
JavaScript for Absolute Beginners

Companion
eBook

Available

7.5 x 9.25 spine = 0.9375" 504 page count

THE EXPERT’S VOICE® IN WEB DEVELOPMENT

Terry McNavage

Learn to write effective JavaScript
code from scratch

M
cNavage

this print for content only—size & color not accurate

  CYAN
  MAGENTA

  YELLOW
  BLACK
  PANTONE 123 C

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

JavaScript for Absolute Beginners
Dear Reader,

Even though I’ve been hand-coding JavaScript for twelve years, I haven’t forgot-
ten what it’s like to be just starting out. With this in mind, I wrote this book in a
friendly, conversational style for web designers new to both JavaScript and pro-
gramming. I assume a familiarity with HTML and CSS, but nothing more. I’m
also aware that just passively staring at code samples in a book is no way to learn
how to program.

So, as we explore ECMAScript, a standard defining JavaScript’s core syn-
tax, and DOM, a standard providing features for working with HTML, CSS, and
events, you will enter and run hundreds of code snippets to see exactly how the
techniques you’re learning work in the real world. All this will be done in the safe-
ty of the JavaScript console of Firebug, a free add-on to Firefox for PC, Mac, or
Linux. Then in the last two chapters of the book, you’ll leave the nest and hand-
code a real-world application in your preferred text editor. That application will
contain features like drag-and-drop, animated scrolling, sprites, and skin swap-
ping. Moreover, it will dynamically add five galleries either by way of Ajax and
data encoded JSON, XML, and HTML, or by dynamic script insertion and JSON
with Padding (JSON-P). Don’t worry if that sounds a bit bewildering now, it’ll all
make sense soon enough!

Finally, you’ll make your script snappier, by incorporating leading-edge
optimizations, such as advance conditional definition, lazy loaders, reverse
loops, closure, minimizing reflows, and thread yielding. And even some new
features from DOM3 and HTML5 that Explorer, Firefox, Safari, and Opera now
implement. So, by the end of the book, you will know how to hand-code ultra-
responsive interfaces. And you’ll have the kinds of JavaScript tools in your
pocket that employers crave.

Terry McNavage

US $29.99

Shelve in
Web Development\JavaScript

User level:
Beginner

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

ISBN 978-1-4302-7219-9

9 781430 272199

52999

THE APRESS ROADMAP

Beginning
HTML5 and CSS3

Pro
JavaScript

with Mootools

Pro
JavaScript RIA

Techniques

JavaScript
for Absolute Beginners

for Absolute Beginners
JavaScript

i

JavaScript for

Absolute Beginners

■ ■ ■

Terry McNavage

ii

JavaScript for Absolute Beginners

Copyright © 2010 by Terry McNavage

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-7219-9

ISBN-13 (electronic): 978-1-4302-7218-2

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

President and Publisher: Paul Manning
Lead Editors: Ben Renow-Clarke, Matthew Moodie
Technical Reviewers: Kristian Besley, Rob Drimmie, Tom Barker
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan Gennick,

Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes, Jeffrey Pepper, Frank
Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Mary Tobin
Copy Editor: Kim Wimpsett
Compositor: MacPS, LLC
Indexer: Toma Mulligan
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

mailto:ny@springer-sbm.com
mailto:ny@springer-sbm.com
mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales

iii

To the Little Flower, St. Thérèse de Lisieux, for sending me this rose.

iv

Contents at a Glance

■Contents .. v

■About the Author .. xiii

■About the Technical Reviewers .. xiv

■Acknowledgments ... xv

■Preface ... xvi

■Chapter 1: Representing Data with Values .. 1

■Chapter 2: Type Conversion .. 25

■Chapter 3: Operators ... 57

■Chapter 4: Controlling Flow ... 97

■Chapter 5: Member Inheritance .. 145

■Chapter 6: Functions and Arrays ... 181

■Chapter 7: Traversing and Modifying the DOM Tree ... 255

■Chapter 8: Scripting CSS ... 307

■Chapter 9: Listening for Events ... 347

■Chapter 10: Scripting BOM .. 399

■Index ... 461

v

Contents

■Contents at a Glance .. iv
■About the Author .. xiii
■About the Technical Reviewers .. xiv
■Acknowledgments ... xv
■Preface ... xvi

■Chapter 1: Representing Data with Values .. 1

What Are Value Types? ... 1

Creating a String Literal .. 2
Commenting Code .. 2

Gluing Strings Together with the + Operator ... 3

Creating a Number Literal ... 4

Creating a Boolean Literal ... 5

Naming a Value with an Identifier ... 6
Can I Name a Variable Anything I Want? .. 6

Some Valid Identifiers Are Already Taken .. 7

Creating an Object Literal ... 9
Naming Members with Identifiers .. 12

Creating an Array Literal ... 14

Creating a Function Literal .. 19

Summary ... 23

■ CONTENTS

vi

■Chapter 2: Type Conversion .. 25

String Members .. 25
Determining the Number of Characters ... 30

Decoding or Encoding Characters .. 31

Converting Case ... 33

Locating a Substring .. 35

Clipping a Substring ... 36

Replacing a Substring .. 37

Splitting a String into an Array of Smaller Strings ... 39

Searching with Regular Expressions ... 43

Explicitly Creating Wrappers ... 43

Converting a Value to Another Type .. 44
Converting a Value to a Number .. 46

Converting a Value to a String ... 50

Putting Off Learning RegExp Syntax .. 53

Summary ... 56

■Chapter 3: Operators ... 57

Introducing Operator Precedence and Associativity ... 57

Using JavaScript Operators .. 60
Combining Math and Assignment Operations .. 61

Incrementing or Decrementing Values ... 66

Testing for Equality .. 68

Testing for Inequality ... 70

Comparing Objects, Arrays, and Functions .. 72

Determining Whether One Number or String Is Greater Than Another .. 74

Determining Whether One Number or String Is Less Than Another ... 77

Greater Than or Equal to, Less Than or Equal to .. 78

Creating More Complex Comparisons .. 81

Saying or With || ... 83

Saying “and” with && .. 84

 ■ CONTENTS

vii

Chaining || Expressions .. 85

Chaining && Expressions ... 87

Chaining || and && Expressions ... 89

Conditionally Returning One of Two Values ... 90

Making Two Expressions Count as One ... 93

Deleting a Member, Element, or Variable .. 94

Summary ... 95

■Chapter 4: Controlling Flow ... 97

Writing an if Condition .. 98
Appending an else Clause .. 100

To Wrap or Not to Wrap .. 101

Coding Several Paths with the else if Idiom ... 102

Controlling Flow with Conditional Expressions .. 105

Taking One of Several Paths with a Switch .. 107

Writing a while Loop ... 115
Aborting an Iteration but Not the Loop ... 118

Replacing Break with Return in a Function .. 120

Writing a do while loop ... 122

Writing a for Loop ... 125

Enumerating Members with a for in Loop ... 127

Snappier Conditionals ... 129

Snappier Loops ... 136

Summary ... 144

■Chapter 5: Member Inheritance .. 145

Creating Objects with a Constructor ... 145

Classical Inheritance ... 149
Determining Which Type or Types an Object Is an Instance Of ... 156

Inherited Members Are Shared Not Copied .. 158

Modifying New and Past Instances of a Type .. 160

■ CONTENTS

viii

Sharing a Prototype but Forgoing the Chain .. 163

Adding an Empty Chain Link .. 166

Stealing a Constructor ... 169

Prototypal Inheritance ... 171

Cloning Members .. 174

Mixins .. 176

Summary ... 179

■Chapter 6: Functions and Arrays ... 181

Why Use Functions? .. 181

Functions Are Values .. 183

Function Members .. 184

Conditional Advance Loading .. 185
Writing Object.defineProperty() .. 186

Writing Object.defineProperties() ... 187

Writing Object.create() ... 188

Using the new Functions .. 189

Lazy Loading ... 194

Recursion .. 198

Borrowing Methods with apply() or call() .. 201
Overriding toString() ... 201

Testing for an Array ... 204

Rewriting cloneMembers() ... 206

Currying .. 208

Chaining Methods ... 212

Closure and Returning Functions .. 216

Passing a Configuration Object ... 222

Callback Functions .. 223

Memoization ... 224

 ■ CONTENTS

ix

Global Abatement with Modules ... 226

Arrays .. 228
Plucking Elements from an Array ... 229

Adding Elements to an Array .. 233

Gluing Two Arrays Together ... 235

Reversing the Elements in an Array ... 237

Sorting the Elements in an Array ... 238

Creating a String from an Array ... 243

Taking a Slice of an Array .. 244

Converting a Read-only Array-like Object to an Array ... 245

Inserting or Deleting Elements from an Array .. 249

Summary ... 253

■Chapter 7: Traversing and Modifying the DOM Tree ... 255

DOM Tree .. 255
Is Every Node the Same? ... 256

Interfaces Are Sensibly Named .. 257

Querying the DOM Tree .. 257

Same Jargon as for a Family Tree ... 260

Traversing the DOM Tree ... 260

Descending with childNodes .. 260

Ascending with parentNode ... 262

Muddying the Waters with Whitespace ... 263

Coding Cascade Style .. 264

Moving Laterally ... 268

Converting a NodeList to an Array ... 271

Converting a NodeList to an Array for Internet Explorer .. 273

Traversing the DOM without childNodes .. 275

Finding an Element by ID ... 277

Finding Elements by Their Tag Names ... 278

Finding Elements by Class ... 279

■ CONTENTS

x

Querying Attributes Like a Member . 111 281

Querying Attributes with Methods . 111 282

Querying Attr Nodes .11 285

Enumerating Attributes for an Element . 11 286

Creating Element or Text Nodes . 11 288

Deleting Content .111 292

Copying Content .11 293

Creating Elements with a Helper Function . 111 294

Reordering Nested Lists . 296

Where Did the Formatting Text Nodes Go? . 11 302

Summary . 111 304

■Chapter 8: Scripting CSS 307

DOM Interfaces for Working with CSS .111 307

Clarifying Some CSS Jargon .11 308
How Does JavaScript Represent a Rule? . 111 308

Two Other Declaration Blobs . 111 310

Downloading the Sample Files . 111 310

Querying a Style Attribute . 111 313

Scripting Classes . 11 318

Scripting Rules . 11 320

Scripting Imported Style Sheets . 111 326

Adding or Deleting a Rule . 111 327
Adding a Rule to a Style Sheet . 111 328

Deleting a Rule from a Style Sheet . 11 332

Querying Overall Styles from the Cascade . 11 334

Enabling and Disabling Style Sheets . 11 338

Including or Importing Style Sheets . 11 339

Embedding a Style Sheet . 11 344

Summary . 111 345

 ■ CONTENTS

xi

■Chapter 9: Listening for Events ... 347

Working with the Event Object .. 347

Downloading Project Files .. 348

Advance Conditional Loading .. 351

Telling JavaScript to Stop Listening for an Event ... 353

Preventing Default Actions from Taking Place .. 353

Preventing an Event from Traversing the DOM Tree ... 355

Writing Helper Functions ... 356
Crawling the DOM Tree .. 356

Finding an Element by Class .. 358

Testing for getElementsByClassName() ... 360

Querying the Cascade .. 362

Sliding Sprites ... 364
Preparing the Ground ... 365

Moving the Sprites ... 368

Snappier Sprites .. 370

Drag-and-Drop Behavior ... 375
Writing the Mousedown Event Listener ... 375

Writing the Mousemove Event Listener ... 378

Writing the Mouseup Event Listener .. 380

The doZ() Helper Function .. 382

Prepping the Drag .. 383

Swapping Skins by Key ... 390

Initiating Behaviors When the DOM Tree Is Available ... 395

Fighting Global Evil ... 395

Summary ... 396

■Chapter 10: Scripting BOM .. 399

Downloading the Project Files .. 399

Remembering Visitor Data with Cookies ... 401

■ CONTENTS

xii

Getting the User’s Preference .. 401

Setting the User’s Skin Preference .. 403

Setting the User’s Preference .. 404

Animating with Timers .. 407
Preparing the Scrollers .. 407

Adding the Press Event Listener .. 410

Writing the Animation Function .. 411

Using the Gallery .. 413

Writing Dynamic Pages Using Ajax ... 421
Testing XMLHttpRequest from Your Local File System .. 422

Creating Tree Branches with createElem() .. 422

Asynchronously Requesting Data .. 425

Parsing an HTML Response ... 427

Parsing an XML Response .. 431

Parsing Simple XML ... 435

Parsing JSON ... 439

Yielding with Timers ... 449

Converting function declarations to expressions .. 450

Summary ... 458

■Index ... 461

xiii

About the Author

■ Terry McNavage, www.popwebdesign.com, has been hand-coding JavaScript for 12 years. In addition to
being a JavaScript wizard, he has expertise in creative design, XHTML, CSS, PHP, Perl, and MySQL. Terry
is an elite runner, too. For the past 14 years he has run 100 or more miles per week over the hilly terrain
of Pittsburgh. He is also a bit of a foodie. Though his Pirates have had 18 losing seasons in a row, Terry
remains hopeful they'll raise the Jolly Roger more often than the white flag in 2011.

http://www.popwebdesign.com

■ CONTENTS

xiv

About the Technical Reviewers

■ Kristian Besley (pictured center) is a lead developer at Beetroot
Design (www.beetrootdesign.co.uk) where he develops web
applications, web sites, educational interactions, and games written
mainly in various combinations of PHP, Flash, and JavaScript.

He has been working with computers and the Web for far too long.
He also spends far too much time hacking and developing for open

source applications—including Moodle—so that they work just so.
Health warning: he has an unhealthy obsession with making his applications super-RSS compatible and
overly configurable.

His past and current clients include the BBC, Pearson Education, Welsh Assembly Government, and
loads of clients with acronyms such as JISC, BECTA, MAWWFIRE, and—possibly his favorite of all (well,
just try saying it out loud)—SWWETN.

When he isn’t working, he’s working elsewhere lecturing in interactive media (at Gower College–
Swansea) or providing geeky technical assistance to a whole gamut of institutions or individuals in an
effort to save them time and money (at his own expense!).

He has authored and coauthored a large number of books for friends of ED and Apress including the
Foundation Flash series, Flash MX Video, Flash ActionScript for Flash (with the wonderful David Powers),
and Flash MX Creativity. His words have also graced the pages of Computer Arts a few times too.

Kristian currently resides with his family in Swansea, Wales, and is a proud fluent Welsh speaker with a
passion for pushing the language on the Web and in bilingual web applications where humanly possible.

■ Rob Drimmie is lucky. He has an amazing wife, two awesome kids, and a new
keyboard. Rob’s creative urges tend to manifest in the form of web applications, and
he prefers they be fuelled by pho and hamburgers—the creative urges, that is.

■ Tom Barker is a software engineer, solutions architect, and technical manager with
more than a decade of experience working with ActionScript, JavaScript, Perl, PHP,
and the Microsoft .NET Framework. Currently, he is the manager of web development
at Comcast Interactive Media where he leads the group of developers responsible for
www.comcast.net and www.xfinity.com. He is also an adjunct professor at Philadelphia
University where he has been teaching undergrad and graduate courses on web
development since 2003, as well as a regular contributor to www.insideRIA.com. When
not working, teaching, or writing, Tom likes to spend time with his family, read, and
play video games until very early in the morning.

http://www.beetrootdesign.co.uk
http://www.comcast.net
http://www.xfinity.com
http://www.insideRIA.com

xv

Acknowledgments

I wish to thank my family Mom, Dad, John, and Ryan for their love and support. I wish to also thank
everyone at Apress, especially Ben Renow-Clarke, Matthew Moodie, Kristian Besley, Dominic
Shakeshaft, and Mary Tobin, for their diligence, patience, and encouragement.

—Terry McNavage

■ PREFACE

xvi

Preface

In the 2005 film adaptation of The Hitchhiker’s Guide to the Galaxy by Douglas Adams, aliens demolish
the earth to make way for a hyperspace expressway. Our demise could have been averted insofar as the
demolition proposal had been on file at local planning offices worldwide for some time. However, no
one complained during the public comment period.

Like construction proposals, no one ever bothers to read the preface to a programming book.
Typically, that’s mostly harmless, but not for this book. Though you won’t be vaporized into star dust for
jumping to Chapter 1 or later, you’ll be befuddled for not having downloaded and familiarized yourself
with Firebug, our tool for learning JavaScript.

JavaScript is a beginner-friendly programming language available in browsers such as Internet
Explorer, Firefox, Safari, Opera, and Chrome. Those browsers contain a JavaScript interpreter to parse
and run your JavaScript programs, which you write in plain text with a text editor. So, you can use the
same text editor that you code your XHTML and CSS with.

JavaScript derives its syntax, which is to say its grammar, from the ECMAScript standard and its
features for manipulating XHTML, CSS, and HTTP from the DOM standard. Typically, JavaScript
interpreters implement ECMAScript and DOM in separate libraries. So, just as your brain has left and
right lobes, a browser’s JavaScript brain has ECMAScript and DOM lobes.

In the first six chapters, we’ll converse with the ECMAScript lobe. Then we’ll converse with the DOM
lobe for a couple of chapters. I guess you could say we’ll be picking a JavaScript’s brain one lobe at a
time—ECMAScript and then DOM, with Firebug. Finally, in the last two chapters, we’ll hand-code an
uber-cool JavaScript program with our preferred text editors. But we’ll never make it through Chapters
1–8 without Firebug. So, our first order of business will be to have you download and familiarize yourself
with Firebug, a free add-on to Firefox for Windows, Mac, or Linux.

Obviously, prior to installing a Firefox add-on like Firebug, you need to have Firefox. Note that
Firefox is a free web browser for Windows, Mac OS X, or Linux. To download Firefox, go to
www.mozilla.com, and click the Download Firefox – Free button, as displayed in Figure 1. Then follow the
wizard to install Firefox on your computer.

Open Firefox, and then download the Firebug add-on from www.getfirebug.com. Simply click Install
Firebug for Firefox button in the top-right corner, as shown in Figure 2. Then follow the wizard, granting
permission to install the add-on if prompted by Firefox.

http://www.mozilla.com
http://www.getfirebug.com

xvii

Figure 1. Downloading Firefox for Windows, Mac OS X, or Linux

Figure 2. Downloading the Firebug add-on

Now that you have Firefox and Firebug installed, let’s run through how to work with Firebug.
Firebug runs JavaScript code relative to whatever HTML document is loaded in Firefox. In other words,
you need to have an HTML document open in Firefox for Firebug to work.

Insofar as ECMAScript provides no way to manipulate HTML or CSS, in Chapters 1–6 we will simply
load the following blank HTML document, firebug.html in the downloads at www.apress.com, in Firefox:

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Firebug</title>
</head>
<body>
</body>
</html>

http://www.apress.com

■ PREFACE

xviii

Opening Firebug
Load firebug.html in Firefox, and then press F12 to open Firebug, as in Figure 3. Note that pressing F12
does the inverse, too. In other words, pressing F12 toggles Firebug from closed to open or from open to
closed. Note that if F12 is a shortcut for something else on your computer, you can open Firebug by
choosing Tools Firebug Open Firebug in the menu bar of Firefox, as illustrated in Figure 4.

Figure 3. Press F12 to open or close Firebug.

Figure 4. Manually opening Firebug if F12 is a shortcut for something else on your computer

■ PREFACE

xix

Enabling Firebug
The first time you open Firebug, you may have to enable it by choosing Enabled from the Console menu,
as shown in Figure 5.

Figure 5. Enabling Firebug from the Console menu

Command Line
Firebug has a command line for running a single line of JavaScript with. This runs along the bottom of
Firebug and is prefaced by >>>. Type the following sample on the command line, as in Figure 6:

alert("Don't Panic");

Figure 6. Keying in a one-liner on the command line

■ PREFACE

xx

Now press Return on your keyboard to have JavaScript run the sample. As Figure 7 displays, this tells
Firefox to open an alert dialog box.

Figure 7. Pressing Return on your keyboard tells Firefox to open an alert dialog box.

Command Editor
Nearly all the JavaScript samples we will run in Firebug are more than one line of code. So, the
command line won’t do. Instead, we’ll toggle the console from the command line to the command
editor by clicking the upward-facing arrow icon in the bottom-right corner of Firebug. As Figure 8
displays, this divides Firebug into two panels. The one on the right is the command editor. This is where
you will type all the code samples in this book.

Note that there are three menu options, Run, Clear, and Copy, on the bottom of the command
editor. Clicking Run will run whatever code you typed into the command editor. Note that the keyboard
shortcut for clicking Run is Ctrl+Return (Command+Return). That is to say, pressing Return runs your
sample in the command line but not in the command editor. If it were otherwise and Return was for
running code in the command editor, you wouldn’t be able to enter more than one line of code. In other
words, the command editor would run the first line of code you typed, because you’d hit Return after
entering it; you’d never get a chance to enter a second line!

The other two, Clear and Copy, are aptly named. Clicking Clear will clear any code from the
command editor, while clicking Copy will copy any code in the command editor to the clipboard. Note
that to clear the left panel of Firebug, you must click Clear in its menu. So, there is a Clear option in both
the left and right panels. Oftentimes in this book I will say “double-clear Firebug,” which is your clue to
click Clear in both menus.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

■ PREFACE

xxi

Figure 8. The command editor has a separate menu with Run, Clear, and Copy options.

OK, type in the previous sample in the command editor, and then click Run or press Ctrl+Return
(Command+Return) to have JavaScript execute it:

alert("Don't Panic");

As Figure 9 displays, Firefox will open an alert dialog box, same as before.

Figure 9. Clicking Run tells Firefox to open an alert dialog box.

One thing to note is that the command editor and command line are under the Console tab in
Firebug. So if you inadvertently toggle to the HTML, CSS, Script, DOM, or Net tab, the command editor
will disappear. So, you will have to click the Console tab in the top-left corner to make the command

■ PREFACE

xxii

editor reappear. Note that the keyboard shortcut for toggling to the Console tab is Ctrl+Shift+L
(Command+Shift+L). Table 1 lists vital keyboard shortcuts for Firebug.

Table 1. Firebug Keyboard Shortcuts

Shortcut Description Windows or Linux Mac

Open Firebug F12 F12

Close Firebug F12 F12

Toggle to Console tab Ctrl+Shift+L Command+Shift+L

Run code in command editor Ctrl+Return Command+Return

If you are a fallible typist, inevitably you will mistype a code sample. Consequently, when you click
Run, JavaScript will print an error in the left panel of Firebug. Those are simply JavaScript’s way of
calling you a dummy.

Syntax and reference errors are the most common. JavaScript names those SyntaxError and
ReferenceError, respectively. So, let’s screw up in both ways now to get you off the schneid with errors.
In Firebug, mistype alert as alrt in order to make a reference error, which is to say you mistyped the
name of something:

alrt("Don't Panic");

As Figure 10 displays, JavaScript prints a ReferenceError containing the message "alrt is not
defined":

Figure 10. Oops JavaScript returns a ReferenceError saying "alrt is not defined".

■ PREFACE

xxiii

OK, fix that typo, reverting alrt to alert, and then delete the closing parentheses like so:

alert("Don't Panic";

Now click Run. As Figure 11 displays, JavaScript prints a SyntaxError containing the message
"missing) after argument list". Note that a syntax error in programming is like a grammar error in
writing.

Figure 11. Oops JavaScript returns a SyntaxError saying "missing) after argument list".

Don’t panic if you get an error. It probably just means you need to fix a typo or two.
Now that you have installed and gained familiarity with Firebug, let’s begin exploring ECMAScript!

■ PREFACE

xxiv

C H A P T E R 1

■ ■ ■

1

Representing Data with Values

When you walk into my childhood home in Pittsburgh, it’s evident a fellow with a lively mind lives there.
Photos from trips to some thirty-one countries on six continents line the walls. Intermingling those are
Aborigine and Aleut art, prints by Klimt and Degas, tapestries from Egypt and Peru, and Greek
sculptures. Notable literary works fill the library.

Though conversations with my dad are interesting, they tend to be interspersed with what my mom
would call “the comment from nowhere,” an unpredicated excerpt from whatever he is thinking about.
For example, I was over there for a Steelers game on a damp November day. I think they were playing the
Ravens, their blood rival. So, the carnage was fairly medieval. Moreover, Heinz Field was a mess. It was
more like a muddy cow pasture than a football field.

On a third and long with the Steelers nearly within field goal range, Roethlisberger dropped back to
pass. But Hines Ward, his intended receiver, slipped and fell on a timing pattern, sprawling face down in
the mud. So, the ball sailed over the first down marker, incomplete.

As the Steelers prepared to punt, I probably muttered something unprintable. Dad, on the other
hand, peered at me overtop his reading glasses and queried, “Did you know that the French may have
lost to the English at Agincourt due to the depth of the mud?” Though I didn’t say, “No, and why are you
telling me that?” I sure was thinking it.

If you are new to JavaScript and programming, some of the things I say in the first few chapters may
bewilder you like Dad’s query did me. Just know that, although I’ve been hand-coding JavaScript for 12
years, I’ve not forgotten how tough it can be at the very beginning. So, this book is written conversational
style, covering only things that matter.

It’s kind of like the knee-deep mud in a rain-soaked, newly plowed field bordering the woods of
Agincourt did on October 25, 1415. That proved very tiring for French knights to wade through wearing
some 50 to 60 pounds of full-plate armor. Those who later fell in the deep mud during the mêlée had
difficulty regaining their feet, leaving them still targets for English longbowmen. Some trampled French
knights even drowned in their armor. Within a few hours, the French army had been crushed by an
English army one-fifth its size. Historians put the French dead at 10,000 compared to 112 for the English,
attributing the slaughter to the muddy terrain.

Dad told me those details over dinner following the game, noting that he had been prepping a
lecture on Henry V, a Shakespeare play featuring the battle of Agincourt, for a course he was giving at
Penn State University. So, the comment from nowhere came from somewhere, too!

So, hang in there during early going while the mud is deep. Things will fall into place for you later in
the book just like they did for me later in the day.

What Are Value Types?
In JavaScript, data is represented with values. There are four value types to convey data with: string,
number, boolean, and object. Additionally, there are two value types to convey no data with: undefined
and null. Two ways to convey “nothing there” won’t seem so strange in Chapter 3.

CHAPTER 1 ■ REPRESENTING DATA WITH VALUES

2

The simplest way to create a string, number, boolean, or object value in JavaScript is to literally type
it into your script. Doing so creates a literal value, or, more plainly, a literal.

Creating a String Literal
Plain text like my favorite ice cream, Ben & Jerry’s Chocolate Fudge Brownie, is represented with a string
value in JavaScript. Just wrap some text in a pair of double or single quotation marks, and you have
yourself a string.

Alright, open firebug.html in Firefox, and then press F12 to enable Firebug. If you’re just joining us,
flip back to the Preface for details on how to do this. Type the following string in the right panel of
Firebug, and click Run. As Figure 1–1 displays, JavaScript will echo the string value, printing it in the left
panel of Firebug:

"Ben & Jerry's Chocolate Fudge Brownie";

Figure 1–1. JavaScript parrots the string literal back to us.

JavaScript interpreters for Firefox and other browsers return a string value in double quotes. So,
we’ll go with double quotes in this book. But it doesn’t matter. The only thing I would say is choose one
style or the other and stick with it.

Note that the previous string is followed by a semicolon. Every statement, which is simply
something you tell JavaScript to do, ends with a semicolon. Our simple statement shown earlier tells
JavaScript to create a string literal in memory. We’ll explore statements more fully in Chapter 4.

Commenting Code
Just like CSS or XHTML, JavaScript permits you to comment your code and format it with whitespace.
Single-line comments begin with a //. JavaScript disregards anything following the // until the end of the
line. In this book, code samples I want you to enter and run are followed by a comment listing the return
value JavaScript will print in Firebug. So, to let you know JavaScript will echo the string literals, I’d write
this:

"Ben & Jerry's";
// "Ben & Jerry's"
"Chocolate Fudge Brownie";
// "Chocolate Fudge Brownie"

CHAPTER 1 ■ REPRESENTING DATA WITH VALUES

3

But you would just enter and run the following:

"Ben & Jerry's";
"Chocolate Fudge Brownie";

If a code sample has two or more comments, that is your clue to stop and click Run to verify a return
value before keying in the remainder of the sample.

Gluing Strings Together with the + Operator
To glue two strings together, separate them with the + concatenation operator. We’ll explore + and a slew
of other operators, listed here, in Chapter 3. Note that the values you give an operator to work with are
referred to as operands.

[]
.
()
new
++
--
!
delete
typeof
void
*
/
%
+
-
<
<=
>
>=
instanceof
in
===
!===
==
!=
&&
||
?:
=
*=
/=
%=
+=
-=
,

Click Clear in both Firebug panels, and then cobble together a larger string from five smaller ones.

"Ben & Jerry's" + " " + "Chocolate Fudge Brownie" + " is my favorite icecream.";
// "Ben & Jerry's Chocolate Fudge Brownie is my favorite icecream."

CHAPTER 1 ■ REPRESENTING DATA WITH VALUES

4

Verify your work with Figure 1–2.

Figure 1–2. Gluing five strings together with the + operator

Note that "Ben & Jerry's" + " " + "Chocolate Fudge Brownie" + " is my favorite icecream." is
referred to as an expression for a value. In JavaScript, those are any phrases of code that create a value.
You might think of an expression as a recipe for a value. We’ll explore that analogy in Chapter 3.

Creating a Number Literal
Scripts typically do a lot of math. So, JavaScript, of course, has a number value type. Click Clear in
Firebug, and let’s have JavaScript do some math.

Chocolate Fudge Brownie has 4 servings per pint and 260 calories per serving. So, we could have
JavaScript calculate the calories per pint with the * operator, which multiplies its operands:

4 * 260;
// 1040

I’m an avid runner, taking daily runs of some 14 miles Monday through Saturday. On Sundays I go
for 21. We could have JavaScript calculate yearly miles with the following expression. Note that / does
division and + does addition. Note too that JavaScript evaluates anything in parentheses first.

(6 * 14 + 21) / 7 * 365;
// 5475

It takes roughly 100 calories to run a mile, so, if I were to fuel my running entirely with Chocolate
Fudge Brownie, how many pints would I need per year? Note that Math.round() rounds a decimal
number to an integer. So, in our case, it rounds 526.4423076923077 to 526. Math.round() is one of the
features for manipulating numbers that we’ll explore in Chapter 5. Note too that + does addition if both
its operands are numbers but concatenation if either operand is a string. For that to work, JavaScript
converts the number 526 to the string "526" before gluing it to "pints of Chocolate Fudge Brownie".
Verify your work with Figure 1–3.

Math.round((6 * 14 + 21) / 7 * 365 * 100 / (4 * 260)) + " pints of Chocolate Fudge Brownie";
// "526 pints of Chocolate Fudge Brownie"

I think I’ll stay with an organic, whole-foods diet for now. But, if I’m still running when I’m 90,

maybe I’ll give that a try!

CHAPTER 1 ■ REPRESENTING DATA WITH VALUES

5

Figure 1–3. Doing some math with numbers

■ Note JavaScript’s value type conversion feature is covered more fully in Chapter 2.

Creating a Boolean Literal
Sometimes you will want a simple yes or no answer from JavaScript. In those circumstances, the return
value for an expression will be true for yes and false for no.

Click Clear in both Firebug panels, and let’s ask JavaScript whether Chocolate Fudge Brownie is just
chocolate ice cream. Note that the === operator tells you whether two values are identical:

"Chocolate Fudge Brownie" === "chocolate icecream";
// false

That’s an understatement. Alright, now let’s compare the previous calculation to its return value,
before verifying our work with Figure 1–4:

Math.round((6 * 14 + 21) / 7 * 365 * 100 / (4 * 260)) + " pints of Chocolate Fudge Brownie"
===
 "526 pints of Chocolate Fudge Brownie";
// true

Figure 1–4. The === operator always returns a boolean.

CHAPTER 1 ■ REPRESENTING DATA WITH VALUES

6

■ Note Comparison operators such as === all return booleans. Moreover, JavaScript can convert any string,
number, object, null, or undefined value to a boolean. We’ll explore value type conversion in Chapter 2. For those

reasons, booleans are vital for controlling flow, something we’ll explore in Chapter 4.

Naming a Value with an Identifier
Insofar as the literals we have created thus far are anonymous, we have no way to query or manipulate
their values later. To fix this, we need to name them with an identifier. Doing so creates a variable, which
of course is a named value.

OK, click Clear in both Firebug panels. Then type the keyword var followed by the identifier
iceCream and a semicolon. Doing so declares a variable named iceCream to JavaScript. However,
iceCream contains undefined, a literal conveying no value.

var iceCream;

Let’s put the string literal "Chocolate Fudge Brownie" in iceCream with the = operator:

var iceCream;
iceCream = "Chocolate Fudge Brownie";

To query the value contained by a variable, type its identifier. Type iceCream, and click Run.
JavaScript will then return the string literal:

var iceCream;
iceCream = "Chocolate Fudge Brownie";
iceCream;
// "Chocolate Fudge Brownie"

To put a new value in iceCream, do another = operation. So, let’s replace "Chocolate Fudge Brownie"
with "New York Super Fudge Chunk" like so:

var iceCream;
iceCream = "Chocolate Fudge Brownie";
iceCream = "New York Super Fudge Chunk";
iceCream;
// "New York Super Fudge Chunk"

Can I Name a Variable Anything I Want?
Sorry, no. JavaScript identifiers may only contain letters, numbers, and the _ underscore character. It
can’t begin with a number, though. Insofar as identifiers may not contain whitespace, ones containing
two or more words are written in camel case. That is to say, spaces are deleted, and the first letter in
every word but the first is capitalized. So, newYorkSuperFudgeChunk is camel case for "New York Super
Fudge Chunk".

Though you may not name a variable anything you want, you may put any expression in it. So,
you’re not limited to literals. Click Clear in both Firebug panels, and then enter and run the following,
before verifying this and the previous few samples with Figure 1–5.

var newYorkSuperFudgeChunk = 4 * 300 + " calories per pint";
newYorkSuperFudgeChunk;
// "1200 calories per pint"

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 1 ■ REPRESENTING DATA WITH VALUES

7

Figure 1–5. Creating validly named variables

The reason this works is that = has very low precedence compared to * and +. In Chapter 3, we’ll
explore precedence, which determines the pecking order of operators more fully.

Some Valid Identifiers Are Already Taken
JavaScript syntax, as defined by the ECMAScript standard, reserves the following identifiers, referred to
as keywords. Those are JavaScript’s key to do something for you. So, the term is apt. Naming a variable
with a keyword returns a syntax error:

break
case
catch
continue
default
delete
do
else
finally
for
function
if
in
instanceof
new
return
switch
this
throw
try
typeof
var
void
while
with

CHAPTER 1 ■ REPRESENTING DATA WITH VALUES

8

By the end of this book, you will know what all these keywords tell JavaScript to do. So, by then, it
will be obvious not to name a variable with a keyword.

On the other hand, future versions of ECMAScript may add the following keywords. Those still won’t
mean anything to you by the end of the book. But don’t feel bad; they still don’t mean anything to
JavaScript either. Anyway, don’t name a variable with one of the following reserved words:

abstract
boolean
byte
char
class
const
debugger
double
enum
export
extends
final
float
goto
implements
import
int
interface
long
native
package
private
protected
public
short
static
super
synchronized
throws
transient
volatile

In addition to keywords and reserved words, JavaScript has some predefined variables, too. So, the
following identifiers are already taken:

arguments
Array
Boolean
Date
decodeURI
decodeURIComponent
encodeURI
Error
escape
eval
EvalError
Function
Infinity
isFinite

CHAPTER 1 ■ REPRESENTING DATA WITH VALUES

9

isNaN
Math
NaN
Number
Object
parseFloat
parseInt
RangeError
ReferenceError
RegExp
String
SyntaxError
TypeError
undefined
unescape
URIError

■ Note If you are curious about the ECMAScript standard, visit http://www.ecmascript.org.

Creating an Object Literal
The object value type provides a way for you to create a place in memory for related values, which may
be named with an identifier or string. Those related values are referred to as members. So, we say an
object contains members.

Alright, click Clear in both Firebug panels. Then create an empty object literal named iceCream by
keying in a pair of curly braces, followed of course by a semicolon.

var iceCream = {
};

Now add a member named "Chocolate Fudge Brownie" followed by an expression with the number
of calories per pint. Just like variables, members may contain a literal value or an expression for a value.
Note that the name of the member is separated from the value by a colon.

var iceCream = {
 "Chocolate Fudge Brownie": 4 * 260
};

OK, now members are separated by a comma. So to add a second member, follow the first one with
a comma, like so:

var iceCream = {
 "Chocolate Fudge Brownie": 4 * 260,
 "Half Baked": 4 * 250
};

Now there are several more members so that we have ten in all. Just remember to separate them
with a comma. But don’t follow the final member—"Mission to Marzipan"—with a comma.

http://www.ecmascript.org

CHAPTER 1 ■ REPRESENTING DATA WITH VALUES

10

var iceCream = {
 "Chocolate Fudge Brownie": 4 * 260,
 "Half Baked": 4 * 250,
 "New York Super Fudge Chunk": 4 * 300,
 "Coffee Heath Bar Crunch": 4 * 280,
 "Cherry Garcia": 4 * 240,
 "Mud Pie": 4 * 270,
 "Milk & Cookies": 4 * 270,
 "Cinnamon Buns": 4 * 290,
 "Chocolate Chip Cookie Dough": 4 * 270,
 "Mission to Marzipan": 4 * 260
};

To query a member in iceCream, type iceCream, and then put the member name within the []
operator. Let’s query "Chocolate Fudge Brownie", my favorite Ben & Jerry’s, then verify our work with
Figure 1–6.

var iceCream = {
 "Chocolate Fudge Brownie": 4 * 260,
 "Half Baked": 4 * 250,
 "New York Super Fudge Chunk": 4 * 300,
 "Coffee Heath Bar Crunch": 4 * 280,
 "Cherry Garcia": 4 * 240,
 "Mud Pie": 4 * 270,
 "Milk & Cookies": 4 * 270,
 "Cinnamon Buns": 4 * 290,
 "Chocolate Chip Cookie Dough": 4 * 270,
 "Mission to Marzipan": 4 * 260
};
iceCream["Chocolate Fudge Brownie"] + " calories per pint";
// "1040 calories per pint"

Figure 1–6. Querying a member in iceCream

Hmm. It think I mismarked "Half Baked". It ought to be 270 per serving, not 250. So, how would we
write a new value to the "Half Baked" member?

CHAPTER 1 ■ REPRESENTING DATA WITH VALUES

11

Yup, with the = operator. Writing a member is like writing a variable. Let’s do so in Firebug, verifying
our work with Figure 1–7:

var iceCream = {
 "Chocolate Fudge Brownie": 4 * 260,
 "Half Baked": 4 * 250,
 "New York Super Fudge Chunk": 4 * 300,
 "Coffee Heath Bar Crunch": 4 * 280,
 "Cherry Garcia": 4 * 240,
 "Mud Pie": 4 * 270,
 "Milk & Cookies": 4 * 270,
 "Cinnamon Buns": 4 * 290,
 "Chocolate Chip Cookie Dough": 4 * 270,
 "Mission to Marzipan": 4 * 260
};
iceCream["Half Baked"] = 4 * 270;
iceCream["Half Baked"] + " calories per pint";
// "1080 calories per pint"

Figure 1–7. Writing a new value to a member

Now what if I want to add a new flavor, say "Peanut Butter Cup" to iceCream? That works the same
way as changing the value of a member. So, = changes the value of a member or adds a new one. It just
depends on whether the member you query is defined already.

In Firebug, let’s add a member named "Peanut Butter Cup" like so. Then query its value, verifying
our work with Figure 1–8:

var iceCream = {
 "Chocolate Fudge Brownie": 4 * 260,
 "Half Baked": 4 * 270,
 "New York Super Fudge Chunk": 4 * 300,
 "Coffee Heath Bar Crunch": 4 * 280,
 "Cherry Garcia": 4 * 240,
 "Mud Pie": 4 * 270,
 "Milk & Cookies": 4 * 270,
 "Cinnamon Buns": 4 * 290,

CHAPTER 1 ■ REPRESENTING DATA WITH VALUES

12

 "Chocolate Chip Cookie Dough": 4 * 270,
 "Mission to Marzipan": 4 * 260
};
iceCream["Peanut Butter Cup"] = 4 * 360;
iceCream["Peanut Butter Cup"] + " calories per pint";
// "1440 calories per pint"

Figure 1–8. Adding a new member to an object

Yipes, 1440 calories! On second thoughts, I’d like to remove that from iceCream. To do so, pass the
"Peanut Butter Cup" member to the delete operator, which as its name implies deletes a member from
an object. Consequently, when we query iceCream["Peanut Butter Cup"] following its demolition,
JavaScript returns undefined to convey no value. We can’t glue undefined to a string, though. So,
JavaScript converts it to "undefined" first.

var iceCream = {
 "Chocolate Fudge Brownie": 4 * 260,
 "Half Baked": 4 * 270,
 "New York Super Fudge Chunk": 4 * 300,
 "Coffee Heath Bar Crunch": 4 * 280,
 "Cherry Garcia": 4 * 240,
 "Mud Pie": 4 * 270,
 "Milk & Cookies": 4 * 270,
 "Cinnamon Buns": 4 * 290,
 "Chocolate Chip Cookie Dough": 4 * 270,
 "Mission to Marzipan": 4 * 260
};
iceCream["Peanut Butter Cup"] = 4 * 360;
delete iceCream["Peanut Butter Cup"];
iceCream["Peanut Butter Cup"] + " calories per pint";
// "undefined calories per pint"

CHAPTER 1 ■ REPRESENTING DATA WITH VALUES

13

Naming Members with Identifiers
Naming iceCream members with strings enabled us to use whitespace, which is forbidden for identifiers.
But we could have gone with camel case identifiers like so:

var iceCream = {
 chocolateFudgeBrownie: 4 * 260,
 halfBaked: 4 * 270,
 newYorkSuperFudgeChunk: 4 * 300,
 coffeeHeathBarCrunch: 4 * 280,
 cherryGarcia: 4 * 240,
 mudPie: 4 * 270,
 milkCookies: 4 * 270,
 cinnamonBuns: 4 * 290,
 chocolateChipCookieDough: 4 * 270,
 missionToMarzipan: 4 * 260
};

Having done so, we can now query members with the . operator followed by an identifier. Try doing so
in Firebug by entering and running the following sample, verifying your work with Figure 1–9.

var iceCream = {
 chocolateFudgeBrownie: 4 * 260,
 halfBaked: 4 * 270,
 newYorkSuperFudgeChunk: 4 * 300,
 coffeeHeathBarCrunch: 4 * 280,
 cherryGarcia: 4 * 240,
 mudPie: 4 * 270,
 milkCookies: 4 * 270,
 cinnamonBuns: 4 * 290,
 chocolateChipCookieDough: 4 * 270,
 missionToMarzipan: 4 * 260
};
iceCream.newYorkSuperFudgeChunk + " calories per pint";
// "1200 calories per pint"

Figure 1–9. Querying a member with an identifier rather than with a string

CHAPTER 1 ■ REPRESENTING DATA WITH VALUES

14

To update the value of a member or to add a new member, you would use the = operator, same as
before. Let’s add a bostonCreamPie member to iceCream. Then query its value, verifying our work with
Figure 1–10:

var iceCream = {
 chocolateFudgeBrownie: 4 * 260,
 halfBaked: 4 * 270,
 newYorkSuperFudgeChunk: 4 * 300,
 coffeeHeathBarCrunch: 4 * 280,
 cherryGarcia: 4 * 240,
 mudPie: 4 * 270,
 milkCookies: 4 * 270,
 cinnamonBuns: 4 * 290,
 chocolateChipCookieDough: 4 * 270,
 missionToMarzipan: 4 * 260
};
iceCream.bostonCreamPie = 4 * 250;
iceCream.bostonCreamPie + " calories per pint";
// "1000 calories per pint"

Figure 1–10. Writing a new value to a member named with an identifier

Creating an Array Literal
The members in iceCream are coded like a top-ten list. However, there’s no way to have JavaScript query
them that way. We couldn’t ask, “What’s my third favorite flavor?” for example. Plus, we have to name
members and give them a value.

So, if we wanted to simply create a top-ten list of flavors, omitting the depressing calorie details, an
object wouldn’t do. For that we’d need an array, which is a subtype of the object value type. That is to
say, an array is still an object; it just has some additional features.

One of those features is ordering values numerically with non-negative integers beginning at 0.
JavaScript does so behind the scenes. So, you just list values in an array from first to last; JavaScript takes
care of the numbering. Note that numbered values are referred to as elements rather than members.

CHAPTER 1 ■ REPRESENTING DATA WITH VALUES

15

Next click Clear in both Firebug panels. Then create an empty array literal named iceCream by
typing a pair of square braces, followed of course by a semicolon.

var iceCream = [
];

Now add an element to iceCream like so:

var iceCream = [
 "Chocolate Fudge Brownie"
];

Just as object members are separated by commas, so too are array elements. We would add my
second favorite flavor like so:

var iceCream = [
 "Chocolate Fudge Brownie",
 "Half Baked"
];

Then continue separating elements with commas to fill in the rest of my top ten. Note that final
element, "Mission to Marzipan", is not followed by a comma. Note too that JavaScript numbers flavors
from 0 to 9. Although "New York Super Fudge Chunk" is 3 in my heart, it’s 2 to JavaScript:

var iceCream = [
 "Chocolate Fudge Brownie",
 "Half Baked",
 "New York Super Fudge Chunk",
 "Coffee Heath Bar Crunch",
 "Cherry Garcia",
 "Mud Pie",
 "Milk & Cookies",
 "Cinnamon Buns",
 "Chocolate Chip Cookie Dough",
 "Mission to Marzipan"
];

To query an element in iceCream, put its number in the [] operator. Note that an element’s number
is referred to as its index. Therefore, in Firebug, query a few elements in iceCream like so. Remember to
stop and click Run prior to each comment.

var iceCream = [
 "Chocolate Fudge Brownie",
 "Half Baked",
 "New York Super Fudge Chunk",
 "Coffee Heath Bar Crunch",
 "Cherry Garcia",
 "Mud Pie",
 "Milk & Cookies",
 "Cinnamon Buns",
 "Chocolate Chip Cookie Dough",
 "Mission to Marzipan"
];
iceCream[0];
// "Chocolate Fudge Brownie"
iceCream[3];
// "Coffee Heath Bar Crunch"

CHAPTER 1 ■ REPRESENTING DATA WITH VALUES

16

iceCream[6];
// "Milk & Cookies"

Verify your work with Figure 1–11.

Figure 1–11. Creating an array and querying elements

Now what if I try a new flavor and want to add it to the top 10. Say swap "Mission to Marzipan" for
"Boston Cream Pie". How would you do that?

Yup, with the = operator. So, = writes a new value to an element or member. Try doing so in Firebug.
Then query the new number 10, before verifying your work with Figure 1–12:

var iceCream = [
 "Chocolate Fudge Brownie",
 "Half Baked",
 "New York Super Fudge Chunk",
 "Coffee Heath Bar Crunch",
 "Cherry Garcia",
 "Mud Pie",
 "Milk & Cookies",
 "Cinnamon Buns",
 "Chocolate Chip Cookie Dough",
 "Mission to Marzipan"
];
iceCream[9] = "Boston Cream Pie";
iceCream[9];
// "Boston Cream Pie"

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 1 ■ REPRESENTING DATA WITH VALUES

17

Figure 1–12. Writing a new value to an element in an array

Admit it, you’re skeptical that an array is of the object value type. Members are named with strings
or identifiers, while elements are named with numbers. Or are they?

No. JavaScript names elements with strings, too. They’re numeric ones but strings nonetheless. So,
our array is like the following object:

var iceCream = {
 "0": "Chocolate Fudge Brownie",
 "1": "Half Baked",
 "2": "New York Super Fudge Chunk",
 "3": "Coffee Heath Bar Crunch",
 "4": "Cherry Garcia",
 "5": "Mud Pie",
 "6": "Milk & Cookies",
 "7": "Cinnamon Buns",
 "8": "Chocolate Chip Cookie Dough",
 "9": "Boston Cream Pie"
};

OK, so if array elements are not named with numbers, how come we read and write their values by
number, not by string?

Sorry, JavaScript tricked you again. The [] operator converts the number you put in there to a string.
If you give it a 3 to work with, it will return the value of the element named 3. To illustrate the point,
query an element in iceCream with a string in Firebug:

var iceCream = [
 "Chocolate Fudge Brownie",
 "Half Baked",
 "New York Super Fudge Chunk",
 "Coffee Heath Bar Crunch",
 "Cherry Garcia",
 "Mud Pie",
 "Milk & Cookies",
 "Cinnamon Buns",
 "Chocolate Chip Cookie Dough",

CHAPTER 1 ■ REPRESENTING DATA WITH VALUES

18

 "Mission to Marzipan"
];
iceCream["7"];
// "Cinnamon Buns"

Verify your work with Figure 1–13.

Figure 1–13. Querying an element with a string rather than with a number

Similarly, we could query a member in an equivalent object literal with a number. Try it in Firebug,
verifying your work with Figure 1–14:

var iceCream = {
 "0": "Chocolate Fudge Brownie",
 "1": "Half Baked",
 "2": "New York Super Fudge Chunk",
 "3": "Coffee Heath Bar Crunch",
 "4": "Cherry Garcia",
 "5": "Mud Pie",
 "6": "Milk & Cookies",
 "7": "Cinnamon Buns",
 "8": "Chocolate Chip Cookie Dough",
 "9": "Mission to Marzipan"
};
iceCream[5];
// "Mud Pie"

CHAPTER 1 ■ REPRESENTING DATA WITH VALUES

19

Figure 1–14. Objects may have elements, too.

In Chapter 5, we’ll explore some array-only features for manipulating elements. Those make
elements in array magical compared to those in an object. It’s sort of like how putting on the spidey suit
turns ordinary Peter Parker into Spiderman.

Creating a Function Literal
Alright, it’s trivial to query our ice cream array for what flavor I’d rank eighth:

var iceCream = [
 "Chocolate Fudge Brownie",
 "Half Baked",
 "New York Super Fudge Chunk",
 "Coffee Heath Bar Crunch",
 "Cherry Garcia",
 "Mud Pie",
 "Milk & Cookies",
 "Cinnamon Buns",
 "Chocolate Chip Cookie Dough",
 "Mission to Marzipan"
];
iceCream[7];
// "Cinnamon Buns"

But it’s quite another to query whether a flavor like "Cinnamon Buns" is among my top ten, as the
following sample and Figure 1–15 illustrate:

var iceCream = [
 "Chocolate Fudge Brownie",
 "Half Baked",
 "New York Super Fudge Chunk",
 "Coffee Heath Bar Crunch",
 "Cherry Garcia",

CHAPTER 1 ■ REPRESENTING DATA WITH VALUES

20

 "Mud Pie",
 "Milk & Cookies",
 "Cinnamon Buns",
 "Chocolate Chip Cookie Dough",
 "Mission to Marzipan"
];
"Cinnamon Buns" === iceCream[0];
// false
"Cinnamon Buns" === iceCream[1];
// false
"Cinnamon Buns" === iceCream[2];
// false
"Cinnamon Buns" === iceCream[3];
// false
"Cinnamon Buns" === iceCream[4];
// false
"Cinnamon Buns" === iceCream[5];
// false
"Cinnamon Buns" === iceCream[6];
// false
"Cinnamon Buns" === iceCream[7];
// true

Figure 1–15. Determining whether a flavor is among the top ten, a real bear

We wouldn’t want to do that for a bunch of flavors. For eliminating this kind of drudgery, JavaScript
provides a second object subtype named function. In addition to being able to contain members or
elements, functions can also contain statements. Remember, those are commands you give to
JavaScript.

Functions provide a way to save snippets of frequently run code to a place in memory, that is to say,
for code reuse.

CHAPTER 1 ■ REPRESENTING DATA WITH VALUES

21

One of those would come in handy for determining whether a flavor is among my top ten. In
Firebug, let’s save a function literal to a variable named rankFlavor. To do so, type the keyword function,
a pair of parentheses, and a pair of curly braces. Note that the parentheses contain a comma-separated
list of identifiers, referred to as parameters or arguments. Those contain the values you pass to a function
when you invoke it. Let’s define a flavor parameter. Then if we pass our function "Cherry Garcia",
JavaScript will assign that to flavor.

var iceCream = [
 "Chocolate Fudge Brownie",
 "Half Baked",
 "New York Super Fudge Chunk",
 "Coffee Heath Bar Crunch",
 "Cherry Garcia",
 "Mud Pie",
 "Milk & Cookies",
 "Cinnamon Buns",
 "Chocolate Chip Cookie Dough",
 "Mission to Marzipan"
];
var rankFlavor = function(flavor) {
};

In an object literal, the curly braces contain members, but in a function literal, the curly braces
contain statements. Just type in the following for, if, and return statements for now. We’ll explore if
and for in Chapter 4 and return in Chapter 6. In a nutshell, this snippet of code compares the value of
flavor to each element in iceCream. If flavor is among my top ten, JavaScript returns the value of the
expression:

flavor + " is number " + (i + 1) + ".";

Note that i is the element’s index in iceCream. Otherwise, JavaScript returns this expression:

flavor + " is not among my top 10.";

Let’s pass rankFlavor() "Coffee Heath Bar Crunch" and then "Dublin Mudslide" like so, verifying
our work with Figure 1–16:

var iceCream = [
 "Chocolate Fudge Brownie",
 "Half Baked",
 "New York Super Fudge Chunk",
 "Coffee Heath Bar Crunch",
 "Everything but the...",
 "Mud Pie",
 "Karamel Sutra",
 "Cinnamon Buns",
 "Milk & Cookies",
 "Mission to Marzipan"
];
var rankFlavor = function(flavor) {
 for (var i = iceCream.length; i --;) {
 if (iceCream[i] === flavor) {
 return flavor + " is number " + (i + 1) + ".";
 }
 }
 return flavor + " is not among my top 10.";

CHAPTER 1 ■ REPRESENTING DATA WITH VALUES

22

};
rankFlavor("Coffee Heath Bar Crunch");
// "Coffee Heath Bar Crunch is number 4."
rankFlavor("Dublin Mudslide");
// "Dublin Mudslide is not among my top 10."

Figure 1–16. Saving a snippet of code to a function rather than typing it over and over

Though a function may seem very different from an object or array, it is quite similar. The following
sample illustrates the point. Here, we add the elements from the iceCream array to the rankFlavor
function. Therefore, rankFlavor() now contains ten elements in addition to a snippet of code. If we then
modify the code snippet so that it iterates over the elements in rankFlavor() rather than those in
iceCream, it works just as well, as Figure 1–17 displays:

var rankFlavor = function(flavor) {
 for (var i = rankFlavor.len; i --;) {
 if (rankFlavor[i] === flavor) {
 return flavor + " is number " + (i + 1) + ".";
 }
 }
 return flavor + " is not among my top 10.";
};
rankFlavor[0] = "Chocolate Fudge Brownie";
rankFlavor[1] = "Half Baked";
rankFlavor[2] = "New York Super Fudge Chunk";
rankFlavor[3] = "Coffee Heath Bar Crunch";
rankFlavor[4] = "Everything but the...";
rankFlavor[5] = "Mud Pie";
rankFlavor[6] = "Karamel Sutra";
rankFlavor[7] = "Cinnamon Buns";
rankFlavor[8] = "Milk & Cookies";

CHAPTER 1 ■ REPRESENTING DATA WITH VALUES

23

rankFlavor[9] = "Mission to Marzipan";
rankFlavor.len = 10;
rankFlavor("New York Super Fudge Chunk");
// "New York Super Fudge Chunk is number 3."
rankFlavor("Peanut Brittle");
// "Peanut Brittle is not among my top 10."

Figure 1–17. The function rankFlavor() now contains ten elements in addition to a snippet of code.

Summary
In this chapter, we explored four value types to represent data with. For text like "Chocolate Fudge
Brownie", JavaScript has a string value type. Numbers provide a way to do math, while booleans say yes
and no.

The object value type provides a way to save related values to the same place in memory, sort of like
a folder on your computer. Those may be named with an identifier or string. The array subtype offers a
way to numerically order related values, while the function subtype contains snippets of frequently run
code.

Although objects, arrays, or functions appear very different, they all may contain members named
with a string or identifier or elements named with a non-negative integer. So, they’re cut from the same
cloth.

CHAPTER 1 ■ REPRESENTING DATA WITH VALUES

24

C H A P T E R 2

■ ■ ■

25

Type Conversion

Iron Man, Superman, Batman, Spider-Man, X-Men, and countless other superheroes have many traits in
common. Most have a distinctive costume, unwavering morals, underlying motif, secret identity,
supervillains to fight, and, of course, extraordinary powers. Those powers may or may not be innate,
though. For example, Clark Kent doesn’t need his Superman costume to fly, but Tony Stark would drop
like a stone without his Iron Man armor.

JavaScript values of object type or array and function subtypes are like Superman or Spider-Man.
They innately have extraordinary powers, referred to as members or methods. On the other hand, values
of the string, number, or boolean type are like Iron Man or Batman in that they need to put on their
costume, referred to as a wrapper, to have extraordinary powers.

So, just as seeing the bat signal appear in the night sky over Gotham City tells Bruce Wayne to put on
the bat suit in order to become Batman, seeing the . operator appear to their right tells a string, number,
or boolean to put on a wrapper in order to become an object.

Conversely, just as Batman returns to being Bruce Wayne after defeating the Joker, Penguin, or
Catwoman, a wrapper object returns to being a string, number, or boolean after invoking a method. To
convert a string, number, or boolean to a wrapper object, JavaScript invokes String(), Number(), or
Boolean(). Those are referred to as constructor functions. To reverse the conversion, that is, to convert a
wrapper object back to a string, number, or boolean, JavaScript invokes valueOf() on the wrapper.

Insofar as JavaScript converts string, number, and boolean values to and from wrapper objects
behind the scenes, we just need to explore their features. Moreover, string wrappers are useful, but those
for numbers and booleans are not. So, we won’t waste time on those.

String Members
Open firebug.html in Firefox, and then press F12 to enable Firebug. If you’re just joining us, flip back to
the preface for details on how to do this. In Chapter 1, you learned how to glue one string to another with
the + operator. concat() does the same thing. So in Firebug, let’s glue "man" to "Bat" by way of the +
operator and concat() method, verifying our work with Figure 2–1:

"Bat" + "man";
// "Batman"
"Bat".concat("man");
// "Batman"

CHAPTER 2 ■ TYPE CONVERSION

26

Figure 2–1. concat() works like the + operator.

If you want to append more than one string, separate them with commas. JavaScript will then
sequentially append the parameters to the initial string. Try it in Firebug by entering and running the
following sample:

"Spider".concat("-", "Man");
// "Spider-Man"

One thing to note regarding every String method we explore in this chapter is that they return a
new, modified string but do not modify the original string. More formally, we would say strings are
immutable. To illustrate the point, let’s invoke concat() on a variable containing a string like so,
verifying our work with Figure 2–2:

var name = "Super";
name.concat("man");
// "Superman"
name;
// "Super"

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 2 ■ TYPE CONVERSION

27

Figure 2–2. String methods do not modify the initial string.

As you can see, JavaScript used the string in name as the basis for the modification we wanted done.
The concat() method returned "Superman", but name still contains "Super".

With this in mind, you will likely want to save the return value of a String method to another
variable. Otherwise, it’s as if the modification never happened. Let’s do so, verifying our work with
Figure 2–3:

var pre = "Bat";
var post = pre.concat("man");
pre;
// "Bat"
post;
// "Batman";

CHAPTER 2 ■ TYPE CONVERSION

28

Figure 2–3. Typically you will want to save the return value. Otherwise, it’s lost.

If you do not need the original string, you can simply overwrite it with the return value like so. Note
that this does not modify the original string. Rather, it writes a new string to the variable:

var pre = "Bat";
pre = pre.concat("man");
pre;
// "Batman"

Oddly enough, it’s quite common not to save the return value of a string method. Say you want to do
a case-insensitive comparison of one string to another. Perhaps you’re unsure whether a visitor will
search for "Superman", "superman", or "SuperMan". To do so, you would call toLowerCase() on a string,
comparing the return value, a lowercase literal, to another lowercase literal like so, verifying your work
with Figure 2–4:

var hero = "Superman";
hero.toLowerCase() === "superman";
// true

CHAPTER 2 ■ TYPE CONVERSION

29

Figure 2–4. But it’s also common not to save the return value.

Understanding the three ways to use the return value of any String method is as vital as knowing
what it does. Here’s a recap:

• You can save the return value to a new variable.

• You can replace the string in the original variable with the return value.

• You can immediately use the return value as an operand for an operator such as
===.

Note that the first two ways apply to object members, array elements, and function parameters, too.
In addition to concat(), string wrappers provide the following members. Note that we’ll explore

only the vital ones. Note too that, except for String.fromCharCode(), we’ll need to replace identifier
String with a string literal or string expression, typically just the name of a variable, member, element, or
parameter containing a string. However, any expression returning a string will do.

String.charAt()
String.charCodeAt()
String.concat()
String.fromCharCode()
String.indexOf()
String.lastIndexOf()
String.length
String.localeCompare()
String.match()
String.replace()
String.search()
String.slice()
String.split()
String.substring()
String.substr()
String.toLocaleLowerCase()

CHAPTER 2 ■ TYPE CONVERSION

30

String.toLocaleUpperCase()
String.toLowerCase()
String.toUpperCase()

■ Note We use String.fromCharCode() as it is because it is a static method. This means JavaScript does not

use the String() constructor method to create a string when we call this method.

Determining the Number of Characters
For the string "Batman", Firefox would create a wrapper like the following object literal. Recall from
Chapter 1 that an object may have elements just like an array. So, this object contains six elements
numbered 0 to 5.

{"0": "B", "1": "a", "2": "t", "3": "m", "4": "a", "5": "n"}

With this in mind, we can query characters in "Batman" numerically with the [] operator. Try doing
so in Firebug, verifying your work with Figure 2–5:

"Batman"[3];
// "m"
"Batman"[0];
// "B"

Figure 2–5. Querying elements in a wrapper object

String wrappers have a length member equal to the number of elements. That is to say, length is
equal to the number of characters in the string. Try querying length for the Incredibles and a few of their
supervillains.

CHAPTER 2 ■ TYPE CONVERSION

31

"Mr. Incredible, Elastigirl, Violet, Dash, Jack-Jack".length;
// 51
"Underminer, Syndrome, Bomb Voyage".length;
// 33

Just as you can query the final element in an array by subtracting 1 from its length member, you can
query the final character, which is to say the final element, in a string the very same way. Similarly,
subtracting 2 from length returns the second-from-last character, subtracting 3 returns the third-from-
last character, and so on:

var parrFamily = "Mr. Incredible, Elastigirl, Violet, Dash, Jack-Jack";
parrFamily[parrFamily.length - 1];
// "k"
parrFamily[parrFamily.length - 15];
// "D"

Querying elements in a wrapper object with the [] operator is a Firefox proprietary feature that is
helpful in understanding the way strings are represented with wrapper objects. However, ECMAScript
does not require JavaScript interpreters to support it. So, Internet Explorer and other browsers don’t.
Therefore, it’s best to query characters the standard way—by passing the element’s index, in other
words, its number, to charAt(). Though not as convenient, doing so works cross-browser. Try the
following sample in Firebug, verifying your work with Figure 2–6:

var parrFamily = "Mr. Incredible, Elastigirl, Violet, Dash, Jack-Jack";
parrFamily.charAt(7);
// "r"
parrFamily.charAt(parrFamily.length - 1);
// "k"

Figure 2–6. Querying elements the standard way is less convenient but works cross-browser.

CHAPTER 2 ■ TYPE CONVERSION

32

Decoding or Encoding Characters
For nonkeyboard characters, it’s typically simpler to work with the Unicode encoding than the
character. For example, Dr. Otto Günther Octavius is the secret identity of one of Spider-Man’s
archenemies, Doctor Octopus. Rather than try to type the ü in Günther, pass its Unicode encoding (252)
to String.fromCharCode() like so in Firebug, verifying your work with Figure 2–7:

var id = "Dr. Otto G" + String.fromCharCode(252) + "nther Octavius";
id;
// "Dr. Otto Günther Octavius"

Figure 2–7. String.fromCharCode() provides a way to insert nonkeyboard characters.

Conversely, it’s simpler to encode the ü and work with 252, say in a comparison, than to try to type
the ü. To do so, pass the index to charCodeAt(), which returns the Unicode encoding rather than the
character, as its partner in crime, charAt(), would. Although the following two comparisons are
equivalent, I’m guessing you were only able to key in the first in Firebug. Figure 2–8 displays both,
however.

var id = "Dr. Otto G" + String.fromCharCode(252) + "nther Octavius";
id.charCodeAt(10) === 252;
// true
id.charAt(10) === "ü";
// true

CHAPTER 2 ■ TYPE CONVERSION

33

Figure 2–8. charCodeAt() is useful for encoding nonkeyboard characters.

Converting Case
In addition to decoding and encoding characters with String.fromCharCode() and charCodeAt(), you can
convert their case to lowercase or uppercase with toLowerCase() or toUpperCase(). For example, fight
scenes in Batman comic books would have onomatopoeic words such as pow, bam, and zonk
superimposed in uppercase. So in Firebug, let’s add some pop to some lowercase onomatopoeic words
with the help of toUpperCase():

"Pow! Bam! Zonk!".toUpperCase();
// "POW! BAM! ZONK!"

Conversely, if the Penguin were to quietly spray a paralytic gas on Batman and Robin with his
umbrella, we might want to tone down "PSST...ZZZZ" with toLowerCase(), verifying both samples with
Figure 2–9. Note that toLowerCase() or toUpperCase() only manipulate letters. So, nothing weird like the
“!” changing to a “1” will happen.

"PSST...ZZZZ".toLowerCase();
// "psst...zzzz"

CHAPTER 2 ■ TYPE CONVERSION

34

Figure 2–9. Converting to uppercase or lowercase

Turkish has dotted and dotless versions of i:

• i

• I ı

The lowercase version of I is ı, not i. Conversely, the uppercase version of i is , not I. So for Turkish,
toLowerCase() and toLowerCase() would mess up the i pairings. For Turkish and other alphabets with
dotted and dotless i versions such as Azerbaijani, Kazakh, Tatar, and Crimean Tatar, JavaScript provides
a second pair of methods, toLocaleLowerCase() and toLocaleUpperCase(), which get the i conversions
right:

"I".toLowerCase();
// "i"
"i".toUpperCase()
// "I"
"I".toLocaleLowerCase();
// "ı"
"i".toLocaleUpperCase()
// " "

■ Note toLocaleLowerCase() and toLocaleUpperCase() convert case based on your OS settings. You’d have

to change those settings to Turkish for the previous sample to work. Or just take my word for it!

CHAPTER 2 ■ TYPE CONVERSION

35

Locating a Substring
Sometimes you will want to search a string for a smaller string, referred to as a substring. For example,
"man" is a substring of "Batman" and "Catwoman". One way to do so is with indexOf(), which works with
two parameters:

• The substring to search for

• An optional index for where to begin the search

If the substring is found, indexOf() returns the index of the first matched character. Otherwise, it
returns -1 to convey failure. So in Firebug, let’s determine where the substring "Ghost" begins in a literal
containing some of Iron Man’s archenemies:

"Iron Monger, Titanium Man, Madame Masque, Ghost, Mandarin".indexOf("Ghost");
// 42

Try doing so indirectly through a variable containing the literal. Pass in "Mandarin" and then "Green
Goblin", who is Spider-Man’s responsibility. So, as Figure 2–10 displays, JavaScript confirms this by
returning -1:

var villains = "Iron Monger, Titanium Man, Madame Masque, Ghost, Mandarin";
villains.indexOf("Mandarin");
// 49
villains.indexOf("Green Goblin");
-1

Figure 2–10. indexOf() returns -1 to convey failure.

Note that you may call indexOf() on any expression evaluating to string. Those include literals and
variables as well as return values for operators or functions, which we’ll cover in Chapters 3 and 6,
respectively.

indexOf() optionally takes a second parameter telling JavaScript where to begin looking for a
substring. Insofar as indexOf() returns the location of the first match, the second parameter provides a

CHAPTER 2 ■ TYPE CONVERSION

36

way to locate a recurring substring, such as "Man" in our list of Iron Man supervillains. So, we could
locate the first and second occurrences of "Man" like so in Firebug. Note that JavaScript evaluates
villains.indexOf("Man") + 1, which returns 23, prior to passing the parameter to indexOf(). Verify your
work with Figure 2–11:

var villains = "Iron Monger, Titanium Man, Madame Masque, Ghost, Mandarin";
villains.indexOf("Man");
// 22
villains.indexOf("Man", villains.indexOf("Man") + 1);
// 49

Figure 2–11. Locating the second occurence of "Man"

indexOf() has a partner in crime named lastIndexOf() that searches upstream, from the end of a
string to the beginning. Insofar as the second occurrence of "Man" is also the last, we could therefore
rewrite the previous sample like so:

var villains = "Iron Monger, Titanium Man, Madame Masque, Ghost, Mandarin";
villains.lastIndexOf("Man");
// 49

Clipping a Substring
Sometimes you may want to cut a slice from a string. To do so, pass two parameters to slice():

• The index of the first character in the slice

• The index of the first character after the slice

So, to slice n characters beginning at index i, pass i for the first parameter and i + n for the second
parameter. Just remember that character indexes begin at 0.

"Superman, Batman, Spider-Man, Iron Man".slice(18, 24);
// "Spider"

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 2 ■ TYPE CONVERSION

37

Note that, if you omit the second parameter, JavaScript cuts a slice from the index in the first
parameter all the way the end of the string. That is, it sets the second index to length. So, the following
two samples do the same thing:

var heroes = "Superman, Batman, Spider-Man, Iron Man";
heroes.slice(30);
// "Iron Man"
heroes.slice(30, heroes.length);
// "Iron Man"

Note too that, if either parameter is negative, JavaScript adds length to them. Verify your work with
Figure 2–12:

heroes.slice(10, -22);
// "Batman"

Figure 2–12. Clipping a substring with slice()

Replacing a Substring
If you want to replace part of a string, invoke its replace() method, which works with two parameters:

• The string to remove

• The string to insert

However, the first parameter may be a string or RegExp object (we’ll explore RegExp objects in
Chapter 5), and the second parameter can be a string or a function that returns a string.

CHAPTER 2 ■ TYPE CONVERSION

38

■ Note Don’t worry about the RegExp examples in this chapter; they’re fairly simple and are included to keep
some common tasks in one place. This means you’ll learn the best ways to replace substrings here, rather than

having to wait until Chapter 5 to learn all the techniques.

To begin with, we’ll make both parameters strings. So, double-clear Firebug as detailed in the
preface, and let’s use replace() to turn Batman into Superman like so:

"Batman".replace("Bat", "Super");
// "Superman"

One thing to note when passing a string rather than a RegExp object for the first parameter is that
replace() swaps only the first occurrence. To illustrate the point, run the following sample in Firebug:

"Batman and Batgirl".replace("Bat", "Super");
// "Superman and Batgirl"

To replace two or more occurrences of a search string like "Bat" with a replacement string like
"Super", the first parameter must be a RegExp object marked with a g flag, which tells JavaScript to find
all matches rather than just the first match. So, just as a primer for Chapter 5, if we make the first
parameter in the previous sample a very simple RegExp literal, /Bat/g, we get the desired duo. Verify this
and the previous two samples with Figure 2–13:

"Batman and Batgirl".replace(/Bat/g, "Super");
// "Superman and Supergirl"

Figure 2–13. Replacing a substring with replace()

Now let’s create a title-casing function named titleCase() to pass as the second parameter so that
we can replace each hero’s name with its title-case version. JavaScript will pass titleCase() the matched
text, which we can refer to as m within the function block. There we’ll chain invocations of slice() and

CHAPTER 2 ■ TYPE CONVERSION

39

toUpperCase() in order to convert the first letter in m to uppercase. Then we’ll glue that to a slice
containing every character in m but the first and return that as the replacement string.

var titleCase = function(m) {
 return m.slice(0,1).toUpperCase() + m.slice(1);
};

If we then pass a RegExp literal that matches words, /\b\w+\b/g, for the first parameter, JavaScript
will pass each word in the string we call replace() to titleCase(). Let’s try this on "batman, spider-man,
iron man", verifying our work with Figure 2–14. Note that JavaScript invokes titleCase() five times, once
for each of the following matches: "batman", "spider", "man", "iron", and "man".

var titleCase = function(m) {
 return m.slice(0,1).toUpperCase() + m.slice(1);
};
"batman, spider-man, iron man".replace(/\b\w+\b/g, titleCase);
// "Batman, Spider-Man, Iron Man"

Figure 2–14. The second parameter to replace() may be a function.

Splitting a String into an Array of Smaller Strings
If you want to divide a string into smaller strings, pass the split() method a divider. It will then split the
string into smaller strings, referred to as substrings, based on where the divider occurs. Those substrings
do not include the divider and are returned in an array by split(). Double-clear Firebug, and let’s divvy
up a list of Spider-Man’s archenemies relative to a comma followed by a space. We’ll pass ", " to
split() like so, verifying our work with Figure 2–15:

var villains = "Green Goblin, Doctor Octopus, Venom, Hobgoblin, Sandman";
villains.split(", ");
// ["Green Goblin", "Doctor Octopus", "Venom", "Hobgoblin", "Sandman"]

CHAPTER 2 ■ TYPE CONVERSION

40

Figure 2–15. Splitting a string into smaller strings with split()

Say the final villain is prefaced by ", and " rather than ", ". That is to say, we want to divvy up a
string based on two dividers, ", " or ", and ". This can’t be done by passing a string divider. Rather,
we’d need to pass in a RegExp literal to match both dividers:

/, (?:and)?/g

Don’t worry, this won’t look like gobbledygook by the end of Chapter 5 (note how you can identify
the dividers in the expression, and we’re using /g again). Try the following sample in Firebug, verifying
your work with Figure 2–16:

var villains = "Green Goblin, Doctor Octopus, Venom, Hobgoblin, and Sandman";
villains.split(/, (?:and)?/g);
// ["Green Goblin", "Doctor Octopus", "Venom", "Hobgoblin", "Sandman"]

CHAPTER 2 ■ TYPE CONVERSION

41

Figure 2–16. Passing a RegExp object to split()

Do you remember from Chapter 1 how you would query the array returned by split()?
Uh-huh. By passing an index to the [] operator. So, to return the fourth element, "Hobgoblin", we’d

pass [] the index 3 since JavaScript numbers elements beginning with 0:

var villains = "Green Goblin, Doctor Octopus, Venom, Hobgoblin, and Sandman";
villains.split(/, (?:and)?/g)[3];
// "Hobgoblin"

That worked well. But what happened to the array? It’s not in villains, as Figure 2–17 displays:

var villains = "Green Goblin, Doctor Octopus, Venom, Hobgoblin, and Sandman";
villains.split(/, (?:and)?/g)[3];
// "Hobgoblin"
villains;
// "Green Goblin, Doctor Octopus, Venom, Hobgoblin, and Sandman"

CHAPTER 2 ■ TYPE CONVERSION

42

Figure 2–17. Where’d the array of substrings go?

As noted earlier in the chapter, split(), like any other string method, does not modify the string
value it’s called upon. Rather, split() returns a new value. We’d need to save the array to a new variable
or overwrite villains. Let’s do the latter, verifying our work with Figure 2–18:

var villains = "Green Goblin, Doctor Octopus, Venom, Hobgoblin, and Sandman";
villains = villains.split(/, (?:and)?/g);
villains[1];
// "Doctor Octopus"

Figure 2–18. Overwriting the string in villains with the array returned by split()

CHAPTER 2 ■ TYPE CONVERSION

43

Searching with Regular Expressions
Whereas indexOf() returns the index of the first match of a string, search() returns the index of the first
match of a RegExp object. So, the following samples are equivalent:

var villains = "Green Goblin, Doctor Octopus, Venom, Hobgoblin, and Sandman";
villains.indexOf("Goblin");
// 6
villains.search(/Goblin/);
// 6

In the event that you want all matches rather than just the first one, pass match() the RegExp
instead. JavaScript will then return an array of matching substrings. Let’s find any occurrence of goblin
regardless of case in Firebug, verifying our work with Figure 2–19:

var villains = "Green Goblin, Doctor Octopus, Venom, Hobgoblin, and Sandman";
villains.match(/[Gg]oblin/g);
// ["Goblin", "goblin"]

We’ll revisit search() and match() in Chapter 5, where you will learn to write more interesting
RegExp patterns.

Figure 2–19. Passing a RegExp object to match()

Explicitly Creating Wrappers
In addition to the members provided by the String(), Number(), or Boolean() constructor functions,
wrapper objects receive the following members from Object() too. The only one we’ll explore now is
valueOf(); the others are covered in Chapter 5.

constructor
hasOwnProperty()
isPrototypeOf()

CHAPTER 2 ■ TYPE CONVERSION

44

propertyIsEnumerable()
toLocaleString()
toString()
valueOf()

valueOf() returns the string, number, or boolean associated with a wrapper object. In other words,
JavaScript invokes valueOf() on a wrapper to revert it to a string, number, or boolean. So, in Firebug, we
can explicitly do what JavaScript does implicitly by creating a wrapper with new and String(), Number(),
or Boolean(); querying a member or invoking a method; and then invoking valueOf(). Verify your work
with Figure 2–20.

var pre = new String("Hob");
var post = pre.concat("goblin");
pre = pre.valueOf();
pre;
// "Hob"
post;
// "Hobgoblin"

Figure 2–20. Explicitly converting a string to and from a wrapper object

JavaScript does not immediately revert an explicitly created wrapper to a string, number, or
boolean. They provide a way to create a wrapper that persists past a single line of code.

Converting a Value to Another Type
Elastigirl, Mr. Incredible’s wife Helen Parr, can reshape any part of her body to be as large as 30 meters
or as small as 1 millimeter. For example, in the 2004 Pixar animated film The Incredibles, Elastigirl
repeatedly saved the day by reshaping her body into a parachute, rubber raft, and so on. Like Elastigirl,
JavaScript values are shape changers, too. They can save the day by changing to another value type, say
from a number to a string. Here’s how.

CHAPTER 2 ■ TYPE CONVERSION

45

Invoking String(), Number(), or Boolean() with the new operator creates a wrapper object. On the
other hand, omitting new converts the parameter to a string, number, or boolean. Converting a value to a
different type is another thing JavaScript does behind the scenes. So, just as JavaScript quietly converts a
string to a wrapper, which is to say to the object type, it also quietly converts a string to the number or
boolean type.

You’re wondering why would JavaScript ever need to do that for you, aren’t you? For one thing, the
operators we’ll explore typically require their operands to be of a certain type. So, in the event you give
them a value of the wrong type to work with, JavaScript saves your bacon by converting it to the correct
type. For another, controlling flow with conditional statements, which we’ll explore in Chapter 4, relies
on JavaScript converting values to the boolean type. In turn, this means that every value you could
possibly create has a boolean equivalent. Those that convert to true are referred to as truthy values,
while those that convert to false are referred to as falsy values. There are only six falsy values, which are
listed here, so all other values convert to true:

undefined
null
false
""
0
NaN

But don’t take my word for it. Double-clear Firebug, and then pass each of those in turn to
Boolean(), verifying your work with Figure 2–21:

Boolean(undefined);
// false
Boolean(null);
// false
Boolean(false);
// false
Boolean("");
// false
Boolean(0);
// false
Boolean(NaN);
// false

CHAPTER 2 ■ TYPE CONVERSION

46

Figure 2–21. Converting values to the boolean type

■ Note Converting undefined, the value for a missing method or member, to false is the basis for feature

testing, which we’ll do quite a bit of in the final few chapters.

Every other value converts to true. So, any string except for "", any number except for 0 and NaN, and
any object converts to true:

Boolean("Mr. Incredible");
// true
Boolean(["Green Goblin", "Doctor Octopus", "Venom", "Hobgoblin", "Sandman"]);
// true
Boolean(String.fromCharCode);
// true

Converting a Value to a Number
Now let’s try converting some values to a number by passing them to Number(). Double-clear Firebug,
and then try converting nothing, undefined or null, to a number:

Number(undefined);
// NaN
Number(null);
// 0

Whereas both undefined and null convert to the same boolean (false), they convert to different
numbers: undefined to NaN, and null to 0. Note that NaN (“not a number”) is a special number literal
JavaScript returns for math errors, such as division by 0, or for conversions to the number type that fail.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 2 ■ TYPE CONVERSION

47

Note too that, if either operand to a math operator like * or - is NaN, the return value will be NaN, too.
Therefore, as Figure 2–22 displays, you can do math with null but not with undefined.

var nothing, zilch = null;
nothing * 4;
// NaN
zilch * 4;
// 0

Figure 2–22. JavaScript can do math with null but not with undefined.

Converting strings to numbers is fairly straightforward. Number-like strings such as "4" or "3.33"
convert to an equivalent number (4 and 3.33). The "" empty string converts to 0. Everything else
converts to NaN. Let’s try converting a few strings to a number in Firebug, verifying our work with Figure
2–23:

Number("4");
// 4
Number("");
// 0
Number("Mr. Incredible");
// NaN

CHAPTER 2 ■ TYPE CONVERSION

48

Figure 2–23. Most strings convert to NaN.

One common bugaboo is trying to do math with a CSS value; JavaScript represents all of those as
strings. So, if you try to move an element 3 pixels to the left by subtracting 3 from a left value of, say,
30px, you’re really doing the following calculation. Note that manipulating CSS is covered in Chapter 8.

"30px" - 3;
// NaN

Converting booleans to numbers is very simple. true converts to 1, and false converts to 0. Try
doing so in Firebug:

Number(true);
// 1
Number(false);
// 0

Rarely will an object, array, or function convert to a number other than NaN. Trying to do math with
an object, array, or function value will generally return NaN to convey failure. Try converting one of each
in Firebug, verifying your work with Figure 2–24:

Number(["Green Goblin", "Doctor Octopus", "Sandman"]);
// NaN
Number({hero: "Batman", archenemy: "Joker"});
// NaN
Number(String.fromCharCode);
// NaN

CHAPTER 2 ■ TYPE CONVERSION

49

Figure 2–24. Most object, array, and function values convert to NaN.

Table 2–1 displays at a glance the number conversions we explored.

Table 2–1. Samples Displaying Spectrum of Conversions to Number Type

Initial Value Number()

undefined NaN

null 0

"" 0

"30px" NaN

"4" 4

"3.33" 3.33

true 1

false 0

["Green Goblin", "Doctor Octopus", "Sandman"] NaN

{hero:"Batman", archenemy: "Joker"} NaN

String.fromCharCode NaN

CHAPTER 2 ■ TYPE CONVERSION

50

Converting a Value to a String
In Chapter 1, you learned that the [] operator converts a number to a string. So, the following queries
both return the member named "3":

"Mezmerella"[2];
// "z"
"Mezmerella"["2"];
// "z"

Though JavaScript frequently converts numbers to strings behind the scenes, occasionally it will
have to convert values of other types to strings. Doing so for undefined, null, or booleans is unsurprising:

String(undefined);
// "undefined"
String(null);
// "null"
String(true);
// "true"
String(false);
// "false"

On the other hand, converting values of the object type or array and function subtypes to strings in
not straightforward or common. To do so, JavaScript calls the value’s toString() method. The following
array to string conversions are equivalent:

String(["Green Goblin", "Doctor Octopus", "Sandman"]);
// "Green Goblin,Doctor Octopus,Sandman"
["Green Goblin", "Doctor Octopus", "Sandman"].toString();
// "Green Goblin,Doctor Octopus,Sandman"

So too are the following object to string conversions, as Figure 2–25 displays. Note that the
lowercase object indicates the value type, and the uppercase Object indicates the class, which is to say
the identifier for the Object() constructor. Figure 2–25 displays the results:

({"Bob Parr": "Mr. Incredible", "Helen Parr": "Elastigirl"}).toString();
// "[object Object]"
String({"Bob Parr": "Mr. Incredible", "Helen Parr": "Elastigirl"});
// "[object Object]"

Don’t devote too many brain cells to converting objects, arrays, or functions to strings. It’s not
important to know.

CHAPTER 2 ■ TYPE CONVERSION

51

Figure 2–25. Converting an array and object to a string

Methods for Converting a Number to a String
Mr. Incredible’s 10-year-old son, Dashiell “Dash” Robert Parr, is a speedster like the Flash. He can
probably run at the speed of light: 299,792,458 meters per second. JavaScript numbers may not contain
commas, so the number literal for that would be 299792458. That’s pretty ugly.

Not to worry. Number wrappers provide the following three methods to convert a bloated number
like 299792458 to a succinct string.

Number.toExponential()
Number.toFixed()
Number.toPrecision()

Double-clear Firebug, and let’s call each of those in turn on 299792458. First, toExponential()
converts a number to an exponential string. Optionally, you can indicate the number of decimal places
by passing a number between 0 and 20. Try passing 2 and omitting the parameter, verifying your work
with Figure 2–26:

(299792458).toExponential(2);
// "3.00e+8"
(299792458).toExponential();
// "2.99792458e+8"

CHAPTER 2 ■ TYPE CONVERSION

52

Figure 2–26. Converting a number to a string with toExponential()

The next method, toFixed(), converts a number to a decimal string. Optionally, you can indicate the
number of decimal places by passing a number between 0 and 20. Let’s divide 299792458 by 1000 to
determine kilometers per second. Then convert that to a string with three or no decimal places, verifying
your work with Figure 2–27. Note that omitting the parameter is the same as passing 0.

(299792458 / 1000).toFixed(3);
// "299792.458"
(299792458 / 1000).toFixed();
//"299792"

Figure 2–27. Converting a number to a string with toFixed()

CHAPTER 2 ■ TYPE CONVERSION

53

If you are indecisive and want JavaScript to choose between exponential and decimal format, call
toPrecision() on the number. The optional parameter differs this time: it’s a number between 1 and 21
indicating the number of significant digits. If the parameter is less than the number of digits in the
integer part of the number, JavaScript chooses exponential format. If not, JavaScript chooses decimal
format. Finally, if you omit the parameter, JavaScript invokes Number.toString(). Try the following
samples to clarify how toPrecision() works, verifying your work with Figure 2–28. Note that the final
two samples are equivalent.

(299792458).toPrecision(2);
// "3.0e+8"
(299792458).toPrecision(12);
// "299792458.000"
(299792458).toPrecision();
// "299792458"
(299792458).toString();
// "299792458"

Figure 2–28. Converting a number to a string with toPrecision()

Note that toExponential(), toFixed(), and toPrecision() round trailing digits 0–4 down and 5–9 up
just like you would.

Putting Off Learning RegExp Syntax
Even though I will cover RegExp objects more fully in Chapter 5, if you are new to both JavaScript and
programming, I suggest simply passing string parameters to the four methods that work with RegExp
objects. replace() and split() work with either a string or a RegExp parameter. So, a string will do as is.
match() and search() work only with a RegExp parameter, but JavaScript implicitly converts a string
parameter to a RegExp object. So, just as a string is converted to a wrapper object by passing it to new and
String(), it can be converted to a RegExp object by passing it to new and RegExp(). Insofar as JavaScript
does the latter just as quietly as the former, this means that a beginner can put off learning RegExp
syntax until after learning JavaScript syntax. I recommend you do.

CHAPTER 2 ■ TYPE CONVERSION

54

To illustrate this beginner-friendly JavaScript string to RegExp conversion feature, double-clear
Firebug, and then enter and run the following sample. As Figure 2–29 displays, passing a string to
match() and search() works just dandy:

var incredibles = "Mr. Incredible, Elastigirl, Violet, Dash, Jack-Jack";
incredibles.match("Jack");
// ["Jack"]
incredibles.search("Jack");
// 42

Figure 2–29. JavaScript quietly converts "Jack" to /Jack/ for both match() and search().

JavaScript quietly passed "Jack" to RegExp(), which like String() is referred to as a constructor
function. So to explicitly do what JavaScript implicitly did, let’s enter and run the following in Firebug. As
Figure 2–30 displays, the return values are the same:

var incredibles = "Mr. Incredible, Elastigirl, Violet, Dash, Jack-Jack";
incredibles.match(new RegExp("Jack"));
// ["Jack"]
incredibles.search(new RegExp("Jack"));
// 42

CHAPTER 2 ■ TYPE CONVERSION

55

Figure 2–30. Passing a RegExp for a literal string to match() and search()

Note, however, that, when JavaScript converts a string to a RegExp object, the g, i, and m flags, which
we’ll explore in Chapter 5, are not set. There’s no way for JavaScript to save the day if we intended to
pass /jack/ig but instead passed "jack" to match(), as Figure 2–31 displays:

var incredibles = "Mr. Incredible, Elastigirl, Violet, Dash, Jack-Jack";
incredibles.match(/jack/ig);
// ["Jack", "Jack"]
incredibles.match("jack");
// null

Note that match() conveys failure, which is to say no array of matching strings, by returning null.
Remember from Chapter 1 that null conveys no value on the heap, in other words, no object, array, or
function. That is why match() returned null instead of undefined.

CHAPTER 2 ■ TYPE CONVERSION

56

Figure 2–31. JavaScript does not set the i, g, or m flag when converting a string to a RegExp object.

Summary
In this chapter, you learned that JavaScript converts a string to a wrapper object whenever the string is
the left operand to the . or [] operator, quietly passing the string to the String() constructor and then
just as quietly reverting the wrapper to a string by invoking its valueOf() method. String wrappers
manipulate characters as if they were read-only elements. In other words, string values are immutable,
and wrapper methods return a new value without changing the original. So, typically you will want to
save the return value or immediately pass it to one of the operators we’ll explore in Chapter 3.

Most JavaScript operators are particular about the value type of their operands. Knowing this,
JavaScript will save the day by converting an operand of the wrong type to the correct one. Though
JavaScript does so behind the scenes, we explored how to do so by passing values to String(), Number(),
Boolean(), and Object(). If invoked without the new operator, those constructors convert their argument
to a string, number, boolean, or object. So, a string can be converted to a wrapper by passing it to
Object() without new or to String() with new:

Object("Spider-Man");
new String("Spider-Man");

So, when JavaScript creates a wrapper for a string, it’s really converting the value from the string
type to the object type. The same thing goes for number or boolean wrappers, too. Therefore, value type
conversion is vital for manipulating values with wrapper methods or with operators. You’ll learn more
about the latter in Chapter 3. Take a breather, and I’ll see you there!

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

C H A P T E R 3

■ ■ ■

57

Operators

Having data is no use if you can’t do anything with it, so step forward operators. Operators do just what
their name suggests; they operate on things. In the case of JavaScript, those things are the values stored
in variables and any other value used in your script. For example, we’d use a division operator to divide
one value by another value to return a result. There are some very straightforward operators in
JavaScript and some not-so-straightforward ones; we’ll cover all the useful ones and mention the others
in passing, even though you will never use them.

To work with operators, you must first understand operator precedence, which is how JavaScript
decides which operator to apply first if there is more than one in an expression, and operator
associativity, which is the direction JavaScript reads through an expression when applying operators.
We’ll look at precedence and associativity as a general theory at the start of the chapter and then see how
JavaScript operators really work. In the course of the chapter, you’ll learn how to use operators
effectively so that your expressions really zing.

Introducing Operator Precedence and Associativity
I’ve been running more than 100 miles per week for 14 years. To take in enough daily carbohydrates, I’ve
become not so much a foodie as a doughie. Monday to Friday I run in the evening after work. So by the
time I begin making dinner, it’s pretty late. To save some time, I typically go with soda leavening rather
than yeast.

One of my favorite late-night soda breads is leavened with soda, cream of tartar, and Organic Valley
pourable vanilla yogurt, which is drinkable like kefir but tastes like yogurt:

• 2 cups Bob’s Red Mill organic whole wheat pastry flour

• 1/3 cup blanched almonds, freshly ground into fine flour

• 1 tsp. Saigon cinnamon

• 2 tsp. minced lemon zest

• 1/4 tsp. sea salt

• 1 tsp. soda

• 1 tsp. cream of tartar

• 1 cup Organic Valley pourable vanilla yogurt

• 1 egg

• 1 1/4 cups fresh wild blueberries

CHAPTER 3 ■ OPERATORS

58

Remember from Chapter 1 that an expression is like a recipe whereby operators combine
ingredients referred to as operands to create a value. So, with that analogy in mind, we might write an
expression for the dough like so:

var dough = pastryFlour + almonds + saigonCinnamon + lemon + seaSalt + soda + tartar +
pourableVanillaYogurt + egg + wildBlueberries;

Insofar as that tells JavaScript blindly combine ingredients left to right, not only would the soda
leavening fail, but the wild blueberries and lemon would get mulched by the mixer. We’d wind up with a
very tart purple stone rather than a yummy loaf. I think I’d just go to bed hungry.

Rather than sequentially mulch everything, we want JavaScript to asynchronously take eight steps:

1. Grind almonds into a very fine flour.

2. Zest lemon.

3. Sift flour, almonds, saigonCinnamon, lemon, and seaSalt.

4. Whisk egg, pourableVanillaYogurt, and tartar.

5. Whisk in soda to touch off alkaline and acid reaction.

6. Mix now bubbling liquid with dry ingredients.

7. Fold in wildBlueberries by hand.

8. Knead dough to form gluten strands.

Okeydokey. But can JavaScript precisely follow a recipe? That is to say, how can it evaluate an
expression asynchronously?

Yup, you bet your fern.
Operators have a couple of traits that determine the order of operation. Precedence is a value

between 1 and 15 indicating an operator’s priority. 1 is very low priority, and 15 is very high priority. So if
an expression sequentially contains operators with a priority of 2, 14, 9, and 3, JavaScript does the 14
operation first, followed by the 9, then the 3, and finally the 2.

The other trait, associativity, tells JavaScript what to do when consecutive operators have the same
priority. Just two options here. R associativity means do the one on the right first. Conversely, L
associativity means do the one on the left first. So if an expression sequentially contains operators with
priorities of 15, 15, 3, and 3 and L, L, R, and R associativity, JavaScript does the first 15, then the second
15, then the second 3, then the first 3.

With this in mind, let’s create some fictitious operators for JavaScript to cook with:

• G for grind—14 precedence, R associativity

• Z for zest—14 precedence, R associativity

• S for sift—11 precedence, L associativity

• W for whisk—10 precedence, R associativity

• F for fold—3 precedence, L associativity

• K for knead—3 precedence, R associativity

So, we can now express dough to JavaScript with the following expression:

var dough = K flour S G almonds S saigonCinnamon S Z lemon S seaSalt W soda W tartar W
pourableVanillaYogurt W egg F wildBlueberries;

CHAPTER 3 ■ OPERATORS

59

Let’s unpick this in steps:

1. All right, both G and Z have 14 priority. So, does JavaScript evaluate G almonds or
Z lemon first? If two operators have equal priority but are not adjacent,
JavaScript works left to right. Therefore, the almonds are ground, and then the
lemon is zested.

2. Sifting is next up because of S having 11 priority. But there are four S operations
in a row, so JavaScript turns to associativity, which is L for sifting, to determine
the order of operation. Therefore, JavaScript groups them as follows, evaluating
them from left to right:

 (((flour S almond) S saigonCinnamon) S lemon) S seaSalt

3. Insofar as W has 10 priority compared to 3 from K and F, JavaScript does the
whisking next. There are four W operations in a row. Associativity, which is R for
W, tells JavaScript to do those from right to left. Therefore, JavaScript groups the
W operations as follows. Note that W having R associativity does not mean
JavaScript whisks the right operand with the left operand.

siftedIngredients W (soda W (tartar W (pourableVanillaYogurt W egg)))

4. Now we have a K followed by an F, both of which have 3 priority. However, K
has R associativity and F has L. Does JavaScript do the K or F first? Yup, the F
folding. R followed by R or L means do the one on the right first. Conversely, L
followed by L or R means do the one on the left first. So, JavaScript folds in
wildBlueberries.

5. Now we just have to K knead the dough for a minute or two to form bubble
trapping gluten strands, shape the loaf, and slash a shallow X across the top,
and we’re done.

6. Not quite. = is an operator, too. But it has a very low priority of 2. Only the ,
operator, which we’ll explore a little later, has 1 priority. So, JavaScript does the
G, Z, S, W, F, and K operations before assigning the loaf to the variable dough with
the = operator.

The = operator having low priority and R associativity enables you to assign an expression to two or
more variables. So if we wanted to make three loafs of wild blueberry swope rather than one, we would
do so by chaining = operators:

var loaf1, loaf2, loaf3;
loaf1 = loaf2 = loaf3 = K flour S almond S saigonCinnamon S lemon S seaSalt W soda W tartar W
pourableVanillaYogurt W egg F wildBlueberries;

JavaScript would do the higher priority G, Z, S, W, F, and K operations first. Insofar as = has R
associativity, JavaScript would first assign wild blueberry swope to loaf3, then to loaf2, and finally to
loaf1.

This section has given you an idea how operator precedence works in principle, so let’s look at the
actual JavaScript operators, their precedence, and how to use them.

CHAPTER 3 ■ OPERATORS

60

Using JavaScript Operators
As we explore JavaScript operators in this chapter, you might want to refer to the handy Table 3–1, which
lists precedence and associativity values. Though you’re probably thinking you’ll never remember
precedence and associativity for all those operators, it’s actually very straightforward:

• Unary operators have R associativity and 14 precedence, except for new, which has
15 precedence.

• Binary assignment operators (=, *=, /=, %=, +=, -=) have R associativity and 2
precedence. All other binary operators have L associativity and varying
precedence.

• The ?: ternary operator has R associativity and 3 precedence.

Remembering value types for operands will take time. But a year from now, if not by the end of this
book, those will be as simple to remember as associativity and precedence.

Table 3–1. Precedence and Associativity for Essential JavaScript Operators

Operator Precedence Associativity

. 15 L

[] 15 L

() 15 L

new 15 R

++ 14 R

-- 14 R

! 14 R

delete 14 R

typeof 14 R

void 14 R

* 13 L

/ 13 L

% 13 L

+ 12 L

- 12 L

> 10 L

>= 10 L

< 10 L

Operator Precedence Associativity

<= 10 L

instanceof 10 L

in 10 L

== 9 L

!= 9 L

=== 9 L

!== 9 L

&& 5 L

|| 4 L

?: 3 R

= 2 R

*= 2 R

/= 2 R

%= 2 R

+= 2 R

-= 2 R

, 1 L

CHAPTER 3 ■ OPERATORS

61

■ Note JavaScript has a group of operators called bitwise operators. Bitwise operators are generally very fast in
other programming languages, but they are very slow in JavaScript. So, no one does bit manipulation with

JavaScript. Nor will we, so I won’t cover them in this book.

Combining Math and Assignment Operations
Open firebug.html in Firefox, and then press F12 to enable Firebug. If you’re just joining us, flip back to
the preface for details on how to do this. In Chapter 1, we explored the + (addition), - (subtraction), *
(multiplication), and / (division) operators, noting that + adds numbers but glues strings. Moreover, we
explored how to save a value to a variable with the = (assignment) operator.

In the event that the left operand to +, -, *, or / is a variable, member, element, or parameter, you
may replace the = operator and +, -, *, or / operator with a +=, -=, *=, or /= shortcut operator. Those do
the math and assignment operations in one fell swoop. In Firebug, let’s create the following dough object
so that we have some values to explore +=, -=, *=, and /= with.

var dough = {
 pastryFlour: [1 + 3/4, "cup"],
 almondFlour: [1/3, "cup"],
 saigonCinnamon: [1, "tsp"],
 mincedLemonZest: [2, "tsp"],
 seaSalt: [1/4, "tsp"],
 soda: [1, "tsp"],
 tartar: [1, "tsp"],
 pourableVanillaYogurt: [1, "cup"],
 egg: [1],
 wildBlueberries: [1 + 1/4, "cup"]
};

Say I want to triple the recipe. To do so, we could pass each element and 3 to the *= operator like so
in Firebug. Then query the new values of a couple of elements, verifying your work with Figure 3–1:

var dough = {
 pastryFlour: [1 + 3/4, "cup"],
 almondFlour: [1/3, "cup"],
 saigonCinnamon: [1, "tsp"],
 mincedLemonZest: [2, "tsp"],
 seaSalt: [1/4, "tsp"],
 soda: [1, "tsp"],
 tartar: [1, "tsp"],
 pourableVanillaYogurt: [1, "cup"],
 egg: [1],
 wildBlueberries: [1 + 1/4, "cup"]
};
dough.pastryFlour[0] *= 3;
dough.almondFlour[0] *= 3;
dough.saigonCinnamon[0] *= 3;
dough.mincedLemonZest[0] *= 3;
dough.seaSalt[0] *= 3;
dough.soda[0] *= 3;
dough.tartar[0] *= 3;

CHAPTER 3 ■ OPERATORS

62

dough.pourableVanillaYogurt[0] *= 3;
dough.egg[0] *= 3;
dough.wildBlueberries[0] *= 3;
dough.pastryFlour[0];
// 5.25
dough.pourableVanillaYogurt[0];
// 3

Figure 3–1. Doubling elements with *=

The following is what we would have had to type in if we didn’t have *=, so *= saved us from having
to separately key in = and * as Figure 3–2 displays.

var dough = {
 pastryFlour: [1 + 3/4, "cup"],
 almondFlour: [1/3, "cup"],
 saigonCinnamon: [1, "tsp"],
 mincedLemonZest: [2, "tsp"],
 seaSalt: [1/4, "tsp"],
 soda: [1, "tsp"],
 tartar: [1, "tsp"],
 pourableVanillaYogurt: [1, "cup"],
 egg: [1],
 wildBlueberries: [1 + 1/4, "cup"]
};
dough.pastryFlour[0] = dough.pastryFlour[0] * 3;
dough.almondFlour[0] = dough.almondFlour[0] * 3;
dough.saigonCinnamon[0] = dough.saigonCinnamon[0] * 3;
dough.mincedLemonZest[0] = dough.mincedLemonZest[0] * 3;
dough.seaSalt[0] = dough.seaSalt[0] * 3;
dough.soda[0] = dough.soda[0] * 3;

CHAPTER 3 ■ OPERATORS

63

dough.tartar[0] = dough.tartar[0] * 3;
dough.pourableVanillaYogurt[0] = dough.pourableVanillaYogurt[0] * 3;
dough.wildBlueberries[0] = dough.wildBlueberries[0] * 3;
dough.pastryFlour[0];
// 5.25
dough.pourableVanillaYogurt[0];
// 3

Figure 3–2. Tripling elements the hard way with = and *

■ Note The for in loop, which we’ll cover in Chapter 4, would further eliminate drudgery.

Like the * multiplication operator, *= converts its operands to numbers if necessary. So if we
inadvertently defined some elements with strings, JavaScript would convert those to numbers so that the
multiplication part of *= will work. Insofar as *= does assignment too, values are permanently converted
from strings to numbers

Like *=, -= and /= convert their operands to numbers, too. However, += favors gluing strings over
adding numbers just as + does. So if one operand is a string and the other is a number, boolean, object,
null, or undefined, += converts the nonstring to a string. Therefore, += will do addition only if one
operand is a number and the other is not a string.

To illustrate, try doubling pourableVanillaYogurt with += rather than *=. As Figure 3–3 displays, +=
converts its left operand 1 to 1 and then glues it to its right operand to create the string 11.

var dough = {
 pastryFlour: [1 + 3/4, "cup"],
 almondFlour: [1/3, "cup"],
 saigonCinnamon: [1, "tsp"],

CHAPTER 3 ■ OPERATORS

64

 mincedLemonZest: [2, "tsp"],
 seaSalt: [1/4, "tsp"],
 soda: [1, "tsp"],
 tartar: [1, "tsp"],
 pourableVanillaYogurt: [1, "cup"],
 egg: [1],
 wildBlueberries: [1 + 1/4, "cup"]
};
dough.pourableVanillaYogurt[0] += "1";
dough.pourableVanillaYogurt[0];
// "11"

Figure 3–3. += only does concatenation if its right operand is not a number.

Remember that every JavaScript value can be converted to a boolean or string, but not to a number.
Not one you can do math with anyway. Most non-numbers convert to the “not a number” literal NaN.
Moreover, the return value of any math operation containing a NaN operand will always be NaN.

Insofar as JavaScript returns NaN whenever a value cannot be converted to a number, +=, -=, *=, and
/= may overwrite a variable, member, element, or parameter with NaN. To illustrate the point, try the
following sample, verifying your work with Figure 3–4. Insofar as we forgot to refine our query with the
[] operator, JavaScript multiplies the array [1 + 1/4, “cup”] by 3. Therefore, [1 + 1/4, “cup”] is converted
to the number NaN and multiplied by 3. So, the array in dough.wildBlueberries is overwritten with the
return value of NaN * 3, which of course is NaN.

var dough = {
 pastryFlour: [1 + 3/4, "cup"],
 almondFlour: [1/3, "cup"],
 saigonCinnamon: [1, "tsp"],
 mincedLemonZest: [2, "tsp"],
 seaSalt: [1/4, "tsp"],
 soda: [1, "tsp"],
 tartar: [1, "tsp"],
 pourableVanillaYogurt: [1, "cup"],
 egg: [1],
 wildBlueberries: [1 + 1/4, "cup"]
};

CHAPTER 3 ■ OPERATORS

65

dough.wildBlueberries *= 3;
dough.wildBlueberries;
// NaN

Figure 3–4. Failing to refine our query with [] results in the array being overwritten with NaN.

OK, so what would happen if we try to query the first element in dough.wildBlueberries now that
that’s NaN, not an array?

Here’s a hint: see Chapter 2.
Yup, if you query NaN with the . or [] operators, JavaScript creates a number wrapper for NaN. Since

that number wrapper does not contain any elements, querying its first element returns undefined, as the
following sample and Figure 3–5 illustrate. Note that + converts undefined to "undefined" prior to gluing
it to “There are ”. Note too that finding and fixing coding typos like this are what debugging primarily
entails.

var dough = {
 pastryFlour: [1 + 3/4, "cup"],
 almondFlour: [1/3, "cup"],
 saigonCinnamon: [1, "tsp"],
 mincedLemonZest: [2, "tsp"],
 seaSalt: [1/4, "tsp"],
 soda: [1, "tsp"],
 tartar: [1, "tsp"],
 pourableVanillaYogurt: [1, "cup"],
 egg: [1],
 wildBlueberries: [1 + 1/4, "cup"]
};
dough.wildBlueberries *= 3;
"There are " + dough.wildBlueberries[0] + " cups of wild blueberries in the dough.";
// "There are undefined cups of wild blueberries in the dough."

CHAPTER 3 ■ OPERATORS

66

Figure 3–5. JavaScript converts NaN to a wrapper object if you query it with the . or [] operator.

Finally, it’s vital to remember that the left operand to +=, -=, *=, or /= must be a variable, member,
element, or parameter. Otherwise, JavaScript will slap you upside the head by returning a SyntaxError
noting, "invalid assignment left-hand side", which means the left operand must be one of these
things.

3 -= 1;
// SyntaxError: invalid assignment left-hand side { message="invalid assignment left-hand
side" }
"blue" += "berries";
// SyntaxError: invalid assignment left-hand side { message="invalid assignment left-hand
side" }

Incrementing or Decrementing Values
In the event that you are adding or subtracting 1 from a value with += or -=, you may even more
succinctly do so with the ++ increment and -- decrement unary operators, which convert it to a number
if necessary. Note that although += may do addition or concatenation, ++ always does addition.

So in Firebug, let’s double saigonCinnamon with ++ and halve mincedLemonZest with --, verifying our
work with Figure 3–6.

var dough = {
 pastryFlour: [1 + 3/4, "cup"],
 almondFlour: [1/3, "cup"],
 saigonCinnamon: [1, "tsp"],
 mincedLemonZest: [2, "tsp"],
 seaSalt: [1/4, "tsp"],
 soda: [1, "tsp"],
 tartar: [1, "tsp"],
 pourableVanillaYogurt: [1, "cup"],
 egg: [1],
 wildBlueberries: [1 + 1/4, "cup"]
};
dough.saigonCinnamon[0] ++;
dough.mincedLemonZest[0] --;

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 3 ■ OPERATORS

67

dough.saigonCinnamon[0];
// 2
dough.mincedLemonZest[0];
// 1

Figure 3–6. ++ is a shortcut for += 1, and -- is a shortcut for -= 1.

Note that ++ and -- may appear in the prefix or postfix positions, that is to say, to the left or right of
their operand. The prefix and postfix positions are irrelevant to the operand’s new value: ++ will add 1 to
its operand, and -- will subtract 1 from its operand either way. However, the return value of the ++ and -
- will differ. In the prefix position, ++ returns the unincremented value, and -- returns the
undecremented value. Conversely, in the postfix position, ++ returns the incremented value, and --
returns the decremented value.

To illustrate the point, try the following sample, which has ++ and -- in both the prefix and postfix
positions. As Figure 3–7 displays, the return values of the ++ and -- expressions differ in the prefix and
postfix positions, but not the new member values. Those are always incremented by ++ or decremented
by --. Remember to stop and click Run prior to each comment, as explained in the preface.

var dough = {
 pastryFlour: [1 + 3/4, "cup"],
 almondFlour: [1/3, "cup"],
 saigonCinnamon: [1, "tsp"],
 mincedLemonZest: [2, "tsp"],
 seaSalt: [1/4, "tsp"],
 soda: [1, "tsp"],
 tartar: [1, "tsp"],
 pourableVanillaYogurt: [1, "cup"],
 egg: [1],
 wildBlueberries: [1 + 1/4, "cup"]
};
dough.saigonCinnamon[0] ++;
// 1
++ dough.mincedLemonZest[0];
// 3
dough.wildBlueberries[0] --;

CHAPTER 3 ■ OPERATORS

68

// 1.25
-- dough.pastryFlour[0];
// .75
dough.saigonCinnamon[0];
// 2
dough.mincedLemonZest[0];
// 3
dough.wildBlueberries[0];
// .25
dough.pastryFlour[0];
// .75

Figure 3–7. The return value for ++ differs in the prefix and postfix position.

The differing return values of ++ and -- in the prefix and postfix positions provide additional
flexibility in limiting the number of roundabouts JavaScript takes of a for, while, or do while loop. Those
are covered in Chapter 4.

Testing for Equality
Scones are particularly fast to make—maybe 20 minutes from mixing the dough to putting the scones on
the cooling rack. Hazelnut cream scones are among my favorites. I make those with either Organic Valley
heavy whipping cream or half & half. Those are deliciously sweet and creamy because of Organic Valley
pasturing their cows rather than feeding them corn.

Note that for cream scones the leavening bubbles derive from soda reacting with cream of tartar.
That is to say, heavy whipping cream or half & half contain no lactic acid. Note that the ratio of soda tsp.
to flour cups is 1:4 for scones compared to 1:2 for bread; we don’t want as much lift. Note too that the

CHAPTER 3 ■ OPERATORS

69

ratio of soda to tartar is 1:2. Although tartar is tasteless, soda is bitter, so we want to ensure there’s soda
left in the dough following the leavening reaction.

var dough = {
 pastryFlour: [1 + 2/3, "cup"],
 hazelnutFlour: [1/3, "cup"],
 butter: [3, "tbs"],
 sugar: [2, "tbs"],
 seaSalt: [1/4, "tsp"],
 soda: [1/2, "tsp"],
 tartar: [1, "tsp"],
 heavyWhippingCream: [1, "cup"],
 currants: [1/3, "cup"]
};

If you’re not familiar with making scones, you combine the ingredients in dough like so:

• Sift pastryFlour, hazelnutFlour, sugar, and seaSalt.

• Grate cold butter into flour and work into course meal with pastry blender.

• Sequentially whisk heavyWhippingCream, orangeJuice, mincedLemonZest, tartar, and soda.

• Make a well in center of flour, pour in wet ingredients and currants, and quickly
blend with rubber spatula to form soft, slightly moist dough.

• Turn dough onto a well-floured work surface and roll into round 9 inches in
diameter (1/2-inch thick).

• Slice into 8 wedges with sharp, floured knife. Cut away and discard center with 3–
inch biscuit cutter.

• Bake slightly separated wedges on parchment lined sheet for 12 minutes at 425°F.

• Cool on wire rack for ten minutes.

Note that rolling dough for scones or other pastries can be difficult. So if you’re a budding doughie, I
recommend buying a marble pastry board. Insofar as marble stays cooler than room temperature, it’s
easier to roll dough on.

Anyway, say I’d like to compare my guess at how much of an ingredient to add to the dough to what
the recipe calls for. I could do so by way of the === identity operator. === returns true if its operands
evaluate to identical values and false if not. That boolean verdict derives from the following protocol:

• If the values are of different types, return false.

• If both values are of the undefined type, return true.

• If both values are of the null type, return true.

• If both values are of the number type and one or both are NaN, return false.
Otherwise, return true if the numbers are the same and false if not.

• If both values are of the string type and have the same sequence and number of
characters, return true. Otherwise, return false.

• If both values are of the boolean type, return true if both are false or both are
true. Otherwise, return false.

CHAPTER 3 ■ OPERATORS

70

• If both memory addresses refer to the same location, return true. Otherwise,
return false.

Did that final step go over your head? Don’t worry, we’ll explore comparing memory addresses,
which along with pointers are more generally referred to as references, in Chapter 5. For now just know
that undefined, null, numbers, strings, and booleans are compared by value while objects, arrays, and
functions are compared by memory address, which is to say by reference (which all implies that the two
sets are stored in different ways, more of which in Chapter 5).

Note that === does not do datatype conversion, but its predecessor, the == equality operator, does.
Insofar as == can tell you whether only one expression is not entirely unlike another, savvy JavaScript
programmers frown upon its use. So since you’re a clean slate, I won’t teach you bad habits here.

Enough with the theory of ===; in Firebug, try the following sample, verifying your work with Figure
3–8:

var dough = {
 pastryFlour: [1 + 2/3, "cup"],
 hazelnutFlour: [1/3, "cup"],
 butter: [3, "tbs"],
 sugar: [2, "tbs"],
 seaSalt: [1/4, "tsp"],
 soda: [1/2, "tsp"],
 tartar: [1, "tsp"],
 heavyWhippingCream: [1, "cup"],
 currants: [1/3, "cup"]
};
dough.heavyWhippingCream[0] === 2/3;
// false
dough.currants[0] === dough.hazelnutFlour[0];
// true
dough.hazelnutFlour[0] * 5 === dough.pastryFlour[0];
// true
dough.soda[0] / dough.tartar[0] === 1;
// false

Figure 3–8. Verifying the amount of cream of tartar and soda with ===

CHAPTER 3 ■ OPERATORS

71

Testing for Inequality
Frequently you will want to test for inequality, which is to say for a value you don’t want an expression to
return. To do so, we might invert the boolean returned by === with the ! logical not operator. ! flips true
to false and false to true. However, ! has 14 priority and === 9. To trump the 14 with the 9, we would
wrap the === expression in the () grouping operator as the following sample and Figure 3–9 illustrate.

var dough = {
 pastryFlour: [1 + 2/3, "cup"],
 hazelnutFlour: [1/3, "cup"],
 butter: [3, "tbs"],
 sugar: [2, "tbs"],
 seaSalt: [1/4, "tsp"],
 soda: [1/2, "tsp"],
 tartar: [1, "tsp"],
 heavyWhippingCream: [1, "cup"],
 currants: [1/3, "cup"]
};
! (dough.heavyWhippingCream[0] === 2/3);
// true
! (dough.currants[0] === dough.hazelnutFlour[0]);
// false
! (dough.hazelnutFlour[0] * 5 === dough.pastryFlour[0]);
// false
! (dough.soda[0] / dough.tartar[0] === 1);
// true

Figure 3–9. Querying JavaScript as to whether two expressions are not equal

As a shortcut for comparing two expressions for equality with === and flipping the verdict with !,
JavaScript provides the !== operator. !== first runs through the === protocol and then does a logical not
on the verdict. So if === would return true, !== returns false, and if === would false, !== returns true. So
!== is quite the contrarian!

CHAPTER 3 ■ OPERATORS

72

The important thing to remember is that both === and !== run through the same protocol; !== just
inverts the verdict. It’s sort of like a judge sending you to jail when the jury says innocent and letting you
go free when the jury says guilty. Wouldn’t that be something?

Let’s simplify the previous sample with !==, verifying our work with Figure 3–10:

var dough = {
 pastryFlour: [1 + 2/3, "cup"],
 hazelnutFlour: [1/3, "cup"],
 butter: [3, "tbs"],
 sugar: [2, "tbs"],
 seaSalt: [1/4, "tsp"],
 soda: [1/2, "tsp"],
 tartar: [1, "tsp"],
 heavyWhippingCream: [1, "cup"],
 currants: [1/3, "cup"]
};
dough.heavyWhippingCream[0] !== 2/3;
// true
dough.currants[0] !== dough.hazelnutFlour[0];
// false
dough.hazelnutFlour[0] * 5 !== dough.pastryFlour[0];
// false
dough.soda[0] / dough.tartar[0] !== 1;
// true

Figure 3–10. !== does a logical not on the verdict of the === protocol.

Comparing Objects, Arrays, and Functions
Thus far we’ve compared strings and numbers with ===. So, JavaScript never made it to the final step
where memory addresses rather than values are compared. Referring to the === protocol, there’s no step
where JavaScript tediously compares object members, array elements, or function bodies. Not an error

CHAPTER 3 ■ OPERATORS

73

on my part. JavaScript never wastes time and memory doing that. Moreover, if you compare an array to a
function, === does not return false (or !== true) because of those being different subtypes. Rather, the
boolean verdict simply derives from the array and function being in different locations in memory.
Remember, JavaScript stores string, number, boolean, undefined, and null values in a different way to
object, array, and function values (as we inferred earlier in the chapter).

Now don’t be rolling your eyes at me. It’s vital to get this point. So, let’s compare some of the
identical arrays in the following dough object representing the recipe for another of my favorite scones,
hazelnut cherry, with === and !== like so in Firebug. As Figure 3–11 displays, === returns false and !==
returns true for separate but identical arrays.

var dough = {
 pastryFlour: [1 + 2/3, "cup"],
 hazelnutFlour: [1/3, "cup"],
 butter: [3, "tbs"],
 sugar: [2, "tbs"],
 seaSalt: [1/4, "tsp"],
 soda: [1/2, "tsp"],
 tartar: [1, "tsp"],
 heavyWhippingCream: [1, "cup"],
 currants: [1/3, "cup"]
};
dough.pastryFlour === [1 + 2/3, "cup"];
// false
dough.currants !== [1/3, "cup"];
// true

Figure 3–11. Separate but identical arrays are not equal.

Separate but identical values of the object type or array and function subtypes are never equal. Like
you and me, those are equal only to themselves, as the following sample and Figure 3–12 display:

var dough = {
 pastryFlour: [1 + 2/3, "cup"],
 hazelnutFlour: [1/3, "cup"],
 butter: [3, "tbs"],
 sugar: [2, "tbs"],
 seaSalt: [1/4, "tsp"],
 soda: [1/2, "tsp"],

CHAPTER 3 ■ OPERATORS

74

 tartar: [1, "tsp"],
 heavyWhippingCream: [1, "cup"],
 currants: [1/3, "cup"]
};
dough === {
 pastryFlour: [1 + 2/3, "cup"],
 hazelnutFlour: [1/3, "cup"],
 butter: [3, "tbs"],
 sugar: [2, "tbs"],
 seaSalt: [1/4, "tsp"],
 soda: [1/2, "tsp"],
 tartar: [1, "tsp"],
 heavyWhippingCream: [1, "cup"],
 currants: [1/3, "cup"]
};
// false
dough === dough;
// true
dough.pastryFlour === [1 + 2/3, "cup"];
// false
dough.pastryFlour === dough.pastryFlour;
// true

Figure 3–12. An object, array, or function is only equal to itself.

Furthermore, separate but otherwise identical object, array, or function literals are never equal
inasmuch as JavaScript saves those to different locations in memory. To illustrate the point, try the
following sample in Firebug:

[1 + 2/3, "cup"] === [1 + 2/3, "cup"];
// false

CHAPTER 3 ■ OPERATORS

75

We’ll more fully explore comparing by value or reference in Chapter 5. It’s time to move on to
determining the relative order of numbers and strings with the > greater and < less operators.

Determining Whether One Number or String Is Greater Than
Another
If you were to strain most of the watery whey from a 1 quart tub of whole milk yogurt, which is 4 percent
cream, you would have 1 2/3 cups of delicious full cream Greek yogurt, yiaourti, which is 10 percent
cream. Mmmh. Moreover, if you were to strain all of the watery whey, you would have 1 1/3 cups of
yogurt cheese, a healthier cream cheese. To do so, simply put a sieve lined with eight layers of
cheesecloth overtop a bowl in the fridge, dump in the yogurt, and let the whey drain for 6 hours to make
yiaourti or 12 hours to make yogurt cheese. However, Greek yogurt and yogurt cheese makers are
inexpensive; I bought mine for $21 from www.kingarthurflour.com, but Target has one for $16.

Insofar as yogurt cheese retains the lactic acid from the yogurt, you can leaven dough with it in
place of sour cream. One of my favorite apple cakes does so. Plus the icing is made with whipped yogurt
cheese rather than cream cheese. The recipe can be represented by nesting dough and icing objects
within the following cake object. Note that you would do the following:

• Strain 2 2/3 cups of watery whey from 4 cups of Stonyfield cream-top yogurt to
create 1 1/3 cups yogurt cheese.

• Shred 1 2/3 cups of tart Granny Smith apples.

• Sift Red Mill organic whole wheat pastry flour with the nutmeg and cinnamon.

• Whisk 2 eggs, with 2/3 cup yogurt cheese and 1/3 cup pure maple syrup.

• Dissolve the tartar and soda in the liquid.

• Immediately mix liquid with sifted dry ingredients.

• Fold in the shredded Granny Smith and chopped pecans.

• Bake for 40 minutes at 350ºF.

• To make icing, whisk until creamy the remaining 2/3 cup yogurt cheese with 1 1/3
tbs (4 tsp) pure maple syrup and 2 tsp. ground pecans.

• Wait for cake to cool before topping with icing.

var cake = {
 dough: {
 organicPastryFlour: [1 + 1/2, "cup"],
 freshlyGroundNutmeg: [1/4, "tsp"],
 saigonCinnamon: [1/2, "tsp"],
 soda: [1, "tsp"],
 tartar: [1, "tsp"],
 egg: [2],
 yogurtCheese: [2/3, "cup"],
 pureMapleSyrup: [1/3, "cup"],
 shreddedGrannySmith: [1 + 2/3, "cup"],
 choppedPecans: [1/2, "cup"]
 },
 icing: {
 yogurtCheese: [2/3, "cup"],

http://www.kingarthurflour.com

CHAPTER 3 ■ OPERATORS

76

 pureMapleSyrup: [1 + 1/3, "tbs"],
 groundPecans: [2, "tsp"]
 }
};

What if we want to know whether there’s more pastry flour or shredded Granny Smiths in the
dough? Neither === nor !== would be of any help. Instead, we’d compare those ingredients with the >
greater than operator, which like === and !== returns a boolean verdict—true if its first operand is
greater than its second operand, and false if not. Try comparing some members with the > operator,
verifying your work with Figure 3–13:

var cake = {
 dough: {
 organicPastryFlour: [1 + 1/2, "cup"],
 freshlyGroundNutmeg: [1/4, "tsp"],
 saigonCinnamon: [1/2, "tsp"],
 soda: [1, "tsp"],
 tartar: [1, "tsp"],
 egg: [2],
 yogurtCheese: [2/3, "cup"],
 pureMapleSyrup: [1/3, "cup"],
 shreddedGrannySmith: [1 + 2/3, "cup"],
 choppedPecans: [1/2, "cup"]
 },
 icing: {
 yogurtCheese: [2/3, "cup"],
 pureMapleSyrup: [1 + 1/3, "tbs"],
 groundPecans: [2, "tsp"]
 }
};
cake.dough.organicPastryFlour[0] > cake.dough.shreddedGrannySmith[0];
// false
cake.dough.choppedPecans[0] > cake.dough.pureMapleSyrup[0];
// true
cake.dough.freshlyGroundNutmeg[0] > cake.dough.saigonCinnamon[0];
// false
cake.icing.yogurtCheese[0] > cake.dough.yogurtCheese[0];
// false

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 3 ■ OPERATORS

77

Figure 3–13. Determining whether one number is greater than another with the > operator

In addition to comparing numbers, > is sometimes used to compare strings. However, it does so
numerically by the Unicode encoding for each character. Uppercase letters are greater than lowercase
characters. Therefore, you want to invoke toLowerCase() on both operands to get an alphabetical
comparison as Listing 3–1 displays. Note that we explored toLowerCase() and other string methods in
Chapter 2.

Listing 3–1. Comparing Strings Alphabetically with the > Operator

"apple" > "Granny Smith";
// false
"apple".toLowerCase() > "Granny Smith".toLowerCase();
// true

Determining Whether One Number or String Is Less Than Another
Now what if we want to do the inverse? In other words, we want to determine whether there’s less pure
maple syrup than ground pecans in the dough.

Hmm.
Want to take a guess?
Yup, turn the > around and you have the < less than operator, which tells you whether its first

operand is less than its second operand. Let’s muck around with < in Firebug, verifying our work with
Figure 3–14.

var cake = {
 dough: {
 organicPastryFlour: [1 + 1/2, "cup"],
 freshlyGroundNutmeg: [1/4, "tsp"],

CHAPTER 3 ■ OPERATORS

78

 saigonCinnamon: [1/2, "tsp"],
 soda: [1, "tsp"],
 tartar: [1, "tsp"],
 egg: [2],
 yogurtCheese: [2/3, "cup"],
 pureMapleSyrup: [1/3, "cup"],
 shreddedGrannySmith: [1 + 2/3, "cup"],
 choppedPecans: [1/2, "cup"]
 },
 icing: {
 yogurtCheese: [2/3, "cup"],
 pureMapleSyrup: [1 + 1/3, "tbs"],
 groundPecans: [2, "tsp"]
 }
};
cake.dough.organicPastryFlour[0] < cake.dough.shreddedGrannySmith[0];
// true
cake.dough.choppedPecans[0] < cake.dough.pureMapleSyrup[0];
// false
cake.dough.freshlyGroundNutmeg[0] < cake.dough.saigonCinnamon[0];
// true
cake.icing.yogurtCheese[0] < cake.dough.yogurtCheese[0];
// false

Figure 3–14. Determining whether one number is less than another with the > operator

CHAPTER 3 ■ OPERATORS

79

Greater Than or Equal to, Less Than or Equal to
OK, in both the > and < samples, comparing the yogurt cheese in the dough and icing returned false
since those are equal—2/3 cup. So if we wanted to know whether one member is greater than or equal to
(or less than or equal to) another member, > and < wouldn’t be of any help.

Or so it would seem: Saying “not less than” is the same as saying “greater than or equal to,” and
saying “not greater than” is the same as saying “less than or equal to.” So, we’ll just flip the boolean
verdict of < with ! to do a “greater than or equal to” operation. Conversely, flipping the verdict of > with !
will do a “less than or equal to” operation. So, let’s have at it in Firebug, verifying our work with Figure 3–
15. Note that > and < have 10 priority, so we need to trump the ! operator’s 14 priority by wrapping the >
or < expression in parentheses:

var cake = {
 dough: {
 organicPastryFlour: [1 + 1/2, "cup"],
 freshlyGroundNutmeg: [1/4, "tsp"],
 saigonCinnamon: [1/2, "tsp"],
 soda: [1, "tsp"],
 tartar: [1, "tsp"],
 egg: [2],
 yogurtCheese: [2/3, "cup"],
 pureMapleSyrup: [1/3, "cup"],
 shreddedGrannySmith: [1 + 2/3, "cup"],
 choppedPecans: [1/2, "cup"]
 },
 icing: {
 yogurtCheese: [2/3, "cup"],
 pureMapleSyrup: [1 + 1/3, "tbs"],
 groundPecans: [2, "tsp"]
 }
};
! (cake.icing.yogurtCheese[0] > cake.dough.yogurtCheese[0]);
// true
! (cake.icing.yogurtCheese[0] < cake.dough.yogurtCheese[0]);
// true

CHAPTER 3 ■ OPERATORS

80

Figure 3–15. Inverting the boolean verdict of > or < with !

Just as JavaScript provides !== as a shortcut to flipping the boolean verdict of === with !, it provides
>= as a shortcut to flipping the boolean verdict of < with !, and <= as a shortcut to flipping the boolean
verdict of > with !. Just remember that neither >= nor <= tests for equality with the === operator. Rather,
>= does a “not less than” operation while <= does a “not greater than” operation. Try comparing some
ingredients with >= and <=, verifying your work Figure 3–16:

var cake = {
 dough: {
 organicPastryFlour: [1 + 1/2, "cup"],
 freshlyGroundNutmeg: [1/4, "tsp"],
 saigonCinnamon: [1/2, "tsp"],
 soda: [1, "tsp"],
 tartar: [1, "tsp"],
 egg: [2],
 yogurtCheese: [2/3, "cup"],
 pureMapleSyrup: [1/3, "cup"],
 shreddedGrannySmith: [1 + 2/3, "cup"],
 choppedPecans: [1/2, "cup"]
 },
 icing: {
 yogurtCheese: [2/3, "cup"],
 pureMapleSyrup: [1 + 1/3, "tbs"],
 groundPecans: [2, "tsp"]
 }
};
cake.icing.yogurtCheese[0] <= cake.dough.yogurtCheese[0];
// true
cake.icing.yogurtCheese[0] >= cake.dough.yogurtCheese[0];
// true

CHAPTER 3 ■ OPERATORS

81

cake.dough.organicPastryFlour[0] <= cake.dough.shreddedGrannySmith[0];
// true
cake.dough.choppedPecans[0] >= cake.dough.pureMapleSyrup[0];
// true

Figure 3–16. Comparing ingredients with >= and <=

Note that >, <, >=, and <= can only compare numbers or strings, so JavaScript converts operands of
other value types as follows:

• Convert objects to numbers if possible. Otherwise, convert them to strings.

• If both operands are now strings, compare them by their Unicode encodings.

• Convert any string, boolean, null, or undefined operand to a number, that is, true
to 1, false to 0, null to 0, and undefined to NaN, and strings to a number or NaN.
Both operands will now be numbers, so compare them mathematically unless one
or both are NaN, in which case return false no matter what.

So if one or both operands are of the number, boolean, null, or undefined value type, then >, <, >=,
and <= will always compare operands mathematically. That is to say, string comparison is done only
when both operands are strings or objects that cannot be converted to numbers.

Creating More Complex Comparisons
Brown Cow, my favorite organic cream-top yogurt, comes in a maple flavor that is just yogurt sweetened
with pure maple syrup. Comparing labels of maple and plain Brown Cow to pure maple syrup, I
calculated that there’s 1 tbsp. pure maple syrup per cup of maple Brown Cow. So if I’m making
boysenberry muffins and don’t have maple Brown Cow in the fridge, I’ll sweeten 1 1/2 cups plain Brown
Cow or Stonyfield cream-top with 1 /12 tbs pure maple syrup. Note that boysenberries were created by
horticulturist Charles Boysen in 1923 from several varieties of blackberries, raspberries, and

CHAPTER 3 ■ OPERATORS

82

loganberries. Note too that Brown Cow is a Stonyfield subsidiary, so their cream-top yogurts taste fairly
similar.

The following muffin object represents the recipe for boysenberry muffins. I buy the oat and barley
flours from www.kingarthurflour.com. However, you can replace those with the Bob’s Red Mill organic
whole wheat pastry flour we’ve been making dough with. To make the muffins, you would do the
following:

1. Sift oatFlour, barleyFlour, pastryFlour, sugar, freshlyGroundNutmeg,
saigonCinnamon, and seaSalt.

2. Sequentially whisk mapleBrownCow, tartar, and soda.

3. Immediately mix in sifted dry ingredients.

4. Fold in boysenberries and choppedPecans.

5. Fill muffin cups 2/3 full.

6. Bake for 20 minutes at 375°F. However, this will vary depending on the size of
the muffin cups.

7. Cool on wire rack for 10 minutes.

var muffin = {
 oatFlour: [1/3, "cup"],
 barleyFlour: [1/3, "cup"],
 pastryFlour: [1 + 1/3, "cup"],
 freshlyGroundNutmeg: [1/4, "tsp"],
 saigonCinnamon: [1/2, "tsp"],
 seaSalt: [1/4, "tsp"],
 soda: [1, "tsp"],
 tartar: [1, "tsp"],
 mapleBrownCow: [1 + 1/2, "cup"],
 boysenberries: [2, "cup"],
 choppedPecans: [1/3, "cup"]
};

OK, say we’d like to do a more complex comparison. Say verify that one of two comparisons are
valid. Or that both of them are. Maybe even that two of five comparisons are valid. Could we do so?

Yup. In addition to being able to say “not” with the ! logical not operator, we can say “or” with the ||
logical or operator and “and” with the && logical and operator. Both || and && return one of their two
operands relative to the boolean their first operand evaluates or converts to. If the first operand
evaluates to or converts to true:

• || returns its first operand.

• && returns its second operand.

On the other hand, if the first operand evaluates to or converts to false:

• || returns its second operand.

• && returns its first operand.

Note that && and || only convert their first operand to a boolean in order to determine which
operand to return. In other words, if || or && choose to return their first operand, it is the unconverted
value that is returned.

http://www.kingarthurflour.com

CHAPTER 3 ■ OPERATORS

83

The odd way in which || and && choose their return value is the basis for boolean algebra. Scary
term, but not to worry. Doing algebra with booleans is simpler than with numbers. Here’s how it works.

• The return value for || will convert to true if its first or second operand or both
evaluate or convert to true. Otherwise, the return value for || will convert to false.

• The return value for && will convert to true if its first and second operand evaluate
or convert to true. Otherwise, the return value for || will convert to false.

That was simple, but why would you want to do boolean algebra? For one thing, the operators we
explored for comparing expressions, ===, !==, ==, !=, >, <, >=, and <=, all return a boolean verdict. So,
boolean algebra provides a way to express complex comparisons. For another, insofar as objects and
functions convert to true and undefined converts to false, boolean algebra is the foundation for DOM
feature testing, which we’ll explore in gory detail in the final four chapters of this book.

Saying or With ||
Insofar as ===, !==, >, <, >=, and <= return a boolean verdict and || returns one of its operands, you can
use || to do boolean algebra on two comparison expressions. If one of two comparisons return true or
both of them do, || will return true. That is to say, || will only return false if both comparisons return
false. So, we can test if one or both comparisons are valid like so. Note that it’s fine to add a new line
between a binary operator like || and its second operand. Be sure to click Run prior to each comment.
So four times overall. Then verify your work with Figure 3–17.

var muffin = {
 oatFlour: [1/3, "cup"],
 barleyFlour: [1/3, "cup"],
 pastryFlour: [1 + 1/3, "cup"],
 freshlyGroundNutmeg: [1/4, "tsp"],
 saigonCinnamon: [1/2, "tsp"],
 seaSalt: [1/4, "tsp"],
 soda: [1, "tsp"],
 tartar: [1, "tsp"],
 mapleBrownCow: [1 + 1/2, "cup"],
 boysenberries: [2, "cup"],
 choppedPecans: [1/3, "cup"]
};
muffin.mapleBrownCow[0] > muffin.boysenberries[0] ||
 muffin.oatFlour[0] === muffin.barleyFlour[0];
// true
muffin.oatFlour[0] === muffin.barleyFlour[0] ||
 muffin.mapleBrownCow[0] > muffin.boysenberries[0];
// true
muffin.boysenberries[0] > muffin.choppedPecans[0] ||
 muffin.pastryFlour[0] > muffin.barleyFlour[0];
// true
muffin.boysenberries[0] < muffin.choppedPecans[0] ||
 muffin.pastryFlour[0] < muffin.barleyFlour[0];
// false

CHAPTER 3 ■ OPERATORS

84

Figure 3–17. || will return true if at least one of two comparisons is valid.

Saying “and” with &&
Though || will return true if one of two comparisons is true, && will return true only if both comparisons
are true. To illustrate, try the following in Firebug, verifying your work with Figure 3–18. Remember to
click Run prior to each comment so four times overall.

var muffin = {
 oatFlour: [1/3, "cup"],
 barleyFlour: [1/3, "cup"],
 pastryFlour: [1 + 1/3, "cup"],
 freshlyGroundNutmeg: [1/4, "tsp"],
 saigonCinnamon: [1/2, "tsp"],
 seaSalt: [1/4, "tsp"],
 soda: [1, "tsp"],
 tartar: [1, "tsp"],
 mapleBrownCow: [1 + 1/2, "cup"],
 boysenberries: [2, "cup"],
 choppedPecans: [1/3, "cup"]
};
muffin.mapleBrownCow[0] > muffin.boysenberries[0] &&
 muffin.oatFlour[0] === muffin.barleyFlour[0];
// false
muffin.oatFlour[0] === muffin.barleyFlour[0] &&
 muffin.mapleBrownCow[0] > muffin.boysenberries[0];
// false
muffin.boysenberries[0] > muffin.choppedPecans[0] &&
 muffin.pastryFlour[0] > muffin.barleyFlour[0];
// true
muffin.boysenberries[0] < muffin.choppedPecans[0] &&

CHAPTER 3 ■ OPERATORS

85

 muffin.pastryFlour[0] < muffin.barleyFlour[0];
// false

Figure 3–18. && will return true only if both comparisons are valid.

Chaining || Expressions
If you chain two || expressions, you can test whether one of three comparisons is valid. Try it in Firebug,
verifying your work with Figure 3–19. Note that || has L associativity and that JavaScript does not
evaluate the second operand when the first operand evaluates or converts to true. So in the following
sample, since the first comparison is true, JavaScript does not evaluate muffin.oatFlour !==
muffin.barleyFlour or muffin.pastryFlour < muffin.barleyFlour.

var muffin = {
 oatFlour: [1/3, "cup"],
 barleyFlour: [1/3, "cup"],
 pastryFlour: [1 + 1/3, "cup"],
 freshlyGroundNutmeg: [1/4, "tsp"],
 saigonCinnamon: [1/2, "tsp"],
 seaSalt: [1/4, "tsp"],
 soda: [1, "tsp"],
 tartar: [1, "tsp"],
 mapleBrownCow: [1 + 1/2, "cup"],
 boysenberries: [2, "cup"],
 choppedPecans: [1/3, "cup"]
};
muffin.mapleBrownCow[0] > muffin.boysenberries[0] ||
 muffin.oatFlour[0] !== muffin.barleyFlour[0] ||
 muffin.pastryFlour[0] < muffin.barleyFlour[0];
// true

3

CHAPTER 3 ■ OPERATORS

86

Figure 3–19. Determining whether at least one of three comparisons is true

As you might imagine, you can keep right on going, chaining as many || operations as you like. So
in the following sample, we’re testing whether at least one of five comparisons is valid. So as Figure 3–20
displays, even though just the second and fourth comparison are valid, which is to say return true,
overall the chained || expressions return true:

var muffin = {
 oatFlour: [1/3, "cup"],
 barleyFlour: [1/3, "cup"],
 pastryFlour: [1 + 1/3, "cup"],
 freshlyGroundNutmeg: [1/4, "tsp"],
 saigonCinnamon: [1/2, "tsp"],
 seaSalt: [1/4, "tsp"],
 soda: [1, "tsp"],
 tartar: [1, "tsp"],
 mapleBrownCow: [1 + 1/2, "cup"],
 boysenberries: [2, "cup"],
 choppedPecans: [1/3, "cup"]
};
muffin.mapleBrownCow[0] > muffin.boysenberries[0] ||
 muffin.oatFlour[0] !== muffin.barleyFlour[0] ||
 muffin.freshlyGroundNutmeg[0] >= muffin.saigonCinnamon[0] ||
 muffin.choppedPecans[0] <= muffin.mapleBrownCow[0] ||
 muffin.pastryFlour[0] === muffin.barleyFlour[0];
// true

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 3 ■ OPERATORS

87

Figure 3–20. Determining whether at least one of five comparisons is true

Chaining && Expressions
So || is pretty lenient—just one of two or more chained || has to return true for the whole shebang to
return true. && on the other hand, is very strict. Every comparison in a chain of && expressions must be
valid for the chain to return true as a whole. So as Figure 3–21 illustrates, even though the first and last
two comparisons are true, since the third is false the chain of && expressions return false. So we’re
asking JavaScript all five comparisons are true, not whether most of them are true.

var muffin = {
 oatFlour: [1/3, "cup"],
 barleyFlour: [1/3, "cup"],
 pastryFlour: [1 + 1/3, "cup"],
 freshlyGroundNutmeg: [1/4, "tsp"],
 saigonCinnamon: [1/2, "tsp"],
 seaSalt: [1/4, "tsp"],
 soda: [1, "tsp"],
 tartar: [1, "tsp"],
 mapleBrownCow: [1 + 1/2, "cup"],
 boysenberries: [2, "cup"],
 choppedPecans: [1/3, "cup"]
};
muffin.mapleBrownCow[0] < muffin.boysenberries[0] &&
 muffin.oatFlour[0] === muffin.barleyFlour[0] &&
 muffin.freshlyGroundNutmeg[0] >= muffin.saigonCinnamon[0] &&
 muffin.choppedPecans[0] <= muffin.mapleBrownCow[0] &&
 muffin.pastryFlour[0] > muffin.barleyFlour[0];
// false

CHAPTER 3 ■ OPERATORS

88

Figure 3–21. Determining whether all five comparisons are true

Let’s make && happy and change the third comparison “not less than” to “less than.” As Figure 3–22
displays, since all five comparisons are true, overall the && chain returns true. Hurray!

var muffin = {
 oatFlour: [1/3, "cup"],
 barleyFlour: [1/3, "cup"],
 pastryFlour: [1 + 1/3, "cup"],
 freshlyGroundNutmeg: [1/4, "tsp"],
 saigonCinnamon: [1/2, "tsp"],
 seaSalt: [1/4, "tsp"],
 soda: [1, "tsp"],
 tartar: [1, "tsp"],
 mapleBrownCow: [1 + 1/2, "cup"],
 boysenberries: [2, "cup"],
 choppedPecans: [1/3, "cup"]
};
muffin.mapleBrownCow[0] < muffin.boysenberries[0] &&
 muffin.oatFlour[0] === muffin.barleyFlour[0] &&
 muffin.freshlyGroundNutmeg[0] < muffin.saigonCinnamon[0] &&
 muffin.choppedPecans[0] <= muffin.mapleBrownCow[0] &&
 muffin.pastryFlour[0] > muffin.barleyFlour[0];
// true

CHAPTER 3 ■ OPERATORS

89

Figure 3–22. Since all five comparisons are true, overall the && chain returns true.

Chaining || and && Expressions
Note that && has a priority of 5 while || has a priority of 4. So in the following sample, JavaScript
evaluates the two && expressions prior to the two || expressions. Therefore, as Figure 3–23 illustrates, by
the time JavaScript does the || operations, the comparison has been simplified to false || true ||
muffin.pastryFlour < muffin.barleyFlour. So, it’s not necessary for JavaScript to evaluate the final <
comparison.

var muffin = {
 oatFlour: [1/3, "cup"],
 barleyFlour: [1/3, "cup"],
 pastryFlour: [1 + 1/3, "cup"],
 freshlyGroundNutmeg: [1/4, "tsp"],
 saigonCinnamon: [1/2, "tsp"],
 seaSalt: [1/4, "tsp"],
 soda: [1, "tsp"],
 tartar: [1, "tsp"],
 mapleBrownCow: [1 + 1/2, "cup"],
 boysenberries: [2, "cup"],
 choppedPecans: [1/3, "cup"]
};
muffin.mapleBrownCow[0] < muffin.boysenberries[0] &&
 muffin.oatFlour[0] === muffin.barleyFlour[0] ||
 muffin.freshlyGroundNutmeg[0] < muffin.saigonCinnamon[0] &&
 muffin.choppedPecans[0] <= muffin.mapleBrownCow[0] ||
 muffin.pastryFlour[0] < muffin.barleyFlour[0];
// true
false || true || muffin.pastryFlour[0]< muffin.barleyFlour[0];
// true

CHAPTER 3 ■ OPERATORS

90

Figure 3–23. Chaining && and || expression to do a complex comparison

To better illustrate the JavaScript’s lazy evaluation of || and &&, let’s replace the final comparison
with an alert() call that would say “Don’t panic!” Now click Run in Firebug. Firebug does not open an
alert dialog box because JavaScript never bothered to invoke alert().

var muffin = {
 oatFlour: [1/3, "cup"],
 barleyFlour: [1/3, "cup"],
 pastryFlour: [1 + 1/3, "cup"],
 freshlyGroundNutmeg: [1/4, "tsp"],
 saigonCinnamon: [1/2, "tsp"],
 seaSalt: [1/4, "tsp"],
 soda: [1, "tsp"],
 tartar: [1, "tsp"],
 mapleBrownCow: [1 + 1/2, "cup"],
 boysenberries: [2, "cup"],
 choppedPecans: [1/3, "cup"]
};
muffin.mapleBrownCow[0] < muffin.boysenberries[0] &&
 muffin.oatFlour[0] === muffin.barleyFlour[0] ||
 muffin.freshlyGroundNutmeg[0] < muffin.saigonCinnamon[0] &&
 muffin.choppedPecans[0] <= muffin.mapleBrownCow[0] ||
 alert("Don't panic!");
// true

I think our boysenberry Brown Cow muffins are done, so let’s pull them from the oven. Mmmh,
share and enjoy.

Conditionally Returning One of Two Values
What if we’d like to conditionally choose a return value rather than just verify it? This is where the ?:
conditional operator, JavaScript’s only ternary operator, earns its keep. Like || and &&, ?: chooses a

CHAPTER 3 ■ OPERATORS

91

return value based on the boolean its first operand evaluates or converts to. If the first operand evaluates
to or converts to true:

• || returns its first operand.

• && returns its second operand.

• ?: returns its second operand.

On the other hand, if the first operand evaluates to or converts to false:

• || returns its second operand.

• && returns its first operand.

• ?: returns its third operand.

Though all three operators can be used to conditionally return a value, the ?: conditional operator’s
separation of the boolean condition from the possible return values make it the preferred way of doing
so. Here’s a quick example:

var first = 30;
var second = 20;
var result = first > second ? "first is larger" : "first is smaller";
result;
//"first is larger"

Here the first operand evaluates to true, so ?: returns its second operand. As you can see, the return
value is not used as any part of the conditional test.

If I’m making cranberry bread with buttermilk, I’d add 1/2 cup buttermilk as in the following dough
object. Note that the leavening bubbles are created by soda reacting with citric acid in the orange juice,
lactic acid in the buttermilk, and tartaric acid in the cream of tartar. Note too that for this recipe I like to
go with Bob’s Red Mill organic hard white whole wheat flour. Though it contains as much fiber-rich bran
and vitamin-rich germ as hard red, hard white wheat does have the bitter red tannins. Therefore, hard
white whole wheat flour has a milder, sweeter flavor than hard red, making it ideal for sweet soda breads.

var dough = {
 hardWhiteWholeWheatFlour: [2, "cup"],
 sugar: [1/3, "cup"],
 madagascarVanilla: [1, "tsp"],
 orangeZest: [1, "tbs"],
 soda: [1, "tsp"],
 tartar: [1, "tsp"],
 orangeJuice: [1/2, "cup"],
 buttermilk: [1/2, "cup"],
 egg: [1],
 cranberries: [2/3, "cup"]
};

If I don’t have buttermilk and do have kefir, I’d add 9/16 cup kefir. Note that there are 16 tbsp. per
cup, so 9/16 cup kefir means 1/2 cup plus 1 tbsp.

var dough = {
 hardWhiteWholeWheatFlour: [2, "cup"],
 sugar: [1/3, "cup"],
 madagascarVanilla: [1, "tsp"],
 orangeZest: [1, "tbs"],
 soda: [1, "tsp"],

CHAPTER 3 ■ OPERATORS

92

 tartar: [1, "tsp"],
 orangeJuice: [1/2, "cup"],
 kefir: [9/16, "cup"],
 egg: [1],
 cranberries: [2/3, "cup"]
};

But if I don’t have buttermilk or kefir but do have yogurt, I’d add 10/16 cup yogurt, which is 1/2 cup
plus 2 tbs:

var dough = {
 hardWhiteWholeWheatFlour: [2, "cup"],
 sugar: [1/3, "cup"],
 madagascarVanilla: [1, "tsp"],
 orangeZest: [1, "tbs"],
 soda: [1, "tsp"],
 tartar: [1, "tsp"],
 orangeJuice: [1/2, "cup"],
 yogurt: [10/16, "cup"],
 egg: [1],
 cranberries: [2/3, "cup"]
};

With this in mind, let’s conditionally set the amount of a culturedMilk[0] element to 1/2, 9/16, or
10/16 depending on whether there’s enough buttermilk, kefir, or yogurt in the fridge. To do so, we’ll
chain two ?: expressions, one as the return value of the other. As Figure 3–24 displays, since there was
not enough buttermilk but enough kefir in the fridge, JavaScript set the amount to 9/16, which evaluates
to 0.5625 decimal. In other words, the first ?: returns its second operand because the conditional
expression is true; if the conditional had been false, it would have returned the second ?: expression,
which in turn would have been evaluated:

var fridge = {
 buttermilk: [1/3, "cup"],
 kefir: [1 + 1/2, "cup"],
 yogurt: [4, "cup"],
};
var dough = {
 hardWhiteWholeWheatFlour: [2, "cup"],
 sugar: [1/3, "cup"],
 madagascarVanilla: [1, "tsp"],
 orangeZest: [1, "tbs"],
 soda: [1, "tsp"],
 tartar: [1, "tsp"],
 orangeJuice: [1/2, "cup"],
 culturedMilk: [1/2, "cup"],
 egg: [1],
 cranberries: [2/3, "cup"]
};
dough.culturedMilk[0] = fridge.buttermilk[0] < 1/2 && fridge.kefir[0] >= 9/16 ? 9/16 :
 fridge.yogurt[0] >= 10/16 ? 10/16 :
 alert("No cranberry bread for you!");
dough.culturedMilk;
// [0.5625, "cup"]

CHAPTER 3 ■ OPERATORS

93

Figure 3–24. Conditionally choosing the amount of cultured milk with the ?: operator

Making Two Expressions Count as One
Now what if we’d like to also update the amount of buttermilk, kefir, or yogurt in the fridge? Insofar as
we can put only one expression following the ? and : tokens of the ?: operator, it would appear we’re out
of luck.

Not so. JavaScript provides the , comma operator for circumstances like this. , works with two
operands and simply evaluates both of its operands and returns the value of the second operand. So if
we make our updating of the fridge the first operand to , and the value we want to assign to
dough.culturedMilk[0] the second operand, that’ll work just dandy. Try it in Firebug, verifying your
work with Figure 3–25:

var fridge = {
 buttermilk: [1/3, "cup"],
 kefir: [1 + 1/2, "cup"],
 yogurt: [4, "cup"],
};
var dough = {
 hardWhiteWholeWheatFlour: [2, "cup"],
 sugar: [1/3, "cup"],
 madagascarVanilla: [1, "tsp"],
 orangeZest: [1, "tbs"],
 soda: [1, "tsp"],
 tartar: [1, "tsp"],
 orangeJuice: [1/2, "cup"],
 culturedMilk: [1/2, "cup"],
 egg: [1],
 cranberries: [2/3, "cup"]
};
dough.culturedMilk[0] = fridge.buttermilk[0] >= 1/2 ? (fridge.buttermilk[0] -= 1/2, 1/2) :
 fridge.kefir[0] >= 9/16 ? (fridge.kefir[0] -= 9/16, 9/16) :

CHAPTER 3 ■ OPERATORS

94

 fridge.yogurt[0] >= 10/16 ? (fridge.yogurt[0] -= 10/16, 10/16) :
 alert("No cranberry bread for you!");
dough.culturedMilk;
// [0.5625, "cup"]
fridge.kefir;
// [0.9375, "cup"]

Figure 3–25. Making two expressions count as one with the , operator

Deleting a Member, Element, or Variable
If we don’t have buttermilk, kefir, or yogurt, we can still make cranberry bread by doubling the orange
juice. How do we tell JavaScript to delete dough.culturedMilk and then double dough.orangeJuice?

To delete the culturedMilk member from dough we’d pass it to the delete operator, which works
with an any variable, member, element, or parameter. To double the OJ, we’d pass 2 to the *= operator,
which we covered earlier. We can do both in one statement by separating them with the , comma
operator.

To verify the demise of culturedMilk, we can pass it to the typeof operator, which returns the value
type of its operand as a string. So for a missing member like culturedMilk, typeof would return
"undefined". Or we could verify its demise with in, an operator that returns true if an object contains a
member named with a particular string. Otherwise, in returns false. Note that typeof has a couple of
quirks. For null, typeof returns "object" not "null", and for a function typeof returns "function" not
"object". Yep, pretty stupid. But try it, verifying your work with Figure 3–26.

var dough = {
 hardWhiteWholeWheatFlour: [2, "cup"],
 sugar: [1/3, "cup"],

CHAPTER 3 ■ OPERATORS

95

 madagascarVanilla: [1, "tsp"],
 orangeZest: [1, "tbs"],
 soda: [1, "tsp"],
 tartar: [1, "tsp"],
 orangeJuice: [1/2, "cup"],
 culturedMilk: [1/2, "cup"],
 egg: [1],
 cranberries: [2/3, "cup"]
};
delete dough.culturedMilk, dough.orangeJuice[0] *= 2, dough.orangeJuice;
// [1, "cup"]
typeof dough.culturedMilk;
// "undefined"
"culturedMilk" in dough;
// false
"orangeJuice" in dough;
// true

Figure 3–26. Deleting a member with delete and verifying its demise with typeof and in

Summary
In addition to querying objects or arrays, invoking functions, doing math, gluing strings, and assigning
values, operators provide a way to verify return values for expressions. Good thing—other than literals,
JavaScript expressions tend to evaluate to different values depending on what a visitor does or the
browser they’re doing it with. So there are many operators to help verify return values with. Those will
prove invaluable in Chapter 4, where we’ll explore controlling flow, and in the DOM chapters, where
we’ll test for features before trying to use them.

CHAPTER 3 ■ OPERATORS

96

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

C H A P T E R 4

■ ■ ■

97

Controlling Flow

Running a forest trail in May, I startled a doe and her newborn fawn. The doe made a raspy snort to warn
the fawn of danger. Not knowing what to do, the fawn wobbled over to me and plopped down between
my legs. Trembling with fear, it looked up at me and bleated faintly, imploring me to keep it safe. The
doe stood 20 yards off, quivering with agitation. Obviously, it had wanted the fawn to run away from the
predator, not to it.

JavaScript is like the newborn fawn in that it does not know which way you want it to run. So by
default, it will simply run forward—that is to say, from the first line in your script to the last. However,
there are four ways to manipulate this mindless, sequential flow.

First, you can send JavaScript down different paths with if and switch statements. They are referred
to as conditional statements because the paths run conditionally relative to the boolean value of an
expression. true gives JavaScript the green light to take a path, while false tells JavaScript either to do
nothing or to take a fall-through path. Second, you can tell JavaScript to take several roundabouts of a
loop path with one of the four looping statements: while, do while, for, for, or in. Like if and switch,
loops run conditionally relative to a boolean expression: true tells JavaScript to take another
roundabout, while false tells JavaScript not to. Third, you can disrupt flow with a disruptive statement
such as break, continue, or return. These statements prevent JavaScript from continuing on its way.
Fourth, you can temporarily jump elsewhere in a script by way of function invocation. By this, I mean
JavaScript goes off and runs the function and then comes back to the spot from which you invoked it.

■ Note Chapter 6 more fully covers functions.

Neither disruptive statements nor function invocations are dynamic. That is to say, neither provides
a way for JavaScript to make a decision relative to circumstances. So, with them, a fawn would have to
run away from squirrels as well as from wolves. On the other hand, conditional and looping statements
are dynamic, so they do provide a way for JavaScript to think before it leaps.

So alrighty then, how does JavaScript think? I alluded to this earlier, but the answer is simple:
boolean expressions. Truthy expressions, those that return true or can be converted to true, are a green
light, while falsy expressions, those that return undefined, null, "", 0, NaN, or false, are a red light. So, not
surprisingly, every conditional or looping statement contains a boolean expression, which enables
JavaScript to make a decision.

What else do conditional or looping statements contain? They contain paths in the form of child
statements or blocks, which are statements wrapped in curly braces. For this reason, conditional and
looping statements are referred to as compound statements. So, if you want JavaScript to think, you write
a compound statement.

The thing is, formal JavaScript syntax limits a compound statement to one child statement. For
example, an if conditional statement, which we will explore in a moment, can have only one child

CHAPTER 4 ■ CONTROLLING FLOW

98

statement following its boolean expression. In the following if statement, run(miles); is the one child
statement permitted by JavaScript:

if (timeToRun === true) run(miles);

Oftentimes this will not do, and JavaScript knows this. If you bundle several child statements in a
pair of curly braces, JavaScript will look the other way and view the bundle, referred to as a block, as one
child statement. So if I want JavaScript to run three child statements whenever it’s time to run, which is
to say timeToRun contains true, then I can bundle those statements in a block. JavaScript will be happy as
a clam, and I get to run in shoes rather than barefoot:

if (timeToRun === true) {
 lace(shoes);
 run(miles);
 shower();
}

Note that the block of child statements is not followed by a semicolon. However, the child
statements within the block are.

Writing an if Condition
Oftentimes, you will want JavaScript to run a path if circumstances permit but otherwise do nothing and
move on. if conditional statements will be your bread and butter for this type of decision. To write one
of these statements, simply type the keyword if, followed by an expression in parentheses, and then a
path in the form of a child statement or block. In the event that the expression does not return a
boolean, JavaScript will convert the value to a boolean by passing it to Boolean(), which we explored in
Chapter 2. So if the expression returns any value other than undefined, null, "", 0, NaN, or false,
JavaScript has a green light to run the path.

Therefore, a JavaScript interpreter views an if condition like so:

if (Boolean(expression)) path

But you write it like this:

if (expression) path

Open firebug.html in Firefox and then press F12 to enable Firebug. If you’re just joining us, flip back
to the Preface for details on how to do this.

For any fast running I do, I tend to wear the Nike Mayfly, which weighs just four ounces. By
comparison, most running shoes weigh three or four times as much. However, the downside to the
Mayfly’s minimalist design is that its cushioning goes dead after just 100 kilometers.

Let’s create a mayfly object containing two methods that may query a secret variable named tally,
which will contain a tally of kilometers run in a pair of Mayfly shoes. mayfly.addToTally() adds its
parameter (named km) to tally only if km is safe for addition—that is to say, if km is of the number
datatype but not the special numbers NaN or Infinity. The other method, mayfly.kmLeftToLive(), will
return a message indicating how many kilometers of cushioning the Mayfly has left only if tally is less
than 100.

So in Firebug, enter the following code, and click Run. Doing so creates a closure so that tally may
be queried only by addToTally() and kmLeftToLive(). Closures are covered in Chapter 6, so just nod
knowingly for now. Anyway, just focus on the two if conditions.

var mayfly = function () {
 var tally = 0;
 return {

CHAPTER 4 ■ CONTROLLING FLOW

99

 addToTally: function (km) {
 if (typeof km === "number" && isFinite(km)) {
 return tally += km;
 }
 },
 kmLeftToLive: function () {
 if (tally < 100) {
 return "Mayfly has " + (100 - tally) + " kilometers left to live.";
 }
 }
 }
}();

Now that we have initialized mayfly() and the secret variable tally, click Clear in the bottom-right
corner of Firebug. Doing so not only leaves mayfly() in memory so that we can invoke it but also
prevents us from overwriting it the next several times we click Run.

Now let’s add 10 kilometers to tally. To do so, pass 10 to mayfly.addToTally() by entering the
following code and clicking Run:

mayfly.addToTally(10);
// 10

We can add 10 to tally because we’ve passed in a number that passes the test in the first if
statement.

Click Run three more times to log a few more 10K races. So now, as Figure 4–1 illustrates, our secret
variable tally contains 40.

Figure 4–1. Invoking mayfly.addToTally four times with the parameter 10

Click Clear in both Firebug panels and then try calling the other method, mayfly.kmLeftToLive().
This one doesn’t take any parameters. So, just enter the following code, and click Run in order to find
out how many kilometers are left on our pair of Mayfly shoes. We see some output because the tally
variable is less than 100, and therefore the condition in the second if is true.

CHAPTER 4 ■ CONTROLLING FLOW

100

mayfly.kmLeftToLive();
// "Mayfly has 60 kilometers left to live."

Appending an else Clause
Now what if you want JavaScript to go down one path when an expression is truthy but another path
when it is falsy? Simply append an else clause to your if condition. To do so, simply type the else
keyword and then a path in the form of a child statement or block. JavaScript will run the if path when
the boolean expression is true and else path when it is false. So, one or the other path will run, but
never both.

Currently, both mayfly.addToTally() and mayfly.kmLeftToLive() return undefined whenever
JavaScript does not run their if paths. Let’s change that by adding else clauses to both methods. To do
so, click Clear in Firebug, enter the following, and click Run:

var mayfly = function () {
 var tally = 0;
 return {
 addToTally: function (km) {
 if (typeof km === "number" && isFinite(km)) {
 return tally += km;
 } else {
 return "Invalid parameter!";
 }
 },
 kmLeftToLive: function () {
 if (tally < 100) {
 return "Mayfly has " + (100 - tally) + " kilometers left to live.";
 } else {
 return "Mayfly is dead!";
 }
 }
 }
}();

Now click Clear, and enter the following:

mayfly.addToTally("ten");
// "Invalid parameter!"

Here, typeof km returns "string", so the === operator returns false, and in turn the && operator
returns false. Therefore, JavaScript goes down the else path, and mayfly.addToTally() returns "Invalid
parameter!" rather than adding km to tally, which remains at 0. Let’s verify this by clicking Clear and
then invoking mayfly.kmLeftToLive() like so:

mayfly.kmLeftToLive();
// "Mayfly has 100 kilometers left to live."

Great, so our Mayfly still has a full tank. Now let’s make sure the else clause for
mayfly.kmLeftToLive() works by clicking Clear and then running the following:

mayfly.addToTally(110);
mayfly.kmLeftToLive();
// "Mayfly is dead!"

CHAPTER 4 ■ CONTROLLING FLOW

101

So tally < 100 returns false, and JavaScript goes down the else path. Therefore,
mayfly.kmLeftToLive() returns "Mayfly is dead!" to indicate that it’s time to buy a new Mayfly.

By the way, even if you are not a runner, you might want to try the Mayfly sometime. The upper part
is bright orange with a black support grid resembling the wing of a fly—you will be hard to miss in a pair
of those!

To Wrap or Not to Wrap
As noted earlier, whenever a compound statement contains a single child statement, you do not have to
wrap it in curly braces. So, we could have defined mayfly like so, where the bold code shows the single
child statements do not have curly braces:

var mayfly = function () {
 var tally = 0;
 return {
 addToTally: function (km) {
 if (typeof km === "number" && isFinite(km))
 return tally += km;
 else
 return "Invalid parameter!";
 },
 kmLeftToLive: function () {
 if (tally < 100)
 return "Mayfly has " + (100 - tally) + " kilometers left to live.";
 else
 return "Mayfly is dead!";
 }
 }
}();

Furthermore, we could have omitted the line breaks, too:

var mayfly = function () {
 var tally = 0;
 return {
 addToTally: function (km) {
 if (typeof km === "number" && isFinite(km)) return tally += km;
 else return "Invalid parameter!";
 },
 kmLeftToLive: function () {
 if (tally < 100) return "Mayfly has " + (100 - tally) + " kilometers left to live.";
 else return "Mayfly is dead!";
 }
 }
}();

The else if idiom, which we will cover next, takes advantage of this single-line, no-bracket
JavaScript feature. Moreover, you will encounter both styles in scripts written by others, myself included.
However, as a beginner, you may want to wrap single child statements in curly braces inasmuch as this
eliminates the need for you to remember that two or more child statements need to be wrapped in curly
braces and that an else clause goes with the nearest if condition.

CHAPTER 4 ■ CONTROLLING FLOW

102

On the other hand, if you wrap all child statements in curly braces, you may find yourself wasting
time debugging scripts that have, say, 143 opening braces but only 138 closing braces. Or you may find
that peppering your scripts with optional braces makes them less readable.

Regardless of whether you wrap single child statements in curly braces, the important thing to note
is that both styles are right. JavaScript does not care which style you go with. Moreover, even
programmers who wrap everything in curly braces omit them to use the else if idiom. (However, this is
probably because they think else if is a statement, not an idiom. So, they do not even know they are
violating their mantra!)

Coding Several Paths with the else if Idiom
I tend to have a smoothie for dessert most nights. Sometimes if it is late, that is all I will have. I don’t
worry too much about calories. My favorite full-throttle smoothie contains Brown Cow cream-top
yogurt, grass-fed cream and milk, Saigon cinnamon, and wild blueberries. If you like yogurt, treat
yourself to Brown Cow cream-top sometime. Trust me, you will never forget your first Brown Cow!

OK, that came out wrong. Anyway, for the Brown Cow and grass-fed cream and milk, I have to go to
Whole Foods. But there is just one of those so far in Pittsburgh, and, to get there, I have to drive through
murder alley. Most nights when I open the fridge there is no Brown Cow, and I have to choose some
other yogurt or kefir for my smoothie. In descending order of preference, those are Stonyfield cream-top,
Fage cultured cream, and Lifeway Greek-style kefir.

Alrighty then, let’s create an object named fridge with boolean members indicating what my
cultured milk options are. Life is good tonight because I do have Brown Cow in there:

var fridge = {
 brownCow: true,
 stonyfield: false,
 fage: true,
 lifeway: false
};
var smoothie;

Now we want JavaScript to choose my favorite available yogurt or kefir by testing the following four
expressions in order from top to bottom:

fridge.brownCow
fridge.stonyfield
fridge.fage
fridge.lifeway

But an if condition can test only one expression. So, do we write four of those in a row? It’s sort of a
clunky solution, but let’s do it in Firebug. Note that, for this to work, we have to test the four expressions
from bottom to top so that the best available yogurt goes into my smoothie:

var fridge = {
 brownCow: true,
 stonyfield: false,
 fage: true,
 lifeway: false
};
var smoothie;
if (fridge.lifeway) {
 smoothie = "Lifeway Greek-style kefir";
}
if (fridge.fage) {

CHAPTER 4 ■ CONTROLLING FLOW

103

 smoothie = "Fage cultured cream";
}
if (fridge.stonyfield) {
 smoothie = "Stonyfield cream-top yogurt";
}
if (fridge.brownCow) {
 smoothie = "Brown Cow cream-top yogurt";
}
smoothie += ", grass-fed cream and milk, Saigon cinnamon, and wild blueberries."
// "Brown Cow cream-top yogurt, grass-fed cream and milk, Saigon cinnamon,
// and wild blueberries."

Although this kludge works, it makes us look like bumpkins to JavaScript-savvy programmers
because we test for every variation, even if we’ve previously found a match. There is a better way, right?

Yup, you betcha. First, reorder the if conditions in descending order of preference. Second, nest if
conditions two through four in an else clause for if conditions one through three. We’ve now got some
opt-outs if an if condition is true; in other words, we don’t go on and test for every variation after an if
condition is found to be true.

var fridge = {
 brownCow: true,
 stonyfield: false,
 fage: true,
 lifeway: false
};
var smoothie;
if (fridge.brownCow) {
 smoothie = "Brown Cow cream-top yogurt";
} else {
 if (fridge.stonyfield) {
 smoothie = "Stonyfield cream-top yogurt";
 } else {
 if (fridge.fage) {
 smoothie = "Fage cultured cream";
 } else {
 if (fridge.lifeway) {
 smoothie = "Lifeway Greek-style kefir";
 }
 }
 }
}
smoothie += ", grass-fed cream and milk, Saigon cinnamon, and wild blueberries."
// "Brown Cow cream-top yogurt, grass-fed cream and milk, Saigon cinnamon,
// and wild blueberries."

This is more elegant, but we can do even better by using the else if idiom. So, click Clear in both
Firebug panels, and enter and run the following:

var fridge = {
 brownCow: true,
 stonyfield: false,
 fage: true,
 lifeway: false
};
var smoothie;

CHAPTER 4 ■ CONTROLLING FLOW

104

if (fridge.brownCow) {
 smoothie = "Brown Cow cream-top yogurt";
} else if (fridge.stonyfield) {
 smoothie = "Stonyfield cream-top yogurt";
} else if (fridge.fage) {
 smoothie = "Fage cultured cream";
} else if (fridge.lifeway) {
 smoothie = "Lifeway Greek-style kefir";
}
smoothie += ", grass-fed cream and milk, Saigon cinnamon, and wild blueberries."
// "Brown Cow cream-top yogurt, grass-fed cream and milk, Saigon cinnamon,
// and wild blueberries."

Verify your work with Figure 4–2.

Figure 4–2. Simplifying things with the else if idiom

That’s much simpler to code and read, don’t you think? Now what is going on here? In a nutshell,
since all the else clauses contain a single child statement, the curly braces are optional, so we omitted
them along with the line breaks. Doing so means the else and if keywords come together, which is why
the idiom is referred to as else if.

But there is one problem: if none of the boolean expression returns true, there’s no fall-through
path for JavaScript to take. Can we fix that? Oh, you betcha. Simply append an else clause to the final
nested if condition. But this time, go with the optional curly braces. Let’s make Dannon (Danone in the
United Kingdom) the default and then set all fridge members to false so that we can test the fall-
through path, as in Figure 4–3:

var fridge = {
 brownCow: false,
 stonyfield: false,
 fage: false,
 lifeway: false
};

CHAPTER 4 ■ CONTROLLING FLOW

105

var smoothie;
if (fridge.brownCow) {
 smoothie = "Brown Cow cream-top yogurt";
} else if (fridge.stonyfield) {
 smoothie = "Stonyfield cream-top yogurt";
} else if (fridge.fage) {
 smoothie = "Fage cultured cream";
} else if (fridge.lifeway) {
 smoothie = "Lifeway Greek-style kefir";
} else {
 smoothie = "Dannon yogurt";
}
smoothie += ", grass-fed cream and milk, Saigon cinnamon, and wild blueberries."
// "Dannon yogurt, grass-fed cream and milk, Saigon cinnamon, and wild blueberries."

Figure 4–3. Testing the default else path

So there it is. JavaScript has five paths to choose from. Before moving on, note that, since all five
paths are single child statements, we may omit curly braces throughout:

var fridge = {
 brownCow: false,
 stonyfield: false,
 fage: false,
 lifeway: false
};
var smoothie;
if (fridge.brownCow)
 smoothie = "Brown Cow cream-top yogurt";
else if (fridge.stonyfield)
 smoothie = "Stonyfield cream-top yogurt";
else if (fridge.fage)

CHAPTER 4 ■ CONTROLLING FLOW

106

 smoothie = "Fage cultured cream";
else if (fridge.lifeway)
 smoothie = "Lifeway Greek-style kefir";
else
 smoothie = "Dannon yogurt";
smoothie += ", grass-fed cream and milk, Saigon cinnamon, and wild blueberries."
// "Dannon yogurt, grass-fed cream and milk, Saigon cinnamon, and wild blueberries."

Controlling Flow with Conditional Expressions
In the event that your if and else clauses contain single expression statements, you may more elegantly
control flow with a conditional expression using the ?: operator, which we covered in Chapter 3.
Moreover, you may nest conditional expressions to emulate the else if idiom, too.

■ Note Even though you can create an expression statement by simply pinning a semicolon tail to any expression,

you generally do so only for assignment, invocation, increment, or decrement expressions.

Click Clear in both Firebug panels, and rewrite our else if sample using nested conditional
expressions like so:

var fridge = {
 brownCow: true,
 stonyfield: false,
 fage: true,
 lifeway: false
};
var smoothie = fridge.brownCow ? "Brown Cow cream-top yogurt" :
(fridge.stonyfield ? "Stonyfield cream-top yogurt" :
(fridge.fage ? "Fage cultured cream" :
(fridge.lifeway ? "Lifeway Greek-style kefir" : "Dannon yogurt")));
smoothie += ", grass-fed cream and milk, Saigon cinnamon, and wild blueberries."
// "Brown Cow cream-top yogurt, grass-fed cream and milk, Saigon cinnamon,
// and wild blueberries."

Verify your work with Figure 4–4.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 4 ■ CONTROLLING FLOW

107

Figure 4–4. Replacing an if else statement with a ?: expression

For reasons of readability, I recommend not nesting more than one ?: expression. So, what we did
earlier is not recommended. However, you will encounter such skullduggery in scripts written by others,
and being familiar with the technique will prove helpful.

Taking One of Several Paths with a Switch
Now for a less common way to write a multiway branch, let’s look at the switch statement. Typically,
switch statements are used if all paths depend on the value of the same expression and if that expression
returns a string or number.

From a bird’s-eye view, if and switch statements look similar:

if (expression) {block}
switch (expression) {block}

Beyond that, if and switch are markedly different. For one thing, the if block contains just one
path, while the switch block contains many paths. Those are marked by one or more case expressions.
JavaScript decides which path to take by comparing the switch expression to the case expressions with
the === operator. So, no datatype conversion takes place as would occur with the == operator.

For another, case expressions mark only where JavaScript begins running statements in the switch
block. You have to manually mark the end of each path with a break or return disruptive statement.
Doing so prevents JavaScript from running all paths downstream of the matching case expression.

Finally, whereas an else clause contains the fall-through path for an if statement, a default case
clause contains the fall-through for a switch. However, just like else, the default path is optional.

So, refresh Firefox to clear everything we coded thus far from memory. Then click Clear in Firebug
to give you a clean slate, and let’s try a switch. For your favorite sports team, say you want JavaScript to
return the name of a player based on a jersey number. Since all paths depend on the same expression,
which returns a number, switch is more efficient than else if. For the Pittsburgh Steelers, a switch for
jersey numbers would look like this. Feel free to go with your favorite team rather than mine.

var jersey = 34, name = "";
switch (jersey) {
 case 7:
 name = "Roethlisberger";

CHAPTER 4 ■ CONTROLLING FLOW

108

 break;
 case 10:
 name = "Holmes";
 break;
 case 17:
 name = "Wallace";
 break;
 case 34:
 name = "Mendenhall";
 break;
 case 43:
 name = "Polamalu";
 break;
 case 83:
 name = "Miller";
 break;
 case 86:
 name = "Ward";
 break;
 case 92:
 name = "Harrison";
 break;
 case 94:
 name = "Timmons";
 break;
 case 96:
 name = "Hood";
 break;
 default:
 name = "not worn by any Steeler";
 break;
}
"Number " + jersey + " is " + name + ".";
// "Number 34 is Mendenhall."

Verify your work with Figure 4–5.

CHAPTER 4 ■ CONTROLLING FLOW

109

Figure 4–5. Coding a multiway branch with a switch statement

Here, JavaScript had to evaluate the first four case clauses in order to identify 34 as Mendenhall.
Now change jersey to a number no case expression matches in order to make sure the default path
works:

var jersey = 1, name = "";
switch (jersey) {
 case 7:
 name = "Roethlisberger";
 break;
 case 10:
 name = "Holmes";
 break;
 case 17:
 name = "Wallace";
 break;
 case 34:
 name = "Mendenhall";
 break;
 case 43:
 name = "Polamalu";

CHAPTER 4 ■ CONTROLLING FLOW

110

 break;
 case 83:
 name = "Miller";
 break;
 case 86:
 name = "Ward";
 break;
 case 92:
 name = "Harrison";
 break;
 case 94:
 name = "Timmons";
 break;
 case 96:
 name = "Hood";
 break;
 default:
 name = "not worn by any Steeler";
 break;
}
"Number " + jersey + " is " + name + ".";
// "Number 1 is not worn by any Steeler."

Since there is no case clause for 1, JavaScript ran the default path. Note that, although the default
case typically goes last, that is not something JavaScript requires. So let’s put it first instead:

var jersey = 1, name = "";
switch (jersey) {
 default:
 name = "not worn by any Steeler";
 break;
 case 7:
 name = "Roethlisberger";
 break;
 case 10:
 name = "Holmes";
 break;
 case 17:
 name = "Wallace";
 break;
 case 34:
 name = "Mendenhall";
 break;
 case 43:
 name = "Polamalu";
 break;
 case 83:
 name = "Miller";
 break;
 case 86:
 name = "Ward";
 break;
 case 92:
 name = "Harrison";

CHAPTER 4 ■ CONTROLLING FLOW

111

 break;
 case 94:
 name = "Timmons";
 break;
 case 96:
 name = "Hood";
 break;
}
"Number " + jersey + " is " + name + ".";
// "Number 1 is not worn by any Steeler."

It works just as well there. Now, as I noted earlier, case clauses can have more than one case
expression. This provides a way for you to run a path for more than one string or number. For example,
numbers 92 and 97 on the Steelers are both named Harrison, so let’s kill two birds with one stone like
this:

var jersey = 92, name = "";
switch (jersey) {
 case 7:
 name = "Roethlisberger";
 break;
 case 10:
 name = "Holmes";
 break;
 case 17:
 name = "Wallace";
 break;
 case 34:
 name = "Mendenhall";
 break;
 case 43:
 name = "Polamalu";
 break;
 case 83:
 name = "Miller";
 break;
 case 86:
 name = "Ward";
 break;
 case 92:
 case 97:
 name = "Harrison";
 break;
 case 94:
 name = "Timmons";
 break;
 case 96:
 name = "Hood";
 break;
 default:
 name = "not worn by any Steeler";
 break;
}
"Number " + jersey + " is " + name + ".";

CHAPTER 4 ■ CONTROLLING FLOW

112

// "Number 92 is Harrison."

Verify your work with Figure 4–6.

Figure 4–6. Falling through from one case clause to another

JavaScript fell through from the case clause for 92 to the one for 97. Now let’s be ornery, omit some
break statements, and see what happens:

var jersey = 7, name = "";
switch (jersey) {
 case 7:
 name = "Roethlisberger";
 case 10:
 name = "Holmes";
 case 17:
 name = "Wallace";
 case 34:
 name = "Mendenhall";
 case 43:
 name = "Polamalu";
 case 83:

CHAPTER 4 ■ CONTROLLING FLOW

113

 name = "Miller";
 break;
 case 86:
 name = "Ward";
 break;
 case 92:
 case 97:
 name = "Harrison";
 break;
 case 94:
 name = "Timmons";
 break;
 case 96:
 name = "Hood";
 break;
 default:
 name = "not worn by any Steeler";
 break;
}
"Number " + jersey + " is " + name + ".";
// "Number 7 is Miller."

Here, JavaScript begins running the switch block with the statement name = "Roethlisberger"; and
stops when it encounters the break statement after the statement name = "Miller";, so for a jersey
number of 7, JavaScript incorrectly returns "Miller". Put another way, JavaScript just ran a path like the
one for the following ridiculous if condition, which overwrites name six times in a row!

if (jersey === 7) {
 name = "Roethlisberger";
 name = "Holmes";
 name = "Wallace";
 name = "Mendenhall";
 name = "Polamalu";
 name = "Miller";
}

Now put the break statements back in, change jersey to 96, and delete the break after the case clause
for 96. Click Run to see what happens:

var jersey = 96, name = "";
switch (jersey) {
 case 7:
 name = "Roethlisberger";
 break;
 case 10:
 name = "Holmes";
 break;
 case 17:
 name = "Wallace";
 break;
 case 34:
 name = "Mendenhall";
 break;
 case 43:
 name = "Polamalu";

CHAPTER 4 ■ CONTROLLING FLOW

114

 break;
 case 83:
 name = "Miller";
 break;
 case 86:
 name = "Ward";
 break;
 case 92:
 case 97:
 name = "Harrison";
 break;
 case 94:
 name = "Timmons";
 break;
 case 96:
 name = "Hood";
 default:
 name = "not worn by any Steeler";
 break;
}
"Number " + jersey + " is " + name + ".";
// "Number 96 is not worn by any Steeler."

As you can see, JavaScript will continue running statements, even those in the default clause, until
it either encounters a disruptive statement or encounters the closing curly brace. By neglecting to put a
break statement after the case clause for 96, we effectively had JavaScript run the following if condition:

if (jersey === 96) {
 name = "Hood";
 name = "not worn by any Steeler";
}

Note that had we put the default case at the top of the switch, JavaScript would not have fallen
through from the case clause for 96 to the default.

As previously noted, if a switch appears within a function, then you can end paths with a return
disruptive statement instead of a break. Oftentimes, the return statement not only marks the end of the
path but also is the path itself. So, let’s go ahead and put our switch in a function so that we can use
return statements:

var jersey = 7, name = "";
function identifyPlayer() {
 switch (jersey) {
 case 7:
 return "Roethlisberger";
 case 10:
 return "Holmes";
 case 17:
 return "Wallace";
 case 34:
 return "Mendenhall";
 case 43:
 return "Polamalu";
 case 83:
 return "Miller";
 case 86:

CHAPTER 4 ■ CONTROLLING FLOW

115

 return "Ward";
 case 92:
 return "Harrison";
 case 94:
 return "Timmons";
 case 96:
 return "Hood";
 default:
 return "not worn by any Steeler";
 }
}
"Number " + jersey + " is " + identifyPlayer() + ".";
// "Number 7 is Roethlisberger."

Verify your work with Figure 4–7.

Figure 4–7. Within a function, you can replace break statements with return statements.

One final note on switch statements: case expressions, which go between the case keyword and the
colon, typically are string or number literals. However, any expression will do. Just make sure those do
not do anything other than return a value for the === operator to test for identity versus the value of the
switch expression. I say this because JavaScript does not evaluate case expressions downstream of the
one that matches the switch expression. So, you never know how many of your case expressions will run.
For example, if your fourth case expression invokes a function that returns a number for === to work
with but also changes three variables elsewhere in your script and your second case expression matches
the switch expression, then JavaScript never has a chance to change those three variables. This
unpredictability is why writing case expressions with secondary effects is frowned upon. Don’t do it.

CHAPTER 4 ■ CONTROLLING FLOW

116

Writing a while Loop
To eliminate the drudgery of coding a slew of identical conditional statements one after another,
JavaScript provides you with four looping statements. Remember from earlier that those are while, do
while, for, and for in. We will explore each of those in turn, beginning with the simple while loop.

while loops are like an if condition that runs over and over until its expression returns false. Not
surprisingly, from a syntax point of view, while and if statements appear similar:

if (expression) path
while (expression) path

Just as JavaScript converts the value of an if condition’s expression to a boolean if necessary, it does
so for a while loop’s expression, too. So to JavaScript, the game plan looks like this:

while (Boolean(expression)) path

The first time JavaScript runs a while statement, if the expression returns true or a value that
converts to true, then the path runs. On the other hand, if the expression returns false or a value that
converts to false (remember those are undefined, null, "", 0, or NaN), then the path does not run. That is
to say, on its first iteration, a while loop is no different from an if condition.

Now if the path ran on the first iteration, JavaScript has to decide whether to take another
roundabout of the path. To do so, it simply reevaluates the while loop’s expression. In the event that the
expression again returns a truthy value, the path runs. But if the expression returns a falsy value, the
path does not run, so JavaScript moves past the while loop and continues with the remainder of your
script.

Iterations of the while loop continue until its expression returns a falsy value. With this in mind, you
want to ensure that eventually the expression does return a falsy value. Otherwise, the loop will never
stop iterating. Such a mistake is aptly referred to as an infinite loop. Those freeze the browser until its
long-running script limit, typically between 5 and 10 seconds, is reached.

Essentially, we want to write an if condition but somewhere in the path make sure that expression
will eventually return a falsy value. Typically, this is done by incrementing a loop variable, traditionally
named i, j, or k, which you in turn compare to the number of roundabouts you want JavaScript to take.
So, click Clear in both Firebug panels, and let’s enter and run a simple while loop.

I don’t know about you, but a cup of tea brightens my mood. So, if I am feeling a little glum and
want to rummage through the looseleaf teas in the pantry looking for Borpatra, my favorite Assam tea, I
could do so with the following while loop. So, enter and run the following:

var looseLeafTea = [
 "Ghillidary",
 "Kenilworth",
 "Milima",
 "Keemun",
 "Boisahabi",
 "Manohari",
 "Borpatra",
 "Lukwah",
 "Khongea"
];
var mood = "glum";
var i = 0;
while (i < looseLeafTea.length) {
 if (looseLeafTea[i] === "Borpatra") {
 mood = "cheery";
 break;

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 4 ■ CONTROLLING FLOW

117

 }
 i ++;
}
"I feel " + mood + "!";
// "I feel cheery!"

Verify your work with Figure 4–8.

Figure 4–8. Iterating over an array with a while loop

Here we have a looseLeafTea array with nine elements. Prior to running the while loop, we initialize
a loop variable named i to 0, the index of the first element in looseLeafTea. For the while loop’s boolean
expression, we test whether i is less than looseLeafTea.length, which is 9. At the very end of the while
path, we add 1 to i with the ++ operator. In this way, the loop will run at most nine times, one iteration
per element in looseLeafTea.

During a particular roundabout of the while path, we can query the next element in looseLeafTea
with i and the [] operator. So, for example, during the fourth iteration i would be 3 (remember it started
at 0), and so looseLeafTea[i] would be "Keemun". This behavior is typical of a loop. That is to say, on
each roundabout you have JavaScript run the same set of commands on a different variable, member, or
element. So, loops provide a way to do things in a batch. It’s kind of like baking oatmeal cookies!

Now, unless we tell JavaScript otherwise, it will take all nine roundabouts of the while path. There’s
no harm in that, but it is inefficient. In the event that an element contains "Borpatra", then there’s no
need to loop through the remainder of looseLeafTea. To tell JavaScript that enough is enough, we add
break statement to the while loop. Doing so tells JavaScript to move past the while statement and
continue with the next statement in the script, which in our case glues mood to a couple of other strings.

So, our while loop eliminated the drudgery of having to write separate if conditions for the nine
elements in looseLeafTea like so:

var looseLeafTea = [
 "Ghillidary",
 "Kenilworth",
 "Milima",

CHAPTER 4 ■ CONTROLLING FLOW

118

 "Keemun",
 "Boisahabi",
 "Manohari",
 "Borpatra",
 "Lukwah",
 "Khongea"
];
var mood = "glum";
if (looseLeafTea[0] === "Borpatra") {
 mood = "cheery";
}
if (looseLeafTea[1] === "Borpatra") {
 mood = "cheery";
}
if (looseLeafTea[2] === "Borpatra") {
 mood = "cheery";
}
if (looseLeafTea[3] === "Borpatra") {
 mood = "cheery";
}
if (looseLeafTea[4] === "Borpatra") {
 mood = "cheery";
}
if (looseLeafTea[5] === "Borpatra") {
 mood = "cheery";
}
if (looseLeafTea[6] === "Borpatra") {
 mood = "cheery";
}
if (looseLeafTea[7] === "Borpatra") {
 mood = "cheery";
}
if (looseLeafTea[8] === "Borpatra") {
 mood = "cheery";
}
"I feel " + mood + "!";
// "I feel cheery!"

Bet you’re glad now that JavaScript provides looping statements so that you don’t have to write all
those if conditions! Note that, in addition to saving programmers time, loops let JavaScript work smart.
In our while loop, JavaScript knew it was not necessary to query the final three elements, since it had
already found "Borpatra".

Aborting an Iteration but Not the Loop
A break statement tells JavaScript to totally abort a loop. But what if you just want to abort an iteration
but not the loop? Is there anything less draconian than break? It turns out there is. continue statements
simply terminate an iteration. JavaScript then reevaluates the boolean expression to see whether it takes
another roundabout.

Typically, continue is used to abort an iteration when a variable contains an undesirable value such
as undefined or "". Let’s corrupt looseLeafTea by adding "" prior to "Kenilworth" and undefined prior to
"Keemun" (by inserting two commas in a row). Then add an else if clause that runs whenever an
element in looseLeafTea contains a falsy value. In there we will do two things. First, we will delete the

CHAPTER 4 ■ CONTROLLING FLOW

119

falsy element from looseLeafTea by way of the predefined splice()method, which we will cover in more
detail in Chapter 5, that just removes the element from the array and then brings the subsequent
elements forward to fill the gap. Second, we will insert a continue statement to abort the iteration. This
statement will halt the current iteration of the loop and jump back to the start of the while loop with a
new iteration. Note that this means we will skip the i ++ line of code, so the counter will not be
incremented. This is exactly what we want to happen because, when we removed the falsy element,
JavaScript brought all the remaining elements forward to fill the gap, so there is a new element now
occupying the position of the old falsy element. For that reason, we want to loop over the same index in
the array twice to make sure we cover all the elements. Finally, let’s increment i within an else clause
just to make things read better.

So, modify the previous sample like so, and click Run in Firebug:

var looseLeafTea = [
 "Ghillidary",
 "",
 "Kenilworth",
 "Milima",
 ,
 "Keemun",
 "Boisahabi",
 "Manohari",
 "Borpatra",
 "Lukwah",
 "Khongea"
];
var mood = "glum";
var i = 0;
while (i < looseLeafTea.length) {
 if (looseLeafTea[i] === "Borpatra") {
 mood = "cheery";
 break;
 } else if (! looseLeafTea[i]) {
 looseLeafTea.splice(i, 1);
 continue;
 } else {
 i ++;
 }
}
"I feel " + mood + "!";
// "I feel cheery!"

Before moving on, let’s check to make sure JavaScript did weed out the "" and undefined values
from looseLeafTea. So, click Clear, and then query looseLeafTea like so, verifying your work with Figure
4–9:

looseLeafTea;
// ["Ghillidary", "Kenilworth", "Milima", "Keemun", "Boisahabi", "Manohari",
// "Borpatra", "Lukwah", "Khongea"]

So there it is. JavaScript deleted the "" and undefined elements just like we wanted.

CHAPTER 4 ■ CONTROLLING FLOW

120

Figure 4–9. Culling elements containing "" or undefined from looseLeafTea

Replacing Break with Return in a Function
Now just as you can abort a switch with return rather than break whenever the switch appears in a
function, you can abort a loop (while, do while, for, for in) with return rather than break whenever the
loop appears in a function. So, click Clear in both Firebug panels, and let’s rewrite our while loop inside
a function, replacing break with return:

var looseLeafTea = [
 "Ghillidary",
 "Kenilworth",
 "Milima",
 "Keemun",
 "Boisahabi",
 "Manohari",
 "Borpatra",
 "Lukwah",
 "Khongea"
];
function findTea(tea) {
 var i = 0;
 while (i < looseLeafTea.length) {
 if (looseLeafTea[i] === tea) {
 return "cheery";

CHAPTER 4 ■ CONTROLLING FLOW

121

 } else if (! looseLeafTea[i]) {
 looseLeafTea.splice(i, 1);
 continue;
 } else {
 i ++;
 }
 }
 return "glum";
}
"I feel " + findTea("Kenilworth") + "!";
// "I feel cheery!"

As Figure 4–10 illustrates, invoking our function findTea() evaluates to "cheery" or "glum"
depending upon whether JavaScript can find the value of the tea parameter in looseLeafTea.

Figure 4–10. Inside a function, you can abort a while loop with a return statement.

■ Note Chapter 6 covers functions more fully.

CHAPTER 4 ■ CONTROLLING FLOW

122

Writing a do while loop
while loops provide a way to conditionally run a path zero or more times. That is, if the loop expression
equates to false when it is first evaluated, then the path will not run at all. Now what if you want to make
sure the path runs at least one time? For this circumstance, you would write a do while loop. The syntax
for do while is as follows:

do path while (expression);

As you might guess by now, path can be either a single child statement or a block, and the value of
expression is converted to a boolean if necessary by passing it to Boolean(). Though it is easy to
overlook, the semicolon following the expression in parentheses is required. With those things in mind,
click Clear in both Firebug panels, and let’s try a do while loop.

More often than not, when it comes time to follow a recipe, there is a spice that if unavailable would
put the kaibosh on my plans. Say I want to make lemon scones; the limiting ingredient would be, oddly
enough, lemon peel. Being a foodie, it is safe to assume I have at least one spice. Therefore, it makes
sense to rummage through the spice shelf with a do while loop like so, because we want to check at least
one spice:

var spices = [
 "cinnamon",
 "ginger",
 "nutmeg",
 "cloves",
 "sesame seed",
 "pepper",
 "rosemary",
 "tarragon",
 "basil",
 "mace",
 "poppy seed",
 "lemon peel",
 "vanilla",
 "oregano",
 "allspice",
 "thyme"
];
var putTheKaiboshOn = true;
var i = 0;
do {
 if (spices[i] === "lemon peel") {
 putTheKaiboshOn = false;
 break;
 }
 i ++;
} while (i < spices.length);
(putTheKaiboshOn) ? "No can do!" : "Go right ahead!";
// "Go right ahead!"

Verify your work with Figure 4–11.

CHAPTER 4 ■ CONTROLLING FLOW

123

Figure 4–11. Rummaging through the spices array with a do while loop

Here, === will compare "cinnamon" to "lemon peel" no matter what, since JavaScript always takes at
least one roundabout of a do while loop. Thereafter, JavaScript will do another iteration only if i <
spices.length returns true. Since spices.length evaluates to 15, JavaScript will run the do while path 15
times unless we tell it otherwise with a break statement, which we do in the event we find "lemon peel"
in spices. Finally, our loop variable i contains the index by which we query elements in spices, so we
increment i with the ++ operator at the end of the path. In this way, JavaScript can decide whether there
is any point to taking another roundabout.

In the event that JavaScript finds "lemon peel" while rummaging through spices, it assigns false to
putTheKaiboshOn. This variable in turn enables JavaScript to decide whether our recipe is doable. If
putTheKaiboshOn is false, JavaScript prints "Go right ahead!". Otherwise, it prints "No can do!". Test
that your code works both ways by running the sample with and without "lemon peel" in the spices
array.

Before moving on, let’s rework our do while loop as a while loop. Doing so illustrates that JavaScript
unconditionally takes the first roundabout of a do while loop and then conditionally takes any
subsequent ones. Therefore, to emulate such behavior with a while loop, you would have to key in the
path twice like so:

path
while (expression) path

With this in mind, click Clear in both Firebug panels, and let’s try to pull this off:

var spices = [
 "cinnamon",
 "ginger",

CHAPTER 4 ■ CONTROLLING FLOW

124

 "nutmeg",
 "cloves",
 "sesame seed",
 "pepper",
 "rosemary",
 "tarragon",
 "basil",
 "mace",
 "poppy seed",
 "lemon peel",
 "vanilla",
 "oregano",
 "allspice",
 "thyme"
];
var putTheKaiboshOn = true;
var i = 0;
if (spices[i] === "lemon peel") {
 putTheKaiboshOn = false;
} else {
 i ++;
 while (i < spices.length) {
 if (spices[i] === "lemon peel") {
 putTheKaiboshOn = false;
 break;
 }
 i ++;
 }
}
(putTheKaiboshOn) ? "No can do!" : "Go right ahead!";
// "Go right ahead!"

As Figure 4–12 illustrates, the while equivalent to our do while loop is much more verbose.
Therefore, for circumstances where you want JavaScript to go down a path one or more times, it is much
more elegant to control flow with do while rather than while. Many beginners shy away from do while.
Don’t be one of them!

CHAPTER 4 ■ CONTROLLING FLOW

125

Figure 4–12. Replacing a do while loop with a while loop takes some doing!

Writing a for Loop
Observant readers will notice that in both our while and do while samples, we initialized a loop variable
prior to the loop and then incremented it at the very end of the loop’s path. It’s a bit of a pain to have to
remember to initialize and increment a loop variable, don’t you think? JavaScript thinks so, too.
Consequently, there is a third kind of looping statement, for, which puts the initialization to the left of
the boolean expression and the increment to the right. Note that semicolons separate the initialization,
boolean, and increment expressions.

Click Clear in both Firebug panels, and let’s try a for loop.
Norah Jones is one of my favorite recording artists. I was listening to a prerelease of her new album,

The Fall, today. I am thinking that “Back to Manhattan” will be a hit. It is with me anyway. However,
since the album is new, I have a hard time remembering the track number for “Back to Manhattan.”

Let’s create an array named theFall containing a chronological list of tracks on The Fall and then
have JavaScript iterate through those with a for loop looking for "Back to Manhattan", which we will
save to a variable named song. JavaScript will then add 1 to the index of the matching element and store
the result in j, which represents the track number. We do so since array elements are numbered with
integers beginning with 0, while album tracks obviously are numbered with integers beginning with 1.

Enter and run the following for loop, then verify your work with Figure 4–13:

CHAPTER 4 ■ CONTROLLING FLOW

126

var theFall = [
 "Chasing Pirates",
 "Even Though",
 "Light as a Feather",
 "Young Blood",
 "I Wouldn't Need You",
 "Waiting",
 "It's Gonna Be",
 "You've Ruined Me",
 "Back to Manhattan",
 "Stuck",
 "December",
 "Tell Yer Mama",
 "Man of the Hour"
];
var song = "Back to Manhattan";
for (var i = 0, j = 0; i < theFall.length; i ++) {
 if (theFall[i] === song) {
 j = i + 1;
 break;
 }
}
song + (j > 0 ? " is track " + j : " is not") + " on The Fall.";
// "Back to Manhattan is track 9 on The Fall."

Figure 4–13. Iterating over theFall with a for loop

Here, JavaScript initializes i and j to 0 prior to evaluating the boolean expression i <
theFall.length. Following any roundabout of the for loop, JavaScript increments i with the ++ operator.
Then it reevaluates the boolean expression to see whether it should run the path again. Note that the

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 4 ■ CONTROLLING FLOW

127

initialization expressions are not reevaluated. That is to say, JavaScript runs those just the first time.
Note too that we use the comma operator to separate the two initialization expressions. Recall from
Chapter 3 that doing so makes i = 0 and j = 0 count as one expression rather than two. So, the comma
operator does for expressions what curly braces do for statements—it makes two or more count as one.

■ Tip In the event that you have previously declared the loop variables, i and j in our sample, the var keyword

is optional.

Enumerating Members with a for in Loop
The fourth and final looping statement, for in, provides a way to enumerate the members of an object.
JavaScript ensures the boolean expression, which uses the in operator from Chapter 3, returns true by
assigning the name of a different member to the left operand of in prior to an iteration. There’s no need
to initialize and increment a loop variable in order to prevent an infinite loop; JavaScript already knows
to do one iteration per member.

for (member in object) path

There are three things to note. First, regardless of whether the member was named with an identifier
or string, JavaScript returns its name as a string. Second, the left operand to in may be a variable,
member, or element. That is to say, it can be anything you can assign a string to. Third, the right operand
to in may be any expression for an object—typically, an identifier or function invocation. With those
things in mind, click Clear in both Firebug panels, and let’s work through a sample for in loop.

I like to wear a shoe tailored to the pace and distance of a run. So, I have a number of running shoes
in the cellar. There are eight Nikes down there at the moment. Let’s create an object named shoes
containing the weight in ounces of each shoe I could run in this evening:

var shoes = {
 "LunaRacer": 6.6,
 "Air Max": 13,
 "LunarGlide": 10.2,
 "Zoom Streak XC": 7,
 "Free": 8.6,
 "Mayfly": 4,
 "Zoom Vomero": 11.6,
 "LunarElite": 9.7
}

Generally, the more a shoe weighs, the more cushioning it provides. Therefore, if I am running far
afield, I wear a pair of shoes weighing more than 10 ounces. Let’s enumerate the members in shoes,
saving the name of any shoe weighing more than 10 ounces to an array named myOptions. In this way, I
will know what my options are.

Note that during each roundabout of the for in loop, JavaScript assigns the name of a member in
shoes to shoe. So, shoes[shoe] will return the weight of a shoe. In the event that this weight is greater
than or equal to 10, we add the name of the shoe to myOptions by way of the push() method, which I will
cover in Chapter 5.

Try entering and running the following for in loop in Firebug, then verify your work with Figure 4–
14:

var shoes = {

CHAPTER 4 ■ CONTROLLING FLOW

128

 "LunaRacer": 6.6,
 "Air Max": 13,
 "LunarGlide": 10.2,
 "Zoom Streak XC": 7,
 "Free": 8.6,
 "Mayfly": 4,
 "Zoom Vomero": 11.6,
 "LunarElite": 9.7
}
var myOptions = [];
for (var shoe in shoes) {
 if (shoes[shoe] >= 10) {
 myOptions.push(shoe);
 }
}
myOptions;
// ["Air Max", "LunarGlide", "Zoom Vomero"]

Figure 4–14. Enumerating members with a for in loop

Our for in loop eliminated the drudgery of having to write the following eight if conditions:

 if (shoes["LunaRacer"] >= 10) {
 myOptions.push("LunaRacer");
 }
 if (shoes["Air Max"] >= 10) {
 myOptions.push("Air Max");
 }
 if (shoes["LunarGlide"] >= 10) {
 myOptions.push("LunarGlide");
 }
 if (shoes["Zoom Streak XC"] >= 10) {
 myOptions.push(”Zoom Streak XC");
 }

CHAPTER 4 ■ CONTROLLING FLOW

129

 if (shoes["Free"] >= 10) {
 myOptions.push("Free");
 }
 if (shoes["Mayfly"] >= 10) {
 myOptions.push("Mayfly");
 }
 if (shoes["Zoom Vomero"] >= 10) {
 myOptions.push("Zoom Vomero");
 }
 if (shoes["LunarElite"] >= 10) {
 myOptions.push("LunarElite");
 }

Snappier Conditionals
Now that we have explored conditionals and loops, let’s work through some techniques to make them
run snappier—not just a little but two to seven times snappier, if not more. Insofar as the bulk of any
JavaScript behavior is comprised of conditionals and loops, doing so will in turn make your behaviors
feel that much more responsive to visitors. Yup, I like the sound of that, too!

Let’s begin with a few ways to code speedier switch and if else conditionals. One simple thing you
can do is favor switch over if else whenever coding five or more paths for JavaScript to conditionally
take. Past four, incrementally adding conditions to a switch decrements speed much less than doing so
for an if else.

OK, that was painless. And so is the second way to code snappier conditionals—just order their
paths from the one JavaScript is most likely to take to the one JavaScript is least likely to take. Doing so
minimizes the number of boolean expressions JavaScript has to evaluate.

Now for the third way to code snappier conditionals: don’t code them in the first place. No, that’s
not a typo. In the event that you have written an if else or switch for variations of a string or number
and every path does the same thing (just with a different value of that string or number), replacing the if
else or switch with an array or object member query will result in an extraordinary speed gain, to put it
mildly.

There are a couple of reasons why doing so is preferable to conditional statements. For one thing,
JavaScript does not have to drill down through conditions, just one [] operation. For another, whereas
adding conditions to a switch or if else decrements evaluation speed, adding members to an object or
elements to an array does not decrement query speed.

Ideally, you are sold on replacing conditionals with an object or array query whenever possible. Now
let’s give the technique a try. Double-clear Firebug, and then enter the following function, which
contains a switch mapping jersey numbers to player names for Opening Day, 2010 as my Pittsburgh
Pirates try to avert their eighteenth losing season in a row. Insofar as 17 of 25 Pirates were not in the
dugout last April, namePirate() will come in handy!

function namePirate(jersey) {
 var name;
 switch(jersey) {
 case 77:
 name = "D.J. Carrasco";
 break;
 case 53:
 name = "Brendan Donnelly";
 break;
 case 29:
 name = "Octavio Dotel";

CHAPTER 4 ■ CONTROLLING FLOW

130

 break;
 case 57:
 name = "Zach Duke";
 break;
 case 48:
 name = "Javier Lopez";
 break;
 case 28:
 name = "Paul Maholm";
 break;
 case 34:
 name = "Daniel McCutchen";
 break;
 case 47:
 name = "Evan Meek";
 break;
 case 37:
 name = "Charlie Morton";
 break;
 case 49:
 name = "Ross Ohlendorf";
 break;
 case 62:
 name = "Hayden Penn";
 break;
 case 43:
 name = "Jack Taschner";
 break;
 case 41:
 name = "Ryan Doumit";
 break;
 case 35:
 name = "Jason Jaramillo";
 break;
 case 13:
 name = "Ronny Cedeno";
 break;
 case 6:
 name = "Jeff Clement";
 break;
 case 2:
 name = "Bobby Crosby";
 break;
 case 3:
 name = "Akinori Iwamura";
 break;
 case 15:
 name = "Andy LaRoche";
 break;
 case 19:
 name = "Ryan Church";
 break;
 case 46:
 name = "Garrett Jones";

CHAPTER 4 ■ CONTROLLING FLOW

131

 break;
 case 22:
 name = "Andrew McCutchen";
 break;
 case 85:
 name = "Lastings Milledge";
 break;
 case 58:
 name = "John Raynor";
 break;
 case 24:
 name = "Delwyn Young";
 break;
 default:
 name = "not worn by any Pirate";
 }
 return jersey + " is " + name + ".";
}

We’re only two games into the season, but the big fella wearing 46 has already hit three home runs.
One of those even landed in the Allegheny River, which flows past PNC Park where the Pirates play. So, let’s
pass 46 to namePirate() and find out who that thumper is. Verify your work with Figure 4–15.

function namePirate(jersey) {
 var name;
 switch(jersey) {
 case 77:
 name = "D.J. Carrasco";
 break;
 case 53:
 name = "Brendan Donnelly";
 break;
 case 29:
 name = "Octavio Dotel";
 break;
 case 57:
 name = "Zach Duke";
 break;
 case 48:
 name = "Javier Lopez";
 break;
 case 28:
 name = "Paul Maholm";
 break;
 case 34:
 name = "Daniel McCutchen";
 break;
 case 47:
 name = "Evan Meek";
 break;
 case 37:
 name = "Charlie Morton";
 break;
 case 49:

CHAPTER 4 ■ CONTROLLING FLOW

132

 name = "Ross Ohlendorf";
 break;
 case 62:
 name = "Hayden Penn";
 break;
 case 43:
 name = "Jack Taschner";
 break;
 case 41:
 name = "Ryan Doumit";
 break;
 case 35:
 name = "Jason Jaramillo";
 break;
 case 13:
 name = "Ronny Cedeno";
 break;
 case 6:
 name = "Jeff Clement";
 break;
 case 2:
 name = "Bobby Crosby";
 break;
 case 3:
 name = "Akinori Iwamura";
 break;
 case 15:
 name = "Andy LaRoche";
 break;
 case 19:
 name = "Ryan Church";
 break;
 case 46:
 name = "Garrett Jones";
 break;
 case 22:
 name = "Andrew McCutchen";
 break;
 case 85:
 name = "Lastings Milledge";
 break;
 case 58:
 name = "John Raynor";
 break;
 case 24:
 name = "Delwyn Young";
 break;
 default:
 name = "not worn by any Pirate";
 }
 return jersey + " is " + name + ".";
}
namePirate(46);
// "46 is Garrett Jones."

CHAPTER 4 ■ CONTROLLING FLOW

133

Figure 4–15. Mapping jersey numbers to names for the Pittsburgh Pirates with a switch

Now then, I ordered the switch like a scorecard (pitchers, catchers, infielders, outfielders) and then
by surname. JavaScript had to evaluate 21 case clauses to determine who wears 46. But if we were to
replace the switch with an object member query, we would in turn replace those 21 === operations with
1 [] operation. Yup, that sounds like a good idea to me, too.

So, double-clear Firebug, and then enter the following object literal. Note that, although we are
adding members in the same order as in the switch, which is to say by position and then by surname,
remember that ECMAScript does not define an order for object members. So, neither D. J. Carrasco nor
any other Pirate is the first member in pirates. Note too that, since the jersey numbers are integers, we
could have done this with an array. However, that would be a bear to type. Insofar as an object may have
elements just like an array, a feature I will explore in Chapter 5, there is no point in doing all the extra
typing to create an array lookup.

var pirates = {
 "77": "D.J. Carrasco",
 "53": "Brendan Donnelly",
 "29": "Octavio Dotel",
 "57": "Zach Duke",
 "48": "Javier Lopez",
 "28": "Paul Maholm",
 "34": "Daniel McCutchen",
 "47": "Evan Meek",

CHAPTER 4 ■ CONTROLLING FLOW

134

 "37": "Charlie Morton",
 "49": "Ross Ohlendorf",
 "62": "Hayden Penn",
 "43": "Jack Taschner",
 "41": "Ryan Doumit",
 "35": "Jason Jaramillo",
 "13": "Ronny Cedeno",
 "6": "Jeff Clement",
 "2": "Bobby Crosby",
 "3": "Akinori Iwamura",
 "15": "Andy LaRoche",
 "19": "Ryan Church",
 "46": "Garrett Jones",
 "22": "Andrew McCutchen",
 "85": "Lastings Milledge",
 "58": "John Raynor",
 "24": "Delwyn Young"
};

Now let’s code a much simpler version of namePirate(). There’s just one line of code in the body
now:

var pirates = {
 "77": "D.J. Carrasco",
 "53": "Brendan Donnelly",
 "29": "Octavio Dotel",
 "57": "Zach Duke",
 "48": "Javier Lopez",
 "28": "Paul Maholm",
 "34": "Daniel McCutchen",
 "47": "Evan Meek",
 "37": "Charlie Morton",
 "49": "Ross Ohlendorf",
 "62": "Hayden Penn",
 "43": "Jack Taschner",
 "41": "Ryan Doumit",
 "35": "Jason Jaramillo",
 "13": "Ronny Cedeno",
 "6": "Jeff Clement",
 "2": "Bobby Crosby",
 "3": "Akinori Iwamura",
 "15": "Andy LaRoche",
 "19": "Ryan Church",
 "46": "Garrett Jones",
 "22": "Andrew McCutchen",
 "85": "Lastings Milledge",
 "58": "John Raynor",
 "24": "Delwyn Young"
};
function namePirate(jersey) {
 return jersey + " is " + (pirates[jersey] ? pirates[jersey] : "not worn by a Pirate") + ".";
}

Alright, let’s test this thing and see if it works. Hmm. Someone wearing 3 is playing second base now
that Freddy Sanchez has been traded to the Giants for prospects. Let’s find out who’s on second (no, not

CHAPTER 4 ■ CONTROLLING FLOW

135

first base) by passing 3 to namePirate(). Remember from Chapter 3 that [] converts its operand to a
string; therefore, you can pass either 3 or "3" to namePirate(). Inasmuch as numbers take fewer
keystrokes, let’s pass 3. Then verify your work with Figure 4–16.

var pirates = {
 "77": "D.J. Carrasco",
 "53": "Brendan Donnelly",
 "29": "Octavio Dotel",
 "57": "Zach Duke",
 "48": "Javier Lopez",
 "28": "Paul Maholm",
 "34": "Daniel McCutchen",
 "47": "Evan Meek",
 "37": "Charlie Morton",
 "49": "Ross Ohlendorf",
 "62": "Hayden Penn",
 "43": "Jack Taschner",
 "41": "Ryan Doumit",
 "35": "Jason Jaramillo",
 "13": "Ronny Cedeno",
 "6": "Jeff Clement",
 "2": "Bobby Crosby",
 "3": "Akinori Iwamura",
 "15": "Andy LaRoche",
 "19": "Ryan Church",
 "46": "Garrett Jones",
 "22": "Andrew McCutchen",
 "85": "Lastings Milledge",
 "58": "John Raynor",
 "24": "Delwyn Young"
};
function namePirate(jersey) {
 return jersey + " is " + (pirates[jersey] ? pirates[jersey] : "not worn by a Pirate") + ".";
}
namePirate(3);
// "3 is Akinori Iwamura."

CHAPTER 4 ■ CONTROLLING FLOW

136

Figure 4–16. Replacing a switch with an object member query

Now that you know three ways to make conditionals run snappy, let’s explore some ways to do so
for loops.

Snappier Loops
So, which of the four loops is fastest?

No, not for.
Not while either.
Definitely not for in. That one runs like a tortoise.
So then, it has to be do while, right? Sorry, no.
Alright, so that was a trick question. for in loops are the slowest. Sometimes they’re seven times

slower than the others. But while, for, and do while loops run neck and neck. So, of those three, code
the one that you prefer for a particular job.

On the other hand, try to replace for in loops with one of the other three whenever you can. That
might seem to be a tall order, though. After all, for in is the only loop that can enumerate members in
an object, right?

Yes and no: for in loops are the only one that can enumerate unknown object members, in other
words, members you do not know the name of. However, you can enumerate members that you know
the name of with one of the other three loops. Just put those names in an array and iterate through them.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 4 ■ CONTROLLING FLOW

137

Taking this tack can speed up your code sevenfold. Yup, that’s a lot! So, double-clear Firebug, and I’ll
show you how.

First, let’s create an object to loop through. Hmm. OK, I thought of one: there are a couple of games
remaining in the NHL regular season, and several players are vying for the Rocket Richard trophy, which
is awarded annually to the top goal scorer. Right now, Sidney Crosby for my Pittsburgh Penguins has the
most at 49. Let’s create an object containing the top 20 goal scorers entering the final weekend of play:

var topTwenty = {
 "Crosby": 49,
 "Ovechkin": 48,
 "Stamkos": 48,
 "Marleau": 43,
 "Gaborik": 41,
 "Kovalchuk": 40,
 "Heatley": 39,
 "Semin": 39,
 "Parise": 37,
 "Burrows": 35,
 "Kopitar": 34,
 "Ryan": 34,
 "Carter": 33,
 "Nash": 33,
 "Iginla": 32,
 "Penner": 32,
 "Backstrom": 31,
 "Hornqvist": 30,
 "Jokinen": 30,
 "Kane": 30
};

Now with two games to go, most of those players have no chance whatsoever of passing Crosby and
winning the Rocket Richard. So, not only would enumerating every topTwenty member with a for in
loop be slow, it would also be irrational. Not wanting to appear ridiculous, let’s create an array named
rocketRichard containing just the names of the four players that have a chance of finishing first in goals.
While we’re at it, let’s create a note string for later:

var topTwenty = {
 "Crosby": 49,
 "Ovechkin": 48,
 "Stamkos": 48,
 "Marleau": 43,
 "Gaborik": 41,
 "Kovalchuk": 40,
 "Heatley": 39,
 "Semin": 39,
 "Parise": 37,
 "Burrows": 35,
 "Kopitar": 34,
 "Ryan": 34,
 "Carter": 33,
 "Nash": 33,
 "Iginla": 32,
 "Penner": 32,
 "Backstrom": 31,
 "Hornqvist": 30,

CHAPTER 4 ■ CONTROLLING FLOW

138

 "Jokinen": 30,
 "Kane": 30
};
var rocketRichard = ["Ovechkin", "Crosby", "Marleau", "Stamkos"], note = "";

Now let’s order the names in rocketRichard by goals and then by name. To do so, we will use the
sort() method that every array, including rocketRichard, defines so that you can order its elements. We
will cover sort() and other Array methods in the next chapter. So for now, just type carefully!

var topTwenty = {
 "Crosby": 49,
 "Ovechkin": 48,
 "Stamkos": 48,
 "Marleau": 43,
 "Gaborik": 41,
 "Kovalchuk": 40,
 "Heatley": 39,
 "Semin": 39,
 "Parise": 37,
 "Burrows": 35,
 "Kopitar": 34,
 "Ryan": 34,
 "Carter": 33,
 "Nash": 33,
 "Iginla": 32,
 "Penner": 32,
 "Backstrom": 31,
 "Hornqvist": 30,
 "Jokinen": 30,
 "Kane": 30
};
var rocketRichard = ["Ovechkin", "Crosby", "Marleau", "Stamkos"], note = "";
rocketRichard.sort(function(p1, p2) {
 var d = topTwenty[p2] - topTwenty[p1];
 if (d !== 0) {
 return d;
 } else {
 return (p1 < p2) ? -1 : 1;
 }
});

Now we can code either a for, while, or do while loop to indirectly enumerate members in
topTwenty by way of the member names in rocketRichard. Let’s go with a for loop. This one will build up
a string in note that lists the top four goal scorers. Following the for loop, let’s clip off the ", " from the
end of note with String.slice(), a method we covered in Chapter 2. Then click Run, and verify your work
with Figure 4–17.

var topTwenty = {
 "Crosby": 49,
 "Ovechkin": 48,
 "Stamkos": 48,
 "Marleau": 43,
 "Gaborik": 41,
 "Kovalchuk": 40,

CHAPTER 4 ■ CONTROLLING FLOW

139

 "Heatley": 39,
 "Semin": 39,
 "Parise": 37,
 "Burrows": 35,
 "Kopitar": 34,
 "Ryan": 34,
 "Carter": 33,
 "Nash": 33,
 "Iginla": 32,
 "Penner": 32,
 "Backstrom": 31,
 "Hornqvist": 30,
 "Jokinen": 30,
 "Kane": 30
};
var rocketRichard = ["Ovechkin", "Crosby", "Marleau", "Stamkos"], note = "";
rocketRichard.sort(function(p1, p2) {
 var d = topTwenty[p2] - topTwenty[p1];
 if (d !== 0) {
 return d;
 } else {
 return (p1 < p2) ? -1 : 1;
 }
});
for (var i = 0; i < rocketRichard.length; i ++) {
 note = note + rocketRichard[i] + ": " + topTwenty[rocketRichard[i]] + ", ";
}
note.slice(0, -2);
// "Crosby: 49, Ovechkin: 48, Stamkos: 48, Marleau: 43"

By the way, the previous sample illustrates a hidden perk in enumerating object members with a
helper array. Doing so enables you to set the order members are enumerated.

CHAPTER 4 ■ CONTROLLING FLOW

140

Figure 4–17. Replacing a for in sloth with a for gazelle

Now that you know how to replace a for in sloth with a for, while, or do while gazelle, let’s explore
a couple of ways to make those three snappier. Let’s begin with our for loop from the previous sample.

First, JavaScript can query local variables within a function or global variables outside of a function
faster than object members such as length—like two times as fast in Explorer 7 and 8. So, rather than
query length over and over in the boolean expression, i < rocketRichard.length, let’s do so one time in
the initialization expression, replacing i = 0 with i = rocketRichard.length. Second, it’s faster to iterate
over an array in reverse because doing so provides a way to combine the boolean expression with the
increment or decrement expression. Therefore, omit the latter, and decrement the loop variable i in the
boolean expression. In turn, since we are now iterating over the array in reverse, we need to tweak the
function literal we pass to sort() so that rocketRichard is ordered from fewest to most goals and then
from Z to A. Make the following changes, click Run, and then verify your work with Figure 4–18:

var topTwenty = {
 "Crosby": 49,
 "Ovechkin": 48,
 "Stamkos": 48,
 "Marleau": 43,
 "Gaborik": 41,
 "Kovalchuk": 40,
 "Heatley": 39,

CHAPTER 4 ■ CONTROLLING FLOW

141

 "Semin": 39,
 "Parise": 37,
 "Burrows": 35,
 "Kopitar": 34,
 "Ryan": 34,
 "Carter": 33,
 "Nash": 33,
 "Iginla": 32,
 "Penner": 32,
 "Backstrom": 31,
 "Hornqvist": 30,
 "Jokinen": 30,
 "Kane": 30
}
var rocketRichard = ["Ovechkin", "Crosby", "Marleau", "Stamkos"], note = "";
rocketRichard.sort(function(p1, p2) {
 var d = topTwenty[p1] - topTwenty[p2];
 if (d !== 0) {
 return d;
 } else {
 return (p2 < p1) ? -1 : 1;
 }
});
for (var i = rocketRichard.length; i --;) {
 note = note + rocketRichard[i] + ": " + topTwenty[rocketRichard[i]] + ", ";
}
note.slice(0, -2);
// "Crosby: 49, Ovechkin: 48, Stamkos: 48, Marleau: 43"

Note that in i --, the -- operator is in the post-decrement position. Why does that matter? It
matters for a couple of reasons. For one thing, if you wrote -- i instead of i --, JavaScript would never
query the fourth element in rocketRichard. For another, if rocketRichard were empty, which is to say its
length was 0, then our for loop would never stop iterating. So, be sure that -- is in the post-decrement
position!

CHAPTER 4 ■ CONTROLLING FLOW

142

Figure 4–18. Snappier for loop

Alright, now let’s try rewriting our snappy for loop as an equally snappy while loop. Just move the
initialization of i to rocketRichard.length to a separate statement prior to the while loop, and
decrement i in the boolean expression. Make those two quick edits like so, and click Run:

var topTwenty = {
 "Crosby": 49,
 "Ovechkin": 48,
 "Stamkos": 48,
 "Marleau": 43,
 "Gaborik": 41,
 "Kovalchuk": 40,
 "Heatley": 39,
 "Semin": 39,
 "Parise": 37,
 "Burrows": 35,
 "Kopitar": 34,
 "Ryan": 34,
 "Carter": 33,

CHAPTER 4 ■ CONTROLLING FLOW

143

 "Nash": 33,
 "Iginla": 32,
 "Penner": 32,
 "Backstrom": 31,
 "Hornqvist": 30,
 "Jokinen": 30,
 "Kane": 30
}
var rocketRichard = ["Ovechkin", "Crosby", "Marleau", "Stamkos"], note = "";
rocketRichard.sort(function(p1, p2) {
 var d = topTwenty[p1] - topTwenty[p2];
 if (d !== 0) {
 return d;
 } else {
 return (p2 < p1) ? -1 : 1;
 }
});
var i = rocketRichard.length;
while (i --) {
 note = note + rocketRichard[i] + ": " + topTwenty[rocketRichard[i]] + ", ";
}
note.slice(0, -2);
// "Crosby: 49, Ovechkin: 48, Stamkos: 48, Marleau: 43"

Finally, let’s rewrite our snappy while loop as a snappy do while. That makes sense since we want to
run the loop at least one time. OK, four times. With that in mind, be sure to initialize i to one less than
rocketRichard.length. Otherwise, note will contain "undefined: undefined, Crosby: 49, Ovechkin:
48, Stamkos: 48, Marleau: 43" since there is no element with an index of 4 in rocketRichard. Edit the
while loop from the previous sample like so, and then click Run:

var topTwenty = {
 "Crosby": 49,
 "Ovechkin": 48,
 "Stamkos": 48,
 "Marleau": 43,
 "Gaborik": 41,
 "Kovalchuk": 40,
 "Heatley": 39,
 "Semin": 39,
 "Parise": 37,
 "Burrows": 35,
 "Kopitar": 34,
 "Ryan": 34,
 "Carter": 33,
 "Nash": 33,
 "Iginla": 32,
 "Penner": 32,
 "Backstrom": 31,
 "Hornqvist": 30,
 "Jokinen": 30,
 "Kane": 30
}
var rocketRichard = ["Ovechkin", "Crosby", "Marleau", "Stamkos"], note = "";
rocketRichard.sort(function(p1, p2) {

CHAPTER 4 ■ CONTROLLING FLOW

144

 var d = topTwenty[p1] - topTwenty[p2];
 if (d !== 0) {
 return d;
 } else {
 return (p2 < p1) ? -1 : 1;
 }
});
var i = rocketRichard.length - 1;
do {
 note = note + rocketRichard[i] + ": " + topTwenty[rocketRichard[i]] + ", ";
} while (i --);
note.slice(0, -2);
// "Crosby: 49, Ovechkin: 48, Stamkos: 48, Marleau: 43"

So, there it is. We’re done exploring conditionals and loops. By the way, Sidney Crosby and Steven
Stamkos finished in a tie for most goals in the NHL with 51 apiece. They’ll share the Rocket Richard
trophy. Note to NHL: I’d suggest fewest empty net goals being the tie-breaker for the Rocket Richard in
the future. Crosby had just one empty net goal this year, while Stamkos had five, including number 51!

Summary
In this chapter, you learned how to control flow with if and switch conditional statements and with
while, do while, for, and for in looping statements. You also learned to make decisions, as JavaScript
does, with boolean expressions. true is a green light to do something, and false is a red light not to.

In the next chapter, we will delve more deeply into objects and arrays, folder-like datatypes for
organizing data. Take a well-deserved break, and I’ll see you there!

C H A P T E R 5

■ ■ ■

145

Member Inheritance

In this chapter, I’ll cover a feature of JavaScript called inheritance, which is a very useful and powerful
tool to acquire. It allows us to write much more ordered and efficient code, because it is a great way to
organize your code into useful little lumps. I will cover the following four ways to approach inheritance,
each of which has its own place in your programs:

• Classical

• Prototypal

• Deep copy

• Mixin

As you may have guessed from the chapter title, this chapter covers only member inheritance;
Chapter 6 covers how to use inheritance with object functions.

To get to grips with inheritance, you first have to get to know objects a little bit better, so I will start
by covering object constructors to see how objects are defined and created. You’ve already seen a few
constructors in previous chapters (anything preceded by the new keyword is a constructor), but in this
chapter, you will see how to define constructors for yourself.

Creating Objects with a Constructor
Ben & Jerry’s Wild Maine Blueberry rests peacefully in a small graveyard on a grassy knoll encircled by a
white picket fence in Waterbury, Vermont. The epitaph on its humble tombstone reads as follows:

Wild Maine Blueberry
Wild Maine Blueberry

From the land of the puffin,
Now when we crave you,

We turn to the muffin.
1990–92

Blueberries are my favorite fruit—my mom nicknamed me Blueberry as a child for that reason and
because it rhymes with Terry—so I took it pretty hard when Wild Maine Blueberry died. I may have even
stopped talking for a while.

But time heals all wounds. Or in this case, an ice cream maker did. So, now I churn my own Wild
Maine Blueberry from the following recipe. Note that I puree one of the two cups of wild Maine
blueberries, the pulp for which is removed with the vanilla pod and seeds by straining the French-style
custard through a fine mesh sieve.

CHAPTER 5 ■ MEMBER INHERITANCE

146

• 1 cup, Organic Valley heavy whipping cream

• 1 cup, Organic Valley half & half

• 5/8 cup, sugar

• 6 egg yolks

• 2 cups, wild Maine blueberries

• 1 Madagascar Bourbon vanilla bean

• 2 tsp. fresh lemon juice

Open firebug.html in Firefox, and then press F12 to enable Firebug. If you’re just joining us, flip
back to the preface for details on how do this. So anyway, we can represent this recipe with the following
wildMaineBlueberry object:

var wildMaineBlueberry = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [1, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6],
 blueberries: [2, "cup", "fresh wild Maine blueberries"],
 vanilla: [1, "bean", "Madagascar Bourbon"],
 freshLemonJuice: [2, "tsp"]
};

However, other than a few short months, fresh wild Maine blueberries are tough to find. So for most
of the year, I’d have to set wildMaineBlueberry.blueberries to either [2, "cup", "Dole frozen wild
blueberries"] or [2, "cup", "Wyman frozen wild blueberries"]. Moreover, Madagascar Bourbon is my
favorite type of vanilla bean. But if I’m out of those, I’ll steep a Tahitian or Mexican one instead. The
former is milder than Madagascar Bourbon while the latter is more intense.

So, what do you do? Modify wildMaineBlueberry.blueberries and wildMaineBlueberry.vanilla by
hand whenever my preferred ingredients are not to be had? Well, we could, but that’s so greenhorn. There’s
a better way: create a constructor to churn custom quarts of Wild Maine Blueberry for us. Here’s how:

Constructors are functions invoked with the new operator. Unlike typical functions, constructors are
named in upper camel case to indicate that new is required. Omitting new for a constructor adds
members to the global window object, which would not be good.

So, anyway, when you invoke a constructor with new, JavaScript creates a private variable named
this, which contains an empty object for you to add members to. Whereas functions implicitly return
undefined, constructors implicitly return this. So you don’t have to create a private this variable in the
body of the constructor or explicitly write a return statement. JavaScript does that for you.

That’s really nice. But even better, this inherits any members you add to the constructor’s prototype
object. With all of this in mind, we can create a constructor named WildMaineBlueberry(). Carved in
stone members will go in WildMaineBlueberry.prototype, while the values we pass in parameters
cleverly named blueberries and vanilla will be assigned to the blueberries and vanilla members of
this. In other words, we set the prototype to contain all the ingredients that never change and use the
constructor to customize the ingredients that do change, which are then combined with the unchanging
set.

In the following constructor, you can see how we use ?: to set the default values of blueberries and
vanilla, should we not supply a blueberries parameter or a vanilla parameter (in other words, the
value of the blueberries parameter is returned by ?: if it is set; otherwise, the default string is returned):

var WildMaineBlueberry = function(blueberries, vanilla) {
 this.blueberries = [2, "cup", blueberries ? blueberries : "fresh wild Maine blueberries"];

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 5 ■ MEMBER INHERITANCE

147

 this.vanilla = [1, "bean", vanilla ? vanilla : "Madagascar Bourbon"];
};
WildMaineBlueberry.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [1, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6],
 freshLemonJuice: [2, "tsp"]
};

Now let’s have WildMaineBlueberry() churn us a quart of Ben & Jerry’s Wild Maine Blueberry with
the preferable default values for blueberries and vanilla. Then pass that to Firebug’s console.dir()
method, which as Figure 5–1 displays, prints an object’s own and inherited members. Note that own
members are those we add to this, so blueberries and vanilla:

var WildMaineBlueberry = function(blueberries, vanilla) {
 this.blueberries = [2, "cup", blueberries ? blueberries : "fresh wild Maine blueberries"];
 this.vanilla = [1, "bean", vanilla ? vanilla : "Madagascar Bourbon"];
};
WildMaineBlueberry.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [1, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6],
 freshLemonJuice: [2, "tsp"]
};
var wildMaineBlueberry = new WildMaineBlueberry();
console.dir(wildMaineBlueberry);

Figure 5–1. Firebug’s console.dir() method prints an object’s own and inherited members.

Now this time, let’s churn a less preferable but still yummy quart with Dole frozen wild blueberries
and a Tahitian bean, verifying our work with Figure 5–2:

var WildMaineBlueberry = function(blueberries, vanilla) {
 this.blueberries = [2, "cup", blueberries ? blueberries : "fresh wild Maine blueberries"];
 this.vanilla = [1, "bean", vanilla ? vanilla : "Madagascar Bourbon"];

CHAPTER 5 ■ MEMBER INHERITANCE

148

};
WildMaineBlueberry.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [1, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6],
 freshLemonJuice: [2, "tsp"]
};
var wildMaineBlueberry = new WildMaineBlueberry("Dole frozen wild blueberries", "Tahitian");
console.dir(wildMaineBlueberry);

Figure 5–2. Churning a quart with Dole frozen wild blueberries and a Tahitian bean

Finally, let’s be ding-dongs and forget to invoke WildMaineBlueberry() with new. As Figure 5–3
displays, WildMaineBlueberry() returns undefined, and there are now global variables named
blueberries and vanilla. Great googly moogly!

var WildMaineBlueberry = function(blueberries, vanilla) {
 this.blueberries = [2, "cup", blueberries ? blueberries : "fresh wild Maine blueberries"];
 this.vanilla = [1, "bean", vanilla ? vanilla : "Madagascar Bourbon"];
};
WildMaineBlueberry.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [1, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6],
 freshLemonJuice: [2, "tsp"]
};
var wildMaineBlueberry = WildMaineBlueberry();
typeof wildMaineBlueberry;
// "undefined"
blueberries;
// [2, "cup", "fresh wild Maine blueberries"]
vanilla;
// [1, "bean", "Madagascar Bourbon"]

CHAPTER 5 ■ MEMBER INHERITANCE

149

Figure 5–3. Don’t forget to invoke constructors like WildMaineBlueberry() with new, or you’ll be creating

or overwriting global variables.

Now that you know how to create custom objects using a constructor, it’s time to talk about
inheritance. This will show you how to take advantage of constructors.

Classical Inheritance
Like Wild Maine Blueberry, many ice cream flavors begin with a vanilla base, which other ingredients are
then added to. This is something we’d often like to do in JavaScript; in other words, if we have some
object that has some desirable members, we can take that object and add other members to it to create
another kind of object. The new object is based on the old one and has all the members of the old one, in
addition to all the new ones we have added. This means we can place useful common members in one
object and then base other, more specialized, objects on it, as well as make more specialized versions of
useful objects in our code. The feature in JavaScript to do this is called inheritance, because the new
object inherits the members of the old object.

Back to the ice cream to see inheritance in action: the very best vanilla ice cream is made by
steeping a vanilla bean rather than adding vanilla extract. There are three types of vanilla beans.
Madagascar Bourbon is the most common. I prefer those to the more floral Tahitian or intense Mexican
beans.

So, let’s create a VanillaBean() constructor that optionally takes a vanilla parameter, which would
contain the bean type as a string. By way of the ?: operator, we’ll default vanilla to "Madagascar
Bourbon":

var VanillaBean = function(vanilla) {
 this.vanilla = [1, "bean", vanilla ? vanilla : "Madagascar Bourbon"];
}

Oftentimes I’ll steep a stick of Saigon cinnamon with the vanilla bean. That works especially well for
fruit flavors like peach or if you’re serving the ice cream with pie. So, let’s add an optional boolean
parameter named cinnamon. By way of the && operator, VanillaBean() will add a cinnamon stick only if
cinnamon is true. Note that insofar as && has higher precedence than =, we need to wrap the = expression
in parentheses.

var VanillaBean = function(vanilla, cinnamon) {

CHAPTER 5 ■ MEMBER INHERITANCE

150

 this.vanilla = [1, "bean", vanilla ? vanilla : "Madagascar Bourbon"];
 cinnamon && (this.cinnamon = [1, "stick", "Saigon"]);
};

Having defined VanillaBean(), we can now put add carved in stone members to
VanillaBean.prototype:

var VanillaBean = function(vanilla, cinnamon) {
 this.vanilla = [1, "bean", vanilla ? vanilla : "Madagascar Bourbon"];
 cinnamon && (this.cinnamon = [1, "stick", "Saigon"]);
};
VanillaBean.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [2, "cup", "Organic Valley"],

 sugar: [5/8, "cup"],

 yolks: [6]
};

Having done so, let’s create a VanillaBean() instance named vanilla, verifying our work with Figure
5–4. Note that vanilla has its own vanilla and cinnamon members but inherits other members from
VanillaBean.prototype.

var VanillaBean = function(vanilla, cinnamon) {
 this.vanilla = [1, "bean", vanilla ? vanilla : "Madagascar Bourbon"];
 cinnamon && (this.cinnamon = [1, "stick", "Saigon"]);
};
VanillaBean.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [2, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6]
};
var vanilla = new VanillaBean("Tahitian", true);
console.dir(vanilla);

CHAPTER 5 ■ MEMBER INHERITANCE

151

Figure 5–4. vanilla has its own vanilla and cinnamon members but inherits other members from

VanillaBean.prototype.

Now let’s create a Coffee() constructor that will inherit from VanillaBean(). Unless otherwise
specified in an optional coffee parameter, we’ll steep coarsely ground Starbucks Espresso with a
Madagascar Bourbon vanilla bean.

var VanillaBean = function(vanilla, cinnamon) {
 this.vanilla = [1, "bean", vanilla ? vanilla : "Madagascar Bourbon"];
 cinnamon && (this.cinnamon = [1, "stick", "Saigon"]);
};
VanillaBean.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [2, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6]
};
var Coffee = function(coffee) {
 this.coffee = coffee || [1/4, "cup, coarsely ground", "Starbucks Espresso"];
};
Coffee.prototype = new VanillaBean();

Note that Coffee.prototype contains just one member, vanilla, which contains [1, "bean",
"Madagascar Bourbon"], because we didn’t supply the optional cinnamon parameter to the Vanilla()
constructor. So for Coffee(), the prototype chain would be as follows:

VanillaBean.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [2, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6]
};
Coffee.prototype = {
 vanilla: [1, "bean", "Madagascar Bourbon"],
};

CHAPTER 5 ■ MEMBER INHERITANCE

152

Having done so, let’s create a Coffee() instance named coffee, verifying our work with Figure 5–5.
Note that coffee has its own coffee member but inherits other members from Coffee.prototype and
VanillaBean.prototype.

var VanillaBean = function(vanilla, cinnamon) {
 this.vanilla = [1, "bean", vanilla ? vanilla : "Madagascar Bourbon"];
 cinnamon && (this.cinnamon = [1, "stick", "Saigon"]);
};
VanillaBean.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [2, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6]
};
var Coffee = function(coffee) {
 this.coffee = coffee || [1/4, "cup, coarsely ground", "Starbucks Espresso"];
};
Coffee.prototype = new VanillaBean();
var coffee = new Coffee();
console.dir(coffee);

Figure 5–5. coffee has its own coffee member but inherits other members from Coffee.prototype and

VanillaBean.prototype.

Now let’s create a Chocolate() constructor that also inherits members from VanillaBean(). Optional
cocoa and bittersweet parameters will allow us to specify Dutch cocoa and bittersweet chocolate other
than Callebaut, though Callebaut will be substituted in different quantities for each parameter if they are
missing. We’ll then set the prototype, as we did for Coffee(). However, we’ll add a yolks member to
override the one on VanillaBean.prototype, because chocolate ice cream takes fewer yolks than vanilla:

var VanillaBean = function(vanilla, cinnamon) {
 this.vanilla = [1, "bean", vanilla ? vanilla : "Madagascar Bourbon"];
 cinnamon && (this.cinnamon = [1, "stick", "Saigon"]);
};

CHAPTER 5 ■ MEMBER INHERITANCE

153

VanillaBean.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [2, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6]
};
var Coffee = function(coffee) {
 this.coffee = coffee || [1/4, "cup, coarsely ground", "Starbucks Espresso"];
};
Coffee.prototype = new VanillaBean();

var Chocolate = function(cocoa, bittersweet) {

 this.cocoa = cocoa || [3/16, "cup", "Callebaut"];

 this.bittersweet = bittersweet || [1 + 1/2, "cup", "Callebaut"];
};
Chocolate.prototype = new VanillaBean();
Chocolate.prototype.yolks = [4];

Having done so, let’s create a Chocolate() instance named chocolate, verifying our work with Figure
5–6. Note that chocolate has its own cocoa and bittersweet members and inherits other members from
Chocolate.prototype and VanillaBean.prototype.

var VanillaBean = function(vanilla, cinnamon) {
 this.vanilla = [1, "bean", vanilla ? vanilla : "Madagascar Bourbon"];
 cinnamon && (this.cinnamon = [1, "stick", "Saigon"]);
};
VanillaBean.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [2, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6]
};
var Coffee = function(coffee) {
 this.coffee = coffee || [1/4, "cup, coarsely ground", "Starbucks Espresso"];
};
Coffee.prototype = new VanillaBean();

var Chocolate = function(cocoa, bittersweet) {
 this.cocoa = cocoa || [3/16, "cup", "Callebaut"];
 this.bittersweet = bittersweet || [1 + 1/2, "cup", "Callebaut"];
};
Chocolate.prototype = new VanillaBean();
Chocolate.prototype.yolks = [4];
var chocolate = new Chocolate([1/4, "cup", "Bensdorp"]);
console.dir(chocolate);

CHAPTER 5 ■ MEMBER INHERITANCE

154

Figure 5–6. chocolate has its own cocoa and bittersweet members and inherits other members from

Chocolate.prototype and VanillaBean.prototype.

Though it’s not in my top 10, Ben & Jerry’s Mint Chocolate Chunk is pretty good, so let’s define a
MintChocolateChunk() constructor and chain MintChocolateChunk.prototype to Chocolate.prototype by
invoking Chocolate() with the new operator. Note that you would steep the mint leaves with the vanilla
pod and seeds, later removing both by straining through a fine mesh sieve. Note too that you would add
the Callebaut bittersweet chunks at the very end of the churning phase.

var VanillaBean = function(vanilla, cinnamon) {
 this.vanilla = [1, "bean", vanilla ? vanilla : "Madagascar Bourbon"];
 cinnamon && (this.cinnamon = [1, "stick", "Saigon"]);
};
VanillaBean.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [2, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6]
};
var Coffee = function(coffee) {
 this.coffee = coffee || [1/4, "cup, coarsely ground", "Starbucks Espresso"];
};
Coffee.prototype = new VanillaBean();
var Chocolate = function(cocoa, bittersweet) {
 this.cocoa = cocoa || [3/16, "cup", "Callebaut"];
 this.bittersweet = bittersweet || [1 + 1/2, "cup", "Callebaut"];
};
Chocolate.prototype = new VanillaBean();
Chocolate.prototype.yolks = [4];

CHAPTER 5 ■ MEMBER INHERITANCE

155

var MintChocolateChunk = function(mint) {
 this.mint = mint || [1, "cup", "fresh mint leaves"];
};
MintChocolateChunk.prototype = new Chocolate();

Now let’s add a vanilla member to override Chocolate.prototype.vanilla. Insofar as we’re
chipping the Callebaut bittersweet chocolate, we need only 1 cup, rather than 1 1/2 cups. So, let’s modify
the first element in the MintChocolateChunk.prototype.bittersweet array. Finally, we don’t want the
cocoa, so pass that member to the delete operator, which we covered in Chapter 3.

var VanillaBean = function(vanilla, cinnamon) {
 this.vanilla = [1, "bean", vanilla ? vanilla : "Madagascar Bourbon"];
 cinnamon && (this.cinnamon = [1, "stick", "Saigon"]);
};
VanillaBean.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [2, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6]
};
var Coffee = function(coffee) {
 this.coffee = coffee || [1/4, "cup, coarsely ground", "Starbucks Espresso"];
};
Coffee.prototype = new VanillaBean();
var Chocolate = function(cocoa, bittersweet) {
 this.cocoa = cocoa || [3/16, "cup", "Callebaut"];
 this.bittersweet = bittersweet || [1 + 1/2, "cup", "Callebaut"];
};
Chocolate.prototype = new VanillaBean();
Chocolate.prototype.yolks = [4];

var MintChocolateChunk = function(mint) {
 this.mint = mint || [1, "cup", "fresh mint leaves"];
};
MintChocolateChunk.prototype = new Chocolate();
MintChocolateChunk.prototype.vanilla = [1/3, "bean", "Madagascar Bourbon"];
MintChocolateChunk.prototype.bittersweet[0] = 1;
delete MintChocolateChunk.prototype.cocoa;

Having done so, let’s create a MintChocolateChunk() instance named mintChocolateChunk, verifying
our work with Figure 5–7. Note that mintChocolateChunk has its own mint member and inherits other
members from MintChocolateChunk.prototype, Chocolate.prototype, and VanillaBean.prototype.

var VanillaBean = function(vanilla, cinnamon) {
 this.vanilla = [1, "bean", vanilla ? vanilla : "Madagascar Bourbon"];
 cinnamon && (this.cinnamon = [1, "stick", "Saigon"]);
};
VanillaBean.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [2, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6]
};
var Coffee = function(coffee) {

CHAPTER 5 ■ MEMBER INHERITANCE

156

 this.coffee = coffee || [1/4, "cup, coarsely ground", "Starbucks Espresso"];
};
Coffee.prototype = new VanillaBean();
var Chocolate = function(cocoa, bittersweet) {
 this.cocoa = cocoa || [3/16, "cup", "Callebaut"];
 this.bittersweet = bittersweet || [1 + 1/2, "cup", "Callebaut"];
};
Chocolate.prototype = new VanillaBean();
Chocolate.prototype.yolks = [4];

var MintChocolateChunk = function(mint) {
 this.mint = mint || [1, "cup", "fresh mint leaves"];
};
MintChocolateChunk.prototype = new Chocolate();
MintChocolateChunk.prototype.vanilla = [1/3, "bean", "Madagascar Bourbon"];
MintChocolateChunk.prototype.bittersweet[0] = 1;
delete MintChocolateChunk.prototype.cocoa;
var mintChocolateChunk = new MintChocolateChunk();
console.dir(mintChocolateChunk);

Figure 5–7. mintChocolateChunk has its own mint member and inherits other members from

MintChocolateChunk.prototype, Chocolate.prototype, and VanillaBean.prototype.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 5 ■ MEMBER INHERITANCE

157

Determining Which Type or Types an Object Is an Instance Of
The prototype chain, such as those we saw earlier, determines which type or types an object such as
mintChocolateChunk is an instance of, that is, what constructor or constructors an object inherits
members from. To figure this out, you would use the aptly named instanceof operator, which we didn’t
cover in Chapter 3. Note that instanceof, like typeof, is in lowercase, not camel case.

Let’s query JavaScript in regard to what types mintChocolateChunk is an instance of with instanceof.
Note that the second operand to instanceof is the identifier for the constructor, so don’t append the ()
operator. Note too that like every object, mintChocolateChunk is an instance of the Object() constructor,
from which it inherits methods like valueOf() and toString(). So as Figure 5–8 displays,
mintChocolateChunk is an instance of four types, which is to say it inherits members from four
constructors.

var VanillaBean = function(vanilla, cinnamon) {
 this.vanilla = [1, "bean", vanilla ? vanilla : "Madagascar Bourbon"];
 cinnamon && (this.cinnamon = [1, "stick", "Saigon"]);
};
VanillaBean.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [2, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6]
};
var Coffee = function(coffee) {
 this.coffee = coffee || [1/4, "cup, coarsely ground", "Starbucks Espresso"];
};
Coffee.prototype = new VanillaBean();
var Chocolate = function(cocoa, bittersweet) {
 this.cocoa = cocoa || [3/16, "cup", "Callebaut"];
 this.bittersweet = bittersweet || [1 + 1/2, "cup", "Callebaut"];
};
Chocolate.prototype = new VanillaBean();
Chocolate.prototype.yolks = [4];
var MintChocolateChunk = function(mint) {
 this.mint = mint || [1, "cup", "fresh mint leaves"];
};
MintChocolateChunk.prototype = new Chocolate();
MintChocolateChunk.prototype.vanilla = [1/3, "bean", "Madagascar Bourbon"];
MintChocolateChunk.prototype.bittersweet[0] = 1;
delete MintChocolateChunk.prototype.cocoa;
var mintChocolateChunk = new MintChocolateChunk();

mintChocolateChunk instanceof MintChocolateChunk;

// true
mintChocolateChunk instanceof Chocolate;
// true
mintChocolateChunk instanceof Coffee;
// false
mintChocolateChunk instanceof VanillaBean;
// true
mintChocolateChunk instanceof Object;
// true

CHAPTER 5 ■ MEMBER INHERITANCE

158

Figure 5–8. mintChocolateChunk is an instance of four types, which is to say it inherits members from four

constructors.

Inherited Members Are Shared Not Copied
It’s important to note inherited members are shared among instances. So if you recall from Chapter 3,
the === will return true for a member that two instances share, even a member that is an object, array, or
function. To illustrate the point, let’s chain && comparisons in order to confirm that instances of
VanillaBean, Coffee, Chocolate, and MintChocolateChunk share the heavyCream array, [1, "cup",
"Organic Valley"], verifying our work with Figure 5–9:

var VanillaBean = function(vanilla, cinnamon) {
 this.vanilla = [1, "bean", vanilla ? vanilla : "Madagascar Bourbon"];
 cinnamon && (this.cinnamon = [1, "stick", "Saigon"]);
};
VanillaBean.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [2, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6]
};
var Coffee = function(coffee) {
 this.coffee = coffee || [1/4, "cup, coarsely ground", "Starbucks Espresso"];

CHAPTER 5 ■ MEMBER INHERITANCE

159

};
Coffee.prototype = new VanillaBean();
var Chocolate = function(cocoa, bittersweet) {
 this.cocoa = cocoa || [3/16, "cup", "Callebaut"];
 this.bittersweet = bittersweet || [1 + 1/2, "cup", "Callebaut"];
};
Chocolate.prototype = new VanillaBean();
Chocolate.prototype.yolks = [4];
var MintChocolateChunk = function(mint) {
 this.mint = mint || [1, "cup", "fresh mint leaves"];
};
MintChocolateChunk.prototype = new Chocolate();
MintChocolateChunk.prototype.vanilla = [1/3, "bean", "Madagascar Bourbon"];
MintChocolateChunk.prototype.bittersweet[0] = 1;
delete MintChocolateChunk.prototype.cocoa;

var vanilla = new VanillaBean("Tahitian", true);

var coffee = new Coffee();
var chocolate = new Chocolate([1/4, "cup", "Bensdorp"]);
var mintChocolateChunk = new MintChocolateChunk();

vanilla.heavyCream === coffee.heavyCream &&
 vanilla.heavyCream === chocolate.heavyCream &&
 vanilla.heavyCream === mintChocolateChunk.heavyCream &&
 mintChocolateChunk.heavyCream === coffee.heavyCream &&
 coffee.heavyCream === chocolate.heavyCream &&
 mintChocolateChunk.heavyCream === chocolate.heavyCream;
// true

CHAPTER 5 ■ MEMBER INHERITANCE

160

Figure 5–9. Any instance of VanillaBean, Coffee, Chocolate, or MintChocolateChunk shares the heavyCream

array, [1, "cup", "Organic Valley"].

What are the implications of sharing inherited members? Changing an inherited member
immediately changes all instances, both old and new, that inherit it. If you’re thinking this would make it
easier to look after your code when something has to change, I owe you a Smiley Cookie!

Modifying New and Past Instances of a Type
Now then, if we modify, add, or delete a member in MintChocolateChunk.prototype,
Chocolate.prototype, Coffee.prototype, or VanillaBean.prototype, the change will be evident in any
instance, both new and old, that inherits the member. So for example, if we change
MintChocolateChunk.prototype.bittersweet[2] from "Callebaut" to "Lindt" after creating
mintChocolateChunk, its bittersweet member reflects the change as Figure 5–10 displays:

var VanillaBean = function(vanilla, cinnamon) {
 this.vanilla = [1, "bean", vanilla ? vanilla : "Madagascar Bourbon"];
 cinnamon && (this.cinnamon = [1, "stick", "Saigon"]);
};
VanillaBean.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],

CHAPTER 5 ■ MEMBER INHERITANCE

161

 halfHalf: [2, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6]
};
var Coffee = function(coffee) {
 this.coffee = coffee || [1/4, "cup, coarsely ground", "Starbucks Espresso"];
};
Coffee.prototype = new VanillaBean();
var Chocolate = function(cocoa, bittersweet) {
 this.cocoa = cocoa || [3/16, "cup", "Callebaut"];
 this.bittersweet = bittersweet || [1 + 1/2, "cup", "Callebaut"];
};
Chocolate.prototype = new VanillaBean();
Chocolate.prototype.yolks = [4];
var MintChocolateChunk = function(mint) {
 this.mint = mint || [1, "cup", "fresh mint leaves"];
};
MintChocolateChunk.prototype = new Chocolate();
MintChocolateChunk.prototype.vanilla = [1/3, "bean", "Madagascar Bourbon"];
MintChocolateChunk.prototype.bittersweet[0] = 1;
delete MintChocolateChunk.prototype.cocoa;
var mintChocolateChunk = new MintChocolateChunk();
console.dir(mintChocolateChunk);

MintChocolateChunk.prototype.bittersweet[2] = "Lindt";
console.dir(mintChocolateChunk);

Figure 5–10. Changing MintChocolateChunk.prototype.bittersweet[2] from "Callebaut" to "Lindt" after

creating mintChocolateChunk still changes its bittersweet member.

CHAPTER 5 ■ MEMBER INHERITANCE

162

Now let’s add four chopped Heath Bars to VanillaBean.prototype in order to change vanilla to Ben
& Jerry’s Vanilla Heath Bar Crunch and coffee to Ben & Jerry’ Coffee Heath Bar Crunch. However, as
Figure 5–11 displays, by doing so we also wind up with Chocolate Heath Bar Crunch and Mint Chocolate
Chip Heath Bar Crunch, because everything that inherits from VanillaBean gets the heathBars member!

var VanillaBean = function(vanilla, cinnamon) {
 this.vanilla = [1, "bean", vanilla ? vanilla : "Madagascar Bourbon"];
 cinnamon && (this.cinnamon = [1, "stick", "Saigon"]);
};
VanillaBean.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [2, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6]
};
var Coffee = function(coffee) {
 this.coffee = coffee || [1/4, "cup, coarsely ground", "Starbucks Espresso"];
};
Coffee.prototype = new VanillaBean();
var Chocolate = function(cocoa, bittersweet) {
 this.cocoa = cocoa || [3/16, "cup", "Callebaut"];
 this.bittersweet = bittersweet || [1 + 1/2, "cup", "Callebaut"];
};
Chocolate.prototype = new VanillaBean();
Chocolate.prototype.yolks = [4];
var MintChocolateChunk = function(mint) {
 this.mint = mint || [1, "cup", "fresh mint leaves"];
};
MintChocolateChunk.prototype = new Chocolate();
MintChocolateChunk.prototype.vanilla = [1/3, "bean", "Madagascar Bourbon"];
MintChocolateChunk.prototype.bittersweet[0] = 1;
delete MintChocolateChunk.prototype.cocoa;
var vanilla = new VanillaBean();
var coffee = new Coffee();
var chocolate = new Chocolate();
var mintChocolateChunk = new MintChocolateChunk();

VanillaBean.prototype.heathBars = [4, "Heath Bars, chopped in chunks"];
console.dir(vanilla);
console.dir(coffee);
console.dir(chocolate);
console.dir(mintChocolateChunk);

CHAPTER 5 ■ MEMBER INHERITANCE

163

Figure 5–11. Adding four Heath Bars to VanillaBean.prototype has unintended effects, which are that the

three other objects also include Heath Bars.

Sharing a Prototype but Forgoing the Chain
One drawback of chaining prototypes is that own members turn into inherited members. For example,
linking MintChocolateChunk.prototype to Chocolate.prototype by invoking Chocolate() put cocoa and
bittersweet members on MintChocolateChunk.prototype, so we had to delete
MintChocolateChunk.prototype.cocoa and modify MintChocolateChunk.prototype.bittersweet[0].

One way around this bugaboo would be to have two constructors share a prototype object, thereby
dispensing with the chain link. Let’s look at an example: to make blueberry, strawberry, mango, or
raspberry ice cream, I’ll typically puree one of the two cups of fresh fruit. Then cut the half & half from 2
cups to 1 and the yolks from 6 to 3. With this in mind, we can have constructors for blueberry and
strawberry ice cream share a parent prototype object, as shown next.

Note that fraises des bois are smaller, sweeter, and more flavorful than traditional strawberries.
Create an instance of Blueberry() and Strawberry(), verifying your work with Figure 5–12.

CHAPTER 5 ■ MEMBER INHERITANCE

164

var Berry = function() {}
Berry.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [1, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [3],
 vanilla: [1, "bean", "Madagascar Bourbon"]
};

var Blueberry = function(blueberry, lemon) {
 this.blueberry = [2, "cup", blueberry ? blueberry : "Maine wild blueberries"];
 this.freshLemonJuice = [2, "tsp", lemon ? lemon : "Meyer"];
};
Blueberry.prototype = Berry.prototype;

var Strawberry = function(strawberry) {
 this.strawberry = [2, "cup", strawberry ? strawberry : "fraises des bois"];
};
Strawberry.prototype = Berry.prototype;
var blueberry = new Blueberry();
var strawberry = new Strawberry();
console.dir(blueberry);
console.dir(strawberry);

Figure 5–12. There’s no prototype chain link between Strawberry.prototype and Blueberry.prototype.

So, forgoing the prototype chain link prevented our having to delete
Strawberry.prototype.blueberry and Strawberry.prototype.freshLemonJuice members as in the
following sample and Figure 5–13, where the strawberry recipe is based on the blueberry recipe:

var Blueberry = function(blueberry, lemon) {
 this.blueberry = [2, "cup", blueberry ? blueberry : "Maine wild blueberries"];
 this.freshLemonJuice = [2, "tsp", lemon ? lemon : "Meyer"];

CHAPTER 5 ■ MEMBER INHERITANCE

165

};
Blueberry.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [1, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [3],
 vanilla: [1, "bean", "Madagascar Bourbon"]
};
var Strawberry = function(strawberry) {
 this.strawberry = [2, "cup", strawberry ? strawberry : "fraises des bois"];
};
Strawberry.prototype = new Blueberry();
delete Strawberry.prototype.blueberry;
delete Strawberry.prototype.freshLemonJuice;
var blueberry = new Blueberry();
var strawberry = new Strawberry();
console.dir(blueberry);
console.dir(strawberry);

Figure 5–13. Having to delete unwanted Strawberry.prototype.blueberry and

Strawberry.prototype.freshLemonJuice members

That’s the good news. Now for the bad. Since Blueberry.prototype and Strawberry.prototype are
the same object, there’s no way to add, delete, or modify inherited members for Strawberry() without
identically changing inherited embers for Blueberry(), and vice versa. To illustrate the point, try the
following sample, verifying your work with Figure 5–14:

var Berry = function() {}
Berry.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [1, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],

CHAPTER 5 ■ MEMBER INHERITANCE

166

 yolks: [3],
 vanilla: [1, "bean", "Madagascar Bourbon"]
};

var Blueberry = function(blueberry, lemon) {
 this.blueberry = [2, "cup", blueberry ? blueberry : "Maine wild blueberries"];
 this.freshLemonJuice = [2, "tsp", lemon ? lemon : "Meyer"];
};
Blueberry.prototype = Berry.prototype;

var Strawberry = function(strawberry) {
 this.strawberry = [2, "cup", strawberry ? strawberry : "fraises des bois"];
};
Strawberry.prototype = Berry.prototype;
var blueberry = new Blueberry();
var strawberry = new Strawberry();
Blueberry.prototype.cinnamon = [1, "stick", "Saigon"];
console.dir(blueberry);
console.dir(strawberry);

Figure 5–14. Adding a cinnamon member to Blueberry.prototype is no different from adding it to

Strawberry.prototype or Berry.prototype since they’re the same object.

Adding an Empty Chain Link
Both of the previous patterns have a downside. Chaining prototypes turns own members into inherited
members, adding those to the child constructor’s prototype. Forgoing the prototype chain solves that
problem but then effectively prevents us from adding, deleting, or modifying prototype members.

Hmm. Would there be a way for a child constructor to inherit members from a parent constructor’s
prototype yet have its own, blank prototype to add inherited members to?

Yup, but you’ll need to be ten toes in for a few moments to get it. First we’ll create a helper function
named extend that takes two parameters:

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 5 ■ MEMBER INHERITANCE

167

• child will be the constructor we want to have a blank prototype.

• parent will be a constructor we want the child to inherit members from.

var extend = function (child, parent) {
};

Now we’ll create a constructor named Proxy() with an empty code block. In this way, when we
invoke Proxy() with new, it will return an empty object.

var extend = function (child, parent) {
 var Proxy = function () {};
};

Now just as we did for Strawberry.prototype and Blueberry.prototype, we’ll have Proxy.prototype
refer to parent.prototype. That is to say, there’s no prototype chain between Proxy.prototype and
parent.prototype. Rather, they’re just two names for the same object.

var extend = function (child, parent) {
 var Proxy = function () {};
 Proxy.prototype = parent.prototype;
};

Now just as we linked MintChocolateChunk.prototype to Chocolate.prototype with the assignment
expression MintChocolateChunk.prototype = new Chocolate(), we’ll link child.prototype to
parent.prototype with the assignment expression child.prototype = new Proxy(). Note that in terms of
creating a link from child.prototype to parent.prototype, the expressions new parent() and new
Proxy() would be equivalent because parent.prototype and Proxy.prototype refer to the same object.
However, since Proxy() has an empty body, it returns an empty object linked to parent.prototype. It’s
that empty object that is assigned to child.prototype.

var extend = function (child, parent) {
 var Proxy = function () {};
 Proxy.prototype = parent.prototype;
 child.prototype = new Proxy();
};

Now it’s inefficient to create Proxy() every time we invoke extend(), so by way of a self-invoking
function, we’ll save Proxy() to a closure. Just nod knowingly for now; we’ll cover self-invoking functions
and closures in Chapter 6.

var extend = (function () {
 var Proxy = function () {};
 return function (child, parent) {
 Proxy.prototype = parent.prototype;
 child.prototype = new Proxy();
 }
}());

Chaining prototypes or using extend() overwrites the default prototype and its constructor
member, which simply refers to the function that constructed the object, so let’s add a constructor
member to child.prototype:

var extend = (function () {
 var Proxy = function () {};
 return function (child, parent) {
 Proxy.prototype = parent.prototype;

CHAPTER 5 ■ MEMBER INHERITANCE

168

 child.prototype = new Proxy();
 child.prototype.constructor = child;
 }
}());

The downside of doing so is that while the default constructor member would not be enumerated in
a for in loop, the one you add by hand would be enumerated. For this reason, you may want to forgo
adding a constructor member, but I have added it here so you can say you’ve seen one in action. Note
that JavaScript does not need the constructor member for the prototype chain, instanceof operator, or
any feature to work.

A common practice is to add a static member to child (not to child.prototype) referring to
parent.prototype. Doing so provides a way to query a type’s parent (known as its superclass). That’s not
something you’ll do as a beginner. Still, you’ll see it around, so let’s add one named donor:

var extend = (function () {
 var Proxy = function () {};
 return function (child, parent) {
 Proxy.prototype = parent.prototype;
 child.prototype = new Proxy();
 child.prototype.constructor = child;
 child.donor = parent.prototype;
 }
}());

Now that we have extend() written, let’s use it to create a blank prototype for a CherryGarcia()
constructor that is chained to Strawberry.prototype. In this way, instances of CherryGarcia will inherit
members from Strawberry.prototype but not the strawberry member created in the body of
Strawberry(). Cherries are sweeter than strawberries, so let’s override Strawberry.prototype.sugar by
adding a sugar member to CherryGarcia.prototype.

Now for the moment of truth. Create instances of Strawberry() and CherryGarcia(), passing them
to Firebug’s console.dir() method. Then verify your work with Figure 5–15.

Cherry Garcia. Mmmh.

var extend = (function () {
 var Proxy = function () {};
 return function (child, parent) {
 Proxy.prototype = parent.prototype;
 child.prototype = new Proxy();
 child.prototype.constructor = child;
 child.donor = parent.prototype;
 }
}());
var Strawberry = function(strawberry) {
 this.strawberry = [2, "cup", strawberry ? strawberry : "fraises des bois"];
};
Strawberry.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [1, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [3],

 vanilla: [1, "bean", "Madagascar Bourbon"]

};
var CherryGarcia = function(cherry, bittersweet) {

CHAPTER 5 ■ MEMBER INHERITANCE

169

 this.cherries = [2, "cup, pitted and halved", cherry ? cherry : "Bing"];
 this.bittersweet = [1, "cup, coarsely chopped", bittersweet ? bittersweet : "Callebaut"];
};

extend(CherryGarcia, Strawberry);

CherryGarcia.prototype.sugar = [9/16, "cup"];
var strawberry = new Strawberry();
var cherryGarcia = new CherryGarcia();
console.dir(strawberry);
console.dir(cherryGarcia);

Figure 5–15. cherryGarcia inherits members only from Strawberry.prototype.

Stealing a Constructor
With extend(), we can chain the prototype of one constructor to the prototype of another. But what if we
want to fully duplicate a constructor? In other words, say we want to inherit members from its prototype
and borrow all its other members that aren’t in the prototype. We’d do the former with extend() and the
latter invoking the parent constructor’s apply() method from within the child constructor, passing this
and an array of parameters.

For example, if we wanted to make CherryGarcia() be a Cherry() clone that adds Callebaut
bittersweet chunks, we’d chain CherryGarcia.prototype to Cherry.prototype with extend(). Then invoke
Cherry.apply() from within CherryGarcia(), passing this and the cherry parameter as in the following
sample and Figure 5–16:

CHAPTER 5 ■ MEMBER INHERITANCE

170

var extend = (function () {
 var Proxy = function () {};
 return function (child, parent) {
 Proxy.prototype = parent.prototype;
 child.prototype = new Proxy();
 child.prototype.constructor = child;
 child.donor = parent.prototype;
 }
}());
var Cherry = function(cherry) {
 this.cherries = [2, "cup, pitted and halved", cherry ? cherry : "Bing"];
};
Cherry.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [1, "cup", "Organic Valley"],
 sugar: [9/16, "cup"],
 yolks: [3],

 vanilla: [1, "bean", "Madagascar Bourbon"]

};
var CherryGarcia = function(cherry, bittersweet) {
 Cherry.apply(this, [cherry]);
 this.bittersweet = [1, "cup, coarsely chopped", bittersweet ? bittersweet : "Callebaut"];
};
extend(CherryGarcia, Cherry);

var cherry = new Cherry();

var cherryGarcia = new CherryGarcia();
console.dir(cherry);
console.dir(cherryGarcia);

CHAPTER 5 ■ MEMBER INHERITANCE

171

Figure 5–16. CherryGarcia() is a Cherry() clone that adds Callebaut bittersweet chunks.

Prototypal Inheritance
Oftentimes you will want to create one object that is pretty similar to another. The techniques we saw
previously can do this, but there was a fair amount of work involved when writing all the constructors
and chaining their prototypes if there are lots of similarities between the objects. For circumstances like
this, we’ll forgo the previous classical inheritance and turn to prototypal inheritance instead, which
clones from prototypes, rather than using inheritance such as that we saw earlier. Though ECMAScript 5
defines an Object.create() function for prototypal inheritance, no browsers yet implement it. So, we’ll
write our own prototypal inheritance function named clone() while we wait for Firefox, Safari, Opera
and eventually Internet Explorer to implement Object.create().

■ Note The beta versions of the next major releases for Internet Explorer, Firefox, Chrome, and Safari all support

Object.create(), so it might not be so long before it’s in general use.

clone() works with one parameter named donor, which contains the object you want to clone.
Similar to extend(), we’ll create an empty constructor function named Proxy(). Unlike extend(), we’ll
set Proxy.prototype to donor rather than to donor.prototype and return an empty object, which will
inherit both own and inherited members from donor. We’ll then add whatever additional members we
need to the empty object.

var clone = function (donor) {
 var Proxy = function () {};
 Proxy.prototype = donor;
 return new Proxy();
};

CHAPTER 5 ■ MEMBER INHERITANCE

172

So, say we have a quart of banana ice cream and want to make a quart of Ben & Jerry’s Chunky
Monkey based on the contents of the banana ice cream. We’d do so with the help of clone() as in the
following sample and Figure 5–17:

var clone = function (donor) {
 var Proxy = function () {};
 Proxy.prototype = donor;
 return new Proxy();
};
var banana = {

 heavyCream: [1, "cup", "Organic Valley"],

 halfHalf: [1, "cup", "Organic Valley"],
 sugar: [9/16, "cup"],
 yolks: [3],
 banana: [1 + 1/2, "cup, puréed"],
 coconutMilk: [1/4, "cup"],
 lemon: [2, "tsp", "freshly juiced Meyer lemon"],
 vanilla: [1, "bean", "Madagascar Bourbon"]
};
var chunkyMonkey = clone(banana);
chunkyMonkey.walnuts = [3/4, "cup, coarsely chopped"];
chunkyMonkey.bittersweet = [1, "cup, coarsely chopped", "Callebaut"];
console.dir(banana);
console.dir(chunkyMonkey);

Figure 5–17. Prototypal inheritance is much simpler than classical.

CHAPTER 5 ■ MEMBER INHERITANCE

173

Now then, Object.create() will take an optional second parameter when it eventually arrives,
which is an object containing members to add to the clone. So, let’s define a second function named
emulate() that does the same thing while we wait for better days:

var emulate = function (donor, more) {
 var Proxy = function () {}, child, m;
 Proxy.prototype = donor;
 child = new Proxy();
 for (var m in more) {
 child[m] = more[m];
 }
 return child;
};

Now say we’ve made a quart of chocolate ice cream and want to make a quart of Ben & Jerry’s New
York Super Fudge Chunk. We can do so by passing the chocolate quart plus the additional ingredients to
emulate(). Try it, verifying your work with Figure 5–18:

var emulate = function (donor, more) {
 var Proxy = function () {}, child, m;
 Proxy.prototype = donor;
 child = new Proxy();
 for (var m in more) {
 child[m] = more[m];
 }
 return child;
};
var chocolate = {
 heavyCream: [1, "cup", "Organic Valley"],

 halfHalf: [2, "cup", "Organic Valley"],

 sugar: [5/8, "cup"],
 yolks: [6],
 cocoa: [3/8, "cup", "Callebaut, Dutch process"],
 vanilla: [1, "bean", "Madagascar Bourbon"]
};
var newYorkSuperFudgeChunk = emulate(chocolate, {
 pecans: [1/4, "cup, coarsely chopped"],

 walnuts: [1/4, "cup, coarsely chopped"],

 almonds: [1/4, "cup, coarsely chopped"],
 whiteChocolate: [1/3, "cup, coarsely chopped", "Callebaut"],
 bittersweetChocolate: [1/3, "cup, coarsely chopped", "Callebaut"]
});
console.dir(chocolate);
console.dir(newYorkSuperFudgeChunk);

CHAPTER 5 ■ MEMBER INHERITANCE

174

Figure 5–18. Adding members in prototypal inheritance

Cloning Members
Another way to clone an object is to do a deep copy of its members. Unlike emulate() shown earlier,
which does a shallow copy of members (that is, members of the object type are copied by reference), a
deep copy recursively clones those. Let’s write a helper function named cloneMembers() that will clone
an object by doing a deep copy of its members, deferring the explanation of recursion until Chapter 6.

var cloneMembers = function (donor, donee) {
 donee = donee || {};
 for (var m in donor) {
 if (typeof donor[m] === "object" && donor[m] !== null) {
 donee[m] = typeof donor[m].pop === "function" ? [] : {};
 cloneMembers(donor[m], donee[m]);
 } else {
 donee[m] = donor[m];
 }
 }
 return donee;
};

Now if we want to make a quart of Ben & Jerry’s Coffee Heath Bar Crunch from Vanilla Heath Bar
Crunch, we’d clone the latter by doing a deep copy of its members. Then add a coffee member, verifying
our work with Figure 5–19. Note that coffeeHeathBarCrunch does not inherit members from
vanillaHeathBarCrunch via the prototype chain. Rather, coffeeHeathBarCrunch has deep copies of
vanillaHeathBarCrunch members. So, no prototype chain this time.

CHAPTER 5 ■ MEMBER INHERITANCE

175

var cloneMembers = function (donor, donee) {
 donee = donee || {};
 for (var m in donor) {
 if (typeof donor[m] === "object" && donor[m] !== null) {
 donee[m] = typeof donor[m].pop === "function" ? [] : {};
 cloneMembers(donor[m], donee[m]);
 } else {
 donee[m] = donor[m];
 }
 }
 return donee;
};
var vanillaHeathBarCrunch = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [2, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6],
 heathBars: [4, "bars, coarsely chopped"],
 vanilla: [1, "bean", "Madagascar Bourbon"]
};
var coffeeHeathBarCrunch = cloneMembers(vanillaHeathBarCrunch);
coffeeHeathBarCrunch.coffee = [1/4, "cup, coarsely ground", "Starbucks Espresso"];
console.dir(vanillaHeathBarCrunch);

console.dir(coffeeHeathBarCrunch);

Figure 5–19. Doing a deep copy of members

CHAPTER 5 ■ MEMBER INHERITANCE

176

Mixins
Finally, we can create an object by doing a deep copy of the members of two or more objects. Doing so is
called a mixin. So, we’ll write a merge() function that takes an array of mixins named mixins and
optionally a donee to clone members to. Note that merge() will have cloneMembers() do the deep copy.

var cloneMembers = function (donor, donee) {
 donee = donee || {};
 for (var m in donor) {
 if (typeof donor[m] === "object" && donor[m] !== null) {
 donee[m] = typeof donor[m].pop === "function" ? [] : {};
 cloneMembers(donor[m], donee[m]);
 } else {
 donee[m] = donor[m];
 }
 }
 return donee;
};

var merge = function (mixins, donee) {
 var i, j, donee = donee || {};
 for (i = 0, j = mixins.length; i < j; i ++) {

 cloneMembers(mixins[i], donee);

 }
 return donee;
};

Now let’s create some mixins. Throughout this chapter, we’ve used a French sweet cream base;
other kinds of ice cream bases include Philadelphia, which contains no yolks, and Italian gelato, which
has a higher yolk to cream ratio than French and therefore delivers a denser ice cream. In addition to
those bases, we’ll create some mixins for flavors.

var cloneMembers = function (donor, donee) {
 donee = donee || {};
 for (var m in donor) {
 if (typeof donor[m] === "object" && donor[m] !== null) {
 donee[m] = typeof donor[m].pop === "function" ? [] : {};
 cloneMembers(donor[m], donee[m]);
 } else {
 donee[m] = donor[m];
 }
 }
 return donee;
};
var merge = function (mixins, donee) {
 var i, j, donee = donee || {};
 for (i = 0, j = mixins.length; i < j; i ++) {
 cloneMembers(mixins[i], donee);
 }
 return donee;
};

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 5 ■ MEMBER INHERITANCE

177

var french = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [2, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6]
};
var philly = {

 heavyCream: [2, "cup", "Organic Valley"],

 halfHalf: [1, "cup", "Organic Valley"],
 sugar: [5/8, "cup"]
};
var gelato = {
 halfHalf: [3, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6]
};
var vanilla = {
 vanilla: [1, "bean", "Madagascar Bourbon"]
};
var heathBar = {
 heathBars: [4, "bars, coarsely chopped"]
};
var coffee = {
 coffee: [1/4, "cup, coarsely ground", "Starbucks Espresso"]
};

Having done so, we’ll create Italian-style Coffee Heath Bar Crunch, Philadelphia-style Coffee, and
French-style Vanilla Heath Bar Crunch, verifying our work with Figure 5–20:

var cloneMembers = function (donor, donee) {
 donee = donee || {};
 for (var m in donor) {
 if (typeof donor[m] === "object" && donor[m] !== null) {
 donee[m] = typeof donor[m].pop === "function" ? [] : {};
 cloneMembers(donor[m], donee[m]);
 } else {
 donee[m] = donor[m];
 }
 }
 return donee;
};
var merge = function (mixins, donee) {
 var i, j, donee = donee || {};
 for (i = 0, j = mixins.length; i < j; i ++) {
 cloneMembers(mixins[i], donee);
 }
 return donee;
};
var french = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [2, "cup", "Organic Valley"],

CHAPTER 5 ■ MEMBER INHERITANCE

178

 sugar: [5/8, "cup"],
 yolks: [6]
};
var philly = {
 heavyCream: [2, "cup", "Organic Valley"],
 halfHalf: [1, "cup", "Organic Valley"],
 sugar: [5/8, "cup"]
};
var gelato = {
 halfHalf: [3, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6]
};
var vanilla = {
 vanilla: [1, "bean", "Madagascar Bourbon"]
};
var heathBar = {
 heathBars: [4, "bars, coarsely chopped"]
};
var coffee = {
 coffee: [1/4, "cup, coarsely ground", "Starbucks Espresso"]
};

var coffeeHeathBarCrunch = merge([gelato, vanilla, coffee, heathBar]);
console.dir(coffeeHeathBarCrunch);
var coffee = merge([philly, vanilla, coffee]);
console.dir(coffee);
var vanillaHeathBarCrunch = merge([french, vanilla, heathBar]);
console.dir(vanillaHeathBarCrunch);

k

CHAPTER 5 ■ MEMBER INHERITANCE

179

Figure 5–20. Creating Italian, Philadelphia, and French ice creams with a mixin implementation

Summary
In this chapter, we explored inheriting members by way of classical, prototypal, deep copy, and mixin
implementations. However, more often than not, it’s methods, which is to say functions, that are
inherited. We’ll cover that and other function essentials in Chapter 6.

Have a well-deserved scoop or two of your favorite ice cream, and I’ll see you there.

CHAPTER 5 ■ MEMBER INHERITANCE

180

C H A P T E R 6

■ ■ ■

181

Functions and Arrays

In the previous chapter, you learned about inheritance and saw how to pass members onto child objects
using classical, prototypal, deep copy, and mixin inheritance. As I noted at the end of that chapter, it’s
actually functions that are more often passed on to child objects. This is because common processes, as
provided by a function, are frequently more useful than common data, as provided by members. In this
chapter, I’ll cover why you would want to use functions and how to take advantage of function
inheritance. There are a lot of cool tricks to learn in this area and we’ll take advantage of a lot of them in
later chapters, as you’ll see from the copious forward references. In other words, this is quite an
important chapter.

In addition to the function subtype, arrays are a second subtype of the object value type. Arrays are
special primarily due to the predefined methods they inherit from Array.prototype. We’ll explore those
methods in this chapter.

Why Use Functions?
Ben & Jerry’s, Häagen-Dazs, and other French-style ice creams are made by creating a satiny custard
from cream, milk, and egg yolks. Compared to Philadelphia-style ice cream, which is made by simply
churning cream and milk, French-style ice cream can be tricky for a beginner to make. So, it’s best to
start with vanilla before gilding the lily. Err, gilding the orchid—vanilla flavoring derives from the fruit of
the vanilla orchid.

Anyway, the most delicious vanilla ice cream is made by steeping the pod and seeds from a vanilla
bean rather than by stirring in vanilla extract, which is less flavorful. Vanilla beans differ in taste
depending on where the vanilla orchids are grown. Madagascar Bourbon are my favorite. Compared to
those, Tahitian are milder in flavor, and Mexican are bolder.

If you are an ice-cream beginner, take your lumps with the following recipe for French vanilla before
gilding the orchid with chocolate, fruit, and so on:

1 cup, Organic Valley heavy whipping cream
2 cups, Organic Valley half & half
5/8 cup, sugar
6 egg yolks
1 Madagascar Bourbon vanilla bean

• Separate the egg yolks into mixing bowl.

• Slit the vanilla bean length-wise with a paring knife.

• Scrape the tiny, pasty seeds into a saucepan. Then add the empty pod halves—
most of the vanilla flavor derives from the pod.

• Add 2 cups half & half, 1/2 cup heavy whipping cream, and 5/8 cup sugar to
saucepan containing the vanilla seeds and pod halves.

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

182

• Add the remaining 1/2 cup heavy whipping cream to the 6 egg yolks and whisk
vigorously until smooth.

• Stirring frequently with wooden spoon, put the saucepan over medium heat for 4
minutes or just until the liquid begins to ripple but do not boil.

• Temper the egg yolks by gradually adding 1/4 of the hot liquid from the saucepan
while whisking continuously. Tempering prevents the yolks from curdling, which
would ruin the custard.

• Pour the tempered yolk mixture into the saucepan while whisking constantly.

• Stirring constantly with wooden spoon, put the saucepan over medium heat for 4
minutes or until custard thickens at roughly 170 F—do not boil.

• Pressing with the wooden spoon, strain the custard through a fine mesh sieve into
a bowl to remove the vanilla pod, seeds, and any custard lumps.

• Stirring occasionally, cool the custard by placing the bowl into a larger bowl
halfway filled with ice water.

• Remove the custard from ice bath and chill in refrigerator for at least a few hours if
not overnight as well-chilled custard freezes into ice cream more effectively.

• Finally, churn chilled custard in ice-cream maker and then freeze for a few hours
or until firm.

Once you’ve mastered French vanilla, it’s easy to embellish it, as many flavors derive from it. For
example, to make coffee ice cream, just steep 1/4 cup coarsely ground espresso beans with the vanilla
pod and seeds. Then strain away the espresso grinds along with the vanilla pod and seeds and any
custard lumps with a fine mesh sieve. Or to make chocolate, whisk 3/8 cup Dutch process cocoa—I
recommend Callebaut—into the yolks and cream prior to tempering.

The French-style ice-cream recipes for vanilla, coffee, and chocolate displayed here are similar:

1 cup, Organic Valley heavy whipping cream
2 cups, Organic Valley half & half
5/8 cup, sugar
6 egg yolks
1 Madagascar Bourbon vanilla bean

1 cup, Organic Valley heavy whipping cream
2 cups, Organic Valley half & half
5/8 cup, sugar
6 egg yolks
1/4 cup, Starbucks Espresso beans, freshly and coarsely ground
1 Madagascar Bourbon vanilla bean

1 cup, Organic Valley heavy whipping cream
2 cups, Organic Valley half & half
5/8 cup, sugar
6 egg yolks
3/8 cup, Callebaut cocoa
1 Madagascar Bourbon vanilla bean

In JavaScript, if you find yourself writing a certain sequence of statements over and over that differ
just slightly as the steps in our recipes for vanilla, coffee, and chocolate ice cream do, then you would

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

183

want to create a function for those statements. Then define parameters for the differences. The
constructor and helper functions in Chapter 5 such as CherryGarcia() and extend() are good examples
of this.

You already know when to create a function. Therefore, in this chapter, we’ll explore two vital
features of JavaScript functions that make them distinctive. First, functions are values that may be
expressed with literal notation. In geeky terms, this means JavaScript has first-class functions. Second,
JavaScript has function scope, which makes functions vital for variable lookup.

Open firebug.html in Firefox, and then press F12 to enable Firebug—if you’re just joining us, flip
back to the preface for details on how to do this—and let’s begin exploring functions as values.

■ Note If you save a function to an object, the function is referred to as a method.

Functions Are Values
First-class functions may be expressed with literals. Typically, those are unnamed or anonymous. You
invoke a function through the variable, member, or element you saved it to. For example, in Chapter 5,
we saved an unnamed function expression to a variable named WildMaineBlueberry and invoked the
anonymous function by way of the variable’s name, WildMaineBlueberry:

var WildMaineBlueberry = function (blueberries, vanilla) {
 this.blueberries = [2, "cup", blueberries ? blueberries : "fresh wild Maine blueberries"];
 this.vanilla = [1, "bean", vanilla ? vanilla : "Madagascar Bourbon"];
};
WildMaineBlueberry.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [1, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6],
 freshLemonJuice: [2, "tsp"]
};
var wildMaineBlueberry = new WildMaineBlueberry();
console.dir(wildMaineBlueberry);

Named function values can be created with a function declaration. In turn, you can invoke the
function by its name. So, rather than save a function expression to a variable named
WildMaineBlueberry, we could create a function named WildMaineBlueberry like so:

function WildMaineBlueberry (blueberries, vanilla) {
 this.blueberries = [2, "cup", blueberries ? blueberries : "fresh wild Maine blueberries"];
 this.vanilla = [1, "bean", vanilla ? vanilla : "Madagascar Bourbon"];
}
WildMaineBlueberry.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [1, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6],
 freshLemonJuice: [2, "tsp"]
};
var wildMaineBlueberry = new WildMaineBlueberry();
console.dir(wildMaineBlueberry);

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

184

What’s the difference? For one thing, functions declarations cannot be assigned to variables,
members, or elements. That is to say, you have to declare the function and then assign its name to a
variable, member, or element. It’s two steps rather than one. Moreover, you cannot pass a function
declaration to a function. Rather, you have to pass its name. Again, it’s two steps rather than one. Finally,
declarations create functions that may be called prior to being defined, though doing so is frowned
upon. For those reasons and so that you get used to using functions as values just like objects or
booleans, we’ll continue using function expressions rather than declarations for the remainder of our
journey.

Function Members
Functions are values of the object value type, so they inherit members from Object.prototype like
valueOf() as well as the following ones from Function.prototype. Note that
Function.prototype.constructor and Function.prototype.toString() override
Object.prototype.constructor and Object.prototype.toString().

constructor
length
apply()
bind()
call()
toString()

Function.prototype.constructor just refers to Function(), length contains the number of named
parameters defined for the function, and toString() contains the function definition as a string. Query
those for WildMaineBlueberry(). Note that we’ll explore apply(), bind(), and call() in just a bit.

function WildMaineBlueberry (blueberries, vanilla) {
 this.blueberries = [2, "cup", blueberries ? blueberries : "fresh wild Maine blueberries"];
 this.vanilla = [1, "bean", vanilla ? vanilla : "Madagascar Bourbon"];
}
WildMaineBlueberry.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [1, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6],
 freshLemonJuice: [2, "tsp"]
};
WildMaineBlueberry.constructor;
// Function()
WildMaineBlueberry.length;
// 2
WildMaineBlueberry.toString()
// "function WildMaineBlueberry(blueberries, vanilla) { this.blueberries = [2, "cup",
blueberries ? blueberries : "fresh wild Maine blueberries"]; this.vanilla = [1, "bean",
vanilla ? vanilla : "Madagascar Bourbon"]; }"

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

185

■ Tip It’s worth noting that JavaScript initializes an element in the arguments object for every named or unnamed
parameter. You can use this object to obtain the number of parameters used (arguments.length) or get the name
of the function that called the current function (arguments.callee), which we will cover a bit later in the

“Recursion” section. You can also obtain parameters by using their place in the parameter list (for example,

arguments[0] to obtain the first parameter).

Conditional Advance Loading
One implication of functions being values is that you can conditionally choose one of two or more values
for a function as your script loads. This technique, referred to as conditional advance loading or load-
time branching, is one we’ll turn to quite a bit in Chapters 9 and 10.

Conditional advance loading can be used to choose a value for a function relative to what
ECMAScript or DOM features a browser’s JavaScript interpreter implements. This means we set the
function’s value to use a particular feature if it is available or write that particular feature in the
function’s value if it is not available. For example, ECMAScript 5 defines the following 12 new methods.
Note that those are static methods, which is to say they are saved to Object, not to Object.prototype.

Object.create()
Object.defineProperty()
Object.defineProperties()
Object.getOwnPropertyDescriptor()
Object.keys()
Object.getOwnPropertyNames()
Object.preventExtensions()
Object.isExtensible()
Object.seal()
Object.isSealed()
Object.freeze()
Object.isFrozen()

Right now, no browser supports these methods, but the JavaScript interpreters in Explorer 9 and
Firefox 4 will do so. However, those methods will greatly improve JavaScript’s inheritance features. So, if
available, we’d want to work those into the functions we wrote in Chapter 5.

One way to do so is with conditional advance loading. The “conditional” bit means an if
conditional statement or ?: conditional expression that checks to see whether a particular feature is
available, while the “advance loading” bit means doing the feature detection as the script loads, which is
to say in advance.

So jargon in hand, let’s rewrite extend() from Chapter 5 so that Explorer 9 and Firefox 4 can use the
following ECMAScript 5 methods, each of which I will explain as I show you how to implement them:

Object.create()
Object.defineProperty()
Object.defineProperties()

The first thing we want to do is define methods not quite unlike the ECMAScript 5 ones for current
versions of Explorer, Firefox, Safari, and Opera; in other words, we’re going to write our own versions of
create(), defineProperty(), and defineProperties() for browsers to use if they don’t support

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

186

ECMAScript5. Let’s begin by roughing out an if condition for missing members. Do you remember what
the value of a missing member is?

Yup, undefined.
Thus far, we have this:

if (Object.defineProperty === undefined) {
}
if (Object.defineProperties === undefined) {
}
if (Object.create === undefined) {
}

Now, within the empty if blocks, create the missing members and just assign an empty function
literal. Take care not to omit the semicolon following each assignment statement:

if (Object.defineProperty === undefined) {
 Object.defineProperty = function () {
 };
}
if (Object.defineProperties === undefined) {
 Object.defineProperties = function () {
 };
}
if (Object.create === undefined) {
 Object.create = function () {
 };
}

Writing Object.defineProperty()
With Object.defineProperty(), you can assign a value to a member as well as define whether a member
is writable, enumerable, or deletable.

■ Note Enumerable means that a member is enumerated in a for in loop, while writable simply means we can

assign a value to the member. So, you can see that an array is enumerable, as are the properties of an object.

Prior to ECMAScript 5, any member you added to an object was writable, enumerable, and
deletable. For most members, that’s what you want. So, Object.defineProperty() is not a replacement
for adding members with the ., [], and = operators. Rather, it is just for doing things such as ensuring
that members like constructor (for a prototype object) don’t appear in a for in loop.

To do so, you pass Object.defineProperty() three parameters.

• First, an object to add a member to or that contains a member you want to
modify.

• Second, the name of a member, as a string, that you want to add or modify.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

187

• Third, a data descriptor or accessor descriptor object. Data descriptors may
contain the following four members. Minimally, a data descriptor must contain a
value or writable member.

• value contains the member’s value, which defaults to undefined.

• writable contains a boolean indicating whether the member’s value is
writable. true means that it is, and false, which is the default, means that it
is not. So, false means that you cannot assign a new value to a member
with the = operator.

• configurable contains a boolean indicating whether a member may be
deleted and whether its descriptor attributes are writable, with the
exception of writable, which is carved in stone. false, the default, means
that a member may not be deleted and that its configurable and
enumerable attributes may not be changed. true means the inverse.

• enumerable contains a boolean indicating whether the member would be
enumerated in a for in loop. true means that it would be, and false, the
default, means that it would not. So, enumerable provides a way to ensure a
member such as constructor doesn’t appear in a for in loop.

Note that the writable, configurable, and enumerable descriptor attributes default to false. On the
other hand, for a member traditionally created or modified with the = operator, writable, configurable,
and enumerable default to true. That’s your clue to continue using = for most assignment operations.
Note that, if you add a member with the =, you may later change its writable, configurable, and
enumerable attributes with Object.defineProperty().

■ Note I will not cover accessor descriptors in this book. You use them to provide a function that is called

whenever a property value is accessed or set.

For browsers that do not implement Object.defineProperty(), we’d simply want to assign the
descriptor’s value member with the = operator and disregard the writable, configurable, and
enumerable members. Note that, if the descriptor just has a writable member, descriptor.value
evaluates to undefined.

if (Object.defineProperty === undefined) {
 Object.defineProperty = function (obj, name, descriptor) {
 obj[name] = descriptor.value;
 };
}
if (Object.defineProperties === undefined) {
 Object.defineProperties = function () {
 };
}
if (Object.create === undefined) {
 Object.create = function () {
 };
}

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

188

Writing Object.defineProperties()
Object.defineProperties() is sort of the plural version of Object.defineProperty(). That is to say, it can
create or modify more than one member. Unlike Object.defineProperty(), this one takes two parameters.

• The first one is the same as Object.defineProperty()—the object on which to add
or modify members.

• The second one is an object containing one or more descriptor objects.

So, for pre-ECMAScript 5 browsers, we’ll loop through the descriptors parameter with a for in
loop, disregarding descriptor members other than value:

if (Object.defineProperty === undefined) {
 Object.defineProperty = function (obj, name, descriptor) {
 obj[name] = descriptor.value;
 };
}
if (Object.defineProperties === undefined) {
 Object.defineProperties = function (obj, descriptors) {
 for (descriptor in descriptors) {
 if (descriptors.hasOwnProperty(descriptor)) {
 obj[descriptor] = descriptors[descriptor].value;
 }
 }
 };
}
if (Object.create === undefined) {
 Object.create = function () {
 };
}

Writing Object.create()
Finally, Object.create() works with two parameters (recall we discussed create() in Chapter 5).

• The first one is the object to inherit members from.

• The optional second one is an object containing descriptors of its own members
to add to the child object.

For pre-ECMAScript 5 browsers, we’ll write a function similar to clone() in Chapter 5. In the event
that the optional descriptors parameter is defined, we’ll pass those to Object.defineProperties():

if (Object.defineProperty === undefined) {
 Object.defineProperty = function (obj, name, descriptor) {
 obj[name] = descriptor.value;
 };
}
if (Object.defineProperties === undefined) {
 Object.defineProperties = function (obj, descriptors) {
 for (descriptor in descriptors) {
 if (descriptors.hasOwnProperty(descriptor)) {

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

189

 obj[descriptor] = descriptors[descriptor].value;
 }
 }
 };
}
if (Object.create === undefined) {
 Object.create = function (parent, descriptors) {
 var Proxy = function () {},
 child;
 Proxy.prototype = parent;
 child = new Proxy();
 if (descriptors !== undefined) {
 Object.defineProperties(child, descriptors);
 }
 return child;
 };
}

Using the new Functions
Now let’s invoke toString() on Object.defineProperty, Object.defineProperties, and Object.create
and then pass the string to Firebug’s console.log() method. If you’re running Firefox 3, JavaScript will
print our pre-ECMAScript 5 functions in the left panel of Firebug, as in Figure 6–1. On the other hand, if
you’re running Firefox 4, JavaScript will print the native ECMAScript 5. Note that native functions are
written in a compiled language like C++, so rather than print compiled gobbledygook for the body of a
native function, JavaScript simply prints [native code]:

if (Object.defineProperty === undefined) {
 Object.defineProperty = function (obj, name, descriptor) {
 obj[name] = descriptor.value;
 };
}
if (Object.defineProperties === undefined) {
 Object.defineProperties = function (obj, descriptors) {
 for (descriptor in descriptors) {
 if (descriptors.hasOwnProperty(descriptor)) {
 obj[descriptor] = descriptors[descriptor].value;
 }
 }
 };
}
if (Object.create === undefined) {
 Object.create = function (parent, descriptors) {
 var Proxy = function () {},
 child;
 Proxy.prototype = parent;
 child = new Proxy();
 if (descriptors !== undefined) {
 Object.defineProperties(child, descriptors);
 }
 return child;
 };

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

190

}
console.log(Object.defineProperty.toString());
console.log(Object.defineProperties.toString());
console.log(Object.create.toString());

Figure 6–1. Firefox 3 opts for our pre-ECMAScript 5 functions.

Now with those conditional advance loaders written, we can rework extend() from Chapter 5 so that
the constructor members we add to the child and parent prototype objects are not enumerated in a for
in loop. That is to say, our constructor members will behave like the native ones that get overwritten
during prototype chaining or prototype replacement. Moreover, we’ll set writable to true and
configurable to false so that the constructor member can be changed but not deleted. Finally, we’ll
make the child constructor’s superclass member writable and configurable but not enumerable. In this
way, we retain the option to have the child not inherit from a parent.

if (Object.defineProperty === undefined) {
 Object.defineProperty = function (obj, name, descriptor) {
 obj[name] = descriptor.value;
 };
}
if (Object.defineProperties === undefined) {
 Object.defineProperties = function (obj, descriptors) {
 for (descriptor in descriptors) {
 if (descriptors.hasOwnProperty(descriptor)) {
 obj[descriptor] = descriptors[descriptor].value;
 }
 }

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

191

 };
}
if (Object.create === undefined) {
 Object.create = function (parent, descriptors) {
 var Proxy = function () {},
 child;
 Proxy.prototype = parent;
 child = new Proxy();
 if (descriptors !== undefined) {
 Object.defineProperties(child, descriptors);
 }
 return child;
 };
}
var extend = function (child, parent, descriptors) {
 child.prototype = Object.create(parent.prototype, descriptors);
 Object.defineProperty(child.prototype, "constructor", {
 value: child,
 writable: true,
 enumerable: false,
 configurable: false
 });
 if (! parent.prototype.hasOwnProperty("constructor")) {
 Object.defineProperty(parent.prototype, "constructor", {
 value: parent,
 writable: true,
 enumerable: false,
 configurable: false
 });
 }
 Object.defineProperty(child, "superclass", {
 value: parent.prototype,
 writable: true,
 enumerable: false,
 configurable: true
 });
};

Insofar as writable, enumerable, and configurable default to false, we can more succinctly write
extend() like so. Just be sure to remove the comma following the final descriptor member. After all,
descriptors are just object literals, so those must abide by object literal notation.

if (Object.defineProperty === undefined) {
 Object.defineProperty = function (obj, name, descriptor) {
 obj[name] = descriptor.value;
 };
}
if (Object.defineProperties === undefined) {
 Object.defineProperties = function (obj, descriptors) {
 for (descriptor in descriptors) {
 if (descriptors.hasOwnProperty(descriptor)) {
 obj[descriptor] = descriptors[descriptor].value;
 }

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

192

 }
 };
}
if (Object.create === undefined) {
 Object.create = function (parent, descriptors) {
 var Proxy = function () {},
 child;
 Proxy.prototype = parent;
 child = new Proxy();
 if (descriptors !== undefined) {
 Object.defineProperties(child, descriptors);
 }
 return child;
 };
}
var extend = function (child, parent, descriptors) {
 child.prototype = Object.create(parent.prototype, descriptors);
 Object.defineProperty(child.prototype, "constructor", {
 value: child,
 writable: true
 });
 if (! parent.prototype.hasOwnProperty("constructor")) {
 Object.defineProperty(parent.prototype, "constructor", {
 value: parent,
 writable: true
 });
 }
 Object.defineProperty(child, "superclass", {
 value: parent.prototype,
 writable: true,
 configurable: true
 });
};

Now let’s rework the extend() sample from Chapter 5 in which we had CherryGarcia() inherit from
Strawberry. In ECMAScript 5 compliant browsers like Explorer 9 and Firefox 4,
Strawberry.prototype.constructor and CherryGarcia.prototype.constructor will not be enumerated in
a for in loop or deleted by the delete operator. Moreover, CherryGarcia.superclass will not be
enumerated in a for in loop but would be deleted by the delete operator. On the other hand, in pre-
ECMAScript 5 browsers extend() would create constructor and superclass members by simple
assignment with the = operator. So, Firebug’s console.dir() method, which prints an object’s
enumerable members, would print the constructor member for strawberry and cherryGarcia if you’re
running Firefox 3 as in Figure 6–2, but not if you’re running Firefox 4.

if (Object.defineProperty === undefined) {
 Object.defineProperty = function (obj, name, descriptor) {
 obj[name] = descriptor.value;
 };
}
if (Object.defineProperties === undefined) {
 Object.defineProperties = function (obj, descriptors) {
 for (descriptor in descriptors) {
 if (descriptors.hasOwnProperty(descriptor)) {
 obj[descriptor] = descriptors[descriptor].value;

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

193

 }
 }
 };
}
if (Object.create === undefined) {
 Object.create = function (parent, descriptors) {
 var Proxy = function () {},
 child;
 Proxy.prototype = parent;
 child = new Proxy();
 if (descriptors !== undefined) {
 Object.defineProperties(child, descriptors);
 }
 return child;
 };
}
var extend = function (child, parent, descriptors) {
 child.prototype = Object.create(parent.prototype, descriptors);
 Object.defineProperty(child.prototype, "constructor", {
 value: child,
 writable: true
 });
 if (! parent.prototype.hasOwnProperty("constructor")) {
 Object.defineProperty(parent.prototype, "constructor", {
 value: parent,
 writable: true
 });
 }
 Object.defineProperty(child, "superclass", {
 value: parent.prototype,
 writable: true,
 configurable: true
 });
};

var Strawberry = function(strawberry) {
 this.strawberry = [2, "cup", strawberry ? strawberry : "fraises des bois"];
};
Strawberry.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [1, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [3],
 vanilla: [1, "bean", "Madagascar Bourbon"]
};
var CherryGarcia = function(cherry, bittersweet) {
 this.cherries = [2, "cup, pitted and halved", cherry ? cherry : "Bing"];
 this.bittersweet = [1, "cup, coarsely chopped", bittersweet ? bittersweet : "Callebaut"];
};
extend(CherryGarcia, Strawberry, {
 sugar: {
 value: [9/16, "cup"],

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

194

 writable: true,
 enumerable: true,
 configurable: true
 }});
var strawberry = new Strawberry();
var cherryGarcia = new CherryGarcia();
console.dir(strawberry);
console.dir(cherryGarcia);

Figure 6–2. strawberry and cherryGarcia will have enumerable constructor members in pre-ECMAScript

5 browsers.

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

195

Lazy Loading
Another implication of functions being values is that you can conditionally change a function value
while it’s running. This technique, referred to as lazy loading or lazy definition, is one we’ll turn to often
in Chapters 9 and 10.

Because native functions such as Object.create() are compiled into gobbledygook, they run much
faster than your plain-text functions. So, it’s best to opt for a native function to do some work if one is
available. Conditional advance loading is one way to ensure that JavaScript opts for fast-running
gobbledygook. Lazy loading—that is, having a function redefine itself the first time it’s called—is another
way.

Lazy loaders are appropriate for functions that may not be needed or that are not needed right
away. Lazy refers to not redefining a function unless or until you have to. On the other hand, conditional
advance loading is appropriate for functions you definitely need, especially those that are needed right
away.

In Chapter 5, we wrote the following clone() function to implement prototypal inheritance:

var clone = function (donor) {
 var Proxy = function () {};
 Proxy.prototype = donor;
 return new Proxy();
};

If you omit its optional second parameter, Object.create() does the same thing as clone() but
much faster. Insofar as descriptors are too unwieldy to add members that are writable, enumerable, and
configurable, which is to say like those added with the = operator, more often than not you’ll be omitting
the second parameter. With this in mind, let’s rework clone() into a lazy loader that opts for
Object.create() in Explorer 9, Firefox 4, and other ECMAScript 5-savvy browsers.

Begin by putting our definition of clone in the else clause of an if condition that determines
whether Object.create is defined. However, omit the var keyword because we want to overwrite the
containing clone() function, not create a nested clone() function.

var clone = function (donor) {
 if (Object.create !== undefined) {
 } else {
 clone = function (donor) {
 var Proxy = function () {};
 Proxy.prototype = donor;
 return new Proxy();
 };
 }
};

Now, within the if clause, simply return the empty object created by passing donor to
Object.create():

var clone = function (donor) {
 if (Object.create !== undefined) {
 clone = function (donor) {
 return Object.create(donor);
 };
 } else {
 clone = function (donor) {
 var Proxy = function () {};
 Proxy.prototype = donor;

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

196

 return new Proxy();
 };
 }
};

Unfortunately, right now clone() would simply redefine itself the first time we call it. That is, it
would return undefined rather than an empty object that inherits members from donor.

Hmmm.
What to do?
I know. Following the if else statement, we’ll pass donor from the old clone() to the new clone():

var clone = function (donor) {
 if (Object.create !== undefined) {
 clone = function (donor) {
 return Object.create(donor);
 };
 } else {
 clone = function (donor) {
 var Proxy = function () {};
 Proxy.prototype = donor;
 return new Proxy();
 };
 }
 clone(donor);
};

But that will still return undefined the first time we call clone() inasmuch as a function that does not
explicitly return a value with a return statement will implicitly return undefined. With this in mind, how
would we fix our lazy loader?

Yup, have the old clone() explicitly return the value of passing its donor parameter to the new
clone(). Note that if you are redefining a function that does not explicitly return a value, such as the
thwart() or burst() functions we’ll write in Chapter 9, then you can omit the return keyword.

var clone = function (donor) {
 if (Object.create !== undefined) {
 clone = function (donor) {
 return Object.create(donor);
 };
 } else {
 clone = function (donor) {
 var Proxy = function () {};
 Proxy.prototype = donor;
 return new Proxy();
 };
 }
 return clone(donor);
};

Now let’s create some Ben & Jerry’s Chunky Monkey with our lazy loading clone() just as we did in
Chapter 5, before verifying our work with Figure 6–3. If you’re running Firefox 4, then chunkyMonkey is
churned by Object.create(). But if you’re running Firefox 3, then chunkyMonkey is churned by Proxy().
It’s delicious either way, but you’ll have a scoop sooner if Object.create() is doing the churning.

var clone = function (donor) {
 if (Object.create !== undefined) {
 clone = function (donor) {

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

197

 return Object.create(donor);
 };
 } else {
 clone = function (donor) {
 var Proxy = function () {};
 Proxy.prototype = donor;
 return new Proxy();
 };
 }
 return clone(donor);
};

var banana = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [1, "cup", "Organic Valley"],
 sugar: [9/16, "cup"],
 yolks: [3],
 banana: [1 + 1/2, "cup, puréed"],
 coconutMilk: [1/4, "cup"],
 lemon: [2, "tsp", "freshly juiced Meyer lemon"],
 vanilla: [1, "bean", "Madagascar Bourbon"]
};
var chunkyMonkey = clone(banana);
chunkyMonkey.walnuts = [3/4, "cup, coarsely chopped"];
chunkyMonkey.bittersweet = [1, "cup, coarsely grated", "Callebaut"];
console.dir(banana);
console.dir(chunkyMonkey);

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

198

Figure 6–3. Firefox 4 creates chunkyMonkey with Object.create(), while Firefox 3 creates chunkyMonkey

with Proxy().

Recursion
Whereas function literal expressions create function values, function invocation expressions create
values of any type, typically by manipulating one or more values referred to as parameters or arguments.
Insofar as a function value can self-invoke, a function can do work on parameters and then pass those
back to itself. Doing so, referred to as recursion, provides a way to do a lot of mind numbing work in
small steps. Recursive functions are invaluable for traversing the DOM, something we’ll explore in
Chapter 7. But we’ve already written a recursive function in Chapter 5. There we churned a quart of Ben
& Jerry’s Coffee Heath Bar Crunch from Vanilla Heath Bar Crunch by simply cloning members with a
recursive function named cloneMembers() like so:

var cloneMembers = function cloneMembers (donor, donee) {
 donee = donee || {};
 for (var m in donor) {
 if (donor.hasOwnProperty(m)) {
 if (typeof donor[m] === "object" && donor[m] !== null) {
 donee[m] = typeof donor[m].pop === "function" ? [] : {};
 cloneMembers(donor[m], donee[m]);
 } else {
 donee[m] = donor[m];
 }
 }

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

199

 }
 return donee;
};
var vanillaHeathBarCrunch = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [2, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6],
 heathBars: [4, "bars, coarsely chopped"],
 vanilla: [1, "bean", "Madagascar Bourbon"]
};
var coffeeHeathBarCrunch = cloneMembers(vanillaHeathBarCrunch);
coffeeHeathBarCrunch.coffee = [1/4, "cup, coarsely ground", "Starbucks Espresso"];

Note how we test whether an object is an array by checking if it has a pop() method. We’ll cover
arrays and their methods later in this chapter, but for now remember that arrays have a pop() method of
type function.

If we rewrote cloneMembers() as a nonrecursive function, which is to say deleted
cloneMembers(donor[m], donee[m]);, then we’d have to invoke cloneMembers() eight times rather than
one time. So, recursion spares us from having to key in the following, which as Figure 6–4 displays still
works fine.

var cloneMembers = function cloneMembers (donor, donee) {
 donee = donee || {};
 for (var m in donor) {
 if (donor.hasOwnProperty(m)) {
 if (typeof donor[m] === "object" && donor[m] !== null) {
 donee[m] = typeof donor[m].pop === "function" ? [] : {};
 } else {
 donee[m] = donor[m];
 }
 }
 }
 return donee;
};
var vanillaHeathBarCrunch = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [2, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6],
 heathBars: [4, "bars, coarsely chopped"],
 vanilla: [1, "bean", "Madagascar Bourbon"]
};
var coffeeHeathBarCrunch = cloneMembers(vanillaHeathBarCrunch);

coffeeHeathBarCrunch.heavyCream = cloneMembers(vanillaHeathBarCrunch.heavyCream,
 coffeeHeathBarCrunch.heavyCream);
coffeeHeathBarCrunch.halfHalf = cloneMembers(vanillaHeathBarCrunch.halfHalf,
 coffeeHeathBarCrunch.halfHalf);
coffeeHeathBarCrunch.sugar = cloneMembers(vanillaHeathBarCrunch.sugar,
 coffeeHeathBarCrunch.sugar);
coffeeHeathBarCrunch.yolks = cloneMembers(vanillaHeathBarCrunch.yolks,
 coffeeHeathBarCrunch.yolks);
coffeeHeathBarCrunch.heathBars = cloneMembers(vanillaHeathBarCrunch.heathBars,

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

200

 coffeeHeathBarCrunch.heathBars);
coffeeHeathBarCrunch.vanilla = cloneMembers(vanillaHeathBarCrunch.vanilla,
 coffeeHeathBarCrunch.vanilla);
coffeeHeathBarCrunch.heavyCream = cloneMembers(vanillaHeathBarCrunch.heavyCream,
 coffeeHeathBarCrunch.heavyCream);
coffeeHeathBarCrunch.coffee = [1/4, "cup, coarsely ground", "Starbucks Espresso"];
console.dir(vanillaHeathBarCrunch);
console.dir(coffeeHeathBarCrunch);

Figure 6–4. Recursion prevents our having to invoke cloneMembers() eight times rather than one time.

Don’t know about you, but I’d rather work smart than hard. So, recursion is a keeper. Note that in
Chapter 7 we’ll write a recursive function named traverseTree() to traverse the DOM tree. Doing so
possibly prevents our having to invoke traverseTree() hundreds of times by hand.

Another way to implement recursion is by way of arguments.callee, which refers to the running
function. We’ll use this approach a bit more later in the book:

var cloneMembers = function cloneMembers (donor, donee) {
 donee = donee || {};
 for (var m in donor) {
 if (donor.hasOwnProperty(m)) {

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

201

 if (typeof donor[m] === "object" && donor[m] !== null) {
 donee[m] = typeof donor[m].pop === "function" ? [] : {};
 arguments.callee(donor[m], donee[m]);
 } else {
 donee[m] = donor[m];
 }
 }
 }
 return donee;
};
var vanillaHeathBarCrunch = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [2, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6],
 heathBars: [4, "bars, coarsely chopped"],
 vanilla: [1, "bean", "Madagascar Bourbon"]
};
var coffeeHeathBarCrunch = cloneMembers(vanillaHeathBarCrunch);
coffeeHeathBarCrunch.coffee = [1/4, "cup, coarsely ground", "Starbucks Espresso"];

Borrowing Methods with apply() or call()
Insofar as functions are values of the object value type, they inherit members from Object.prototype
and Function.prototype by way of a prototype chain in the same way as our cherryGarcia object inherits
members from Object.prototype, Strawberry.prototype, and CherryGarcia. Two methods inherited
from Function.prototype, apply() and call(), provide a way to borrow function values. These functions
mean that you can define a function in one object and use it in another as if it were inherited, without
having to inherit the whole object. In both cases, you pass the object that is inheriting the function as the
first parameter (which becomes this in the inherited function), followed by either of these:

• The arguments to the function as a series of values separated by commas, in the
case of call()

• The arguments to the function as an array, in the case of apply()

ECMAScript 5 defines an Array.isArray() method to verify whether or not a value is an array. This is
a much-needed addition to JavaScript inasmuch as typeof returns "object" for an object, array, or null,
and the instanceof operator does not work with frames in some Explorer versions. Let’s see how call()
and apply() can help.

Overriding toString()
So, for Explorer 9, Firefox 4, and other ECMAScript 5-savvy browsers, we want to verify arrayness with
Array.isArray() rather than testing for an array method like pop() or slice() as we did in
cloneMembers(). After all, there’s no reason why an object or function could not have a method named
pop() or slice().

To do so, we’d want to write a conditional advance loader for Array.isArray(). So, just like we did
for Object.create(). The tricky part is writing something not quite unlike Array.isArray() for Explorer
8, Firefox, 3, and other ECMAScript 5 dummies. To do so, we’re going to work with the toString()
function to extract information about the object in question.

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

202

If you invoke toString() on an object that does not override Object.prototype.toString() with its
own toString() method, it will return "[object Object]". For example, even though we churned
wildMaineBlueberry with the WildMaineBlueberry() constructor in Chapter 5, as Figure 6–5 displays,
invoking wildMaineBlueberry.toString() returns "[object Object]" inasmuch as we did not override
Object.prototype.toString():

var WildMaineBlueberry = function(blueberries, vanilla) {
 this.blueberries = [2, "cup", blueberries ? blueberries : "fresh wild Maine blueberries"];
 this.vanilla = [1, "bean", vanilla ? vanilla : "Madagascar Bourbon"];
};
WildMaineBlueberry.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [1, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6],
 freshLemonJuice: [2, "tsp"]
};
var wildMaineBlueberry = new WildMaineBlueberry("Dole frozen wild blueberries", "Tahitian");
wildMaineBlueberry.toString();
// "[object Object]"

Figure 6–5. Invoking toString() on an object that does not override Object.prototype.toString() with

its own toString() method, it will return "[object Object]".

However, if we add a toString() method to WildMaineBlueberry.prototype, that will override
Object.prototype.toString() as the following sample and Figure 6–6 display:

var WildMaineBlueberry = function(blueberries, vanilla) {
 this.blueberries = [2, "cup", blueberries ? blueberries : "fresh wild Maine blueberries"];
 this.vanilla = [1, "bean", vanilla ? vanilla : "Madagascar Bourbon"];
};
WildMaineBlueberry.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [1, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6],

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

203

 freshLemonJuice: [2, "tsp"],
 toString: function () { return "[object WildMaineBlueberry]";}
};
var wildMaineBlueberry = new WildMaineBlueberry("Dole frozen wild blueberries", "Tahitian");
wildMaineBlueberry.toString();
// "[object WildMaineBlueberry]"

Figure 6–6. WildMaineBlueberry.prototype.toString() overrides Object.prototype.toString().

Native JavaScript constructors defined by ECMAScript or DOM always override
Object.prototype.toString(). For example, if we call toString() on the array in
wildMaineBlueberry.heavyCream, JavaScript glues the elements together with commas instead of
returning "[object Array]", which is what Object.prototype.toString() returns for an array when it is
not overridden. Similarly, if we call toString() on the constructor function WildMaineBlueberry,
JavaScript return its definition as a string. Try doing both, verifying your work with Figure 6–7.

var WildMaineBlueberry = function(blueberries, vanilla) {
 this.blueberries = [2, "cup", blueberries ? blueberries : "fresh wild Maine blueberries"];
 this.vanilla = [1, "bean", vanilla ? vanilla : "Madagascar Bourbon"];
};
WildMaineBlueberry.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [1, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6],
 freshLemonJuice: [2, "tsp"],
 toString: function () { return "[object WildMaineBlueberry]";}
};
var wildMaineBlueberry = new WildMaineBlueberry("Dole frozen wild blueberries", "Tahitian");
wildMaineBlueberry.heavyCream.toString();
// "1,cup,Organic Valley"
WildMaineBlueberry.toString();
// "function (blueberries, vanilla) { this.blueberries = [2, "cup", blueberries ? blueberries
: "fresh wild Maine blueberries"]; this.vanilla = [1, "bean", vanilla ? vanilla : "Madagascar
Bourbon"]; }"

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

204

Figure 6–7. Native JavaScript constructors defined by ECMAScript or DOM always override

Object.prototype.toString().

Testing for an Array
To test for arrayness like Array.isArray() in ECMAScript 5 dummies like Explorer 8, we need to
circumvent any toString() method overriding Object.prototype.toString() to avoid the gluey string
that JavaScript shows us when we call toString() on an array. Having done so, we would then return
true if Object.prototype.toString() returns "[object Array]" and false if not.

ECMAScript defines a couple of methods for function values, apply() and call(), that provide a way
to borrow a method like Object.prototype.toString() and use it as if it were inherited (so we have
access to it over the head of any overridden methods).

The first parameter to apply() or call() is an object to bind to this for the method you are
borrowing. If you wanted to invoke Object.prototype.toString() on [1, "cup", "Organic Valley"],
which is to say circumvent Array.prototype.toString(), you’d pass [1, "cup", "Organic Valley"] as
the first parameter to apply() or call(). Try both methods, verifying your work with Figure 6–8. Note
that, to save some typing, you can just replace Object.prototype with an empty object literal wrapped in
parentheses.

var WildMaineBlueberry = function(blueberries, vanilla) {
 this.blueberries = [2, "cup", blueberries ? blueberries : "fresh wild Maine blueberries"];
 this.vanilla = [1, "bean", vanilla ? vanilla : "Madagascar Bourbon"];
};
WildMaineBlueberry.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [1, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6],
 freshLemonJuice: [2, "tsp"],
 toString: function () { return "[object WildMaineBlueberry]";}
};
var wildMaineBlueberry = new WildMaineBlueberry("Dole frozen wild blueberries", "Tahitian");

Object.prototype.toString.apply(wildMaineBlueberry.halfHalf);

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

205

// "[object Array]"
Object.prototype.toString.call(wildMaineBlueberry.freshLemonJuice);
// "[object Array]"
({}).toString.apply(wildMaineBlueberry.blueberries);
// "[object Array]"
({}).toString.call(wildMaineBlueberry.vanilla);
// "[object Array]"

Figure 6–8. Circumventing Array.prototype.toString() to verify arrayness

OK, with apply() and call() now in our noggins, we can now write a conditional advance loader as
shown next. Note that it’s only necessary to wrap an empty object literal in parentheses when it begins a
line of code (to prevent confusion as to whether it’s an object or a block), so we can omit those here.
Verify a couple of values for arrayness with Array.isArray(), comparing your work to Figure 6–9. If
you’re running Firefox 4, JavaScript will use the native ECMAScript 5 function, but, if you’re running
Firefox 3, it will use our knock-off.

if (Array.isArray === undefined) {
 Array.isArray = function(v) {
 return {}.toString.apply(v) === "[object Array]";
 };
}
var WildMaineBlueberry = function(blueberries, vanilla) {
 this.blueberries = [2, "cup", blueberries ? blueberries : "fresh wild Maine blueberries"];
 this.vanilla = [1, "bean", vanilla ? vanilla : "Madagascar Bourbon"];
};
WildMaineBlueberry.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [1, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6],
 freshLemonJuice: [2, "tsp"],

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

206

 toString: function () { return "[object WildMaineBlueberry]";}
};
var wildMaineBlueberry = new WildMaineBlueberry("Dole frozen wild blueberries", "Tahitian");

Array.isArray(wildMaineBlueberry.halfHalf);
// true
Array.isArray(wildMaineBlueberry.halfHalf[2]);
// false

Figure 6–9. Verifying arrayness with the native Array.isArray() method or our knock-off

Rewriting cloneMembers()
Now that we have a better way to verify arrayness than simply groking whether a method like pop() or
slice() is defined, let’s rework cloneMembers() accordingly. Then try churning a quart of Coffee Heath
Bar Crunch by cloning and augmenting a quart of Vanilla Heath Bar Crunch, verifying your work with
Figure 6–10:

if (Array.isArray === undefined) {
 Array.isArray = function(v) {
 return {}.toString.apply(v) === "[object Array]";
 };
}
var cloneMembers = function (donor, donee) {
 donee = donee || {};
 for (var m in donor) {
 if (donor.hasOwnProperty(m)) {
 if (typeof donor[m] === "object" && donor[m] !== null) {
 donee[m] = Array.isArray(donor[m]) ? [] : {};
 cloneMembers(donor[m], donee[m]);
 } else {

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

207

 donee[m] = donor[m];
 }
 }
 }
 return donee;
};
var vanillaHeathBarCrunch = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [2, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6],
 heathBars: [4, "bars, coarsely chopped"],
 vanilla: [1, "bean", "Madagascar Bourbon"]
};
var coffeeHeathBarCrunch = cloneMembers(vanillaHeathBarCrunch);
coffeeHeathBarCrunch.coffee = [1/4, "cup, coarsely ground", "Starbucks Espresso"];
console.dir(vanillaHeathBarCrunch);
console.dir(coffeeHeathBarCrunch);

Figure 6–10. Churning a quart of Coffee Heath Bar Crunch with an improved cloneMembers() function

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

208

Currying
Because both functions and their parameters are values, we can create a new function value by
combining an old function and one or more parameters, so those parameters are preset in the new
function. Doing so is referred to as currying in honor of its creator, Haskell Curry, who also has the
Haskell programming language named after him.

ECMAScript 5 defines one new method for function values, Function.prototype.bind(), that is ideal
for currying. Though Explorer 9 and Firefox 4 will implement Function.prototype.bind, as of this writing
Explorer 8, Firefox, 3, and other pre-ECMAScript 5 browsers do not. So, even when the cavalry arrives,
we’ll still need to emulate Function.prototype.bind().

Let’s roll up our sleeves and do so with the help of our conditional advance loaders for
Object.defineProperties() and Object.create(). Those two conditional advance loaders were
implemented with an if statement. But if isn’t the only way to write a conditional advance loader—the
|| and ?: operators work, too. Therefore, let’s choose a value for Function.prototype.bind() with the ||
this time.

Remember from Chapter 3 that, if the first operand to || is falsey, which is to say evaluates to "", 0,
NaN, false, undefined, or null, then the overall || expression evaluates to the second operand. So, if
querying Function.prototype.bind returns undefined, as it would for any pre-ECMAScript 5 browser,
then our || expression will evaluate to the second operand, which will be our emulation of
Function.prototype.bind(). For now, just make that an empty literal that works with an obj parameter:

if (Object.defineProperties === undefined) {
 Object.defineProperties = function (obj, descriptors) {
 for (descriptor in descriptors) {
 if (descriptors.hasOwnProperty(descriptor)) {
 obj[descriptor] = descriptors[descriptor].value;
 }
 }
 };
}
if (Object.create === undefined) {
 Object.create = function (parent, descriptors) {
 var Proxy = function () {},
 child;
 Proxy.prototype = parent;
 child = new Proxy();
 if (descriptors !== undefined) {
 Object.defineProperties(child, descriptors);
 }
 return child;
 };
}

Function.prototype.bind = Function.prototype.bind ||
 function (obj) {
 };

Now the this keyword will refer to the function that inherits the bind() method. We’ll save it to a
variable named that so we can use that to build the new function. Traditionally, when you want to save
this, you do so to a variable named that. But you don’t have to. Like Haskell Curry, you could name the
variable after yourself if you wanted.

if (Object.defineProperties === undefined) {

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

209

 Object.defineProperties = function (obj, descriptors) {
 for (descriptor in descriptors) {
 if (descriptors.hasOwnProperty(descriptor)) {
 obj[descriptor] = descriptors[descriptor].value;
 }
 }
 };
}
if (Object.create === undefined) {
 Object.create = function (parent, descriptors) {
 var Proxy = function () {},
 child;
 Proxy.prototype = parent;
 child = new Proxy();
 if (descriptors !== undefined) {
 Object.defineProperties(child, descriptors);
 }
 return child;
 };
}
Function.prototype.bind = Function.prototype.bind ||
 function (obj) {
 var that = this;
 };

By way of the comma operator, define another variable named ossify. Then borrow the slice()
method from an empty array literal with the call() method, which slice() inherits from
Function.prototype as any other function would. Then we’ll invoke slice() in order to save any
unnamed arguments passed to bind() as an array. So, ossify does not contain obj, just any additional
arguments.

if (Object.defineProperties === undefined) {
 Object.defineProperties = function (obj, descriptors) {
 for (descriptor in descriptors) {
 if (descriptors.hasOwnProperty(descriptor)) {
 obj[descriptor] = descriptors[descriptor].value;
 }
 }
 };
}
if (Object.create === undefined) {
 Object.create = function (parent, descriptors) {
 var Proxy = function () {},
 child;
 Proxy.prototype = parent;
 child = new Proxy();
 if (descriptors !== undefined) {
 Object.defineProperties(child, descriptors);
 }
 return child;
 };
}
Function.prototype.bind = Function.prototype.bind ||
 function (obj) {

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

210

 var that = this,
 ossify = [].slice.call(arguments, 1);
 };

By way of the comma operator, we’ll define a third variable with the var statement. That one will be
named fn and will contain the function value created by currying that and ossify.

if (Object.defineProperties === undefined) {
 Object.defineProperties = function (obj, descriptors) {
 for (descriptor in descriptors) {
 if (descriptors.hasOwnProperty(descriptor)) {
 obj[descriptor] = descriptors[descriptor].value;
 }
 }
 };
}
if (Object.create === undefined) {
 Object.create = function (parent, descriptors) {
 var Proxy = function () {},
 child;
 Proxy.prototype = parent;
 child = new Proxy();
 if (descriptors !== undefined) {
 Object.defineProperties(child, descriptors);
 }
 return child;
 };
}
Function.prototype.bind = Function.prototype.bind ||
 function (obj) {
 var that = this,
 ossify = [].slice.call(arguments, 1),
 fn = function () {
 return that.apply(this instanceof that ? this : obj,
ossify.concat([].slice.call(arguments, 0)));
 };
 };

Now in the event that that contains a constructor function, we need to ensure fn has the same
prototype chain. To do so, we’d assign to fn.prototype the return value of passing that.prototype to
Object.create(). This ensures that objects created by that and fn inherit the same members. Finally, we
want to return the function value in fn, which is a combination of the function value in that and the
parameters in ossify.

if (Object.defineProperties === undefined) {
 Object.defineProperties = function (obj, descriptors) {
 for (descriptor in descriptors) {
 if (descriptors.hasOwnProperty(descriptor)) {
 obj[descriptor] = descriptors[descriptor].value;
 }
 }
 };
}
if (Object.create === undefined) {
 Object.create = function (parent, descriptors) {

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

211

 var Proxy = function () {},
 child;
 Proxy.prototype = parent;
 child = new Proxy();
 if (descriptors !== undefined) {
 Object.defineProperties(child, descriptors);
 }
 return child;
 };
}
Function.prototype.bind = Function.prototype.bind ||
 function (obj) {
 var that = this,
 ossify = [].slice.call(arguments, 1),
 fn = function () {
 return that.apply(this instanceof that ? this : obj,
ossify.concat([].slice.call(arguments, 0)));
 };
 fn.prototype = Object.create(that.prototype);
 return fn;
 };

Now for the moment of truth. Let’s try currying a constructor that churns Wild Maine Blueberry ice
cream with its blueberries and lemon parameters. Insofar as we’re presetting those parameters to their
typical winter values—no fresh wild blueberries to be had now—we’ll name the new constructor
WinterWildMaineBlueberry. Then since WinterWildMaineBlueberry just takes a vanilla parameter—the
blueberries and lemon parameters are preset—we’ll just pass "Tahitian" to choose a mild vanilla bean,
verifying our work with Figure 6–11:

if (Object.defineProperties === undefined) {
 Object.defineProperties = function (obj, descriptors) {
 for (descriptor in descriptors) {
 if (descriptors.hasOwnProperty(descriptor)) {
 obj[descriptor] = descriptors[descriptor].value;
 }
 }
 };
}
if (Object.create === undefined) {
 Object.create = function (parent, descriptors) {
 var Proxy = function () {},
 child;
 Proxy.prototype = parent;
 child = new Proxy();
 if (descriptors !== undefined) {
 Object.defineProperties(child, descriptors);
 }
 return child;
 };
}
Function.prototype.bind = Function.prototype.bind ||
 function (obj) {
 var that = this,
 ossify = [].slice.call(arguments, 1),

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

212

 fn = function () {
 return that.apply(this instanceof that ? this : obj,
ossify.concat([].slice.call(arguments, 0)));
 };
 fn.prototype = Object.create(that.prototype);
 return fn;
 };

var WildMaineBlueberry = function(blueberries, lemon, vanilla) {
 this.blueberries = [2, "cup", blueberries ? blueberries : "fresh wild Maine blueberries"];
 this.freshLemonJuice = [2, "tsp", lemon ? lemon : "Meyer"];
 this.vanilla = [1, "bean", vanilla ? vanilla : "Madagascar Bourbon"];
};
WildMaineBlueberry.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [1, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6]
};
var WinterWildMaineBlueberry = WildMaineBlueberry.bind(null, "Dole frozen wild blueberries",
"Eureka");
var iceCream = new WinterWildMaineBlueberry("Tahitian");
console.dir(iceCream);

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

213

Figure 6–11. WinterWildMaineBlueberry() is created by combining WildMaineBlueberry() and its

blueberries and lemon parameters.

Chaining Methods
If you save a function to an object, the function is referred to as a method. Moreover, within the body of
the method, this refers to the object you saved the method to. So, when you invoke a function as a
constructor, this refers to the object the constructor returns, but when you invoke a function as a
method, this refers to the object containing the function. Finally, if you invoke a function traditionally
as a global method, then this refers to the global object window. However, ECMAScript 5 changes the
value of this to null from window to prevent your coming to grief if you forget to invoke a constructor
with new.

So anyway, to illustrate the point let’s use Object.create() to create an object named iceCream that
inherits methods named _french(), _vanilla(), and _coffee() from another object named churn. Then

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

214

if we invoke those methods on iceCream, this will refer to iceCream and populate the members of
iceCream. Therefore, as Figure 6–12 displays, iceCream will contain heavyCream, halfHalf, sugar, yolks,
vanilla, and coffee members, which we can display by calling _print():

if (Object.defineProperties === undefined) {
 Object.defineProperties = function (obj, descriptors) {
 for (descriptor in descriptors) {
 if (descriptors.hasOwnProperty(descriptor)) {
 obj[descriptor] = descriptors[descriptor].value;
 }
 }
 };
}
if (Object.create === undefined) {
 Object.create = function (parent, descriptors) {
 var Proxy = function () {},
 child;
 Proxy.prototype = parent;
 child = new Proxy();
 if (descriptors !== undefined) {
 Object.defineProperties(child, descriptors);
 }
 return child;
 };
}
var churn = {};
churn._french = function (heavyCream, halfHalf, sugar, yolks) {
 this.heavyCream = [1, "cup", heavyCream || "Organic Valley"],
 this.halfHalf = [1, "cup", halfHalf || "Organic Valley"],
 this.sugar = [sugar || 5/8, "cup"],
 this.yolks = [yolks || 6]
};
churn._vanilla = function (vanilla) {
 this.vanilla = [1, "bean", vanilla || "Madagascar Bourbon"];
};
churn._coffee = function (coffee) {
 this.coffee = [1/4, "cup, coarsely ground", coffee || "Starbucks Espresso"];
};
churn._print = function () {
 var copy = {};
 for (var m in this) {
 this.hasOwnProperty(m) && (copy[m] = this[m]);
 }
 console.dir(copy);
};
var iceCream = Object.create(churn);
iceCream._french();
iceCream._vanilla();
iceCream._coffee();
iceCream._print();

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

215

Figure 6–12. this refers to the containing object for functions invoked as methods.

That all worked fine, but there is a more elegant way to achieve what we just did, by chaining
method calls together.

iceCream._french()._vanilla()._coffee()._print();

Let’s see how to enable this technique.
Right now, our methods return undefined, but to chain a method to another one, we have to return

this instead. As Figure 6–13 displays, doing so works just as well as, but more elegantly than, invoking
the methods separately. Note that chaining methods is also referred to as cascades. Note too that
chaining is very common in DOM and JavaScript libraries.

var clone = typeof Object.create === "function" ?
 Object.create :
 function (donor) {
 var Proxy = function () {};
 Proxy.prototype = donor;

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

216

 return new Proxy();
 };
var churn = {};
churn._vanilla = function (vanilla) {
 this.vanilla = [1, "bean", vanilla || "Madagascar Bourbon"];
 return this;
};
churn._coffee = function (coffee) {
 this.coffee = [1/4, "cup, coarsely ground", coffee || "Starbucks Espresso"];
 return this;
};
churn._french = function (heavyCream, halfHalf, sugar, yolks) {
 this.heavyCream = [1, "cup", heavyCream || "Organic Valley"],
 this.halfHalf = [1, "cup", halfHalf || "Organic Valley"],
 this.sugar = [sugar || 5/8, "cup"],
 this.yolks = [yolks || 6]
 return this;
};
churn._coffee = function (coffee) {
 this.coffee = [1/4, "cup, coarsely ground", coffee || "Starbucks Espresso"];
 return this;
};
churn._print = function () {
 var copy = {};
 for (var m in this) {
 this.hasOwnProperty(m) && (copy[m] = this[m]);
 }
 console.dir(copy);
};
var iceCream = clone(churn);
iceCream._french()._vanilla()._coffee()._print();

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

217

Figure 6–13. Chaining method invocations

Closure and Returning Functions
Vanilla is among the most powerful flavor enhancers, which is to say it enhances our ability to taste
chocolate, coffee, fruit, nuts, and other foods. Moreover, vanilla elevates our perception of sweetness.
For this reason, most ice-cream flavors are embellishments of vanilla ice cream.

So, while you could make chocolate ice cream from a sweet cream base, adding a vanilla bean
boosts the chocolate flavor of the cocoa. To further do so, we could coarsely chop a cup, roughly 4
ounces, of bittersweet chocolate—I’d recommend Callebaut, Ghirardelli, or Lindt—and melt that into
the custard.

Note that chocolate is made by crushing cacao beans and pressing them into an unsweetened paste,
referred to as chocolate liqueur, which is comprised of cocoa and cocoa butter. So cocoa is made by
removing the cocoa butter and grinding the now fat-free cacao paste into a powder. To remove some
acidity and enhance the chocolate flavor, cocoa may be Dutched with alkali.

On the other hand, bittersweet chocolate is made by adding additional cocoa butter to pure
chocolate liqueur and sweetening it with sugar. Fine bittersweet chocolate by Callebaut, Lindt,
Ghirardelli, and others contain 60 to 70 percent pure cacao paste, while inexpensive bittersweet
chocolate typically contains just 15 percent cacao, the FDA minimum. So paying an extra dollar or two
for four or five times as much cacao is worth it if you love chocolate ice cream.

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

218

Let’s get to the JavaScript to see what we can do with all this information. First, some background:
any variable that you declare within the curly braces wrapping the block of an if, for, while, or other
compound statement is visible outside the block, as you have seen throughout this book. Put another
way, curly braces do not provide a way to create private variables.

In contrast, functions have function scope, which means that any variables or functions declared
within the curly braces wrapping a function block normally are not visible outside of the block. Let’s find
out why.

Whenever you define a function, JavaScript saves the scope chain as part of the new function object;
that is to say, the scope chain is the sequence of objects, beginning with the function’s own call object
and ending with the global window object. This means this part of the scope chain is set in stone before
the function ever runs. However, any variables, functions, or arguments contained by the call and global
objects comprising that scope chain are live.

Then, when you invoke a function, JavaScript adds any variables defined locally within the function,
named parameters, the arguments object, and this to the scope chain. So these variable objects will
differ every time you invoke the function. JavaScript looks in this complete set of items in the scope
chain when it is looking up the value of a variable. In other words, when you invoke a function that uses
a variable, JavaScript can only use the variable if it is declared in the scope chain.

Normally, after an invoked function returns, everything added to the scope chain when you invoked
the function is destroyed. However, if you create a closure, the objects contained in function scope are
not destroyed. Therefore, you may query the named parameters and locally defined variables for that
invocation even after it has ended. Let’s look at closures now.

Insofar as closure is a wildly popular technique, do yourself a favor and go ten toes in while we
explore those now. Say we want to save some default values for bittersweet chocolate, cocoa, and vanilla
to a closure our ChocolateChocolate() constructor can query. One way would be to define those as local
variables for a self-invoking function and then have its return value be the ChocolateChocolate()
constructor.

So, in the following sample, chocolateChocolate is churned with Callebaut cocoa and Madagascar
Bourbon vanilla due to closure, as Figure 6–14 displays, along with the function JavaScript assigns to
ChocolateChocolate.

var ChocolateChocolate = function () {
 var _bittersweet = "Ghirardelli",
 _cocoa = "Callebaut",
 _vanilla = "Madagascar Bourbon";
 return function (bittersweet, cocoa, vanilla) {
 this.bittersweet = [1, "cup", bittersweet || _bittersweet];
 this.cocoa = [3, "tbs", cocoa || _cocoa];
 this.vanilla = [1, "bean", vanilla || _vanilla];
 };
}();
ChocolateChocolate.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [1, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6]
};
var chocolateChocolate = new ChocolateChocolate("Lindt");
console.dir(chocolateChocolate);
ChocolateChocolate.toString();

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

219

Figure 6–14. Querying local variables saved to a closure

Another way to save default values for bittersweet chocolate, cocoa, and vanilla to a closure would
be to define _bittersweet, _cocoa, and _vanilla parameters for the self-invoking function that returns
the ChocolateChocolate() constructor. Then pass their values to the self-invoking function.

So, as Figure 6–15 displays, saving our default values as named parameters for a closure works just
as well as saving those as local variables for the closure. Note that the definition of ChocolateChocolate()
is the same as in the previous sample. The reason why we did not have to change the definition of
ChocolateChocolate() is that there’s no difference between named parameters and local variables on an
activation object. That is to say, named parameters become local variables. The only difference between
the two is the way you assign a value to them.

var ChocolateChocolate = function (_bittersweet, _cocoa, _vanilla) {
 return function (bittersweet, cocoa, vanilla) {
 this.bittersweet = [1, "cup", bittersweet || _bittersweet];
 this.cocoa = [3, "tbs", cocoa || _cocoa];
 this.vanilla = [1, "bean", vanilla || _vanilla];
 };
}("Ghirardelli", "Callebaut", "Madagascar Bourbon");
ChocolateChocolate.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [1, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6]
};
var chocolateChocolate = new ChocolateChocolate("Lindt");
console.dir(chocolateChocolate);
ChocolateChocolate.toString();

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

220

Figure 6–15. Querying named parameters saved to a closure

A third way to save default values for bittersweet chocolate, cocoa, and vanilla to a closure would be
to first declare the variable ChocolateChocolate and then assign a function to it from within the self-
invoking function. That is to say, export a locally defined function to a global variable as in the following
sample and Figure 6–16. Note that, as in the previous two samples, we did not have to change definition
for the ChocolateChocolate() constructor. It’s just the way we create a closure for it to query that differs.
Note too that we wrap the self-invoking function within parentheses. Those are mandatory inasmuch as
we want JavaScript to interpret the function as a function expression rather than a function declaration.
That is to say, to prevent a syntax error.

var ChocolateChocolate = null;
(function (_bittersweet, _cocoa, _vanilla) {
 ChocolateChocolate = function (bittersweet, cocoa, vanilla) {
 this.bittersweet = [1, "cup", bittersweet || _bittersweet];
 this.cocoa = [3, "tbs", cocoa || _cocoa];
 this.vanilla = [1, "bean", vanilla || _vanilla];
 };
}("Ghirardelli", "Callebaut", "Madagascar Bourbon"));
ChocolateChocolate.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [1, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6]
};
var chocolateChocolate = new ChocolateChocolate("Lindt");
console.dir(chocolateChocolate);
ChocolateChocolate.toString();

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

221

Figure 6–16. Exporting the constructor function from a self-invoking function expression

The previous sample could be reworked to use locally defined _bittersweet, _cocoa, and _vanilla
variables rather than _bittersweet, _cocoa, and _vanilla named parameters. Try it, verifying your work
with Figure 6–17.

var ChocolateChocolate = null;
(function () {
 var _bittersweet = "Ghirardelli",
 _cocoa = "Callebaut",
 _vanilla = "Madagascar Bourbon";
 ChocolateChocolate = function (bittersweet, cocoa, vanilla) {
 this.bittersweet = [1, "cup", bittersweet || _bittersweet];
 this.cocoa = [3, "tbs", cocoa || _cocoa];
 this.vanilla = [1, "bean", vanilla || _vanilla];
 };
}());
ChocolateChocolate.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [1, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6]
};
var chocolateChocolate = new ChocolateChocolate("Lindt");
console.dir(chocolateChocolate);
ChocolateChocolate.toString();

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

222

Figure 6–17. Reworking the previous sample to use locally defined _bittersweet, _cocoa, and _vanilla

variables rather than _bittersweet, _cocoa, and _vanilla named parameters

Finally, note that, rather than wrapping the self-invocation in parentheses, you will often see the
function expression wrapped in parentheses, which are then followed by the () operator as in the
following sample. Try it, verifying your work with Figure 6–18:

var ChocolateChocolate = null;
(function (_bittersweet, _cocoa, _vanilla) {
 ChocolateChocolate = function (bittersweet, cocoa, vanilla) {
 this.bittersweet = [1, "cup", bittersweet || _bittersweet];
 this.cocoa = [3, "tbs", cocoa || _cocoa];
 this.vanilla = [1, "bean", vanilla || _vanilla];
 };
})("Ghirardelli", "Callebaut", "Madagascar Bourbon");
ChocolateChocolate.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [1, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6]
};
var chocolateChocolate = new ChocolateChocolate("Lindt");
console.dir(chocolateChocolate);
ChocolateChocolate.toString();

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

223

Figure 6–18. Moving the () operator outside the parentheses works fine, too.

Passing a Configuration Object
Often, if you have a number of optional parameters, such as in our closure samples, you will want to
pass a configuration object rather than separate parameters. Doing so prevents your having to pass "" or
some other falsy value parameters prior to the one you want to explicitly pass as in the following sample:

var ChocolateChocolate = function () {
 var _bittersweet = "Ghirardelli",
 _cocoa = "Callebaut",
 _vanilla = "Madagascar Bourbon";
 return function (bittersweet, cocoa, vanilla) {
 this.bittersweet = [1, "cup", bittersweet || _bittersweet];
 this.cocoa = [3, "tbs", cocoa || _cocoa];
 this.vanilla = [1, "bean", vanilla || _vanilla];
 };
}();
ChocolateChocolate.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [1, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6]
};
var chocolateChocolate = new ChocolateChocolate("", "", "Tahitian");
console.dir(chocolateChocolate);

So here’s how we can remedy that bugaboo by defining one parameter named pref. As Figure 6–19
displays, this prevents our having to pass empty strings for bittersweet and cocoa in order to pass
“Tahitian” for vanilla.

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

224

var ChocolateChocolate = function () {
 var _bittersweet = "Ghirardelli",
 _cocoa = "Callebaut",
 _vanilla = "Madagascar Bourbon";
 return function (pref) {
 pref || (pref = {});
 this.bittersweet = [1, "cup", pref.bittersweet || _bittersweet];
 this.cocoa = [3, "tbs", pref.cocoa || _cocoa];
 this.vanilla = [1, "bean", pref.vanilla || _vanilla];
 };
}();
ChocolateChocolate.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [1, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6]
};
var chocolateChocolate = new ChocolateChocolate({vanilla: "Tahitian"});
console.dir(chocolateChocolate);

Figure 6–19. Defining a configuration object in place of several defaut parameters

Callback Functions
Insofar as functions are values, you can pass a function as a parameter to another function, which can
then invoke it. A function passed and invoked this way is referred to as a callback function. Event
listener functions, which we’ll explore in Chapter 9, are the most common type of callback function. But
they’re not the only way to implement this pattern.

For example, we could rework our clone function from earlier in the chapter so that we can pass it
either an object or a callback constructor function. So let’s do so now, and then test it both ways by

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

225

passing it a constructor named SweetCream as well as by passing it SweetCream.prototype. As Figure 6–20
displays, the end result is the same.

var clone = typeof Object.create === "function" ?
 function (donor) {
 return typeof donor !== "function" ?
 Object.create(donor) :
 Object.create(new donor());
 } :
 function (donor) {
 var Proxy = function () {};
 Proxy.prototype = typeof donor !== "function" ?
 donor :
 new donor();
 return new Proxy();
 };

var SweetCream = function () {};
SweetCream.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [1, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6]
};
var sweetCream = clone(SweetCream);
console.dir(sweetCream);
var sweetCream2 = clone(SweetCream.prototype);
console.dir(sweetCream2);

Figure 6–20. Passing a SweetCream() callback function to clone()

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

226

Memoization
In the event that you have a function that does memory-intensive or identically repetitive work, you
might want to cache its return values to a closure. Doing so is referred to as memoization. To illustrate
this technique, let’s memoize our ChocolateChocolate() constructor. To do so, we’ll save a local variable
named memo to a closure. Then, every time ChocolateChocolate() is invoked, we’ll add a member to memo
containing the returned object. Those members will be named with a string created by gluing the
parameter values together with underscores. Just for the purposes of running this in Firebug, we’ll pass
the memo object to console.dir so that we can view its members following each invocation of
ChocolateChocolate().

So, as Figure 6–21 displays, invoking ChocolateChocolate() two times in a row with the same
parameters, returns the object from memo the second time. To verify that, we can compare the return
values with ===. Remember from Chapter 3 that === returns true for two objects only if their heap
memory locations are the same. That is to say, to ===, no two quarts of double chocolate ice cream are
the same—a quart of double chocolate ice cream can only be equal to itself.

var ChocolateChocolate = function () {
 var memo = {};
 return function (bittersweet, cocoa, vanilla) {
 var m = bittersweet + "_" + cocoa + "_" + vanilla;
 if (typeof memo[m] === "object") {
 return memo[m];
 }
 this.bittersweet = [1, "cup", bittersweet || "Callebaut"];
 this.cocoa = [3, "tbs", cocoa || "Callebaut"];
 this.vanilla = [1, "bean", vanilla || "Madagascar Bourbon"];
 memo[m] = this;
 console.dir(memo);
 };
}();
ChocolateChocolate.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [1, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6]
};
var chocolateChocolate = new ChocolateChocolate("Lindt");
console.dir(chocolateChocolate);
var chocolateChocolate2 = new ChocolateChocolate("Lindt");
console.dir(chocolateChocolate);
chocolateChocolate === chocolateChocolate2;

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

227

Figure 6–21. Memoizing ChocolateChocolate()

Global Abatement with Modules
Self-invoking function expressions, which we used earlier in the closure samples, can be used to
eliminate global variables, referred to as global abatement, by way of modules. Eliminating global
variables is often a good idea to avoid name clashes with local variables. In other words, a global variable
could easily have the same name as a local variable, which is not a good idea. The script we’ll hand-code
at the end of this book will leave no global footprint due to the module pattern, which is quite simple.

Just put your script within the body of a self-invoking function expression. As discussed earlier, the
() operator may go inside or outside the parentheses wrapping the function expression. So one of the
following two patterns will do:

(function () {
// paste script here
}());

(function () {
// paste script here
})();

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

228

Using the first way, let’s paste in our callback sample from earlier in the chapter. As Figure 6–22 and
6–23 display, we can invoke clone() from within the module but not outside of it for the reason that
clone() and SweetCream() are not globally defined. So JavaScript returns a reference error in Figure 6–23.

(function () {
var clone = typeof Object.create === "function" ?
 function (donor) {
 return typeof donor !== "function" ?
 Object.create(donor) :
 Object.create(new donor());
 } :
 function (donor) {
 var Proxy = function () {};
 Proxy.prototype = typeof donor !== "function" ?
 donor :
 new donor();
 return new Proxy();
 };

var SweetCream = function () {};
SweetCream.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [1, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6]
};
console.dir(clone(SweetCream));
}());

Figure 6–22. Calling clone() within the module works

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

229

(function () {
var clone = typeof Object.create === "function" ?
 function (donor) {
 return typeof donor !== "function" ?
 Object.create(donor) :
 Object.create(new donor());
 } :
 function (donor) {
 var Proxy = function () {};
 Proxy.prototype = typeof donor !== "function" ?
 donor :
 new donor();
 return new Proxy();
 };

var SweetCream = function () {};
SweetCream.prototype = {
 heavyCream: [1, "cup", "Organic Valley"],
 halfHalf: [1, "cup", "Organic Valley"],
 sugar: [5/8, "cup"],
 yolks: [6]
};
}());
console.dir(clone(SweetCream));

Figure 6–23. clone() and SweetCream() are not globally defined.

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

230

Arrays
Not only did Ben & Jerry’s churn Wild Maine Blueberry from 1990 to 1992, but my Pittsburgh Pirates
made it to the NL championship series during those years, too. But in 1993, Wild Maine Blueberry was
laid to rest, and Barry Bonds left for San Francisco, where he would set MLB marks for most MVP awards
(7), homeruns in a season (73), and homeruns in a career (762). My Pirates then embarked on a streak of
losing seasons, 18 as of this writing, unrivaled in the history of North American pro sports (MLB, NFL,
NBA, NHL).

So anyway, let’s explore some predefined array methods with an array of arrays representing the
Pirates’ unenviable streak of futility, which we’ll assign to a variable named pirates. Note that these
predefined methods are saved to Array.prototype. So every array inherits those methods by way of the
prototype chain in the same way that our ice-cream objects inherited members like halfHalf and yolks
from the prototype chain.

var pirates = [[2010, 57, 105],
 [2009, 62, 99],
 [2008, 67, 95],
 [2007, 68, 94],
 [2006, 67, 95],
 [2005, 67, 95],
 [2004, 72, 89],
 [2003, 75, 87],
 [2002, 72, 89],
 [2001, 62, 100],
 [2000, 69, 93],
 [1999, 78, 83],
 [1998, 69, 93],
 [1997, 79, 83],
 [1996, 73, 89],
 [1995, 58, 86],
 [1994, 53, 61],
 [1993, 75, 87]];

■ Note pirates is a valid JSON array. We’ll explore JSON, the popular Ajax data exchange format in Chapter 10.

Plucking Elements from an Array
Alright, to pluck the first element in pirates we’d invoke its shift() method. So, if we pass the return
value of shift() to console.dir(), JavaScript will print the 2010 season for us in Firebug as Figure 6–24
displays.

var pirates = [[2010, 57, 105],
 [2009, 62, 99],
 [2008, 67, 95],
 [2007, 68, 94],
 [2006, 67, 95],
 [2005, 67, 95],
 [2004, 72, 89],
 [2003, 75, 87],

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

231

 [2002, 72, 89],
 [2001, 62, 100],
 [2000, 69, 93],
 [1999, 78, 83],
 [1998, 69, 93],
 [1997, 79, 83],
 [1996, 73, 89],
 [1995, 58, 86],
 [1994, 53, 61],
 [1993, 75, 87]];
console.dir(pirates.shift());

Figure 6–24. shift() removes and returns the first element in an array.

Note that shift() modifies pirates, too, by shifting the contents down one place in the array every
time it is invoked. This means that element 0 is removed, element 1 becomes element 0, and so on. So,
after invoking shift() three times in a row, pirates has just 15 elements rather than 18 as Figure 6–25
displays.

var pirates = [[2010, 57, 105],
 [2009, 62, 99],
 [2008, 67, 95],
 [2007, 68, 94],
 [2006, 67, 95],
 [2005, 67, 95],
 [2004, 72, 89],
 [2003, 75, 87],
 [2002, 72, 89],
 [2001, 62, 100],
 [2000, 69, 93],
 [1999, 78, 83],

7

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

232

 [1998, 69, 93],
 [1997, 79, 83],
 [1996, 73, 89],
 [1995, 58, 86],
 [1994, 53, 61],
 [1993, 75, 87]];
pirates.shift(),
 pirates.shift(),
 pirates.shift(),
 console.dir(pirates);

Figure 6–25. pirates has 15 elements rather than 18 after invoking its shift() method three times.

Naturally, JavaScript provides a method to pluck the last element from an array, which is named
pop(). So, invoking pop() on pirates three times in a row removes and returns the 1993, 1994, and 1995
seasons, as Figure 6–26 displays.

var pirates = [[2010, 57, 105],
 [2009, 62, 99],
 [2008, 67, 95],
 [2007, 68, 94],
 [2006, 67, 95],
 [2005, 67, 95],
 [2004, 72, 89],
 [2003, 75, 87],
 [2002, 72, 89],
 [2001, 62, 100],
 [2000, 69, 93],
 [1999, 78, 83],
 [1998, 69, 93],
 [1997, 79, 83],

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

233

 [1996, 73, 89],
 [1995, 58, 86],
 [1994, 53, 61],
 [1993, 75, 87]];
console.dir(pirates.pop()),
 console.dir(pirates.pop()),
 console.dir(pirates.pop());

Figure 6–26. pop() removes and returns the last element in an array.

Note that, like shift(), pop() modifies the array it is invoked upon. So, after invoking pop() three
times on pirates, there are just 15 elements left as Figure 6–27 displays:

var pirates = [[2010, 57, 105],
 [2009, 62, 99],
 [2008, 67, 95],
 [2007, 68, 94],
 [2006, 67, 95],
 [2005, 67, 95],
 [2004, 72, 89],
 [2003, 75, 87],
 [2002, 72, 89],
 [2001, 62, 100],
 [2000, 69, 93],
 [1999, 78, 83],
 [1998, 69, 93],
 [1997, 79, 83],
 [1996, 73, 89],
 [1995, 58, 86],
 [1994, 53, 61],
 [1993, 75, 87]];

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

234

pirates.pop(),
 pirates.pop(),
 pirates.pop(),
 console.dir(pirates);

Figure 6–27. pirates has 15 elements rather than 18 after invoking its pop() method three times.

Adding Elements to an Array
To do the inverse of shift(), which is to say add an element to the beginning of an array, call an array’s
unshift() method. The Pirates hired a new manager, Clint Hurdle, for 2011. So I’m hopeful they’ll win
say 15 more games than in 2010. Let’s add that prediction of 72 wins and 90 losses to pirates by invoking
its unshift() method. Then pass pirates to console.dir() and JavaScript will print the modified array in
Firebug as Figure 6–28 displays.

var pirates = [[2010, 57, 105],
 [2009, 62, 99],
 [2008, 67, 95],
 [2007, 68, 94],
 [2006, 67, 95],
 [2005, 67, 95],
 [2004, 72, 89],
 [2003, 75, 87],
 [2002, 72, 89],
 [2001, 62, 100],
 [2000, 69, 93],
 [1999, 78, 83],
 [1998, 69, 93],
 [1997, 79, 83],
 [1996, 73, 89],

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

235

 [1995, 58, 86],
 [1994, 53, 61],
 [1993, 75, 87]];
pirates.unshift([2011, 72, 90]),
console.dir(pirates);

Figure 6–28. unshift() adds an element to the beginning of an array.

Similarly, pop() has an inverse, too. But it’s not named unpop(), but push(). So let’s add the 1992,
1991, and 1990 glory years to pirates by calling push() three times in a row. Then pass pirates to
console.dir(), verifying our work with Figure 6–29.

var pirates = [[2010, 57, 105],
 [2009, 62, 99],
 [2008, 67, 95],
 [2007, 68, 94],
 [2006, 67, 95],
 [2005, 67, 95],
 [2004, 72, 89],
 [2003, 75, 87],
 [2002, 72, 89],
 [2001, 62, 100],
 [2000, 69, 93],
 [1999, 78, 83],
 [1998, 69, 93],
 [1997, 79, 83],

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

236

 [1996, 73, 89],
 [1995, 58, 86],
 [1994, 53, 61],
 [1993, 75, 87]];
pirates.push([1992, 96, 66]),
 pirates.push([1991, 98, 64]),
 pirates.push([1990, 95, 67]);
console.dir(pirates);

Figure 6–29. push() adds an element to the end of an array.

Gluing Two Arrays Together
Alrighty, to glue two arrays together, you would invoke concat() on the first array, passing the second
array as a parameter. So, if we had the past nine seasons in an array named pirates1 and the nine
seasons prior to those in pirates2, we’d create the losing streak array by calling concat() on pirates1
while passing in pirates2. Try it and then query the first and last elements in pirates, verifying your
work with Figure 6–30.

var pirates1 = [[2010, 57, 105],
 [2009, 62, 99],
 [2008, 67, 95],
 [2007, 68, 94],
 [2006, 67, 95],
 [2005, 67, 95],

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

237

 [2004, 72, 89],
 [2003, 75, 87],
 [2002, 72, 89]];
var pirates2 = [[2001, 62, 100],
 [2000, 69, 93],
 [1999, 78, 83],
 [1998, 69, 93],
 [1997, 79, 83],
 [1996, 73, 89],
 [1995, 58, 86],
 [1994, 53, 61],
 [1993, 75, 87]];
var pirates = pirates1.concat(pirates2);
console.dir(pirates[0]);
console.dir(pirates[pirates.length - 1]);

Figure 6–30. Gluing arrays together with concat()

Note that creating pirates by gluing pirates1 to pirates2 does not modify pirates1 or pirates2.
That is to say, the last element in pirates1 is still the 2002 season and the first element in pirates2 is still
the 2001 season as Figure 6–31 displays. So, unlike methods like pop(), push(), shift(), and unshift(), a
concat() does not modify the array it’s invoked upon. In geeky terms, we would say that pop() is a
mutator method while concat() is an accessor method.

var pirates1 = [[2010, 57, 105],
 [2009, 62, 99],
 [2008, 67, 95],
 [2007, 68, 94],
 [2006, 67, 95],
 [2005, 67, 95],

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

238

 [2004, 72, 89],
 [2003, 75, 87],
 [2002, 72, 89]];
var pirates2 = [[2001, 62, 100],
 [2000, 69, 93],
 [1999, 78, 83],
 [1998, 69, 93],
 [1997, 79, 83],
 [1996, 73, 89],
 [1995, 58, 86],
 [1994, 53, 61],
 [1993, 75, 87]];
var pirates = pirates1.concat(pirates2);
console.dir(pirates1[pirates.length - 1]);
console.dir(pirates2[0]);

Figure 6–31. concat() does not modify the array its invoked upon nor the one passed to it as an argument.

Reversing the Elements in an Array
Now say we wanted to reverse the order of seasons in pirates from 2010–1993 to 1993–2010. To do so,
we’d simply call the aptly named method reverse() on pirates. So, as Figure 6–32 displays, querying the
first element in pirates before and after calling reverse() returns the 2010 and 1993 season,
respectively:

var pirates = [[2010, 57, 105],
 [2009, 62, 99],
 [2008, 67, 95],
 [2007, 68, 94],

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

239

 [2006, 67, 95],
 [2005, 67, 95],
 [2004, 72, 89],
 [2003, 75, 87],
 [2002, 72, 89],
 [2001, 62, 100],
 [2000, 69, 93],
 [1999, 78, 83],
 [1998, 69, 93],
 [1997, 79, 83],
 [1996, 73, 89],
 [1995, 58, 86],
 [1994, 53, 61],
 [1993, 75, 87]];
console.dir(pirates[0]);
pirates.reverse();
console.dir(pirates[0]);

Figure 6–32. Reversing the order of elements in an array by invoking its reverse() method

Sorting the Elements in an Array
Though reversing the order of elements in pirates is interesting, it would be more helpful if we could
reorder those by wins or losses. To do so, we’d invoke sort() on pirates and pass a function value to do
the reordering work. JavaScript will pass that function two elements from pirates—yup, happens by
magic—and the function will then return -1 if the first element ought to come before the second
element, 0 if there is a tie, and 1 if the second element ought to come before the first element. Though
it’s typical for the function to return -1 and 1, any negative or positive integer will do. The only return
value set in stone is 0, which conveys a tie.

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

240

So alrighty then, let’s save a function to a variable named sortByLosses that will sort pirates by
losses. Begin by defining parameters named e1 and e2 for JavaScript to pass elements in pirates to
sortByLosses() with.

var pirates = [[2010, 57, 105],
 [2009, 62, 99],
 [2008, 67, 95],
 [2007, 68, 94],
 [2006, 67, 95],
 [2005, 67, 95],
 [2004, 72, 89],
 [2003, 75, 87],
 [2002, 72, 89],
 [2001, 62, 100],
 [2000, 69, 93],
 [1999, 78, 83],
 [1998, 69, 93],
 [1997, 79, 83],
 [1996, 73, 89],
 [1995, 58, 86],
 [1994, 53, 61],
 [1993, 75, 87]];
var sortByLosses = function (e1, e2) {
};

Then write an if condition to handle the case where the Pirates lost the same number of games in
e1 and e2. If so, we want to sort the seasons by year, putting the most recent season first. So we’ll have
sortByLosses() return -1 if the year in e1[0] is more recent than e2[0], and 1 if e1[0] is more recent than
e2[0]:

var pirates = [[2010, 57, 105],
 [2009, 62, 99],
 [2008, 67, 95],
 [2007, 68, 94],
 [2006, 67, 95],
 [2005, 67, 95],
 [2004, 72, 89],
 [2003, 75, 87],
 [2002, 72, 89],
 [2001, 62, 100],
 [2000, 69, 93],
 [1999, 78, 83],
 [1998, 69, 93],
 [1997, 79, 83],
 [1996, 73, 89],
 [1995, 58, 86],
 [1994, 53, 61],
 [1993, 75, 87]];
var sortByLosses = function (e1, e2) {
 if (e1[2] === e2[2]) {
 return e1[0] > e2[0] ? -1 : 1;
 }
};

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

241

Now append an else clause that has sortByLosses() return -1 if the Pirates lost more games in e1
than e2, and 1 if the Pirates lost more games in e2 than e1:

var pirates = [[2010, 57, 105],
 [2009, 62, 99],
 [2008, 67, 95],
 [2007, 68, 94],
 [2006, 67, 95],
 [2005, 67, 95],
 [2004, 72, 89],
 [2003, 75, 87],
 [2002, 72, 89],
 [2001, 62, 100],
 [2000, 69, 93],
 [1999, 78, 83],
 [1998, 69, 93],
 [1997, 79, 83],
 [1996, 73, 89],
 [1995, 58, 86],
 [1994, 53, 61],
 [1993, 75, 87]];
var sortByLosses = function (e1, e2) {
 if (e1[2] === e2[2]) {
 return e1[0] > e2[0] ? -1 : 1;
 } else {
 return e1[2] > e2[2] ? -1 : 1;
 }
};

OK, time to see if sortByLosses() does what we want it to. So invoke sort() on pirates and pass the
sortByLosses identifier—don’t invoke sortByLosses with the () operator or you'll come to grief. sort()
will then reorder and return pirates. So if we invoke console.dir() on the return value of sort(),
JavaScript will print the reordered array in Firebug as Figure 6–33 displays.

var pirates = [[2010, 57, 105],
 [2009, 62, 99],
 [2008, 67, 95],
 [2007, 68, 94],
 [2006, 67, 95],
 [2005, 67, 95],
 [2004, 72, 89],
 [2003, 75, 87],
 [2002, 72, 89],
 [2001, 62, 100],
 [2000, 69, 93],
 [1999, 78, 83],
 [1998, 69, 93],
 [1997, 79, 83],
 [1996, 73, 89],
 [1995, 58, 86],
 [1994, 53, 61],
 [1993, 75, 87]];
var sortByLosses = function (e1, e2) {
 if (e1[2] === e2[2]) {
 return e1[0] > e2[0] ? -1 : 1;

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

242

 } else {
 return e1[2] > e2[2] ? -1 : 1;
 }
};
console.dir(pirates.sort(sortByLosses));

Figure 6–33. Sorting elements in the pirates array by losses and then by year

Forgive me for being negative and sorting by losses. In Pittsburgh, between the end of the Penguins
season and beginning of the Steelers season, guessing how many games the Pirates will lose and which
star players they’ll trade away for prospects is pretty much all there is to do sports-wise. So let’s be
optimistic and sort pirates by wins instead. Doing so is trivial, just rename the function sortByWins and
change the indexes in the boolean expression and else clause from 2 to 1 like so.

var pirates = [[2010, 57, 105],
 [2009, 62, 99],
 [2008, 67, 95],
 [2007, 68, 94],
 [2006, 67, 95],
 [2005, 67, 95],
 [2004, 72, 89],
 [2003, 75, 87],
 [2002, 72, 89],
 [2001, 62, 100],
 [2000, 69, 93],
 [1999, 78, 83],
 [1998, 69, 93],

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

243

 [1997, 79, 83],
 [1996, 73, 89],
 [1995, 58, 86],
 [1994, 53, 61],
 [1993, 75, 87]];
var sortByWins = function (e1, e2) {
 if (e1[1] === e2[1]) {
 return e1[0] > e2[0] ? -1 : 1;
 } else {
 return e1[1] > e2[1] ? -1 : 1;
 }
};

Then invoke sort() on pirates, but pass the identifier sortByWins instead of sortByLosses. As
before, pass the return value of sort() to console.dir() and JavaScript will print the reordered pirates
array in Firebug as in Figure 6–34.

var pirates = [[2010, 57, 105],
 [2009, 62, 99],
 [2008, 67, 95],
 [2007, 68, 94],
 [2006, 67, 95],
 [2005, 67, 95],
 [2004, 72, 89],
 [2003, 75, 87],
 [2002, 72, 89],
 [2001, 62, 100],
 [2000, 69, 93],
 [1999, 78, 83],
 [1998, 69, 93],
 [1997, 79, 83],
 [1996, 73, 89],
 [1995, 58, 86],
 [1994, 53, 61],
 [1993, 75, 87]];
var sortByWins = function (e1, e2) {
 if (e1[1] === e2[1]) {
 return e1[0] > e2[0] ? -1 : 1;
 } else {
 return e1[1] > e2[1] ? -1 : 1;
 }
};
console.dir(pirates.sort(sortByWins));

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

244

Figure 6–34. Sorting elements in the pirates array by wins and then by year

Creating a String from an Array
Often, you will want to create a string from an array. To do so, you would invoke the array’s join()
method, which converts the elements in the array to strings and then sequentially glues them together.
join() takes an optional parameter, which is a separator to glue the elements together with. Note that, if
you omit the separator, then JavaScript will use "," by default.

So say we’d like to create a comma-separated list from pirates, with each entry on a single line, we
would pass "/n" as the separator. JavaScript will then invoke toString() on each element in pirates and
join those strings together with "/n".

■ Note This format is called a comma-separated value (CSV) string. It can be imported into spreadsheets or

processed by other applications, because it is a standard format.

So, as Figure 6–35 displays, join() returns the Pirates’ 18 years of futility as a CSV string:

var pirates = [[2010, 57, 105],
 [2009, 62, 99],
 [2008, 67, 95],
 [2007, 68, 94],
 [2006, 67, 95],

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

245

 [2005, 67, 95],
 [2004, 72, 89],
 [2003, 75, 87],
 [2002, 72, 89],
 [2001, 62, 100],
 [2000, 69, 93],
 [1999, 78, 83],
 [1998, 69, 93],
 [1997, 79, 83],
 [1996, 73, 89],
 [1995, 58, 86],
 [1994, 53, 61],
 [1993, 75, 87]];
pirates.join("\n");

Figure 6–35. Gluing elements together with join()

Taking a Slice of an Array
Sometimes you will want to copy two or more elements from an array. To do so, you would invoke its
slice() method, passing two parameters.

• First, the index of the first element to copy.

• Second, the number of elements to copy.

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

246

■ Note slice() makes a shallow copy of an array. That is to say, elements containing object, array, and function

values are copied by reference, not duplicated.

So, say we’d like to know how the Pirates did during the past five years, we’d invoke slice() on
pirates and pass 0 and 5. As Figure 6–36 displays, slice() returns copies of those five seasons, but does
not remove them from pirates.

var pirates = [[2010, 57, 105],
 [2009, 62, 99],
 [2008, 67, 95],
 [2007, 68, 94],
 [2006, 67, 95],
 [2005, 67, 95],
 [2004, 72, 89],
 [2003, 75, 87],
 [2002, 72, 89],
 [2001, 62, 100],
 [2000, 69, 93],
 [1999, 78, 83],
 [1998, 69, 93],
 [1997, 79, 83],
 [1996, 73, 89],
 [1995, 58, 86],
 [1994, 53, 61],
 [1993, 75, 87]];
console.dir(pirates.slice(0, 5));
pirates.length;
// 18

Figure 6–36. Shallow copying elements from an array with slice()

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

247

Converting a Read-only Array-like Object to an Array
slice() is commonly borrowed by read-only array-like objects such as arguments in order to copy their
elements to a real, read-write array. To very simply illustrate this technique, let’s create a function
named argumentsToArray() that will copy elements from its arguments object to an array and then return
that array. Then if we pass 18 parameters to argumentsToArray(), one for each losing season in the
Pirates’ streak of futility, those will first get saved to its arguments object. Then we’ll have arguments
borrow slice(), which will return a real array containing 18 elements, one for each losing season.
Therefore, if we save the return value of argumentsToArray() to a variable named pirates, it will contain
the very same array we’ve been mucking around with in this chapter as Figure 6–37 displays.

var argumentsToArray = function () {
 return Array.prototype.slice.call(arguments);
};
var pirates = argumentsToArray([2010, 57, 105],
 [2009, 62, 99],
 [2008, 67, 95],
 [2007, 68, 94],
 [2006, 67, 95],
 [2005, 67, 95],
 [2004, 72, 89],
 [2003, 75, 87],
 [2002, 72, 89],
 [2001, 62, 100],
 [2000, 69, 93],
 [1999, 78, 83],
 [1998, 69, 93],
 [1997, 79, 83],
 [1996, 73, 89],
 [1995, 58, 86],
 [1994, 53, 61],
 [1993, 75, 87]);
console.dir(pirates);

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

248

Figure 6–37. Shallow copying members from arguments to an array by borrowing slice().

Or more succinctly, we can borrow slice() from an empty array literal rather than from
Array.prototype. As Figure 6–38 displays, this works just as well and saves some keystrokes.
Consequently, borrowing slice() this way is very common.

var argumentsToArray = function () {
 return [].slice.call(arguments);
}
var pirates = argumentsToArray([2010, 57, 105],
 [2009, 62, 99],
 [2008, 67, 95],
 [2007, 68, 94],
 [2006, 67, 95],
 [2005, 67, 95],
 [2004, 72, 89],
 [2003, 75, 87],
 [2002, 72, 89],
 [2001, 62, 100],
 [2000, 69, 93],
 [1999, 78, 83],
 [1998, 69, 93],
 [1997, 79, 83],
 [1996, 73, 89],
 [1995, 58, 86],
 [1994, 53, 61],
 [1993, 75, 87]);
console.dir(pirates);

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

249

Figure 6–38. A more succinct way of creating an array from the members in arguments

So argumentsToArray() invoked the array method slice() on the arguments object, which is like the
arg object below, but read-only. Then, insofar as we did not pass an index to begin the slice at the
number of elements to copy, slice() copies every element in arguments and returns those in an array.
This works for the reason that any member in an object named with a non-negative integer string is
really an element. So while an object like arguments does not inherit any array methods, it can contain
elements. So slice() copies the members named "0" through "17", but not the one named "length" or
"callee". Pretty cool, don’t you think?

var arg = {
 "0": [2010, 57, 105],
 "1": [2009, 62, 99],
 "2": [2008, 67, 95],
 "3": [2007, 68, 94],
 "4": [2006, 67, 95],
 "5": [2005, 67, 95],
 "6": [2004, 72, 89],
 "7": [2003, 75, 87],
 "8": [2002, 72, 89],
 "9": [2001, 62, 100],
 "10": [2000, 69, 93],
 "11": [1999, 78, 83],
 "12": [1998, 69, 93],
 "13": [1997, 79, 83],
 "14": [1996, 73, 89],
 "15": [1995, 58, 86],

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

250

 "16": [1994, 53, 61],
 "17": [1993, 75, 87],
 "length": 18,
 "callee": argumentsToArray
};

Inserting or Deleting Elements from an Array
Now then, say the elements for the 2000–2002 seasons are invalid inasmuch as the wins and losses are
reversed, and 2002 is in there twice. To delete those four invalid elements and insert new ones in their
place, we can invoke splice() on pirates.

• The first parameter is the index of the first element to delete, so 8 for the 2002
season.

• The second parameter is the number of elements to delete, which would be 4.

• From there, any additional parameters are elements to splice into the array. Note
that it’s OK to add more or fewer elements than you deleted; JavaScript will keep
the array indexes sequential behind the scenes.

So if we add three elements in place of the four invalid ones, the indexes in pirates remain
sequential, ordered 0 to 17 as Figure 6–39 displays.

var pirates = [[2010, 57, 105],
 [2009, 62, 99],
 [2008, 67, 95],
 [2007, 68, 94],
 [2006, 67, 95],
 [2005, 67, 95],
 [2004, 72, 89],
 [2003, 75, 87],
 [2002, 89, 72],
 [2002, 89, 72],
 [2001, 100, 62],
 [2000, 93, 69],
 [1999, 78, 83],
 [1998, 69, 93],
 [1997, 79, 83],
 [1996, 73, 89],
 [1995, 58, 86],
 [1994, 53, 61],
 [1993, 75, 87]];
pirates.splice(8, 4, [2002, 72, 89], [2001, 62, 100], [2000, 69, 93]);
console.dir(pirates);

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

251

Figure 6–39. Deleting and inserting elements into an array with splice()

Now, say the 2000–2002 seasons are simply missing. We can use splice() to insert those. That is to
say, splice() does not require you to delete any elements. So if we pass 0 for the second parameter to
splice(), JavaScript will insert the three new elements, and, as before, keep the indexes sequential
behind the scenes, as Figure 6–40 displays.

var pirates = [[2010, 57, 105],
 [2009, 62, 99],
 [2008, 67, 95],
 [2007, 68, 94],
 [2006, 67, 95],
 [2005, 67, 95],
 [2004, 72, 89],
 [2003, 75, 87],
 [1999, 78, 83],
 [1998, 69, 93],
 [1997, 79, 83],
 [1996, 73, 89],
 [1995, 58, 86],
 [1994, 53, 61],
 [1993, 75, 87]];
pirates.splice(8, 0, [2002, 72, 89], [2001, 62, 100], [2000, 69, 93]);
console.dir(pirates);

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

252

Figure 6–40. There’s no need to delete elements prior to inserting new ones with splice().

Conversely, splice() can be used just to delete elements. That is to say, we’re not required to insert
new elements in place of the ones we delete. So say pirates contains elements for the 1990–92 seasons
and we want to delete those so that only the seasons comprising the 18-year losing streak remain. To do
so, we’d simply pass 18 and 3 to splice(). JavaScript will then clip those three winning seasons from
pirates, as Figure 6–41 displays.

var pirates = [[2010, 57, 105],
 [2009, 62, 99],
 [2008, 67, 95],
 [2007, 68, 94],
 [2006, 67, 95],
 [2005, 67, 95],
 [2004, 72, 89],
 [2003, 75, 87],
 [2002, 72, 89],
 [2001, 62, 100],
 [2000, 69, 93],
 [1999, 78, 83],
 [1998, 69, 93],
 [1997, 79, 83],
 [1996, 73, 89],
 [1995, 58, 86],
 [1994, 53, 61],
 [1993, 75, 87],
 [1992, 96, 66],

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

253

 [1991, 98, 64],
 [1990, 95, 67]];
pirates.splice(18, 3);
console.dir(pirates);

Figure 6–41. There’s no need to replace deleted elements with new ones when invoking splice().

Even more succinctly, we could accomplish the same thing by simply passing 18. JavaScript will
then delete any elements from that index all the way to the end of the array. So, as Figure 6–42 displays,
passing 18 modifies pirates, just as passing 18 and 3 did.

var pirates = [[2010, 57, 105],
 [2009, 62, 99],
 [2008, 67, 95],
 [2007, 68, 94],
 [2006, 67, 95],
 [2005, 67, 95],
 [2004, 72, 89],
 [2003, 75, 87],
 [2002, 72, 89],
 [2001, 62, 100],
 [2000, 69, 93],
 [1999, 78, 83],
 [1998, 69, 93],
 [1997, 79, 83],
 [1996, 73, 89],
 [1995, 58, 86],
 [1994, 53, 61],

CHAPTER 6 ■ FUNCTIONS AND ARRAYS

254

 [1993, 75, 87],
 [1992, 96, 66],
 [1991, 98, 64],
 [1990, 95, 67]];
pirates.splice(18);
console.dir(pirates);

Figure 6–42. If we omit the second parameter, JavaScript deletes elements all the way to the end of the

array.

Summary
In this chapter, we explored functions and arrays, which are subtypes of the object value type. JavaScript
functions are first-class objects, which is to say they are values that can be expressed with function literal
notation. Functions also provide local scope. The diverse array of function techniques we explored in
this chapter derive from those two distinctive features.

I expanded on Chapter 5’s discussion of inheritance by showing how to pass on functions to child
objects. This technique allows you to build scripts for all sorts of purposes, including conditional
advance loading, lazy loading, recursion, function borrowing, and currying. All of these cunning tricks
have their place in a JavaScript application and make life a lot easier when you have to make a snappy
and useful application. You’ve learned a lot of advanced programming techniques in this chapter,
maybe without realizing it, which will stand you in good stead for the chapters to come.

We also explored methods that all arrays inherit by way of the prototype chain from
Array.prototype. Some of those like pop() and splice() modify, which is to say mutate, the array they
are invoked upon. Others like slice() or join() query an array in order to return a new value, but do not
modify the array. Those inherited methods, along with the length member, differentiate the array
subtype from the object type.

C H A P T E R 7

■ ■ ■

255

Traversing and Modifying the

DOM Tree

One of my favorite books as a child was Where the Wild Things Are by Maurice Sendak. If you are not
familiar with the story, it goes like this: one night, a little boy named Max, dressed in a wolf costume,
misbehaves and is sent to bed without supper. There, a sea, a wild forest, and mysterious creatures
spring from his imagination. Max sails to the land of the wild things, who crown him king. But even
though the creatures do his bidding, Max grows hungry for love. So, he sails home to find his supper
waiting for him, still hot.

In 2009, Spike Jonze directed a film adaptation of Where the Wild Things Are. As the book contains
just 338 words, Jonze and cowriter Dave Eggers obviously had to add dialogue. For example, prior to the
wild rumpus in the book, Jonze and Eggers have Max blurt, “I’ll be on my own side. By myself.” Then
later, as warring factions emerge, they have Max wonder, “How do I make everyone OK?”

Those two quotes came to mind as I wrote this chapter. Though Internet Explorer, Firefox, Safari,
and Opera faithfully implement ECMAScript, a standard we explored in the first six chapters, such is not
the case with DOM, a standard we will explore in this chapter and the next two. Not entirely anyway.
Firefox, Safari, and Opera faithfully implement DOM, too. Internet Explorer, on the other hand, does
not—at least not always. For some DOM features, Internet Explorer abides by DOM. For others, it blurts,
like little Max, “I’ll be on my own side. By myself.”

That’s the bad news. Now for the good. There’s no need for you to wonder like Max, “How do I make
everyone OK?” That is to say, how to solve the problem of warring browser factions in regard to DOM. By
way of feature testing, we will script DOM in the standard way for Firefox, Safari, or Opera, but in a
proprietary way for Internet Explorer. Note too that the three DOM chapters were written in order of
increasing Internet Explorer childishness. In other words, we will have to do some cross-browser
scripting in this chapter, a little more in Chapter 8, and quite a bit in Chapter 9. But you will be battle
hardened by then!

DOM Tree
DOM provides a way for JavaScript to represent the nested tags in HTML or XML markup as a tree of
nested objects, referred to as nodes. Like any other JavaScript value of the object datatype, a node is a
container for related variables and functions. Moreover, node members provide a way for scripters like
us to query and manipulate markup, doing things like finding, creating, or deleting content. But just
remember that a node is an object. Everything you learned in Chapter 5 works for a node.

Why not just call a node an object? Things are already confusing enough with having to remember
that arrays and functions are of the object datatype. Now we’re adding nodes to the list. Enough already!
Now before you get your dander up, bumpkin, there is a reason for saying node rather than simply
object. Not a bad one either. DOM is not just for JavaScript. Many other languages use it too, such as
Java, PHP, Perl, and so on. Those languages have their own datatypes. So, saying node rather than

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

256

JavaScript object makes DOM language neutral. Internet Explorer, for example, implements DOM with
COM objects, while Firefox, Safari, and Opera implement DOM with JavaScript objects. For this reason,
DOM objects do not behave like JavaScript objects in Internet Explorer, but do so in Firefox, Safari, and
Opera. So, there’s your first taste of Internet Explorer’s “I’ll be on my own side. By myself.” mischief.

■ Note If you are curious as to what COM objects are, visit the following Wikipedia page:

http://en.wikipedia.org/wiki/Component_Object_Model.

DOM is language-neutral, but it is a pretty loose standard, too. Rather than very specifically
documenting classes, DOM tells Internet Explorer, Firefox, Safari, and Opera what to do by way of
interfaces. Interfaces list methods and members that must be implemented together. Just as an interface
is an intentionally vague blueprint for an object, the JavaScript interpreter for Firefox implements DOM
features differently than the JavaScript interpreter for Internet Explorer or Safari does. Moreover, a node
in the DOM tree can implement more than one interface. For example, a <div> tag from your markup is
represented with an Element node in the DOM tree. Those have all the features listed in the Node,
Element, and HTMLElement interfaces, among others.

With this in mind, in order to know what members and methods are available for you to manipulate
a node with, you have to know which interfaces list those features. Although DOM is comprised of
hundreds of interfaces, we will explore just 11 in this chapter. Did I hear a sigh of relief?

Thought so. Anyway, knowing key interface names will also prove invaluable whenever you need to
look up features in a DOM reference, printed or online. For those reasons, I preface DOM methods and
members with their interface names. For example, the method createElement() is listed in the Document
interface, so I refer to it as Document.createElement(). That way, you know it can be invoked only on a
Document node. Also, you know to look under the Document interface in a DOM reference whenever you
want more information.

Alrighty then, these are the 11 DOM interfaces we will explore in this chapter:

Attr
CharacterData
Document
Element
HTMLCollection
HTMLDocument
HTMLElement
NamedNodeMap
Node
NodeList
Text

Is Every Node the Same?
Every node is not the same; there are 12 different kinds of nodes. But as a DOM scripting beginner, and
even later in life when you are a guru, you will really only ever work with four. First, every tag in your
markup is represented with an Element node. Second, tag attributes like id or href are represented with
Attr nodes. Next, not surprisingly, text content is represented with Text nodes. And finally, the whole
enchilada is represented with a Document node—in other words, the root to the DOM tree is a Document
node. Every other kind of node is a descendant of this root node.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://en.wikipedia.org/wiki/Component_Object_Model

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

257

This brings to mind one further point. Much DOM jargon is borrowed from traditional family trees.
So, this chapter will be sprinkled with terms like parent, child, sibling, ancestor, and descendant. These
terms mean what you think they mean. So, you already are in good shape with the tree jargon.

Interfaces Are Sensibly Named
Now then, as you might guess, every kind of node has the methods and members defined by the Node
interface, so every kind of node implements Node. That’s simple to remember, and things do not get any
harder from here. Element nodes have those defined by the Element interface. Text nodes pick up
features from the Text and CharacterData interfaces; Document nodes from the Document interface; Attr
nodes from the Attr interface. You get the picture.

For a DOM tree representing a web page (that is, HTML markup rather than XML), nodes pick up
some HTML-only features. For example, Element nodes representing HTML tags like <div> receive
members from the HTMLElement and HTMLDivElement interfaces. Note that the former defines members
common to every element in an HTML node tree, such as id and class.

Querying the DOM Tree
To start this example, download seven.html (shown here) from the chapter downloads at
www.apress.com. Then open it with Firefox and press F12 to enable Firebug.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Firebug</title>
</head>
<body>
<div>
 <h4>Talk to me:</h4>

 <li id="twitter" class="sprite">Twitter
 <li id="facebook" class="sprite">Facebook
 <li id="flickr" class="sprite">Flickr
 <li id="linkedin" class="sprite">LinkedIn

</div>
</body>
</html>

As noted, the root to the DOM tree representing this simple XHTML file is a Document node.
Typically, you query this object by way of the document member of window. In other words, document is an
identifier for a global variable. With this in mind, let’s query document in Firebug by typing its identifier
and clicking Run:

document;
// Document dom.html

Firebug tells you the node’s type and the URL of the markup it represents. Now let’s query a few
members that document, like any other node in the DOM tree, receives from the Node interface. First,
nodeType contains an integer between 1 and 12 that tells you the kind of node you have on your hands:

http://www.apress.com
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://www.twitter.com
http://www.facebook.com
http://www.flickr.com
http://www.linkedin.com

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

258

document.nodeType;
// 9

Did you get 9? Yup, me too. nodeType will always be 9 for a Document node. And for Element and Text
nodes, nodeType will always be 1 and 3, respectively. Write those down for later reference, as in Table 7–1.

Table 7–1. nodeType Literals for Commonly Scripted Nodes

Node nodeType Literal

Element 1

Text 3

Document 9

nodeType commonly appears in the boolean expression for if conditions. Say you want to be sure
you have an Element node on your hands, you might write an if condition comparing nodeType to 3. If
=== returns true, you may query any of the members or invoke any of the methods listed in the Element
interface in the if block. So, you do something like this:

if (nodeFromTree.nodeType === 3) {
 // do something to Element node
}

In addition to testing nodeType with number literals, you can do so with constants, that is to say, in
Firefox, Safari, and Opera. As of version 8, Internet Explorer still does not implement nodeType constants.
However, you can create those for Internet Explorer. Just code an if condition testing whether window
has a Node member. If not, create one like so:

if (typeof Node === "undefined") {
 var Node = {ELEMENT_NODE: 1, TEXT_NODE: 3, DOCUMENT_NODE: 9}
}

Note that you are just adding the nodeType constants commonly scripted. There are nine more of
those. But you won’t need them for anything.

Having created the Node object in the event that it is missing, you can now rewrite the nodeType test
like so:

if (nodeFromTree.nodeType === Node.ELEMENT_NODE) {
 // do something to Element node
}

Constants do read better than number literals. But most JavaScript programmers just go with the
number literals, viewing laziness as a virtue. Even so, let’s add a nodeType constant column, as in Table
7–2.

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

259

Table 7–2. nodeType Literals and Constants for Commonly Scripted Nodes

Node nodeType Literal nodeType Constant

Element 1 Node.ELEMENT_NODE

Text 3 Node.TEXT_NODE

Document 9 Node.DOCUMENT_NODE

Now let’s query the nodeName member. Note that, for a Document node, this will always be the string
"#document":

document.nodeName;
// "#document"

For Element nodes, nodeName will be the name of the markup tag in uppercase letters, such as "DIV"
for a <div> element and "LI" for an element. It doesn’t matter whether your markup contains
lowercase or uppercase tags; nodeName always contains a string of uppercase letters.

On the other hand, nodeName for a Text node, like that for a Document node, is carved in stone. This
will always be the string "#text". Let’s add a column for nodeName, as in Table 7–3.

Table 7–3. nodeType Literals, nodeType Constants, and nodeName Values for Commonly Scripted Nodes

Node nodeType Literal nodeType Constant nodeName

Element 1 Node.ELEMENT_NODE Tag name from markup

Text 3 Node.TEXT_NODE "#text"

Document 9 Node.DOCUMENT_NODE "#document"

Finally, in addition to nodeType and nodeName, every node regardless of type has a nodeValue
member. So, let’s query this member for document in Firebug:

document.nodeValue;
// null

Did you get null? Good. For a Document or Element node, nodeValue will always be null. On the other
hand, for a Text node, nodeValue will contain the text content from your markup. So, add a fourth
column for nodeValue to finish our node decoder table, which appears in Table 7–4.

Table 7–4. Our Final Secret Decoder Table for Commonly Scripted Nodes

Node nodeType Literal nodeType Constant nodeName nodeValue

Element 1 Node.ELEMENT_NODE Tag name from
markup

null

Text 3 Node.TEXT_NODE "#text" Text from
markup

Document 9 Node.DOCUMENT_NODE "#document"
null

null

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

260

Now that you can figure out the kind of node you are sitting on in the DOM tree, let’s go ahead and
start climbing about the nodes representing the markup.

Same Jargon as for a Family Tree
The DOM tree is like a family tree in that terms like parent, child, and sibling apply. So, the node one tier
above another is its parent. Conversely, any nodes one tier beneath another are its children. Sibling
nodes are those on the same tier.

A Document node will never have a parent or siblings but will always have children. On the other
hand, a Text node will always have a parent but will never have children. Like a Text node, an Element
node will always have a parent. But unlike a Text node, an Element node, unless it is representing an
empty tag such as or <meta>, will always have children. Both a Text or Element node may have
siblings.

With that in mind, if you ascend the DOM, you will eventually dead end at a Document node.
Conversely, if you descend the DOM, you will likely dead end at a Text or empty Element node. Moving
laterally generally takes you to an Element or Text node.

Traversing the DOM Tree
To traverse the DOM tree, you simply jump to a child, sibling, or parent node by way of one of the
following members listed in the Node interface:

Node.childNodes
Node.firstChild
Node.lastChild
Node.nextSibling
Node.previousSibling
Node.parentNode

Let’s begin with the first one in the list, Node.childNodes.

Descending with childNodes
Now then, like any of the 12 node types, Document, Element, and Text nodes have a childNodes member
containing a NodeList, which is an arraylike object. Remember from earlier in the book that an arraylike
object contains elements and a length property but lacks array methods such as slice() or pop().
childNodes is aptly named in that it contains any child nodes, which is to say direct descendants, of a
parent node. Note that, for Text nodes, childNodes will always be empty and therefore have a length of 0.
Note too that childNodes will never contain null. That is, childNodes will always contain a NodeList
object, even if the parent node is childless.

So, how many children does document have?

document.childNodes;
// [DocumentType, html]

Just two. First, a DocumentType node for:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Second, an Element node representing our <html> element. Note that, for document, childNodes may
contain only one Element node and one DocumentType node. Note too that document has a member

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

261

named documentElement that refers to the one Element child node that it is permitted by DOM. For web
pages, documentElement will always refer to the <html> Element node. Finally, although Firefox, Safari,
and Opera implement DocumentType nodes, Internet Explorer does not. So for Internet Explorer,
document.childNodes would contain just one member, the <html> Element node.

To query an element in a NodeList, use the [] operator like so:

document.childNodes[1].nodeName;
// "HTML"

Another way to query a NodeList element is with NodeList.item():

document.childNodes.item(1).nodeType;
// 1

But since [] takes fewer keystrokes, no one ever queries a NodeList with item().
document has a few shortcut members referring to <body>, <html>, and window. Those are named body,

documentElement, and defaultView, respectively. So try them out in Firebug. Remember that a
commented line is your cue to click Run; in the following example, you would do so five times.

document.body.nodeName;
// "BODY"
document.documentElement.nodeName;
// "HTML"
var yogurt = "Brown Cow";
document.defaultView.yogurt;
// "Brown Cow"
window.yogurt;
// "Brown Cow"
yogurt = "Stonyfield";
document.defaultView.yogurt;
// "Stonyfield"

Verify your work with Figure 7–1.

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

262

Figure 7–1. Querying shortcut members of the document node

Ascending with parentNode
You can descend the DOM tree with childNodes, but is there a way to do the inverse? Of course. You can
ascend with parentNode, a member defined by every type of node. This one is fairly predictable. For a
Document node, parentNode is null. For a Text node, parentNode is an Element node. And for an Element
node, parentNode is either an Element or a Document node. So, although people have two parents, Text
and Element nodes have just one. Kind of like bacteria.

Alright, given that the <html> element contains the <body> element, document.body.parentNode
ought to refer to the <html> element. Let’s see whether this is so:

document.body.parentNode.nodeName;
// "HTML"

In turn, document is the parent of the <html> element:

document.body.parentNode.parentNode.nodeName;
// "#document"

But as I said, document is an orphan, which means its parentNode member contains null:

document.parentNode;
// null

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

263

Muddying the Waters with Whitespace
Now for some bad news. For an Element node, childNodes may contain Text nodes representing the
whitespace you formatted your markup with. Browsers create a single Text node to represent the
whitespace between tags. If you separate two tags with a new line and four spaces, the browser will
create a Text node with the data member "\n " to represent the whitespace. Note that browsers only
ever create one Text node to represent any combination of whitespace between markup tags. So initially,
childNodes will not have two consecutive whitespace Text nodes. However, if you later add or remove
nodes by script, childNodes may then contain consecutive whitespace Text nodes. Later in the chapter,
that very thing will happen.

Let’s take a look at the markup and figure out where the whitespace Text nodes are:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Firebug</title>
</head>
<body>
<div>
 <h4>Talk to me:</h4>

 <li id="twitter" class="sprite">Twitter
 <li id="facebook" class="sprite">Facebook
 <li id="flickr" class="sprite">Flickr
 <li id="linkedin" class="sprite">LinkedIn

</div>
</body>
</html>

First, since childNodes for a Document node may not contain Text nodes, JavaScript does not create a
Text node for the new line between our doctype and html tags:

document.childNodes;
// [DocumentType, html]

On the other hand, for the tag, which is represented by an Element node, childNodes contains
five whitespace Text nodes. To verify this, enter and run the following in Firebug:

document.childNodes[1].childNodes[1].childNodes[1].childNodes[3].childNodes;
 // [
// <TextNode textContent="\n ">,
// li#twitter,
// <TextNode textContent="\n ">,
// li#facebook,
// <TextNode textContent="\n ">,
// li#flickr,
// <TextNode textContent="\n ">,
// li#linkedin,
// <TextNode textContent="\n ">
//]

With this in mind, you would query the Flickr with the childNodes index of 5 rather than 2:

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://www.twitter.com
http://www.facebook.com
http://www.flickr.com
http://www.linkedin.com

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

264

document.childNodes[1].childNodes[1].childNodes[1].childNodes[3].childNodes[5];
// <li id="flickr">

■ Note Internet Explorer does not bother to represent markup formatting with whitespace Text nodes. Don’t you

wish that Firefox, Safari, and Opera would disregard this most stupid of all DOM requirements, too?

Coding Cascade Style
Oftentimes. you will find yourself chaining together a bunch of . or [] refinements while querying the
DOM. Rather than write one extraordinarily long line of code, break the statement over several lines by
coding cascade style. To do so, follow the . operator with a new line and indentation of two or four
spaces. Note that in this book all indents are two spaces. Remember from Chapter 3 that breaking a
statement between the operands of a binary operator prevents JavaScript from implicitly terminating
lines with semicolons. Therefore, separating the . operator from its right operand by a new line and two
spaces is totally safe. So, enter and run the following in Firebug. Do not key in the comments; they are
present for information as you read the book only:

document.
 childNodes[1]. // <html>
 childNodes[1]. // <body>
 childNodes[1]. // <div>
 childNodes[3]. //
 childNodes[5]. //
 childNodes[0]. // <a>
 childNodes[0]. // Text node
 data;
// "Flickr"

So here you descended seven tiers of the DOM tree in order to query the "Flickr" Text node with a
single statement spanning nine lines.

document.
 childNodes[1].
 childNodes[1].
 childNodes[1].
 childNodes[3].
 childNodes[5].
 childNodes[0].
 childNodes[0].
 nodeValue;
// "Flickr"

As illustrated in Figure 7–2, data and nodeValue both contain the string of text the Text node
represents.

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

265

Figure 7–2. nodeValue and data contain the same string of text.

However, data requires fewer keystrokes and so is preferable to nodeValue. But either way will do,
since both members contain the same value. To illustrate this in Firebug, let’s change the final link from
"LinkedIn" to "Linked In" with data and then read the new value with nodeValue.

document.
 childNodes[1].
 childNodes[1].
 childNodes[1].
 childNodes[3].
 childNodes[7].
 childNodes[0].
 childNodes[0].
 data = "Linked In";
document.
 childNodes[1].
 childNodes[1].
 childNodes[1].
 childNodes[3].
 childNodes[7].
 childNodes[0].
 childNodes[0].
 nodeValue;
// "Linked In";

Verify your work with Figure 7–3.

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

266

Figure 7–3. Writing the data member changes the nodeValue member, too.

Note that this changes the display in Firefox. However, if you press Ctrl+U (Cmd+U) to view the
XHTML markup, the link still contains "LinkedIn", as Figure 7–4 displays. So, JavaScript modifies the
DOM tree floating around in memory, not the XHTML file on the server.

Figure 7–4. JavaScript modifies the DOM tree, not the markup it represents.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

267

Finally, let’s try ascending cascade style with parentNode. Doing so is much simpler than descending
with childNodes insofar as there are no element indexes, muddied by whitespace Text nodes, for you to
worry about. So, in Firebug, click Clear in both panels, and save the "Flickr" Text node to a variable
named myText.

var myText = document.
 childNodes[1].
 childNodes[1].
 childNodes[1].
 childNodes[3].
 childNodes[5].
 childNodes[0].
 childNodes[0];

Then ascend from myText to the <html> element by chaining parentNode queries.

myText.parentNode.
 parentNode.
 parentNode.
 parentNode.
 parentNode.
 parentNode;
// <html xmlns="http://www.w3.org/1999/xhtml">

Verify your work with Figure 7–5.

Figure 7–5. Chaining parentNode queries

Note that, while ascending the DOM tree with parentNode from a Text or Element node, you will only
ever pass through an Element node, and eventually you will dead end at the Document node. In Chapter 9,
you will learn to lay event listener functions such as traps along this parentNode path upward through the

http://www.w3.org/1999/xhtml

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

268

DOM tree. Those event listeners will then be triggered as event objects move along this parentNode trail.
We will cover event objects in Chapter 9.

Moving Laterally
So, with childNodes and parentNode, you can move vertically within the DOM tree. But what if you want
to move laterally? Two Node members, nextSibling and previousSibling, provide a way to do so. Like
human siblings, node siblings have the same parent. So in the markup, the four Element nodes and
five formatting Text nodes are all siblings.

Click Clear in both Firebug panels, and try the following nextSibling sample:

var myLI = document.
 childNodes[1].
 childNodes[1].
 childNodes[1].
 childNodes[3]. //
 childNodes[0]. // <TextNode textContent="\n ">
 nextSibling; //
myLI;
// <li id="twitter" class="sprite">

So here you went from the first formatting Text node contained by the to the first Element
node. Just as with childNodes and parentNode, you can chain nextSibling queries, too. Try the following
cascade, and then verify your work with Figure 7–6.

var myLI = document.
 childNodes[1].
 childNodes[1].
 childNodes[1].
 childNodes[3].
 childNodes[1];
myLI.nextSibling.
 nextSibling.
 nextSibling.
 nextSibling.
 nextSibling.
 nextSibling;
// <li id="linkedin" class="sprite">

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

269

Figure 7–6. Moving laterally by chaining nextSibling queries

Here you went from the first to the fourth . Not surprisingly, previousSibling does the
reverse of nextSibling. So, let’s go from the fourth to the first with previousSibling:

var myLI = document.
 childNodes[1].
 childNodes[1].
 childNodes[1].
 childNodes[3].
 childNodes[7];
myLI;
// <li id="linkedin" class="sprite">
myLI.previousSibling.
 previousSibling.
 previousSibling.
 previousSibling.
 previousSibling.
 previousSibling;
// <li id="twitter" class="sprite">

Now then, what would happen if a node does not have a next or previous sibling? I’ll give you a hint:
DOM nodes are of the object datatype and are therefore saved to the heap just like an ordinary object,
array, or function would be. So, how do you represent no data on the heap? Yup, with null.

So, there it is. Let’s verify this in Firebug by querying nextSibling on the final child node of the
like so:

var myUL = document.
 childNodes[1].
 childNodes[1].
 childNodes[1].
 childNodes[3];
myUL.childNodes[myUL.childNodes.length - 1].nextSibling;
// null

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

270

Similarly, querying previousSibling on the first child node of the returns null, too:

var myUL = document.
 childNodes[1].
 childNodes[1].
 childNodes[1].
 childNodes[3];
myUL.childNodes[0].previousSibling;
// null

Now then, is there a simpler way to query the last child node of the than keying in
childNodes[myUL.childNodes.length - 1]? Oh, you betcha. Just query the aptly named lastChild
member:

var myUL = document.
 childNodes[1].
 childNodes[1].
 childNodes[1].
 childNodes[3];
myUL.lastChild.previousSibling;
// <li id="linkedin" class="sprite">

Conversely, every kind of node has a firstChild member referring to its first child node. So rather
than querying childNodes[0], you can save a few keystrokes with firstChild. Note that, in addition to
saving keystrokes, lastChild and firstChild read better than their childNodes equivalents.

So, click Clear in both Firebug panels and give firstChild a try, verifying this and the previous
sample with Figure 7–7:

var myUL = document.
 childNodes[1].
 childNodes[1].
 childNodes[1].
 childNodes[3];
myUL.firstChild.nextSibling;
// <li id="twitter" class="sprite">

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

271

Figure 7–7. Querying lastChild and firstChild members

Converting a NodeList to an Array
Even though childNodes contains elements that you query like an array (with an integer index and the []
operator), childNodes is not an array. Rather, as mentioned earlier, childNodes is a NodeList object. So, it
does not have any array methods like slice() or pop(). Additionally, NodeList objects are live DOM
queries. That is, JavaScript has to re-create the NodeList any time you query one of its members,
including length. With those two things in mind, scripters oftentimes convert NodeList objects to an
array. Doing so not only makes the array methods available but also eliminates the live DOM query
sluggishness.

Click Clear in both Firebug panels, and let’s convert a NodeList object to an array. For this sample,
you will work with the NodeList returned by the childNodes member of the element. Yup, the one
with five Text nodes and four element nodes in it.

var myArray = document.
 childNodes[1].
 childNodes[1].
 childNodes[1].
 childNodes[3].
 childNodes;
myArray = Array.prototype.slice.call(myArray, 0);

Now loop through myArray, deleting formatting Text nodes with the array method, splice():

var i = 0;
while (i < myArray.length) {
 if (myArray[i].nodeType !== 1) {
 myArray.splice(i, 1);
 continue;
 }
 i ++;

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

272

}
myArray;
// [li#twitter.sprite, li#facebook.sprite, li#flickr.sprite, li#linkedin.sprite]

Now myArray just contains the four Element nodes and therefore has a length of 4.

myArray.length;
// 4

On the other hand, childNodes still has a length of 9.

var myUL = document.
 childNodes[1].
 childNodes[1].
 childNodes[1].
 childNodes[3];
myUL.childNodes.length;
// 9

Verify your work in this section with Figure 7–8.

Figure 7–8. Converting a NodeList to an array

So, initially myArray and childNodes had nine arrows on the stack pointing to nine values on the
heap. In other words, there were eighteen arrows on the stack and nine values on the heap. You then
deleted five arrows from the stack with splice(). Doing so left two arrows per Element node but one
arrow per Text node.

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

273

Remember from Chapter 5 that values on the heap are manipulated by way of arrows on the stack.
With this in mind, you can now manipulate the four elements via their arrows in myArray, while
being able to manipulate myArray with array methods like splice() or pop(). In turn, the code runs faster
too since you are working with an array now rather than a live NodeList.

Converting a NodeList to an Array for Internet Explorer
One of the many failings Internet Explorer has in regard to DOM is that NodeList objects are not
JavaScript objects (they are COM objects). Therefore, you cannot pass a NodeList as the first parameter
to Function.call() in Internet Explorer because doing so will return an error since that parameter must
be a JavaScript object. But don’t worry. By rewriting the NodeList to array conversion with a try catch
statement, which is covered in Chapter 4, you can accommodate Internet Explorer, too. So click Clear in
both Firebug panels, and then enter and run the following cross-browser NodeList to array conversion.

var myArray, i, j, myNodeList = document.
 childNodes[1].
 childNodes[1].
 childNodes[1].
 childNodes[3].
 childNodes;
try {
 myArray = Array.prototype.slice.call(myNodeList, 0);
} catch (errorObject) {
 myArray = [];
 for (i = 0, j = myNodeList.length; i < j; i += 1) {
 myArray[i] = myNodeList[i];
 }
}
myArray instanceof Array;
// true

Verify your work with Figure 7–9.

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

274

Figure 7–9. Converting a NodeList to an array for Internet Explorer

Firefox, Safari, and Opera convert the NodeList to an array by way of the try block, while Internet
Explorer does so by way of the catch block, which JavaScript runs in the event that the try block throws
an error.

Because you are running the code in Firefox, you need to make the try block throw an error in order
to test the catch block. To do so, simply mistype the myNodeList identifier in the parameter list and then
click Run:

var myArray, i, j, myNodeList = document.
 childNodes[1].
 childNodes[1].
 childNodes[1].
 childNodes[3].
 childNodes;
try {
 myArray = Array.prototype.slice.call(myNodes, 0);
} catch (errorObject) {
 myArray = [];
 for (i = 0, j = myNodeList.length; i < j; i += 1) {
 myArray[i] = myNodeList[i];
 }
}
myArray instanceof Array;
// true

Both our try path, which Firefox, Safari, and Opera will take, and our inelegant catch path, which
only Internet Explorer will take, run fine. Note that, whenever you loop through a NodeList and do not
add or delete nodes from it within the body of the loop, you can improve performance by saving the
length member to a variable. Why would that be? length, like any other member in a NodeList, is a live

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

275

DOM query. So, by saving length to a variable named j in the previous sample, JavaScript queried DOM
one time rather than nine.

■ Note Every object in the DOM tree is represented with a COM object rather than a JavaScript object in Internet

Explorer. This failing will be a thorn in your side for DOM scripting.

Traversing the DOM without childNodes
childNodes is not really necessary because you can navigate to any node in the DOM tree by way of the
firstChild, nextSibling, lastChild, previousSibling, and parentNode members. DOM traversal
functions typically are implemented by way of those five members. So, click Clear in both Firebug
panels, and let’s write one of those ourselves:

function traverseTree(node, func) {
 func(node);
 node = node.firstChild;
 while (node !== null) {
 arguments.callee(node, func);
 node = node.nextSibling;
 }
}

traverseTree() works with two parameters. node is obviously a node from the DOM tree. func is a
function to invoke on node. By way of recursion, which I covered in Chapter 6, of the firstChild and
nextSibling members, traverseTree() descends the DOM tree and invokes func on every descendant of
the first element you pass to it in node. So, save the element to a variable named root and have that
be the starting point where traverseTree() descends from. Then pass in a function literal for func that
will invoke toLowerCase() on the data member of any Text node you happen upon.

function traverseTree(node, func) {
 func(node);
 node = node.firstChild;
 while (node !== null) {
 arguments.callee(node, func);
 node = node.nextSibling;
 }
}
var root = document.
 childNodes[1].
 childNodes[1].
 childNodes[1].
 childNodes[3];
traverseTree(root, function(node) {
 if (node.nodeType === 3) {
 node.data = node.data.toLowerCase();
 }
});

Now click Run and verify your work with Figure 7–10.

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

276

Figure 7–10. Using traverseTree() to convert the text of our list items to lowercase

One final note on traverseTree(): although you stepped through child nodes by way of firstChild
and nextSibling, you could have done so with lastChild and previousSibling, too. Click the Refresh
icon in Firefox to revert the text in the elements to that from our markup, and then simply edit
traverseTree(), changing firstChild to lastChild and nextSibling to previousSibling. Click Run to
verify that traverseTree() works just as well traversing child nodes in reverse. More often than not, you
will traverse child nodes moving forward with nextSibling rather than in reverse with previousSibling.

function traverseTree(node, func) {
 func(node);
 node = node.lastChild;
 while (node !== null) {
 arguments.callee(node, func);
 node = node.previousSibling;
 }
}
var root = document.
 childNodes[1].
 childNodes[1].
 childNodes[1].
 childNodes[3];
traverseTree(root, function(node) {
 if (node.nodeType === 3) {
 node.data = node.data.toLowerCase();
 }
});

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

277

Finding an Element by ID
Traversing the node tree is one way to find an element. But the most direct way is simply to pass
Document.getElementById() the id of the element you want to work with. So, click Clear in both Firebug
panels and Refresh in Firefox (to revert its display to the original markup). Then retrieve one of the
elements by its id:

var myLI = null;
myLI = document.getElementById("facebook");
// <li id="facebook" class="sprite">

Now that you have an element in myLI, let’s do something to it.
Hmm.
Now let’s see.
I know, why don’t you change the text of its child Text node and then correspondingly update its id?

myLI.firstChild.firstChild.data = "Bebo";
myLI.firstChild.href = "http://www.bebo.com";
myLI.id = "bebo";

Now verify that Firefox updated its display, as in Figure 7–11.

Figure 7–11. Finding an element by its id

Click Clear in both Firebug panels, and query myLI to verify that JavaScript changed the id to "bebo"
from "facebook":

myLI;
// <li id="bebo" class="sprite">

Then verify that the href attribute was updated, too:

myLI.firstChild;
//

Did everything work for you? Great! Now it’s time for some notes on Document.getElementById().
First, type its identifier carefully. JavaScript is case sensitive, so getElementByID is not the same as

http://www.bebo.com
http://www.bebo.com

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

278

getElementById. Second, if no element in your markup has the desired id, then
Document.getElementById() returns null. This is what you ought to expect inasmuch as an Element node
is of the object datatype, which is to say its value is stored on the heap. Finally, in the event that more
than one element in your markup has the desired id, which is a markup error,
Document.getElementById() may return null, or it may randomly return one of the elements. Note that,
other than in Internet Explorer prior to version 8, the id parameter is case sensitive in all relevant
browsers. Therefore, for our with an id of "twitter", passing Document.getElementById() the
parameter "Twitter" returns null in Firefox, Safari, Opera, and Internet Explorer 8+. On the other hand,
Internet Explorer 7 or older returns the by mistake. With this in mind, do not give different elements
id attributes that vary only by case, such as "sprite" and "Sprite", since Internet Explorer may consider
those to be the same id.

Finding Elements by Their Tag Names
Oftentimes, you will want to do some stuff to elements with the same tag name. Say you want to turn
every element with a class of "sprite" into a CSS sprite. Rather than traverse the DOM tree with a
function like traverseTree(), simply pass either Document.getElementsByTagName() or
Element.getElementsByTagName() a string indicating the tag name of the elements you want, and
JavaScript will return a NodeList containing those elements for your scripting pleasure. Take care to note
that it is Elements, plural, in getElementsByTagName(), but it’s Element, singular, in getElementById().

So, you can call getElementsByTagName() on either an Element or a Document node. What’s the
difference? If you want JavaScript to return all the elements in your markup that have the same tag
name, go with Document.getElementsByTagName(). On the other hand, if you just want descendants of a
certain element that have the same tag name, meaning you just want to work with a branch of the DOM
tree rather than the whole thing, then turn to Element.getElementsByTagName().

Click Refresh in Firefox (to revert the second to "Facebook") and then click Clear in both
Firebug panels. Let’s try Document.getElementsByTagName() first:

var myElements = document.getElementsByTagName("a");
myElements;
// [a www.twitter.com, a www.facebook.com, a www.flickr.com, a www.linkedin.com]

JavaScript returns a NodeList containing every <a> Element node from the DOM tree. myElements
contains four members. Now let’s try Element.getElementsByTagName() on just a branch of the tree:

myElements = document.getElementById("twitter").getElementsByTagName("a");
// [a www.twitter.com]

Verify your work with Figure 7–12.

http://www.twitter.com
http://www.facebook.com
http://www.flickr.com
http://www.linkedin.com
http://www.twitter.com

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

279

Figure 7–12. Retrieving elements by their tag name from the DOM tree and from just a branch

Here JavaScript returns every <a> element that is a descendant of the Twitter element. So,
myElements contains a NodeList with just one member, the Twitter <a>. Because
Element.getElementsByTagName() searches for fish in a smaller pond than
Document.getElementsByTagName() does, it is more efficient. Thus, favor
Element.getElementsByTagName() whenever you can.

Finding Elements by Class
With Document.getElementsByTagName() or Element.getElementsByTagName(), you can find elements by
their tag name. Document.getElementById() provides a way to find elements by the value of their id
attribute. Is there a method, say Document.getElementsByClass(), that would enable you to find elements
by the value of their class attribute? No, sorry. But you can write one with the help of the DOM traversal
function traverseTree().

Take a moment to remember where you put traverseTree(). Then click Clear in Firebug, and paste
traverseTree() there. Or, if you forgot to save traverseTree() for later, just retype it like so:

function traverseTree(node, func) {
 func(node);
 node = node.firstChild;
 while (node !== null) {
 arguments.callee(node, func);
 node = node.nextSibling;
 }
}

Now define a function named findClass() that works with two arguments. name will contain the
class to find, and root will contain a node to descend the DOM tree from. Note that root is optional and
will default to the <body> element by way of the || operator, which I covered in Chapter 3. I’ll present my
code in a moment, but try writing the code yourself first and see how they compare at the end. Next,

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

280

create an array named found, which will be the return value of findClass(). found will contain any
elements of the class name that are descendants of root. Say that three times fast!

Now invoke traverseTree(), passing root as the first parameter and a function literal for the second
parameter. Note that the first time that traverseTree() calls the anonymous function, it will pass root as
the value of the argument node. Thereafter, traverseTree() will pass, one by one, every descendant of
root.

So, the anonymous function will be passed every descendant of root in turn. Now what will it do
with all those nodes? It will determine whether the node is an Element node with a class attribute other
than the default "" empty string. You kill both of those birds with one stone with an if condition for the
expression !! node.className. Of the 12 node types, only Element nodes have a className member. For
the other 11, including those bothersome Text nodes representing markup formatting, node.className
returns undefined. Remember from earlier in the book that the !! idiom converts a value of a datatype to
a boolean and that undefined and "" convert to false. So, at the end of the day, JavaScript will run the if
block only if node refers to an Element node that is a member of one or more classes.

Now className contains a string; therefore, you can manipulate its value with any of the wrapper
methods that I covered in Chapter 2. In the event that the element is a member of two or more classes,
those will be separated by whitespace. So, with those two things in mind, let’s invoke String.split() on
the className value and save the returned array to a names variable. Note that you declare names and the
traditional loop variable i in the initialization part of a for loop. In this way, JavaScript creates the names
array before taking the first roundabout of the for loop.

In the for block, you compare each member of names to the class you are trying to match, which is in
the argument name. In the event you have a winner, you append the element in node to found by way of
Array.push(), which I covered in Chapter 5. Then at the end of the day, findClass() returns the found
array. Here’s my finished code:

function traverseTree(node, func) {
 func(node);
 node = node.firstChild;
 while (node !== null) {
 arguments.callee(node, func);
 node = node.nextSibling;
 }
}
function findClass(name, root) {
 var found = [];
 root = root || document.body;
 traverseTree(root, function(node) {
 if (!! node.className) {
 for (var names = node.className.split(/\s+/), i = names.length; i --;) {
 if (names[i] === name) {
 found.push(node);
 }
 }
 }
 });
 return found;
}

Now for the moment of truth. Pass "sprite" as the first parameter to findClass(), and let root
default to <body>. Take a deep breath and click Run. Then verify your work with Figure 7–13.

function traverseTree(node, func) {
 func(node);
 node = node.firstChild;

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

281

 while (node !== null) {
 arguments.callee(node, func);
 node = node.nextSibling;
 }
}
function findClass(name, root) {
 var found = [];
 root = root || document.body;
 traverseTree(root, function(node) {
 if (!! node.className) {
 for (var names = node.className.split(/\s+/), i = names.length; i --;) {
 if (names[i] === name) {
 found.push(node);
 }
 }
 }
 });
 return found;
}
findClass("sprite");
// [li#twitter.sprite, li#facebook.sprite, li#flickr.sprite, li#linkedin.sprite]

Did JavaScript return an array containing your four elements? Good job. You’re not a JavaScript
bumpkin anymore!

Figure 7–13. Retrieving elements of the same class

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

282

Querying Attributes Like a Member
In addition to the members defined in the Node and Element interfaces, every Element node picks up id,
className, title, lang, and dir members from HTMLElement and a style member from
CSSStyleDeclaration. These members provide a way to query the tag attributes id, class, style, title,
lang, and dir. Note that class is one of the reserved keywords in JavaScript, so the member is named
className rather than class.

There are three ways to query attributes. The first and preferred way is with the . or [] operator. It’s
just like querying a Node member like nodeType or an Element member like tagName.

Click Clear in both Firebug panels, and let’s query some members from HTMLElement:

var myElement = document.getElementById("twitter");
myElement.className;
// "sprite"
myElement.id;
// "twitter"
myElement.dir;
// ""

As you can see, if an attribute is set in your markup, JavaScript returns the value (as a string).
Otherwise, it returns the default, "". You get a truthy string if the attribute is set and a falsy string if not,
which provides a way to branch flow with an if condition.

Note that, like any member of an object, you may query an attribute with the . operator and an
identifier. Or you can do so with the [] operator and a string, like so:

var myElement = document.getElementById("twitter");
myElement["className"];
// "sprite"

Generally, attributes contain a string. However, style is an exception. Rather than a string, style
contains a CSSStyleDeclaration object, which I will cover in gory detail in Chapter 8. Note that
CSSStyleDeclaration is an arraylike object. Remember that it has a length member but no array
methods. Element.style.length returns an integer equal to the number of inline CSS declarations in
your markup or added by script. So, style for the Twitter refers to a CSSStyleDeclaration object
with a length of 0:

var myElement = document.getElementById("twitter");
myElement.style;
// CSSStyleDeclaration length=0

Simple elements like and do not have any additional attributes other than id, class, style,
title, lang, and dir, but the rest do. For those, there are myriad DOM interfaces that simply define
members mirroring the additional tag attributes. For example, a <style> element picks up the disabled,
media, and type members from a DOM interface named HTMLStyleElement. Note that essentially all of the
additional element interfaces follow that naming convention: HTML and then the tag name in title case and
then Element. For a <div> element, the DOM interface is named HTMLDivElement. For a <select> element,
the DOM interface is named HTMLSelectElement, and so on. Keep that in mind whenever you refer to DOM
documentation or a JavaScript tome, because doing so will save you some time.

Querying Attributes with Methods
Although I recommend that you query element attributes in the same way that you query other element
members, which is to say with the . or [] operator, the Element interface defines 13 methods that work
only with markup attributes. You can query id with them but not nodeType.

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

283

Now for some good news: of those 13 methods, I will cover just three. First, to read the value of an
attribute, pass Element.getAttribute() the name of the attribute as a string. The method will then return
the attribute value as a string. In the event that the attribute is not defined, Element.getAttribute()
ought to return "". But most browsers return null by mistake. Because both "" and null are falsy and
every string other than "" is truthy, this bug generally is not a problem. For example, an if condition
with truthy and falsy paths will work regardless of whether the browser returns "" or null for an
undefined attribute.

■ Tip To verify that Element.getAttribute() ought to return "" rather than null, visit www.w3.org/TR/DOM-

Level-2-Core/core.html and scroll down to the Element interface. Or just take my word for it and be done.

Enough talk. Double-clear Firebug, and try querying an attribute or two with
Element.getAttribute():

var myElement = document.getElementById("twitter");
myElement.getAttribute("class");
// "sprite"

Note that, while you query the class member with the . or [] operator and the identifier className,
you simply pass the string "class" to Element.getAttribute(). Now why would that be?

Hmm.
There are forbidden identifiers, class being one of them, but no forbidden strings.
Uh-huh.
Now then, let’s see whether Firefox returns "" or null for an undefined attribute:

var myElement = document.getElementById("twitter");
myElement.getAttribute("dir");
// null

So, Firefox has the null bug, too. Bad Firefox, bad.
Now try to query a member, say tagName, that is not an attribute with Element.getAttribute():

var myElement = document.getElementById("twitter");
myElement.getAttribute("tagName");
// null

On the other hand, querying tagName as a member with the . or [] operator returns "LI" rather than
null:

var myElement = document.getElementById("twitter");
myElement.tagName;
// "LI"

Although you can query an attribute with either the . or [] operator or Element.getAttribute(), the
same is not true for other members of an Element node.

Did you just have a eureka moment? Great. Now for Element.getAttribute()’s partner in crime,
Element.setAttribute(), which writes the value of an attribute. Element.setAttribute() takes two string
parameters, the name and value of the attribute.

Let’s try writing an attribute with Element.setAttribute(). Maybe change class from "sprite" to
"sprout" for the Twitter :

var myElement = document.getElementById("twitter");

news:of
http://www.w3.org/TR/DOM-Level-2-Core/core.html
http://www.w3.org/TR/DOM-Level-2-Core/core.html
http://www.w3.org/TR/DOM-Level-2-Core/core.html

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

284

myElement.setAttribute("class", "sprout");

Then verify the change with Element.getAttribute():

myElement.getAttribute("class");
// "sprout"

That worked. Note that, in the event the element does not have the attribute passed in the first
parameter, JavaScript will add a new attribute to the element. It doesn’t even have to be a standard one:

var myElement = document.getElementById("twitter");
myElement.setAttribute("verb", "tweet");

Then verify the addition with Element.getAttribute():

myElement.getAttribute("verb");
// "tweet"

Let’s try to query myElement.verb as a member with the . operator:

typeof myElement.verb;
// "undefined"

Where did the value for our custom attribute verb go? Nowhere, it is still there.

myElement.getAttribute("verb");
// "tweet"

In a nutshell, if you add a custom attribute to an element with Element.setAttribute() or directly in
your XHTML markup, then you must query the attribute with Element.getAttribute().

Conversely, if you add a member with the . or [] operators, it will become an attribute only if the
DTD for your markup defines an attribute by that name. To illustrate this, try the following sample,
verifying your work with Figure 7–14.

myElement.slogan = "What's happening?";
myElement.getAttribute("slogan");
// null

To JavaScript, predefined attributes like href or id are both attributes and members, while custom
attributes like verb are attributes but not members. Conversely, predefined members like tagName and
custom members like slogan are members but not attributes. At least, that’s true in all browsers except
for the one making mischief in its wolf suit. For Internet Explorer, custom attributes like verb are
members, and custom members like slogan are attributes. That’s just one more reason to query
attributes like members with the . or [] operator.

Now for a couple more reasons. First, the style member, which I cover in Chapter 8, contains a
CSSStyleDeclaration object, but the style attribute contains a string of text. Second, event listener
members, which I cover in Chapter 9, contain a function, but event listener attributes contain a string of
text—except in Internet Explorer. Prior to version 8, Internet Explorer returns a CSSStyleDeclaration
object for both the style member and attribute and a function for event listener members and attributes.

With this mess in mind, only query custom attributes with DOM methods.

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

285

Figure 7–14. Custom members are not attributes.

■ Note If you are wondering whether an attribute is distinct from the member it maps to, it is. An attribute is

represented by an Attr node, but its corresponding member is not.

Querying Attr Nodes
DOM provides a way to represent both HTML and XML markup. Whereas HTML attribute values may be
fully represented with strings, this is not so for XML attributes. For this reason, DOM provides an Attr
interface for representing attributes as nodes. Those are not part of the DOM tree. So, you will not bump
into them while traversing the DOM.

Anyway, for HTML markup, Attr nodes have a single Text node child that you may query by way of
the value member. On the other hand, XML Attr nodes may contain both a Text and EntityReference
node, which is why XML attributes cannot be conveyed with just a string.

Click Clear in both Firebug panels, and let’s try querying the members of the Attr node representing
the class attribute for the Twitter . First save the Attr node in a variable named myAttrNode. Note
that you can query the Attr node with Element.getAttributeNode(). So, append Node to
Element.getAttribute(), and you’re good to go:

var myAttrNode = document.getElementById("twitter").getAttributeNode("class");

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

286

Now query some members from the Node interface. Remember to stop and click Run prior to each
comment in order to verify the return value:

myAttrNode.nodeType;
// 11
myAttrNode.nodeName;
// "class"
myAttrNode.nodeValue;
// "sprite"

Now query some members the Attr node received by way of the Attr interface:

myAttrNode.name;
// "class"
myAttrNode.value;
// "sprite"
myAttrNode.value = "sprout";
myAttrNode.value;
// "sprout"
myAttrNode.specified;
// true

So for an Attr node, Node.nodeName and Attr.name contain the same value, a string indicating the
name of the attribute. Similarly, both Node.nodeValue and Attr.value contain the value of the attribute
as a string. So, the first two members, name and value, are redundant. On the other hand, Attr.specified
contains a boolean: true if you explicitly set the attribute in your markup or by JavaScript and false if
not. So, false means the attribute value is a default from the document’s DTD. With those things in
mind, querying Attr.specified will likely be the only time you work with an attribute through the Attr
interface (as a node) rather than the Element interface (as a string).

Enumerating Attributes for an Element
For 11 of the 12 node types, the Node.attributes member simply contains null. But not for Element
nodes. For those, Node.attributes contains a NamedNodeMap, which is an arraylike object. Remember that
those contain numerically indexed members and a length member just like a genuine array but none of
the handy array methods like Array.splice().

What does Node.attributes contain? For every attribute explicitly set in your markup or by script,
Node.attributes contains a corresponding Attr node. So, no default Attr nodes in there.

Alrighty then, click Clear in both Firebug panels, and let’s explore Node.attributes:

var arrayOfAttrNodes = document.getElementById("twitter").attributes;
arrayOfAttrNodes.length;
// 2

So two Attr nodes appear, one for id and one for class. But there are no default ones like style or
dir. Now then, the numerical indexes in a NamedNodeMap are there just for enumeration purposes. That is
to say, DOM does not specify whether those should be ordered relative to source code, alphabetically, or
by any other pattern. So, browsers will vary in their numbering. For example, id appears first in the
Twitter but has an index of 1, not 0, in Firefox:

var arrayOfAttrNodes = document.getElementById("twitter").attributes;
arrayOfAttrNodes[1].name;
// "id"

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

287

But a NamedNodeMap is called a NamedNodeMap for a reason. You can, you know, query members by
name, with an identifier and the . operator or with a string and the [] operator. Try both ways, verifying
your work with Figure 7–15:

var arrayOfAttrNodes = document.getElementById("twitter").attributes;
arrayOfAttrNodes.id.value;
// "twitter"
var arrayOfAttrNodes = document.getElementById("twitter").attributes;
arrayOfAttrNodes["class"].value;
// "sprite"

Figure 7–15. Querying attributes with refinement operators

In regard to Node.attributes, Internet Explorer again says, “I ll be on my own side. By myself.” Prior
to version 8, Internet Explorer put every default attribute from the DTD in an element’s attributes
member. So, there might be like 100 in there. Yipes! Internet Explorer 8 does not have the bug.

Let’s take a moment to sigh ruefully over this Internet Explorer bug. Then find a workaround for
Internet Explorer 7 and earlier.

Hmm.
Why don’t we...
No, that won’t work.
I know, filter the Attr nodes in attributes by their specified member. Just throw away the ones

with a value of false. Click Clear in both Firebug panels, and then define a helper function named
filterDefaultAttrNodes() like so:

function filterDefaultAttrNodes(elem) {
 var filtered = [];
 for (var i = 0, j = elem.attributes.length; i < j; i ++) {
 if (elem.attributes[i].specified) {
 filtered.push(elem.attributes[i]);
 }
 }
 return filtered;
}

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

288

Note that the NamedNodeMap object in Node.attributes is a live DOM query just like a NodeList object
is. To improve performance, you save the length member to a loop variable named j. In this way, you
query the DOM one time for length rather than maybe 100 times for Internet Explorer.

Now pass the Twitter as the parameter to filterDefaultAttrNodes().

function filterDefaultAttrNodes(elem) {
 var filtered = [];
 for (var i = 0, j = elem.attributes.length; i < j; i ++) {
 if (elem.attributes[i].specified) {
 filtered.push(elem.attributes[i]);
 }
 }
 return filtered;
}
filterDefaultAttrNodes(document.getElementById("twitter"));
// [Attr, Attr]

Verify your work with Figure 7–16.

Figure 7–16. Filtering maybe 100 default Attr nodes for Internet Explorer

Two Attr nodes are in there. Note that, for Firefox, Safari, Opera, and Internet Explorer 8,
elem.attributes[i].specified will always be true. So, this function does nothing for nonbuggy
browsers. But for Internet Explorer 7 and older, it eliminates about 100 unwanted default Attr nodes. As
an added benefit, the return value is a real array. Thus, unlike the arraylike attributes object, this one
has all the array methods. You can manipulate the Attr nodes with those methods. Moreover,
Node.attributes is a live DOM query and is memory intensive. On the other hand, the filtered array is
not live, so it is very fast in comparison.

From an Internet Explorer lemon, we made lemonade!

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

289

Creating Element or Text Nodes
Oftentimes, you will want to create Element or Text nodes with JavaScript and then insert them into the
DOM tree. Doing so is one way to dynamically add content to a web page.

One of the implications of DOM being defined with interfaces rather than classes is that you cannot,
for example, create an Element node by writing something like this:

var myLI = new Element("li");

Rather than creating DOM nodes with constructor functions, you do so with factory methods from
the Document interface. So let’s try that. Click Clear in both Firebug panels, and create an Element node,
say an , with the factory method Document.createElement():

var myLI = document.createElement("li");

That was pretty straightforward. Just pass Document.createElement() the tag name of the element as
a string, and this factory method returns a new Element node to you. But it’s blank; it has no attributes
other than defaults from the DTD. It contains no child nodes either. So, you have some work to do
before adding the to the DOM tree. Let’s tackle attributes first. You already know how—set id to
"blog" and class to "sprite":

var myLI = document.createElement("li");
myLI.id = "bebo";
myLI.className = "sprite";

Now it’s time for the children. The existing four elements have a child <a> element with a child
Text node. That’s what you want this new to have, too. Create the <a> first. Do it the same way as
you did the . Then add an href attribute with a value of "http://www.bebo.com".

var myLI = document.createElement("li"), myA = document.createElement("a");
myLI.id = "bebo";
myLI.className = "sprite";
myA.href = "http://www.bebo.com";

Now for the Text node. Like the element factory method, this one is defined by the Document
interface, too. But be wary, unlike the element factory method, the identifier for this one ends with Node:
createTextNode, not createText. Document.createTextNode() works with just one parameter, which is the
string of text you want the node to represent.

var myLI = document.createElement("li"),
 myA = document.createElement("a"),
 myText = document.createTextNode("Bebo");
myLI.id = "bebo";
myLI.className = "sprite";
myA.href = "http://www.bebo.com";

Now you have two Element nodes and one Text node floating around in the ether. How do you insert
those into the DOM tree? Well, every kind of node, yup all 12 of ’em, has three methods to do so:

Node.appendChild()
Node.insertBefore()
Node.replaceChild()

What do those do? The first one, Node.appendChild(), appends the node you pass to it to the end of
the childNodes array of the node you invoke it upon. Invoke Node.appendChild() on myA, passing myText
as the parameter:

var myLI = document.createElement("li"),

http://www.bebo.com
http://www.bebo.com
http://www.bebo.com

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

290

 myA = document.createElement("a"),
 myText = document.createTextNode("Bebo");
myLI.id = "bebo";
myLI.className = "sprite";
myA.href = "http://www.bebo.com";
myA.appendChild(myText);

So now you have the DOM representation of the following <a> tag floating around in memory:

Bebo

Now let’s try Node.insertBefore(). This one takes two parameters. First, it takes a node to insert,
just like the parameter to Node.appendChild(). The second parameter is a node in the childNodes
member of whatever node you call insertBefore() on. JavaScript inserts the node in the first parameter
before the child node in the second parameter. So that’s why the method is named insertBefore(). Uh-
huh.

In the event that you pass null in as the second parameter, Node.insertBefore() does the same
thing as Node.appendChild(). Take advantage of that feature so that you can call Node.insertBefore() on
myLI, which does not have any child nodes for you to choose the second parameter from:

var myLI = document.createElement("li"),
 myA = document.createElement("a"),
 myText = document.createTextNode("Bebo");
myLI.id = "bebo";
myLI.className = "sprite";
myA.href = "http://www.bebo.com";
myA.appendChild(myText);
myLI.insertBefore(myA, null);

Great. Now you have an element like the following floating around in memory, just waiting for
you to insert it into the DOM tree:

<li id="bebo" class="sprite">Bebo

So now for the moment of truth. By way of the third method, Node.replaceChild(), you will swap
the Facebook for the new Bebo . Node.replaceChild() takes two parameters, a child node to
insert and a child node to remove.

OK, so for the DOM tree, you want to call Node.replaceChild() on the element, passing myLI for
the first parameter and the Facebook for the second parameter:

var myLI = document.createElement("li"),
 myA = document.createElement("a"),
 myText = document.createTextNode("Bebo"),
 myUL = document.getElementsByTagName("ul")[0];
myLI.id = "bebo";
myLI.className = "sprite";
myA.href = "http://www.bebo.com";
myA.appendChild(myText);
myLI.insertBefore(myA, null);
myUL.replaceChild(myLI, document.getElementById("facebook"));
// <li id="facebook" class="sprite">

Click Run, and verify that Firefox updated its display like in Figure 7–17. Note that all three insertion
methods have a return value that is a node. As Figure 7–17 shows, for Node.replaceChild(), the return
value is the node you removed. So, that is why Firebug printed <li id="facebook" class="sprite">. For
the other two, Node.appendChild() and Node.insertBefore(), it’s the node you inserted.

http://www.bebo.com
http://www.bebo.com
http://www.bebo.com
http://www.bebo.com
http://www.bebo.com

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

291

Figure 7–17. Replacing a node with Node.replaceChild()

Insofar as a node can be in only one place in the DOM tree at a time, the return value for
Node.appendChild() and Node.insertBefore() is not very useful. On the other hand, you can reinsert the
node returned by Node.replaceChild() somewhere else. So, click Refresh in Firefox to revert the display
to our initial markup and then try reinserting the Facebook like so:

var myLI = document.createElement("li"),
 myA = document.createElement("a"),
 myText = document.createTextNode("Bebo"),
 myUL = document.getElementsByTagName("ul")[0];
myLI.id = "bebo";
myLI.className = "sprite";
myA.href = "http://www.bebo.com";
myA.appendChild(myText);
myLI.insertBefore(myA, null);
myUL.appendChild(myUL.replaceChild(myLI, document.getElementById("facebook")));
// <li id="facebook" class="sprite">

As Figure 7–18 illustrates, JavaScript replaced the Facebook with the new Bebo . Then
reinserted the Facebook at the very end of the NodeList in myUL.childNodes. So, Firefox displays five
 elements rather than four.

http://www.bebo.com

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

292

Figure 7–18. Reinserting the node removed by Node.replaceChild()

■ Note Content created with JavaScript does not have empty Text nodes representing formatting since there is
none. That is to say, dynamically generated content is like markup where every opening tag is flush to the

preceding element’s closing tag.

Deleting Content
Now what if you simply want to delete some content without inserting any in its place? Doing so is
straightforward. Just call Node.removeChild() on the parent of the node you want to delete. Pass
Node.removeChild() the unwanted child node, and you’re done. So, let’s give the Flickr the axe. But
before doing so, click Clear in both Firebug panels and refresh Firefox so that it reverts its display to the
original markup:

var myUL = document.getElementsByTagName("ul")[0];
myUL.removeChild(document.getElementById("flickr"));

Take a peek at Firefox’s display. There are just three elements now.
Since JavaScript printed <li id="flickr" class="sprite"> in the left panel of Firebug, does that

mean Node.removeChild() returns the node it deleted? Yup.
It turns out you can use that return value to reinsert the deleted node elsewhere. Let’s give that a try.

But first click Refresh in Firefox so that you get the Flickr back. Double-clear Firebug, too. Then
enter and run the following:

var myUL = document.getElementsByTagName("ul")[0],

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

293

 myLI = document.getElementById("facebook");
myUL.insertBefore(myUL.removeChild(document.getElementById("flickr")), myLI);

Now then, Node.removeChild() and Node.insertBefore() are called on the parent node of their
parameters. With this in mind, you can call them on the parentNode member of the deleted or inserted
node. In other words, you can be totally clueless about who the parent is. So, refresh Firefox; then rework
the previous sample like so:

var myLI = document.getElementById("facebook");
myLI.parentNode.insertBefore(myLI.parentNode.removeChild(document.getElementById("flickr")),
 myLI);

Then click Run, and verify your cleverness with Figure 7–19. Note that this mystery parent trick
works for Node.appendChild() and Node.replaceChild(), too. As long as you know the node you want to
manipulate, you can call any of those four methods on its parentNode member, since Element and Text
nodes always have a parent, even if they don’t know their name.

Figure 7–19. It’s OK to be totally clueless in regard to the parent node.

Copying Content
Insofar as a node can be in only one place in the DOM tree at any given time, you may think that there is
no way to duplicate content. But you would be wrong. If you want to copy a node with or without its
descendants, just call its cloneNode() method. Node.cloneNode() takes a boolean parameter. Pass in
true if you want to duplicate the node and its descendants (the whole branch of the DOM tree).
Otherwise, pass in false, and JavaScript will duplicate the element as if it were empty. For Text nodes,
which have no descendants, the parameter is moot. But pass in false to show you know what you’re
doing. Note that any event listener functions registered for an element, something you will learn how to
do in Chapter 9, are not copied. This is stupid, but it is what it is. You have to redo any event binding for
the duplicate element.

Alright, double-clear Firebug, refresh Firefox, and try duplicating the and its descendants. Then
reinsert the duplicate branch in the DOM tree:

var myUL = document.getElementsByTagName("ul")[0];
myUL.parentNode.appendChild(myUL.cloneNode(true));

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

294

Note that, although Node.cloneNode() gives you the option to do a deep or shallow copy,
Node.appendChild(), Node.insertBefore(), Node.replaceChild(), and Node.removeChild() do not. Those
four manipulate a node with its descendants, no matter what.

Creating Elements with a Helper Function
Creating an element containing descendants with Document.createElement(), Node.appendChild(), and
other methods can be mind-numbingly repetitive. Why not eliminate some drudgery by writing a helper
function to create elements with?

No, I cannot think of any reason not to either. Let’s get to it. But, before beginning, double-clear
Firebug and refresh Firefox. Now define a function named createElem() that works with three
parameters. First, name will contain the tag name as a string. Next, members will contain an object
containing the names and values of any attributes you want the element to have. Finally, children will
contain an array containing any child nodes you want the element to have. For a Text node child, you
may put a Text node or a string in children.

function createElem(name, members, children) {
}

Now declare local variables named elem and m, initializing elem to the return value of
document.createElement(name) and letting m default to undefined.

function createElem(name, members, children) {
 var elem = document.createElement(name), m;
}

Now you have a vanilla Element node with its nodeName and tagName members both set to name. Of
course, JavaScript will also initialize any other default attributes or members for that particular tag. Let’s
go ahead and enumerate members with a for in loop. In the for in block, you will initialize attributes
with the [] operator and the string in m. Remember from Chapter 4 that, during each roundabout of a for
in loop, JavaScript assigns the name of a member to the loop variable as a string, regardless of whether it
was named with a string or identifier in the object. But before you do, make sure that the members
parameter really does contain an object. To do so, wrap the for in loop with an if condition:

function createElem(name, members, children) {
 var elem = document.createElement(name), m;
 if (members instanceof Object) {
 for (m in members) {
 elem[m] = members[m];
 }
 }
}

Moving right along, let’s do something very similar with the children array. Insofar as children is an
array, go with a for loop instead of a for in loop. Within the for block, you will pass appendChild() an
expression cobbled together with the ?: operator, which I covered in Chapter 3. In the event that
children[i] is a node, which is to say an object, the ?: expression will simply evaluate to the node.
Otherwise, it will evaluate to passing the string in children[i] to Document.createTextNode(), which will
in turn return a Text node. Either way, appendChild() will have a node to work with. So, it will be happy
as a clam.

function createElem(name, members, children) {
 var elem = document.createElement(name), m;
 if (members instanceof Object) {

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

295

 for (m in members) {
 elem[m] = members[m];
 }
 }
 if (children instanceof Array) {
 for (i = 0; i < children.length; i ++) {
 elem.appendChild(
 typeof children[i] === "object" ? children[i] : document.createTextNode(children[i])
);
 }
 }
}

Right now, createElem() returns undefined, so the element and its descendants cannot be inserted
into the DOM tree. No, not good.

What do you do? Just return elem. That way, you can pass the return value of createElem() to a
method like Node.appendChild(). To save your bacon, just amend createElem() like so:

function createElem(name, members, children) {
 var elem = document.createElement(name), m;
 if (members instanceof Object) {
 for (m in members) {
 elem[m] = members[m];
 }
 }
 if (children instanceof Array) {
 for (i = 0; i < children.length; i ++) {
 elem.appendChild(
 typeof children[i] === "object" ? children[i] : document.createTextNode(children[i])
);
 }
 }
 return elem;
}

Now for the moment of truth. Earlier in the day, you laboriously created a Bebo like so:

var myLI = document.createElement("li"),
 myA = document.createElement("a"),
 myText = document.createTextNode("Bebo");
myLI.id = "bebo";
myLI.className = "sprite";
myA.href = "http://www.bebo.com";
myA.appendChild(myText);

Now try to replace all that with a call to the createElem() function. Then you’ll append the Bebo
 element to your . Enter and run the following amended sample, before verifying your work with
Figure 7–20.

function createElem(name, members, children) {
 var elem = document.createElement(name), m;
 if (members instanceof Object) {
 for (m in members) {
 elem[m] = members[m];
 }

http://www.bebo.com

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

296

 }
 if (children instanceof Array) {
 for (i = 0; i < children.length; i ++) {
 elem.appendChild(
 typeof children[i] === "object" ? children[i] : document.createTextNode(children[i])
);
 }
 }
 return elem;
}
var child = createElem(
 "li",
 {id: "bebo", className: "sprite"},
 [createElem("a", {href: "http://www.bebo.com"}, ["Bebo"])]
);
document.getElementsByTagName("ul")[0].appendChild(child);

Did everything work for you? Good job. You’re definitely well on your way from JavaScript dummy
to expert.

Figure 7–20. Creating elements with a helper function

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://www.bebo.com

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

297

Reordering Nested Lists
Let’s try a final sample so that many of the features covered in this chapter take firm root in your noggin.
You’re going to write a function named orderUL that will alphabetically reorder any descendant
elements of a regardless of whether it contains nested elements.

First, download seven2.html (shown here) from the chapter downloads at www.apress.com. Then
open it with Firefox and press F12 to enable Firebug. Note that seven2.html lists the 30 ice hockey teams
in the NHL.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Firebug</title>
</head>
<body>

 Western Conference

 Chicago Blackhawks
 Columbus Blue Jackets
 Detroit Red Wings
 Nashville Predators
 St Louis Blues
 Calgary Flames
 Colorado Avalanche
 Edmonton Oilers
 Minnesota Wild
 Vancouver Canucks
 Anaheim Ducks
 Dallas Stars
 Los Angeles Kings
 Phoenix Coyotes
 San Jose Sharks

 Eastern Conference

 New Jersey Devils
 New York Islanders
 New York Rangers
 Philadelphia Flyers
 Pittsburgh Penguins
 Boston Bruins
 Buffalo Sabres
 Montreal Canadiens
 Ottawa Senators
 Toronto Maple Leafs
 Atlanta Thrashers
 Carolina Hurricanes
 Florida Panthers
 Tampa Bay Lightning
 Washington Capitals

http://www.apress.com
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://blackhawks.nhl.com
http://bluejackets.nhl.com
http://redwings.nhl.com
http://predators.nhl.com
http://blues.nhl.com
http://flames.nhl.com
http://avalanche.nhl.com
http://oilers.nhl.com
http://wild.nhl.com
http://canucks.nhl.com
http://ducks.nhl.com
http://stars.nhl.com
http://kings.nhl.com
http://coyotes.nhl.com
http://sharks.nhl.com
http://devils.nhl.com
http://islanders.nhl.com
http://rangers.nhl.com
http://flyers.nhl.com
http://penguins.nhl.com
http://bruins.nhl.com
http://sabres.nhl.com
http://canadiens.nhl.com
http://senators.nhl.com
http://mapleleafs.nhl.com
http://thrashers.nhl.com
http://hurricanes.nhl.com
http://panthers.nhl.com
http://lightning.nhl.com
http://capitals.nhl.com

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

298

</body>
</html>

Begin by saving the invocation expression, document.getElementsByTagName("ul"), to a variable
named myElements. Then define a function named orderUL that works with an argument named root,
which will refer to an ancestor of the elements you want to reorder.

var myElements = document.getElementsByTagName("ul");
function orderUL(root) {
}

Note that root will typically be a , but any ancestor of the elements you want to reorder will
do. Even document will work fine. However, for your sample, pass myElements[0] to orderUL(). Of course,
you have to write orderUL() before you can think of calling it. So let’s get back to work.

Initialize a local variable named nodeList to root.getElementsByTagName("li"), which evaluates to a
NodeList containing every descendant of the parameter passed to orderUL(). Then create an empty
array named helperArray to copy the elements in nodeList to. Recall from earlier in the chapter that
doing this will make orderUL() run faster since NodeList objects are live DOM queries. Finally, declare
the traditional loop variable i:

var myElements = document.getElementsByTagName("ul");
function orderUL(root) {
 var nodeList = root.getElementsByTagName("li"), helperArray = [], i;
}

Now write a for loop to copy the elements in nodeList to helperArray. Doing so will enable you
to reorder the elements with Array.sort(). Moreover, later you will loop through helperArray,
removing and reinserting an element during each roundabout. This is the kind of loop you should
never use on a live NodeList. So, you definitely have reasons for the way you’re doing things!

var myElements = document.getElementsByTagName("ul");
function orderUL(root) {
 var nodeList = root.getElementsByTagName("li"), helperArray = [], i;
 for (i = 0; i < nodeList.length; i ++) {
 helperArray.push(nodeList[i]);
 }
}

Recall from Chapter 5 that by default Array.sort() reorders strings and numbers relative to their
character encoding. For example, "Zebra" would come before "antelope", and 450 would come before 9.
Rarely will this default behavior be desirable. Obviously, it isn’t here. Pass Array.sort() a function literal
to reorder helperArray with. In this function literal, you determine whether to return -1, 1, or 0 relative
to the lowercase versions of the strings the child Text nodes represent. However, remember that
String.toLowerCase() does not lowercase the string that you call it on. Rather, it returns a lowercased
copy of the string. So, save those to local variables named txt1 and txt2. Comparing those lowercased
copies with the < and > operators takes care of the string and number bugs noted earlier. So feeling
clever, you now have this:

var myElements = document.getElementsByTagName("ul");
function orderUL(root) {
 var nodeList = root.getElementsByTagName("li"), helperArray = [], i;
 for (i = 0; i < nodeList.length; i ++) {
 helperArray.push(nodeList[i]);

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

299

 }
 helperArray.sort(function(li1, li2) {
 var txt1 = li1.getElementsByTagName("a")[0].firstChild.nodeValue.toLowerCase();
 var txt2 = li2.getElementsByTagName("a")[0].firstChild.nodeValue.toLowerCase();
 if (txt1 < txt2) {
 return -1;
 } else if (txt1 > txt2) {
 return 1;
 } else {
 return 0;
 }
 });
}

Now here’s the question: helperArray contains every descendant of the element passed in the
root parameter. That is to say, the elements in helperArray may very well be from different
elements. At this point, you have the elements reordered as you want. Now you need to reinsert
each to the right . How do you do that?

Did you figure it out yet?
Take your time.
No hurry.
Remember, there are no stupid answers.
So, what do you think?
Good try, but that’s not it.
Do you remember how every element has a parent? For example, parentNode is never null for an

Element node. In this case, for every element in the helperArray, parentNode refers to the it
belongs to. Moreover, since nodes may be only one place in the DOM tree at a time, if you blindly call
Node.appendChild() on the parentNode member of each , JavaScript will remove the from the
childNodes member of its containing . Then reinsert it at the very end of the same element’s
childNodes member. So, do so one at a time by way of a for loop:

var myElements = document.getElementsByTagName("ul");
function orderUL(root) {
 var nodeList = root.getElementsByTagName("li"), helperArray = [], i;
 for (i = 0; i < nodeList.length; i ++) {
 helperArray.push(nodeList[i]);
 }
 helperArray.sort(function(li1, li2) {
 var txt1 = li1.getElementsByTagName("a")[0].firstChild.nodeValue.toLowerCase();
 var txt2 = li2.getElementsByTagName("a")[0].firstChild.nodeValue.toLowerCase();
 if (txt1 < txt2) {
 return -1;
 } else if (txt1 > txt2) {
 return 1;
 } else {
 return 0;
 }
 });
 for (i = 0; i < helperArray.length; i ++) {
 helperArray[i].parentNode.appendChild(helperArray[i]);
 }
}

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

300

Taking the time to explore core DOM features is paying dividends. Now for the moment of truth:
pass myElements[0] to orderUL(), cross your fingers, and click Run.

var myElements = document.getElementsByTagName("ul");
function orderUL(root) {
 var nodeList = root.getElementsByTagName("li"), helperArray = [], i;
 for (i = 0; i < nodeList.length; i ++) {
 helperArray.push(nodeList[i]);
 }
 helperArray.sort(function(li1, li2) {
 var txt1 = li1.getElementsByTagName("a")[0].firstChild.nodeValue.toLowerCase();
 var txt2 = li2.getElementsByTagName("a")[0].firstChild.nodeValue.toLowerCase();
 if (txt1 < txt2) {
 return -1;
 } else if (txt1 > txt2) {
 return 1;
 } else {
 return 0;
 }
 });
 for (i = 0; i < helperArray.length; i ++) {
 helperArray[i].parentNode.appendChild(helperArray[i]);
 }
}
orderUL(myElements[0]);

So as Figure 7–21 illustrates, JavaScript reordered the team and conference elements. One last
thing before I call this chapter a wrap. Remember those whitespace Text nodes representing markup
formatting? Where do you think those were moved to?

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

301

Figure 7–21. JavaScript reordered the elements from both tiers of the nested .

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

302

Where Did the Formatting Text Nodes Go?
Now let’s think this through. orderUL() plucked elements from the DOM tree and reinserted them
at the very end of the NodeList in the childNodes member of their parent element. Say that three
times fast. Anyway, the formatting Text nodes were left alone. Therefore, after plucking an from the
tree, the formatting Text nodes that were on either side of the wind up next to each other. By the
time orderUL() finishes its work, the formatting Text nodes are bunched up at the beginning of the
NodeList in the childNodes members of the elements.

Rather than take my word for it, refresh Firefox, and run the following amended sample:

var myElements = document.getElementsByTagName("ul");
function orderUL(root) {
 var nodeList = root.getElementsByTagName("li"), helperArray = [], i;
 for (i = 0; i < nodeList.length; i ++) {
 helperArray.push(nodeList[i]);
 }
 helperArray.sort(function(li1, li2) {
 var txt1 = li1.getElementsByTagName("a")[0].firstChild.nodeValue.toLowerCase();
 var txt2 = li2.getElementsByTagName("a")[0].firstChild.nodeValue.toLowerCase();
 if (txt1 < txt2) {
 return -1;
 } else if (txt1 > txt2) {
 return 1;
 } else {
 return 0;
 }
 });
 for (i = 0; i < helperArray.length; i ++) {
 helperArray[i].parentNode.appendChild(helperArray[i]);
 }
}
orderUL(myElements[0]);
myElements[1].childNodes;

JavaScript then prints the following in Firebug:

[<TextNode textContent="\n ">, <TextNode textContent="\n ">, <TextNode textContent="\n ">,
<TextNode textContent="\n ">, <TextNode textContent="\n ">, <TextNode textContent="\n ">,
<TextNode textContent="\n ">, <TextNode textContent="\n ">, <TextNode textContent="\n ">,
<TextNode textContent="\n ">, <TextNode textContent="\n ">, <TextNode textContent="\n ">,
<TextNode textContent="\n ">, <TextNode textContent="\n ">, <TextNode textContent="\n ">,
<TextNode textContent="\n ">, li, li, li, li, li, li, li, li, li, li, li, li, li, li, li]

So, although you initially had 17 formatting Text nodes interspersing 15 Element nodes, now
you have 17 formatting Text nodes followed by 15 Element nodes. Having those formatting Text
nodes bunched together does no harm. But if you want JavaScript to fold those 17 formatting Text nodes
into one, call Node.normalize() on their parent or any other ancestor. JavaScript will then merge any
adjacent Text nodes and delete any empty ones. Note that, by empty Text nodes, I mean those that do
not even represent whitespace. As you might imagine, empty Text nodes are as rare as formatting Text
nodes are prevalent.

Refresh Firefox; then run the following amended sample:

var myElements = document.getElementsByTagName("ul");
function orderUL(root) {
 var nodeList = root.getElementsByTagName("li"), helperArray = [], i;

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

303

 for (i = 0; i < nodeList.length; i ++) {
 helperArray.push(nodeList[i]);
 }
 helperArray.sort(function(li1, li2) {
 var txt1 = li1.getElementsByTagName("a")[0].firstChild.nodeValue.toLowerCase();
 var txt2 = li2.getElementsByTagName("a")[0].firstChild.nodeValue.toLowerCase();
 if (txt1 < txt2) {
 return -1;
 } else if (txt1 > txt2) {
 return 1;
 } else {
 return 0;
 }
 });
 for (i = 0; i < helperArray.length; i ++) {
 helperArray[i].parentNode.appendChild(helperArray[i]);
 }
}
orderUL(myElements[0]);
myElements[0].normalize();
myElements[1].childNodes;

JavaScript will then print the following in Firebug; as you can see, the 17 formatting Text nodes were
folded into one:

[<TextNode textContent="\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n ">, li, li, li, li,
li, li, li, li, li, li, li, li, li, li, li]

Now what if you don’t want the giant whitespace Text node? Just delete it with Node.removeChild(),
which we explored earlier. Refresh Firefox, and then run the amended sample, verifying your work with
Figure 7–22:

var myElements = document.getElementsByTagName("ul");
function orderUL(root) {
 var nodeList = root.getElementsByTagName("li"), helperArray = [], i;
 for (i = 0; i < nodeList.length; i ++) {
 helperArray.push(nodeList[i]);
 }
 helperArray.sort(function(li1, li2) {
 var txt1 = li1.getElementsByTagName("a")[0].firstChild.nodeValue.toLowerCase();
 var txt2 = li2.getElementsByTagName("a")[0].firstChild.nodeValue.toLowerCase();
 if (txt1 < txt2) {
 return -1;
 } else if (txt1 > txt2) {
 return 1;
 } else {
 return 0;
 }
 });
 for (i = 0; i < helperArray.length; i ++) {
 helperArray[i].parentNode.appendChild(helperArray[i]);
 }
}
orderUL(myElements[0]);
myElements[0].normalize();

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

304

myElements[1].removeChild(myElements[1].firstChild);
myElements[1].childNodes;
// [li, li, li, li, li, li, li, li, li, li, li, li, li, li, li]

So now the Eastern Conference has just children, just as if you had removed all formatting
whitespace from the XHTML markup (or if Internet Explorer were representing it).

Figure 7–22. Eliminating formatting Text nodes with normalize() and removeChild()

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

305

Summary
In this chapter, we explored how to query, traverse, and modify the DOM tree representing your markup;
in other words, you learned how to manipulate the content layer of a web page. To do so, you worked
with features provided by several interfaces, which are just lists of methods and members that need to
be implemented together. Element, Document, Text, and other node types implement several interfaces.
But every kind of node has the features listed in the Node interface. One member from Node, nodeType,
returns an integer between 1 and 12 that tells you what other interface the node accumulates features
from. For example, 1 tells you the node has the methods and members listed in the Element interface,
too. Therefore, knowing what feature lists, or interfaces, to consult is very important to effectively script
DOM.

In the next chapter, we will explore how to manipulate the presentation layer via the CSS module
provided by DOM. Then, in Chapter 9, we will explore how to add a behavior layer with the Events
module. There’s much to look forward to!

CHAPTER 7 ■ TRAVERSING AND MODIFYING THE DOM TREE

306

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

C H A P T E R 8

■ ■ ■

307

Scripting CSS

Booming by a hilly golf course in a new pair of lime green Nike Lunar Elites, I observed some deer
running through the deep snow that a blizzard referred to as “Snowmageddon” had dumped on
Pittsburgh. Though I love to run in fresh powder, 3 feet could be too much. But the deer did just fine.
Besides, in those lime green shoes, I felt invincible. So, off the road and into the snow I went.

Probably ten minutes later, my heart thumping forcefully enough to burst, I glanced down at my run
timer. Ugh. Still 70 minutes left. I was going to drop dead before it beeps, I thought. So, after cresting the
highest hilltop, raising my fists, and rasping “Drago!” a few times, I turned tail and made for the road to
finish my run.

But midway through the downhill, the snow depth suddenly increased, sending me airborne less
one lime green shoe. Landing in a snow drift, I flailed about for a while trying to right myself. Eventually I
had to more or less swim to shallower snow. Finding my missing shoe, I then continued to the road
without further mishap and finished my run. Passersby certainly gave me some odd looks, dusty with
snow as I was from head to toe!

Now then, deer with their four spindly legs and hooves are better designed for deep-snow running
than we are with our two bulkier legs and feet. In the same way, Firefox, Safari, and Opera are better
designed to script CSS with DOM than Internet Explorer is. So in this chapter, we will have to dumb
things down for Internet Explorer. That is to say, we’ll put some snow shoes on our DOM dummy so that
it can keep up!

DOM Interfaces for Working with CSS
In Chapter 7, we explored some DOM interfaces for querying markup. So as you might guess, in this
chapter, we will explore those for querying CSS. We won’t explore all of them, just some essential ones:

CSSStyleDeclaration
CSS2Properties
StyleSheet
CSSStyleSheet
CSSRuleList
CSSRule
CSSStyleRule
CSSImportRule
ElementCSSInlineStyle
ViewCSS
DocumentStyle
StyleSheetList

CHAPTER 8 ■ SCRIPTING CSS

308

Remember from Chapter 7 that an interface is a feature list for an object. That is, an interface tells
you what methods and members an object contains for your scripting pleasure. So, those are the names
to look under on the Web or in a printed DOM reference when you inevitably forget what I tell you here!

Clarifying Some CSS Jargon
Before we get rolling, let’s go over some CSS jargon. Consider the following:

img {display:block;border:0;}

The whole enchilada, img {display:block;border:0;}, is referred to as a rule. Rules have two parts.
First there is a selector indicating what part of the document to which to apply the rule. In our sample
rule, img is the selector. So, the rule is for any img element in the document. The second part of a rule is
the declaration block. They contain one or more declarations. In our sample rule,
{display:block;border:0;} is the declaration block. display:block; is a declaration. border:0; is too. A
declaration pairs a property with a value. That means in our rule, the display property is paired with the
block value. And the border property is paired with the 0 value.

How Does JavaScript Represent a Rule?
You can’t query a CSS rule unless you know what to query. JavaScript represents a CSS rule like img
{display:block;border:0;} with a CSSStyleRule object. They receive the following two members from
CSSStyleRule:

selectorText
style

Then they receive four more from CSSRule:

cssText
parentRule
parentStyleSheet
type

That is, they do in Firefox, Safari, and Opera. Internet Explorer implements CSSStyleRule but not
CSSRule. So, we will dumb things down for Internet Explorer and work with just selectorText and style.

■ Note CSSStyleRule objects have the members listed in both the CSSStyleRule and CSSRule interfaces. So,

there are two lists of features for this kind of DOM object.

Moving right along, here’s a question for you: for our sample rule, img {display:block;border:0;},
what do you think CSSStyleRule.selectorText would contain?

Yup, "img". So, selectorText contains the rule’s selector as a string. Who’d have thought?
The other member, CSSStyleRule.style, is not so simple. JavaScript represents a declaration block

like {display:block;border:0;} with a CSSStyleDeclaration object, which is what the style member
contains.

Now then, a CSSStyleDeclaration object has the following features listed in the
CSSStyleDeclaration interface:

CHAPTER 8 ■ SCRIPTING CSS

309

cssText
length
parentRule
getPropertyCSSValue()
getPropertyPriority()
getPropertyValue()
item()
removeProperty()
setProperty()

Now for the bad news—the Internet Explorer news. Other than cssText, Internet Explorer does not
implement any methods or members from CSSStyleDeclaration. We will have to pretend cssText is the
only CSSStyleDeclaration member. Even though this is not true for Firefox, Safari, and Opera, it is for
dummy Internet Explorer. Sigh and move forward. It is what it is.

On the bright side, pretending CSSStyleDeclaration has one member means I can only give you a
one-question test: for our sample declaration block, {display:block;border:0;}, what would
CSSStyleDeclaration.cssText contain?

Here’s a hint: some CSS text.
Hmm. cssText contains CSS text.
That much was obvious. Sorry.
OK, what do you think?
Close, but not quite. Though cssText does contain the CSS code of the declaration block, it doesn’t

contain the curly braces. For a CSS rule like {display:block;border:0;}, cssText would contain
"display:block;border:0;", not {display:block;border:0;} .

Internet Explorer failing to implement any of the CSSStyleDeclaration methods for querying
property values would seem to be a disaster. I mean if Internet Explorer is totally illiterate, which is to
say it cannot read or write CSS properties, how do we script CSS cross-browser?

Don’t panic.
To simplify querying the property-value pairings within a declaration block, JavaScript extends

CSSStyleDeclaration with an optional interface named CSS2Properties that Internet Explorer, Firefox,
Safari, and Opera all implement. CSS2Properties adds one member for every CSS property in the CSS2
standard to a CSSStyleDeclaration object. So for any CSS property, reading a CSS2Properties member is
equivalent to invoking CSSStyleDeclaration.getPropertyValue(). Conversely, writing a CSS2Properties
member is equivalent to invoking CSSStyleDeclaration.setProperty().

In other words, CSSStyleDeclaration.getProperty() and CSSStyleDeclaration.setProperty() are
redundant, so it’s no big deal that Internet Explorer fails to implement them.

Just as a reminder, insofar as CSS2Properties members are named with an identifier, you may query
those with the . operator and an identifier or with the [] operator and a string, typically in the form of a
variable or parameter. If you are foggy on how those operators work, flip back to Chapter 3. I’ll wait for
you to return. Promise.

One-word CSS properties such as display or left have identically named CSS2Properties members.
But JavaScript identifiers cannot have dashes. But you know that from Chapter 1. So, any CSS property
containing dashes has a CSS2Properties member that is named in camel case rather than in dash case.
For example, margin-bottom is named marginBottom. Finally, float is a JavaScript reserved word. So,
float is represented by a member named cssFloat in Firefox, Safari, and Opera. For whatever reason,
Internet Explorer deviates from DOM and names its member styleFloat instead...just roll your eyes.

CSS2Properties members are named with camel case identifiers. What about their values? Those are
always strings. Yup, always. Even if you want to set a property like left or border to 0, you have to assign
"0".

Whenever we want to script declarations, remember those are property-value pairings, we will
query either CSS2Properties members or the CSSStyleDeclaration member, cssText, since those are the
only features that dummy Explorer knows about. So if we had a variable named myDeclarations
containing a CSSStyleDeclaration object, it would contain an object equivalent to the following:

CHAPTER 8 ■ SCRIPTING CSS

310

var myDeclarations = {
 display: "block",
 border: "0",
 cssText: "display:block;border:0;"
}

I did that one. Now it’s your turn. Create an object literal equivalent to the CSSStyleRule
representing our sample rule, img {display:block;border:0;}. Save it to a variable named myRule.

Here’s a hint: one of the members might just contain my object literal.
One more minute.
Time is up.
Did you create an object literal like the following? Give yourself a pat on the back.

var myRule = {
 selectorText: "img",
 style: {
 display: "block",
 border: "0",
 cssText: "display:block;border:0;"
 }
}

Two Other Declaration Blobs
CSSStyleDeclaration and CSS2Properties provide a way for you to query the declarations in a rule.
Additionally, those enable you to work with two other kinds of declaration blobs that we’ll explore later
in the day. First, the cumulative declarations from the CSS cascade that target an element (however, note
that those declarations are read-only), and second, the declarations in an element’s style attribute.
These declarations are represented by ElementCSSInlineStyle.style and, like the declarations in a rule,
are read-write. Therefore, you can change CSS property values in a rule or style attribute, but not the
cumulative ones from the cascade.

■ Note For any tag in your markup lacking a style attribute, the element representing the tag will still have a

style member containing a CSSStyleDeclaration object, which may have some default members from the DTD.

Downloading the Sample Files
Download or code the following markup, eight.html, from this book’s web site:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Scripting CSS</title>
<link rel="stylesheet" type="text/css" href="eight.css" id="spriteStyles" />
</head>
<body>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

CHAPTER 8 ■ SCRIPTING CSS

311

<div id="running">
 <h4>Running</h4>
 <ul class="blue">
 adidas
 ASICS
 Brooks
 New Balance
 Nike
 Saucony

</div>
</body>
</html>

Additionally, download or code the following CSS file, eight.css. Put it in the same folder with
eight.html.

* {
 margin:0;
 padding:0;
 border:0;
}
body {
 background:rgb(255,255,255);
 color:rgb(0,0,0);
 font:11px Verdana, Arial, Helvetica, sans-serif;
}
div#running {
 position:absolute;
 left:40px;
 top:40px;
 width:120px;
 height:243px;
 background:url(images/container.gif) 0 0 no-repeat;
}
div#running h4 {
 position:absolute;
 left:0px;
 top:0px;
 width:63px;
 height:25px;
 text-indent:-9999px;
 text-decoration:none;
 overflow:hidden;
}
div#running li {
 display:inline;
}
div#running li a {
 position:absolute;
 left:10px;
 width:100px;
 height:28px;
 color:rgb(0,0,0);

http://www.adidas.com
http://www.asics.com
http://www.brooksrunning.com
http://www.newbalance.com
http://www.nike.com
http://www.saucony.com

CHAPTER 8 ■ SCRIPTING CSS

312

 text-indent:-9999px;
 text-decoration:none;
 overflow:hidden;
}
ul.blue a {
 background-image:url(images/blue.gif);
}
ul.fuchsia a {
 background-image:url(images/fuchsia.gif);
}
ul.green a {
 background-image:url(images/green.gif);
}
a#adidas {
 top:30px;
 background-position:0 0;
}
a#asics {
 top:65px;
 background-position:0 -27px;
}
a#brooks {
 top:100px;
 background-position:0 -54px;
}
a#newBalance {
 top:135px;
 background-position:0 -81px;
}
a#nike {
 top:170px;
 background-position:0 -108px;
}
a#saucony {
 top:205px;
 background-position:0 -135px;
}

Finally, download the sprite images: blue.gif, fuchsia.gif, and green.gif. Download the
background image, container.gif, too. Put those four images in a folder aptly named images within the
folder you put eight.html and eight.css in. If you are unfamiliar with sprites, they work by sliding an
image to different coordinates by way of the CSS property background-position. As Figure 8–1 illustrates,
this enables us to combine all 12 link images into a single image, which improves load time.

CHAPTER 8 ■ SCRIPTING CSS

313

Figure 8–1. The blue sprite contains all 12 button images.

Querying a Style Attribute
Open eight.html in Firefox, and then press F12 to enable Firebug. If you’re just joining us, flip back to
the preface for details on how to do this.

Now let’s try querying the style attribute for the Nike link. Insofar as its markup tag does not
contain a style attribute, ElementCSSInlineStyle.style will contain a bunch of "" empty strings. That
makes this a pretty dull read. Nevertheless, take a peek at some CSS properties:

var myStyle = document.getElementById("nike").style;
myStyle.backgroundPosition;
// ""
myStyle.backgroundImage;
// ""
myStyle.left;
// ""
myStyle.top;
// ""

As Figure 8–2 displays, JavaScript returns one "" empty string after another. If you abide by the
separation of markup content from CSS presentation credo, this will be the case for every Element node
in the DOM tree—at least initially.

CHAPTER 8 ■ SCRIPTING CSS

314

Figure 8–2. Just one "" empty string after another

Let’s see what I mean by that cryptic comment. Go ahead and write the members from the previous
sample like so, and click Run, verifying your work with Figure 8–3:

var myStyle = document.getElementById("nike").style;
myStyle.backgroundPosition = "-99px -108px";
myStyle.backgroundImage = "url(images/fuchsia.gif)";
myStyle.left = "200px";
myStyle.top = "30px";

CHAPTER 8 ■ SCRIPTING CSS

315

Figure 8–3. Writing some inline styles

We replaced the blue sprite with the fuchsia one, slid the sprite to the left in order to reveal the down
button, and moved the link entirely out of the container. It’s pretty draconian, but it illustrates the power
of writing an element’s style member: scripted declarations in ElementCSSInlineStyle.style override
those from anywhere else in the CSS cascade.

One more thing: take another peek at ElementCSSInlineStyle.style for the Nike link. There’s
something there other than one "" empty string after another now:

var myStyle = document.getElementById("nike").style;
myStyle.backgroundPosition;
// "-99px -108px"
myStyle.left;
// "200px"

So, our writing four CSS properties by way of ElementCSSInlineStyle.style was equivalent to doing
so by way of the following markup:

<a style="background-position:-99px -108px;background-
image:url(images/fuchsia.gif);left:200px;top:30px" id="nike"
href="http://www.nike.com">Nike

In turn, this is why our scripted styles override those from elsewhere in the cascade, in other words,
from eight.css.

http://www.nike.com

CHAPTER 8 ■ SCRIPTING CSS

316

We’re good with querying CSS2Properties members. Now let’s take a peek at
CSSStyleDeclaration.cssText. Clear both Firebug panels, but do not refresh Firefox. This leaves our
scripted styles in place so cssText has something for us to read other than an "" empty string. Enter and
run the following, verifying your work with Figure 8–4:

myStyle.cssText;
// "background-position: -99px -108px; background-image: url("images/fuchsia.gif"); left:
200px; top: 30px;"

Figure 8–4. Querying CSSStyleDeclaration.cssText

cssText contains the CSS text of the style attribute. Imagine that. Now take a peek at cssText for the
adidas link:

document.getElementById("adidas").style.cssText;
// ""

It’s just a dull "" empty string. If you fully separate CSS from markup, reading cssText will be as
mind-numbing as reading CSS2Properties members—unless you have a thing for "" empty strings. On
the other hand, writing cssText provides a way to change several CSS properties in one fell swoop. Want
to try doing that? Me too. Refresh Firefox, clear Firebug, and then enter and run the following sample.
Note that the second statement wraps to two lines in this book but should be keyed in as one line in
Firebug:

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 8 ■ SCRIPTING CSS

317

var myStyle = document.getElementById("brooks").style;
myStyle.cssText = "background-image:url(images/fuchsia.gif);left:210px;top:0;padding-
left:99px;height:55px";

That did in one assignment statement what would have taken five with CSS2Properties members.
Now for the tricky part: writing cssText wipes away any previous inline style declarations. With this in
mind, click Clear in Firebug, but do not refresh Firefox, and then enter the following assignment;
however, before clicking Run, take a guess at what will happen. You get a Smiley Cookie if you get it
right.

myStyle.cssText = "background-image:url(images/fuchsia.gif)";

■ Note Smiley Cookies are a Pittsburgh institution. If you want to try them, visit www.eatnpark.com, and click the

Create your own Smiley Cookies! link. Trust me, you’ll love them.

Does your guess correspond to Figure 8–5?

Figure 8–5. Any declarations you write to cssText totally overwrite those already in there.

http://www.eatnpark.com

CHAPTER 8 ■ SCRIPTING CSS

318

Don’t feel bad. I didn’t think you’d get that one right. What’s going on here? Any declarations you
write to cssText totally overwrite those already in there. So, our declarations for left, top, padding-left,
and height disappeared. This in turn means that the declarations for those properties in eight.css now
shine through. Therefore, other than swapping the blue sprite for the fuchsia one, our brooks link is
styled the same as when the page initially loaded. This is equivalent to the following markup:

<a style="background-image:url(images/fuchsia.gif);" id="brooks"
href="http://www.brooksrunning.com">Brooks

Note that when you write the value of cssText, property names are dash case, not camel case—just
like in the CSS standard.

Scripting Classes
Writing CSS2Properties members or cssText provides a way to restyle one element, but what if you want
to do so for several elements? One way is to script className, typically of an ancestor element.
Remember that for any element, the className member represents the class attribute.

In our included style sheet, eight.css, we have a rule for a blue class and a fuchsia class. The latter is
dormant. That is to say, no element in our markup is a member of the fuchsia class. So, refresh Firefox,
clear Firebug, and let’s change the className member for the element from blue to fuchsia. Doing
so, as Figure 8–6 illustrates, swaps the sprite for all six links in one fell swoop:

document.getElementsByTagName("ul")[0].className = "fuchsia";

Figure 8–6. Writing the className member to swap the blue sprite for the fuchsia one

http://www.brooksrunning.com

CHAPTER 8 ■ SCRIPTING CSS

319

Totally overwriting className like that is fine if the element is a member of just one class that you
want to replace. But an element can be a member of two or more classes. So, is there a less draconian
way to go about scripting className?

Of course. Why else would I even bring it up? Scripting className is something you will do quite
often. With this in mind, let’s write a function to do the job for us. Maybe name it swapClass. Then
refresh Firefox, clear Firebug, and enter the following:

function swapClass(element, oldClass, newClass) {
 var re = new RegExp("\\b" + oldClass + "\\b", "g");
 element.className = element.className.replace(re, newClass);
}

swapClass() works with three parameters. element is an Element node that you want to change
className for. newClass is the name of the class you want to replace oldClass with. Note that both
oldClass and newClass are strings.

swapClass() does its work in just two statements. First, we save a regular expression to a local
variable named re. This will match a word boundary, followed by the value of oldClass, followed by
another word boundary. So, re will match "blue" but not "blueberry". In the next statement, we call
String.replace() on className, passing re for the first parameter and newClass for the second. Doing so
swaps oldClass for newClass.

■ Note String.replace() and other wrapper methods for strings were covered in Chapter 2.

There it is. Now let’s try swapping "blue" for "fuchsia" for the element with the help of
swapClass(). Verify your work with Figure 8–7:

function swapClass(element, oldClass, newClass) {
 var re = new RegExp("\\b" + oldClass + "\\b", "g");
 element.className = element.className.replace(re, newClass);
}
swapClass(document.getElementsByTagName("ul")[0], "blue", "fuchsia");

CHAPTER 8 ■ SCRIPTING CSS

320

Figure 8–7. Testing swapClass() on the element

Scripting Rules
In addition to scripting className, another way to change the appearance of several elements is to script
a rule that targets them. Rather than swapping className from "blue" for "fuchsia" for the , we
could just as well change the rule for the blue class in eight.css.

Now that we have our marching orders, refresh Firefox, and clear Firebug. JavaScript represents a
style sheet like eight.css with a CSSStyleSheet object. Those implement the members listed in two DOM
interfaces, StyleSheet and CSSStyleSheet. The following seven members come from StyleSheet:

disabled
href
media
ownerNode
parentStyleSheet
title
type

CHAPTER 8 ■ SCRIPTING CSS

321

Additionally, four CSS-only members come from the CSSStyleSheet interface:

cssRules
ownerRule
deleteRule()
insertRule()

Internet Explorer, of course, deviates from the DOM standard but not by much for StyleSheet.
Internet Explorer renames ownerNode, which refers to the <link> or <style> element for the style sheet, as
owningElement. For the other StyleSheet members, Internet Explorer abides by the DOM names.

On the other hand, Internet Explorer does not implement any members from CSSStyleSheet. But
don’t worry. There are Internet Explorer–only members that will enable us to muddle through. The ones
we will explore are as follows:

rules
imports
addRule()
addImport()
removeRule()
removeImport()
cssText

Things could be worse, you know. Internet Explorer deviating from DOM makes scripting style
sheets tough. But the proprietary workarounds make it doable. So, rather than feel sorry for ourselves,
let’s start moving forward in small steps.

Before we can query a rule, we need to get at the style sheet that contains the rule. One way is to
query the sheet member of a <link> or <style> element in Firefox, Safari, and Opera. Internet Explorer
deviates from DOM, no surprise, and implements a proprietary styleSheet member instead. With this in
mind, our first steps will be the following:

var myStyleSheet = document.getElementsByTagName("link")[0];
myStyleSheet = myStyleSheet.sheet || myStyleSheet.styleSheet;

Another, less reliable way to query a style sheet is by way of document.styleSheets, which contains
an array-like object with one member for every <style> or <link> element having a rel attribute value
set to "stylesheet". Internet Explorer and Opera also add one member for every <style> or <link>
element having a rel attribute value set to "alternate stylesheet". No browser adds imported style
sheets to document.styleSheets—just those included with a <link> or embedded in a <style>. Anyway,
we could rewrite the previous sample like so:

var myStyleSheet = document.styleSheets[0];

■ Note document.styleSheets is provided by the DocumentStyle interface. In turn, styleSheets contains an
array-like object provided by the StyleSheetList interface. Members contained by a StyleSheetList are objects
that have the features listed in the StyleSheet and CSSStyleSheet interfaces. So, there are four interfaces for

you to consult in a DOM reference.

Now myStyleSheet contains an object representing eight.css. Let’s find the rule for the blue class.
Where would that be? It’s in a cssRules member for Firefox, Safari, and Opera, but in a rules member for

CHAPTER 8 ■ SCRIPTING CSS

322

Explorer. Those are both CSSRuleList objects. Those are array-like objects, which is to say their members
are elements. Moreover, cssRules.length or rules.length contains the number of members.

cssRules contains both styling rules and @ directives like @import. On the other hand, rules contains
only styling rules. In other words, it contains the ones comprised of a selector and declaration block. So
if a style sheet contains @ directives, cssRules.length will be greater than rules.length. In Internet
Explorer, @import directives are nowhere to be found, but any @page directives are in an array-like object
named pages. Note that although @import directives are missing in Internet Explorer, scripting imported
style sheets remains doable by way of imports, addImport(), and removeImport(). Later in the day, we will
explore those features. Note that Internet Explorer splits grouped selectors into more than one rule.
Therefore, for the following rule, Internet Explorer would add two members to rules, while Firefox,
Safari, and Opera would add one member to cssRules:

div#mast form, div#mast h1 {
 display:inline;
}

In other words, Internet Explorer separates the previous rule into two like so:

div#mast form {
 display:inline;
}
 div#mast h1 {
 display:inline;
}

With all those variations between cssRules and rules in mind, obviously do not hard-code the index
of a rule, because it is apt to be wrong in Internet Explorer or in Firefox, Safari, and Opera.

Now, with length and either cssRules or rules, we can loop through the styling rules in eight.css.
Note that in any browser, rules are numerically indexed in source code order. Say we want to find the
rule with the selector "ul.blue a" in order to change the sprite to fuchsia; a for loop like the following
would work cross-browser:

var myStyleSheet = document.getElementsByTagName("link")[0];
myStyleSheet = myStyleSheet.sheet || myStyleSheet.styleSheet;
var myRules = myStyleSheet.cssRules || myStyleSheet.rules;
for (var i = myRules.length - 1; i > -1; i --) {
 if (myRules[i].selectorText && myRules[i].selectorText.toLowerCase() === "ul.blue a") {
 myRules[i].style.backgroundImage = "url(images/fuchsia.gif)";
 break;
 }
}

Three things in the for loop bear explaining. Thought I’d leave you in the lurch, didn’t you?

• First, we loop through the rules in reverse order. Now why would we do that? CSS
precedence: in the event that more than one rule in the style sheet has the selector
we are looking for, we want to change the last one.

• Second, @import and other @ rules do not define a selectorText or style member.
Calling String.toLowerCase() on undefined returns an error. So, we use the &&
operator to skip any rules that do not define selectorText.

• Third, the string in selectorText may or may not match the CSS selector. For this
reason, we lowercase selectorText prior to comparing it with ===.

CHAPTER 8 ■ SCRIPTING CSS

323

■ Note If you have forgotten how the && and === operators work, flip back to Chapter 3.

Now let’s see whether everything goes according to plan. Refresh Firefox to revert the sprite to blue.
Then click Run in Firebug, and verify your work with Figure 8–8.

Figure 8–8. Manually finding a rule by its selector

Finding a rule certainly takes some doing. And it’s something we’re likely to do often. So, maybe we
ought to write a helper function to simplify things. Yup, that’s what we’ll do. Refresh Firefox, clear
Firebug, and then declare a function named findRule() that takes two parameters. element will contain
the <link> or <style> element, and selector will contain the selector for the rule we want to find.

function findRule(element, selector) {
}

So, an Element node and selector string will go in one end of findRule(), and then a CSSStyleRule
object will pop out of the other. Great. Now let’s make it happen.

First, compensate for Internet Explorer deviating from DOM by renaming sheet and cssRules. To do
so, create a couple local variables like so. Then lowercase the string in the selector argument. This will
save your bacon in the event you forget to pass in the selector in lowercase to begin with.

CHAPTER 8 ■ SCRIPTING CSS

324

function findRule(element, selector) {
 var sheet = element.sheet || element.styleSheet;
 var rules = sheet.cssRules || sheet.rules;
 selector = selector.toLowerCase()
}

Now findRules() has the values necessary to find the desired rule. Let’s tweak the for loop from the
previous sample; the body of the loop just needs to return the matching CSSStyleRule object. In case
there are none, return null following the for loop. Recall from earlier in the book that a function that
typically returns an object ought to return null (which conveys no object) on failure rather than
undefined (which conveys no string, number, or boolean).

With those brave words, our work is done:

function findRule(element, selector) {
 var sheet = element.sheet || element.styleSheet;
 var rules = sheet.cssRules || sheet.rules;
 selector = selector.toLowerCase()
 for (var i = rules.length - 1; i > -1; i --) {
 if (rules[i].selectorText && rules[i].selectorText.toLowerCase() === selector) {
 return rules[i];
 }
 }
 return null;
}

Now let’s see whether findRule() works as planned. Refresh Firefox to revert the sprite to blue.
Then in Firebug, swap the blue sprite for the fuchsia sprite with the help of findRule(), verifying your
work with Figure 8–9.

function findRule(element, selector) {
 var sheet = element.sheet || element.styleSheet;
 var rules = sheet.cssRules || sheet.rules;
 selector = selector.toLowerCase()
 for (var i = rules.length - 1; i > -1; i --) {
 if (rules[i].selectorText && rules[i].selectorText.toLowerCase() === selector) {
 return rules[i];
 }
 }
 return null;
}
var myRule = findRule(document.getElementsByTagName("link")[0], "ul.blue a");
if (myRule !== null) {
 myRule.style.backgroundImage = "url(images/fuchsia.gif)";
}

CHAPTER 8 ■ SCRIPTING CSS

325

Figure 8–9. Swapping the blue sprite for the fuchsia one with findRule()

Remember from earlier in the chapter that CSSStyleRule.style contains an object with the
members listed in the CSSStyleDeclaration and CSS2Properties interfaces. We just wrote
CSS2Properties.backgroundImage. Now by way of CSSStyleDeclaration.cssText, let’s change the sprite
from blue to green for the Saucony link and slide it to the down position. To do so, refresh Firefox, and
rework the previous sample like so. Then click Run.

function findRule(element, selector) {
 var sheet = element.sheet || element.styleSheet;
 var rules = sheet.cssRules || sheet.rules;
 selector = selector.toLowerCase()
 for (var i = rules.length - 1; i > -1; i --) {
 if (rules[i].selectorText && rules[i].selectorText.toLowerCase() === selector) {
 return rules[i];
 }
 }
 return null;
}
var myRule = findRule(document.getElementsByTagName("link")[0], "a#saucony");
if (myRule !== null) {
 myRule.style.cssText = "background:url(images/green.gif) -99px -135px; top:205px";
}

CHAPTER 8 ■ SCRIPTING CSS

326

One thing to note or reiterate is that changing cssText is draconian, obliterating any declarations in
there. This is why we had to reset top to 205px in the previous sample. Another, more general thing to
note is that a style sheet differs from a <link> or <style>. The latter is markup, while the former is CSS. In
other words, a style sheet is the CSS code in the file included by a <link> element or contained by a
<style> element. So, you cannot, for example, retrieve a style sheet by its id member, since it does not
have one. However, you can and probably should retrieve the corresponding <link> or <style> element
by its id. Doing so ensures that your script continues to work in the event that CSS designers add more
<link> or <style> tags. It’s also the case if you add more tags dynamically by script, which we will cover
not far down the road.

For example, rather than hoping that the first <link> element continues to be the one we want to
script in the future, we ought to modify the previous sample like so:

function findRule(element, selector) {
 var sheet = element.sheet || element.styleSheet;
 var rules = sheet.cssRules || sheet.rules;
 selector = selector.toLowerCase()
 for (var i = rules.length - 1; i > -1; i --) {
 if (rules[i].selectorText && rules[i].selectorText.toLowerCase() === selector) {
 return rules[i];
 }
 }
 return null;
}
var myRule = findRule(document.getElementById("spriteStyles"), "a#saucony");
if (myRule !== null) {
 myRule.style.cssText = "background:url(images/green.gif) -99px -135px; top:205px";
}

Scripting Imported Style Sheets
Now then, what if you want to script an imported style sheet? In other words, say you want to script one
included with an @import directive. First, save eight.html as running_copy.html; then, replace the <link>
element with a <style> element that imports eight.css like so:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Scripting CSS</title>
<style type="text/css">
@import url(eight.css);
</style>
</head>
<body>
<div id="running">
 <h4>Running</h4>
 <ul class="blue">
 adidas
 ASICS
 Brooks
 New Balance
 Nike

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://www.adidas.com
http://www.asics.com
http://www.brooksrunning.com
http://www.newbalance.com
http://www.nike.com

CHAPTER 8 ■ SCRIPTING CSS

327

 Saucony

</div>
</body>
</html>

As noted earlier in the day, an @import rule does not have a selectorText or style member. The
reason for this is that an @import rule does not implement the CSSStyleRule interface but instead
implements CSSImportRule. This interface provides three members:

href
media
styleSheet

StyleSheet refers the imported style sheet. So if we want to change left to 500px for the running
<div>, we can do so by entering and running the following in Firebug:

document.getElementsByTagName("style")[0].sheet.cssRules[0].styleSheet.cssRules[2].style.left
= "500px";

This works for Firefox, Safari, and Opera. But it doesn’t work for Internet Explorer, which does not
implement CSSImportRule. Rather, for a <style> or <link> element, styleSheet.imports contains a
collection of imported style sheets. So, we would rework the previous sample like so:

document.getElementsByTagName("style")[0].styleSheet.imports[0].rules[2].style.left = "500px";

Adding or Deleting a Rule
Now then, what if you want to dynamically determine the numeric index of a rule cross-browser? Can it
be done? Yup. But why would you want to know a rule’s index? A couple reasons: to add a rule or delete
one. So, before we try explore those operations, let’s figure out how to determine the numeric index of a
rule regardless of the visitor’s browser.

Insofar as this is something we will want to frequently do, you probably know what I am going to
say. Right, let’s code a helper function. So, delete running_copy.html and reload eight.html in Firebug.
Then key in the following function, which differs from findRule() in just two ways:

• First, it returns the loop variable i rather than a CSSStyleRule object. i will be the
index of the desired rule. That was painless.

• Second, to convey failure in the event no rule in the style sheet has the selector we
gave findIndex() to work with, the return value will be undefined rather than null.
Why? findIndex() ought to return a number. Those are stored on the stack, and
undefined conveys no value on the stack. On the other hand, findRule() ought to
return a object. Those are stored on the heap, and null conveys no value on the
heap. You forgot about all that, didn’t you?

function findIndex(element, selector) {
 var sheet = element.sheet || element.styleSheet;
 var rules = sheet.cssRules || sheet.rules;
 selector = selector.toLowerCase()
 for (var i = rules.length - 1; i > -1; i --) {
 if (rules[i].selectorText && rules[i].selectorText.toLowerCase() === selector) {
 return i;
 }
 }

http://www.saucony.com

CHAPTER 8 ■ SCRIPTING CSS

328

}

Let’s see whether findIndex() works as planned. Refresh Firefox to revert the sprite to blue. Then
pass in "a#adidas" for selector, and click Run. Since that is the tenth rule in eight.css, the return value
ought to be 9 because JavaScript numbers them beginning with 0. Verify your work with Figure 8–10.

function findIndex(element, selector) {
 var sheet = element.sheet || element.styleSheet;
 var rules = sheet.cssRules || sheet.rules;
 selector = selector.toLowerCase()
 for (var i = rules.length - 1; i > -1; i --) {
 if (rules[i].selectorText && rules[i].selectorText.toLowerCase() === selector) {
 return i;
 }
 }
}
findIndex(document.getElementById("spriteStyles"), "a#adidas");
// 9

Figure 8–10. Finding the numeric index of the rule with the "a#adidas" selector with findIndex()

CHAPTER 8 ■ SCRIPTING CSS

329

Adding a Rule to a Style Sheet
Now that we have a helper function to provide us with the numeric index of a rule, we can explore how
to insert a rule into a style sheet. Of course, there is a DOM way and an Internet Explorer way. Let’s write
another helper function to compensate for Internet Explorer’s skullduggery.

Clear Firebug, but do not refresh Firefox because we want findIndex() to remain in memory. Name
the helper function insertRule. This one will work with four parameters:

• element will be a <link> or <style> Element node.

• selector will be the text of the selector for the new rule, in other words, a string
like "div#running li".

• declarations will be the text of the declaration block, minus the curly braces, such
as a string like "top:135px; background-position:0 -81px". Note that property
names are dash case. It’s just like in your CSS code or in
CSSStyleDeclaration.cssText.

• index contains the text of the selector for the rule you want to insert the new rule
before. So, that’s the selector string we will pass to findIndex(), which will then
return a numeric index, or undefined if we are out of luck.

function insertRule(element, selector, declarations, index) {
}

Now let’s move on to the body of our helper function. Assign either the DOM or Internet Explorer
member that contains the CSSStyleSheet object to a local variable named sheet. Similarly, assign the
DOM or Internet Explorer member that contains the CSSRuleList array-like object to one named rules.
It’s just like we did in findIndex().

Now let’s make the index parameter optional by way of a couple if statements. JavaScript will run
the block of the first if statement in the event that we did pass a selector string for the value of index.
Otherwise, JavaScript will run the block of the second if statement, like if we invoked insertRule() with
just three parameters rather than four. In this case, index defaults to undefined. Let’s overwrite that value
with rules.length, which contains a number one greater than the total number of rules in the style
sheet. Later, this numeric index will enable us to append the new rule to the very end of the style sheet.
Thus far we have this:

function insertRule(element, selector, declarations, index) {
 var sheet = element.sheet || element.styleSheet;
 var rules = sheet.cssRules || sheet.rules;
 if (typeof index === "string") {
 index = findIndex(element, index);
 }
 if (typeof index !== "number") {
 index = rules.length;
 }
}

Now sheet will contain either a DOM method named insertRule() or an Internet Explorer method
named addRule(). Let’s figure out which one is available by way of the else if idiom. In the event that
Firefox, Safari, or Opera is running our function, insertRule() will be defined. This method takes two
parameters:

• The full text of the rule, curly braces and all. So, we will cobble that together with
the + operator.

CHAPTER 8 ■ SCRIPTING CSS

330

• The numeric index of the new rule. We have that number on hand in the index, so
just pass that in, and we’re done.

Now let’s code a path for Internet Explorer to run. Its method, addRule(), takes three parameters:
the text for the selector, the text for the declarations, and the numeric index for where to insert the rule.
Simply pass in the values of selector, declarations, and index. It’s simple as can be:

function insertRule(element, selector, declarations, index) {
 var sheet = element.sheet || element.styleSheet;
 var rules = sheet.cssRules || sheet.rules;
 if (typeof index === "string") {
 index = findIndex(element, index);
 }
 if (typeof index !== "number") {
 index = rules.length;
 }
 if (sheet.insertRule) {
 sheet.insertRule(selector + "{" + declarations + "}", index);
 } else if (sheet.addRule) {
 sheet.addRule(selector, declarations, index);
 }
}

Between the rules with the selectors "ul.blue a" and "ul.fuchsia a", let’s insert a new one to swap
the sprite from blue to fuchsia by calling insertRule() like so. Verify your work with Figure 8–11.

function insertRule(element, selector, declarations, index) {
 var sheet = element.sheet || element.styleSheet;
 var rules = sheet.cssRules || sheet.rules;
 if (typeof index === "string") {
 index = findIndex(element, index);
 }
 if (typeof index !== "number") {
 index = rules.length;
 }
 if (sheet.insertRule) {
 sheet.insertRule(selector + "{" + declarations + "}", index);
 } else if (sheet.addRule) {
 sheet.addRule(selector, declarations, index);
 }
}
insertRule(document.getElementById("spriteStyles"), "ul.blue a",
 "background-image:url(images/fuchsia.gif)", "ul.fuchsia a");

CHAPTER 8 ■ SCRIPTING CSS

331

Figure 8–11. Inserting a rule with our helper functions, findIndex() and insertRule()

Of course, since the final rule in a style sheet clobbers any similar ones appearing earlier, we could
just as well omitted the fourth parameter. Our function will then append our new rule to the very end of
the rule collection. Take advantage of that feature to swap the sprite from fuchsia to green like so:

function insertRule(element, selector, declarations, index) {
 var sheet = element.sheet || element.styleSheet;
 var rules = sheet.cssRules || sheet.rules;
 if (typeof index === "string") {
 index = findIndex(element, index);
 }
 if (typeof index !== "number") {
 index = rules.length;
 }
 if (sheet.insertRule) {
 sheet.insertRule(selector + "{" + declarations + "}", index);
 } else if (sheet.addRule) {
 sheet.addRule(selector, declarations, index);
 }
}

CHAPTER 8 ■ SCRIPTING CSS

332

insertRule(document.getElementById("spriteStyles"), "ul.blue a",
 "background-image:url(images/green.gif)");

Deleting a Rule from a Style Sheet
Now then, let’s draft a helper function to delete a rule from a style sheet. Just as with adding a rule,
Internet Explorer implements a proprietary method instead of the one from the DOM standard. Our
game plan for this helper function will be similar to the one for adding a rule. In other words, we will
have Firefox, Safari, and Opera invoke the DOM method, deleteRule(), and Internet Explorer will invoke
its proprietary one, removeRule(). There will be one path for standard savvy browsers and one path for
dummy Internet Explorer.

Clear Firebug, but do not refresh Firefox because we want to keep findIndex() in memory. Name
the helper function deleteRule. It’s the same identifier as for the DOM method. Now why do those
identifiers not collide?

Take your time.
This is one you ought to know.
By the way, we named the helper function for adding a rule with the identifier for the DOM method,

insertRule. Those didn’t collide either.
What do you think?
Yup, different namespaces. The helper functions insertRule() and deleteRule() are methods of

window. On the other hand, the DOM functions insertRule() and deleteRule() are methods of a
CSSStyleSheet object. They’re in different folders, so to speak.

Where were we? Hmm. OK, now define two named arguments:

• The first one, element, will be a <link> or <style> Element node.

• The second one, selector, will be the text of the selector for the rule to delete.

Insofar as the DOM and Internet Explorer functions for deleting a rule are methods of a
CSSStyleSheet object, we need to save a reference to the one containing the rule to delete. Put that in a
local variable named sheet. Then save the return value of passing element and selector to findIndex() to
another local variable named index. If findIndex() has no luck with those parameters and has to return
undefined instead of a number, we cannot delete a rule—not unless we want to do so randomly! So, write
an if statement to abort deleteRule() in the event we have no numeric index to work with.

Thus far we have this:

function deleteRule(element, selector) {
 var sheet = element.sheet || element.styleSheet;
 var index = findIndex(element, selector);
 if (typeof index !== "number") {
 return;
 }
}

Now for the mojo. Both the DOM and Internet Explorer methods work with one parameter, the
numeric index of the rule to delete. Just as a reminder, indexes are integers beginning with 0. So, code
two paths with the if else idiom. Firefox, Safari, and Opera go down the first path, and Internet
Explorer goes down the second. We’re done:

function deleteRule(element, selector) {
 var sheet = element.sheet || element.styleSheet;
 var index = findIndex(element, selector);
 if (typeof index !== "number") {
 return;

CHAPTER 8 ■ SCRIPTING CSS

333

 }
 if (sheet.deleteRule) {
 sheet.deleteRule(index);
 } else if (sheet.removeRule) {
 sheet.removeRule(index);
 }
}

Now let’s try to delete a couple rules, such as the two we just added with insertRule(). Those both
have a selector of "ul.blue a". The first time we pass "ul.blue a" to deleteRule(), the sprite turns from
green to fuchsia, and the second time, it turns from fuchsia to blue. So, run the following twice in
Firebug, verifying your work with Figure 8–12:

function deleteRule(element, selector) {
 var sheet = element.sheet || element.styleSheet;
 var index = findIndex(element, selector);
 if (typeof index !== "number") {
 return;
 }
 if (sheet.deleteRule) {
 sheet.deleteRule(index);
 } else if (sheet.removeRule) {
 sheet.removeRule(index);
 }
}
deleteRule(document.getElementById("spriteStyles"), "ul.blue a");

CHAPTER 8 ■ SCRIPTING CSS

334

Figure 8–12. Deleting the two newly inserted rules with deleteRule() swaps the sprite from green to

fuchsia to blue.

Querying Overall Styles from the Cascade
Now then, what if you want to query the overall styles from the CSS cascade for an element? In other
words, you want to know the declarations that have the highest precedence. Those form one
humongous declaration block, which, like the declaration block for a rule, JavaScript represents with a
CSSStyleDeclaration object. You already know how to query those cumulative declarations—the.
operator and a CSS2Properties member. Remember they are camel case, not dash case. On the other
hand, CSSStyleDeclaration.cssText contains the declarations block, minus the curly braces, as a string.
However, this string is oftentimes too lengthy to bother with.

The cumulative declaration block from the cascade differs from that of a rule in a style sheet in a few
ways:

p

CHAPTER 8 ■ SCRIPTING CSS

335

• It is read-only. Try to assign a new value to a property from the cascade, and
JavaScript calls you a dummy by way of an error.

• Any relative values are converted to absolute values. Typically this means
converting the value to pixels.

• Any property that sets several properties in one fell swoop, such as a margin or
border, may contain undefined, while their corresponding fully expanded
properties, such as marginLeft or borderRightStyle, will always contain a value. As
a rule of thumb, do not query rollup values from the cascade. Query their fully
expanded equivalents instead.

Refresh Firefox, clear Firebug, and let’s cobble together a helper function named queryCascade()
that works with two parameters:

• element will contain an Element node for the DOM tree.

• property will contain the name of the CSS property as a camel case string. That is
to say, don’t pass a dash case string or a camel case identifier.

Now let’s send Firefox, Safari, and Opera down one path and Internet Explorer down another by
way of an if statement and the else if idiom. First let’s test for the DOM function getComputedStyle()
by way of the typeof operator. If typeof returns "function" rather than "undefined", invoke with two
parameters, element and null. getComputedStyle() will then return a CSSStyleDeclaration object
containing the cumulative declarations from the cascade, as well as those implicitly calculated by the
browser, for element. Then query property by way of the [] operator.

function queryCascade(element, property) {
 if (typeof getComputedStyle === "function") {
 return getComputedStyle(element, null)[property];
 }
}

Do you remember why doing so with the . operator will not work?
Come on, you know this one.
I’m not telling you the answer.
Maybe I’ll go reorganize the Penske file while you think it through.

■ Note George reorganized the Penske file in the Seinfeld episode “The Barber.”

What do you think? Right, the . operator works with a hard-coded identifier. On the other hand, []
works with a string or any expression that evaluates to a string, most notably a variable or parameter.

■ Note The if statement and else if idiom were covered in Chapter 4, while the typeof and refinement

operators were covered in Chapter 3. So if you have forgotten how those work, take a moment to flip back and

refresh your memory. I’ll wait for you to return before continuing. Promise!

CHAPTER 8 ■ SCRIPTING CSS

336

Why do we use null for the second parameter? This can be a pseudo-element as a string, for
example, ":before" or ":after". However, Internet Explorer’s proprietary alternative to
getComputedStyle() does not support pseudo-elements. Therefore, pass null to make things work cross-
browser.

Now for our DOM dummy, Internet Explorer, which does not implement the ViewCSS interface that
provides getComputedStyle(). Internet Explorer’s way is simple: an Element node has not only a style
member for inline styles but also a currentStyle member for cascade styles. Both style and
currentStyle contain a CSSStyleDeclaration object. The Internet Explorer path is straightforward, and
we’re done coding queryCascade().

function queryCascade(element, property) {
 if (typeof getComputedStyle === "function") {
 return getComputedStyle(element, null)[property];
 } else if (element.currentStyle) {
 return element.currentStyle[property];
 }
}

Now let’s query a CSS property from the cascade. Then we have a couple that were calculated
behind the scenes by Firefox:

function queryCascade(element, property) {
 if (typeof getComputedStyle === "function") {
 return getComputedStyle(element, null)[property];
 } else if (element.currentStyle) {
 return element.currentStyle[property];
 }
}
queryCascade(document.getElementById("adidas"), "width");
// "100px"
queryCascade(document.getElementsByTagName("ul")[0], "width");
// "120px"
queryCascade(document.getElementsByTagName("ul")[0], "height");
// "0px"

For the Adidas <a> element, queryCascade() returned the value from an explicit declaration in
eight.css. On the other hand, the values for the element were calculated behind the scenes for us
by Firefox. Note that insofar as the is a block element, its width is set to that of the containing <div>,
which we set to "120px". On the other hand, since the <a> elements within the are absolutely
positioned relative to the <div> and the has a display value of inline, the collapses to a height of
"0px".

Here is the situation. Nowadays, CSS presentation and markup content are in separate files.
Initially, the CSSStyleDeclaration object in the style member for an Element node will be irrelevant,
with just scores of "" empty strings and other default values. On the other hand, the
CSSStyleDeclaration object representing cascade declarations is totally relevant but read-only. So if you
do not know what rule or style sheet contains the declaration with the highest precedence, then what do
you do? Typically, scripters read the cascade and write the inline style attribute. That is to say, they
query two separate CSSStyleDeclaration objects. Obviously, if you know where to find the rule, then you
simply read and write the CSSStyleDeclaration object representing the rule’s declaration block, like we
did earlier in the day. But more often than not, you won’t have that option.

Making the computed styles from the cascade read-only is a DOM failing. But to be fair, the
standard predates the notion of putting markup, CSS, and JavaScript in separate layers by five years.
Maybe someday the flaw will be fixed. But that day is far off and may never come at all. So, let’s give the
“read the cascade, write the attribute” thing a try.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 8 ■ SCRIPTING CSS

337

Clear Firebug, but do not refresh Firefox because we want queryCascade() to remain available in
memory. Then save the <div> to a variable named myDIV. Pass myDIV and "left" to queryCascade(), which
will then return "40px". Convert that string to the number 40 by way of parseInt(), and then add 10.
Next, convert the sum of 50 to the string "50", and append "px". Finally, write that string, "50px", to the
style attribute. Click Run repeatedly until left is set to "700px". JavaScript will move our running shoe
menu to the right by 10 pixels each time you click Run.

■ Note If you have forgotten how parseInt() works, flip back to Chapter 2. Datatype conversion is covered

there, too.

function queryCascade(element, property) {
 if (typeof getComputedStyle === "function") {
 return getComputedStyle(element, null)[property];
 } else if (element.currentStyle) {
 return element.currentStyle[property];
 }
}
var myDIV = document.getElementById("running");
myDIV.style.left = parseInt(queryCascade(myDIV, "left")) + 10 + "px";

Verify your work with Figure 8–13.

CHAPTER 8 ■ SCRIPTING CSS

338

Figure 8–13. Moving the interface to the right in 10-pixel increments with the help of queryCascade()

JavaScript animations typically work in this way – that is to say, by writing the style attribute at
regular intervals. Later in the book, we will do just that.

Enabling and Disabling Style Sheets
Now then, sometimes you will want to turn a style sheet on or off. Maybe you’ll want to change the skin
for an interface, for example. Doing so is straightforward and even works in our DOM dummy, Internet
Explorer. Every style sheet embedded in a <style> element or included by a <link> element has a
disabled member (which comes from the CSSStyleSheet interface, by the way).

Now do you remember the JavaScript datatype to convey on or off?
It’s the same as the one that conveys yes or no.
Come on, you know this one.
Right, the booleans, true and false. The only tricky thing with the disabled member is that it isn’t

named enabled. In other words, true means the style sheet is off, and false means that the style sheet is
on. Trust me, you will get this mixed up from time to time.

Refresh Firefox, and clear Firebug. Then disable eight.css, entering and running the following
helper function and verifying your work with Figure 8–14:

CHAPTER 8 ■ SCRIPTING CSS

339

function toggleSheet(element) {
 var sheet = element.sheet || element.styleSheet;
 sheet.disabled = ! sheet.disabled;
}
toggleSheet(document.getElementById("spriteStyles"));

Figure 8–14. Disabling a style sheet by setting its disabled member to true

Our markup is totally unstyled now. No, I don’t like it either. Click Run again to have Firefox reapply
eight.css.

Including or Importing Style Sheets
At this point, there’s no disabled attribute in the markup for a <link> or <style> tag. disabled is a
member of an Element node but not an attribute. Note that we covered difference between a member
and an attribute in Chapter 7; flip back to that chapter if you have forgotten.

Inasmuch as disabled is not a markup attribute, we can set its value to true only with JavaScript. If
JavaScript is not available, we cannot turn off a style sheet by calling toggleSheet(). But what if we want
a style sheet to be applied to a document only when JavaScript is available? Simple. We create and insert
a new <link> or <style> Element node. However, like everything else with scripting CSS, there are
Internet Explorer pitfalls. So, let’s code a helper function to do the job.

e

CHAPTER 8 ■ SCRIPTING CSS

340

Refresh Firefox, and clear Firebug. Then name the helper function addSheet, defining two
arguments:

• tag will contain the string "link" or "style".

• url will contain the URL of the style sheet.

Next, pass tag to document.createElement(), saving the return value to a local variable named
element. Regardless of whether element now contains a <link> or <style>, the type attributes will be
"text/css". Thus far, we have this:

function addSheet(tag, url) {
 var element = document.createElement(tag);
 element.type = "text/css";
}

Now append element to childNodes for <head> by way of appendChild(), which we covered in
Chapter 7. We have to do this now for the remainder of the function to work cross-browser.

function addSheet(tag, url) {
 var element = document.createElement(tag);
 element.type = "text/css";
 document.getElementsByTagName("head")[0].appendChild(element);
}

In the event we passed "link" for tag, set rel to "stylesheet" and href to the string in url. The
browser will then apply the style sheet to the document. So for a <link>, we’re done.

function addSheet(tag, url) {
 var element = document.createElement(tag);
 element.type = "text/css";
 document.getElementsByTagName("head")[0].appendChild(element);
 if (tag === "link") {
 element.rel = "stylesheet";
 element.href = url;
 }
}

Things are trickier if tag contains "style". For Firefox, Safari, and Opera, we just cobble together an
@import directive and pass that to insertRule(). For Internet Explorer, you might think to insert the
directive with addRule(). But you would be wrong. Internet Explorer has a separate method named
addImport() for inserting @import directives. addImport() works with two parameters:

• The URL of the style sheet to import. Just pass in the URL for the first parameter;
there’s no need to cobble together an @import directive.

• The second parameter, which is optional, is the numeric index for where to insert
the directive in imports. Remember from earlier in the chapter that imports is
where Explorer puts @import directives. That is to say, those are kept separate from
the rule sets in rules.

Let’s code these two paths by way of a try catch statement. The try block will work in Firefox,
Safari, and Opera but will generate an error in Internet Explorer, which will then go down the catch path,
merrily as can be. Our final code for addSheet() is as follows:

function addSheet(tag, url) {
 var element = document.createElement(tag);
 element.type = "text/css";

CHAPTER 8 ■ SCRIPTING CSS

341

 document.getElementsByTagName("head")[0].appendChild(element);
 if (tag === "link") {
 element.rel = "stylesheet";
 element.href = url;
 } else if (tag === "style") {
 try {
 element.sheet.insertRule("@import url(" + url + ")", 0);
 } catch (whyNot) {
 element.styleSheet.addImport(url);
 }
 }
}

So that we can tangibly test addSheet(), let’s first delete the <link> that includes eight.css.
Remember how to do so from the previous chapter? Yup, with removeChild(). Just invoke removeChild()
on the <head> element and pass in the <link>, and Firefox will redisplay our document as unstyled
markup, as Figure 8–15 illustrates.

function addSheet(tag, url) {
 var element = document.createElement(tag);
 element.type = "text/css";
 document.getElementsByTagName("head")[0].appendChild(element);
 if (tag === "link") {
 element.rel = "stylesheet";
 element.href = url;
 } else if (tag === "style") {
 try {
 element.sheet.insertRule("@import url(" + url + ")", 0);
 } catch (whyNot) {
 element.styleSheet.addImport(url);
 }
 }
}
document.getElementsByTagName("head")[0].
 removeChild(document.getElementsByTagName("link")[0]);

CHAPTER 8 ■ SCRIPTING CSS

342

Figure 8–15. Delete the <link> element with removeChild(), and Firefox redisplays the document as

unstyled markup.

By the way, even though it may be obvious, note that passing a <link> or <style> to removeChild()
does the inverse of what addSheet() does. So, removing a style sheet is simpler than adding one.

Now that our document is totally unstyled, we can tangibly test addSheet(). Let’s first try to include
eight.css with a new <link>. Go ahead and delete the removeChild() invocation. Then call addSheet()
like so, verifying your work with Figure 8–16.

function addSheet(tag, url) {
 var element = document.createElement(tag);
 element.type = "text/css";
 document.getElementsByTagName("head")[0].appendChild(element);
 if (tag === "link") {
 element.rel = "stylesheet";
 element.href = url;
 } else if (tag === "style") {
 try {
 element.sheet.insertRule("@import url(" + url + ")", 0);
 } catch (whyNot) {
 element.styleSheet.addImport(url);
 }

CHAPTER 8 ■ SCRIPTING CSS

343

 }
}
addSheet("link", "eight.css");

Figure 8–16. Dynamically including eight.css with addSheet()

Did Firefox restyle your document with the blue sprite? Great. Now let’s again remove the <link>
with removeChild(). Then insert a <style> with an @import directive with the help of addSheet(). Doing
so restyles the document, too.

function addSheet(tag, url) {
 var element = document.createElement(tag);
 element.type = "text/css";
 document.getElementsByTagName("head")[0].appendChild(element);
 if (tag === "link") {
 element.rel = "stylesheet";
 element.href = url;
 } else if (tag === "style") {
 try {
 element.sheet.insertRule("@import url(" + url + ")", 0);
 } catch (whyNot) {
 element.styleSheet.addImport(url);

CHAPTER 8 ■ SCRIPTING CSS

344

 }
 }
}
document.getElementsByTagName("head")[0].
 removeChild(document.getElementsByTagName("link")[0]);addSheet("style", "eight.css");

Embedding a Style Sheet
Sometimes you may want to embed a style sheet in a new <style> element rather than including or
importing one. Insofar as the newly minted <style> is empty, the simplest way to embed a style sheet is
to create a Text node containing all the rules and then insert it into the <style> with appendChild(). It
works fine for Firefox, Safari, and Opera, but not for Internet Explorer. There’s a workaround, though. In
Internet Explorer, styleSheet has a cssText member. Rather than create a Text node from our string of
CSS rules, we will simply assign the string to cssText. With those brave words, let’s code a helper
function named embedSheet(). This one works with one parameter, a string of CSS rules. The fork in the
road where Firefox, Safari, and Opera and Internet Explorer part company will be formed from a try
catch statement:

function embedSheet(text) {
 var element = document.createElement("style");
 element.type = "text/css";
 document.getElementsByTagName("head")[0].appendChild(element);
 text = document.createTextNode(text);
 try {
 element.appendChild(text);
 } catch (whyNot) {
 element.styleSheet.cssText = text.data;
 }
}

Now let’s test embedSheet() by passing in a couple of rules that will change the sprite from blue to
fuchsia and move the interface to the right. Enter and run the following, and then verify your work with
Figure 8–17:

function embedSheet(text) {
 var element = document.createElement("style");
 element.type = "text/css";
 document.getElementsByTagName("head")[0].appendChild(element);
 text = document.createTextNode(text);
 try {
 element.appendChild(text);
 } catch (whyNot) {
 element.styleSheet.cssText = text.data;
 }
}
embedSheet("ul.blue a {background-image:url(images/fuchsia.gif);} div#running {left:500px;}");

CHAPTER 8 ■ SCRIPTING CSS

345

Figure 8–17. Dynamically embedding a style sheet with embedSheet()

Summary
In this chapter, we explored a number of DOM interfaces for scripting CSS, while in Chapter 7 we
explored the interfaces for scripting markup. Now you know how to do what JavaScript behaviors do.
You can change the presentation or content of a document. Controlling when those changes occur is the
topic of the next chapter. There we will explore event interfaces provided by DOM and Internet Explorer.
See you there!

CHAPTER 8 ■ SCRIPTING CSS

346

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

C H A P T E R 9

■ ■ ■

347

Listening for Events

Twenty-five hundred years ago in 490 BC, a Greek herald named Pheidippides ran several dispatches
totaling 240 km (150 miles) during the final two days of the Battle of Marathon. The distance of his final
run from Marathon to Athens to deliver news of the Greek victory over the Persians with the word

μ (we have won) is the basis for the marathon race being 42 km (26.2 miles). Insofar as
Pheidippides ran those dispatches over mountainous terrain in hot weather and would have been 40
(born in 530 BC), it is not surprising that he collapsed and died moments later.

Nowadays, dying from running a marathon is rare, but developing rigor mortis, referred to as hitting
the wall, is not. Typically this happens in the final fourth of the marathon when, because of glycogen
depletion, muscle fibers lock up, effectively turning a runner into a staggering corpse. So to run a fast
marathon time, you must not hit the wall. During the race, this more or less comes down to making good
decisions about how to respond to events as they unfold—stuff like whether to speed up or slow down
relative to the display on a split clock or whether to follow a surging runner or remain in the chase pack.

In the same way, you have to be smart about how JavaScript behaviors respond to events, with
things such as visitors moving their mouse or the page loading in order to prevent the browser from
developing rigor mortis. Why would JavaScript freeze the browser anyway? For one, whenever some
JavaScript code is running, the browser cannot do any repaints, reflows, or any other UI updates. So, a
button clicked while JavaScript is executing may never look like it was clicked. For another, while a
JavaScript file is downloading, a browser cannot download any other kind of file. Therefore, CSS and
image downloads are temporarily blocked, both while a JavaScript file downloads and executes, typically
causing a blank white page.

But not to worry—we will explore not only how to respond to events but also how to be quick about
it. Insofar as JavaScript responds to events by running functions, referred to as event listeners, this
typically means coding snappy functions. Some techniques for doing so, such as optimizing loops, are
already in your bailiwick. Others, such as advance conditional loading, are new but well within your
grasp.

Working with the Event Object
A couple of notes before start coding: first, to respond to an event, you have to tell JavaScript to listen for
it as it traverses the DOM tree. In Internet Explorer 9, Firefox, Safari, Chrome, and Opera, you can tell
JavaScript to listen while an event either descends (capturing phase) or ascends (bubbling phase) the
DOM tree. In Internet Explorer 8 or earlier, JavaScript can listen only during the bubbling phase.

How do you know the who, what, when, where, and how of an event? Those details are provided by
the members of an event object that Internet Explorer 9, Firefox, Safari, Chrome, and Opera pass as the
sole parameter to an event listener function. Internet Explorer 8 or earlier, on the other hand, saves its
event object to the global variable, event, that is, to window.event. As you might imagine, window.event is
constantly being overwritten by Internet Explorer. However, even though this is a bit of a kludge, it
works for the reason that no two events ever take place at the same moment in time. Note that

CHAPTER 9 ■ LISTENING FOR EVENTS

348

INTERNET EXPLORER 9 and Opera save an event object to window.event in addition to passing it
to an event listener function.

Now then, to tell JavaScript to listen for an event in Internet Explorer 9, Firefox, Safari, Chrome, and
Opera, you invoke the DOM method addEventListener() on an Element or Document node.
addEventListener() works with three parameters:

• The first one is the name of the event to listen for. This can be a string literal or
expression, such as a variable.

• The second parameter is an event listener function for JavaScript to call when the
event from the first parameter takes place on the node or one of its descendents. It
is in this event listener function that we deal with the event that has happened.
This parameter may be either a function literal or an expression, such as an
identifier naming a function. So, it consists of the same two options, literal or
expression, as with the first parameter.

• The third parameter is simpler. It’s just a boolean, false or true. false means call
the event listener function during the bubbling phase. On the other hand, true
means call the event listener function during the capturing phase. Because
Internet Explorer does not implement capturing, you will nearly always pass false
for the third parameter.

Internet Explorer does not implement addEventListener() or any other feature from the DOM
events module. But it does have a proprietary way to tell JavaScript to listen for events (just during the
bubbling phase, however). In Internet Explorer, Element and Document nodes have a proprietary method
named attachEvent() that works with two parameters:

• The first one is the name of the event to listen for as a string literal or expression.
Note that this differs from the first parameter to addEventListener() in that you
must prefix event names with on—for example, onclick instead of click.

• The second parameter is the same as for addEventListener()—the event listener
function as a literal or expression, such as an identifier naming a function.
Because Internet Explorer can listen for events only during the bubbling phase,
attachEvent() does not take a boolean indicating whether to listen during
capturing or bubbling. So, there’s just two parameters.

Downloading Project Files
It’s time to code some snappy event listeners. However, doing so in Firebug is a bit impractical. We’re
going to do so with whatever plain-text editor you code your XHTML and CSS with. The only difference
is that you save a JavaScript file with a .js extension rather than an .html or .css extension. With this in
mind, create a plain-text file named nine.js. Then download the supporting XHTML, CSS, and image
files from www.apress.com. Put the images in a subfolder (named images) of the one you put the XHTML,
CSS, and JavaScript files in.

Let’s take a peek at what we have in there. In nine.html, we have the following structural markup.
Note that we link in nine.js just before the closing tag for the <body> element. Remember why from
Chapter 1? Uh-huh, it’s to prevent an initially blank page.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

http://www.apress.com
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

CHAPTER 9 ■ LISTENING FOR EVENTS

349

<title>JavaScript for Absolute Beginners</title>
<link rel="stylesheet" type="text/css" href="nine.css" />
<link rel="stylesheet" type="text/css" href="blue.css" id="skin" />
</head>
<body>
<div id="running">
 <h4 class="drag">Running</h4>

 adidas
 ASICS
 Brooks
 New
Balance
 Nike
 Saucony

</div>
<script src="nine.js" type="text/javascript"></script>
</body>
</html>

Now the lion’s share of the CSS presentation is in nine.css. It’s pretty straightforward, as you can
see:

* {
 margin:0;
 padding:0;
 border:0;
}
body {
 background:rgb(255,255,255);
 color:rgb(0,0,0);
 font:11px Verdana, Arial, Helvetica, sans-serif;
}
div#running {
 position:absolute;
 left:40px;
 top:40px;
 width:120px;
 height:243px;
 background:url(images/container.gif) 0 0 no-repeat;
}
div#running h4 {
 position:absolute;
 left:0px;
 top:0px;
 width:63px;
 height:25px;
 text-indent:-9999px;
 text-decoration:none;
 overflow:hidden;
}
div#running li {
 display:inline;

http://www.adidas.com
http://www.asics.com
http://www.brooksrunning.com
http://www.newbalance.com
http://www.nike.com
http://www.saucony.com

CHAPTER 9 ■ LISTENING FOR EVENTS

350

}
div#running li a {
 position:absolute;
 left:10px;
 width:100px;
 height:28px;
 color:rgb(0,0,0);
 text-indent:-9999px;
 text-decoration:none;
 overflow:hidden;
}
a#adidas {
 top:30px;
 background-position:0 0;
}
a#asics {
 top:65px;
 background-position:0 -27px;
}
a#brooks {
 top:100px;
 background-position:0 -54px;
}
a#newBalance {
 top:135px;
 background-position:0 -81px;
}
a#nike {
 top:170px;
 background-position:0 -108px;
}
a#saucony {
 top:205px;
 background-position:0 -135px;
}

Styles just for the blue, fuchsia, and green skins, which we will write a behavior to swap by key, are
in the aptly named files blue.css, fuchsia.css, and green.css. Those are pretty simple for our project—
just one rule each. For a full-blown web app, there would of course be many more. So in blue.css, we
have this:

.sprite {
 background-image:url(images/blue.gif);
}

Then in fuchsia.css, just the name of the GIF differs:

.sprite {
 background-image:url(images/fuchsia.gif);
}

The same goes for green.css:

.sprite {
 background-image:url(images/green.gif);
}

CHAPTER 9 ■ LISTENING FOR EVENTS

351

Then there are the blue, fuchsia, and green sprites. Those go in the images subfolder of the one you
put the XHTML, CSS, and JavaScript files in. Because this is a black-and-white book, I’m just going to
reproduce the blue sprite in Figure 9–1.

Figure 9–1. An example sprite from this chapter’s application

Regardless of whether the skin is blue, fuchsia, or green, the image for the tabbed container, shown
in Figure 9–2, will be the same: container.gif. Note that we will write a behavior so that we can grab the
menu by the Running tab and then drag and drop it elsewhere on the page.

Figure 9–2. Download tabbed container that all three skins share.

With those supporting project files in tow, let’s begin by coding four helper functions to make
working with events a little bit easier.

CHAPTER 9 ■ LISTENING FOR EVENTS

352

Advance Conditional Loading
The DOM and Internet Explorer methods for telling JavaScript to listen for events are similar enough
that we can replace those with a helper function. In our nine.js JavaScript file, let’s create a variable
named addListener and then assign one of two function literals to it with the ?: conditional operator
(one for Internet Explorer and one for all the other browsers). Remember from earlier in the book that
JavaScript converts the first operand of the ?: operator to a boolean and that a function converts to true.
So if the first operand to ?: is document.addEventListener, JavaScript converts that to true in Internet
Explorer 9, Firefox, Safari, Chrome, and Opera but to false in Internet Explorer 8 or earlier, which do not
implement document.addEventListener. As a result, JavaScript assigns the second operand for ?: to
addListener for Internet Explorer 9, Firefox, Safari, Chrome, and Opera, but the third operand for
Internet Explorer 8 or earlier, where these operands are function literals.

Since we are doing the feature testing with the ?: conditional operator prior to defining an
appropriate function, this technique, which we covered in Chapter 6, is referred to as advance
conditional loading. This is much snappier than running the feature test over and over every time the
function is called.

Thus far, we have the following skeleton. Note that to prevent errors deriving from JavaScript’s
automatic semicolon insertion feature, we break lines after the ? and : tokens of the ?: operator. So, the
= assignment statement is currently spread over five lines.

var addListener = (document.addEventListener) ?
 function() {
 } :
 function() {
 } ;

Let’s define four parameters for the function literal intended for Internet Explorer 9, Firefox, Safari,
Chrome, and Opera:

• First, node will refer to an Element or Document node from the DOM tree.

• In turn, type is the name of the event node should listen for.

• listener will refer to the event listener function to run whenever the event in type
occurs on node or one of its descendents.

• phase will contain true for capturing and false or undefined for bubbling. That is
to say, for bubbling, there is no need to explicitly pass false since undefined, the
default value for a parameter, will do the same thing.

Now we have this:

var addListener = (document.addEventListener) ?
 function(node, type, listener, phase) {
 } :
 function() {
 } ;

Having defined the parameters for the DOM-savvy function, let’s move on to the block. Just one
statement in there; invoke addEventListener() as a method of the node parameter, passing in type and
listener the way we found them. On the other hand, let’s convert phase to a boolean with the !! idiom.
Doing so converts undefined to false, which is why phase is optional. So, we’re done with the first
function literal:

var addListener = (document.addEventListener) ?
 function(node, type, listener, phase) {

CHAPTER 9 ■ LISTENING FOR EVENTS

353

 node.addEventListener(type, listener, !! phase);
 } :
 function() {
 } ;

■ Note Both the !! idiom and ! operator were covered in Chapter 3.

Now for the Internet Explorer 8 or earlier function literal. It’s just three parameters, though. Internet
Explorer 8 or earlier just implements bubbling, so there’s no need to define a phase parameter. It’s just
node, type, and listener:

var addListener = (document.addEventListener) ?
 function(node, type, listener, phase) {
 node.addEventListener(type, listener, !! phase);
 } :
 function(node, type, listener) {
 } ;

Now in the block, invoke attachEvent() on the Element or Document node in the node parameter.
Prefix the name of the event in type with on, but pass listener as is. Here it is. Note that Internet
Explorer 9 and Opera implement both addEventListener() and attachEvent().

var addListener = (document.addEventListener) ?
 function(node, type, listener, phase) {
 node.addEventListener(type, listener, !! phase);
 } :
 function(node, type, listener) {
 node.attachEvent("on" + type, listener);
 } ;

Telling JavaScript to Stop Listening for an Event
Now and then you will want to tell JavaScript to stop listening for an event. In Internet Explorer 9,
Firefox, Safari, Chrome, and Opera, you do so with removeEventListener(). In Internet Explorer 8 or
earlier, you do so with detachEvent(). Note that Internet Explorer 9 and Opera implement both
removeEventListener() and detachEvent().

Insofar as those both delete a previously added event listener, you have to pass them the same
parameters you added the event listener with. Therefore, we can tweak addListener() to create a helper
function to delete event listeners with.

Just cut and paste addListener, renaming the copy removeListener. Next, change addEventListener
to removeEventListener in the boolean expression and first function literal. Finally, change attachEvent
to detachEvent in the second function literal. Those four edits are in bold here:

var removeListener = (document.removeEventListener) ?
 function(node, type, listener, phase) {
 node.removeEventListener(type, listener, !! phase);
 } :
 function(node, type, listener) {
 node.detachEvent("on" + type, listener);
 } ;

CHAPTER 9 ■ LISTENING FOR EVENTS

354

removeListener() will come in handy when we code our drag-and-drop behavior.

Preventing Default Actions from Taking Place
Some event types have a default action associated with them. For example, if a click event occurs on an
<a> element, JavaScript loads a new URL. Oftentimes you will want to cancel this default action. Say you
want to load the new content with Ajax rather than by loading a new URL. To do so for Internet Explorer
9, Firefox, Safari, Chrome, and Opera, you would call preventDefault() on the event object for the click.
For IE 8 or earlier, you would assign false to returnValue. Note that Internet Explorer 9 and Opera
implement both preventDefault() and returnValue.

So, depending on the browser, we want to either call a method or write a member of an event object.
Let’s write a helper function named thwart() to do the job. Preventing a default action is not typically
something JavaScript has to do right away as a page loads, so let’s define thwart() by the lazy loading
technique, which we explored in Chapter 6.

Now the only value thwart() needs to do its job is an event object. Traditionally, a parameter for an
event object is named e, so let’s not rock the boat:

function thwart(e) {
}

That’s fine and dandy. Now let’s write our path for Internet Explorer 9, Firefox, Safari, Chrome, and
Opera with an if statement. In the event that referring to e.preventDefault does not return undefined,
we will overwrite thwart with a function literal that calls preventDefault() on the event object:

function thwart(e) {
 if (e.preventDefault) {
 thwart = function(e) {
 e.preventDefault();
 };
 }
}

Referring to e.preventDefault in Internet Explorer 8 or earlier will return undefined, so those
Internet Explorer versions will follow the else path. Yup, I know we don’t have one yet. Let’s fix that by
overwriting thwart with a function literal that changes returnValue to false from true, its default value.

function thwart(e) {
 if (e.preventDefault) {
 thwart = function(e) {
 e.preventDefault();
 };
 } else {
 thwart = function(e) {
 e.returnValue = false;
 };
 }
}

So far, so good. The only problem with this is that the first time we call thwart(), it overwrites itself
without canceling the default action (because we assign a new function to the thwart identifier but don’t
actually call the new function). Good grief!

To fix this, we need for the initial version of thwart() to call the new version of thwart(), passing the
event object in:

CHAPTER 9 ■ LISTENING FOR EVENTS

355

function thwart(e) {
 if (e.preventDefault) {
 thwart = function(e) {
 e.preventDefault();
 };
 } else {
 thwart = function(e) {
 e.returnValue = false;
 };
 }
 thwart(e);
}

The first time thwart() runs, it does a lot of work. But thereafter, thwart() runs snappily since its
block contains but one statement. In Internet Explorer 9, Firefox, Safari, Chrome, and Opera, that would
be e.preventDefault(), and in Internet Explorer or earlier that would be e.returnValue = false.

Preventing an Event from Traversing the DOM Tree
Now then, in Internet Explorer 9, Firefox, Safari, Chrome, and Opera, an event object descends the DOM
tree to the element an event happened on. Then turns tail and ascends the DOM tree. So, the event
object passes by any ancestor of the target of the event two times. On the other hand, in Internet
Explorer 8 or earlier, the event object passes by any ancestor one time, that is, while bubbling upward
through the DOM tree. Therefore, if you register event listeners for a certain kind of event, say a click, on
nodes that are on different tiers of the DOM tree, all of those could potentially run when a click event
occurs.

There ought to be a way to prevent an event object from traversing any further through the DOM
tree to avoid triggering additional event listeners, right? And there is. Just as with preventing default
actions, you do so by calling a method for Internet Explorer 9, Firefox, Safari, Chrome, and Opera and by
writing a member for Internet Explorer 8 or earlier. The DOM method is named stopPropagation(), and
the Internet Explorer 8 or earlier member is named cancelBubble. Note that Internet Explorer 9 and
Opera implement both stopPropagation() and cancelBubble. With this in mind, we can write a lazy
loader to do the job by changing some identifiers in thwart().

Now cut and paste thwart(). Then change the identifier thwart to burst in four places:

function burst(e) {
 if (e.preventDefault) {
 burst = function(e) {
 e.preventDefault();
 };
 } else {
 burst = function(e) {
 e.returnValue = false;
 };
 }
 burst(e);
}

Next, change the identifier for the DOM method from preventDefault to stopPropagation in two
places:

function burst(e) {
 if (e.stopPropagation) {

CHAPTER 9 ■ LISTENING FOR EVENTS

356

 burst = function(e) {
 e.stopPropagation();
 };
 } else {
 burst = function(e) {
 e.returnValue = false;
 };
 }
 burst(e);
}

Now change the identifier for the proprietary Internet Explorer member from returnValue to
cancelBubble. However, cancelBubble has to be set to true to prevent an event object from bubbling
further. Change false to true, and we’re done:

function burst(e) {
 if (e.stopPropagation) {
 burst = function(e) {
 e.stopPropagation();
 };
 } else {
 burst = function(e) {
 e.cancelBubble = true;
 };
 }
 burst(e);
}

We’re done coding helper functions for working with events. This is the final code for them:

var addListener = (document.addEventListener) ?
 function(node, type, listener, phase) {
 node.addEventListener(type, listener, !! phase);
 } :
 function(node, type, listener) {
 node.attachEvent("on" + type, listener);
 } ;
var removeListener = (document.removeEventListener) ?
 function(node, type, listener, phase) {
 node.removeEventListener(type, listener, !! phase);
 } :
 function(node, type, listener) {
 node.detachEvent("on" + type, listener);
 } ;
function thwart(e) {
 if (e.preventDefault) {
 thwart = function(e) {
 e.preventDefault();
 };
 } else {
 thwart = function(e) {
 e.returnValue = false;
 };
 }
 thwart(e);

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 9 ■ LISTENING FOR EVENTS

357

}
function burst(e) {
 if (e.stopPropagation) {
 burst = function(e) {
 e.stopPropagation();
 };
 } else {
 burst = function(e) {
 e.cancelBubble = true;
 };
 }
 burst(e);
}

Writing Helper Functions
Now that you have seen advance conditional loading, let’s rework a few helper functions from the past
two chapters with it. This will improve their performance immensely and make sure we’re using the best
technique in each case.

Crawling the DOM Tree
In Chapter 7, we wrote a helper function named traverseTree() to crawl the DOM tree, which we’ll have
to do again in this chapter. The code for traverseTree() appears here:

function traverseTree(node, func) {
 func(node);
 node = node.firstChild;
 while (node !== null) {
 arguments.callee(node, func);
 node = node.nextSibling;
 }
}

Coding traverseTree() to crawl the DOM by way of firstChild and nextSibling rather than
iterating over childNodes is more than 100 times faster in Internet Explorer. So, our take on
traverseTree() is already optimized relative to that Internet Explorer bug. Note that Firefox, Safari, and
Opera crawl the DOM just as fast by iterating over childNodes.

However, in Internet Explorer 9, Firefox, Safari, Chrome, and Opera,, traverseTree() has to crawl
through Text nodes representing formatting whitespace in our XHTML markup. So if we could eliminate
that ridiculous bit of work, traverseTree() would be much snappier in Internet Explorer 9, Firefox,
Safari, Chrome, and Opera.

DOM 3 defines an ElementTraversal interface that enables us to do just that. ElementTraversal
provides the following members that we can use in place of firstChild, lastChild, previousSibling,
nextSibling, and childNodes.length:

firstElementChild
lastElementChild
previousElementSibling
nextElementSibling
childElementCount

CHAPTER 9 ■ LISTENING FOR EVENTS

358

As its name implies, ElementTraversal is designed for traversing Element nodes. So,
firstElementChild, lastElementChild, previousElementSibling, and nextElementSibling will contain an
Element node or null (and never a Text, Comment, or any other kind of node). Note that
childElementCount differs from childNodes.length in that it contains just the number of child Element
nodes rather than the overall number of child nodes.

Therefore, for Internet Explorer 9, Firefox, Safari, Chrome, and Opera, we can rework
traverseTree() with firstElementChild and nextElementSibling to replace firstChild and nextSibling.
The two function literals in the ?: expression differ only by those identifiers:

var traverseTree = document.documentElement.firstElementChild ?
 function traverseTree (node, func) {
 func(node);
 node = node.firstElementChild;
 while (node !== null) {
 traverseTree(node, func);
 node = node.nextElementSibling;
 }
 } :
 function traverseTree (node, func) {
 func(node);
 node = node.firstChild;
 while (node !== null) {
 traverseTree(node, func);
 node = node.nextSibling;
 }
 } ;

Note that the boolean expression, document.documentElement.firstElementChild, queries
firstElementChild for the <html> Element node. That would be the <head> Element node.

Why not simply query the firstElementChild of the Document node? We could see whether
document.firstElementChild refers to the <html> Element node. That’s a bad idea: ElementTraversal is
implemented only by Element nodes. So although all 12 node types have a firstChild member, only an
Element node has a firstElementChild member, too.

Hmm. If it were up to me, a Document node would implement ElementTraversal, too. But I do not
write the standards, just about them.

■ Note If you want to wade through the details of the ElementTraversal interface, visit

www.w3.org/TR/ElementTraversal/.

Finding an Element by Class
The next helper function we want to rework is findClass(), which we wrote in Chapter 7 to help us find
an Element node by its class attribute. DOM 3 adds a NodeSelector interface that defines two methods,
querySelectorAll() and querySelector(). Those provide a way to query Element nodes with CSS
selectors. That is to say, querySelectorAll() and querySelector() enable you to query elements in the
same way that you would target them in a CSS rule. So for example, to query the <h4> element in our
markup, we could invoke querySelectorAll() in any of the following ways in Firebug:

http://www.w3.org/TR/ElementTraversal

CHAPTER 9 ■ LISTENING FOR EVENTS

359

document.querySelectorAll("h4.drag")[0];
// <h4 class="drag">
document.querySelectorAll("div#running h4")[0];
// <h4 class="drag">
document.getElementById("running").querySelectorAll("h4")[0];
// <h4 class="drag">

As the previous samples illustrate, NodeSelector is implemented by both Document and Element
nodes. So you may query the whole DOM tree or just a branch, just like with getElementsByTagName().

■ Note DocumentFragment nodes also implement NodeSelector.

Like getElementsByTagName(), querySelectorAll() returns a NodeList. But unlike
getElementsByTagName(), querySelectorAll() does not return a live DOM query, just a copy of the
matching Element nodes. This is a terrific feature as far as script speed is concerned. It’s sort of like
optimizing some code by copying the Element nodes returned by getElementsByTagName() into an array
so that you can work solely in ECMAScript.

By the way, querySelector() returns the first Element node in the DOM tree matching a CSS selector.
Since this is totally dependent on XHTML content, which is always being updated, I’d discourage you
from using querySelector(). If the element you want is no longer the first one in source code order
months down the road, your script won’t work.

Just after the var statement for traverseTree, write one for findClass. The first operand to the ?:
operator will be document.querySelectorAll, which will convert to true in Internet Explorer 8, Firefox
3.5, Safari 3.1, Chrome 4, and Opera 10. So, those versions or later will assign the first function literal to
findClass. This one takes two parameters:

• name is the name of the class to find.

• root is where we begin descending the DOM tree from. root may be a Document or
Element node. However, root is optional. In the event that root is undefined, we
will simply assign document.documentElement to the parameter, which is the <html>
element.

var findClass = document.querySelectorAll ?
 function (name, root) {
 root = root || document.documentElement;
 } :
 function() {
 } ;

Next, call querySelectorAll() on the root parameter. Insofar as querySelectorAll() works with a
CSS selector, we need to prefix a . on the class string in name. Let’s do so and then return the value of
calling querySelectorAll():

var findClass = document.querySelectorAll ?
 function (name, root) {
 root = root || document.documentElement;
 return root.querySelectorAll("." + name);
 } :
 function() {
 } ;

CHAPTER 9 ■ LISTENING FOR EVENTS

360

The second function literal, the one for older browsers, is just the findClass() function we wrote in
Chapter 7 but as a function literal. Remember that function literals are values, so those can be an
operand to an operator like ?:. Our completed advance conditional loader for findClass looks as follows.
Just be sure to remember the ? and : tokens and the terminating semicolon.

var findClass = document.querySelectorAll ?
 function (name, root) {
 root = root || document.documentElement;
 return root.querySelectorAll("." + name);
 } :
 function (name, root) {
 var found = [];
 root = root || document.documentElement;
 traverseTree(root, function(node) {
 if (!! node.className) {
 for (var names = node.className.split(/\s+/), i = names.length; i --;) {
 if (names[i] === name) {
 found.push(node);
 }
 }
 }
 });
 return found;
 } ;

Testing for getElementsByClassName()
As of this writing, the fourth working draft of HTML 5 defines a getElementsByClassName() method for
Document and Element nodes to query elements by their class attribute. Even though HTML 5 is not yet a
W3C recommendation, Explorer 9, Firefox 3, Safari 3.1, Chrome 4, and Opera 9.62 already implement
getElementsByClassName().

getElementsByClassName() works with one parameter, a string of one or more class names separated
by spaces, just like the class attribute for an XHTML tag. The return value is a NodeList containing any
matching Element nodes. However, this NodeList differs from the one returned by querySelectorAll() in
that it is a live DOM query.

Now let’s rework our advanced conditional loader for findClass() so that
getElementsByClassName() is the preferred option. Rather than nest ?: expressions, let’s go with the else
if idiom. This is a little more readable for a three-option advance conditional loader.

Because an if statement cannot be the right operand to an = operator (only an expression or literal
can be an operand), we are going to have to put the var statement before the if. Then in the if
statement, we will assign one of three function literals to findClass. Reworking our previous take on
findClass(), we have the following:

var findClass;
if () {
} else if (document.querySelectorAll) {
 findClass = function (name, root) {
 root = root || document.documentElement;
 return root.querySelectorAll("." + name);
 };
} else {
 findClass = function (name, root) {
 var found = [];

CHAPTER 9 ■ LISTENING FOR EVENTS

361

 root = root || document.documentElement;
 traverseTree(root, function(node) {
 if (!! node.className) {
 for (var names = node.className.split(/\s+/), i = names.length; i --;) {
 if (names[i] === name) {
 found.push(node);
 }
 }
 }
 });
 return found;
 };
}

Now put document.getElementsByClassName in the empty () following the if keyword. This will
return either a function, which converts to true, or undefined, which converts to false:

var findClass;
if (document.getElementsByClassName) {
} else if (document.querySelectorAll) {
 findClass = function (name, root) {
 root = root || document.documentElement;
 return root.querySelectorAll("." + name);
 };
} else {
 findClass = function (name, root) {
 var found = [];
 root = root || document.documentElement;
 traverseTree(root, function(node) {
 if (!! node.className) {
 for (var names = node.className.split(/\s+/), i = names.length; i --;) {
 if (names[i] === name) {
 found.push(node);
 }
 }
 }
 });
 return found;
 };
}

Now for the empty if block. Just as with the other two blocks, we want to assign a function literal to
findClass there, since at the moment findClass contains undefined. This one is almost identical to the
one for querySelectorAll(). Just change the identifier to getElementsByClassName and pass in name as is.

var findClass;
if (document.getElementsByClassName) {
 findClass = function (name, root) {
 root = root || document.documentElement;
 return root.getElementsByClassName(name);
 };
} else if (document.querySelectorAll) {
 findClass = function (name, root) {
 root = root || document.documentElement;
 return root.querySelectorAll("." + name);

CHAPTER 9 ■ LISTENING FOR EVENTS

362

 };
} else {
 findClass = function (name, root) {
 var found = [];
 root = root || document.documentElement;
 traverseTree(root, function(node) {
 if (!! node.className) {
 for (var names = node.className.split(/\s+/), i = names.length; i --;) {
 if (names[i] === name) {
 found.push(node);
 }
 }
 }
 });
 return found;
 };
}

So there it is. findClass will be one of three function literals that return elements of the same class
from the overall DOM tree or a branch of it. Note that native browser functions such as
getElementsByClassName() or querySelectorAll() are compiled not interpreted. This is why they are
snappier than ones you write yourself.

■ Note If you want to view W3 documentation on querySelectorAll() or querySelector(), visit:

www.w3.org/TR/selectors-api/

If you want to view W3 documentation on getElementsByClassName() or HTML 5, visit:

www.w3.org/TR/html5/

Querying the Cascade
In Chapter 8, we wrote the following function to query CSS values from the cascade by either the DOM
getComputedStyle() method or the Internet Explorer currentStyle property.

function queryCascade(element, property) {
 if (typeof getComputedStyle === "function") {
 return getComputedStyle(element, null)[property];
 } else if (element.currentStyle) {
 return element.currentStyle[property];
 }
}

Regardless of whether JavaScript queries the CSS cascade in the DOM or Internet Explorer way,
doing so is quite a speed bump. With this in mind, let’s at least eliminate the redundant feature testing
by recoding queryCascade() as an advance conditional loader. Note that we will still have to try to avoid
querying the cascade, which remains slow as a turtle.

The first thing we need to do is declare queryCascade with a var statement, rather than a function
statement:

http://www.w3.org/TR/selectors-api
http://www.w3.org/TR/html5

CHAPTER 9 ■ LISTENING FOR EVENTS

363

var queryCascade;

Next, initialize queryCascade to a ?: expression that returns one of two function literals. The boolean
expression prior to the ? token can be the one from the if else shown earlier, typeof getComputedStyle
=== "function". Or more simply, it can be window.getComputedStyle:

var queryCascade = window.getComputedStyle ?
 function() {
 } :
 function() {
 } ;

Now between the ? and : tokens, code a function literal to do the job of the if clause shown
previously. That is to say, just cut and paste the return statement. But remember to define the element
and property parameters:

var queryCascade = window.getComputedStyle ?
 function(element, property) {
 return getComputedStyle(element, null)[property];
 } :
 function() {
 } ;

Finally, between the : and ; tokens, code a function literal containing the return statement from the
else clause shown previously. Yup, cut and paste. And again, don’t forget the element and property
parameters:

var queryCascade = window.getComputedStyle ?
 function(element, property) {
 return getComputedStyle(element, null)[property];
 } :
 function(element, property) {
 return element.currentStyle[property];
 } ;

So there it is. In Explorer 9, Firefox, Safari, Chrome, and Opera, JavaScript assigns the first function
literal to queryCascade, and in Internet Explorer 8 or earlier, it assigns the second one. There’s no feature
testing to do whenever JavaScript calls queryCascade(). Not even the first time!

We’re done reworking our helper functions for working with markup and CSS, so our JavaScript file
now looks like so:

var addListener = document.addEventListener ?
 function(node, type, listener, phase) {
 node.addEventListener(type, listener, !! phase);
 } :
 function(node, type, listener) {
 node.attachEvent("on" + type, listener);
 } ;
var removeListener = document.removeEventListener ?
 function(node, type, listener, phase) {
 node.removeEventListener(type, listener, !! phase);
 } :
 function(node, type, listener) {
 node.detachEvent("on" + type, listener);
 } ;
function thwart(e) {

CHAPTER 9 ■ LISTENING FOR EVENTS

364

 if (e.preventDefault) {
 thwart = function(e) {
 e.preventDefault();
 };
 } else {
 thwart = function(e) {
 e.returnValue = false;
 };
 }
 thwart(e);
}
function burst(e) {
 if (e.stopPropagation) {
 burst = function(e) {
 e.stopPropagation();
 };
 } else {
 burst = function(e) {
 e.cancelBubble = true;
 };
 }
 burst(e);
}
var traverseTree = document.documentElement.firstElementChild ?
 function traverseTree (node, func) {
 func(node);
 node = node.firstElementChild;
 while (node !== null) {
 traverseTree(node, func);
 node = node.nextElementSibling;
 }
 } :
 function traverseTree (node, func) {
 func(node);
 node = node.firstChild;
 while (node !== null) {
 traverseTree(node, func);
 node = node.nextSibling;
 }
 } ;

var findClass;
if (document.getElementsByClassName) {
 findClass = function (name, root) {
 root = root || document.documentElement;
 return root.getElementsByClassName(name);
 };
} else if (document.querySelectorAll) {
 findClass = function (name, root) {
 root = root || document.documentElement;
 return root.querySelectorAll("." + name);
 };
} else {
 findClass = function (name, root) {

CHAPTER 9 ■ LISTENING FOR EVENTS

365

 var found = [];
 root = root || document.documentElement;
 traverseTree(root, function(node) {
 if (!! node.className) {
 for (var names = node.className.split(/\s+/), i = names.length; i --;) {
 if (names[i] === name) {
 found.push(node);
 }
 }
 }
 });
 return found;
 };
}
var queryCascade = window.getComputedStyle ?
 function(element, property) {
 return getComputedStyle(element, null)[property];
 } :
 function(element, property) {
 return element.currentStyle[property];
 } ;

Sliding Sprites
Now for the first of our behaviors. This one will slide a sprite whenever a visitor rolls their mouse over or
off an element of the sprite class. JavaScript will be listening for mouseover and mouseout events.

The rough skeleton for our sprite behavior will have an event listener function named slideSprite()
nested within a preparatory function named prepSprites(). Doing so means the event listener function
may query the call object of prepSprites() even though prepSprites() will be invoked just one time,
shortly after the page loads. Thus far we have this:

function prepSprites() {
 function slideSprite() {
 }
}

Preparing the Ground
What are these secret variables we want slideSprite() to be able to query even after prepSprites() has
returned? The first one, elements, will contain the return value of passing "sprite" to our helper
function, findClass(). So, any elements of the sprite class will be in there. The second one, sprites, will
for now contain an empty object but later will contain details of each sprite. We’ll add members to
sprites in a moment. Note that creating an object with literal notation is snappier than doing so with
new and the Object() constructor. Therefore, {} it is:

function prepSprites() {
 var elements = findClass("sprite"), sprites = {};
 function slideSprite() {
 }
}

CHAPTER 9 ■ LISTENING FOR EVENTS

366

Now let’s iterate over the Element nodes in elements. Remember from Chapter 4 that looping in
reverse is snappier in that we can test and update the loop variable i in a single expression. Note too that
we want to initialize i to elements.length so that we don’t slow things down by querying
elements.length every roundabout of the loop. Finally, initialize a variable named offsets to null since
it will later contain an array of offsets identifying where the sprites are:

function prepSprites() {
 var elements = findClass("sprite"), sprites = {};
 for (var i = elements.length, offsets = null; i --;) {
 }
 function slideSprite() {
 }
}

Now for every Element node in elements, we want to name a member in sprites with the value of its
id attribute. So, relative to our XHTML markup, sprites will contain members named "adidas", "asics",
"brooks", and so on. Those will initially contain an empty array, which we will create with array literal
notation, since that is snappier than doing so with new and Array():

function prepSprites() {
 var elements = findClass("sprite"), sprites = {};
 for (var i = elements.length, offsets = null; i --;) {
 sprites[elements[i].id] = [];
 }
 function slideSprite() {
 }
}

Now we have to work around some Internet Explorer 8 or earlier skullduggery. Querying
currentStyle.backgroundPosition for an element returns undefined even though querying
style.backgroundPosition for the very same element returns the horizontal and vertical offsets of the
background image. I know, that’s preposterous.

Are those offsets simply missing in currentStyle?
No, they’re just in a different drawer. Internet Explorer 8 or earlier separates them into members

named backgroundPositionX and backgroundPositionY. We will have to code one path for Explorer 9,
Firefox, Safari, Chrome, and Opera and another for Internet Explorer 8 or earlier. Let’s do the former
first. Test for the DOM method getComputedStyle(), and then query backgroundPosition, saving that to
sprites[elements[i].id][0]. So for example, sprites.saucony[0] will contain "0px -135px", which is
the off position for the sprite (the position when the mouse is off the sprite).

Now we need to separate the horizontal and vertical offsets. To do so, call String.split() on the off
position that we just saved to elements[i].id][0]. Remember from Chapter 2 that String.split()
returns an array of smaller strings created by separating the larger string relative to its parameter. So if
we divide the off string based on whitespace, we get an array with two elements. So for the Saucony
sprite, the array would be as follows:

["0px", "-135px"]

Save that to the offsets variable that we initialized to null a moment ago. So we now have this:

function prepSprites() {
 var elements = findClass("sprite"), sprites = {};
 for (var i = elements.length, offsets = null; i --;) {
 sprites[elements[i].id] = [];
 if (typeof getComputedStyle === "function") {
 sprites[elements[i].id][0] = queryCascade(elements[i], "backgroundPosition");
 offsets = sprites[elements[i].id][0].split(/\s+/);

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 9 ■ LISTENING FOR EVENTS

367

 }
 }
 function slideSprite() {
 }
}

Now for the else clause for Internet Explorer 8 or earlier. Insofar as its offsets are already separated,
we will do things in reverse. Create the offsets array from backgroundPositionX and
backgroundPositionY. Then call Array.join() on offsets, passing " " as the parameter, and save the
return value to sprites[elements[i].id][0]. For example, sprites.nike would now contain "0px -
108px":

function prepSprites() {
 var elements = findClass("sprite"), sprites = {};
 for (var i = elements.length, offsets = null; i --;) {
 sprites[elements[i].id] = [];
 if (typeof getComputedStyle === "function") {
 sprites[elements[i].id][0] = queryCascade(elements[i], "backgroundPosition");
 offsets = sprites[elements[i].id][0].split(/\s+/);
 } else {
 offsets = [
 queryCascade(elements[i], "backgroundPositionX"),
 queryCascade(elements[i], "backgroundPositionY")
];
 sprites[elements[i].id][0] = offsets.join(" ");
 }
 }
 function slideSprite() {
 }
}

Now that sprites[elements[i].id][0] and offsets have the same values in Firefox, Safari, Chrome,
Opera, and Internet Explorer, we can calculate the over position by subtracting the width of the element
from 1 and concatenating that to "px " and the vertical offset, which remains the same in the over
position (the over position being for when the mouse is over the button). Internet Explorer doesn’t make
up a different name for width, so we can simply call queryCascade() this time. However, we need to
remove the "px" from the width value with parseInt() before subtracting it from 1:

function prepSprites() {
 var elements = findClass("sprite"), sprites = {};
 for (var i = elements.length, offsets = null; i --;) {
 sprites[elements[i].id] = [];
 if (typeof getComputedStyle === "function") {
 sprites[elements[i].id][0] = queryCascade(elements[i], "backgroundPosition");
 offsets = sprites[elements[i].id][0].split(/\s+/);
 } else {
 offsets = [
 queryCascade(elements[i], "backgroundPositionX"),
 queryCascade(elements[i], "backgroundPositionY")
];
 sprites[elements[i].id][0] = offsets.join(" ");
 }
 sprites[elements[i].id][1] = 1 - parseInt(queryCascade(elements[i], "width")) + "px " +
 offsets[1];

CHAPTER 9 ■ LISTENING FOR EVENTS

368

 }
 function slideSprite() {
 }
}

Now JavaScript has created the following object that our nested event listener function,
slideSprite(), can query even after prepSprites() returns:

var sprites = {
 "adidas": ["0px 0px", "-99px 0px"],
 "asics": ["0px -27px", "-99px -27px"],
 "brooks": ["0px -54px", "-99px -54px"],
 "newBalance": ["0px -81px", "-99px -81px"],
 "nike": ["0px -108px", "-99px -108px"],
 "saucony": ["0px -135px", "-99px -135px"]
}

Now we want to tell JavaScript to run slideSprite() whenever mouseover and mouseout events
occur on the <a> in elements[i]. This is where our helper function, addListener(), earns its keep. Note
that only the second parameter differs in our two calls to addListener(). Feel free to cut and paste:

function prepSprites() {
 var elements = findClass("sprite"), sprites = {};
 for (var i = elements.length, offsets = null; i --;) {
 sprites[elements[i].id] = [];
 if (typeof getComputedStyle === "function") {
 sprites[elements[i].id][0] = queryCascade(elements[i], "backgroundPosition");
 offsets = sprites[elements[i].id][0].split(/\s+/);
 } else {
 offsets = [
 queryCascade(elements[i], "backgroundPositionX"),
 queryCascade(elements[i], "backgroundPositionY")
];
 sprites[elements[i].id][0] = offsets.join(" ");
 }
 sprites[elements[i].id][1] = 1 - parseInt(queryCascade(elements[i], "width")) + "px " +
 offsets[1];
 addListener(elements[i], "mouseover", slideSprite);
 addListener(elements[i], "mouseout", slideSprite);
 }
 function slideSprite() {
 }
}

That ends the for loop, and prepSprites() would now return. Note that only our nested event
listener function, slideSprite(), can query the offsets in sprites, which lives on in a closure. With this in
mind, let’s go ahead and fill in slideSprite().

Moving the Sprites
The first thing we need to do is define a parameter for the event object that Internet Explorer 9, Firefox,
Safari, Chrome, and Opera will pass to slideSprite() whenever a mouseover or mouseout event takes
place on our sprites. By convention, this parameter is named e. It doesn’t have to be. We could name it
brownCow if we wanted. But let’s not rock the boat.

CHAPTER 9 ■ LISTENING FOR EVENTS

369

Internet Explorer 8 or earlier does not pass an event object to event listener functions. Rather, it
continually overwrites the global variable, event, with the latest event object. Insofar as only one event
can ever take place at a time, this works. It’s a bit of a kludge, but it works. Note that for interoperability,
Internet Explorer 9 and Opera implement window.event, too.

Anyway, if e contains undefined, as it would in Internet Explorer 8 or earlier, let’s overwrite that
value with window.event:

function prepSprites() {
 var elements = findClass("sprite"), sprites = {};
 for (var i = elements.length, offsets = null; i --;) {
 sprites[elements[i].id] = [];
 if (typeof getComputedStyle === "function") {
 sprites[elements[i].id][0] = queryCascade(elements[i], "backgroundPosition");
 offsets = sprites[elements[i].id][0].split(/\s+/);
 } else {
 offsets = [
 queryCascade(elements[i], "backgroundPositionX"),
 queryCascade(elements[i], "backgroundPositionY")
];
 sprites[elements[i].id][0] = offsets.join(" ");
 }
 sprites[elements[i].id][1] = 1 - parseInt(queryCascade(elements[i], "width")) + "px " +
 offsets[1];
 addListener(elements[i], "mouseover", slideSprite);
 addListener(elements[i], "mouseout", slideSprite);
 }
 function slideSprite(e) {
 if (!e) e = window.event;
 }
}

e now contains an object with members that detail what the visitor did. One of those members
refers to the node in the DOM tree that the event took place on. For Internet Explorer 9, Firefox, Safari,
Chrome, and Opera, the member is named target. For Internet Explorer 8 or earlier, the member is
named srcElement. Note that Internet Explorer 9 and Opera implement both target and srcElement.

Anyway, if e does not have a target member, referring to e.target returns undefined. In that case,
we want to add a target member to e that refers to window.event.srcElement:

function prepSprites() {
 var elements = findClass("sprite"), sprites = {};
 for (var i = elements.length, offsets = null; i --;) {
 sprites[elements[i].id] = [];
 if (typeof getComputedStyle === "function") {
 sprites[elements[i].id][0] = queryCascade(elements[i], "backgroundPosition");
 offsets = sprites[elements[i].id][0].split(/\s+/);
 } else {
 offsets = [
 queryCascade(elements[i], "backgroundPositionX"),
 queryCascade(elements[i], "backgroundPositionY")
];
 sprites[elements[i].id][0] = offsets.join(" ");
 }
 sprites[elements[i].id][1] = 1 - parseInt(queryCascade(elements[i], "width")) + "px " +
 offsets[1];
 addListener(elements[i], "mouseover", slideSprite);

CHAPTER 9 ■ LISTENING FOR EVENTS

370

 addListener(elements[i], "mouseout", slideSprite);
 }
 function slideSprite(e) {
 if (!e) e = window.event;
 if (!e.target) e.target = e.srcElement;
 }
}

To know whether to slide the sprite to the over or off position, we need to know whether a
mouseover or mouseout event took place. The answer to our query is in e.type. Even in Internet
Explorer 8 or earlier! So if e.type contains "mouseover", we want to slide the sprite to
sprites[e.target.id][1]. Otherwise, we want to slide it to sprites[e.target.id][0]. That sounds like a
job for an if else statement:

function prepSprites() {
 var elements = findClass("sprite"), sprites = {};
 for (var i = elements.length, offsets = null; i --;) {
 sprites[elements[i].id] = [];
 if (typeof getComputedStyle === "function") {
 sprites[elements[i].id][0] = queryCascade(elements[i], "backgroundPosition");
 offsets = sprites[elements[i].id][0].split(/\s+/);
 } else {
 offsets = [
 queryCascade(elements[i], "backgroundPositionX"),
 queryCascade(elements[i], "backgroundPositionY")
];
 sprites[elements[i].id][0] = offsets.join(" ");
 }
 sprites[elements[i].id][1] = 1 - parseInt(queryCascade(elements[i], "width")) + "px " +
 offsets[1];
 addListener(elements[i], "mouseover", slideSprite);
 addListener(elements[i], "mouseout", slideSprite);
 }
 function slideSprite(e) {
 if (!e) e = window.event;
 if (!e.target) e.target = e.srcElement;
 if (e.type == "mouseover") {
 e.target.style.backgroundPosition = sprites[e.target.id][1];
 } else {
 e.target.style.backgroundPosition = sprites[e.target.id][0];
 }
 }
}

So there it is. Now to verify that this all works as planned, load nine.html in Firefox, enable Firebug,
and then call prepSprites():

prepSprites();

Now roll your mouse over and off the sprites to test the swaps. In Figure 9–3, I rolled my mouse over
the New Balance sprite, which has the shading at the top now, rather than at the bottom:

CHAPTER 9 ■ LISTENING FOR EVENTS

371

Figure 9–3. Testing the sprites by manually calling prepSprites() with the Firebug console

Snappier Sprites
So prepSprites() and slideSprite() are written to work for Internet Explorer 9, Firefox, Safari, Chrome,
and Opera or for Internet Explorer 8 or earlier. Even though lumping DOM-savvy and DOM-dummy
paths together in event listener functions is commonplace (most scripts you maintain will do so), all that
feature testing makes them run slower. With this in mind, let’s rework prepSprites() and slideSprite()
as advance conditional loaders so that our sprites are snappier for visitors.

First, we want to define prepSprites with a var statement rather than a function statement. Then,
we initialize its value to one of two function literals relative to whether getComputedStyle() is defined:

var prepSprites = window.getComputedStyle ?
 function () {
 } :
 function () {
 } ;

CHAPTER 9 ■ LISTENING FOR EVENTS

372

Now let’s fill in the function literal for Internet Explorer 9, Firefox, Safari, Chrome, and Opera by
eliminating all the workarounds for Internet Explorer 8 or earlier:

var prepSprites = window.getComputedStyle ?
 function () {
 var elements = findClass("sprite"), sprites = {};
 for (var i = elements.length, offsets = null; i --;) {
 sprites[elements[i].id] = [];
 sprites[elements[i].id][0] = queryCascade(elements[i], "backgroundPosition");
 offsets = sprites[elements[i].id][0].split(/\s+/);
 sprites[elements[i].id][1] = 1 - parseInt(queryCascade(elements[i], "width")) +
 "px " + offsets[1];
 addListener(elements[i], "mouseover", slideSprite);
 addListener(elements[i], "mouseout", slideSprite);
 }
 function slideSprite(e) {
 if (e.type == "mouseover") {
 e.target.style.backgroundPosition = sprites[e.target.id][1];
 } else {
 e.target.style.backgroundPosition = sprites[e.target.id][0];
 }
 }
 } :
 function () {
 } ;

Now for the one that Internet Explorer 8 or earlier can palate. Just remove the code intelligible only
to Internet Explorer 9, Firefox, Safari, Chrome, and Opera. Note that in slideSprite(), we save
window.event to a local variable e. Caching any global variable that you query more than one time in a
function to a local variable makes the lookup snappier. Remember from earlier in the book that global
variables reside on the very last variable object in a function’s execution context. So, caching the global
variable to a local one prevents JavaScript from fruitlessly querying activation objects for a global
variable.

With those things in mind, let’s fill in the block of the function literal for Internet Explorer 8 or
earlier like so:

var prepSprites = window.getComputedStyle ?
 function () {
 var elements = findClass("sprite"), sprites = {};
 for (var i = elements.length, offsets = null; i --;) {
 sprites[elements[i].id] = [];
 sprites[elements[i].id][0] = queryCascade(elements[i], "backgroundPosition");
 offsets = sprites[elements[i].id][0].split(/\s+/);
 sprites[elements[i].id][1] = 1 - parseInt(queryCascade(elements[i], "width")) +
 "px " + offsets[1];
 addListener(elements[i], "mouseover", slideSprite);
 addListener(elements[i], "mouseout", slideSprite);
 }
 function slideSprite(e) {
 if (e.type == "mouseover") {
 e.target.style.backgroundPosition = sprites[e.target.id][1];
 } else {
 e.target.style.backgroundPosition = sprites[e.target.id][0];
 }

CHAPTER 9 ■ LISTENING FOR EVENTS

373

 }
 } :
 function () {
 var elements = findClass("sprite"), sprites = {};
 for (var i = elements.length, offsets = null; i --;) {
 sprites[elements[i].id] = [];
 offsets = [queryCascade(elements[i], "backgroundPositionX"),
 queryCascade(elements[i], "backgroundPositionY")];
 sprites[elements[i].id][0] = offsets.join(" ");
 sprites[elements[i].id][1] = 1 - parseInt(queryCascade(elements[i], "width")) +
 "px " + offsets[1];
 addListener(elements[i], "mouseover", slideSprite);
 addListener(elements[i], "mouseout", slideSprite);
 }
 function slideSprite() {
 var e = window.event;
 if (e.type == "mouseover") {
 e.srcElement.style.backgroundPosition = sprites[e.srcElement.id][1];
 } else {
 e.srcElement.style.backgroundPosition = sprites[e.srcElement.id][0];
 }
 }
 } ;

So there it is. Neither Internet Explorer 9, Firefox, Safari, Chrome, and Opera nor Internet Explorer 8
or earlier have to do any feature testing whenever prepSprites() or slideSprite() run. Not even the first
time. All in all, JavaScript has less work to do, and our visitors get snappier sprites.

Before moving on to the drag-and-drop behavior, verify your work by refreshing Firefox and calling
prepSprites() via Firebug:

prepSprites();

Then roll your mouse over and off the sprites to test the swaps.
Does it work for you, too? Great. But if not, verify that your script is just like the rest of ours:

var addListener = document.addEventListener ?
 function(node, type, listener, phase) {
 node.addEventListener(type, listener, !! phase);
 } :
 function(node, type, listener) {
 node.attachEvent("on" + type, listener);
 } ;

var removeListener = document.removeEventListener ?
 function(node, type, listener, phase) {
 node.removeEventListener(type, listener, !! phase);
 } :
 function(node, type, listener) {
 node.detachEvent("on" + type, listener);
 } ;

function thwart(e) {
 if (e.preventDefault) {
 thwart = function(e) {

CHAPTER 9 ■ LISTENING FOR EVENTS

374

 e.preventDefault();
 };
 } else {
 thwart = function(e) {
 e.returnValue = false;
 };
 }
 thwart(e);
}

function burst(e) {
 if (e.stopPropagation) {
 burst = function(e) {
 e.stopPropagation();
 };
 } else {
 burst = function(e) {
 e.cancelBubble = true;
 };
 }
 burst(e);
}

var traverseTree = document.documentElement.firstElementChild ?
 function traverseTree (node, func) {
 func(node);
 node = node.firstElementChild;
 while (node !== null) {
 traverseTree(node, func);
 node = node.nextElementSibling;
 }
 } :
 function traverseTree (node, func) {
 func(node);
 node = node.firstChild;
 while (node !== null) {
 traverseTree(node, func);
 node = node.nextSibling;
 }
 } ;

var findClass;

if (document.getElementsByClassName) {
 findClass = function (name, root) {
 root = root || document.documentElement;
 return root.getElementsByClassName(name);
 };
} else if (document.querySelectorAll) {
 findClass = function (name, root) {
 root = root || document.documentElement;
 return root.querySelectorAll("." + name);
 };
} else {

CHAPTER 9 ■ LISTENING FOR EVENTS

375

 findClass = function (name, root) {
 var found = [];
 root = root || document.documentElement;
 traverseTree(root, function(node) {
 if (!! node.className) {
 for (var names = node.className.split(/\s+/), i = names.length; i --;) {
 if (names[i] === name) {
 found.push(node);
 }
 }
 }
 });
 return found;
 };
}

var queryCascade = window.getComputedStyle ?
 function(element, property) {
 return getComputedStyle(element, null)[property];
 } :
 function(element, property) {
 return element.currentStyle[property];
 } ;

var doZ = function() {
 var z = 400;
 return function() {
 return z ++;
 };
}();

// sprite swaps

var prepSprites = window.getComputedStyle ?
 function () {
 var elements = findClass("sprite"), sprites = {};
 for (var i = elements.length, offsets = null; i --;) {
 sprites[elements[i].id] = [];
 sprites[elements[i].id][0] = queryCascade(elements[i], "backgroundPosition");
 offsets = sprites[elements[i].id][0].split(/\s+/);
 sprites[elements[i].id][1] = 1 - parseInt(queryCascade(elements[i], "width")) +
 "px " + offsets[1];
 addListener(elements[i], "mouseover", slideSprite);
 addListener(elements[i], "mouseout", slideSprite);
 }
 function slideSprite(e) {
 if (e.type == "mouseover") {
 e.target.style.backgroundPosition = sprites[e.target.id][1];
 } else {
 e.target.style.backgroundPosition = sprites[e.target.id][0];
 }
 }
 } :
 function () {

CHAPTER 9 ■ LISTENING FOR EVENTS

376

 var elements = findClass("sprite"), sprites = {};
 for (var i = elements.length, offsets = null; i --;) {
 sprites[elements[i].id] = [];
 offsets = [queryCascade(elements[i], "backgroundPositionX"),
 queryCascade(elements[i], "backgroundPositionY")];
 sprites[elements[i].id][0] = offsets.join(" ");
 sprites[elements[i].id][1] = 1 - parseInt(queryCascade(elements[i], "width")) +
 "px " + offsets[1];
 addListener(elements[i], "mouseover", slideSprite);
 addListener(elements[i], "mouseout", slideSprite);
 }
 function slideSprite() {
 var e = window.event;
 if (e.type == "mouseover") {
 e.srcElement.style.backgroundPosition = sprites[e.srcElement.id][1];
 } else {
 e.srcElement.style.backgroundPosition = sprites[e.srcElement.id][0];
 }
 }
 } ;

Drag-and-Drop Behavior
Now it’s time for the drag-and-drop behavior, where we can move the panel of buttons around the page.
For this one to work, we need to have JavaScript listen for mousedown, mousemove, and mouseup
events. Those occur whenever a visitor presses down on their mouse button, moves their mouse, and
releases their mouse button. Who’d have thought?

Writing the Mousedown Event Listener
The rough skeleton will be a mousedown event listener named drag() containing the mousemove and
mouseup event listeners, named move() and drop(). Those two nested functions can then query the call
object for drag(), which is where we will store several coordinates for later (the position of the moveable
panel and the position of the mouse when the event occurs). Note that all three event listeners define an
e parameter for the event object that Internet Explorer 9, Firefox, Safari, Chrome, and Opera send their
way. Then assign window.event to e if it contains undefined, if the browser is Internet Explorer 8 or
earlier. Thus far we have the following:

function drag(e) {
 if (!e) e = window.event;
 function move(e) {
 if (!e) e = window.event;
 }
 function drop(e) {
 if (!e) e = window.event;
 }
}

Now let’s fill in the block for drag(). This is the only one of the three event listeners that needs to
query e.target, because we can then use the results of this query elsewhere. Remember that e.target is
the node the event happened to. For drag(), that would a mousedown event on an element of the drag

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 9 ■ LISTENING FOR EVENTS

377

class. Taking a peek at our markup, that would be the <h4> element. So fine, if e does not have a target
member, add one that refers to srcElement for Internet Explorer 8 or earlier:

function drag(e) {
 if (!e) e = window.event;
 if (!e.target) e.target = e.srcElement;
 function move(e) {
 if (!e) e = window.event;
 }
 function drop(e) {
 if (!e) e = window.event;
 }
}

By the way, if you are wondering whether we will be recoding this as an advance conditional loader,
don’t. Other than redefining e and its members, there’s no workarounds for Internet Explorer 8 or
earlier. So our first cut will be our final one.

Where were we? Right. Now we don’t want to move the running tab, which is to say the <h4>
element. Rather, we want to move the <div> wrapping the whole shebang, which is
e.target.parentNode. We’ll save that to a local variable aptly named wrapper. That way, both move() and
drop() can manipulate the <div> later. But one thing we need to do straightaway is make sure wrapper
displays in front of any other content in the document so the user can always see it when dragging. To do
so, set its z-index to the return value of doZ(), a helper function we will write later (remind me if I forget).
We now have this:

function drag(e) {
 if (!e) e = window.event;
 if (!e.target) e.target = e.srcElement;
 var wrapper = e.target.parentNode;
 wrapper.style.zIndex = doZ();
 function move(e) {
 if (!e) e = window.event;
 }
 function drop(e) {
 if (!e) e = window.event;
 }
}

We just need to jot down some coordinates for move() to do calculations with later. First, we want to
save CSS values for left and top (stripped of their units of measure) to local variables named, well, left
and top, which we will use later to recalculate the new position of the panel. Then we want to save
clientX and clientY for the mousedown event to local variables named, you guessed it, clientX and
clientY. The clientX and clientY members of the event object provide those coordinates in pixels.
However, those are numbers, not strings. So, no "px" suffix to strip away with parseInt(). Note that
clientX and clientY are not in document coordinates because CSS values for left and top would need
to be when we reposition wrapper (in other words, clientX and clientY are the coordinates on the
current window rather than the position in the document). Still, we need clientX and clientY to
calculate left and top as well as to keep the visitors mouse pinned to the same spot on the Running tab
(you’ll see the actual calculations in the next section). We now have this:

function drag(e) {
 if (!e) e = window.event;
 if (!e.target) e.target = e.srcElement;
 var wrapper = e.target.parentNode;
 var left = parseInt(queryCascade(wrapper, "left"));

CHAPTER 9 ■ LISTENING FOR EVENTS

378

 var top = parseInt(queryCascade(wrapper, "top"));
 var clientX = e.clientX;
 var clientY = e.clientY;
 wrapper.style.zIndex = doZ();
 function move(e) {
 if (!e) e = window.event;
 }
 function drop(e) {
 if (!e) e = window.event;
 }
}

Observant readers will notice that we put those last four var statements before the
wrapper.style.zIndex = doZ() statement. Any ideas as to why?

Right. It’s good programming practice to put all local variable declarations at the top of their
function’s block. Smiley cookie for remembering.

Now we want to have document listen for every mousemove event. Why do we want to run an event
listener function for every mousemove event? Why not just listen for those that happen on the <h4>
element?

It turns out a visitor can move their mouse faster than an event listener on just the <h4> can respond
to them. So, if we just run move() for mousemove events on the <h4>, the visitor’s mouse will leave its
confines. Consequently, after an initial nudge, the <div> will not follow their mouse. Sort of like a
stubborn mule.

Not wanting that to be the case, let’s bind move() to document rather than the <h4>. And to improve
performance in Internet Explorer 9, Firefox, Safari, Chrome, and Opera, let’s do so for the capture phase.
Note that in Internet Explorer 8 or earlier, document will listen during the bubble phase instead. So, pass
true as the optional fourth parameter to addListener():

function drag(e) {
 if (!e) e = window.event;
 if (!e.target) e.target = e.srcElement;
 var wrapper = e.target.parentNode;
 var left = parseInt(queryCascade(wrapper, "left"));
 var top = parseInt(queryCascade(wrapper, "top"));
 var clientX = e.clientX;
 var clientY = e.clientY;
 wrapper.style.zIndex = doZ();
 addListener(document, "mousemove", move, true);
 function move(e) {
 if (!e) e = window.event;
 }
 function drop(e) {
 if (!e) e = window.event;
 }
}

Just as we registered move() on document in order to keep up with the visitor’s mouse, we also want
to register drop() on document so as not to miss the mouseup event, which tells us where to drop the
Running <div>, that is, where the visitor wanted to drag it to.

Could you tell me what would happen if we did miss that vital mouseup event?
This one is worth a couple Smiley cookies.
What do you think?
Sort of. If the visitor stopped moving their mouse, the <div> would drop pretty much where they

wanted it to. However, whenever they started moving their mouse again, say from the <h4> tab down to

CHAPTER 9 ■ LISTENING FOR EVENTS

379

the Brooks <a>, the <div> would follow their mouse. They’d never be able to click the Brooks <a>—or any
other link on the page. Great googly moogly, we can’t have that!

Let’s register drop() on document, too. Pass true for the fourth parameter again to improve
performance in Internet Explorer 9, Firefox, Safari, Chrome, and Opera. Rather than wait for the
mouseup event to descend and ascend the DOM tree, just nip it in the bud:

function drag(e) {
 if (!e) e = window.event;
 if (!e.target) e.target = e.srcElement;
 var wrapper = e.target.parentNode;
 var left = parseInt(queryCascade(wrapper, "left"));
 var top = parseInt(queryCascade(wrapper, "top"));
 var clientX = e.clientX;
 var clientY = e.clientY;
 wrapper.style.zIndex = doZ();
 addListener(document, "mousemove", move, true);
 addListener(document, "mouseup", drop, true);
 function move(e) {
 if (!e) e = window.event;
 }
 function drop(e) {
 if (!e) e = window.event;
 }
}

Now call burst() and thwart(), remembering to pass in e, which contains the mousedown event
object. Doing so prevents any mousedown event listeners bound to ancestors of the <h4> from running
and a context menu from appearing for Mac visitors:

function drag(e) {
 if (!e) e = window.event;
 if (!e.target) e.target = e.srcElement;
 var wrapper = e.target.parentNode;
 var left = parseInt(queryCascade(wrapper, "left"));
 var top = parseInt(queryCascade(wrapper, "top"));
 var clientX = e.clientX;
 var clientY = e.clientY;
 wrapper.style.zIndex = doZ();
 addListener(document, "mousemove", move, true);
 addListener(document, "mouseup", drop, true);
 burst(e);
 thwart(e);
 function move(e) {
 if (!e) e = window.event;
 }
 function drop(e) {
 if (!e) e = window.event;
 }
}

We’re done with the mousedown event listener. Now let’s move on to move(), mousemove event
listener. Sorry for the pun.

CHAPTER 9 ■ LISTENING FOR EVENTS

380

Writing the Mousemove Event Listener
One note of caution for those who are bad at math. There is some possibility that your head will explode
trying to comprehend how move() calculates left and top during the drag. So, maybe cover your ears
and close your eyes while we work on move(). Someone will give you a poke when we’re done to let you
know it’s safe to follow along again.

Now even though drag() will have returned prior to JavaScript ever calling move(), which it will do
rapid-fire during a drag, wrapper continues to refer to the Running <div> by way of a closure. Therefore,
we can reposition the <div> by changing wrapper.style.left and wrapper.style.top.

This is where things get tricky. Even though the clientX and clientY members of an event object are
in window coordinates, but CSS values for left and top are in document coordinates, we can use the
former to calculate the latter for the reason that the document does not scroll during the drag, while
move() is running.

With this in mind, we can calculate the CSS value for wrapper.style.left by adding the X
coordinate of the mousemove event in e.clientX to the local variable left and then subtracting the X
coordinate of the mousedown event. Finally, we concatenate "px" to that number:

function drag(e) {
 if (!e) e = window.event;
 if (!e.target) e.target = e.srcElement;
 var wrapper = e.target.parentNode;
 var left = parseInt(queryCascade(wrapper, "left"));
 var top = parseInt(queryCascade(wrapper, "top"));
 var clientX = e.clientX;
 var clientY = e.clientY;
 wrapper.style.zIndex = doZ();
 addListener(document, "mousemove", move, true);
 addListener(document, "mouseup", drop, true);
 burst(e);
 thwart(e);
 function move(e) {
 if (!e) e = window.event;
 wrapper.style.left = left + e.clientX - clientX + "px";
 }
 function drop(e) {
 if (!e) e = window.event;
 }
}

In the same way, we can calculate the CSS value for wrapper.style.top by adding the Y coordinate
of the mousemove event in e.clientY to the local variable top and then subtracting the Y coordinate of
the mousedown event. Finally, we concatenate "px" to that number:

function drag(e) {
 if (!e) e = window.event;
 if (!e.target) e.target = e.srcElement;
 var wrapper = e.target.parentNode;
 var left = parseInt(queryCascade(wrapper, "left"));
 var top = parseInt(queryCascade(wrapper, "top"));
 var clientX = e.clientX;
 var clientY = e.clientY;
 wrapper.style.zIndex = doZ();
 addListener(document, "mousemove", move, true);
 addListener(document, "mouseup", drop, true);

CHAPTER 9 ■ LISTENING FOR EVENTS

381

 burst(e);
 thwart(e);
 function move(e) {
 if (!e) e = window.event;
 wrapper.style.left = left + e.clientX - clientX + "px";
 wrapper.style.top = top + e.clientY - clientY + "px";
 }
 function drop(e) {
 if (!e) e = window.event;
 }
}

Now to prevent the mousemove event object from traversing the DOM tree any further, pass e to
burst(). Note that this is just for Internet Explorer 9, Firefox, Safari, Chrome, and Opera since in Internet
Explorer 8 or earlier the mousemove event has already ended its journey by bubbling up to document.
Note too that there would be no point in passing e to thwart() inasmuch as there is no default action for
a mousemove event.

And with that, we’re done coding move(). So if any one next to you has their ears covered and eyes
closed, give them a poke. Then have them cut and paste our code for move(), which appears here:

function drag(e) {
 if (!e) e = window.event;
 if (!e.target) e.target = e.srcElement;
 var wrapper = e.target.parentNode;
 var left = parseInt(queryCascade(wrapper, "left"));
 var top = parseInt(queryCascade(wrapper, "top"));
 var clientX = e.clientX;
 var clientY = e.clientY;
 wrapper.style.zIndex = doZ();
 addListener(document, "mousemove", move, true);
 addListener(document, "mouseup", drop, true);
 burst(e);
 thwart(e);
 function move(e) {
 if (!e) e = window.event;
 wrapper.style.left = left + e.clientX - clientX + "px";
 wrapper.style.top = top + e.clientY - clientY + "px";
 burst(e);
 }
 function drop(e) {
 if (!e) e = window.event;
 }
}

Writing the Mouseup Event Listener
Now for the mouseup event listener, drop(). First, we want to tell JavaScript not to listen for mousemove
or mouseup events on document. This is where our helper function removeListener() earns its keep.
Remember that to remove an event listener with removeEventListener() or detachEvent(), you must
pass the same parameters that you added the event listener with. With this in mind, let’s cut and paste
our addListener calls within drag(). Then just change addListener to removeListener:

CHAPTER 9 ■ LISTENING FOR EVENTS

382

function drag(e) {
 if (!e) e = window.event;
 if (!e.target) e.target = e.srcElement;
 var wrapper = e.target.parentNode;
 var left = parseInt(queryCascade(wrapper, "left"));
 var top = parseInt(queryCascade(wrapper, "top"));
 var clientX = e.clientX;
 var clientY = e.clientY;
 wrapper.style.zIndex = doZ();
 addListener(document, "mousemove", move, true);
 addListener(document, "mouseup", drop, true);
 burst(e);
 thwart(e);
 function move(e) {
 if (!e) e = window.event;
 wrapper.style.left = left + e.clientX - clientX + "px";
 wrapper.style.top = top + e.clientY - clientY + "px";
 burst(e);
 }
 function drop(e) {
 if (!e) e = window.event;
 removeListener(document, "mousemove", move, true);
 removeListener(document, "mouseup", drop, true);
 }
}

Now then, if an element has negative left or top CSS values, browsers do not render scrollbars to
make the element accessible to visitors. For this reason, if a visitor drags and drops the Running <div>
beyond the browser window to the left or top, there will be no way for them to view the <div>. It’s sort of
like dropping the <div> down a black hole.

What to do? Well, simply query left and top, and if their values are negative, change them to 0,
which will snap the <div> back into view, flush to edge of the window:

function drag(e) {
 if (!e) e = window.event;
 if (!e.target) e.target = e.srcElement;
 var wrapper = e.target.parentNode;
 var left = parseInt(queryCascade(wrapper, "left"));
 var top = parseInt(queryCascade(wrapper, "top"));
 var clientX = e.clientX;
 var clientY = e.clientY;
 wrapper.style.zIndex = doZ();
 addListener(document, "mousemove", move, true);
 addListener(document, "mouseup", drop, true);
 burst(e);
 thwart(e);
 function move(e) {
 if (!e) e = window.event;
 wrapper.style.left = left + e.clientX - clientX + "px";
 wrapper.style.top = top + e.clientY - clientY + "px";
 burst(e);
 }
 function drop(e) {
 if (!e) e = window.event;

CHAPTER 9 ■ LISTENING FOR EVENTS

383

 removeListener(document, "mousemove", move, true);
 removeListener(document, "mouseup", drop, true);
 if (parseInt(wrapper.style.left) < 0) wrapper.style.left = "0px";
 if (parseInt(wrapper.style.top) < 0) wrapper.style.top = "0px";
 }
}

Finally, pass the mouseup event object in e to burst() and thwart(), and we’re done:

function drag(e) {
 if (!e) e = window.event;
 if (!e.target) e.target = e.srcElement;
 var wrapper = e.target.parentNode;
 var left = parseInt(queryCascade(wrapper, "left"));
 var top = parseInt(queryCascade(wrapper, "top"));
 var clientX = e.clientX;
 var clientY = e.clientY;
 wrapper.style.zIndex = doZ();
 addListener(document, "mousemove", move, true);
 addListener(document, "mouseup", drop, true);
 burst(e);
 thwart(e);
 function move(e) {
 if (!e) e = window.event;
 wrapper.style.left = left + e.clientX - clientX + "px";
 wrapper.style.top = top + e.clientY - clientY + "px";
 burst(e);
 }
 function drop(e) {
 if (!e) e = window.event;
 removeListener(document, "mousemove", move, true);
 removeListener(document, "mouseup", drop, true);
 if (parseInt(wrapper.style.left) < 0) wrapper.style.left = "0px";
 if (parseInt(wrapper.style.top) < 0) wrapper.style.top = "0px";
 burst(e);
 thwart(e);
 }
}

The doZ() Helper Function
Now for doZ()—thanks for reminding me. This helper function will always return the next highest
integer after the one it last returned. So if we set the z-index of the element the visitor is dragging to the
return value of doZ(), we can be sure they will never drag it underneath another element. Yup, good idea.

Declare a variable doZ containing the return value of a self-invoking function literal. This will create
a closure to save the z-index within from one doZ() call to the next:

var doZ = function() {
}();

Now initialize a private variable z to an integer greater than any z-index on your page. I dun no, say
400:

var doZ = function() {

CHAPTER 9 ■ LISTENING FOR EVENTS

384

 var z = 400;
}();

Right now, doZ evaluates to undefined since the self-invoking function literal does not explicitly
return a value. We have some work to do; return a function literal for JavaScript to initialize doZ to, that
is, the helper function we want doZ to refer to.

var doZ = function() {
 var z = 400;
 return function() {
 };
}();

Now return the unincremented value of the private z variable. Then increment z to the value doZ()
ought to return the next time we call it. To do so, place the ++ operator in the post-increment position.
So the first call of doZ() returns 400 and saves 401 to z, the second call of doZ() returns 401 and saves 402
to z, the third call of doZ() returns 402 and saves 403 to z, and so on. doZ() returns z from the closure and
then remembers what to return the next time.

■ Note The ++ operator and the pre- and post-increment positions were covered in Chapter 3.

var doZ = function() {
 var z = 400;
 return function() {
 return z ++;
 };
}();

Before moving on, let’s put doZ() up with the other helper functions, say right before prepSprites().
Yup, cut and paste.

Prepping the Drag
Now we want to tell JavaScript to listen for mousedown events on any element of the drag class. We’ll do
so within a function named prepDrag(), which as you might imagine will prep the drag-and-drop
behavior:

function prepDrag() {
}

Now in a local variable elements, let’s save any element in our markup that is a member of the drag
class by passing "drag" to our findClass() helper function:

function prepDrag() {
 var elements = findClass("drag");
}

Then write an optimized for loop to iterate over elements. During each roundabout of the for loop,
tell JavaScript to listen for mousedown events on elements[i], that is, every element that is a member of
the drag class. To do so, pass our helper function addListener() the DOM node that elements[i] refers
to, the string "mousedown", and the identifier for our drag() function.

CHAPTER 9 ■ LISTENING FOR EVENTS

385

■ Caution It bears repeating that the third parameter to addListener() is an identifier naming a function, not a
function invocation expression. That is to say, we are telling JavaScript the name of a function to run rather than

running the function by appending the () operator.

With those words of caution, we’re done:

function prepDrag() {
 var elements = findClass("drag");
 for (var i = elements.length; i --;) {
 addListener(elements[i], "mousedown", drag);
 }
}

Now let’s put our drag-and-drop behavior through the wringer. Save our JavaScript file. Then
refresh Firefox, and call prepDrag() from the Firebug console. Optionally, call prepSprites() again, too;
refreshing Firefox KO’d the sprite event listeners.

prepSprites();
prepDrag();

Now grab the Running tab with your mouse, and drag and drop the menu to a different spot on the
page. Figure 9–4 the Running menu after I moved it from its usual starting position. Note that as you
drag, your mouse stays pinned to wherever you grabbed hold of the tab.

CHAPTER 9 ■ LISTENING FOR EVENTS

386

Figure 9–4. Grabbing the menu by the tab and dragging it elsewhere on the page

Now drag the menu beyond the bounds of the Firefox window, either to the left or top. Once it has
disappeared from view, drop it and watch JavaScript snap it flush to the edge of the Firefox window.
Figure 9–5 illustrates where I dragged the Running menu to and where JavaScript snapped it back into
view.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 9 ■ LISTENING FOR EVENTS

387

Figure 9–5. Dragging the Running menu beyond the bounds of the Firefox window.

CHAPTER 9 ■ LISTENING FOR EVENTS

388

Figure 9–6. The Running menu snaps back into view

How did it go? I hope you’re smiling like a butcher’s dog. But if not, carefully compare your script to
that of your fearless leader:

var addListener = document.addEventListener ?
 function(node, type, listener, phase) {
 node.addEventListener(type, listener, !! phase);
 } :
 function(node, type, listener) {
 node.attachEvent("on" + type, listener);
 } ;

var removeListener = document.removeEventListener ?
 function(node, type, listener, phase) {
 node.removeEventListener(type, listener, !! phase);
 } :
 function(node, type, listener) {
 node.detachEvent("on" + type, listener);
 } ;

CHAPTER 9 ■ LISTENING FOR EVENTS

389

function thwart(e) {
 if (e.preventDefault) {
 thwart = function(e) {
 e.preventDefault();
 };
 } else {
 thwart = function(e) {
 e.returnValue = false;
 };
 }
 thwart(e);
}

function burst(e) {
 if (e.stopPropagation) {
 burst = function(e) {
 e.stopPropagation();
 };
 } else {
 burst = function(e) {
 e.cancelBubble = true;
 };
 }
 burst(e);
}

var traverseTree = document.documentElement.firstElementChild ?
 function traverseTree (node, func) {
 func(node);
 node = node.firstElementChild;
 while (node !== null) {
 traverseTree(node, func);
 node = node.nextElementSibling;
 }
 } :
 function traverseTree (node, func) {
 func(node);
 node = node.firstChild;
 while (node !== null) {
 traverseTree(node, func);
 node = node.nextSibling;
 }
 } ;

var findClass;

if (document.getElementsByClassName) {
 findClass = function (name, root) {
 root = root || document.documentElement;
 return root.getElementsByClassName(name);
 };
} else if (document.querySelectorAll) {
 findClass = function (name, root) {
 root = root || document.documentElement;

CHAPTER 9 ■ LISTENING FOR EVENTS

390

 return root.querySelectorAll("." + name);
 };
} else {
 findClass = function (name, root) {
 var found = [];
 root = root || document.documentElement;
 traverseTree(root, function(node) {
 if (!! node.className) {
 for (var names = node.className.split(/\s+/), i = names.length; i --;) {
 if (names[i] === name) {
 found.push(node);
 }
 }
 }
 });
 return found;
 };
}

var queryCascade = window.getComputedStyle ?
 function(element, property) {
 return getComputedStyle(element, null)[property];
 } :
 function(element, property) {
 return element.currentStyle[property];
 } ;

var doZ = function() {
 var z = 400;
 return function() {
 return z ++;
 };
}();

// sprite swaps

var prepSprites = window.getComputedStyle ?
 function () {
 var elements = findClass("sprite"), sprites = {};
 for (var i = elements.length, offsets = null; i --;) {
 sprites[elements[i].id] = [];
 sprites[elements[i].id][0] = queryCascade(elements[i], "backgroundPosition");
 offsets = sprites[elements[i].id][0].split(/\s+/);
 sprites[elements[i].id][1] = 1 - parseInt(queryCascade(elements[i], "width")) +
 "px " + offsets[1];
 addListener(elements[i], "mouseover", slideSprite);
 addListener(elements[i], "mouseout", slideSprite);
 }
 function slideSprite(e) {
 if (e.type == "mouseover") {
 e.target.style.backgroundPosition = sprites[e.target.id][1];
 } else {
 e.target.style.backgroundPosition = sprites[e.target.id][0];
 }

CHAPTER 9 ■ LISTENING FOR EVENTS

391

 }
 } :
 function () {
 var elements = findClass("sprite"), sprites = {};
 for (var i = elements.length, offsets = null; i --;) {
 sprites[elements[i].id] = [];
 offsets = [queryCascade(elements[i], "backgroundPositionX"),
 queryCascade(elements[i], "backgroundPositionY")];
 sprites[elements[i].id][0] = offsets.join(" ");
 sprites[elements[i].id][1] = 1 - parseInt(queryCascade(elements[i], "width")) +
 "px " + offsets[1];
 addListener(elements[i], "mouseover", slideSprite);
 addListener(elements[i], "mouseout", slideSprite);
 }
 function slideSprite() {
 var e = window.event;
 if (e.type == "mouseover") {
 e.srcElement.style.backgroundPosition = sprites[e.srcElement.id][1];
 } else {
 e.srcElement.style.backgroundPosition = sprites[e.srcElement.id][0];
 }
 }
 } ;

// drag and drop

function drag(e) {
 if (!e) e = window.event;
 if (!e.target) e.target = e.srcElement;
 var wrapper = e.target.parentNode;
 var left = parseInt(queryCascade(wrapper, "left"));
 var top = parseInt(queryCascade(wrapper, "top"));
 var clientX = e.clientX;
 var clientY = e.clientY;
 wrapper.style.zIndex = doZ();
 addListener(document, "mousemove", move, true);
 addListener(document, "mouseup", drop, true);
 burst(e);
 thwart(e);

 function move(e) {
 if (!e) e = window.event;
 wrapper.style.left = left + e.clientX - clientX + "px";
 wrapper.style.top = top + e.clientY - clientY + "px";
 burst(e);
 }

 function drop(e) {
 if (!e) e = window.event;
 removeListener(document, "mousemove", move, true);
 removeListener(document, "mouseup", drop, true);
 if (parseInt(wrapper.style.left) < 0) wrapper.style.left = "0px";
 if (parseInt(wrapper.style.top) < 0) wrapper.style.top = "0px";
 burst(e);

CHAPTER 9 ■ LISTENING FOR EVENTS

392

 thwart(e);
 }
}

function prepDrag() {
 var elements = findClass("drag");
 for (var i = elements.length; i --;) {
 addListener(elements[i], "mousedown", drag);
 }
}

Swapping Skins by Key
Now for a skin-swapping behavior. This one will swap the skin to fuchsia if the visitor presses f on their
keyboard, to green if they press g, and back to blue if they press b. Note that case does not matter. So for
example, f or F will swap the skin to fuchsia. To implement this behavior, we want to have JavaScript
listen for keypress events. They can tell you the character that would normally print in response to
pressing a key or combination of keys. That is to say, a keypress event can differentiate between an r and
an R even though they share the same key on a typical keyboard.

Insofar as we want to respond to every keypress event, we will bind the skin-swapping event listener
to document, which as you know is omniscient. For Internet Explorer 9, Firefox, Safari, Chrome, and
Opera, JavaScript will nip the keypress in the bud by listening during the capturing phase. On the other
hand, Internet Explorer 8 or earlier will listen during the bubbling phase. So, Internet Explorer 8 or
earlier will have to wait for the event to traverse the DOM tree, but Internet Explorer 9, Firefox, Safari,
Chrome, and Opera will not.

The rough framework for this behavior will be a keypress event listener named swapSkinByKey()
nested inside a preparatory function named prepSkinKeys(). In this way, swapSkinByKey() can query the
local variables of prepSkinKeys() even after prepSkinKeys() has returned. Note that prepSkinKeys()
defines no parameters, but swapSkinByKey() defines e for the keypress event object. Thus far we have
this:

function prepSkinKeys() {
 function swapSkinByKey(e) {
 }
}

Now declare a local variable named sheet referring to the skin style sheet— the one containing the
CSS rules that vary among the blue, fuchsia, and green skins. swapSkinByKey() may then query sheet
even after prepSkinKeys() has returned. That’s a good thing, since prepSkinKeys() will only run one
time, right after the page loads:

function prepSkinKeys() {
 var sheet = document.getElementById("skin");
 function swapSkinByKey(e) {
 }
}

On to the nested event listener swapSkinByKey(). Begin with a couple of statements to ensure e refers
to the keypress event object and that e.target refers to the DOM node the keypress took place on:

function prepSkinKeys() {
 var sheet = document.getElementById("skin");
 function swapSkinByKey(e) {
 if (!e) e = window.event;

CHAPTER 9 ■ LISTENING FOR EVENTS

393

 if (!e.target) e.target = e.srcElement;
 }
}

Since we do not want to swap skins if the visitor is typing some text in a form (wouldn’t that be
bizarre!), let’s terminate swapSkinByKey() if e.target is an <input> or <textarea> element:

function prepSkinKeys() {
 var sheet = document.getElementById("skin");
 function swapSkinByKey(e) {
 if (!e) e = window.event;
 if (!e.target) e.target = e.srcElement;
 if (e.target.nodeName.toLowerCase() === "input" ||
 e.target.nodeName.toLowerCase() === "textarea") return;
 }
}

If JavaScript gets this far, we really do want to swap skins. To do so, we will convert the ASCII value
of the key the visitor pressed to a string by way of String.fromCharCode(). In turn, we will then convert
that string to lowercase with String.toLowerCase(). Flip back to Chapter 2 if you have forgotten how
those two methods work.

Like me, you probably do not know the ASCII values for b, f, g, B, F, and G off hand. Table 9–1
contains the lowdown.

Table 9–1. ASCII Values for b, f, g, B, F, and G

ASCII Value Printable Character

66 B

70 F

71 G

98 b

102 f

103 g

Now we just need to query the keypress event object for the ASCII value of the key the visitor
pressed. It’s in e.charCode for Firefox and Safari but e.keyCode for Internet Explorer, Opera, and Safari,
so either one will do for Safari! On the other hand, e.keyCode will be 0 in Firefox while e.charCode will be
undefined in Internet Explorer and Opera. Since 0 and undefined are both falsy, we can grock the ASCII
value of the keypress cross-browser with the expression e.charCode || e.keyCode. We will get the ASCII
value from charCode in Firefox and Safari, but from keyCode in Internet Explorer and Opera. As to why
things have to be so muddled, I have no idea.

Let’s add a letter member to the keypress event object. Then save the converted ASCII value to
e.letter:

function prepSkinKeys() {
 var sheet = document.getElementById("skin");
 function swapSkinByKey(e) {
 if (!e) e = window.event;
 if (!e.target) e.target = e.srcElement;

CHAPTER 9 ■ LISTENING FOR EVENTS

394

 if (e.target.nodeName.toLowerCase() === "input" ||
 e.target.nodeName.toLowerCase() === "textarea") return;
 e.letter = String.fromCharCode(e.charCode || e.keyCode).toLowerCase();
 }
}

Now we want to swap skins (or do nothing) relative to the string in e.letter. Let’s go with the else
if idiom for the job. Insofar as the initial skin is blue, let’s optimize things by making b the third choice.
Don’t want to make it the default, though. Otherwise, every key other than f or g would be a shortcut for
the blue skin!

I dun no, of the other two, fuchsia probably would be more popular. So, let’s put that before green.
Then in the event the visitor did not press f, g, or b, we want to do nothing. To do so, put a naked return
in an else clause or omit the else clause entirely. Let’s go with the former to make our intentions clear:

function prepSkinKeys() {
 var sheet = document.getElementById("skin");
 function swapSkinByKey(e) {
 if (!e) e = window.event;
 if (!e.target) e.target = e.srcElement;
 if (e.target.nodeName.toLowerCase() === "input" ||
 e.target.nodeName.toLowerCase() === "textarea") return;
 e.letter = String.fromCharCode(e.charCode || e.keyCode).toLowerCase();
 if (e.letter === "f") {
 sheet.href = "fuchsia.css";
 } else if (e.letter === "g") {
 sheet.href = "green.css";
 } else if (e.letter === "b") {
 sheet.href = "blue.css";
 } else {
 return;
 }
 }
}

We’re done with swapSkinByKey(). Now we want to tell JavaScript to run it whenever a keypress
occurs:

function prepSkinKeys() {
 var sheet = document.getElementById("skin");
 function swapSkinByKey(e) {
 if (!e) e = window.event;
 if (!e.target) e.target = e.srcElement;
 if (e.target.nodeName.toLowerCase() === "input" ||
 e.target.nodeName.toLowerCase() === "textarea") return;
 e.letter = String.fromCharCode(e.charCode || e.keyCode).toLowerCase();
 if (e.letter === "f") {
 sheet.href = "fuchsia.css";
 } else if (e.letter === "g") {
 sheet.href = "green.css";
 } else if (e.letter === "b") {
 sheet.href = "blue.css";
 } else {
 return;
 }

CHAPTER 9 ■ LISTENING FOR EVENTS

395

 }
 addListener(document, "keypress", swapSkinByKey, true);
}

Insofar as a skin swap requires a repaint and possibly a reflow, optimizing swapSkinByKey() as either
a lazy loader or advance conditional loader is not worthwhile. Compared to the time a browser takes to
reflow the render tree and repaint the page, the time JavaScript takes to run swapSkinByKey() is
insignificant. Let’s leave swapSkinByKey() the way it is and move on to testing.

You know what to do. Refresh Firefox, and then use the Firebug console to run the three prepatory
functions like so:

prepSprites();
prepDrag();
prepSkinKeys();

Now click somewhere within the Firefox window (so that you do not continuing typing in the
Firebug console), and press f or F to swap the skin from blue to fuchsia, verifying your work with Figure
9–7. Then press g or G to change the skin to green and b or B to revert to the initial blue skin.

Figure 9–7. Pressing f or F swaps the skin from blue to fuchsia (this may not be so obvious in a black-and-

white book, but take my word for it).

CHAPTER 9 ■ LISTENING FOR EVENTS

396

In the unlikely event that things did not go according to plan, take a deep breath, and verify your
script with that of the fella next to you.

Initiating Behaviors When the DOM Tree Is Available
To load our behaviors, we want JavaScript to run prepSprites(), prepDrag(), and prepSkinKeys().
However, to prevent errors, we don't want to run these functions until the DOM tree is fully available.
How do we know when that is?

Simple, window will be the target of a load event when the DOM tree is fully available. Moreover,
when that load event takes place, you know that the browser has loaded and parsed all markup, CSS,
JavaScript, and images.

Insofar as the load event listener for window will simply invoke prepSprites(), prepDrag(), and
prepSkinKeys(), a function literal will do. So in our JavaScript file, let’s call addListener() like so:

addListener(window, "load", function() {
 prepSprites();
 prepDrag();
 prepSkinKeys();
 });

Save our JavaScript file, and then refresh Firefox. This time around there’s no need manually call
prepSprites(), prepDrag(), and prepSkinKeys() from the Firebug console.

Fighting Global Evil
One final touch to wrap things up. Rather than risk that another script will overwrite our functions, or
vice versa, let’s paste our script (yup, the whole enchilada) into the body of a self-invoking function
literal that is wrapped with parentheses. Doing so creates a module, a global abatement technique
covered in Chapter 6. Pretty simple to do, too. Just take a look at the first and last lines, which are in bold,
of the final code for our script below.

Then save our JavaScript file, refresh Firefox, and test the behaviors one last time.

(function() {
var addListener = document.addEventListener ?
 ...

var removeListener = document.removeEventListener ?
 ...

function thwart(e) {
 ...
}
function burst(e) {
 ...
}

var traverseTree = document.documentElement.firstElementChild ?
 ...

var findClass;
if (document.getElementsByClassName) {

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 9 ■ LISTENING FOR EVENTS

397

 ...
} else if (document.querySelectorAll) {
 ...
} else {
 ...
}

var queryCascade = window.getComputedStyle ?
 ...

var doZ = function() {
 ...
}();

// sprite swaps
var prepSprites = window.getComputedStyle ?
 ...

// drag and drop
function drag(e) {
 ...
}
function prepDrag() {
 ...
}

// swap skins by key
function prepSkinKeys() {
 ...
}

// load behaviors when the DOM tree is fully available
addListener(window, "load", function() {
 prepSprites();
 prepDrag();
 prepSkinKeys();
 });
})();

Summary
In this chapter, we explored how to have JavaScript listen for an event that occurs on an element or its
ancestors and in turn respond by running a function referred to as an event listener. Moreover, we
covered a couple of techniques to make an event listener or its supporting functions snappier. Those
that would run straightaway when a page loads were rewritten as advance conditional loaders, while
those that run later in time were rewritten as lazy loaders.

In the next chapter, we will add some BOM features to this script—things like timers for animations
and Ajax for dynamic content. It’s going to be a real hootenanny!

CHAPTER 9 ■ LISTENING FOR EVENTS

398

C H A P T E R 10

■ ■ ■

399

Scripting BOM

A while ago, I worked a scene in the Russell Crowe and Liam Neeson film The Next Three Days. Probably
the thing that surprised me most was how dynamic things were on set. Paul Haggis, who won two Oscars
for Crash, kept reworking the content of the scene, especially the timing; he must have had Jason Beghe
(Detective Quinn) run out of every single door in the precinct and say, “We found his son!” each time.
Oftentimes Haggis would tell us what to do just moments before filming another take. Needless to say,
having a good short-term memory was vital.

Now in JavaScript, those things (dynamic content, timing, short-term memory) are the purview of
the Browser Object Model (BOM). For dynamic content, there’s XMLHttpRequest, an object for loading
data at runtime without having to refresh the page, a technique called Ajax. Then for timing things like
animations, BOM provides four timer functions: setTimeout(), setInterval(), clearTimeout(), and
clearInterval(). Finally, in order to give a browser a memory, BOM provides cookies. You might have
heard of those.

In this chapter, Ajax, timers, and cookies are on the docket. These are pretty disparate features, but
that’s the way with BOM, which isn’t a standard, but rather a hodgepodge of initially proprietary features
that are now implemented by Internet Explorer, Firefox, Safari, and Opera. For example,
XMLHttpRequest began life as a proprietary Internet Explorer feature.

Downloading the Project Files
Prior to rolling up our sleeves and coding, download the project files from www.apress.com. There are
quite a few of them this time. Let’s take a peek at the markup in ten.html, displayed here. Later in the
chapter, we will turn the branch of the DOM tree beginning with <div class="scroller" id="s1"> into
an animated gallery. Then we’ll dynamically add additional galleries by way of Ajax.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Getting StartED with JavaScript</title>
<link rel="stylesheet" type="text/css" href="ten.css" />
<link rel="stylesheet" type="text/css" href="blue.css" id="skin" />
</head>
<body>
<div id="running">
 <h4 class="drag">Running</h4>

 adidas
 ASICS
 Brooks

http://www.apress.com
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://www.adidas.com
http://www.asics.com
http://www.brooksrunning.com

CHAPTER 10 ■ SCRIPTING BOM

400

 New
Balance
 Nike
 Saucony

</div>
<div class="scroller" id="s1">
 <div class="wrapper">
 <ul class="slide">

 <img alt="Nike Lunar Glide, Boston" src="images/glide_bos.jpg"
/>
 <img alt="Nike Lunar Glide, NYC" src="images/glide_nyc.jpg"
/>

 <img alt="Nike Lunar Fly, Orange" src="images/fly_org.jpg"
/>
 <img alt="Nike Lunar Fly, Black" src="images/fly_blk.jpg"
/>

 </div>
 <div class="left arrow sprite"></div>
 <div class="right arrow sprite"></div>
</div>
<script src="ten.js" type="text/javascript"></script>
</body>
</html>

Note that the three sprites now have four arrows (as displayed in Figure 10–1). We’ll need those to
scroll the galleries.

Figure 10–1. The blue, fuchsia, and green sprites now have four arrows.

http://www.newbalance.com
http://www.nike.com
http://www.saucony.com

CHAPTER 10 ■ SCRIPTING BOM

401

Remembering Visitor Data with Cookies
In Chapter 9, we wrote a skin-swapping behavior. However, if you click Refresh in Firefox to reload
ten.html, JavaScript totally forgets which skin you preferred. Similarly, if you close Firefox, the next time
you open ten.html, the skin reverts to blue, which is the default.

So, we need to find a way to give JavaScript a memory. For this, BOM provides cookies. Our goal will
be to save a visitor’s skin preference to a cookie. That way, we can preset the skin to their favorite skin.
We ought to make them feel welcome. However, working with cookies is not entirely straightforward.

On the one hand, writing a cookie is simple. Just assign name value pairs, separated by semicolons,
to document.cookie, and you’re done. Here are a couple of name-value pairs:

name=john;preference=blue

On the other hand, reading a cookie is a nightmare. JavaScript returns the name-value pair of every
cookie, joined by semicolons, in one long string. It’s sort of like the ticker tapes that stock exchanges
used to work with. You have to search through all those cookies for the one you want. That’s ridiculous,
of course. But with BOM, ridiculous is the status quo.

With this in mind, it makes sense to write a helper function to read the value of a cookie. There’s no
need to write a second one to write the value of a cookie, since that is simple enough.

Getting the User’s Preference
Open ten.js, which right now is just the final code for nine.js, in your preferred text editor. Scroll down
to just past doZ(), the last helper function we coded in Chapter 9, and insert a new helper function
named getCookie(). Then define a name parameter, which will contain the name of the cookie to clip
from the ticker-tape string in document.cookie:

function getCookie(name) {
}

Now define some local variables:

• batch will contain the ticker-tape string in document.cookie.

• i will contain the return value of passing name concatenated to = to
String.indexOf(). Remember from Chapter 2 that this wrapper method returns
the offset from the beginning of the string or -1 to convey failure. i will enable us
to clip our cookie from batch.

• Just let firstCut and secondCut default to undefined for now.

Thus far we have this:

function getCookie(name) {
 var batch = document.cookie, i, firstCut, secondCut;
 i = batch.indexOf(name + "=");
}

So if JavaScript can find our cookie in batch, i will not contain -1. Let’s write an if conditional for i
!=== -1 before we go any further:

function getCookie(name) {
 var batch = document.cookie, i, firstCut, secondCut;
 i = batch.indexOf(name + "=");

CHAPTER 10 ■ SCRIPTING BOM

402

 if (i !== -1) {
 }
}

Now that we are sure there is a cookie named with the string in the name parameter, we want to clip
its value from the ticker tape. That cut will begin at the index equivalent to i, plus the character length of
the string in name, plus 1 for the = sign. Remember from Chapter 2 that String.length contains the
number of characters comprising a string. So, for a cookie named skin, that would be 4. Let’s assign the
value of the expression indicating the offset where the value of our cookie begins to firstCut:

function getCookie(name) {
 var batch = document.cookie, i, firstCut, secondCut;
 i = batch.indexOf(name + "=");
 if (i !== -1) {
 firstCut = i + name.length + 1;
 }
}

As you might imagine, secondCut will be the offset in the document.cookie ticker tape where the
value of our cookie ends. That will either be the first semicolon after firstCut or the end of the string of
cookies. So to find the semicolon, we would again call indexOf() on batch. But this time, we would pass
firstCut as the optional second parameter, which tells JavaScript where to begin its search. Note that i
would work here, too. However, passing secondCut results in a quicker match since it’s closer to the
semicolon than i:

function getCookie(name) {
 var batch = document.cookie, i, firstCut, secondCut;
 i = batch.indexOf(name + "=");
 if (i !== -1) {
 firstCut = i + name.length + 1;
 secondCut = batch.indexOf(";", firstCut);
 }
}

In the event that our cookie is the last one in batch, secondCut will contain -1. If that’s the case, we
want to overwrite -1 with the length of the string of cookies. That is to say, we want to overwrite it with
batch.length:

function getCookie(name) {
 var batch = document.cookie, i, firstCut, secondCut;
 i = batch.indexOf(name + "=");
 if (i !== -1) {
 firstCut = i + name.length + 1;
 secondCut = batch.indexOf(";", firstCut);
 if (secondCut === -1) secondCut = batch.length;
 }
}

Now for the moment of truth. Clip the value of our cookie from batch by passing
String.substring() the offsets in firstCut and secondCut. However, to decode any whitespace,
commas, or semicolons in the cookie value, be sure to pass the return value of substring() to
decodeURIComponent(). Note that cookie values may not contain any whitespace, commas, or
semicolons, so it’s always best to clean them out just in case. I’ll remind you of that in a bit when we
write the value of our cookie.

Anyway, getCookie() has done its job at this point, so let’s return the cookie value like so:

CHAPTER 10 ■ SCRIPTING BOM

403

function getCookie(name) {
 var batch = document.cookie, i, firstCut, secondCut;
 i = batch.indexOf(name + "=");
 if (i !== -1) {
 firstCut = i + name.length + 1;
 secondCut = batch.indexOf(";", firstCut);
 if (secondCut === -1) secondCut = batch.length;
 return decodeURIComponent(batch.substring(firstCut, secondCut));
 }
}

Finally, if getCookie() cannot find a cookie named name, let’s convey failure by appending an else
clause that returns false. In just a moment, we will check for false prior to presetting the skin relative to
a visitor’s preference. The final code for getCookie() would be as follows:

function getCookie(name) {
 var batch = document.cookie, i, firstCut, secondCut;
 i = batch.indexOf(name + "=");
 if (i !== -1) {
 firstCut = i + name.length + 1;
 secondCut = batch.indexOf(";", firstCut);
 if (secondCut === -1) secondCut = batch.length;
 return decodeURIComponent(batch.substring(firstCut, secondCut));
 } else {
 return false;
 }
}

Setting the User’s Skin Preference
Now for a function to preset the skin to blue, fuchsia, or green depending on the visitor’s preference.
Hmm. Let’s cleverly name it presetSkin(). In its block, declare a local variable named pref, and assign to
it the return value of passing "skin" to getCookie():

function presetSkin() {
 var pref = getCookie("skin");
}

So, pref will contain "blue", "fuchsia", or "green" if the visitor set their preference during a
previous visit. Otherwise, pref will contain false. Note that if cookies are disabled, pref will contain
false as well. With this in mind, let’s make sure pref does not contain false before we do anything else.
An if condition and the !== operator will do the job:

function presetSkin() {
 var pref = getCookie("skin");
 if (pref !== false) {
 }
}

Fine and dandy. Now if JavaScript runs the if block, we have a skin to set. Just set the href member
of the skin style sheet to "blue.css", "fuchsia.css", or "green.css" by concatenating pref to ".css":

function presetSkin() {
 var pref = getCookie("skin");

CHAPTER 10 ■ SCRIPTING BOM

404

 if (pref !== false) {
 document.getElementById("skin").href = pref + ".css";
 }
}

We’re done with presetSkin(). The final code for that and our getCookie() helper would be as
follows:

function getCookie(name) {
 var batch = document.cookie, i, firstCut, secondCut;
 i = batch.indexOf(name + "=");
 if (i !== -1) {
 firstCut = i + name.length + 1;
 secondCut = batch.indexOf(";", firstCut);
 if (secondCut === -1) secondCut = batch.length;
 return decodeURIComponent(batch.substring(firstCut, secondCut));
 } else {
 return false;
 }
}
// some intervening code
function presetSkin() {
 var pref = getCookie("skin");
 if (pref !== false) {
 document.getElementById("skin").href = pref + ".css";
 }
}

Setting the User’s Preference
We can now read the skin cookie whenever the visitor returns. But it’s not very useful unless we create
the skin cookie elsewhere in our script. Let’s do so by rewriting swapSkinByKey(), the keypress event
listener we cobbled together in Chapter 9. That’s nested in prepSkinKeys(). Right now we have this:

function prepSkinKeys() {
 var sheet = document.getElementById("skin");
 function swapSkinByKey(e) {
 if (!e) e = window.event;
 if (!e.target) e.target = e.srcElement;
 if (e.target.nodeName.toLowerCase() === "input" || e.target.nodeName.toLowerCase() ===
"textarea") return;
 e.letter = String.fromCharCode(e.charCode || e.keyCode).toLowerCase();
 if (e.letter === "f") {
 sheet.href = "fuchsia.css";
 } else if (e.letter === "g") {
 sheet.href = "green.css";
 } else if (e.letter === "b") {
 sheet.href = "blue.css";
 } else {
 return;
 }
 }
 addListener(document, "keypress", swapSkinByKey, true);
}

CHAPTER 10 ■ SCRIPTING BOM

405

First declare a local variable named pref prior to the if statement. Then replace the three href
assignment statements with pref ones:

function prepSkinKeys() {
 var sheet = document.getElementById("skin");
 function swapSkinByKey(e) {
 if (!e) e = window.event;
 if (!e.target) e.target = e.srcElement;
 if (e.target.nodeName.toLowerCase() === "input" || e.target.nodeName.toLowerCase() ===
"textarea") return;
 e.letter = String.fromCharCode(e.charCode || e.keyCode).toLowerCase();
 var pref;
 if (e.letter === "f") {
 pref = "fuchsia";
 } else if (e.letter === "g") {
 pref = "green";
 } else if (e.letter === "b") {
 pref = "blue";
 } else {
 return;
 }
 }
 addListener(document, "keypress", swapSkinByKey, true);
}

Following the else clause, reinsert the href assignment. However, we can now do so in one fell
swoop by concatenating pref to ".css":

function prepSkinKeys() {
 var sheet = document.getElementById("skin");
 function swapSkinByKey(e) {
 if (!e) e = window.event;
 if (!e.target) e.target = e.srcElement;
 if (e.target.nodeName.toLowerCase() === "input" || e.target.nodeName.toLowerCase() ===
"textarea") return;
 e.letter = String.fromCharCode(e.charCode || e.keyCode).toLowerCase();
 var pref;
 if (e.letter === "f") {
 pref = "fuchsia";
 } else if (e.letter === "g") {
 pref = "green";
 } else if (e.letter === "b") {
 pref = "blue";
 } else {
 return;
 }
 sheet.href = pref + ".css";
 }
 addListener(document, "keypress", swapSkinByKey, true);
}

Now for the reason why we gutted swapSkinByKey() in the first place. Yup, it’s time to create or write
the skin cookie. Both of those operations work the same way. Just cobble together a string to assign to
document.cookie. Note that this does not overwrite any cookies already in there. I know, it’s not very
intuitive. Such is the sad state of BOM. Anyway, just concatenate "skin=" to pref:

CHAPTER 10 ■ SCRIPTING BOM

406

function prepSkinKeys() {
 var sheet = document.getElementById("skin");
 function swapSkinByKey(e) {
 if (!e) e = window.event;
 if (!e.target) e.target = e.srcElement;
 if (e.target.nodeName.toLowerCase() === "input" || e.target.nodeName.toLowerCase() ===
"textarea") return;
 e.letter = String.fromCharCode(e.charCode || e.keyCode).toLowerCase();
 var pref;
 if (e.letter === "f") {
 pref = "fuchsia";
 } else if (e.letter === "g") {
 pref = "green";
 } else if (e.letter === "b") {
 pref = "blue";
 } else {
 return;
 }
 sheet.href = pref + ".css";
 document.cookie = "skin=" + pref;
 }
 addListener(document, "keypress", swapSkinByKey, true);
}

There’s one problem with what we did. Although our cookie would survive a refresh, it would be
deleted when the visitor closes their browser. That’s because we created a session cookie, meaning one
with no sell by date.

Let’s fix that by setting the optional max-age attribute, the value for which is the life span of the
cookie in seconds. Like me, you probably do not know off-hand the number of seconds in a week,
month, year, and so forth. Therefore, let’s let JavaScript do the math for us. Say for a 30-day cookie, we
would write this:

function prepSkinKeys() {
 var sheet = document.getElementById("skin");
 function swapSkinByKey(e) {
 if (!e) e = window.event;
 if (!e.target) e.target = e.srcElement;
 if (e.target.nodeName.toLowerCase() === "input" || e.target.nodeName.toLowerCase() ===
"textarea") return;
 e.letter = String.fromCharCode(e.charCode || e.keyCode).toLowerCase();
 var pref;
 if (e.letter === "f") {
 pref = "fuchsia";
 } else if (e.letter === "g") {
 pref = "green";
 } else if (e.letter === "b") {
 pref = "blue";
 } else {
 return;
 }
 sheet.href = pref + ".css";
 document.cookie = "skin=" + pref + "; max-age=" + (60*60*24*30);
 }
 addListener(document, "keypress", swapSkinByKey, true);

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 10 ■ SCRIPTING BOM

407

}

As it is right now, presetSkin() will never run. To fix that, simply call presetSkin() first thing in the
load event listener:

addListener(window, "load", function() {
 presetSkin();
 prepSprites();
 prepDrag();
 prepSkinKeys();
 });

Now let’s test this in Firefox. Save ten.js, and then open ten.html with Firefox. Press f or F to swap
the skin to fuchsia, and then click Refresh to make sure the skin remains fuchsia.

Now exit Firefox to end your browsing session. Then reopen ten.html to see whether our sell by date
worked as planned. Skin still green?

Great. There you have it—a script with a memory!

Animating with Timers
Timers are the next BOM feature we will explore. Those are the cornerstone JavaScript animations.
Scrollers are one kind of animated behavior. Let’s add one of those to our script so that visitors can scroll
right or left through an image gallery of running shoes. But before we do, download ten.html, ten.css,
and images folder from www.apress.com (and refer to the listing of ten.html at the start of this chapter for
the layout of the elements we’re going to work with in this section, particularly the wrapper and scroller
parts). In addition to images for the gallery, revised blue, fuchsia, and green sprites are in the images
folder, too. There’s no need to download ten.js, though, since we are coding that over the course of this
chapter.

Preparing the Scrollers
Beneath prepSkinKeys(), add a function named prepScrollers(). Then assign to a local variable named
elements the return value of passing "scroller" to the helper function, findClass(). There will be one
element per scrolling gallery in there.

function prepScrollers() {
 var elements = findClass("scroller");
}

Now iterate over elements with a for loop. To make that snappier (remember, the browser is frozen
while JavaScript is doing something), we will query elements.length just one time, saving that to the
venerable loop variable i. Then we will decrement i in the test expression. That is to say, we will loop
through elements in reverse and omit the third expression, which is traditionally where i would be
incremented. Just remember to put a semicolon following i -- in order to prevent a syntax error.

function prepScrollers() {
 var elements = findClass("scroller");
 for (var i = elements.length; i --;) {
 }
}

http://www.apress.com

CHAPTER 10 ■ SCRIPTING BOM

408

During each roundabout of the for loop, we’ll pass elements[i] to a function literal that defines a
scroller argument, which is the div that contains the scroller panel. But we cannot call it until it is
defined. So, wrap the function literal in parentheses, like so:

function prepScrollers() {
 var elements = findClass("scroller");
 for (var i = elements.length; i --;) {
 (function (scroller) {
 })(elements[i]);
 }
}

Now we are going to save some local variables to the call object of the function literal. Closure will
make those persistent and private to some nested functions we will code in a moment or two.

The first private variable, wrapper, will contain the descendent of scroller that is of the wrapper
class. Similarly, slide will contain the descendent of scroller that is of the slide class. So in both cases,
we pass scroller as the value of the root parameter to findClass(). However, its return value is an array,
so grab the first and only element by passing 0 to the [] operator:

function prepScrollers() {
 var elements = findClass("scroller");
 for (var i = elements.length; i --;) {
 (function (scroller) {
 var wrapper = findClass("wrapper", scroller)[0];
 var slide = findClass("slide", scroller)[0];
 })(elements[i]);
 }
}

Querying computed styles from the CSS cascade forces the browser to flush its rendering queue and
do any pending reflow or repaint. That’s not something you want to do very often, unless of course you
like to torment visitors by freezing their browser. So, let’s save the width of wrapper and slide, which are
values we will need to query every 15 milliseconds as the gallery is animating, to private variables named
w1 and w2. Note that JavaScript can look up tersely named variables like w1 faster than more readable
ones like wrapperWidth. Finally, let’s clip off the "px" from w1 and w2 with parseInt() while we are here:

function prepScrollers() {
 var elements = findClass("scroller");
 for (var i = elements.length; i --;) {
 (function (scroller) {
 var wrapper = findClass("wrapper", scroller)[0];
 var slide = findClass("slide", scroller)[0];
 var w1 = parseInt(queryCascade(wrapper, "width"));
 var w2 = parseInt(queryCascade(slide, "width"));
 })(elements[i]);
 }
}

Now initialize a timer variable to null. This will later contain a timer ID that we will need in the
event we want to defuse a timer before it goes off. Just picture a timer ID as the trigger code some bomb-
squad guy tries frantically to crack in a movie.

function prepScrollers() {
 var elements = findClass("scroller");
 for (var i = elements.length; i --;) {
 (function (scroller) {

CHAPTER 10 ■ SCRIPTING BOM

409

 var wrapper = findClass("wrapper", scroller)[0];
 var slide = findClass("slide", scroller)[0];
 var w1 = parseInt(queryCascade(wrapper, "width"));
 var w2 = parseInt(queryCascade(slide, "width"));
 var timer = null;
 })(elements[i]);
 }
}

To animate our gallery, we will increment or decrement slide.style.left. Its value is "" right now,
so at some point we will have to query the CSS cascade for the computed value of left. Rather than
cause an initial lurch by waiting until the beginning of an animation to query the cascade, let’s do so
now. Querying the cascade takes time, you know.

By the way, during the course of an animation, JavaScript will read and write slide.style.left
every 15 milliseconds. Bet you couldn’t do that—or anything else in .015 seconds! Don’t feel bad,
though. JavaScript would struggle to query left from the cascade that fast, which is why we saved it
locally to slide.style.left in this step:

function prepScrollers() {
 var elements = findClass("scroller");
 for (var i = elements.length; i --;) {
 (function (scroller) {
 var wrapper = findClass("wrapper", scroller)[0];
 var slide = findClass("slide", scroller)[0];
 var w1 = parseInt(queryCascade(wrapper, "width"));
 var w2 = parseInt(queryCascade(slide, "width"));
 var timer = null;
 slide.style.left = queryCascade(slide, "left");
 })(elements[i]);
 }
}

Now we want to bind a mousedown event listener named press(), which we haven’t written yet, to
the arrows. So, initialize a variable named arrows to the findClass("arrow", scroller) invocation
expression. Initialize the loop variable i to arrows.length and re to a regular expression for the word
"right", too. We have three loop variables initialized with one var statement:

function prepScrollers() {
 var elements = findClass("scroller");
 for (var i = elements.length; i --;) {
 (function (scroller) {
 var wrapper = findClass("wrapper", scroller)[0];
 var slide = findClass("slide", scroller)[0];
 var w1 = parseInt(queryCascade(wrapper, "width"));
 var w2 = parseInt(queryCascade(slide, "width"));
 var timer = null;
 slide.style.left = queryCascade(slide, "left");
 for (var arrows = findClass("arrow", scroller), i = arrows.length, re = /\bright\b/; i -
-;) {
 addListener(arrows[i], "mousedown", press);
 }
 })(elements[i]);
 }
}

CHAPTER 10 ■ SCRIPTING BOM

410

In addition to binding press() for the mousedown event, we want to add a jump member to both
<div> elements. For the one of the right class, jump will contain -10. On the other hand, jump will be 10
for the <div> of the left class. During an animation, JavaScript will add jump to slide.style.left. That is
to say, pressing down on the right arrow will decrement left for slide by 10 pixels, while pressing down
on the left arrow will increment left for slide by 10 pixels. That happens in just 15 milliseconds, mind
you.

Anyway, this is where re earns its keep. Remember from Chapter 2 that RegExp.test() returns true
if the regular expression matches the string parameter and false if not. If we pass re.test() the value of
the class attribute for both arrows, it will return true for the right arrow and false for the left arrow.
With this in mind, we can initialize jump to the appropriate value by making the call to RegExp.test() the
boolean expression prior to the ? token of the conditional operator:

function prepScrollers() {
 var elements = findClass("scroller");
 for (var i = elements.length; i --;) {
 (function (scroller) {
 var wrapper = findClass("wrapper", scroller)[0];
 var slide = findClass("slide", scroller)[0];
 var w1 = parseInt(queryCascade(wrapper, "width"));
 var w2 = parseInt(queryCascade(slide, "width"));
 var timer = null;
 slide.style.left = queryCascade(slide, "left");
 for (var arrows = findClass("arrow", scroller), i = arrows.length, re = /\bright\b/; i -
-;) {
 addListener(arrows[i], "mousedown", press);
 arrows[i].jump = (re.test(arrows[i].className)) ? -10 : 10;
 }
 })(elements[i]);
 }
}

Adding the Press Event Listener
Now on to the event listener press(), which will execute whenever a mousedown event fires on an arrow
<div>. Define an e parameter for the DOM event object. Then if JavaScript defaults e to undefined, assign
window.event to e. Remember, window.event is where Internet Explorer will save details about the
mousedown event. One of those tidbits, window.event.srcElement, will refer to the left or right arrow
<div>. DOM-savvy browsers call that member target. So in Internet Explorer, initialize a new
window.event.target member that refers to window.event.srcElement. That way, e.target refers to an
arrow <div> cross-browser:

function prepScrollers() {
 var elements = findClass("scroller");
 for (var i = elements.length; i --;) {
 (function (scroller) {
 var wrapper = findClass("wrapper", scroller)[0];
 var slide = findClass("slide", scroller)[0];
 var w1 = parseInt(queryCascade(wrapper, "width"));
 var w2 = parseInt(queryCascade(slide, "width"));
 var timer = null;
 slide.style.left = queryCascade(slide, "left");
 for (var arrows = findClass("arrow", scroller), i = arrows.length, re = /\bright\b/; i -
-;) {

CHAPTER 10 ■ SCRIPTING BOM

411

 addListener(arrows[i], "mousedown", press);
 arrows[i].jump = (re.test(arrows[i].className)) ? -10 : 10;
 }

 function press(e) {
 if (!e) e = window.event;
 if (!e.target) e.target = e.srcElement;
 }
 })(elements[i]);
 }
}

Now then, the <div> that e.target refers to has a jump member containing 10 or -10. Inasmuch as
JavaScript can look up a local variable faster than a nested object member, save e.target.jump to a local
variable jump. While animating our particular gallery, JavaScript may need to query jump 143 times. So,
saving e.target.jump to a local variable is certainly worthwhile.

Now call animate(), a function we will nest in press() in a moment. Note that animate() can query
jump from the call object on press(). That’s a good thing, because it will do so every 15 milliseconds!
Before we code animate(), though, pass the mousedown event object to both burst() and thwart() to
prevent the event from bubbling any further and a context menu from pestering Mac visitors:

function prepScrollers() {
 var elements = findClass("scroller");
 for (var i = elements.length; i --;) {
 (function (scroller) {
 var wrapper = findClass("wrapper", scroller)[0];
 var slide = findClass("slide", scroller)[0];
 var w1 = parseInt(queryCascade(wrapper, "width"));
 var w2 = parseInt(queryCascade(slide, "width"));
 var timer = null;
 slide.style.left = queryCascade(slide, "left");
 for (var arrows = findClass("arrow", scroller), i = arrows.length, re = /\bright\b/; i -
-;) {
 addListener(arrows[i], "mousedown", press);
 arrows[i].jump = (re.test(arrows[i].className)) ? -10 : 10;
 }

 function press(e) {
 if (!e) e = window.event;
 if (!e.target) e.target = e.srcElement;
 var jump = e.target.jump;
 animate();
 burst(e);
 thwart(e);
 }
 })(elements[i]);
 }
}

CHAPTER 10 ■ SCRIPTING BOM

412

Writing the Animation Function
Now nest animate() in press() so that it can query jump from the call object for press(). Note that
animate() can (and will) query slide, w1, w2, and timer from the call object of the function literal press()
is nested within.

function prepScrollers() {
 var elements = findClass("scroller");
 for (var i = elements.length; i --;) {
 (function (scroller) {
 var wrapper = findClass("wrapper", scroller)[0];
 var slide = findClass("slide", scroller)[0];
 var w1 = parseInt(queryCascade(wrapper, "width"));
 var w2 = parseInt(queryCascade(slide, "width"));
 var timer = null;
 slide.style.left = queryCascade(slide, "left");
 for (var arrows = findClass("arrow", scroller), i = arrows.length, re = /\bright\b/; i -
-;) {
 addListener(arrows[i], "mousedown", press);
 arrows[i].jump = (re.test(arrows[i].className)) ? -10 : 10;
 }

 function press(e) {
 if (!e) e = window.event;
 if (!e.target) e.target = e.srcElement;
 var jump = e.target.jump;
 animate();
 burst(e);
 thwart(e);

 function animate() {
 }
 }
 })(elements[i]);
 }
}

First convert slide.style.left to a number by passing it to parseInt(). Then add jump, which will
be either 10 or -10, to that number, saving the sum to a variable named x. Now we want to determine
whether x is in bounds, that is, no less than w1 - w2 and no greater than 0. For our gallery that would
mean an integer between -1424 and 0 inclusive. If x falls within those bounds, we want to concatenate
"px" to x, which converts it to a string—remember CSS values are all of the string datatype—then assign
that to slide.style.left.

function prepScrollers() {
 var elements = findClass("scroller");
 for (var i = elements.length; i --;) {
 (function (scroller) {
 var wrapper = findClass("wrapper", scroller)[0];
 var slide = findClass("slide", scroller)[0];
 var w1 = parseInt(queryCascade(wrapper, "width"));
 var w2 = parseInt(queryCascade(slide, "width"));
 var timer = null;
 slide.style.left = queryCascade(slide, "left");

CHAPTER 10 ■ SCRIPTING BOM

413

 for (var arrows = findClass("arrow", scroller), i = arrows.length, re = /\bright\b/; i -
-;) {
 addListener(arrows[i], "mousedown", press);
 arrows[i].jump = (re.test(arrows[i].className)) ? -10 : 10;
 }

 function press(e) {
 if (!e) e = window.event;
 if (!e.target) e.target = e.srcElement;
 var jump = e.target.jump;
 animate();
 burst(e);
 thwart(e);

 function animate() {
 var x = parseInt(slide.style.left) + jump;
 if (x >= w1 - w2 && x <= 0) {
 slide.style.left = x + "px";
 }
 }
 }
 })(elements[i]);
 }
}

But what if x is too negative, which is to say less than -1424, or at all positive? In the former case, we
want to assign "-1424px" to slide.style.left, and in the latter case we want to assign "0px". Let’s make
that happen by way of the else if idiom, which we explored in Chapter 4.

function prepScrollers() {
 var elements = findClass("scroller");
 for (var i = elements.length; i --;) {
 (function (scroller) {
 var wrapper = findClass("wrapper", scroller)[0];
 var slide = findClass("slide", scroller)[0];
 var w1 = parseInt(queryCascade(wrapper, "width"));
 var w2 = parseInt(queryCascade(slide, "width"));
 var timer = null;
 slide.style.left = queryCascade(slide, "left");
 for (var arrows = findClass("arrow", scroller), i = arrows.length, re = /\bright\b/; i -
-;) {
 addListener(arrows[i], "mousedown", press);
 arrows[i].jump = (re.test(arrows[i].className)) ? -10 : 10;
 }

 function press(e) {
 if (!e) e = window.event;
 if (!e.target) e.target = e.srcElement;
 var jump = e.target.jump;
 animate();
 burst(e);
 thwart(e);

 function animate() {

CHAPTER 10 ■ SCRIPTING BOM

414

 var x = parseInt(slide.style.left) + jump;
 if (x >= w1 - w2 && x <= 0) {
 slide.style.left = x + "px";
 } else if (x < w1 - w2) {
 slide.style.left = w1 - w2 + "px";
 } else {
 slide.style.left = "0px";
 }
 }
 }
 })(elements[i]);
 }
}

Using the Gallery
Now let’s put the gallery through the wringer. To do so, scroll down and add prepScrollers() to the load
event listener:

addListener(window, "load", function() {
 presetSkin();
 prepSprites();
 prepDrag();
 prepSkinKeys();
 prepScrollers();
 });

Then save ten.js, refresh Firefox, and press the right arrow.
Hmm. It just nudges the gallery by 10 pixels. We’d have to press and release the right arrow 143

times to scroll to the end!
Maybe you didn’t notice, but when we pressed on the right arrow, it swapped to the down version of

the left arrow. And when we let go, it swapped to the up version of the left arrow. But if you press and
release the left arrow, its sprite remains correct. Great googly-moogly, what’s going on?

Well, the two arrow <div> elements do not have an ID, which our sprite-swapping behavior relies
on. Actually, that’s not entirely true. The arrow <div> elements both have an ID of "", which is the empty
string is the default value for the ID. Moreover, you can name an object member with any string,
including "". So when prepSprites() ran, it first added a member named "" to the sprites object with
offsets for the right arrow. Then it overwrote "" with offsets for the left arrow. So in the slideSprite()
event listener function, sprites[e.target.id] refers to sprites[""] for both arrow <div> elements. The
code is shown here for your reference:

var prepSprites = window.getComputedStyle ?
 function () {
 var elements = findClass("sprite"), sprites = {};
 for (var i = elements.length, offsets = null; i --;) {
 sprites[elements[i].id] = [];
 sprites[elements[i].id][0] = queryCascade(elements[i], "backgroundPosition");
 offsets = sprites[elements[i].id][0].split(/\s+/);
 sprites[elements[i].id][1] = 1 - parseInt(queryCascade(elements[i], "width")) + "px " +
offsets[1];
 addListener(elements[i], "mouseover", slideSprite);
 addListener(elements[i], "mouseout", slideSprite);

CHAPTER 10 ■ SCRIPTING BOM

415

 }
 function slideSprite(e) {
 if (e.type == "mouseover") {
 e.target.style.backgroundPosition = sprites[e.target.id][1];
 } else {
 e.target.style.backgroundPosition = sprites[e.target.id][0];
 }
 }
 } :
 function () {
 var elements = findClass("sprite"), sprites = {};
 for (var i = elements.length, offsets = null; i --;) {
 sprites[elements[i].id] = [];
 offsets = [queryCascade(elements[i], "backgroundPositionX"), queryCascade(elements[i],
"backgroundPositionY")];
 sprites[elements[i].id][0] = offsets.join(" ");
 sprites[elements[i].id][1] = 1 - parseInt(queryCascade(elements[i], "width")) + "px " +
offsets[1];
 addListener(elements[i], "mouseover", slideSprite);
 addListener(elements[i], "mouseout", slideSprite);
 }
 function slideSprite() {
 var e = window.event;
 if (e.type == "mouseover") {
 e.srcElement.style.backgroundPosition = sprites[e.srcElement.id][1];
 } else {
 e.srcElement.style.backgroundPosition = sprites[e.srcElement.id][0];
 }
 }
 } ;

So, we have two issues to fix. First, we want JavaScript to animate rather than nudge the gallery.
Second, we want the arrow sprites to swap correctly.

Animating the Gallery
To eliminate the nudging bugaboo, we’ll add a timer to move the animation along. BOM provides two
kinds: window.setTimeout() runs a function after a certain number of milliseconds have elapsed, and
window.setInterval() runs a function in intervals of a certain number of milliseconds. Regardless of
which timer you go with, the parameters are the same. The first one is the function to run, and the
second is the number of milliseconds to wait.

I tend to favor setTimeout() over setInterval() for the reason that JavaScript will not honor the call
to setInterval() in the event that the last task setInterval() added to the UI queue is still in there. This
behavior can result in jerky animations.

So setTimeout() it is. If x is within bounds, we will tell JavaScript to run animate() again in 15
milliseconds. It is always preferable to recurse by way of arguments.callee, which refers to the function
that is running, than to do so with an identifier like animate. With this in mind, let’s modify animate()
like so:

function prepScrollers() {
 var elements = findClass("scroller");
 for (var i = elements.length; i --;) {
 (function (scroller) {

CHAPTER 10 ■ SCRIPTING BOM

416

 var wrapper = findClass("wrapper", scroller)[0];
 var slide = findClass("slide", scroller)[0];
 var w1 = parseInt(queryCascade(wrapper, "width"));
 var w2 = parseInt(queryCascade(slide, "width"));
 var timer = null;
 slide.style.left = queryCascade(slide, "left");
 for (var arrows = findClass("arrow", scroller), i = arrows.length, re = /\bright\b/; i -
-;) {
 addListener(arrows[i], "mousedown", press);
 arrows[i].jump = (re.test(arrows[i].className)) ? -10 : 10;
 }

 function press(e) {
 if (!e) e = window.event;
 if (!e.target) e.target = e.srcElement;
 var jump = e.target.jump;
 animate();
 burst(e);
 thwart(e);

 function animate() {
 var x = parseInt(slide.style.left) + jump;
 if (x >= w1 - w2 && x <= 0) {
 slide.style.left = x + "px";
 setTimeout(arguments.callee, 15);
 } else if (x < w1 - w2) {
 slide.style.left = w1 - w2 + "px";
 } else {
 slide.style.left = "0px";
 }
 }
 }
 })(elements[i]);
 }
}

Save ten.js, and then refresh ten.html in Firefox. Press down on the right arrow until a few images
have scrolled by, and then let go.

Did the gallery keep right on rolling like a runaway train? It did so for me, too. Try the left arrow. It
has the same problem.

So, we need to tell JavaScript to stop scrolling the gallery whenever a visitor releases one of the
arrows. That, and we still need to fix the screwy sprites. Sigh.

OK, the sprites will have to wait. To fix the runaway gallery thingy, we need to employ the services of
window.clearTimeout(). If we pass that the return value of setTimeout(), it will call off the hounds.

So, the first thing we have to do is save the return value of setTimeout() to timer, the variable we
saved to the call object of the function literal that press() and in turn animate() are nested within.

function prepScrollers() {
 var elements = findClass("scroller");
 for (var i = elements.length; i --;) {
 (function (scroller) {
 var wrapper = findClass("wrapper", scroller)[0];
 var slide = findClass("slide", scroller)[0];
 var w1 = parseInt(queryCascade(wrapper, "width"));

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 10 ■ SCRIPTING BOM

417

 var w2 = parseInt(queryCascade(slide, "width"));
 var timer = null;
 slide.style.left = queryCascade(slide, "left");
 for (var arrows = findClass("arrow", scroller), i = arrows.length, re = /\bright\b/; i -
-;) {
 addListener(arrows[i], "mousedown", press);
 arrows[i].jump = (re.test(arrows[i].className)) ? -10 : 10;
 }

 function press(e) {
 if (!e) e = window.event;
 if (!e.target) e.target = e.srcElement;
 var jump = e.target.jump;
 animate();
 burst(e);
 thwart(e);

 function animate() {
 var x = parseInt(slide.style.left) + jump;
 if (x >= w1 - w2 && x <= 0) {
 slide.style.left = x + "px";
 timer = setTimeout(arguments.callee, 15);
 } else if (x < w1 - w2) {
 slide.style.left = w1 - w2 + "px";
 } else {
 slide.style.left = "0px";
 }
 }
 }
 })(elements[i]);
 }
}

If you are curious as to what the return value of setTimeout() is, don’t be. It’s an opaque value
referred to as a timer ID. Typically this will be a number, but there’s no standard saying what it should
be. Anything goes. Note that you snuff out a setInterval() timer in a similar way by passing its return
value to window.clearInterval(). So, BOM provides two pairs of timer functions—four in all. Don’t mix
and match, or you’ll come to grief.

Now where were we? Right, call off the timer to fix the runaway train bug. But where? In a function
named release() that we will temporarily bind to document whenever press() is called. So that the
release identifier resolves faster, let’s nest release() in press(). That way, it’ll be on the first variable
object in the scope chain.

release() will do two things. First, it will call off the hounds by passing timer to clearTimeout().
Second, it will resign its position. In other words, it will remove the mouseup event listener from
document. Note that we bind the mouseup event listener to document so that if the visitor’s mouse drifts
off the arrow before they let go, the animation will still stop. Passing true as the optional fourth
parameter puts the brakes on sooner in DOM savvy browsers. Note too that once we stop the animation,
we don’t want document running release() whenever subsequent mouseup events take place elsewhere
on the page. This is why we have release() resign after calling clearTimeout():

function prepScrollers() {
 var elements = findClass("scroller");
 for (var i = elements.length; i --;) {
 (function (scroller) {

CHAPTER 10 ■ SCRIPTING BOM

418

 var wrapper = findClass("wrapper", scroller)[0];
 var slide = findClass("slide", scroller)[0];
 var w1 = parseInt(queryCascade(wrapper, "width"));
 var w2 = parseInt(queryCascade(slide, "width"));
 var timer = null;
 slide.style.left = queryCascade(slide, "left");
 for (var arrows = findClass("arrow", scroller), i = arrows.length, re = /\bright\b/; i -
-;) {
 addListener(arrows[i], "mousedown", press);
 arrows[i].jump = (re.test(arrows[i].className)) ? -10 : 10;
 }

 function press(e) {
 if (!e) e = window.event;
 if (!e.target) e.target = e.srcElement;
 addListener(document, "mouseup", release, true);
 var jump = e.target.jump;
 animate();
 burst(e);
 thwart(e);

 function animate() {
 var x = parseInt(slide.style.left) + jump;
 if (x >= w1 - w2 && x <= 0) {
 slide.style.left = x + "px";
 timer = setTimeout(arguments.callee, 15);
 } else if (x < w1 - w2) {
 slide.style.left = w1 - w2 + "px";
 } else {
 slide.style.left = "0px";
 }
 }

 function release(e) {
 clearTimeout(timer);
 removeListener(document, "mouseup", release, true);
 }
 }
 })(elements[i]);
 }
}

Now let’s test our revision. Save ten.js, refresh ten.html in Firefox, and press down on the right
arrow until a few images scroll by. Then let go. Did the gallery stop on a dime? Great.

Now press down again on the right arrow, move your mouse off of the arrow, and let go. Did it work
that way too?

This is pretty good as it is. But it won’t take but a moment for us to have the gallery stop scrolling
whenever a visitor moves their mouse off the arrow without previously letting up on their mouse. Just
duplicate the addListener() and removeListener() calls, changing just the second parameter from
"mouseup" to "mouseout" like so:

function prepScrollers() {
 var elements = findClass("scroller");
 for (var i = elements.length; i --;) {

CHAPTER 10 ■ SCRIPTING BOM

419

 (function (scroller) {
 var wrapper = findClass("wrapper", scroller)[0];
 var slide = findClass("slide", scroller)[0];
 var w1 = parseInt(queryCascade(wrapper, "width"));
 var w2 = parseInt(queryCascade(slide, "width"));
 var timer = null;
 slide.style.left = queryCascade(slide, "left");
 for (var arrows = findClass("arrow", scroller), i = arrows.length, re = /\bright\b/; i -
-;) {
 addListener(arrows[i], "mousedown", press);
 arrows[i].jump = (re.test(arrows[i].className)) ? -10 : 10;
 }

 function press(e) {
 if (!e) e = window.event;
 if (!e.target) e.target = e.srcElement;
 addListener(document, "mouseup", release, true);
 addListener(document, "mouseout", release, true);
 var jump = e.target.jump;
 animate();
 burst(e);
 thwart(e);

 function animate() {
 var x = parseInt(slide.style.left) + jump;
 if (x >= w1 - w2 && x <= 0) {
 slide.style.left = x + "px";
 timer = setTimeout(arguments.callee, 15);
 } else if (x < w1 - w2) {
 slide.style.left = w1 - w2 + "px";
 } else {
 slide.style.left = "0px";
 }
 }

 function release(e) {
 clearTimeout(timer);
 removeListener(document, "mouseup", release, true);
 removeListener(document, "mouseout", release, true);
 }
 }
 })(elements[i]);
 }
}

Now save ten.js, refresh ten.html in Firefox, and press on the right arrow. Then after a few images
scroll by, move your mouse off the right arrow without letting go of your mouse button. Did the
animation halt nonetheless, just like we wanted? For me, too.

The gallery is good to go. Now let’s fix those screwy sprites.

CHAPTER 10 ■ SCRIPTING BOM

420

Swapping Sprites by ID or Class
Oftentimes a number of elements will share the same parts of a sprite. In an e-commerce site, for
example, every Add to Cart link would share the same off and over image. If you have several JavaScript
scrollers on a page, the same thing goes for the arrow sprites.

One way to fix this would be to give each element a unique ID, say add_to_cart_01 through
add_to_cart_72. In addition to being error prone and inefficient, that would be fairly ridiculous.

Numbering ID values won’t do. However, swapping sprites by class would be quite elegant.
Identically styled elements typically are of the same class. So, swapping their sprites by class makes a
good deal of sense.

That’s what we’ll do then. It’s pretty simple to modify prepSprites() and swapSprites(). In the var
bit of the for loop, declare a member variable. Then in the beginning of the for block, initialize member to
id or className by way of the || operator. If id contains "", which is falsey, the || returns the value of the
class attribute, which is a string. For our arrows, that would be "left arrow sprite" or "right arrow sprite".
Insofar as an object member may be named with any string, including "", we’ll next name a member in
sprites with one of those two class strings, but only if sprites does not already have a member member.
In that event, we’ll calculate offsets just like in Chapter 9 except that we need to replace
sprites[elements[i].id] with sprites[member] inasmuch as members are not necessarily named by ID
anymore. So, there are four replacements in the DOM version and three in the Internet Explorer version:

var prepSprites = window.getComputedStyle ?
 function () {
 var elements = findClass("sprite"), sprites = {};
 for (var i = elements.length, offsets = null, member; i --;) {
 member = elements[i].id || elements[i].className;
 if (! sprites[member]) {
 sprites[member] = [];
 sprites[member][0] = queryCascade(elements[i], "backgroundPosition");
 offsets = sprites[member][0].split(/\s+/);

 sprites[member][1] = 1 - parseInt(queryCascade(elements[i], "width")) + "px " +
offsets[1];

 }
 addListener(elements[i], "mouseover", slideSprite);
 addListener(elements[i], "mouseout", slideSprite);
 }
 function slideSprite(e) {
 if (e.type == "mouseover") {
 e.target.style.backgroundPosition = sprites[e.target.id][1];
 } else {
 e.target.style.backgroundPosition = sprites[e.target.id][0];
 }
 }
 } :
 function () {
 var elements = findClass("sprite"), sprites = {};
 for (var i = elements.length, offsets = null, member; i --;) {
 member = elements[i].id || elements[i].className;
 if (! sprites[member]) {
 sprites[member] = [];

 offsets = [queryCascade(elements[i], "backgroundPositionX"), queryCascade(elements[i],
"backgroundPositionY")];

CHAPTER 10 ■ SCRIPTING BOM

421

 sprites[member][0] = offsets.join(" ");
 sprites[member][1] = 1 - parseInt(queryCascade(elements[i], "width")) + "px " +
offsets[1];
 }
 addListener(elements[i], "mouseover", slideSprite);
 addListener(elements[i], "mouseout", slideSprite);
 }
 function slideSprite() {
 var e = window.event;
 if (e.type == "mouseover") {
 e.srcElement.style.backgroundPosition = sprites[e.srcElement.id][1];
 } else {
 e.srcElement.style.backgroundPosition = sprites[e.srcElement.id][0];
 }
 }
 } ;

Why didn’t we put the addListener() invocations in the if block, too? Regardless of whether we

save off and over offsets for a sprite, we still want it to have a sprite-swapping behavior. For example, if
you have three scrollers on a page, as we will by the end of the day, you want all three left arrows to run
slideSprite() for mouseover and mouseout events. However, if we were to put the addListener()
invocations in the if block, only one pair of arrows would run slideSprite() for mouseover and
mouseout events.

Hmm. I don’t like the sound of that either.
Now in the DOM version of slideSprite(), replace e.target.id with e.target.id ||

e.target.className in two places. That way, if id contains "", then JavaScript will query sprites by the
string in className. Similarly renovate the Internet Explorer version, replacing e.srcElement.id with
e.srcElement.id || e.srcElement.className, and you’re done:

var prepSprites = window.getComputedStyle ?
 function () {
 var elements = findClass("sprite"), sprites = {};
 for (var i = elements.length, offsets = null, member; i --;) {
 member = elements[i].id || elements[i].className;
 if (! sprites[member]) {
 sprites[member] = [];
 sprites[member][0] = queryCascade(elements[i], "backgroundPosition");
 offsets = sprites[member][0].split(/\s+/);
 sprites[member][1] = 1 - parseInt(queryCascade(elements[i], "width")) + "px " +
offsets[1];
 }
 addListener(elements[i], "mouseover", slideSprite);
 addListener(elements[i], "mouseout", slideSprite);
 }
 function slideSprite(e) {
 if (e.type == "mouseover") {

 e.target.style.backgroundPosition = sprites[e.target.id || e.target.className][1];

 } else {
 e.target.style.backgroundPosition = sprites[e.target.id || e.target.className][0];
 }
 }

CHAPTER 10 ■ SCRIPTING BOM

422

 } :
 function () {
 var elements = findClass("sprite"), sprites = {};
 for (var i = elements.length, offsets = null, member; i --;) {
 member = elements[i].id || elements[i].className;
 if (! sprites[member]) {
 sprites[member] = [];
 offsets = [queryCascade(elements[i], "backgroundPositionX"), queryCascade(elements[i],
"backgroundPositionY")];
 sprites[member][0] = offsets.join(" ");
 sprites[member][1] = 1 - parseInt(queryCascade(elements[i], "width")) + "px " +
offsets[1];
 }
 addListener(elements[i], "mouseover", slideSprite);
 addListener(elements[i], "mouseout", slideSprite);
 }
 function slideSprite() {
 var e = window.event;
 if (e.type == "mouseover") {
 e.srcElement.style.backgroundPosition = sprites[e.srcElement.id ||
e.srcElement.className][1];
 } else {
 e.srcElement.style.backgroundPosition = sprites[e.srcElement.id ||
e.srcElement.className][0];
 }
 }
 } ;

Save ten.js, refresh ten.html in Firefox, and put the arrows, which are swapped by class, and the
running links, which are swapped by ID, through the wringer. Verify your work with Figure 10–2.

Figure 10–2. The scroller works fine, now.

Everything work fine now? Great, now on to scripting HTTP.

CHAPTER 10 ■ SCRIPTING BOM

423

Writing Dynamic Pages Using Ajax
Now we come to Asynchronous JavaScript and XML (Ajax), which has had a lot of prominence over the
last few years. It’s a great way to add dynamic features to your web pages to make them more responsive
and user friendly. Traditionally, web pages were a static lump of HTML that was delivered from the web
server to the web browser; when a user interacted with the UI in any way, details of their action was sent
back to the server, and a new lump of HTML was returned, even if that meant there was only a small
change to make to the web page (just consider all that data and time spent waiting for not very much).

You can already see how JavaScript can help here, because actions such as button clicks and mouse
over events can be handled by the browser without it having to contact the web server. In other words,
user interaction can be captured by the browser without having to involve the server at all (just recall all
the examples where we displayed new text on a web page without a web server being involved).
However, this isn’t always quite what we want. Sometimes we want to get data from a web server in
response to the user’s actions and display it using the JavaScript techniques we’ve already learned,
without disturbing any content that doesn’t need to change. This can certainly make a web page much
more responsive and user-friendly, because there is no page refresh needed and only the data we need
to send is sent.

This in essence is Ajax: updating a web page following an event, without waiting for the server to
send a lump of HTML to replace the entire web page. The user can continue to view the page while
JavaScript and the web server are passing data around in the background (that’s the asynchronous bit in
Ajax). The XML bit of Ajax is the data exchange format; it’s not always XML as we’ll see here, but XML is
commonly used. The secret ingredient to all this is the XMLHttpRequest (XHR) object in BOM. It handles
all the behind-the-scenes calls to the web server and passes any data returned to your JavaScript.

So, let’s get on with it. Open ten.html in your text editor, the one you are coding ten.js in, and then
delete the <div class="scroller" id="s1"> element and all its descendents. Don’t worry, we’ll be
adding some new scrollers with Ajax. Now our markup looks like so:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Getting StartED with JavaScript</title>
<link rel="stylesheet" type="text/css" href="ten.css" />
<link rel="stylesheet" type="text/css" href="blue.css" id="skin" />
</head>
<body>
<div id="running">
 <h4 class="drag">Running</h4>

 adidas
 ASICS
 Brooks
 New
Balance
 Nike
 Saucony

</div>
<script src="ten.js" type="text/javascript"></script>
</body>
</html>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://www.adidas.com
http://www.asics.com
http://www.brooksrunning.com
http://www.newbalance.com
http://www.nike.com
http://www.saucony.com

CHAPTER 10 ■ SCRIPTING BOM

424

Testing XMLHttpRequest from Your Local File System
One very important thing to note before we begin scripting HTTP with an XMLHttpRequest object is that
it works with the HTTP protocol. So, file URLs must begin with http://, not file://. This means you
must test an Ajax script on a web server, not your local file system, which is to say your computer. In
Internet Explorer, anyway. On the other hand, Firefox, Safari, and Opera relax this restriction and let you
load URLs with either the http:// or file:// protocol.

What this means is that you can test the Ajax part of this script on your computer in Firefox, Safari,
and Opera, but not in Internet Explorer. Of course, on a web server you can test the script in Internet
Explorer, Firefox, Safari, and Opera.

Creating Tree Branches with createElem()
One helper function we’ll need for the job is createElem(), which we wrote in Chapter 7 to simplify
creating branches of the DOM tree. The code for createElem() is listed here. Put it with the other helper
functions in ten.js.

function createElem(name, members, children) {
 var elem = document.createElement(name), m;
 if (members instanceof Object) {
 for (m in members) {
 elem[m] = members[m];
 }
 }
 if (children instanceof Array) {
 for (i = 0; i < children.length; i ++) {
 elem.appendChild(typeof children[i] === "object" ? children[i] :
document.createTextNode(children[i]));
 }
 }
 return elem;
}

Now we’re going to conditionally define a helper function named createXHR(), which will create an
XMLHttpRequest object by way of the XMLHttpRequest() constructor in Firefox, Safari, Opera, and Internet
Explorer 7 or greater, and by way of the ActiveXObject() constructor in Internet Explorer 5 or 6. Note that
the XMLHttpRequest object returned by XMLHttpRequest() and ActiveXObject() works the same.

Okeydokey, declare createXHR, initializing its value to null. Recall from Chapter 1 that null is
preferable to undefined for representing no value on the heap, which is where function values are saved.
So, right beneath createElem(), we write the following:

var createXHR = null;

Now if the identifier XMLHttpRequest is defined, we’ll overwrite null with a function literal that
creates an XMLHttpRequest object with the XMLHttpRequest() constructor. Because Internet Explorer
and Safari return "object" for typeof XMLHttpRequest, but Firefox and Opera return "function", we’ll
avoid their disagreement like so:

var createXHR = null;
if (typeof XMLHttpRequest !== "undefined") {
 createXHR = function() {
 return new XMLHttpRequest();
 };
}

http://or
file://protocol

CHAPTER 10 ■ SCRIPTING BOM

425

Now the waters muddy considerably. To create an XMLHttpRequest object in Internet Explorer 5 or
6, we have to pass a program id to the ActiveXObject() constructor. During the ten years Internet
Explorer 5 and 6 were in active development, Microsoft released several of those. So in an array named
versions, let’s save four of the most common, ordered newest to oldest:

var createXHR = null;
if (typeof XMLHttpRequest !== "undefined") {
 createXHR = function() {
 return new XMLHttpRequest();
 };
} else if (typeof ActiveXObject !== "undefined") {
 var versions = ["MSXML2.XMLHTTP.6.0", "MSXML2.XMLHTTP.3.0", "MSXML2.XMLHTTP",
"Microsoft.XMLHTTP"];
}

To figure out the newest program ID a visitor’s copy of Internet Explorer supports, we’ll loop
through versions. Within a try block, we’ll then attempt to create an XMLHttpRequest object with the
program ID in versions[i]. In the event doing so does not throw an error, we’ll save that program ID to
version, which we initialized to "" prior to the first roundabout, and then terminate the for loop with a
break statement.

Note that the empty catch block prevents an error from propagating to the nearest containing catch
block. So by analogy, JavaScript errors bubble upward through a script just like events bubble upward
through the DOM. Therefore, a catch clause squishes an error object in the same way that burst()
squishes an event object. Note too that try must be followed by a catch or finally clause. So, our empty
catch block prevents a syntax error, too.

var createXHR = null;
if (typeof XMLHttpRequest !== "undefined") {
 createXHR = function() {
 return new XMLHttpRequest();
 };
} else if (typeof ActiveXObject !== "undefined") {
 var versions = ["MSXML2.XMLHTTP.6.0", "MSXML2.XMLHTTP.3.0", "MSXML2.XMLHTTP",
"Microsoft.XMLHTTP"];

 for (var i = 0, j = versions.length, version = ""; i < j; i ++) {

 try {
 new ActiveXObject(versions[i]);
 version = versions[i];
 break;
 }
 catch(e) {
 }
 }
}

If version does not contain its initial value (the "" empty string), then overwrite null with a function
literal that returns an XMLHttpRequest object by passing the program ID in version to ActiveXObject().
So final code for the createXHR() advance conditional loader would be:

CHAPTER 10 ■ SCRIPTING BOM

426

var createXHR = null;
if (typeof XMLHttpRequest !== "undefined") {
 createXHR = function() {
 return new XMLHttpRequest();
 };
} else if (typeof ActiveXObject !== "undefined") {
 var versions = ["MSXML2.XMLHTTP.6.0", "MSXML2.XMLHTTP.3.0", "MSXML2.XMLHTTP",
"Microsoft.XMLHTTP"];
 for (var i = 0, j = versions.length, version = ""; i < j; i ++) {
 try {
 new ActiveXObject(versions[i]);
 version = versions[i];
 break;
 }
 catch(e) {
 }
 }
 if (version !== "") {
 createXHR = function() {
 return new ActiveXObject(version);
 };
 }
}

Asynchronously Requesting Data
Now that we can create an XMLHttpRequest object with the XMLHttpRequest() or ActiveXObject()
constructor, we’ll write a helper function named getData() to asynchronously request (GET) any kind of
data with. Typically, an XMLHttpRequest object is used to fetch JSON or XML. Occasionally, you will
want to fetch XHTML or plain text, too. Regardless, getData() can do the job.

getData() works with two parameters:

• url is the URL of the data to fetch.

• callback is a function to pass the XMLHttpRequest object containing the data to.

function getData(url, callback) {
}

Now we want to ensure createXHR was conditionally defined; that is, it does not still contain null,
which would indicate the visitor has a browser from the Pleistocene epoch—a dark time predating any
version of Firefox, Safari, or Opera, and version 5 or greater of Internet Explorer.

function getData(url, callback) {
 if (createXHR !== null) {
 }
}

Now we need to do four things. First, create an XMLHttpRequest object. Just call createXHR(),
saving the return value to a local variable named req:

function getData(url, callback) {
 if (createXHR !== null) {
 var req = createXHR();

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 10 ■ SCRIPTING BOM

427

 }
}

Second, define a readystatechange event listener for JavaScript to call whenever the number in
XMLHttpRequest.readyState changes from 0 to 1 to 2 to 3 and finally to 4. More what those numbers
mean in a bit.

Our readystatechange event listener will do nothing, which is to say simply return undefined,
whenever readyState changes to 1, 2, or 3. But when it changes to 4, which indicates the GET request is
done, we’ll pass the XMLHttpRequest object to the callback function. Note that 4 means the GET
request is done but not that we have the data in url. For example, if we mistyped url, the server returns a
404 “File not found” HTTP status code. But that’s for the callback function to worry about. Our
readystatechange event listener looks like so:

function getData(url, callback) {
 if (createXHR !== null) {
 var req = createXHR();
 req.onreadystatechange = function() {
 if (req.readyState === 4) {
 callback(req);
 }
 }
 }
}

Note that unlike event listeners bound to nodes in the DOM tree, a readystatechange event listener
does not work with an event object. There’s no e parameter. Note too that we bind the listener to
XMLHttpRequest.onreadystatechange instead of doing so by calling our helper function addListener().
This is the DOM 0 way of binding events. Note that DOM 0, like BOM, is not a standard, which is why we
did not explore binding events this way in Chapter 9. Since you are a clean slate, I didn’t want to
encourage bad habits. However, for binding a readystatechange event cross-browser, we have to resign
ourselves to DOM 0. Just don’t be doing this for DOM tree events, or I’d be most unhappy.

The third thing we need to do is clue JavaScript in to the details of the GET request. To do so, we’ll
pass the XMLHttpRequest.open() method three parameters:

• The first one is a string for the type of HTTP request, typically GET or POST, to do.

• The second one is a string for the URL to request. Note that the URL is relative to
the page (ten.html in our case) making the request.

• The third parameter is a boolean indicating whether to do an asynchronous
request (true) or a synchronous request (false). More plainly, true means do not
freeze the browser until the HTTP request is done, and false means go right
ahead and freeze the browser. Note that the default is true.

function getData(url, callback) {
 if (createXHR !== null) {
 var req = createXHR();
 req.onreadystatechange = function() {
 if (req.readyState === 4) {
 callback(req);
 }
 }
 req.open("GET", url, true);
 }
}

CHAPTER 10 ■ SCRIPTING BOM

428

Calling open() prepares an HTTP request to be sent but doesn’t send it. So, there’s a fourth step to
do—call XMLHttpRequest.send(). This method takes one parameter: null for a GET request and a query
string like "sport=running&brand=Nike&shoe=LunaRacer" for a POST request. Note that for a synchronous
request, JavaScript blocks until send() returns. So, this is why asynchronous requests are preferred. We
don’t want to freeze the visitor’s browser, right?

Anyway, we’re done coding getData(), which looks like so:

function getData(url, callback) {
 if (createXHR !== null) {
 var req = createXHR();
 req.onreadystatechange = function() {
 if (req.readyState === 4) {
 callback(req);
 }
 }
 req.open("GET", url, true);
 req.send(null);
 }
}

Before moving on, let’s recap what the readyState numbers mean, since the details are now
comprehensible to you:

• 0 A new XMLHttpRequest object has been created by calling XMLHttpRequest()
or ActiveXObject(). Insofar as 0 is the initial value for readyState, the
readystatechange event listener is not invoked.

• 1 XMLHttpRequest.open() has been called.

• 2 XMLHttpRequest.send() has been called. For things to work cross-browser, you
need to bind the readystatechange event listener prior to calling open() and send().

• 3 HTTP response headers have been received and the body is beginning to load.
Note that if the XHR was created by passing "MSXML2.XMLHTTP.3.0",
"MSXML2.XMLHTTP", or "Microsoft.XMLHTTP" to ActiveXObject(), the
readystatechange event listener is not invoked.

• 4 The response is complete, so if the HTTP status code is 200 “OK” or 304 “Not
modified,” there’s data for the callback to add to the page.

Parsing an HTML Response
The first callback function will parse the HTML markup in data/s2.html, shown here. It contains the
slide :

<ul class="slide">

 <img alt="Nike Lunar Glide, Boston" src="images/glide_bos.jpg"
/>
 <img alt="Nike Lunar Glide, NYC" src="images/glide_nyc.jpg"
/>

 <img alt="Nike Lunar Fly, Orange" src="images/fly_org.jpg"
/>

CHAPTER 10 ■ SCRIPTING BOM

429

However, we receive this as a string:

"<ul class="slide">

 <img alt="Nike Lunar Glide, Boston" src="images/glide_bos.jpg"
/>
 <img alt="Nike Lunar Glide, NYC" src="images/glide_nyc.jpg"
/>

 <img alt="Nike Lunar Fly, Orange" src="images/fly_org.jpg"
/>

"

So, we’re going to have to write a function to search through the string and create the , ,
<a>, and Element nodes before we can place them on the page, making sure of course to get the
nesting right.

Because this is the final chapter in the book, you probably can roll a helper function to do the job by
yourself. So I’ll leave that, as they say, as an exercise for the reader.

Just kidding. You’d likely gnaw off a finger or two in frustration trying to code that.
It’d be pretty dull to explain, too. Turns out, I won’t have to.
Internet Explorer 4 gave every Element node a proprietary innerHTML member. If you assign a string

to innerHTML, JavaScript parses it into HTML and then replaces all descendents of the Element node with
that DOM branch. That may be draconian, but it’s practical, too. It’s so much so that Firefox, Safari, and
Opera have always implemented innerHTML, even though it’s not part of any DOM standard.

Anyway, innerHTML is totally perfect for parsing an HTML response, quietly converting it from a
string value to a branch of the DOM tree. I guess we’ll use it then.

Here’s how: XMLHttpRequest.responseText contains the string equivalent of the HTML in
data/s2.html. parseHTML() will assign that to innerHTML for <div class="wrapper">. However, we’re
going to need to create that and the other elements of the scroller first with our helper function,
createElem()—but only if we received data/s2.html all right from the server or browser cache. To make
sure of that we test whether XMLHttpRequest.status is 200 (received data/s2.html from the server) or 304
(received data/s2.html from the cache).

With all those details spilling out of mind, let’s begin coding parseHTML() like so. Note that the req
parameter will contain the XMLHttpRequest object passed in by getData() when
XMLHttpRequest.readyState changes to 4:

function parseHTML(req) {
 if (req.status === 200 || req.status === 304) {
 }
}

Note that if you are testing this script on your computer, which is to say loading URLs with the
file:// protocol, there obviously will not be an http:// status code. So, XMLHttpRequest.status will
always be 0, no matter what. With this in mind, if you are testing the script on your computer, you must
replace 200 or 304 with 0. Otherwise, the if block will never run!

file://protocol
http://status

CHAPTER 10 ■ SCRIPTING BOM

430

function parseHTML(req) {
 if (req.status === 0 || req.status === 304) {
 }
}

Within the block of the if conditional, we then want to create the HTML for the scroller, less <ul
class="slide">, by calling createElem() like so.

function parseHTML(req) {
 if (req.status === 200 || req.status === 304) {
 var div = createElem("div", {className: "scroller", id: "s2"}, [
 createElem("div", {className: "wrapper"}),
 createElem("div", {className: "left arrow sprite"}),

 createElem("div", {className: "right arrow sprite"})]);

 }
}

Doing so creates the following DOM branch in memory:

<div class="scroller" id="s2">
 <div class="wrapper">
 </div>
 <div class="left arrow sprite"></div>
 <div class="right arrow sprite"></div>
</div>

Now we want to parse the string of text in XMLHttpRequest.responseText into HTML. Then attach
that branch to the DOM tree limb, <div class="wrapper">, which we refer to as div.firstChild. One
simple assignment to innerHTML does that all in one fell swoop:

function parseHTML(req) {
 if (req.status === 200 || req.status === 304) {
 var div = createElem("div", {className: "scroller", id: "s2"}, [
 createElem("div", {className: "wrapper"}),
 createElem("div", {className: "left arrow sprite"}),
 createElem("div", {className: "right arrow sprite"})]);
 div.firstChild.innerHTML = req.responseText;
 }
}

I’ve given Internet Explorer some grief in this book. Deservedly so, too. However, innerHTML is a
good idea. I wish it were added to the DOM standard.

Enough with the compliments. The local variable <div> now contains the following HTML:

<div class="scroller" id="s2">
 <div class="wrapper">
 <ul class="slide">

 <img alt="Nike Lunar Glide, Boston" src="images/glide_bos.jpg"
/>
 <img alt="Nike Lunar Glide, NYC" src="images/glide_nyc.jpg"
/>

 <img alt="Nike Lunar Fly, Orange" src="images/fly_org.jpg"
/>

CHAPTER 10 ■ SCRIPTING BOM

431

 <img alt="Nike Lunar Fly, Black" src="images/fly_blk.jpg"
/>

 </div>
 <div class="left arrow sprite"></div>
 <div class="right arrow sprite"></div>
</div>

The only problem is it’s floating around in memory, totally invisible to visitors. So, we want to insert
it into the DOM tree with appendChild(), a method we covered in Chapter 7:

function parseHTML(req) {
 if (req.status === 200 || req.status === 304) {
 var div = createElem("div", {className: "scroller", id: "s2"}, [
 createElem("div", {className: "wrapper"}),
 createElem("div", {className: "left arrow sprite"}),
 createElem("div", {className: "right arrow sprite"})]);
 div.firstChild.innerHTML = req.responseText;
 document.body.appendChild(div);
 }
}

Regardless of the HTTP status code for our GET request for data/s2.html, we want to call a function
named prep(), which will replace the function literal we currently have for the load event. That way, if
we get an undesirable status code, say a 404 “Not found” for mistyping the URL, prep() will still run,
adding the drag and drop, sprite, and other behaviors elements on our page.

function parseHTML(req) {
 if (req.status === 200 || req.status === 304) {
 var div = createElem("div", {className: "scroller", id: "s2"}, [
 createElem("div", {className: "wrapper"}),
 createElem("div", {className: "left arrow sprite"}),
 createElem("div", {className: "right arrow sprite"})]);
 div.firstChild.innerHTML = req.responseText;
 document.body.appendChild(div);
 }
 prep();
}

Underneath parseHTML(), define a function named prep(). In its body, call prepSprites(),
prepDrag(), prepSkinKeys(), and prepScrollers(). Finally, in the body of the load event listener, which
now contains just a call to presetSkin(), append a call to getData() to fetch data/s2.html. Our script
now ends like so:

function prep() {
 prepSprites();
 prepDrag();
 prepSkinKeys();
 prepScrollers();
}
addListener(window, "load", function(e) {
 presetSkin();
 getData("data/s2.html", parseHTML);

CHAPTER 10 ■ SCRIPTING BOM

432

 });

Why bother making those changes? Wouldn’t adding a call to getData() to the old load event
listener, say like in the following code, work just as well?

addListener(window, "load", function(e) {
 presetSkin();
 getData("data/s2.html", parseHTML);
 prepSprites();
 prepDrag();
 prepSkinKeys();
 prepScrollers();
 });

Well no, it wouldn’t. Because we requested data/s2.html asynchronously, JavaScript does not block
until data/s2.html has loaded. That is to say, prepSprites() and prepScrollers() would very likely run
before parseHTML() added the new scroller to the page. Therefore, pressing on the arrows for the new
scroller would do nothing whatsoever.

That would be bad, so let’s add the prep() function, save ten.js, and reload ten.html in Firefox. Put
the new scroller through the wringer, verifying you work with Figure 10–3.

Figure 10–3. Testing the HTML scroller

Parsing an XML Response
For the first few years, XML was the preferred data exchange format for Ajax. Although JSON (which we
will cover in a bit) has overtaken XML in popularity, you will likely need to work with XML for years to
come.

With this in mind, let’s write a function named parseXML() to parse the contents of the XML file,
data/s3.xml, code for which appears in this section. This is the data from the original ten.html, marked
up as data:

<?xml version="1.0" encoding="utf-8"?>
<gallery>

CHAPTER 10 ■ SCRIPTING BOM

433

 <shoe>
 <href>ten.html</href>
 <src>images/lunaracer.jpg</src>
 <alt>Nike LunaRacer</alt>
 </shoe>
 <shoe>
 <href>ten.html</href>
 <src>images/glide_bos.jpg</src>
 <alt>Nike Lunar Glide, Boston</alt>
 </shoe>
 <shoe>
 <href>ten.html</href>
 <src>images/glide_nyc.jpg</src>
 <alt>Nike Lunar Gllide, NYC</alt>
 </shoe>
 <shoe>
 <href>ten.html</href>
 <src>images/mariah.jpg</src>
 <alt>Nike Mariah</alt>
 </shoe>
 <shoe>
 <href>ten.html</href>
 <src>images/fly_org.jpg</src>
 <alt>Nike Lunar Fly, Orange</alt>
 </shoe>
 <shoe>
 <href>ten.html</href>
 <src>images/fly_blk.jpg</src>
 <alt>Nike Lunar Fly, Black</alt>
 </shoe>
 <shoe>
 <href>ten.html</href>
 <src>images/elite.jpg</src>
 <alt>Nike Lunar Elite</alt>
 </shoe>
 <shoe>
 <href>ten.html</href>
 <src>images/vomero.jpg</src>
 <alt>Nike Zoom Vomero</alt>
 </shoe>
 <shoe>
 <href>ten.html</href>
 <src>images/max.jpg</src>
 <alt>Nike Air Max</alt>
 </shoe>
</gallery>

We’ll use this data in a second scroller below the one we created in the previous example. The first
thing we need to do is move the prep() invocation from parseHTML() to parseXML(), replacing it with a
call to getData() for data/s3.xml. Doing so ensures the two new scrollers are in the DOM tree prior to
JavaScript running prepSprites() and prepScrollers().

function parseHTML(req) {
 if (req.status === 200 || req.status === 304) {

CHAPTER 10 ■ SCRIPTING BOM

434

 var div = createElem("div", {className: "scroller", id: "s2"}, [
 createElem("div", {className: "wrapper"}),
 createElem("div", {className: "left arrow sprite"}),
 createElem("div", {className: "right arrow sprite"})]);
 div.firstChild.innerHTML = req.responseText;
 document.body.appendChild(div);
 }
 getData("data/s3.xml", parseXML);
}
function parseXML(req) {
 prep();
}

An XML response differs from an HTML one in that it is a Document node containing Element and
Text nodes rather than a string of plain text. So you query XML data the same way as a DOM tree. Yup,
with the methods we covered in Chapter 7.

So as you might guess, the DOM tree representing data/s3.xml isn’t in
XMLHttpRequest.responseText. That value is a string not an object. Rather, the DOM tree for our XML is
in XMLHttpRequest.responseXML. So after we make sure XMLHttpRequest.status is either 200 or 304, same
as we did for HTML, we’ll save the DOM tree for our XML to a local variable named domTree.

function parseXML(req) {
 if (req.status === 200 || req.status === 304) {
 var domTree = req.responseXML;
 }
 prep();
}

Note that if you are testing this script on your computer, which is to say loading URLs with the
file:// protocol, there obviously will not be an http:// status code. So XMLHttpRequest.status will
always be 0, no matter what. With this in mind, if you are testing the script on your computer, you must
replace 200 or 304 with 0. Otherwise, the if block will never run!

function parseXML(req) {
 if (req.status === 0 || req.status === 304) {
 var domTree = req.responseXML;
 }
 prep();
}

Now we want to save the nine <shoe> Element nodes to a local variable named elements. Fetch
those as if they were <div> or elements—with Document.getElementsByTagName(), which we covered
in Chapter 7:

function parseXML(req) {
 if (req.status === 200 || req.status === 304) {
 var domTree = req.responseXML;
 var elements = domTree.getElementsByTagName("shoe");
 }
 prep();
}

Now for any of those <shoe> elements, we can query the Text node in a child <href> like so:

elements[i].getElementsByTagName("href")[0].firstChild.data

file://protocol
http://status

CHAPTER 10 ■ SCRIPTING BOM

435

Same thing works for a child <src> or <alt>:

elements[i].getElementsByTagName("src")[0].firstChild.data
elements[i].getElementsByTagName("alt")[0].firstChild.data

With this in mind, we can cobble together a scroller with our helper function, createElem(), like so:

function parseXML(req) {
 if (req.status === 200 || req.status === 304) {
 var domTree = req.responseXML;
 var elements = domTree.getElementsByTagName("shoe");
 var div, ul = createElem("ul", {className: "slide"}), li;
 for (var i = 0, j = elements.length; i < j; i ++) {
 li = createElem("li", null, [
 createElem("a", {href: elements[i].getElementsByTagName("href")[0].firstChild.data}, [
 createElem("img", {src: elements[i].getElementsByTagName("src")[0].firstChild.data,
 alt: elements[i].getElementsByTagName("alt")[0].firstChild.data})])]);
 ul.appendChild(li);
 }
 div = createElem("div", {className: "scroller", id: "s3"}, [
 createElem("div", {className: "wrapper"}, [ul]),
 createElem("div", {className: "left arrow sprite"}),
 createElem("div", {className: "right arrow sprite"})]);
 }
 prep();
}

Now the local variable <div> contains the following DOM branch:

<div class="scroller" id="s3">
 <div class="wrapper">
 <ul class="slide">

 <img alt="Nike Lunar Glide, Boston" src="images/glide_bos.jpg"
/>
 <img alt="Nike Lunar Glide, NYC" src="images/glide_nyc.jpg"
/>

 <img alt="Nike Lunar Fly, Orange" src="images/fly_org.jpg"
/>
 <img alt="Nike Lunar Fly, Black" src="images/fly_blk.jpg"
/>

 </div>
 <div class="left arrow sprite"></div>
 <div class="right arrow sprite"></div>
</div>

But it’s floating around in memory invisible to visitors. So, we need attach the DOM branch to the
tree, the same way we did in parseHTML():

function parseXML(req) {

CHAPTER 10 ■ SCRIPTING BOM

436

 if (req.status === 200 || req.status === 304) {
 var domTree = req.responseXML;
 var elements = domTree.getElementsByTagName("shoe");
 var div, ul = createElem("ul", {className: "slide"}), li;
 for (var i = 0, j = elements.length; i < j; i ++) {
 li = createElem("li", null, [
 createElem("a", {href: elements[i].getElementsByTagName("href")[0].firstChild.data}, [
 createElem("img", {src: elements[i].getElementsByTagName("src")[0].firstChild.data,
 alt: elements[i].getElementsByTagName("alt")[0].firstChild.data})])]);
 ul.appendChild(li);
 }
 div = createElem("div", {className: "scroller", id: "s3"}, [
 createElem("div", {className: "wrapper"}, [ul]),
 createElem("div", {className: "left arrow sprite"}),
 createElem("div", {className: "right arrow sprite"})]);
 document.body.appendChild(div);
 }
 prep();
}

Okeydokey, save ten.js, and reload ten.html in Firefox, comparing its display to Figure 10–4:

Figure 10–4. Testing the XML scroller

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 10 ■ SCRIPTING BOM

437

Parsing Simple XML
Like HTML, XML is fairly bloated. That is to say, the ratio of data to structure (tags) is quite low. For this
reason, encoding data in XML tag attributes has gained favor over doing so with child nodes. Take a peek
at the XML file data/s4.xml to see what I mean by that. Compare its code, displayed here, to that of
data/s3.xml. We’ll put this into a third scroller.

<?xml version="1.0" encoding="utf-8"?>
<gallery>
 <shoe href="ten.html" src ="images/lunaracer.jpg" alt="Nike LunaRacer"></shoe>
 <shoe href="ten.html" src ="images/glide_bos.jpg" alt="Nike Lunar Glide, Boston"></shoe>
 <shoe href="ten.html" src ="images/glide_nyc.jpg" alt="Nike Lunar Glide, NYC"></shoe>
 <shoe href="ten.html" src ="images/mariah.jpg" alt="Nike Mariah"></shoe>
 <shoe href="ten.html" src ="images/fly_org.jpg" alt="Nike Lunar Fly, Orange"></shoe>
 <shoe href="ten.html" src ="images/fly_blk.jpg" alt="Nike Lunar Fly, Black"></shoe>
 <shoe href="ten.html" src ="images/elite.jpg" alt="Nike Lunar Elite"></shoe>
 <shoe href="ten.html" src ="images/vomero.jpg" alt="Nike Zoom Vomero"></shoe>
 <shoe href="ten.html" src ="images/max.jpg" alt="Nike Air Max"></shoe>
</gallery>

Because XML encoded this way is referred to as Simple XML, let’s name the function that will parse
data/s4.xml, parseSimpleXML(). Like before, the first thing we want to do is move the prep() invocation
from parseXML() to parseSimpleXML(), replacing it with a call to getData() for data/s4.xml. You know, so
that the three new scrollers are in the DOM tree prior to JavaScript running prepSprites() and
prepScrollers():

function parseXML(req) {
 if (req.status === 200 || req.status === 304) {
 var domTree = req.responseXML;
 var elements = domTree.getElementsByTagName("shoe");
 var div, ul = createElem("ul", {className: "slide"}), li;
 for (var i = 0, j = elements.length; i < j; i ++) {
 li = createElem("li", null, [
 createElem("a", {href: elements[i].getElementsByTagName("href")[0].firstChild.data}, [
 createElem("img", {src: elements[i].getElementsByTagName("src")[0].firstChild.data,
 alt: elements[i].getElementsByTagName("alt")[0].firstChild.data})])]);
 ul.appendChild(li);
 }
 div = createElem("div", {className: "scroller", id: "s3"}, [
 createElem("div", {className: "wrapper"}, [ul]),
 createElem("div", {className: "left arrow sprite"}),
 createElem("div", {className: "right arrow sprite"})]);
 document.body.appendChild(div);
 }

 getData("data/s4.xml", parseSimpleXML);

}
function parseSimpleXML(req) {
 prep();
}

Now what would you do next in parseSimpleXML()?
Make sure XMLHttpRequest.status is either 200 or 304, the same as we did for parseHTML() and

parseXML().

CHAPTER 10 ■ SCRIPTING BOM

438

function parseSimpleXML(req) {
 if (req.status === 200 || req.status === 304) {
 }
 prep();
}

Next?
Right again. Save the DOM tree for our XML to a local variable named domTree, just like we did in

parseXML().

function parseSimpleXML(req) {
 if (req.status === 200 || req.status === 304) {
 var domTree = req.responseXML;
 }
 prep();
}

And now?
Yup, save the nine <shoe> elements to a local variable, the same as for parseXML().

function parseSimpleXML(req) {
 if (req.status === 200 || req.status === 304) {
 var domTree = req.responseXML;
 var elements = domTree.getElementsByTagName("shoe");
 }
 prep();
}

Note that if you are testing this script on your computer, which is to say loading URLs with the
file:// protocol, there obviously will not be an http:// status code. XMLHttpRequest.status will always
be 0, no matter what. With this in mind, if you are testing the script on your computer, you must replace
200 or 304 with 0. Otherwise, the if block will never run!

function parseSimpleXML(req) {
 if (req.status === 0 || req.status === 304) {
 var domTree = req.responseXML;
 var elements = domTree.getElementsByTagName("shoe");
 }
 prep();
}

Do you remember how to query a custom attribute for an element?
We can’t use the . or [] operators. Rather, we need to call Element.getAttribute(), a method

defined by each <shoe> element. For example, to query the href attribute, we’d write this:

elements[i].getAttribute("href")

The same thing goes for the src and alt attributes:

elements[i].getAttribute("src")
elements[i].getAttribute("alt")

Even that is less verbose than for traditional XML. Anyway, with this in mind, we can cobble
together a scroller with our helper function, createElem(), like so:

function parseSimpleXML(req) {
 if (req.status === 200 || req.status === 304) {
 var domTree = req.responseXML;

file://protocol
http://status

CHAPTER 10 ■ SCRIPTING BOM

439

 var elements = domTree.getElementsByTagName("shoe");
 var div, ul = createElem("ul", {className: "slide"}), li;
 for (var i = 0, j = elements.length; i < j; i ++) {
 li = createElem("li", null, [
 createElem("a", {href: elements[i].getAttribute("href")}, [
 createElem("img", {src: elements[i].getAttribute("src"), alt:
elements[i].getAttribute("alt")})])]);
 ul.appendChild(li);
 }

 div = createElem("div", {className: "scroller", id: "s4"}, [

 createElem("div", {className: "wrapper"}, [ul]),
 createElem("div", {className: "left arrow sprite"}),
 createElem("div", {className: "right arrow sprite"})]);
 }
 prep();
}

Now the local variable <div> contains the following DOM branch:

<div class="scroller" id="s4">
 <div class="wrapper">
 <ul class="slide">

 <img alt="Nike Lunar Glide, Boston" src="images/glide_bos.jpg"
/>
 <img alt="Nike Lunar Glide, NYC" src="images/glide_nyc.jpg"
/>

 <img alt="Nike Lunar Fly, Orange" src="images/fly_org.jpg"
/>
 <img alt="Nike Lunar Fly, Black" src="images/fly_blk.jpg"
/>

 </div>
 <div class="left arrow sprite"></div>
 <div class="right arrow sprite"></div>
</div>

But it’s in memory, invisible to visitors. How would you fix that?
Yep, put the DOM branch on the tree:

function parseSimpleXML(req) {
 if (req.status === 200 || req.status === 304) {
 var domTree = req.responseXML;
 var elements = domTree.getElementsByTagName("shoe");
 var div, ul = createElem("ul", {className: "slide"}), li;
 for (var i = 0, j = elements.length; i < j; i ++) {
 li = createElem("li", null, [

CHAPTER 10 ■ SCRIPTING BOM

440

 createElem("a", {href: elements[i].getAttribute("href")}, [
 createElem("img", {src: elements[i].getAttribute("src"), alt:
elements[i].getAttribute("alt")})])]);
 ul.appendChild(li);
 }
 div = createElem("div", {className: "scroller", id: "s4"}, [
 createElem("div", {className: "wrapper"}, [ul]),
 createElem("div", {className: "left arrow sprite"}),
 createElem("div", {className: "right arrow sprite"})]);
 document.body.appendChild(div);
 }
 prep();
}

It’s time to give parseSimpleXML() a whirl. So, save ten.js and reload ten.html in Firefox, comparing
its display to Figure 10–5:

Figure 10–5. Testing the Simple XML scroller

CHAPTER 10 ■ SCRIPTING BOM

441

Parsing JSON
More and more, XML is being supplanted by JSON, a data exchange format derived from JavaScript
object and array literal syntax. JSON downloads snappy and is simple to parse. Just pass JSON data to
window.eval(), and you have a JavaScript array or object. However, passing third-party JSON data, which
may be malformed or malicious, to eval() is a horrible idea.

■ Caution The eval() method is a powerful and dangerous tool. You should not pass any third-party data to it,
because that third-party data could well contain malicious code for your users’ browsers to run. This could lead to

all sorts of attacks and discomforts.

For this reason, Internet Explorer 8, Firefox 3.5, and Safari 4 define a method, JSON.parse(), for you
to use instead of eval(). For other versions and browsers, download the free JSON parser maintained by
Douglas Crockford, JSON’s creator, from http://json.org/json2.js. Delete the first line:

alert('IMPORTANT: Remove this line from json2.js before deployment.');

Save the file as json2.js to the same directory as your other JavaScript files. Then link it in to your
XHTML page. json2.js will define window.JSON only if it is missing. So for ten.html, we would link in
json2.js like so:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Getting StartED with JavaScript</title>
<link rel="stylesheet" type="text/css" href="ten.css" />
<link rel="stylesheet" type="text/css" href="blue.css" id="skin" />
</head>
<body>
<div id="running">
 <h4 class="drag">Running</h4>

 adidas
 ASICS
 Brooks
 New
Balance
 Nike
 Saucony

</div>
<script src="ten.js" type="text/javascript"></script>

<script src="json2.js" type="text/javascript"></script>

</body>
</html>

http://json.org/json2.js
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://www.adidas.com
http://www.asics.com
http://www.brooksrunning.com
http://www.newbalance.com
http://www.nike.com
http://www.saucony.com

CHAPTER 10 ■ SCRIPTING BOM

442

Note that http://json.org/json2.js is the very same JSON parser that Internet Explorer 8, Firefox
3.5, Safari 4, and Opera 10.5 natively define. The only difference is that the native version is compiled
rather than interpreted. So, it runs faster.

JSON in a Nutshell
Okeydokey, JSON differs from JavaScript object and array literals in a few ways. First, JSON object
members may only be named with strings. So no identifiers. Second, JSON does not permit values to be
functions or undefined. That is to say, a JSON value may be a string, number, boolean, null, object literal,
or array literal.

Pretty simple, don’t you think?
We’re going to be doing exactly the same as we did in the previous examples, except we’re using

JSON to pass the data, rather than HTML or XML. We’ll add another scroller to the page, using the JSON
data. To encode data for a scroller with JSON, we would write the following, which is what data/s5.js
contains:

[
 {
 "href": "ten.html",
 "src": "images/lunaracer.jpg",
 "alt": "Nike LunaRacer"
 },
 {
 "href": "ten.html",
 "src": "images/glide_bos.jpg",
 "alt": "Nike Lunar Glide, Boston"
 },
 {
 "href": "ten.html",
 "src": "images/glide_nyc.jpg",
 "alt": "Nike Lunar Glide, NYC"
 },
 {
 "href": "ten.html",
 "src": "images/mariah.jpg",
 "alt": "Nike Mariah"
 },
 {
 "href": "ten.html",
 "src": "images/fly_org.jpg",
 "alt": "Nike Lunar Fly, Orange"
 },
 {
 "href": "ten.html",
 "src": "images/fly_blk.jpg",
 "alt": "Nike Lunar Fly, Black"
 },
 {
 "href": "ten.html",
 "src": "images/elite.jpg",
 "alt": "Nike Lunar Elite"
 },
 {

http://json.org/json2.js

CHAPTER 10 ■ SCRIPTING BOM

443

 "href": "ten.html",
 "src": "images/vomero.jpg",
 "alt": "Nike Zoom Vomero"
 },
 {
 "href": "ten.html",
 "src": "images/max.jpg",
 "alt": "Nike Air Max"
 }
]

With JSON data and parser in hand, let’s create a new scroller. The function to do so will, oddly
enough, be named parseJSON(). But before I forget, relocate prep() and have getData() go GET the JSON
data. Hmm. I’ve seen this fish before!

function parseSimpleXML(req) {
 if (req.status === 200 || req.status === 304) {
 var domTree = req.responseXML;
 var elements = domTree.getElementsByTagName("shoe");
 var div, ul = createElem("ul", {className: "slide"}), li;
 for (var i = 0, j = elements.length; i < j; i ++) {
 li = createElem("li", null, [
 createElem("a", {href: elements[i].getAttribute("href")}, [
 createElem("img", {src: elements[i].getAttribute("src"), alt:
elements[i].getAttribute("alt")})])]);
 ul.appendChild(li);
 }
 div = createElem("div", {className: "scroller", id: "s4"}, [
 createElem("div", {className: "wrapper"}, [ul]),
 createElem("div", {className: "left arrow sprite"}),
 createElem("div", {className: "right arrow sprite"})]);
 document.body.appendChild(div);
 }
 getData("data/s5.js", parseJSON);
}
function parseJSON(req) {
 prep();
}

Now then, eval() and JSON.parse() work with a string. Moreover, an XMLHttpRequest has but two
hiding places for data, XMLHttpRequest.responseText or XMLHttpRequest.responseXML.

So, where would our JSON data be?
Right, XMLHttpRequest.responseText. I’d have fallen into despair had you missed that one.
After making sure the HTTP request did not fail, create a local variable named data containing the

return value of passing XMLHttpRequest.responseText to JSON.parse(). Remember, that’ll be a compiled
or interpreted version of Crockford’s JSON parser. So no worries; this works perfectly cross-browser.

function parseJSON(req) {
 if (req.status === 200 || req.status === 304) {

 var data = JSON.parse(req.responseText);

 }
 prep();
}

CHAPTER 10 ■ SCRIPTING BOM

444

Note that if you are testing this script on your computer, which is to say loading URLs with the
file:// protocol, there obviously will not be an http:// status code. XMLHttpRequest.status will always
be 0, no matter what. With this in mind, if you are testing the script on your computer, you must replace
200 or 304 with 0. Otherwise, the if block will never run!

function parseJSON(req) {
 if (req.status === 0 || req.status === 304) {
 var data = JSON.parse(req.responseText);
 }
 prep();
}

The local variable data now contains an array of objects, just like if we had written this:

function parseJSON(req) {
 if (req.status === 200 || req.status === 304) {
 var data = [
 {
 "href": "ten.html",
 "src": "images/lunaracer.jpg",
 "alt": "Nike LunaRacer"
 },
 {
 "href": "ten.html",
 "src": "images/glide_bos.jpg",
 "alt": "Nike Lunar Glide, Boston"
 },
 {
 "href": "ten.html",
 "src": "images/glide_nyc.jpg",
 "alt": "Nike Lunar Glide, NYC"
 },
 {
 "href": "ten.html",
 "src": "images/mariah.jpg",
 "alt": "Nike Mariah"
 },
 {
 "href": "ten.html",
 "src": "images/fly_org.jpg",
 "alt": "Nike Lunar Fly, Orange"
 },
 {
 "href": "ten.html",
 "src": "images/fly_blk.jpg",
 "alt": "Nike Lunar Fly, Black"
 },
 {
 "href": "ten.html",
 "src": "images/elite.jpg",
 "alt": "Nike Lunar Elite"
 },
 {
 "href": "ten.html",
 "src": "images/vomero.jpg",

file://protocol
http://status

CHAPTER 10 ■ SCRIPTING BOM

445

 "alt": "Nike Zoom Vomero"
 },
 {
 "href": "ten.html",
 "src": "images/max.jpg",
 "alt": "Nike Air Max"
 }
];
 }
 prep();
}

To query say the src member of the third element in data, we would write one of the following:

data[2].src
data[2]["src"]

Those would both return the string, images/glide_nyc.jpg. Remember from Chapter 5 you may
query a member named with a string with an identifier so long as the string, src in our case, is a valid
identifier.

With this in mind, we can create a new scroller from our JSON data and createElem() helper
function like so:

function parseJSON(req) {
 if (req.status === 200 || req.status === 304) {
 var data = JSON.parse(req.responseText);

 var div, ul = createElem("ul", {className: "slide"}), li;

 for (var i = 0, j = data.length; i < j; i ++) {
 li = createElem("li", null, [
 createElem("a", {href: data[i].href}, [
 createElem("img", {src: data[i].src, alt: data[i].alt})])]);
 ul.appendChild(li);
 }
 div = createElem("div", {className: "scroller", id: "s5"}, [
 createElem("div", {className: "wrapper"}, [ul]),
 createElem("div", {className: "left arrow sprite"}),

 createElem("div", {className: "right arrow sprite"})]);

 }
 prep();
}

Then add the DOM branch to the tree. Note that displaying our new scroller to the visitor is a UI
update. Just like rendering the down image for a sprite. Remember that if the UI thread is running
JavaScript at the time, those have to take a number and wait in the UI queue. I’m just trying to reinforce
why it’s vital to write JavaScript that runs snappy. UI rigor mortis is unpleasant for the visitor.

function parseJSON(req) {
 if (req.status === 200 || req.status === 304) {
 var data = JSON.parse(req.responseText);
 var div, ul = createElem("ul", {className: "slide"}), li;
 for (var i = 0, j = data.length; i < j; i ++) {
 li = createElem("li", null, [

CHAPTER 10 ■ SCRIPTING BOM

446

 createElem("a", {href: data[i].href}, [
 createElem("img", {src: data[i].src, alt: data[i].alt})])]);
 ul.appendChild(li);
 }
 div = createElem("div", {className: "scroller", id: "s5"}, [
 createElem("div", {className: "wrapper"}, [ul]),
 createElem("div", {className: "left arrow sprite"}),
 createElem("div", {className: "right arrow sprite"})]);
 document.body.appendChild(div);
 }
 prep();
}

Now let’s throw parseJSON() into the pool and see whether it sinks or swims; save ten.js and reload
ten.html in Firefox, comparing its display to Figure 10–6.

Figure 10–6. Testing the JSON scroller

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 10 ■ SCRIPTING BOM

447

Padding JSON
Since JSON is valid JavaScript, you do not need an XMLHttpRequest object to retrieve JSON data. This is
referred to as JSON-P, JSON with Padding.

JSON-P works like this:

• The JSON data created by a PHP or some other server-side script is wrapped in a
callback function. So in data/s6.js, displayed next, the JSON array from the
previous gallery is wrapped in a callback function named padJSON(), which we’ll
define in a bit.

• A <script> element with an src set to the URL of the JSON-P file is dynamically
inserted into the page, into ten.html in our case. Note that for cross-browser
compatibility, the <script> has to go into the <head>, not the <body>. The browser
then executes the JSON-P data file like any other JavaScript file. So, the JSON array
gets passed to the callback function it is wrapped in.

padJSON([
 {
 "href": "ten.html",
 "src": "images/lunaracer.jpg",
 "alt": "Nike LunaRacer"
 },
 {
 "href": "ten.html",
 "src": "images/glide_bos.jpg",
 "alt": "Nike Lunar Glide, Boston"
 },
 {
 "href": "ten.html",
 "src": "images/glide_nyc.jpg",
 "alt": "Nike Lunar Glide, NYC"
 },
 {
 "href": "ten.html",
 "src": "images/mariah.jpg",
 "alt": "Nike Mariah"
 },
 {
 "href": "ten.html",
 "src": "images/fly_org.jpg",
 "alt": "Nike Lunar Fly, Orange"
 },
 {
 "href": "ten.html",
 "src": "images/fly_blk.jpg",
 "alt": "Nike Lunar Fly, Black"
 },
 {
 "href": "ten.html",
 "src": "images/elite.jpg",
 "alt": "Nike Lunar Elite"
 },

CHAPTER 10 ■ SCRIPTING BOM

448

 {
 "href": "ten.html",
 "src": "images/vomero.jpg",
 "alt": "Nike Zoom Vomero"
 },
 {
 "href": "ten.html",
 "src": "images/max.jpg",
 "alt": "Nike Air Max"
 }
]);

Let’s define a function named parseJSONP. Insofar as we’re not making an parseJSONP request, let’s
name the parameter data, not req. As we’ve done several times before, move prep() from parseJSON() to
parseJSONP(). However, rather than call getData() for data/s6.js, simply call parseJSONP() instead.
Remember, we’re bypassing XMLHttpRequest entirely.

function parseJSON(req) {
 if (req.status === 200 || req.status === 304) {
 var data = JSON.parse(req.responseText);
 var div, ul = createElem("ul", {className: "slide"}), li;
 for (var i = 0, j = data.length; i < j; i ++) {
 li = createElem("li", null, [
 createElem("a", {href: data[i].href}, [
 createElem("img", {src: data[i].src, alt: data[i].alt})])]);
 ul.appendChild(li);
 }
 div = createElem("div", {className: "scroller", id: "s5"}, [
 createElem("div", {className: "wrapper"}, [ul]),
 createElem("div", {className: "left arrow sprite"}),
 createElem("div", {className: "right arrow sprite"})]);
 document.body.appendChild(div);
 }

 parseJSONP();

}

function parseJSONP(data) {
 prep();
}

Now when parseJSON() calls parseJSONP(), data will be undefined. In that event, we want to define
padJSON(), the JSON-P callback function. But it has to be global so that it is callable from data/s6.js.
Remember, none of the functions in ten.js is global. They’re all saved to the call object of the self-
invoking function wrapping the script.

So by way of a closure, we’ll make parseJSONP() callable from the global scope like so. Remember
from Chapter 6 that arguments.callee refers to the function that is running parseJSONP().

function parseJSONP(data) {

 if (typeof data === "undefined") {
 var f = arguments.callee;
 window.padJSON = function(d) {
 f(d);
 };

CHAPTER 10 ■ SCRIPTING BOM

449

 }

 prep();
}

Now we’ll dynamically insert a <script> with an src of data/s6.js, the URL of our JSON-P file. Then
return to terminate parseJSONP(). This is when the <script> element is added to the DOM tree. Our
JSON array then gets passed to padJSON(), which in turn passes it on to parseJSONP(). The second time
parseJSONP() is called, data contains the JSON array not undefined. But a JSON array is a valid JavaScript
array, too. So, we can create a new scroller from data just like we did in parseJSON():

function parseJSONP(data) {
 if (typeof data === "undefined") {
 var f = arguments.callee;
 window.padJSON = function(d) {
 f(d);
 };

 var script = document.createElement("script");
 script.src = "data/s6.js";
 document.getElementsByTagName("head")[0].appendChild(script);
 return;
 }
 var div, ul = createElem("ul", {className: "slide"}), li;
 for (var i = 0, j = data.length; i < j; i ++) {
 li = createElem("li", null, [
 createElem("a", {href: data[i].href}, [
 createElem("img", {src: data[i].src, alt: data[i].alt})])]);
 ul.appendChild(li);
 }
 div = createElem("div", {className: "scroller", id: "s6"}, [
 createElem("div", {className: "wrapper"}, [ul]),
 createElem("div", {className: "left arrow sprite"}),
 createElem("div", {className: "right arrow sprite"})]);

 prep();
}

Finally, it’s time to put the branch on the DOM tree. You know what to do:

function parseJSONP(data) {
 if (typeof data === "undefined") {
 var f = arguments.callee;
 window.padJSON = function(d) {
 f(d);
 };
 var script = document.createElement("script");
 script.src = "data/s6.js";
 document.getElementsByTagName("head")[0].appendChild(script);
 return;
 }
 var div, ul = createElem("ul", {className: "slide"}), li;
 for (var i = 0, j = data.length; i < j; i ++) {
 li = createElem("li", null, [
 createElem("a", {href: data[i].href}, [

CHAPTER 10 ■ SCRIPTING BOM

450

 createElem("img", {src: data[i].src, alt: data[i].alt})])]);
 ul.appendChild(li);
 }
 div = createElem("div", {className: "scroller", id: "s6"}, [
 createElem("div", {className: "wrapper"}, [ul]),
 createElem("div", {className: "left arrow sprite"}),
 createElem("div", {className: "right arrow sprite"})]);

 document.body.appendChild(div);

 prep();
}

Now let’s test parseJSONP(); save ten.js, and reload ten.html in Firefox, comparing its display to
Figure 10–7.

Figure 10–7. Testing the JSON-P scroller

CHAPTER 10 ■ SCRIPTING BOM

451

Yielding with Timers
In addition to animations, one other use for timers is to yield control of the UI thread so that the browser
can update its display. Doing so prevents browser rigormortis.

At the moment, JavaScript blocks while prep() is running. So, until prepSprites(), prepDrag(),
prepSkinKeys(), and prepScrollers() have all returned, a visitor’s browser will be frozen.

To fix that, we’ll create an array named mojo containing those four functions. Then yield the UI
thread for 30 milliseconds, long enough for most UI updates, between each call:

function prep() {
 var mojo = [prepSprites, prepDrag, prepSkinKeys, prepScrollers];
 setTimeout(function() {
 (mojo.shift())();
 if (mojo.length !== 0) {
 setTimeout(arguments.callee, 30);
 }
 }, 30);
}

Converting function declarations to expressions
Other than the conditional advance loaders, the functions in our script are defined by way of
declarations rather than expressions. Doing so is helpful while initially coding a script insofar as you can
invoke declared functions prior to defining them. So you can be bit messy while you are trying to get
things working if you code your functions with declarations. Moreover, a debugger like Firebug can use a
declared function's nonstandard name member as an indicator to convey errors with.

However, function expressions are preferred over declarations insofar as function expressions
require you to use functions as values, which is the key to unlocking the power of JavaScript. Moreover,
function expressions require you to define a function prior to invoking it, which is good programming
practice. This is why we explored functions with expressions rather than declarations in Chapter 6.

With this in mind, let's now go through and recode our function declarations as expressions. Doing
so is fairly simple for the most part. Just declare a variable named with the identifier from the declaration
and then assign an unnamed function expression to it. The body of the expression is the identical to the
body of the declaration. So we're pretty much just moving the identifier. Finally, follow the } curly brace
at the end of the function body with a ; semicolon to end the var statement.

Except for the nested functions, we were careful not to invoke functions prior to their declaration.
So in addition to converting the nested function declarations to expressions, we will need to move them
higher in their parent function's body so that we are invoking a function rather than undefined.

Furthermore, let's rework our conditional advance loaders for createXHR() and findClass() with the
?: operator rather than with an if else statement. In this way, our script will contain 24 function
expressions followed by 1 invocation expression (of addListener()). Yup, pretty elegant.

ECMAScript 5 adds a strict mode that tells a JavaScript interpreter to throw errors if you try to use
deprecated features such as argument.callee. To trigger strict mode, simply put "use strict"; on the
very first line of a script. Internet Explorer 9, Firefox 4, and other ECMAScript 5 compliant browsers will
then parse our script in strict mode, while older browsers will simply ignore the string literal, which is
not saved to any variable. So let's insert "use strict"; on the very first line of our script.

Now for the final moment of truth. Save ten.js, and then reload ten.html in Firefox. Put all the
behaviors we coded in Chapters 9 and 10 through the wringer.

Final code for ten.js appears here. Note that in the downloads for this chapter at www.apress.com;
this is tenFinal.js:

http://www.apress.com

CHAPTER 10 ■ SCRIPTING BOM

452

"use strict";
(function () {

var addListener = document.addEventListener ?
 function (node, type, listener, phase) {
 node.addEventListener(type, listener, !! phase);
 } :
 function (node, type, listener) {
 node.attachEvent("on" + type, listener);
 } ;

var removeListener = document.removeEventListener ?
 function (node, type, listener, phase) {
 node.removeEventListener(type, listener, !! phase);
 } :
 function (node, type, listener) {
 node.detachEvent("on" + type, listener);
 } ;

var thwart = function (e) {
 if (e.preventDefault) {
 thwart = function (e) {
 e.preventDefault();
 };
 } else {
 thwart = function (e) {
 e.returnValue = false;
 };
 }
 thwart(e);
};

var burst = function (e) {
 if (e.stopPropagation) {
 burst = function (e) {
 e.stopPropagation();
 };
 } else {
 burst = function (e) {
 e.cancelBubble = true;
 };
 }
 burst(e);
};

var traverseTree = document.documentElement.firstElementChild ?
 function traverseTree (node, func) {
 func(node);
 node = node.firstElementChild;
 while (node !== null) {
 traverseTree(node, func);
 node = node.nextElementSibling;
 }
 } :

CHAPTER 10 ■ SCRIPTING BOM

453

 function traverseTree (node, func) {
 func(node);
 node = node.firstChild;
 while (node !== null) {
 traverseTree(node, func);
 node = node.nextSibling;
 }
 } ;

var findClass = document.getElementsByClassName ?
 function (name, root) {
 root = root || document.documentElement;
 return root.getElementsByClassName(name);
 } :
 document.querySelectorAll ?
 function (name, root) {
 root = root || document.documentElement;
 return root.querySelectorAll("." + name);
 } :
 function (name, root) {
 var found = [];
 root = root || document.documentElement;
 traverseTree(root, function (node) {
 if (!! node.className) {
 for (var names = node.className.split(/\s+/), i = names.length; i --;) {
 if (names[i] === name) {
 found.push(node);
 }
 }
 }
 });
 return found;
 } ;

var queryCascade = window.getComputedStyle ?
 function (element, property) {
 return getComputedStyle(element, null)[property];
 } :
 function (element, property) {
 return element.currentStyle[property];
 } ;

var doZ = function () {
 var z = 400;
 return function () {
 return z ++;
 };
}();

var getCookie = function (name) {
 var batch = document.cookie, i, firstCut, secondCut;
 i = batch.indexOf(name + "=");
 if (i !== -1) {
 firstCut = i + name.length + 1;

CHAPTER 10 ■ SCRIPTING BOM

454

 secondCut = batch.indexOf(";", firstCut);
 if (secondCut === -1) secondCut = batch.length;
 return decodeURIComponent(batch.substring(firstCut, secondCut));
 } else {
 return false;
 }
};

var createElem = function (name, members, children) {
 var elem = document.createElement(name), m;
 if (members instanceof Object) {
 for (m in members) {
 elem[m] = members[m];
 }
 }
 if (children instanceof Array) {
 for (i = 0; i < children.length; i ++) {
 elem.appendChild(typeof children[i] === "object" ?
 children[i] : document.createTextNode(children[i]));
 }
 }
 return elem;
};

var createXHR = typeof XMLHttpRequest !== "undefined" ?
 function () {
 return new XMLHttpRequest();
 } :
 typeof ActiveXObject !== "undefined" ?
 function () {
 var versions = ["MSXML2.XMLHTTP.6.0", "MSXML2.XMLHTTP.3.0",
 "MSXML2.XMLHTTP", "Microsoft.XMLHTTP"];
 for (var i = 0, j = versions.length, version = ""; i < j; i ++) {
 try {
 new ActiveXObject(versions[i]);
 version = versions[i];
 break;
 }
 catch(e) {
 }
 }
 if (version !== "") {
 return function () {
 return new ActiveXObject(version);
 };
 } else {
 return null;
 }
 }() :
 null ;

var getData = function (url, callback) {
 if (createXHR !== null) {
 var req = createXHR();

CHAPTER 10 ■ SCRIPTING BOM

455

 req.onreadystatechange = function () {
 if (req.readyState === 4) {
 callback(req);
 }
 }
 req.open("GET", url, true);
 req.send(null);
 }
};

var prepSprites = window.getComputedStyle ?
 function () {
 var elements = findClass("sprite"), sprites = {};
 var slideSprite = function (e) {
 if (e.type == "mouseover") {
 e.target.style.backgroundPosition =
 sprites[e.target.id || e.target.className][1];
 } else {
 e.target.style.backgroundPosition =
 sprites[e.target.id || e.target.className][0];
 }
 };
 for (var i = elements.length, offsets = null, member; i --;) {
 member = elements[i].id || elements[i].className;
 if (! sprites[member]) {
 sprites[member] = [];
 sprites[member][0] = queryCascade(elements[i], "backgroundPosition");
 offsets = sprites[member][0].split(/\s+/);
 sprites[member][1] = 1 - parseInt(queryCascade(elements[i], "width")) +
 "px " + offsets[1];
 }
 addListener(elements[i], "mouseover", slideSprite);
 addListener(elements[i], "mouseout", slideSprite);
 }
 } :
 function () {
 var elements = findClass("sprite"), sprites = {};
 for (var i = elements.length, offsets = null, member; i --;) {
 member = elements[i].id || elements[i].className;
 if (! sprites[member]) {
 sprites[member] = [];
 offsets = [queryCascade(elements[i], "backgroundPositionX"),
 queryCascade(elements[i], "backgroundPositionY")];
 sprites[member][0] = offsets.join(" ");
 sprites[member][1] = 1 - parseInt(queryCascade(elements[i], "width")) +
 "px " + offsets[1];
 }
 addListener(elements[i], "mouseover", slideSprite);
 addListener(elements[i], "mouseout", slideSprite);
 }
 var slideSprite = function () {
 var e = window.event;
 if (e.type == "mouseover") {
 e.srcElement.style.backgroundPosition =

CHAPTER 10 ■ SCRIPTING BOM

456

 sprites[e.srcElement.id || e.srcElement.className][1];
 } else {
 e.srcElement.style.backgroundPosition =
 sprites[e.srcElement.id || e.srcElement.className][0];
 }
 };
 } ;

var drag = function (e) {
 if (!e) e = window.event;
 if (!e.target) e.target = e.srcElement;
 var wrapper = e.target.parentNode;
 var left = parseInt(queryCascade(wrapper, "left"));
 var top = parseInt(queryCascade(wrapper, "top"));
 var clientX = e.clientX;
 var clientY = e.clientY;
 wrapper.style.zIndex = doZ();
 var move = function (e) {
 if (!e) e = window.event;
 wrapper.style.left = left + e.clientX - clientX + "px";
 wrapper.style.top = top + e.clientY - clientY + "px";
 burst(e);
 };
 var drop = function (e) {
 if (!e) e = window.event;
 removeListener(document, "mousemove", move, true);
 removeListener(document, "mouseup", drop, true);
 if (parseInt(wrapper.style.left) < 0) wrapper.style.left = "0px";
 if (parseInt(wrapper.style.top) < 0) wrapper.style.top = "0px";
 burst(e);
 thwart(e);
 };
 addListener(document, "mousemove", move, true);
 addListener(document, "mouseup", drop, true);
 burst(e);
 thwart(e);
};

var prepDrag = function () {
 var elements = findClass("drag");
 for (var i = elements.length; i --;) {
 addListener(elements[i], "mousedown", drag);
 }
};

var presetSkin = function () {
 var pref = getCookie("skin");
 if (pref !== false) {
 document.getElementById("skin").href = pref + ".css";
 }
};

var prepSkinKeys = function () {
 var sheet = document.getElementById("skin");

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 10 ■ SCRIPTING BOM

457

 var swapSkinByKey = function (e) {
 if (!e) e = window.event;
 if (!e.target) e.target = e.srcElement;
 if (e.target.nodeName.toLowerCase() === "input" ||
 e.target.nodeName.toLowerCase() === "textarea") return;
 e.letter = String.fromCharCode(e.charCode ||
 e.keyCode).toLowerCase();
 var pref;
 if (e.letter === "f") {
 pref = "fuchsia";
 } else if (e.letter === "g") {
 pref = "green";
 } else if (e.letter === "b") {
 pref = "blue";
 } else {
 return;
 }
 sheet.href = pref + ".css";
 document.cookie = "skin=" + pref + "; max-age=" + (60*60*24*30);
 };
 addListener(document, "keypress", swapSkinByKey, true);
};

var prepScrollers = function () {
 var elements = findClass("scroller");
 for (var i = elements.length; i --;) {
 (function (scroller) {
 var wrapper = findClass("wrapper", scroller)[0];
 var slide = findClass("slide", scroller)[0];
 var w1 = parseInt(queryCascade(wrapper, "width"));
 var w2 = parseInt(queryCascade(slide, "width"));
 var timer = null;
 slide.style.left = queryCascade(slide, "left");

 var press = function (e) {
 if (!e) e = window.event;
 if (!e.target) e.target = e.srcElement;
 var jump = e.target.jump;

 var animate = function animate () {
 var x = parseInt(slide.style.left) + jump;
 if (x >= w1 - w2 && x <= 0) {
 slide.style.left = x + "px";
 timer = setTimeout(animate, 15);
 } else if (x < w1 - w2) {
 slide.style.left = w1 - w2 + "px";
 } else {
 slide.style.left = "0px";
 }
 };

 var release = function (e) {
 clearTimeout(timer);
 removeListener(document, "mouseup", release, true);

CHAPTER 10 ■ SCRIPTING BOM

458

 removeListener(document, "mouseout", release, true);
 };
 addListener(document, "mouseup", release, true);
 addListener(document, "mouseout", release, true);
 animate();
 burst(e);
 thwart(e);
 };
 for (var arrows = findClass("arrow", scroller),
 i = arrows.length, re = /\bright\b/; i --;) {
 addListener(arrows[i], "mousedown", press);
 arrows[i].jump = (re.test(arrows[i].className)) ? -10 : 10;
 }
 })(elements[i]);
 }
};

var parseHTML = function (req) {
 if (req.status === 200 || req.status === 304) {
 var div = createElem("div", {className: "scroller", id: "s2"}, [
 createElem("div", {className: "wrapper"}),
 createElem("div", {className: "left arrow sprite"}),
 createElem("div", {className: "right arrow sprite"})]);
 div.firstChild.innerHTML = req.responseText;
 document.body.appendChild(div);
 }
 getData("data/s3.xml", parseXML);
};

var parseXML = function (req) {
 if (req.status === 200 || req.status === 304) {
 var domTree = req.responseXML,
 m = "getElementsByTagName";
 var elements = domTree[m]("shoe");
 var div, ul = createElem("ul", {className: "slide"}), li;
 for (var i = 0, j = elements.length; i < j; i ++) {
 li = createElem("li", null, [
 createElem("a", {href: elements[i][m]("href")[0].firstChild.data}, [
 createElem("img", {src: elements[i][m]("src")[0].firstChild.data,
 alt: elements[i][m]("alt")[0].firstChild.data})])]);
 ul.appendChild(li);
 }
 div = createElem("div", {className: "scroller", id: "s3"}, [
 createElem("div", {className: "wrapper"}, [ul]),
 createElem("div", {className: "left arrow sprite"}),
 createElem("div", {className: "right arrow sprite"})]);
 document.body.appendChild(div);
 }
 getData("data/s4.xml", parseSimpleXML);
};

var parseSimpleXML = function (req) {
 if (req.status === 200 || req.status === 304) {
 var domTree = req.responseXML;

CHAPTER 10 ■ SCRIPTING BOM

459

 var elements = domTree.getElementsByTagName("shoe");
 var div, ul = createElem("ul", {className: "slide"}), li;
 for (var i = 0, j = elements.length; i < j; i ++) {
 li = createElem("li", null, [
 createElem("a", {href: elements[i].getAttribute("href")}, [
 createElem("img", {src: elements[i].getAttribute("src"),
 alt: elements[i].getAttribute("alt")})])]);
 ul.appendChild(li);
 }
 div = createElem("div", {className: "scroller", id: "s4"}, [
 createElem("div", {className: "wrapper"}, [ul]),
 createElem("div", {className: "left arrow sprite"}),
 createElem("div", {className: "right arrow sprite"})]);
 document.body.appendChild(div);
 }
 getData("data/s5.js", parseJSON);
};

var parseJSON = function (req) {
 if (req.status === 200 || req.status === 304) {
 var data = JSON.parse(req.responseText);
 var div, ul = createElem("ul", {className: "slide"}), li;
 for (var i = 0, j = data.length; i < j; i ++) {
 li = createElem("li", null, [
 createElem("a", {href: data[i].href}, [
 createElem("img", {src: data[i].src, alt: data[i].alt})])]);
 ul.appendChild(li);
 }
 div = createElem("div", {className: "scroller", id: "s5"}, [
 createElem("div", {className: "wrapper"}, [ul]),
 createElem("div", {className: "left arrow sprite"}),
 createElem("div", {className: "right arrow sprite"})]);
 document.body.appendChild(div);
 }
 parseJSONP();
};

var parseJSONP = function parseJSONP (data) {
 if (typeof data === "undefined") {
 var f = parseJSONP;
 window.padJSON = function (d) {
 f(d);
 };
 var script = document.createElement("script");
 script.src = "data/s6.js";
 document.getElementsByTagName("head")[0].appendChild(script);
 return;
 }
 var div, ul = createElem("ul", {className: "slide"}), li;
 for (var i = 0, j = data.length; i < j; i ++) {
 li = createElem("li", null, [
 createElem("a", {href: data[i].href}, [
 createElem("img", {src: data[i].src, alt: data[i].alt})])]);
 ul.appendChild(li);

CHAPTER 10 ■ SCRIPTING BOM

460

 }
 div = createElem("div", {className: "scroller", id: "s6"}, [
 createElem("div", {className: "wrapper"}, [ul]),
 createElem("div", {className: "left arrow sprite"}),
 createElem("div", {className: "right arrow sprite"})]);
 document.body.appendChild(div);
 prep();
};

var prep = function () {
 var mojo = [prepSprites, prepDrag, prepSkinKeys, prepScrollers];
 setTimeout(function yield () {
 (mojo.shift())();
 if (mojo.length !== 0) {
 setTimeout(yield, 30);
 }
 }, 30);
};

addListener(window, "load", function (e) {
 presetSkin();
 getData("data/s2.html", parseHTML);
 });

})();

Summary
In this chapter we explored how to save visitor data in a cookie in order to remember their preference for
a blue, fuchsia, or green skin, animate part of the DOM tree and yield the UI thread with timers, and
dynamically add content with Ajax or JSON-P. Finally, we explored how to recode our function
declarations as function expressions and to have JavaScript interpret our script in strict mode, which is
new in ECMAScript 5.

Though function declarations are simpler to work with while writing and debugging a script,
function expressions are preferred insofar as those require you to use functions as values. Doing so is the
key to unlocking the power of JavaScript and to your becoming a JavaScript wizard.

Index

■ ■ ■

461

■ SYMBOLS
, operator, 93
!! idiom, 352
!== operator, 71
< operator, 77
<= operator, 80
?: operator, 90, 105, 351
> operator, 75
>= operator, 80
. operator, 13
() operator, 221, 226, 239
[] operator, 10, 17, 30, 41, 65, 260
@ directives, 322
@import, 322, 326–327, 340, 343
@page, 322
*= operator, 61, 63
/= operator, 61, 63
&& operator, 82, 84
+ operator, 25
+= operator, 61, 63
-= operator, 61, 63
=== operator, 5, 69, 107
|| operator, 82–83

■ A
ActiveXObject(), 423–425
addEventListener(), 352

Internet Explorer and, 348
parameters, 348

addListener(), 353, 367, 376, 383, 395, 419

addRule(), 329, 340
addSheet(), 340–343
addToTally(), 98
Ajax

ActiveXObject(), 423–425
appendChild(), 429
burst(), 423
comparing JSON to JavaScript object and

array literals, 440
createElem(), 422, 428, 433, 437, 443
createXHR(), 423–425
encoding data in XML tag attributes, 435
eval(), 439, 442
getAttribute(), 437
getData(), 425, 427–428, 430, 432, 436
getElementsByTagName(), 433
innerHTML, 428–429
JSON, parsing, 439
json2.js, 440
JSON-P, 445
open(), 426
overview of, 421
padJSON(), 445
parse(), 442
parseHTML(), 428, 430, 432, 434, 436
parseJSON(), 441, 444, 447
parseJSONP(), 446–448
parseSimpleXML(), 435
parseXML(), 431–432, 436
parsing an HTML response, 427

■ INDEX

462

parsing an XML response, 431
prep(), 430, 432
prepDrag(), 430
prepScrollers(), 430, 432, 436
prepSkinKeys(), 430
prepSprites(), 430, 432, 436
presetSkin(), 430
readystatechange event listener, 426
requesting data asynchronously, 425
responseText, 428–429, 442
responseXML, 442
send(), 426
Simple XML, 435
ten.html, 421, 431
testing an Ajax script on a web server, 422
writing dynamic pages with, 421
XMLHttpRequest, 422
See also JSON

alert(), 90
animate(), 410–411, 414–415
appendChild(), 340, 429
apply(), 169, 201, 204–205
arguments, 20
arguments.callee, 200
argumentsToArray(), 245–246, 248
arrays

argumentsToArray(), 245–246, 248
Array(), 365
array elements, 14–16, 229, 233, 237–238,

249
array literals, creating, 14
Array.prototype, 229, 247
concat(), 235–236
converting a read-only array-like object to

an array, 245
creating a string from, 243
differentiating pop() and concat(), 236
gluing two arrays together, 235
index, 15
inserting or deleting elements from, 249
isArray(), 201, 204–205
iterating over an array with a for loop, 125
iterating over an array with a while loop, 116
join(), 243

pop(), 231–232, 234, 272
predefined array methods, 229
push(), 234
reverse(), 237
reversing the elements in, 237
selecting elements from, 229
shift(), 229–230, 232–233
slice(), 244–245, 247–248
sort(), 138, 238, 240–241
sortByLosses(), 239
sorting the elements in, 238
splice(), 249–251, 272
taking a slice of, 244
testing for an array, 204
toString(), 243
unshift(), 233
See also value types; variables

associativity, understanding R and L
associativity, 58

attachEvent(), 353
Internet Explorer and, 348
parameters, 348

Attr interface, 257
Attr node, 256

querying, 285

■ B
background-position property, 312
binary operators, 60
bind(), 208–209
bitwise operators, 61
blocks, 97
blue.css, 350
boolean literals

=== operator, 5
Boolean(), 43, 45, 98, 122
boolean expressions, 97
creating, 5
falsy values, list of, 45
truthy values, 45
See also value types

break statement, 107, 117
Browser Object Model (BOM)

ActiveXObject(), 423

■ INDEX

463

animating with timers, 407
appendChild(), 429
clearInterval(), 416
clearTimeout(), 415–416
comparing JSON to JavaScript object and

array literals, 440
createElem(), 422, 428, 433, 437, 443
createXHR(), 423
decodeURIComponent(), 402
document.cookie, 401, 405
encoding data in XML tag attributes, 435
eval(), 439, 442
findClass(), 407
getAttribute(), 437
getCookie(), 401–403
getData(), 425, 427–428, 430, 432, 436
getElementsByTagName(), 433
indexOf(), 401–402
innerHTML, 428–429
JSON, parsing, 439
json2.js, 440
JSON-P, 445
open(), 426
overview of, 399
padJSON(), 445
parse(), 442
parseHTML(), 428, 430, 432, 434, 436
parseInt(), 408
parseJSON(), 441, 444, 447
parseJSONP(), 446–448
parseSimpleXML(), 435
parseXML(), 431–432, 436
prep(), 430, 432
prepDrag(), 430
prepScrollers(), 430, 432, 436
prepSkinKeys(), 404, 430
prepSprites(), 430, 432, 436
presetSkin(), 403–404, 406, 430
press(), 416
readystatechange event listener, 426
release(), 416
removeListener(), 417
responseText, 428–429, 442
responseXML, 442

send(), 426
setInterval(), 414, 416
setTimeout(), 414–416
Simple XML, 435
slide class, 407
substring(), 402
swapSkinByKey(), 404–405
ten.html, 399, 401, 406
ten.js, 401
user’s preferences, getting, 401
user’s preferences, setting, 404
user’s skin preference, setting, 403
using cookies to give JavaScript a memory,

401
using timers to yield control of the UI

thread, 449
wrapper class, 407
writing and reading cookies, 401
writing dynamic pages using Ajax, 421
XMLHttpRequest, 422
See also DOM; DOM 3; events; objects

burst(), 196, 377, 379, 382, 410, 423

■ C
call(), 201, 204–205, 209
callback function

definition of, 223
example of, 223

camel case, 6
cancelBubble, 355
case expressions, 107, 115
chaining methods, 212
CharacterData interface, 257
charAt(), 31–32
charCodeAt(), 32
child statements, 97
childNodes, 260, 270
Chocolate() constructor, 152
clearInterval(), 416
clearTimeout(), 415–416
clone(), 171–172, 195–196, 226
cloneMembers(), 174, 176, 198–199, 206
closures

caching return values to a closure, 224

■ INDEX

464

creating, 217
querying local variables saved to a closure,

217
coding cascade style, 264
Coffee() constructor, 151
COM objects, 256
comma (,) operator, 93, 126
comments, examples of commenting code, 2
commonly scripted nodes, table of, 259
compound statements, 97
concat(), 25–27, 235–236
concatenation operator, 3
conditional advance loading

console.dir(), 192
console.log(), 189
definition of, 185, 351
extend(), 185, 190–192
load-time branching, 185
new ECMAScript 5 static methods, list of,

185
Object.create(), 188
Object.defineProperties(), 187
Object.defineProperty(), 186–187
setting a function’s value according to a

feature’s availability, 185
toString(), 189
when to use, 195
See also conditional statements

conditional statements
blocks and child statements, 97
boolean expressions, 97
compound statements, 97
definition of, 97
dynamic nature of, 97
if statement, 98
namePirate() code example, 129
replacing conditionals with an object or

array query, 129
switch statement, 107
techniques for making conditionals run

faster, 129
See also conditional advance loading;

looping statements
configuration objects, passing, 222
console.dir(), 147, 168, 192

console.log(), 189
constructors, 25, 54

Chocolate() constructor, 152
Coffee() constructor, 151
console.dir(), 147
creating objects with a constructor, 145
definition of, 146
duplicating a constructor, 169
invoking a constructor with new, 146
MintChocolateChunk() constructor, 154
naming, 146
prototype object, 146
this private variable, 146
VanillaBean() constructor, 149
wildMaineBlueberry object, 146
WildMaineBlueberry(), 147–148
See also functions; objects

container.gif, 351
continue statement, 118
controlling JavaScript’s flow, 97
cookies

decodeURIComponent(), 402
document.cookie, 401, 405
getCookie(), 401–403
giving JavaScript a memory, 401
indexOf(), 401–402
prepSkinKeys(), 404
presetSkin(), 403–404, 406
substring(), 402
swapSkinByKey(), 404–405
ten.html, 406
ten.js, 401
user’s preferences, getting, 401
user’s preferences, setting, 404
user’s skin preference, setting, 403
writing and reading cookies, 401

createElem(), 294–295, 422, 428, 433, 437, 443
createXHR(), 423–425
CSS

@ directives, 322
adding or deleting rules, 327
addRule(), 329, 340
addSheet(), 340–343
appendChild(), 340

■ INDEX

465

background-position property, 312
className, 318–319
CSS2Properties, 309–310, 316–317, 325
cssFloat, 309
CSSImportRule, 327
CSSRule, 308
CSSRuleList, 321, 329
cssRules, 321
CSSStyleDeclaration, 281–282, 284, 308–310,

316, 325, 334–336
CSSStyleRule, 308, 327
CSSStyleSheet, 320–321, 329, 338
cssText, 309, 316–318, 326
currentStyle, 336
declarations, 308
deleteRule(), 332–333
deleting a rule from a style sheet, 332
document.styleSheets, 321
DOM interfaces for querying CSS, 307
eight.css, code listing, 311
eight.html, code listing, 310
ElementCSSInlineStyle.style, 310, 313, 315
embedding a style sheet, 344
embedSheet(), 344
enabling and disabling style sheets, 338
findIndex(), 327–328, 332
findRule(), 323–324, 326–327
getComputedStyle(), 335–336
getPropertyValue(), 309
@import, 322, 326–327, 340, 343
including or importing style sheets, 339
inserting a rule into a style sheet, 328
insertRule(), 328–333, 340
manually finding a rule by its selector, 323
ownerNode, 321
owningElement, 321
@page, 322
parseInt(), 336
queryCascade(), 336
querying a style attribute, 313
querying a style sheet, 321
querying the declarations in a rule, 310
querying the overall styles from the CSS

cascade, 334

removeChild(), 341–343
removeRule(), 332
rules, 308, 321
scripting imported style sheets, 326
scripting rules, 320
selectors, 308
selectorText, 308
setProperty(), 309
sprites, 312
style attribute, 310
styleFloat, 309
StyleSheet, 320
StyleSheetList, 321
swapClass(), 319
toggleSheet(), 339

curly braces, 21, 217
using in an if statement, 101

currentStyle property, 362
currentStyle.backgroundPosition, 365
currying

Curry, Haskell, 208
definition of, 208

■ D
declarations, 308
decodeURIComponent(), 402
decrement (--) operator, 66
default case clause, 107
delete operator, 12, 94, 155
deleteRule(), 332–333
detachEvent(), 353, 380
disruptive statements, definition of, 97
dividers, 39
do while loop

spices code example, 122
syntax of, 122
techniques for running faster, 143
See also conditional statements; looping

statements
Document interface, 257, 289
Document node, 256, 259, 348
document.cookie, 401, 405
Document.createElement(), 289
Document.createTextNode(), 289

■ INDEX

466

document.styleSheets, 321
DOM

[] operator, 260
Attr interface, 257
Attr node, 256
chaining nextSibling queries, 268
CharacterData interface, 257
childNodes, 260, 270
coding cascade style, 264
COM objects, 256
commonly scripted nodes, table of, 259
converting a NodeList to an array, 271
converting a NodeList to an array for

Internet Explorer, 273
copying content, 293
createElem(), 294–295
creating Element or Text nodes, 288
creating elements with a helper function,

294
CSSStyleDeclaration, 281–282, 284
deleting content, 292
descending and ascending the DOM tree,

260
differences in browser implementation, 255
Document interface, 257, 289
Document node, 256
#document string, 259
Document.createElement(), 289
Document.createTextNode(), 289
documentElement, 260
DocumentType node, 260
DOM interfaces for querying CSS, 307
DOM objects, 256
DOM-savvy browsers and events, 347
Element interface, 257, 282
Element node, 256
Element.getAttribute(), 282
Element.getAttributeNode(), 285
Element.setAttribute(), 283
enumerating attributes for an element, 286
filterDefaultAttrNodes(), 287
findClass(), code listing, 280
finding elements by class, 279
finding elements by id, 277
finding elements by their tag names, 278

firstChild, 270
getElementById(), 277
getElementsByTagName(), 278
HTMLDivElement, 257
HTMLElement, 257, 281
HTMLStyleElement, 282
interfaces, definition of, 256, 308
interfaces, list of, 256
item(), 261
kinds of nodes, 256
lastChild, 270
merging adjacent Text nodes and deleting

empty ones, 302
moving laterally within the DOM tree, 268
NamedNodeMap, 286
nextSibling, 268
Node interface, 257
Node.appendChild(), 289
Node.attributes, 286
Node.cloneNode(), 293
Node.insertBefore(), 289, 293
Node.normalize(), 302
Node.removeChild(), 292
Node.replaceChild(), 290
NodeList, 260
nodes and, 255
nodeType literals and constants for

commonly scripted nodes, table of,
258

nodeType literals for commonly scripted
nodes, table of, 258

nodeType literals, nodeType constants, and
nodeName values for commonly
scripted nodes, table of, 259

orderUL(), 296–297, 299
parent, child, and sibling nodes, 260
parentNode, 262
previousSibling, 268–269
querying an element in a NodeList, 260
querying Attr nodes, 285
querying attributes like a member, 281
querying attributes with methods, 282
querying the document member of window,

257
querying the nodeName member, 259

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

■ INDEX

467

querying the nodeValue member, 259
reordering nested lists, 296
representing nested tags as a tree of nested

objects, 255
seven.html, code listing, 257
seven2.html, code listing, 296
Text interface, 257
Text node, 256
#text string, 259
traverseTree(), 275, 278–279
traversing the DOM tree without

childNodes, 275
whitespace Text nodes, 263
See also Browser Object Model (BOM);

events; nodes; objects
DOM 3

ElementTraversal interface, 357
NodeSelector interface, 358

double quotes and strings, 2
doZ, 382
drag class, 383
drag(), 375, 378, 380
drag-and-drop behavior, 375
drop(), 375, 377, 380

■ E
ECMAScript, 31, 133, 255

new ECMAScript 5 static methods, list of,
185

Object.create(), 171
eight.css, code listing, 311
eight.html, code listing, 310
Element interface, 257, 282
Element node, 256, 348
Element.getAttribute(), 282
Element.getAttributeNode(), 285
Element.setAttribute(), 283
ElementCSSInlineStyle.style, 310, 313, 315
ElementTraversal interface, 357
else clause

definition of, 100
example of, 100

else if idiom, 103
embedSheet(), 344
emulate(), 173–174

equality, 70
eval(), 439, 442
events

!! idiom, 352
?: operator, 351
addEventListener(), 348, 352
addListener(), 353, 367, 376, 383, 395
advance conditional loading, definition of,

351
ASCII values for pressed keys, table of, 391
attachEvent(), 348, 353
blue, fuchsia, and green sprites, 350
blue.css, 350
burst(), 377, 379, 382
cancelBubble, 355
container.gif, 351
crawling the DOM tree, 356
creating a helper function to delete event

listeners, 353
currentStyle property, 362
currentStyle.backgroundPosition, 365
detachEvent(), 353, 380
Document node, 348
DOM-savvy browsers, 347
doZ, 382
drag class, 383
drag(), 375, 378, 380
drag-and-drop behavior, 375
drop(), 375, 377, 380
Element node, 348
ElementTraversal interface, 357
findClass(), 358, 360, 365, 383
finding an element by class, 358
fromCharCode(), 391
fuchsia.css, 350
getComputedStyle(), 362, 366, 370
getElementsByClassName(), 360, 362
getElementsByTagName(), 359
green.css, 350
implementing skin-swapping behavior, 390
Internet Explorer and, 347
listener parameter, 352
listening for events in Firefox, Safari, and

Opera, 348

■ INDEX

468

listening for mousedown events on any
element of the drag class, 383

listening while an event descends or
ascends the DOM tree, 347

move(), 375–379
nine.css, code listing, 349
nine.html, code listing, 348
nine.js, 348
node parameter, 352
NodeSelector interface, 358
parseInt(), 367, 376
phase parameter, 352
prepDrag(), 383–384, 395
prepSkinKeys(), 391, 395
prepSprites(), 365, 367–370, 372, 384, 395
preventDefault(), 353–354
preventing an event from traversing the

DOM tree, 355
queryCascade(), 362–363, 367
querying CSS values from the cascade, 362
querySelector(), 358–359, 362
querySelectorAll(), 358–362
removeEventListener(), 353, 380
removeListener(), 353, 380
slideSprite(), 365, 367–368, 370, 372
split(), 366
stopPropagation(), 355
style.backgroundPosition, 365
swapSkinByKey(), 391, 393
telling JavaScript to stop listening for an

event, 353
thwart(), 354–355, 377, 382
toLowerCase(), 391
traverseTree(), 356–357
type parameter, 352
window.event, 347, 368, 371
window.event.srcElement, 368
working with the event object, 347
wrapper.style.left, 378
wrapper.style.top, 378
wrapping a script in a self-invoking function

literal, 395
writing the mousedown event listener, 375
writing the mousemove event listener, 378
writing the mouseup event listener, 380

See also Browser Object Model (BOM);
DOM; nodes; objects

expression for a value, definition of, 4
extend(), 166–169, 171, 185, 190–192

■ F
filterDefaultAttrNodes(), 287
findClass(), 358, 365, 383, 407

code listing, 280, 360
findIndex(), 327–328, 332
findRule(), 323–324, 326–327
firebug.html, 2
firstChild, 270
for in loop

enumerating the members of an object, 127
enumerating unknown object members,

136
shoes code example, 127
syntax of, 127
See also conditional statements; looping

statements
for loop

comma operator and initialization
expressions, 126

iterating over an array, 125
techniques for running faster, 140
theFall code example, 125
See also conditional statements; looping

statements
fridge code example, 102
fromCharCode(), 29, 31, 391
fuchsia.css, 350
functions

() operator, 221, 226, 239
aborting a loop with return rather than

break, 120
apply(), 201, 204–205
arguments, 20
arguments.callee, 200
borrowing methods, 201
caching return values to a closure, 224
call(), 201, 204–205
callback function, 223
clone(), 226
cloneMembers(), 206

■ INDEX

469

closures, 217
conditional advance loading, 185
conditionally changing a function value

while it’s running, 194
curly braces and, 21, 217
currying, 208
definition of, 20
eliminating global variables, 226
exploring functions as values, 183
expressing first-class functions with literals,

183
function declaration, 183
function invocation, definition of, 97
function keyword, 20
function literals, creating, 19
function scope, 183, 217
Function.prototype.bind(), 208–209
Function.prototype.constructor, 184
Function.prototype.toString(), 184
global abatement with modules, 226
inheriting members from Object.prototype,

184
invoking a function by its name, 183
isArray(), 201, 204–205
lazy loading, 194
memoization, 224
methods, chaining, 212
new ECMAScript 5 static methods, list of,

185
parameters, 20
passing a configuration object rather than

separate parameters, 222
rankFlavor(), 21
recursive functions, 198
scope chain, 217
testing for an array, 204
this, 212
toString(), 201–203
traverseTree(), 200
See also methods; recursion

■ G
getAttribute(), 437
getComputedStyle(), 335–336, 362, 366, 370
getCookie(), 401–403

getData(), 425, 427–428, 430, 432, 436
getElementById(), 277
getElementsByClassName(), 360

W3 online documentation for, 362
getElementsByTagName(), 278, 359, 433
getPropertyValue(), 309
global abatement, 226
global variables, eliminating, 226
greater than (>) operator, 75
greater than or equal to (>=) operator, 80
green.css, 350
grouping () operator, 70

■ H
HTMLDivElement, 257
HTMLElement, 257, 281
HTMLStyleElement, 282

■ I
identifiers, definition of, 6
identity (===) operator, 69
if statement

?: operator, 105
addToTally(), 98
else clause, 100
else if idiom, 103
fridge code example, 102
kmLeftToLive(), 98
mayfly code example, 98
returning undefined, 100
syntax of, 98
wrapping in curly braces, 101
writing an if condition, 98
See also conditional statements; looping

statements
@import, 322, 326–327, 340, 343
in operator, 94
increment (++) operator, 66
index, 15
indexOf(), 35, 401–402
infinite loop, 116
inheritance

adding an empty chain link, 166
apply(), 169

■ INDEX

470

chaining prototypes, 163
Chocolate() constructor, 152
classical inheritance, 149
clone(), 171–172
cloneMembers(), 174, 176
cloning members, 174
Coffee() constructor, 151
console.dir(), 168
definition of, 149
determining which type(s) an object is an

instance of, 156
duplicating a constructor, 169
emulate(), 173–174
extend(), 166–169, 171
inherited members as shared among

instances, 158
instanceof operator, 157
merge(), 176
MintChocolateChunk() constructor, 154
mixins, 176
modifying new and past instances of a type,

160
Object.create(), 171, 173
prototypal inheritance, 171
Proxy(), 166–167, 171
querying a type’s parent, 167
VanillaBean() constructor, 149
See also members; objects

innerHTML, 428–429
insertRule(), 328–333, 340
instanceof operator, 157
interfaces

Attr interface, 257
CharacterData interface, 257
definition of, 256
Document interface, 257
Element interface, 257
HTMLDivElement interface, 257
HTMLElement interface, 257
list of, 256
Node interface, 257
Text interface, 257
See also objects

Internet Explorer
addEventListener() not implemented, 348

attachEvent(), 348
converting a NodeList to an array, 273
events and, 347
window.event, 347
See also Browser Object Model (BOM);

events; nodes; objects
isArray(), 201, 204–205
item(), 261

■ J
jersey code example, 107
join(), 243
JSON

comparing JSON to JavaScript object and
array literals, 440

description of, 439
eval(), 439
json2.js, 440
JSON-P, 445
padding JSON, 445
padJSON(), 445
parseJSON(), 441, 444, 447
parseJSONP(), 446–448
parsing, 439
See also Ajax

■ K
keywords

ECMAScript and, 8
else, 100
false, 97
function, 20
if, 98
new, 146
reserved keywords, list of, 7
return, 196
true, 97
var, 6

kmLeftToLive(), 98

■ L
lastChild, 270
lastIndexOf(), 36

■ INDEX

471

lazy loading, 354
clone(), 195–196
conditionally changing a function value

while it’s running, 194
lazy definition, 194
Object.create(), 195
Proxy(), 196
when to use, 195

length member, 30
less than (<) operator, 77
less than or equal to (<=) operator, 80
listener parameter, 352
load-time branching, 185
logical and (&&) operator, 82, 84
logical not (!) operator, 70
logical or (||) operator, 82–83
loop variable, 116
looping statements

blocks and child statements, 97
boolean expressions, 97
compound statements, 97
definition of, 97
do while loop, 122
dynamic nature of, 97
enumerating object members with a helper

array, 139
for in loop, 127
for loop, 125
infinite loop, 116
replacing break with return in a function,

120
techniques for making loops run faster, 136
topTwenty code example, 137
while loop, 115
See also conditional advance loading;

conditional statements; lazy loading
looseLeafTea code example, 116

■ M
match(), 43, 53–55
Math.round(), 4
mayfly code example, 98
members, 25

adding, 9
changing, 10

cloneMembers(), 174
cloning members, 174
inherited members as shared among

instances, 158
naming with identifiers, 12
querying members with the dot (.) operator,

13
See also inheritance; objects

memoization, definition of, 224
merge(), 176
methods, 25

chaining, 212
this, 212
See also functions

MintChocolateChunk() constructor, 154
mixins

creating, 176
definition of, 176

move(), 375–379

■ N
NamedNodeMap, 286
namePirate() code example, 129
NaN, 46, 64
new keyword, 146
nextSibling, 268
nine.css, code listing, 349
nine.html, code listing, 348
nine.js, 348
nodes

[] operator, 260
Attr node, 256
chaining nextSibling queries, 268
childNodes, 260, 270
coding cascade style, 264
commonly scripted nodes, table of, 259
converting a NodeList to an array, 271
converting a NodeList to an array for

Internet Explorer, 273
copying content, 293
createElem(), 294–295
creating Element or Text nodes, 288
creating elements with a helper function,

294
CSSStyleDeclaration, 281–282, 284

■ INDEX

472

definition of, 255
deleting content, 292
Document interface, 289
Document node, 256
#document string, 259
Document.createElement(), 289
Document.createTextNode(), 289
documentElement, 260
DocumentType node, 260
Element interface, 282
Element node, 256
Element.getAttribute(), 282
Element.getAttributeNode(), 285
Element.setAttribute(), 283
enumerating attributes for an element, 286
filterDefaultAttrNodes(), 287
findClass(), code listing, 280
finding elements by class, 279
finding elements by id, 277
finding elements by their tag names, 278
firstChild, 270
getElementById(), 277
getElementsByTagName(), 278
HTMLElement, 281
HTMLStyleElement, 282
item(), 261
kinds of, 256
lastChild, 270
merging adjacent Text nodes and deleting

empty ones, 302
NamedNodeMap, 286
nextSibling, 268
Node interface, 257
node parameter, 352
Node.appendChild(), 289
Node.attributes, 286
Node.cloneNode(), 293
Node.insertBefore(), 289, 293
Node.normalize(), 302
Node.removeChild(), 292
Node.replaceChild(), 290
NodeList, 260
NodeSelector interface, 358

nodeType literals and constants for
commonly scripted nodes, table of,
258

nodeType literals for commonly scripted
nodes, table of, 258

nodeType literals, nodeType constants, and
nodeName values for commonly
scripted nodes, table of, 259

orderUL(), 296–297, 299
parent, child, and sibling nodes, 260
parentNode, 262
previousSibling, 268–269
querying an element in a NodeList, 260
querying Attr nodes, 285
querying attributes like a member, 281
querying attributes with methods, 282
querying the nodeName member, 259
querying the nodeValue member, 259
reordering nested lists, 296
seven2.html, code listing, 296
Text node, 256
#text string, 259
traverseTree(), 275, 278–279
traversing the DOM tree without

childNodes, 275
whitespace Text nodes, 263
See also DOM

null, 1–2, 46, 50
number literals

creating, 4
Math.round(), 4
See also value types

Number(), 43, 46

■ O
objects

[] operator, 10, 17
Blueberry(), 163, 165
Chocolate() constructor, 152
Coffee() constructor, 151
console.dir(), 147
creating objects with a constructor, 145
delete operator, 12
invoking a constructor with new, 146
members, adding, 9

■ INDEX

473

members, changing, 10
MintChocolateChunk() constructor, 154
Object(), 43, 50, 365
object literals, creating, 9
Object.create(), 171, 173, 188, 195
Object.defineProperties(), parameters, 187
Object.defineProperty(), parameters, 186
Object.prototype, functions as inheriting

members from, 184
prototype object, 146
Strawberry(), 163, 165
this private variable, 146
VanillaBean() constructor, 149
wildMaineBlueberry object, 146
WildMaineBlueberry(), 147–148
See also Browser Object Model (BOM);

constructors; DOM; functions;
methods; variables

open(), 426
operators

!! idiom, 352
!== operator, 71
?: operator, 90, 105, 351
. operator, 13
() operator, 221, 226, 239
[] operator, 10, 17, 30, 41, 65, 260
*= operator, 61, 63
/= operator, 61, 63
+ operator, 25
+= operator, 61, 63
-= operator, 61, 63
alert(), 90
associativity, 57
binary operators, 60
bitwise operators, 61
chaining && expressions, 87
chaining || and && expressions, 89
chaining || expressions, 85
combining math and assignment

operations, 61
comma (,) operator, 93
comparing objects, arrays, and functions, 72
concatenation operator, 3
conditionally returning one of two values,

90

converting operands to numbers, 63
decrement (--) operator, 66
delete operator, 12, 94, 155
deleting a member, element, or variable, 94
equality (==) operator, 70
evaluating an expression asynchronously,

58
greater than (>) operator, 75
greater than or equal to (>=) operator, 80
grouping operator, 70
identity (===) operator, 5, 69, 107
in operator, 94, 127
increment (++) operator, 66
incrementing or decrementing values, 66
instanceof operator, 157
less than (<) operator, 77
less than or equal to (<=) operator, 80
list of, 3
logical and (&&) operator, 82, 84
logical not (!) operator, 70
logical or (||) operator, 82–83
NaN, 64
operands, 3, 58
overwriting a variable, member, element, or

parameter with NaN, 64
precedence, 57
precedence and associativity values, table

of, 60
prefix and postfix positions of ++ and --, 67
SyntaxError, 66
ternary operator, 60
testing for equality, 68
testing for inequality, 70
toLowerCase(), 77
typeof operator, 94, 335
unary operators, 60, 66
undefined, 65
See also conditional statements; looping

statements
orderUL(), 296–297, 299
ownerNode, 321
owningElement, 321

■ INDEX

474

■ P
padJSON(), 445
@page, 322
parameters, 20
parent, child, and sibling nodes, 260
parentheses and numeric calculations, 4
parentNode, 262
parse(), 442
parseHTML(), 428, 430, 432, 434, 436
parseInt(), 336–367, 376, 408, 411
parseJSON(), 441, 444, 447
parseJSONP(), 446–448
parseSimpleXML(), 435
parseXML(), 431–432, 436
phase parameter, 352
pop(), 199, 206, 231–232, 234, 272
precedence, 57
predefined variables, list of, 8
prep(), 430, 432, 449
prepDrag(), 383–384, 395, 430, 449
prepScrollers(), 407, 413, 430, 432, 436, 449
prepSkinKeys(), 391, 395, 404, 407, 430, 449
prepSprites(), 365, 367–370, 372, 384, 395, 413,

418, 430, 432, 436, 449
presetSkin(), 403, 406, 430

final code listing, 404
press(), 409–411, 415–416
preventDefault(), 353–354
previousSibling, 268–269
prototype objects, 146, 163
Proxy(), 166–167, 171, 196
push(), 127, 234

■ Q
queryCascade(), 336, 362–363, 367
querySelector(), 358–359

W3 online documentation for, 362
querySelectorAll(), 358–361

W3 online documentation for, 362

■ R
rankFlavor(), 21
readystatechange event listener, 426

recursion
arguments.callee, 200
cloneMembers(), 198–199
definition of, 198
implementing, 200
pop(), 199
traverseTree(), 200
See also functions

RegExp
match(), 43, 53–55
RegExp(), 53–54
RegExp.test(), 409
replace(), 53
search(), 43, 53–54
split(), 53
String(), 54

release(), 416
removeChild(), 341–343
removeEventListener(), 353, 380
removeListener(), 353, 380, 417
removeRule(), 332
replace(), 37–39, 53
responseText, 428–429, 442
responseXML, 442
return keyword, 196
return statement, 107, 114
reverse(), 237
rules, 308

■ S
scope chain, definition of, 217
search(), 43, 53–54
selectors, 308
selectorText, 308
semicolons, ending JavaScript statements with,

2
send(), 426
setInterval(), 414, 416
setProperty(), 309
setTimeout(), 414–416
seven.html, code listing, 257
seven2.html, code listing, 296
shift(), 229–230, 232–233
shoes code example, 127

■ INDEX

475

Simple XML, 435
skin-swapping behavior, 390
slice(), 36, 38, 206, 209, 244–245, 247–248
slide class, 407
slide.style.left, 408–409, 411–412
sliding sprites

getComputedStyle(), 370
prepSprites(), 365, 367–370, 372
slideSprite(), 365, 367–368, 370, 372, 413,

419
sort(), 138, 238, 240–241
sortByLosses(), 239
spices code example, 122
splice(), 118, 249–251, 272
split(), 39, 42, 53, 366
sprites, 312
square braces, 15
stopPropagation(), 355
string members

[] operator, 30, 41
+ operator, 25
charAt(), 31–32
charCodeAt(), 32
combining two strings together, 3
concat(), 25–27
concatenation operator, 3
converting case, 33
creating, 2
decoding and encoding characters, 31
determining the number of characters, 30
dividers, 39
double quotes, 2
fromCharCode(), 29, 31
handling alphabets with dotted and dotless

i versions, 34
indexOf(), 35
lastIndexOf(), 36
length member, 30
match(), 43
querying elements in a wrapper object, 31
replace(), 37–39
saving the return value of a String method

to another variable, 27
search(), 43
searching with regular expressions, 43

slice(), 36, 38
split(), 39, 42
splitting a string into an array of smaller

strings, 39
string wrappers, list of members, 29
String(), 30, 43, 54
strings as immutable, 26
substring, clipping, 36
substring, locating, 35
substring, replacing, 37
three ways to use the return value of a String

method, 29
titleCase(), 38
toLocaleLowerCase(), 34
toLocaleUpperCase(), 34
toLowerCase(), 28, 33
toUpperCase(), 33, 39
See also value types

style attribute, 310
style.backgroundPosition, 365
styleFloat, 309
StyleSheet, 320
StyleSheetList, 321
substring(), 402
swapClass(), 319
swapSkinByKey(), 391, 393, 404–405
swapSprites(), 418
switch statement

=== operator, 107
break statement, 107
case expressions, 107, 115
default case clause, 107
jersey code example, 107
namePirate() code example, 129
return statement, 107, 114
switch block, 107
syntax of, 107
See also conditional statements; looping

statements
SyntaxError, 66

■ T
ten.html, 401, 406, 421, 431

code listing, 399

■ INDEX

476

ten.js, 401
ternary operator, 60
Text interface, 257
Text node, 256

representing whitespace with, 263
#text string, 259

theFall code example, 125
this private variable, 146, 212
thwart(), 196, 355, 377, 382, 410

code listing, 354
timers

addListener(), 419
animate(), 410–411, 414–415
animating with, 407
animation function, writing, 411
burst(), 410
clearInterval(), 416
clearTimeout(), 415–416
findClass(), 407
gallery, animating, 414
gallery, using, 413
mojo array, creating, 449
parseInt(), 408, 411
prep(), 449
prepDrag(), 449
prepScrollers(), 407, 413, 449
prepSkinKeys(), 407, 449
prepSprites(), 413, 418, 449
press event listener, adding, 410
press(), 409–411, 415–416
RegExp.test(), 409
release(), 416
removeListener(), 417
scrollers, preparing, 407
setInterval(), 414, 416
setTimeout(), 414–416
slide class, 407
slide.style.left, 408–409, 411–412
slideSprite(), 413, 419
sprites, swapping by ID or class, 418
swapSprites(), 418
thwart(), 410
window.event.srcElement, 410
window.event.target, 410

wrapper class, 407
yielding control of the UI thread, 449

titleCase(), 38
toExponential(), 51
toFixed(), 51–52
toggleSheet(), 339
toLocaleLowerCase(), 34
toLocaleUpperCase(), 34
toLowerCase(), 28, 33, 77, 275, 391
toPrecision(), examples of, 53
topTwenty code example, 137
toString(), 50, 189, 243

overriding, 201–203
toUpperCase(), 33, 39
trailing digits, rounding, 53
traverseTree(), 200, 275, 278–279, 356–357
type parameter, 352
typeof operator, 94, 335

■ U
unary operators, 60, 66
undefined, 1, 6, 46, 50, 65
unshift(), 233

■ V
value types

array literals, creating, 14
boolean literals, creating, 5
converting a number to a string, 51
converting a string, number, or boolean to a

wrapper object, 25
converting a value to a number, 46
converting a value to a string, 50
converting a value to another type, 44
converting booleans to numbers, 48
definition of, 1
delete operator, 12
doing math with null but not with

undefined, 46
double quotes and strings, 2
function literals, creating, 19
members, adding, 9
members, changing, 10
NaN, 46

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

■ INDEX

477

null, 1, 46, 50
number literals, creating, 4
Number(), 46
object literals, creating, 9
Object(), 50
rounding trailing digits, 53
sample number conversions, table of, 49
string literals, creating, 2
toExponential(), 51
toFixed(), 51–52
toPrecision(), 53
toString(), 50
trying to do math with a CSS value, 48
undefined, 1, 6, 46, 50

valueOf(), 43–44
invoking on a wrapper, 25

VanillaBean() constructor, 149
variables

camel case, 6
naming, 6
predefined variables, list of, 8
undefined, 6
var keyword, 6
See also arrays; functions

■ W
while loop

aborting a single iteration but not the loop,
118

break statement, 117

continue statement, 118
iterating over an array, 116
loop variable, 116
looseLeafTea code example, 116
replacing break with return in a function,

120
syntax of, 115
techniques for running faster, 142
See also conditional statements; looping

statements
whitespace Text nodes, 263
wildMaineBlueberry object, 146
window.event, 347, 368, 371
window.event.srcElement, 368, 410
window.event.target, 410
wrapper class, 407
wrapper.style.left, 378
wrapper.style.top, 378
wrappers

converting a string, number, or boolean to a
wrapper object, 25

creating, 43
invoking valueOf(), 25
string wrappers, list of members, 29
valueOf(), 43–44

■ X, Y, Z
XMLHttpRequest, 422

■ INDEX

478

■ INDEX

479

	Prelim
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Preface
	Representing Data with Values
	What Are Value Types?
	Creating a String Literal
	Commenting Code
	Gluing Strings Together with the + Operator

	Creating a Number Literal
	Creating a Boolean Literal
	Naming a Value with an Identifier
	Can I Name a Variable Anything I Want?
	Some Valid Identifiers Are Already Taken

	Creating an Object Literal
	Naming Members with Identifiers

	Creating an Array Literal
	Creating a Function Literal
	Summary

	Type Conversion
	String Members
	Determining the Number of Characters
	Decoding or Encoding Characters
	Converting Case
	Locating a Substring
	Clipping a Substring
	Replacing a Substring
	Splitting a String into an Array of Smaller Strings
	Searching with Regular Expressions

	Explicitly Creating Wrappers
	Converting a Value to Another Type
	Converting a Value to a Number
	Converting a Value to a String
	Methods for Converting a Number to a String
	Putting Off Learning RegExp Syntax

	Summary

	Operators
	Introducing Operator Precedence and Associativity
	Using JavaScript Operators
	Combining Math and Assignment Operations
	Incrementing or Decrementing Values
	Testing for Equality
	Testing for Inequality
	Comparing Objects, Arrays, and Functions
	Determining Whether One Number or String Is Greater Than Another
	Determining Whether One Number or String Is Less Than Another
	Greater Than or Equal to, Less Than or Equal to
	Creating More Complex Comparisons
	Saying or With ||
	Saying “and” with &&
	Chaining || Expressions
	Chaining && Expressions
	Chaining || and && Expressions
	Conditionally Returning One of Two Values
	Making Two Expressions Count as One
	Deleting a Member, Element, or Variable

	Summary

	Controlling Flow
	Writing an if Condition
	Appending an else Clause
	To Wrap or Not to Wrap
	Coding Several Paths with the else if Idiom
	Controlling Flow with Conditional Expressions

	Taking One of Several Paths with a Switch
	Writing a while Loop
	Aborting an Iteration but Not the Loop
	Replacing Break with Return in a Function

	Writing a do while loop
	Writing a for Loop
	Enumerating Members with a for in Loop
	Snappier Conditionals
	Snappier Loops
	Summary

	Member Inheritance
	Creating Objects with a Constructor
	Classical Inheritance
	Determining Which Type or Types an Object Is an Instance Of
	Inherited Members Are Shared Not Copied
	Modifying New and Past Instances of a Type
	Sharing a Prototype but Forgoing the Chain
	Adding an Empty Chain Link
	Stealing a Constructor

	Prototypal Inheritance
	Cloning Members
	Mixins
	Summary

	Functions and Arrays
	Why Use Functions?
	Functions Are Values
	Function Members
	Conditional Advance Loading
	Writing Object.defineProperty()
	Writing Object.defineProperties()
	Writing Object.create()
	Using the new Functions

	Lazy Loading
	Recursion
	Borrowing Methods with apply() or call()
	Overriding toString()
	Testing for an Array
	Rewriting cloneMembers()

	Currying
	Chaining Methods
	Closure and Returning Functions
	Passing a Configuration Object
	Callback Functions
	Memoization
	Global Abatement with Modules
	Arrays
	Plucking Elements from an Array
	Adding Elements to an Array
	Gluing Two Arrays Together
	Reversing the Elements in an Array
	Sorting the Elements in an Array
	Creating a String from an Array
	Taking a Slice of an Array
	Converting a Read-only Array-like Object to an Array
	Inserting or Deleting Elements from an Array

	Summary

	Traversing and Modifying the DOM Tree
	DOM Tree
	Is Every Node the Same?
	Interfaces Are Sensibly Named
	Querying the DOM Tree
	Same Jargon as for a Family Tree
	Traversing the DOM Tree
	Descending with childNodes
	Ascending with parentNode
	Muddying the Waters with Whitespace
	Coding Cascade Style
	Moving Laterally
	Converting a NodeList to an Array
	Converting a NodeList to an Array for Internet Explorer
	Traversing the DOM without childNodes
	Finding an Element by ID
	Finding Elements by Their Tag Names
	Finding Elements by Class
	Querying Attributes Like a Member
	Querying Attributes with Methods
	Querying Attr Nodes
	Enumerating Attributes for an Element
	Creating Element or Text Nodes
	Deleting Content
	Copying Content
	Creating Elements with a Helper Function
	Reordering Nested Lists
	Where Did the Formatting Text Nodes Go?

	Summary

	Scripting CSS
	DOM Interfaces for Working with CSS
	Clarifying Some CSS Jargon
	How Does JavaScript Represent a Rule?
	Two Other Declaration Blobs

	Downloading the Sample Files
	Querying a Style Attribute
	Scripting Classes
	Scripting Rules
	Scripting Imported Style Sheets
	Adding or Deleting a Rule
	Adding a Rule to a Style Sheet
	Deleting a Rule from a Style Sheet

	Querying Overall Styles from the Cascade
	Enabling and Disabling Style Sheets
	Including or Importing Style Sheets
	Embedding a Style Sheet
	Summary

	Listening for Events
	Working with the Event Object
	Downloading Project Files
	Advance Conditional Loading
	Telling JavaScript to Stop Listening for an Event
	Preventing Default Actions from Taking Place
	Preventing an Event from Traversing the DOM Tree
	Writing Helper Functions
	Crawling the DOM Tree
	Finding an Element by Class
	Testing for getElementsByClassName()
	Querying the Cascade

	Sliding Sprites
	Preparing the Ground
	Moving the Sprites
	Snappier Sprites

	Drag-and-Drop Behavior
	Writing the Mousedown Event Listener
	Writing the Mousemove Event Listener
	Writing the Mouseup Event Listener
	The doZ() Helper Function
	Prepping the Drag

	Swapping Skins by Key
	Initiating Behaviors When the DOM Tree Is Available
	Fighting Global Evil
	Summary

	Scripting BOM
	Downloading the Project Files
	Remembering Visitor Data with Cookies
	Getting the User’s Preference
	Setting the User’s Skin Preference
	Setting the User’s Preference

	Animating with Timers
	Preparing the Scrollers
	Adding the Press Event Listener
	Writing the Animation Function
	Using the Gallery
	Animating the Gallery
	Swapping Sprites by ID or Class

	Writing Dynamic Pages Using Ajax
	Testing XMLHttpRequest from Your Local File System
	Creating Tree Branches with createElem()
	Asynchronously Requesting Data
	Parsing an HTML Response
	Parsing an XML Response
	Parsing Simple XML
	Parsing JSON
	JSON in a Nutshell
	Padding JSON

	Yielding with Timers
	Converting function declarations to expressions
	Summary

	Index
	¦ ¦ ¦
	¦ SYMBOLS
	¦ A
	¦ B
	¦ C
	¦ D
	¦ E
	¦ F
	¦ H
	¦ I
	¦ G
	¦ J
	¦ K
	¦ L
	¦ N
	¦ M
	¦ O
	¦ P
	¦ S
	¦ Q
	¦ R
	¦ T
	¦ U
	¦ V
	¦ W
	¦ X, Y, Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

