the right-hand frame,
and name the frames subframe1 and subframe2:

<frameset rows=”50%,*”>

<frame src=”subframe1.html” name=”subframe1”>

<frame src=”subframe2.html” name=”subframe2”>

</frameset>

6. Save the file and close it.

7. Create a new document for subframe1.html, and include any con-
tent to display in that frame:

<body>

This is subframe1.

</body>

8. Save the file and close it.

9. Create a new document for subframe2.html. In the header of the
document, create a script block containing the function doAlert,
which displays an alert dialog box to the user indicating the frame
where it was executed:

<head>

<script language=”JavaScript”>

function doAlert() { window.alert(“This is Æ

subframe2.”); }

</script>

</head>

<body>

This is subframe2.

</body>

10. Save the file and close it. Open the top-level frameset in a browser,
and you will see the frame layout If the user clicks on the link in the
left-hand frame, he or she will see a dialog box like Figure 141-1.

Figure 141-1: Calling a function in a nested frame.

Manipulating Browser Windows 291

Task 141

tips
• There is really no theoreti-

cal limit to the number of
layers of nesting you can
do with frames. Practical
limits exist; for instance,
too many columns in a
small window would mean
that the columns would
become too narrow to dis-
play any content.

• If you have multiple levels
of nesting, you can extend
this syntax to parent.
parent.frameX.
subframeX.
subsubframeX, and so
on as the nesting gets
deeper and depending on
what frame you are making
the reference from and
what frame you are
referencing.

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 291

Updating Multiple Frames from a Link

If you have a frameset layout with multiple frames, you may want to allow
several frames to update when the user clicks on a link. In this case, it is not

possible to target two URLs to two frames at the same time using a simple link.
Instead, it becomes necessary to leverage JavaScript to load URLs into the frames
by setting the document.location property of each of the frames. This task
shows how to build a frameset with three horizontal frames. A link in the top
frame causes new documents to load in both of the bottom frames.

1. Create a new HTML document to hold the frameset, and create a
frameset block with the rows attribute set to create three rows:

<frameset cols=”10%,45%,45%”>

2. In the frameset, create three frame tags to load the three initial
documents; frame1 will contain the link and the others will just
contain content:

<frameset rows=”10%,45%,45%”>

<frame name=”frame1” src=”142a.html”>

<frame name=”frame2” src=”142b.html”>

<frame name=”frame3” src=”142c.html”>

</frameset>

3. Save the file and close it. Create a new HTML document, and in the
header, create a script block.

4. In the script block, create a function named twoLinks that takes no
arguments. In this function, set the document.location properties
for frame2 and frame3 to new documents:

function twoLinks() {

parent.frame2.document.location = “142bnew.html”;

parent.frame3.document.location = “142cnew.html”;

}

5. In the body of the document, create a link to call the twoLinks
function:

<body>

Update frame2 and Æ

frame3

</body>

6. Save the file in the location indicated for frame1 in the frameset ear-
lier. Next, create two simple HTML files for the initial documents
for frame2 and frame3. For instance, frame2’s document could
look like this:

<body>

This is frame 2.

</body>

7. Next, create two simple HTML files for the new documents for
frame2 and frame3. These are the documents that are loaded in the

notes
• Typically, if you want to use

a link in one frame to cause
a new document to load in
another frame, you use the
target attribute of the a
tag to specify the name of
the frame where the docu-
ment indicated in the URL
should load.

• frame1 will contain the
link, while frame2 and
frame3 will be the frames
that will be updated.

• The parent.frame2.
document.location
reference works like this:
From inside the current
frame, parent refers to
the window object of the
window that contains the
frameset. Within that
window object, frame2
refers to the right-hand
frame, and within that,
document.location is
the URL of the document
loaded in that frame.

• Make sure the documents
indicate the frame so you
can see what is happening.

292 Part 5

Task 142

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 292

twoLinks function discussed earlier. For instance, frame3’s docu-
ment could look like this:

<body>

This is a new document in frame3.

</body>

8. Load the frameset file. The page loads as shown in Figure 142-1.
Click on the link, and the two bottom frames update as shown in
Figure 142-2.

Figure 142-1: Three frames in a window.

Figure 142-2: Updating the two bottom frames from a link.

Manipulating Browser Windows 293

Task 142

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 293

Dynamically Creating Frames
in JavaScript

In the previous tasks dealing with frames, all the examples have statically defined
a frameset. This task shows that you can use JavaScript to create a frameset so

that, ultimately, you can make programmatic decisions about the layout and doc-
uments displayed in a frameset.

The principle is simple: In a script, use document.write to output the
frameset and frame tags, and if necessary, dynamically specify the value of
attributes when doing this. For instance, if the name of a document to display
in a frame is contained in a variable, you could output that frame’s tag with the
following:

document.write(“<frame src=’” + frameUrl + “‘>”);

The following steps illustrate creating a frameset in JavaScript that then displays
two simple HTML files in the frames:

1. Create a new document to hold the frameset code. In that document,
create a script block:

<script language=”JavaScript”>

2. In the script, open a new document output stream with
document.open:

document.open();

3. Use document.write to output the frameset code to the browser,
and close the stream with document.close, so the script looks like
Listing 143-1.

<script language=”JavaScript”>

document.open();

document.write(“<frameset cols=’50%,*’>”);

document.write(“<frame src=’143a.html’>”);

document.write(“<frame src=’143b.html’>”);

document.write(“</frameset>”);

document.close();

</script>

Listing 143-1: Creating a frameset using JavaScript.

4. Save the file and close it.

note
• Be careful in the use of

quotation marks when
outputting HTML with
document.write. If you
enclose the string being
output in double quotes,
then your attributes should
really use single quotes.
Otherwise, you need to
escape your double quotes
with backslashes (\”).

294 Part 5

Task 143

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 294

5. Create an HTML document for displaying in the left-hand frame:

<body>

This is frame 1.

</body>

6. Save the file in the location specified in the frameset for the left-hand
frame and close it.

7. Create an HTML document for displaying in the left-hand frame:

<body>

This is frame 2.

</body>

8. Save the file in the location specified in the frameset for the right-
hand frame and close it.

9. Open the frameset file in your browser, and you see the two docu-
ments loaded in the two frames, as illustrated in Figure 143-1.

Figure 143-1: Creating two frames in a script.

Manipulating Browser Windows 295

Task 143

tip
• This technique of dynami-

cally creating HTML from
within JavaScript is flexible
and not limited to frames
alone. Any HTML tag could
be dynamically delivered
so that its attributes can be
dynamically specified from
within JavaScript.

cross-reference
• The document.write

method and its use are dis-
cussed further in Task 9.

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 295

Dynamically Updating Frame Content

When working inside a document in a frame, you are essentially working in
exactly the same environment you would be working in if your document

was loaded straight into a window.

For instance, documents loaded into a window have a document object associ-
ated with them, and you access them with the following:

document.method()

or

document.property

Similarly, when a document is loaded in a frame, the document also has a docu-
ment object associated with it, and accessing it from code within that page is
exactly the same.

To illustrate this principle, this task shows how to load documents into two
frames. Each document has a link that invokes JavaScript to change the content
displayed in the frame using document.write.

1. Create a new HTML document to hold the frameset, and create a
frameset block with the cols attribute set to create two equal-
sized columns:

<frameset cols=”50%,*”>

2. In the frameset, create a frame tag to load the document for the left-
hand frame:

<frame name=”frame1” src=”144a.html”>

3. In the frameset, create a second frame tag to load the documents for
the right-hand frame:

<frameset cols=”50%,*”>

<frame name=”frame1” src=”144a.html”>

<frame name=”frame2” src=”144b.html”>

</frameset>

4. Save the file and close it. Create a new HTML document, and in the
body, create a link for the user to click to display new content:

Click here for new content

296 Part 5

Task 144

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 296

5. In the onClick event handler for the a tag, use document.write
to write new content to the window:

<a href=”#” onClick=”document.write(‘New Æ

Content
’);”>Click here for new content

6. Save the file in the location specified for the left-hand frame and
close it.

7. Create a new HTML document for the right-hand frame, and dupli-
cate the content of the document specified for the left-hand frame:

<body>

<a href=”#” onClick=”document.write(‘New Æ

Content
’);”>Click here for new content

</body>

8. Save the file in the location specified for the right-hand frame and
close it.

9. Open the frameset file in your browser. You should see two identical
frames, as illustrated in Figure 144-1. Click on either of the links,
and that frame should update with new content. In Figure 144-2, the
user has clicked the right-hand link, and the right-hand frame was
updated.

Figure 144-1: Both frames offer links to update their content.

Figure 144-2: Updating the right-hand frame with new content.

Manipulating Browser Windows 297

Task 144

tip
• By default, the document.
write method writes its
output into the frame or
window in which the code
exists—that is, the frame or
window in which the docu-
ment containing the doc-
ument.write code is
loaded.

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 297

Referring to Unnamed
Frames Numerically

In all the previous examples in this part of the book, we have referred to frames
by the names specified in the name attribute of the frame tag. For instance,

consider the following frameset:

<frameset rows=”50%,*”>

<frame src=”frame1.html” name=”frame1”>

<frame src=”frame2.html” name=”frame2”>

</frameset>

Here, the first frame is referred to as window.frame1 from within the frameset
document or parent.frame1 from within one of the two frames. But what if no
name attributes were specified? Consider the following frameset:

<frameset rows=”50%,*”>

<frame src=”frame1.html”>

<frame src=”frame2.html”>

</frameset>

Here, the frame name approach used in the previous example will not work. So
you need another approach. The following task shows how to create two frames;
in each frame there is a function called doAlert that displays a dialog box. You
call these functions through links from the other frame using the frames array
instead of frame names.

1. Create a new HTML document to hold the frameset, and create a
frameset block with the rows attribute set to create two equal-
sized columns:

<frameset rows=”50%,*”>

2. In the frameset, create a frame tag to load the document for the top
frame:

<frame name=”frame1” src=”145a.html”>

3. In the frameset, create a second frame tag to load the documents for
the bottom frame:

<frameset rows=”50%,*”>

<frame name=”frame1” src=”145a.html”>

<frame name=”frame2” src=”145b.html”>

</frameset>

4. Save the file and close it. Create a new HTML document for the top
frame. In the header of the document, create a script block, and in
the script block, place a function called doAlert to display a mes-
sage to the user indicating the current frame:

notes
• Notice the use of 0 and 1

as the array indexes for the
first and second frame. In
JavaScript, arrays start
counting at 0, so the first
element is indexed 0, the
second is indexed 1, and
so on.

• Luckily, the objects associ-
ated with each frame are
stored in an array in the
frames property of the
window object for the
frameset. Now you can
refer to window.
frames[0] and
window.frames[1].
Similarly, from within the
frames themselves, you
can refer to parent.
frames[0] and par-
ent.frames[1]. The
objects in the frames array
appear in the order in
which the frame tags
appear in the frameset.

298 Part 5

Task 145

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 298

<script language=”JavaScript”>

function doAlert() { window.alert(“This is the top Æ

frame”); }

</script>

5. In the body of the text, create a link for calling the function in the
bottom frame:

Call the bottom frame

6. In the onClick event handler for the a tag, call the doAlert func-
tion in the bottom frame:

Call Æ

the bottom frame

7. Save the file in the location specified in the frameset for the top
frame. Create a similar document for the bottom frame, but alter the
message displayed in the dialog box and make the link call the func-
tion in the top frame:

<script language=”JavaScript”>

function doAlert() { window.alert(“This is the Æ

bottom frame”); }

</script>

<body>

Æ

Call the top frame

</body>

8. Save the file in the location specified in the frameset for the bottom
frame.

9. Open the frameset in a browser. You see two frames with links, as
illustrated in Figure 145-1. Click on the link in the top frame to see
the dialog box shown in Figure 145-2.

Figure 145-1: Two unnamed frames.

Figure 145-2: Calling the bottom frame from the top.

Manipulating Browser Windows 299

Task 145

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 299

06 542419 Ch05.qxd 11/19/03 10:33 AM Page 300

Part 6: Manipulating Cookies
Task 146: Creating a Cookie in JavaScript

Task 147: Accessing a Cookie in JavaScript

Task 148: Displaying a Cookie

Task 149: Controlling the Expiry of a Cookie

Task 150: Using a Cookie to Track a User’s Session

Task 151: Using a Cookie to Count Page Access

Task 152: Deleting a Cookie

Task 153: Creating Multiple Cookies

Task 154: Accessing Multiple Cookies

Task 155: Using Cookies to Present a Different Home Page
for New Visitors

Task 156: Creating a Cookie Function Library

Task 157: Allowing a Cookie to be Seen for all Pages in a Site

07 542419 Ch06.qxd 11/19/03 10:34 AM Page 301

Creating a Cookie in JavaScript

JavaScript cookies are stored in the document.cookie object and are created
by assigning values to this object. When creating a cookie, you typically spec-

ify a name, value, and expiration date and time for that cookie. The cookie will
then be accessible in your scripts every time the user returns to your site until the
cookie expires. These cookies will also be sent to your server every time the user
requests a page from your site.

The simplest way to create a cookie is to assign a string value to the
document.cookie object, which looks like this:

name=value;expires=date

The name is a name you assign to the cookie so that you can refer to it later
when you want to access it. The value is any text string that has been escaped as
if it were going to appear in a URL (you do this in JavaScript with the escape
function).

The following steps outline how to create a new cookie in JavaScript:

1. In the header of a new document, create a script block with opening
and closing script tags:

<head>

<script language=”JavaScript”>

</script>

</head>

2. In the script, type document.cookie followed by an equal sign to
begin assigning a value to the document.cookie object:

document.cookie =

3. Type an opening double quotation followed by a name for the cookie
followed by an equal sign. In this case, the name is myCookie:

document.cookie = “myCookie=

4. Close the double quotation, and type a plus sign:

document.cookie = “myCookie=” +

5. Enter the value you wish to assign to the cookie as the argument to
the escape function. In this case, the value of the cookie is “This
is my Cookie”:

document.cookie = “myCookie=” + escape(“This is my Æ

Cookie”)

notes
• Normally, cookies are sim-

ple variables set by the
server in the browser and
returned to the server every
time the browser accesses
a page on the same server.
They are typically used to
carry persistent information
from page to page through
a user session or to
remember data between
user sessions. With
JavaScript, though, you
can create and read cook-
ies in the client without
resorting to any server-side
programming.

• The escape function takes
a string and escapes any
characters that are not
valid in a URL. Escaping
involves replacing the char-
acter with a numeric code
preceded by a percent
sign. For instance, spaces
become %20 (see Step 5).

302 Part 6

Task 146

07 542419 Ch06.qxd 11/19/03 10:34 AM Page 302

6. Type a semicolon to end the command. The final result is that you
will have JavaScript code like that in Listing 146-1.

<head>

<script language=”JavaScript”>

document.cookie = “myCookie=” + escape(“This is my Æ

Cookie”);

</script>

</head>

Listing 146-1: Creating a Cookie.

7. For testing purposes, you can see the exact string you are assigning to
the document.cookie object by using the window.alert method
to display the same string in a simple dialog box. The result looks
like Figure 146-1.

<head>

<script language=”JavaScript”>

document.cookie = “myCookie=” + escape(“This is myÆ

Cookie”);

window.alert(“myCookie=” + escape(“This is my Æ

Cookie”));

</script>

</head>

Figure 146-1: Displaying a cookie in a dialog box.

Manipulating Cookies 303

Task 146

cross-reference
• Task 25 discusses the cre-

ation of alert dialog boxes
using the window.alert
method. The method takes
a single string argument. In
this case, you are building
a string by concatenating
two strings.

07 542419 Ch06.qxd 11/19/03 10:34 AM Page 303

Accessing a Cookie in JavaScript

If the current document has a single cookie associated with it, then the
document.cookie object contains a single string with all the details of the

cookie. A typical document.cookie string looks like this:

myCookie=This%20is%20my%20Cookie

You probably noticed that there is no indication of the expiration date. When
you access the document.cookie object, it contains a cookie only if there is a
cookie available for the site in question that has not expired. This determination
is handled automatically in the background, and it is unnecessary to include the
actual expiration date in the string returned by the document.cookie object.

To access a cookie, you need to separate the name and value using the split
method of the String object, as outlined in the following steps:

1. In the header of a new HTML document, create a script block with
opening and closing script tags:

<head>

<script language=”JavaScript”>

</script>

</head>

2. Assign the document.cookie object to a new variable. In this case,
the object is assigned to the string newCookie:

var newCookie = document.cookie;

3. Split the cookie at the equal sign and assign the resulting array to a
new variable. You do this with the split method of the String
object, which takes as an argument the character that serves the
delimiter where you want to split the string. The resulting parts of
the string are returned in an array. In this case, the array is stored in
a variable called cookieParts:

var cookieParts = newCookie.split(“=”);

4. Assign the first entry in the array to a variable; this entry in the array
contains the name of the cookie. In this case, the name is stored in
the variable cookieName:

var cookieName = cookieParts[0];

5. Assign the second entry in the array to a variable; this entry in the
array contains the value of the cookie. At the same time, unescape the
string with the unescape function. In this case, the end result is that
the unescaped value of the cookie stored in the cookieValue vari-
able. The resulting JavaScript code is shown in Listing 147-1.

note
• Cookies are just small text

files stored by your browser
and then returned to the
server, or a JavaScript
script, when necessary.
There are complaints that
cookies pose security or
privacy risks. Cookies are
not really a security risk,
and privacy implications of
cookies are debatable.
They are, however, very use-
ful for any Web applications
that span more than one
page (see Step 5).

304 Part 6

Task 147

07 542419 Ch06.qxd 11/19/03 10:34 AM Page 304

<head>

<script language=”JavaScript”>

var newCookie = document.cookie;

var cookieParts = newCookie.split(“=”);

var cookieName = cookieParts[0];

var cookieValue = unescape(cookieParts[1]);

</script>

</head>

Listing 147-1: Splitting a cookie into its name and value parts.

6. You can test the cookie results by using the window.alert method
to display each variable in turn in a simple dialog box; these dialog
boxes are illustrated in Figures 147-1 and 147-2.

<head>

<script language=”JavaScript”>

var newCookie = document.cookie;

var cookieParts = newCookie.split(“=”);

var cookieName = cookieParts[0];

var cookieValue = unescape(cookieParts[1]);

window.alert(cookieName);

window.alert(cookieValue);

</script>

</head>

Figure 147-1: Displaying the cookie name in a dialog box.

Figure 147-2: Displaying the cookie value in a dialog box.

Manipulating Cookies 305

Task 147

07 542419 Ch06.qxd 11/19/03 10:34 AM Page 305

Displaying a Cookie

A common use of a cookie is to include the value in the Web page being dis-
played. If a cookie stores a user’s username, you might want to display a login

form with the username field filled in with the user’s username. The following
illustrates this by creating a simple login form with two fields for the username
and password and displaying the username in the username field, if available.
The username will be stored in a cookie named loginName, if it has been set:

1. In a separate script block at the start of the body of your page, extract
the name and value of the cookie to two variables; refer to Task 147
for a summary of this process. In this case, the name of the cookie is
stored in cookieName, and the value in cookieValue and the
script block should look like Listing 148-1.

<script language=”JavaScript”

var newCookie = document.cookie;

var cookieParts = newCookie.split(“=”);

var cookieName = cookieParts[0];

var cookieValue = unescape(cookieParts[1]);

</script>

Listing 148-1: Extract the cookie’s name and value in separate script block.

2. After the script, enter a form tag to start the form; make sure the
form is being submitted to an appropriate location for processing:

<form method=”post” action=”doLogin.cgi”>

3. Start a new script block with the script tag:

<script language=”JavaScript”>

4. Enter an if command to test that the name of the cookie is
loginName and the value is not the empty string:

if (cookieName == “loginName” && cookieValue != “”) {

5. Display a username text field that includes the user’s username from
the cookie. Display this with the document.write command:

document.write(‘Username: <input type=”text” Æ

name=”username” value=”’ + cookieValue + ‘“>’);

6. Enter an else command:

} else {

7. Display a username text field without the user’s username for the case
where no cookie is available. Display this with the document.write
command:

document.write(‘Username: <input type=”text” Æ

name=”username”>’);

note
• As indicated in Task 146, it

is a good idea to escape
cookie values in order to
remove characters that are
not valid in cookies. This
means you need to
unescape the cookies
when accessing them so
that you end up with the
original, intended value
instead of a value with a
number of escaped
characters.

306 Part 6

Task 148

07 542419 Ch06.qxd 11/19/03 10:34 AM Page 306

8. Close the if block, and close the script block with a closing
script tag:

}

</script>

9. Enter an input tag to create a password entry field:

Password: <input type=”password” name=”password”>

10. Close the form with a closing form tag. The resulting form code
should look like Listing 148-2, and the form, when displayed, should
look like Figure 148-1.

<form method=”post” action=”doLogin.cgi”>

<script language=”JavaScript”>

if (cookieName == “loginName” && cookieValue != “”) {

document.write(‘Username: <input type=”text” Æ

name=”username” value=”’ + cookieValue + ‘“>’);

} else {

document.write(‘Username: <input type=”text” Æ

name=”username”>’);

}

</script>

Password: <input type=”password” name=”password”>

</form>

Listing 148-2: The code to dynamically display a username in a form.

Figure 148-1: Dynamically displaying a username in a form.

Manipulating Cookies 307

Task 148

tip
• You need to test the

cookie’s name and value
before using it for two rea-
sons. First, there is a
chance that the cookie
contained in document.
cookie is a different
cookie. Second, if the
cookie is an empty string,
then no username is avail-
able (see Step 4).

cross-reference
• Task 9 discusses generat-

ing output to the browser
from JavaScript using the
document.write
method. The method takes
a single string argument. In
this case, you are building
a string by concatenating
two strings.

07 542419 Ch06.qxd 11/19/03 10:34 AM Page 307

Controlling the Expiry of a Cookie

When you create a cookie, you may want to set an expiration date and time.
If you set a cookie without an expiry, the cookie will expire at the end of

the user’s browser session and you will lose the ability to access the cookie across
multiple user sessions. To create a cookie with an expiration date, you need to
append an expiration date to the cookie string so that the cookie string looks like
the following:

name=value;expires=date

The expiration date is optional and is typically represented as a string in
Greenwich Mean Time, which you can generate with the toGMTString method
of the Date object.

The following steps outline the process of creating a cookie with an expiration
date:

1. Create a Date object for the date and time when you want the cookie
to expire; this is done by assigning a new instance of the Date object
to a variable and passing the date information as an argument to the
Date object. In this case, the resulting Date object is stored in the
variable myDate and the date for the object is set to April 14, 2005,
at 1:15 P.M.:

var myDate = new Date(2005,03,14,13,15,00);

2. Type document.cookie followed by an equal sign to begin assigning
a value to the document.cookie object:

document.cookie =

3. Type an opening double quotation followed by a name for the cookie
followed by an equal sign. In this case, the name is myCookie:

document.cookie = “myCookie=

4. Close the double quotation, and type a plus sign:

document.cookie = “myCookie=” +

5. Enter the value you wish to assign to the cookie as the argument to
the escape function, and follow the escape function with a plus
sign. In this case, the value of the cookie is “This is my Cookie”:

document.cookie = “myCookie=” + escape(“This is my Æ

Cookie”) +

6. Type an opening double quotation following by a semicolon followed
by expires, and follow this with an equal sign, a closing quotation
mark, and then another plus sign:

document.cookie = “myCookie=” + escape(“This is my Æ

Cookie”) + “;expires=” +

note
• When you use the
toGMTString method,
the returned date will look
like this: “Fri, 28-Mar-03
10:05:32 UTC”. UTC is the
standard international
code for Universal Time
Coordinate, another name
for Greenwich Mean Time.

308 Part 6

Task 149

07 542419 Ch06.qxd 11/19/03 10:34 AM Page 308

7. Type myDate.toGMTString() to add the specified date and time as
a properly formatted string to the cookie, and end the command with
a semicolon. Your code should now look like Listing 149-1.

<head>

<script language=”JavaScript”>

var myDate = new Date(2005,03,14,13,15,00);

document.cookie = “myCookie=” + escape(“This is my Æ

Cookie”) + “;expires=” + myDate.toGMTString();

</script>

</head>

Listing 149-1: Creating a cookie in JavaScript.

8. For testing purposes, you can see the exact string you are assigning to
the document.cookie object by using the window.alert method
to display the same string a simple dialog box. The result looks like
Figure 149-1.

<head>

<script language=”JavaScript”>

var myDate = new Date(2005,03,14,13,15,00);

document.cookie = “myCookie=” + escape(“This is my Æ

Cookie”) + “;expires=” + myDate.toGMTString();

window.alert(“myCookie=” + escape(“This is my Cookie”)

+ “;expires=” + myDate.toGMTString());

</script>

</head>

Figure 149-1: Displaying a cookie in a dialog box.

Manipulating Cookies 309

Task 149

tip
• When creating dates,

remember that in
JavaScript months are
numbered starting at 0.
This means January is
month 0, February is
month 1, March is month
2, April is month 3, and so
on (see Step 1).

07 542419 Ch06.qxd 11/19/03 10:34 AM Page 309

Using a Cookie to Track
a User’s Session

A common application of cookies is to track user-specific information across
a user’s session with a Web site. This might mean tracking the user’s latest

preference selections, a user’s search query, or a session ID, which allows your
script to determine additional information for displaying the page appropriately
for the user. In all cases, a session is considered to have ended after a certain
amount of time without user activity has expired.

The way this is done is to set the appropriate cookie with an expiration date and
time that will cause the cookie to elapse when the session should end. For instance,
if a session should end after a 20-minute period of inactivity, the cookie’s expiry
should be 20 minutes in the future. Then, on each page the user accesses in the
site, the session cookie should be reset with a new expiry 20 minutes in the
future.

To do this, include the following code at the start of each page in your Web
application; this example is generic and works for any single cookie that needs
to be maintained across a user’s session:

1. Obtain the name and value of the cookie as outlined in Task 147;
here the name and value will be stored in the variables cookieName
and cookieValue:

var newCookie = document.cookie;

var cookieParts = newCookie.split(“=”);

var cookieName = cookieParts[0];

var cookieValue = unescape(cookieParts[1]);

2. Create a new Date object, but don’t set the date. Here the Date
object is assigned to the variable newDate:

var newDate = new Date();

3. Set the expiration date to the appropriate number of minutes in the
future. You do this by using the setTime method of the newDate
object. This method takes the time as a number of milliseconds. To
set the time into the future, get the current time with the getTime
method and then add the number of milliseconds. For instance,
20 minutes is 1200000 milliseconds:

newDate.setTime(newDate.getTime() + 1200000);

4. Type document.cookie followed by an equal sign to begin assigning
a value to the document.cookie object:

document.cookie =

310 Part 6

Task 150

07 542419 Ch06.qxd 11/19/03 10:34 AM Page 310

5. Type cookieName followed by a plus sign followed by an equal sign
in quotation marks:

document.cookie = cookieName + “=”

6. Type a plus sign followed by the escape function with
cookieValue as the argument, followed by a plus sign:

document.cookie = cookieName + “=” + escape(cookieValue) +

7. Type an opening double quotation followed by a semicolon followed
by expires; then follow this with an equal sign and a closing quotation
mark and then another plus sign:

document.cookie = cookieName + “=” + escape(cookieValue) + Æ

“;expires=” +

8. Type newDate.toGMTString() to add the specified date and time as
a properly formatted string to the cookie, and end the command with
a semicolon. Your JavaScript code should look like Listing 150-1.

<head>

<script language=”JavaScript”>

var newCookie = document.cookie;

var cookieParts = newCookie.split(“=”);

var cookieName = cookieParts[0];

var cookieValue = unescape(cookieParts[1]);

var newDate = new Date();

newDate.setTime(newDate.getTime() + 1200000);

document.cookie = cookieName + “=” + Æ

escape(cookieValue) + “;expires=” + newDate.toGMTString();

</script>

</head>

Listing 150-1: Creating a new session cookie at the start of every page in an
application.

Manipulating Cookies 311

Task 150

cross-references
• Task 47 discusses the

use of the Date object
to obtain and display the
current date.

• Task 146 discusses the
creation of cookies and the
use of the document.
cookie property in that
process.

07 542419 Ch06.qxd 11/19/03 10:34 AM Page 311

Using a Cookie to Count Page Access

One use of cookies is to provide a personal page counter. This is different than
a global access counter, which displays the total number of visits to a site by

any visitor. Instead, a personal hit counter displays the user’s personal access
count. The approach is simple: Create a cookie with a long expiration date, and
each time the user accesses the page, retrieve the cookie, increment it by 1, dis-
play the value, and then resave the cookie with a new expiration date and time.
The following generates a personal hit counter using a cookie named myHits:

1. Create a script block at the start of your page with an opening
script tag:

<script language=”JavaScript”>

2. Obtain the name and value of the cookie as outlined in Task 147;
here the name and value will be stored in the variables cookieName
and cookieValue:

var newCookie = document.cookie;

var cookieParts = newCookie.split(“=”);

var cookieName = cookieParts[0];

var cookieValue = unescape(cookieParts[1]);

3. Assign the cookie value to a variable named previousCount:

var previousCount = cookieValue;

4. Use an if statement to check if the cookieName is not myHits or
the cookieValue is a null value (in other words, no cookie existed),
and if either condition is true, set previousCount to zero:

if (cookieName != “myHits” || cookieValue == null) {

previousCount = 0;

}

5. Increment the value of previousCount by 1, and assign it the vari-
able newCount:

var newCount = parseInt(previousCount) + 1;

6. Create a new Date object, but don’t set the date. Here the Date
object is assigned to the variable newDate:

var newDate = new Date();

7. Set the expiration date to the appropriate number of minutes in the
future. You do this by using the setTime method of the newDate
object. This method takes the time as a number of milliseconds. To
set the time into the future, get the current time with the getTime
method and then add the number of milliseconds. For instance,
30 days is 30 days times 24 hours per day times 60 minutes per hour
times 60 seconds per minute times 1000 milliseconds per second, or
2592000000 milliseconds:

newDate.setTime(newDate.getTime() + 2592000000);

312 Part 6

Task 151

07 542419 Ch06.qxd 11/19/03 10:34 AM Page 312

8. Reset the cookie by assigning the value of newCount to the
document.cookie object with an expiration date as specified in
newDate. (This process was described in Task 149.)

document.cookie = “myHits=” + newCount + “;expires=” + Æ

newDate.toGMTString();

9. Close the script block with a closing script tag, so that the result-
ing script block looks like Listing 151-1.

<script language=”JavaScript”>

var newCookie = document.cookie;

var cookieParts = newCookie.split(“=”);

var cookieName = cookieParts[0];

var cookieValue = unescape(cookieParts[1]);

var previousCount = cookieValue;

if (cookieName != “myHits” || cookieValue == null) {

previousCount = 0;

}

var newCount = parseInt(previousCount) + 1;

var newDate = new Date();

newDate.setTime(newDate.getTime() + 2592000000);

document.cookie = “myHits=” + newCount + “;expires=” + Æ

newDate.toGMTString();

</script>

Listing 151-1: Incrementing and resaving a counter cookie at the start of a page.

10. In the body of your text, when you want to display the current count,
create a new script block and use the document.write method to
display the value of the newCount variable. You will see the results in
your browser.

<script language=”JavaScript”>

document.write(“You have visited this page “ + Æ

newCount + “ time(s).”);

</script>

Manipulating Cookies 313

Task 151

cross-reference
• Task 9 discusses generat-

ing output to the browser
from JavaScript using
the document.write
method. The method takes
a single string argument. In
this case, you are building
a string by concatenating
two strings.

07 542419 Ch06.qxd 11/19/03 10:34 AM Page 313

Deleting a Cookie

Sometimes you will want to delete a cookie so that subsequent attempts to
read the cookie return nothing. For instance, you may want to remove a

username cookie if the user logs out or explicitly asks not to save his or her user-
name in a cookie. To do this, you reset the cookie but set the expiration date to a
time in the past. This causes the browser to drop the cookie and the cookie will
cease to be returned, effectively deleting it.

The following example illustrates how to delete a cookie name myCookie:

1. In the head of a new HTML document, create a script block with
opening and closing script tags:

<head>

<script language=”JavaScript”>

</script>

</head>

2. In the script, create a new Date object, but don’t set the date. Here
the Date object is assigned to the variable newDate:

<head>

<script language=”JavaScript”>

var newDate = new Date();

</script>

</head>

3. Set the expiration date to some time in the past; for instance, you
might set the date to one day in the past. You do this by using the
setTime method of the newDate object. This method takes the
time as a number of milliseconds. To set the time into the past,
get the current time with the getTime method and then subtract
the number of milliseconds. For instance, one day is 86400000
milliseconds:

<head>

<script language=”JavaScript”>

var newDate = new Date();

newDate.setTime(newDate.getTime() - 86400000);

</script>

</head>

4. Type document.cookie followed by an equal sign to begin assigning
a value to the document.cookie object:

document.cookie =

note
• Task 146 discusses the

creation of cookies and
the use of the document.
cookie property in that
process. The deletion of a
cookie involves setting a
cookie with an expiration
date that is not in the
future.

314 Part 6

Task 152

07 542419 Ch06.qxd 11/19/03 10:34 AM Page 314

5. Type an opening double quotation followed by a name for the cookie
followed by an equal sign. In this case, the name is myCookie:

document.cookie = “myCookie=

6. Type a semicolon followed by expires, and follow this with an equal
sign and a closing quotation mark, and then a plus sign:

document.cookie = “myCookie=;expires=” +

7. Type newDate.toGMTString() to add the specified date and time
as a properly formatted string to the cookie, and end the command
with a semicolon. Your JavaScript code should look like Listing 152-1.

<head>

<script language=”JavaScript”>

var newDate = new Date();

newDate.setTime(newDate.getTime() - 86400000);

document.cookie = “myCookie=;expires=” + Æ

newDate.toGMTString();

</script>

</head>

Listing 152-1: Deleting a cookie.

8. For testing purposes, you can display the current cookie using the
window.alert method to ensure no cookie exists with the name
myCookie:

<head>

<script language=”JavaScript”>

var newDate = new Date();

newDate.setTime(newDate.getTime() - 86400000);

document.cookie = “myCookie=;expires=” + Æ

newDate.toGMTString();

window.alert(document.cookie);

</script>

</head>

Manipulating Cookies 315

Task 152

cross-reference
• Task 25 discusses the cre-

ation of alert dialog boxes
using the window.alert
method.

07 542419 Ch06.qxd 11/19/03 10:34 AM Page 315

Creating Multiple Cookies

W ithin limits, it is possible to create multiple cookies for a Web page. This
allows you to set and track multiple values throughout your Web applica-

tion or between user sessions. There are limitations, however. Most Web
browsers set limits on the number of cookies that can be set or the total number
of bytes that can be consumed by the cookies from one site. When these thresh-
olds are set, the oldest cookies for a site are automatically expired as you attempt
to create new ones even if their expiration date and time has not been reached.

To create multiple cookies from JavaScript, you simply assign each cookie in turn
to the document.cookie object and ensure that each cookie has a different
name. The same ability to set expiration date and time exists for each cookie as
when setting a single cookie, and each cookie may have a different expiration
date and time.

The following example illustrates the creation of two cookies named
myFirstCookie and mySecondCookie:

1. Type document.cookie followed by an equal sign to begin assigning
a value to the document.cookie object:

document.cookie =

2. Type an opening double quotation followed by a name for the cookie
followed by an equal sign. In this case, the name is myFirstCookie:

document.cookie = “myFirstCookie=

3. Close the double quotation and type a plus sign:

document.cookie = “myFirstCookie=” +

4. Enter the value you wish to assign to the first cookie as the argument
to the escape function. In this case, the value of the cookie is “This
is my first Cookie”:

document.cookie = “myFirstCookie=” + escape(“This is my Æ

first Cookie”)

5. Type a semicolon to end the command. For the first cookie, your
JavaScript code should look like Listing 153-1.

document.cookie = “myFirstCookie=” + escape(“This is my Æ

first Cookie”);

Listing 153-1: Creating the first cookie in JavaScript.

note
• The escape function takes

a string and escapes any
characters that are not
valid in a URL. Escaping
involves replacing the char-
acter with a numeric code
preceded by a percent
sign. For instance, spaces
become %20.

316 Part 6

Task 153

07 542419 Ch06.qxd 11/19/03 10:34 AM Page 316

6. Continue to create the second cookie on a new line of your script by
typing document.cookie followed by an equal sign to begin assigning
a value to the document.cookie object:

document.cookie =

7. Type an opening double quotation followed by a name for the cookie
followed by an equal sign. In this case, the name is mySecondCookie:

document.cookie = “mySecondCookie=

8. Close the double quotation and type a plus sign:

document.cookie = “mySecondCookie=” +

9. Enter the value you wish to assign to the first cookie as the argument
to the escape function. In this case, the value of the cookie is “This
is my first Cookie”:

document.cookie = “mySecondCookie=” + escape(“This is Æ

my second Cookie”)

10. Type a semicolon to end the command. Your JavaScript code for the
two cookies should now look like Listing 153-2.

<script language=”JavaScript”>

document.cookie = “myFirstCookie=” + escape(“This is Æ

my first Cookie”);

document.cookie = “mySecondCookie=” + escape(“This is Æ

my second Cookie”);

</script>

Listing 153-2: Creating two cookies from a single script in JavaScript.

Manipulating Cookies 317

Task 153

tip
• In theory, browsers should

store at least 300 cookies
of at least 4096 characters
in size and should allow
each individual server host
or domain name to create
at least 20 cookies. In
practice, Netscape and
Internet Explorer do not
always adhere to these
standards. In fact, Internet
Explorer allows you to indi-
cate the maximum percent-
age of your hard drive that
cookies are allowed to fill.

cross-reference
• Task 146 discusses the

creation of cookies and the
use of the document.
cookie property in that
process. The same process
applies for each cookie
regardless of the number of
cookies you are creating.

07 542419 Ch06.qxd 11/19/03 10:34 AM Page 317

Accessing Multiple Cookies

If a page has multiple cookies associated with it, then accessing one, or all, of
those cookies is a little more complicated than illustrated in Task 147. This is

because when you access document.cookie, you will now see a series of cook-
ies separated by semicolons like this:

firstCookieName=firstCookieValue;secondCookieName=secondCookieValue;

etc.

This means to extract a cookie from a page with multiple cookies requires two
steps: separating the string returned by document.cookie into multiple pieces
using the semicolon to determine where to break the string, and then treating
each cookie individually.

The following example assumes you have two cookies on the page:
myFirstCookie and mySecondCookie. These steps extract both cookies and
display them in dialog boxes using the window.alert method.

1. Use the indexOf method of the String object to locate the charac-
ter where the string “myFirstCookie=” appears in the string
returned by the document.cookie object. This value is assigned to
the variable first:

var first = document.cookie.indexOf(“myFirstCookie=”);

2. Use the indexOf method once more to find where the cookie ends
(by looking for a semicolon), and assign this location to the variable
firstEnd. Searching starts after the location where
“myFirstCookie=” was found:

var firstEnd = document.cookie.indexOf(“;”, first + 1);

3. Check to see whether or not a semicolon was found by checking if
firstEnd has the value -1. If the value is -1, it means that this
cookie is the last cookie and firstEnd should be set to the last char-
acter in the document.cookie string:

if (firstEnd == -1) { firstEnd = document.cookie.length; }

4. Extract the value of the first cookie by taking the substring starting at
the character after “myFirstCookie=” and ending at the semicolon.
This is done with the substring method of the String object, and
the resulting substring is passed to unescape to remove any escaped
characters. The results are stored in the variable firstCookie.
Note that first + 14 is used as the first character of the substring;
this represents the first character after the equal sign after
myFirstCookie (since “myFirstCookie=” is 14-characters long).
The resulting code for extracting myFirstCookie looks like
Listing 154-1.

note
• The indexOf method of

the String object takes
one or two arguments: The
first is the string being
searched for, and the sec-
ond is an index indicating,
optionally, which character
to start searching from
(searching starts from the
beginning of the string if
this isn’t provided). The
method returns the index
of the first match or -1 if
no match is found.

318 Part 6

Task 154

07 542419 Ch06.qxd 11/19/03 10:34 AM Page 318

var first = document.cookie.indexOf(“myFirstCookie=”);

var firstEnd = document.cookie.indexOf(“;”, first + 1);

if (firstEnd == -1) { firstEnd = document.cookie.length; }

var firstCookie = Æ

unescape(document.cookie.substring(first+14,firstEnd));

Listing 154-1: Extracting a cookie from multiple cookies.

5. Repeat the process for the second cookie, but search for
mySecondCookie and store the results in new variables named
second, secondEnd and secondCookie:

var second = document.cookie.indexOf(“mySecondCookie=”);

var secondEnd = document.cookie.indexOf(“;”, second + 1);

if (secondEnd == -1) { secondEnd = document.cookie.length;

}

var secondCookie = Æ

unescape(document.cookie.substring(second+15,secondEnd));

6. Display each of the cookie values in turn using the window.alert
method. You should see dialog boxes like Figures 154-1 and 154-2.

window.alert(firstCookie);

window.alert(secondCookie);

Figure 154-1: Displaying the first cookie.

Figure 154-2: Displaying the second cookie.

Manipulating Cookies 319

Task 154

07 542419 Ch06.qxd 11/19/03 10:34 AM Page 319

Using Cookies to Present a Different
Home Page for New Visitors

W ith cookies you can track if a user has visited your site previously (or, at
least, if he or she has visited recently). This can be done by simply setting

a cookie indicating the user has visited and then giving it a long expiration time.
Then each time the user returns to the site, you can update the expiration time to
ensure that the cookie is unlikely to ever expire.

Meanwhile, each time a user accesses a page in your site, you can test for the exis-
tence of the cookie, and if it isn’t there, you can direct the user to a default start
page where you want new users to begin their experience of your site. Alternately,
you can test the cookie only when a user accesses the home page and direct new
users to a specialized home page just for them.

The following outlines the code you need to build into every page on your site,
or just into your home page, to achieve this. In this example, the cookie named
visitCookie will exist and be set to a value of 1 if the user has previously vis-
ited the site.

1. Create a new Date object, but don’t set the date. Here the Date
object is assigned to the variable newDate:

var newDate = new Date();

2. Set the expiration date to be an appropriate distance in the future; for
instance, you might set the date to six months in the future. You do
this by using the setTime method of the newDate object. This
method takes the time as a number of milliseconds. To set the time
into the future, get the current time with the getTime method and
then add the number of milliseconds. For instance, six months (or
26 weeks) is 26 weeks times 7 days per week times 24 hours per day
times 60 minutes per hour times 60 seconds per minute times 1000
milliseconds per seconds, for a total of 15724800000 milliseconds:

newDate.setTime(newDate.getTime() + 15724800000);

3. Search the document.cookie string to see whether or not
“visitCookie=” exists. This is done with the indexOf method of
the String object, and the return value is the index of the first
occurrence of “visitCookie=”, which is stored here in the variable
firstVisit:

var firstVisit = document.cookie.indexOf(“visitCookie=”);

4. Use an if command to test if a visitCookie cookie exists:

if (firstVisit == -1) {

320 Part 6

Task 155

07 542419 Ch06.qxd 11/19/03 10:34 AM Page 320

5. If the cookie does not exist, you want to set a visitCookie cookie,
using the date and time stored in newDate to set the expiration date
for the cookie:

document.cookie = “visitCookie=1;expires=” + Æ

newDate.toGMTString();

6. After setting the visitCookie cookie for new visitors, redirect
them to the special home page for new visitors by setting a new value
for the window.location property:

window.location = “http://myurl.com/new.html”

7. Close the if block with a closing curly bracket:

}

8. If processing reaches this point, then the user is a returning user and
has not been redirected to the new page. In this case, the
visitCookie needs to be reset with the new expiration date and
time indicated in newDate. The final script looks like Listing 155-1.

<script language=”JavaScript”>

var newDate = new Date();

newDate.setTime(newDate.getTime() + 15724800000);

var firstVisit = document.cookie.indexOf(“visitCookie=”);

if (firstVisit == -1) {

document.cookie = “visitCookie=1;expires=” + Æ

newDate.toGMTString();

window.location = “http://myurl.com/new.html”

}

document.cookie = “visitCookie=1;expires=” + Æ

newDate.toGMTString();

</script>

Listing 155-1: Redirecting new users to a custom home page.

Manipulating Cookies 321

Task 155

tip
• There are some flaws

to this cookie-based
approach to determining if
a user has previously
viewed your site. Namely,
users may choose to
explicitly turn off cookies in
their browsers.

cross-references
• Task 154 illustrates how to

search for and identify spe-
cific cookies in the set of
accessible cookies.

• Task 55 shows how to redi-
rect the user’s browser to
another URL using the
window.location
object.

07 542419 Ch06.qxd 11/19/03 10:34 AM Page 321

Creating a Cookie Function Library

A s you probably noted in the previous tasks dealing with cookies, working
with cookies requires a lot of string and date manipulation, especially when

accessing existing cookies when multiple cookies have been set. To address this,
you should create a small cookie function library for yourself so that you can cre-
ate, access, and delete cookies without needing to rewrite the code to do this
every time.

Most cookie libraries include three functions:

• getCookie: Retrieves a cookie based on a cookie name passed in as
an argument.

• setCookie: Sets a cookie based on a cookie name, cookie value, and
expiration date passed in as arguments.

• deleteCookie: Deletes a cookie based on a cookie name passed in
as an argument.

The following steps outline how to create these functions for yourself. You
can then include them in any pages where you need to work with cookies in
JavaScript.

1. Start the getCookie function with the function keyword, and
define a single argument named cookieName:

function getCookie(cookieName) {

2. Based on the technique outlined in Task 154, retrieve the text for
the cookie named in the cookieName argument, as shown in
Listing 156-1.

function getCookie(cookieName) {

var cookieValue = “”;

if (document.cookie.length > 0) {

var cookieStart = document.cookie.indexOf(cookieName Æ

+ “=”);

if (cookieStart != -1) {

var cookieEnd = document.cookie.indexOf(“;”, Æ

cookieStart + 1);

if (cookieEnd == -1) { cookieEnd = Æ

document.cookie.length; }

var cookieValue = Æ

unescape(document.cookie.substring(cookieStart+cookieName.Æ

length+1,cookieEnd));

}

}

return cookieValue;

}

Listing 156-1: The getCookie function.

notes
• The getCookie function

adds some extra logic. First
it checks to make sure at
least one cookie exists by
testing the length of the
document.cookie
string, and then it only
retrieves a value for the
cookie if a matching cookie
is found. If there is no
matching cookie, then an
empty string is returned by
the function.

• Task 146 discusses the
creation of cookies and the
use of the document.
cookie property in that
process. The deletion of a
cookie involves setting a
cookie with an expiration
date that is not in the
future (see Step 6).

322 Part 6

Task 156

07 542419 Ch06.qxd 11/19/03 10:34 AM Page 322

3. Start the setCookie function with the function keyword, and
define three arguments named cookieName, cookieValue, and
expiryDate:

function setCookie(cookieName,cookieValue,expiryDate) {

4. Based on the technique outlined in Task 147, create the cookie by
assigning the appropriate string to the document.cookie object, so
that the final function looks like Listing 156-2.

function setCookie(cookieName,cookieValue,expiryDate) {

document.cookie = cookieName + “=” + escapeÆ

(cookieValue) + “;expires=” + expiryDate.toGMTString();

}

Listing 156-2: The setCookie function.

5. Start the deleteCookie function with the function keyword, and
define a single argument named cookieName:

function deleteCookie(cookieName) {

6. Based on the technique outlined in Task 152, delete the cookie
named in the cookieName argument, so that the final function looks
like Listing 153-3.

function deleteCookie(cookieName) {

var newDate = new Date();

newDate.setTime(newDate.getTime() - 86400000);

document.cookie = cookieName + “=deleted;expires=” + Æ

newDate.toGMTString();

}

Listing 156-3: The deleteCookie function.

7. Include these three functions in pages that must manipulate cookies,
and then simply invoke the functions. For instance, the following
code sets a new myCookie function, retrieves it, displays the value,
and then deletes it:

var newDate = new Date();

newDate.setTime(newDate.getTime() + 86400000);

setCookie(“myCookie”,”This is My Cookie”,newDate);

var cookieValue = getCookie(“myCookie”);

window.alert(cookieValue);

deleteCookie(“myCookie”);

Manipulating Cookies 323

Task 156

cross-reference
• The getCookie function

returns a value using the
return keyword. This
technique is discussed in
Task 29.

07 542419 Ch06.qxd 11/19/03 10:34 AM Page 323

Allowing a Cookie to be Seen
for all Pages in a Site

When a cookie is created by JavaScript, by default it is only accessible from
other pages in the same directory on the server. You can, however, define

which directory path on the server is allowed to access a cookie you create.

For instance, you could create a cookie in the page /dir/subdir/mypage.
html and do any number of things, including the following:

• That the cookie is accessible from the parent directory and from all
its children (in other words, everywhere below /dir)

• Indicate that the cookie is accessible only in the current directory and
in its children (in other words, everywhere below /dir/subdir/)

• Indicate that the cookie is accessible anywhere on the same site (in
other words, everywhere below /).

You do this by extending your cookie definition when you create the cookie and
adding a path clause to the cookie, so that the cookie now looks like this:

name=value;expires=expiryDate;path=accessPath

For example, the following steps create the cookie myCookie and make it acces-
sible to all pages on the same site:

1. Create a Date object for the date and time when you want the cookie
to expire; this is done by assigning a new instance of the Date object
to a variable and passing the date information as an argument to the
Date object. In this case, the resulting Date object is stored in the
variable myDate and the date for the object is set to April 14, 2005,
at 1:15 P.M.:

var myDate = new Date(2005,03,14,13,15,00);

2. Type document.cookie followed by an equal sign to begin assigning
a value to the document.cookie object:

document.cookie =

3. Type an opening double quotation followed by a name for the cookie
followed by an equal sign. In this case, the name is myCookie:

document.cookie = “myCookie=

4. Close the double quotation and type a plus sign:

document.cookie = “myCookie=” +

note
• The escape function takes

a string and escapes any
characters that are not
valid in a URL. Escaping
involves replacing the char-
acter with a numeric code
preceded by a percent
sign. For instance, spaces
become %20 (see Step 5).

324 Part 6

Task 157

07 542419 Ch06.qxd 11/19/03 10:34 AM Page 324

5. Enter the value you wish to assign to the cookie as the argument to
the escape function, and follow the escape function with a plus
sign. In this case, the value of the cookie is “This is my Cookie”:

document.cookie = “myCookie=” + escape(“This is my Æ

Cookie”) +

6. Type an opening double quotation following by a semicolon followed
by expires, and follow this with an equal sign and a closing quotation
mark and then another plus sign:

document.cookie = “myCookie=” + escape(“This is my Æ

Cookie”) + “;expires=” +

7. Type myDate.toGMTString() to add the specified date and time as
a properly formatted string to the cookie, and follow that with a plus
sign:

document.cookie = “myCookie=” + escape(“This is my Æ

Cookie”) + “;expires=” + myDate.toGMTString() +

8. Type an opening double quotation followed by a semicolon followed
by path, and follow this with an equal sign and a forward slash, and
finally close the double quotation and end the command with a semi-
colon:

document.cookie = “myCookie=” + escape(“This is my Æ

Cookie”) + “;expires=” + myDate.toGMTString() + “;path=/”;

9. On another page in another directory on the site, attempt to retrieve
the cookie and display it in a dialog box with the window.alert
method. Figure 157-1 shows the result.

var newCookie = document.cookie;

var cookieParts = newCookie.split(“=”);

var cookieName = cookieParts[0];

var cookieValue = unescape(cookieParts[1]);

window.alert(cookieValue);

Figure 157-1: Displaying a cookie set in a different directory.

Manipulating Cookies 325

Task 157

07 542419 Ch06.qxd 11/19/03 10:34 AM Page 325

07 542419 Ch06.qxd 11/19/03 10:34 AM Page 326

Part 7: DHTML and Style Sheets
Task 158: Controlling Line Spacing
Task 159: Determining an Object’s Location
Task 160: Placing an Object
Task 161: Moving an Object Horizontally
Task 162: Moving an Object Vertically
Task 163: Moving an Object Diagonally
Task 164: Controlling Object Movement with Buttons
Task 165: Creating the Appearance of Three-Dimensional Movement
Task 166: Centering an Object Vertically
Task 167: Centering an Object Horizontally
Task 168: Controlling Line Height in CSS
Task 169: Creating Drop Shadows with CSS
Task 170: Modifying a Drop Shadow
Task 171: Removing a Drop Shadow
Task 172: Placing a Shadow on a Nonstandard Corner
Task 173: Managing Z-Indexes in JavaScript
Task 174: Setting Fonts for Text with CSS
Task 175: Setting Font Style for Text with CSS
Task 176: Controlling Text Alignment with CSS
Task 177: Controlling Spacing with CSS
Task 178: Controlling Absolute Placement with CSS
Task 179: Controlling Relative Placement with CSS
Task 180: Adjusting Margins with CSS
Task 181: Applying Inline Styles
Task 182: Using Document Style Sheets
Task 183: Creating Global Style Sheet Files
Task 184: Overriding Global Style Sheets for Local Instances
Task 185: Creating a Drop Cap with Style Sheets
Task 186: Customizing the Appearance of the First Line of Text
Task 187: Applying a Special Style to the First Line of Every Element

on the Page
Task 188: Applying a Special Style to All Links
Task 189: Accessing Style Sheet Settings
Task 190: Manipulating Style Sheet Settings
Task 191: Hiding an Object in JavaScript
Task 192: Displaying an Object in JavaScript
Task 193: Detecting the Window Size
Task 194: Forcing Capitalization with Style Sheet Settings
Task 195: Detecting the Number of Colors
Task 196: Adjusting Padding with CSS

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 327

Controlling Line Spacing

Every element of your page has an object associated with it that can be accessed
through JavaScript. For instance, you can manipulate an element’s line spac-

ing window using this object.

The line spacing information is part of the style property of the object. The
style property is an object reflecting all the cascading style sheet (CSS) style
settings for an object, including the line-height attribute. This means you
can specify the line height of an object, typically in pixels, with the following
property:

object.style.line-height

To reference the element’s object, you use the document.getElementById
method. For each object in your document that you want to manipulate through
JavaScript, you should assign an ID using the id attribute of the element’s tag.
For instance, the following has the ID myLayer:

<div id=”myLayer”> </div>

From this, you can obtain a reference to the layer’s object with the following:

var layerRef = document.getElementById(“myLayer”);

layerRef would then refer to the object for the layer element (myLayer) of
your document, and you could change its line height with this:

layerRef.style.lineHeight = “15px”;

The following steps show how to build a page with a layer element and a link.
When the user clicks the link, the line height in the layer increases.

1. In the header of a new document, create a script block containing a
function named moreSpace. The function should take one argument
containing the ID of the element to work with:

function moreSpace(objectID) {

}

2. Create a variable named thisObject, and associate it with the ID
object specified in the function’s argument. Use
document.getElementById:

var thisObject = document.getElementById(objectID);

3. Increase the value of the lineHeight attribute of the element’s
style object so that the final function looks like:

thisObject.style.lineHeight =

parseInt(thisObject.style.lineHeight) + 5 + “px”;

notes
• The style object

referred to here and
the document.
getElementByID
method are only available
in newer browsers with
robust support for the
Domain Object Model. This
means this task will only
work in Internet Explorer 5
and later or Netscape 6
and later.

• The parseInt function is
used here in resetting the
line height because
lineHeight returns a
string such as 18px.
parseInt converts this
string into a numeric value,
such as 18, to which you
can safely add 5 pixels.

• Notice the use of a
javascript: URL in the
link. This URL causes the
specified JavaScript code
to execute when the user
clicks on the link.

• When you call the
moreSpace function, you
pass in the object ID as a
string; that is why
myObject is contained in
single quotes.

328 Part 7

Task 158

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 328

4. In the body of the document, create a layer and position it where you
are using the style attribute of the div tag. Specify an initial line
height for the object, and specify myObject as the ID for the layer:

<div id=”myObject” style=”position: absolute; left: Æ

50px; top: 50px; width: 150px; font-size: 14px; line-Æ

height: 18px; background-color: #cccccc;”>This is my Æ

object and it has lots of text for us to experiment Æ

with.</div>

5. Create a link the user can click to call the moreSpace function, so
the final page looks like Listing 158-1.

<head>

<script language=”JavaScript”>

function moreSpace(objectID) {

var thisObject = document.getElementById(objectID);

thisObject.style.lineHeight =

parseInt(thisObject.style.lineHeight) + 5 + “px”;

}

</script>

</head>

<body>

<div id=”myObject” style=”position: absolute; left: Æ

50px; top: 50px; width: 150px; font-size: 14px; line-Æ

height: 18px; background-color: #cccccc;”>This is my Æ

object and it has lots of text for us to experiment Æ

with.</div>

Æ

Increase the line spacing.

</body>

Listing 158-1: Changing an element’s line height.

6. Save the file and close it.

7. Open the file in a browser, and you see the link and the text object.

8. Click on the link, and the layer’s line height increases. Keep clicking
and the line height keeps increasing.

DHTML and Style Sheets 329

Task 158

cross-reference
• This task shows you how to

change line spacing in text.
Tasks 174 and 175 show
you how to manipulate the
font characteristics of text.

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 329

Determining an Object’s Location

Every element of your page has an object associated with it that can be accessed
through JavaScript. For instance, you can determine an object’s location in

the browser window using this object.

The location information is part of the style property of the object. The style
property includes the left and top attributes. You can determine the location of
an object with the following two properties:

object.style.left

object.style.top

To reference the element’s object, you use the document.getElementById
method. For each object in your document that you want to manipulate through
JavaScript, you should assign an ID using the id attribute of the element’s tag.
For instance, the following image has the ID myImage:

Then, you could obtain a reference to the image’s object with the following:

var imageRef = document.getElementById(“myImage”);

This means imageRef would then refer to the object for the image element of
your document, and you could reference the position of the image with this:

imageRef.style.left

imageRef.style.top

The following steps show how to build a page with a layer element and a link.
When the user clicks the link, he or she sees a dialog box reporting the coordi-
nate locations of the object.

1. In the header of a new document, create a script block containing a
function named getLocation. The function should take one argu-
ment containing the ID of the element to work with:

function getLocation(objectID) {

}

2. Create a variable named thisObject, and associate it with the ID
object specified in the function’s argument. Use
document.getElementById:

var thisObject = document.getElementById(objectID);

3. Create the variables x and y and store the left and top properties
of the object in them:

var x = thisObject.style.left;

var y = thisObject.style.top;

notes
• Values for the top and
left properties are usu-
ally set in pixels.

• The style object
referred to here and the
document.
getElementByID
method are only available
in newer browsers with
robust support for the
Domain Object Model. This
means this task will only
work in Internet Explorer 5
and later or Netscape 6
and later.

• In Step 6 notice the use of
a javascript: URL in
the link. This URL causes
the specified JavaScript
code to execute when the
user clicks on the link.

• When you call the
getLocation function,
you pass in the object ID
as a string; that is why
myObject is contained in
single quotes.

330 Part 7

Task 159

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 330

4. Display the information in a dialog box for the user using
window.alert so that the final function looks like this:

window.alert(“Object Location: (“ + x + “,” + y + “)”);

5. In the body of the document, create a layer and position it wherever
you want using the style attribute of the div tag. Specify
myObject as the ID for the layer:

<div id=”myObject” style=”position: absolute; left: Æ

50px; top: 200px; background-color: #cccccc;”>My ObjectÆ

</div>

6. Create a link the user can click to call the getLocation function, so
the final page looks like Listing 159-1.

<head>

<script language=”JavaScript”>

function getLocation(objectID) {

var thisObject = document.getElementById(objectID);

var x = thisObject.style.left;

var y = thisObject.style.top;

window.alert(“Object Location: (“ + x + “,” + y + Æ

“)”);

}

</script>

</head>

<body>

<div id=”myObject” style=”position: absolute; left: Æ

50px; top: 200px; background-color: #cccccc;”>My Æ

Object</div>

Where is Æ

the object?

</body>

Listing 159-1: Determining the location of an object.

7. Save the file and close it.

8. Open the file in a browser, and you see the link and object.

9. Click on the link to see the object’s location in a dialog box.

DHTML and Style Sheets 331

Task 159

cross-reference
• See Task 249 for issues

that may arise regarding
object placement when
working with different
browsers.

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 331

Placing an Object

E very element of your page has an object associated with it that can be
accessed through JavaScript. For instance, you can determine an object’s

location in the browser window using this object.

The location information is part of the style property of the object. The style
property includes the left and top attributes. You can specify the location of an
object, typically in pixels, with the following two properties:

object.style.left

object.style.top

To reference the element’s object, you use the document.getElementById
method. For each object in your document that you want to manipulate through
JavaScript, you should assign an ID using the id attribute of the element’s tag.
For instance, the following image has the ID myImage:

Then, you could obtain a reference to the image’s object with the following:

var imageRef = document.getElementById(“myImage”);

This means imageRef would then refer to the object for the image element
of your document, and you could assign a new location to the picture with the
following:

imageRef.style.left = 100;

imageRef.style.top = 200;

This code positions the image at 100 pixels from the left of the browser window
and 200 pixels from the top of the browser window.

The following steps show how to build a page with a layer element and a link.
When the user clicks the link, the object moves to a new location.

1. In the header of a new document, create a script containing a func-
tion named moveObject. The function should take one argument
that contains the ID of the element to work with:

function moveObject(objectID) {

}

2. Create a variable named thisObject, and associate it with the
object specified in the function’s argument. Use
document.getElementById:

var thisObject = document.getElementById(objectID);

notes
• The style object

referred to here and the
document.
getElementByID
method are only available
in newer browsers with
robust support for the
Domain Object Model. This
means this task will only
work in Internet Explorer 5
and later or Netscape 6
and later.

• Here the left and top of
the object are specified as
simple numbers; these are
treated as pixels.

• In Step 5 notice the use of
a javascript: URL in
the link. This URL causes
the specified JavaScript
code to execute when the
user clicks on the link.

• When you call the
moveObject function,
you pass in the object ID
as a string; that is why
myObject is contained in
single quotes.

332 Part 7

Task 160

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 332

3. Assign new locations to the left and top attributes of the element’s
style object:

thisObject.style.left = 300;

thisObject.style.top = 100;

4. In the body of the document, create a layer and position it wherever
you want, using the style attribute of the div tag. Specify
myObject as the ID for the layer:

<div id=”myObject” style=”position: absolute; left: Æ

50px; top: 200px; background-color: #cccccc;”>My Æ

Object</div>

5. Create a link the user can click to call the moveObject function, so
the final page looks like Listing 160-1.

<head>

<script language=”JavaScript”>

function moveObject(objectID) {

var thisObject = document.getElementById(objectID);

thisObject.style.left = 300;

thisObject.style.top = 100;

}

</script>

</head>

<body>

<div id=”myObject” style=”position: absolute; left: Æ

50px; top: 200px; background-color: #cccccc;”>My Object</div>

Move Æ

Object to (300,100).

</body>

Listing 160-1: Moving a page element.

6. Save the file and close it.

7. Open the file in a browser, and you see the link and object.

8. Click on the link, and the element moves to a new location

DHTML and Style Sheets 333

Task 160

cross-references
• In this task, you set the

location of an object. In
Task 159 you can learn
how to retrieve the location
of an object.

• See Tasks 166 and 167 to
learn how to center an item
on your page.

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 333

Moving an Object Horizontally

E very element of your page has an object associated with it that can be
accessed through JavaScript. For instance, you can determine an object’s

location in the browser window using this object. The location information is
part of the style property of the object.

To reference the element’s object, you use the document.getElementById
method. For each object in your document that you want to manipulate through
JavaScript, you should assign an ID using the id attribute of the element’s tag.
Then, you could obtain a reference to the object with the following:

var tagRef = document.getElementById(“TagID”);

With this, objRef refers to the object for the TagID element of your document.
You could assign a new location to the element using the left and top attributes:

objRef.style.left = 100;

objRef.style.top = 200;

This code positions the element at 100 pixels from the left of the browser window
and 200 pixels from the top of the browser window.

The following steps show how to build a page with a layer element and a link.
When the user clicks the link, the object moves 10 pixels to the right; the user
can click on the link repeatedly to keep moving the object further to the right.

1. In the header of a new document, create a script block containing a
function named moveRight. The function should take one argument
that contains the ID of the element to work with:

function moveRight(objectID) {

}

2. Create a variable named thisObj, and associate it with the object
specified in the function’s argument. Use
document.getElementById:

var thisObj = document.getElementById(objectID);

3. Assign a new location to the left attribute of the element’s style
object:

thisObj.style.left = parseInt(thisObj.style.left) + 10;

4. In the body of the document, create a layer and position it wherever
you want using the style attribute of the div tag. Specify
myObject as the ID for the layer:

<div id=”myObject” style=”position: absolute; left: 50px; Æ

top: 200px; background-color: #cccccc;”>My Object</div>

notes
• The style object

referred to here and the
document.getElement
ByID method are only
available in newer browsers
with robust support for the
Domain Object Model. This
means this task will only
work in Internet Explorer 5
and later or Netscape 6
and later.

• The parseInt function is
used here in resetting the
left position because left
returns a string such as
100px. parseInt con-
verts this string into a
numeric value, such as
100, to which you can
safely add 10 pixels.

• Notice the use of a
javascript: URL in the
link. This URL causes the
specified JavaScript code
to execute when the user
clicks on the link.

• When you call the
moveRight function, you
pass in the object ID as a
string; that is why
myObject is contained in
single quotes (see Step 5).

• The style property is
actually an object reflecting
all the CSS style settings
for an object. This includes
the left and top
attributes:

object.style.left

object.style.top

334 Part 7

Task 161

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 334

5. Create a link the user can click to call the moveRight function, so
the final page looks like Listing 161-1.

<head>

<script language=”JavaScript”>

function moveRight(objectID) {

var thisObj = document.getElementById(objectID);

thisObj.style.left = parseInt(thisObj.style.left) + 10;

}

</script>

</head>

<body>

<div id=”myObject” style=”position: absolute; left: Æ

50px; top: 200px; background-color: #cccccc;”>My Æ

Object</div>

Move Æ

Object to the right.

</body>

Listing 161-1: Moving a page element.

6. Save the file and close it.

7. Open the file in a browser, and you see the link and object, as shown
in Figure 161-1.

Figure 161-1: A layer and a link.

8. Click on the link several times, and the element moves progressively
further to the right.

DHTML and Style Sheets 335

Task 161

cross-references
• Task 162 shows you how to

move an object vertically.

• Task 159 shows you how to
determine the current loca-
tion of an object.

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 335

Moving an Object Vertically

E very element of your page has an object associated with it that can be
accessed through JavaScript. For instance, you can determine an object’s

location in the browser window using this object. The location information is
part of the style property of the object.

To reference the element’s object, you use the document.getElementById
method. For each object in your document that you want to manipulate through
JavaScript, you should assign an ID using the id attribute of the element’s tag.
Then, you could obtain a reference to an object with the following:

var objRef = document.getElementById(“TagID”);

With this, objRef would then refer to the object for the TagID element of your
document. You could assign a new location to the element using the left and
top attributes:

objRef.style.left = 100;

objRef.style.top = 200;

This code positions the image at 100 pixels from the left of the browser window
and 200 pixels from the top of the browser window.

The following steps show how to build a page with a layer element and a link.
When the user clicks the link, the object moves 10 pixels down; the user can click
on the link repeatedly to keep moving the object further down.

1. In the header of a new document, create a script block containing a
function named moveDown. The function should take one argument,
which contains the ID of the element to work with:

function moveDown(objectID) {

}

2. Create a variable named thisObj, and associate it with the object
specified in the function’s argument. Use
document.getElementById:

var thisObj = document.getElementById(objectID);

3. Assign a new location to the top attribute of the element’s style
object:

thisObj.style.top = parseInt(thisObj.style.top) + 10;

4. In the body of the document, create a layer and position it wherever
you want using the style attribute of the div tag. Specify
myObject as the ID for the layer:

<div id=”myObject” style=”position: absolute; left: Æ

50px; top: 200px; background-color: #cccccc;”>My Æ

Object</div>

notes
• The style object

referred to here and the
document.
getElementByID
method are only available
in newer browsers with
robust support for the
Domain Object Model. This
means this task will only
work in Internet Explorer 5
and later or Netscape 6
and later.

• The parseInt function is
used here in resetting the
top position because top
returns a string such as
100px. parseInt con-
verts this string into a
numeric value, such as
100, to which you can
safely add 10 pixels.

• In Step 5 notice the use of
a javascript: URL in
the link. This URL causes
the specified JavaScript
code to execute when the
user clicks on the link.

• When you call the
moveDown function, you
pass in the object ID
as a string; that is why
myObject is contained
in single quotes.

• The style property is
actually an object reflecting
all the CSS style settings
for an object. This includes
the left and top
attributes:

object.style.left

object.style.top

336 Part 7

Task 162

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 336

5. Create a link the user can click to call the moveDown function, so the
final page looks like Listing 162-1.

<head>

<script language=”JavaScript”>

function moveDown(objectID) {

var thisObj = document.getElementById(objectID);

thisObj.style.top = parseInt(thisObj.style.top) + 10;

}

</script>

</head>

<body>

<div id=”myObject” style=”position: absolute; left: Æ

50px; top: 200px; background-color: #cccccc;”>My Object</div>

Move Æ

Object down.

</body>

Listing 162-1: Moving a page element.

6. Save the file and close it.

7. Open the file, and you see the link and object, as shown in
Figure 162-1.

Figure 162-1: A layer and a link.

8. Click on the link several times, and the element moves progressively
further down.

DHTML and Style Sheets 337

Task 162

cross-reference
• Task 159 shows you how to

determine the current loca-
tion of an object.

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 337

Moving an Object Diagonally

E very element of your page has an object associated with it that can be
accessed through JavaScript. For instance, you can determine an object’s

location in the browser window using this object. The location information is
part of the style property of the object.

To reference the element’s object, you use the document.getElementById
method. For each object in your document that you want to manipulate through
JavaScript, you should assign an ID using the id attribute of the element’s tag.
Then, you could obtain a reference to the object with the following:

var objRef = document.getElementById(“TagID”);

With this, objRef would then refer to the object for the TagID element of your
document, and you could assign a new location to the element with this:

objRef.style.left = 100;

objRef.style.top = 200;

This code positions the image at 100 pixels from the left of the browser window
and 200 pixels from the top of the browser window.

The following steps show how to build a page with a layer element and a link.
When the user clicks the link, the object moves 10 pixels down and 10 pixels to
the right; the user can click on the link repeatedly to keep moving the object.

1. In the header of a new document, create a script block containing a
function named moveDiagonally. The function should take one
argument that will contain the ID of the element to work with:

function moveDiagonally(objectID) {

}

2. Create a variable named thisObj, and associate it with the object
specified in the function’s argument. Use
document.getElementById:

var thisObj = document.getElementById(objectID);

3. Assign a new location to the left attribute of the element’s style
object:

thisObj.style.left = parseInt(thisObj.style.left) + 10;

4. Assign a new location to the top attribute of the element’s style
object so that the final function looks like this:

thisObj.style.top = parseInt(thisObj.style.top) + 10;

notes
• The style object

referred to here and
the document.
getElementByID
method are only available
in newer browsers with
robust support for the
Domain Object Model. This
means this task will only
work in Internet Explorer 5
and later or Netscape 6
and later.

• The parseInt function is
used here in resetting the
left position because left
returns a string such as
100px. parseInt con-
verts this string into a
numeric value, such as
100, to which you can
safely add 10 pixels.

• In Sep 6 notice the use of
a javascript: URL in
the link. This URL causes
the specified JavaScript
code to execute when the
user clicks on the link.

• When you call the
moveDiagonally func-
tion, you pass in the object
ID as a string; that is why
myObject is contained in
single quotes.

• The style property is
actually an object reflecting
all the CSS style settings
for an object. This includes
the left and top
attributes:

object.style.left

object.style.top

338 Part 7

Task 163

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 338

5. In the body of the document, create a layer and position it wherever
you want using the style attribute of the div tag. Specify
myObject as the ID for the layer:

<div id=”myObject” style=”position: absolute; left: 50px; Æ

top: 200px; background-color: #cccccc;”>My Object</div>

6. Create a link the user can click to call the moveDiagonally function,
so the final page looks like Listing 163-1.

<head>

<script language=”JavaScript”>

function moveDiagonally(objectID) {

var thisObj = document.getElementById(objectID);

thisObj.style.left = parseInt(thisObj.style.left) + 10;

thisObj.style.top = parseInt(thisObj.style.top) + 10;

}

</script>

</head>

<body>

<div id=”myObject” style=”position: absolute; left: Æ

50px; top: 200px; background-color: #cccccc;”>My Object</div>

Move Æ

Object diagonally.

</body>

Listing 163-1: Moving a page element.

7. Save the file and close it.

8. Open the file in a browser, and you see the link and object.

9. Click on the link several times, and the element moves progressively
further along the diagonal.

DHTML and Style Sheets 339

Task 163

cross-reference
• Task 161 shows you how to

move an object horizontally,
while Task 162 shows you
how to move an object
vertically.

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 339

Controlling Object Movement
with Buttons

The following steps show how to build a page with a layer element and four
buttons. The buttons move the layer element up, down, right, or left.

1. In the header of a new document, create a script block containing a
function named moveUp. The function should take one argument
that contains the ID of the element to work with and should subtract
10 pixels from the top property of the element’s style object:

function moveUp(objectID) {

var thisObj = document.getElementById(objectID);

thisObj.style.top = parseInt(thisObj.style.top) - 10;

}

2. Create another function called moveDown. The function should work
just like moveUp, except that it adds 10 pixels to the top property:

thisObj.style.top = parseInt(thisObj.style.top) + 10;

3. Create another function called moveRight. The function should
work just like moveUp, except that it adds 10 pixels to the left
property:

thisObj.style.left = parseInt(thisObj.style.left) + 10;

4. Create another function called moveLeft. The function should
work like moveUp, except that it subtracts 10 pixels from the left
property:

thisObj.style.left = parseInt(thisObj.style.left) - 10;

5. In the body of the document, create a layer and position it wherever
you want using the style attribute of the div tag. Specify
myObject as the ID for the layer:

<div id=”myObject” style=”position: absolute; left: 50px; Æ

top: 200px; background-color: #cccccc;”>My Object</div>

6. Create four buttons using the input tag. Each button should display
a symbol (using the value attribute), indicating which direction it
moves the object in and should use the onClick event handler to
call the appropriate function specified earlier.

7. Use a table to position the buttons in a diamond layout so that the
final page looks like Listing 164-1.

<head>

<script language=”JavaScript”>

function moveUp(objectID) {

var thisObj = document.getElementById(objectID);

(continued)

notes
• The parseInt function is

used here in resetting the
top position because top
returns a string such as
100px. parseInt con-
verts this string into a
numeric value, such as
100, to which you can
safely add 10 pixels.

• When you call the
moveDiagonally func-
tion, you pass in the object
ID as a string; that is why
myObject is contained in
single quotes.

340 Part 7

Task 164

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 340

thisObj.style.top = parseInt(thisObj.style.top) - 10;

}

function moveDown(objectID) {

var thisObj = document.getElementById(objectID);

thisObj.style.top = parseInt(thisObj.style.top) + 10;

}

function moveRight(objectID) {

var thisObj = document.getElementById(objectID);

thisObj.style.left = parseInt(thisObj.style.left) + 10;

}

function moveLeft(objectID) {

var thisObj = document.getElementById(objectID);

thisObj.style.left = parseInt(thisObj.style.left) - 10;

}

</script>

</head>

<body>

<div id=”myObject” style=”position: absolute; left: Æ

50px; top: 200px; background-color: #cccccc;”>My Object</div>

<table>

<tr valign=”bottom”>

<td colspan=”2” align=”center”>

<input type=”button” value=”^” Æ

onClick=”moveUp(‘myObject’);”>

</td></tr>

<tr valign=”middle”>

<td align=”right”>

<input type=”button” value=”<” Æ

onClick=”moveLeft(‘myObject’);”>

</td>

<td align=”left”>

<input type=”button” value=”>” Æ

onClick=”moveRight(‘myObject’);”>

</td></tr>

<tr valign=”top”>

<td colspan=”2” align=”center”>

<input type=”button” value=”v” Æ

onClick=”moveDown(‘myObject’);”>

</td></tr>

</table>

</body>

Listing 164-1: Controlling element placement using buttons.

8. Save the file and open it in a browser. You now see the buttons and
object.

9. Click repeatedly on the buttons, and the element moves in the direc-
tions indicated by the buttons.

DHTML and Style Sheets 341

Task 164

cross-reference
• See Task 163 for more

background information on
the style object and the
other variables used in
this task.

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 341

Creating the Appearance of
Three-Dimensional Movement

E very element of your page has an object associated with it that can be
accessed through JavaScript. For instance, you can determine an object’s

location in the browser window using this object as well as its size.

The following steps show how to build a page with a layer element that starts in
the top left at 100 by 100 pixels and moves down and to the right while progres-
sively increasing in size, until it has moved 100 pixels from its original starting
position. The result is an effect of a square moving closer to the user.

1. In the header of a new document, create a script block containing a
function named moveObject. The function should take one argu-
ment that contains the ID of the element to work with:

function moveObject(objectID) {

}

2. Create a variable named thisObj, and associate it with the object
specified in the function’s argument. Use
document.getElementById:

var thisObj = document.getElementById(objectID);

3. Assign new locations to the left and top attributes of the style
object:

thisObj.style.left = parseInt(thisObj.style.left) + 10;

thisObj.style.top = parseInt(thisObj.style.top) + 10;

4. Assign new values to the height and width attributes of the ele-
ment’s style object. Increase the size by 10 percent in each direc-
tion each time by multiplying the current height and width by 1.1:

thisObj.style.width = parseInt(thisObj.style.width) * 1.1;

thisObj.style.height = parseInt(thisObj.style.height) * Æ

1.1;

5. As the last step in the function, you have to decide if the object
should move again. Test the current location, and if the left position
of the object is less than 200 pixels, use the window.setTimeout
method to schedule the function run again. The final function looks
like this:

function moveObject(objectID) {

thisObj = document.getElementById(objectID);

thisObj.style.left = parseInt(thisObj.style.left) + 10;

thisObject.style.top = parseInt(thisObject.style.Æ

top) + 10;

thisObj.style.width = parseInt(thisObj.style.width) Æ

* 1.1;

notes
• This task illustrates a very

crude implementation of
an object moving in three
dimensions toward the
user. It is meant to illus-
trate that you can precisely
control the positioning and
height of page elements
dynamically in JavaScript to
create whatever visual
effects you require in your
applications.

• The parseInt function is
used here in resetting the
position because the prop-
erties return a string such
as 100px. parseInt
converts this string into a
numeric value, such as
100, to which you can
safely add 10 pixels.

• The window.set
Timeout method takes
two arguments: the func-
tion to call and the number
of millisecond to wait
before calling the function.
In specifying the function,
you need to specify its
arguments as well. This is
done here so that the
actual function call will look
like this: moveObject-
(‘myObject’).

• When you call the
moveObject function,
you pass in the object ID
as a string; that is why
myObject is contained in
single quotes (see Step 7).

• The onLoad event handler
specifies JavaScript code to
execute once the page
completes loading. This
way, once the page is
loaded and the page ele-
ment you will animate
exists, you begin the ani-
mation of the element.

342 Part 7

Task 165

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 342

thisObj.style.height = parseInt(thisObj.style.height) *

1.1;

if (parseInt(thisObj.style.left) < 200) {

window.setTimeout(“moveObject(‘“ + objectID +

“‘)”,150);

}

}

6. In the body of the document, create a layer named myObject, and
position it wherever you want using the style attribute of the
div tag:

<div id=”myObject” style=”position: absolute; left: 50px;

top: 200px; background-color: #cccccc;”>My Object</div>

7. In the onLoad event handler of the body tag, call the moveObject
function to start the animation. The final page is in Listing 165-1.

<head>

<script language=”JavaScript”>

function moveObject(objectID) {

thisObj = document.getElementById(objectID);

thisObj.style.left = parseInt(thisObj.style.left) + 10;

thisObj.style.top = parseInt(thisObj.style.top) + 10;

thisObj.style.width = parseInt(thisObj.style.width) Æ

* 1.1;

thisObj.style.height = parseInt(thisObj.style.height) Æ

* 1.1;

if (parseInt(thisObj.style.left) < 200) {

window.setTimeout(“moveObject(‘“ + objectID + Æ

“‘)”,150);

}

}

</script>

</head>

<body onLoad=”moveObject(‘myObject’);”>

<div id=”myObject” style=”position: absolute; left: 50px; Æ

top: 50px; height: 50px; width: 50px; background-color: Æ

#cccccc;”></div>

</body>

Listing 165-1: Animating an object in apparent three dimensions.

8. Save the file and open it in a browser. You now see the initial page
block element. The element animates, moving down and to the right
and growing larger until it reaches its final position.

DHTML and Style Sheets 343

Task 165

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 343

Centering an Object Vertically

With JavaScript, you can determine the dimensions of the working area of
the browser window. Using this information, you can precisely position

elements in the center of the browser window. This means you can center a page
element vertically if needed.

To do this, you need to know the height of the working area of the window. The
way you do this depends on the browser you are using:

• In Netscape 6 and higher, the window.innerHeight property indi-
cates the height of the working area of the browser window in pixels.

• In Internet Explorer, the document.body.clientHeight property
indicates the height in pixels.

To center an object vertically, you will also need to know its height and be able to
reset its height. The height of a page element is obtained from the height prop-
erty of the style object associated with the element.

To reference the element’s object, you use the document.getElementById
method. You obtain a reference to an object with the following:

var objRef = document.getElementById(“elementName”);

This means objRef would then refer to the object for the element named
elementName, and you could reference its height with this:

objRef.style.height

The following task creates a layer on the page along with a link. When the user
clicks the link, the object will be centered vertically in the browser window:

1. In the header of a new document, create a script block containing a
function named centerVertically. The function should take one
argument called objectID, which contains the ID of the element to
work with.

2. Create a variable named thisObj, and associate it with the object ID
specified in the function’s argument. Use
document.getElementById:

var thisObj = document.getElementById(objectID);

3. Create a variable named height, and store the height of the working
area of the browser window in a variable:

var height = (window.innerHeight) ? window.Æ

innerHeight : document.body.clientHeight;

notes
• The style object r

eferred to here and the
document.getElement
ByID method are only
available in newer browsers
with robust support for the
Domain Object Model. This
means this task will only
work in Internet Explorer 5
and later or Netscape 6
and later.

• Here you can see an exam-
ple of short-form condi-
tional evaluation. This takes
the form (condition)
? value if true :
value if false. What
the condition in this exam-
ple says is this: “”If
window.innerHeight
exists, then assign that
value to height; other-
wise, assign document.
body.clientHeight
to height.”

• The formula for placing the
page element vertically in
the center has to deter-
mine where to place the
top edge of the object. You
know that the object takes
up some amount of space,
and exactly half of the
remaining space in the
window should be above
the object. Therefore, you
subtract the height of the
object from the height of
the window and divide by
two to find out where to
place the top edge of the
page element.

• When you call the
centerVertically
function, you pass in the
object ID as a string; that
is why myObject is con-
tained in single quotes.

344 Part 7

Task 166

08 542419 Ch07.qxd 11/26/03 11:30 AM Page 344

4. Assign the height of the object to it a variable named
objectHeight:

var objectHeight = parseInt(thisObject.style.height);

5. Calculate the correct placement of the top of the object, and store it
in the variable newLocation:

var newLocation = (height - objectHeight) / 2;

6. Assign this new location to the height attribute of the element’s
style object:

thisObj.style.top = newLocation;

7. In the body of the document, create a layer named myObject, and
position it wherever you want using the style attribute of the
div tag:

<div id=”myObject” style=”position: absolute; left: Æ

50px; top: 200px; background-color: #cccccc;”>My Æ

Object</div>

8. Create a link the user can click to call the centerVertically func-
tion, so the final page looks like Listing 166-1.

<head>

<script language=”JavaScript”>

function centerVertically(objectID) {

var thisObj = document.getElementById(objectID);

var height = (window.innerHeight) ? window.innerHeightÆ

: document.body.clientHeight;

var objectHeight = parseInt(thisObj.style.height);

var newLocation = (height - objectHeight) / 2;

thisObj.style.top = newLocation;

}

</script>

</head>

<body>

<div id=”myObject” style=”position: absolute; left: 50px; Æ

top: 200px; background-color: #cccccc;”>My Object</div>

Center Æ

object vertically.

</body>

Listing 166-1: Centering an object vertically.

9. Open the file in a browser, and you now see the link and object. Click
on the link and the object repositions to the vertical center of the
document area of the browser window.

DHTML and Style Sheets 345

Task 166

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 345

Centering an Object Horizontally

W ith JavaScript, you can determine the dimensions of the working area of
the browser window. Using this information, you can precisely position

elements in the center of the browser window. This means you can center a page
element horizontally if needed.

To do this, you need to know the width of the working area of the window. The
way you do this depends on the browser you are using:

• In Netscape 6 and higher, the window.innerWidth property indi-
cates the width of the working area of the browser window in pixels.

• In Internet Explorer, the document.body.clientWidth property
indicates the width in pixels.

To center an object horizontally, you will also need to know its width and be able
to reset its width. The width of a page element is obtained from the width prop-
erty of the style object associated with the element.

To reference the element’s object, you use the document.getElementById
method. You could obtain a reference to an object with the following:

var objRef = document.getElementById(“elementName”);

This means objRef would then refer to the object for the element named
elementName, and you could reference the width of the layer with this:

objRef.style.width

The following task creates a layer on the page along with a link. When the user
clicks the link, the object will be centered horizontally in the browser window.

1. In the header of a new document, create a script block containing a
function named centerHorizontally. The function should take
one argument called objectID, which contains the ID of the element
to work with.

2. Create a variable named thisObj, and associate it with the object ID
specified in the function’s argument. Use
document.getElementById:

var thisObj = document.getElementById(objectID);

3. Create a variable named width, and store the height of the working
area of the browser window in the variable:

var height = (window.innerWidth) ? window.innerWidth : Æ

document.body.clientWidth;

notes
• The style object r

eferred to here and the
document.getElement
ByID method are only
available in newer browsers
with robust support for the
Domain Object Model. This
means this task will only
work in Internet Explorer 5
and later or Netscape 6
and later.

• Here you can see an exam-
ple of short-form condi-
tional evaluation. This takes
the form (condition)
? value if true :
value if false. What
the condition in this exam-
ple says is this: “If win-
dow.innerWidth exists,
then assign that value to
width; otherwise, assign
document.body.
clientWidth to width.”

• The formula for placing the
page element horizontally
in the center has to deter-
mine where to place the
left edge of the object. You
know that the object takes
up some amount of space,
and exactly half of the
remaining space in the
window should be to the
left of the object. Therefore,
you subtract the width of
the object from the width of
the window and then divide
by two to find out where to
place the left edge of the
page element (see Step 5).

• In Step 8 notice the use of
a javascript: URL in
the link. This URL causes
the specified JavaScript
code to execute when the
user clicks on the link.

346 Part 7

Task 167

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 346

4. Assign the width of the object to a variable named objectWidth:

var objectWidth = parseInt(thisObj.style.width);

5. Calculate the correct placement of the left of the object, and store it
in the variable newLocation:

var newLocation = (width - objectWidth) / 2;

6. Assign this new location to the width attribute of the element’s
style object:

thisObj.style.left = newLocation;

7. Create a layer and position it wherever you want using the style
attribute of the div tag. Specify myObject as the ID for the layer:

<div id=”myObject” style=”position: absolute; left: Æ

50px; top: 200px; background-color: #cccccc;”>My Æ

Object</div>

8. Create a link the user can click to call the centerHorizontally
function, so the final page looks like Listing 167-1.

<head>

<script language=”JavaScript”>

function centerHorizontally(objectID) {

var thisObj = document.getElementById(objectID);

var width = (window.innerWidth) ? window.innerWidth :

document.body.clientWidth;

var objectWidth = parseInt(thisObj.style.width);

var newLocation = (width - objectWidth) / 2;

thisObj.style.left = newLocation;

}

</script>

</head>

<body>

<div id=”myObject” style=”position: absolute; left: 50px; Æ

top: 200px; background-color: #cccccc;”>My Object</div>

 Æ

Center object horizontally.

</body>

Listing 167-1: Centering an object horizontally.

9. Open the file in a browser, and you now see the link and object. Click
on the link, and the object repositions to the horizontal center of the
document area of the browser window.

DHTML and Style Sheets 347

Task 167

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 347

Controlling Line Height in CSS

A s browser support for cascading style sheets has improved, so too has the
ability of Web designers to control all aspects of their pages’ appearance

through Dynamic HTML.

One of the aspects of the appearance of your pages that can be controlled
through style sheets is the line spacing used for text. This is controlled with the
line-height attribute:

<div style=”line-height: 20px;”>

Text goes here

</div>

The following task illustrates this attribute by displaying text with a variety of
spacing set:

1. Create a new HTML document in your preferred editor.

2. In the body of your document, create a layer containing text. Set the
line spacing tightly:

<div style=”font-size: 24px; line-height: 18px;”>This Æ

is a paragraph with really tight line spacing as you Æ

can see.</div>

3. Create another layer, and set the line spacing moderately:

<div style=”font-size: 24px; line-height: 30px;”>This Æ

is a paragraph with pretty standard line spacing as you Æ

can see.</div>

4. Create another layer, and set the line spacing loosely. The final page
should look like Listing 168-1.

<body>

<div style=”font-size: 24px; line-height: 18px;”>This Æ

is a paragraph with really tight line spacing as you can Æ

see.</div>

<hr>

(continued)

notes
• Dynamic HTML is the com-

bination of JavaScript, cas-
cading style sheets, and
the Domain Object Model,
which together make it pos-
sible to build sophisticated
interactive user interfaces
and applications that run
in the browser.

• You only need to specify
these style attributes to
enforce them. For instance,
if you don’t want extra line
spacing, you can normally
leave out line-height.

348 Part 7

Task 168

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 348

<div style=”font-size: 24px; line-height: 30px;”>This Æ

is a paragraph with pretty standard line spacing as you Æ

can see.</div>

<hr>

<div style=”font-size: 24px; line-height: 48px;”>This Æ

is a paragraphy with pretty loose line spacing as you can Æ

see.</div>

</body>

Listing 168-1: Changing line spacing.

5. Save the file and close it.

6. Open the file in your browser, and you should see three blocks of text
with different line spacing, as in Figure 168-1.

Figure 168-1: Changing line spacing

DHTML and Style Sheets 349

Task 168

cross-reference
• Task 158 shows you how to

control the line spacing
using JavaScript.

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 349

Creating Drop Shadows with CSS

A s browser support for cascading style sheets has improved, so too has the
ability for you to implement special visual effects purely in Dynamic HTML

code. One such effect is a drop shadow, such as the one in Figure 169-1.

Figure 169-1: A drop shadow down with absolute positioning.

Drop shadows on rectangular page elements is simple: You need one layer to be
positioned behind and slightly offset from another. For example, the following
creates a block box with a 5-pixel-wide gray shadow:

<div style=”background-color: #cccccc; width: 100px; height: Æ

100px; position: absolute; left: 105px; top: 105px;”> </div>

<div style=”background-color: #000000; width: 100px; height: Æ

100px; position: absolute; left: 100px; top: 100px;”> </div>

The problem with this approach is that it requires absolute and precise position-
ing of both the shadow and the main layer. Relative positioning in the flow of a
document is not possible. Consider the following code:

<div style=”background-color: #cccccc; width: 100px; height: Æ

100px; position: relative; left: 105px; top: 105px;”> </div>

<div style=”background-color: #000000; width: 100px; height: Æ

100px; position: relative; left: 100px; top: 100px;”> </div>

This fails to create the drop shadow, as illustrated in Figure 169-2.

The solution lies in embedded layers. The outer div tag specifies the dimensions
and color of the shadow. Inside the div block, a second div block specifies the
dimensions, color, and relative placement of the front layer. Then, the outer div
tag can be positioned using absolute or relative positioning, and the entire unit
will be placed together. A drop shadow is illustrated in the following steps:

notes
• The drop shadow effect

described in this task will
work on newer browsers
such as Internet Explorer 5
and higher or Netscape 6
and higher.

• The div tag is used to cre-
ate layers. You can specify
inline styles for a layer
using the style attribute
of the div tag.

• The position style
attribute allows you to
specify relative or absolute
positioning for a layer. With
relative positioning, the
layer is positioned in the
flow of the document as
would be expected based
on the preceding HTML,
and then any offsets are
implemented relative to
that location. With absolute
positioning, the layer is
positioned relative to the
top left corner of the docu-
ment window regardless of
where in your HTML code it
appears.

• When a layer is embedded
in another layer, relative
positioning means posi-
tioning the layer relative to
the position of the layer
that contains it. This means
that the inner layer is
always positioned relative
to the outer shadow layer,
and therefore, you can
position the outer shadow
layer using relative or
absolute positioning, and
the inner, front layer will
move along with it (see
Step 2).

350 Part 7

Task 169

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 350

Figure 169-2: Relative positioning may not work for drop shadows.

1. In a new document, create a body block with a layer for the shadow.
Specify the height, width, and color of the shadow:

<body>

<div style=”width: 100px; height: 100px; position: Æ

relative; background: #cccccc;”> </div>

</body>

2. Inside the layer for the shadow, create the layer to sit on top of the
shadow. In addition to the dimensions and color of the layer, use rela-
tive positioning to position that layer to the left and slightly up from
the shadow, so that the final document looks like Listing 169-1.

<body>

<div style=”width: 100px; height: 100px; position: Æ

relative; background: #cccccc;”>

<div style=”width: 100px; height: 100px; background: Æ

#00ffff; position: relative; left: -4px; top: -4px;”>

This box has a drop shadow.

</div>

</div>

</body>

Listing 169-1: Creating a drop shadow.

3. Save the file and close it.

4. Open the file in a browser, and you now see a box with a drop shadow.

DHTML and Style Sheets 351

Task 169

cross-reference
• In Task 170, you’ll see how

to modify a drop shadow.

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 351

Modifying a Drop Shadow

The ability of Web designers to implement visual effects purely in their
Dynamic HTML code has improved thanks to browser support for cascading

style sheets. One such effect is a drop shadow, such as the one shown in Figure
170-1.

Figure 170-1: A displayed drop shadow.

In this task, you will see how to manipulate the visual attributes of your drop
shadow from JavaScript once the shadow is in place. You can manipulate any
style attribute of the shadow by providing an ID for the shadow’s layer and then
accessing the style property of the layer’s object.

This task creates a drop shadow and then provides two links: When the user
clicks the first link, the color of the shadow changes, and when the user clicks the
second link, the width of the shadow changes.

1. In the header of a new document, create a script block containing a
function named changeDropColor. The function should take one
argument, which contains the ID of the element to work with:

function changeDropColor(dropID) {

}

2. Create a variable named dropObject, and associate it with the
object specified in the function’s argument. Use
document.getElementById:

var dropObject = document.getElementById(dropID);

3. Change the color assigned to the background attribute of the
element’s style object:

dropObject.style.background = “#000000”;

notes
• You can refer to an object’s

background color with
object.style.
background.

• To reference the element’s
object, you use the
document.getElement
ById method:

var objectRef =
document.getElement
ById(

“element ID”);

The variable objectRef
then refers to the object
associated with the ele-
ment specified in the ID.

• The style object
referred to here and the
document.getElement
ByID method are only
available in newer browsers
with robust support for the
Domain Object Model. This
means this task will only
work in Internet Explorer 5
and later or Netscape 6
and later.

• By increasing the width
and height of the shadow
by 5 pixels each, you make
the shadow stick that much
further out from behind the
front layer, which makes the
shadow seem thicker.

• In Step 7 notice the use of
a javascript: URL in
the link. This URL causes
the specified JavaScript
code to execute when the
user clicks on the link.

• When you call the
changeDropColor func-
tion, you pass in the object
ID as a string; that is why
myObject is contained in
single quotes.

352 Part 7

Task 170

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 352

4. Create another function named changeDropWidth. The function
should take one argument containing the ID of the element to work
with. The function should work in the same way as
changeDropColor, except that the dimensions of the element are
changed instead of the background color (see Listing 170-1).

5. In the body of the document, create your drop shadow. Make sure
the outer layer has the ID myDrop.

6. Create a link the user can click to call the changeDropColor
function.

7. Create another link the user can click to call the changeDropWidth
function, so the final page looks like Listing 170-1.

<head>

<script language=”JavaScript”>

function changeDropColor(dropID) {

var dropObject = document.getElementById(dropID);

dropObject.style.background = “#000000”;

}

function changeDropWidth(dropID) {

var dropObject = document.getElementById(dropID);

dropObject.style.width = 105;

dropObject.style.height = 105;

}

</script>

</head>

<body>

<div id=”myDrop” style=”width: 100px; height: 100px; Æ

position: relative; left: 0px; top: 0px; background: Æ

#cccccc;”>

<div style=”width: 100px; height: 100px; background: Æ

#00ffff; position: relative; left: -4px; top: -4px;”>

This box has a drop shadow.

</div>

</div>

Change Æ

Color of the Drop Shadow

Change Æ

Width of the Drop Shadow

</body>

Listing 170-1: Changing the appearance of a drop shadow.

8. Save the file and open it in a browser. You now see the drop shadow
that was illustrated in Figure 170-1.

9. Clicking the first link changes the shadow’s color to black. Clicking
the second increases the width of the shadow by 5 pixels.

DHTML and Style Sheets 353

Task 170

cross-reference
• The method for creating

this type of drop shadow
with cascading style sheets
is discussed in depth in
Task 169. This task is
based on the principles
from Task 169.

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 353

Removing a Drop Shadow

T he ability of Web designers to implement visual effects purely in their
Dynamic HTML code has improved thanks to browser support for cascading

style sheets. One such effect is a drop shadow, such as the one shown in Figure
171-1.

Figure 171-1: A displayed drop shadow.

In this task, you will see how to manipulate the visual attributes of your drop
shadow from JavaScript in order to remove the shadow. You can manipulate any
style attribute of the shadow by providing an ID for the shadow’s layer and then
accessing the style property of the layer’s object.

This task creates a drop shadow and then provides a link. When the user clicks
the link, the drop shadow disappears.

1. In the header of a new document, create a script block containing a
function named removeDrop. The function should take one argu-
ment that contains the ID of the element to work with:

function removeDrop(dropID) {

}

2. Create a variable named dropObject, and associate it with the
object specified in the function’s argument. Use
document.getElementById:

var dropObject = document.getElementById(dropID);

3. Change the color assigned to the background attribute of the ele-
ment’s style object to none so that the final function looks like this:

function changeDropColor(dropID) {

var dropObject = document.getElementById(dropID);

dropObject.style.background = “none”;

}

notes
• You can refer to an object’s

background color with
object.style.
background.

• To reference the element’s
object, you use the
document.getElement
ById method:

var objectRef =
document.getElement
ById(

“element ID”);

The variable objectRef
then refers to the object
associated with the ele-
ment specified in the ID.

• The style object
referred to here and the
document.getElement
ByID method are only
available in newer browsers
with robust support for the
Domain Object Model. This
means this task will only
work in Internet Explorer 5
and later or Netscape 6
and later.

• By setting the
background style prop-
erty to none, you effec-
tively remove the
background color and
make the drop shadow
layer transparent.

• In Step 5 notice the use of
a javascript: URL in
the link. This URL causes
the specified JavaScript
code to execute when the
user clicks on the link.

• When you call the
removeDrop function,
you pass in the object ID
as a string; that is why
myObject is contained in
single quotes.

354 Part 7

Task 171

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 354

4. In the body of the document, create your drop shadow. Make sure
the outer layer has the ID myDrop:

<div id=”myDrop” style=”width: 100px; height: 100px; Æ

position: relative; left: 0px; top: 0px; background: Æ

#cccccc;”>

<div style=”width: 100px; height: 100px; background: Æ

#00ffff; position: relative; left: -4px; top: -4px;”>

This box has a drop shadow.

</div>

</div>

5. Create a link the user can click to call the removeDrop function, so
the final page looks like Listing 171-1.

<head>

<script language=”JavaScript”>

function removeDrop(dropID) {

var dropObject = document.getElementById(dropID);

dropObject.style.background = “none”;

}

</script>

</head>

<body>

<div id=”myDrop” style=”float: left; width: 100px; Æ

height: 100px; position: relative; background: #cccccc;”>

<div style=”float: left; width: 100px; height: Æ

100px; background: #00ffff; position: relative; left: Æ

-4px; top: -4px;”>

This box has a drop shadow.

</div>

</div>

Remove Drop Æ

Shadow

</body>

Listing 171-1: Removing a drop shadow.

6. Save the file and open it in a browser. You now see the drop shadow.

7. Click on the link and the shadow disappears.

DHTML and Style Sheets 355

Task 171

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 355

Placing a Shadow on a
Nonstandard Corner

A s browser support for cascading style sheets has improved, so too has the
ability for you to implement special visual effects purely in their Dynamic

HTML code. One such effect is a drop shadow. In this task, you will see how you
can make the “drop” shadow actually protrude from any corner of the element
simply by adjusting the style attributes assigned to the inner layer of your drop
shadow effect.

Task 169 shows how the typical drop shadow effect is created. In that task, you
can see that the critical attributes that control the way the drop shadow works
are the left and top style attributes on the inner div tag. The inner div tag
specifies the front layer, which is positioned relative to the position of the shadow.
Therefore, the following positioning rules apply to these two attributes:

• Use a negative value for the left attribute to make the shadow
appear on the right of the element.

• Use a positive value for the left attribute to make the shadow
appear on the left of the element.

• Use a negative value for the top attribute to make the shadow appear
on the bottom of the element.

• Use a positive value for the top attribute to make the shadow appear
on the top of the element.

The following task applies these principles to create three identical drop shadow
effects, except that the shadow appears on a different, nonstandard corner of the
element in each instance:

1. Create an element with a drop shadow in the top left using positive
values for the left and top style attributes on the inner layer:

<div style=”width: 100px; height: 100px; position: Æ

relative; background: #cccccc;”>

<div style=”width: 100px; height: 100px; Æ

background: #00ffff; position: relative; left: 4px; Æ

top: 4px;”>

This box has a drop shadow.

</div></div>

2. Create an element with a drop shadow in the bottom left using a pos-
itive value for the left style attribute and a negative value for the
top style attribute on the inner layer.

3. Finally, create an element with a drop shadow in the top right using a
negative value for the left style attribute and a positive value for the
top style attribute on the inner layer. The final page should look like
Listing 172-1.

notes
• Dynamic HTML is the com-

bination of JavaScript, cas-
cading style sheets, and
the Domain Object Model,
which together make it pos-
sible to build sophisticated
interactive user interfaces
and applications that run
in the browser.

• The drop shadow effect
described in this task will
work on newer browsers
such as Internet Explorer 5
and higher or Netscape 6
and higher.

356 Part 7

Task 172

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 356

<body>

<div style=”width: 100px; height: 100px; position: Æ

relative; background: #cccccc;”>

<div style=”width: 100px; height: 100px; background: Æ

#00ffff; position: relative; left: 4px; top: 4px;”>

This box has a Top/Left drop shadow.

</div></div>

<div style=”width: 100px; height: 100px; position: Æ

relative; background: #cccccc;”>

<div style=”width: 100px; height: 100px; background: Æ

#00ffff; position: relative; left: 4px; top: -4px;”>

This box has a Bottom/Left drop shadow.

</div></div>

<div style=”width: 100px; height: 100px; position: Æ

relative; background: #cccccc;”>

<div style=”width: 100px; height: 100px; background: Æ

#00ffff; position: relative; left: -4px; top: 4px;”>

This box has a Top/Right drop shadow.

</div></div>

</body>

Listing 172-1: Placing the shadow on any nonstandard corner.

4. Save the file and close it.

5. Open the file in a browser, and you now see the drop shadow effects,
as illustrated in Figure 172-1.

Figure 172-1: The drop shadow can be placed on any corner of the element.

DHTML and Style Sheets 357

Task 172

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 357

Managing Z-Indexes in JavaScript

Using cascading style sheets, you can control the relative stacking order of
layers. The stacking order of layers determines which layers appear on top

of other layers when they overlap with each other. You control this stacking order
with the z-index style attribute, which takes a numeric value. The larger the
value, the higher a layer is in the stack.

The layer ordering information is part of the style property of the object. You
can determine the layer order position of an object by using object.style.
zindex. The following steps create two overlapping layers with links to adjust
which layer is on top:

1. In the header of a new document, create a script block containing
a function named swapLayer that takes two arguments named
topTarget (which will contain the layer ID for the layer to move to
the top) and bottomTarget (which will contain the layer ID for the
layer to move to the bottom):

function swapLayer(topTarget,bottomTarget) { }

2. In the function, set the stacking order for the desired top layer to
2 and for the bottom layer to 1:

document.getElementById(topTarget).style.zIndex = 2;

document.getElementById(bottomTarget).style.zIndex = 1;

3. In the body of the document, create a layer named firstLayer with
a stacking order of 1:

<div id=”firstLayer” style=” ... z-index: 1;”> </div>

4. In the layer, create a link to call swapLayer designed to move the
layer to the top of the stack; specify ‘firstLayer’ as the first argu-
ment and ‘secondLayer’ as the second argument:

<p><a href= Æ

“javascript:swapLayer(‘firstLayer’,’secondLayer’)”>

Move to top</P>

5. Create a second layer named secondLayer with a stacking order
of 2:

<div id=”secondLayer” style=” ... z-index: 2;”> </div>

6. In the layer, create a link to call swapLayer design to move the layer
to the top of the stack; specify ‘secondLayer’ as the first argument
and ‘firstLayer’ as the second argument. The final page should
look like Listing 173-1.

notes
• By default, layers stack on

top of each other in the
order in which they appear
in the HTML file.

• To reference the element’s
object, you use the
document.getElement
ById method:

var objectRef =
document.getElement
ById(

“element ID”);

The variable objectRef
then refers to the object
associated with the ele-
ment specified in the ID.

• See Listing 173-1 for the
rest of the style attributes
defined in Steps 3 and 5.

• The style object r
eferred to here and the
document.getElement
ByID method are only
available in newer browsers
with robust support for the
Domain Object Model. This
means this task will only
work in Internet Explorer 5
and later or Netscape 6
and later.

• Simply resetting one layer’s
stacking order doesn’t alter
another page element’s
stacking order. In order to
cause the layers to flip
positions in the stack as in
this example, you need to
change both layers’ stack-
ing order positions.

358 Part 7

Task 173

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 358

<head>

<script language=”JavaScript”>

function swapLayer(topTarget,bottomTarget) {

document.getElementById(topTarget).style.zIndex = 2;

document.getElementById(bottomTarget).style.zIndex = 1;

}

</script>

</head>

<body>

<div id=”firstLayer” style=”position: absolute; left: Æ

10px; top: 10px; width: 100px; height: 100px; background-Æ

color: yellow; z-index: 1;”>

<p><a href= Æ

“javascript:swapLayer(‘firstLayer’,’secondLayer’)”>Æ

Move to top</P> </div>

<div id=”secondLayer” style=”position: absolute; left: Æ

60px; top: 60px; width: 100px; height: 100px; background-Æ

color: lightgrey; z-index: 2;”>

<p><a href=Æ

“javascript:swapLayer(‘secondLayer’,’firstLayer’)”>Æ

Move to top</P> </div>

</body>

Listing 173-1: Changing stacking order with JavaScript.

7. Save the file and close it. Open the file in a browser, and you now see
two overlapping layers, as illustrated in Figure 173-1.

Figure 173-1: Overlapping layers.

8. Click on the Move to Top link in the bottom layer, and it moves to
the top of the stack. Click on the Move to Top link in the other layer,
and you should return to the original state of the page.

DHTML and Style Sheets 359

Task 173

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 359

Setting Fonts for Text with CSS

A s browser support for cascading style sheets has improved, so too has the
ability for you to control all aspects of your pages’ appearance through

Dynamic HTML. One of the aspects of the appearance of your pages that can be
controlled through style sheets is the font used for text. You can control this with
the font-family style attribute. For instance, the following sets all text in a
layer to Arial:

<div style=”font-family: Arial;”>

Text goes here

</div>

Similarly, you can change a font inline using the span tag:

<p>

This is text. Some of it is Æ

in Arial.

</p>

This results in the text shown in Figure 174-1.

Figure 174-1: Changing font inline with a style sheet.

When specifying fonts, you have no way to guarantee the user will have the fonts
on his or her browser. For this reason, you typically specify a list of fonts such as
the following:

font-family: Arial, Helvetica, SANS-SERIF;

Here, if the user doesn’t have Arial installed, his or her browser will use
Helvetica. If Helvetica isn’t installed, then SANS-SERIF is used. SANS-SERIF
is one of a special group of font names provided in cascading style sheets. It indi-
cates that the browser should use its default sans serif font instead of a specific
font.

notes
• Dynamic HTML is the com-

bination of JavaScript, cas-
cading style sheets, and
the Domain Object Model,
which together make it pos-
sible to build sophisticated
interactive user interfaces
and applications that run
in the browser.

• It is always a good idea to
provide one of these spe-
cial fonts as the final font
in your font-family
specification so that you
cause the browser to fall
back on a default if your
preferred fonts are missing.
Otherwise, you may end up
having text intended to be
displayed as a sans serif
font displayed with serifs or
the other way around.

360 Part 7

Task 174

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 360

The following task illustrates the font-family attribute by displaying text in
three different fonts:

1. In the body of your document, create a layer containing text. Specify
Times, SERIF as the font-family style:

<div style=”font-family: Times, SERIF;”>This type is Æ

Times</div>

2. Create another layer containing text. This time specify Arial,
SANS-SERIF:

<div style=”font-family: Arial, SANS-SERIF;”>This type Æ

is Arial</div>

3. Create another layer containing text. This time specify Courier,
MONOSPACE. The final page should look like Listing 174-1.

<body>

<div style=”font-family: Times, SERIF;”>This type is Æ

Times</div>

<div style=”font-family: Arial, SANS-SERIF;”>This type Æ

is Arial</div>

<div style=”font-family: Courier, MONOSPACE;”>This type Æ

is Courier</div>

</body>

Listing 174-1: Changing font family.

4. Save the file and close it.

5. Open the file in your browser, and you should see three blocks of text
in different fonts, as in Figure 174-2.

Figure 174-2: Changing fonts with font-family.

DHTML and Style Sheets 361

Task 174

tip
• Two other special font

names you might want
to use are SERIF (the
browser’s default serif font)
and MONOSPACE (the
browser’s default mono-
spaced font).

cross-reference
• Task 175 shows you how to

control the style for text
(such as size and bolding).

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 361

Setting Font Style for Text with CSS

A s browser support for cascading style sheets has improved, so too has the
ability of Web designers to control all aspects of their pages’ appearance

through Dynamic HTML.

One of the aspects of the appearance of your pages that can be controlled
through style sheets is the style used for text. For instance, you can control the
following:

• Use the font-style style attribute to control the italicization of
text. The following makes text italic:

<div style=”font-style: italic;”>

Text goes here

</div>

• Use the font-weight style attribute to control the boldness of text.
The following makes text bold:

The following text is bold: <span style=”font-weight: Æ

bold;”>This is bold

• Use the font-size style attribute to control the size of text. You
can specify sizes in points (such as 24pt), in pixels (such as 18px), or
as some fraction of the default font size (such as 1.5em). Typically,
you will use points or pixels (which are more consistent between
browsers and operating systems), as in the following:

<div style=”font-size: 18px;”>

Text goes here

</div>

• Use the text-decoration attribute to control underlining of text.
The following makes text underlined:

The following text is underlined: <span style=”text-Æ

decoration: underline;”>This is underlined

The following task illustrates these attributes by displaying text in all four styles,
as well as combining the styles:

1. In the body of your document, create a layer containing text. Make
the text italic:

<div style=”font-style: italic;”>This type is Æ

Italics</div>

2. Create another layer and make the text bold:

<div style=”font-weight: bold;”>This type is Bold</div>

notes
• Dynamic HTML is the com-

bination of JavaScript, cas-
cading style sheets, and
the Domain Object Model,
which together make it pos-
sible to build sophisticated
interactive user interfaces
and applications that run
in the browser.

• You only need to specify
these style attributes to
enforce them. For instance,
if you don’t want bold text,
you can normally leave out
font-weight.

362 Part 7

Task 175

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 362

3. Create another layer and make the text 24 point:

<div style=”font-size: 24pt;”>This type is 24pt</div>

4. Create another layer and make the text underlined:

<div style=”text-decoration: underline;”>This type is Æ

Underlined</div>

5. Create another layer containing text, and apply all four styles from
the previous layers. The final page should look like Listing 175-1.

<body>

<div style=”font-style: italic;”>This type is Æ

Italics</div>

<div style=”font-weight: bold;”>This type is Bold</div>

<div style=”font-size: 24pt;”>This type is 24pt</div>

<div style=”text-decoration: underline;”>This type is Æ

Underlined</div>

<div style=”font-style: italic; font-weight: bold; Æ

font-size: 24pt; text-decoration: underline;”>This type Æ

has all four styles</div>

</body>

Listing 175-1: Changing font styles.

6. Save the file and close it.

7. Open the file in your browser, and you should see five blocks of text
in different styles, as in Figure 175-1.

Figure 175-1: Changing font styles.

DHTML and Style Sheets 363

Task 175

cross-reference
• Task 174 shows you how

to change the font used
on text.

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 363

Controlling Text Alignment with CSS

A s browser support for cascading style sheets has improved, so too has the
ability of Web designers to control all aspects of their pages’ appearance

through Dynamic HTML.

One of the aspects of the appearance of your pages that can be controlled
through style sheets is alignment of text. You can control this with the text-
align style attribute. For instance, the following sets all text in a layer to be
centered:

<div style=”text-align: center;”>

Text goes here

</div>

This results in the text shown in Figure 176-1.

Figure 176-1: Changing font alignment to centered.

The following task illustrates the text-align attribute by displaying text in
three different alignments:

1. Create a new HTML document in your preferred editor.

2. In the body of your document, create a layer containing text. Specify
left as the text-align style:

<div style=”text-align: left;”>This type is left-Æ

aligned</div>

3. Create another layer containing text. This time specify center:

<div style=”text-align: center;”>This type is Æ

centered</div>

notes
• Dynamic HTML is the com-

bination of JavaScript, cas-
cading style sheets, and
the Domain Object Model,
which together make it pos-
sible to build sophisticated
interactive user interfaces
and applications that run
in the browser.

• Normally, you will only
apply text alignment to lay-
ers (div tags, as well as
standard HTML elements
such as h1, p, and so on)
but not to inline text
(span tags).

364 Part 7

Task 176

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 364

4. Create another layer containing text. This time specify right. The
final page should look like Listing 176-1.

<body>

<div style=”text-align: left;”>This type is left-Æ

aligned</div>

<div style=”text-align: center;”>This type is Æ

centered</div>

<div style=”text-align: right;”>This type is right-Æ

aligned</div>

</body>

Listing 176-1: Changing text alignment.

5. Save the file and close it.

6. Open the file in your browser, and you should see three blocks of text
with different alignments, as in Figure 176-2.

Figure 176-2: Changing alignment with text-align.

DHTML and Style Sheets 365

Task 176

cross-reference
• Task 174 shows you how to

change the font for text,
while Task 175 shows you
how to change the styles
(such as bolding and size).

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 365

Controlling Spacing with CSS

A s browser support for cascading style sheets has improved, so too has the
ability of Web designers to control all aspects of their pages’ appearance

through Dynamic HTML.

One of the aspects of the appearance of your pages that can be controlled
through style sheets is the spacing used for text. For instance, you can control
the following:

• Use the letter-spacing style attribute to control the spacing of
letters. You can specify spacing in pixels (such as 10px) or as some
fraction of the width of the letter “m” in the font you are using (such
as 2.0em):

<div style=”letter-spacing: 20px;”>

Text goes here

</div>

• Use the word-spacing style attribute to control the spacing
between words in pixels or em units:

The following text has larger word spacing: <span Æ

style=”word-spacing: 3.0em;”>This has bigger word Æ

spacing

The following task illustrates these attributes by displaying text with a variety of
spacing set:

1. Create a new HTML document in your preferred editor.

2. In the body of your document, create a layer containing text. Set the
letter spacing using pixels:

<div style=”letter-spacing: 10px;”>These letters are 10 Æ

pixels apart</div>

3. Create another layer and set the letter spacing as a fraction of the
width of the letter “m”:

<div style=”letter-spacing: 2em;”>These letters are Æ

2 m’s apart</div>

4. Create another layer and set the word spacing using pixels:

<div style=”word-spacing: 30px;”>These words are 30 Æ

pixels apart</div>

notes
• Dynamic HTML is the com-

bination of JavaScript, cas-
cading style sheets, and
the Domain Object Model,
which together make it pos-
sible to build sophisticated
interactive user interfaces
and applications that run
in the browser.

• You only need to specify
these style attributes to
enforce them. For instance,
if you don’t want extra
letter spacing, you can
normally leave out
letter-spacing.

366 Part 7

Task 177

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 366

5. Create another layer and set the word spacing as a fraction of the
width of the letter “m.” The final page should look like Listing 177-1.

<body>

<div style=”letter-spacing: 10px;”>These letters are Æ

10 pixels apart</div>

<div style=”letter-spacing: 2em;”>These Æ

letters are 2 m’s apart</div>

<div style=”word-spacing: 30px;”>These words are 30 Æ

pixels apart</div>

<div style=”word-spacing: 5em;”>These words are 5 m’s Æ

apart</div>

</body>

Listing 177-1: Changing text spacing.

6. Save the file and close it.

7. Open the file in your browser, and you should see four blocks of text
with different spacing, as in Figure 177-1.

Figure 177-1: Changing text spacing.

DHTML and Style Sheets 367

Task 177

cross-reference
• In addition to spacing, you

may want to control the
alignment of your text. Task
176 shows how to set the
alignment.

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 367

Controlling Absolute Placement
with CSS

A s browser support for cascading style sheets has improved, so too has the
ability of Web designers to control all aspects of their pages’ appearance

through Dynamic HTML.

One of the aspects of the appearance of your pages that can be controlled
through style sheets is the placement of layers. You can place layers in an absolute
fashion by using the position: absolute style setting. You then use the left
and top style attribute to specify the position of a layer relative to the top left
corner of the document section of the browser window. Typically, you will set
these values in pixels. For instance, consider the following layer:

<div style=”position: absolute; left: 100px; right: 100px;”>

Text goes here

</div>

This results in text positioned 100 pixels below and to the right of the top left
corner, as illustrated in Figure 178-1.

Figure 178-1: Changing layer positioning.

The following task illustrates absolute positioning by displaying two absolutely
positioned layers:

1. Create a new HTML document in your preferred editor.

2. In the body of your document, create a layer containing text and
place it 200 pixels in and down from the top left corner:

<div style=”position: absolute; top: 200px; left: Æ

200px;”>This text is placed 200 pixels from the top and Æ

300 pixels from the left of the window</div>

notes
• Dynamic HTML is the com-

bination of JavaScript, cas-
cading style sheets, and
the Domain Object Model,
which together make it pos-
sible to build sophisticated
interactive user interfaces
and applications that run
in the browser.

• Layers are created with
div tags and can contain
any valid HTML in them.
They are simply containers
for the HTML to which you
can apply styles for the
whole layer.

• With absolute positioning,
the order of layers really
doesn’t matter. In this
example, the second layer
visually appears in the flow
of the page as being before
the first layer.

368 Part 7

Task 178

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 368

3. Create another layer containing text, and place it right at the top left
corner. The final page should look like Listing 178-1.

<body>

<div style=”position: absolute; top: 200px; left: Æ

200px;”>This text is placed 200 pixels from the top and Æ

300 pixels from the left of the window</div>

<div style=”position: absolute; top: 0px; left: Æ

0px;”>This text is placed right in the top-left corner of Æ

the window</div>

</body>

Listing 178-1: Controlling layer positioning.

4. Save the file and close it.

5. Open the file in your browser, and you should see the two layers, as
in Figure 178-2.

Figure 178-2: Controlling layer positioning with absolute positioning.

DHTML and Style Sheets 369

Task 178

cross-reference
• More information on con-

trolling the order of layers
can be found in Task 173.

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 369

Controlling Relative Placement
with CSS

A s browser support for cascading style sheets has improved, so too has the
ability of Web designers to control all aspects of their pages’ appearance

through Dynamic HTML.

One of the aspects of the appearance of your pages that can be controlled
through style sheets is the placement of layers. Layers are created with div tags
and can contain any valid HTML in them. They are simply containers for the
HTML to which you can apply styles for the whole layer.

You can place layers in a relative fashion by using the position: relative
style setting. This means that any positioning you specify is relative to where you
would normally have expected the layer to appear in your document given its
placement in the flow of HTML in your document.

You then use the left and top style attribute to specify the position of a layer
relative to its normal place in the flow of the document. Typically, you will set
these values in pixels. For instance, consider the following layer:

<div style=”position: relative; left: 100px; right: 100px;”>

Text goes here

</div>

The following task illustrates relative positioning by creating a document that
starts with a paragraph and then follows that with a relatively positioned layer:

1. Create a new HTML document in your preferred editor.

2. In the body of your document, create a paragraph:

<p>

Here is some text

</p>

3. Create a relatively positioned layer to follow the paragraph. The final
page should look like Listing 179-1.

notes
• Dynamic HTML is the com-

bination of JavaScript, cas-
cading style sheets, and
the Domain Object Model,
which together make it pos-
sible to build sophisticated
interactive user interfaces
and applications that run
in the browser.

• With relative positioning,
the order of layers does
matter. In this example, if
you switched the position
of the layer and the para-
graph in your file, you
would end up with
different results.

370 Part 7

Task 179

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 370

<body>

<p>Here is some text</p>

<div style=”position: relative;

left: 50px;

top: 100px;”>

This text is indented 50 pixels relative to the text

before it and shifted down by 100 pixels

</div>

</body>

Listing 179-1: Controlling layer positioning.

4. Save the file and close it.

5. Open the file in your browser, and you should see the two layers, as
in Figure 179-1.

Figure 179-1: Controlling layer positioning with relative positioning.

DHTML and Style Sheets 371

Task 179

cross-reference
• Relative positioning can

also be used in creating
shadows. See Tasks 169
through 172 for more infor-
mation on shadows.

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 371

Adjusting Margins with CSS

A s browser support for cascading style sheets has improved, so too has the
ability for you to control all aspects of your pages’ appearance through

Dynamic HTML. One of the aspects of the appearance of your pages that can
be controlled through style sheets is the margin of a layer.

To understand margins and their meaning in style sheets, you need to learn about
the box model used in cascading style sheets. The box model defines a layer’s
outer components, as shown in Figure 180-1.

Figure 180-1: The CSS box model.

You control the width of the margin in one of several ways:

• Use the margin attribute to set the same margin width for all sides.
The following creates 5-pixel margins on all sides of the layer:

<div style=”margin: 5px;”>

Text goes here

</div>

• Use the margin attribute to set different widths for the different
sides:

<div style=”margin: 5px 10px 15px 20px;”>

Text goes here

</div>

• Specify distinct margins individually using the margin-top,
margin-bottom, margin-right, and margin-left attributes.
For instance, the following only creates margins on the top and to
the right of the layer:

<div style=”margin-top: 5px; margin-right: 5px;”>

Text goes here

</div>

Outer boundary of the layer
(not visible)

Margin

Border (may be visible)

Padding (background color or
image will fill padding, as well
as the content)

Actual content of the layer

notes
• Layers are created with
div tags and can contain
any valid HTML in them.
They are simply containers
for the HTML to which you
can apply styles for the
whole layer.

• When you are specifying all
four margin widths with the
margin attribute, the first
value is for the top margin
and then the values pro-
ceed clockwise, with the
right margin, the bottom
margin, and finally the left
margin.

• This outer layer with a bor-
der is presented for visual
purposes. It allows you to
see where the margin
occurs as the space
between the visible edge of
an inner layer and the bor-
der (see Step 2).

• The inner layer has a back-
ground color to show where
the visible part of the layer
ends and the margins start
(see Step 3).

• By default, layers have no
margins; so if you don’t
need a margin, you don’t
have to specify any margin-
related style attributes
(see Step 5).

372 Part 7

Task 180

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 372

The following task illustrates how margins work by displaying the same layer
with two different margin settings:

1. In the body of your document, create a layer with a border:

<div style=”border-style: solid; border-width: 1px;”>

</div>

2. In this layer, create another layer with a margin:

<div style=”background-color: #cccccc; margin: 10px;”>Æ

10 pixel margins</div>

3. Create another layer with a border, and inside that, create a layer
without a margin, so that the final page looks like Listing 180-1.

<body>

<div style=”border-style: solid; border-width: 1px;”>

<div style=”background-color: #cccccc; margin: 10px;”Æ

>10 pixel margins</div>

</div>

<div style=”border-style: solid; border-width: 1px;”>

<div style=”background-color: #cccccc;”>No margins</div>

</div>

</body>

Listing 180-1: Using margins.

4. Save the file and close it.

5. Open the file in your browser, and you should see the two layers, as
in Figure 180-2.

Figure 180-2: Controlling margins.

DHTML and Style Sheets 373

Task 180

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 373

Applying Inline Styles

W ith cascading style sheets, there are a number of ways you can apply styles
to text. One way is to use inline style definitions. These allow you to spec-

ify styles in the style attribute of any HTML tag.

For instance, you might specify a style attribute specifically for one paragraph:

<p style=”style definition”>A paragraph<p>

Similarly, you might specify style settings for a layer that can contain lots of
HTML:

<div style=”style definition”>Lots of HTML</div>

Finally, you can specify inline styles that override styles just for a given span of
text, as in the following:

<p>

This is text and this is Æ

inline

</p>

The following task illustrates the use of inline style assignments:

1. Create a new HTML document in your preferred editor.

2. In the body of your document, create a level 1 heading:

<h1>A Stylized Headline</h1>

3. Apply styles to the heading:

<h1 style=”font-family: Arial; font-size: 18px;”>A Æ

Stylized Headline</h1>

4. After the heading, create a layer with some HTML in it:

<div>

<h1>A Layer</h1>

This layer has style. It also has Æ

some inline text.

</div>

5. Add a style specification to the layer:

<div style=”background-color: #cccccc; color: red;”>

<h1>A Layer</h1>

This layer has style. It also has

some inline text.

</div>

notes
• The style definition in the
div tag will apply to all
contents of the layer unless
overridden by a setting in
the layer. Therefore, the
level head will retain its
normal font and size but
will adopt the colors speci-
fied in the style definition.

• The style for the span
block inside the layer will
override the colors speci-
fied in the div tag just for
the text contained in the
text span.

374 Part 7

Task 181

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 374

6. Specify a style definition for some of the text in the layer, using a
span tag, so that the final document looks like Listing 181-1.

<body>

<h1 style=”font-family: Arial; font-size: 18px;”>A Æ

Stylized Headline</h1>

<div style=”background-color: #cccccc; color: red;”>

<h1>A Layer</h1>

This layer has style. It also has Æ

some <span style=”color: white; background-color: Æ

black;”>inline text.

</div>

</body>

Listing 181-1: Using inline style definitions.

7. Save the file and close it.

8. Open the file in a browser to see the styles, as in Figure 181-1.

Figure 181-1: Applying inline styles.

DHTML and Style Sheets 375

Task 181

cross-reference
• You can set a number of

different style values. For
example, Tasks 174 and
175 show you how to set
some of the text character-
istics, and Task 176 shows
you how to control
alignment.

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 375

Using Document Style Sheets

With cascading style sheets, there are a number of ways you can apply styles
to text. One way is to use a style sheet specified in the header of your docu-

ment. You can then refer to and reuse these styles throughout your document.

A document style sheet is specified between opening and closing style tags in
the header of your document:

<head>

<style type=”text/css”>

</style>

</head>

To build your style sheet, just define the styles in the style block. You can define
three types of style definitions:

• HTML element definitions, which specify a default style for different
HTML elements (in other words, for different HTML tags)

• Class definitions, which can be applied to any HTML tag by using
the class attribute common to all tags

• Identity definitions, which apply to any page elements that have a
matching ID

The following steps show you how to create a style sheet in a document and then
use the styles:

1. In the header of a new document, create a style block:

<style type=”text/css”>

</style>

2. In the style block, create a style definition for the p tag:

P {

font-family: Arial, Helvetica, SANS-SERIF;

color: #ff0000; }

3. Next, create a style definition for the myClass class:

.myClass {

font-size: 24pt;

font-style: italic; }

4. Finally, create a style definition for elements with the myID ID:

#myID { background-color: #cccccc; }

5. In the body of your document, create a level 1 heading and apply the
myClass class to it:

<h1 class=”myClass”> This is a headline </h1>

notes
• You can combine as many

different style definitions as
needed into a single style
sheet.

• You must specify a type in
the style tag, and the
type should always be
text/css.

• Using a class overrides any
existing defaults for the
HTML element. Therefore,
the default font, size, and
so on used by the browser
for level 1 heads will be
completely ignored in this
case, and only the speci-
fied style rules will affect
the visual appearance of
the header.

376 Part 7

Task 182

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 376

6. Create a paragraph:

<p>This is a plain old paragraph. </p>

7. Finally, create a layer with the ID myID and place some HTML in it,
so that the final page looks like Listing 182-1.

<head>

<style type=”text/css”>

P { font-family: Arial, Helvetica, SANS-SERIF;

color: #ff0000; }

.myClass { font-size: 24pt;

font-style: italic; }

#myID { background-color: #cccccc; }

</style>

</head>

<body>

<h1 class=”myClass”>This is a headline</h1>

<p>This is a plain old paragraph.</p>

<div id=”myID”>

This layer has the ID myID.

</div>

</body>

Listing 182-1: Using a document style sheet.

8. Save the file and close it.

9. Open the file in your browser, and you now see the document styles
applied to the displayed text, as in Figure 182-1.

Figure 182-1: Using a document style sheet.

DHTML and Style Sheets 377

Task 182

cross-references
• In Task 183 you learn how

to make a global style
sheet that can be used by
many of your documents.

• Task 190 shows how to
manipulate style sheet set-
tings using JavaScript. Task
189 shows how to access
the settings using
JavaScript.

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 377

Creating Global Style Sheet Files

T ypically, you will not only want to reuse styles with different elements on
your page, but you will also want to use the same style definitions in different

documents. You can do this by defining your styles in a global style sheet file and
then including that file in any of the documents in your site that need to use the
styles.

To build a global style sheet file, just define the styles in a separate file. You can
define three types of style definitions:

• HTML element definitions, which specify a default style for different
HTML elements (in other words, for different HTML tags). For
instance, the following defines a style for level 1 headers in HTML:

h1 {

font-family: Arial, Helvetica, SANS-SERIF;

font-size: 18px; }

• Class definitions, which can be applied to any HTML tag by using
the class attribute common to all tags:

.className {

font-family: Arial, Helvetica, SANS-SERIF;

font-size: 18px; }

• Identity definitions, which apply to any page elements that have a
matching ID:

#ID {

font-family: Arial, Helvetica, SANS-SERIF;

font-size: 18px; }

Once you have a style sheet file, the easiest way to include it in your documents is
with the link tag in the header of your document:

<link rel=”stylesheet” href=”path to style sheet file”>

The following steps show how to create a global style sheet file and then include
it and use it in an HTML file:

1. Create a new document in your preferred editor. This file will be the
style sheet file.

2. In the file, create a style definition for the p tag:

P { background-color: #cccccc;

font-size: 24pt; }

3. In the file, also create a style definition for a class named myClass:

.myClass {

font-weight: bold;

font-family: Arial, Helvetica, SANS-SERIF; }

notes
• You can combine as many

definitions as needed into
a single style sheet file.

• Typically, you will save the
style sheet file with a .css
extension.

378 Part 7

Task 183

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 378

4. Save the file as style.css.

5. In a new HTML file, create a link tag in the header to include the
style sheet file you just saved:

<head>

<link rel=”stylesheet” href=”style.css”>

</head>

6. In the body of the document, create a plain paragraph of text:

<p>This is a paragraph with some style.</p>

7. Follow the paragraph with a layer that uses the myClass class, so
that the final page looks like Listing 183-1.

<head>

<link rel=”stylesheet” href=”style.css”>

</head>

<body>

<p>This is a paragraph with some style.</p>

<div class=”myClass”>This is a layer with some Æ

style.</div>

</body>

Listing 183-1: Using a global style sheet file.

8. Save the file and close it.

9. Open the HTML file, and you should see the styles from the global
style sheet file applied to your document as in Figure 183-1.

Figure 183-1: Styles from the global style sheet file apply to your documents.

DHTML and Style Sheets 379

Task 183

cross-reference
• See Task 184 to learn how

to override a style that has
been set.

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 379

Overriding Global Style Sheets
for Local Instances

T ypically, you will not only want to reuse styles with different elements on
your page, but you will also want to use the same style definitions in different

documents. You can do this by defining your styles in a global style sheet file and
then including that file in any of the documents in your site that need to use the
styles.

To build a global style sheet file, just define the styles in a separate file. Task 183
shows you how to define three types of style definitions:

• HTML element definitions, which specify a default style for different
HTML elements (in other words, for different HTML tags)

• Class definitions, which can be applied to any HTML tag using the
class attribute common to all tags

• Identity definitions, which apply to page elements having a matching ID

One you have a style sheet file, the easiest way to include it in your documents is
with the link tag in the header of your document:

<link rel=”stylesheet” href=”path to style sheet file”>

You can then use the styles in your document, but also override individual style
attributes as needed by using the style attribute in any tag. For instance, the fol-
lowing layer uses a style class but then specifies a local font size that overrides
any font size that may be specified in the class:

<div class=”class name” style=”font-size: 24pt;”>

Text goes here </div>

The following steps show how to create a global style sheet file, and then include
it and use it in an HTML file and override individual style attributes:

1. In a new file create a style definition for the p tag:

P { background-color: #cccccc;

font-size: 24pt; }

2. In the file also create a style definition for a class named myClass:

.myClass {

font-weight: bold;

font-family: Arial, Helvetica, SANS-SERIF; }

3. Save the file as style.css. This will be your style sheet file.

4. In a new HTML file, create a link tag in the header to include the
style sheet file you just saved:

<head><link rel=”stylesheet” href=”style.css”></head>

notes
• Typically, you will save the

style sheet file with a .css
extension.

• You can combine as many
definitions as needed into
a single style sheet file.

380 Part 7

Task 184

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 380

5. In the body of the document, create a plain paragraph of text:

<p>This is a paragraph with some style.</p>

6. Set a local style for the paragraph to specify the font size and make
the text italic:

<p style=”font-size: 14pt; font-style: italic;”>This is Æ

a paragraph with some style.</p>

7. Follow the paragraph with a layer that uses the myClass class:

<div class=”myClass”>This is a layer with some Æ

style.</div>

8. Override the font weight for the layer. Listing 184-1 shows the page.

<head><link rel=”stylesheet” href=”style.css”></head>

<body>

<p style=”font-size: 14pt; font-style: italic;”>This Æ

is a paragraph with some style.</p>

<div class=”myClass” style=”font-weight: normal;”>This Æ

is a layer with some style.</div>

</body>

Listing 184-1: Overriding global styles.

9. Save the file and open it in your browser. You should see the styles
from the global style sheet file, with the specific local styles overrid-
ing them, applied to your document, as in Figure 184-1.

Figure 184-1: Individual style attributes overridden with local style definitions.

DHTML and Style Sheets 381

Task 184

cross-reference
• See Task 182 for additional

information on creating
individual styles.

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 381

Creating a Drop Cap with Style Sheets

One of the aspects of the appearance of your pages that can be controlled
through style sheets is the appearance of the first letter of a block of text.

Using this ability, you can create special effects such as drop caps (large first
letters of a paragraph, page, or document).

To control this, you typically use a document style sheet in the header of your
document. In the style sheet, a style for a class should be defined; it should spec-
ify the normal appearance of text for the class.

Next, a special selector can be used to override the appearance of just the first
letter of text to which this class is applied. The class and selector style definitions
are defined as follows:

.myClass { style definition }

.myClass:first-letter { style definition for the first letter only }

The following task creates a paragraph of text with a drop cap:

1. In the header of a new HTML document, create a style block:

<style type=”text/css”>

</style>

2. Create a style definition for the myClass class. This defines the nor-
mal text appearance for the paragraph:

.myClass {

font-size: 24px;

}

3. Create a style definition for the first letter of the myClass class:

.myClass:first-letter {

float: left;

font-size: 72px;

margin-right: 10px;

margin-bottom: 10px;

}

4. In the body of the document, create a layer that is assigned the
myClass class, and put a paragraph of text in the layer. The final
page should look like Listing 185-1.

notes
• Cascading style sheets has

a range of special selec-
tors, including selectors for
when the mouse is hover-
ing over a given HTML ele-
ment, for the first letter of
the element, for the first
line of an element, for
only links in an element,
and so on.

• Notice the float
attribute. Essentially this
says that the element to
which the attribute is
applied should be placed
at the left and other text
and elements on the page
should wrap around it to
the right. This allows you to
specify that the text of the
paragraph should wrap
around the drop cap.
Otherwise, the large letter
will sit on the first line
and extend up above the
first line.

• There is no need to apply
any special styling to the
first letter itself in the text.
The style sheet, with the
first-letter selector,
will handle that job.

382 Part 7

Task 185

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 382

<head>

<style type=”text/css”>

.myClass {

font-size: 24px;

}

.myClass:first-letter {

float: left;

font-size: 72px;

margin-right: 10px;

margin-bottom: 10px;

}

</style>

</head>

<body>

<div class=”myClass”>

This is a big paragraph with lots of text. The goal Æ

is to see what happens to the first character as a Æ

so-called drop cap. Should be interesting.

</div>

</body>

Listing 185-1: Creating a drop cap.

5. Save the file and close it.

6. Open the file in your browser, and you should see the paragraph with
the drop cap, as in Figure 185-1.

Figure 185-1: A drop cap on the first letter.

DHTML and Style Sheets 383

Task 185

cross-reference
• Task 182 discusses docu-

ment style sheets.

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 383

Customizing the Appearance
of the First Line of Text

A s browser support for cascading style sheets has improved, so too has the
ability of Web designers to control all aspects of their pages’ appearance

through Dynamic HTML.

One of the aspects of the appearance of your pages that can be controlled through
style sheets is the appearance of the first line of a block of text. To control this,
you typically use a document style sheet in the header of your document. In the
style sheet, a style for a class should be defined; it should specify the normal
appearance of text for the class.

Next, a special selector can be used to override the appearance of just the first
line of text to which this class is applied. The class and selector style definitions
are defined as follows:

.myClass { style definition }

.myClass:first-line { style definition for the first line only }

The following task creates a paragraph of text with a special first-line style:

1. In the header of a new HTML document, create a style block:

<style type=”text/css”>

</style>

2. Create a style definition for the myClass class. This will define the
normal text appearance for the paragraph:

.myClass {

font-size: 24px;

}

3. Create a style definition for the first line of the myClass class:

.myClass:first-letter {

font-size: 48px;

color: #999999;

font-style: italic;

}

4. In the body of the document, create a layer that is assigned the
myClass class, and put a paragraph of text in the layer. The final
page should look like Listing 186-1.

5. Save the file and close it.

6. Open the file in your browser, and you should see the paragraph with
the drop cap, as in Figure 186-1.

notes
• Dynamic HTML is the com-

bination of JavaScript, cas-
cading style sheets, and
the Domain Object Model,
which together make it pos-
sible to build sophisticated
interactive user interfaces
and applications that run
in the browser.

• Cascading style sheets
have a range of special
selectors, including selec-
tors for when the mouse is
hovering over a given HTML
element, for the first letter
of the element, for the first
line of an element, for
only links in an element,
and so on.

• The nice thing about the
first-line selector is
that it always affects the
first line regardless of
changes in the window
dimensions. If you have a
very narrow window with
fewer words on the first line
than a wider window, then
only those words are
affected by the style.

• There is no need to apply
any special styling to the
first line itself in the text.
The style sheet, with the
first-line selector,
will handle that job.

384 Part 7

Task 186

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 384

<head>

<style type=”text/css”>

.myClass {

font-size: 24px;

}

.myClass:first-line {

font-size: 48px;

color: #999999;

font-style: italic;

}

</style>

</head>

<body>

<div class=”myClass”>

This is a big paragraph with lots of text.

The goal is to see what happens to the first

line of the paragraph. Should be interesting.

</div>

</body>

Listing 186-1: Creating a first-line effect.

Figure 186-1: A special style on the first line.

7. Resize your browser window to a different width. Even though the
number of words on the first line changes, it is always just the first
line that displays the special style.

DHTML and Style Sheets 385

Task 186

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 385

Applying a Special Style to the First
Line of Every Element on the Page

One of the aspects of the appearance of your pages that can be controlled
through style sheets is the appearance of the first line of a block of text.

To control this, you typically use a document style sheet in the header of your
document.

A special selector can be used to override the appearance of just the first line of
any element in the page as follows:

:first-line { style definition for first line of all elements }

The following task creates a document with a special first-line style and shows
how it applies to any element in the page:

1. In the header of a new HTML document, create a style block:

<style type=”text/css”>

</style>

2. Create a style definition for the first line of elements:

:first-letter {

font-size: 48px;

color: #999999;

font-style: italic;

}

3. Create a layer with a paragraph of text in the body of the document:

<div>

This is a big paragraph with lots of text. The goal Æ

is to see what happens to the first line of the Æ

paragraph. Should be interesting.

</div>

4. Create a paragraph and place text in it:

<p>This is a big paragraph...</p>

5. Create a level 1 header and place text in it:

<h1>This is a big paragraph...</h1>

6. Finally, place a paragraph of text outside any element. The final page
should look like Listing 187-1.

<head>

<style type=”text/css”>

:first-line {

(continued)

notes
• Cascading style sheets has

a range of special selec-
tors, including selectors for
when the mouse is hover-
ing over a given HTML ele-
ment, for the first letter of
the element, for the first
line of an element, for
only links in an element,
and so on.

• The nice thing about the
first-line selector is
that it always affects the
first line regardless of
changes in the window
dimensions. If you have a
very narrow window with
fewer words on the first line
than a wider window, then
only those words are
affected by the style.

• The first-line effect will not
apply to the last paragraph,
since the last paragraph is
not in a page element.

386 Part 7

Task 187

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 386

font-size: 48px;

color: #999999;

font-style: italic; }

</style>

</head>

<body>

<div>

This is a big paragraph with lots of text. The goal Æ

is to see what happens to the first line of the Æ

paragraph. Should be interesting.

</div>

<p>This is a big paragraph with lots of text. The goal Æ

is to see what happens to the first line of the Æ

paragraph. Should be interesting.</p>

<h1>This is a big paragraph with lots of text. The Æ

goal is to see what happens to the first line of Æ

the paragraph. Should be interesting.</h1>

This is a big paragraph with lots of text. The goal Æ

is to see what happens to the first line of the Æ

paragraph. Should be interesting.

</body>

Listing 187-1: Creating a first-line effect.

7. Save the file and close it.

8. Open the file in your browser, and you should see the four para-
graphs, as in Figure 187-1.

Figure 187-1: A special style on the first line.

DHTML and Style Sheets 387

Task 187

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 387

Applying a Special Style to All Links

One of the aspects of the appearance of your pages that can be controlled
through style sheets is the appearance of all links in the document. To

control this, you typically use a document style sheet in the header of your
document.

A special selector can be used to override the appearance of any link in the page
as follows:

:link { style definition for all links }

The following task creates a document with a special link style and shows how it
applies to any link in the page:

1. In the header a new HTML document, create a style block:

<style type=”text/css”>

</style>

2. Create a style definition for links:

:link {

background-color: #999999;

color: red;

font-style: italic;

}

3. In the body of the document, create a layer with a link in it:

<div>

This is a layer with a link.

</div>

4. Create a level 1 header and put a link in it:

<h1>

This is a header with a link.

</h1>

5. Finally, place a paragraph of text outside any element and include a
link in it. The final page should look like Listing 188-1.

notes
• Dynamic HTML is the com-

bination of JavaScript, cas-
cading style sheets, and
the Domain Object Model,
which together make it pos-
sible to build sophisticated
interactive user interfaces
and applications that run
in the browser.

• Cascading style sheets has
a range of special selec-
tors, including selectors for
when the mouse is hover-
ing over a given HTML ele-
ment, for the first letter of
the element, for the first
line of an element, for
only links in an element,
and so on.

• The link style will apply in
addition to any appearance
attributes of the element
containing a link. So, if you
specify just a special color
as a link style, then in a
header, the link will have
the color and will be the
same size as the header;
however, in regular text, the
link will be the same size
as that text while it adopts
the color of the link style.

388 Part 7

Task 188

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 388

<head>

<style type=”text/css”>

:link {

background-color: #999999;

color: red;

font-style: italic;

}

</style>

</head>

<body>

<div>

This is a layer with a link.

</div>

<h1>

This is a header with a link.

</h1>

This is floating text with a link.

</body>

Listing 188-1: Creating a link effect.

6. Save the file and close it.

7. Open the file in your browser, and you should see the links with the
special style, as in Figure 188-1.

Figure 188-1: A special style for links.

DHTML and Style Sheets 389

Task 188

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 389

Accessing Style Sheet Settings

T he beauty of Dynamic HTML is that it allows you to integrate JavaScript and
cascading style sheets. Your styles are not just static visual definitions that are

fixed once the page is rendered. Instead, you can actually access all these style
attributes from within your JavaScript code.

Every page element has an object associated with it that you can access in
JavaScript. These objects have a style property. The style property is actually
an object reflecting all the CSS style settings for an object.

To reference the element’s object, you use the document.getElementById
method. You obtain a reference to the object with the following:

var objRef = document.getElementById(“elementID”);

This means objRef would then refer to the object for the elementID element.

The following steps show how to build a page with a layer element and a form
that can be used to enter the name of any style attribute and then display that
attribute’s value in a dialog box:

1. In the script block of a new document, create a function named
displayStyle that takes two arguments—the ID of the element to
work with and a style name:

function displayStyle(objected,styleName) { }

2. In the function, create a variable named thisObj, and use document.
getElementById to associate this with the object for the ID speci-
fied in the function’s argument:

var thisObj = document.getElementById(objectID);

3. Create a variable named styleValue, and assign the style’s value
to it:

var styleValue = eval(“thisObj.style.” + styleName);

4. Display the information in a dialog box using window.alert:

window.alert(styleName + “=” + styleValue);

5. Create a layer and position it wherever you want using the style
attribute of the div tag. Specify myObject as the ID for the layer:

<div id=”myObject” style=”position: absolute; left: Æ

50px; top: 200px; background-color: #cccccc;”>My Æ

Object</div>

6. Create a form with a text input field named styleText:

<form>Style: <input type=”text” name=”styleText”> </form>

notes
• The actual style sheet

attribute names do not
translate directly to style
attribute names in
JavaScript. Two rules apply:

• If a style sheet attribute
name is a single word
with no dash, then the
same name applies in
JavaScript.

• If the style sheet attribute
name has one or more
dashes, remove each
dash and capitalize the
letter that follows the
dash. Therefore,
margin-left would
become marginLeft
in JavaScript.

• The style object
referred to here and the
document.getElement
ByID method are only
available in newer browsers
with robust support for the
Domain Object Model. This
means this task will only
work in Internet Explorer 5
and later or Netscape 6
and later.

390 Part 7

Task 189

caution
• If you don’t enter a value

into the form that is pre-
sented when you run
Listing 189-1, you may get
a JavaScript runtime error.

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 390

7. In the form, add a button. Use the onClick event handler to invoke
the displayStyle function, so that the final page looks like Listing
189-1.

<head>

<script language=”JavaScript”>

function displayStyle(objectID,styleName) {

var thisObj = document.getElementById(objectID);

var styleValue = eval(“thisObj.style.” + styleName);

window.alert(styleName + “=” + styleValue);

}

</script>

</head>

<body>

<div id=”myObject” style=”position: absolute; left: Æ

50px; top: 200px; background-color: #cccccc;”>My Object</div>

<form>

Style: <input type=”text” name=”styleText”>

<input type=”button” value=”Display Style” Æ

onClick=”displayStyle(‘myObject’,this.form.styleText.Æ

value);”>

</form>

</body>

Listing 189-1: Displaying a layer’s style attributes.

8. Save the file and open it in a browser. You now see the form and
object, as illustrated in Figure 189-1.

Figure 189-1: A layer and a form.

9. Enter a style name in the form (such as backgroundColor), and
click the button to see the style value displayed in a dialog box.

DHTML and Style Sheets 391

Task 189

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 391

Manipulating Style Sheet Settings

The beauty of Dynamic HTML is that it allows you to integrate JavaScript and
cascading style sheets. Your styles, therefore, are not just static visual defini-

tions that are fixed once the page is rendered. Instead, you can actually manipu-
late all these style attributes from within your JavaScript code.

Every page element has an object associated with it that you can access in
JavaScript. These objects have a style property. The style property is actually
an object reflecting all the CSS style settings for an object.

To reference the element’s object, you use the document.getElementById
method. You could obtain a reference to the object with the following:

var objRef = document.getElementById(“elementID”);

This means objRef would then refer to the object for the elementID element.

The following steps show how to build a page with a layer element and a form
the user can use to enter the name of any style attribute and a value, and then
apply it to the layer:

1. In the script block of a new document, create a function named
changeStyle. The function should take three arguments that con-
tain the ID of the element to work with, a style name, and a style
value, respectively:

function changeStyle(objected,styleName,styleValue) { }

2. In the function, create a variable named thisObj, and use docu-
ment.getElementById to associate this with the object for the ID
specified in the function’s argument:

var thisObj = document.getElementById(objectID);

3. Assign the new value to the specified style:

eval(“thisObj.style.” + styleName + “=’” + styleValue Æ

+ “‘“);

4. In the body of the document, create a layer and position it wherever
you want using the style attribute of the div tag. Specify
myObject as the ID for the layer.

5. Create a form with two text input fields named styleText and
styleValue:

<form>

Style: <input type=”text” name=”styleText”>

Value: <input type=”text” name=”styleValue”>

</form>

notes
• In Step 3 you want to

assign the style value for a
style whose name is speci-
fied in styleName. For
instance, margin might
be stored in styleName.
To assign the value of the
margin attribute, you
can’t use thisObject.
style.styleName; what
you want is thisObject.
style.margin. eval
allows you to provide a
string containing the actual
command you want to exe-
cute, and it executes it and
returns the results. This way
you can build a string from
the styleName and
styleValue variables, so
you end up changing the
value of the desired style
attribute.

• Notice the use of this.
form.styleText.
value. The this keyword
refers to the button itself.
this.form refers to the
form containing the button,
which then allows you to
reference the text field and
its value.

• When you call the
changeStyle function,
you pass in the object ID
as a string; that is why
myObject is contained in
single quotes.

392 Part 7

Task 190

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 392

6. In the form add a button. Use the onClick event handler to invoke
the changeStyle function, so that the final page looks like Listing
190-1.

<head>

<script language=”JavaScript”>

function changeStyle(objectID,styleName,styleValue) {

var thisObj = document.getElementById(objectID);

eval(“thisObj.style.” + styleName + “=’” +

styleValue + “‘“); }

</script>

</head>

<body>

<div id=”myObject” style=”position: absolute; left: Æ

50px; top: 200px; background-color: #cccccc;”>My Object</div>

<form>

Style: <input type=”text” name=”styleText”>

Value: <input type=”text” name=”styleValue”>

<input type=”button” value=”Display Style” Æ

onClick=”changeStyle(‘myObject’,this.form.styleText.Æ

value,this.form.styleValue.value);”>

</form>

</body>

Listing 190-1: Changing a layer’s style attributes.

7. Save the file and open it in a browser, and you now see the form and
object, as illustrated in Figure 190-1.

Figure 190-1: A layer and a form.

8. Enter a style name and value in the form, and click the button to see
the style value applied to the layer.

DHTML and Style Sheets 393

Task 190

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 393

Hiding an Object in JavaScript

Every element of your page has an object associated with it that can be accessed
through JavaScript. For instance, you can determine an object’s visibility in

the browser using this object. The visibility information is part of the style
property of the object.

To reference the element’s object, you use the document.getElementById
method. For each object in your document that you want to manipulate through
JavaScript, you should assign an ID using the id attribute of the element’s tag.
Then, you could obtain a reference to an object with the following:

var objRef = document.getElementById(“TagID”);

This means objRef would then refer to the object for the TagID element of
your document, and you could reference the visibility of the image with this:

objRef.style.visibility

The following steps show how to build a page with a layer element and a link.
When the user clicks the link, the object disappears.

1. In the header of a new document, create a script block containing a
function named hideObject that takes one argument containing
the ID of the element to work with:

function hideObject(objectID) {

}

2. Create a variable named thisObject, and associate it with the
object specified in the function’s argument. Use
document.getElementById:

var thisObject = document.getElementById(objectID);

3. Set the visibility property of the element’s style object to
hidden, so that final function looks like this:

function hideObject(objectID) {

var thisObject = document.getElementById(objectID);

thisObject.style.visibility = “hidden”;

}

4. In the body of the document, create a layer and position it wherever
you want using the style attribute of the div tag. Specify
myObject as the ID for the layer:

<div id=”myObject” style=”position: absolute; left: Æ

50px; top: 200px; background-color: #cccccc;”>My Æ

Object</div>

notes
• The style property is

actually an object reflecting
all the CSS style settings
for an object, including the
visibility attribute.
This means you can deter-
mine the visibility of an
object with object.
style.visibility.

• The style object
referred to here and
the document.
getElementByID
method are only available
in newer browsers with
robust support for the
Domain Object Model. This
means this task will only
work in Internet Explorer 5
and later or Netscape 6
and later.

• In Step 5 notice the use of
a javascript: URL in
the link. This URL causes
the specified JavaScript
code to execute when the
user clicks on the link.

• When you call the
hideObject function,
you pass in the object ID
as a string; that is why
myObject is contained in
single quotes.

394 Part 7

Task 191

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 394

5. Create a link the user can click to call the hideObject function, so
the final page looks like Listing 191-1.

<head>

<script language=”JavaScript”>

function hideObject(objectID) {

var thisObject = document.getElementById(objectID);

thisObject.style.visibility = “hidden”;

}

</script>

</head>

<body>

<div id=”myObject” style=”position: absolute; left: Æ

50px; top: 200px; background-color: #cccccc;”>My Object</div>

Hide the Æ

object

</body>

Listing 191-1: Hiding an object.

6. Save the file and close it.

7. Open the file in a browser, and you now see the link and object, as
illustrated in Figure 191-1.

Figure 191-1: A layer and a link.

8. Click on the link to see the object disappear.

DHTML and Style Sheets 395

Task 191

cross-reference
• Task 192 shows how to

make an object visible.

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 395

Displaying an Object in JavaScript

E very element of your page has an object associated with it that can be
accessed through JavaScript. For instance, you can determine an object’s visi-

bility in the browser using this object. The visibility information is part of the
style property of the object.

To reference the element’s object, you use the document.getElementById
method. For each object in your document that you want to manipulate through
JavaScript, you should assign an ID using the id attribute of the element’s tag.
Then, you could obtain a reference to an object with the following:

var objRef = document.getElementById(“TagID”);

This means objRef would then refer to the object for the TagID element of
your document, and you could reference the visibility of the image with this:

objRef.style.visibility

The following steps show how to build a page with a layer element and a link.
The layer element will initially not be visible, and when the user clicks the link,
the object will appear.

1. In the header of a new document, create a script block containing a
function named showObject. The function should take one argu-
ment that contains the ID of the element to work with:

function showObject(objectID) {

}

2. Create a variable named thisObject, and associate it with the
object specified in the function’s argument. Use
document.getElementById:

var thisObject = document.getElementById(objectID);

3. Set the visibility property of the element’s style object to vis-
ible, so that final function looks like this:

function showObject(objectID) {

var thisObject = document.getElementById(objectID);

thisObject.style.visibility = “visible”;

}

4. In the body of the document, create a layer and position it wherever
you want using the style attribute of the div tag. Specify
myObject as the ID for the layer; make sure that the layer is hidden:

<div id=”myObject” style=”position: absolute; left: Æ

50px; top: 200px; background-color: #cccccc; visibility: Æ

hidden;”>My Object</div>

notes
• The style property is

actually an object reflecting
all the CSS style settings
for an object, including the
visibility attribute.
This means you can deter-
mine the visibility of an
object with object.
style.visibility.

• The style object
referred to here and
the document.
getElementByID
method are only available
in newer browsers with
robust support for the
Domain Object Model. This
means this task will only
work in Internet Explorer 5
and later or Netscape 6
and later.

• In Step 5 notice the use of
a javascript: URL in
the link. This URL causes
the specified JavaScript
code to execute when the
user clicks on the link.

• When you call the
showObject function,
you pass in the object ID
as a string; that is why
myObject is contained in
single quotes.

396 Part 7

Task 192

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 396

5. Create a link the user can click to call the showObject function, so
the final page looks like Listing 192-1.

<head>

<script language=”JavaScript”>

function showObject(objectID) {

var thisObject = document.getElementById(objectID);

thisObject.style.visibility = “visible”;

}

</script>

</head>

<body>

<div id=”myObject” style=”position: absolute; left: Æ

50px; top: 200px; background-color: #cccccc; visibility: Æ

hidden;”>My Object</div>

Show Æ

the object

</body>

Listing 192-1: Showing an object.

6. Save the file and close it.

7. Open the file in a browser, and you now see the link, as illustrated in
Figure 192-1.

Figure 192-1: A link, but the layer is hidden.

8. Click on the link to see the object appear.

DHTML and Style Sheets 397

Task 192

cross-reference
• Task 191 shows how to

hide an object.

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 397

Detecting the Window Size

Using JavaScript, you can determine the dimensions of the working area of the
browser window. The way you do this depends on the browser you are using:

• In Netscape 6 and higher, the window.innerHeight property indi-
cates the height of the working area of the browser window in pixels.
Similarly, window.innerWidth indicates the width.

• In Internet Explorer, the document.body.clientHeight prop-
erty indicates the height in pixels. Similarly, the
document.body.clientWidth property indicates the width.

The following task shows you how to display this information in the browser
window:

1. Create a new HTML document in your preferred editor.

2. In the body of the document, include any introductory text:

<body>

The window has the following dimensions:

</body>

3. Create a script block after the introductory text:

<script language=”JavaScript”>

</script>

4. In the script, create a variable named width, and assign the width of
the window to it:

var width = (window.innerWidth) ? window.innerWidth : Æ

document.body.clientWidth;

5. Next, create the variable named height, and assign the height of the
window to it:

var height = (window.innerHeight) ? window.innerHeight : Æ

document.body.clientHeight;

6. Finally, use the document.write method to display the dimensions
in the browser window. The final page should look like Listing
193-1.

note
• In Step 4 you can see an

example of short-form
conditional evaluation.
This takes the form
(condition) ? value
if true : value if
false. What the condition
in this example says is this:
“If window.innerWidth
exists, then assign that
value to width; otherwise,
assign document.body.
clientWidth to width.”

398 Part 7

Task 193

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 398

<body>

The window has the following dimensions:

<script language=”JavaScript”>

var width = (window.innerWidth) ? window.Æ

innerWidth : document.body.clientWidth;

var height = (window.innerHeight) ? window.Æ

innerHeight : document.body.clientHeight;

document.write(width + “ by “ + height + “ pixels”);

</script>

</body>

Listing 193-1: Obtaining the browser’s dimensions.

7. Save the file and close it.

8. Open the file in a browser, and you now see the window’s dimensions,
as illustrated in Figure 193-1.

Figure 193-1: The browser’s dimensions.

DHTML and Style Sheets 399

Task 193

tip
• You can use the informa-

tion presented in this task
to do a number of interest-
ing things. For example,
using the information in
Tasks 178 or 179, you can
place items in certain loca-
tions in the Window. For
instance, you can deter-
mine the center of the win-
dow by dividing the width
and height in half.

cross-reference
• In addition to detecting the

size of a window, you can
also detect other informa-
tion. For example, see Task
195 to discover the steps
for detecting the number
of colors.

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 399

Forcing Capitalization with
Style Sheet Settings

A s browser support for cascading style sheets has improved, so too has the
ability for you to control all aspects of your pages’ appearance through

Dynamic HTML.

One of the aspects of the appearance of your pages that can be controlled
through style sheets is the capitalization used for text. You can control this with
the text-transform style attribute. For instance, the following sets all text in
a layer to uppercase:

<div style=”text-transform: uppercase;”>

Text goes here

</div>

Similarly, you can change to all lowercase inline using the span tag:

<p>

This is text. Some of it <span style=”text-transform: Æ

lowercase;”>is in Arial.

</p>

The text-transform attribute has three possible values:

• uppercase: All letters are converted to uppercase.

• lowercase: All letters are converted to lowercase.

• capitalize: Capitalization is converted to a title style where the
first letter of each word is capitalized.

The following task illustrates the text-transform attribute by displaying text
in all three capitalization styles:

1. Create a new HTML document in your preferred editor.

2. In the body of your document, create a layer containing text. Specify
uppercase as the text-transform style:

<div style=”text-transform: uppercase;”>This text is Æ

uppercase</div>

3. Create another layer containing text. This time specify capitalize:

<div style=”text-transform: capitalize;”>This Æ

text is capitalized</div>

note
• Dynamic HTML is the com-

bination of JavaScript, cas-
cading style sheets, and
the Domain Object Model,
which together make it pos-
sible to build sophisticated
interactive user interfaces
and applications that run
in the browser.

400 Part 7

Task 194

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 400

4. Create another layer containing text. This time specify lowercase:

<div style=”text-transform: lowercase;”>This text is Æ

lowercase</div>

5. Create another layer containing text. This time don’t specify the
text-transform attribute. The final page should look like Listing
194-1.

<body>

<div style=”text-transform: uppercase;”>This text is Æ

uppercase</div>

<div style=”text-transform: capitalize;”>This text is Æ

capitalized</div>

<div style=”text-transform: lowercase;”>This text is Æ

lowercase</div>

<div>This text is normal</div>

</body>

Listing 194-1: Changing capitalization.

6. Save the file and close it.

7. Open the file in your browser, and you should see four blocks of text
in different capitalization styles, as in Figure 194-1.

Figure 194-1: Changing capitalization with text-transform.

DHTML and Style Sheets 401

Task 194

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 401

Detecting the Number of Colors

Every user’s display settings has a color depth associated with it. The color
depth is usually specified in bits (such as 8-bit or 16-bit) and refers to the size

of the number used to specify each pixel’s color: the larger the color depth, the
more colors the display can render.

Using JavaScript, you can determine the color depth of the user’s display. This is
done with the window.screen.colorDepth property, which returns the num-
ber of bits of the color depth.

The following task shows you how to display this information in the browser
window:

1. Create a new HTML document in your preferred editor.

2. In the body of the document, include any introductory text:

<body>

The display has the following color depth:

</body>

3. Create a script block after the introductory text:

<script language=”JavaScript”>

</script>

4. In the script, create a variable named depth, and assign the color
depth to it:

var depth = window.screen.colorDepth;

5. Next, create the variable named colors, and assign the number of
colors to it:

var colors = Math.pow(2,depth);

6. Finally, use the document.write method to display the depth and
number of colors in the browser window. The final page should look
like Listing 195-1.

notes
• The color depth information

could be used to select
and display an appropriate
image for the user. For
users with a large color
depth, you could provide a
richly textured color image,
while other users would get
a simpler visual with fewer
colors.

• If a user has 8-bit color,
then the number of colors
that can be displayed is 28.
Similarly, 16-bit means 216

colors.

• The Math.pow method is
used to calculate exponent
values. Here you calculate
2 to the power of the color
depth.

402 Part 7

Task 195

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 402

<body>

The display has the following color depth:

<script language=”JavaScript”>

var depth = window.screen.colorDepth;

var colors = Math.pow(2,depth);

document.write(depth + “ bits which means “ + Æ

colors + “ colors”);

</script>

</body>

Listing 195-1: Obtaining the color depth.

7. Save the file and close it.

8. Open the file in a browser, and you now see the display’s color infor-
mation, as illustrated in Figure 195-1.

Figure 195-1: The display’s color depth information.

DHTML and Style Sheets 403

Task 195

cross-reference
• You can detect other values

as well. For example, see
Task 193 to learn how to
detect the size of the cur-
rent browser window.

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 403

Adjusting Padding with CSS

A s browser support for cascading style sheets has improved, so too has the
ability of Web designers to control all aspects of their pages’ appearance

through Dynamic HTML.

One of the aspects of the appearance of your pages that can be controlled
through style sheets is the padding of a layer. To understand padding and its
meaning in style sheets, you need to learn about the box model used in cascading
style sheets. The box model defines a layer’s outer components, as shown in
Figure 196-1.

Figure 196-1: The CSS box model.

You control the width of the padding in one of several ways:

• Use the padding attribute to set the same padding width for all
sides. The following creates 5-pixel padding on all sides of the layer:

<div style=”padding: 5px;”>

Text goes here

</div>

• Use the padding attribute to set different margin widths for the dif-
ferent sites:

<div style=”padding: 5px 10px 15px 20px;”>

Text goes here

</div>

• Specify distinct margins individually using the padding-top,
padding-bottom, padding-right, and padding-left attrib-
utes. For instance, the following only creates padding on the top and
to the right of the layer:

<div style=”padding-top: 5px; padding-right: 5px;”>

Text goes here

</div>

Outer boundary of the layer
(not visible)

Margin

Border (may be visible)

Padding (background color or
image will fill padding, as well
as the content)

Actual content of the layer

notes
• Layers are created with
div tags and can contain
any valid HTML in them.
They are simply containers
for the HTML to which you
can apply styles for the
whole layer.

• When you are specifying all
four padding widths with
the padding attribute, the
first value is for the top
padding and then the val-
ues proceed clockwise with
the right padding, the bot-
tom padding, and finally
the left padding.

• The layer has a background
color to show where
padding is happening.

• By default, layers have no
padding, so if you don’t
need any padding, you
don’t have to specify any
padding-related style
attributes.

404 Part 7

Task 196

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 404

The following task illustrates how margins work by displaying the same layer
with two different padding settings:

1. Create a new HTML document in your preferred editor.

2. Create a layer with padding in the body of the document:

<div style=”background-color: #cccccc; padding: 10px;”Æ

>10 pixel margins</div>

3. Create another layer without any padding, so that the final page
looks like Listing 196-1:

<body>

<div style=”background-color: #cccccc; padding: 10px;”Æ

>10 pixel padding</div>

<div style=”background-color: #cccccc;”>No padding</div>

</body>

Listing 196-1: Using padding.

4. Save the file and close it.

5. Open the file in your browser, and you should see the two layers, as
in Figure 196-2.

Figure 196-2: Controlling padding.

DHTML and Style Sheets 405

Task 196

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 405

08 542419 Ch07.qxd 11/19/03 9:59 AM Page 406

Part 8: Dynamic User Interaction
Task 197: Creating a Simple Pull-Down Menu

Task 198: Creating Two Pull-Down Menus

Task 199: Detecting and Reacting to Selections in a Pull-Down Menu

Task 200: Generating a Drop-Down Menu with a Function

Task 201: Placing Menu Code in an External File

Task 202: Inserting a Prebuilt Drop-Down Menu

Task 203: Creating a Floating Window

Task 204: Closing a Floating Window

Task 205: Resizing a Floating Window

Task 206: Moving a Floating Window

Task 207: Changing the Content of a Floating Window

Task 208: Detecting Drag and Drop

Task 209: Moving a Dragged Object in Drag and Drop

Task 210: Changing Cursor Styles

Task 211: Determining the Current Scroll Position

Task 212: Creating an Expanding/Collapsing Menu

Task 213: Creating a Highlighting Menu Using Just Text and CSS—No
JavaScript

Task 214: Creating a Highlighting Menu Using Text, CSS, and JavaScript

Task 215: Placing Content Offscreen

Task 216: Sliding Content into View

Task 217: Creating a Sliding Menu

Task 218: Auto-Scrolling a Page

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 407

Creating a Simple Pull-Down Menu

With JavaScript, you can create dynamic user interfaces. One interface is a
pull-down menu that might initially appear closed in a Web page. But

when the user moves the mouse pointer over the menu, the pull-down menu
appears, as in Figure 197-1.

Figure 197-1: The menu in its open position.

This task outlines how to build an extremely simple pull-down menu. The prin-
ciple is simple. Given an object named myObject, you can specify the top of the
object in pixels relative to the browser window with the following:

myObject.top = pixel placement relative to top of window;

The following steps show how to create a simple pull-down menu in the top left
corner of the browser window with three menu items in the menu:

1. In the header of your HTML document, create a script block with
opening and closing script tags.

2. In the script block, create a function named menuToggle that takes a
single attribute called target, which is the name of the object con-
taining the menu:

function menuToggle(target) {

}

3. In the function, create a variable named targetMenu and set it to
the appropriate object with the specified object name in target:

targetMenu = (document.getElementById) ? Æ

document.getElementById(target).style : evalÆ

(“document.” + target);

4. Finish the function by assigning the appropriate top value to the top
property of the targetMenu object:

targetMenu.top = (parseInt(targetMenu.top) == 22) Æ

? -2000 : 22;

5. Also in the header, create a style sheet block with opening and clos-
ing style tags:

notes
• Drop-down menus work in

much the same way as
menu in most Windows
applications; when the user
moves the mouse over the
menu (or clicks on the
menu in some cases), the
menu appears.

• Notice the use of the
conditional based on
document.
getElementById. In
Internet Explorer, this
method is available, and
you use it to access the
style property of the tar-
get object. But in Netscape,
this method is not available
and the correct object to
work with is the object
itself and not a style
property. By testing for the
existence of the
getElementById
method, you can determine
what browser you are
using.

408 Part 8

Task 197

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 408

6. Create three style classes: menu, menuTitle, and menuLink. menu
is for the menu block itself and should have an absolute top position
of -2000 pixels so the menu is initially hidden. menuTitle is for the
menu header and should have an absolute position of 0 pixels to place
the menu’s header at the top of the screen. Finally, menuEntry speci-
fies the appearance and behavior of individual items in the menu.

.menu { position:absolute;

font:15px arial, helvetica, sans-serif;

background-color:#020A33;

line-height: 20px; top: -2000px; }

.menuTitle { position:absolute;

font:15px arial, helvetica, sans-serif;

background-color:#020A33;

line-height: 21px; top: 0px;

text-decoration:none; color:#FFFFFF; }

.menuEntry { text-decoration:none; color:#FFFFFF; }

.menuEntry:link { color:#FFFFFF; }

.menuEntry:hover { background-color:#CCCCCC; Æ

color:#020A33; }

7. In the body of the document, use opening and closing div tags to
create the menu title block:

<div class=”menuTitle” style=”left:0px; width:100px;”

onMouseover=”menuToggle(‘myMenu’);”

onMouseout=”menuToggle(‘myMenu’);”>My Menu</div>

8. In the body of the document, use opening and closing div tags to
create the menu block:

<div id=”myMenu” class=”menu” style=”left:0px; Æ

width:100px;”

onMouseout=”menuToggle(‘myMenu’)”>

</div>

9. In the div block create one link for each entry. The link should use
the menuEntry style class and should be followed by a br tag. This
div block can be placed anywhere in the body of the document:

<div id=”myMenu” class=”menu” style=”left:0px; Æ

width:100px;”

onMouseout=”menuToggle(‘myMenu’)”>

First Æ

Entry

Second Æ

Entry

Third Æ

Entry

</div>

Dynamic User Interaction 409

Task 197

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 409

Creating Two Pull-Down Menus

In Task 197 you saw how to create a simple pull-down menu. In this task, this is
extended to displaying two pull-down menus simultaneously. Here the same

principle is repeated, allowing the same JavaScript and style sheets to be used for
multiple menus and, in fact, can be extended to any number of menus.

The result is that two menus are displayed. Either one of the menus can be
expanded at a given time, as illustrated in Figure 198-1.

Figure 198-1: Opening the second menu.

Use the following steps to create two menus in the top left corner of the browser
window:

1. In the header of your HTML document, create a script block and
place the menuToggle function from Task 197 in the block:

<script language=”JavaScript”>

<!--

function menuToggle(target) {

targetMenu = (document.getElementById) ? Æ

document.getElementById(target).style : evalÆ

(“document.” + target);

targetMenu.top = (parseInt(targetMenu.top) == 22) Æ

? -2000 : 22;

}

// -->

</script>

2. In the header of your HTML document, create a style block and
include the same menu, menuTitle, and menuEntry styles as in
Task 197:

.menu { position:absolute;

font:15px arial, helvetica, sans-serif;

notes
• You can actually create as

many menus as you want
using the technique out-
lined here. Just make sure
each menu has a unique
id name specified in the
div tag, and make sure
the individual menus don’t
overlap.

• The opening div tag
should specify several
attributes: a name for the
menu with the id attribute
(in this case, myMenu), the
menu style class using the
class attribute, a left loca-
tion with the align attribute,
the width with the style
attribute, and, finally,
the onMouseout event
handler to invoke
menuToggle and pass in
the name myMenu to the
function.

410 Part 8

Task 198

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 410

background-color:#020A33;

line-height: 20px; top: -2000px; }

.menuTitle { position:absolute;

font:15px arial, helvetica, sans-serif;

background-color:#020A33;

line-height: 21px; top: 0px;

text-decoration:none; color:#FFFFFF; }

.menuEntry { text-decoration:none; color:#FFFFFF; }

.menuEntry:link { color:#FFFFFF; }

.menuEntry:hover { background-color:#CCCCCC; Æ

color:#020A33; }

3. In the body of the document, create the title block for the first
menu’s header:

<div class=”menuTitle” style=”left:0px; width:100px;”Æ

onMouseover=”menuToggle(‘myMenu’);”Æ

onMouseout=”menuToggle(‘myMenu’);”>My Menu</div>

4. In the body of the document, create the menu block for the first
menu:

<div id=”myMenu” class=”menu” style=”left:0px; Æ

width:100px;”

onMouseout=”menuToggle(‘myMenu’)”>

First Æ

Entry

Second Æ

Entry

Third Æ

Entry

</div>

5. In the body of the document, create the title block for the second
menu’s header; notice that the left side of the menu is placed at 100
pixels, which is just to the right of the first, 100-pixel-wide menu:

<div class=”menuTitle” style=”left:100px; width:100px;”Æ

onMouseover=”menuToggle(‘otherMenu’);”Æ

onMouseout=”menuToggle(‘otherMenu’);”>Other Menu</div>

6. In the body of the document, create the menu block for the second
menu and, again, set the left side of the menu to 100 pixels:

<div id=”otherMenu” class=”menu” style=”left:100px; Æ

width:100px;”

onMouseout=”menuToggle(‘otherMenu’)”>

First Æ

Entry

Second Æ

Entry

Third Æ

Entry

</div>

Dynamic User Interaction 411

Task 198

cross-reference
• This task is a simple

extension of the code in
Task 197.

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 411

Detecting and Reacting to Selections
in a Pull-Down Menu

In Tasks 197 and 198, you saw how to create simple pull-down menus in which
the individual menu items point to URLs for other pages. Two techniques can

be used to trigger JavaScript code from a menu entry in these menus: Use a
javascript: URL in the href attribute of each menu entry’s link, or use the
onClick event handler for each menu entry’s link. This task uses the first tech-
nique to extend the simple menu from Task 197 to cause a dialog box to be dis-
played when the user selects a menu entry instead of following a URL.

1. In the header of your HTML document, create a script block and
place the menuToggle function from Task 197 in the block:

<script language=”JavaScript”>

<!--

function menuToggle(target) {

targetMenu = (document.getElementById) ? Æ

document.getElementById(target).style : eval(“document.” Æ

+ target);

targetMenu.top = (parseInt(targetMenu.top) == 22) Æ

? -2000 : 22;

}

// -->

</script>

2. In the header of your HTML document, create a style block and
include the same menu, menuTitle, and menuEntry styles as in
Task 197:

<style type=”text/css”>

.menu {

position:absolute; background-color:#020A33;

font:15px arial, helvetica, sans-serif;

line-height: 20px; top: -2000px;

}

.menuTitle {

position:absolute; background-color:#020A33;

font:15px arial, helvetica, sans-serif;

line-height: 21px; top: 0px;

text-decoration:none; color:#FFFFFF;

}

.menuEntry {

text-decoration:none; color:#FFFFFF;

}

.menuEntry:link {

color:#FFFFFF;

}

.menuEntry:hover {

note
• These pull-down menus are

quite flexible; you can
cause the menu entries to
trigger arbitrary JavaScript
code to make these menus
a mechanism for navigating
functionality within a page,
rather than simply navigat-
ing between pages.

412 Part 8

Task 199

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 412

tip
• There is no practical limit

to the JavaScript code you
can execute when the user
selects a menu entry. Of
course, to make your code
manageable, what you
want to do is place the
code you want to execute
for a menu entry into a
function and then call that
function from the
onClick event handler or
the javascript: URL.

background-color:#CCCCCC; color:#020A33;

}

</style>

3. In the body of the document, create the title block for the menu’s
header:

<div class=”menuTitle” style=”left:0px; width:100px;”Æ

onMouseover=”menuToggle(‘myMenu’);”Æ

onMouseout=”menuToggle(‘myMenu’);”>My Menu</div>

4. In the body of the document, create the menu block for the menu:

<div id=”myMenu” class=”menu” style=”left:0px;Æ

width:100px;” onMouseout=”menuToggle(‘myMenu’)”>

</div>

5. Create the menu links, using the menuEntry style class. For each
link, use a javascript: URL to display a dialog box when the user
selects the menu entry:

<div id=”myMenu” class=”menu” style=”left:0px;

width:100px;” onMouseout=”menuToggle(‘myMenu’)”>

<a href=”javascript:alert(‘You chose the first Æ

entry’);” class=”menuEntry”>First Entry

<a href=”javascript:alert(‘You chose the second Æ

entry’);” class=”menuEntry”>Second Entry

<a href=”javascript:alert(‘You chose the third Æ

entry’);” class=”menuEntry”>Third Entry

</div>

6. Save the file and open it in a browser. The menu is displayed closed,
as in Figure 199-1.

Figure 199-1: The menu displays closed by default.

7. Select an entry from the menu. The browser displays a dialog box, as
illustrated in Figure 199-2.

Figure 199-2: Displaying a dialog box when a user selects an entry.

Dynamic User Interaction 413

Task 199

cross-reference
• This task is a simple exten-

sion of the code in Task
197.

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 413

Generating a Drop-Down Menu
with a Function

This task shows how to simplify the creation of menus by encapsulating most of
the work into functions and then simply invoking the functions. The follow-

ing steps outline how to extend the basic menu from Task 197 to use a function
to create the menu:

1. In the header of your HTML document, create a script block and
place the menuToggle function from Task 197 in the block:

<script language=”JavaScript”>

<!--

function menuToggle(target) {

targetMenu = (document.getElementById) ? Æ

document.getElementById(target).style : eval(“document.” Æ

+ target);

targetMenu.top = (parseInt(targetMenu.top) == 22) Æ

? -2000 : 22;

}

// -->

</script>

2. In the script block, create a second function named createMenu.
This function takes five parameters: a name for the menu object, a
display title for the menu, an array containing menu entries, and the
horizontal placement and width of the menu in pixels:

function

createMenu(menuName,menuTitle,menuEntries,left,width) {

}

3. In the function, create a variable named numEntries containing the
number of entries in the menuEntries array:

numEntries = menuEntries.length;

4. Use the document.write method to output the menu title block;
use the menuName variable to pass the name of the menuObject in
the calls to menuToggle in the onMouseover and onMouseout
event handlers, as well as menuTitle as the title text in the block:

document.write(‘<div class=”menuTitle” style=”left:0px; Æ

width:100px;”’);

document.write(‘onMouseover=”menuToggle(\’’ + menuName Æ

+ ‘\’);”’);

document.write(‘onMouseout=”menuToggle(\’’ + menuName + Æ

‘\’);”>’);

document.write(menuTitle);

document.write(‘</div>’);

notes
• This task allows you to

avoid the creation of the
cumbersome HTML code
necessary to create the
menu title and menu
blocks. Instead, the goal is
to define the menu entries
in an array and then simply
call a function to create the
menu. The advantage of this
approach is that it removes
the burden of correctly
specifying the HTML for the
menu from the developer
and ensures that the HTML
code is properly generated.

• Notice the use of
menuEntries[i].
entry and
menuEntries[i].url.
As you will see later when
you create the array, each
entry in the array consists
of an object with two prop-
erties named entry
and url.

• You can create an object
with one or more named
properties by using the
form { propertyName:
propertyValue,
propertyName:
propertyValue,
etc.}.

414 Part 8

Task 200

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 414

5. To finish the function, use the document.write method to output
the menu block. You will need to use a for loop to output one link
for each entry in the menuEntries array:

document.write(‘<div id=”myMenu” class=”menu” Æ

style=”left:0px; width:100px;”’);

document.write(‘onMouseout=”menuToggle(\’’ + menuName + Æ

‘\’)”>’);

for (i = 0; i < numEntries; i++) {

document.write(‘<a href=”’ + menuEntries[i].url + ‘“ Æ

class=”menuEntry”>’ + menuEntries[i].entry + ‘
’);

}

document.write(‘</div>’);

6. In the header of your HTML document, create a style block and
include the same menu, menuTitle, and menuEntry styles as in
Task 197.

7. In the body of the document, create a script block with opening and
closing script tags.

8. In the script, create an array named myMenu:

var myMenu = new Array();

9. Create array entries for each entry in the menu. Notice that each
entry is an object containing two properties named entry (the dis-
play text for the entry) and url (the URL for the entry’s link):

myMenu[0] = { entry: “Entry 1”, url: “http://someurl/” };

myMenu[1] = { entry: “Entry 2”, url: “http://anotherurl/Æ

” };

myMenu[2] = { entry: “Entry 3”, url: “http://otherurl/” };

10. As the last line of the script, call the createMenu function, provid-
ing myMenu as the object name for the menu, “My Menu” as the dis-
play header for the menu, the myMenu array as the array of entries,
and positioning to place the menu at the left side of the window. This
code produces a menu like Figure 200-1.

createMenu(“myMenu”,”My Menu”,myMenu,0,100);

Figure 200-1: The menu in its expanded state.

Dynamic User Interaction 415

Task 200

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 415

Placing Menu Code in an External File

In Task 200, you saw how to encapsulate the creation of a menu into functions.
However, for the task to be really useful, you will want to be able to reuse the

menu system in any of your HTML files and applications. To do this, you need
to move the relevant JavaScript code and style sheets to external files that can
simply be included in your HTML documents. The following steps outline how
to do this:

1. Create a new file to contain the JavaScript code, and place the code
for the createMenu and menuToggle functions in that file. The
code looks like Listing 201-1.

function

createMenu(menuName,menuTitle,menuEntries,left,width) {

numEntries = menuEntries.length;

document.write(‘<div class=”menuTitle” style=”left:0px; Æ

width:100px;”’);

document.write(‘onMouseover=”menuToggle(\’’ + menuName Æ

+ ‘\’);”’);

document.write(‘onMouseout=”menuToggle(\’’ + menuName Æ

+ ‘\’);”>’);

document.write(menuTitle);

document.write(‘</div>’);

document.write(‘<div id=”myMenu” class=”menu” Æ

style=”left:0px; width:100px;”’);

document.write(‘onMouseout=”menuToggle(\’’ + menuName Æ

+ ‘\’)”>’);

for (i = 0; i < numEntries; i++) {

document.write(‘<a href=”’ + menuEntries[i].url + ‘“ Æ

class=”menuEntry”>’ + menuEntries[i].entry + ‘
’);

}

document.write(‘</div>’);

}

function menuToggle(target) {

targetMenu = (document.getElementById) ? Æ

document.getElementById(target).style : eval(“document.” Æ

+ target);

targetMenu.top = (parseInt(targetMenu.top) == 22) ? Æ

-2000 : 22;

}

Listing 201-1: The menu.js file.

notes
• Placing menu creation in

functions effectively creates
a menuing system in which
the developer doesn’t
need to understand the
JavaScript to create this
type of dynamic drop-down
menu.

• The link tag allows you to
create certain types of rela-
tionships to external files.
One type of relationship is
to style sheets, effectively
including the style sheet
file in the current document.

416 Part 8

Task 201

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 416

2. Save the file as menu.js and close it.

3. Create a new file to contain the styles for the menu, and place the
style sheet code in it.

4. Save the file as menu.css and close it. Make sure it is in the same
directory as menu.js.

5. Create a new file for the main HTML document that will display
the menu.

6. In the header of the document, use the script tag to include
menu.js:

<script language=”JavaScript” src=”menu.js”>

</script>

7. In the header of the document, use the link tag to include menu.css:

<link rel=”stylesheet” href=”menu.css”>

8. In the body of the document, include a script block to build an array
of menu entries and call the createMenu function:

<body>

<script language=”JavaScript”>

var myMenu = new Array();

myMenu[0] = { entry: “Entry 1”, url: Æ

“http://someurl/” };

myMenu[1] = { entry: “Entry 2”, url: Æ

“http://anotherurl/” };

myMenu[2] = { entry: “Entry 3”, url: Æ

“http://otherurl/” };

createMenu(“myMenu”,”My Menu”,myMenu,0,100);

</script>

</body>

Dynamic User Interaction 417

Task 201

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 417

Inserting a Prebuilt Drop-Down Menu

In Tasks 197 to 201, you saw how to build and manage your own simple
drop-down menu system. However, the menus created in these tasks are quite

simple. Using more advanced JavaScript, it is possible to create extremely sophis-
ticated menu systems. These menus can offer improved visual effects, can create
multitiered menus, and can do much more.

In this task, you will see how to use a complex prebuilt menu system. The
menu in question is Top Navigational Bar IV from dynamicdrive.com and
can be downloaded from www.dynamicdrive.com/dynamicindex1/
topmen4/index.htm.

This system offers a flexible, robust system for creating navigation menu bars
across the top of the page. These menus can be two levels deep and offer the
ability to include icons in the menu entries and apply fading effects to the dis-
playing of menus. The menu looks like Figure 202-1. Figure 202-2 illustrates one
of the menus in the open state.

Figure 202-1: The Top Navigational Bar IV.

Figure 202-2: Opening a menu.

Creating this type of menu is quite complex. This menu system has more than
900 lines of dense code, which makes it clear that you are better off using a pre-
built system than creating your own.

The following steps outline how to build your own simple menu using this menu
system:

1. Download the Top Navigation Bar IV; the code comes in a ZIP file.

2. Unzip the file to a directory in your Web site. The menu includes a
number of image files, plus two JavaScript files (mmenu.js and
menu_array.js), plus a sample HTML file (menu.htm).

3. In your HTML file, use script tags to include the two JavaScript
files; these tags should be the first ones to appear in the body of your
document:

notes
• The code for these

advanced menu systems
can get so complex, it is
better to consider using
one of the many freely
available JavaScript menu
systems. With these sys-
tems, you simply include
the relevant code in your
page and call the neces-
sary functions to create a
menu system.

• There are numerous
sources of drop-down
menu systems. dynamic-
drive.com offers a collec-
tion menu systems that you
can download and use.
Another useful source of
menu examples is dhtml-
shock.com .

418 Part 8

Task 202

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 418

<script language=JavaScript src=”menu_array.js” Æ

type=text/javascript></script>

<script language=JavaScript src=”mmenu.js” Æ

type=text/javascript></script>

4. Open the file menu_array.js in your editor.

5. Scroll down to the section that starts with the following text:

////////////////////////////////////

// Editable properties START here //

////////////////////////////////////

6. Make any changes to the visual style settings in this section of the
file. The role of these settings is well documented in the file itself.

7. In the next section of the file, replace the series of addmenu function
calls with your own to create your own hierarchy of menus. The
meaning of the parameters to addmenu is described in the menu_
array.js file. The following calls create a menu bar with two
menus.

addmenu(menu=[Æ

“mainmenu”,20,200,,1,,style1,1,”left”,effect,,1,,,,,,,,,,Æ

,”Menu 1 ”,”show-menu=menu1”,,””,1Æ

,”Menu 2 ”,”show-menu=menu2”,,””,1Æ

])

addmenu(menu=[“menu1”,Æ

,,120,1,””,style1,,”left”,effect,,,,,,,,,,,,Æ

,”Entry 1”,”http://someurl/”,,,1Æ

,”Entry 2”,”http://otherurl/”,,,1Æ

,”Entry 3”,”show-menu=submenu1”,,,1Æ

])

addmenu(menu=[“submenu1”,Æ

,,170,1,””,style1,,”left”,effect,,,,,,,,,,,,Æ

,”SubEntry1”,”http://anotherurl/”,,,0Æ

])

addmenu(menu=[“menu2”,Æ

,,170,1,””,style1,,”left”,effect,,,,,,,,,,,,Æ

,” Entry Æ

1”,”http://someurl/”,,,1Æ

,” Entry Æ

2”,”http://otherurl/”,,,1Æ

])

8. Ensure the last line of the file is as follows:

dumpmenus()

9. Save the file and open the main HTML file in your browser to view
the menu.

Dynamic User Interaction 419

Task 202

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 419

Creating a Floating Window

At times, it is necessary to create a window that floats above another window
at all times; even if the user attempts to bring the rear window to the fore-

ground, you want the floating window to remain in front.

Creating these floating windows is fairly easy. From your main document, you
create the new floating window, and then in the floating window, you trap any
attempt to remove focus from the floating window and return focus to the win-
dow. The following steps outline the creation of a simple floating window:

1. Create a new document in your HTML editor. This document will
serve as the document for the main, background window.

2. In the document header, create a new script block with opening and
closing script tags.

3. In the script, create a function called floatingWindow, which will
be used to display the floating window. Use the function keyword
to create the function:

function floatingWindow(){

}

4. In the function, use the window.open method to open a new win-
dow of your preferred height; in the window, load the file
floatingWindow.html. Here the window is 300 by 175 pixels, and
the resulting window object is stored in the variable floater:

function floatingWindow(){

floater = Æ

window.open(“floatingWindow.html”,””,”height=175,Æ

width=300,scrollbars=no”);

}

5. In the onLoad event handler of the body tag, call the
floatingWindow function so that the final document looks
like Listing 203-1.

6. Save and close the file, and open a new file in your editor to contain
the content of the floating window.

7. In the body tag of file, use the onBlur event handler to call the
self.focus method to force the window to come back to the front
if the user attempts to remove focus from the window:

<body onBlur=”self.focus()”>

Floating Window

</body>

notes
• There are numerous reasons

why you might want to cre-
ate floating windows as
described here. For exam-
ple, you might want a per-
manent toolbar or control
panel window that provides
controls that must be acces-
sible to the user at all times;
placing them in a floating
window can help ensure
this. Similarly, if loading
a page takes a long time,
you may want a floating
window to appear during
loading to provide other
information or a status
report to the user.

• The technique described
here works on Internet
Explorer and on Netscape
Communicator 4.7x. It does
not work on newer versions
of Netscape. In these
newer Netscape browsers,
the window doesn’t stay on
top if the user brings the
rear window to the fore-
ground. This doesn’t pre-
vent you from using the
floating window code out-
lined here to create a pop-
up window, however.

420 Part 8

Task 203

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 420

<head>

<script language=”JavaScript”>

<!--

function floatingWindow(){

floater = Æ

window.open(“floatingWindow.html”,””,”height=175,Æ

width=300,scrollbars=no”);

}

//-->

</script>

</head>

<body onLoad=”floatingWindow()”>

Main Document Goes Here.

</body>

Listing 203-1: Creating a floating window.

8. Save the file as floatingWindow.html.

9. Open the background file and you should see the floating window
displayed in the front, as in Figure 203-1.

Figure 203-1: Displaying a floating window.

Dynamic User Interaction 421

Task 203

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 421

Closing a Floating Window

As described in Task 203, sometimes the goal of a floating window is to pre-
sent a temporary placeholder while a larger, time-consuming document loads

in a rear window. In this situation, it is necessary to be able to close the floating
window programmatically once the rear window is ready.

JavaScript makes this easy by allowing you to reference the floating window from
the main window that created it. This task shows how to close the floating win-
dow from the main window by automatically closing the floating window five
seconds after it is displayed.

1. Create a new document in your HTML editor. This document will
serve as the document for the main, background window.

2. In the document header, create a new script block with opening and
closing script tags.

3. In the script, create a function called floatingWindow, which will
be used to display the floating window. Use the function keyword
to create the function. In the function, use the window.open
method to open a new window of your preferred height; in the win-
dow, load the file floatingWindow.html. Here the window is 300
by 175 pixels, and the resulting window object is stored in the vari-
able floater:

function floatingWindow(){

floater = Æ

window.open(“floatingWindow.html”,””,”height=175,Æ

width=300,scrollbars=no”);

}

4. In the onLoad event handler of the body tag, call the
floatingWindow function, and then use the setTimeout
function to call floater.close five seconds after the floating
window is displayed:

<body onLoad=”floatingWindow(); setTimeoutÆ

(‘floater.close()’,5000);”>

Main Document Goes Here.

</body>

5. Save and close the file, and open a new file in your editor to contain
the content of the floating window.

6. In the body tag of file, use the onBlur event handler to call the
self.focus method to force the window to come back to the front
if the user attempts to remove focus from the window:

<body onBlur=”self.focus()”>

Floating Window

</body>

notes
• The technique described

here works on Internet
Explorer and on Netscape
Communicator 4.7x. It does
not work on newer versions
of Netscape. In these
newer Netscape browsers,
the window doesn’t stay on
top if the user brings the
rear window to the fore-
ground. This doesn’t pre-
vent you from using the
floating window code out-
lined here to create a pop-
up window, however.

• The setTimeout function
allows you to schedule a
function or method call for
future execution. The func-
tion takes two parameters:
the function or method call
to invoke and the number of
milliseconds to wait before
executing the function call.

• When you call floater.
close, you are calling the
close method of the
floater object;
floater is the window
object associated with the
floating window so this
function call closes the
floating window.

422 Part 8

Task 204

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 422

7. Save the file as floatingWindow.html.

8. Open the background file and you should see the floating window
displayed in the front, as in Figure 204-1. Five seconds later the
floating window should disappear, as illustrated in Figure 204-2.

Figure 204-1: Displaying a floating window.

Figure 204-2: Closing the floating window.

Dynamic User Interaction 423

Task 204

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 423

Resizing a Floating Window

In Task 203, you saw how to create a floating window. Sometimes you will want
to manipulate that floating window after it has been displayed. Among the ways

in which a floating window can be manipulated is to resize it.

In this task, you learn how to resize a floating window using JavaScript code exe-
cuted in the main, rear window. To do this, you rely on the resizeTo method of
the window object.

The following task shows how to automatically resize the floating window to 400
by 300 pixels five seconds after it is displayed:

1. Create a new document in your HTML editor. This document will
serve as the document for the main, background window.

2. In the document header, create a new script block with opening and
closing script tags.

3. In the script, create a function called floatingWindow, which will
be used to display the floating window. Use the function keyword
to create the function. In the function, use the window.open method
to open a new window of your preferred height; in the window, load
the file floatingWindow.html. Here the window is 300 by 175
pixels, and the resulting window object is stored in the variable
floater:

function floatingWindow(){

floater = Æ

window.open(“floatingWindow.html”,””,”height=175,Æ

width=300,scrollbars=no”);

}

4. In the script, create a second function called
resizeFloatingWindow. The function should call
floater.resizeTo to resize the floating window:

function resizeFloatingWindow() {

floater.resizeTo(400,300);

}

5. In the onLoad event handler of the body tag, call the
floatingWindow function, and then use the setTimeout function
to call resizeFloatingWindow five seconds after the floating win-
dow is displayed:

<body onLoad=”floatingWindow(); setTimeout(resizeÆ

FloatingWindow()’,5000);”>

Main Document Goes Here.

</body>

notes
• This method takes two

parameters, the width and
height of the window, and
changes the window
dimensions to match:
windowObject.resizeTo
(width,height); (see
Step 3).

• The technique described
here works on Internet
Explorer and on Netscape
Communicator 4.7x. It does
not work on newer versions
of Netscape. In these
newer Netscape browsers,
the window doesn’t stay on
top if the user brings the
rear window to the fore-
ground. This doesn’t pre-
vent you from using the
floating window code out-
lined here to create a pop-
up window, however.

• The setTimeout function
allows you to schedule a
function or method call for
future execution. The func-
tion takes two parameters:
the function or method call
to invoke and the number
of milliseconds to wait
before executing the func-
tion call (see Step 5).

424 Part 8

Task 205

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 424

6. Save and close the file, and open a new file in your editor to contain
the content of the floating window.

7. In the body tag of file, use the onBlur event handler to call the
self.focus method to force the window to come back to the front
if the user attempts to remove focus from the window:

<body onBlur=”self.focus()”>

Floating Window

</body>

8. Save the file as floatingWindow.html.

9. Open the background file and you should see the floating window
displayed in the front, as in Figure 205-1. Five seconds later the
floating window should resize, as illustrated in Figure 205-2.

Figure 205-1: Displaying a floating window.

Figure 205-2: Resizing the floating window.

Dynamic User Interaction 425

Task 205

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 425

Moving a Floating Window

In the last task, you saw how to resize a floating window programatically.
Sometimes you will want to manipulate that floating window in other ways

after it has been displayed. Among the other ways in which a floating window can
be manipulated is that you can move the window to a new location in the display.

In this task, you learn how to move a floating window using JavaScript code exe-
cuted in the main, rear window. To do this, you rely on the moveBy method of
the window object.

The following task shows how to automatically move the floating window to the
right and down by 200 pixels in each direction five seconds after it is displayed:

1. Create a new document in your HTML editor. This document will
serve as the document for the main, background window.

2. In the document header, create a new script block with opening and
closing script tags.

3. In the script, create a function called floatingWindow, which will
be used to display the floating window. Use the function keyword
to create the function. In the function, use the window.open
method to open a new window of your preferred height; in the win-
dow, load the file floatingWindow.html. Here the window is 300
by 175 pixels, and the resulting window object is stored in the vari-
able floater:

function floatingWindow(){

floater = Æ

window.open(“floatingWindow.html”,””,”height=175,Æ

width=300,scrollbars=no”);

}

4. In the script, create a second function called moveFloatingWindow.
The function should call floater.moveBy to move the floating
window:

function moveFloatingWindow() {

floater.moveBy(200,200);

}

5. In the onLoad event handler of the body tag, call the
floatingWindow function, and then use the setTimeout function
to call moveFloatingWindow five seconds after the floating window
is displayed:

<body onLoad=”floatingWindow(); setTimeout(‘moveÆ

FloatingWindow()’,5000);”>

Main Document Goes Here.

</body>

6. Save and close the file, and open a new file in your editor to contain
the content of the floating window.

notes
• This task takes two

parameters, the horizontal
and vertical offsets for
moving the window:
windowObject.moveBy
(horizontalOffset,vertical
Offset). The moveBy
method moves a window
relative to its current loca-
tion. Negative values are
possible to move a window
to the left or up.

• Closely related to the
moveBy method is the
moveTo method; the criti-
cal difference is that the
moveTo method allows
you to specify an absolute
position on the screen in
pixels.

• The moveBy and moveTo
methods are available in
both Internet Explorer and
Netscape browsers starting
with version 4.

• The technique described
here works on Internet
Explorer and on Netscape
Communicator 4.7x. It does
not work on newer versions
of Netscape. In these
newer Netscape browsers,
the window doesn’t stay on

426 Part 8

Task 206

top if the user brings the
rear window to the fore-
ground. This doesn’t pre-
vent you from using the
floating window code out-
lined here to create a pop-
up window, however.

• The setTimeout function
allows you to schedule a
function or method call for
future execution. The func-
tion takes two parameters:
the function or method call
to invoke and the number
of milliseconds to wait
before executing the func-
tion call.

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 426

7. In the body tag of file, use the onBlur event handler to call the
self.focus method to force the window to come back to the front
if the user attempts to remove focus from the window:

<body onBlur=”self.focus()”>

Floating Window

</body>

8. Save the file as floatingWindow.html.

9. Open the background file and you should see the floating window
displayed in the front, as in Figure 206-1. Five seconds later the
floating window should move, as illustrated in Figure 206-2.

Figure 206-1: Displaying a floating window.

Figure 206-2: Moving the floating window.

Dynamic User Interaction 427

Task 206

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 427

Changing the Content of a Floating
Window

In Task 205 you learned how to resize a floating window, and in Task 206 you
saw how to move a floating window. Another useful manipulation of a floating

window is to be able to change the contents of the window programmatically as
events occur in the main, background window.

In this task, you learn how to change the content of a floating window using
JavaScript code executed in the main, rear window. To do this, you rely on three
methods of the document object: open, write, and close.

The following task shows how to automatically change the content of the
floating window five seconds after it is displayed:

1. Create a new document in your HTML editor. This document will
serve as the document for the main, background window.

2. In the document header, create a new script block with opening and
closing script tags.

3. In the script, create a function called floatingWindow, which will
be used to display the floating window. Use the function keyword
to create the function. In the function, use the window.open
method to open a new window of your preferred height; in the win-
dow, load the file floatingWindow.html. Here the window is 300
by 175 pixels, and the resulting window object is stored in the vari-
able floater:

function floatingWindow(){

floater = Æ

window.open(“floatingWindow.html”,””,”height=175,Æ

width=300,scrollbars=no”);

}

4. In the script, create a second function called newFloatingWindow.
The function should use the document object to display new content
in the floating window:

function newFloatingWindow() {

floater.document.open();

floater.document.write(“New Floating Window Content”);

floater.document.close();

}

5. In the onLoad event handler of the body tag, call the
floatingWindow function, and then use the setTimeout
function to call newFloatingWindow five seconds after the floating
window is displayed:

notes
• The technique described in

this task is particularly use-
ful if unexpected events
happen when loading the
background and the float-
ing window is a place-
holder while that loading
takes place. Another use
would be to change the
contents of a toolbar or
control panel displayed in
the floating window as the
contents of the main win-
dow change.

• The open method creates
a new document stream in
a specific window, the
write method outputs
text or HTML to the docu-
ment stream, and the
close method closes the
document stream.

• Notice the use of
floater.document.me
thodName. The docu-
ment object is a property
of the window object, and
floater refers to the
window object for the
floating window.

• The setTimeout function
allows you to schedule a
function or method call for

428 Part 8

Task 207

future execution. The func-
tion takes two parameters:
the function or method call
to invoke and the number
of milliseconds to wait
before executing the func-
tion call.

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 428

<body onLoad=”floatingWindow(); setTimeout(newÆ

FloatingWindow()’,5000);”>

Main Document Goes Here.

</body>

6. Save and close the file, and open a new file in your editor to contain
the content of the floating window.

7. In the body tag of file, use the onBlur event handler to call the
self.focus method to force the window to come back to the
front if the user attempts to remove focus from the window:

<body onBlur=”self.focus()”>

Floating Window

</body>

8. Save the file as floatingWindow.html. Open the background file
and you should see the floating window displayed in the front, as in
Figure 207-1. Five seconds later the floating window should display
the new content, as illustrated in Figure 207-2.

Figure 207-1: Displaying a floating window.

Figure 207-2: Changing the content of the floating window.

Dynamic User Interaction 429

Task 207

cross-reference
• The use of the document

object for outputting to the
browser is discussed in
detail in Part 2.

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 429

Detecting Drag and Drop

Microsoft Internet Explorer provides a special set of events for detecting and
responding to drag-and-drop events. This task discusses the basic applica-

tion of these events to detecting drag-and-drop events in Internet Explorer.

The Microsoft event model provides seven events related to drag-and-drop activity:

• onDragStart: This event fires when the user presses the mouse
button and begins dragging an object. This event is specified and
trapped in the source object that is being dragged, and this is where
you want to save information about the object that is being dragged.

• onDrag: This event fires repeatedly as an object continues to be
dragged. It is specified and trapped in the source object that is being
dragged.

• onDragEnter: This event fires when an object is dragged over a pos-
sible drop target. It is specified and trapped in the drop target object.

• onDragOver: This event fires repeatedly as an object is being
dragged over a possible drop target. It is specified and trapped in the
drop target object.

• onDragLeave: This event fires when an object is dragged out of a pos-
sible drop target. It is specified and trapped in the drop target object.

• onDragEnd: This event fires when an object that is being dragged is
dropped anywhere. It is specified and trapped in the source object
that is being dragged.

• onDrop: This event fires when an object is dropped in a possible
drop target. It is specified and trapped in the drop target object.

There are a few catches to using these events. First, unless you are dropping on a
text box, the onDrop event will not be triggered unless the default behavior for
the onDragLeave and onDragEnd event handlers is canceled. This is done by
setting event.returnValue to false for these events in the tag for the drop
target object, as in the following:

<div onDragLeave=”event.returnValue = false;” onDragEnd=Æ

”event.returnValue=false;”>

The following steps show how to create a simple drag-and-drop example. In this
example, the user can drag selected text over a target blue box. When the user
drops the object, a dialog box will confirm the name of the object that was
dragged and the name of the object where it was dropped.

1. Create a new document and create a script block in the header. In the
script block, define the variable sourceObject as a new Object
that will be a placeholder to store the object the user drags:

var sourceObject = new Object();

notes
• For a more detailed discus-

sion of drag and drop in
Internet Explorer, consult
the article “Drag and Drop
in Internet Explorer” at
http://webreference.
com/programming/
javascript/
dragdropie/.

• Notice the reference to the
event object. The event
object exists for each event
handler and includes infor-
mation about the event.
One of the properties
of this object is the
returnValue property
used here. Another useful
property is the
srcElement property,
which points to the object
where the event fired.

• Notice that event.src
Element is used here.
This allows you to store the
object being dragged in
sourceObject for later
use when the object is
dropped.

• The id attribute of an
object contains the name
specified in the id
attribute of the tag that
created the object.

430 Part 8

Task 208

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 430

2. In the body of the document, use span tags to specify the text for
dragging. Name the block dragThis with the id attribute, and use
the onDragStart event handler to assign the source object to
sourceObject when the user starts dragging the text:

<span id=”dragThis”Æ

onDragStart=”sourceObject = event.srcElement;”>

Drag This

3. Create the blue target box, using a div tag. Name the box
dropHere, and cancel onDragEnter and onDragOver as outlined
earlier in this task. Finally, use onDrop to display a dialog box nam-
ing the object that was dragged and where it was dropped.

<div id=”dropHere”

onDragEnter=”event.returnValue = false;”

onDragOver=”event.returnValue = false;”

onDrop=”alert(sourceObject.id + ‘ was dropped on ‘ Æ

+ event.srcElement.id);”

style=”height:100;width:100;left:500;position:absolute;Æ

background-color:blue;”>

</div>

4. Save the file and open it in your browser.

5. Select the text, and drag it and drop it on the blue box. A dialog box
like Figure 208-1 appears.

Figure 208-1: Dropping the text displays an alert dialog box.

Dynamic User Interaction 431

Task 208

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 431

Moving a Dragged Object in
Drag and Drop

In Task 208 you saw the basics of drag and drop. This task shows you how to
move a dragged object in Internet Explorer. For instance, consider Figure

209-1. In this case, the goal is to allow the user to drag the text into the blue
square and drop it to leave it in the square and remove the original text, as in
Figure 209-2.

Figure 209-1: Preparing to move the text.

Figure 209-2: Moving the text after dragging and dropping.

Doing this requires several steps:

1. When the user starts dragging the object, save the object for
future use.

2. When the user drops the object on the blue box, insert the HTML
from the source object into the body of the blue box.

3. Remove the original object from the page.

notes
• The function in the code

uses the innerHTML and
outerHTML properties
of objects. Consider the
simple code <div id=
”myObject”>Text</
b></div>. In this case,
myObject.outerHTML
is <div id=”my
Object”>Text
</div>, while
myObject.innerHTML
is just Text.

• Notice that event.
srcElement is
used here. This allows
you to store the object
being dragged in
sourceObject for later
use when the object is
dropped.

432 Part 8

Task 209

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 432

The following steps build this example:

1. Create a new document and create a script block in the header. In the
script block, define the variable sourceObject as a new Object
that will be a placeholder to store the object the user drags:

var sourceObject = new Object();

2. Add a function to the script block named moveObject that takes two
arguments: source and destination, which are the source object
being dragged and the target object where the source object was
dropped:

function moveObject(source,destination) {

}

3. In the function, add the complete HTML of the source object to the
inside of the destination object, and then set the display style of
the source object to none to hide it. This duplicates the source object
in the inside of the destination drop target object and then hides the
original:

function moveObject(source,destination) {

destination.innerHTML += source.outerHTML;

source.style.display = “none”;

}

4. In the body of the document, use span tags to specify the text for
dragging. Name the block dragThis with the id attribute, and use
the onDragStart event handler to assign the source object to
sourceObject when the user starts dragging the text:

<span id=”dragThis”Æ

onDragStart=”sourceObject = event.srcElement;”>

Drag This

5. Create the blue target box, using a div tag. Name the box dropHere,
and cancel onDragEnter and onDragOver as outlined earlier in
this task. Finally, use onDrop to call the function moveObject with
sourceObject and event.srcElement as the two arguments.

<div id=”dropHere”

onDragEnter=”event.returnValue = false;”

onDragOver=”event.returnValue = false;”

onDrop=”moveObject(sourceObject,event.srcElement);”

style=”height:100;width:100;left:500;position:absolute;Æ

background-color:blue;”> </div>

6. Save the file, and open it in a browser to test the drag-and-drop code.

Dynamic User Interaction 433

Task 209

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 433

Changing Cursor Styles

Sometimes it is useful to be able to override the default cursor to provide
information to the user about the object the mouse is over . This is achieved

in Internet Explorer using the cursor style attribute in cascading style sheets.
This allows you to specify the state of the cursor while it is over an object, and
this is useful to control the cursor while an object is being dragged. The basic
syntax to use this attribute is as follows:

.styleName { cursor: cursorName; }

The possible cursor names include the following:

• auto: Allows the browser to automatically choose a cursor

• all-scroll (Internet Explorer 6): Arrows pointing in all four direc-
tions with a dot in the middle

• col-resize (Internet Explorer 6): Arrows pointing left and right
separated by a vertical bar

• crosshair: A simple crosshair

• default: The default cursor (usually an arrow)

• hand: The hand cursor, which is typically used when the pointer
hovers over a link

• help: An arrow with a question mark

• move: Crossed arrows

• no-drop (Internet Explorer 6): A hand with a small circle with a line
through it

• not-allowed (Internet Explorer 6): A circle with a line through it

• pointer (Internet Explorer 6): The hand cursor, which is typically
used when the pointer hovers over a link

• progress (Internet Explorer 6): An arrow with an hourglass next
to it

• row-resize (Internet Explorer 6): Arrows pointing up and down
separated by a horizontal bar

• text: An I-bar

• vertical-text (Internet Explorer 6): A horizontal I-bar

• wait: An hourglass

note
• There are a number of rea-

sons why you might want to
change the cursor. For
instance, if an object has
help information associ-
ated with it, you might want
a cursor with a question
mark to appear when the
mouse is over the object.
Similarly, an object that
can be moved should dis-
play a crosshair cursor
when the mouse is over it.

434 Part 8

Task 210

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 434

The following example shows three boxes on the page, and each displays a
different cursor (a hand, an hourglass, and a crosshair) when the mouse rolls
over the box:

1. Create a new document in your editor.

2. In the body of the document, use a div tag to create a box. Set the
cursor attribute to hand. In this example, the box has a border and is
100 pixels by 100 pixels:

<div style=”border-style: solid; width: 100; height: Æ

100; cursor: hand;”> </div>

3. Create a second box and set the cursor attribute to wait for an
hourglass:

<div style=”border-style: solid; width: 100; height: Æ

100; cursor: wait;”> </div>

4. Create a third box and set the cursor attribute to crosshair.

<div style=”border-style: solid; width: 100; height: Æ

100; cursor: crosshair;”> </div>

5. Save the file and open it in a browser. The page shows three boxes, as
in Figure 210-1. Move the mouse over the three boxes to view the
three cursors.

Figure 210-1: Each box is associated with a different cursor.

Dynamic User Interaction 435

Task 210

cross-reference
• The use of the div tag is

discussed in Task 169.

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 435

Determining the Current Scroll Position

Using JavaScript, you can determine how far down the page the user has
scrolled. Consider Figure 211-1, for example. Here the window is quite nar-

row, so the user must scroll further down the window to see the same text as in a
wide window, where scrolling would be minimized.

Figure 211-1: A long document in a narrow window.

To determine the vertical position of the scroll bar, you need to use different
techniques in Internet Explorer and Netscape. In Internet Explorer, the
scrollTop property of the body object points to the current scroll position:

document.body.scrollTop

In Netscape, the pageYOffset property of the window object provides the
same information:

window.pageYOffset

The following steps illustrate how to use this capability to create a two-frame
HTML page in which the bottom frame contains a document the user can scroll
and the top frame contains a button the user can click to view the current scroll
position in a dialog box:

1. Create a new document to hold the contents of the bottom frame.

2. In the header of the document, create a script block. In the script block,
create a function named scrollCheck that doesn’t take any arguments:

function scrollCheck() {

}

3. In the function, use an if statement to check if the user is using
Internet Explorer; this is achieved by checking if document.all

notes
• JavaScript allows you to

determine the scroll position
by allowing you to check
how many pixels down the
scroll bar the user has
scrolled. This means that the
scroll distance is related to
the size of the window.

• When you are working with
frames, keep in mind that
the parent object in a
frame refers to the parent
frameset. This object has a
frames property that is
an array of frame objects
referring to all frames in
the frameset. With two hori-
zontal frames, the top
frame will be frames[0]
and the bottom frame will
be frames[1].

436 Part 8

Task 211

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 436

exists (it won’t exist in Netscape). Based on this, use the alert
method to display the current vertical scroll position:

function scrollCheck() {

if (document.all) {

alert(document.body.scrollTop);

} else {

alert(window.pageYOffset);

}

}

4. In the body of the document, put lots of text so that the document is
likely to stretch beyond the bottom of the average browser window.

5. Save the file as scrollFrame.html and close it. Create another
new file to hold the top frame.

6. Create a button in the body of the document, using the input tag,
and display the text “Scroll Position”.

<input type=”button” value=”Scroll Position”>

7. Add an onClick event handler to the button, and use that to call the
scrollCheck function in the other frame:

<input type=”button” value=”Scroll Position” Æ

onClick=”parent.frames[1].scrollCheck();”>

8. Save the file as scrollButton.html and close it. Create another
new file to hold the frameset.

9. Create a frameset with scrollButton.html in the top frame and
scrollFrame.html in the bottom frameset:

<frameset rows=”50,*”>

<frame src=”scrollButton.html”>

<frame src=”scrollFrame.html” id=”mainFrame”>

</frameset>

10. Save the file and open it in your browser. The two frames are displayed.
Scroll the bottom frame to the desired location, and then click the
Scroll Position button in the top frame. The current scroll position of
the bottom frame is displayed in a dialog box, as in Figure 211-2.

Figure 211-2: Checking the scroll position of the bottom frame.

Dynamic User Interaction 437

Task 211

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 437

Creating an Expanding/Collapsing Menu

This task shows how to quickly build a simple expanding/collapsing menu with
a minimum of JavaScript code required. The menu you will build allows for a

hierarchical menu to be defined as a series of embedded unordered lists. In fully
expanded form, the menu might look like Figure 212-1, but it is possible to
expand or collapse any tree of the hierarchy.

Figure 212-1: The menu fully expanded.

The principle behind this task is two-fold:

1. Objects on the page have parents and children. If one object is contained
within another’s opening and closing tags, then the object is the child.

2. Objects can have a style attribute named display that controls
whether the object is displayed.

The following task builds a page containing such an expanding and collapsing menu:

1. Create a new file and place a script block in the header of the docu-
ment, using opening and closing script tags:

2. In the script block, create a function called toggleMenu that takes a
single argument—the name of the object to display or hide:

function toggleMenu(target) {

}

3. In the function, create a variable named targetLayer to select the
appropriate object to use in manipulating the display style attribute:

targetLayer = (document.getElementById) ? document.Æ

getElementById(target).style : eval(“document.” + target);

notes
• In the case of parent-child

relationships, when the
child is hidden, the space
taken by the child is
removed; this allows the
menu outlined above to
collapse automatically.
The display attribute is
simple to use: no value
means the object is dis-
played; none means the
object is hidden.

• Notice the use of the
conditional based on
document.
getElementById. In
Internet Explorer, this
method is available and
you use it to access the
style property of the
target object. But in
Netscape, this method is
not available and the cor-
rect object to work with is
the object itself and not a
style property. By testing
for the existence of the
getElementById
method, you can determine
what browser you are using.

438 Part 8

Task 212

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 438

4. Use a conditional expression to hide or display the object in question.
This is done by checking if the display attribute is set to none. If it
is, the attribute is set to an empty string. Otherwise, it is set to none.
The result of this logic is that the display attribute toggles between
none and an empty string each time the function is called. The
resulting function is as follows:

function toggleMenu(target) {

targetLayer = (document.getElementById) ? document.Æ

getElementById(target).style : eval(“document.” + target);

targetLayer.display = (targetLayer.display == “none”) Æ

? “” : “none”;

}

5. In the body of the document, create your menu hierarchy with
unordered lists:

Menu 1

Entry 1

Entry 2

Menu 2

Entry 1

Entry 2

6. In the ul tags for the child lists, assign names with the id attribute,
and use the style attribute to set display to none. For the first
menu, you might use the following:

<ul id=”menu1” style=”display:none”>

7. Turn the entries in the parent list into links. Each link should use a
javascript: URL to call toggleMenu and pass it the name of the
appropriate child list. As an example, the entry for the first menu
might be as follows:

Menu 1

8. Save the file and open it in a browser to test the menu.

Dynamic User Interaction 439

Task 212

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 439

Creating a Highlighting Menu Using Just
Text and CSS—No JavaScript

Sometimes the simplest interactive menus are those that require the least
effort to create. This task shows how to create a simple menu bar where

the menu entries highlight when the mouse hovers over them—without any
JavaScript or other dynamic scripting. Instead, only the cascading style sheets
side of Dynamic HTML is used.

This task relies on effective use of style sheets. The key is that any style entry, such
as a class, can have a special case defined for when the mouse hovers over an ele-
ment on the page as a link. For instance, consider the following simple example:

<head>

<style type=”text/css”>

.item { text-decoration: none; }

.item:hover {text-decoration: underline; }

</style>

</head>

<body>

The Link

</body>

Here one style class named item is created. It is defined so that when a link
using that class is in its normal state, it is not underlined, as shown in Figure
213-1. However, when the mouse hovers over the link, the underlining appears.

Figure 213-1: The link is normally not underlined.

440 Part 8

Task 213

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 440

tip
• When defining the style for
menuEntry, you are free
to use any valid style
attributes and settings to
achieve the effect you are
aiming for.

The following steps show how to create a menu bar consisting of three gray but-
tons. When the mouse pointer is over the button, it switches color to a dark blue.

1. Create a new HTML document in your editor.

2. In the header of the document, create a style block with opening and
closing style tags.

3. In the style block, create a style class named menuEntry. Make sure
the height and width and background color of the style are specified.
Here the buttons will be 100 by 25 pixels with a gray background. In
addition, you can optionally set a border style, text styles, and so on.

.menuEntry {

width: 100px;

height: 25px;

background-color: #CCCCCC;

border-style: solid;

border-width: 1px;

border-color: black;

text-align: center;

text-decoration: none;

color: #020A33;

}

4. In the style block, create a special hover style for the menuEntry
class. This should change the color of the background and text to
create the highlighting effect:

.menuEntry:hover {

background-color: #020A33;

color: yellow;

}

5. In the body of the document, create three links that use the
menuEntry class. Use the style attribute to position these links at
even intervals across the top of the page:

<a href=”http://someurl/” class=”menuEntry” style=Æ

”top: 1; left: 1;”>Entry 1

<a href=”http://someurl/” class=”menuEntry” style=Æ

”top: 1; left: 52;”>Entry 2

<a href=”http://someurl/” class=”menuEntry” style=Æ

”top: 1; left: 103;”>Entry 3

6. Save the file and open it in a browser to use the menu.

Dynamic User Interaction 441

Task 213

cross-reference
• Style sheets are one of the

main subjects of Part 7.

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 441

Creating a Highlighting Menu Using
Text, CSS, and JavaScript

This task shows how to use JavaScript to implement a hover effect instead of
simply using CSS. The possible advantages of this include being able to exe-

cute any JavaScript code that is necessary when the mouse pointer hovers over an
entry in the menu.

This task relies on the borderStyle property of objects in JavaScript, which
allows you to reset the border style of an object programmatically in code. When
set to outset, the object will have a three-dimensional border as in Figure
214-1. Setting the property to none removes the border.

Figure 214-1: Highlighting a
menu element with a three-
dimensional border.

The following steps build the menu illustrated previously:

1. Create a new document.

2. In the header of the document, create a style block. In the style
block, define a menuItems class with the visual style that is desired.
Make sure border color and size is specified but that the border style
is set to none:

<style type=”text/css”>

.menuitems {

border-size:2.5px;

border-style:none;

border-color:#FFF2BF;

text-decoration:none;

color:blue;

font-family:Arial,Helvetica,SANS-SERIF;

}

</style>

note
• Notice the use of the

conditional based on
document.
getElementById. In
Internet Explorer, this
method is available and
you use it to access the
style property of the
target object. But in
Netscape, this method is
not available and the cor-
rect object to work with is
the object itself and not a
style property. By testing
for the existence of the
getElementById
method, you can determine
what browser you are using.

442 Part 8

Task 214

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 442

3. In the header of the document, create a script block with opening
and closing script tags.

4. In the script, create a function called toggleMenu. The function
should take two arguments: target, which contains the name of the
object to toggle, and border, which contains the desired border style
as a string:

function toggleMenu(target,border) {

}

5. In the function, define a variable named targetLayer that will
point to the object you can use to manipulate the visual style of the
object named in target:

targetLayer = (document.getElementById) ? Æ

document.getElementById(target).style : evalÆ

(“document.” + target); @

6. Complete the function by setting the object’s border style to the style
specified in the border argument:

function toggleMenu(target,border) {

targetLayer = (document.getElementById) ? Æ

document.getElementById(target).style : evalÆ

(“document.” + target);

targetLayer.borderStyle = border;

}

7. In the body of the document, create a layer with a div tag:

<div style=”background-color:#FFF2BF;”>

</div>

8. Inside the layer, create one or more links that use the class
menuItems and are named with the id attribute. Use the
onMouseover and onMouseout event handlers to call toggleMenu
to switch the border style:

<div style=”background-color:#FFF2BF;”>

<a href=”http://someurl/” class=”menuItems” id=Æ

”entry1” onMouseover=”toggleMenu(‘entry1’,’outset’);” Æ

onMouseout=”toggleMenu(‘entry1’,’none’);”>Entry 1

<a href=”http://someurl/” class=”menuItems” id=Æ

”entry2” onMouseover=”toggleMenu(‘entry2’,’outset’);” Æ

onMouseout=”toggleMenu(‘entry2’,’none’);”>Entry 2

<a href=”http://someurl/” class=”menuItems” id=Æ

”entry3” onMouseover=”toggleMenu(‘entry3’,’outset’);” Æ

onMouseout=”toggleMenu(‘entry3’,’none’);”>Entry 3

</div>

9. Save the file and open it in a browser to test the menu.

Dynamic User Interaction 443

Task 214

cross-reference
• The use of the div tag is

discussed in Task 169.

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 443

Placing Content Offscreen

With JavaScript it is easy to hide content offscreen until you need it. This is
an alternative to using the visibility of layers to hide and display content.

Using JavaScript, in fact, you can control the placement of the top and left of any
element on your page. With this in mind, you can use a negative pixel value to
place an element off the top of the screen.

The principle is simple. Given an object named myObject, you can specify the
top of the object in pixels relative to the browser window with the following:

myObject.top = pixel placement relative to top of window;

For instance, if you want the object to be placed 100 pixels down from the top of
the window, use this:

myObject.top = 100;

Similarly, you can specify the left of the object, as in the following example,
which places an object 2000 pixels off the left side of the browser window:

myObject.left = -2000;

The question at hand is how to identify the appropriate object to apply the top
or left property to. In Internet Explorer, objects have a style property that
contains a style object. Therefore, for an object on the page named myObject,
in Internet Explorer, you refer to myObject.style.top and
myObject.style.left. In Netscape, the top and left properties are directly
accessible from the object as myObject.top and myObject.left.

The following task shows how to display text in a layer and allow users to hide
the text when they click on a link:

1. Create a new document.

2. In the header of the document, create a script block with opening
and closing script tags.

3. In the script, create a function named hideLayer that takes a single
attribute target; target will represent the name of the object that
will by hidden when the user clicks on the link:

function hideLayer(target) {

}

4. In the function, create a variable named targetLayer to hold the
object you will work with; this will be dependent on the browser
being used:

targetLayer = (document.getElementById) ? document.Æ

getElementById(target).style : eval(“document.” + target);

notes
• Notice the use of the

conditional based on
document.
getElementById. In
Internet Explorer, this
method is available and
you use it to access the
style property of the tar-
get object. But in Netscape,
this method is not available
and the correct object to
work with is the object
itself and not a style
property. By testing for the
existence of the
getElementById
method, you can determine
what browser you are using.

• To hide menus, you set the
top of the menu object to -
2000 pixels. This should be
large enough to hide any
menu that fits on the
screen, since most screen
resolutions do not exceed
2000 pixels in depth.

• Notice the use of the
position: absolute
style attribute in the div
tag. This is necessary to
allow absolute placement
of the object when you
reset the top of the layer.

444 Part 8

Task 215

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 444

5. Use the targetLayer object to set the top of the object to -2000
pixels to move it off the screen. The function looks like this:

function hideLayer(target) {

targetLayer = (document.getElementById) ? Æ

document.getElementById(target).style : evalÆ

(“document.” + target);

targetLayer.top = -2000;

}

6. In the body of the document, use opening and closing div tags to
create a layer named myLayer:

<div id=”myLayer” style=”position: absolute;”>

</div>

7. In the layer, place any text you want to display, followed by a link that
uses a javascript: URL to call the hideLayer function, and pass
in the name of the layer as string:

<div id=”myLayer” style=”position: absolute;”>

<p>Here is some text in a layer.</p>

<p>Æ

Click here to hide the layer</P>

</div>

8. Save the file and open it in your browser. The text and link appears,
as in Figure 215-1.

Figure 215-1: Displaying text in a layer.

9. Click on the link, and the text and link in the layer disappears.

Dynamic User Interaction 445

Task 215

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 445

Sliding Content into View

By extending the principle of hiding objects offscreen, you can build a system
to slide an object into view from outside the browser window. The idea is

simple: Place an object offscreen and then gradually change its placement until it
is fully displayed in the window.

The simple approach to this would be to place the object offscreen and then use a
loop to move the object onto the screen pixel by pixel. For instance, you could
use a simple for loop to move the object myObject onscreen from 200 pixels
above the top of the window into the window.

The problem with this is that the loop moves so quickly, the object effectively
appears onscreen instantly. Instead, it may be necessary to pause between each
change in the location of the object. This can be achieved using the setTimeout
method, which allows a scheduled call to a function. For instance, the following
code causes each move to happen one-tenth of a second apart:

function moveLayer(target,newTop) {

targetLayer = (document.getElementById) ? document.Æ

getElementById(target).style : eval(“document.” + target);

targetLayer.top = newTop;

if (newTop < 0) {

setTimeout(“moveLayer(‘“ + target + “‘,” + Æ

(newTop+1) + “)”,100);

}

}

moveLayer(‘myObject’,-200);

The following task shows a complete page where the text of the page scrolls onto
the screen using this technique:

1. Create a new document in your editor.

2. In the header of the document, create a script block with opening
and closing script tags.

3. In the script, create a variable named slideSpeed that indicates the
speed at which the content should slide onto the screen. The lower
the value of slideSpeed, the faster the content will move when
sliding:

var slideSpeed = 1;

4. Create the moveLayer function as outlined earlier in this task.
Notice that the time specified in the setTimeout function uses
slideSpeed as a multiplier to set the number of milliseconds
between each call to the moveLayer function:

function moveLayer(target,newTop) {

targetLayer = (document.getElementById) ? document.Æ

getElementById(target).style : eval(“document.” + target);

notes
• In this task things move

much slower; in fact, they
may move too slowly. This
can be adjusted by changing
the 100 in the
setTimeout function call
to a smaller value.

• Notice the use of the
setTimeout function.
Here you are essentially
scheduling a recursive call
to the same function and
rebuilding the function
arguments with the new
top point set 1 pixel lower
than it was on the current
call. This is allowed to
repeat until the top of the
object is at 0 pixels, which
means it is just inside the
window.

• Notice the use of the
conditional based on
document.
getElementById. In
Internet Explorer, this
method is available and
you use it to access the
style property of the tar-
get object But in Netscape,
this method is not available
and the correct object to
work with is the object
itself and not a style
property. By testing
for the existence of the
getElementById
method, you can determine
what browser you are using.

446 Part 8

Task 216

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 446

targetLayer.top = newTop;

if (newTop < 0) {

setTimeout(“moveLayer(‘“+target+”’,”+(newTop+1)+”)”,Æ

slideSpeed * 25);

}

}

5. In the body tag, use the onLoad event handler to call moveLayer
when the page loads. The sliding animation will start at 100 pixels
above the top of the window, since this is where the layer in question
will be placed initially:

<body onLoad=”moveLayer(‘myLayer’,-100);”>

6. Create a layer using opening and closing div tags, and name the
layer myLayer with the id attribute.

7. Set the style attribute of the div tag to apply absolute positioning,
and position the layer 100 pixels beyond the top of the window:

<div id=”myLayer” style=”position: absolute; top: -100;”>

8. Place any text desired in the layer:

<div id=”myLayer” style=”position: absolute; top: -100;”>

<p>

Place the text of the page here.

Place the text of the page here.

Place the text of the page here.

Place the text of the page here.

Place the text of the page here.

</p>

</div>

9. Save the file and open it in your browser. Initially, nothing will be
displayed. Gradually, the content of the page will slide down into the
window, as illustrated in Figure 216-1. Finally, the entire text will be
displayed, and sliding will stop when the text reaches the top of the
window.

Figure 216-1: The content will slide down.

Dynamic User Interaction 447

Task 216

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 447

Creating a Sliding Menu

Extending the technique outlined in Task 216, you can create a menu that
slides into view when it is needed and then is hidden when it is not needed.

This task shows how to create a menu that only displays a small link initially.
When the user clicks the link, the menu slides into view horizontally, as shown in
Figure 217-2. When the user is finished with the menu, he or she can click on
the link at the far right to hide the menu and it will slide back to the left to be
hidden.

Figure 217-1: The menu slides into view when it is needed.

The following steps create a page that implements this menu:

1. In the header of the HTML file, create a script block and define
three variables: slideSpeed (the delay factor between slide incre-
ments; the lower the number the faster the slide effect), menuWidth
(the width in pixels the menu will require), and leftPosition (the
left position where the menu should end up after sliding into the
window):

var slideSpeed = 1;

var menuWidth = 300;

var leftPosition = 51;

2. Create a function called showLayer designed to slide the menu into
view; this function will resemble the function used in Task 216. The
function takes two arguments—the name of the layer containing the
menu and the left position where the layer should be moved to:

function showLayer(target,newLeft) {

targetLayer = (document.getElementById) ? document.Æ

getElementById(target).style : eval(“document.” + target);

targetLayer.left = newLeft;

if (newLeft < leftPosition) {

setTimeout(“showLayer(‘“+target+”’,”+Æ

(newLeft+1)+”)”,slideSpeed * 10);

}

}

3. Create a function called hideLayer designed to slide the menu out
of view:

function hideLayer(target,newLeft) {

targetLayer = (document.getElementById) ? document.Æ

getElementById(target).style : eval(“document.” + target);

notes
• Achieving results in this

task requires some simple
principles: The menu will
be hidden off the left of the
screen, and one function
will be available to slide
the menu into view and
another will be available
to slide the menu back
out of view.

• Notice that the control of
the final positioning of the
menu in the if statement
is done by comparing
against leftPosition.

• This function is the same
as showLayer except for
two key differences: In
recalling the function with
setTimeout, you
decrease the left position
by 1 instead of increasing
it, and in the if statement,
you compare the position
to the negative value of
menuWidth to ensure it
moves far enough out of
the window to be hidden.

• Use the style attribute of
the tag to do the following:
Place the layer at the top
left corner of the window,
enable absolute position-
ing, and, finally, set the z-
index to place the object
relative to other layers.

• Using the style attribute,
place the layer off to the
left of the browser window
by the same number of pix-
els as the width of the
layer, and set z-index to
0 to place the layer
beneath the previous layer.

448 Part 8

Task 217

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 448

targetLayer.left = newLeft;

if (newLeft > -menuWidth) {

setTimeout(“hideLayer(‘“+target+”’,”+Æ

(newLeft-1)+”)”,slideSpeed * 10);

}

}

4. In the body of the document, create a layer with a div tag to display
the link users will use to slide the menu into view:

<div style=”position: absolute; top: 0; left: 0; width: Æ

50; background: #020A33; z-index: 1;”>

</div>

5. In the layer, create a link to call the showLayer function when it is
clicked; start moving from the negative value of menuWidth:

<div style=”position: absolute; top: 0; left: 0; width: Æ

50; background: #020A33; z-index: 1;”>

<a style=”color: yellow; text-decoration: none;” Æ

href=”javascript:showLayer(‘myLayer’,-menuWidth);Æ

”>SHOW

</div>

6. Create a layer with a div tag to hold the menu itself. The layer
should be named myLayer:

<div id=”myLayer” style=”position: absolute; top: 0; Æ

left: -300; width: 300; background: #CCCCCC; color: Æ

black; z-index: 0;”>

</div>

7. In the layer, create your menu and include a link that uses a
javascript: URL to call the hideLayer function so the user can
hide the menu:

<div id=”myLayer” style=”position: absolute; top: 0; Æ

left: -300; width: 300; background: #CCCCCC; color: Æ

black; z-index: 0;”>

My Menu Goes Here. Place all links here.

<a style=”text-decoration: none;” href=”javascript:Æ

hideLayer(‘myLayer’,leftPosition);”>HIDE

</div>

8. Save the file and open it in a browser to use the menu.

Dynamic User Interaction 449

Task 217

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 449

Auto-Scrolling a Page

This task extends the ability to read a page’s scroll position outlined in Task 211
and provides a simple mechanism to automatically scroll a page from top to

bottom once it is loaded. This task relies on the principle that not only can the
scroll position be read, it can also be written.

In Internet Explorer, the scroll position is controlled through the document.
body.scrollTop property, while in Netscape, it is controlled by window.
pageYOffset.

The following steps set up a page that automatically scrolls from top to bottom
once loaded:

1. Create a new document and place a script block in the header of the
document:

<script language=”JavaScript”>

</script>

2. In the script, create a function named scrollPage that takes no
arguments. This function will move the scroll bar down 1 pixel, and
if the page is not yet at the bottom schedule, it will make another call
to itself to move the scroll bar further down:

function scrollPage() {

}

3. Start the scroll by creating the variables origScroll and
newScroll to hold values later in the function:

var origScroll = 0;

var newScroll = 0;

4. Test for the existence of document.all to determine whether or
not the browser is Internet Explorer:

if (document.all) {

5. If the browser is Internet Explorer, first store the current scroll posi-
tion in origScroll, then add 1 to document.body.scrollTop to
move the scroll bar down 1 pixel, and, finally, store the new scroll
position in newScroll:

if (document.all) {

origScroll = document.body.scrollTop;

document.body.scrollTop += 1;

newScroll = document.body.scrollTop;

}

notes
• The notion behind compar-

ing newScroll and
origScroll is that even
if the current scroll position
is increased by 1, if the
page is at the bottom, the
scroll position value will not
actually change.

• The setTimeout function
allows you to schedule a
function or method call for
future execution. The func-
tion takes two parameters:
the function or method call
to invoke and the number
of milliseconds to wait
before executing the
function call.

450 Part 8

Task 218

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 450

6. If the browser is Netscape, perform the same steps as for Internet
Explorer but use window.pageYOffset for the scroll position:

if (document.all) {

origScroll = document.body.scrollTop;

document.body.scrollTop += 1;

newScroll = document.body.scrollTop;

} else {

origScroll = window.pageYOffset;

window.pageYOffset+=1;

newScroll = window.pageYOffset;

}

7. Test if newScroll is bigger than origScroll. If it is, then the
scrolling hadn’t reached the bottom of the page and setTimeout is
used to schedule a new call to the scrollPage function:

if (newScroll > origScroll) {

setTimeout(“scrollPage()”,25);

}

8. In the body tag, use the onLoad event handler to call the
scrollPage function once the page loads:

<body onLoad=”scrollPage()”>

9. Place any text for the page in the body of the document and save the
page.

10. Load the page in your browser, and it automatically starts scrolling,
as in Figure 218-1.

Figure 218-1: Scrolling a document automatically.

Dynamic User Interaction 451

Task 218

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 451

09 542419 Ch08.qxd 11/19/03 10:21 AM Page 452

Part 9: Handling Events
Task 219: Responding to the onMouseOver Event

Task 220: Taking Action When the User Clicks on an Object

Task 221: Responding to Changes in a Form’s Text Field

Task 222: Responding to a Form Field Gaining Focus with onFocus

Task 223: Taking Action When a Form Field Loses Focus with onBlur

Task 224: Post-Processing Form Data with onSubmit

Task 225: Creating Code to Load When a Page Loads with onLoad

Task 226: Executing Code When a User Leaves a Page for Another

Task 227: Taking Action When a User Makes a Selection in a
Selection List

10 542419 Ch09.qxd 11/19/03 10:22 AM Page 453

Responding to the onMouseOver Event

JavaScript provides an event model that allows you to script actions to take in
response to events. These event handlers consist of JavaScript to execute only

when the event occurs. Most events are associated with user actions executed
with items in the visible HTML page, and most of these event handlers can be
specified through attributes of HTML tags.

One event that is commonly used in JavaScript is the onMouseOver event. This
event is triggered when the user moves the mouse pointer over an element in a
page such as a link or an image. It is common to use the onMouseOver event
with images.

The basic structure of an event handler looks like the following, illustrated with
an a tag:

link text

While you can string together multiple JavaScript commands, separating them
by commas, in the onMouseOver attributes, typically you will want to create a
JavaScript function elsewhere in your document and then call that function
from the onMouseOver attribute to keep your HTML code clean and simple
to follow.

The following steps display an alert dialog box when the user rolls over a link in
an HTML document:

1. Start a script block with the script tag:

<script language=”JavaScript”>

2. Start a function named doMouseOver to be the function you will call
when the user triggers the onMouseOver event; the function takes a
single parameter named message that will contain a string intended
to be displayed in the alert dialog box:

function doMouseOver(message) {

3. Use the alert method of the window object to display the message
in an alert dialog box:

window.alert(message);

4. End the function with a closing curly bracket:

}

note
• The onMouseOver event

is commonly used to pro-
duce rollover effects. When
the pointer moves over an
image, it changes (see
Step 6). See Task 61 for an
example of how to imple-
ment a rollover.

454 Part 9

Task 219

10 542419 Ch09.qxd 11/19/03 10:22 AM Page 454

tip
• The window.alert

method takes a single
argument that should be a
text string. It then displays
that text string in a dialog
box (see Step 6).

5. Close the script block with the closing script tag:

</script>

6. In the body of your HTML document, add an onMouseOver
attribute to the a tag you want to trigger the onMouseOver event.
Make the value of the attribute doMouseOver(‘You Rolled
Over the Link’), as in the following code. Figure 219-1 shows a
simple document containing the script block and a link with the
onMouseOver event specified. When the mouse moves over the link,
an alert dialog box like the one in Figure 219-2 is displayed.

<a href=”http://my.url/” onMouseOver=”doMouseOver(‘You Æ

Rolled Over the Link’)”>Roll Over this Link

Figure 219-1: Using the onMouseOver event for a link.

Figure 219-2: Displaying an alert dialog box when the user moves the mouse over
a link.

Handling Events 455

Task 219

cross-reference
• Refer to Task 25 for infor-

mation on how to create an
alert dialog box.

10 542419 Ch09.qxd 11/19/03 10:22 AM Page 455

Taking Action When the User
Clicks on an Object

Using the JavaScript event model, you can run JavaScript code when a user
clicks on an object. This is done using the onClick event handler. The

onClick event handler is commonly used with form buttons and links, but you
can apply it to other objects as well.

The onClick event handler is commonly used in forms to perform verification
of the form data before allowing the form to be submitted. This is done by using
the onClick attribute in the input tag for the button that submits the form.

Another popular use of this event handler is to perform an action when a link is
clicked. For instance, you might confirm the user wants to follow a link before
allowing he or she to follow it. If a link will take the user to a page that performs
some type of irreversible action such as deleting data, you could confirm the
user’s choice before allowing the user to proceed.

Used in a link, the onClick event handler looks like the following:

link text

The following example illustrates how you can confirm a user wants to follow a
link before actually allowing the user’s browser to follow the link. To do this, you
will use the window.confirm method, which looks like Figure 220-1 in Internet
Explorer and Figure 220-2 in Netscape.

Figure 220-1: A confirmation dialog box in Internet Explorer.

Figure 220-2: A confirmation dialog box in Netscape.

The following steps show how to use the window.confirm method to confirm
users want to follow a link:

1. Create a regular link like the following:

Click Here

note
• When you use the
onClick event in a link,
the JavaScript code for the
event handler must return
true if you want the user
to follow the link or false
if you want the user’s click
on the link to be canceled.
Since the window.
confirm method returns
true if the user answers
the prompt in the affirma-
tive and false otherwise,
you can simply return the
results of this method as
the return value for the
event handler (see Step 2).

456 Part 9

Task 220

10 542419 Ch09.qxd 11/19/03 10:22 AM Page 456

tip
• The window.confirm

method takes a single argu-
ment that should be a text
string. It then displays that
text string in a dialog box,
along with an OK and
Cancel button. It returns a
boolean value based on the
button the user clicks (see
Step 4).

2. Add the onClick attribute to the a tag:

Click Here

3. As the value for the onClick attribute first enter “return”:

Click Here

4. The value to return is the return value of the window.confirm
method. Therefore, the return command should be followed by the
window.confirm method:

<a href=”http://my.url/” onClick=”return window.

confirm(‘Do you want to follow the link?’)”>Click Here

5. When the user clicks on the link, the browser displays a confirmation
dialog box like Figure 220-3.

Figure 220-3: Displaying a confirmation dialog box when the user clicks on a link.

Handling Events 457

Task 220

cross-reference
• Refer to Task 26 for infor-

mation on how to create a
confirmation dialog box
using the window.
confirm method.

10 542419 Ch09.qxd 11/19/03 10:22 AM Page 457

Responding to Changes in a
Form’s Text Field

Using JavaScript’s event handlers combined with forms provides a powerful
but simple mechanism for creating dynamic forms that react to user input in

the client without having to be submitted to the server. These types of forms can
be used to create calculator applications, to prompt users for data, and for other
applications.

One of the event handlers that you can use to create dynamic forms that react to
user actions is the onChange event handler. When used with a text field, the
onChange event handler is invoked each time the text in the field changes and
then the cursor leaves the text field. Used with a text field, the onChange event
handler looks like this:

<input type=”text” name=”textField” onChange=”Some JavaScript”>

The following example illustrates a dynamic form in which a user enters a
number in one text field and the square of the number is automatically
displayed in a second text field once the user’s cursor leaves the first text field:

1. Start a script block with the script tag:

<script language=”JavaScript”>

2. Start a function named doSquare that takes a single parameter
containing a pointer to the field where a change occurred:

function doSquare(formField) {

3. Calculate the square of the number, and assign that value to a tempo-
rary variable named square:

var square = formField.value * formField.value;

4. Assign the value of the variable square to the form field named
squareValue:

formField.form.squareValue.value = square;

5. End the function with a closing curly bracket:

}

6. Close the script block with the closing script tag:

</script>

7. In the body of your HTML document, start a form; the form tag
doesn’t need to have a method or action attribute:

<form>

notes
• Each form field has an

object associated with it,
and in the doSquare
function, the formField
argument will contain such
an object (see introductory
paragraphs).

• When you are working with
a form field’s object for a
text field, keep in mind that
the value property con-
tains the current text in the
field (see Step 3).

• In event handlers inside
form fields, the this key-
word refers to the object
associated with the field
where the event occurred.
In this case, that allows you
to pass the object associ-
ated with the text field
to the doSquare function
(see Step 8).

• When you are working with
a form field’s object, keep
in mind that the form
property is the object for
the form containing the
field. In this case, that
means formField.form
points to the form contain-
ing the two text fields (see
Step 10).

458 Part 9

Task 221

10 542419 Ch09.qxd 11/19/03 10:22 AM Page 458

8. Create a text field named number that should have an onChange
event handler that calls the function doSquare and passes in a
pointer to this form field:

<input type=”text” name=”number” Æ

onChange=”doSquare(this)”>

9. Create a text field named squareValue that will be used to display
the square of the value entered by the user:

<input type=”text” name=”squareValue”>

10. Add any descriptive text to help the user understand the form, and
close the form with a closing form tag. The final page should look
like the following:

<script language=”JavaScript”>

function doSquare(formField) {

var square = formField.value * formField.value;

formField.form.squareValue.value = square;

}

</script>

<body>

<form>

<input type=”text” name=”number” Æ

onChange=”doSquare(this)”>

squared is

<input type=”text” name=”squareValue”>

</form>

</body>

A sample form with real values is illustrated in Figure 221-1.

Figure 221-1: Dynamically squaring a number entered by the user.

Handling Events 459

Task 221

cross-reference
• Task 81 discusses the
onChange event handler
and detecting change in
text fields in forms.

10 542419 Ch09.qxd 11/19/03 10:22 AM Page 459

Responding to a Form Field Gaining
Focus with onFocus

Using the onFocus event handler, you can trigger JavaScript code to execute
whenever a form field gains focus. Gaining focus means, for instance, that

the cursor is placed in a text field.

This event handler is commonly used in forms where the designer of the form
displays prompt text for a field inside the field; when the user clicks in the field,
the prompt text disappears and the user can begin typing his or her desired input.

The onFocus event handler can also be used to prevent editing of a text field
when the rest of the form is in a particular state. For instance, you could make
a form field uneditable except when a second text field contains an appropriate
value.

The following example shows how you can create a text field with a prompt in
the field that disappears once the user places the cursor in the text field:

1. Start your form with an appropriate form tag:

<form method=”post” action=”http://my.url/”>

2. Create a text field with a default initial value; this initial value should
be prompt text for the field. The form field can have any name; the
text field should look like Figure 222-1 when it is first displayed to
the user.

<input type=”text” name=”myField” value=”Enter Your Name”>

Figure 222-1: Displaying a prompt in a text field.

note
• When you are working with

a form field’s object for a
text field, keep in mind
that the value property
contains the current text in
the field (see Step 4).

460 Part 9

Task 222

10 542419 Ch09.qxd 11/19/03 10:22 AM Page 460

tip
• The value stored in text

fields are strings. When you
want to change the value of
a text field, you need to
assign a string value to the
text field’s value property.
In this case, you assign an
empty string to clear the
text field.

3. Add an onFocus attribute to the text field:

<input type=”text” name=”myField” value=”Enter Your Æ

Name” onFocus=””>

4. Set the value of the onFocus attribute to this.value = ‘’ in
order to clear the text field when the field gains focus; when the user
clicks in the field, the prompt text will disappear, as illustrated in
Figure 222-2.

<input type=”text” name=”myField” value=”Enter Your Æ

Name” onFocus=”this.value = ‘’”>

Figure 222-2: The text field clears when the user gives it cursor focus.

5. Add any additional fields and close the form with a closing form tag;
your final form might look something like this:

<form method=”post” action=”http://my.url/”>

<input type=”text” name=”myField” value=”Enter Your Æ

Name” onFocus=”this.value = ‘’”>

<input type=”submit” value=”Submit”>

</form>

Handling Events 461

Task 222

cross-reference
• Tasks 79 and 80 discuss

how to access the value
displayedin a form’s text
fields.

10 542419 Ch09.qxd 11/19/03 10:22 AM Page 461

Taking Action When a Form Field
Loses Focus with onBlur

Acorollary to onFocus is the onBlur event handler. This event handler is
invoked when a form field loses cursor focus. Using this event handler, you

could verify form field data right after a user enters it and prevent the user from
continuing if the data he or she entered is invalid. Similarly, you could extend the
example from Task 222, and when a user removes cursor focus from a form field,
you could redisplay the original prompt if the user hasn’t entered any text of his
or her own in the field.

The logic of this in-field prompt works like this:

• When first displayed, the text field contains default text that serves as
a prompt.

• When the user places the cursor in the text field, the default text
disappears.

• When the user removes the cursor from the text field, the default
text reappears if no text has been entered by the user.

The following example extends the example from Task 222 to provide this com-
plete logic:

1. Start your form with an appropriate form tag:

<form method=”post” action=”http://my.url/”>

2. Create a text field with a default initial value; this initial value should
be prompt text for the field. The form field can have any name:

<input type=”text” name=”myField” value=”Enter Your Name”>

3. Add an onFocus attribute to the text field:

<input type=”text” name=”myField” value=”Enter Your Æ

Name” onFocus=””>

4. Set the value of the onFocus attribute to this.value = ‘’ in
order to clear the text field when the field gains focus; when the user
clicks in the field, the prompt text will disappear:

<input type=”text” name=”myField” value=”Enter Your Æ

Name” onFocus=”this.value = ‘’”>

5. Add an onBlur attribute to the text field:

<input type=”text” name=”myField” value=”Enter Your Æ

Name” onFocus=”this.value = ‘’” onBlur=””>

notes
• When you are working with

a form field’s object for a
text field, keep in mind that
the value property con-
tains the current text in the
field (see Step 4).

• The logic of the if state-
ment works like this: If the
value in the field is the
empty string when focus is
removed, it means the user
didn’t enter any value in
the text field, so the prompt
is redisplayed in the field
(see Step 6).

462 Part 9

Task 223

10 542419 Ch09.qxd 11/19/03 10:22 AM Page 462

6. Set the value of the onBlur attribute to if (this.value == ‘’)
{ this.value = ‘Enter Your Name’ } in order to redisplay
the original prompt if the user leaves the field without entering any
text:

<input type=”text” name=”myField” value=”Enter Your Æ

Name” onFocus=”this.value = ‘’” onBlur=”if (this.value Æ

== ‘’) { this.value = ‘Enter Your name’ }”>

7. Add any additional fields and close the form with a closing form tag;
the final page should look like Listing 223-1. When the user clicks
outside the field without entering any text in the field, the prompt
will reappear, as shown in Figure 223-1.

<form method=”post” action=”http://my.url/”>

<input type=”text” name=”myField” value=”Enter Your Æ

Name” onFocus=”this.value = ‘’” onBlur=”if (this.value Æ

== ‘’) { this.value = ‘Enter Your name’ }”>

<input type=”submit” value=”Submit”>

</form>

Listing 223-1: In-field prompting.

Figure 223-1: The prompt returns if the field is still empty when the field loses focus.

Handling Events 463

Task 223

cross-references
• Task 222 provides an

example of the onFocus
event handler.

10 542419 Ch09.qxd 11/19/03 10:22 AM Page 463

Post-Processing Form Data with
onSubmit

Apowerful application of JavaScript event handlers is to process form data
before it is submitted to ensure the validity of the data. Using this, you can

ensure that required fields have been completed and that fields contain valid
types of data (for instance, if you are asking for a phone number in a text field,
it shouldn’t contain a generic string). By validating data in the client with
JavaScript, you can prompt the user to fix the problems before submitting
the form and thus eliminate an unnecessary transaction with the server, which
consumes bandwidth and server resources.

The simplest way to post-process form data is to trap form submission by using
the onSubmit event handler in the form tag. The JavaScript code executed
by the onSubmit event handler must return either a true or false value.

The following example illustrates a form with two text fields. The fields are
validated before form submission to ensure that the first is not empty and that
the second is not empty and contains a numeric value.

1. Start a script block with the script tag:

<script language=”JavaScript”>

2. Create a function named processForm that takes a single argument
called targetForm that contains the form object to process:

function processForm(targetForm) {

3. Set a temporary variable to track if the form validated successfully;
initially, it is assumed that validation will succeed:

var success = true;

4. Test the first form field named text1 to see if it is empty, and if it is,
alert the user and set success to false:

if (targetForm.text1.value == “”) {

success = false;

window.alert(“The first form field must not be empty”);

}

5. Test the second form field named text2 to see if it contains a num-
ber and if not alert the user and set success to false:

if (typeof(targetForm.text2.value) != “number”) {

success = false;

window.alert(“The second form field must contain a Æ

number”);

}

notes
• When you are using
onSubmit, if true is
returned by the JavaScript
run when the event is trig-
gered, then the form will be
submitted; otherwise, the
form will not be submitted.
This allows you to perform
form field validation and
return false if there is a
problem, which means the
user can continue editing
the form before trying
to submit it again.

• In event handlers inside the
form tag, the this key-
word refers to the object
associated with the form
itself. In this case, that
allows you to pass the
object associated with the
form to the processForm
function (see Step 9).

464 Part 9

Task 224

10 542419 Ch09.qxd 11/19/03 10:22 AM Page 464

6. Return the success value, and close the function and script block so
that the script block looks like this:

<script language=”JavaScript”>

function processForm(targetForm) {

var success = true;

if (targetForm.text1.value == “”) {

success = false;

window.alert(“The first form field must not be Æ

empty”);

}

if (typeof(targetForm.text2.value) != “number”) {

success = false;

window.alert(“The second form field must Æ

contain a number”);

}

return success;

}

</script>

7. In the body of your document, create the form containing the two
text fields:

<form method=”post” action=”http://my.url”>

First field:

<input type=”text” name=”text1”>

Second field:

<input type=”text” name=”text2”>

<input type=”submit” value=”submit”>

</form>

8. Add an onSubmit attribute to the form tag:

<form method=”post” action=”http://my.url” onSubmit=””>

9. Set the value of the onSubmit attribute to return
processForm(this):

<form method=”post” action=”http://my.url” Æ

onSubmit=”return processForm(this)”>

10. When the user submits the form, if it is not completed properly, the
user will see one or two error messages, as shown in Figure 224-1,
and the form will not be submitted to the server.

Figure 224-1: Incomplete forms will generate errors when submitted.

Handling Events 465

Task 224

10 542419 Ch09.qxd 11/19/03 10:22 AM Page 465

Creating Code to Load When a Page
Loads with onLoad

Often you need to execute some JavaScript code just after a page loads, but
you want to ensure the code doesn’t execute before the page has loaded com-

pletely. The simplest form of executing code at load time is to place it in a script
block but not inside a function, as shown in the following high-level overview of
an HTML page:

<head>

<script language=”JavaScript”>

Code to execute at load time

</script>

</head>

<body>

Body of the document

</body>

The problem here is that the JavaScript may execute before the body of the doc-
ument has finished loading. This can cause problems if your code refers to page
elements that have not been loaded when the code executes; in fact, the code will
throw errors in this case.

The solution to the problem lies in the use of the onLoad event handler. Used in
conjunction with the body tag, the onLoad event handler is executed once the
entire body of a document has been loaded. If you place the code to execute at
load time in a function, the preceding code is transformed into the following
using onLoad:

<head>

<script language=”JavaScript”>

function startFunction() {

Code to execute at load time

}

</script>

</head>

<body onLoad=”startFunction()”>

Body of the document

</body>

The following example uses onLoad to populate a form text field with the
current date at the time the page is loaded into the browser by the client:

1. Start a script block with the script tag:

<script language=”JavaScript”>

note
• The Date object offers a

number of methods to
access parts of the date.
The getFullYear,
getMonth, and getYear
methods return the year,
month, and day numerically
(see Step 4).

466 Part 9

Task 225

10 542419 Ch09.qxd 11/19/03 10:22 AM Page 466

tip
• When you create a new
Date object in the manner
shown in Step 3, the object
is initialized with the cur-
rent date and time.

2. Create a function named start that takes no arguments:

function start() {

3. Create a new date object, and assign it to the variable now:

var now = new Date();

4. Set the value of the date text field in the first form in the document
to the current date:

document.forms[0].date.value = now.getFullYear() + “/” Æ

+ now.getMonth() + “/” + now.getDay();

5. Close the function with a curly bracket:

}

6. In the body tag of your HTML document, add an onLoad attribute
with the value start():

<body onLoad=”start()”>

7. Create a form with a text field named date with no initial default value:

<form method=”post” action=”http://my.url”>

<input type=”text” name=”date”>

</form>

8. Load the page in your browser; the form field should contain the
current date, as illustrated in Figure 225-1.

Figure 225-1: When the document loads, the date is placed in the text field.

Handling Events 467

Task 225

10 542419 Ch09.qxd 11/19/03 10:22 AM Page 467

Executing Code When a User Leaves
a Page for Another

Just as it is possible to execute code when a page finishes loading, it is also
possible to specify JavaScript code to execute when the page unloads. Page

unloading occurs when the user enters a new URL to visit or clicks on a link to
another page.

You specify this code using the onUnload event handler in the body tag of your
document. The most common use of this event handler is perhaps the most
pernicious one: pop-up ads that don’t go away. Some sites will pop up an adver-
tisement only when you leave the page and then will keep popping up a new ad
for each window that you close.

Still, there are valid reasons why you might want to use the onUnload event
handler:

• Keeping a user on a page of your application until he or she com-
pletes an important or required task

• Displaying a farewell message

• Performing some cleanup tasks, such as removing cookies that you
want to eliminate the instant a user leaves your site

The following example uses onUnload to display a farewell message to the user
in a simple dialog box:

1. Create your HTML document as you normally would. A simple
HTML document might look like the following:

<html>

<head>

<title>Simple HTML</title>

</head>

<body>

Hello World

</body>

</html>

2. Add the onUnload attribute to the body tag:

<body onUnload=””>

3. Enter window.alert followed by an open bracket and a single quote
as the first part of the attribute’s value:

<body onUnload=”window.alert(‘“>

note
• Pop-up ads have become

such a problem on the
Internet that some popular
PC security packages will
automatically prevent the
pop-ups from occurring.

468 Part 9

Task 226

10 542419 Ch09.qxd 11/19/03 10:22 AM Page 468

tip
• The window.alert

method takes a single
argument: a string. It then
displays that string as the
content of a dialog box. The
dialog box will contain a
single button the user can
use to close the dialog box
(see Step 3).

4. Enter your farewell message; in this case the message is “Goodbye
World”:

<body onUnload=”window.alert(‘Goodbye World

5. Finish the function call with a single quote and a closing bracket:

<body onUnload=”window.alert(‘Goodbye World’)”>

6. Open this page in your browser, and you see a page like Figure
226-1. Proceed to open another URL; the browser displays the
Goodbye World message in a dialog box, as in Figure 226-2.

Figure 226-1: The initial page.

Figure 226-2: Using the onUnload event handler to display a farewell message.

Handling Events 469

Task 226

cross-reference
• Refer to Task 25 for infor-

mation on how to create an
alert dialog box.

10 542419 Ch09.qxd 11/19/03 10:22 AM Page 469

Taking Action When a User Makes a
Selection in a Selection List

Acommon feature of many dynamic forms provided in Web applications today
is for a user’s selections in one selection list of a form to determine the values

of other form fields or even to determine the available options in another selec-
tion list. To do this, you need to be able to invoke specific JavaScript code when-
ever the selected item in a list changes. This is done with the onChange event
handler, which is specified in the select tag.

The following example creates a simple form in which the value of a user’s selec-
tion in a selection list is displayed in a text field sitting next to the selection list:

1. Start your form with an appropriate form tag:

<form method=”post” action=”http://my.url/”>

2. Start your selection list with a select tag, and name the field
myList:

<select name=”myList”>

3. Provide entries for the list as a series of option tags; make sure the
displayed text and the value of the entry are different:

<option value=”1”>One</option>

<option value=”2”>Two</option>

<option value=”3”>Three</option>

4. Close the select list with a closing select tag; this produces a selec-
tion list like the one in Figure 227-1:

</select>

Figure 227-1: Creating a selection list.

note
• In event handlers inside the
form tag, the this key-
word refers to the object
associated with the form
itself. The object for the
selection list has a form
property that refers to the
form object for the form
containing the selection list
(see Step 8).

470 Part 9

Task 227

10 542419 Ch09.qxd 11/19/03 10:22 AM Page 470

5. Create an empty text field named myText:

<input type=”text” name=”myText”>

6. Close the form with a closing form tag so that the form looks like
this:

<form method=”post” action=”http://my.url/”>

<select name=”myList”>

<option value=”1”>One</option>

<option value=”2”>Two</option>

<option value=”3”>Three</option>

</select>

<input type=”text” name=”myText”>

</form>

7. Add the onChange attribute to the select tag in the form:

<select name=”myList” onChange=””>

8. Assign the following value to the onChange tag this.form.
myText.value = this.value to assign the value of the
selected item to the myText text field when a new item is selected:

<select name=”myList” onChange=”this.form.myText.Æ

value = this.value”>

9. Open the page in a browser, and select an item in the list; its value is
displayed in the text field as in Figure 227-2.

Figure 227-2: Responding to selections in the list with onSelect.

Handling Events 471

Task 227

cross-reference
• The techniques for

working with selection
lists in forms are outlined
in Tasks 82 to 86.

10 542419 Ch09.qxd 11/19/03 10:22 AM Page 471

10 542419 Ch09.qxd 11/19/03 10:22 AM Page 472

Part 10:Bookmarklets
Task 228: Downloading and Installing Bookmarklets

Task 229: Checking Page Freshness with a Bookmarklet

Task 230: Checking for E-mail Links with a Bookmarklet

Task 231: E-mailing Selected Text with a Bookmarklet in
Internet Explorer

Task 232: E-mailing Selected Text with a Bookmarklet in Netscape

Task 233: Displaying Images from a Page with a Bookmarklet

Task 234: Changing Background Color with a Bookmarklet

Task 235: Removing Background Images with a Bookmarklet

Task 236: Hiding Images with a Bookmarklet

Task 237: Hiding Banners with a Bookmarklet

Task 238: Opening All Links in a New Window with a Bookmarklet

Task 239: Changing Page Fonts with a Bookmarklet

Task 240: Highlighting Page Links with a Bookmarklet

Task 241: Checking the Current Date and Time with a Bookmarklet

Task 242: Checking Your IP Address with a Bookmarklet

Task 243: Searching Yahoo! with a Bookmarklet in Internet Explorer

Task 244: Searching Yahoo! with a Bookmarklet in Netscape

11 542419 Ch10.qxd 11/19/03 10:22 AM Page 473

Downloading and Installing
Bookmarklets

Bookmarklets are short, single-line JavaScript scripts presented as URLs in the
form javascript:JavaScript code. They can be added as a bookmark

or favorite to your browser and then invoked by being selected from the book-
marks or favorites list of the browser.

There are numerous sources of bookmarklets on the Web. These sites present
bookmarklets as links, and you can install them in your browser by right-clicking
on the link and selecting Add to Favorites (Internet Explorer) or Bookmark This
Link (Netscape) from the pop-up menu.

If you want to create your own bookmarklets, as is done throughout this part of
the book, then you need to know how to easily install your own bookmarklets.

For Internet Explorer, you can use the following steps:

1. Create your bookmarklet in your preferred editor.

2. Copy the bookmarklet to the clipboard.

3. In your browser, select Favorites ➪ Add to Favorites from the menu.

4. In the Add Favorite dialog box (Figure 228-1), give the favorite a
name and click on the OK button.

Figure 228-1: The Add Favorite dialog box.

5. In the Favorites menu, right-click on the new favorite you created,
and select Properties from the context menu that appears.

6. In the Properties dialog box (Figure 228-2), paste the bookmarklet
into the URL field and click on the OK button.

474 Part 10

Task 228

11 542419 Ch10.qxd 11/19/03 10:22 AM Page 474

tip
There are plenty of Web sites

Figure 228-2: Properties for a favorite in Internet Explorer.

For Netscape 6 and above, use the following steps:

1. Create your bookmarklet in your preferred editor.

2. Copy the bookmarklet to the clipboard.

3. In your browser, select Bookmarks ➪ Manage Bookmarks from the
menu. Netscape displays the bookmarks management window.

4. Select File ➪ New ➪ Bookmark from the menu. Netscape displays
the Add Bookmark dialog box, as illustrated in Figure 228-3.

Figure 228-3: The Add Bookmark dialog box.

Enter a name for the bookmark in the Name field, and then paste the
bookmarklet in the Location field and click on the OK button.

Bookmarklets 475

Task 228

tips
• There are plenty of Web

sites that offer book-
marklets for you to use.
Check out the following
three as good starting
points: www.
bookmarklets.com,
www.squarefree.com/
bookmarklets, and
www.sam-i-am.com/
work/bookmarklets/
dev_debugging.html.

• There is another approach
to installing your own book-
marklets in Internet
Explorer or Netscape. Just
create an HTML file and
create a link with the book-
marklet code as a
javasccript: URL in
the link. Then you can open
the HTML file, right-click on
the link, and install the
bookmarklet as a favorite
or bookmark like you would
for any other link.

• Bookmarklets can also
work in other browsers than
Internet Explorer and
Netscape. Browsers that
support JavaScript to a
greater or lesser degree
should be able to run some
of the bookmarklets pre-
sented in this part. The
methods for creating a
bookmarklet will vary from
browser to browser; if you
use another browser, con-
sult its documentation.

11 542419 Ch10.qxd 11/19/03 10:22 AM Page 475

Checking Page Freshness
with a Bookmarklet

Using a bookmarklet, you can check the date of last modification of a page
based on information the server provided to the browser when the page was

requested by the user. This task depends on the document.lastModified
property, which indicates the date and time provided by the server as the last
modification date of a document.

To illustrate this property, consider the following code, which outputs the modi-
fication date in an HTML document:

<body>

Last Modified:

<script language=”JavaScript”>

document.write(document.lastModified);

</script>

</body>

This results in output like Figure 229-1 in Internet Explorer and Figure 229-2 in
Netscape.

Figure 229-1: Displaying the last modification date in a document in Internet Explorer.

Figure 229-2: Displaying the last modification date in a document in Netscape.

note
• To make developing book-

marklets easy, it is best to
start by editing the code in
your regular code editor
and then copy and paste
the bookmarklet into your
favorites or bookmarks list
at the end.

476 Part 10

Task 229

11 542419 Ch10.qxd 11/19/03 10:22 AM Page 476

The following steps create the bookmarklet:

1. Open the text editor you normally use for writing JavaScript.

2. Use the window.alert method to display the last modification date
in a dialog box:

window.alert(document.lastModified);

3. Add javascript: to the start of the command to create a single-
line URL:

javascript:window.alert(document.lastModified);

4. Create a bookmark or favorite using this code as the URL.

5. To test the bookmarklet, select the new bookmark or favorite you
created, and a dialog box should be displayed containing the last
modification date and time, as illustrated in Figure 229-3.

Figure 229-3: Displaying the last modification date in a dialog box.

Bookmarklets 477

Task 229

tip
• Notice how Internet

Explorer displays the modi-
fication date using different
formats.

cross-references
• Part 2 discusses the
document object and the
use of the
document.write
method for outputting to
the browser window.

• Task 115 discusses how to
use the window.alert
method to display a
dialog box.

11 542419 Ch10.qxd 11/19/03 10:22 AM Page 477

Checking for E-mail Links
with a Bookmarklet

This task outlines how to search a page for e-mail links and then display those
addresses in a dialog box—all with a bookmarklet. The principle of this is

simple. The document.links array provides access to all links in a document.
E-mail links will appear in this list and take the form mailto:e-mail
address. Based on this, any check to e-mail links involves looping through the
document.links array, checking the protocol of the link, and then, if necessary,
outputting the address of the link if the protocol of the link is mailto:.

This task uses this logic to build a bookmarklet that collects all such addresses in
a list and then displays the list in a dialog box.

1. Open the text editor you normally use for writing JavaScript.

2. Create an empty string variable named emailList that will hold a
list of all addresses found by the end of the script:

emailList = “”;

3. Start a for loop. Loop from 0 up to the length of the
document.links array:

for (i = 0; i < document.links.length; i ++) {

4. Use an if statement to check if the current entry in the document.
links array uses the mailto: protocol:

if (document.links[i].protocol == “mailto:”) {

5. If the link is an e-mail address, extract the link from the link and save
it in a temporary variable called thisEmail:

thisEmail = document.links[i].toString();

6. Remove the mailto: part of the string by using the substring
method to remove the first 7 characters of the link, and store the
result back into thisEmail:

thisEmail = thisEmail.substring(7,thisEmail.length);

7. Append the e-mail address to the end of the emailList string, and
add a new-line character after the e-mail address:

emailList += thisEmail + “\n”;

notes
• Each link in the
document.links
array is an object and
not a string. Using the
toString method of the
object returns the URL as a
string.

• The substring method
of the String object
returns a portion of the
string. The two arguments
are the first character index
and the last character
index of the portion of the
string to be returned by the
substring method.

• The new-line character is
one of several special char-
acters that are written in
JavaScript using what is
known as “escaping.” With
escaping, the backslash
character indicates that the
character following the
backslash should be inter-
preted and not just used
normally. In this case, \n
implies a new-line charac-
ter instead of the letter n.

478 Part 10

Task 230

11 542419 Ch10.qxd 11/19/03 10:22 AM Page 478

8. Close the if and for blocks, and then use the window.alert
method to display the value of the emailList string so that the
script looks like this:

emailList = “”;

for (i = 0; i < document.links.length; i ++) {

if (document.links[i].protocol == “mailto:”) {

thisEmail = document.links[i].toString();

thisEmail = thisEmail.substring(7,thisEmail.length);

emailList += thisEmail + “\n”;

}

}

window.alert(emailList);

9. Remove the line separations and blank spaces from the script, and
add the javascript: protocol to the start of the script, so that the
result is a one-line URL with all extraneous spaces removed:

javascript:emailList=””;for(i=0;i<document.links.length;Æ

i++){if(document.links[i].protocol==”mailto:”){thisÆ

Email=document.links[i].toString();thisEmail=thisEmail.Æ

substring(7,thisEmail.length);emailList+=thisEmail+”\n”;Æ

}}window.alert(emailList);

10. Create a bookmark or favorite using this code as the URL. To test
the bookmarklet, open a Web page in your browser. For instance,
open the Yahoo! home page. Select the new bookmark or favorite
you created, and a dialog box should be displayed containing the
e-mail addresses from the page, as illustrated in Figure 230-1.

Figure 230-1: Displaying the e-mail addresses from the Yahoo! home page
in a dialog box.

Bookmarklets 479

Task 230

tip
• You can identify the proto-

col of a link in the links
array with the protocol
property of the link. For
instance, the protocol of
the first link in a document
is document.links[0].
protocol. A mailto:
link will have a protocol
value of mailto.

cross-reference
• Task 228 discusses how to

create a bookmark or
favorite for a JavaScript
bookmarklet.

11 542419 Ch10.qxd 11/19/03 10:22 AM Page 479

E-mailing Selected Text with a
Bookmarklet in Internet Explorer

A common task performed by users on the Web is to e-mail part of a page to
someone. The usual approach is to select the text, copy it, paste it into an

e-mail, and send the e-mail.

Using JavaScript in Internet Explorer, you can build a bookmarklet that e-mails
text the user sent in the page by invoking the user’s default e-mail client and pre-
populating the e-mail with the selected text.

This bookmarklet relies on the following:

• Internet Explorer provides the document.selection object to reflect
the text currently selected in a Web page.

• The createRange method of the document.selection object returns
a pointer to the selected range that has a text property containing
the selected text.

• Using a mailto: link triggers an outgoing message with the user’s
default mail client. The body of the message can be set with a URL
of the form mailto:?BODY=body of the document.

The following steps show how to create this bookmarklet:

1. Open the text editor you normally use for writing JavaScript.

2. Save the currently selected text in the variable selectedText:

selectedText = document.selection.createRange().text;

3. Use the escape function to convert the selected text to URL-
encoded format, and save the result back into selectedText:

selectedText = escape(selectedText);

4. Set location.href to an appropriate mailto: URL, including the
selected text as the body of the message, so that the final script looks
like this:

selectedText = document.selection.createRange().text;

selectedText = escape(selectedText);

location.href=’mailto:?BODY=’ + selectedText;

5. Enclose the last command in a void statement; otherwise, the
browser will try to display the URL string after assigning it to the
location.href property, and this will cause an empty page with
the URL displayed to replace the current page:

selectedText = document.selection.createRange().text;

selectedText = escape(selectedText);

void(location.href=’mailto:?BODY=’ + selectedText);

notes
• This bookmarklet only

works in Internet Explorer.

• The location.href
property reflects the URL of
the current page. When a
new URL is assigned to it,
the new URL will be dis-
played by the browser.

480 Part 10

Task 231

11 542419 Ch10.qxd 11/19/03 10:22 AM Page 480

6. Remove the line separations and blank spaces from the script, and
add the javascript: protocol to the start of the script, so that the
result is a one-line URL with all extraneous spaces removed:

javascript:selectedText=document.selection.createRange().Æ

text;selectedText=escape(selectedText);void(location.Æ

href=’mailto:?BODY=’+selectedText);

7. Create a favorite using this code as the URL. To test the book-
marklet, open a Web page in your browser and select some text, as
illustrated in Figure 231-1. Select the new favorite you created, and
your e-mail client should open with the body of the message set to
your selected text, as illustrated in Figure 231-2.

Figure 231-1: A Web page with text selected.

Figure 231-2: E-mailing the selected text.

Bookmarklets 481

Task 231

tip
• To make developing book-

marklets easy, it is best to
start by editing the code in
your regular code editor
and then copy and paste
the bookmarklet into your
favorites or bookmarks list
at the end.

11 542419 Ch10.qxd 11/19/03 10:22 AM Page 481

E-mailing Selected Text with
a Bookmarklet in Netscape

A common task performed by users on the Web is to e-mail part of a page to
someone. The usual approach is to select the text, copy it, paste it into an

e-mail, and send the e-mail.

Using JavaScript in Netscape, you can build a bookmarklet that e-mails text the
user sent in the page by invoking the user’s default e-mail client and prepopulat-
ing the e-mail with the selected text.

This bookmarklet relies on the following:

• Netscape provides the document.getSelection method, which
returns the selected text.

• Using a mailto: link triggers an outgoing message with the user’s
default mail client. The body of the message can be set with a URL
of the form mailto:?BODY=body of the document.

The following steps show how to create this bookmarklet:

1. Open the text editor you normally use for writing JavaScript.

2. Save the currently selected text in the variable selectedText:

selectedText = document.getSelection();

3. Use the escape function to convert the selected text to URL-
encoded format and save the result back into selectedText:

selectedText = escape(selectedText);

4. Set location.href to an appropriate mailto: URL, including the
selected text as the body of the message, so that the final script looks
like this:

selectedText = document.getSelection();

selectedText = escape(selectedText);

location.href=’mailto:?BODY=’ + selectedText;

5. Enclose the last command in a void statement; otherwise, the
browser will try to display the URL string after assigning it to the
location.href property, and this will cause an empty page with
the URL displayed to replace the current page:

selectedText = document.getSelection();

selectedText = escape(selectedText);

void(location.href=’mailto:?BODY=’ + selectedText);

notes
• This bookmarklet only

works in Netscape.

• The location.href
property reflects the URL of
the current page. When a
new URL is assigned to it,
the new URL will be dis-
played by the browser.

482 Part 10

Task 232

11 542419 Ch10.qxd 11/19/03 10:22 AM Page 482

6. Remove the line separations and blank spaces from the script, and
add the javascript: protocol to the start of the script, so that the
result is a one-line URL with all extraneous spaces removed:

javascript:selectedText=document.getSelection();Æ

selectedText=escape(selectedText);void(location.href=Æ

’mailto:?BODY=’+selectedText);

7. Create a bookmark using this code as the URL. To test the book-
marklet, open a Web page in your browser and select some text, as
illustrated in Figure 232-1. Select the new bookmark you created,
and your e-mail client should open with the body of the message set
to your selected text, as illustrated in Figure 232-2.

Figure 232-1: A Web page with text selected.

Figure 232-2: E-mailing the selected text.

Bookmarklets 483

Task 232

tip
• To make developing book-

marklets easy, it is best to
start by editing the code in
your regular code editor
and then copy and paste
the bookmarklet into your
favorites or bookmarks list
at the end.

11 542419 Ch10.qxd 11/19/03 10:22 AM Page 483

Displaying Images from a Page
with a Bookmarklet

T his task shows how to build a bookmarklet to display all images included in a
Web page in the center of the browser window in a column. This is useful for

testing and debugging when you are building Web pages yourself.

This task relies on the document.images array, which contains an Image
object for each image in a page. These objects have a src property that points
to the source of the image.

The following steps show how to build this bookmarklet:

1. Open the text editor you normally use for writing JavaScript.

2. Create a variable named imageList, and assign it the empty string:

imageList = ‘’;

3. Use a for loop to loop through the document.images array:

for (i = 0; i < document.images.length; i ++) {

4. For each image, use the source of the image to build a new img tag,
and add it to the imageList string:

imageList += ‘<img src=’ + document.images[i].src Æ

+’>
’;

5. Close the for loop:

}

6. Use the document.write method to output the image list centered
in the page:

document.write(‘<center>’ + imageList + ‘</center>’);

7. Use the document.close method to close the document stream:

document.close();

8. Wrap the last command in a void statement so that the final script
looks like this:

imageList = ‘’;

for (i = 0; i < document.images.length; i ++) {

imageList += ‘<img src=’ + document.images[i].src Æ

+’>
’;

}

document.write(‘<center>’ + imageList + ‘</center>’);

void(document.close());

9. Remove the line separations and blank spaces from the script, and
add the javascript: protocol to the start of the script, so that the
result is a one-line URL with all extraneous spaces removed:

484 Part 10

Task 233

11 542419 Ch10.qxd 11/19/03 10:22 AM Page 484

javascript:imageList=’’;for(i=0;i<document.images.length;Æ

i++){imageList+=’Æ

’;}document.write(‘<center>’+imageList+’</center>’);Æ

void(document.close

10. Create a bookmark or favorite using this code as the URL. To test
the bookmarklet, open a Web page in your browser. For instance,
Figure 233-1 shows the Juxta Publishing home page displayed in a
browser. Select the new bookmark or favorite you created, and the
images should be displayed as in Figure 233-2.

Figure 233-1: The Juxta Publishing home page.

Figure 233-2: The images from the Juxta Publishing home page.

Bookmarklets 485

Task 233

tips
• To make developing book-

marklets easy, it is best to
start by editing the code in
your regular code editor
and then copy and paste
the bookmarklet into your
favorites or bookmarks list
at the end.

• The void function is used
to prevent any value being
returned by the code. In the
case of your bookmarklets,
any values returned by the
last function or method call
in the URL can cause unex-
pected behavior in the
browser. You don’t really
care about the value
returned by document.
close, so you hide
that value with the void
function.

cross-references
• Part 3 of the book dis-

cusses how to work with
images, including using the
document.images array
and image objects.

• Task 228 discusses how to
create a bookmark or
favorite for a JavaScript
bookmarklet.

11 542419 Ch10.qxd 11/19/03 10:22 AM Page 485

Changing Background Color
with a Bookmarklet

This task shows how to create a bookmarklet that allows users to replace any
background color or image in a page with the background color of their

choice. This is particularly useful when viewing pages where the author has made
a poor choice of design and made the text of the page particularly hard to read.

The technique used in this bookmarklet relies on several principles:

• The document.body.background property indicates the image used
for the background. When set to the empty string, any existing back-
ground image is removed from the page.

• The document.bgColor property indicates the background color of
the page.

The following steps outline the creation of a bookmarklet to change the
background color of a page:

1. Open the text editor you normally use for writing JavaScript.

2. Check to make sure that the document doesn’t use frames by testing
the length of the frames array; if the length is less than 1, then there
are no frames:

if (frames.length < 1) {

3. If the page has no frames, remove any background images by setting
document.body.background to an empty string:

document.body.background = ‘’;

4. Use the window.prompt method to ask the user to enter a back-
ground color, and save the result returned in document.bgColor:

document.bgColor = window.prompt(‘Enter a background Æ

color:’);

5. Place the last line inside a void statement; otherwise, Netscape
browsers will actually try to display the value entered by the user in
the dialog box after applying it to the page, and this will cause the
page in question to disappear:

void(document.bgColor = window.prompt(‘Enter a Æ

background color:’));

6. Close the if block so that the script looks like this:

if (frames.length < 1) {

document.body.background = ‘’;

document.bgColor = window.prompt(‘Enter a Æ

background color:’);

}

notes
• This bookmarklet only

works with pages with no
frames.

• When entering colors, you
should enter them as stan-
dard hexadecimal triplets.
This is a six-digit hexadeci-
mal number where the first
two digits represent red,
the next two represent
green, and the final two
represent blue. You can
find examples of these
triple codes at
www.geocities.com/
Paris/2734/.

486 Part 10

Task 234

11 542419 Ch10.qxd 11/19/03 10:22 AM Page 486

7. Remove the line separations and blank spaces from the script, and
add the javascript: protocol to the start of the script, so that the
result is a one-line URL with all extraneous spaces removed:

javascript:if(frames.length<1){document.body.backgroundÆ

=’’;void(document.bgColor=window.prompt(‘Enter a Æ

background color:’));}

8. Create a bookmark or favorite using this code as the URL. To test
the bookmarklet, open a Web page in your browser. For instance,
you could open the Juxta Publishing home page at www.juxta.com.
Select the new bookmark or favorite you created, and enter a back-
ground color in the dialog box , as shown in Figure 234-1. The
page should be updated to use the new background color, as in
Figure 234-2.

Figure 234-1: A dialog box for entering a color.

Figure 234-2: The home page with a new background color (in grayscale).

Bookmarklets 487

Task 234

tip
• To make developing book-

marklets easy, it is best to
start by editing the code in
your regular code editor
and then copy and paste
the bookmarklet into your
favorites or bookmarks list
at the end.

cross-reference
• Task 117 discusses how to

use the window.prompt
method to prompt the
user for information in a
dialog box.

11 542419 Ch10.qxd 11/19/03 10:22 AM Page 487

Removing Background Images
with a Bookmarklet

This task illustrates a simple technique for removing background images from
the current document the user is viewing by using a bookmarklet. This is a

useful function for times when a page author has placed text over a distracting
background image, making the text hard to read.

The actual work is achieved by simply setting the document.body.background
property to an empty string. This property indicates the background image of a
page, and when set to the empty string, any existing background image is removed
from the page. You should set the value of this property to the URL of an image
as in the following examples:

document.body.background = “myImage.gif”;

document.body.background = “../images/anotherImage.gif”;

document.body.background = “http://some.domain/remoteImage”;

The following steps show how to create this bookmarklet:

1. Open the text editor you normally use for writing JavaScript.

2. Assign an empty string to the document.body.background
property:

document.body.background = ‘’;

3. Enclose the last command in a void statement; otherwise, the
browser will try to display the empty string after assigning it to the
document.body.background property, and this will cause an
empty page to replace the current page:

void(document.body.background = ‘’);

4. Remove blank spaces from the script, and add the javascript:
protocol to the start of the script, so that the result is a one-line URL
with all extraneous spaces removed:

javascript:void(document.body.background=’’);

5. Create a bookmark or favorite using this code as the URL. To test
the bookmarklet, open a Web page containing a background image
in your browser, as illustrated in Figure 235-1. Select the new book-
mark or favorite you created and the background image disappears,
as illustrated in Figure 235-2.

note
• When assigning a URL for a

background image to the
background property, you
can use either an absolute
or relative URL.

488 Part 10

Task 235

11 542419 Ch10.qxd 11/19/03 10:22 AM Page 488

Figure 235-1: A home page with a background image.

Figure 235-2: The page after the background image has been removed.

Bookmarklets 489

Task 235

tip
• To make developing book-

marklets easy, it is best to
start by editing the code in
your regular code editor
and then copy and paste
the bookmarklet into your
favorites or bookmarks list
at the end.

11 542419 Ch10.qxd 11/19/03 10:22 AM Page 489

Hiding Images with a Bookmarklet

T his task shows how you can hide images in a page using a bookmarklet. This
can be useful when the images on a page are cluttering the display and you

need to remove them for clarity, or in testing your own pages to see where
exactly images are appearing and where they aren’t.

This example leverages the fact that the document.image array contains an
object for each image in the current page. Each Image object has a style prop-
erty that points to the style object containing the style settings of that image.
One the properties of this style object is the visibility property, which,
when set to hidden, causes the object in question to be rendered as invisible.

The result is that a simple loop through the document.images array can be
used to hide all images in a document, as in the following steps:

1. Open the text editor you normally use for writing JavaScript.

2. Use a for loop to loop from 0 to the length of the
document.images array:

for (i = 0; i < document.images.length; i ++) {

3. In the loop, assign ‘hidden’ to the visibility property of the
style object for the given image:

document.images[i].style.visibility = ‘hidden’;

4. Enclose the last command in a void statement; otherwise, the
browser will try to display the ‘hidden’ string after assigning it to
the visibility property, and this will cause an empty page with
the text “hidden” to replace the current page:

void(document.images[i].style.visibility = ‘hidden’);

5. Close the for loop so that the final script looks like this:

for (i = 0; i < document.images.length; i ++) {

void(document.images[i].style.visibility = ‘hidden’);

}

6. Remove the line separations and blank spaces from the script, and
add the javascript: protocol to the start of the script, so that the
result is a one-line URL with all extraneous spaces removed:

javacript:for(i=0;i<document.images.length;i++)Æ

{void(document.images[i].style.visibility=’hidden’s

note
• A for loop allows you to

count. That is, the code
inside the loop is executed
once for each iteration of
the loop, and in each itera-
tion of the loop, a counter
variable’s value is adjusted.
In this case, the counter
variable is i and is initially
set to a value of zero. Each
iteration through the loop i
is increased by 1 until it
reaches the same value as
the total number of images
in the document.

490 Part 10

Task 236

11 542419 Ch10.qxd 11/19/03 10:22 AM Page 490

7. Create a bookmark or favorite using this code as the URL. To test
the bookmarklet, open a Web page containing images in your
browser, as illustrated in Figure 236-1. Select the new bookmark or
favorite you created and the images disappears, as illustrated in
Figure 236-2.

Figure 236-1: A Web page with images.

Figure 236-2: The same page with images hidden.

Bookmarklets 491

Task 236

tip
• To make developing book-

marklets easy, it is best to
start by editing the code in
your regular code editor
and then copy and paste
the bookmarklet into your
favorites or bookmarks list
at the end.

cross-references
• Part 3 of the book

discusses how to work with
images, including using the
document.images array
and image objects

• Part 7 of the book dis-
cusses how to work with
style sheets and the
style object.

11 542419 Ch10.qxd 11/19/03 10:22 AM Page 491

Hiding Banners with a Bookmarklet

This task is a variation of Task 236. Here, instead of hiding all images, only
images likely to be banner advertisements will be hidden. This is a nice tool

if you like to avoid banner images.

The principle behind this task is that banner advertisements usually are the same
size: 468 by 60 pixels. This is because this is the size dictated by most major
advertising networks and Web sites that sell banner advertisement placement.

This means the script developed in Task 236 needs to be extended to check the
height and width of the image before proceeding to hide it. This is easy to do,
because each Image object in the document.images array has height and width
properties that can be checked to determine the size of an image.

The following steps show how to create a bookmarklet to hide banner
advertisements:

1. Open the text editor you normally use for writing JavaScript.

2. Use a for loop to loop from 0 to the length of the
document.images array:

for (i = 0; i < document.images.length; i ++) {

3. In the loop, check each image’s size to see if it is 468 by 60 pixels by
using an if statement:

if (document.images[i].width == 468 && Æ

document.images[i].height == 60) {

4. If the image is 468 by 60 pixels, assign ‘hidden’ to the visibility
property of the style object for the given image:

document.images[i].style.visibility = ‘hidden’;

5. Enclose the last command in a void statement; otherwise, the
browser will try to display the ‘hidden’ string after assigning it to
the visibility property, and this will cause an empty page with
the text “hidden” to replace the current page:

void(document.images[i].style.visibility = ‘hidden’);

6. Close the if statement and for loop so that the final script looks like:

for (i = 0; i < document.images.length; i ++) {

if (document.images[i].width == 468 && Æ

document.images[i].height == 60) {

void(document.images[i].style.visibility = Æ

‘hidden’);

}

}

7. Remove the line separations and blank spaces from the script, and
add the javascript: protocol to the start of the script, so that the
result is a one-line URL with all extraneous spaces removed:

note
• This script isn’t a foolproof

way to remove banner
advertisements for several
reasons: Today, not all ban-
ner advertisements are
images and not all adhere
to the 468 by 60 pixel size.
Some banners today are
implemented in Flash and
won’t be accessible in the
document.images array
and other advertisements
don’t use the simple hori-
zontal shape of traditional
banners; for instance,
many advertisements
today are vertical rather
than horizontal.

492 Part 10

Task 237

11 542419 Ch10.qxd 11/19/03 10:22 AM Page 492

javascript:for(i=0;i<document.images.length;i++){ifÆ

(document.images[i].width==468&&document.images[i].heightÆ

==60){void(document.images[i].style.visibility=’hidden’

8. Create a bookmark or favorite using this code as the URL. To test
the bookmarklet, open a Web page containing banner advertisements
in your browser, as illustrated in Figure 237-1. Select the new book-
mark or favorite you created and the banners will disappear, as illus-
trated in Figure 237-2.

Figure 237-1: A Web page with banner advertisements.

Figure 237-2: The same page with banner advertisements hidden.

Bookmarklets 493

Task 237

tip
• To make developing book-

marklets easy, it is best to
start by editing the code in
your regular code editor
and then copy and paste
the bookmarklet into your
favorites or bookmarks list
at the end.

cross-reference
• Part 7 of the book dis-

cusses how to work with
style sheets and the
style object. The visibility
of objects is discussed
specifically in Task 192

11 542419 Ch10.qxd 11/19/03 10:22 AM Page 493

Opening All Links in a New Window
with a Bookmarklet

T his task shows how to build a bookmarklet that adjusts the links in a page
so that when you click on a link, every link opens in a new window. This is

particularly useful when you are following links from a page but want to maintain
access to the page. This allows you to freely click on links without having to
right-click and select to open the link in a new window from the context menu
for the link.

This task uses the fact that the document.links array provides an object for
every link in a page and that each object has a target property that specifies, and
can be used to set, the target window for a link. Setting the target to _blank
causes the link to open in a new window.

The following steps show how to build this bookmarklet:

1. Open the text editor you normally use for writing JavaScript.

2. Use a for loop to loop through the document.links array:

for (i = 0; i < document.links.length; i ++) {

3. For each link set the target to _blank:

document.links[i].target = ‘_blank’;

4. Enclose the last command in a void statement; otherwise, the
browser will try to display _blank after assigning it to the target
property, and this will cause a page containing just “_blank” to
replace the current page:

void(document.links[i].target = ‘_blank’);

5. Close the for loop so that the script looks like this:

for (i = 0; i < document.links.length; i ++) {

void(document.links[i].target = ‘_blank’);

}

6. Remove line separations and blank spaces from the script, and add
the javascript: protocol to the start of the script, so that the
result is a one-line URL with all extraneous spaces removed:

javascript:for(i=0;i<document.links.length;i Æ

++){void(document.links[i].target=’_blank’);}

494 Part 10

Task 238

11 542419 Ch10.qxd 11/19/03 10:22 AM Page 494

7. Create a bookmark or favorite using this code as the URL. To test
the bookmarklet, open a Web page in your browser, as illustrated
in Figure 238-1, and then select the new bookmark or favorite you
created. If you follow a link, it should open in a new window, as illus-
trated in Figure 238-2.

Figure 238-1: A Web page.

Figure 238-2: Opening links in new windows.

Bookmarklets 495

Task 238

tips
• You can identify the target

of a link in the links
array with the target
property of the link. For
instance, the target of the
first link in a document is
document.links[0].
target.

• To make developing book-
marklets easy, it is best to
start by editing the code in
your regular code editor
and then copy and paste
the bookmarklet into your
favorites or bookmarks list
at the end.

11 542419 Ch10.qxd 11/19/03 10:22 AM Page 495

Changing Page Fonts with a
Bookmarklet

Sometimes Web pages use hard-to-read fonts. At other times they specify
fonts that are missing on your system and your system defaults to a poor

alternative. For these cases, this task shows how to use a bookmarklet to set the
default font style to your preferred font.

This task relies on the fact that the document body is represented in the
document.body object. This object has a style property containing an object
reflecting the style attributes for the body of the document. The fontFamily
property of this object can be used to specify a new font by name.

For instance, to set the default body font of a document to Times, you would use
the following:

document.body.style.fontFamily = “Times”;

You can also specify a list of fonts just like in a style sheet. The browser will use
the first font on the list that it has available:

document.body.style.fontFamily = “Garamond, Times, SERIF”;

Several generic fonts names are available, including: SERIF (which indicates the
default serif font in the browser), SANS-SERIF (which indicates the default sans
serif font in the browser), and MONOSPACE (which indicates the default fixed-
width font in the browser).

The following steps show how to build a bookmarklet to set the default font to
Arial:

1. Open the text editor you normally use for writing JavaScript.

2. Assign Arial to the document.body.style.fontFamily property:

document.body.style.fontFamily = ‘Arial’;

3. Enclose the last command in a void statement; otherwise, the browser
will try to display the font name after assigning it to the document.
body.style.fontFamily property, and this will cause a page con-
taining just the name of the font to replace the current page:

void(document.body.style.fontFamily = ‘Arial’);

4. Remove blank spaces from the script, and add the javascript:
protocol to the start of the script, so that the result is a one-line URL
with all extraneous spaces removed:

javascript:void(document.body.style.fontFamily=’Arial’);

note
• This task changes the

default font style for the
body of the document. If
the HTML code for a page
has explicit styles used for
specific elements of the
page that use another font,
these styles will override
the font style specified in
the bookmarklet and the
bookmarklet will have no
effect on those fonts.

496 Part 10

Task 239

11 542419 Ch10.qxd 11/19/03 10:22 AM Page 496

5. Create a bookmark or favorite using this code as the URL. To test
the bookmarklet, open a Web page in your browser, as illustrated in
Figure 239-1. Select the new bookmark or favorite you created, and
the default font changes to Arial, as illustrated in Figure 239-2.

Figure 239-1: A Web page.

Figure 239-2: Changing the default body font of a Web page.

Bookmarklets 497

Task 239

tip
• To make developing book-

marklets easy, it is best to
start by editing the code in
your regular code editor
and then copy and paste
the bookmarklet into your
favorites or bookmarks list
at the end.

cross-reference
• Step 174 specifically dis-

cusses how to set text for a
page element (and the
body tag is just one of the
elements of a page).

11 542419 Ch10.qxd 11/19/03 10:22 AM Page 497

Highlighting Page Links with a
Bookmarklet

Sometimes Web page authors fail to ensure that the links in the page are
evident to the user. This task shows how to create a bookmarklet to highlight

all links in a page so that they are readily visible to the user.

This bookmarklet relies on the fact that all tags are represented in the
document.all array in Internet Explorer.

In the document.all array, each object represents a tag. Each object has a
property called tagName that can be used to test for A tags that represent links.
Each object also has a style property containing an object representing all style
attributes of the link. The backgroundColor property of this style object is
used to specify a background color for the link. For instance, the following exam-
ple sets the background color for the first tag in a document to yellow:

document.all[0].style.backgroundColor = ‘yellow’;

The following steps show how to build a bookmarklet to highlight all links in cyan:

1. Open the text editor you normally use for writing JavaScript.

2. Use a for loop to loop though the document.all array:

for (i = 0; i < document.all.length; i ++) {

3. Inside the loop, test if the given tag is an A tag using an if statement:

if (document.all[i].tagName == ‘A’) {

4. If the tag is an A tag, then assign cyan as the background color:

document.all[i].style.backgroundColor = ‘cyan’;

5. Enclose the last command in a void statement; otherwise, the
browser will try to display the ‘cyan’ string after assigning it to the
backgroundColor property, and this will cause an empty page with
the text “cyan” to replace the current page:

void(document.all[i].style.backgroundColor = ‘cyan’);

6. Close the if statement and for loop so that the final script looks
like this:

for (i = 0; i < document.all.length; i ++) {

if (document.all[i].tagName == ‘A’) {

void(document.all[i].style.backgroundColor = Æ

‘cyan’);

}

}

7. Remove the line separations and blank spaces from the script, and
add the javascript: protocol to the start of the script, so that the
result is a one-line URL with all extraneous spaces removed:

note
• The document.all

array is not available in
Netscape, so it will not
work on that browser.

498 Part 10

Task 240

11 542419 Ch10.qxd 11/19/03 10:22 AM Page 498

javascript:for(i=0;i<document.all.length;i++){ifÆ

(document.all[i].tagName==’A’){void(document.all[i].Æ

style.backgroundColor=’cyan’);}}

8. Create a bookmark or favorite using this code as the URL. To test
the bookmarklet, open a Web page in your browser, as illustrated in
Figure 240-1. Select the new bookmark or favorite you created, and
the links are highlighted, as illustrated in Figure 240-2.

Figure 240-1: A Web page.

Figure 240-2: A Web page with links highlighted.

Bookmarklets 499

Task 240

tip
• To make developing book-

marklets easy, it is best to
start by editing the code in
your regular code editor
and then copy and paste
the bookmarklet into your
favorites or bookmarks list
at the end.

11 542419 Ch10.qxd 11/19/03 10:22 AM Page 499

Checking the Current Date and Time
with a Bookmarklet

JavaScript’s Date object provides an easy way to display the current date and
time to the user. This can be used to create a bookmarklet to display the date

and time in a dialog box.

The toLocaleString method of the Date object will output the Date object’s
current date and time in a format appropriate to the user’s locale when using
Internet Explorer. These locales differ in the formatting. For instance, in the
United States, you typically see the following:

Wednesday, 23 July, 2003 22:38:15

At the same time, in the United Kingdom you should see the following:

23 July 2003 22:40:44

Locales also specify the language of the month and day names, as in the Czech
Republic, which is illustrated in Figure 241-1, and Japan, which is illustrated in
Figure 241-2.

Figure 241-1: Displaying the date in the Czech Republic’s locale.

Figure 241-2: Displaying the date in Japan’s locale.

500 Part 10

Task 241

11 542419 Ch10.qxd 11/19/03 10:22 AM Page 500

By contast, in newer versions of Netscape, the date is always output in a standard
default fashion based on the language of the browser and ignoring the operating
system’s specified locale settings.

The following steps create a bookmarklet for outputting the current date in a
dialog box in the current locale (in Internet Explorer):

1. Open the text editor you normally use for writing JavaScript.

2. Create a new Date object and assign it to the variable today:

today = new Date();

3. Use the window.alert method to display the date and time format-
ted for the user’s locale; the final script will look like this:

today = new Date();

window.alert(today.toLocaleString());

4. Remove blank spaces from the script, and add the javascript:
protocol to the start of the script, so that the result is a one-line URL
with all extraneous spaces removed; notice that the space between
new and Date is not extraneous and cannot be removed:

javascript:today=new Date();window.alertÆ

(today.toLocaleString());

5. Create a bookmark or favorite using this code as the URL. To test
the bookmarklet, select the new bookmark or favorite you created,
and the date and time is displayed in a dialog box, as illustrated in
Figure 241-3.

Figure 241-3: Displaying the date and time in a dialog box.

Bookmarklets 501

Task 241

tips
• In Windows 2000, you set

the locale for Windows in
the Control Panel’s
Regional Option tool.

• To make developing book-
marklets easy, it is best to
start by editing the code in
your regular code editor
and then copy and paste
the bookmarklet into your
favorites or bookmarks list
at the end.

cross-reference
• Task 47 illustrates how to

use the Date object to
output the current date.

11 542419 Ch10.qxd 11/19/03 10:22 AM Page 501

Checking Your IP Address
with a Bookmarklet

This task shows how to use Netscape and Java to create a bookmarklet to
display the user’s computer’s IP address in a dialog box. Doing so relies on

the fact that through JavaScript in Netscape you can access the Java environment
available in the browser. This Java environment provides the java.net.
InetAddress.getLocalHost().getHostAddress() method to access the
IP address.

java.net is the class that contains numerous objects, and associated methods
and properties, for working with networks and their hosts. This class is a stan-
dard part of typical Java installations and should be available on any modern
Netscape browser with Java support installed.

The getLocalHost method returns a host object containing information
about the local, as well as methods for accessing that information. The
getHostAddress of the host object returns the IP address of the host.

This method should only be called if the user has Java enabled. This can be
tested by referring to the navigator.javaEnabled method, which returns
true if Java is, in fact, enabled. The result is the following steps to create the
bookmarklet:

1. Open the text editor you normally use for writing JavaScript.

2. Use an if statement to test if Java is enabled:

if (navigator.javaEnabled()) {

3. If Java is enabled, display the current IP address in a dialog box by
using the window.alert method:

window.alert(java.net.InetAddress.getLocalHost().Æ

getHostAddress());

4. Close the if statement so that the final script looks like this:

if (navigator.javaEnabled()) {

window.alert(java.net.InetAddress.getLocalHost().Æ

getHostAddress());

}

note
• This bookmarklet only

works in Netscape and
cannot be used in Internet
Explorer.

502 Part 10

Task 242

11 542419 Ch10.qxd 11/19/03 10:22 AM Page 502

5. Remove line separations and blank spaces from the script, and add
the javascript: protocol to the start of the script, so that the
result is a one-line URL with all extraneous spaces removed:

javascript:if(navigator.javaEnabled()){window.alertÆ

(java.net.InetAddress.getLocalHost().getHostAddress());}

6. Create a bookmark using this code as the URL. To test the book-
marklet, select the new bookmark or favorite you created, and the
computer’s IP address is displayed in a dialog box, as illustrated in
Figure 242-1. If you attempt to run the bookmarklet in Internet
Explorer, you get an error, as illustrated in Figure 242-2.

Figure 242-1: Displaying the IP address in a dialog box.

Figure 242-2: In Internet Explorer, the bookmarklet causes an error.

Bookmarklets 503

Task 242

tip
• To make developing book-

marklets easy, it is best to
start by editing the code in
your regular code editor
and then copy and paste
the bookmarklet into your
favorites or bookmarks list
at the end.

11 542419 Ch10.qxd 11/19/03 10:22 AM Page 503

Searching Yahoo! with a Bookmarklet
in Internet Explorer

Acommon task performed by users is to search a popular search engine such as
Yahoo! for a word or phrase they find in a Web page. The usually approach

is to select the word or phrase, copy it, open Yahoo!, and then paste the word or
phrase into the search box.

Using JavaScript in Internet Explorer, you can build a bookmarklet so that the
user can simply select the word or phrase and then select the bookmarklet to
automatically trigger the appropriate search on Yahoo!.

This bookmarklet relies on the following:

• Internet Explorer provides the document.selection object to reflect
the text currently selected in a Web page.

• The createRange method of the document.selection object returns
a pointer to the selected range that has a text property containing
the selected text.

• Yahoo! expects a search query in the URL in the form http://
search.yahoo.com/bin/search?p=search query here.

The following steps show how to create this bookmarklet:

1. Open the text editor you normally use for writing JavaScript.

2. Save the currently selected text in the variable searchQuery:

searchQuery = document.selection.createRange().text;

3. Use the escape function to convert the selected text to URL-
encoded format and save the result back into searchQuery:

searchQuery = escape(searchQuery);

4. Set location.href to the Yahoo! search URL, and append the
value of searchQuery to the end of the URL; the final script will
look like this:

searchQuery = document.selection.createRange().text;

searchQuery = escape(searchQuery);

location.href = ‘http://search.yahoo.com/bin/search?p=’ Æ

+ searchQuery;

5. Remove the line separations and blank spaces from the script, and
add the javascript: protocol to the start of the script, so that the
result is a one-line URL with all extraneous spaces removed:

javascript:searchQuery=document.selection.createRange().Æ

text;searchQuery=escape(searchQuery);location.href=Æ

’http://search.yahoo.com/bin/search?p=’+searchQuery;

notes
• The document.
selection object is
only available in Internet
Explorer. This task will not
work in Netscape
Navigator.

• The location.href
property reflects the URL of
the current page. When a
new URL is assigned to it,
the new URL will be dis-
played by the browser.

504 Part 10

Task 243

11 542419 Ch10.qxd 11/19/03 10:22 AM Page 504

6. Create a favorite using this code as the URL. To test the book-
marklet, open a Web page in your browser and select some text, as
illustrated in Figure 243-1. Select the new favorite you created, and
your browser is redirected to Yahoo!, where search results are dis-
played as illustrated in Figure 243-2.

Figure 243-1: A Web page with text selected.

Figure 243-2: Yahoo! search results.

Bookmarklets 505

Task 243

tip
• To make developing book-

marklets easy, it is best to
start by editing the code in
your regular code editor
and then copy and paste
the bookmarklet into your
favorites or bookmarks list
at the end.

11 542419 Ch10.qxd 11/19/03 10:22 AM Page 505

Searching Yahoo! with a Bookmarklet
in Netscape

A common task performed by users is to search a popular search engine such
as Yahoo! for a word or phrase they find in a Web page. The usually approach

to this is to select the word or phrase, copy it, open Yahoo!, and then paste the
word or phrase into the search box.

Using JavaScript in Netscape, you can build a bookmarklet so that the user can
simply select the word or phrase and then select the bookmarklet to automati-
cally trigger the appropriate search on Yahoo!.

This bookmarklet relies on the following:

• Netscape provides the document.getSelection method to retrieve
the currently selected text in a Web page.

• Yahoo! expects a search query in the URL in the form http://
search.yahoo.com/bin/search?p=search query here.

The following steps show how to create this bookmarklet:

1. Open the text editor you normally use for writing JavaScript.

2. Save the currently selected text in the variable searchQuery:

searchQuery = document.getSelection();

3. Use the escape function to convert the selected text to URL-
encoded format and save the result back into searchQuery:

searchQuery = escape(searchQuery);

4. Set location.href to the Yahoo! search URL, and append the
value of searchQuery to the end of the URL; the final script will
look like this:

searchQuery = document.getSelection();

searchQuery = escape(searchQuery);

location.href = ‘http://search.yahoo.com/bin/search?p=’ Æ

+ searchQuery;

5. Remove the line separations and blank spaces from the script, and
add the javascript: protocol to the start of the script, so that the
result is a one-line URL with all extraneous spaces removed:

javascript:searchQuery=document.getSelection();searchÆ

Query=escape(searchQuery);location.href=’http://search.Æ

yahoo.com/bin/search?p=’+searchQuery; @

notes
• The document.get
Selection method is
only available in Netscape.
This task will not work in
Internet Explorer.

• The location.href
property reflects the URL of
the current page. When a
new URL is assigned to it,
the new URL will be
displayed by the browser.

506 Part 10

Task 244

11 542419 Ch10.qxd 11/19/03 10:22 AM Page 506

6. Create a bookmark using this code as the URL. To test the book-
marklet, open a Web page in your browser and select some text, as
illustrated in Figure 244-1. Select the new favorite you created, and
your browser is redirected to Yahoo!, where search results are dis-
played as illustrated in Figure 244-2.

Figure 244-1: A Web page with text selected.

Figure 244-2: Yahoo! search results.

Bookmarklets 507

Task 244

tip
• To make developing book-

marklets easy, it is best to
start by editing the code in
your regular code editor
and then copy and paste
the bookmarklet into your
favorites or bookmarks list
at the end.

11 542419 Ch10.qxd 11/19/03 10:22 AM Page 507

11 542419 Ch10.qxd 11/19/03 10:22 AM Page 508

Part 11:Cross-Browser Compatibility
and Issues
Task 245: Detecting the Browser Type

Task 246: Detecting the Browser Version

Task 247: Browser Detection Using Object Testing

Task 248: Creating Browser Detection Variables

Task 249: Dealing with Differences in Object Placement in Newer Browsers

Task 250: Creating Layers with the div Tag

Task 251: Controlling Layer Placement in HTML

Task 252: Controlling Layer Size in HTML

Task 253: Controlling Layer Visibility in HTML

Task 254: Controlling Layer Ordering in HTML

Task 255: Changing Layer Placement and Size in JavaScript

Task 256: Changing Layer Visibility in JavaScript

Task 257: Changing Layer Ordering in JavaScript

Task 258: Fading Objects

Task 259: Creating a Page Transition in Internet Explorer

Task 260: Installing the X Cross-Browser Compatibility Library

Task 261: Showing and Hiding Elements with X

Task 262: Controlling Stacking Order with X

Task 263: Changing Text Color with X

Task 264: Setting a Background Color with X

Task 265: Setting a Background Image with X

Task 266: Repositioning an Element with X

Task 267: Sliding an Element with X

Task 268: Changing Layer Sizes with X

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 509

Detecting the Browser Type

Using JavaScript you can determine the type of browser the user is running.
This proves useful if you want to implement features in your applications

that require different code in different browsers. By detecting the browser the
user is using, you can account for that in the code that actually is run by the user.

The key to determining the browser the user is using is the navigator object.
The navigator object provides several properties you can use to tell you the
type of browser being used:

• navigator.appName: This property returns a string indicating the
browser that is being used. For instance, this string might be
“Microsoft Internet Explorer” or “Netscape”.

• navigator.appCodeName: This property returns the browser
name that the browser claims to be. For instance, in Internet
Explorer 6, this will actually be “Mozilla,” as it also will be in
Netscape 7.

• navigator.userAgent: This property returns the entire user
agent string. The user agent string is a string sent by the browser to
the server identifying itself to the server. It is from the user agent
string that the application name and the code name are derived.
Following are examples of user agent strings:

• Internet Explorer 6: Mozilla/4.0 (compatible; MSIE 6.0;
Windows NT 5.0; .NET CLR 1.0.3705)

• Netscape 7: Mozilla/5.0 (Windows; U; Windows NT 5.0;
en-US; rv:1.0.2) Gecko/20030208 Netscape/7.02

The following task shows how to display the browser’s application name, code
name, and user agent to the user:

1. Create a new document in your preferred editor.

2. In the body of the document, create a script block with opening and
closing script tags:

<body>

<script language=”JavaScript”>

</script>

</body>

3. Use the document.write method to output the application name:

document.write(“Browser Type: “ + navigator.Æ

appName + “
”);

notes
• There are many reasons

why you might want to
account for a user’s
browser version in your
applications. For instance,
some browsers have poor
support for advanced fea-
tures of cascading style
sheets, and you want to
avoid using those features
on these browsers.

• Browsers will often make
claims to being a different
browser. For instance, both
Internet Explorer and
Netscape claim to be
Mozilla in an attempt to
ensure that sites send
them the same versions of
their code. This can be
problematic, since Internet
Explorer and Mozilla
don’t actually have
identical JavaScript
implementations.

510 Part 11

Task 245

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 510

4. Use the document.write method to output the code name:

document.write(“Code Name: “ + navigator.Æ

appCodeName + “
”);

5. Use the document.write method to output the user agent string.
The final page should look like Listing 245-1.

<body>

<script language=”JavaScript”>

document.write(“Browser Type: “ + navigator.appName Æ

+ “
”);

document.write(“Code Name: “ + navigator.appCodeName Æ

+ “
”);

document.write(“User Agent: “ + navigator.userAgent Æ

+ “
”);

</script>

</body>

Listing 245-1: Displaying browser version information.

6. Save the file and close it.

7. Open the file in your browser. In Internet Explorer, the display
should look similar to Figure 245-1.

Figure 245-1: Displaying browser information in Internet Explorer 6.

Cross-Browser Compatibility and Issues 511

Task 245

cross-reference
• Task 9 discusses generat-

ing output to the browser
from JavaScript using the
document.write
method. The method takes
a single string argument. In
this case, you are building
a string by concatenating
two strings.

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 511

Detecting the Browser Version

In Task 245 you saw how to detect the browser type by using the navigator
object. In addition to this information, the navigator object can tell you

which version of a particular browser is in use. This is important because there
can be significant functionality differences between individual versions. For
instance, the difference between the Netscape 4.7x and the Netscape 7
browsers is more significant than the differences between Netscape 7 and
Internet Explorer 6.

To check the version of a particular browser, you need to use the navigator.
appVersion property. In Internet Explorer 6, this would return the following:

4.0 (compatible; MSIE 6.0; Windows NT 5.0; .NET CLR 1.0.3705)

In Netscape 7, this returns the following:

5.0 (Windows; en-US)

These version strings provide you with information about the platform involved
and the version.

The following task shows how to display the browser version and user agent
string in the browser window:

1. Create a new document in your preferred editor.

2. In the body of the document, create a script block with opening and
closing script tags:

<body>

<script language=”JavaScript”>

</script>

</body>

3. Use the document.write method to output the browser version:

document.write(“Browser Version: “ + Æ

navigator.appVersion + “
”);

4. Use the document.write method to output the user agent string.
The final page looks like Listing 246-1.

5. Save the file and close it.

6. Open the file in your browser. In Internet Explorer, the display
should look similar to Figure 246-1. In Mozilla, it should appear like
Figure 246-2.

notes
• Notice that Internet Explorer

purports to be version 4.0.
This actually reflects the
version of the browser rep-
resented in the code name.
That is, Internet Explorer 6
claims to be the same as
Mozilla 4.0. Insider the
parentheses, Internet
Explorer then provides an
accurate representation of
its real version.

• Netscape 6 and later is
actually a true Mozilla-based
browser. Therefore, Netscape
7 reports itself as Mozilla
(as the code name and
application name) and then
provides a version to place
itself in the Mozilla line. This
version number does not
reflect the release number of
the Mozilla version used in
the Netscape browser, but
instead an internal number
also reported if you check
the browser version in an
actual Mozilla browser.

• Notice that the browser
version reported by
navigator.appVersion
contains some part of the
user agent string that is in
parentheses. In Internet
Explorer, this could be the
entire part of the user
agent string that is in
parentheses, while in
Mozilla and Netscape, this
is just a subset of that part
of the user agent string.

512 Part 11

Task 246

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 512

<body>

<script language=”JavaScript”>

document.write(“Browser Version: “ + Æ

navigator.appVersion + “
”);

document.write(“User Agent: “ + navigator.userAgent Æ

+ “
”);

</script>

</body>

Listing 246-1: Displaying a browser’s user agent string.

Figure 246-1: Displaying browser information in Internet Explorer 6.

Figure 246-2: Displaying browser information in Mozilla 1.2.1.

Cross-Browser Compatibility and Issues 513

Task 246

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 513

Browser Detection Using Object Testing

In the previous tasks, examples were given of how to determine what browser
and version a user is using by examining properties of the navigator object.

However, it is generally the case that using these properties in practical real-
world applications is difficult at best.

Because of this, the technique of object testing has emerged as the preferred
method for determining what browser is in use. This means you can simply
determine browser versions by testing for the existence of these objects:

if (object name) { object exists }

The following lists key objects you can use in determining browser versions:

• document.all: IE4+

• document.getElementById: IE5+/NS6+

• document.layers: NS4

• document.fireEvent: IE5.5+

• document.createComment: IE6+

Using these, you can build conditions that test for various browser environments:

• NS4/IE4+:(document.all || document.layers)

• NS4+: (!document.all)

• IE4+: (document.all)

• NS4 only: (document.layers &&
!document.getElementById)

• IE 4 only: (document.all && !document.getElementById)

• NS6+/IE5+: (document.getElementById)

• NS6+: (document.getElementById && !document.all)

• IE5+: (document.all && document.getElementById)

• IE5.5+: (document.all && document.fireEvent)

• IE6 only: (document.all && document.createComment)

• IE5 only: (document.all && document.getElementById &&
!document.fireEvent)

• IE5.5 only: (document.all && document.fireEvent &&
!document.createComment)

notes
• The way that the user

agents of different browsers
represent themselves
means you need to perform
complex string analysis just
to figure what browser the
user really is running.

• There are other browsers as
well, such as Opera, and
some of these tests will be
true with certain versions of
these browsers. However,
such an overwhelming
majority of users either use
Netscape or Internet
Explorer that in some appli-
cations, accounting for
these marginal browsers
may be more effort than it’s
worth; you need to judge
that for each application
you build. This task pro-
vides examples for Internet
Explorer and Netscape, but
you can extend the concept
to other browsers as well
by looking at the JavaScript
documentation for those
browsers and identifying
appropriate objects to use
in your tests.

514 Part 11

Task 247

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 514

tip
• The premise of object

testing is simple: Each
browser has at least some
objects that it implements
that other browsers do not.
You can test for the exis-
tence of an object easily
by using the object as the
condition of an if state-
ment. For instance, you
can test if document.
all exists with
if (document.all).

The following task builds a page that displays information about the current
browser based on some of these object-testing conditions:

1. In the body of a new document, create a script block.

2. In the script, use an if statement to test for the existence of
document.all to separate Internet Explorer browsers from
Netscape browsers.

3. Based on the initial test, display the browser type and then test for,
and display, the version of the browser, so that the final page looks
like Listing 247-1.

<body>

<script language=”JavaScript”>

if (document.all) {

document.write(“Microsoft IE.
”);

if (!document.getElementById) {

document.write(“Version 4.”);

}

if (document.getElementById && !document.Æ

fireEvent) {

document.write(“Version 5.”);

}

if (document.fireEvent && !document.Æ

createComment) {

document.write(“Version 5.5.”);

}

if (document.createComment) {

document.write(“Version 6.”);

}

} else {

document.write(“Netscape.
”);

if (document.getElementById) {

document.write(“Version 6+.”);

} else {

document.write(“Version 4.”);

}

}

</script>

</body>

Listing 247-1: Using object testing to determine browser version.

4. Save the file and close it.

5. Open the file in a browser. You see a message about the type of
browser you are using.

Cross-Browser Compatibility and Issues 515

Task 247

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 515

Creating Browser Detection Variables

In Task 247 you saw how object testing could be used to build conditions to
determine which browser was in use. In practical terms, though, you typically

will not want to be using these complex conditions in multiple places in your
code to determine what browser is being used to view your pages.

Instead, a common practice is to build a list of variables at the start of your script.
These variables would each represent a specific browser and version and would
take a value of true or false. For instance, the variable ie4 could be true or false
to indicate if the user is using Internet Explorer 4. Then you could test if the user
is using that browser in your code with the following:

if (ie4) {

Code to execute if the user is using Internet Explorer 4

}

You can create these variables by assigning boolean expressions to them; these
conditions were outlined in Task 247:

• NS4/IE4+: (document.all || document.layers)

• NS4+: (!document.all)

• IE4+: (document.all)

• NS4 only: (document.layers &&
!document.getElementById)

• IE 4 only: (document.all && !document.getElementById)

• NS6+/IE5+: (document.getElementById)

• NS6+: (document.getElementById && !document.all)

• IE5+: (document.all && document.getElementById)

• IE5.5+: (document.all && document.fireEvent)

• IE6 only: (document.all && document.createComment)

• IE5 only: (document.all && document.getElementById &&
!document.fireEvent)

• IE5.5 only: (document.all && document.fireEvent &&
!document.createComment)

The following task shows how to build JavaScript code to create these sorts of
variables for each of the main versions of Internet Explorer and Netscape:

1. In the header of any document where you need to perform browser
detection, create a script block.

note
• The variables created in

this script are being
assigned expressions. Each
of these expressions evalu-
ates to a boolean value
(true or false), so ie4 will
be true on Internet Explorer
4 but will be false in
Netscape 6, for instance.

516 Part 11

Task 248

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 516

tip
• These conditions use

object testing. The premise
of object testing is simple:
Each browser has at least
some objects that it imple-
ments that other browsers
do not. You can test for the
existence of an object eas-
ily by using the object as
the condition of an if
statement. For instance,
you can test if document.
all exists with: if
(document.all).

2. In the script, create a variable named ie4 to represent Internet
Explorer 4, and assign the result of the Internet Explorer 4 test
condition to the variable:

var ie4 = (document.all && !document.getElementById);

3. In the script, create a variable named ie5 to represent Internet
Explorer 5, and assign the result of the Internet Explorer 5 test
condition to the variable:

var ie5 = (document.all && document.getElementById && Æ

!document.fireEvent);

4. In the script, create a variable named ie55 to represent Internet
Explorer 5.5, and assign the result of the Internet Explorer 5.5 test
condition to the variable:

var ie55 = (document.all && document.fireEvent && Æ

!document.createComment);

5. In the script, create a variable named ie6 to represent Internet
Explorer 6, and assign the result of the Internet Explorer 6 test
condition to the variable:

var ie6 = (document.all && document.createComment);

6. In the script, create a variable named ns4 to represent Netscape 4,
and assign the result of the Netscape 4 test condition to the variable:

var ns4 = (document.layers && !document.getElementById);

7. In the script, create a variable named ns6 to represent Netscape 6
and higher, and assign the result of Netscape 6 and higher. The final
set of variable assignments should look like Listing 248-1.

<script language=”JavaScript”>

var ie4 = (document.all && !document.getElementById);

var ie5 = (document.all && document.getElementById && Æ

!document.fireEvent);

var ie55 = (document.all && document.fireEvent && Æ

!document.createComment);

var ie6 = (document.all && document.createComment);

var ns4 = (document.layers && !document.getElementById);

var ns6 = document.getElementById && !document.all);

</script>

Listing 248-1: Creating browser detection variables.

Cross-Browser Compatibility and Issues 517

Task 248

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 517

Dealing with Differences in Object
Placement in Newer Browsers

When working directly with elements of your pages from within JavaScript,
you need to be aware of some critical differences between Internet

Explorer and Netscape browsers. Recall that it is possible to assign IDs to any
object in your HTML with the id attribute. For instance, the following HTML
creates a span of text with the ID myText:

Some text goes here

If you want to reference this span of text in JavaScript, you have to refer to it dif-
ferently in the two browsers. Netscape refers to page elements by their IDs right
under the document object. This means this text could be referenced with the
following:

document.myText

By comparison, you reference page elements by their IDs in Internet Explorer
under document.all:

document.all.myText

Luckily, you can account for this difference using the document.getElementById
method: Given the ID string for a page element, this method returns a reference
to the object associated with the method and is supported on Internet Explorer 5
or greater and Netscape 6 or greater.

To use this method to refer to the text span earlier, you would use the following:

document.getElementById(“myText”);

The following task illustrates the use of this method. The user is presented with a
link; when he or she clicks the link, the text is replaced by new text:

1. Create a new document in your editor.

2. In the body of the document, create a new text span:

<body>

</body>

3. Specify an ID for the span using the id attribute of the span tag:

notes
• The span tag has three

main purposes: to assign
an ID to a page element, to
assign a class to a page
element, or to directly
assign one or more style
attributes to a page ele-
ment. In a document, all
IDs assigned to tags
should be unique, but
classes can be shared.
Both IDs and tags can
be associated with style
definitions, which, in turn,
are applied to matching
page elements.

• It is important to note
that the document.
getElementById method
is not available in Internet
Explorer 4 or Netscape 4-
series browsers; the solu-
tion here is for newer
browsers.

518 Part 11

Task 249

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 518

4. In the text span, create a link for the user to click to change the text
in the span:

Change this text

5. As the URL for the link, use a javascript: URL to change the
text attribute of the object associated with the text span page element.
The final page is shown in Listing 249-1.

<body>

<a Æ

href=”javascript:document.getElementById(‘mySpan’).text = Æ

‘New Text’;”>Change this text

</body>

Listing 249-1: Accessing a page element.

6. Save the file and close it.

7. Open the file in a browser and you see a link.

8. Click on the link and the link disappears and is replaced with the new
text, as illustrated in Figure 249-1.

Figure 249-1: Changing the text in a text span.

Cross-Browser Compatibility and Issues 519

Task 249

cross-reference
• The span tag is discussed

in Task 181.

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 519

Creating Layers with the div Tag

The emergence of Dynamic HTML as a powerful combination of JavaScript
and cascading style sheets has opened new doors for page development. At

the core of these developments is the notion of a layer.

Layers are created with the div tag. Their initial placement and appearance are
specified using style sheets: Either a style sheet class is defined in a document-
wide style sheet and then associated with the layer using the class attribute of
the div tag, or specific style attributes are specified for the layer in the style
attribute of the div tag.

For instance, in the following example, a simple class is defined in a style sheet
and then applied to a layer:

<head>

<style type=”text/css”>

.myStyle {

background-color: lightgrey;

width: 100px;

height: 100px;

}

</style>

</head>

<body>

<div class=”myStyle”>This is a layer</div>

</body>

The following sample illustrates the creation of two layers. The first layer actu-
ally sits on top of, and obscures part of, the second layer:

1. Create a new document in your preferred editor.

2. In the body of the document, create a new layer with opening and
closing div tags:

<body>

<div>

</div>

</body>

3. Specify styles for the layer with the style attribute of the div tag:

<div style=”position:relative; font-size:50px; Æ

background-color: lightgrey; z-index:2;”>

4. Specify text to appear in the layer:

This is the top layer

notes
• Notice the use of the z-
index style attribute. This
attribute specifies how lay-
ers stack on top of each
other. Layers with larger z-
index values will appear
on top of layers with lower
values if the positioning of
the layers overlaps. See
Task 254 for more discus-
sion of this attribute.

• In this task you use the
top and left style attrib-
utes to adjust the place-
ment of the layer relative to
where it would normally be
placed by the browser
when rendering the page.
When you use a negative
value for the top attribute,
the layer is moved up to
overlap some of the place
taken by the first layer.
These style attributes
are discussed further in
Task 251.

520 Part 11

Task 250

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 520

tip
• You can also specify styles

directly using the style
attribute of the div tag. In
this particular example, you
could dispense with the
style sheet and simply use
this div tag: <div
style=”background-
color: lightgrey;
width: 100px;
height: 100px

5. Create a second layer with opening and closing div tags, and specify
the styles for the layer with the style attribute of the div tag:

<div style=”position:relative; top:-25; left:25; Æ

color:blue; font-size:80px; background-color: yellow; Æ

z-index:1;”>

6. Specify text to appear in the layer, so that the final document looks
like Listing 250-1.

<body>

<div style=”position:relative; font-size:50px; Æ

background-color: lightgrey; z-index:2;”>

This is the top layer

</div>

<div style=”position:relative; top:-25; left:25; Æ

color:blue; font-size:80px; background-color: yellow; Æ

z-index:1;”>

This is the bottom layer

</div>

</body>

Listing 250-1: Creating two layers using div tags.

7. Save the file and close it.

8. Open the file in your browser. You should see the layers on top of
each other, as in Figure 250-1.

Figure 250-1: Creating two layers that overlap.

Cross-Browser Compatibility and Issues 521

Task 250

cross-references
• A layer is an arbitrary block

of HTML code that can be
manipulated as a unit: It
can be allocated a certain
amount of space on the
page, it can be placed pre-
cisely on the page, and all
aspects of its appearance
can then be manipulated in
JavaScript. Layers are cre-
ated with the div tag, which
is introduced in Task 169.

• Notice the use of the posi-
tion style attribute. This
attribute is discussed fur-
ther in Task 251.

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 521

Controlling Layer Placement in HTML

Using cascading style sheets, you can control the placement of layers. If you
don’t specify a position, the browser should just render the layers in the

order they appear in the HTML file: vertically, with one on top of the other.

Consider the following three layers:

<div style=”background-color: lightgrey;”>Layer 1</div>

<div style=”background-color: white;”>Layer 2</div>

<div style=”background-color: yellow;”>Layer 3</div>

Using the following attributes, you can adjust the placement of these layers:

• position: This attribute takes one of two possible values: relative
or absolute.

• top: This attribute specifies an offset, normally in pixels, for the top
of the layer.

• left: This attribute specifies an offset, normally in pixels, for the left
side of the layer.

The following task places two layers with absolute and relative positioning:

1. Create a new document in your preferred editor, and create a para-
graph of opening text in the body of the document:

<p>

This is opening text. There is lots of it. This is Æ

opening text. There is lots of it. etc.

</p>

2. Create a new layer after the paragraph using opening and closing
div tags, and use the style attribute to specify relative positioning
and to place the layer down 100 pixels and to the right by 100 pixels:

<div style=”position:relative; top: 100px; left: 100px; Æ

background-color: yellow;”>

3. Place some text in the layer.

4. Create another layer using opening and closing div tags, and use the
style attribute to specify absolute positioning and to place the layer
down 100 pixels and to the right by 100 pixels:

<div style=”position: absolute; top: 100px; left: 100px; Æ

background-color: lightgrey;”>

5. Place some text in the layer, so that the final page looks like Listing
251-1.

notes
• With relative positioning,

any adjustments specified
in the top and left
attributes are relative to
where the browser would
normally have placed the
layer based on the rest of
the HTML in the file. With
absolute positioning, any
offsets in the top and
left attributes are relative
to the top left corner of the
display area of the browser
window regardless of the
rest of the HTML in the file.

• With the top attribute, you
can move a layer down by
100 pixels from its normal
position (relative position-
ing) or from the top of the
display area of the window
(absolute positioning) by
setting this attribute to
100px.

• With the left attribute, you
can move a layer to the right
by 200 pixels from its nor-
mal position (relative posi-
tioning) or from the left of
the display area of the win-
dow (absolute positioning)
by setting this attribute to
200px.

• Notice the difference
between absolute and rela-
tive positioning: The
absolutely positioned layer
is much higher up and to
the left of the relatively
positioned layer. This is
because the relatively posi-
tioned layer is placed rela-
tive to its normal position:
just below the paragraph
of text.

522 Part 11

Task 251

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 522

<body>

<p>

This is opening text. There is lots of it. This Æ

is opening text. There is lots of it. etc.

</p>

<div style=”position:relative; top: 100px; left: Æ

100px; background-color: yellow;”>

(100,100) relative

</div>

<div style=”position: absolute; top: 100px; left: Æ

100px; background-color: lightgrey;”>

(100,100) absolute

</div>

</body>

Listing 251-1: Using absolute and relative positioning.

6. Save the file and close it. Now open the file in your browser, and you
should see the two layers placed as in Figure 251-1.

Figure 251-1: Relative and absolute positioning of layers.

Cross-Browser Compatibility and Issues 523

Task 251

cross-reference
• You can also control layer

placement in JavaScript.
Refer to Task 255 for
details.

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 523

Controlling Layer Size in HTML

Using cascading style sheets, you can control the size of layers precisely. If you
don’t specify the size, the browser just renders the layers so that the height

accommodates all the text and HTML placed in the layer and the width fills the
normal width of the display area. Consider the following layer:

<div style=”background-color: lightgrey;”>

Layer 1

with two lines of text

</div>

The results look like Figure 252-1.

Figure 252-1: Layers auto-size if no size is specified.

Using the width and height style attributes, you can control the size of layers:

• width: This attribute specifies the width of a layer, normally in pixels.
This overrides the default behavior to extend a layer across the width
of the browser window.

• height: This attribute specifies the height of a layer, normally in
pixels. This overrides the default behavior to make the height of the
layer just enough to accommodate the text and HTML displayed in
the layer.

The following task creates two layers with different sizes:

1. Create a new document in your preferred editor.

2. In the body of the document, create a new layer with opening and
closing div tags, and specify the style attributes for the layer, making
the layer 100 pixels by 100 pixels in size:

524 Part 11

Task 252

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 524

<div style=”position:relative; background-color: Æ

lightgrey; width: 100px; height: 100px;”>

3. Place some text to display in the layer.

4. Create a second layer with opening and closing div tags, and specify
the style attributes for the layer, making the layer 300 pixels by 300
pixels in size:

<div style=”position:relative; color:blue; background-Æ

color: yellow; width: 300px; height: 300px;”>

5. Place some text to display in the layer, so that the final page looks
like Listing 252-1.

<body>

<div style=”position:relative; background-color: Æ

lightgrey; width: 100px; height: 100px;”>

A small box

</div>

<div style=”position:relative; color:blue; background-Æ

color: yellow; width: 300px; height: 300px;”>

A larger box

</div>

</body>

Listing 252-1: Controlling the size of layers.

6. Save the file and close it.

7. Open the file in a browser and you should see two layers, as in
Figure 252-2.

Figure 252-2: A small and large layer displaying in the browser.

Cross-Browser Compatibility and Issues 525

Task 252

cross-references
• A layer is an arbitrary block

of HTML code that can be
manipulated as a unit: It
can be allocated a certain
amount of space on the
page, it can be placed pre-
cisely on the page, and all
aspects of its appearance
can then be manipulated in
JavaScript. Layers are cre-
ated with the div tag, which
is introduced in Task 169.

• The use of the position
attribute for relative posi-
tioning is discussed in
Task 251.

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 525

Controlling Layer Visibility in HTML

Using cascading style sheets, you can control the visibility of layers. By default,
all layers are displayed. Using the visibility style attribute, however,

you can hide a layer so that it is not displayed. This attribute takes two possible
values:

• hidden: The layer will not be visible.

• visible: The layer will be visible.

For instance, the following layer would not be displayed:

<div style=”visibility: hidden;”>

You can’t see this layer.

</div>

The following task creates two layers; the first is hidden and the second is visible:

1. Create a new document in your preferred editor.

2. In the body of the document, create a layer with opening and closing
div tags:

<body>

<div>

</div>

</body>

3. Use the style attribute of the div tag to specify the appearance of
the layer; make sure the layer is not visible:

<div style=”position:relative; background-color: Æ

lightgrey; width: 100px; height: 100px; visibility: Æ

hidden;”>

4. Place text in the layer as desired:

A small box

5. Create a second layer with opening and closing div tags:

<div>

</div>

6. Use the style attribute of the div tag to specify the appearance of
the layer; make sure the layer is visible:

<div style=”position:relative; color:blue; background-Æ

color: yellow; width: 300px; height: 300px; visibility: Æ

visible;”>

526 Part 11

Task 253

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 526

7. Place text in the layer as desired, so that the final code looks like
Listing 253-1.

<body>

<div style=”position:relative; background-color: Æ

lightgrey; width: 100px; height: 100px; visibility: Æ

hidden;”>

A small box

</div>

<div style=”position:relative; color:blue; background-Æ

color: yellow; width: 300px; height: 300px; visibility: Æ

visible;”>

A larger box

</div>

</body>

Listing 253-1: Controlling layer visibility.

8. Save the file and close it.

9. Open the file in your browser and you should see a page like Figure
253-1.

Figure 253-1: The hidden layer is above the visible layer.

Cross-Browser Compatibility and Issues 527

Task 253

cross-references
• You can control the visibility

of a layer after it is created
by using JavaScript as out-
lined in Task 256. For
instance, a layer may ini-
tially be hidden, and then
you can use JavaScript to
display the layer when it is
needed.

• Layers are created with the
div tag, which is intro-
duced in Task 169.

• The use of the position
attribute for relative posi-
tioning is discussed in
Task 251.

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 527

Controlling Layer Ordering in HTML

Using cascading style sheets, you can control the relative stacking order of lay-
ers. The stacking order of layers determines which layers appear on top of

other layers when they overlap with each other.

By default, layers stack on top of each other in the order in which they appear in
the HTML file. Consider the following three layers:

<div style=”position: absolute; left: 0px; top: 0px; width: 100px; Æ

height: 100px; background-color: yellow;”>Bottom Layer</div>

<div style=”position: absolute; left: 50px; top: 50px; width: Æ

100px; height: 100px; background-color: lightgrey;”>Middle Layer</div>

<div style=”position: absolute; left: 100px; top: 100px; width: Æ

100px; height: 100px; background-color: cyan;”>Top Layer</div>

By default, the last layer is the top of the stack and the first layer is the bottom.
You can control this stacking order with the z-index style attribute. This
attribute takes a numeric value, and the larger the value, the higher a layer is in
the stack.

The following task creates three layers where the first layer specified is the top
layer, the second is the bottom layer, and the third is the middle layer:

1. Create a new document in your preferred editor.

2. In the body of the document, create a new layer and set the z-index
style attribute to 3:

<body>

<div style=”position:absolute; top: 0px; left: Æ

0px;font-size:50px; background-color: lightgrey; Æ

z-index:3;”>

This is the top layer

</div>

</body>

3. Create another layer and set the z-index style attribute to 1 so it
appears below the previous layer:

<body>

<div style=”position:absolute; top: 0px; left: Æ

0px;font-size:50px; background-color: lightgrey; Æ

z-index:3;”>

This is the top layer

</div>

<div style=”position:absolute; top:40; left:40; Æ

color:blue; font-size:80px; background-color: yellow; Æ

z-index:1;”>

This is the bottom layer

</div>

</body>

note
• A layer is an arbitrary block

of HTML code that can be
manipulated as a unit: It
can be allocated a certain
amount of space on the
page, it can be placed pre-
cisely on the page, and all
aspects of its appearance
can then be manipulated in
JavaScript. Layers are cre-
ated with the div tag,
which is introduced in
Task 169.

528 Part 11

Task 254

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 528

4. Create a third layer and set the z-index style attribute to 2 so it
appears between the previous two layers; place the layer so that it
should overlap both of the previous layers:

<body>

<div style=”position:absolute; top: 0px; left: Æ

0px;font-size:50px; background-color: lightgrey; Æ

z-index:3;”>

This is the top layer

</div>

<div style=”position:absolute; top:40; left:40; Æ

color:blue; font-size:80px; background-color: yellow; Æ

z-index:1;”>

This is the bottom layer

</div>

<div style=”position:absolute; top:20; left:20; Æ

color:red; font-size:70px; background-color: cyan; Æ

z-index:2;”>

This is the middle layer

</div>

</body>

5. Save the file and close it.

6. Open the file in a browser and you should see three overlapping lay-
ers, as shown in Figure 254-1.

Figure 254-1: With the z-index attribute, layers can stack in any order regardless of
the order of appearance in the HTML file.

Cross-Browser Compatibility and Issues 529

Task 254

cross-references
• You can control layer stack-

ing order in JavaScript. This
is outlined in Task 257.

• The use of the position
attribute for absolute posi-
tioning is discussed in
Task 251.

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 529

Changing Layer Placement and
Size in JavaScript

Task 251 showed how to place layers using style attributes, and 252 showed
how to control the size of layers using style attributes. However, once a page

is rendered, these style attributes cannot be adjusted unless you use JavaScript.

As an example, consider the following layer:

<div id=”mylayer” style=”height: 100px;”>This layer is 100 pixels Æ

high</div>

You could change the height of the layer to 200 pixels with this:

document.getElementByID(“myLayer”).style.height = 200;

The following task creates two layers; the first has a link that causes the layer to
move. The second has a link that causes the layer to resize:

1. In a script block in the header of a new document, create a new func-
tion named moveLayer that takes no arguments:

function moveLayer()

2. In the function, reset the left style attribute of the layer with the ID
firstLayer to 300 pixels:

document.getElementById(“firstLayer”).style.left = 300;

3. In the script block, create a second function named resizeLayer
that takes no arguments:

function resizeLayer()

4. In the function, reset the width and height style attributes of the
layer with the ID secondLayer to 300 pixels and 400 pixels:

document.getElementById(“secondLayer”).style.width = 300;

document.getElementById(“secondLayer”).style.height = 400;

5. In the body of the document, create a layer with the ID
firstLayer:

<div id=”firstLayer” style=”position: relative; Æ

background-color: lightgrey; width: 100px; height: Æ

100px;”>

6. In the layer, create a link that calls the moveLayer function when the
user clicks on the link:

<p>Move layer</p>

notes
• Using JavaScript, you can

control the placement and
size of layers after they
have been created. To do
this, you use the docu-
ment.getElementById
method to retrieve the
object associated with a
specific layer’s ID and then
manipulate style attributes
as follows: document.
getElementById
(“Layer ID”).style.
styleProperty = new
value. Typically, these
style properties have the
same names as the style
attributes in your style
sheet definitions.

• Notice that in the style
definition in the div tag
you specified px as the
units. In JavaScript, the
style.height property
is a numeric value, and you
simply specify the number
of pixels without specifying
the units.

530 Part 11

Task 255

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 530

7. Create another layer with the ID secondLayer:

<div id=”secondLayer” style=”background-color: Æ

yellow; width: 100px; height: 100px;”>

8. In the layer, create a link that calls the resizeLayer function
when the user clicks on the link, so that the final page looks like
Listing 255-1:

<head>

<script language=”JavaScript”>

function moveLayer() {

document.getElementById(“firstLayer”).style.Æ

left = 300;

}

function resizeLayer() {

document.getElementById(“secondLayer”).style.Æ

width = 300;

document.getElementById(“secondLayer”).style.Æ

height = 400;

}

</script>

</head>

<body>

<div id=”firstLayer” style=”position: relative; Æ

background-color: lightgrey; width: 100px; height: 100px;”>

<p>Move layer</p>

</div>

<div id=”secondLayer” style=”background-color: yellow; Æ

width: 100px; height: 100px;”>

<p>Resize Æ

layer</p>

</div>

</body>

Listing 255-1: Resizing and moving layers in JavaScript.

9. Save the file and close it. Open the file in a browser, and you should
see the two initial layers. Click on the Move Layer link, and the top
layer should jump to the right. Click on the Resize Layer link, and
the bottom layer should grow.

Cross-Browser Compatibility and Issues 531

Task 255

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 531

Changing Layer Visibility in JavaScript

Task 253 showed how to control the visibility of layers using style attributes.
However, once a page is rendered, these style attributes cannot be adjusted

unless you use JavaScript. As an example, consider the following layer:

<div id=”mylayer” style=”visibility: visible;”>This layer is Æ

visible</div>

You could hide the layer with this:

document.getElementByID(“myLayer”).style.visibility = “hidden”;

The following task creates a layer and then provides two links to allow the user to
hide or show the layer:

1. Create a new function named hideLayer that takes no arguments:

function hideLayer()

2. In the function, reset the visibility style attribute of the layer
with the ID firstLayer to hidden:

document.getElementById(“firstLayer”).style.visibility = Æ

“hidden”;

3. In the script block, create a second function named showLayer that
takes no arguments:

function showLayer()

4. In the function, reset the visibility style attribute of the layer
with the ID firstLayer to visible, so that the final script looks
like this:

document.getElementById(“firstLayer”).style.visibility = Æ

“visible”;

5. In the body of the document create a layer with the ID firstLayer:

<div id=”firstLayer” style=”background-color: lightgrey; Æ

width: 100px; height: 100px;”>

6. After the layer, create a link that calls the hideLayer function when
the user clicks on the link:

Hide layer

7. Create another link that calls the showLayer function when the user
clicks on the link. The final page should look like Listing 256-1.

note
• The document.
getElementById
property is available in
newer versions of Internet
Explorer and Netscape.
However, earlier browsers,
such as Netscape 4, lacked
this method. In addition,
there was no style property
associated with the layer
object. Instead, you
would need to access the
style properties with
document.layerID.
styleProperty. Of
course, Netscape 4 series
browsers also supported
far less of the cascading
style sheet specification,
which made it harder to
achieve many of the effects
described in this part of
the book.

532 Part 11

Task 256

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 532

<head>

<script language=”JavaScript”>

function hideLayer(target) {

document.getElementById(“firstLayer”).style.Æ

visibility = “hidden”;

}

function showLayer(target) {

document.getElementById(“firstLayer”)Æ

.style.visibility = “visible”;

}

</script>

</head>

<body>

<div id=”firstLayer” style=”background-color: Æ

lightgrey; width: 100px; height: 100px;”>

The layer

</div>

<p>Hide layer</p>

<p>Show layer</p>

</body>

Listing 256-1: Hiding and showing layers from JavaScript.

8. Save the file and close it.

9. Open the file in a browser and you see the layer and two links, as
illustrated in Figure 256-1.

Figure 256-1: The layer is visible initially.

10. Click on the Hide Layer link and the layer disappears. Click on the
Show Layer link and the layer reappears.

Cross-Browser Compatibility and Issues 533

Task 256

cross-reference
• The creation of your own

functions is discussed in
Task 27.

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 533

Changing Layer Ordering in JavaScript

Task 254 showed how to control the stacking order of layers using style attrib-
utes. However, once a page is rendered, these style attributes cannot be

adjusted unless you use JavaScript.

As an example, consider the following layer:

<div id=”mylayer” style=”z-index: 1;”>This layer has a Æ

stacking order of 1</div>

You could change the z-index value to 2 with this:

document.getElementByID(“myLayer”).style.zIndex = 2;

The following task creates two overlapping layers; each layer has a link that
brings the layer to the top of the stack:

1. In a script in the header of a new document, create a function named
swapLayer that takes two arguments names topTarget and
bottomTarget (for the IDs of the layers to move to the top and
bottom):

function swapLayer(topTarget,bottomTarget) {

2. In the function, set the stacking order for the desired top layer to 2:

document.getElementById(topTarget).style.zIndex = 2;

3. Set the stacking order for the desired bottom layer to 1:

document.getElementById(bottomTarget).style.zIndex = 1;

4. In the body of the document, create a layer named firstLayer with
a stacking order of 1:

<div id=”firstLayer” style=”position: absolute; left: Æ

10px; top: 10px; width: 100px; height: 100px; background-Æ

color: yellow; z-index: 1;”>

5. In the layer, create a link to call swapLayer designed to move the
layer to the top of the stack; specify ‘firstLayer’ as the first argu-
ment and ‘secondLayer’ as the second argument:

<p><a Æ

href=”javascript:swapLayer(‘firstLayer’,’secondLayer’)”>Æ

Move to top</P>

6. Create a second layer named secondLayer with a stacking order
of 2:

<div id=”secondLayer” style=”position: absolute; left: Æ

60px; top: 60px; width: 100px; height: 100px; background-Æ

color: lightgrey; z-index: 2;”>

note
• Simply resetting one layer’s

stacking order doesn’t alter
other page element’s stack-
ing order. To cause the layers
to flip positions in the stack
as in this example, you need
to change both layers’ stack-
ing order positions.

534 Part 11

Task 257

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 534

7. In the layer, create a link to call swapLayer design to move the layer
to the top of the stack; specify ‘secondLayer’ as the first argument
and ‘firstLayer’ as the second argument. The final page should
look like Listing 257-1.

<head>

<script language=”JavaScript”>

function swapLayer(topTarget,bottomTarget) Æ

{

document.getElementById(topTarget).style.Æ

zIndex = 2;

document.getElementById(bottomTarget).style.Æ

zIndex = 1;

}

</script>

</head>

<body>

<div id=”firstLayer” style=”position: absolute; left: Æ

10px; top: 10px; width: 100px; height: 100px; background-Æ

color: yellow; z-index: 1;”>

<p><a href=”javascript:swapLayer(‘firstLayer’,’Æ

secondLayer’)”>Move to top</P>

</div>

<div id=”secondLayer” style=”position: absolute; left: Æ

60px; top: 60px; width: 100px; height: 100px; background-Æ

color: lightgrey; z-index: 2;”>

<p><a href=”javascript:swapLayer(‘secondLayer’,’Æ

firstLayer’)”>Move to top</P>

</div>

</body>

Listing 257-1: Changing stacking order with JavaScript.

8. Save the file and close it. Open the file in a browser, and you see two
overlapping layers.

9. Click on the Move to Top link in the bottom layer, and it comes to
the top of the stack. Click on the Move to Top link in the other layer,
and you should return to the original state of the page.

Cross-Browser Compatibility and Issues 535

Task 257

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 535

Fading Objects

In the newer versions of Internet Explorer and Netscape, style sheet extensions
are available to control the opacity of objects on the page. Unfortunately, you

control opacity differently in Internet Explorer and Netscape. You control the
opacity with the following filter in your style definitions for Internet Explorer:

filter:alpha(opacity=opacity value);

By contrast, in Netscape you control the opacity as follows:

-moz-opacity: opacity value;

Since each browser will ignore attributes it doesn’t understand in your style defi-
nitions, you can actually combine these two style attributes in your styles. The
following task creates two layers. A form is provided to allow the user to adjust
the opacity of the top layer.

1. In a script block in the header of a new document, create a new func-
tion named setOpacity that takes two arguments (the ID of a layer
and an opacity as a percentage):

function setOpacity(target,percentage) {

2. In the function, test for the existence of document.all, and use it
to set the value of the layer object’s appropriate property:

if (document.all) {

document.all(target).filters.alpha.opacity = Æ

percentage;

} else if (document.getElementById) {

document.getElementById(target).style.MozOpacity = Æ

percentage/100;

}

3. In the body of the document, create the bottom layer:

<div id=”backLayer” style=”position: absolute; Æ

font-size: 60pt; left: 10px; top: 10px;”>

4. Create the top layer, which overlaps the bottom and obscures it:

<div id=”topLayer” style=”position: absolute; left: Æ

200px; top: 10px; width: 100px; height: 100px; Æ

background-color: yellow; filter:alpha(opacity=100); Æ

-moz-opacity:1;”>

5. Create a form with the ID buttonForm, and position the form
below the previous two layers:

<form id=”buttonForm” style=”position: absolute; left: Æ

200px; top: 200px;”>

notes
• Opacity controls the degree

to which an object is faded
and allows anything from
behind the object to show
through. Using opacity, you
can stack layers and allow
layers lower in the stack to
show through the layer
above them to one degree
or another.

• Internet Explorer has the
document.all method;
Netscape doesn’t. Passing
the ID of a layer to this
method returns the layer’s
object in the same way as
document.getElement
ByID. By testing for the
existence of document.
all, you can quickly deter-
mine which method you
need to use to set the
opacity.

caution
• In Internet Explorer, you

want to set the filters.
alpha.opacity property
of the layer in question
(that means document.
all(layer ID).
filters.alpha.
opacity). By contrast,
you set the style.Moz
Opacity property of the
layer’s object in Netscape
(that means, document.
getElementById
(layer ID).style.
MozOpacity).

536 Part 11

Task 258

12 542419 Ch11.qxd 11/26/03 11:29 AM Page 536

tips
• In Internet Explorer, the

opacity value can range
from 0 to 100, where 100
means the layer is com-
pletely opaque and you
cannot see anything hidden
behind the layer. At 0, the
layer is completely trans-
parent and you cannot see
the layer itself.

• In Netscape, the opacity is
a value from 0 to 1, where
1 is completely opaque
and 0 is completely
transparent.

6. In the form, create two form elements; the first is a text field named
opacity where the user can enter a percentage value for the opacity
of the top layer, and the second is a button that, when clicked, calls
the setOpacity. The final page should look like Listing 258-1.

<head>

<script language=”JavaScript”>

function setOpacity(target,percentage) {

if (document.all) {

document.all(target).filters.alpha.opacity = Æ

percentage;

} else if (document.getElementById) {

document.getElementById(target).style.Æ

MozOpacity = percentage/100;

}

}

</script>

</head>

<body>

<div id=”backLayer” style=”position: absolute; Æ

font-size: 60pt; left: 10px; top: 10px;”>

This Text is in the Background

</div>

<div id=”topLayer” style=”position: absolute; left: Æ

200px; top: 10px; width: 100px; height: 100px; background-Æ

color: yellow; filter:alpha(opacity=100); -moz-opacity:1;”>

This Layer is on Top

</div>

<form id=”buttonForm” style=”position: absolute; left: Æ

200px; top: 200px;”>

Opacity: <input type=”text” name=”opacity”>%

<input type=”button” value=”Set Opacity” Æ

onClick=”setOpacity(‘topLayer’,this.form.opacity.value)”>

</form>

</body>

Listing 258-1: Controlling layer opacity.

7. Save the file and open it in a browser. Initially, the top layer com-
pletely obscures part of the bottom layer.

8. Enter an opacity value in the form field, and click on the Set Opacity
button. The top layer fades to the opacity you specified.

Cross-Browser Compatibility and Issues 537

Task 258

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 537

Creating a Page Transition in
Internet Explorer

Since version 4, Internet Explorer has offered a feature that allows you to
specify special effect page transitions to control how one page appears to

replace another. You control the page transition effects through meta tags placed
in the header of your HTML documents. The tags are used to set Page-Enter
or Page-Exit HTTP headers to specify transitions for entering and leaving a
page. As the value for these HTTP headers, you specify the following:

RevealTrans(Duration: number of seconds, Transition: type of Æ

transition)

The duration indicates how many seconds it should take to complete the transi-
tion, while the transition type is a numeric value specifying one of two dozen
available effects. These include the following:

• 0: Box in

• 1: Box out

• 2: Circle in

• 3: Circle out

• 4: Wipe up

• 5: Wipe down

• 6: Wipe right

• 7: Wipe left

• 8: Vertical blinds

• 9: Horizontal blinds

• 10: Checkerboard across

• 11: Checkerboard down

The following task illustrates page transitions by creating a page with exit and
enter page effects:

1. In the header of a new document, create a meta tag for specifying a
transition for when the user enters the page. The transition effect
specified is for a checkerboard effect across the page:

<meta http-equiv=”Page-Enter” content=”RevealTrans Æ

(Duration=3, Transition=10)”>

notes
• As an example, when a

user clicks a link, the new
page might slide in from
the right to replace the
browser, or an effect similar
to the rotating of vertical
window blinds might cause
one page to replace
another in the browser
window.

• These page transition
effects are not available in
any version of Netscape.
The techniques described
here do not apply to
Netscape.

• meta tags allow you to
specify extra information to
be sent in the header of
the response from the
server to the browser.
Internet Explorer will pay
attention to the Page-
Enter and Page-Exit
headers if they exist, but
other browsers will simply
ignore HTTP headers that
they don’t understand.

538 Part 11

Task 259

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 538

2. Specify a second meta tag for the page exit. and use the vertical-
blinds transition effect:

<meta http-equiv=”Page-Exit” content=”RevealTrans Æ

(Duration=2, Transition=1)”>

3. Specify any body text that you want displayed in the page, so that the
final page looks like Listing 259-1.

<head>

<meta http-equiv=”Page-Enter” content=”RevealTrans Æ

(Duration=3, Transition=10)”>

<meta http-equiv=”Page-Exit” content=”RevealTrans Æ

(Duration=2, Transition=11)”>

</head>

<body>

This is the new page.

</body>

Listing 259-1: Specifying page transitions.

4. Save the file and close it. Open your favorite Web site in your
browser.

5. In the same browser window, open the file you just created. You
should see the page transition to the new one using the checkerboard-
across effect, as in Figure 259-1. In the same browser window, open
some other Web page and you should see the exit transition with the
vertical-blinds effect.

Figure 259-1: The checkerboard-across effect on page entry.

Cross-Browser Compatibility and Issues 539

Task 259

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 539

Installing the X Cross-Browser
Compatibility Library

As most of this part illustrates, the task of building cross-browser-compatible
code is difficult, especially if you plan to manipulate page elements such as

layers from within JavaScript. Luckily, many individuals have produced freely
available cross-browser Dynamic HTML libraries you can use to simplify this
process.

With these libraries, you generally call functions from the library to manipulate
objects, rather than use the direct JavaScript methods you normally would.
Sometimes you will even create all your page elements by calling functions in
the libraries.

These libraries include the following:

• CBE: www.cross-browser.com

• X: www.cross-browser.com

• DynAPI: http://dynapi.sourceforge.net/dynapi/

• Glimmer: www.inkless.com/glimmer

• DHTML Library: www.dhtmlcentral.com/projects/lib

The X library’s Web site is illustrated in Figure 260-1.

Figure 260-1: The X cross-browser compatibility library’s Web site.

notes
• Make sure the path to
x.js is correct in the
script tag. If x.js is not
in the same directory as
the HTML file, then specify
the relative path to the file.

• The x.js file is the only
file needed to use the X
cross-browser function
library.

540 Part 11

Task 260

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 540

tip
• If you want to build pages

and sites that make even
moderate use of Dynamic
HTML and you want those
pages to function reason-
ably well for most users,
you should seriously con-
sider the use of a library
rather than coding the
Dynamic HTML yourself. It
will make it easier to focus
on the functionality of your
page rather than the code
you will need to generate to
make the functionality pos-
sible in each browser.

For the purposes of this part of the book and the tasks that follow, you will use
the X library. Unlike some of the libraries listed here that are large, fully featured
libraries that manage the entire process of object creation through manipulation,
X is simply a series of functions that encapsulate manipulation tasks on existing
page elements in a browser-compatible way.

This task shows how to install the library into any application you are building:

1. Download the most recent version of the X library from www.
cross-browser.com. The most recent version as of the
publication of this book was in a file named x38.zip.

2. Extract the contents of the ZIP archive file to the directory where
you want to store the library files for future reference.

3. Copy the x.js file to the directory where you are building the files
for your JavaScript application.

4. In each page that will need to perform cross-browser page element
manipulation, include the following line in the header of the
HTML file:

<script language=”JavaScript” src=”x.js”></script>

5. Make calls in these pages to any of the X library methods as shown in
the remaining tasks in this part of the book.

Cross-Browser Compatibility and Issues 541

Task 260

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 541

Showing and Hiding Elements with X

The X cross-browser function library, introduced in Task 260, simplifies the
process of showing and hiding page elements such as layers. Showing or hid-

ing a layer with the X library requires two steps:

1. Include the x.js script library file in the header of your document.

2. Use the xShow and xHide functions to show and hide page elements:

xShow(“element ID”);

xHide(“element ID”);

The following task illustrates how to use these functions to display a layer and
then provide links to the user to show and hide the layer:

1. Create a new document in your preferred editor.

2. In the header of the document, include the x.js script library file:

<script language=”JavaScript” src=”x.js”></script>

3. In the body of the document, create a layer with the ID myLayer:

<div id=”myLayer” style=”width: 100px; height: 100px; Æ

background-color: lightgrey;”>

This is a layer

</div>

4. Create a link for showing the layer; the link should call xShow when
the user clicks on it:

Show Layer

5. Create a link for hiding the layer; the link should call xHide when
the user clicks on it. The final page should look like Listing 261-1.

<head>

<script language=”JavaScript” src=”x.js”></script>

</head>

<body>

background-color: lightgrey;”>

This is a layer

</div>

Show Layer

Hide Layer

</body>

Listing 261-1: Using xShow and xHide.

542 Part 11

Task 261

caution
• While cross-browser

libraries provide the benefit
of making it easy to
develop Dynamic HTML
applications for multiple
browsers, they can affect
the size and download time
of your pages. Remember,
the library is included in
every page. As a general-
purpose tool, a library nec-
essarily has more code
than if you handled the
cross-browser compatibility
code yourself and made it
specific to your needs.

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 542

6. Save the file and close it.

7. Open the file in your browser. You should see the layer followed by
the two links, as in Figure 261-1.

Figure 261-1: The layer and links.

8. Click on the Hide Layer link and the layer should disappear, as illus-
trated in Figure 261-2. Click on the Show Layer link to return to the
original state.

Figure 261-2: Hiding the layer.

Cross-Browser Compatibility and Issues 543

Task 261

cross-reference
• Refer to Task 260 to learn

how to properly include the
X library in your pages.

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 543

Controlling Stacking Order with X

The X cross-browser function library, introduced in Task 260, simplifies the
process of controlling the stacking order of page elements such as layers.

Changing the stacking order of an element with the X library requires two steps:

1. Include the x.js script library file in the header of your document.

2. Use the xZIndex function to specify a new stacking order value:

xZIndex(“element ID”, stacking order value);

The following task illustrates how to use this function to display two overlapping
layers and then to provide links that the user selects to choose which layer to dis-
play at the top of the stack:

1. Create a new document in your preferred editor.

2. In the header of the document, include the x.js script library file:

<script language=”JavaScript” src=”x.js”></script>

3. In the body of the document, create a layer with the ID
firstLayer. The layer should contain a link that calls xZIndex
twice to set the appropriate stacking order for the two layers:

<div id=”firstLayer” style=”position: absolute; width: Æ

100px; height: 100px; left: 10px; top: 10px; background-Æ

color: lightgrey; z-index: 1;”>

<a href=”#” onClick=”xZIndex(‘firstLayer’,2);xZIndexÆ

(‘secondLayer’,1); return false;”>Move to Top

</div>

4. Create another layer that overlaps the first layer with the ID
secondLayer. The layer should contain a link that calls xZIndex
twice to set the appropriate stacking order for the two layers. The
final page should look like Listing 262-1.

5. Save the file and close it.

6. Open the file in your browser. You should see the two layers contain-
ing links, as in Figure 262-1.

7. Click on the Move to Top link, and the bottom layer and the layer
should move to the top.

note
• The stacking order should

be an integer numeric
value; lower values are
stacked below elements
with higher values.

544 Part 11

Task 262

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 544

<head>

<script language=”JavaScript” src=”x.js”></script>

</head>

<body>

<div id=”firstLayer” style=”position: absolute; width: Æ

100px; height: 100px; left: 10px; top: 10px; background-Æ

color: lightgrey; z-index: 1;”>

<a href=”#” Æ

onClick=”xZIndex(‘firstLayer’,2);xZIndex(‘secondLayer’,1); Æ

return false;”>Move to Top

</div>

<div id=”secondLayer” style=”position: absolute; width: Æ

100px; height: 100px; left: 60px; top: 60px; background-Æ

color: yellow; z-index: 2;”>

<a href=”#”onClick=”xZIndex(‘secondLayer’,2);xZIndexÆ

(‘firstLayer’,1); return false;”>Move to Top

</div>

</body>

Listing 262-1: Using xZIndex.

Figure 262-1: Two overlapping layers.

Cross-Browser Compatibility and Issues 545

Task 262

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 545

Changing Text Color with X

The X cross-browser function library, introduced in Task 260, simplifies the
process of changing the text color of page elements such as layers. Changing

the text color of a layer with the X library requires two steps:

1. Include the x.js script library file in the header of your document.

2. Use the xColor function to change the color of page elements:

xColor(“element ID”,”Color”);

The following task illustrates how to use these functions to display a layer and
then provide a form the user can use to change the text color in the layer:

1. Create a new document in your preferred editor.

2. In the header of the document, include the x.js script library file:

<script language=”JavaScript” src=”x.js”></script>

3. In the body of the document, create a layer with the ID myLayer:

<div id=”myLayer” style=”font-size: 40pt; color: blue;”>

This is my text

</div>

4. Create a form following the layer. The form should have a text field
named textColor and a button that is used to call the xColor
method to set the layer’s text color to the color specified in the text
field. The final page should look like Listing 263-1.

<head>

<script language=”JavaScript” src=”x.js”></script>

</head>

<body>

<div id=”myLayer” style=”font-size: 40pt; color: blue;”>

This is my text

</div>

<form>

Color: <input type=”text” name=”textColor”>

<input type=”button” Æ

onClick=”xColor(‘myLayer’,this.form.textColor.value);” Æ

value=”Set Color”>

</form>

</body>

Listing 263-1: Using xColor.

note
• You can see the second

argument passed in calling
the function is this.
form.textColor.valu
e. The this keyword
refers to the object associ-
ated with the button itself.
For each form element,
the associated object has
a property called form
that references the object
of the form in which the
element is contained. From
here you can reference
other form fields by their
names and values.

546 Part 11

Task 263

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 546

5. Save the file and close it.

6. Open the file in your browser. You should see the layer followed by
the form, as in Figure 263-1.

Figure 263-1: The layer and form.

7. Enter a color in the form and click the Set Color button. The text
color in the layer changes as shown in Figure 263-2.

Figure 263-2: Changing text color (in grayscale).

Cross-Browser Compatibility and Issues 547

Task 263

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 547

Setting a Background Color with X

The X cross-browser function library, introduced in Task 260, simplifies the
process of changing the background color of page elements such as layers.

Changing the background color of a layer with the X library requires two steps:

1. Include the x.js script library file in the header of your document.

2. Use the xBackground function to change the background color of
page elements:

xColor(“element ID”,”Color”);

The following task illustrates how to use these functions to display a layer and
then provide a form the user can use to change the background color in the layer:

1. Create a new document in your preferred editor.

2. In the header of the document, include the x.js script library file:

<script language=”JavaScript” src=”x.js”></script>

3. In the body of the document, create a layer with the ID myLayer:

<div id=”myLayer” style=”font-size: 40pt; color: blue; Æ

background-color: lightgrey;”>

This is my text

</div>

4. Create a form following the layer. The form should have a text field
named backgroundColor and a button that is used to call the
xBackground method to set the layer’s background color to the
color specified in the text field. The final page should look like
Listing 264-1.

<head>

<script language=”JavaScript” src=”x.js”></script>

</head>

<body>

<div id=”myLayer” style=”font-size: 40pt; color: blue; Æ

background-color: lightgrey;”>

This is my text

</div>

<form>

Color for background: <input type=”text” Æ

name=”backgroundColor”>

<input type=”button” onClick=”xBackground(‘myLayer’,Æ

this.form.textColor.value);” value=”Set Color”>

</form>

</body>

Listing 264-1: Using xBackground.

note
• You can see the second

argument passed in calling
the function is this.
form.backgroundColo
r.value. The this key-
word refers to the object
associated with the button
itself. For each form ele-
ment, the associated
object has a property
called form that refer-
ences the object of the
form in which the element
is contained. From here you
can reference other form
fields by their names and
values.

548 Part 11

Task 264

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 548

5. Save the file and close it.

6. Open the file in your browser. You should see the layer followed by
the form, as in Figure 264-1.

Figure 264-1: The layer and form.

7. Enter a color in the form and click the Set Color button. The back-
ground color in the layer changes as shown in Figure 264-2.

Figure 264-2: Changing background color (in grayscale).

Cross-Browser Compatibility and Issues 549

Task 264

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 549

Setting a Background Image with X

The X cross-browser function library, introduced in Task 260, simplifies the
process of applying a background image to page elements such as layers.

Applying a background image to a page element with the X library requires
two steps:

1. Include the x.js script library file in the header of your document.

2. Use the XBackground function to set the background image for
page elements:

xBackground(“element ID”,”color”,”image path or URL”);

The following task illustrates how to use these functions to display a layer and
then provide a link to apply a background image to the layer:

1. Create a new document in your preferred editor.

2. In the header of the document, include the x.js script library file:

<script language=”JavaScript” src=”x.js”></script>

3. In the body of the document, create a layer with the ID myLayer:

<div id=”myLayer” style=”font-size: 40pt; color: blue; Æ

background-color: lightgrey; width: 300px; height: Æ

300px;”>

This is a layer

</div>

4. Create a link for applying the background image; the link should call
xBackground when the user clicks on it. The final page should look
like Listing 265-1.

<head>

<script language=”JavaScript” src=”x.js”></script>

</head>

<body>

<div id=”myLayer” style=”font-size: 40pt; color: blue; Æ

background-color: lightgrey; width: 300px; height: 300px;”>

This is a layer

</div>

<a href=”#” Æ

onClick=”xBackground(‘mylayer’,’lightgrey’,’ethan.jpg’);”>Æ

Set background image for layer

</body>

Listing 265-1: Using xBackground.

notes
• Notice that the background

color is being set as well;
this is because the image
must be the third argument
to the function; the image
will override the back-
ground color.

• If an image is smaller than
a layer, it is normally tiled
in the layer as shown here.

550 Part 11

Task 265

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 550

5. Save the file and close it.

6. Open the file in your browser. You should see the layer followed by
the link, as in Figure 265-1.

Figure 265-1: The layer and link.

7. Click on the link and the layer should take on a background image, as
illustrated in Figure 265-2.

Figure 265-2: Setting the background image for a layer.

Cross-Browser Compatibility and Issues 551

Task 265

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 551

Repositioning an Element with X

The X cross-browser function library, introduced in Task 260, simplifies the
process of repositioning page elements such as layers. Changing the position

of a page element with the X library requires two steps:

1. Include the x.js script library file in the header of your document.

2. Use the xMoveTo function to change the position of page elements:

xMoveTo(“element ID”, x position, y position);

The following task illustrates how to use these functions to display a layer and
then provide a form the user can use to change the position of the layer:

1. Create a new document in your preferred editor.

2. In the header of the document, include the x.js script library file:

<script language=”JavaScript” src=”x.js”></script>

3. In the body of the document, create a layer with the ID myLayer:

<div id=”myLayer” style=”position: absolute; width: Æ

100px; height: 100px; left: 10px; top: 10px; background-Æ

color: lightgrey;”>

This is a layer

</div>

4. Create a form following the layer. The form should have two text
fields named x and y and a button that is used to call the xMoveTo
function to set the layer’s position as specified in the text fields. The
final page should look like Listing 266-1.

<head>

<script language=”JavaScript” src=”x.js”></script>

</head>

<body>

<div id=”myLayer” style=”position: absolute; width: Æ

100px; height: 100px; left: 10px; top: 10px; background-Æ

color: lightgrey;”>

This is a layer

</div>

<form style=”position: absolute; left: 10px; top: Æ

120px;”>

X: <input type=”text” name=”x”>

Y: <input type=”text” name=”y”>

<input type=”button” value=”Reset Position” Æ

onClick=”xMoveTo(‘myLayer’,this.form.x.value,this.form.y.Æ

value);”>

</form>

</body>

Listing 266-1: Using xMoveTo.

note
• You can see the second

argument passed in calling
the function is
this.form.x.value.
The this keyword refers to
the objet associated with
the button itself. For each
form element, the associ-
ated object has a property
called form that refer-
ences the object of the
form in which the element
is contained. From here you
can reference other form
fields by their names and
values, as is done in the
third argument as well.

552 Part 11

Task 266

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 552

5. Save the file and close it.

6. Open the file in your browser. You should see the layer followed by
the form, as in Figure 266-1.

Figure 266-1: The layer and form.

7. Enter a new position in the form and click the Reset Position button.
The position of the layer changes as shown in Figure 266-2.

Figure 266-2: Changing position.

Cross-Browser Compatibility and Issues 553

Task 266

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 553

Sliding an Element with X

The X cross-browser function library, introduced in Task 260, simplifies the
process of repositioning page elements such as layers. Changing the position

of a page element by sliding it with the X library requires two steps:

1. Include the x.js script library file in the header of your document.

2. Use the xSlideTo function to slide page elements to new positions:

xSlideTo(“element ID”, x position, y position, duration);

The following task illustrates how to use these functions to display a layer and
then provide a form the user can use to change the position of the layer by sliding
the layer:

1. Create a new document in your preferred editor.

2. In the header of the document, include the x.js script library file:

<script language=”JavaScript” src=”x.js”></script>

3. In the body of the document, create a layer with the ID myLayer:

<div id=”myLayer” style=”position: absolute; width: Æ

100px; height: 100px; left: 10px; top: 10px; background-Æ

color: lightgrey;”>

This is a layer

</div>

4. Create a form following the layer. The form should have two text
fields named x and y and a button that is used to call the xSlideTo
function to set the layer’s position as specified in the text fields. The
final page should look like Listing 267-1.

<head>

<script language=”JavaScript” src=”x.js”></script>

</head>

<body>

<div id=”myLayer” style=”position: absolute; width: Æ

100px; height: 100px; left: 10px; top: 10px; background-Æ

color: lightgrey;”>

This is a layer

</div>

<form style=”position: absolute; left: 10px; top: Æ

120px;”>

X: <input type=”text” name=”x”>

Y: <input type=”text” name=”y”>

<input type=”button” value=”Reset Position” Æ

onClick=”xSlideTo(‘myLayer’,this.form.x.value,this.form.y.Æ

value);”>

</form>

</body>

Listing 267-1: Using xSlideTo.

note
• You can see the second

argument passed in calling
the function is
this.form.x.value.
The this keyword refers to
the object associated with
the button itself. For each
form element, the associ-
ated object has a property
called form that refer-
ences the object of the
form in which the element
is contained. From here you
can reference other form
fields by their names and
values, as is done in the
third argument as well.

554 Part 11

Task 267

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 554

tip
• The duration is specified in

milliseconds and indicates
how long it should take to
slide the element from its
original location to the new
location.

5. Save the file and close it.

6. Open the file in your browser. You should see the layer followed by
the form, as in Figure 267-1.

Figure 267-1: The layer and form.

7. Enter a new position in the form and click the Reset Position button.
The layer slides to the new position, as shown in Figure 267-2.

Figure 267-2: Changing position with sliding.

Cross-Browser Compatibility and Issues 555

Task 267

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 555

Changing Layer Sizes with X

The X cross-browser function library, introduced in Task 260, simplifies the
process of resizing page elements such as layers. Changing the size of a page

element with the X library requires two steps:

1. Include the x.js script library file in the header of your document.

2. Use the xResizeTo function to change the size of page elements:

xResizeTo(“element ID”, width, height);

The following task illustrates how to use these functions to display a layer and
then provide a form the user can use to change the size of the layer:

1. Create a new document in your preferred editor.

2. In the header of the document, include the x.js script library file:

<script language=”JavaScript” src=”x.js”></script>

3. In the body of the document, create a layer with the ID myLayer:

<div id=”myLayer” style=”position: absolute; width: Æ

100px; height: 100px; left: 10px; top: 120px; background-Æ

color: lightgrey;”>

This is a layer

</div>

4. Create a form following the layer. The form should have two text
fields named width and height and a button that is used to call the
xResizeTo function to set the layer’s size as specified in the text
fields. The final page should look like Listing 268-1.

<head>

<script language=”JavaScript” src=”x.js”></script>

</head>

<body>

<div id=”myLayer” style=”position: absolute; width: Æ

100px; height: 100px; left: 10px; top: 120px; background-Æ

color: lightgrey;”>

This is a layer

</div>

<form style=”position: absolute; left: 10px; top: 10px;”>

Width: <input type=”text” name=”x”>

Height: <input type=”text” name=”y”>

<input type=”button” value=”Reset Size” Æ

onClick=”xResizeTo(‘myLayer’,this.form.x.value,this.Æ

form.y.value);”>

</form>

</body>

Listing 268-1: Using xResizeTo.

note
• You can see the second

argument passed in calling
the function is this.
form.width.value.
The this keyword refers
to the object associated
with the button itself. For
each form element, the
associated object has a
property called form that
references the object of the
form in which the element
is contained. From here you
can reference other form
fields by their names and
values, as is done in the
third argument as well.

556 Part 11

Task 268

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 556

5. Save the file and close it.

6. Open the file in your browser. You should see the layer followed by
the form, as in Figure 268-1.

Figure 268-1: The layer and form.

7. Enter a new size in the form and click the Reset Size button. The
size of the layer changes as shown in Figure 268-2.

Figure 268-2: Changing size.

Cross-Browser Compatibility and Issues 557

Task 268

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 557

12 542419 Ch11.qxd 11/19/03 10:23 AM Page 558

Appendix A
JavaScript Quick Reference

The following reference outlines the properties and methods associated with JavaScript
objects and indicates the browser support for each using a series of icons:

Icon Browser

[Netscape 3

] Netscape 4

{ Netscape 6

} Netscape 7 and above

- Microsoft Internet Explorer 4

= Microsoft Internet Explorer 5

_ Microsoft Internet Explorer 5.5

+ Microsoft Internet Explorer 6

In the reference listings for each object, the following colors indicate if an item is a property
or method:

Text Color Coding Description

■■■ Property in black

■■■ Method in blue

By no means is this a comprehensive reference but instead provides a quick reference to the
objects that are most commonly used in JavaScript. Obscure, older, or rarely used objects may
not be included.

Anchor Object - = _ +] { }
name - = _ +] { }
text] { }
x] { }
y] { }

Applet Object - = _ + { }
align - = _ + { }

13 542419 AppA.qxd 11/19/03 10:24 AM Page 559

code - = _ + { }
codeBase - = _ + { }
height - = _ + { }
hspace - = _ + { }
name - = _ + { }
vspace - = _ + { }
width - = _ + { }
blur - = _ + { }
focus - = _ + { }

Area Object - = _ +] { }
alt - = _ + { }
coords - = _ + { }
hash - = _ +] { }
host - = _ +] { }
hostname - = _ +] { }
href - = _ +] { }
noHref - = _ + { }
pathname - = _ +] { }
port - = _ +] { }
protocol - = _ +] { }
search - = _ +] { }
shape - = _ + { }
target - = _ +] { }
x - = _ +] { }
y - = _ +] { }

Array Object - = _ +] { }
constructor - = _ +] { }
index] { }
input] { }
length - = _ +] { }
prototype - = _ +] { }

560 Appendix A

13 542419 AppA.qxd 11/19/03 10:24 AM Page 560

concat - = _ +] { }
join - = _ +] { }
pop _ +] { }
push _ +] { }
reverse - = _ +] { }
shift _ +] { }
slice - = _ +] { }
sort - = _ +] { }
slice - = _ +] { }
toLocaleString - = _ +
toSource] { }
toString - = _ +] { }
unshift _ +] { }
valueOf - = _ +] { }

Boolean Object - = _ +] { }
constructor - = _ +] { }
prototype - = _ +] { }
toSource] { }
toString - = _ +] { }
valueOf - = _ +] { }

Button Object - = _ +] { }
form - = _ +] { }
name - = _ +] { }
type - = _ +] { }
value - = _ +] { }
blur - = _ +] { }
click - = _ +] { }
focus - = _ +] { }
handleEvent]

JavaScript Quick Reference 561

13 542419 AppA.qxd 11/19/03 10:24 AM Page 561

Checkbox Object - = _ +] { }
checked - = _ +] { }
defaultChecked - = _ +] { }
form - = _ +] { }
name - = _ +] { }
type - = _ +] { }
value - = _ +] { }
blur - = _ +] { }
click - = _ +] { }
focus - = _ +] { }
handleEvent]

cssRule Object { }
cssText { }
parentStyleSheet { }
selectorText { }
style { }

Debug Object - = _ +
write = _ +
writeln = _ +

Date Object - = _ +] { }
constructor - = _ +] { }
prototype - = _ +] { }
getDate - = _ +] { }
getDay - = _ +] { }
getFullYear - = _ +] { }
getHours - = _ +] { }
getMilliseconds - = _ +] { }
getMinutes - = _ +] { }
getMonth - = _ +] { }
getSeconds - = _ +] { }

562 Appendix A

13 542419 AppA.qxd 11/19/03 10:24 AM Page 562

getTime - = _ +] { }
getTimezoneOffset - = _ +] { }
getUTCDate - = _ +] { }
getUTCDay - = _ +] { }
getUTCFullYear - = _ +] { }
getUTCHours - = _ +] { }
getUTCMilliseconds - = _ +] { }
getUTCMinutes - = _ +] { }
getUTCMonth - = _ +] { }
getUTCSeconds - = _ +] { }
getVarDate - = _ +
getYear - = _ +] { }
parse - = _ +] { }
setDate - = _ +] { }
setFullYear - = _ +] { }
setHours - = _ +] { }
setMilliseconds - = _ +] { }
setMinutes - = _ +] { }
setMonth - = _ +] { }
setSeconds - = _ +] { }
setTime - = _ +] { }
setUTCDate - = _ +] { }
setUTCFullYear - = _ +] { }
setUTCHours - = _ +] { }
setUTCMilliseconds - = _ +] { }
setUTCMinutes - = _ +] { }
setUTCMonth - = _ +] { }
setUTCSeconds - = _ +] { }
setYear - = _ +] { }
toDateString _ +
toGMTString - = _ +] { }
toLocaleDateString - = _ + { }

JavaScript Quick Reference 563

13 542419 AppA.qxd 11/19/03 10:24 AM Page 563

toLocaleString - = _ +] { }
toLocaleTimeString - = _ + { }
toSource] { }
toString - = _ +] { }
toTimeString _ +
toUTCString - = _ +] { }
UTC - = _ +] { }
valueOf - = _ +] { }

document Object - = _ +] { }
activeElement - = _ +
attributes = _ + { }
alinkColor - = _ +] { }
all - = _ +
anchors - = _ +] { }
applets - = _ +] { }
areas - = _ +
bgColor - = _ +] { }
body - = _ + { }
charset - = _ +
characterSet { }
childNodes = _ + { }
children - = _ +
compatMode { }
classes]
cookie - = _ +] { }
contentWindow { }
defaultCharset - = _ +
documentElement = _ + { }
doctype { }
domain - = _ +] { }
embeds - = _ +] { }

564 Appendix A

13 542419 AppA.qxd 11/19/03 10:24 AM Page 564

expando - = _ +
fgColor - = _ +] { }
firstChild = _ + { }
forms - = _ +] { }
height] { }
ids]
images - = _ +] { }
implementation { }
lastChild = _ + { }
lastModified - = _ +] { }
layers]
linkColor - = _ +] { }
links - = _ +] { }
location - = _ +] { }
namespaceURI = _ + { }
nextSibling = _ + { }
nodeName = _ + { }
nodeType = _ + { }
nodeValue { }
ownerDocument { }
parentNode = _ + { }
plugins - = _ +] { }
previousSibling = _ + { }
referrer - = _ +] { }
scripts - = _ +
stylesheets - = _ + { }
tags]
title - = _ +] { }
URL - = _ +] { }
vlinkColor - = _ +] { }
width - = _ +] { }
clear - = _ +] { }

JavaScript Quick Reference 565

13 542419 AppA.qxd 11/19/03 10:24 AM Page 565

close - = _ +] { }
createAttribute { }
createDocumentFragment { }
createElement - = _ + { }
createStylesheet - = _ +
createTextNode = _ + { }
captureEvents]
contextual]
elementFromPoint - = _ +
focus - = _ + { }
getElementById = _ + { }
getElementsByName = _ + { }
getElementsByTagName = _ + { }
getSelection]
handleEvent]
open - = _ +] { }
releaseEvents]
routeEvent]
write - = _ +] { }
writeln - = _ +] { }

Enumerator Object - = _ +
attends - = _ +
item - = _ +
moveFirst - = _ +
moveNext - = _ +

Error Object = _ +
description = _ +
message = _ +
name _ +
number = _ +

566 Appendix A

13 542419 AppA.qxd 11/19/03 10:24 AM Page 566

event Object] { }
altKey { }
bubbles { }
cancelBubble { }
cancelable { }
charCode { }
clientX { }
clientY { }
ctrlKey { }
currentTarget { }
data]
detail { }
eventPhase { }
height]
isChar { }
keyCode { }
layerX] { }
layerY] { }
metaKey { }
modifiers]
pageX] { }
pageY] { }
relatedTarget { }
screenX] { }
screenY] { }
shiftKey { }
target] { }
timeStamp { }
type] { }
view { }
width]
which]

JavaScript Quick Reference 567

13 542419 AppA.qxd 11/19/03 10:24 AM Page 567

x]
y]
initEvent { }
initMouseEvent { }
initUIEvent { }
preventDefault { }
stopPropagation { }

FileUpload Object - = _ +] { }
form - = _ +] { }
name - = _ +] { }
type - = _ +] { }
value - = _ +] { }
blur - = _ +] { }
focus - = _ +] { }
handleEvent]
select - = _ +] { }

Form Object - = _ +] { }
action - = _ +] { }
acceptCharset { }
elements - = _ +] { }
encoding - = _ +] { }
enctype - = _ + { }
length - = _ +] { }
method - = _ +] { }
name - = _ +] { }
target - = _ +] { }
handleEvent]
reset - = _ +] { }
submit - = _ +] { }

568 Appendix A

13 542419 AppA.qxd 11/19/03 10:24 AM Page 568

FrameSet Object { }
cols { }
rows { }

Frame Object { }
contentDocument { }
contentWindow { }
frameBorder { }
longDesc { }
marginHeight { }
marginWidth { }
name] { }
noResize { }
scrolling { }
src { }

Function Object - = _ +] { }
arguments - = _ +] { }
arguments.callee] { }
arguments.caller] { }
arguments.length] { }
callee _ +
caller - = _ +
arity] { }
constructor - = _ +] { }
length - = _ +] { }
prototype - = _ +] { }
apply _ +] { }
call _ +] { }
toSource] { }
toString - = _ +] { }
valueOf - = _ +] { }

JavaScript Quick Reference 569

13 542419 AppA.qxd 11/19/03 10:24 AM Page 569

Global Object = _ +
Infinity = _ +
NaN = _ +
undefined _ +
decodeURI _ +
decodeURIComponent _ +
encodeURI _ +
encodeURIComponent _ +
escape = _ +
eval = _ +
isFinite = _ +
isNaN = _ +
parseFloat = _ +
parseInt = _ +
unescape = _ +

Hidden Object - _ +] { }
form - = _ +] { }
maxLength = _ + { }
name - = _ +] { }
readOnly = _ + { }
size = _ + { }
type - = _ +] { }
value - = _ +] { }

History Object - = _ +] { }
current]
length - = _ +] { }
next]
previous]
back - = _ +] { }
forward - = _ +] { }

570 Appendix A

13 542419 AppA.qxd 11/19/03 10:24 AM Page 570

go - = _ +] { }

Iframe Object { }
align { }
contentDocument { }
contentWindow { }
frameBorder { }
longDesc { }
marginHeight { }
marginWidth { }
name] { }
noResize { }
scrolling { }
src { }

Image Object - = _ +] { }
align - = _ + { }
alt - = _ + { }
border - = _ +] { }
complete - = _ +] { }
height - = _ +] { }
href - = _ + { }
hspace - = _ +] { }
isMap - = _ + { }
lowsrc - = _ +] { }
name - = _ +] { }
src - = _ +] { }
useMap - = _ + { }
vpsace - = _ +] { }
width - = _ +] { }
x]
y]
handleEvent]

JavaScript Quick Reference 571

13 542419 AppA.qxd 11/19/03 10:24 AM Page 571

Layer Object]
above]
background]
bgColor]
below]
clip.bottom]
clip.height]
clip.left]
clip.right]
clip.top]
clip.width]
document]
left]
name]
pageX]
pageY]
parentLayer]
siblingAbove]
siblingBelow]
src]
top]
visibility]
window]
x]
y]
zIndex]
captureEvents]
handleEvent]
load]
moveAbove]
moveBelow]
moveBy]

572 Appendix A

13 542419 AppA.qxd 11/19/03 10:24 AM Page 572

moveTo]
moveToAbsolute]
releaseEvents]
resizeBy]
resizeTo]
routeEvent]

Link Object - = _ +] { }
hash - = _ +] { }
host - = _ +] { }
hostname - = _ +] { }
href - = _ +] { }
name - = _ + { }
pathname - = _ +] { }
port - = _ +] { }
protocol - = _ +] { }
rel - = _ + { }
rev - = _ + { }
search - = _ +] { }
target - = _ +] { }
text]
x]
y]
handleEvent]

Location Object - = _ +] { }
hash - = _ +] { }
host - = _ +] { }
hostname - = _ +] { }
href - = _ +] { }
pathname - = _ +] { }
port - = _ +] { }
protocol - = _ +] { }

JavaScript Quick Reference 573

13 542419 AppA.qxd 11/19/03 10:24 AM Page 573

search - = _ +] { }
reload - = _ +] { }
replace - = _ +] { }

Math Object - = _ +] { }
E - = _ +] { }
LN2 - = _ +] { }
LN10 - = _ +] { }
LOG2E - = _ +] { }
LOG10E - = _ +] { }
PI - = _ +] { }
SQRT1_2 - = _ +] { }
SQRT2 - = _ +] { }
abs - = _ +] { }
acos - = _ +] { }
asin - = _ +] { }
atan - = _ +] { }
atan2 - = _ +] { }
ceil - = _ +] { }
cos - = _ +] { }
exp - = _ +] { }
floor - = _ +] { }
log - = _ +] { }
max - = _ +] { }
min - = _ +] { }
pow - = _ +] { }
random - = _ +] { }
round - = _ +] { }
sin - = _ +] { }
sqrt - = _ +] { }
tan - = _ +] { }

574 Appendix A

13 542419 AppA.qxd 11/19/03 10:24 AM Page 574

MimeType Object - = _ +] { }
description - = _ +] { }
enabledPlugin - = _ +] { }
suffixes - = _ +] { }
type - = _ +] { }

navigator Object - = _ +] { }
appCodeName - = _ +] { }
appMinorVersion - = _ +
appName - = _ +] { }
appVersion - = _ +] { }
browserLanguage - = _ +
cookieEnabled - = _ + { }
cpuClass - = _ +
language] { }
mimeTypes - = _ +] { }
online - = _ +
oscpu { }
platform - = _ +] { }
plugins - = _ +] { }
product { }
productSub { }
systemLanguage - = _ +
userAgent - = _ +] { }
userLanguage - = _ +
userProfile - = _ +
vendor { }
vendorSub { }
javaEnabled - = _ +] { }
plugins.refresh]
preference]
savePreferences]

JavaScript Quick Reference 575

13 542419 AppA.qxd 11/19/03 10:24 AM Page 575

taintEnabled - = _ +] { }

Number Object - = _ +] { }
MAX_VALUE - = _ +] { }
MIN_VALUE - = _ +] { }
NaN - = _ +] { }
NEGATIVE_INFINITY - = _ +] { }
POSITIVE_INFINITY - = _ +] { }
constructor - = _ +] { }
prototype - = _ +] { }
toExponential _ + { }
toFixed _ + { }
toLocaleString - = _ +
toPrecision _ + { }
toSource] { }
toString - = _ +] { }
valueOf - = _ +] { }

Object Object - = _ + { }
prototype - = _ +] { }
constructor - = _ +] { }
propertyIsEnumerable _ +
eval] { }
isPrototypeOf _ +
hasOwnProperty _ +
toLocaleString - = _ +
toSource] { }
toString - = _ +] { }
unwatch] { }
valueOf - = _ +] { }
watch] { }

Option Object - = _ +] { }
defaultSelected - = _ +] { }

576 Appendix A

13 542419 AppA.qxd 11/19/03 10:24 AM Page 576

index - = _ +] { }
form - = _ + { }
length]
selected - = _ +] { }
text - = _ +] { }
value - = _ +] { }
remove = _ + { }

Password Object - = _ +] { }
defaultValue - = _ +] { }
form - = _ +] { }
maxLength - = _ + { }
name - = _ +] { }
readOnly - = _ + { }
size - = _ + { }
type - = _ +] { }
value - = _ +] { }
blur - = _ +] { }
focus - = _ +] { }
handleEvent]
select - = _ +] { }

Plugin Object - = _ +] { }
description - = _ +] { }
filename - = _ +] { }
length - = _ +] { }
name - = _ +] { }
refresh - = _ +] { }

Radio Object - = _ +] { }
checked - = _ +] { }
defaultChecked - = _ +] { }
form - = _ +] { }

JavaScript Quick Reference 577

13 542419 AppA.qxd 11/19/03 10:24 AM Page 577

name - = _ +] { }
type - = _ +] { }
value - = _ +] { }
blur - = _ +] { }
click - = _ +] { }
focus - = _ +] { }
handleEvent]

Range Object { }
collapsed { }
commonAncestorContainer { }
endContainer { }
endOffset { }
startContainer { }
startOffset { }
createRange { }
setStart { }
setEnd { }
setStartBefore { }
setStartAfter { }
setEndBefore { }
setEndAfter { }
selectNode { }
selectNodeContents { }
collapse { }
cloneContents { }
deleteContents { }
extractContents { }
insertNode { }
surroundContents { }
compareBoundaryPoints { }
cloneRange { }

578 Appendix A

13 542419 AppA.qxd 11/19/03 10:24 AM Page 578

detach { }
toString { }

RegExp Object - = _ +] { }
constructor] { }
global] { }
ignoreCase] { }
index - = _ +
input - = _ +]
lastIndex - = _ +] { }
lastMatch _ +]
lastParen _ +]
leftContext _ +]
multiline] { }
prototype] { }
rightContext _ +]
source] { }
compile]
exec] { }
test] { }
toSource] { }
toString] { }
valueOf]

Regular Expression Object - = _ +
global _ +
ignoreCase _ +
multiline _ +
source - = _ +
compile - = _ +
exec - = _ +
test - = _ +

JavaScript Quick Reference 579

13 542419 AppA.qxd 11/19/03 10:24 AM Page 579

Reset Object - = _ +] { }
form - = _ +] { }
name - = _ +] { }
type - = _ +] { }
value - = _ +] { }
blur - = _ +] { }
click - = _ +] { }
focus - = _ +] { }
handleEvent]

screen Object - = _ +] { }
availHeight - = _ +] { }
availLeft] { }
availTop] { }
availWidth - = _ +] { }
bufferDepth - = _ +
colorDepth - = _ +] { }
fontSmoothingEnabled - = _ +
height - = _ +] { }
left { }
pixelDepth - = _ +] { }
top { }
updateInterval - = _ +
width - = _ +] { }

Script Object - = _ + { }
defer - = _ + { }
event - = _ + { }
htmlFor - = _ + { }
language - = _ + { }
src - = _ + { }

580 Appendix A

13 542419 AppA.qxd 11/19/03 10:24 AM Page 580

text - = _ + { }
type - = _ + { }

Select Object - = _ +] { }
form - = _ +] { }
length - = _ +] { }
multiple - = _ + { }
name - = _ +] { }
options - = _ +] { }
selectedIndex - = _ +] { }
size - = _ + { }
type - = _ +] { }
value - = _ + { }
blur - = _ +] { }
focus - = _ +] { }
handleEvent]

String Object - = _ +] { }
constructor - = _ +] { }
length - = _ +] { }
prototype - = _ +] { }
anchor - = _ +] { }
big - = _ +] { }
blink - = _ +] { }
bold - = _ +] { }
charAt - = _ +] { }
charCodeAt _ +] { }
concat - = _ +] { }
fixed - = _ +] { }
fontcolor - = _ +] { }
fontsize - = _ +] { }
fromCharCode - = _ +] { }

JavaScript Quick Reference 581

13 542419 AppA.qxd 11/19/03 10:24 AM Page 581

indexOf - = _ +] { }
italics - = _ +] { }
lastIndexOf - = _ +] { }
link - = _ +] { }
localeCompare _ + { }
match - = _ +] { }
replace - = _ +] { }
search - = _ +] { }
slice - = _ +] { }
small - = _ +] { }
split - = _ +] { }
strike - = _ +] { }
sub - = _ +] { }
substr - = _ +] { }
substring - = _ +] { }
sup - = _ +] { }
toLocaleLowerCase _ +
toLocaleUpperCase _ +
toLowerCase - = _ +] { }
toUpperCase - = _ +] { }
toSource] { }
toString - = _ +] { }
valueOf - = _ +] { }

Style Object - = _ + { }
accelerator { }
azimuth { }
align

background - = _ + { }
backgroundAttachment - = _ + { }
backgroundColor - = _ + { }

582 Appendix A

13 542419 AppA.qxd 11/19/03 10:24 AM Page 582

backgroundImage - = _ + { }
backgroundPosition - = _ + { }
backgroundPositionX - = _ +
backgroundPositionY - = _ +
backgroundRepeat - = _ + { }
border - = _ + { }
borderBottom - = _ + { }
borderBottomColor - = _ + { }
borderBottomStyle - = _ + { }
borderBottomWidth - = _ + { }
borderCollapse { }
borderColor - = _ + { }
borderLeft - = _ + { }
borderLeftColor - = _ + { }
borderLeftStyle - = _ + { }
borderLeftWidth - = _ + { }
borderRight - = _ + { }
borderRightColor - = _ + { }
borderRightStyle - = _ + { }
borderRightWidth - = _ + { }
borderSpacing { }
borderStyle - = _ + { }
borderTop - = _ + { }
borderTopColor - = _ + { }
borderTopStyle - = _ + { }
borderTopWidth - = _ + { }
borderWidth - = _ + { }
bottom = _ + { }
captionSide { }
clear - = _ + { }
clip - = _ + { }
color - = _ + { }

JavaScript Quick Reference 583

13 542419 AppA.qxd 11/19/03 10:24 AM Page 583

content { }
counterIncrement { }
counterReset { }
cssFloat { }
cssText - = _ + { }
cue { }
cueAfter { }
cueBefore { }
cursor - = _ + { }
direction = _ + { }
display - = _ + { }
elevation { }
emptyCells { }
font - = _ + { }
fontFamily - = _ + { }
fontSize - = _ + { }
fontSizeAdjust { }
fontStretch { }
fontStyle - = _ + { }
fontVariant - = _ + { }
fontWeight - = _ + { }
height - = _ + { }
left - = _ + { }
length { }
letterSpacing { }
lineHeight - = _ + { }
listStyle - = _ + { }
listStyleImage - = _ + { }
listStylePosition - = _ + { }
listStyleType - = _ + { }
margin - = _ + { }
marginBottom - = _ + { }

584 Appendix A

13 542419 AppA.qxd 11/19/03 10:24 AM Page 584

marginLeft - = _ + { }
marginRight - = _ + { }
marginTop - = _ + { }
markerOffset { }
marks { }
maxHeight { }
maxWidth { }
media { }
minHeight { }
minWidth { }
MozBinding { }
MozOpacity { }
orphans { }
outline { }
outlineColor { }
outlineStyle { }
outlineWidth { }
overflow - = _ + { }
padding - = _ + { }
paddingBottom - = _ + { }
paddingLeft - = _ + { }
paddingRight - = _ + { }
paddingTop - = _ + { }
page { }
pageBreakAfter - = _ + { }
pageBreakBefore - = _ + { }
pageBreakInside { }
parentRule { }
pause { }
pauseAfter { }
pauseBefore { }
pitch { }

JavaScript Quick Reference 585

13 542419 AppA.qxd 11/19/03 10:24 AM Page 585

pitchRange { }
playDuring { }
pixelHeight - = _ +
pixelLeft - = _ +
pixelTop - = _ +
pixelWidth - = _ +
posHeight - = _ +
position - = _ + { }
posLeft - = _ +
posTop - = _ +
posWidth - = _ +
quotes { }
richness { }
right = _ + { }
size { }
speak { }
speakHeader { }
speakNumeral { }
speakPunctuation { }
speechRate { }
stress { }
styleFloat - = _ +
tableLayout = _ + { }
textAlign - = _ + { }
textDecoration - = _ + { }
textDecorationBlink - = _ +
textDecorationLineThrough - = _ +
textDecorationNone - = _ +
textDecorationOverline - = _ +
textDecorationUnderline - = _ +
textIndent - = _ + { }
textShadow { }

586 Appendix A

13 542419 AppA.qxd 11/19/03 10:24 AM Page 586

textTransform - = _ + { }
top - = _ + { }
type { }
unicodeBidi = _ + { }
verticalAlign - = _ + { }
visibility - = _ + { }
voiceFamily { }
volume { }
whiteSpace - = _ + { }
widows { }
width - = _ + { }
wordSpacing - = _ + { }
zIndex - = _ + { }

styleSheet Object - = _ + { }
cssRules = _ + { }
disabled - = _ + { }
href - = _ + { }
id - = _ +
imports - = _ +
media - = _ + { }
owningElement - = _ +
ownerNode { }
ownerRule { }
parentStyleSheet - = _ + { }
readOnly - = _ +
rules - = _ +
title - = _ + { }
type - = _ + { }
addImport - = _ + { }
addRule - = _ + { }

JavaScript Quick Reference 587

13 542419 AppA.qxd 11/19/03 10:24 AM Page 587

removeRule - = _ + { }
deleteRule { }
insertRule { }

Submit Object - = _ +] { }
form - = _ +] { }
name - = _ +] { }
type - = _ +] { }
value - = _ +] { }
blur - = _ +] { }
click - = _ +] { }
focus - = _ +] { }
handleEvent]

Text Object - = _ +] { }
defaultValue - = _ +] { }
form - = _ +] { }
maxLength - = _ + { }
name - = _ +] { }
readOnly - = _ + { }
size - = _ + { }
type - = _ +] { }
value - = _ +] { }
blur - = _ +] { }
click - = _ +] { }
focus - = _ +] { }
handleEvent]
select - = _ +] { }

Textarea Object - = _ +] { }
cols - = _ + { }
defaultValue - = _ +] { }
form - = _ +] { }

588 Appendix A

13 542419 AppA.qxd 11/19/03 10:24 AM Page 588

name - = _ +] { }
readOnly - = _ + { }
rows - = _ + { }
type - = _ +] { }
value - = _ +] { }
wrap - = _ + { }
blur - = _ +] { }
click - = _ +] { }
createTextRange - = _ +
focus - = _ +] { }
handleEvent]
select - = _ +] { }

window Object - = _ +] { }
clientInformation - = _ +
closed - = _ +] { }
content { }
Components { }
controllers { }
crypto] { }
defaultStatus - = _ +] { }
dialogArguments - = _ +
dialogHeight - = _ +
dialogLeft - = _ +
dialogTop - = _ +
dialogWidth - = _ +
directories { }
document - = _ +] { }
event - = _ +
external - = _ +
frames - = _ +] { }
history - = _ +] { }

JavaScript Quick Reference 589

13 542419 AppA.qxd 11/19/03 10:24 AM Page 589

innerHeight] { }
innerWidth] { }
length - = _ + { }
location - = _ +] { }
locationbar] { }
menubar] { }
name - = _ +] { }
navigator - = _ + { }
offscreenBuffering - = _ +
opener - = _ +] { }
outerHeight] { }
outerWidth] { }
pageXOffset] { }
pageYOffset] { }
parent - = _ +] { }
personalbar] { }
pkcs11 { }
prompter { }
screen - = _ + { }
screenX] { }
screenY] { }
scrollbars] { }
scrollX { }
scrollY { }
self - = _ +] { }
sidebar { }
status - = _ +] { }
statusbar] { }
toolbar] { }
top - = _ +] { }
alert - = _ +] { }
atob]

590 Appendix A

13 542419 AppA.qxd 11/19/03 10:24 AM Page 590

back] { }
blur - = _ +] { }
btoa]
captureEvents] { }
clearInterval - = _ +] { }
clearTimeout - = _ +] { }
close - = _ +] { }
confirm - = _ +] { }
dump { }
crypto.random]
crypto.signText]
disableExternalCapture]
dump { }
enableExternalCapture]
escape { }
find]
focus - = _ +] { }
forward] { }
GetAttention { }
getSelection { }
handleEvent]
home] { }
moveBy - = _ +] { }
moveTo - = _ +] { }
navigate - = _ +
open - = _ +] { }
print - = _ +] { }
prompt - = _ +] { }
releaseEvents] { }
resizeBy - = _ +] { }
resizeTo - = _ +] { }
routeEvent]

JavaScript Quick Reference 591

13 542419 AppA.qxd 11/19/03 10:24 AM Page 591

scroll - = _ +] { }
scrollBy - = _ +] { }
scrollByLines { }
scrollByPages { }
scrollTo - = _ +] { }
setCursor { }
setHotKeys]
setInterval - = _ +] { }
setResizable]
setTimeout - = _ +] { }
sizeToContent { }
setZOptions]
stop] { }
unescape { }
updateCommands { }

592 Appendix A

13 542419 AppA.qxd 11/19/03 10:24 AM Page 592

Appendix B
CSS Quick Reference

The following reference outlines the properties and pseudo-classes and elements in the cas-
cading style sheets level. The following icons are used to indicate browser compatibility:

Icon Browser

[Netscape 3

] Netscape 4

{ Netscape 6

} Netscape 7 and above

- Microsoft Internet Explorer 4

= Microsoft Internet Explorer 5

_ Microsoft Internet Explorer 5.5

+ Microsoft Internet Explorer 6

By no means is this a comprehensive reference but instead provides a quick reference to the
properties that are most commonly used in CSS. It is possible that browser support is only
partial if a property is listed as supported by a particular browser. Also, these compatibility
listings are based on the Windows version of browsers; slight inconsistencies may exist
between versions of the same browser on different operating systems.

background property - = _ +] { }

background-attachment property - = _ + { }
scroll - = _ + { }
fixed - = _ + { }

background-color property - = _ + { }
transparent - = _ + { }

background-image property - = _ +] { }
none - = _ +] { }

14 542419 AppB.qxd 11/19/03 10:24 AM Page 593

background-position property - = _ + { }
bottom - = _ + { }
center - = _ + { }
left - = _ + { }
right - = _ + { }
top - = _ + { }

background-repeat property - = _ +] { }
repeat = _ +] { }
repeat-x = _ +] { }
repeat-y = _ +] { }
no-repeat - = _ +] { }

border property - = _ +] { }

border-bottom property - = _ + { }

border-bottom-width property - = _ + { }
medium - = _ + { }
thick - = _ + { }
thin - = _ + { }

border-color property - = _ +] { }

border-left property - = _ + { }

border-left-width property - = _ +] { }
medium - = _ +] { }
thick - = _ +] { }
thin - = _ +] { }

border-right property - = _ + { }

border-right-width property - = _ +] { }
medium - = _ +] { }
thick - = _ +] { }
thin - = _ +] { }

594 Appendix B

14 542419 AppB.qxd 11/19/03 10:24 AM Page 594

border-style property - = _ +] { }
dashed _ + { }
dotted _ + { }
double - = _ +] { }
groove - = _ +] { }
inset - = _ +] { }
none - = _ +] { }
outset - = _ +] { }
ridge - = _ +] { }
solid - = _ +] { }

border-top property - = _ + { }

border-top-width property - = _ +] { }
medium - = _ +] { }
thick - = _ +] { }
thin - = _ +] { }

border-width property - = _ +] { }
medium - = _ +] { }
thick - = _ +] { }
thin - = _ +] { }

clear property - = _ +] { }
both - = _ +] { }
left _ + { }
none - = _ +] { }
right _ + { }

color property - = _ +] { }

display property - = _ +] { }
block _ + { }
inline _ + { }
list-item + { }

CSS Quick Reference 595

14 542419 AppB.qxd 11/19/03 10:24 AM Page 595

none - = _ +] { }

float property - = _ +] { }
left _ + { }
none - = _ +] { }
right _ + { }

font property - = _ +] { }

font-family property - = _ +] { }
cursive - = _ + { }
fantasy - = _ + { }
monospace - = _ + { }
sans-serif - = _ +] { }
serif - = _ +] { }

font-size property - = _ +] { }
medium - = _ +] { }
large - = _ +] { }
larger - = +] { }
small - = _ +] { }
smaller - = +] { }
x-large - = _ +] { }
x-small - = _ +] { }
xx-large - = _ +] { }
xx-small - = _ +] { }

font-style property - = _ +] { }
italic - = _ +] { }
normal - = _ +] { }
oblique - = _ + { }

font-variant property - = _ + { }
normal - = _ + { }
small-caps - = _ + { }

596 Appendix B

14 542419 AppB.qxd 11/19/03 10:24 AM Page 596

font-weight property - = _ +] { }
bold - = _ +] { }
bolder - = _ +] { }
lighter - = _ + { }
normal - = _ +] { }

height property - = _ + { }
auto - = _ + { }

letter-spacing property - = _ + { }
normal - = _ + { }

line-height property - = _ +] { }
normal - = _ +] { }

list-style property - = _ +] { }

list-style-image property - = _ + { }
none - = _ + { }

list-style-position property - = _ + { }
inside - = _ + { }
outside - = _ + { }

list-style-type property - = _ +] { }
circle - = _ +] { }
decimal - = _ +] { }
disc - = _ +] { }
lower-alpha - = _ +] { }
lower-roman - = _ +] { }
none - = _ +] { }
square - = _ +] { }
upper-alpha - = _ +] { }
upper-roman - = _ +] { }

margin property - = _ + { }
auto - = _ + { }

CSS Quick Reference 597

14 542419 AppB.qxd 11/19/03 10:24 AM Page 597

margin-bottom property - = _ + { }
auto - = _ + { }

margin-left property - = _ + { }
auto _ + { }

margin-right property - = _ + { }
auto _ + { }

margin-top property - = _ +] { }
auto - = _ +] { }

padding property - = _ + { }

padding-bottom property - = _ + { }

padding-left property - = _ + { }

padding-right property - = _ + { }

padding-top property - = _ + { }

text-align property - = _ +] { }
center - = _ +] { }
left - = _ +] { }
justify - = _ + { }
right - = _ +] { }

text-decoration property - = _ +] { }
blink] { }
line-through - = _ +] { }
none - = _ +] { }
overline - = _ + { }
underline - = _ +] { }

598 Appendix B

14 542419 AppB.qxd 11/19/03 10:24 AM Page 598

text-indent property - = _ +] { }

text-transform property - = _ +] { }
capitalize - = _ +] { }
lowercase - = _ +] { }
none - = _ +] { }
uppercase - = _ +] { }

vertical-align property - = _ + { }
baseline - = _ + { }
bottom _ + { }
middle _ + { }
sub - = _ + { }
super - = _ + { }
text-bottom _ + { }
text-top _ + { }
top _ + { }

white-space property _ +] { }
normal _ +] { }
nowrap _ + { }
pre] { }

width property - = _ +] { }
auto - = _ +] { }

word-spacing property + {
normal + {

Pseudo-classes and Pseudo-elements
active - = _ + { }
first-line _ + { }
first-letter _ + { }
link - = _ +] { }
visited - = _ + { }

CSS Quick Reference 599

14 542419 AppB.qxd 11/19/03 10:24 AM Page 599

14 542419 AppB.qxd 11/19/03 10:24 AM Page 600

Symbols & Numbers
++ operator, 172–173
@ sign, e-mail address in

forms, 202
// (slashes) in comments, 10

A
absolute placement (CSS),

368–369
absolute placement (HTML),

layers, 522
action attribute, form buttons,

multiple and, 220
action property, form tag in

form submission URL and, 226
addresses

e-mail, validation, 202–203
IP, checking with

bookmarklets, 502–503
Alert dialog boxes

introduction, 50–51
recurring functions, 78

alert dialog boxes
window object, creating and,

238–239
window object and, 236

alignment
centering horizontally,

346–347
centering vertically, 344–345
text (CSS), 364–365

all-scroll cursor, 434
American Express card

numbers, 208
Anchor object, 559
animation

banner generation, 156–157
GIF files, 156

Applet object, 559–560
Area object, 560

arguments
document.write method,

92–93
functions as, 48
introduction, 18
methods, 18
order in introductory

paragraph, 57
passing to functions, 56–57
replace method, 34
window.alert method, 90

Array object
creation, 40
length property, 130
length property, number of

entries and, 142
methods, 560–561
properties, 560–561

arrays
containers, 40
creation, 40–41
data types and, 134
definition, 131
document object and, 90
document.all, 498–499
document.images, 492–493
imageList, slide show

captions, 148
images, 118
indexes, 42
looping through, 74–75
numbering in, 130
populating, 42–43
sorting, 44–45

arrows in cursor, 434
attributes

checked, 180, 190–191
cursor, 434–435
float, 382–383
font-family, 360–361

font-size, 362–363
font-style, 362–363
font-weight, 362–363
id, 328
letter-spacing, 366–367
line-height, 328, 348–349
margin, 372–373
margin-bottom, 372–373
margin-left, 372–373
margin-right, 372–373
margin-top, 372–373
onMouseOver, 122–123,

454–455
padding, 404–405
position, 350–351
text-align, 364–365
text-decoration, 362–363
text-transform, 400–401
value, 188, 190–191
visibility, 526–527
word-spacing, 366–367
z-index, 358–359, 520–521

auto cursor, 434
auto-scrolling, 450–451

B
background

color, changing with
bookmarklet, 486–487

color,
object.style.background
and, 352–353

color, setting with X library,
548–549

images, removing with
bookmarklet, 488–489

images, setting with X library,
550–551

background-attachment
property, CSS, 593

Index

15 542419 index.qxd 11/19/03 10:25 AM Page 601

background-color
property, 593

background-image
property, 593

background-position
property, 594

background property, CSS, 593
background-repeat

property, 594
backgroundColor property,

links, highlighting with
bookmarklets, 498–499

banners
animated, generating,

156–157
hiding with bookmarklet,

492–493
random ad, 158–159

big method, strings, 36
blink method, strings, 36
blocks

new-line characters, 94
script blocks, 2–3
script blocks, multiple, 82–83

bmyArray.sort method,
document.write method
and, 44

bold method, strings, 36
bold text, font-weight

attribute, 362–363
bookmarklets

background color, changing,
486–487

banners, hiding, 492–493
date and time check, 500–501
downloading, 474–475
e-mail links, checking for,

478–479
e-mail text in Internet

Explorer, 480–481
e-mail text in Netscape,

482–483
fonts, changing, 496–497
images, displaying all in a

page, 484–485
images, hiding, 490–491

images, removing background,
488–489

installation, 474–475
IP addresses, checking,

502–503
last page modification,

476–477
links, highlighting, 498–499
links, opening all in new

window, 494–495
page freshness checks,

476–477
Yahoo! searches in IE,

504–505
Yahoo! searches in Netscape,

506–507
Bookmarks (Netscape),

bookmarklets, 475
boolean data types, 24
boolean expressions, browser

detection variables and,
516–517

Boolean object, 561
border-bottom property,

CSS, 594
border-bottom-width

property, CSS, 594
border-color property,

CSS, 594
border-left property,

CSS, 594
border-left-width

property, 594
border property, CSS, 594
border-right property,

CSS, 594
border-right-width property,

CSS, 594
border-style property,

CSS, 595
border-top property, CSS, 595
border-top-width property,

CSS, 595
border-width property,

CSS, 595
borderStyle property,

highlighting menu creation,
442–443

bottomTarget argument,
swapLayer function, 358–359

browser windows
closing, 236, 270–271
closing from links, 272–273
creating with window object,

244–245
dependent, Netscape and,

274–275
documents, loading, 258–259
forms, access from another

window, 268–269
full screen, opening in

Internet Explorer, 262–263
left property, 250–251
location setting, 250–251
opening, 236
opening, window object and,

244
opening from link, 246–247
parent/child relationships,

264–265
resizing, 256–257
screenX property, 250–251
screenY property, 250–251
scroll bar display, 254–255
scrolling control, 260–261
size, content size (Netscape),

276–277
size, detecting, 398–399
size, window object and, 236
size control, window.open

method and, 248–249
size restrictions, 256–257
toolbar visibility, 252–253
top property, 250–251
updating content from

another window, 266–267
browsers

browser document, replacing
with new, 110–111

conditions testing for, 514
cookie storage, 317
date output, 96–97
detection variables, building,

516–517
layer creation, div tag and,

520–521

602 JavaScript in 10 Simple Steps or Less

15 542419 index.qxd 11/19/03 10:25 AM Page 602

noscript tag, 6–7
object placement in new

browsers, 581–519
type detection, 510–511
type detection, object testing

and, 514–515
user agents, 514–515
version detection, 512–513
version detection, object

testing, 514
window creation, window

object and, 244–245
writing output to, 18–19

Button object, 561
buttons

forms, mouse click reactions,
222–223

graphical, 224–225
multiple with INPUT
TYPE=”button,” 220–221

object movement control and,
340–341

radio, creating groups, 180

C
calendar, outputting, 104–105
calling functions

description, 48–49
from tags, 62–63

canceling scheduled functions,
80–81

capitalization
drop caps, 382–383
forcing with style sheet

settings, 400–401
captions, slide shows, 148–149
CBE library, 540
centerHorzontally function,

346–347
centering

horizontal, 346–347
text (CSS), 364–365
vertical, 344–345

centerVertically function,
344–345

Central European Time, 98–99

changeDropColor function,
352–353

changeDropWidth function,
352–353

changeList function, 174–175
charAt method, zip code

validation, 204
charCodeAt method, Unicode

and, 230
check boxes

checked attribute, 190–191
creation, 188–189
input tag, 188
onClick event handler,

190–191
selection changes, detecting,

194–195
selection status, 190–191
selection validation, 214–215
selections, status control,

192–193
value attribute, 188, 190–191

Checkbox object, 562
checkCheckbox function,

214–215
checkCreditCard function, 208
checked attribute

check boxes, 190–191
radio buttons, 180

checked property, radio buttons,
182, 186–187

checkEmail function, address
validation and, 202–203

checkField function, form field
verification, 196–197

checkList function, 210–211
checkNumber function, numeric

text field validation, 228–229
checkPassword function,

216–217
checkPhone function, 206
checkRadio function, 212–213
checkZip function, 204
class definitions

document style sheets, 376
global style sheets, 378–379

global style sheets, overriding,
380–381

classes, java.net, 502–503
clear property, CSS, 595
clearTimeout method,

scheduled functions, 80–81
click events

image detection, 124–125
responding to, 456–457

close method, browser
windows, 270–271

closing windows
browser windows, 270–271
browser windows, from links,

272–273
floating windows, 422–423

code. See also source code
executing, page loads and,

64–65, 84–85
executing, user leaves page

and, 468–469
external, 8–9
hidden frames, 288–289
hiding, 4–5
loading after page load,
onLoad event handler and,
466–467

main, storage in one frame,
286–287

sharing between frames,
282–283

storing, 8–9
storing, menu code in external

files, 416–417
col-resize cursor, 434
collapsing/expanding menus,

creating, 438–439
color

background, changing with
bookmarklets, 486–487

background,
object.style.backgroun
d, 352–353

background, setting with X
library, 548–549

Index 603

15 542419 index.qxd 11/19/03 10:25 AM Page 603

color (continued)
depth of user’s display,

402–403
text, changing with X library,

546–547
color property, CSS, 595
commands

compound, curly brackets and
(), 16–17

deletion from scripts, 14–15
introduction, 12–13

comments
// slashes in, 10
HTML, hiding JavaScript

code, 4–5
multiline, 10–11
single-line, 10–11

compatibility
browser type detection,

510–511
browser type detection, object

testing and, 514–515
browser version detection,

512–513
complete property, Image

object, 150
compound commands, curly

brackets (), 16–17
concatenation

dynamic HTML and, 92–93
of strings, 30–31

condition-based loops, 67
condition controlling loops, 66
conditional branching looping,

68–69
conditional loops, 72–73
conditions, short-form of testing,

70–71
confirm method

condition testing, loops,
70–71

confirmation dialog boxes,
240–241

introduction, 52–53
confirmation dialog boxes

introduction, 52–53
window object and, 236,

240–241

containers
arrays, 40
variables, 22–23

content
browser window size

(Netscape), 276–277
browser windows, updating

from another window,
266–267

floating windows, changing,
428–429

offscreen placement, 444–445
offscreen placement, sliding

into view, 446–447
selection lists, dynamically

changing, 174–175
text fields, accessing, 164–165

cookies
accessing, 304–305
creating, 302–303
deleteCookie function, 322
deleting, 314–315
directories, 324–325
displaying, 306–307
displaying in all pages on site,

324–325
escape function, 302,

316–317
expiration, 308–309
function library, creating,

322–323
getCookie function, 322
loginName, username

display and, 306–307
multiple, accessing, 318–319
multiple, creating, 316–317
new visitor home page,

320–321
page access counts, 312–313
security, 304–305
setCookie function, 322
split method and, 304
users, tracking sessions,

310–311
corners, drop shadows in

nonstandard, 356–357
counters, personal, cookies,

312–313

createMenu function, external
files, storing in, 416–417

createRange method
bookmarklets, 480–481
Yahoo! searches with

bookmarklets, 504–505
createRollOver function,

136–137
credit card number validation in

forms, 208–209
cross-browser libraries

(DHTML), 540–541
crosshair cursor, 434
CSS (Cascading Style Sheets)

absolute placement, 368–369
background-attachment

property, 593
background-color

property, 593
background-image

property, 593
background-position

property, 594
background properties, 593
background-repeat

property, 594
border-bottom property,

594
border-bottom-width

property, 594
border-color property, 594
border-left property, 594
border-left-width

property, 594
border properties, 594
border-right property, 594
border-right-width

property, 594
border-style property, 595
border-top property, 595
border-top-width

property, 595
border-width property, 595
capitalization, forcing,

400–401
clear property, 595
color property, 595

604 JavaScript in 10 Simple Steps or Less

15 542419 index.qxd 11/19/03 10:25 AM Page 604

cursor styles, changing,
434–435

display property, 595–596
document style sheets,

376–377
drop cap creation, 382–383
drop shadows, creating,

350–351
drop shadows, modifying,

352–353
drop shadows, removing,

354–355
drop shadows in nonstandard

corners, 356–357
first line of all elements on

page, 386–387
first line of text appearance,

384–385
float property, 596
font-family property, 596
font property, 596
font-size property, 596
font style, 362–363
font-style property, 596
font-variant property, 596
font-weight property, 597
fonts, 360–361
global style sheets, files,

378–379
global style sheets, overriding

for local instances, 380–381
height property, 597
highlighting menu creation,

440–441, 442–443
inline styles, 374–375
letter-spacing

property, 597
line height, 348–349
line-height property, 597
line spacing, 328–329
links, special styles for,

388–389
list-style-image

property, 597
list-style-position

property, 597
list-style property, 597

list-style-type
property, 597

margin-bottom property, 598
margin-left property, 598
margin property, 597
margin-right property, 598
margin-top property, 598
margins, 372–373
padding, 404–405
padding-bottom

property, 598
padding-left property, 598
padding property, 598
padding-right property, 598
padding-top property, 598
pseudo-classes, 599
pseudo-elements, 599
quick reference icons for

properties, 593
relative placement, 370–371
settings, accessing, 390–391
settings, editing, 392–393
spacing, 366–367
style sheet files, global,

378–379
text-align property, 598
text alignment, 364–365
text-decoration

property, 598
text-indent property, 599
text-transform

property, 599
vertical-align

property, 599
white-space property, 599
width property, 599
word-spacing property, 599

cssRule object, 562
curly brackets () in compound

commands, 16–17
cursor

hourglass, 434
scrolling, 434

cursor attribute (CSS), 434–435
cursors

all-scroll, 434
auto, 434

col-resize, 434
crosshair, 434
default, 434
hand, 434
help, 434
I-bar, 434
move, 434
no-drop, 434
not-allowed, 434
pointer, 434
progress, 434
row-resize, 434
style changes, 434–435
text, 434
vertical-text, 434
wait, 434

D
data types

array elements, 134
boolean, 24
numeric, 24, 26–27
string, 24

date and time
Central European Time,

98–99
checking with bookmarklets,

500–501
getDate method, 100
getDay method, 100
getFullYear method, 100
getHours method, 100
getMinutes method, 100
getMonth method, 100
getTimezoneOffset

method, 98–99
output customization,

102–103
output to browser, 96–97
output to browser, formatting,

100–101
setHours method, 98–99
time zone and, 98–99
toGMTString method, 100
toLocaleString

method, 100
toUTCString method, 100

Index 605

15 542419 index.qxd 11/19/03 10:25 AM Page 605

date method, outputting date to
browser, 96–97

Date object
calendar output, 104–105
looping and, 104–105
methods, 100, 562–564
properties, 562
tostring method, 96

dates, month numbering and, 309
Debug object, 562
debugging, 14
declaring variables, 20–21
default cursor, 434
deleteCookie function, 322
delimiters, splitting at strings,

46–47
dependent browser windows,

Netscape and, 274–275
DHTML (Dynamic HTML)

absolute placement (CSS),
368–369

cross-browser libraries,
540–541

drop shadows (CSS), 350–351
drop shadows (CSS),

modifying, 352–353
drop shadows (CSS),

removing, 354–355
first line of text appearance

(CSS), 384–385
fonts (CSS), 360–361
line height, 348–349
margins (CSS), 372–373
padding (CSS), 404–405
relative placement (CSS),

370–371
spacing (CSS), 366–367
style sheet setting access,

390–391
style sheet setting

modifications, 392–393
text alignment (CSS), 364–365

DHTML Library, 540
diagonal movement of objects,

338–339
dialog boxes

Alert, 50–51

alert, window object and,
238–239

confirmation, 52–53
confirmation, window object

and, 240–241
window.alert method, 50

directories, cookies, 324–325
display property, CSS, 595–596
div tag

drop shadows and, 350–351
layer creation and, 520–521
line height and, 329

div tag (inner)
drop shadows in nonstandard

corners, 356–357
left attribute, 356–357
top attribute, 356–357

doAlert function, 290–291
document object

access, 90–91
arrays, 90
methods, 90, 565–566
properties, 90, 564–565

document style sheets. See also
CSS (Cascading Style Sheets)

class definitions, 376
HTML element

definitions, 376
identity definitions, 376

document.all array, links,
highlighting with bookmarklets,
498–499

document.all object, browser
version detection, 514

document.body object, page
fonts, changing with
bookmarklet, 496–497

document.body.background
property

background image removal
with bookmarklet, 488–489

bookmarklet for changing
color, 486–487

document.body.clientHeight
property

browser window size, 398–399
introduction, 344–345

document.body.clientWidth
property, browser window size,
398–399

document.body.scrollTop
property

auto-scrolling, 450–451
browser window scrolling,

260–261
document.cookie object

cookie access, 304–305
deleting cookies, 314–315
displaying cookies, 306–307
expiration date of cookies,

308–309
introduction, 302
multiple cookies, 316–317
multiple cookies, accessing,

318–319
page access counting, 312–313
strings, 304
tracking user sessions,

310–311
document.createComment

object, browser version
detection, 514

document.fireEvent object,
browser version detection, 514

document.forms array, naming
forms and, 164

document.getElementById
method, object referencing, 328

document.getElementById
object, browser version
detection, 514

document.getSelection
method, bookmarklets, 482–483

document.images array
banners, hiding with

bookmarklet, 492–493
bookmarklet displaying

images, 484–485
document.lastModified

property, bookmarklets and,
476–477

document.layers object,
browser version detection, 514

606 JavaScript in 10 Simple Steps or Less

15 542419 index.qxd 11/19/03 10:25 AM Page 606

document.links array
e-mail link checking with

bookmarklets, 478–479
links, opening all in new

window with bookmarklet,
494–495

mailto: protocol and, 478
document.location property

loaded document URL, 258
loading documents into

browser window, 258–259
document.myImage, 118
document.open method,

browser document replacement,
110–111

document.write method
arguments, 92–93
calendar generation and,

104–105
date output, 96
myArray.sort method

and, 44
new-line characters, 94
output, 18–19
separators in output, 46
string formatting, 36–37

document.writeln method
date output, 96
document.write and, 95
introduction, 18

doMouseOver function, 454–455
doSquare function, text field

change responses, 458–459
drag-and-drop

detecting events, 430–431
moving dragged objects,

432–433
onDrag event, 430–431
onDragEnd event, 430–431
onDragEnter event, 430–431
onDragLeave event, 430–431
onDragOver event, 430–431
onDragStart event, 430–431
onDrop event, 430–431

drop caps, CSS, 382–383
drop-down lists, navigation and,

232–233

drop-down menus
generating using a function,

414–415
prebuilt, inserting, 418–419

drop shadows (CSS)
creating, 350–351
inner div tag, 356–357
modifying, 352–353
nonstandard corners, 356–357
removing, 354–355

dropObject variable, 354–355
dynamic changes, selection list

content, 174–175
dynamic HTML, outputting,

92–93
dynamic output

calendar generation, 108–109
document object and, 90–91

dynamic updates, text fields,
166–167

dynamically creating frames,
294–295

dynamically updating frame
content, 296–297

dynamicdrive.com, 418
DynAPI library, 540

E
e-mail

address validation, 202–203
links, checking for with

bookmarklets, 478–479
sending text with

bookmarklets in IE, 480–481
sending text with

bookmarklets in Netscape,
482–483

elements of arrays
data types, 134
population and, 43

embedded functions, as
arguments, 48

embedded images, accessing,
118–119

empty fields, e-mail address in
forms, 202

enabling, JavaScript, 86–87

encapsulation, functions, 54–55
encrypt function, form

submission and, 230
encryption, forms submission

and, 230–231
end-of-line-type characters,
document.write method, 18

Enumerator object, 566
Error object, 566
escape function, cookies, 302,

316–317
escapes, URL parameter

values, 107
evaluation of operators, 28
event handlers

definition, 454
form fields, this keyword

and, 176–177
image buttons, 224
onBlur, form field losing

focus and, 460–461
onBlur, form field

verification and, 196–197
onChange, selection list

selections and, 470–471
onClick, check boxes and,

190–191
onClick, function calls and,

62–63
onClick, redirection and,

112
onFocus, form field gaining

focus, 460–461
onLoad, 466–467
onLoad, calling code and,

64–65
onUnload, 84, 468–469
responding to user clicks,

456–457
event object, 567–568
events

click events, detecting,
124–125

drag-and-drop, detecting,
430–431

onMouseOut, 128

Index 607

15 542419 index.qxd 11/19/03 10:25 AM Page 607

events (continued)
onMouseOver, 152–153
onMouseOver, detecting,

122–123
event.srcElement, 432–433
expanding/collapsing menus,

creating, 438–439
expiration, cookies, 308–309
expressions

concatenation, 31
introduction, 29
regular expressions (See

regular expressions)
external files, menu code storage,

416–417

F
fading objects, 536–537
Favorites (Internet Explorer),

bookmarklets, 474
fields. See also form fields

choosing which to use, 180
focus method, 196
naming, 163
text, accessing content,

164–165
text, detecting changes in,

168–169
text, dynamic updates,

166–167
text, responding to changes in,

458–459
this keyword and, 176–177
verifying, 196–197
verifying, onBlur event

handler, 196–197
files, style sheets, global, 378–379
FileUpload Object, 568
filters.alpha.opacity

property, 536–537
first-line selector, 384–385,

386–387
firstList function, 178–179
fixed method, strings, 36
float attribute, drop caps and,

382–383
float property, CSS, 596

floater.close, 422–423
floater.moveBy, 426–427
floater.resizeTo, 424–425
floating windows

closing, 422–423
content changes, 428–429
creating, 420–421
moving, 426–427
resizing, 424–425

floatingWindow function
changing floating window

content, 428–429
closing floating windows,

422–423
introduction, 420–421
moving floating windows,

426–427
resizing floating windows,

424–425
focus

form fields, onBlur event
handler and, 462–463

form fields, onFocus event
handler and, 460–461

focus method, form field
verification, 196

font-family attribute, 360–361
font-family property, CSS,

596
font property, CSS, 596
font-size attribute, 362–363
font-size property, CSS, 596
font-style attribute, 362–363
font-style property, CSS, 596
font-variant property,

CSS, 596
font-weight attribute, 362–363
font-weight property, CSS,

597
fontcolor method, strings, 36
fontFamily property, page

fonts, changing with
bookmarklet, 496–497

fonts
changing with bookmarklet,

496–497
CSS, 360–361

sans-serif, 360
serif, 360
size, 362–363
style (CSS), 362–363

fontsize method, strings, 36
for loops

document.images array,
bookmarklets and, 484–485

images, hiding with
bookmarklet, 490–491

offscreen content, moving,
446–447

for statement, 66–67
for statement, for loops, 66–67
form fields. See also fields

choosing which to use, 180
focus, onBlur event
handler and, 462–463

focus, onFocus event handler
and, 460–461

verification, 196–197
verification, INPUT
TYPE=”button,” 200–201

verification, onBlur event
handler, 196–197

verification, onSubmit
attribute, 198–199

Form object, 568
Form tag, onSubmit attribute,

form field verification, 198–199
form tag, name attribute and,

163
format

date output, 100–101
strings, 36–37
strings, multiple functions,

38–39
forms

access, from another browser
window, 268–269

buttons, mouse click reactions,
222–223

buttons, multiple with INPUT
TYPE=”button,” 220–221

check box creation, 188–189
check box selection status,

190–191

608 JavaScript in 10 Simple Steps or Less

15 542419 index.qxd 11/19/03 10:25 AM Page 608

check box selection validation,
214–215

checked attribute in radio
buttons, 180

credit card number validation,
208–209

e-mail address, @ missing, 202
e-mail address, dot

missing, 202
e-mail address, empty

field, 202
e-mail address, illegal

characters, 202
e-mail address validation,

202–203
encryption and, 230–231
graphical buttons, 224–225
image element, 224–225
input tag and radio

buttons, 180
name attribute, 163
naming, 163
naming, document.forms

array and, 164
navigation and, 232–233
password validation, 216–217
phone number validation,

206–207
phone number validation,

regular expressions and,
218–219

post-processing data,
onSubmit event
handler and, 464–465

preparation for JavaScript,
162–163

radio button groups,
accessing, 182

radio button groups,
creating, 180

radio button selection
validation, 212–213

radio button selections,
182–183

selection list choice validation,
210–211

selection lists, 176–177
(See also selection lists)

selection lists, navigation and,
232–233

submission URL, controlling,
226–227

zip code validation, 204–205
forms array, form order, 162
Frame object, 569
frame tag

frame updates, 280–281
name attribute, 278

frames
bookmarklet for background

color, 486–487
code sharing, 282–283
content, dynamic updates,

296–297
cross-reference, nesting and,

290–291
dynamic creation, 294–295
hidden, 288–289
loading pages to, 278–279
main code storage, 286–287
naming, 278
nested, 290–291
nested, cross-referencing and,

290–291
pseudo-persistent data and,

284–285
unnamed, referencing

numerically, 298–299
updating, multiple from

another link, 292–293
updating from another frame,

280–281
variables and, 284

FrameSet object, 569
frameset tag

frame updates, 280–281
rows attribute, 278

fullScreen property, browser
windows in Internet Explorer,
262–263

function keyword, cookie
function creation, 322

function library, cookies,
creating, 322–323

Function object, 569
functions

as arguments, 48
arguments, passing to

functions, 56–57
calling, 48–49
calling from tags, 62–63
centerHorzontally,

346–347
centerVertically,

344–345
changeDropColor, 352–353
changeDropWidth, 352–353
changeList, 174–175
checkCheckbox, 214–215
checkCreditCard, 208
checkList, 210–211
checkPassword, 216–217
checkPhone, 206
checkRadio, 212–213
checkZip, 204
createRollOver, 136–137
creation, 54–55
deleteCookie, 322
doAlert, 290–291
doMouseOver, 454–455
doSquare, 458–459
drop-down menu generation,

414–415
encapsulation, 54–55
encrypt, 230
escape, 302, 316–317
firstList, 178–179
floatingWindow, 420–421
getCookie, 322
hideLayer, 444–445,

448–449, 532–533
hideObject, 394–395
lineHeight, 328
menuToggle, 408–409,

410–411
methods comparison, 48
moreSpace, 328
moveDiagonally, 338–339
moveDown, 336–337

Index 609

15 542419 index.qxd 11/19/03 10:25 AM Page 609

functions (continued)
moveLayer, 530–531
moveObject, 342–343
moveRight, 334–335
moveUp, 340–341
newFloatingWindow,

428–429
nextSlide, 146
parameters, passing multiple

to functions, 60–61
parseInt, 328, 340–341
previousSlide, 146
processForm, 464–465
removeDrop, 354–355
resizeFloatingWindow,

424–425
resizeLayer, 530–531
rollover creation, 134–135
rollovers, multiple on one

page, 138–139
rollovers, triggering, 136–137
scheduling, 76–77
scheduling, canceling, 80–81
scheduling, recurring, 78–79
scheduling, window object

and, 236
scrollCheck, 436–437
scrollDocument, 260
scrollPage, 450–451
secondList, 178–179
selectButton, 186–187
setCookie, 322
setOpacity, 536–537
showLayer, 448–449,

532–533
showObject, 396–397
slideShow, 142
swapLayer, 358–359,

534–535
toggleMenu, 438, 443
unescape, 304
values, function calls and, 48
values, returning, 58–59
void, 484–485
XBackground, 550–551
xColor, 546–547, 548–549

xHide, 542–543
xMoveTo, 552–553
xResizeTo, 556–557
xShow, 542–543
xSlideTo, 554–555
xZIndex, 544–545

G
getCookie function

cookieName argument, 322
function keyword, 322
function library and, 322
values returned, 322

getDate method, 100
getDay method, 100
getFullYear method, 100
getHours method, 100
getLocalHost method, IP

address checking with
bookmarklet, 502–503

getMinutes method, 100
getMonth method, 100
getTimezoneOffset method,

outputting date/time and,
98–99

GIF files
animation and, 156
buttons, 224

Glimmer library, 540
Global object, 570
global style sheets

files, 378–379
overriding for local instances,

380–381
GMT (Greenwich Mean Time),

98–99
graphical buttons in forms,

introduction, 224–225
Greenwhich Mean Time, 98–99
groups

radio buttons, access, 182
radio buttons, creating, 180

H
hand cursor, 434
height attribute, layers, HTML

and, 524–525

height property
browser windows, 248–249
CSS, 597
style attribute, 344–345

help cursor, 434
hidden frames, 288–289
Hidden object, 570
hideLayer function

layer visibility, 532–533
offscreen content and,

444–445
sliding menus, 448–449

hideObject function, 394–395
hiding

banners, bookmarklets and,
492–493

code, 4–5
elements, X library, 542–543
images, with bookmarklets,

490–491
layers, 532–533
layers, HTML and, 526–527
objects, 394–395

highlighting links, bookmarklets
and, 498–499

highlighting menus, creating,
440–441, 442–443

History object, 570–571
hit counter, personal, cookies

and, 312–313
home pages, new visitors, cookies

and, 320–321
horizontal centering, 346–347
horizontal movement of objects,

334–335
hourglass cursor, 434
HTML element definitions

document style sheets, 376
global style sheets, 378–379
global style sheets, overriding,

380–381
HTML (HyperText Markup

Language)
comments, hiding JavaScript

code, 4–5
dynamic HTML, outputting,

92–93

610 JavaScript in 10 Simple Steps or Less

15 542419 index.qxd 11/19/03 10:25 AM Page 610

files, global style sheets in,
378–379

JavaScripting, hiding
code, 4–5

layer placement, 522–523
layer placement, absolute, 522
layer placement, relative, 522
layer visibility, 526–527
layers, ordering, 528–529
layers, size, 524–525

I
I-bar cursor, 434
icons, quick reference,

browsers, 559
id attribute, assigning ID, 328
identity definitions

document style sheets, 376
global style sheets, 378–379
global style sheets, overriding,

380–381
if statement

introduction, 68–69
window.confirm method,

240
Iframe object, 571
illegal characters, e-mail address

in forms, 202
image buttons

event handlers, 224
as submit buttons, 224

image element, forms, graphical
buttons and, 224

image maps, rollovers and,
154–155

Image object
complete property, 150
images array, 118
introduction, 571
loading images and, 120–121

imageList array
animated banners, 156
slide show captions, 148

imageList variable,
bookmarklets, 484–485

images
background, removing with

bookmarklet, 488–489
background, setting with X

library, 550–551
bookmarklets and, displaying

all images in a page, 484–485
click events, detecting,

124–125
embedded, accessing, 118–119
hiding with bookmarklets,

490–491
loading, 120–121
loading, testing if loaded,

150–151
onClick attribute, 124–125
onMouseOut events, 128
onMouseOver events,

454–455
onMouseOver events,

detecting, 122–123
random, 130–131
random, loading multiple,

132–133
random, script blocks, 132
rollovers, switching images

programmatically, 126–127
size, 118–119

images array, entries, 118
 tag, referencing images,

118
index-based loops, 67
index variable, loops, 74–75
indexes

arrays, 42
for loops, 66
Z indexes, 358–359

indexOf method, characters in
cookies, 318

inline styles (CSS), 374–375
innerHTML property, 432–433
input fields, detecting changes,

168–169
input tag

check boxes and, 188
radio button creation, 180
text fields, 168–169

INPUT TYPE=”button”
form buttons, multiple and,

220–221
form field verification and,

200–201
Internet Explorer

bookmarklets, 474
e-mailing text using

bookmarklets, 480–481
full screen browser window,

opening, 262–263
page transitions, 538–539
Yahoo! searches with

bookmarklets, 504–505
IP addresses, checking with

bookmarklet, 502–503
italic text, font-style attribute,

362–363
italics method, strings, 36

J
Java, enabled,
navigator.javaEnabled
method, 502–503

javaEnabled method, 86–87
java.net class, IP address

checking with bookmarklet,
502–503

java.net.InetAddress
.getLocalHost()
.getHostAddress()
method, 502–503

JavaScript, enabled, checking for,
86–87

JPEG files
banners, 156
buttons, 224

.js files, 9

L
Layer object, 572–573
layerRef method, 328
layers

creating, div tag and,
520–521

drop shadows and, 352–353

Index 611

15 542419 index.qxd 11/19/03 10:25 AM Page 611

layers (continued)
height attribute, 524–525
margins, 373
ordering, 534–535
ordering, HTML, 528–529
ordering, X library and,

544–545
placement, changing, 530–531
placement control, HTML

and, 522–523
size, HTML and, 524–525
size, X library and, 556–557
visibility, 532–533
visibility, HTML and,

526–527
width attribute, 524–525
x.js script library file,

542–543
left attribute

div tag, 356–357
layer placement, HTML

and, 522
object location, 330–331
object placement and,

332–333
left property, browser windows,

250–251
leftPosition variable, sliding

menus, 448–449
length property

Array object, 130
Array object, number of

entries, 142
e-mail address validation,

202–203
radio buttons, 182
selection list content changes,

174–175
selection lists, 172–173

letter-spacing attribute,
366–367

letter-spacing property,
CSS, 597

libraries
cross-browser (DHTML),

540–541
function library for cookies,

322–323

line height
CSS, 348–349
div tag and, 329
parseInt function and, 328

line-height attribute
CSS line height, 348–349
introduction and, 328

line-height property, CSS,
597

line spacing, CSS and, 328–329
lineHeight function, 328
Link object, 573
link style, 388–389
links

browser windows, closing,
272–273

e-mail, checking for with
bookmarklets, 478–479

highlighting, bookmarklets
and, 498–499

opening all in new window
with bookmarklet, 494–495

opening browser windows,
246–247

rollovers, triggering in
different location with,
152–153

slide show transitions,
triggering, 146–147

styles (CSS), 388–389
text input elements, 164
updating frames from,

292–293
list-style-image property,

CSS, 597
list-style-position

property, CSS, 597
list-style property, CSS, 597
list-style-type property,

CSS, 597
lists

option lists, 180
selection list, populating

programmatically, 172–173
selection list access, 170–171

loading
code after page load, onLoad

event handler and, 466–467
images, 120–121

images, multiple random,
132–133

images, random, 130–131
images, testing if loaded,

150–151
pages to frames, 278–279

loading pages
calling code after, 64–65,

84–85
placeholder, 114–115

locating objects, 330–331
Location object, 573–574
location property, window

object, 112
loginName cookie, username,

306–307
loops

arrays, looping through,
74–75

condition-based loops, 67
condition controlling, 66
conditional, 72–73
conditional branching

looping, 68–69
Date object and, 104–105
index-based, 67
index variable, 74–75
for loops, for statement,

66–67
for loops, viewing offscreen

content, 446–447
short-form condition testing,

70–71
while command, 72–73

lowercase, changing all to,
400–401

M
mailto: protocol, link checking

with bookmarklets and, 479
map blocks, 154
margin attribute, 372–373
margin-bottom attribute,

372–373
margin-bottom property,

CSS, 598
margin-left attribute, 372–373

612 JavaScript in 10 Simple Steps or Less

15 542419 index.qxd 11/19/03 10:25 AM Page 612

margin-left property, CSS, 598
margin property, CSS, 597
margin-right attribute,

372–373
margin-right property,

CSS, 598
margin-top attribute, 372–373
margin-top property, CSS, 598
margins

CSS, 372–373
padding and, 404–405

Mastercard numbers, 208
Math object

array numbering, 130
methods, 574
properties, 574
random banner ads, 158

mathematical operations, 28–29
Math.floor, 130
menu class, pull-down menu

creation and, 409
menuLink class, pull-down menu

creation, 409
menus

code storage in external files,
416–417

drop-down, generating using a
function, 414–415

drop-down, inserting prebuilt,
418–419

expanding/collapsing,
creating, 438–439

generating dynamically,
108–109

highlighting menus, creating,
440–441, 442–443

pull-down, creating, 408–409
pull-down, creating multiple,

410–411
pull-down, selections,

412–413
rollover menu system,

140–141
sliding, creating, 448–449

menuTitle class, pull-down
menu creation, 409

menuToggle function
drop-down menu generation,

414–415
pull-down menu creation,

408–409, 410–411
pull-down menu selections,

412–413
meta tags, page transitions,

Internet Explorer, 538–539
methods

Applet object, 559–560
Area object, 560
arguments, 18
Array object, 560–561
big, 36
blink, 36
bold, 36
Boolean object, 561
Button object, 562
charCodeAt, 230
Checkbox object, 562
clearTimeout, 80–81
close, 270–271
confirm, 52–53, 240–241
date, 96–97
Date object, 562–564
Debug object, 562
document object, 565–566
document object and, 90
document.write, 18–19,

36–37
document.writeln, 18, 95
Error object, 566
event object, 568
FileUpload object, 568
fixed, 36
focus, 196
fontcolor, 36
fontsize, 36
Form object, 568
Function object, 569
functions comparison, 48
getDate, 100
getDay, 100
getFullYear, 100
getHours, 100

getLocalHost, 502–503
getMinutes, 100
getMonth, 100
getTimezoneOffset,

98–99
Global object, 570
History object, 570–571
Image object, 571
italics, 36
javaEnabled, 86–87
java.net.InetAddress.
getLocalHost().
getHostAddress(),
502–503

Layer object, 572–573
layerRef, 328
Location object, 574
Math object, 574
moveBy, 426–427
navigator object, 575–576
Number object, 576
Object object, 576
open, 244–245
Option object, 577
Password object, 577
Plugin object, 577
quick reference, 559
Radio object, 578
Range object, 578–579
RegExp object, 579
Regular Expression

object, 579
replace, 34
Reset object, 580
resizeTo, 424–425
Select object, 581
setHours, 98–99
setTimeout, 76–77, 142
sizeToContent, 276–277
small, 36
sort, 44
split, 46
strike, 36
String object, 581–582
styleSheet object, 587–588
sub, 36
Submit object, 588

Index 613

15 542419 index.qxd 11/19/03 10:25 AM Page 613

methods (continued)
sup, 36
test, 218
Text object, 588
Textarea object, 589
toGMTString, 100, 308–309
toLocaleString, 100,

500–501
toLowerCase, 36
toUpperCase, 36
toUTCString, 100
window object, 236, 590–592
window.alert, 50
window.confirm, 240–241
window.open, 244–245
window.setTimeout, 142

MimeType object, 575
moreSpace function, 328
mouse, click reactions, forms,

222–223
move cursor, 434
moveBy method, 426–427
moveDiagonally function,

338–339
moveDown function, object

movement and, 336–337,
340–341

moveLayer function
layer placement, 530–531
offscreen content, 446–447

moveLeft function, object
movement and, 340–341

moveObject function, three-
dimensional movement and,
342–343

moveRight function, object
movement and, 334–335,
340–341

moveUp function, object
movement and, 340–341

Mozilla versions, 512–513
multiline comments, 10–11

N
name attribute

forms and, 163
frame tag, 278

naming
frames, 278
input tags for radio button

groups, 180
variables, 20–21

navigation, forms and, 232–233
navigator object

browser type detection,
510–511

methods, 575–576
properties, 575

navigator.appCodeName:
property, browser type
detection, 510–511

navigator.appName: property,
browser type detection,
510–511

navigator.appVersion
property, browser version
detection, 512–513

navigator.javaEnabled
method, 86–87

navigator.userAgent:
property, browser type
detection, 510–511

nested frames, 290–291
Netscape

bookmarklets, 475
browser windows, sizing to

contents size, 276–277
dependent browser windows,

274–275
e-mailing text using

bookmarklets, 482–483
Yahoo! searches with

bookmarklets, 506–507
new-line characters, output,

94–95
newCookie string,
document.cookie object, 304

newFloatingWindow function,
moving floating windows and,
428–429

newScroll variable, auto-
scrolling, 450–451

nextSlide function, 146
no-drop cursor, 434

noscript tag, 6–7
not-allowed cursor, 434
Number object, 576
number of colors in user’s display,

402–403
numeric data types, 24, 26–27
numeric text fields, validation,

regular expressions and,
228–229

numeric variables, creation,
26–27

O
Object object, 576
object placement, style

property and, 332–333
object testing, browser detection

and, 514–515
objects

Anchor object, 559
Applet object, 559–560
Area object, 560
Array object, 560–561
Boolean object, 561
Button object, 561
centering horizontally,

346–347
centering vertically, 344–345
Checkbox object, 562
clicks on, responding to,

456–457
cssRule object, 562
Date object, 562–564
Debug object, 562
diagonal movement, 338–339
document object, 564–566
document object, access,

90–91
document.cookie, 304
Enumerator object, 566
Error object, 566
event object, 567–568
fading, 536–537
FileUpload object, 568
Form object, 568
Frame object, 569
FrameSet object, 569

614 JavaScript in 10 Simple Steps or Less

15 542419 index.qxd 11/19/03 10:25 AM Page 614

Global object, 570
Hidden object, 570
hiding, 394–395
History object, 571
horizontal movement,

334–335
Iframe object, 571
Image object, 571
Layer object, 572–573
layer references, 328
Link object, 573
location determination,

330–331
Location object, 573–574
Math object, 574
MimeType object, 575
movement control using

buttons, 340–341
navigator object, 575–576
Number object, 576
Object object, 576
Option object, 576–577
Password object, 577
placement in new browsers,

581–519
Plugin, 577
Radio object, 577–579
Range object, 578–579
RegExp object, 579
Regular Expression

object, 579
Reset object, 580
screen Object, 580
Script object, 580–581
Select object, 581
showing, 396–397
String object, 581–582
Style object, 582–587
styleSheet object, 587–588
Submit object, 588
Text object, 588
Textarea, 588–589
vertical movement, 336–337
window, 236–237
window object, 589–592

object.style.background,
background color and, 352–353

object.style.zindex,
358–359

offscreen placement of content
creating, 444–445
sliding into view, 446–447

onBlur event handler
form field verification and,

196–197
form fields losing focus,

462–463
onChange event handler

input fields, 168–169
selection list actions, 470–471
selection list status, 176–177
text field change responses,

458–459
onClick attribute, images,

124–125
onClick event handler

check box selection changes,
194–195

check boxes, 190–191
function calls and, 62–63
images, 124–125
mouse click, reactions to,

222–223
radio button selection

changes, 184
redirection and, 112
responses, 456–457
selection list content changes,

174–175
text fields and, 164

onDrag event, drag-and-drop
and, 430–431

onDragEnd event, drag-and-
drop and, 430–431

onDragEnter event, drag-and-
drop and, 430–431

onDragLeave event, drag-and-
drop and, 430–431

onDragOver event, drag-and-
drop and, 430–431

onDragStart event, drag-and-
drop and, 430–431

onDrop event, drag-and-drop
and, 430–431

onFocus event handler, form
fields with focus, 460–461

onLoad event handler
calling code and, 64–65
loading code after page loads

and, 466–467
onMouseOut event handlers,

highlighting menu creation, 443
onMouseOut events, 128
onMouseOver event handlers,

highlighting menu creation, 443
onMouseOver events

description, 454
detecting, 122–123
introduction, 152–153
rollovers and, 122–127

onSubmit attribute, form field
verification, Form tag, 198–199

onSubmit event handler, post-
processing form data and,
464–465

onUnload event handler
calling code, 84
user leaves page for another

page, 468–469
opacity of objects, 536–537
open method, browser window

creation, 244–245
opening browser windows

full screen, Internet Explorer,
262–263

from link, 246–247
window object and, 244

operations
expressions, 29
mathematical, 28–29

operators
++, 172–173
evaluation order, 28
order of precedence, 28

option lists, 180
Option object, 576–577

Index 615

15 542419 index.qxd 11/19/03 10:25 AM Page 615

option tag
selection list population,

172–173
selection lists, 170–171

options array, selection list
populating and, 172–173

options property, selections list,
172–173

order of precedence,
operators, 28

ordering layers
HTML, 528–529
JavaScript, 534–535
X library and, 544–545

origScroll variable, auto-
scrolling, 450–451

outerHTML property, 432–433
output

browsers, writing, 18–19
customizing URL variables,

106–107
date, 96–97
date, formatting, 100–101
date and time, time zone and,

98–99
document.write method,

18–19
dynamic, document object

and, 90–91
dynamic HTML, 92–93
new-line characters, 94–95
separators in document.write

method, 46
time of day customization,

102–103
variables, 22–23

P
padding, CSS and, 404–405
padding attribute, 404–405
padding-bottom property,

404–405, 598
padding-left property,

404–405, 598
padding property, 598
padding-right property,

404–405, 598

padding-top property,
404–405, 598

pages
accessing, counting with

cookies, 312–313
auto-scrolling, 450–451
displaying cookies on all,

324–325
fonts, changing with

bookmarklet, 496–497
images, displaying all with

bookmarklets, 484–485
last modification,

bookmarklets, 476–477
loading, calling code after,

64–65, 84–85
loading, placeholders and,

114–115
loading to frames, 278–279
redirection, 112–113
transitions, Internet Explorer,

538–539
parameters

functions, passing multiple
parameters to, 60–61

values, URLs, 107
parentheses, functions as

arguments and, 48
parseInt function

line height and, 328
object movement, 340–341
three-dimensional

movement, 342
passing parameters, to functions,

multiple, 60–61
Password object, 577
passwords, validating in forms,

216–217
pathnames, cookies, 324–325
persistentVariable

variable, 284
personal hit counter, cookies,

312–313
phone numbers

validation in forms, 206–207
validation in forms, with

regular expressions, 218–219

placeholders, page loading,
114–115

placement
absolute (CSS), 368–369
layers, changing, 530–531
layers, HTML and, 522–523
object, new browsers and,

581–519
offscreen content, 444–445
offscreen content, sliding into

view, 446–447
X library and, 552–553

Plugin object, 577
PNG files, buttons, 224
pointer, onMouseOver events,

122–123
pointer cursor, 434
populating arrays, 42–43
populating lists, selection,

populating programmatically,
172–173

position attribute
drop shadows and, 350–351
layer placement, HTML

and, 522
position:absolute, 368–369
position:relative, 370–371
post-processing data, onSubmit

event handler and, 464–465
prebuilt drop-down menus,

inserting, 418–419
previousSlide function, 146
processForm function, post-

processing form data and,
464–465

progress cursor, 434
prompt method, window object

and, 242–243
prompts, window object and,

242–243
properties

Anchor object, 559
Applet object, 559–560
Area object, 560
Array object, 560–561
background-attachment

(CSS), 593

616 JavaScript in 10 Simple Steps or Less

15 542419 index.qxd 11/19/03 10:25 AM Page 616

background-color
(CSS), 593

background (CSS), 593
background-image

(CSS), 593
background-position

(CSS), 594
background-repeat

(CSS), 594
backgroundColor, 498–499
Boolean object, 561
border-bottom (CSS), 594
border-bottom-width

(CSS), 594
border-color (CSS), 594
border (CSS), 594
border-left (CSS), 594
border-left-width

(CSS), 594
border-right (CSS), 594
border-right-width

(CSS), 594
border-style (CSS), 595
border-top (CSS), 595
border-top-width

(CSS), 595
border-width (CSS), 595
borderStyle, 442–443
browser compatibility,

593–599
Button object, 562
ccsRule object, 562
Checkbox object, 562
checked, 182
clear (CSS), 595
color (CSS), 595
Date object, 562
display (CSS), 595–596
document object, 90,

564–565
document.body.background,

486–487, 488–489
document.body.client
Height, 344–345, 398–399

document.body.client
Width, 398–399

document.body.scrollTop,
260–261

Enumerator object, 566
event object, 567–568
FileUpload object, 568
filters.alpha.opacity,

536–537
float (CSS), 596
font (CSS), 596
font-family (CSS), 596
font-size (CSS), 596
font-style (CSS), 596
font-variant (CSS), 596
font-weight (CSS), 597
Form object, 568
Frame object, 569
FrameSet object, 569
Function object, 569
Global object, 570
height, browser windows,

248–249
height (CSS), 597
Hidden object, 570
History object, 570
Iframe object, 571
Image object, 571
Layer object, 572
left, browser windows and,

250–251
letter-spacing (CSS), 597
line-height (CSS), 597
Link object, 573
list-style (CSS), 597
list-style-image

(CSS), 597
list-style-position

(CSS), 597
list-style-type (CSS),

597
Location object, 573–574
margin-bottom (CSS), 598
margin (CSS), 597
margin-left (CSS), 598
margin-right (CSS), 598
margin-top (CSS), 598
Math object, 574
MimeType object, 575
navigator object, 575
navigator.appCodeName:,

510–511

navigator.appName:,
510–511

navigator.appVersion,
512–513

navigator.userAgent:,
510–511

Number object, 576
Object object, 576
Option object, 576–577
padding-bottom (CSS),

404–405, 598
padding (CSS), 598
padding-left (CSS),

404–405, 598
padding-right (CSS),

404–405, 598
padding-top (CSS),

404–405, 598
Password object, 577
Plugin object, 577
quick reference, 559
Radio object, 577–578
Range object, 578
RegExp object, 579
Regular Expression

object, 579
Reset object, 580
resizable, 256–257
screen object, 580
screenX, browser windows

and, 250–251
screenY, browser windows

and, 250–251
Script object, 580–581
scrollTop, 436–437
Select object, 581
String object, 581
style, 390
Style object, 582–587
styleSheet object, 587
Submit object, 588
tagName, 498–499
text-align (CSS), 598
text-decoration (CSS),

598
text-indent (CSS), 599
Text object, 588
text-transform (CSS), 599

Index 617

15 542419 index.qxd 11/19/03 10:25 AM Page 617

properties (continued)
Textarea object, 588–589
top, browser windows and,

250–251
value, 182
vertical-align (CSS), 599
visibility, 394–395,

396–397, 490–491
white-space (CSS), 599
width, browser windows,

248–249
width (CSS), 599
window object, 236, 589–590
window.innerHeight,

344–345, 398–399
window.innerWidth,

346–347, 398–399
window.screen.colorDepth,

402–403
window.status, 236
word-spacing (CSS), 599

pseudo-classes (CSS), 599
pseudo-elements (CSS), 599
pseudo-persistent data, frames

and, 284–285
pull-down menus

creating, 408–409
creating multiple, 410–411
selections, detecting, 412–413
selections, reacting to,

412–413
punctuation in phone numbers,

validation and, 206

Q
question mark with arrow

cursor, 434
quick reference

browser icons, 559
methods, 559
properties, 559

quotation marks, text, 23

R
radio buttons

checked attribute, 180
checked property, 182,

186–187

checked property in radio
buttons, 182

groups, accessing, 182
groups, creating, 180
input tag and, 180
length property, 182
selection changes, 186–187
selection changes, detecting,

184–183
selection changes, onClick

event handler, 184
selection lists, substitution for,

180–181
selection status, 182–187
selection updates, 186–187
selection validation, 212–213
value of selected, 182
value property, 182, 186–187

Radio object, 577–579
random, banner ads, 158–159
random image loading, 130–133
random slide show, 144–145
Range object, 578–579
recurring function execution,

78–79
redirection, new pages, 112–113
RegExp object, 579
Regular Expression

object, 579
regular expressions

numeric text field validation
and, 228–229

phone number validation in
forms, 218–219

test method and, 218
variables and, 228

relative placement
CSS, 370–371
layers (HTML), 522

removeDrop function, 354–355
replace method, arguments, 34
replace text, strings, 34–35
Reset object, 580
resizable property, browser

windows, 256–257
resizeFloatingWindow

function, 424–425

resizeLayer function, layer
placement, 530–531

resizeTo method, 424–425
return command

functions and, 202–203
returning values from

functions, 58–59
rollovers

creating with functions,
134–135

image maps and, 154–155
links, triggering with in

different location, 152–153
location, triggering from

different, 152–153
menu system, creating,

140–141
multiple on one page,

128–129
multiple on one page,

functions and, 138–139
switching images

programmatically, 126–127
triggering, functions and,

136–137
rotateBanner function, 156
row-resize cursor, 434
rows attribute, frameset

tag, 278

S
sans serif fonts, 360
scheduled functions

canceling, 80–81
introduction, 76–77
recurring, 78–79

screen Object, 580
screenX property, browser

windows, 250–251
screenY property, browser

windows, 250–251
script blocks

creation, 2–3
images, displaying multiple

random, 132
map block, 154

Script object, 580–581

618 JavaScript in 10 Simple Steps or Less

15 542419 index.qxd 11/19/03 10:25 AM Page 618

script tags
introduction, 2–3
src attribute, 8–9

scripts
command deletion, 14–15
comments, 10–11
multiple, adding, 82–83

scroll bars
browser windows, 254–255
position determination,

436–437
scrollbars property, browser

windows, 254–255
scrollCheck function, scroll

position, 436–437
scrollDocument function,

browser windows, 260
scrolling

auto-scrolling, 450–451
browser window control,

260–261
position determination,

436–437
window object and, 236

scrolling cursor, 434
scrollPage function, auto-

scrolling, 450–451
scrollTop property, scroll bar

position, 436–437
searches

strings, text in, 32–33
Yahoo!, Internet Explorer

with bookmarklets, 504–505
Yahoo!, Netscape with

bookmarklets, 506–507
secondList function, 178–179
security, cookies and, 304–305
Select object, 581
select tag, selection lists,

170–171
selectButton function, radio

buttons, 186–187
selectedIndex property,

selection lists, 178–179
selection lists

access, 170–171
changeList function,

174–175

choice validation, 210–211
content, dynamically

changing, 174–175
length property, 172–173
length property, content

changes and, 174–175
navigation and, 232–233
onClick event handler and

content changes, 174–175
options array, 172–173
options property, 172–173
populating programmatically,

172–173
radio button use instead of,

180–181
responding to user selections,

470–471
selectedIndex property,

178–179
selection status, 176–177
updating based on selections

in another list, 178–179
self keyword, window object

and, 236
serif fonts, 360
sessions, tracking with cookies,

310–311
setCookie function, 322–323
setHours method, outputting

date/time and, 98–99
setOpacity function, fading

objects and, 536–537
setTimeout method

animated banners, 156
scheduled functions, 76–77

sharing code, between frames,
282–283

short-form condition testing,
70–71

showLayer function
layer visibility and, 532–533
sliding menus, 448–449

showObject function, 396–397
single-line comments, 10–11
sizeToContent method,

browser windows, 276–277
slashes (//) in comments, 10

slide shows
captions, 148–149
creating, 142–143
randomizing, 144–145
transitions triggering from

links, 146–147
slideShow function, 142
slideSpeed variable

offscreen content, 446–447
sliding menus and, 448–449

sliding elements with X, 554–555
sliding menus, creating, 448–449
small method, strings, 36
sort method, 44
sorts, arrays, 44–45
spacing

CSS, 366–367
line spacing (CSS), 328–329

span tag
lowercase, 400–401
object placement in new

browsers and, 581–519
uppercase, 400–401

split method
cookies and, 304
introduction, 46

splitting strings, delimiters and,
46–47

src attribute, script tag, 8–9
stacking order of layers, 534–535
statements

if, 68–69
var, 20–21

status bar, text, window.status
property, 236

strike method, strings, 36
string data types, 24
String object

methods, 581–582
properties, 581
split method, 304
text strings, 36–37

strings
concatenation, 30–31
document.cookie object,

304
document.write method

and, 36–37
formatting, 36–37

Index 619

15 542419 index.qxd 11/19/03 10:25 AM Page 619

strings (continued)
formatting, multiple, 38–39
quotation marks, 23
replace method, 34
splits, delimiters and, 46–47
text in, replacing, 34–35
text in, searches, 32–33
unescape function, 304

style attribute
div tag, 329
height property, 344–345

Style object, 582–587
style object, 328
style property

diagonal movement of objects,
338–339

horizontal movement of
objects, 334–335

left attribute, 330–331
object placement and,

332–333
page fonts, changing with

bookmarklet, 496–497
style sheet settings access, 390
style sheet settings

modifications, 392–393
top attribute, 330–331
vertical movement of objects,

336–337
styles

capitalization, forcing,
400–401

cursors, changing, 434–435
document style sheets,

376–377
first line of all elements on

page, 386–387
inline (CSS), 374–375
links (CSS), 388–389
style sheet files, global,

378–379
styleSheet object, 587–588
sub method, strings, 36
submit buttons, image buttons

as, 224
submit method, form buttons,

multiple, 220

Submit object, 588
submitting forms

encryption and, 230–231
URL, controlling, 226–227

sup method, strings, 36
swapLayer function

layer ordering, 534–535
layers, 358–359

T
tagName property, links,

highlighting with bookmarklets,
498–499

tags
calling functions from, 62–63
div, 329
meta, 538–539
noscript, 6–7
option, 170–171
select, 170–171

test method, regular
expressions and, 218

testing, if images loaded, 150–151
text

alignment (CSS), 364–365
bold, 362–363
color, changing with X library,

546–547
data types, 24
first line, customizing (CSS),

384–385
font style (CSS), 362–363
fonts (CSS), 360–361
highlighting menu creation,

440–441, 442–443
italic, 362–363
quotation marks, 23
size, 362–363
strings, replacing, 34–35
strings, searches, 32–33
underlined, 362–363

text-align attribute, 364–365
text-align property, CSS, 598
text cursor, 434
text-decoration attribute,

362–363

text-decoration property,
CSS, 598

text fields
content access, 164–165
detecting changes in, 168–169
dynamically updating,

166–167
input tag, 168–169
numeric, validating with

regular expressions, 228–229
onClick event handler, 164
responding to changes in,

458–459
text-indent property,

CSS, 599
Text object, 588
text-transform attribute

CSS, 599
forcing capitalization and,

400–401
Textarea object, 588–589
three-dimensional movement,
moveObject function and,
342–343

time. See date and time
time zone

date output and, 98–99
GMT, 98–99
Universal Time Coordinate,

98–99
today variable, date and time

check with bookmarklet,
500–501

toggleMenu function
expanding/collapsing

functions, 438
highlighting menu

creation, 443
toGMTString method

cookie expiration, 308–309
date and time, 100

toLocaleString method
date and time, 100
date and time, checking with

bookmarklets, 500–501

620 JavaScript in 10 Simple Steps or Less

15 542419 index.qxd 11/19/03 10:25 AM Page 620

toLowerCase method,
strings, 36

toolbars, browser window
visibility, 252–253

top attribute
div tag, 356–357
layer placement, HTML

and, 522
object location, 330–331
object placement and,

332–333
Top Navigational Bar IV,

downloading, 418
top property, browser windows,

250–251
topTarget argument,
swapLayer function, 358–359

tostring method, date
object, 96

toUpperCase method,
strings, 36

toUTCString method, date and
time, 100

tracking user sessions, cookies
and, 310–311

transitioning pages, Internet
Explorer, 538–539

transitionList array,
animated banners, 156

transitions in slide shows,
triggering from links, 146–147

type attribute, input tag,
168–169

U
underlined text, 362–363
unescape function, strings, 304
unnamed frames, referencing

numerically, 298–299
updates

bookmarklets, checking,
476–477

browser window content from
another window, 266–267

frame content, dynamic,
296–297

frames, from another frame,
280–281

frames, multiple from another
link, 292–293

radio button selections,
186–187

selections, 178–179
text fields, dynamic updates,

166–167
uppercase, changing all to,

400–401
URLs (Uniform Resource

Locators)
browser window creation and,

244–245
form submission, controlling,

226–227
loaded document,
document.location
property and, 258

parameter values, 107
variables, custom output and,

106–107
user input, window object

and, 236
user interaction

pull-down menu creation,
408–409

pull-down menus, creating
two, 410–411

usernames, cookies, displaying,
306–307

users
background color replacement

with bookmarklets, 486–487
leaving page, executing code

and, 468–469
new, home page changes with

cookies, 320–321
responding to clicks, 456–457
selection list actions,

responding to, 470–471
text field input, responding to,

458–459
tracking sessions with cookies,

310–311
UTC (Universal Time

Coordinate), 98–99, 100–101,
308–309

V
validation

check box selection, 214–215
credit card numbers in forms,

208–209
e-mail addresses in forms,

202–203
numeric text fields, regular

expressions and, 228–229
passwords in forms, 216–217
phone numbers in forms,

206–207
phone numbers in forms,

regular expressions and,
218–219

radio button selections,
212–213

selection list choices, 210–211
zip codes in forms, 204–205

value attribute, check boxes,
188, 190–191

value property, radio buttons,
182, 186–187

values, returning from functions,
58–59

var statement, 20–21
variables

browser detection, building,
516–517

creating, 20–21
declaring, 20–21
dropObject, 354–355
frames and, 284
imageList, 484–485
leftPosition, 448–449
naming, 20–21
newScroll, 450–451
numeric variables, creation,

26–27
origScroll, 450–451
outputting, 22–23
persistentVariable, 284
regular expressions and, 228
slideSpeed, 448–449
today, 500–501
URLs, custom output and,

106–107

Index 621

15 542419 index.qxd 11/19/03 10:25 AM Page 621

verification, form fields, 196–197
version of browser

detecting, 512–513
detecting, object testing, 514

vertical-align property,
CSS, 599

vertical centering, 344–345
vertical movement of objects,

336–337
vertical-text cursor, 434
Visa card numbers, 208
visibility attribute, layers,

HTML, 526–527
visibility property, 394–395,

396–397
visitCookie, 320–321
void function, bookmarklets,

484–485

W
wait cursor, 434
while command, loops, 72–73
white-space property, CSS,

599
width attribute, layers, HTML

and, 524–525
width property

browser window, 248–249
CSS, 599

window keyword, window object
and, 236

window object
access, 236
alert dialog boxes, 236
alert dialog boxes, creating,

238–239
browser window creation,

244–245
browser window size, 236
closing browser windows,

270–271
confirmation dialog boxes,

236, 240–241
document scrolling, 236
function execution

scheduling, 236

introduction, 236
location property, 112
methods, 236, 590–592
opening browser windows, 244
opening pages in browser

windows, 236
prompt method, 242–243
prompts, 242–243
properties, 236, 589–590
self keyword and, 236
user input dialog boxes, 236,

242–243
window.alert method

arguments, 90
dialog boxes, 50

window.clearTimeout
method, scheduled functions,
80–81

window.close method
browser windows, 270–271,

272–273
page loading placeholder,

114–115
URLs in href attribute, 273

window.confirm method
click responses, 456–457
condition testing, loops,

70–71
introduction, 52–53

window.innerHeight property
browser window size, 398–399
vertical centering and,

344–345
window.innerWidth property

browser window size, 398–399
horizontal centering, 346–347

window.location, navigation
and, 232–233

window.location property,
112–113

window.open method
browser window creation,

244–245
browser window location

setting, 250–251

browser window resizing,
256–257

browser window scroll bars,
256–257

browser window size control,
248–249

browser window toolbar
display, 256–257

floating windows, 420–421
full screen windows in

Internet Explorer, 262–263
opening browser window at

link, 246–247
page loading placeholder,

114–115
window.pageYOffset, auto-

scrolling, 450–451
windows

floating, closing, 422–423
floating, content changes,

428–429
floating, creating, 420–421
floating, moving, 426–427
floating, resizing, 424–425
links, opening all in new

window with bookmarklet,
494–495

window.screen.colorDepth
property, 402–403

window.setTimeout method
animated banners, 156
scheduled functions, 76–77
slide shows and, 142

window.status property
status bar text, 236
window object, 236

word-spacing attribute,
366–367

word-spacing property, CSS,
599

X
X library, 540

background color, 548–549
background images, setting,

550–551

622 JavaScript in 10 Simple Steps or Less

15 542419 index.qxd 11/19/03 10:25 AM Page 622

	JavaScript in 10 Steps or Less
	Front Page
	Copyright
	Dedication
	Credits
	About the Author
	Acknowledgments

	Contents
	Introduction
	Part 1: JavaScript Basics
	Task 1: Creating a script Block
	Task 2: Hiding Your JavaScript Code
	Task 3: Providing Alternatives to Your JavaScript Code
	Task 4: Including Outside Source Code
	Task 5: Commenting Your Scripts
	Task 6: Writing a JavaScript Command
	Task 7: Temporarily Removing a Command from a Script
	Task 8: Using Curly Brackets
	Task 9: Writing Output to the Browser
	Task 10: Creating a Variable
	Task 11: Outputting a Variable
	Task 12: Creating a String
	Task 13: Creating a Numeric Variable
	Task 14: Performing Math
	Task 15: Concatenating Strings
	Task 16: Searching for Text in Strings
	Task 17: Replacing Text in Strings
	Task 18: Formatting Strings
	Task 19: Applying Multiple Formatting Functions to a String
	Task 20: Creating Arrays
	Task 21: Populating an Array
	Task 22: Sorting an Array
	Task 23: Splitting a String at a Delimiter
	Task 24: Calling Functions
	Task 25: Alerting the User
	Task 26: Confirming with the User
	Task 27: Creating Your Own Functions
	Task 28: Passing an Argument to Your Functions
	Task 29: Returning Values from Your Functions
	Task 30: Passing Multiple Parameters to Your Functions
	Task 31: Calling Functions from Tags
	Task 32: Calling Your JavaScript Code after the Page Has Loaded
	Task 33: Using forLoops
	Task 34: Testing Conditions with if
	Task 35: Using Short-Form Condition Testing
	Task 36: Looping on a Condition
	Task 37: Looping through an Array
	Task 38: Scheduling a Function for Future Execution
	Task 39: Scheduling a Function for Recurring Execution
	Task 40: Canceling a Scheduled Function
	Task 41: Adding Multiple Scripts to a Page
	Task 42: Calling Your JavaScript Code after the Page Has Loaded
	Task 43: Check If Java Is Enabled with JavaScript

	Part 2: Outputting to the Browser
	Task 44: Accessing the document Object
	Task 45: Outputting Dynamic HTML
	Task 46: Including New Lines in Output
	Task 47: Outputting the Date to the Browser
	Task 48: Outputting the Date and Time in a Selected Time Zone
	Task 49: Controlling the Format of Date Output
	Task 50: Customizing Output by the Time of Day
	Task 51: Generating a Monthly Calendar
	Task 52: Customizing Output Using URL Variables
	Task 53: Dynamically Generating a Menu
	Task 54: Replacing the Browser Document with a New Document
	Task 55: Redirecting the User to a New Page
	Task 56: Creating a "Page Loading ..." Placeholder

	Part 3: Images and Rollovers
	Task 57: Accessing an HTML-Embedded Image in JavaScript
	Task 58: Loading an Image Using JavaScript
	Task 59: Detecting MouseOver Events on Images
	Task 60: Detecting Click Events on Images
	Task 61: Switching an Image Programatically
	Task 62: Using Multiple Rollovers in One Page
	Task 63: Displaying a Random Image
	Task 64: Displaying Multiple Random Images
	Task 65: Using a Function to Create a Rollover
	Task 66: Using a Function to Trigger a Rollover
	Task 67: Using Functions to Create Multiple Rollovers in One Page
	Task 68: Creating a Simple Rollover Menu System
	Task 69: Creating a Slide Show in JavaScript
	Task 70: Randomizing Your Slide Show
	Task 71: Triggering Slide Show Transitions from Links
	Task 72: Including Captions in a Slide Show
	Task 73: Testing If an Image Is Loaded
	Task 74: Triggering a Rollover in a Different Location with a Link
	Task 75: Using Image Maps and Rollovers Together
	Task 76: Generating Animated Banners in JavaScript
	Task 77: Displaying a Random Banner Ad

	Part 4: Working with Forms
	Task 78: Preparing Your Forms for JavaScript
	Task 79: Accessing Text Field Contents
	Task 80: Dynamically Updating Text Fields
	Task 81: Detecting Changes in Text Fields
	Task 82: Accessing Selection Lists
	Task 83: Programmatically Populating a Selection List
	Task 84: Dynamically Changing Selection List Content
	Task 85: Detecting Selections in Selection Lists
	Task 86: Updating One Selection List Based on Selection in Another
	Task 87: Using Radio Buttons instead of Selection Lists
	Task 88: Detecting the Selected Radio Button
	Task 89: Detecting Change of Radio Button Selection
	Task 90: Updating or Changing Radio Button Selection
	Task 91: Creating Check Boxes
	Task 92: Detecting Check Box Selections
	Task 93: Changing Check Box Selections
	Task 94: Detecting Changes in Check Box Selections
	Task 95: Verifying Form Fields in JavaScript
	Task 96: Using the onSubmit Attribute of the Form Tag to Verify Form Fields
	Task 97: Verifying Form Fields Using INPUT TYPE="button" Instead of TYPE="submit"
	Task 98: Validating E-mail Addresses
	Task 99: Validating Zip Codes
	Task 100: Validating Phone Numbers
	Task 101: Validating Credit Card Numbers
	Task 102: Validating Selection List Choices
	Task 103: Validating Radio Button Selections
	Task 104: Validating Check Box Selections
	Task 105: Validating Passwords
	Task 106: Validating Phone Numbers with Regular Expressions
	Task 107: Creating Multiple Form Submission Buttons Using INPUT TYPE="button"Buttons
	Task 108: Reacting to Mouse Clicks on Buttons
	Task 109: Using Graphical Buttons in JavaScript
	Task 110: Controlling the Form Submission URL
	Task 111: Validating a Numeric Text Field with Regular Expressions
	Task 112: Encrypting Data before Submitting It
	Task 113: Using Forms for Automatic Navigation Jumping

	Part 5: Manipulating Browser Windows
	Task 114: Using the WindowObject
	Task 115: Popping Up an Alert Dialog Box
	Task 116: Popping Up Confirmation Dialog Boxes
	Task 117: Popping Up JavaScript Prompts
	Task 118: Creating New Browser Windows
	Task 119: Opening a New Browser Window from a Link
	Task 120: Setting the Size of New Browser Windows
	Task 121: Setting the Location of New Browser Windows
	Task 122: Controlling Toolbar Visibility for New Browser Windows
	Task 123: Determining the Availability of Scroll Bars for New Browser Windows
	Task 124: Restricting Resizing of New Browser Windows
	Task 125: Loading a New Document into a Browser Window
	Task 126: Controlling Window Scrolling from JavaScript
	Task 127: Opening a Full-Screen Window in Internet Explorer
	Task 128: Handling the Parent-Child Relationship of Windows
	Task 129: Updating One Window's Contents from Another
	Task 130: Accessing a Form in Another Browser Window
	Task 131: Closing a Window in JavaScript
	Task 132: Closing a Window from a Link
	Task 133: Creating Dependent Windows in Netscape
	Task 134: Sizing a Window to Its Contents in Netscape
	Task 135: Loading Pages into Frames
	Task 136: Updating One Frame from Another Frame
	Task 137: Sharing JavaScript Code between Frames
	Task 138: Using Frames to Store Pseudo-Persistent Data
	Task 139: Using One Frame for Your Main JavaScript Code
	Task 140: Using a Hidden Frame for Your JavaScript Code
	Task 141: Working with Nested Frames
	Task 142: Updating Multiple Frames from a Link
	Task 143: Dynamically Creating Frames in JavaScript
	Task 144: Dynamically Updating Frame Content
	Task 145: Referring to Unnamed Frames Numerically

	Part 6: Manipulating Cookies
	Task 146: Creating a Cookie in JavaScript
	Task 147: Accessing a Cookie in JavaScript
	Task 148: Displaying a Cookie
	Task 149: Controlling the Expiry of a Cookie
	Task 150: Using a Cookie to Track a User's Session
	Task 151: Using a Cookie to Count Page Access
	Task 152: Deleting a Cookie
	Task 153: Creating Multiple Cookies
	Task 154: Accessing Multiple Cookies
	Task 155: Using Cookies to Present a Different Home Page for New Visitors
	Task 156: Creating a Cookie Function Library
	Task 157: Allowing a Cookie to be Seen for all Pages in a Site

	Part 7: DHTML and Style Sheets
	Task 158: Controlling Line Spacing
	Task 159: Determining an Object's Location
	Task 160: Placing an Object
	Task 161: Moving an Object Horizontally
	Task 162: Moving an Object Vertically
	Task 163: Moving an Object Diagonally
	Task 164: Controlling Object Movement with Buttons
	Task 165: Creating the Appearance of Three-Dimensional Movement
	Task 166: Centering an Object Vertically
	Task 167: Centering an Object Horizontally
	Task 168: Controlling Line Height in CSS
	Task 169: Creating Drop Shadows with CSS
	Task 170: Modifying a Drop Shadow
	Task 171: Removing a Drop Shadow
	Task 172: Placing a Shadow on a Nonstandard Corner
	Task 173: Managing Z-Indexes in JavaScript
	Task 174: Setting Fonts for Text with CSS
	Task 175: Setting Font Style for Text with CSS
	Task 176: Controlling Text Alignment with CSS
	Task 177: Controlling Spacing with CSS
	Task 178: Controlling Absolute Placement with CSS
	Task 179: Controlling Relative Placement with CSS
	Task 180: Adjusting Margins with CSS
	Task 181: Applying Inline Styles
	Task 182: Using Document Style Sheets
	Task 183: Creating Global Style Sheet Files
	Task 184: Overriding Global Style Sheets for Local Instances
	Task 185: Creating a Drop Cap with Style Sheets
	Task 186: Customizing the Appearance of the First Line of Text
	Task 187: Applying a Special Style to the First Line of Every Element on the Page
	Task 188: Applying a Special Style to All Links
	Task 189: Accessing Style Sheet Settings
	Task 190: Manipulating Style Sheet Settings
	Task 191: Hiding an Object in JavaScript
	Task 192: Displaying an Object in JavaScript
	Task 193: Detecting the Window Size
	Task 194: Forcing Capitalization with Style Sheet Settings
	Task 195: Detecting the Number of Colors
	Task 196: Adjusting Padding with CSS

	Part 8: Dynamic User Interaction
	Task 197: Creating a Simple Pull-Down Menu
	Task 198: Creating Two Pull-Down Menus
	Task 199: Detecting and Reacting to Selections in a Pull-Down Menu
	Task 200: Generating a Drop-Down Menu with a Function
	Task 201: Placing Menu Code in an External File
	Task 202: Inserting a Prebuilt Drop-Down Menu
	Task 203: Creating a Floating Window
	Task 204: Closing a Floating Window
	Task 205: Resizing a Floating Window
	Task 206: Moving a Floating Window
	Task 207: Changing the Content of a Floating Window
	Task 208: Detecting Drag and Drop
	Task 209: Moving a Dragged Object in Drag and Drop
	Task 210: Changing Cursor Styles
	Task 211: Determining the Current Scroll Position
	Task 212: Creating an Expanding/Collapsing Menu
	Task 213: Creating a Highlighting Menu Using Just Text and CSS-No JavaScript
	Task 214: Creating a Highlighting Menu Using Text, CSS, and JavaScript
	Task 215: Placing Content Offscreen
	Task 216: Sliding Content into View
	Task 217: Creating a Sliding Menu
	Task 218: Auto-Scrolling a Page

	Part 9: Handling Events
	Task 219: Responding to the onMouseOverEvent
	Task 220: Taking Action When the User Clicks on an Object
	Task 221: Responding to Changes in a Form's Text Field
	Task 222: Responding to a Form Field Gaining Focus with onFocus
	Task 223: Taking Action When a Form Field Loses Focus with onBlur
	Task 224: Post-Processing Form Data with onSubmit
	Task 225: Creating Code to Load When a Page Loads with onLoad
	Task 226: Executing Code When a User Leaves a Page for Another
	Task 227: Taking Action When a User Makes a Selection in a Selection List

	Part 10: Bookmarklets
	Task 228: Downloading and Installing Bookmarklets
	Task 229: Checking Page Freshness with a Bookmarklet
	Task 230: Checking for E-mail Links with a Bookmarklet
	Task 231: E-mailing Selected Text with a Bookmarklet in Internet Explorer
	Task 232: E-mailing Selected Text with a Bookmarklet in Netscape
	Task 233: Displaying Images from a Page with a Bookmarklet
	Task 234: Changing Background Color with a Bookmarklet
	Task 235: Removing Background Images with a Bookmarklet
	Task 236: Hiding Images with a Bookmarklet
	Task 237: Hiding Banners with a Bookmarklet
	Task 238: Opening All Links in a New Window with a Bookmarklet
	Task 239: Changing Page Fonts with a Bookmarklet
	Task 240: Highlighting Page Links with a Bookmarklet
	Task 241: Checking the Current Date and Time with a Bookmarklet
	Task 242: Checking Your IP Address with a Bookmarklet
	Task 243: Searching Yahoo! with a Bookmarklet in Internet Explorer
	Task 244: Searching Yahoo! with a Bookmarklet in Netscape

	Part 11: Cross-Browser Compatibility and Issues
	Task 245: Detecting the Browser Type
	Task 246: Detecting the Browser Version
	Task 247: Browser Detection Using Object Testing
	Task 248: Creating Browser Detection Variables
	Task 249: Dealing with Differences in Object Placement in Newer Browsers
	Task 250: Creating Layers with the div Tag
	Task 251: Controlling Layer Placement in HTML
	Task 252: Controlling Layer Size in HTML
	Task 253: Controlling Layer Visibility in HTML
	Task 254: Controlling Layer Ordering in HTML
	Task 255: Changing Layer Placement and Size in JavaScript
	Task 256: Changing Layer Visibility in JavaScript
	Task 257: Changing Layer Ordering in JavaScript
	Task 258: Fading Objects
	Task 259: Creating a Page Transition in Internet Explorer
	Task 260: Installing the X Cross-Browser Compatibility Library
	Task 261: Showing and Hiding Elements with X
	Task 262: Controlling Stacking Order with X
	Task 263: Changing Text Color with X
	Task 264: Setting a Background Color with X
	Task 265: Setting a Background Image with X
	Task 266: Repositioning an Element with X
	Task 267: Sliding an Element with X
	Task 268: Changing Layer Sizes with X

	Appendix A: JavaScript Quick Reference
	Appendix B: CSS Quick Reference
	Index (linked)

