o The perfect complement'to your 4th or
0 Gold Edition ﬁbgm'pt Bible

COMPREHENSIVE
AUTHORITATIVE
WHAT YOU NEED
ONE HUNDRED PERCENT

Immerse yourself in
a JavaScript master’s
code examples and
analysis

Learn JavaScript and
DOM behavior via
interactive labs

Complete your

JavaScript Bible
library with this = . €& e 2A
invalvable »_% 4 - Wi YAr =L

JavaS hpt”

CD-ROM

INSIDE!
Over 300 Ready-to-Run
Example Scripts and More
on (D-ROM!

The Essential Companion
to JavaScript™ Bible

Praise for Danny Goodman’s JavaScript Bible

“JavaScript Bible is the definitive resource in JavaScript programming. I am never
more than three feet from my copy.”

—Steve Reich, CEO, PageCoders

“This book is a must-have for any Web developer or programmer.”
— Thoma Lile, President, Kanis Technologies, Inc.

“Outstanding book. I would recommend this book to anyone interested in learning to
develop advanced Web sites. Mr. Goodman did an excellent job of organizing this
book and writing it so that even a beginning programmer can understand it.”

—Jason Hensley, Director of Internet Services, NetVoice, Inc.

“Goodman is always great at delivering clear and concise technical books!”
— Dwayne King, Chief Technology Officer, White Horse

“JavaScript Bible is well worth the money spent!”
—Yen C.Y. Leong, IT Director, Moo Mooltimedia, a member of SmartTransact Group

“A must-have book for any Internet developer.”
— Uri Fremder, Senior Consultant, TopTier Software

“I' love this book! I use it all the time, and it always delivers. It’s the only JavaScript
book I use!”

—Jason Badger, Web Developer

“Whether you are a professional or a beginner, this is a great book to get.”
— Brant Mutch, Web Application Developer, Wells Fargo Card Services, Inc.

“I never thought I'd ever teach programming before reading your book [JavaScript
Bible]. It’s so simple to use —the Programming Fundamentals section brought it all
back! Thank you for such a wonderful book, and for breaking through my program-
ming block!”

—Susan Sann Mahon, Certified Lotus Instructor, TechNet Training

“I continue to get so much benefit from JavaScript Bible. What an amazing book! Danny
Goodman is the greatest!”

— Patrick Moss

“Danny Goodman is very good at leading the reader into the subject. JavaScript Bible
has everything we could possibly need.”

— Philip Gurdon

“An excellent book that builds solidly from whatever level the reader is at. A book that
is both witty and educational.”

— Dave Vane

“I continue to use the book on a daily basis and would be lost without it.”

— Mike Warner, Founder, Oak Place Productions

“JavaScript Bible is by far the best JavaScript resource I've ever seen (and I've seen
quite a few).”

—Robert J. Mirro, Independent Consultant, RIM Consulting

JavaScript
Examples Bible:
The Essential
Companion to
JavaScript Bible

JavaScript
Examples Bible:
The Essential
Companion to
JavaScript Bible

Danny Goodman

>

Hungry Minds~
Best-Selling Books e Digital Downloads ® e-Books ® Answer Networks e e-Newsletters ® Branded Web Sites ¢ e-Learning

Indianapolis, IN 4 Cleveland, OH 4+ New York, NY

JavaScript™ Examples Bible: The Essential
Companion to JavaScript™ Bible

Published by:

Hungry Minds, Inc.

909 Third Avenue

New York, NY 10022

www. hungryminds.com

Copyright © 2001 Danny Goodman. All rights
reserved. No part of this book, including interior
design, cover design, and icons, may be reproduced
or transmitted in any form, by any means
(electronic, photocopying, recording, or otherwise)
without the prior written permission of the
publisher.

Library of Congress Control No.: 2001091964

ISBN: 0-7645-4855-7

Printed in the United States of America
10987654321

1B/RY/QX/QR/IN

Distributed in the United States by

Hungry Minds, Inc.

Distributed by CDG Books Canada Inc. for Canada;
by Transworld Publishers Limited in the United
Kingdom; by IDG Norge Books for Norway; by IDG
Sweden Books for Sweden; by IDG Books Australia
Publishing Corporation Pty. Ltd. for Australia and
New Zealand; by TransQuest Publishers Pte Ltd. for
Singapore, Malaysia, Thailand, Indonesia, and Hong
Kong; by Gotop Information Inc. for Taiwan; by ICG
Muse, Inc. for Japan; by Intersoft for South Africa;
by Eyrolles for France; by International Thomson
Publishing for Germany, Austria, and Switzerland;
by Distribuidora Cuspide for Argentina; by LR
International for Brazil; by Galileo Libros for

Chile; by Ediciones ZETA S.C.R. Ltda. for Peru;

by WS Computer Publishing Corporation, Inc., for
the Philippines; by Contemporanea de Ediciones
for Venezuela; by Express Computer Distributors
for the Caribbean and West Indies; by Micronesia
Media Distributor, Inc. for Micronesia; by Chips
Computadoras S.A. de C.V. for Mexico; by Editorial
Norma de Panama S.A. for Panama; by American
Bookshops for Finland.

For general information on Hungry Minds’ products
and services please contact our Customer Care
department; within the U.S. at 800-762-2974, outside
the U.S. at 317-572-3993 or fax 317-572-4002.

For sales inquiries and resellers information,
including discounts, premium and bulk quantity
sales and foreign language translations please
contact our Customer Care department at
800-434-3422, fax 317-572-4002 or write to Hungry
Minds, Inc., Attn: Customer Care department, 10475
Crosspoint Boulevard, Indianapolis, IN 46256.

For information on licensing foreign or domestic
rights, please contact our Sub-Rights Customer
Care department at 212-884-5000.

For information on using Hungry Minds’ products
and services in the classroom or for ordering
examination copies, please contact our Educational
Sales department at 800-434-2086 or fax
317-572-4005.

For press review copies, author interviews, or
other publicity information, please contact our
Public Relations department at 317-572-3168 or fax
317-572-4168.

For authorization to photocopy items for
corporate, personal, or educational use, please

contact Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, or fax 978-750-4470.

CONSEQUENTIAL, OR OTHER DAMAGES.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND AUTHOR HAVE USED THEIR
BEST EFFORTS IN PREPARING THIS BOOK. THE PUBLISHER AND AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS BOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. THERE ARE NO WARRANTIES WHICH
EXTEND BEYOND THE DESCRIPTIONS CONTAINED IN THIS PARAGRAPH. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE
ACCURACY AND COMPLETENESS OF THE INFORMATION PROVIDED HEREIN AND THE OPINIONS
STATED HEREIN ARE NOT GUARANTEED OR WARRANTED TO PRODUCE ANY PARTICULAR RESULTS,
AND THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY
INDIVIDUAL. NEITHER THE PUBLISHER NOR AUTHOR SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR
ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL,

Trademarks: JavaScript is a registered trademark or trademark of Sun Microsystems, Inc. All other
trademarks are property of their respective owners. Hungry Minds, Inc., is not associated with any product

or vendor mentioned in this book.

Hungry Minds- is a trademark of Hungry Minds, Inc.

About the Author

Danny Goodman is the author of numerous critically acclaimed and bestselling
books, including The Complete HyperCard Handbook, Danny Goodman’s AppleScript
Handbook, and Dynamic HTML: The Definitive Reference. He is a renowned authority
and expert teacher of computer scripting languages and is widely known for his
“JavaScript Apostle” articles in Netscape’s ViewSource online developer newsletter.
His writing style and pedagogy continue to earn praise from readers and teachers
around the world. To help keep his finger on the pulse of real-world programming
challenges, Goodman frequently lends his touch as consulting programmer and
designer to leading-edge World Wide Web and intranet sites from his home base in
the San Francisco area.

Credits

Acquisitions Editor
Sharon Cox

Project Editor
Neil Romanosky

Technical Editor
David Wall

Copy Editors
Jerelind Charles
Victoria Lee O’Malley

Editorial Manager
Colleen Totz

Project Coordinator
Regina Snyder

Graphics and Production Specialists
Gabriele McCann

Betty Schulte

Jeremey Unger

Erin Zeltner

Quality Control Technicians
Laura Albert

David Faust

Andy Hollandbeck

Permissions Editor
Laura Moss

Media Development Specialist
Greg Stephens

Media Development Coordinator
Marisa Pearman

Book Designer
Kurt Krames

Proofreading and Indexing
TECHBOOKS Production Services

Cover Illustrator
Kate Shaw

Preface

Acommon thread running throughout most of my computer-book-writing
career is that [tend to write a book I wish | had had in order to learn a new
technology in the first place. Because I must write that book without the benefit of
existing models, | begin by doing my best to master the technology, and then I write
the book to help other newcomers learn as much as I did, but more quickly and
with less pain, anguish, and confusion. To accomplish that goal, | write as much
content as | feel is necessary to cover the topic in the depth that my readers
require.

When I started on what became the 4th and Gold editions of the JavaScript Bible,
there were models to follow (my previous three editions) plus a substantial amount
of brand new material, much of which had not yet been documented anywhere. I
also assumed the responsibility of integrating the frequently conflicting and com-
peting philosophies of the ways the JavaScript language is applied to a variety of
browser brands and versions. Resolving these conflicts is a challenge that I face in
my own programming work with clients, and I take great pleasure in sharing my
solutions and approaches with other programmers floating in the same boat.

As my editor and I began counting the pages I had assembled for these new edi-
tions, we discovered that the number of pages far outstripped the printer’s binding
capabilities, even in a thicker volume made possible by using a hard cover (the
Gold edition). Certainly not all of the words that I had written were so precious that
some of them couldn’t be cut. But we were hundreds of pages beyond capacity. To
cut that much content would have forced exclusion of coverage of language or doc-
ument object model vocabulary.

Fortunately, as had been done in previous editions, the plan for the new editions
included Adobe Acrobat versions of the books on the accompanying CD-ROM.
Although a significant compromise to ease of reading, it was possible to move some
of the book’s content to the CD-ROM and leave the most important parts on the
printed page. For the softcover 4th edition, reference chapters covering less-used or
advanced subjects were pulled from print; for the hardcover Gold edition, which
was longer and targeted more for professional scripters, the advanced chapters
were put back into the book (along with 15 additional chapters for that edition),
and the JavaScript tutorial was exiled to the CD-ROM.

But even after making the difficult decisions about which chapters could go to the
CD-ROMs, the page counts for both volumes were still excessive. Something else —
something big—had to go. The remaining bundle that could free us from the page

X JavaScript Example Bible: The Essential Companion to JavaScript Bible

count devil was all of the Example sections from the reference vocabulary. By being
nondiscriminatory about these extractions — that is, extracting all of them instead
of only selected sections —we could convey to readers a consistent organizational
model.

In the end, the extracted Example sections from Parts Il and IV found their way into
Appendix F on the CD-ROMs of both editions of the larger tome. I knew that as a
reader of my own books (and one of a certain age at that) I would not enjoy having
to flip back and forth between book and screen to refresh my memory about a term
and see it in action. A more pleasing solution for many JavaScript Bible readers
would be a separate volume containing a printed version of the Examples sections.
The new volume would act as a companion to both the 4th and Gold editions of the
JavaScript Bible.

Using Appendix F as a starting point, I divided the content into chapters along the
same lines as the JavaScript Bible reference sections. This also gave me a chance to
study the examples for each chapter with fresh eyes. The examples haven’t
changed, but [had the opportunity to direct the reader’s attention to examples that
I thought were particularly helpful in mastering a document-level or core language
object. Thus, each chapter of this book begins with a scene-setting introduction and
a list of highlights to which you should pay special attention. Also, since you will
likely be scanning through the book from time to time, [added many illustrations of
the pages produced from the code listings. These figures will help you visualize what
important listing code does when the page is loaded into a browser.

Now you know the story behind the JavaScript Examples Bible. Some budget-
conscious readers may not be thrilled to pay more for what appears to be a printout
of content they already own in electronic format. If so, then please continue using
the Acrobat version. But if, like me, you enjoy the portability and visual scanability
of a printed work, then keeping this book near your JavaScript Bible volume will
enhance your learning and research activities.

Organization and Features of This Book

Almost all chapters in this book correspond to similarly named chapters in Parts III
and IV from the JavaScript Bible 4th and Gold editions. Although chapters in this
book are consecutively numbered starting with Chapter 1, each chapter title
includes a reference to the corresponding chapter number from the big books. For
example, Chapter 1 of this book provides the Examples sections for terms related
to generic HTML elements. That subject is covered in Chapter 15 of the big books.
There is not always a one-to-one relationship between chapters. Several chapters of
the big books have no Examples sections in them because sample code is embed-
ded as part of the big book text. Therefore, don’t be surprised to see gaps in pointers
to JavaScript Bible reference chapters.

Preface

Listing numbers are derived from their original order in what had been planned as a
contiguous volume. Such listing numbers are the ones referred to in the “On the
CD-ROM” pointers throughout Parts IIl and IV of the big books. This should help
you locate an example’s listing when you reach one of those pointers in the
JavaScript Bible. Notice, too, that the big books’ running footers with property,
method, and event handler names appear in this book, too. Therefore, if you should
be looking at an example listing of this book and wish to consult the more detailed
discussion of the subject in the large book, turn to the corresponding big book
chapter and locate the corresponding terminology within the object’s chapter.

Many examples throughout this book refer to The Evaluator. This Web page applica-
tion is described at length in Chapter 13 of the big books. You can find the file for
The Evaluator within the Listings\Chap13 folder on the CD-ROM for either the big
book or this book.

CD-ROM

The accompanying CD-ROM contains the complete set of over 300 ready-to-run
HTML documents from the JavaScript Bible, Gold Edition. These include listings for
both the Examples sections in this book and all other listings from the Gold edition.
You can run these examples with your JavaScript-enabled browser, but be sure to
use the index.html page in the Listings folder as a gateway to running the listings.
This page shows you the browsers that are compatible with each example listing.

The Quick Reference from Appendix A of the big books is in . pdf format on the
CD-ROM for you to print out and assemble as a handy reference, if desired. Adobe
Acrobat Reader is included on the CD-ROM so that you can read this . pdf file. Finally,
the text of the book is in a . pdf file format on the CD-ROM for easy searching.

Formatting and Naming Conventions

The script listings and words in this book are presented in a monospace font to
set them apart from the rest of the text. Because of restrictions in page width, lines
of script listings may, from time to time, break unnaturally. In such cases, the
remainder of the script appears in the following line, flush with the left margin of
the listing, just as they would appear in a text editor with word wrapping turned on.
If these line breaks cause you problems when you type a script listing into a docu-
ment yourself, I encourage you to access the corresponding listing on the CD-ROM
to see how it should look when you type it.

To make it easier to spot in the text when a particular browser and browser version
is required, most browser references consist of a two-letter abbreviation and a ver-
sion number. For example, IE5 means Internet Explorer 5 for any operating system;

X|| JavaScript Example Bible: The Essential Companion to JavaScript Bible

NN6 means Netscape Navigator 6 for any operating system. If a feature is intro-
duced with a particular version of browser and is supported in subsequent ver-
sions, a plus symbol (+) follows the number. For example, a feature marked IE4+
indicates that Internet Explorer 4 is required at a minimum, but the feature is also
available in IE5, IE5.5, and so on. Occasionally, a feature or some highlighted behav-
ior applies to only one operating system. For example, a feature marked
[E4+/Windows means that it works only on Windows versions of Internet Explorer 4
or later. As points of reference, the first scriptable browsers were NN2,
IE3/Windows, and IE3.01/Macintosh. Moreover, IE3 for Windows can be equipped
with one of two versions of the JScript.d11 file. A reference to the earlier version
is cited as IE3/J1, while the later version is cited as IE3/J2. You will see this notation
primarily in the compatibility charts throughout the reference chapters.

Acknowledgments

Because most of the content of this volume was created as part of the
JavaScript Bible, the acknowledgments that you see in your copy of the 4th or
Gold editions apply equally to this volume. But this JavaScript Examples Bible did
not come into being without additional effort on the part of dedicated Hungry
Minds, Inc., staff. In particular, I want to thank Sharon Cox for turning my idea into a
title, and editor Neil Romanosky, who, even after marshaling over 4,000 pages of
content for the 4th and Gold editions, took charge of this volume to maintain conti-
nuity across the entire series. Thanks, too, to my friends and family, who certainly
must have grown weary of my tales of reaching schedule milestones on this project
not once, not twice, but three times over many, many months.

Contents at a Glance

Preface. e ix
Acknowledgments xiii
Chapter 1: Generic HTML Element Objects (Chapter 15) 1
Chapter 2: Window and Frame Objects (Chapter 16) 127
Chapter 3: Location and History Objects (Chapter 17) 205
Chapter 4: The Document and Body Objects (Chapter 18) 223
Chapter 5: Body Text Objects (Chapter 19) 265
Chapter 6: Image, Area, and Map Objects (Chapter22) 317
Chapter 7: The Form and Related Objects (Chapter23) 335
Chapter 8: Button Objects (Chapter24) 343
Chapter 9: Text-Related Form Objects (Chapter25) 357
Chapter 10: Select, Option, and Optgroup Objects (Chapter 26) 369
Chapter 11: Table and List Objects (Chapter27) 381
Chapter 12: Navigator and Other Environment Objects (Chapter 28) 397
Chapter 13: Event Objects (Chapter29) 409
Chapter 14: Style Sheet Objects (Chapter 30) 435
Chapter 15: The NN4 Layer Object (Chapter31) 441
Chapter 16: String and Number Objects (Chapters 34 and35) 469
Chapter 17: The Array Object (Chapter37) 487
Appendix: What'sonthe CD-ROM 497
Index. 499
End-User License Agreement 528

CD-ROM Installation Instructions 532

Contents

Preface. X
Acknowledgments xiii
Chapter 1: Generic HTML Element Objects (Chapter15) 1
Examples Highlights 1
Generic Objects e 3
Properties 3

Methods 50
Eventhandlers 95

Chapter 2: Window and Frame Objects (Chapter16) 127
Examples Highlights 128
Window Object e e 129
Properties 129

Methods 153

Event handlers 188

FRAME Element Object 190
Properties 190
FRAMESET Element Object 194
Properties 194

[FRAME Element Object, 198
Properties 198

popup Object 201
Properties 201

Methods 202

Chapter 3: Location and History Objects (Chapter17) 205
Examples Highlights 205
Location Object e 206
Properties 206

Methods 216

History Object e 218
Properties 218

Methods e 219

X\/| JavaScript Example Bible: The Essential Companion to JavaScript Bible

Chapter 4: The Document and Body Objects (Chapter18) 223
Examples Highlights 224
Document Object 224

Properties 224
Methods 243
EventHandlers 256
BODY Element Object 257
Properties 257
Methods e 261
EventHandlers 262

Chapter 5: Body Text Objects (Chapter19) 265
Examples Highlights 266
FONT Element Object it 266

Properties 266
HR Element Object 269
Properties 269
MARQUEE Element Object 273
Properties 273
Methods 276
Range Object e 276
Properties 276
Methods 279
selection Object 291
Properties 291
Methods 292
Text and TextNode Objects 293
Properties 293
Methods 294
TextRange Object 297
Properties 297
Methods 300
TextRectangle Object 315
Properties 315

Chapter 6: Image, Area, and Map Objects (Chapter22) 317
Examples Highlights 317
Image and IMG Element Objects 318

Properties 318
Event handlers 329
AREA Element Object 331
Properties 331
MAP Element Object e 331

Property e 331

Contents

Chapter 7: The Form and Related Objects (Chapter23) 335
Examples Highlights 335
FORM Object e e e e 336
Properties 336
Methods 340
Eventhandlers 341
LABEL Element Object 342
Property e 342
Chapter 8: Button Objects (Chapter24) 343
Examples Highlights, 343

The BUTTON Element Object and the Button, Submit, and
Reset Input Objects 344
Properties 344
Methods 345
Event handlers 346
Checkbox Input Object 347
Properties 347
Eventhandlers 349
RadioInput Object e 352
Properties 352
Eventhandlers 355
Chapter 9: Text-Related Form Objects (Chapter25) 357
Examples Highlights 358
Text Input Object 358
Properties 358
Methods 363
Eventhandlers 365
TEXTAREA Element Object 368
Properties 368
Methods 368
Chapter 10: Select, Option, and Optgroup Objects (Chapter 26) . . 369
Examples Highlights 370
SELECT Element Object 370
Properties 370
Methods e 376
Eventhandlers 377
OPTION Element Object 378
Properties 378
OPTGROUP Element Object 378

Properties 378

XVii

XVIIl JavaScript Example Bible: The Essential Companion to JavaScript Bible

Chapter 11: Table and List Objects (Chapter27) 381
Examples Highlights 382
TABLE Element Object 382

Properties 382
Methods 390
TBODY, TFOOT, and THEAD Element Objects 390
Properties 390
COL and COLGROUP Element Objects 391
Properties 391
TRElement Object 391
Properties 391
TD and TH Element Objects 392
Properties 392
OLElement Object e 394
Properties 394
ULElement Object e 395
Properties 395
LIElement Object e 395
Properties 395

Chapter 12: Navigator and Other Environment Objects

(Chapter28)c.i i nnennnnnnnnnns 397
Examples Highlights 398
clientinformation Object (IE4+) and navigator Object (All) 398

Properties 398
Methods 405
screen Object 407
Properties 407
userProfile Object 407
Methods 407

Chapter 13: Event Objects (Chapter29) 409
Examples Highlights 410
NN4 event Object e 410

Properties 410
[E4+ event Object 413
Properties 413
NN6+event Object e 423

Chapter 14: Style Sheet Objects (Chapter30) 435
Examples Highlights 435
styleSheet Object 436

Properties 436
Methods 438
cssRuleand rule Objects 440

Properties 440

Contents

Chapter 15: The NN4 Layer Object (Chapter31) 441
Examples Highlights 441

NN4 Layer Object e 442
Properties 442

Methods 462

Chapter 16: String and Number Objects (Chapters 34 and 35) . . . 469
Examples Highlights 470
String Object e 470
Properties 470

Parsing methods 471

Number Object e 484
Properties 484

Methods e 485

Chapter 17: The Array Object (Chapter37) 487
Examples Highlights 487
Array Object Methods, 488
Appendix: What'sonthe CD-ROM 497
INdexX 499
End-User License Agreement 528

CD-ROM Installation Instructions.0..u.... 532

XiX

Generic HTML
Element Objects
(Chapter 15)

Document object models for both IE4+ and NN6 expose all
HTML elements as scriptable objects. A beneficial
byproduct of this concept is that object model designers find it
easier to implement their models according to genuinely object-
oriented principles. (In truth, modern HTML and DOM industry
standards encourage browser makers to think in object-oriented
terms anyway.) The object-oriented principle most applicable to
the way we work with objects is that all HTML elements inherit
properties, methods, and event handlers from a generic (and
unseen) HTML element object. Thus, specifications for any
HTML element object start with those of the generic object, and
then pile on element-specific features, such as the src property
of an IMG element. This chapter deals almost exclusively with
the properties, methods, and event handlers that all HTML
elements have in common.

Examples Highlights

4 Modern object models and the scripting world now pay
much attention to the containment hierarchy of ele-
ments and text nodes in a document. The function
shown in Listing 15-3 demonstrates how vital the
childNodes property is to scripts that need to inspect
(and then perhaps modify) page content.

4 Element containment is also at the forefront in Listing
15-10, where W3C DOM syntax demonstrates how to use
the firstChild and 1astChild properties, plus the
insertBefore(), appendChild(),and replaceChild()
methods, to change portions of page content on the fly.

4 In the IE/Windows world, data binding can be a powerful
tool that requires only tiny amounts of your code in a
page. You can get a good sense of the possibilities in
the extended examples for the dataF1d and related
properties.

CHAPTER

¢+ 0+ o+
In This Chapter

Understanding
element containment
relationships

Common properties
and methods of all
HTML element objects

Event handlers of all
element objects

+ o+ o+

2

JavaScript Examples Bible: The Essential Companion to JavaScript Bible

4 Follow the steps for the disabled property to see how form controls can be
disabled in I[E4+ and NN6. IE5.5 lets you disable any element on the page, as
you can witness in real time when you follow the example steps.

4 Long-time IE scripters know the powers of the innerHTML and innerText
properties. Listing 15-11 solidifies by example the precise differences between
the two related properties. Only one of these properties, innerHTML, is
implemented in NN6.

4+ Grasping the details of properties that govern element positions and dimen-
sions is not easy, as noted in the JavaScript Bible text. But you can work through
the examples of the client-, offset-, and scroll-related properties for [E4+ and the
offset-related properties in NN6 to help you visualize what these properties con-
trol. If you are scripting cross-browser applications, be sure to work through the
offset-related properties in both browsers to compare the results.

4+ Compare the [ES+ attachEvent () method and NN6 addEventListener()
method for modern ways to assign event handlers to element objects.
Although the method names are different, the two work identically.

4 Observe how the getAttribute() method returns an object’s property value
when the property name is a string and the name is the same as an assigned
element attribute name. The getAttribute() method is the prescribed way
to retrieve property values according to the W3C DOM.

4 You can see how the getElementsByTagName () method returns an array of
nested elements with a particular tag. This is a great way, for example, to get a
one-dimensional array of all cells within a table.

4+ Spend time comparing how the various insert- and replace-related methods
operate from different points of view. In the IE world, most operate on the cur-
rent element; in the W3C DOM world, the methods operate on child nodes of
the current element.

4 For IE5+/Windows, check out the way dynamic properties are managed
through the getExpression(), setExpression(), and recalc() methods.
Listing 15-32 demonstrates a neat graphical clock that employs these methods.

4+ [E5+/Windows provides a number of event handlers, such as onBeforeCopy,
onBeforePaste, onCopy, onCut, and onPaste that let scripts manage the
specific information preserved in the clipboard. These event handlers can
also be used with the onContextMenu event handler to facilitate custom
context menus.

4 Another set of [IE5+/Windows event handlers provides excellent control over
user dragging and dropping of elements on a page. Listing 15-37 is particularly
interesting in this regard.

4 Listing 15-41 shows a cross-browser laboratory for understanding the three
keyboard events and how to get key and character information from the event.
You see event-handling that works with IE4+, NN4, and NN6 event models.

4+ Numerous mouse-related events belong to all HTML elements. Listings 15-42
and 15-43 demonstrate simplified image swapping and element dragging.

Chapter 1 4 Generic HTML Element Objects (Chapter 15) 3

Generic Objects

Properties
accessKey
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v
Example

When you load the script in Listing 15-1, adjust the height of the browser window
so that you can see nothing below the second dividing rule. Enter any character
into the Settings portion of the page and press Enter. (The Enter key may cause
your computer to beep.) Then hold down the Alt (Windows) or Ctrl (Mac) key while
pressing the same keyboard key. The element from below the second divider
should come into view.

Listing 15-1: Controlling the accessKey Property

<HTML>
<HEAD>
<TITLE>accessKey Property</TITLE>
{SCRIPT LANGUAGE="JavaScript">
function assignKey(type, elem) {
if (window.event.keyCode == 13) {
switch (type) {
case "button":
document.forms["output"].accessl.accessKey = elem.value
break
case "text":
document.forms["output"].access2.accessKey = elem.value
break
case "table":
document.all.myTable.accessKey = elem.value

1
return false
}

}
</SCRIPT>
</HEAD>
<BODY>
<H1>accessKey Property Lab</H1>
<HR>
Settings:

Continued

elementObject.accessKey

4 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-1 (continued)

<FORM NAME="input">

Assign an accessKey value to the Button below and press Return:
<INPUT TYPE="text" SIZE=2 MAXLENGTH=1

onKeyPress="return assignKey('button', this)">

Assign an accessKey value to the Text Box below and press Return:
<INPUT TYPE="text" SIZE=2 MAXLENGTH=1

onKeyPress="return assignKey('text', this)">

Assign an accessKey value to the Table below (IE5.5 only) and press Return:
<INPUT TYPE="text" SIZE=2 MAXLENGTH=1

onKeyPress="return assignKey('table', this)">

</FORM>

Then press ATt (Windows) or Control (Mac) + the key.

<I>Size the browser window to view nothing lTower than this line.</I>
<HR>

<FORM NAME="output" onSubmit="return false">
<INPUT TYPE="button" NAME="accessl" VALUE="Standard Button">
<PX/P>
<INPUT TYPE="text" NAME="access2">
<PH/PY
</FORM>
<TABLE ID="myTable" CELLPADDING="10" BORDER=2>
<TR>
<TH>Quantity<TH>Description<TH>Price
</TR>
<TBODY BGCOLOR="red">
<TR>
<TD WIDTH=100>4<TD>Primary Widget<TD>$14.96
</TR>
<TR>
<TD>10<TD>Secondary Widget<TD>$114.96
</TR>
</TBODY>
</TABLE>

</BODY>
</HTML>

/\Iote In IE5, the keyboard combination may bring focus to the input field. This anomalous
~— behavior does not affect the normal script setting of the accessKey property.

elementObject.accessKey

Chapter 1 4 Generic HTML Element Objects (Chapter 15) 5

all
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
all collection. Enter the following statements one at a time into the lower text box,
and review the results in the textarea for each.

document.all
myTable.all
myP.all

If you encounter a numbered element within a collection, you can explore that
element to see which tag is associated with it. For example, if one of the results for
the document.all collection says document.all.8=[object], enter the following
statement into the topmost text box:

document.all[8].tagName

attributes
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to examine the values of
the attributes array for some of the elements in that document. Enter each of the
following expressions into the lower text field, and see the array contents in the
Results textarea for each:

document.body.attributes
document.getElementById("myP").attributes
document.getETementById("myTable").attributes

If you have both NN6 and IE5, compare the results you get for each of these
expressions. To view the properties of a single attribute in I[E5/Windows, enter the
following statement into the bottom text field:

document.getETementById("myP").attributes["class"]
For NN6 and IE5/Mac, use the W3C DOM syntax:
document.getElementById("myP").attributes.getNamedItem("class")

elementObject.attributes

JavaScript Examples Bible: The Essential Companion to JavaScript Bible

behaviorUrns

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

Example

The following function is embedded within a more complete example of
IE/Windows HTML behaviors (Listing 15-19 in this chapter). It reports the length of
the behaviorUrns array and shows —if the values are returned — the URL of the
attached behavior.

function showBehaviors() {
var num = document.all.myP.behaviorUrns.length
var msg = "The myP element has " + num + " behavior(s). "
if (num > 0) {
msg += "Name(s): \r\n"
for (var i = 0; 1 < num; i++) {
msg += document.all.myP.behaviorUrns[i] + "\r\n"
}
}
alert(msg)
}

canHaveChildren

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

Example

Listing 15-2 uses color to demonstrate the difference between an element that can
have children and one that cannot. The first button sets the color style property of
every visible element on the page to red. Thus, elements (including the normally
non-childbearing ones such as HR and INPUT) are affected by the color change.

But if you reset the page and click the largest button, only those elements that can
contain nested elements receive the color change.

Listing 15-2: Reading the canHaveChildren Property

<HTML>

<HEAD>

<TITLE>canHaveChildren Property</TITLE>
<SCRIPT LANGUAGE="JavaScript">

elementObject.canHaveChildren

Chapter 1 4 Generic HTML Element Objects (Chapter 15) 7

function colorA11() {
for (var i = 0; i < document.all.length; i++) {
document.all[i].style.color = "red"
1
}

function colorChildBearing() {
for (var i = 0; i < document.all.length; i++) {
if (document.all[i].canHaveChildren) {

document.all[i].style.color = "red"
}

}
}
</SCRIPT>
</HEAD>
<BODY>
<H1>canHaveChildren Property Lab</H1>
<HR>

<FORM NAME="input">

<INPUT TYPE="button" VALUE="Color A1l Elements" onClick="colorAll()">

<INPUT TYPE="button" VALUE="Reset" onClick="history.go(0)">

<INPUT TYPE="button" VALUE="Color Only Elements That Can Have Children"
onClick="colorChildBearing()">

</FORM>

<HR>

<FORM NAME="output">
<INPUT TYPE="checkbox" CHECKED>Your basic checkbox
<PY</PY
CINPUT TYPE="text" NAME="access2" VALUE="Some textbox text.">
<PXS/P>
</FORM>
<TABLE ID="myTable" CELLPADDING="10" BORDER=2>
<TR>
<TH>Quantity<TH>Description<TH>Price
/TR
<TBODY>
<TR>
<TD WIDTH=100>4<TD>Primary Widget<TD>$14.96
</TR>
<TR>
<TD>10<TD>Secondary Widget<TD>$114.96
</TR>
</TBODY>
</TABLE>

</BODY>
</HTML>

elementObject.canHaveChildren

8 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

canHaveHTML
NN2 NN3 NN4 NNé6 IE3/J1 1E3/)2 IE4 IE5 IE5.5
Compatibility v
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
canHaveHTML property. Enter the following statements into the top text field and
observe the results:

document.all.input.canHaveHTML
document.all.myP.canHaveHTML

The first statement returns false because an INPUT element (the top text field
in this case) cannot have nested HTML. But the myP element is a P element that
gladly accepts HTML content.

childNodes
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v/ v v
Example

The walkChildNodes () function shown in Listing 15-3 accumulates and returns
a hierarchical list of child nodes from the point of view of the document’s HTML
element (the default) or any element whose ID you pass as a string parameter. This
function is embedded in The Evaluator so that you can inspect the child node
hierarchy of that page or (when using evaluator. js for debugging as described in
Chapter 45 of the JavaScript Bible) the node hierarchy within any page you have
under construction. Try it out in The Evaluator by entering the following statements
into the top text field:

walkChildNodes ()
walkChildNodes(getETlementById("myP"))

The results of this function show the nesting relationships among all child nodes
within the scope of the initial object. It also shows the act of drilling down to further
childNodes collections until all child nodes are exposed and catalogued. Text nodes
are labeled accordingly. The first 15 characters of the actual text are placed in the
results to help you identify the nodes when you compare the results against your
HTML source code. The early NN6 phantom text nodes that contain carriage returns
display <cr> in the results for each return character.

elementObject.childNodes

Chapter 1 4 Generic HTML Element Objects (Chapter 15) o

Listing 15-3: Collecting Child Nodes

function walkChildNodes(objRef, n) {

var obj
if (objRef) {
if (typeof objRef == "string") {
obj = document.getElementById(objRef)
} else {
obj = objRef
}
} else {

obj = (document.body.parentElement) ?
document.body.parentElement : document.body.parentNode
}
var output =
var indent =
var i, group, txt
if (n) {
for (i =0; 1 < n; i++) |
indent += "+---"

}

} else {
n=20
output += "Child Nodes of <" + obj.tagName
output += "d\n=====================\n"

}
group = obj.childNodes
for (i = 0; 1 < group.length; i++) {
output += indent
switch (group[il.nodeType) {
case 1:
output += "<" + group[i].tagName
output += (groupli].id) ? " ID=" + groupl[i].id : ""
output += (grouplil.name) ? " NAME=" + group[i].name :
output += ">\n"
break
case 3:
txt = groupl[iJ.nodeValue.substr(0,15)
output += "[Text:\"" + txt.replace(/[\r\nl/g,"<cr>")
if (group[i].nodeValue.length > 15) {
output += "..."

}
output += "\"J\n"
break
case 8:
output += "[!COMMENT!I\n"
break
default:
output += "[Node Type = " + groupl[i]l.nodeType + "J\n"

Continued

elementObject.childNodes

10 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-3 (continued)

if (group[il.childNodes.length > 0) {
output += walkChildNodes(groupl[i], n+1)
1
}

return output

children
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v
Example

The walkChildren() function in Listing 15-4 accumulates and returns a
hierarchical list of child elements from the point of view of the document’s HTML
element (the default) or any element whose ID you pass as a string parameter. This
function is embedded in The Evaluator so that you can inspect the parent—child
hierarchy of that page or (when using evaluator. js for debugging, as described in
Chapter 45 of the JavaScript Bible) the element hierarchy within any page you have
under construction. Try it out in The Evaluator in I[E5+ by entering the following
statements into the top text field:

walkChildren()
walkChildren("myP")

The results of this function show the nesting relationships among all parent and
child elements within the scope of the initial object. It also shows the act of drilling
down to further children collections until all child elements are exposed and
catalogued. The element tags also display their 1D and/or NAME attribute values if
any are assigned to the elements in the HTML source code.

Listing 15-4: Collecting Child Elements

function walkChildren(objRef, n) {

var obj
if (objRef) {
if (typeof objRef == "string") {
obj = document.getElementById(objRef)
}oelse {
obj = objRef

elementObject.children

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) 11

1
} else {

obj = document.body.parentElement
1
var output =
var indent =
var i, group
if (n) {

for (i = 0; i < n; i++) |

indent += "+---"

}

} else {
n=20
output += "Children of <" + obj.tagName
output += "d\n==s==================\p"

}
group = obj.children
for (i = 0; 1 < group.length; i++) {
output += indent + "<" + groupl[i].tagName
output += (group[il.id) ? " ID=" + group[il].id : ""
output += (group[iJ].name) ? " NAME=" + group[i].name : ""
output += ">\n"
if (group[il.children.length > 0) {
output += walkChildren(groupl[i], n+1)
}
}
return output

className
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v/ v v
Example

The style of an element toggles between “on” and “off” in Listing 15-5 by virtue of
setting the element’s c1assName property alternatively to an existing style sheet
class selector name and an empty string. When you set the className to an empty
string, the default behavior of the H1 element governs the display of the first
header. A click of the button forces the style sheet rule to override the default
behavior in the first HI element.

elementObject.className

12 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-5: Working with the className Property

<HTML>
<HEAD>
<TITLE>cTassName Property</TITLE>
{STYLE TYPE="text/css">
.special {font-size:16pt; color:red}
</STYLED
<SCRIPT LANGUAGE="JavaScript">
function toggleSpecialStyle(elemID) {
var elem = (document.all) ? document.all(elemID)
document.getElementById(elemID)

if (elem.className == "") {
elem.className = "special"
} else {

elem.className =
}
}
</SCRIPT>
</HEAD>
<BODY>
<H1>cTassName Property Lab</H1>
<HR>
<FORM NAME="input">
<INPUT TYPE="button" VALUE="Toggle Class Name"
onClick="toggleSpecialStyle('headl')">
</FORM>

<H1 ID="headl">ARTICLE I</H1>
<P>Congress shall make no law respecting an establishment of religion, or
prohibiting the free exercise thereof; or abridging the freedom of speech, or of
the press; or the right of the people peaceably to assemble, and to petition the
government for a redress of grievances.</P>

<HI>ARTICLE TI<K/H1>

<P>A well regulated militia, being necessary to the security of a free state,
the right of the people to keep and bear arms, shall not be infringed.</P>
</BODY>

</HTML>

You can also create multiple versions of a style rule with different class selector
identifiers and apply them at will to a given element.

elementObject.className

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) 13

clientHeight
clientWidth

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/ v v

Example

Listing 15-6 calls upon the clientHeight and c1ientWidth properties of a DIV
element that contains a paragraph element. Only the width of the DIV element is
specified in its style sheet rule, which means that the paragraph’s text wraps inside
that width and extends as deeply as necessary to show the entire paragraph. The
clientHeight property describes that depth. The c1ientHeight property then
calculates where a logo image should be positioned immediately after DIV, regardless
of the length of the text. As a bonus, the cTientWidth property helps the script
center the image horizontally with respect to the paragraph’s text.

Listing 15-6: Using clientHeight and clientWidth Properties

<HTML>
<HEAD>
<TITLE>clientHeight and clientWidth Properties</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function showlLogo() {
var paragraphW = document.all.myDIV.clientWidth
var paragraphH = document.all.myDIV.clientHeight
// correct for Windows/Mac discrepancies
var paragraphTop = (document.all.myDIV.clientTop) ?
document.all.myDIV.clientTop : document.all.myDIV.offsetTop
var TogoW = document.all.logo.style.pixelWidth
// center logo horizontally against paragraph
document.all.logo.style.pixelleft = (paragraphW-TlogoW)/2
// position image immediately below end of paragraph
document.all.logo.style.pixelTop = paragraphTop + paragraphH
document.all.logo.style.visibility = "visible"
}
</SCRIPT>
</HEAD>
<BODY>
<BUTTON onClick="showLogo()">Position and Show Logo Art</BUTTON>
<DIV ID="Togo" STYLE="position:absolute; width:120px; visibility:hidden"></DIV>
<DIV ID="myDIV" STYLE="width:200px">

Continued

elementObject.clientHeight

14 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-6 (continued)

<P>Lorem ipsum dolor sit amet, consectetaur adipisicing elit, sed do eiusmod
tempor incididunt ut Tabore et dolore magna aliqua. Ut enim adminim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit involuptate velit esse cillum dolore eu
fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident.</P>
</DIVS

</BODY>

<THTML>

To assist in the vertical positioning of the logo, the of fsetTop property of the
DIV object provides the position of the start of the DIV with respect to its outer
container (the BODY). Unfortunately, I[E/Mac uses the c1ientTop property to obtain
the desired dimension. That measure (assigned to the paragraphTop variable), plus
the clientHeight of the DIV, provides the top coordinate of the image.

If you use only IE5, you can eliminate the DIV wrapper around the P element and
assign the STYLE attribute directly to the P element. The script can then read the
clientHeight and cTientWidth of the P object.

contentEditable
NN2 NN3 NN4 NN6é IE3/J1 IE3/)2 1IE4 IE5 IE5.5
Compatibility v
Example

Listing 15-7 is a simplified demonstration of how to turn some text inside a
document into an editable element. When you click the button of a freshly loaded
page, the toggleEdit() function captures the opposite of the current editable
state via the isContentEditable property of the DIV that is subject to edit. You
switch on editing for that element in the next statement by assigning the new value
to the contentEditable property of the DIV. For added impact, turn the text of the
DIV to red to provide additional user feedback about what is editable on the page.
You can also switch the button label to one that indicates the action invoked by the
next click on it.

Listing 15-7: Using the contentEditable Property

<HTML>

<HEAD>

<STYLE TYPE="text/css">
.normal {color: black}
.editing {color: red}

elementObject.contentEditable

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) 15

</STYLED>

{SCRIPT LANGUAGE="JavaScript">

function togglekEdit() {
var newState = leditableText.isContentEditable
editableText.contentEditable = newState

editableText.className = (newState) ? "editing" : "normal"
editBtn.innerText = (newState) ? "Disable Editing" : "Enable Editing"
}
</SCRIPT>
<BODY>
<HI>Editing Contents</H1>
<HR>

<P>Turn on editing to modify the following text:</P>

<DIV ID="editableText">Edit this text on the fly....</DIV>

<P><BUTTON ID="editBtn" onClick="togglekEdit()" onFocus="this.blur()">
Enable Editing

</BUTTON></P>

</BODY>

<IHTMLY

The BUTTON element has an onFocus event handler that immediately invokes
the bTur () method on the button. This prevents a press of the spacebar (during
editing) from accidentally triggering the button.

currentStyle

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to compare the properties
of the currentStyle and sty1e objects of an element. For example, an unmodified
copy of The Evaluator contains an EM element whose ID is "myEM". Enter document.
all.myEM.styTe into the bottom property listing text box and press Enter. Notice
how most of the property values are empty. Now enter document.all.myEM.
currentStyle into the property listing text box and press Enter. Every property
has a value associated with it.

elementObject.currentStyle

16 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

dataFld
dataFormatAs
dataSrc
NN2 NN3 NN4 NN6 IE3/J1 1E3/)2 1E4 1IE5 1E5.5
Compatibility v v v
Example

Listing 15-8 is a simple document that has two TDC objects associated with it.
The external files are different formats of the U.S. Bill of Rights document. One file is
a traditional, tab-delimited data file consisting of only two records. The first record
is a tab-delimited sequence of field names (named "Articlel", "Article2", and
so on); the second record is a tab-delimited sequence of article content defined in
HTML:

<HI>ARTICLE I</HI><P>Congress shall make...</P>

The second file is a raw text file consisting of the full Bill of Rights with no HTML
formatting attached.

When you load Listing 15-8, only the first article of the Bill of Rights appears in a
blue-bordered box. Buttons enable you to navigate to the previous and next articles
in the series. Because the data source is a traditional, tab-delimited file, the
nextField() and prevField() functions calculate the name of the next source
field and assign the new value to the dataF1d property. All of the data is already in
the browser after the page loads, so cycling through the records is as fast as the
browser can reflow the page to accommodate the new content.

Listing 15-8: Changing dataFld and dataSrc Properties

<HTML>
<HEAD>
<TITLE>Data Binding</TITLE>
{STYLE TYPE="text/css">
f#display {width:500px; border:10px ridge blue; padding:20px}
.hiddenControl {display:none}
</STYLE>
{SCRIPT LANGUAGE="JavaScript">
function nextField() {
var elem = document.all.display
var fieldName = elem.dataF1d
var currfFieldNum = parselnt(fieldName.substring(7, fieldName.length),10)
currFieldNum = (currFieldNum == 10) ? 1 : ++currFieldNum
elem.dataF1d = "Article" + currFieldNum

elementObject.dataFld

function prevField()

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) 17

{

var elem = document.all.display

var fieldName = e

var currFieldNum

Tem.dataF1d
= parselnt(fieldName.substring(7, fieldName.length),10)

currFieldNum = (currFieldNum == 1) ? 10 : --currFieldNum
elem.dataF1d = "Article" + currFieldNum
}

function toggleComplete() {
if (document.all.buttonWrapper.className == "") {
document.all.display.dataSrc = "#rights_raw"
document.all.display.dataFld = "columnl"
document.all.display.dataFormatAs = "text"
document.all.buttonWrapper.className = "hiddenControl"
} else {
document.all.display.dataSrc = "#rights_html"
document.all.display.dataFld = "Articlel”
document.all.display.dataFormatAs = "HTML"
document.all.buttonWrapper.className = ""
}
}
</SCRIPT>
</HEAD>
<BODY>
<P>U.S. Bill of Rights</P>
<FORM>
<INPUT TYPE="button" VALUE="Toggle Complete/Individual"
onClick="toggleComplete()">

<INPUT TYPE="button" VALUE="Prev" onClick="prevField()">
<INPUT TYPE="button" VALUE="Next" onClick="nextField()">

</FORM>

<DIV ID="display" DATASRC="ffrights_html" DATAFLD="Articlel"
DATAFORMATAS="HTML"></DIV>

<OBJECT ID="rights_html" CLASSID="c1sid:333C7BC4-460F-11D0-BC04-0080C7055A83">
<PARAM NAME="DataURL" VALUE="Bill of Rights.txt">
<PARAM NAME="UseHeader" VALUE="True">
<PARAM NAME="FieldDelim" VALUE="	">

</0BJECT>

<OBJECT ID="rights_raw" CLASSID="cl1sid:333C7BC4-460F-11D0-BC04-0080C7055A83">
<PARAM NAME="DataURL" VALUE="Bill of Rights (no format).txt">
<PARAM NAME="FieldDelim" VALUE="\">
<PARAM NAME="RowDelim" VALUE="\")>

</0BJECT>

</BODY>

</HTML>

elementObject.dataFld

18 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Another button on the page enables you to switch between the initial piecemeal
version of the document and the unformatted version in its entirety. To load the
entire document as a single record, the FieldDelim and RowDelim parameters of
the second OBJECT element eliminate their default values by replacing them with
characters that don’t appear in the document at all. And because the external file
does not have a field name in the file, the default value (column1 for the lone col-
umn in this document) is the data field. Thus, in the toggleComplete() function,
the dataSrc property is changed to the desired OBJECT element ID, the dataF1d
property is set to the correct value for the data source, and the dataFormatAs
property is changed to reflect the different intention of the source content (to be
rendered as HTML or as plain text). When the display shows the entire document,
you can hide the two radio buttons by assigning a cl1assName value to the SPAN
element that surrounds the buttons. The c1assName value is the identifier of the
class selector in the document’s style sheet. When the toggleComplete() function
resets the className property to empty, the default properties (normal inline
display style) take hold.

One further example demonstrates the kind of power available to the TDC under
script control. Listing 15-9 displays table data from a tab-delimited file of Academy
Award information. The data file has eight columns of data, and each column heading
is treated as a field name: Year, Best Picture, Best Director, Best Director Film, Best
Actress, Best Actress Film, Best Actor, and Best Actor Film. For the design of the
page, only five fields from each record appear: Year, Film, Director, Actress, and Actor.
Notice in the listing how the HTML for the table and its content is bound to the data
source object and the fields within the data.

The “dynamic” part of this example is apparent in how you can sort and filter the
data, once loaded into the browser, without further access to the original source
data. The TDC object features Sort and Filter properties that enable you to act on
the data currently loaded in the browser. The simplest kind of sorting indicates on
which field (or fields, via a semicolon delimited list of field names) the entire data
set should be sorted. Leading the name of the sort field is either a plus (to indicate
ascending) or minus (descending) symbol. After setting the data object’s Sort
property, invoke its Reset () method to tell the object to apply the new property.
The data in the bound table is immediately redrawn to reflect any changes.

Similarly, you can tell a data collection to display records that meet specific criteria.
In Listing 15-9, two select lists and a pair of radio buttons provide the interface to the
Filter property’s settings (see Figure 1-1). For example, you can filter the output to
display only those records in which the Best Picture was the same picture of the
winning Best Actress’s performance. Simple filter expressions are based on field
names:

dataObj.Filter = "Best Picture" = "Best Actress Film"

Listing 15-9: Sorting and Filtering Bound Data

<HTML>

<HEAD>

(TITLE>Data Binding—Sorting</TITLE>
{SCRIPT LANGUAGE="JavaScript">

elementObject.dataFld

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) 19

function sortByYear(type) {
oscars.Sort = (type == "normal") ? "-Year" : "+Year"
oscars.Reset()
}
function filterInCommon(form) {
var filterkxprl = form.filterl.options[form.filterl.selectedIndex].value
var filterkxpr2 = form.filterZ.options[form.filter2.selectedIndex].value
var operator = (form.operator[0].checked) ? "=" : "<
var filterExpr = filterExprl + operator + filterkExpr2
oscars.Filter = filterExpr
oscars.Reset()
}
</SCRIPT>

</HEAD>
<BODY>
<P><{B>Academy Awards 1978-1997</P>
<FORM>
<P>Sort 1ist by year from newest to
oldest or from oldest to
newest.</P>
<P>Filter listings for records whose
<SELECT NAME="filterl" onChange="filterInCommon(this.form)">
<OPTION VALUE="">
<OPTION VALUE="Best Picture">Best Picture
<OPTION VALUE="Best Director Film">Best Director's Film
<OPTION VALUE="Best Actress FiIm">Best Actress's Film
<OPTION VALUE="Best Actor Film">Best Actor's Film
</SELECT>
<INPUT TYPE="radio" NAME="operator" CHECKED
onClick="filterInCommon(this.form)">is
<INPUT TYPE="radio" NAME="operator" onClick="filterInCommon(this.form)">is not
<SELECT NAME="filter2" onChange="filterInCommon(this.form)">
<OPTION VALUE="">
<OPTION VALUE="Best Picture">Best Picture
<OPTION VALUE="Best Director Film">Best Director's Film
<OPTION VALUE="Best Actress Film">Best Actress's Film
<OPTION VALUE="Best Actor Film">Best Actor's Film
</SELECT>
</P>
</FORM>
(TABLE DATASRC="#foscars" BORDER=1 ALIGN="center">
<THEAD STYLE="background-color:yellow; text-align:center">
<TR><TD>Year</TD>
<TD>Film</TD>
<TD>Director</TD>
<TD>Actress</TD>
<TD>Actor</TD>
/TR
</THEAD>
<TR>

Continued

elementObject.dataFld

20 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-9 (continued)

<TD><DIV ID="coll" DATAFLD="Year" ></DIV></TD>
<TD><DIV ID="col2" DATAFLD="Best Picture"></DIV></TD>
<TD><DIV ID="col13" DATAFLD="Best Director"></DIV></TD>
<TD><DIV ID="col4" DATAFLD="Best Actress"></DIV></TD>
<TD><DIV ID="col5" DATAFLD="Best Actor"></DIV></TD>
</TR>
</TABLE>

<OBJECT ID="oscars" CLASSID="cl1sid:333C7BC4-460F-11D0-BC04-0080C7055A83">
<PARAM NAME="DataURL" VALUE="Academy Awards.txt">
<PARAM NAME="UseHeader" VALUE="True">
<PARAM NAME="FieldDelim" VALUE="	">

</0BJECT>

</BODY>

</HTML>

For more detailed information on Data Source Objects and their properties, visit
http://msdn.microsoft.comand search for “Data Binding.”

Data B D 050 erne ore _[FX
J File Edit View Favorites Tools Help ‘
« . = 9 fat Q Gl 4 = = >
Back Forward Stop Refresh Home Search Favorites History Mail Print Edit
Academy Awards 1978-1997
Sort list by year from newest to oldest or from oldest to newest.
Filter listings for records whose IBESt Director's Film x| @ i3 € is not |Best Actor's Film 'I
Year ‘ Filn | Director EtallFlsE Actor
1594 ‘Forrest Gump |Robert Zemeckis
1991 ‘The Silence of the Lambs |J'onathan Demme E FOITEr [T
1584 ‘Amadeus |Mos Forman |Sally Fuield ‘P Murray Abraham
1982 ‘Gandh.i |Richa.rd Attenborough |Mery1 Streep ‘Ben Emngsley
1574 ‘Kramer vs. Kramer |Robert Benton |Sa]1y Field ‘Dustin Hoffinan
LI
&] Done ’_’_ g My Computer

Figure 1-1: IE/Windows data binding puts filtering, sorting, and display under
script control.

elementObject.dataFld

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) 21

dir
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v
Example

Changing this property value in a standard U.S. version of the browser only
makes the right margin the starting point for each new line of text (in other words,
the characters are not rendered in reverse order). You can experiment with this in
The Evaluator by entering the following statements into the expression evaluation
field:

document.getElementById("myP").dir = "rti1"

disabled
NN2 NN3 NN4 NNé6é IE3/)J1 1E3/)2 IE4 IE5 IE5.5
Compatibility) v v v
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
disabled property on both form elements (IE4+ and NN6) and regular HTML
elements (IE5.5). For IE4+ and NN6, see what happens when you disable the output
textarea by entering the following statement into the top text box:

document.forms[0].output.disabled = true

The textarea is disabled for user entry, although you can still set the field’s value
property via script (which is how the true returned value got there).

If you have IE5.5+, disable the myP element by entering the following statement
into the top text box:

document.all.myP.disabled = true

The sample paragraph’s text turns gray.

document

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

elementObject.document

22 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example

The following simplified function accepts a parameter that can be any object in a
document hierarchy. The script finds out the reference of the object’s containing
document for further reference to other objects:

function getCompanionFormCount(obj) f
var ownerDoc = obj.document
return ownerDoc.forms.length

Because the ownerDoc variable contains a valid reference to a document object, the
return statement uses that reference to return a typical property of the document
object hierarchy.

firstChild
lastChild
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v/ v v
Example

These two properties come in handy for Listing 15-10, whose job it is to either
add or replace L1 elements to an existing OL element. You can enter any text you
want to appear at the beginning or end of the list. Using the firstChild and
lastChild properties simplifies access to the ends of the list. For the functions
that replace child nodes, the example uses the replaceChild() method.
Alternatively for IE4+, you can modify the innerText property of the objects
returned by the firstChild or TastChild property. This example is especially
interesting to watch when you add items to the list: The browser automatically
renumbers items to fit the current state of the list.

Listing 15-10: Using firstChild and lastChild Properties

<HTML>

<HEAD>

KTITLE>firstChild and lastChild Properties</TITLE>

{SCRIPT LANGUAGE="JavaScript">

// helper function for prepend() and append()

function makeNewLI(txt) {
var newltem = document.createETement("LI")
newltem.innerHTML = txt
return newltem

}

function prepend(form) {
var newltem = makeNewLI(form.input.value)
var firstLl = document.getElementById("myList").firstChild
document.getETementById("myList").insertBefore(newltem, firstLI)

elementObject.firstChild

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) 23

}
function append(form) {
var newltem = makeNewLI(form.input.value)
var lastLI = document.getElementById("myList").lastChild
document.getElementById("myList").appendChild(newItem)
}
function replaceFirst(form) {
var newltem = makeNewLI(form.input.value)
var firstLI = document.getElementById("myList").firstChild
document.getElementById("myList").replaceChild(newltem, firstLI)
}
function replacelast(form) {
var newltem = makeNewLI(form.input.value)
var lastLl = document.getElementById("myList").lastChild
document.getElementById("myList").replaceChild(newltem, lastlLI)
}
</SCRIPT>

</HEAD>

<BODY>

<H1>firstChild and TastChild Property Lab</H1>

<HR>

<FORM>

<LABEL>Enter some text to add to or replace in the OL element:</LABEL>

<INPUT TYPE="text" NAME="input" SIZE=50>

<INPUT TYPE="button" VALUE="Insert at Top" onClick="prepend(this.form)">
<INPUT TYPE="button" VALUE="Append to Bottom" onClick="append(this.form)">

<INPUT TYPE="button" VALUE="Replace First Item"
onClick="replaceFirst(this.form)">

<INPUT TYPE="button" VALUE="Replace Last Item" onClick="replacelast(this.form)">
</FORM>

<POC/PY

<OL ID="myList">Initial Item 1

Initial Item 2

LI>Initial Item 3

Initial Item 4

</BODY>

</HTML>

height
width

- __
NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v

elementObject.height

24 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example
The following example increases the width of a table by 10 percent.

var tableW = parselnt(document.all.myTable.width)
document.all.myTable.width = (tableW * 1.1) + "%"

Because the initial setting for the WIDTH attribute of the TABLE element is set as a
percentage value, the script calculation extracts the number from the percentage
width string value. In the second statement, the old number is increased by 10 percent
and turned into a percentage string by appending the percentage symbol to the value.
The resulting string value is assigned to the width property of the table.

hideFocus
NN2 NN3 NN4 NN6 |IE3/)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
hideFocus property in IE5.5. Enter the following statement into the top text field to
assign a tabIndex value to the myP element so that, by default, the element
receives focus and the dotted rectangle:

document.all.myP.tabIndex = 1

Press the Tab key several times until the paragraph receives focus. Now, disable
the focus rectangle:

document.all.myP.hideFocus = true

If you now press the Tab key several times, the dotted rectangle does not appear
around the paragraph. To prove that the element still receives focus, scroll the page
down to the bottom so that the paragraph is not visible (you may have to resize the
window). Click one of the focusable elements at the bottom of the page, and then
press the Tab key slowly until the Address field toolbar has focus. Press the Tab
key once. The page scrolls to bring the paragraph into view, but there is no focus
rectangle around the element.

id

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v 4

elementObject.id

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) 25

Example

Rarely do you need to access this property in a script — unless you write an
authoring tool that iterates through all elements of a page to extract the IDs
assigned by the author. You can retrieve an object reference once you know the
object’s id property (via the document.getElementById(elemID) method). But if
for some reason your script doesn’t know the ID of, say, the second paragraph of a
document, you can extract that ID as follows:

var elemID = document.all.tags("P")[1].1d

innerHTML
innerText

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility) v/ v v

Example

The IE4+ page generated by Listing 15-11 contains an H1 element label and a
paragraph of text. The purpose is to demonstrate how the innerHTML and innerText
properties differ in their intent. Two text boxes contain the same combination of text
and HTML tags that replaces the inner content of the paragraph’s label.

If you apply the default content of the first text box to the innerHTML property of
the Tabell object, the italic style is rendered as such for the first word. In addition,
the text in parentheses is rendered with the help of the small style sheet rule
assigned by virtue of the surrounding tags. But if you apply that same
content to the innerText property of the Tabel object, the tags are rendered as is.

Use this as a laboratory to experiment with some other content in both text
boxes. See what happens when you insert a
 tag within some text of both
text boxes.

Listing 15-11: Using innerHTML and innerText Properties

<HTML>

<HEAD>

KTITLE>innerHTML and innerText Properties</TITLE>

(STYLE TYPE="text/css">

H1 {font-size:18pt; font-weight:bold; font-family:"Comic Sans MS", Arial, sans-
serif}

.small {font-size:12pt; font-weight:400; color:gray}

</STYLE>

{SCRIPT LANGUAGE="JavaScript">

function setGrouplabelAsText(form) {
var content = form.textInput.value

Continued

elementObject.innerHTML

26 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-11 (continued)

if (content) {
document.all.labell.innerText = content
}
}
function setGrouplLabelAsHTML(form) {
var content = form.HTMLInput.value
if (content) {
document.all.labell.innerHTML = content
}
}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
<P>
{INPUT TYPE="text" NAME="HTMLInput"
VALUE="<I>First</I> Article (of ten)"
SIZE=50>
<INPUT TYPE="button" VALUE="Change Heading HTML"
onClick="setGrouplLabelAsHTML(this.form)">
<P
<P>
<INPUT TYPE="text" NAME="textInput"
VALUE="<I>First</I> Article (of ten)"
SIZE=50>
<INPUT TYPE="button" VALUE="Change Heading Text"
onClick="setGrouplLabelAsText(this.form)">
</P>
</FORM>
<H1 ID="Tabell">ARTICLE I</H1>
<P>
Congress shall make no law respecting an establishment of religion, or
prohibiting the free exercise thereof; or abridging the freedom of speech, or of
the press; or the right of the people peaceably to assemble, and to petition the
government for a redress of grievances.

</P>
</BODY>
</HTML>
isContentEditable
NN2 NN3 NN4 NNé6 IE3/J)1 1E3/)2 1E4 1E5 1E5.5
Compatibility v

elementObject.isContentEditable

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) 27

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with both
the contentEditable and isContentEditable properties on the myP and nested
my EM elements (reload the page to start with a known version). Check the current
setting for the myEM element by typing the following statement into the top text field:

myEM.isContentEditable

This value is false because no element upward in the element containment
hierarchy is set to be editable yet. Next, turn on editing for the surrounding myP
element:

myP.contentEditable = true

At this point, the entire myP element is editable because its child element is set,
by default, to inherit the edit state of its parent. Prove it by entering the following
statement into the top text box:

myEM.isContentEditable

While the my EM element is shown to be editable, no change has accrued to its
contentEditable property:

myEM.contentEditable

This property value remains the default inherit. You can see an additional example
of these two properties in use in Listing 15-7.

isDisabled

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with both
the disabled and isDisabled properties on the myP and nested myEM elements
(reload the page to start with a known version). Check the current setting for the
my EM element by typing the following statement into the top text field:

myEM.isDisabled

This value is false because no element upward in the element containment
hierarchy is set for disabling yet. Next, disable the surrounding myP element:

myP.disabled = true

At this point, the entire myP element (including its children) is disabled. Prove it by
entering the following statement into the top text box:

myEM.isDisabled

elementObject.isDisabled

28 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

While the my EM element is shown as disabled, no change has accrued to its
disabled property:

myEM.disabled

This property value remains the default false.

isMultilLine

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to read the isMultiline
property for elements on that page. Try the following statements in the top text box:

document.body.isMultilLine
document.forms[0].input.isMultiline
myP.isMultiline

myEM.isMultiline

All but the text field form control report that they are capable of occupying multiple

lines.
isTextEdit
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v 4
Example

Good coding practice dictates that your script check for this property before
invoking the createTextRange () method on any object. A typical implementation
is as follows:

if (document.all.myObject.isTextEdit) {
var myRange = document.all.myObject.createTextRange()
[more statements that act on myRange]

lang

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v

elementObject.lang

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) 29

Example

Values for the 1ang property consist of strings containing valid ISO language
codes. Such codes have, at the minimum, a primary language code (for example,
"fr" for French) plus an optional region specifier (for example, "fr-ch" for Swiss
French). The code to assign a Swiss German value to an element looks like the
following:

document.all.specialSpan.lang = "de-ch"

language

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

Although it is unlikely that you will modify this property, the following example
shows you how to do it for a table cell object:

document.all.cellA3.language = "vbs"
lastChild
See firstchild.
length
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v v v v v v
Example

You can try the following sequence of statements in the top text box of The
Evaluator (Chapter 13 in the JavaScript Bible) to see how the 1ength property
returns values (and sets them for some objects). Note that some statements work
in only some browser versions.

(A11 browsers) document.forms.length
(A11 browsers) document.forms[0].elements.length
(NN3+, TE4+) document.images.length

(NN4+) document.layers.length
(TE4+) document.all.length
(TE5+, NN6) document.getElementById("myTable").childNodes.length

elementObject.length

30 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

nextSibling
previousSibling

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/ v v
Example
The following function assigns the same class name to all child nodes of an
element:

function setAl1ChildClasses(parentElem, className) {
var childElem = parentElem.firstChild
while (childElem.nextSibling) {
childElem.className = className
childElem = childETem.nextSibling

This example is certainly not the only way to achieve the same results. Using a
for loop to iterate through the childNodes collection of the parent element is an
equally valid approach.

nodeName

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

The following function demonstrates one (not very efficient) way to assign a new
class name to every P element in an IE5+ document:

function setAl1PClasses(className) {
for (var i = 0; i < document.all.length; i++) {
if (document.all[i].nodeName == "P") {
document.all[i].className = className
1

A more efficient approach uses the getElementsByTagName () method to
retrieve a collection of all P elements and then iterate through them directly.

elementObject.nodeName

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) 31

nodeType
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v
Example

You can experiment with viewing nodeType property values in The Evaluator.
The P element whose ID is myP is a good place to start. The P element itself is a
nodeType of 1:

document.getETementById("myP").nodeType

This element has three child nodes: a string of text (nodeName #text); an EM
element (nodeName EM); and the rest of the text of the element content (nodeName
jitext). If you view the nodeType of either of the text portions, the value comes
back as 3:

document.getElementById("myP").childNodes[0].nodeType

In NN6 and IE5/Mac, you can inspect the nodeType of the one attribute of this
element (the 1D attribute):

document.getETementById("myP").attributes[0].nodeType

With NN6 and IE5/Mac, you can see how the document object returns a
nodeType of 9:

document.nodeType

When IE5 does not support a nodeType constant for a node, its value is sometimes
reported as 1. However, more likely the value is undefined.

nodeValue
NN2 NN3 NN4 NN6é IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v
Example

The first example increases the width of a TEXTAREA object by 10 percent. The
nodeValue is converted to an integer (for NN6’s string values) before performing
the math and reassignment:

function widenCols(textareaElem) {
var colWidth = parselnt(textareaktlem.attributes["cols"].nodeValue, 10)
textareaElem.attributes["cols"].nodeValue = (colWidth * 1.1)

elementObject.nodeValue

32 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

The second example replaces the text of an element, assuming that the element
contains no further nested elements:

function replaceText(elem, newText) {
if (elem.childNodes.length == 1 && elem.firstChild.nodeType == 3) {
elem.firstChild.nodeValue = newText

}

The function builds in one final verification that the element contains just one child
node and that it is a text type. An alternative version of the assignment statement of
the second example uses the innerText property in IE with identical results:

elem.innerText = newText

offsetHeight
offsetWidth
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v
Example

With IE4+, you can substitute the of fsetHeight and offsetWidth properties
for clientHeight and clientWidth in Listing 15-6. The reason is that the two
elements in question have their widths hard-wired in style sheets. Thus, the
offsetWidth property follows that lead rather than observing the default width of
the parent (BODY) element.

With [E5+ and NN6, you can use The Evaluator to inspect the of fsetHeight and
of fsetWidth property values of various objects on the page. Enter the following
statements into the top text box:

document.getETementById("myP").offsetWidth
document.getElementById("myEM").of fsetWidth
document.getETementById("myP").offsetHeight
document.getElementById("myTable").offsetWidth

offsetLeft
offsetTop
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v

elementObject.offsetLeft

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) 33

Example

The following IE script statements utilize all four “offset” dimensional properties
to size and position a DIV element so that it completely covers a SPAN element
located within a P element. This can be for a fill-in-the-blank quiz that provides text
entry fields elsewhere on the page. As the user gets an answer correct, the blocking
DIV element is hidden to reveal the correct answer.

document.al
document.al
document.al
document.al

.blocker.style.pixelleft = document.all.span2.offsetleft
.blocker.style.pixelTop = document.all.spanZ2.offsetTop
.bTockImg.height = document.all.span2.offsetHeight
.blockImg.width = document.all.span2.offsetWidth

Because the offsetParent property for the SPAN element is the BODY element,
the positioned DIV element can use the same positioning context (it’s the default
context, anyway) for setting the pixellLeft and pixelTop style properties.
(Remember that positioning properties belong to an element’s style object.) The
offsetHeight and offsetWidth properties can read the dimensions of the SPAN
element (the example has no borders, margins, or padding to worry about) and
assign them to the dimensions of the image contained by the blocker DIV element.

This example is also a bit hazardous in some implementations. If the text of span?
wraps to a new line, the new of fsetHeight value has enough pixels to accommodate
both lines. But the b1ockImg and b1ocker DIV elements are block-level elements that
render as a simple rectangle. In other words, the bTocker element doesn’t turn into
two separate strips to cover the pieces of span? that spread across two lines.

offsetParent

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v 4

Example

You can use the offsetParent property to help you locate the position of a
nested element on the page. Listing 15-12 demonstrates how a script can “walk” up
the hierarchy of offsetParent objects in IE for Windows to assemble the location of
a nested element on a page. The goal of the exercise in Listing 15-12 is to position an
image at the upper-left corner of the second table cell. The entire table is centered
on the page.

The onLoad event handler invokes the setImagePosition() function. The
function first sets a Boolean flag that determines whether the calculations should
be based on the client or offset sets of properties. IE4/Windows and [E5/Mac rely
on client properties, while IE5+/Windows works with the offset properties. The
discrepancies even out, however, with the whi1e loop. This loop traverses the
offsetParent hierarchy starting with the of fsetParent of the cell out to, but not
including, the document.body object. The body object is not included because that
is the positioning context for the image. In IE5, the whi1e loop executes only once

elementObject.offsetParent

34 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

because just the TABLE element exists between the cell and the body; in [E4, the
loop executes twice to account for the TR and TABLE elements up the hierarchy.
Finally, the cumulative values of left and top measures are applied to the positioning
properties of the DIV object’s style and the image is made visible.

Listing 15-12: Using the offsetParent Property

<HTML>
<HEAD>
<TITLE>offsetParent Property</TITLE>
{SCRIPT LANGUAGE="JavaScript">
function setImagePosition(){
var ckElement = document.all.myCell
// Set flag for whether calculations should use
// client- or offset- property measures. Use
// client- for I[E5/Mac and IE4/Windows; otherwise
// use offset- properties. An ugly, but necessary
// workaround.
var useClient = (cElement.offsetTop
((cElement.offsetParent.tagName
if (useClient) {
var x = cElement.clientleft
var y = cElement.clientTop
} else {
var x = cElement.offsetleft
var y = cElement.offsetTop

=0)?
= "TR") ? false : true) : false

}
var pElement = document.all.myCell.offsetParent
while (pElement != document.body) {
if (useClient) {
x += pElement.clientleft
y += pElement.clientTop
} else {
x += pElement.offsetleft
y += pElement.offsetTop
}
pElement = pElement.offsetParent
}
document.all.myDIV.style.pixelleft = x
document.all.myDIV.style.pixelTop =y
document.all.myDIV.style.visibility = "visible"
}
</SCRIPT>
</HEAD>
<BODY onload="setImagePosition()">
(SCRIPT LANGUAGE="JavaScript">
</SCRIPT>
<H1>The offsetParent Property</H1>
<HR>
{P>After the document loads, the script positions a small image in the upper
left corner of the second table cell.</P>
<TABLE BORDER=1 ALIGN="center">

elementObject.offsetParent

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) 35

<TR>
<TD>This is the first cell</TD>
<TD 1D="myCel1">This is the second cell.</TD>
</TR>
</TABLE>
<DIV ID="myDIV" STYLE="position:absolute; visibility:hidden; height:12;
width:12">
</DIV>
</BODY>
</HTML>

outerHTML
outerText

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

The page generated by Listing 15-13 (IE4+/Windows only) contains an H1 element
label and a paragraph of text. The purpose is to demonstrate how the outerHTML
and outerText properties differ in their intent. Two text boxes contain the same
combination of text and HTML tags that replaces the element that creates the
paragraph’s label.

If you apply the default content of the first text box to the outerHTML property
of the Tabel1 object, the H1 element is replaced by a SPAN element whose CLASS
attribute acquires a different style sheet rule defined earlier in the document.
Notice that the ID of the new SPAN element is the same as the original H1 element.
This allows the script attached to the second button to address the object. But this
second script replaces the element with the raw text (including tags). The element
is now gone, and any attempt to change the outerHTML or outerText properties of
the 1abel1l object causes an error because there is no longer a Tabel1 object in
the document.

Use this laboratory to experiment with some other content in both text boxes.

Listing 15-13: Using outerHTML and outerText Properties

<HTML>

<HEAD>

<TITLE>outerHTML and outerText Properties</TITLE>
(STYLE TYPE="text/css">

Continued

elementObject.outerHTML

36 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-13 (continued)

H1 {font-size:18pt; font-weight:bold; font-family:"Comic Sans MS", Arial, sans-
serif}

.heading {font-size:20pt; font-weight:bold; font-family:"Arial Black", Arial,
sans-serif}

</STYLED>

{SCRIPT LANGUAGE="JavaScript">

function setGrouplLabelAsText(form) {
var content = form.textInput.value
if (content) {
document.all.labell.outerText = content
}
}
function setGrouplLabelAsHTML(form) {
var content = form.HTMLInput.value
if (content) {
document.all.labell.outerHTML = content
}
}
</SCRIPT>
</HEAD>

<BODY>

<FORM>

<P>
CINPUT TYPE="text" NAME="HTMLInput"
VALUE="Article the First" SIZE=55>
<INPUT TYPE="button" VALUE="Change Heading HTML"
onClick="setGrouplLabelAsHTML(this.form)">

</P>

<P>
CINPUT TYPE="text" NAME="textInput"
VALUE="Article the First" SIZE=55>
CINPUT TYPE="button" VALUE="Change Heading Text"
onClick="setGrouplLabelAsText(this.form)">

</P>

</FORM>

<H1 ID="Tabell">ARTICLE I</H1>

<P>

Congress shall make no law respecting an establishment of religion, or

prohibiting the free exercise thereof; or abridging the freedom of speech, or of

the press; or the right of the people peaceably to assemble, and to petition the

government for a redress of grievances.

</P>

</BODY>

</HTML>

elementObject.outerHTML

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) 37

ownerDocument

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to explore the
ownerDocument property in NN6. Enter the following statement into the top
text box:

document.body.childNodes[5].ownerDocument

The result is a reference to the document object. You can use that to inspect a
property of the document, as shown in the following statement you should enter
into the top text box:

document.body.childNodes[5].ownerDocument.URL

This returns the document.URL property for the document that owns the
child node.

parentElement

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

You can experiment with the parentElement property in The Evaluator. The
document contains a P element named myP. Type each of the following statements
from the left column into the upper expression evaluation text box and press Enter
to see the results.

Expression Result
document.all.myP.tagName P
document.all.myP.parentElement [object]
document.all.myP.parentElement.tagName BODY
document.all.myP.parentElement.parentElement [object]
document.all.myP.parentElement.parentElement.tagName HTML

document.all.myP.parentElement.parentElement.parentElement null

elementObject.parentElement

38 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

parentNode
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v
Example

Use The Evaluator to examine the parentNode property values of both an element
and a non-element node. Begin with the following two statements and watch the
results of each:

document.getETementById("myP").parentNode.tagName
document.getElementById("myP").parentElement.tagName (IE only)

Now examine the properties from the point of view of the first text fragment
node of the myP paragraph element:

document.getETementById("myP").childNodes[0].nodeValue
document.getElementById("myP").childNodes[0].parentNode.tagName
document.getElementById("myP").childNodes[0].parentElement (IE only)

Notice (in [E) that the text node does not have a parentElement property.

parentTextEdit
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v/ v v
Example

The page resulting from Listing 15-14 contains a paragraph of Greek text and
three radio buttons that select the size of a paragraph chunk: one character, one
word, or one sentence. If you click anywhere within the large paragraph, the
onC1lick event handler invokes the selectChunk () function. The function first
examines which of the radio buttons is selected to determine how much of the
paragraph to highlight (select) around the point at which the user clicks.

After the script employs the parentTextEdit property to test whether the
clicked element has a valid parent capable of creating a text range, it calls upon the
property again to help create the text range. From there, TextRange object methods
shrink the range to a single insertion point, move that point to the spot nearest the
cursor location at click time, expand the selection to encompass the desired chunk,
and select that bit of text.

Notice one workaround for the TextRange object’s expand() method anomaly: If
you specify a sentence, IE doesn’t treat the beginning of a P element as the starting
end of a sentence automatically. A camouflaged (white text color) period is appended
to the end of the previous element to force the TextRange object to expand only to
the beginning of the first sentence of the targeted P element.

elementObject.parentTextEdit

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) 39

Listing 15-14: Using the parentTextEdit Property

<HTML>
<HEAD>
<TITLE>parentTextEdit Property</TITLE>
{STYLE TYPE="text/css">
P {cursor:hand}
</STYLED
<SCRIPT LANGUAGE="JavaScript">
function selectChunk() {
var chunk, range
for (var i = 0; 1 < document.forms[0].chunk.length; i++) {
if (document.forms[0].chunk[i].checked) {
chunk = document.forms[0].chunk[i].value
break
1
}
var x = window.event.clientX
var y = window.event.clientY
if (window.event.srcElement.parentTextEdit) {
range = window.event.srcElement.parentTextEdit.createTextRange()
range.collapse()
range.moveToPoint(x, y)
range.expand(chunk)
range.select()
}
}
</SCRIPT>
</HEAD>

<BODY BGCOLOR="white">

<FORM>

<P>Choose how much of the paragraph is to be selected when you click anywhere in
it:

<INPUT TYPE="radio" NAME="chunk" VALUE="character" CHECKED>Character

<INPUT TYPE="radio" NAME="chunk" VALUE="word">Word

<INPUT TYPE="radio" NAME="chunk" VALUE="sentence">Sentence

.</P>

</FORM>

<P onClick="selectChunk()">

Lorem ipsum dolor sit amet, consectetaur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim adminim veniam, quis
nostrud exercitation ullamco Taboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit involuptate velit esse cillum dolore eu
fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.

<P

</BODY>

</HTML>

elementObject.parentTextEdit

40 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

previousSibling
See nextSibling.

readyState
NN2 NN3 NN4 NN6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v
Example

To witness a readyState property other than complete for standard HTML, you
can try examining the property in a script that immediately follows an tag:

{SCRIPT LANGUAGE="JavaScript">
alert(document.all.mylImg.readyState)
</SCRIPT>

Putting this fragment into a document that is accessible across a slow network
helps. If the image is not in the browser’s cache, you might get the uninitialized
or 1oading result. The former means that the IMG object exists, but it has not
started receiving the image data from the server yet. If you reload the page,
chances are that the image will load instantaneously from the cache and the
readyState property will report complete.

recordNumber

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

You can see the recordNumber property in action in Listing 15-15. The data
source is a small, tab-delimited file consisting of 20 records of Academy Award data.
Thus, the table that displays a subset of the fields is bound to the data source
object. Also bound to the data source object are three SPAN objects embedded
within a paragraph near the top of the page. As the user clicks a row of data, three
fields from that clicked record are placed into the bound SPAN objects.

The script part of this page is a mere single statement. When the user triggers the
onC1ick event handler of the repeated TR object, the function receives a reference
to the TR object as a parameter. The data store object maintains an internal copy of
the data in a recordset object. One of the properties of this recordset object is

elementObject.recordNumber

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) 41

the AbsolutePosition property, which is the integer value of the current record
that the data object points to (it can point to only one row at a time, and the default
row is the first row). The statement sets the AbsolutePosition property of the
recordset object to the recordNumber property for the row that the user clicks.
Because the three SPAN elements are bound to the same data source, they are
immediately updated to reflect the change to the data object’s internal pointer to
the current record. Notice, too, that the third SPAN object is bound to one of the
data source fields not shown in the table. You can reach any field of a record
because the Data Source Object holds the entire data source content.

Listing 15-15: Using the Data Binding recordNumber Property

<HTML>

<HEAD>

<TITLE>Data Binding (recordNumber)</TITLE>

<STYLE TYPE="text/css">

filmTitle {font-style:italic)

</STYLED>

<SCRIPT LANGUAGE="JavaScript">

// set recordset pointer to the record clicked on in the table.

function setRecNum(row) {
document.oscars.recordset.AbsolutePosition = row.recordNumber

}

</SCRIPT>

</HEAD>
<BODY>
<P><{B>Academy Awards 1978-1997 (Click on a table row to extract data from
one record.)</P>
<{P>The award for Best Actor of
 went to
 for his outstanding achievement in the film
(SPAN CLASS="filmTitle" DATASRC="#oscars" DATAFLD="Best Actor Film">.</P>
<TABLE BORDER=1 DATASRC="{#foscars" ALIGN="center">
<THEAD STYLE="background-color:yellow; text-align:center">
<TRX><TD>Year</TD>
<TD>Film</TD>
<TD>Director</TD>
<TD>Actress</TD>
<TD>Actor</TD>
</TR>
</THEAD>
<TR ID=repeatableRow onClick="setRecNum(this)">
<TD><DIV ID="coll" DATAFLD="Year"></DIV></TD>
{TD><XDIV CLASS="filmTitle" ID="col2" DATAFLD="Best Picture"></DIV></TD>
<TD><DIV ID="col13" DATAFLD="Best Director"></DIV></TD>
<TD><DIV ID="col4" DATAFLD="Best Actress"></DIV></TD>
<TD><DIV ID="col5" DATAFLD="Best Actor"></DIV></TD>

Continued

elementObject.recordNumber

47 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-15 (continued)

</TR>
</TABLE>

<OBJECT ID="oscars" CLASSID="clsid:333C7BC4-460F-11D0-BC04-0080C7055A83">
<PARAM NAME="DataURL" VALUE="Academy Awards.txt">
{PARAM NAME="UseHeader" VALUE="True">
<PARAM NAME="FieldDelim" VALUE="	">

</0BJECT>

</BODY>

</HTML>

runtimeStyle

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to compare the properties
of the runtimeStyle and style objects of an element. For example, an unmodified
copy of The Evaluator contains an EM element whose ID is “myEM”. Enter both

document.all.myEM.style.color
and
document.all.myEM.runtimeStyle.color

into the top text field in turn. Initially, both values are empty. Now assign a color to
the style property via the upper text box:

document.all.myEM.style.color = "red"

If you now type the two earlier statements into the upper box, you can see that
the style object reflects the change, while the runtimeStyle object still holds
onto its original (empty) value.

scopeName

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

elementObject.scopeName

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) 43

Example

If you have a sample document that contains XML and a namespace spec, you
can use document.write() or alert() methods to view the value of the
scopeName property. The syntax is

document.all.elementID.scopeName

scrol1Height
scrol1Width
NN2 NN3 NN4 NNé6 IE3/J1 1E3/)2 IE4 IE5 IE5.5
Compatibility v v v
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with these
two properties of the TEXTAREA object, which displays the output of evaluations
and property listings. To begin, enter the following into the bottom one-line text
field to list the properties of the body object:

document.body

This displays a long list of properties for the body object. Now enter the follow-
ing property expression in the top one-line text field to see the scrol1Height prop-
erty of the output TEXTAREA when it holds the dozens of lines of property listings:

document.all.output.scrollHeight

The result, some number probably in the hundreds, is now displayed in the output
TEXTAREA. This means that you can scroll the content of the output element
vertically to reveal that number of pixels. Click the Evaluate button once more. The
result, 13 or 14, is a measure of the scrol1Height property of the TEXTAREA that
had only the previous result in it. The scrollable height of that content was only 13 or
14 pixels, the height of the font in the TEXTAREA. The scrol1Width property of the
output TEXTAREA is fixed by the width assigned to the element’s COLS attribute (as
calculated by the browser to determine how wide to make the textarea on the page).

scrollLeft
scrollTop

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/ v v

elementObject.scrollLeft

44 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with these
two properties of the TEXTAREA object, which displays the output of evaluations
and property listings. To begin, enter the following into the bottom one-line text
field to list the properties of the body object:

document.body

This displays a long list of properties for the body object. Use the TEXTAREA’s
scrollbar to page down a couple of times. Now enter the following property expres-
sion in the top one-line text field to see the scrol1Top property of the output
TEXTAREA after you scroll:

document.all.output.scrollTop

The result, some number, is now displayed in the output TEXTAREA. This means
that the content of the output element was scrolled vertically. Click the Evaluate
button once more. The result, 0, is a measure of the scrol1Top property of the
TEXTAREA that had only the previous result in it. There wasn’t enough content in
the TEXTAREA to scroll, so the content was not scrolled at all. The scrol1Top
property, therefore, is zero. The scrol1Left property of the output is always zero
because the TEXTAREA element is set to wrap any text that overflows the width of
the element. No horizontal scrollbar appears in this case, and the scrolllLeft
property never changes.

sourcelndex

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/ v v

Example

While the operation of this property is straightforward, the sequence of ele-
ments exposed by the document.all property may not be. To that end, you can
use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment in [E4+ with
the values that the sourcelndex property returns to see how the index values of
the document.all collection follow the source code.

To begin, reload The Evaluator. Enter the following statement in the top text box
to set a preinitialized global variable:

a=20
When you evaluate this expression, a zero should appear in the Results box.
Next, enter the following statement into the top text box:

document.alll[al.tagName + " [" + a++ + "]"

There are a lot of plus signs in this statement, so be sure you enter it correctly. As
you successively evaluate this statement (by repeatedly clicking the Evaluate but-
ton), the global variable (a) is incremented, thus enabling you to “walk through” the

elementObject.sourcelndex

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) 45

elements in source code order. The sourcelIndex value for each HTML tag appears in
square brackets in the Results box. You generally begin with the following sequence:

HTML [0]
HEAD [1]
TITLE [2]

You can continue until there are no more elements, at which point an error message
appears because the value of a exceeds the number of elements in the document.all
array. Compare your findings against the HTML source code view of The Evaluator.

style
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v
Example

Most of the action with the style property has to do with the sty1e object’s
properties, so you can use The Evaluator here to simply explore the lists of style
object properties available on as many DHTML-compatible browsers as you have
running. To begin, enter the following statement into the lower, one-line text box to
inspect the style property for the document.body object:

document.body.style

Now inspect the sty1e property of the table element that is part of the original
version of The Evaluator. Enter the following statement into the lower text box:

document.getElementById("myTable").style

In both cases, the values assigned to the style object’s properties are quite limited
by default.

tabIndex
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v
Example

The HTML and scripting in Listing 15-16 demonstrate not only the way you can
modify the tabbing behavior of a form on the fly, but also how to force form ele-
ments out of the tabbing sequence entirely in IE. In this page, the upper form
(named 1ab) contains four elements. Scripts invoked by buttons in the lower form
control the tabbing sequence. Notice that the TABINDEX attributes of all lower form
elements are set to -1, which means that these control buttons are not part of the

tabbing sequence in IE.
elementObject.tablndex

46 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

When you load the page, the default tabbing order for the 1ab form control ele-
ments (default setting of zero) takes charge. If you start pressing the Tab key, the
precise results at first depend on the browser you use. In IE, the Address field is
first selected; next the Tab sequence gives focus to the window (or frame, if this
page were in a frameset); finally the tabbing reaches the 1ab form. Continue press-
ing the Tab key and watch how the browser assigns focus to each of the element
types. In NN6, however, you must click anywhere on the content to get the Tab key
to start working on form controls.

The sample script inverts the tabbing sequence with the help of a for loop that
initializes two variables that work in opposite directions as the looping progresses.
This gives the last element the lowest tabIndex value. The skip2() function sim-
ply sets the tabIndex property of the second text box to -1, removing it from the
tabbing entirely (IE only). Notice, however, that you can click in the field and still
enter text. (See the disabled property earlier in this chapter to see how to prevent
field editing.) NN6 does not provide a tabIndex property setting that forces the
browser to skip over a form control. You should disable the control instead.

Listing 15-16: Controlling the tabindex Property

<HTML>
<HEAD>
<TITLE>tabIndex Property</TITLE>
{SCRIPT LANGUAGE="JavaScript">
function invert() {
var form = document.lab
for (var i = 0, j = form.elements.length; i < form.elements.length;
i+, j--) |
form.elements[i].tabIndex = j
}
}

function skip2() {
document.lab.text2.tabIndex = -1
}

function resetTab() {
var form = document.lab
for (var i = 0; i < form.elements.length; i++) {
form.elements[i].tabIndex = 0
}
}
</SCRIPT>
</HEAD>

<BODY>

<H1>tabIndex Property Lab</H1>

<HR>

<FORM NAME="Tab">

Text box no. 1: <INPUT TYPE="text" NAME="textl">

Text box no. 2: <INPUT TYPE="text" NAME="text2">

<INPUT TYPE="button" VALUE="A Button">

elementObject.tablndex

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) 47

<INPUT TYPE="checkbox">And a checkbox

</FORM>

<HR>

<FORM NAME="control">

<INPUT TYPE="button" VALUE="Invert Tabbing Order" TABINDEX=-1
onClick="invert()">

<INPUT TYPE="button" VALUE="Skip Text box no. 2 (IE Only)" TABINDEX=-1
onClick="skip2()">

<INPUT TYPE="button" VALUE="Reset to Normal Order" TABINDEX=-1
onClick="resetTab()">

</FORM>

</BODY>

</HTML>

The final function, resetTab (), sets the tabIndex property value to zero for all
1ab form elements. This restores the default order; but in IE5.5/Windows, you may
experience buggy behavior that prevents you from tabbing to items after you reset
them. Only the reloading of the page provides a complete restoration of default
behavior.

tagName
NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v/ v/ v v
Example

You can see the tagName property in action for the example associated with the
sourcelIndex property discussed earlier. In that example, the tagName property is
read from a sequence of objects in source code order.

tagUlrn
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v
Example

If you have a sample document that contains XML and a Namespace spec, you
can use document.write() or alert() methods to view the value of the tagUrn
property. The syntax is

document.all.elementID.tagUrn

elementObject.tagUrn

48 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

title
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v
Example

You can see how dynamic a tooltip is in Listing 15-17. A simple paragraph ele-
ment has its TITLE attribute setto "First Time!", which is what the tooltip dis-
plays if you roll the pointer atop the paragraph and pause after the page loads. But
an onMouseOver event handler for that element increments a global variable
counter in the script, and the tit1e property of the paragraph object is modified
with each mouseover action. The count value is made part of a string assigned to
the title property. Notice that there is not a live connection between the title
property and the variable; instead, the new value explicitly sets the tit1e property.

Listing 15-17: Controlling the title Property

<HTML>

<HEAD>

<TITLE>title Property</TITLE>
{SCRIPT LANGUAGE="JavaScript">
// global counting variable
var count = 0

function setToolTip(elem) {
elem.title = "You have previously rolled atop this paragraph " +
count + " time(s)."
}

function incrementCount(elem) {
count++
setToolTip(elem)

}

</SCRIPT>

</HEAD>

<BODY>

<H1>title Property Lab</H1>

<HR>

<P ID="myP" TITLE="First Time!" onMouseOver="incrementCount(this)">
Rol1l the mouse over this paragraph a few times.

Then pause atop it to view the tooltip.</P>

</BODY>

<IHTML

elementObject.title

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) 49

uniquelD
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v
Example

Listing 15-18 demonstrates the recommended syntax for obtaining and applying
a browser-generated identifier for an object. After you enter some text into the text
box and click the button, the addRow () function appends a row to the table. The
left column displays the identifier generated via the table row object’s uniquelD
property. [E5+ generates identifiers in the format "ms__idn", where n is an integer
starting with zero for the current browser session. Because the addRow () function
assigns uniquelD values to the row and the cells in each row, the integer for each
row is three greater than the previous one. There is no guarantee that future gener-
ations of the browser will follow this format, so do not rely on the format or
sequence in your scripts.

Listing 15-18: Using the uniquelD Property

<HTML>
<HEAD>
<TITLE>Inserting an IE5+/Windows Table Row</TITLE>
<{SCRIPT LANGUAGE="JavaScript">
function addRow(iteml) {
if (iteml) {
// assign long reference to shorter var name
var theTable = document.all.myTable
// append new row to the end of the table
var newRow = theTable.insertRow(theTable.rows.length)
// give the row its own ID
newRow.id = newRow.uniquelD

// declare cell variable
var newCell

// an inserted row has no cells, so insert the cells
newCell = newRow.insertCell(0)

// give this cell its own id

newCell.id = newCell.uniquelD

// display the row's id as the cell text
newCell.innerText = newRow.id

newCell.bgColor = "yellow"

// reuse cell var for second cell insertion

newCell = newRow.insertCell(1)

newCell.id = newCell.uniquelD

Continued

elementObject.uniquelD

50 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-18 (continued)

newCell.innerText = iteml
1
}
</SCRIPT>
</HEAD>

<BODY>

<TABLE ID="myTable" BORDER=1>
<TR>

<TH>Row ID</TH>

<TH>Data</TH>

</TR>

<TR ID="firstDataRow">

<TD>firstDataRow

<TD>Fred

</TR>

<TR ID="secondDataRow">

<TD>secondDataRow

<TD>Jane

<TR>

</TABLE>

<HR>

<FORM>

Enter text to be added to the table:

<INPUT TYPE="text" NAME="input" SIZE=25>

<INPUT TYPE='button' VALUE="Insert Row' onClick="addRow(this.form.input.value)'>
</FORM>

</BODY>

</HTML>

Methods
addBehavior("URL")

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

Example

Listing 15-19a is the JavaScript code for an external component named
makeHot.htc. Its purpose is to turn the color style property of an object to either a

elementObject.addBehavior()

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) 51

default color ("red") or any other color that is passed to the component. For details
on the syntax of the <PUBLIC> tags, see Chapter 48 of the JavaScript Bible. The code
presented here helps you see how the page and scripts in Listing 15-19b work.

Listing 15-19a: The makeHot.htc Behavior Component

<PUBLIC:ATTACH EVENT="onmousedown" ONEVENT="makeHot()" />
<PUBLIC:ATTACH EVENT="onmouseup" ONEVENT="makeNormal()" />
<PUBLIC:PROPERTY NAME="hotColor" />

<PUBLIC:METHOD NAME="setHotColor" />

{SCRIPT LANGUAGE="JScript">

var oldColor

var hotColor = "red"

function setHotColor(color) {
hotColor = color

}

function makeHot() {
if (event.srcElement == element) {
oldColor = style.color
runtimeStyle.color = hotColor

}

function makeNormal() {
if (event.srcElement == element) {
runtimeStyle.color = oldColor
}
}
</SCRIPT>

The object to which the component is attached is a simple paragraph object,
shown in Listing 15-19b. When the page loads, the behavior is not attached, so
clicking the paragraph text has no effect.

When you turn on the behavior by invoking the turnOn () function, the
addBehavior() method attaches the code of the makeHot.htc component to the
my P object. At this point, the myP object has one more property, one more method,
and two more event handlers that are written to be made public by the component’s
code. If you want the behavior to apply to more than one paragraph in the document,
you have to invoke the addBehavior () method for each paragraph object.

After the behavior file is instructed to start loading, the setInitialColor() func-
tion is called to set the new color property of the paragraph to the user’s choice from
the SELECT list. But this can happen only if the component is fully loaded. Therefore,
the function checks the readyState property of myP for completeness before invok-
ing the component’s function. If IE is still loading the component, the function is
invoked again in 500 milliseconds.

elementObject.addBehavior()

52 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

As long as the behavior is loaded, you can change the color used to turn the
paragraph “hot.” The function first ensures that the component is loaded by check-
ing that the object has the new color property. If it does, then (as a demonstration
of how to expose and invoke a component method) the method of the component
is invoked. You can also simply set the property value.

Listing 15-19b: Using addBehavior() and removeBehavior()

<HTML>

<HEAD>

<TITLE>addBehavior() and removeBehavior() Methods</TITLE>
{SCRIPT LANGUAGE="JavaScript">

var myPBehaviorlID

function turnOn() {
myPBehaviorID = document.all.myP.addBehavior("makeHot.htc")
setInitialColor()

}

function setInitialColor() {
if (document.all.myP.readyState == "complete") {
var select = document.forms[0].colorChoice
var color = select.options[select.selectedIndex].value
document.all.myP.setHotColor(color)
} else {
setTimeout("setInitialColor()", 500)
}
}

function turnOff() {
document.all.myP.removeBehavior(myPBehaviorID)
}

function setColor(select, color) {
if (document.all.myP.hotColor) {
document.all.myP.setHotColor(color)
} else {
alert("This feature is not available. Turn on the Behavior first.")
select.selectedIndex = 0
1
}
function showBehaviorCount() {
var num = document.all.myP.behaviorUrns.length
var msg = "The myP element has " + num + " behavior(s).
if (num > 0) {
msg += "Name(s): \r\n"
for (var i = 0; i < num; i++) {
msg += document.all.myP.behaviorUrns[i] + "\r\n"

}
}
alert(msg)

elementObject.addBehavior()

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) 53

</SCRIPT>

</HEAD>

<BODY>

<H1>addBehavior() and removeBehavior() Method Lab</H1>

<HR>

<P ID="myP">This is a sample paragraph. After turning on the behavior,
it will turn your selected color when you mouse down anywhere in this
paragraph.</P>

<FORM>

CINPUT TYPE="button" VALUE="Switch On Behavior" onClick="turnOn()">
Choose a 'hot' color:

(SELECT NAME="colorChoice" onChange="setColor(this, this.value)">
<OPTION VALUE="red">red

<OPTION VALUE="blue">blue

<OPTION VALUE="cyan">cyan

<{/SELECT>

<INPUT TYPE="button" VALUE="Switch Off Behavior" onClick="turn0ff()">
<P>CINPUT TYPE="button" VALUE="Count the URNs"
onClick="showBehaviorCount()"></P>

</BODY>

<IHTML>

To turn off the behavior, the removeBehavior () method is invoked. Notice that
the removeBehavior() method is associated with the myP object, and the parame-
ter is the ID of the behavior added earlier. If you associate multiple behaviors with
an object, you can remove one without disturbing the others because each has its
own unique ID.

addEventListener("eventType", listenerFunc,
useCapture)
removeEventListener("eventType",

listenerFunc, useCapture)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

Listing 15-20 provides a compact workbench to explore and experiment with the
basic W3C DOM event model. When the page loads, no event listeners are regis-
tered with the browser (except for the control buttons, of course). But you can add
an event listener for a c11ck event in bubble and/or capture mode to the BODY ele-
ment or the P element that surrounds the SPAN holding the line of text. If you add
an event listener and click the text, you see a readout of the element processing the

elementObject.addEventListener()

54 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

event and information indicating whether the event phase is bubbling (3) or cap-
ture (1). With all event listeners engaged, notice the sequence of events being pro-
cessed. Remove listeners one at a time to see the effect on event processing.

/\lote Listing 15-20 includes code for event capture that does not operate in NN6. Event
—— capture facilities should work in a future version of the browser.

Listing 15-20: W3C Event Lab

<HTML>

<HEAD>

<TITLEDW3C Event Model Lab</TITLE>

(STYLE TYPE="text/css">

TD {text-align:center}

</STYLED

<SCRIPT LANGUAGE="JavaScript">

// add event listeners

function addBubblelListener(elemID) {
document.getElementById(elemID).addEventListener("click", reportEvent, false)

}

function addCapturelListener(elemID) {
document.getElementById(elemID).addEventListener("click", reportEvent, true)

}

// remove event Tisteners

function removeBubblelistener(elemID) {
document.getElementById(elemID).removeEventlListener("click", reportEvent, false)

}

function removeCapturelistener(elemID) {
document.getElementById(elemID).removeEventlListener("click", reportEvent, true)

}

// display details about any event heard

function reportEvent(evt) {

if (evt.target.parentNode.id == "mySPAN") {
var msg = "Event processed at " + evt.currentTarget.tagName +
" element (event phase = " + evt.eventPhase + ").\n"

document.controls.output.value += msg

}

}

// clear the details textarea

function clearTextArea() {
document.controls.output.value = ""

}

</SCRIPT>

</HEAD>

<BODY ID="myBODY">

<HI>W3C Event Model Lab</H1>

<HR>

<P ID="myP">This paragraph (a SPAN element nested inside a P

element) can be set to listen for "click" events.</P>

<HR>

<TABLE CELLPADDING=5 BORDER=1>

elementObject.addEventListener()

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) 55

<CAPTION STYLE="font-weight:bold">Control Panel</CAPTION>
<FORM NAME="controls">
(TR STYLE="background-color:#ffff99"><TD ROWSPAN=2>"Bubble"-type click Tistener:
(TD>INPUT TYPE="button" VALUE="Add to BODY"
onClick="addBubbleListener('myBODY"')">
<TD><INPUT TYPE="button" VALUE="Remove from BODY"
onClick="removeBubbleListener('myBODY"')">
</TR>
<TR STYLE="background-color:#ffff99">
{TD>INPUT TYPE="button" VALUE="Add to P"
onClick="addBubbleListener('myP')">
{TD>INPUT TYPE="button" VALUE="Remove from P"
onClick="removeBubbleListener('myP"')">
</TR>
<TR STYLE="background-color:#ff9999"><TD ROWSPAN=2>"Capture"-type click
listener:
<TD><INPUT TYPE="button" VALUE="Add to BODY"
onClick="addCapturelListener('myBODY")">
{TD>INPUT TYPE="button" VALUE="Remove from BODY"
onClick="removeCaptureListener("'myBODY"')">
</TR>
<{TR STYLE="background-color:#ff9999">
<TD><INPUT TYPE="button" VALUE="Add to P"
onClick="addCapturelListener('myP"')">
{TD>INPUT TYPE="button" VALUE="Remove from P"
onClick="removeCapturelListener('myP"')">
</TR>
<P>Examine click event characteristics: <INPUT TYPE="button" VALUE="Clear"
onClick="clearTextArea()">

<TEXTAREA NAME="output" COLS="80" ROWS="6" WRAP="virtual"></TEXTAREA>
</FORM>
</TABLED>
</BODY>
<IHTMLY

appendChild(elementObject)

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

Scripts in Listing 15-21 demonstrate how the three major child-related methods
work in [E5+ and NN6. The page includes a simple, two-item list. A form enables you
to add items to the end of the list or replace the last item with a different entry.

elementObject.appendChild()

56 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

The append () function creates a new LI element and then uses the
appendChild() method to attach the text box text as the displayed text for the
item. The nested expression, document.createTextNode(form.input.value),
evaluates to a legitimate node that is appended to the new LI item. All of this occurs
before the new LI item is added to the document. In the final statement of the func-
tion, appendChild() is invoked from the vantage point of the UL element — thus
adding the LI element as a child node of the UL element.

Invoking the replaceChild() method in the replace() function utilizes some
of the same code. The main difference is that the replaceChi1d() method requires
a second parameter: a reference to the child element to be replaced. This demon-
stration replaces the final child node of the UL list, so the function takes advantage
of the TastChild property of all elements to get a reference to that final nested
child. That reference becomes the second parameter to replaceChild().

Listing 15-21: Various Child Methods

<HTML>
<HEAD>
<TITLE>appendChild(), removeChild(), and replaceChild() Methods</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function append(form) {
if (form.input.value) {
var newltem = document.createElement("LI")
newltem.appendChild(document.createTextNode(form.input.value))
document.getETlementById("myUL").appendChild(newItem)

}

function replace(form) {
if (form.input.value) {
var newltem = document.createETement("LI")
var lastChild = document.getElementById("myUL").TastChild
newltem.appendChild(document.createTextNode(form.input.value))
document.getElementById("myUL").replaceChild(newItem, lastChild)

}

function restore() {
var oneChild
var mainObj = document.getElementById("myUL")
while (mainObj.childNodes.length > 2) {
oneChild = mainObj.lastChild
mainObj.removeChild(oneChild)
1
}
</SCRIPT>
</HEAD>
<BODY>
<H1>Child Methods</H1>
<HR>
Here is a list of items:
<UL ID="myUL">First Item

elementObject.appendChild()

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) 57

<{LI>Second Item

<FORM>

Enter some text to add/replace in the Tist:

<INPUT TYPE="text" NAME="input" SIZE=30>

<INPUT TYPE="button" VALUE="Append to List" onClick="append(this.form)">
<INPUT TYPE="button" VALUE="Replace Final Item" onClick="replace(this.form)">
<INPUT TYPE="button" VALUE="Restore List" onClick="restore()">

</BODY>

</HTML>

The final part of the demonstration uses the removeChild() method to peel
away all children of the UL element until just the two original items are left standing.
Again, the TastChild property comes in handy as the restore() function keeps
removing the last child until only two remain. Upon restoring the list, [E5/Mac fails to
render the list bullets; but in the browser’s object model, the UL element still exists.

applyElement(elementObjectl, typel)

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

Example

To help you visualize the impact of the appTyETement () method with its differ-
ent parameter settings, Listing 15-22 enables you to apply a new element (an EM
element) to a SPAN element inside a paragraph. At any time, you can view the
HTML of the entire P element to see where the EM element is applied, as well as its
impact on the element containment hierarchy for the paragraph.

After you load the page, inspect the HTML for the paragraph before doing any-
thing else. Notice the SPAN element and its nested FONT element, both of which
surround the one-word content. If you apply the EM element inside the SPAN ele-
ment (click the middle button), the SPAN element’s first (and only) child element
becomes the EM element; the FONT element is now a child of the new EM element.

Listing 15-22: Using the applyElement() Method

<HTML>

<HEAD>

<TITLE>applyElement() Method</TITLE>

{SCRIPT LANGUAGE="JavaScript">

function applyOQutside() {
var newltem = document.createElement("EM")
newltem.id = newltem.uniquelD
document.all.mySpan.applyElement(newltem)

Continued

elementObject.applyElement()

58 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-22 (continued)
)

function applyInside() {
var newltem = document.createElement("EM")
newltem.id = newltem.uniquelD
document.all.mySpan.applyElement(newltem, "inside")
}

function showHTML() {
alert(document.all.myP.outerHTML)
}
</SCRIPT>
</HEAD>
<BODY>
<H1>applyETement() Method</H1>
<HR>
<P ID="myP">A simple paragraph with a
special word in it.</P>
<FORM>
<INPUT TYPE="button" VALUE="Apply Qutside" onClick="applyOutside()">
<INPUT TYPE="button" VALUE="Apply Inside" onClick="applylInside()">

<INPUT TYPE="button" VALUE="Show <P> HTML..." onClick="showHTML()">

<INPUT TYPE="button" VALUE="Restore Paragraph" onClick="Tocation.reload()">
</FORM>

</BODY>

<THTML>

The visible results of applying the EM element inside and outside the SPAN ele-
ment in this case are the same. But you can see from the HTML results that each
element impacts the element hierarchy quite differently.

attachkEvent("eventName", functionRef)
detachEvent("eventName", functionRef)

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to create an anonymous
function that is called in response to an onmousedown event of the first paragraph
on the page. Begin by assigning the anonymous function to global variable a
(already initialized in The Evaluator) in the upper text box:

a = new Function("alert('Function created at " + (new Date()) + "')")

elementObject.attachEvent()

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) 59

The quote marks and parentheses can get jumbled easily, so enter this expres-
sion carefully. When you enter the expression successfully, the Results box shows
the function’s text. Now assign this function to the onmousedown event of the myP
element by entering the following statement into the upper text box:

document.all.myP.attachEvent("onmousedown", a)

The Results box displays true when successful. If you mouse down on the first
paragraph, an alert box displays the date and time that the anonymous function
was created (when the new Date() expression was evaluated).

Now, disconnect the event relationship from the object by entering the following
statement into the upper text box:

document.all.myP.detachEvent("onmousedown", a)

blur()

focus ()
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE55
Compatibility v A A v v ooV
Example

To show how both the window. focus () method and its opposite
(window.bTur()) operate, Listing 15-23 for NN3+ and IE4+ creates a two-window
environment. From each window, you can bring the other window to the front. The
main window uses the object returned by window.open() to assemble the refer-
ence to the new window. In the subwindow (whose content is created entirely on
the fly by JavaScript), self.opener is summoned to refer to the original window,
while seTf.bTur () operates on the subwindow itself (except for the buggy behav-
ior of NN6 noted earlier). Blurring one window and focusing on another window
yields the same result of sending the window to the back of the pile.

Listing 15-23: The window.focus() and window.blur()
Methods

<HTML>
<HEAD>
KTITLE>Window Focus() and Blur()</TITLE>
<{SCRIPT LANGUAGE="JavaScriptl.1">
// declare global variable name
var newWindow = null
function makeNewWindow() {

// check if window already exists

if (InewWindow || newWindow.closed) {

// store new window object in global variable

Continued

elementObject.blur()

60 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-23 (continued)

newWindow = window.open("","","width=250,height=250")
// pause briefly to let IE3 window finish opening
setTimeout("fillWindow()",100)
} else {
// window already exists, so bring it forward
newWindow. focus()
}
}
// assemble new content and write to subwindow
function fillWindow() {
var newContent = "<HTML><HEAD><TITLE>Another Subwindow</TITLE></HEAD>"
newContent += "<BODY bgColor="salmon'>"
newContent += "<HI>A Salmon-Colored Subwindow.</H1>"
newContent += "<FORM><INPUT TYPE='button' VALUE='Bring Main to Front'
onClick="'self.opener.focus()'>"
// the following button doesn't work in NN6
newContent += "<FORM><INPUT TYPE='button' VALUE='Put Me in Back'
onClick="self.blur()'>"
newContent += "</FORM></BODY></HTML>"
// write HTML to new window document
newlWindow.document.write(newContent)
newWindow.document.close()
}
</SCRIPT>
</HEAD>
<BODY>
<HI>Window focus() and blur() Methods</H1>
<HR>
<FORM>
<INPUT TYPE="button" NAME="newOne" VALUE="Show New Window"
onClick="makeNewWindow()">
</FORM>
</BODY>
</HTML>

A key ingredient to the success of the makeNewWindow() function in Listing 15-23
is the first conditional expression. Because newWind is initialized as a nu11 value
when the page loads, that is its value the first time through the function. But after
you open the subwindow the first time, newlWind is assigned a value (the subwin-
dow object) that remains intact even if the user closes the window. Thus, the value
doesn’t revert to nul1 by itself. To catch the possibility that the user has closed the
window, the conditional expression also sees if the window is closed. If it is, a new
subwindow is generated, and that new window’s reference value is reassigned to
the newlWind variable. On the other hand, if the window reference exists and the
window is not closed, the focus () method brings that subwindow to the front. You
can see the focus () method for a text object in action in JavaScript Bible Chapter
25’s description of the select () method for text objects.

elementObject.blur()

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) 61

clearAttributes()
NN2 NN3 NN4 NNé6é IE3/J1 1E3/)2 IE4 IE5 IE5.5
Compatibility v v
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to examine the attributes
of an element before and after you apply clearAttributes (). To begin, display
the HTML for the table element on the page by entering the following statement
into the upper text field:

myTable.outerHTML

Notice the attributes associated with the <TABLE> tag. Look at the rendered
table to see how attributes such as BORDER and WIDTH affect the display of the
table. Now, enter the following statement in the top text box to remove all remov-
able attributes from this element:

myTable.clearAttributes()

First, look at the table. The border is gone, and the table is rendered only as wide
as is necessary to display the content with no cell padding. Lastly, view the results
of the clearAttributes() method in the outerHTML of the table again:

myTable.outerHTML

The source code file has not changed, but the object model in the browser’s mem-
ory reflects the changes you made.

click()

NN2 NN3 NN4 NN6 IE3/J)1 IE3/2 IE4 IE5 IE55
Compatibility A v v v v
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
click() method. The page includes various types of buttons at the bottom. You
can “click” the checkbox, for example, by entering the following statement in the
topmost text field:

document.myForm2.myCheckbox.click()

If you use a recent browser version, you most likely can see the checkbox change
states between checked and unchecked each time you execute the statement.

elementObject.click()

62 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

cloneNode(deepBoolean)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to clone, rename, and
append an element found in The Evaluator’s source code. Begin by cloning the
paragraph element named myP along with all of its content. Enter the following
statement into the topmost text field:

a = document.getElementById("myP").cloneNode(true)

The variable a now holds the clone of the original node, so you can change its 1D
attribute at this point by entering the following statement:

a.setAttribute("ID", "Dolly")

If you want to see the properties of the cloned node, enter a into the lower text
field. The precise listing of properties you see depends on whether you use NN or
IE; in either case, you should be able to locate the id property, whose value is now
Dolly.

As a final step, append this newly named node to the end of the body element by
entering the following statement into the topmost text field:

document.body.appendChild(a)

You can now scroll down to the bottom of the page and see a duplicate of the con-
tent. But because the two nodes have different 1D attributes, they cannot confuse
scripts that need to address one or the other.

componentFromPoint(x,y)

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v v

Example

You can experiment with this method in the code supplied with Listing 15-24. As
presented, the method is associated with a TEXTAREA object that is specifically
sized to display both vertical and horizontal scrollbars. As you click various areas
of the TEXTAREA and the rest of the page, the status bar displays information about
the location of the event with the help of the componentFromPoint () method.

The script utilizes a combination of the event.srcElement property and the
componentFromPoint () method to help you distinguish how you can use each one

elementObject.componentFromPoint()

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) 63

for different types of event processing. The srcETement property is used initially as
a filter to decide whether the status bar will reveal further processing about the
TEXTAREA element’s event details.

The onMouseDown event handler in the BODY element triggers all event process-
ing. IE events bubble up the hierarchy (and no events are cancelled in this page), so
all mouseDown events eventually reach the BODY element. Then, the
whereInWorld() function can compare each mouseDown event from any element
against the textarea’s geography.

Listing 15-24: Using the componentFromPoint() Method

<HTML>
<HEAD>
KTITLE>componentFromPoint() Method</TITLE>
(SCRIPT LANGUAGE="JavaScript">
function wherelnWorld(elem) {
var x = event.clientX
var y = event.clientY
var component = document.all.myTextarea.componentFromPoint(x,y)

if (window.event.srcElement == document.all.myTextarea) {
if (component == "") {
status = "mouseDown event occurred inside the element"
} else {
status = "mouseDown occurred on the element\'s " + component
1
} else {
status = "mouseDown occurred " + component + " of the element"”
}
}
</SCRIPT>
</HEAD>

<BODY onMouseDown="whereInWorld()">

<H1>componentFromPoint() Method</H1>

<HR>

<P>Tracking the mouseDown event relative to the textarea object. View results in
status bar.</P>

<FORM>

<TEXTAREA NAME="myTextarea" WRAP="off" COLS=12 ROWS=4>

This is Line 1

This is Line
This is Line
This is Line
This is Line
This is Line
</TEXTAREA>
</FORM>
</BODY>
</HTMLY

o O B W N

elementObject.componentFromPoint()

64 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

contains(elementObjectReference)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

Using The Evaluator (Chapter 13 in the JavaScript Bible), see how the contains()
method responds to the object combinations in each of the following statements as
you enter them into the upper text box:

document.body.contains(document.all.myP)
document.all.myP.contains(document.all.item("myEM"))
document.all.myEM.contains(document.all.myEM)
document.all.myEM.contains(document.all.myP)

Feel free to test other object combinations within this page.

detachEvent ()

See attachEvent ().

dispatchEvent(eventObject)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

Listing 15-25 demonstrates the dispatchEvent () method as defined in the W3C
DOM Level 2. The behavior is identical to that of Listing 15-26, which demonstrates
the IE5.5 equivalent: fireEvent (). This example does not perform all intended
actions in the first release of NN6 because the browser does not fully implement the
document.createEvent () method. The example is designed to operate more com-
pletely in a future version that supports event generation.

Listing 15-25: Using the dispatchEvent() Method

<HTML>

<HEAD>

{STYLE TYPE="text/css">

#fmySPAN {font-style:italic)

</STYLED

{SCRIPT LANGUAGE="JavaScript">

// assemble a couple event object properties

elementObject.dispatchEvent()

Chapter 1 4 Generic HTML Element Objects (Chapter 15)

function getEventProps(evt) {
var msg = ""
var elem = evt.target
msg += "event.target.nodeName: + elem.nodeName + "\n"
msg += "event.target.parentNode: " + elem.parentNode.id + "\n"
msg += "event button: " + evt.button
return msg

}

// onClick event handlers for body, myP, and mySPAN
function bodyClick(evt) {
var msg = "Click event processed in BODY\n\n"
msg += getEventProps(evt)
alert(msg)
checkCancelBubble(evt)
}
function pClick(evt) {
var msg = "Click event processed in P\n\n"
msg += getEventProps(evt)
alert(msg)
checkCancelBubble(evt)
}
function spanClick(evt) {
var msg = "Click event processed in SPAN\n\n"
msg += getEventProps(evt)
alert(msg)
checkCancelBubble(evt)
}

// cancel event bubbling if check box is checked
function checkCancelBubble(evt) {
if (document.controls.bubbleOn.checked) {
evt.stopPropagation()
1
}

// assign onClick event handlers to three elements
function init() {
document.body.onclick = bodyClick
document.getElementById("myP").onclick = pClick
document.getElementById("mySPAN").onclick = spanClick
}

// invoke fireEvent() on object whose ID is passed as parameter
function doDispatch(objID, evt) {
// don't let button clicks bubble
evt.stopPropagation()
var newkEvt = document.createktvent("MouseEvent")
if (newkvt) {
newEvt.button = 3
document.getElementById(objID).dispatchEvent(newkvt)
} else {

Continued

elementObject.dispatchEvent()

65

66 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-25 (continued)

alert("This browser version does not support the feature.")
1
}
</SCRIPT>
</HEAD>
<BODY ID="myBODY" onlLoad="init()">
<H1>fireEvent() Method</H1>
<HR>
<P ID="myP">This is a paragraph (with a nested SPAN)
that receives click events.</P>
<HR>
<P>Control Panel</P>
<FORM NAME="controls">
<P>CINPUT TYPE="checkbox" NAME="bubbleOn"
onClick="event.stopPropagation()">Cancel event bubbling.</P>
<P>CINPUT TYPE="button" VALUE="Fire Click Event on BODY"
onClick="doDispatch('myB0ODY", event)"></P>
<P>CINPUT TYPE="button" VALUE="Fire Click Event on myP"
onClick="doDispatch('myP"', event)"></P>
<P>KINPUT TYPE="button" VALUE="Fire Click Event on mySPAN"
onClick="doDispatch('mySPAN", event)"></P>
</FORM>
</BODY>
</HTML>

firebEvent("eventType"[, eventObjectRef])

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

The small laboratory of Listing 15-26 enables you to explore the possibilities of
the IE5.5 fireEvent () method while reinforcing event bubbling concepts in IE.
Three nested element objects are assigned separate onC11ick event handlers (via
the init() function invoked after the page loads — although you can also set these
event handlers via onC11ck attributes in the tags). Each handler displays an alert
whose content reveals which object’s event handler was triggered and the tag name
and ID of the object that received the event. The default behavior of the page is to
allow event bubbling, but a checkbox enables you to turn off bubbling.

After you load the page, click the italic segment (a nested SPAN element) to
receive a series of three alert boxes. The first advises you that the SPAN element’s
onC1ick event handler is processing the event and that the SPAN element (whose ID

elementObject.fireEvent()

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) 67/

is mySPAN) is, indeed, the source element of the event. Because event bubbling is
enabled by default, the event bubbles upward to the SPAN element’s next outermost
container: the myP paragraph element. (However, mySPAN is still the source element.)
Finally, the event reaches the BODY element. If you click in the H1 element at the top
of the page, the event is not processed until it reaches the BODY element — although
the H1 element is the source element because that’s what you clicked. In all cases,
when you explicitly click something to generate the onc1ick event, the event’s
button property shows zero to signify the primary mouse button in IE.

Now onto the real purpose of this example: the fireEvent () method. Three but-
tons enable you to direct a click event to each of the three elements that have event
handlers defined for them. The events fired this way are artificial, generated via the
createEventObject () method. For demonstration purposes, the button property
of these scripted events is set to 3. This property value is assigned to the event
object that eventually gets directed to an element. With event bubbling left on, the
events sent via fireEvent () behave just like the physical clicks on the elements.
Similarly, if you disable event bubbling, the first event handler to process the event
cancels bubbling, and no further processing of that event occurs. Notice that event
bubbling is cancelled within the event handlers that process the event. To prevent
the clicks of the checkbox and action buttons from triggering the BODY element’s
onC1lick event handlers, event bubbling is turned off for the buttons right away.

Listing 15-26: Using the fireEvent() Method

<HTML>
<HEAD>
(STYLE TYPE="text/css">
F#mySPAN {font-style:italic}
</STYLE>
{SCRIPT LANGUAGE="JavaScript">
// assemble a couple event object properties
function getEventProps() {

var msg = ""

var elem = event.srcElement

msg += "event.srcElement.tagName:

+ elem.tagName + "\n"

msg += "event.srcElement.id: " + elem.id + "\n"
msg += "event button: " + event.button
return msg

}

// onClick event handlers for body, myP, and mySPAN
function bodyClick() {

var msg = "Click event processed in BODY\n\n"
msg += getEventProps()
alert(msg)

checkCancelBubble()
}
function pClick() f

var msg = "Click event processed in P\n\n"
msg += getEventProps()
alert(msg)

Continued

elementObject.fireEvent()

68 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-26 (continued)

checkCancelBubble()
}
function spanClick() {
var msg = "Click event processed in SPAN\n\n"
msg += getEventProps()
alert(msg)
checkCancelBubble()
}

// cancel event bubbling if check box is checked
function checkCancelBubble() {

event.cancelBubble = document.controls.bubbleOn.checked
}

// assign onClick event handlers to three elements

function init() {
document.body.onclick = bodyClick
document.all.myP.onclick = pClick
document.all.mySPAN.onclick = spanClick

}

// invoke firekEvent() on object whose ID is passed as parameter
function doFire(objID) {
var newkvt = document.createEventObject()
newEvt.button = 3
document.all(objID).fireEvent("onclick", newEvt)
// don't Tet button clicks bubble
event.cancelBubble = true
}
</SCRIPT>
</HEAD>
<BODY ID="myBODY" onLoad="init()">
<H1>fireEvent() Method</H1>
<HR>
<P ID="myP">This is a paragraph (with a nested SPAN)
that recejves click events.</P>
<HR>
<P>Control Panel</P>
<FORM NAME="controls">
<P>INPUT TYPE="checkbox" NAME="bubbleOn"
onClick="event.cancelBubble=true">Cancel event bubbling.</P>
<P>INPUT TYPE="button" VALUE="Fire Click Event on BODY"
onClick="doFire('myBODY")"></P>
<P>CINPUT TYPE="button" VALUE="Fire Click Event on myP"
onClick="doFire("'myP"')"></P>
<P>INPUT TYPE="button" VALUE="Fire Click Event on mySPAN"
onClick="doFire("'mySPAN")"></P>
</FORM>
</BODY>
<IHTMLY

elementObject.fireEvent()

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) 69
focus ()
See blur().

getAdjacentText("position")

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to examine all four adja-
cent text possibilities for the myP and nested myEM elements in that document.
Enter each of the following statements into the upper text box, and view the results:

.myP.getAdjacentText("beforeBegin")
.myP.getAdjacentText("afterBegin")
.myP.getAdjacentText("beforetnd")
.myP.getAdjacentText("afterEnd")

document.al
document.al
document.al
document.al

The first and last statements return empty strings because the myP element has
no text fragments surrounding it. The afterBegin version returns the text frag-
ment of the myP element up to, but not including, the EM element nested inside. The
beforeEnd string picks up after the end of the nested EM element and returns all
text to the end of myP.

Now, see what happens with the nested myEM element:

document.al
document.al
document.al
document.al

.myEM.getAdjacentText("beforeBegin")
.myEM.getAdjacentText("afterBegin")
.myEM.getAdjacentText("beforefnd")
.myEM.getAdjacentText("afterknd")

Because this element has no nested elements, the afterBegin and beforekEnd
strings are identical: the same value as the innerText property of the element.

getAttribute("attributeName"
[, caseSensitivityl)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
getAttribute() method for the elements in the page. For IE4, use the document.all

elementObject.getAttribute()

70 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

notation. IE5 and NN6 understand the W3C standard getElementById() method of
addressing an element. You can enter the following sample statements into the top
text box to view attribute values.

IE4:

document.all.myTable.getAttribute("width")
document.all.myTable.getAttribute("border")

IE5/NN6:

document.getETementById("myTable").getAttribute("width")
document.getElementById("myTable").getAttribute("border")

getAttributeNode("attributeName")

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to explore the
getAttributeNode () method in NN6. The Results TEXTAREA element provides
several attributes to check out. Because the method returns an object, enter the fol-
lowing statements into the bottom text field so you can view the properties of the
attribute node object returned by the method:

document.getElementById("output").getAttributeNode("COLS")
document.getElementById("output").getAttributeNode("ROWS")
document.getElementById("output").getAttributeNode("wrap")
document.getElementById("output").getAttributeNode("style")

All (except the last) statements display a list of properties for each attribute
node object. The last statement, however, returns nothing because the STYLE
attribute is not specified for the element.

getBoundingClientRect()

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

Example

Listing 15-27 employs both the getBoundingClientRect() and
getClientRects () methods in a demonstration of how they differ. A set of ele-
ments is grouped within a SPAN element named main. The group consists of two
paragraphs and an unordered list.

elementObject.getBoundingClientRect()

Chapter 1 4 Generic HTML Element Objects (Chapter 15)

Two controls enable you to set the position of an underlying highlight rectangle
to any line of your choice. A checkbox enables you to set whether the highlight
rectangle should be only as wide as the line or the full width of the bounding rect-
angle for the entire SPAN element.

All the code is located in the hiTite() function. The SELECT and checkbox ele-
ments invoke this function. Early in the function, the getClientRects() method is
invoked for the main element to capture a snapshot of all TextRectangles for the
entire element. This array comes in handy when the script needs to get the coordi-
nates of a rectangle for a single line, as chosen in the SELECT element.

Whenever the user chooses a number from the SELECT list and the value is less
than the total number of TextRectangle objects in c1ientRects, the function
begins calculating the size and location of the underlying yellow highlighter. When
the Full Width checkbox is checked, the left and right coordinates are obtained
from the getBoundingClientRect () method because the entire SPAN element’s
rectangle is the space you're interested in; otherwise, you pull the Teft and right
properties from the chosen rectangle in the clientRects array.

Next comes the assignment of location and dimension values to the hiliter
object’s sty1e property. The top and bottom are always pegged to whatever line is
selected, so the clientRects array is polled for the chosen entry’s top and bottom
properties. The previously calculated Teft value is assigned to the hiliter object’s
pixelleft property, while the width is calculated by subtracting the 1eft from the
right coordinates. Notice that the top and 1eft coordinates also take into account
any vertical or horizontal scrolling of the entire body of the document. If you resize
the window to a smaller size, line wrapping throws off the original line count.
However, an invocation of hilite() from the onResize event handler applies the
currently chosen line number to whatever content falls in that line after resizing.

Listing 15-27: Using getBoundingClientRect()

<HTML>
<HEAD>
<TITLE>getClientRects() and getBoundClientRect() Methods</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function hilite() {
var hTop, hLeft, hRight, hBottom, hWidth
var select = document.forms[0].choice
var n = parselnt(select.optionslselect.selectedIndex].value) - 1
var clientRects = document.all.main.getClientRects()
var mainElem = document.all.main
if (n >= 0 && n < clientRects.length) {
if (document.forms[0].fullWidth.checked) f{
hLeft = mainElem.getBoundingClientRect().left
hRight = mainElem.getBoundingClientRect().right
} else {
hLeft = clientRects[n].left
hRight = clientRects[n].right
1
document.all.hiliter.style.pixelTop = clientRects[n].top +

Continued

elementObject.getBoundingClientRect()

71

72 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-27 (continued)

document.body.scrol1Top

document.all.hiliter.style.pixelBottom = clientRects[n].bottom
document.all.hiliter.style.pixelleft = hLeft + document.body.scrollleft
document.all.hiliter.style.pixelWidth hRight - hlLeft
document.all.hiliter.style.visibility = "visible"

}else if (n > 0) {
alert("The content does not have that many Tines.")
document.all.hiliter.style.visibility = "hidden"

}
}
</SCRIPT>
</HEAD>
<BODY onResize="hilite()">
<Hl1>getClientRects() and getBoundClientRect() Methods</H1>
<HR>
<FORM>
Choose a Tine to highlight:
<SELECT NAME="choice" onChange="hilite()">
<OPTION VALUE=0>
<OPTION VALUE=1>1
<OPTION VALUE=2>2
<OPTION VALUE=3>3
<OPTION VALUE=4>4
<OPTION VALUE=5>5
<OPTION VALUE=6>6
<OPTION VALUE=7>7
<OPTION VALUE=8>8
<OPTION VALUE=9>9
<OPTION VALUE=10>10
<OPTION VALUE=11>11
<OPTION VALUE=12>12
<OPTION VALUE=13>13
<OPTION VALUE=14>14
<OPTION VALUE=15>15
</SELECT>

<INPUT NAME="fullWidth" TYPE="checkbox" onClick="hilite()">

Full Width (bounding rectangle)

</FORM>

<P>Lorem ipsum dolor sit amet, consectetaur adipisicing elit, sed do
ejusmod tempor incididunt ut labore et dolore magna aliqua.

Ut enim adminim veniam, quis nostrud exercitation ullamco:</P>

Taboris

nisi

aliquip ex ea commodo

<P>Duis aute irure dolor in reprehenderit involuptate velit esse
cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deseruntmollit

elementObject.getBoundingClientRect()

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) 73

anim id est laborum Et harumd und lookum Tike Greek to me, dereud
facilis est er expedit distinct.</P>

<DIV ID="hiliter"

STYLE="position:absolute; background-color:yellow; z-index:-1;
visibility:hidden">

</DIV>

</BODY>

</HTML>

Because the z-index style property of the hiliter element is set to -1, the ele-
ment always appears beneath the primary content on the page. If the user selects a
line number beyond the current number of lines in the main element, the hiliter
element is hidden.

getClientRects()

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

Example

See Listing 15-27, which demonstrates the differences between getClientRects()
and getBoundingClientRect () and shows how you can use the two together.

getElementsByTagName(" tagName")

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
getElementsByTagName () method. Enter the following statements one at a time
into the upper text box and study the results:

document.body.getElementsByTagName("DIV")
document.body.getElementsByTagName("DIV").length
document.getElementById("myTable").getElementsByTagName("TD").length

Because the getElementsByTagName () method returns an array of objects, you
can use one of those returned values as a valid element reference:

document.getElementsByTagName("FORM")[0].getElementsByTagName("INPUT").Tength

elementObject.getElementsByTagName()

74 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

getExpression("attributeName")

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

Example

See Listing 15-32 for the setExpression() method. This listing demonstrates
the kinds of values returned by getExpression().

hasChildNodes ()
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v 4
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
hasChildNodes () method. If you enter the following statement into the topmost
text box:

document.getETementById("myP").hasChildNodes()

the returned value is true. You can find out how many nodes there are by getting
the Tength of the childNodes array:

document.getElementById("myP").childNodes.length

This expression reveals a total of three nodes: the two text nodes and the EM ele-
ment between them. Check out whether the first text node has any children:

document.getElementById("myP").childNodes[0].hasChildNodes()

The response is false because text fragments do not have any nested nodes.
But check out the EM element, which is the second child node of the myP element:

document.getElementById("myP").childNodes[1].hasChildNodes()

The answer is true because the EM element has a text fragment node nested
within it. Sure enough, the statement

document.getETementById("myP").childNodes[1].childNodes.length

yields a node count of 1. You can also go directly to the EM element in your
references:

document.getETementById("myEM").hasChildNodes()
document.getElementById("myEM").childNodes.length

elementObject.hasChildNodes()

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) 75

If you want to see the properties of the text fragment node inside the EM ele-
ment, enter the following into the lower text box:

document.getETementById("myEM").childNodes[0]

You can see that the data and nodeVaTue properties for the text fragment return
the text "al1".

insertAdjacentElement(" Tocation",

elementObject)
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v
Example

Use The Evaluator (Chapter 13 in JavaScript Bible) to experiment with the
insertAdjacentElement () method. The goal of the experiment is to insert a new
H1 element above the myP element.

All actions require you to enter a sequence of statements in the topmost text
box. Begin by storing a new element in the global variable a:

a = document.createElement("H1")

Give the new object some text:

a.innerText = "New Header"

Now, insert this element before the start of the myP object:
myP.insertAdjacentETement("beforeBegin", a)

Notice that you have not assigned an id property value to the new element. But
because the element was inserted by reference, you can modify the inserted object
by changing the object stored in the a variable:

a.style.color = "red"

The inserted element is also part of the document hierarchy, so you can access it
through hierarchy references such as myP.previousSibling.

The parent element of the newly inserted element is the BODY. Thus, you can
inspect the current state of the HTML for the rendered page by entering the follow-
ing statement into the topmost text box:

document.body.innerHTML

If you scroll down past the first form, you can find the <H1> element that you added
along with the STYLE attribute.

elementObject.insertAdjacentElement()

76 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

insertAdjacentHTML(" Tocation", "HTMLtext")
insertAdjacentText("Tocation", "text")

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/ v v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with these
two methods. The example here demonstrates the result of employing both meth-
ods in an attempt to add some HTML to the beginning of the myP element.

Begin by assigning a string of HTML code to the global variable a:

a = "<B ID="myB'>Important News!"

Because this HTML is to go on the same line as the start of the myP paragraph, use
the afterBegin parameter for the insert method:

myP.insertAdjacentHTML("afterBegin", a)

Notice that there is no space after the exclamation mark of the inserted HTML.
But to prove that the inserted HTML is genuinely part of the document’s object
model, you can now insert the text of a space after the B element whose ID is myB:

myB.insertAdjacentText("afterknd", " ")

Each time you evaluate the preceding statement (by repeatedly clicking the
Evaluate button or pressing Enter with the cursor in the topmost field), an addi-
tional space is added.

You should also see what happens when the string to be inserted with
insertAdjacentText () contains HTML tags. Reload The Evaluator and enter the
following two statements into the topmost field, evaluating each one in turn:

a = "<B ID="myB'>Important News!"
myP.insertAdjacentText("afterBegin", a)

The HTML is not interpreted but is displayed as plain text. There is no object
named myB after executing this latest insert method.

insertBefore(newChildNodeObjectl,
referenceChildNode])

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/ v v

elementObject.insertBefore()

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) 77

Example

Listing 15-28 demonstrates how the insertBefore() method can insert child
elements (LI) inside a parent (OL) at different locations, depending on the second
parameter. A text box enables you to enter your choice of text and/or HTML for
insertion at various locations within the OL element. If you don’t specify a position,
the second parameter of insertBefore() is passed as nul1 —meaning that the
new child node is added to the end of the existing children. But choose a spot from
the select list where you want to insert the new item. The value of each SELECT list
option is an index of one of the first three child nodes of the OL element.

Listing 15-28: Using the insertBefore() Method

<HTML>
<HEAD>
<TITLE>insertBefore() Method</TITLE>
<{SCRIPT LANGUAGE="JavaScript">
function doInsert(form) {
if (form.newText) {
var newChild = document.createElement("LI")
newChild.innerHTML = form.newText.value
var choice = form.itemIndex.options[form.itemIndex.selectedIndex].value
var insertPoint = (isNaN(choice)) ?
null : document.getElementById("myUL").childNodes[choice]
document.getETementById("myUL").insertBefore(newChild, insertPoint)
t
}
</SCRIPT>
</HEAD>
<BODY>
<Hl1>insertBefore() Method</H1>
<HR>
<FORM onSubmit="return false">
<P>Enter text or HTML for a new Tist item:
<INPUT TYPE="text" NAME="newText" SIZE=40 VALUE=""></P>
{P>Before which existing item?
(SELECT NAME="itemIndex">
<OPTION VALUE=null>None specified
<OPTION VALUE=0>1
<OPTION VALUE=1>2
<OPTION VALUE=2>3
{/SELECT></P>
<INPUT TYPE="button" VALUE="Insert Item" onClick="dolInsert(this.form)">
</FORM>

<OL ID="myUL">
0riginally the First Item
0riginally the Second Item
Originally the Third Item

</0L>

</BODY>

</HTML>

elementObject.insertBefore()

78 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

item(index | "index" [, subIndex])

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
item() method. Type the following statements into the topmost text box and view

the results for each:
NN6 and IE5

document.getETementById("myP").childNodes.length
document.getElementById("myP").childNodes.item(0).data
document.getElementById("myP").childNodes.item(1).nodeName

NNG6, IE4, and IE5
document.forms[1].elements.item(0).type
[E4 and IE5

document.all.item("myP").outerHTML
myP.outerHTML

In the last two examples, both statements return the same string. The first exam-
ple is helpful when your script is working with a string version of an object’s name.
If your script already knows the object reference, then the second approach is more
efficient and compact.

mergeAttributes("sourceObject")

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v v

Example

Listing 15-29 demonstrates the usage of mergeAttributes() in the process of
replicating the same form input field while assigning a unique ID to each new field.
So you can see the results as you go, I display the HTML for each input field in the
field.

The doMerge () function begins by generating two new elements: a P and an
INPUT element. Because these newly created elements have no properties associ-
ated with them, a unique ID is assigned to the INPUT element via the uniquelD
property. Attributes from the field in the source code (fieldl) are merged into the
new INPUT element. Thus, all attributes except name and id are copied to the new
element. The INPUT element is inserted into the P element, and the P element is

elementObject.mergeAttributes()

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) 79

appended to the document’s form element. Finally, the outerHTML of the new ele-
ment is displayed in its field. Notice that except for the NAME and 1D attributes, all
others are copied. This includes style sheet attributes and event handlers. To prove
that the event handler works in the new elements, you can add a space to any one
of them and press Tab to trigger the onChange event handler that changes the con-
tent to all uppercase characters.

Listing 15-29: Using the mergeAttributes() Method

<HTML>

<HEAD>

<TITLE>mergeAttributes() Method</TITLE>

{SCRIPT LANGUAGE="JavaScript">

function doMerge(form) {
var newPElem = document.createElement("P")
var newlInputElem = document.createElement("INPUT")
newlnputElem.id = newlnputElem.uniquelD
newlInputElem.mergeAttributes(form.fieldl)
newPETem.appendChild(newInputElem)
form.appendChild(newPElem)
newlInputElem.value = newInputElem.outerHTML

}

// called by onChange event handler of fields

function upperMe(field) {
field.value = field.value.toUpperCase()

}

</SCRIPT>

</HEAD>

<BODY onlLoad="document.expandable.fieldl.value =

document.expandable.fieldl.outerHTML">

<H1>mergeAttributes() Method</H1>

<HR>

<{FORM NAME="expandable" onSubmit="return false">

<P>INPUT TYPE="button" VALUE="Append Field 'Clone'"

onClick="doMerge(this.form)"></P>

<P>CINPUT TYPE="text" NAME="fieldl" ID="FIELD1" SIZE=120 VALUE="" STYLE="font-

size:9pt" onChange="upperMe(this)"></P>

</FORM>

</BODY>

</HTML>

normalize()

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

elementObject.normalize()

80 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example

Use The Evaluator to experiment with the normalize() method in NN6. The fol-
lowing sequence adds a text node adjacent to one in the myP element. A subsequent
invocation of the normalize() method removes the division between the adjacent
text nodes.

Begin by confirming the number of child nodes of the myP element:

document.getElementById("myP").childNodes.length

Three nodes initially inhabit the element. Next, create a text node and append it as
the last child of the myP element:

a = document.createTextNode("This means you!")
document.getElementById("myP").appendChild(a)

With the new text now rendered on the page, the number of child nodes
increases to four:

document.getETementById("myP").childNodes.length
You can see that the last child node of myP is the text node you just created:
document.getETementById("myP").lastChild.nodeValue

But by invoking normalize() on myP, all adjacent text nodes are accumulated into
single nodes:

document.getETementById("myP").normalize()

You can now see that the myP element is back to three child nodes, and the last
child is a combination of the two previously distinct, but adjacent, text nodes:

document.getElementById("myP").childNodes.length
document.getETementById("myP").lastChild.nodeValue

releaseCapture()
setCapture(containerBoolean)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

Example

Listing 15-30 demonstrates the usage of setCapture() and releaseCapture()
in a “quick-and-dirty” context menu for IE5+/Windows. The job of the context menu
is to present a list of numbering styles for the ordered list of items on the page.
Whenever the user brings up the context menu atop the OL element, the custom
context menu appears. Event capture is turned on in the process to prevent mouse
actions elsewhere on the page from interrupting the context menu choice. Even a
click on the link set up as the title of the list is inhibited while the context menu is
visible. A click anywhere outside of the context menu hides the menu. Clicking a

elementObject.releaseCapture()

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) 81

choice in the menu changes the 1istStyleType property of the OL object and
hides the menu. Whenever the context menu is hidden, event capture is turned off
so that clicking on the page (such as the link) works as normal.

For this design, onC1ick, onMouseOver, and onMouseOut event handlers are
assigned to the DIV element that contains the context menu. To trigger the display
of the context menu, the OL element has an onContextMenu event handler. This
handler invokes the showContextMenu () function. In this function, event capture is
assigned to the context menu DIV object. The DIV is also positioned at the location
of the click before it is set to be visible. To prevent the system’s regular context
menu from also appearing, the event object’s returnValue property is set to
false. The context menu is shown activated in Figure 1-2.

ings'Chap15tst15-30.htm - Microsoft Internet Explorer

JEiIe Edit View Favorites Tools Help |

«.».@m@sa@‘ 2

Back Forward Stop Refresh Home Search Favorites History

Three-Dimensional Shapes
Circular Cylinder

Cube [})
Rectangular Prisr :ib";c‘
Regular Right Py 450
Right Circular Co g3,
Sphere

N

Bl
[&] Done [[= my computer Y

Figure 1-2: Displaying a customized context menu

Now that all mouse events on the page go through the contextMenu DIV object,
let’s examine what happens with different kinds of events triggered by user action. As
the user rolls the mouse, a flood of mouseover and mouseout events fire. The event
handlers assigned to the DIV manage these events. But notice that the two event han-
dlers, highTight() and unhighlight(), perform action only when the srcETement
property of the event is one of the menu items in the DIV. Because the page has no
other onMouseOver or onMouseOut event handlers defined for elements up the con-
tainment hierarchy, you do not have to cancel event bubbling for these events.

When a user clicks the mouse button, different things happen depending on
whether event capture is enabled. Without event capture, the c11ck event bubbles
up from wherever it occurred to the onC11ick event handler in the BODY element.
(An alert dialog box displays to let you know when the event reaches the BODY.)
But with event capture turned on (the context menu is showing), the
handleClick() event handler takes over to apply the desired choice whenever the
click is atop one of the context menu items. For all c11ck events handled by this
function, the context menu is hidden and the c1ick event is canceled from bub-
bling up any higher (no alert dialog box appears). This takes place whether the
user makes a choice in the context menu or clicks anywhere else on the page. In the
latter case, all you need is for the context menu to go away like the real context
menu does. For added insurance, the onLoseCapture event handler hides the con-
text menu when a user performs any of the actions just listed that cancel capture.

elementObject.releaseCapture()

82 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-30: Using setCapture() and releaseCapture()

<HTML>
{STYLE TYPE="text/css">
ffcontextMenu {position:absolute; background-color:fcfcfcf;
border-style:solid; border-width:1px;
border-color:#fEFEFEF #505050 #505050 #fEFEFEF;
padding:3px 10px; font-size:8pt; font-family:Arial, Helvetica;
lTine-height:150%; visibility:hidden)
.menultem {color:black}
.menultemOn {color:white}
OL {1ist-style-position:inside; font-weight:bold; cursor:nw-resize}
LT {font-weight:normal}
</STYLED
<{SCRIPT LANGUAGE="JavaScript">
function showContextMenu() {
contextMenu.setCapture()
contextMenu.style.pixelTop = event.clientY + document.body.scrollTop
contextMenu.style.pixelleft = event.clientX + document.body.scrollleft
contextMenu.style.visibility = "visible"
event.returnValue = false

}

function revert() {
document.releaseCapture()
hideMenu()

}

function hideMenu() {
contextMenu.style.visibility = "hidden"
}

function handleClick() {
var elem = window.event.srcElement
if (elem.id.index0f("menultem") == 0) {
shapeslList.style.1istStyleType = elem.LISTTYPE
1
revert()
event.cancelBubble = true
}

function highlight() {
var elem = event.srcElement
if (elem.className == "menultem") {
elem.className = "menultemOn"
1
}

function unhighlight() {

var elem = event.srcElement
if (elem.className == "menultemOn") {

elementObject.releaseCapture()

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) 83

elem.className = "menultem"

}
}
</SCRIPT>
<BODY onClick="alert('You reached the document object.')" >
<OL ID="shapesList" onContextMenu="showContextMenu()">
Three-Dimensional Shapes
Circular Cylinder
Cube
Rectangular Prism
Regular Right Pyramid
Right Circular Cone
Sphere
</0L>

<DIV ID="contextMenu" onLoseCapture="hideMenu()" onClick="handleClick()"
onMouseOver="highlight()" onMouseQut="unhighlight()">

<SPAN ID="menulteml" CLASS="menultem" LISTTYPE="upper-
alpha">A,B,C,...

<SPAN ID="menultem2" CLASS="menultem" LISTTYPE="lower-
alpha">a,b,c,...

<SPAN ID="menultem3" CLASS="menultem" LISTTYPE="upper-
roman">I,II,IIT,...

(SPAN ID="menultem4" CLASS="menultem" LISTTYPE="Tower-
roman">i,ii,111,...

1,2,3,...

</DIVS

</BODY>

</HTML>

removeAttribute("attributeName"
[, caseSensitivityl)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
removeAttribute() method for the elements in the page. See the examples for the
setAttribute() method later in this chapter, and enter the corresponding
removeAttribute() statements in the top text box. Interlace statements using
getAttribute() to verify the presence or absence of each attribute.

elementObject.removeAttribute()

84 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

removeAttributeNode(attributeNode)
setAttributeNode(attributeNode)

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
setAttributeNode() and removeAttributeNode() methods for the P element in
the page. The task is to create and add a STYLE attribute to the P element. Begin by
creating a new attribute and storing it temporarily in the global variable a:

a = document.createAttribute("style")

Assign a value to the attribute object:
a.nodeValue = "color:red"
Now insert the new attribute into the P element:
document.getETementById("myP").setAttributeNode(a)

The paragraph changes color in response to the newly added attribute.
Due to the NN6 bug that won’t allow the method to return a reference to the
newly inserted attribute node, you can artificially obtain such a reference:

b = document.getElementById("myP").getAttributeNode("style")

Finally, use the reference to the newly added attribute to remove it from the
element:

document.getElementById("myP").removeAttribute(b)

Upon removing the attribute, the paragraph resumes its initial color. See the
example for the setAttribute() method later in this chapter to discover how you
can perform this same kind of operation with setAttribute().

removeBehavior(ID)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

Example
See Listings 15-19a and 15-19b earlier in this chapter for examples of how to use
addBehavior() and removeBehavior().

elementObject.removeBehavior()

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) 85

removeChild(nodeObject)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

You can see an example of removeChild() as part of Listing 15-21 earlier in this
chapter.

removeEventListener()

See addEventListener().

removeExpression("propertyName")

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

Example

You can experiment with all three expression methods in The Evaluator (Chapter
13 in the JavaScript Bible). The following sequence adds an expression to a style
sheet property of the myP element on the page and then removes it.

To begin, enter the number 24 in the bottom one-line text box in The Evaluator
(but don’t press Enter or click the List Properties button). This is the value used in
the expression to govern the fontSize property of the myP object. Next, assign an
expression to the myP object’s sty1e object by entering the following statement
into the topmost text box:

myP.style.setExpression("fontSize","document.forms[0].inspector.value","JScript")

You can now enter different font sizes into the lower text box and have the val-
ues immediately applied to the fontSize property. (Keyboard events in the text
box automatically trigger the recalculation.) The default unit is px, but you can also
append other units (such as pt) to the value in the text field to see how different
measurement units influence the same numeric value.

Before proceeding to the next step, enter a value other than 16 (the default
fontSize value). Finally, enter the following statement in the topmost text box to
disconnect the expression from the property:

myP.style.removeExpression("fontSize")

elementObject.removeExpression()

86 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Notice that although you can no longer adjust the font size from the lower text
box, the most recent value assigned to it still sticks to the element. To prove it,
enter the following statement in the topmost text box to see the current value:

myP.style.fontSize

removeNode(removeChildrenFlag)

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

Example

Examine Listing 15-21 for the appendChi1d () method to understand the differ-
ence between removeChild() and removeNode().In the restore() function, you
can replace this statement

mainObj.removeChild(oneChild)
in IE5+ with
oneChild.removeNode(true)
The difference is subtle, but it is important to understand. See Listing 15-31 later
in this chapter for another example of the removeNode () method.

replaceAdjacentText(" location™, "text")

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
replaceAdjacentText () method. Enter each of the following statements into the
top text box and watch the results in the myP element (and its nested myEM element)
below the solid rule:

document.all.myEM.replaceAdjacentText("afterBegin", "twenty")

Notice that the myEM element’s new text picks up the behavior of the element. In
the meantime, the replaced text (al1) is returned by the method and displayed in
the Results box.

document.all.myEM.replaceAdjacentText("beforeBegin", "We need ")

elementObject.replaceAdjacentText()

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) 87

All characters of the text fragment, including spaces, are replaced. Therefore,
you may need to supply a trailing space, as shown here, if the fragment you replace
has a space.

document.all.myP.replaceAdjacentText("beforeEnd", " good people.")

This is another way to replace the text fragment following the myEM element, but
it is also relative to the surrounding myP element. If you now attempt to replace text
after the end of the myP block-level element,

document.all.myP.replaceAdjacentText("afterEnd", "Hooray!")

the text fragment is inserted after the end of the myP element’s tag set. The fragment
is just kind of floating in the document object model as an unlabeled text node.

replaceChild(newNodeObject, oldNodeObject)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v 4

Example

You can see an example of replaceChild() as part of Listing 15-21 earlier in
this chapter.

replaceNode("newNodeObject")

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

Example

Listing 15-31 demonstrates three node-related methods: removeNode (),
replaceNode(), and swapNode (). These methods work in IE5+ only.

The page rendered from Listing 15-31 begins with a UL type list of four items. Four
buttons control various aspects of the node structure of this list element. The first
button invokes the replace () function, which changes the UL type to OL. To do this,
the function must temporarily tuck away all child nodes of the original UL element so
that they can be added back into the new OL element. At the same time, the old UL
node is stored in a global variable (01dNode) for restoration in another function.

To replace the UL node with an OL, the replace() function creates a new, empty
OL element and assigns the myOL ID to it. Next, the children (LI elements) are stored
en masse as an array in the variable innards. The child nodes are then inserted into
the empty OL element, using the insertBefore() method. Notice that as each
child element from the innards array is inserted into the OL element, the child ele-
ment is removed from the innards array. That’s why the loop to insert the child
nodes is a whiTe loop that constantly inserts the first item of the innards array to

elementObject.replaceNode()

JavaScript Examples Bible: The Essential Companion to JavaScript Bible

the new element. Finally, the replaceNode () method puts the new node in the old
node’s place, while the old node (just the UL element) is stored in oTdNode.

The restore() function operates in the inverse direction of the replace()
function. The same juggling of nested child nodes is required.

The third button invokes the swap () function, whose script exchanges the first
and last nodes. The swapNode () method, like the others in this discussion, oper-
ates from the point of view of the node. Therefore, the method is attached to one of
the swapped nodes, while the other node is specified as a parameter. Because of
the nature of the OL element, the number sequence remains fixed but the text of
the LI node swaps.

To demonstrate the removeNode () method, the fourth function removes the last
child node of the list. Each call to removeNode () passes the true parameter to
guarantee that the text nodes nested inside each LI node are also removed.
Experiment with this method by setting the parameter to false (the default).
Notice how the parent—child relationship changes when you remove the LI node.

Listing 15-31: Using Node-Related Methods

<HTML>

<HEAD>

<TITLE>removeNode(), replaceNode(), and swapNode() Methods</TITLE>
<SCRIPT LANGUAGE="JavaScript">

// store original node between changes

var oldNode

// replace UL node with OL
function replace() {
if (document.all.myUL) {
var newNode = document.createETement("0L")
newNode.id = "myOL"
var innards = document.all.myUL.children
while (innards.length > 0) {
newNode.insertBefore(innards[0])

1

oldNode = document.all.myUL.replaceNode(newNode)
}

// restore OL to UL
function restore() {
if (document.all.myOL && oldNode) {
var innards = document.all.myOL.children
while (innards.length > 0) {
oldNode.insertBefore(innards[0])

}
document.all.myOL.replaceNode(oldNode)

}

// swap first and last nodes
function swap() {

elementObject.replaceNode()

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) 89

if (document.all.myUL) {
document.all.myUL.firstChild.swapNode(document.all.myUL.TastChild)
}
if (document.all.myOL) {
document.all.myOL.firstChild.swapNode(document.all.myOL.lastChild)
}
}

// remove last node
function remove() {

if (document.all.myUL) {

document.all.myUL.TastChild.removeNode(true)
1
if (document.all.myOL) {
document.all.myOL.TastChild.removeNode(true)

1
}
</SCRIPT>
</HEAD>
<BODY>
<H1>Node Methods</H1>
<HR>
Here is a list of items:
<UL ID="myUL">
First Item
Second Item
Third Item
Fourth Item
<UL
<FORM>
<INPUT TYPE="button" VALUE="Change to OL List" onClick="replace()">
<INPUT TYPE="button" VALUE="Restore LI List" onClick="restore()">
<INPUT TYPE="button" VALUE="Swap First/Last" onClick="swap()">
<INPUT TYPE="button" VALUE="Remove Last" onClick="remove()">
</BODY>
</HTML>

You can accomplish the same functionality shown in Listing 15-31 in a cross-
browser fashion using the W3C DOM. In place of the removeNode () and
replaceNode() methods, use removeChild() and replaceChild() methods to
shift the point of view (and object references) to the parent of the UL and OL
objects: the document .body. Also, you need to change the document.all refer-
ences to document.getElementById().

scrollIntoView(topAlignFlag)

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

elementObject.scrollintoView()

90 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
scrollIntoView() method. Resize the browser window height so that you can see
only the topmost text box and the Results textarea. Enter each of the following
statements into the top text box and see where the myP element comes into view:

myP.scrollIntoView()
myP.scrollIntoView(false)

Expand the height of the browser window until you can see part of the table
lower on the page. If you enter

myTable.scrollIntoView(false)

into the top text box, the page scrolls to bring the bottom of the table to the bottom
of the window. But if you use the default parameter (true or empty),

myTable.scrollIntoView()

the page scrolls as far as it can in an effort to align the top of the element as closely
as possible to the top of the window. The page cannot scroll beyond its normal
scrolling maximum (although if the element is a positioned element, you can use
dynamic positioning to place it wherever you want —including “off the page”).
Also, if you shrink the window and try to scroll the top of the table to the top of the
window, be aware that the TABLE element contains a CAPTION element so the cap-
tion is flush with the top of the window.

setActive()

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to compare the
setActive() and focus () methods. With the page scrolled to the top and the win-
dow sized so that you cannot see the sample check box near the bottom of the
page, enter the following statement into the top text box:

document.forms[1].myCheckbox.setActive()

Scroll down to see that the checkbox has operational focus (press the spacebar
to see). Now, scroll back to the top and enter the following:

document.forms[1].myCheckbox.focus()

This time, the checkbox gets focus and the page automatically scrolls the object
into view.

elementObject.setActive()

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) O]

setAttribute("attributeName", value
[, caseSensitivity])

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/ v/ v v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
setAttribute() method for the elements in the page. For [E4, use the document.
a1l notation; IE5 and NN6 understand the W3C standard getElementById()
method of addressing an element.

Setting attributes can have immediate impact on the layout of the page (just as
setting an object’s properties can). Enter these sample statements into the top text
box to view attribute values:

1E4+:

document.all.myTable.setAttribute("width", "80%")
document.all.myTable.setAttribute("border", "5")

IE5+/NN6:

document.getETementById("myTable").setAttribute("width", "80%")
document.getElementById("myTable").setAttribute("border", "5")

setAttributeNode()

See removeAttributeNode().

setCapture(containerBoolean)

See releaseCapture().

setExpression("propertyName",
"expression"," language")

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

Example

Listing 15-32 shows the setExpression(), recalc(), and getExpression()
methods at work in a DHTML-based clock. Figure 1-3 shows the clock. As time clicks

elementObject.setExpression()

02 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

by, the bars for hours, minutes, and seconds adjust their widths to reflect the cur-
rent time. At the same time, the innerHTML of SPAN elements to the right of each
bar display the current numeric value for the bar.

The dynamically calculated values in this example are based on the creation of
a new date object over and over again to get the current time from the client com-
puter clock. It is from the date object (stored in the variable called now) that the
hour, minute, and second values are retrieved. Some other calculations are
involved so that a value for one of these time components is converted into a
pixel value for the width of the bars. The bars are divided into 24 (for the hours)
and 60 (for the minutes and seconds) parts, so the scale for the two types differs.
For the 60-increment bars in this application, each increment is set to 5 pixels
(stored in shortWidth); the 24-increment bars are 2.5 times the shortWidth.

As the document loads, the three SPAN elements for the colored bars are given
no width, which means that they assume the default width of zero. But after the
page loads, the onlLoad event handler invokes the init () function, which sets the
initial values for each bar’s width and the text (innerHTML) of the three labeled
spans. Once these initial values are set, the init () function invokes the
updateClock() function.

In the updateClock() function, a new date object is created for the current
instant. The document.recalc() method is called, instructing the browser to
recalculate the expressions that were set in the init () function and assign the new
values to the properties. To keep the clock “ticking,” the setTimeout () method is
set to invoke this same updateClock() function in one second.

To see what the getExpression() method does, you can click the button on the
page. It simply displays the returned value for one of the attributes that you assign
using setExpression().

Listing 15-32: Dynamic Properties

<HTML>

<HEAD>

{TITLE>getExpression(), setExpression(), and recalc() Methods</TITLE>
(STYLE TYPE="text/css">

TH {text-align:right)

SPAN {vertical-align:bottom}

</STYLED

{SCRIPT LANGUAGE="JavaScript">

var now = new Date()
var shortWidth = 5
var multiple = 2.5

function init() {
with (document.all) {

hoursBlock.style.setExpression("width",
"now.getHours() * shortWidth * multiple","jscript")

hourslabel.setExpression("innerHTML",
"now.getHours()","jscript")

minutesBlock.style.setExpression("width",
"now.getMinutes() * shortWidth","jscript")

elementObject.setExpression()

Chapter 1 4 Generic HTML Element Objects (Chapter 15)

minuteslLabel.setExpression("innerHTML",
"now.getMinutes()","jscript")
secondsBlock.style.setExpression("width",
"now.getSeconds() * shortWidth","jscript")
secondslLabel.setExpression("innerHTML",
"now.getSeconds()","jscript")
}

updateClock()
}

function updateClock() {
now = new Date()
document.recalc()
setTimeout("updateClock()",1000)
}

function showkExpr() {
alert("Expression for the \'Hours\' innerHTML property is:\r\n" +
document.all.hoursLabel.getExpression("innerHTML") + ".")
}
</SCRIPT>
</HEAD>
<BODY onLoad="init()">
<{H1>getExpression(), setExpression(), recalc() Methods</H1>
<HR>
<P>This clock uses Dynamic Properties to calculate bar width and time
numbers:</P>
<TABLE BORDER=0>
<TR>
{TH>Hours:</TH>
<TD>
 </TD>
</TR>
<TR>
<TH>Minutes:</TH>
<TD>
 </TD>
</TR>
<TR>
<TH>Seconds:</TH>
<TD>
 </TD>
</TR>
</TABLE>
<HR>
<FORM>
<INPUT TYPE="button" VALUE="Show 'Hours' number innerHTML Expression"
onClick="showExpr()"
</FORM>
</BODY>
<IHTMLY

elementObject.setExpression()

93

94

JavaScript Examples Bible: The Essential Companion to JavaScript Bible

a =1 ES
J Fle Edit \iew Favoites Toole Help ‘
J@-*.@ Q ‘%vé@-

Back Farward Stop Refresh Home Search Favoites Historp b ail PFrint Edit RealGuide
getExpression(), setExpression(), recalc() Methods
This clock uses Diynamic Properties to calculate bar width and time numbers:
Hours: [N, 2o
Minutes: 57
Seconds: - 11
Show 'Hours' number innerHTML Expression |
=
@ Done ’7’7 25 Local intranet
Figure 1-3: A clock controlled by dynamic properties
swapNode(otherNodeObject)
NN2 NN3 NN4 NN6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v
Example

See Listing 15-31 (the replaceNode () method) for an example of the
swapNode () method in action.

tags("tagName")

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

elementObject.tags()

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) o5

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
tags () method. Enter the following statements one at a time into the upper text
box and study the results:

document.all.tags("DIV")
document.all.tags("DIV").length
myTable.all.tags("TD").length

Because the tags () method returns an array of objects, you can use one of
those returned values as a valid element reference:

document.all.tags("FORM")[1].elements.tags("INPUT").length

urns("behaviorURN")

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

Example

In case the urns () method is reconnected in the future, you can add a button
and function to Listing 15-19b that reveals whether the makeHot . htc behavior is
attached to the myP element. Such a function looks like this:

function behaviorAttached() {
if (document.all.urns("makeHot")) {
alert("There is at least one element set to \'makeHot\'.")

}
}

Event handlers

onActivate
onBeforeDeactivate
onDeactivate

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

You can modify Listing 15-34 later in this chapter by substituting onActivate for
onFocus and onDeactivate for onBlur.

elementObject.onActivate

o6 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
onBeforeDeactivate event handler. To begin, set the myP element so it can accept
focus:

myP.tabIndex =1

If you repeatedly press the Tab key, the myP paragraph will eventually receive
focus —indicated by the dotted rectangle around it. To see how you can prevent
the element from losing focus, assign an anonymous function to the
onBeforeDeactivate event handler, as shown in the following statement:

myP.onbeforedeactivate = new Function("event.returnValue=false")

Now you can press Tab all you like or click other focusable elements all you like,
and the myP element will not lose focus until you reload the page (which clears
away the event handler). Please do not do this on your pages unless you want to
infuriate and alienate your site visitors.

onBeforeCopy

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

Example

You can use the onBeforeCopy event handler to preprocess information prior to
an actual copy action. In Listing 15-33, the function invoked by the second para-
graph element’s onBeforeCopy event handler selects the entire paragraph so that
the user can select any character(s) in the paragraph to copy the entire paragraph
into the clipboard. You can paste the results into the textarea to verify the opera-
tion. By assigning the paragraph selection to the onBeforeCopy event handler, the
page notifies the user about what the copy operation will entail prior to making the
menu choice. Had the operation been deferred to the onCopy event handler, the
selection would have been made after the user chose Copy from the menu.

Listing 15-33: The onBeforeCopy Event Handler

<HTML>
<HEAD>
<TITLE>onBeforeCopy Event Handler</TITLE>
{SCRIPT LANGUAGE="JavaScript">
function selectWhole() {
var obj = window.event.srcElement
var range = document.body.createTextRange()
range.moveToElementText(obj)
range.select()
event.returnValue = false
}
</SCRIPT>

elementObject.onBeforeCopy

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) o7

</HEAD>

<BODY>

<H1>onBeforeCopy Event Handler</H1>

<HR>

<P>Select one or more characters in the following paragraph. Then
execute a Copy command via Edit or context menu.</P>

<P ID="myP" onBeforeCopy="selectWhole()">Lorem ipsum dolor sit amet,
consectetaur adipisicing elit, sed do ejusmod tempor incididunt ut
labore et dolore magna aliqua. Ut enim adminim veniam, quis nostrud
exercitation ullamco Taboris nisi ut aliquip ex ea commodo consequat.</P>
<FORM>

<P>Paste results here:

<TEXTAREA NAME="output"™ COLS="60" ROWS="5"></TEXTAREA>

</P>

</FORM>

</BODY>

</HTML>

onBeforeCut

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

Example

You can use the onBeforeCut event handler to preprocess information prior to
an actual cut action. You can try this by editing a copy of Listing 15-33, changing the
onBeforeCopy event handler to onBeforeCut. Notice that in its original form, the
example does not activate the Cut item in either the context or Edit menu when you
select some text in the second paragraph. But by assigning a function to the
onBeforeCut event handler, the menu item is active, and the entire paragraph is
selected from the function that is invoked.

onBeforeDeactivate

See onActivate.

onBeforeEditFocus

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

elementObject.onBeforeEditFocus

o8 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example

Use The Evaluator to explore the onBeforeEditFocus in IE5.5+. In the following
sequence, you assign an anonymous function to the onBeforeEditFocus event
handler of the myP element. The function turns the text color of the element to red
when the event handler fires:

myP.onbeforeeditfocus = new Function("myP.style.color="red'")
Now turn on content editing for the myP element:
myP.contentEditable = true

If you now click inside the myP element on the page to edit its content, the text
turns to red before you begin editing. In a page scripted for this kind of user inter-
face, you would include some control that turns off editing and changes the color to
normal.

If you wish to learn more about HTML content editing via the DHTML Editing
ActiveX control, visit http://msdn.microsoft.com/workshop/browser/mshtml/.

onBeforePaste

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v v

Example

See Listing 15-45 for the onPaste event handler (later in this chapter) to see how
the onBeforePaste and onPaste event handlers work together.

onBlur
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v v v oo/ v
Example

More often than not, a page author uses the onB1ur event handler to exert
extreme control over the user, such as preventing a user from exiting out of a text
box unless that user types something into the box. This is not a Web-friendly prac-
tice, and it is one that | discourage because there are intelligent ways to ensure a
field has something typed into it before a form is submitted (see Chapter 43 of the
JavaScript Bible). Listing 15-34 simply demonstrates the impact of the TABINDEX
attribute in an IE5/Windows element with respect to the onBlur and onFocus
events. Notice that as you press the Tab key, only the second paragraph issues the
events even though all three paragraphs have event handlers assigned to them.

elementObject.onBlur

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) 99

Listing 15-34: onBlur and onFocus Event Handlers

<HTML>
<HEAD>
<TITLE>onBlur and onBlur Event Handlers</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function showBlur() {
var id = event.srcElement.id
alert("Element \"" + id + "\" has blurred.")
}
function showFocus() {
var id = event.srcElement.id
alert("Element \"" + id + "\" has received focus.")
}
</SCRIPT>
</HEAD>
<BODY>
<H1 ID="H1" TABINDEX=2>onBlur and onBlur Event Handlers</H1>
<HR>
<P ID="P1" onBlur="showBlur()" onFocus="showFocus()">Lorem ipsum
dolor sit amet, consectetaur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim adminim veniam,
quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea
commodo consequat.</P>

<P ID="P2" TABINDEX=1 onBlur="showBlur()" onFocus="showFocus()">Bis
nostrud exercitation ullam mmodo consequet. Duis aute involuptate
velit esse cillum dolore eu fugiat nulla pariatur. At vver eos et
accusam dignissum qui blandit est praesent luptatum delenit
aigueexcepteur sint occae.</P>

<P ID="P3" onBlur="showBlur()" onFocus="showFocus()">Unte af phen
neigepheings atoot Prexs eis phat eit sakem eit vory gast te Plok
peish ba useing phen roxas. Eslo idaffacgad gef trenz beynocguon

quiel ba trenzSpraadshaag ent trenz dreek wirc procassidt program.</P>

</BODY>
</HTML>

onClick

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v VR v

elementObject.onClick

100 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example

The onC11ick event handler is one of the simplest to grasp and use. Listing 15-35
demonstrates its interaction with the onDb1C11 ck event handler and shows you
how to prevent a link’s intrinsic action from activating when combined with c1ick
events. As you click and/or double-click the link, the status bar displays a message
associated with each event. Notice that if you double-click, the c11ick event fires
first with the first message immediately replaced by the second. For demonstration
purposes, I show both backward-compatible ways of cancelling the link’s intrinsic
action. In practice, decide on one style and stick with it.

Listing 15-35: Using onClick and onDblIClick Event Handlers

<HTML>

<HEAD>

<TITLE>onCTick and onDb1Click Event Handlers</TITLE>

<SCRIPT LANGUAGE="JavaScript">

var msg = ""

function showClick() {
msg = "The element has been clicked.
status = msg

}
function showDb1Click() {
msg = "The element has been double-clicked."
status = msg
return false
}
</SCRIPT>
</HEAD>
<BODY>
<H1>onClick and onDb1Click Event Handlers</H1>
<HR>
<A HREF="#" onClick="showClick();return false"
onDb1CTick="return showDb1Click()">
A sample link.

</BODY>
</HTML>
onContextMenu
NN2 NN3 NN4 NN6 IE3/J)1 1E3/)2 1E4 1IE5 1E5.5
Compatibility v v

elementObject.onContextMenu

Chapter 1 4 Generic HTML Element Objects (Chapter 15)

Example

See Listing 15-30 earlier in this chapter for an example of using the onContextMenu
event handler with a custom context menu.

onCopy
onCut
NN2 NN3 NN4 NN6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v
Example

Listing 15-36 shows both the onBeforeCut and onCut event handlers in action
(as well as onBeforePaste and onPaste). Notice how the handleCut () function
not only stuffs the selected word into the c1ipboardData object, but it also erases
the selected text from the table cell element from where it came. If you replace the
onBeforeCut and onCut event handlers with onBeforeCopy and onCopy (and
change handTeCut () to not eliminate the inner text of the event source element),
the operation works with copy and paste instead of cut and paste. | demonstrate
this later in the chapter in Listing 15-45.

Listing 15-36: Cutting and Pasting under Script Control

<HTML>
<HEAD>
<TITLE>onBeforeCut and onCut Event Handlers</TITLE>
(STYLE TYPE="text/css">
TD {text-align:center}
TH {text-decoration:underline}
.blanks {text-decoration:underline}
</STYLED
<SCRIPT LANGUAGE="JavaScript">
function selectWhole() {
var obj = window.event.srcElement
var range = document.body.createTextRange()
range.moveToElementText(obj)
range.select()
event.returnValue = false
}
function handleCut() {
var rng = document.selection.createRange()
clipboardData.setData("Text",rng.text)
var elem = event.srcElement

Continued

elementObject.onCopy

101

102 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-36 (continued)
elem.innerText = ""
event.returnValue = false
}

function handlePaste() {
var elem = window.event.srcElement
if (elem.className == "blanks") {
elem.innerHTML = clipboardData.getData("Text")
}
event.returnValue = false
}
function handleBeforePaste() {
var elem = window.event.srcElement
if (elem.className == "blanks") {
event.returnValue = false
}
}
</SCRIPT>
</HEAD>
<BODY>
<Hl1>onBeforeCut and onCut Event Handlers</H1>
<HR>
<P>Your goal is to cut and paste one noun and one
adjective from the following table into the blanks
of the sentence. Select a word from the table and
use the Edit or context menu to cut it from the table.
Select one or more spaces of the blanks in the
sentence and choose Paste to replace the blank with
the clipboard contents.</P>

<TABLE CELLPADDING=5 onBeforeCut="selectWhole()" onCut="handleCut()" >
<TR>CTH>Nouns</TH><TH>Adjectives</TH></TR>
<TRX>CTD>truck</TD><TD>round</TD></TR>
<TRX>CTD>do11</TD><TD>red</TD></TR>
<TR>TD>ball</TD><TD>pretty</TD></TR>

</TABLE>

<P ID="myP" onBeforePaste="handleBeforePaste()" onPaste="handlePaste()">
Pat said, "Oh my, the

is so
 !"</P>

<BUTTON onClick="Tlocation.reload()">Reset</BUTTON>

</BODY>
</HTML>

elementObject.onCopy

Chapter 1 + Generic HTML Element Objects (Chapter 15) 1 (03

onDb1Click

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v 4 v

Example
See Listing 15-35 (for the onC11ck event handler) to see the onDb1C11ck event in
action.

onDrag
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v
Example

Listing 15-37 shows several drag-related event handlers in action. The page
resembles the example in Listing 15-36, but the scripting behind the page is quite
different. In this example, the user is encouraged to select individual words from
the Nouns and Adjectives columns and drag them to the blanks of the sentence. To
beef up the demonstration, Listing 15-37 shows you how to pass the equivalent of
array data from a drag source to a drag target. At the same time, the user has a
fixed amount of time (two seconds) to complete each drag operation.

The onDragStart and onDrag event handlers are placed in the <BODY> tag
because those events bubble up from any element that the user tries to drag. The
scripts invoked by these event handlers filter the events so that the desired action
is triggered only by the “hot” elements inside the table. This approach to event han-
dlers prevents you from having to duplicate event handlers (or IE <SCRIPT FOR=>
tags) for each table cell.

The onDragStart event handler invokes setupDrag (). This function cancels the
onDragStart event except when the target element (in other words, the one about
to be dragged) is one of the TD elements inside the table. To make this application
smarter about what kind of word is dragged to which blank, it passes not only the
word’s text, but also some extra information about the word. This lets another event
handler verify that a noun has been dragged to the first blank, while an adjective has
been dragged to the second blank. To help with this effort, class names are assigned
to the TD elements to distinguish the words from the Nouns column from the words
of the Adjectives column. The setupDrag() function generates an array consisting of
the innerText of the event’s source element plus the element’s class name. But the
event.dataTransfer object cannot store array data types, so the Array.join()
method converts the array to a string with a colon separating the entries. This string,
then, is stuffed into the event.dataTransfer object. The object is instructed to ren-
der the cursor display during the drag-and-drop operation so that when the cursor is

elementObject.onDrag

104 javaScript Examples Bible: The Essential Companion to JavaScript Bible

atop a drop target, the cursor is the “copy” style. Figure 1-4 shows the cursor effect
as the user drags a selected word from the columns to a blank field that is scripted as
a drop target. Finally, the setupDrag() function is the first to execute in the drag
operation, so a timer is set to the current clock time to time the drag operation.

J File Edit View Favorites Tools Help |
J] ot Q 3|] ‘ B 2
Back Forward Stop Refresh Home Search Favorites History Mail
|
Dragging Event Handlers
Your goal is to drag one noun and one adjective from the following table into the blanks of the
sentence. Select a word from the table and drag it to the desired blank. When vou release the mouse,
the word will appear m the blank. Y ou have two seconds to complete each blank.
Nouns Adjectives
truck
doll red
ball pretty
Pat said, "Oh my, the ball is so \"
&0
Feset |
|
|@ Done FF@ My Computer i

Figure 1-4: The cursor turns to a “copy” icon atop a designated drop target

The onDrag event handler (in the BODY) captures the onDrag events that are
generated by whichever table cell element is the source element for the action.
Each time the event fires (which is a lot during the action), the timeIt () function
is invoked to compare the current time against the reference time (global timer)
set when the drag starts. If the time exceeds two seconds (2,000 milliseconds), an
alert dialog box notifies the user. To close the alert dialog box, the user must
unclick the mouse button to end the drag operation.

To turn the blank SPAN elements into drop targets, their onDragEnter,
onDragQver, and onDrop event handlers must set event.returnValue to false;
also, the event.dataTransfer.dropEffect property should be set to the desired
effect (copy in this case). These event handlers are placed in the P element that
contains the two SPAN elements, again for simplicity. Notice, however, that the
cancelDefault() functions do their work only if the target element is one of the
SPAN elements whose ID begins with “blank.”

As the user releases the mouse button, the onDrop event handler invokes the
handleDrop() function. This function retrieves the string data from event.
dataTransfer and restores it to an array data type (using the String.split()
method). A little bit of testing makes sure that the word type (“noun” or “adjec-
tive”) is associated with the desired blank. If so, the source element’s text is set to
the drop target’s innerText property; otherwise, an error message is assembled to
help the user know what went wrong.

elementObject.onDrag

Chapter 1 4+ Generic HTML Element Objects (Chapter 15) 1 (05

Listing 15-37: Using Drag-Related Event Handlers

<HTML>
<HEAD>
<TITLE>Dragging Event Handlers</TITLE>
{STYLE TYPE="text/css">
TD {text-align:center}
TH {text-decoration:underline}
.blanks {text-decoration:underline}
</STYLED
{SCRIPT LANGUAGE="JavaScript">
var timer
function setupDrag() {
if (event.srcElement.tagName != "TD") {
// don't allow dragging for any other elements
event.returnValue = false
} else {
// setup array of data to be passed to drop target
var passedData = [event.srcElement.innerText,
event.srcElement.className]
// store it as a string
event.dataTransfer.setData("Text", passedData.join(":"))
event.dataTransfer.effectAllowed = "copy"
timer = new Date()
1
}
function timelt() {
if (event.srcElement.tagName == "TD" && timer) {
if ((new Date()) - timer > 2000) {
alert("Sorry, time is up. Try again.")
timer = 0

}
}
function handleDrop() {
var elem = event.srcElement
var passedData = event.dataTransfer.getData("Text")
var errMsg = ""
if (passedData) {
// reconvert passed string to an array
passedData = passedData.split(":")
if (elem.id == "blankl") {
if (passedDatal[l] == "noun") {
event.dataTransfer.dropEffect = "copy"
event.srcElement.innerText = passedDatal[0]
} else {
errMsg = "You can't put an adjective into the noun placeholder."
1
} else if (elem.id == "blank2") {
if (passedData[l] == "adjective") {
event.dataTransfer.dropEffect = "copy"

Continued

elementObject.onDrag

106 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-37 (continued)

event.srcElement.innerText = passedDatal[0]
} else {
errMsg = "You can't put a noun into the adjective placeholder."”
1
}
if (errMsg) {
alert(errMsg)
}
}
}
function cancelDefault() {
if (event.srcElement.id.index0f("blank") == 0) {
event.dataTransfer.dropEffect = "copy"
event.returnValue = false
}
}
</SCRIPT>
</HEAD>
<BODY onDragStart="setupDrag()" onDrag="timelt()">
<H1>Dragging Event Handlers</H1>
<HR>
<P>Your goal is to drag one noun and one
adjective from the following table into the blanks
of the sentence. Select a word from the table and
drag it to the desired blank. When you release the
mouse, the word will appear in the blank. You have
two seconds to complete each blank.</P>

<TABLE CELLPADDING=5>

<TR><TH>Nouns</TH><TH>Adjectives</TH></TR>

<TRX>KTD class="noun">truck</TD><TD class="adjective">round</TD></TR>
<TR>CTD class="noun">do11</TD><TD class="adjective">red</TD></TR>
<TRX>TD class="noun">ball</TD><TD class="adjective">pretty</TD></TR>
</TABLE>

<P ID="myP" onDragEnter="cancelDefault()"
onDrop="handleDrop()">

Pat said, "Oh my, the

is so
 I "</P>

onDragOver="cancelDefault()"

<BUTTON onClick="Tocation.reload()">Reset</BUTTON>
</BODY>
</HTML>

One event handler not shown in Listing 15-37 is onDragEnd. You can use this
event to display the elapsed time for each successful drag operation. Because the

elementObject.onDrag

Chapter 1 4 Generic HTML Element Objects (Chapter15) 1 (Q7/

event fires on the drag source element, you can implement it in the <BODY> tag and
filter events similar to the way the onDragStart or onDrag event handlers filter
events for the TD element.

onDragEnter
onDraglLeave
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v
Example

Listing 15-38 shows the onDragEnter and onDragleave event handlers in use.
The simple page displays (via the status bar) the time of entry to one element of
the page. When the dragged cursor leaves the element, the onDragleave event
handler hides the status bar message. No drop target is defined for this page, so
when you drag the item, the cursor remains as the “no drop” cursor.

Listing 15-38: Using onDragEnter and onDraglLeave Event
Handlers

<HTML>
<HEAD>
<TITLE>onDragEnter and onDragleave Event Handlers</TITLE>
{SCRIPT LANGUAGE="JavaScript">
function showkEnter() {
status = "Entered at: " + new Date()
event.returnValue = false
}
function clearMsg() {
status = ""
event.returnValue = false
}
</SCRIPT>
</HEAD>
<BODY>
<H1 onDragEnter="showEnter()" onDraglLeave="clearMsg()">
onDragEnter and onDragleave Event Handlers
<IHD>
<HR>
<P>Select any character(s) from this paragraph,
and slowly drag it around the page. When the dragging action enters the
large header above, the status bar displays when the onDragknter
event handler fires. When you leave the header, the message is cleared
via the onDragleave event handler.</P>
</BODY>
</HTML>

elementObject.onDragEnter

108 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

onDragOver
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v
Example

See Listing 15-37 of the onDrag event handler to see how the onDragOver event
handler contributes to making an element a drop target.

onDragStart
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v
Example

See Listing 15-37 of the onDrag event handler to see how to apply the
onDragStart event handler in a typical drag-and-drop scenario.

onDrop
NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v
Example

See Listing 15-37 of the onDrag event handler to see how to apply the onDrop
event handler in a typical drag-and-drop scenario.

onFilterChange

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v/ v v

Example

Listing 15-39 demonstrates how the onFilterChange event handler can trigger
a second transition effect after another one completes. The onLoad event handler

elementObject.onFilterChange

Chapter 1 4 Generic HTML Element Objects (Chapter 15) 1 (09

triggers the first effect. Although the onFilterChange event handler works with
most of the same objects in [E4 as IE5, the filter object transition properties are not
reflected in a convenient form. The syntax shown in Listing 15-39 uses the new
ActiveX filter control found in IE5.5 (described in Chapter 30 of the JavaScript Bible).

Listing 15-39: Using the onFilterChange Event Handler

<HTML>
<HEAD>
<TITLE>onFilterChange Event Handler</TITLE>
{SCRIPT LANGUAGE=JavaScript>
function init() {
imagel.filters[0].apply()
image2.filters[0].apply()
start()
}

function start() {
imagel.style.visibility = "hidden"
imagel.filters[0].play()

}

function finish() {
// verify that first transition is done (optional)
if (imagel.filters[0].status == 0) {
image2.style.visibility = "visible"
image2.filters[0].play()
t
}
</SCRIPT>
</HEAD>
<BODY onlLoad="init()">
<H1>onFiTlterChange Event Handler</H1>
<HR>
<{P>The completion of the first transition ("circle-in")
triggers the second ("circle-out").
<BUTTON onClick="Tlocation.reload()">Play It Again</BUTTON></P>
<DIV ID="1imagel" STYLE="visibility:visible;
position:absolute; top:150px; Teft:150px;
filter:proglID:DXImageTransform.Microsoft.Iris(irisstyle="CIRCLE",
motion="in")"
onFilterChange="finish()"><IMG SRC="deskl.gif" HEIGHT=90
WIDTH=120></DIV>
<DIV ID="image2" STYLE="visibility:hidden;
position:absolute; top:150px; Teft:150px;
filter:progID:DXImageTransform.Microsoft.Iris(irisstyle="CIRCLE",
motion='out')">
</DIV>
</BODY>
</HTMLY

elementObject.onFilterChange

110 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

onFocus
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v 4 v v v v
Example

See Listing 15-34 earlier in this chapter for an example of the onFocus and

onBTur event handlers.

onHelp
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v
Example

Listing 15-40 is a rudimentary example of a context-sensitive help system that
displays help messages tailored to the kind of text input required by different text
fields. When the user gives focus to either of the text fields, a small legend appears
to remind the user that help is available by a press of the F1 help key. IE5/Mac pro-

vides only generic help.

Listing 15-40: Creating Context-Sensitive Help

<HTML>

<HEAD>

<{SCRIPT LANGUAGE="JavaScript">

function showNameHelp() {
alert("Enter your first and last names.")
event.cancelBubble = true
return false

}

function showYOBHelp() {

alert("Enter the four-digit year of your birth. For example:

event.cancelBubble = true
return false
}
function showGenericHelp() {
alert("Al11 fields are required.")
event.cancelBubble = true
return false
}
function showlLegend() {
document.all.legend.style.visibility = "visible"/
}

elementObject.onHelp

1972")

Chapter 1 + Generic HTML Element Objects (Chapter 15)]] 1

function hidelLegend() {
document.all.legend.style.visibility = "hidden"

}

function init() {

nn

var msg =
if (navigator.userAgent.indexOf("Mac") != -1) {

msg = "Press \'help\' key for help."
} else if (navigator.userAgent.indexOf("Win") != -1) {

msg = "Press F1 for help."
1
document.all.legend.style.visibility = "hidden"
document.all.legend.innerHTML = msg
}
</SCRIPT>
</HEAD>

<BODY onLoad="init()" onHelp="return showGenericHelp()">

<H1>onHelp Event Handler</H1>

<HR>

<P ID="1egend" STYLE="visibility:hidden; font-size:10px"> </P>

<FORM>

Name: <INPUT TYPE="text" NAME="name" SIZE=30
onFocus="showlLegend()" onBlur="hidelLegend()"
onHelp="return showNameHelp()">

Year of Birth: <INPUT TYPE="text" NAME="YOB" SIZE=30
onFocus="showlLegend()" onBlur="hidelLegend()"
onHelp="return showYOBHelp()">

</FORM>

</BODY>

</HTML>

onKeyDown
onKeyPress
onKeyUp

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v 4 v

Example

Listing 1541 is a working laboratory that you can use to better understand the
way keyboard event codes and modifier keys work in IE5+ and NN6. The actual code
of the listing is less important than watching the page while you use it. For every key
or key combination that you press, the page shows the keyCode value for the

elementObject.onKeyDown

112 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

onKeyDown, onKeyPress, and onKeyUp events. If you hold down one or more modi-
fier keys while performing the key press, the modifier key name is highlighted for
each of the three events. Note that when run in NN6, the keyCode value is not the
character code (which doesn’t show up in this example for NN6). Also, you may need
to click the NN6 page for the document object to recognize the keyboard events.

The best way to watch what goes on during keyboard events is to press and hold
a key to see the key codes for the onKeyDown and onKeyPress events (see Figure
1-5). Then release the key to see the code for the onKeyUp event. Notice, for
instance, that if you press the A key without any modifier key, the onKeyDown event
key code is 65 (A) but the onKeyPress key code in IE (and the charCode property
in NN6 if it were displayed here) is 97 (). If you then repeat the exercise but hold
the Shift key down, all three events generate the 65 (A) key code (and the Shift mod-
ifier labels are highlighted). Releasing the Shift key causes the onKeyUp event to
show the key code for the Shift key.

B Keyhoard Event Handler Lab - Netscape 6 [_[OI=]

| dit Miew SZearch Go Bookmarks Tasks Help

% 2 Bonsai ™ Bugzila ™ Open Dir

Keyboard Event Handler Lab

onKeyDown||onKeyPress| onKeyUp
Key Codes 74 0 0
Char Codes (IES/ac; INING) 0 74 0
Shift Shif Shift
Modifier Keys Ctrl Chrl Chrl
Al sl Al

In another experiment, press any of the four arrow keys. No key code is passed
for the onKeyPress event because those keys don’t generate those events. They
do, however, generate onKeyDown and onKeyUp events.

Listing 15-41: Keyboard Event Handler Laboratory

<HTML>

<HEAD>

<TITLE>Keyboard Event Handler Lab</TITLE>

(STYLE TYPE="text/css">

TD {text-align:center}

</STYLED

<SCRIPT LANGUAGE="JavaScript">

function init() {
document.onkeydown = showKeyDown
document.onkeyup = showKeyUp

elementObject.onKeyDown

}

Chapter 1 4 Generic HTML Element Objects (Chapter 15)

document.onkeypress = showKeyPress

function showKeyDown(evt) {

}

evt = (evt) ? evt : window.event

document.getETlementById("pressKeyCode").innerHTML = 0

document.getElementById("upKeyCode").innerHTML = 0

document.getElementById("pressCharCode").innerHTML = 0

document.getElementById("upCharCode").innerHTML = 0

restoreModifiers("")

restoreModifiers("Down")

restoreModifiers("Up")

document.getElementById("downKeyCode").innerHTML = evt.keyCode

if (evt.charCode) {
document.getElementById("downCharCode").innerHTML = evt.charCode

1

showModifiers("Down", evt)

function showKeyUp(evt) {

}

evt = (evt) ? evt : window.event

document.getElementById("upKeyCode").innerHTML = evt.keyCode

if (evt.charCode) {
document.getElementById("upCharCode").innerHTML = evt.charCode

}

showModifiers("Up", evt)

return false

function showKeyPress(evt) {

}

evt = (evt) ? evt : window.event

document.getElementById("pressKeyCode").innerHTML = evt.keyCode

if (evt.charCode) {
document.getElementById("pressCharCode").innerHTML = evt.charCode

}

showModifiers("", evt)

return false

function showModifiers(ext, evt) {

restoreModifiers(ext)
if (evt.shiftKey) {
document.getElementById("shift" + ext).style.backgroundColor = "#ff0000"
}
if (evt.ctrlKey) {
document.getElementById("ctr1" + ext).style.backgroundColor = "ff00ff00"
}
if (evt.altKey) {
document.getElementById("alt" + ext).style.backgroundColor = "#0000ff"
}

Continued

elementObject.onKeyDown

113

114 javaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-41 (continued)

function restoreModifiers(ext) f
document.getElementById("shift" + ext).style.backgroundColor = "#ffffff"
document.getElementById("ctr1" + ext).style.backgroundColor = "#ffffff"
document.getElementById("alt" + ext).style.backgroundColor = "ffffffff"

}

</SCRIPT>

</HEAD>

<BODY onLoad="init()">
<{H1>Keyboard Event Handler Lab</H1>
<HR>
<FORM>
<TABLE BORDER=2 CELLPADDING=2>
STR>KTH></TH><TH>onKeyDown</TH><TH>onKeyPress</TH><TH>onKeyUp</TH></TR>
<TR><TH>Key Codes</TH>
<TD ID="downKeyCode">0</TD>
<TD ID="pressKeyCode">0</TD>
<TD ID="upKeyCode">0</TD>
</TR>
<TR><TH>Char Codes (IE5/Mac; NN&)</TH>
<TD ID="downCharCode">0</TD>
<TD ID="pressCharCode">0</TD>
<TD ID="upCharCode">0</TD>
</TR>
<TR><TH ROWSPAN=3>Modifier Keys</TH>
{TD>Shift</TD>
<TD>Shift</TD>
<TD>Shift</TD>
</TR>
<TR>
<TD>Ctr1</TD>
{TD>Ctr1</TD>
<TD>Ctr1</TD>
</TR>
<TR>
<TD>ATt</TD>
<TD>ATt</TD>
{TD>AT1t</TD>
</TR>
</TABLE>
</FORM>
</BODY>
</HTML>

Spend some time with this lab, and try all kinds of keys and key combinations
until you understand the way the events and key codes work.

elementObject.onKeyDown

Chapter 1 + Generic HTML Element Objects (Chapter15)] 15

onLoseCapture

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

Example

See Listing 15-30 earlier in this chapter for an example of how to use
onLoseCapture with an event-capturing scenario for displaying a context menu.
The onLoseCapture event handler hides the context menu when the user performs
any action that causes the menu to lose mouse capture.

onMouseDown
onMouselUp

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v

Example

To demonstrate a likely scenario of changing button images in response to
rolling atop an image, pressing down on it, releasing the mouse button, and roll-
ing away from the image, Listing 15-42 presents a pair of small navigation buttons
(left- and right-arrow buttons). Because the image object is not part of the docu-
ment object model for NN2 or IE3 (which reports itself as Navigator version 2),
the page is designed to accept all browsers. Only those browsers that support
precached images and image swapping (and thus pass the test for the presence of
the document.images array) can execute those statements. For a browser with an
image object, images are preloaded into the browser cache as the page loads so
that response to the user is instantaneous the first time the user calls upon new
versions of the images.

Listing 15-42: Using onMouseDown and onMouseUp Event
Handlers

<HTML>
<HEAD>
<TITLE>onMouseDown and onMouseUp Event Handlers</TITLE>
{SCRIPT LANGUAGE="JavaScript">
if (document.images) f
var RightNormImg = new Image(16,16)
var RightUpImg = new Image(16,16)

Continued

elementObject.onMouseDown

116 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-42 (continued)

var RightDownImg = new Image(16,16)
var LeftNormImg = new Image(16,16)
var LeftUpImg = new Image(16,16)

var LeftDownImg = new Image(16,16)

RightNormImg.src = "RightNorm.gif"
RightUpImg.src = "RightUp.gif"
RightDownImg.src = "RightDown.gif"
LeftNormImg.src = "LeftNorm.gif"
LeftUpImg.src = "LeftUp.gif"
LeftDownImg.src = "LeftDown.gif"
}
function setImage(imgName, type) {
if (document.images) {
var imgFile = eval(imgName + type + "Img.src")
document.images[imgName].src = imgFile
return false
}
}
</SCRIPT>
</HEAD>
<BODY>
<H1>onMouseDown and onMouseUp Event Handlers</H1>
<HR>
<P>Ro11 atop and click on the buttons to see how the link event handlers swap
images:</P>
<CENTER>
<A HREF="javascript:void(0)"
onMouseOver="return setImage('Left','Up")"
onMouseDown="return setImage('Left"', 'Down"')"
onMouseUp="return setImage('Left','Up")"
onMouseOut="return setImage('Left', 'Norm')"
>

<A HREF="javascript:void(0)"
onMouseOver="return setImage('Right','Up"')"
onMouseDown="return setImage('Right"', 'Down')"
onMouseUp="return setImage('Right','Up')"
onMouseOut="return setImage('Right', 'Norm")"
>

</CENTER>
</BODY>
<THTML>

elementObject.onMouseDown

Chapter 1 + Generic HTML Element Objects (Chapter15) 117/

[E4+ and NN6+ simplify the implementation of this kind of three-state image but-
ton by allowing you to assign the event handlers directly to IMG element objects.
Wrapping images inside links is a backward compatibility approach that allows older
browsers to respond to clicks on images for navigation or other scripting tasks.

onMouseEnter
onMouselLeave

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

You can modify Listing 15-43 with the IE5.5 syntax by substituting onMouseEnter
for onMouseOver and onMouselLeave for onMouseOut. The effect is the same.

onMouseMove

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility) v/ v/ v/ v/

Example

Listing 15-43 is a simplified example of dragging elements in [E4+. (See Chapter
31 of the JavaScript Bible for more dragging examples.) Three images are individu-
ally positioned on the page. Most of the scripting code concerns itself with the
geography of click locations, the stacking order of the images, and the management
of the onMouseMove event handler so that it is active only when an item is dragged.

Scripts assign the onMouseDown and onMouseUp event handlers to the document
object, invoking the engage () and release() functions, respectively. When a user
mouses down anywhere in the document, the engage () function starts by invoking
setSelected0bj (). This function examines the target of the mouseDown event. If it
is one of the map images, the selected0bj global variable is set to the image
object and the element is brought to the front of the stacking order of images (any
previously stacked image is returned to its normal position in the stack).
MouseDown events on any other element simply make sure that the selectedObj
variable is nu11. The presence of a value assigned to selected0Obj serves as a kind
of switch for other functions: When the variable contains a value, it means that the
user is doing something associated with dragging an element.

Back at the engage () function — provided the user mouses down on one of the
draggable images —the onMouseMove event handler is assigned to the document
object, setting it to invoke the dragIt () function. For the sake of users, the offset
of the mouse down event from the top-left corner of the image is preserved in the

elementObject.onMouseMove

118 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

offsetX and offsetY variables (minus any scrolling that the body is subject to at
that instant). These offset values are necessary to let the scripts set the location of
the image during dragging (the location is set for the top-left corner of the image)
while keeping the cursor in the same location within the image as when the user
first presses the mouse.

As the user drags the image, the onMouseDown event handler fires repeatedly,
allowing the dragIt () function to continually update the location of the element
relative to the current cursor position (the event.clientX and event.clientY
properties). The global offset variables are subtracted from the cursor position to
preserve the relation of the image’s top-left corner to the initial cursor position at
mouse down.

Upon the user releasing the mouse button, the release() function turns off the
onMouseMove event handler (setting it to nul1). This prevents the event from being
processed at all during normal usage of the page. The selected0bj global variable
is also set to nul1, turning off the “switch” that indicates dragging is in session.

Listing 15-43: Dragging Elements with onMouseMove

<HTML>

<HEAD><TITLE>onMouseMove Event Handler</TITLE>

(STYLE TYPE="text/css">
jtcamap {position:absolute; left:20; top:120}
jformap {position:absolute; 1eft:80; top:120}
jfwamap {position:absolute; left:140; top:120}

</STYLED

<SCRIPT LANGUAGE="JavaScript">

// global variables used while dragging

var offsetX =0

var offsetY = 0

var selectedObj

var frontObj

// set document-level event handlers
document.onmousedown = engage
document.onmouseup = release

// positioning an object at a specific pixel coordinate
function shiftTo(obj, x, y) {

obj.style.pixelleft = x

obj.style.pixelTop =y
}

// setting the z-order of an object
function bringToFront(obj) {
if (frontObj) |
frontObj.style.zIndex = 0
}
frontObj = obj
frontObj.style.zIndex = 1

elementObject.onMouseMove

Chapter 1 4 Generic HTML Element Objects (Chapter15)] 19

// set global var to a reference to dragged element
function setSelectedObj() {
var img0bj = window.event.srcElement
if (imgObj.id.index0f("map") == 2) {
selected0bj = img0bj
bringToFront(selected0bj)
return
}
selectedObj = null
return

}

// do the dragging (called repeatedly by onMouseMove)
function draglt() f
if (selectedObj) f
shiftTo(selectedObj, (event.clientX - offsetX), (event.clientY -
offsetY))
return false
}
}

// set global vars and turn on mousemove trapping (called by onMouseDown)
function engage() {
setSelected0bj()
if (selectedObj) f
document.onmousemove = draglt
offsetX = window.event.offsetX - document.body.scrollleft
offsetY = window.event.offsetY - document.body.scrollTop

}

// restore everything as before (called by onMouseUp)
function release() {
if (selectedObj) f
document.onmousemove = null
selectedObj = null

}

</SCRIPT>

</HEAD>

<BODY>

<H1>onMouseMove Event Handler</H1>

<HR>

Click and drag the images:

</SCRIPT>

</BODY>

</HTML>

elementObject.onMouseMove

120 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

onMouseQut
onMouseQver
NN2 NN3 NN4 NNé6 IE3/J1 1E3/)2 1IE4 IE5 IE5.5
Compatibility v v v v v v/ ooV v
Example

Listing 15-44 uses the U.S. Pledge of Allegiance with four links to demonstrate
how to use the onMouseOver and onMouseOut event handlers. Notice that for each
link, the handler runs a general-purpose function that sets the window’s status mes-
sage. The function returns a true value, which the event handler call evaluates to
replicate the required return true statement needed for setting the status bar. In
one status message, [supply a URL in parentheses to let you evaluate how helpful
you think it is for users.

Listing 15-44: Using onMouseOver and onMouseOut Event
Handlers

<HTML>
<HEAD>
<TITLE>onMouseQver and onMouseOut Event Handlers</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function setStatus(msg) {
status = msg
return true
}
// destination of all Tink HREFs
function emulate() {
alert("Not going there in this demo.")
}
</SCRIPT>
</HEAD>
<BODY>
<H1>onMouseOver and onMouseOut Event Handlers
</HL>
<HR>
<H1>Pledge of Allegiance</H1>
<HR>

elementObject.onMouseOut

Chapter 1 + Generic HTML Element Objects (Chapter 15)]2]

I pledge <A HREF="javascript:emulate()" onMouseOver="return setStatus('View
dictionary definition')" onMouseQut="return setStatus('')">allegiance to the
<A HREF="javascript:emulate()" onMouseOver="return setStatus('Learn about the
U.S. flag (http://lcweb.Toc.gov)')" onMouseOut="return setStatus('")">flag
of the <A HREF="javascript:emulate()" onMouseOver="return setStatus('View info
about the U.S. government')" onMouseOut="return setStatus('')">United States of
America, and to the Republic for which it stands, one nation <A
HREF="javascript:emulate()" onMouseOver="return setStatus('Read about the
history of this phrase in the Pledge')" onMouseOut="return setStatus('"')">under
God, indivisible, with Tiberty and justice for all.

</BODY>
</HTML>
onPaste
NN2 NN3 NN4 NN6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v
Example

Listing 15-45 demonstrates how to use the onBeforePaste and onPaste event
handlers (in conjunction with onBeforeCopy and onCopy) to let scripts control the
data transfer process during a copy-and-paste user operation. A table contains
words to be copied (one column of nouns, one column of adjectives) and then
pasted into blanks in a paragraph. The onBeforeCopy and onCopy event handlers
are assigned to the TABLE element because the events from the TD elements bub-
ble up to the TABLE container and there is less HTML code to contend with.

Inside the paragraph, two SPAN elements contain underscored blanks. To paste
text into the blanks, the user must first select at least one character of the blanks.
(See Listing 15-37, which gives a drag-and-drop version of this application.) The
onBeforePaste event handler in the paragraph (which gets the event as it bubbles
up from either SPAN) sets the event.returnValue property to false, thus allow-
ing the Paste item to appear in the context and Edit menus (not a normal occur-
rence in HTML body content).

At paste time, the innerHTML property of the target SPAN is set to the text data
stored in the clipboard. The event.returnValue property is set to false here, as
well, to prevent normal system pasting from interfering with the controlled version.

elementObject.onPaste

122 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-45: Using onBeforePaste and onPaste Event
Handlers

<HTML>
<HEAD>
<TITLE>onBeforePaste and onPaste Event Handlers</TITLE>
(STYLE TYPE="text/css">
TD {text-align:center}
TH {text-decoration:underline}
.blanks {text-decoration:underline}
</STYLED
{SCRIPT LANGUAGE="JavaScript">
function selectWhole() {
var obj = window.event.srcElement
var range = document.body.createTextRange()
range.moveToElementText(obj)
range.select()
event.returnValue = false
}
function handleCopy() {
var rng = document.selection.createRange()
clipboardData.setData("Text",rng.text)
event.returnValue = false

}

function handlePaste() {
var elem = window.event.srcElement
if (elem.className == "blanks") {
elem.innerHTML = clipboardData.getData("Text")
1
event.returnValue = false
}
function handleBeforePaste() {
var elem = window.event.srcElement
if (elem.className == "blanks") {
event.returnValue = false
1
}
</SCRIPT>
</HEAD>
<BODY>
<H1>onBeforePaste and onPaste Event Handlers</H1>
<HR>
<P>Your goal is to copy and paste one noun and one
adjective from the following table into the blanks
of the sentence. Select a word from the table and
copy it to the clipboard. Select one or more spaces
of the blanks in the sentence and choose Paste to
replace the blank with the clipboard contents.</P>

<TABLE CELLPADDING=5 onBeforeCopy="selectWhole()" onCopy="handleCopy()" >
<TR>CTH>Nouns</TH><TH>Adjectives</TH></TR>

elementObject.onPaste

Chapter 1 4+ Generic HTML Element Objects (Chapter15)] 23

LTR>TD>truck</TD><TD>round</TD></TR>
KTR>KTD>do11</TD><TD>red</TD></TR>
KTR>KTD>bal1</TD><TD>pretty</TD></TR>
</TABLE>

<P ID="myP" onBeforePaste="handleBeforePaste()" onPaste="handlePaste()">
Pat said, "Oh my, the

is so
 ! "</P>

<BUTTON onClick="Tlocation.reload()">Reset</BUTTON>

</BODY>
</HTML>
onPropertyChange
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v
Example

The page generated by Listing 15-46 contains four radio buttons that alter the
innerHTML and style.color properties of a paragraph. The paragraph’s
onPropertyChange event handler invokes the showChange () function, which
extracts information about the event and displays the data in the status bar of the
window. Notice how the property name includes style. when you modify the style
sheet property.

Listing 15-46: Using the onPropertyChange Property

<HTML>
<HEAD>
<TITLE>onPropertyChange Event Handler</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function normalText() {
myP.innerText = "This is a sample paragraph.”
}
function shortText() {
myP.innerText = "Short stuff."
}
function normalColor() {
myP.style.color = "black"
}

Continued

elementObject.onPropertyChange

124 javaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-46 (continued)

function hotColor() {
myP.style.color = "red"
}
function showChange() {
var objID = event.srcElement.id
var propName = event.propertyName
var newValue = eval(objID + "." + propName)
status = "The " + propName + " property of the " + objID
status += " object has changed to \"" + newValue + "\"."
}
</SCRIPT>
</HEAD>
<BODY>
<H1>onPropertyChange Event Handler</H1>
<HR>
<P ID="myP" onPropertyChange = "showChange()">This is a sample paragraph.</P>
<FORM>
Text: <INPUT TYPE="radio" NAME="btnl" CHECKED onClick="normalText()">Normal
<INPUT TYPE="radio" NAME="btnl" onClick="shortText()">Short

Color: <INPUT TYPE="radio" NAME="btn2" CHECKED onClick="normalColor()">Black
<INPUT TYPE="radio" NAME="btn2" onClick="hotColor()">Red
</FORM>
</BODY>
<IHTML>

onReadyStateChange

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v v 4

Example

You can use the onReadyStateChange event handler to assist with a status dis-
play while a long external file, such as a Java applet, loads. For example, you might
have a small image on a page that changes with the state change of an applet. The
<APPLET> tag assigns a function to the onReadyStateChange event handler:

<APPLET ... onReadyStateChange="showState(this)">

elementObject.onReadyStateChange

Chapter 1 4 Generic HTML Element Objects (Chapter 15)] 25

Then the function changes the image for each state type:

function showState(obj) {
var img = document.all.statusImage
switch (obj.readyState) {
case "uninitialized" :
img.src = uninit.src
break
case "loading" :
img.src = loading.src
break
case "complete" :
img.src = ready.src

The preceding function assumes that the state images are precached as the page
loads.

onResize
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v/ v v/ v v
Example

If you want to capture the user’s resizing of the browser window (or frame), you
can assign a function to the onResize event handler either via script

window.onresize = handleResize
or by an HTML attribute of the BODY element:
<BODY onResize="handleResize()">

onSelectStart
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v/ v v
Example

Use the page from Listing 15-47 to see how the onSelectStart event handler
works when a user selects across multiple elements on a page. As the user begins a
selection anywhere on the page, the ID of the object receiving the event appears in
the status bar. Notice that the event doesn’t fire until you actually make a selection.
When no other element is under the cursor, the BODY element fires the event.

elementObject.onSelectStart

126 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-47: Using the onSelectStart Event Handler

<HTML>
<HEAD>
<TITLE>onSelectStart Event Handler</TITLE>
{STYLE TYPE="text/css">
TD {text-align:center}
</STYLED
<SCRIPT LANGUAGE="JavaScript">
function showObj() {
var objID = event.srcElement.id
status = "Selection started with object: " + objID
}
</SCRIPT>
</HEAD>
<BODY ID="myBody" onSelectStart="showObj()">
<H1 ID="myH1">onSelectStart Event Handler</H1>
<HR ID="myHR">
<P ID="myP">This is a sample paragraph.</P>
<TABLE BORDER="1">
<TR ID="rowl">
<TH ID="headerl1">Column A</TH>
<TH ID="header2">Column B</TH>
<TH ID="header3">Column C</TH>
</TR>
<TR ID="row2">
<TD ID="cellA2">text</TD>
<TD ID="cellB2">text</TD>
<TD ID="cellC2">text</TD>
</TR>
<TR ID="row3">
<TD ID="celTA3">text</TD>
<TD ID="cel1B3">text</TD>
<TD ID="cellC3">text</TD>
<TR>
</TABLE>
</BODY>
</HTML>

elementObject.onSelectStart

CHAPIXTER

Window and
Frame Objects
(Chapter 16)

¢+ 4+ o+

In This Chapter

As physical containers of documents, window and frame
objects play huge rolls in scripting. The window object
has been scriptable in one form or another since the first
scriptable browsers. Of course the object has gained numer-
ous properties, methods, and event handlers over time, but
you also often find many object-model-specific items that you
probably wish were available across all browsers.

While scripts permit Web authors to manage multiple
windows — and many of the examples in this chapter support
that facility —try to think about your visitors, too. Very often
multiple windows get in the way of site navigation and con-
tent, regardless of your good intentions. As some examples
also demonstrate, you must include safety nets for your code
to counteract the unpredictable actions of users who close or
hide windows precisely when you don’t want them to do so.
Therefore, do not regard the multi-window examples here as
user interface recommendations; rather consider them as rec-
ommended ways to handle a potentially tricky user-interface
element.

Possible exceptions to my multi-window admonitions are the
modal and modeless dialog box windows provided by various
versions of IE for Windows. For other platforms, a modal
dialog box can be simulated (search for details at www .
dannyg.com). IE5.5 for Windows also adds a popup type win-
dow, which can be a helpful user interface element that exists
between a tooltip and a modal dialog box.

Modern browsers, however, provide ample script control
over framesets. As examples in this chapter demonstrate,
your scripts can hide and show frames, or completely rearchi-
tect a frameset without loading a new frameset.

Scripting
communication
among multiple
frames

Creating and
managing new

windows

Controlling the size,
position, and
appearance of the
browser window

Dynamically
adjusting frame sizes
and frameset
compositions

¢+ 0+ o+

128 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Examples Highlights
4 Listing 16-4 for the window.closed property demonstrates an industrial-

strength treatment of new window creation, which works with all scriptable
browsers (taking into account shortcomings of earlier browsers).

4 NN4+ allows dynamic control over the presence of window chrome (statusbar,
toolbar, et al.) with the help of signed scripts, as shown in Listing 16-6.
Without signed scripts, or for IE, you must use window.open() to create a
separate window with the characteristics of your choice.

4 The example listings for the window. opener property show you how scripts
from a subwindow communicate with the window that opened it.

4 In the example listings for the window.parent property, you see how refer-
ences to the various synonyms for a window object within a frameset evaluate.
Thus, you can see what the references window, top, parent, and self mean
within a frameset.

4+ Compare Listings 16-20, 16-23, and 16-29 to understand not only the different
looks of the three native dialog box windows (alert, confirm, and prompt), but
also how values returned from two of them can influence script processing
sequences.

4 A simple countdown timer in Listing 16-22 shows a practical application of the
window.clearTimeout () method. Here the method stops the looping timer
when the count reaches zero.

4 Watch the browser window dance in Listing 16-24. The window.moveBy () and
window.moveTo() methods put window positioning through its paces.

4 Examples for window.setInterval () and window.setTimeout () apply
these two similar methods to applications that are ideal for each one. You find
other applications of setTimeout () in examples for the window.closed
property and window.open () method.

4 Internet Explorer’s modal and modeless dialog box windows get workouts in
Listings 16-39 through 16-42.

4 The composition of a frameset, including the sizes of the frames, can be con-
trolled dynamically in I[E4+ and NN6, as shown in examples for the FRAMESET .
cols and FRAMESET. rows properties.

Chapter 2 + Window and Frame Objects (Chapter 16) |29

Window Object

Properties
clipboardData

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

Example

See Listings 15-30 and 15-39 (in Chapter 1 of this book) to see how the
clipboardData object is used with a variety of edit-related event handlers.

closed
NN2 NN3 NN4 NNé6 IE3/J1 1E3/)2 IE4 IE5 IE5.5
Compatibility v v v v v v
Example

In Listing 16-4, I have created the ultimate cross-platform window opening and
closing sample. It takes into account the lack of the opener property in Navigator 2,
the missing c1osed property in Navigator 2 and Internet Explorer 3, and it even pro-
vides an ugly but necessary workaround for the inability of Internet Explorer 3 to
gracefully see if a subwindow is still open.

The script begins by initializing a global variable, newWind, which is used to hold
the object reference to the second window. This value needs to be global so that
other functions can reference the window for tasks, such as closing. Another global
variable, is1E3, is a Boolean flag that lets the window closing routines know
whether the visitor is using Internet Explorer 3 (see details about the navigator.
appVersion property in Chapter 28 of the JavaScript Bible).

For this example, the new window contains some HTML code written dynamically
to it, rather than loading an existing HTML file into it. Therefore, the URL parameter
of the window.open() method is left as an empty string. It is vital, however, to
assign a name in the second parameter to accommodate the Internet Explorer 3
workaround for closing the window. After the new window is opened, an opener
property is assigned to the object if one is not already assigned (this property is
needed only for Navigator 2). Next comes a brief delay to allow Internet Explorer
(especially versions 3 and 4) to catch up with opening the window so that content

windowObject.closed

130 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

can be written to it. The delay (using the setTimeout () method described later in
this chapter) invokes the finishNewWindow() function, which uses the global
newWind variable to reference the window for writing. The document.close()
method closes writing to the document — a different kind of close than a window
close.

A separate function, closeWindow(), is responsible for closing the subwindow.
To accommodate Internet Explorer 3, the script appears to create another window
with the same characteristics as the one opened earlier in the script. This is the
trick: If the earlier window exists (with exactly the same parameters and a name
other than an empty string), Internet Explorer does not create a new window even
with the window.open () method executing in plain sight. To the user, nothing
unusual appears on the screen. Things look weird for Internet Explorer 3 users only
if the user has closed the subwindow. The window.open() method momentarily
creates that subwindow. This subwindow is necessary because a “living” window
object must be available for the upcoming test of window existence. (Internet
Explorer 3 displays a script error if you try to address a missing window, while
NN2+ and [E4+ simply return friendly nul1 values.)

As a final test, an if condition looks at two conditions: 1) if the window object
has ever been initialized with a value other than nul1 (in case you click the window
closing button before ever having created the new window) and 2) if the window’s
closed property is null or false. If either condition is true, the cl1ose () method
is sent to the second window.

Listing 16-4: Checking Before Closing a Window

<HTML>
<HEAD>
KTITLE>window.closed Property</TITLE>
{SCRIPT LANGUAGE="JavaScript">
// initialize global var for new window object
// so it can be accessed by all functions on the page
var newWind
// set flag to help out with special handling for window closing
var isIE3 = (navigator.appVersion.indexOf("MSIE 3") I= -1) ? true : false
// make the new window and put some stuff in it
function newWindow() {
newWind = window.open("","subwindow","HEIGHT=200,WIDTH=200")
// take care of Navigator 2
if (newWind.opener == null) {
newWind.opener = window
}
setTimeout("finishNewWindow()", 100)
}
function finishNewWindow() {
var output = ""
output += "<HTML><BODY><H1>A Sub-window</H1>"
output += "<FORM><INPUT TYPE="button' VALUE='Close Main Window"'"
output +="onClick="window.opener.close()'></FORM></BODY></HTML>"

windowObject.closed

Chapter 2 4+ Window and Frame Objects (Chapter16)]3]

newWind.document.write(output)
newWind.document.close()
}
// close subwindow, including ugly workaround for IE3
function closeWindow() {
if (isIE3) {
// if window is already open, nothing appears to happen
// but if not, the subwindow flashes momentarily (yech!)
newWind = window.open("","subwindow","HEIGHT=200,WIDTH=200")
}
if (newWind && !newWind.closed) {
newWind.close()
}
}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
<INPUT TYPE="button" VALUE="Open Window" onClick="newWindow()">

<INPUT TYPE="button" VALUE="Close it if Still Open" onClick="closeWindow()">
</FORM>
</BODY>
<THTML

To complete the example of the window opening and closing, notice that the sub-
window is given a button whose onC11ck event handler closes the main window. In
Navigator 2 and Internet Explorer 3, this occurs without complaint. But in NN3+ and
IE4+, the user is presented with an alert asking to confirm the closure of the main
browser window.

defaultStatus
NN2 NN3 NN4 NN6 |IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v v v v v v
Example

Unless you plan to change the default statusbar text while a user spends time at
your Web page, the best time to set the property is when the document loads. In
Listing 16-5, notice how I also read this property to reset the statusbar in an
onMouseOut event handler. Setting the status property to empty also resets the
statusbar to the defaultStatus setting.

windowObject.defaultStatus

132 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-5: Setting the Default Status Message

<HTML>

<HEAD>

KTITLE>window.defaultStatus property</TITLE>
<SCRIPT LANGUAGE="JavaScript">

window.defaultStatus = "Welcome to my Web site."

</SCRIPT>

</HEAD>

<BODY>

<A HREF="http://www.microsoft.com"

onMouseOver="window.status = 'Visit Microsoft\'s Home page.';return true"
onMouseOut="window.status = '';return true">Microsoft<{/A><P>

<A HREF="http://home.netscape.com"

onMouseOver="window.status = 'Visit Netscape\'s Home page.';return true"
onMouseOut="window.status = window.defaultStatus;return true">Netscape
</BODY>

</HTML>

If you need to display single or double quotes in the statusbar (as in the second
link in Listing 16-5), use escape characters (\' and \ ") as part of the strings being
assigned to these properties.

dialogArguments

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

See Listing 16-38 for the window.showModalDialog() method to see how argu-
ments can be passed to a dialog box and retrieved via the dialogArguments

property.
dialogHeight
dialogWidth
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v

windowObject.dialogHeight

Chapter 2 4+ Window and Frame Objects (Chapter16)]33

Example

Dialog boxes sometimes provide a button or icon that reveals more details or
more complex settings for advanced users. You can create a function that handles
the toggle between two sizes. The following function assumes that the document in
the dialog box has a button whose label also toggles between “Show Details” and
“Hide Details.” The button’s onC11ick event handler invokes the function as
toggleDetails(this).

function toggleDetails(btn) {
if (dialogHeight == "200px") {
dialogHeight = "350px"

btn.value = "Hide Details"
} else {

dialogHeight = "200px"

btn.value = "Show Details"

In practice, you also have to toggle the dispTlay style sheet property of the extra
material between none and b1ock to make sure that the dialog box does not display
scrollbars in the smaller dialog box version.

dialoglLeft
dialogTop
NN2 NN3 NN4 NNé6 IE3/J1 1E3/)2 IE4 IE5 IE55
Compatibility v/ v v
Example

Although usually not a good idea because of the potentially jarring effect on a
user, you can reposition a dialog box window that has been resized by script (or by
the user if you let the dialog box be resizable). The following statements in a dialog
box window document’s script recenter the dialog box window.

dialogLeft = (screen.availWidth/2) - (parselnt(dialogWidth)/2) + "px"
dialogHeight = (screen.availHeight/2) - (parselnt(dialogHeight)/2) + "px"

Note that the parselInt () functions are used to read the numeric portion of the
dialogWidth and dialogHeight properties so that the values can be used for
arithmetic.

windowObject.dialogLeft

134 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

directories
locationbar
menubar
personalbar
scrollbars

statusbar
toolbar
NN2 NN3 NN4 NN6é IE3/J1 IE3/)2 1IE4 IE5 IE5.5
Compatibility v v
Example

In Listing 16-6, you can experiment with the look of a browser window with any
of the chrome elements turned on and off. To run this script, you must either sign
the scripts or turn on codebase principals (see Chapter 46 of the JavaScript Bible).
Java must also be enabled to use the signed script statements.

As the page loads, it stores the current state of each chrome element. One but-
ton for each chrome element triggers the toggleBar () function. This function
inverts the visible property for the chrome object passed as a parameter to the
function. Finally, the Restore button returns visibility to their original settings.
Notice that the restore() function is also called by the onUnload event handler
for the document. Also, if you load this example into NN6, non-fatal script errors
occur when the scrollbars are turned on or off.

Listing 16-6: Controlling Window Chrome

<HTML>

<HEAD>

<TITLE>Bars Bars Bars</TITLE>

<SCRIPT LANGUAGE="JavaScript">

// store original outer dimensions as page loads

var originallocationbar = window.locationbar.visible
var originalMenubar = window.menubar.visible

var originalPersonalbar = window.personalbar.visible
var originalScrollbars = window.scrollbars.visible
var originalStatusbar = window.statusbar.visible

var originalToolbar = window.toolbar.visible

// generic function to set inner dimensions

function toggleBar(bar) {
netscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserWrite")
bar.visible = lbar.visible
netscape.security.PrivilegeManager.revertPrivilege("UniversalBrowserWrite")

windowObject.directories

Chapter 2 4+ Window and Frame Objects (Chapter 16) |35

// restore settings
function restore() {
netscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserWrite")
window.locationbar.visible = originallocationbar
window.menubar.visible = originalMenubar
window.personalbar.visible = originalPersonalbar
window.scrollbars.visible = originalScrollbars
window.statusbar.visible = originalStatusbar
window.toolbar.visible = originalToolbar
netscape.security.PrivilegeManager.revertPrivilege("UniversalBrowserWrite")
}
</SCRIPT>
</HEAD>
<BODY onUnload="restore()">
<FORM>
Toggle Window Bars

<INPUT TYPE="button" VALUE="Location Bar"
onClick="toggleBar(window.locationbar)">

<INPUT TYPE="button" VALUE="Menu Bar" onClick="toggleBar(window.menubar)">

<INPUT TYPE="button" VALUE="Personal Bar"
onClick="toggleBar(window.personalbar)">

<INPUT TYPE="button" VALUE="Scrollbars"
onClick="toggleBar(window.scrollbars)">

<INPUT TYPE="button" VALUE="Status Bar"
onClick="toggleBar(window.statusbar)">

<INPUT TYPE="button" VALUE="Tool Bar" onClick="toggleBar(window.toolbar)">

<HR>
<INPUT TYPE="button" VALUE="Restore Original Settings" onClick="restore()">

</FORM>

</BODY>
</HTML>
external
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v/ v v
Example

The first example asks the user if it is okay to add a Web site to the Active
Desktop. If Active Desktop is not enabled, the user is given the choice of enabling it
at this point.

external.AddDesktopComponent("http://www.nytimes.com", "website", 200, 100, 400, 400)

windowObject.external

136 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

In the next example, the user is asked to approve the addition of a URL to the
Favorites list. The user can follow the normal procedure for filing the item in a
folder in the list.

external.AddFavorite("http://www.dannyg.com/update6.html",
"JSBible 4 Support Center")

The final example assumes that a user makes a choice from a SELECT list of items.
The onChange event handler of the SELECT list invokes the following function to navi-
gate to a fictitious page and locate listings for a chosen sports team on the page.

function locate(list) f

var choice = Tist.options[list.selectedIndex].value
external.NavigateAndFind("http://www.collegesports.net/scores.html", choice,
"scores")
}
frames

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v v v 4

Example

Listings 16-7 and 16-8 demonstrate how JavaScript treats values of frame refer-
ences from objects inside a frame. The same document is loaded into each frame. A
script in that document extracts info about the current frame and the entire frame-
set. Figure 2-1 shows the results after loading the HTML document in Listing 16-7.

Listing 16-7: Framesetting Document for Listing 16-8

<HTML>

<HEAD>

KTITLE>window.frames property</TITLE>

<{/HEAD>

<FRAMESET COLS="50%,50%">
{FRAME NAME="JustAKidl" SRC="1st16-08.htm">
{FRAME NAME="JustAKid2" SRC="1st16-08.htm">

</FRAMESET>

</HTML>

A call to determine the number (length) of frames returns 0 from the point of
view of the current frame referenced. That’s because each frame here is a window
that has no nested frames within it. But add the parent property to the reference,
and the scope zooms out to take into account all frames generated by the parent
window’s document.

windowObject.frames

Chapter 2 + Window and Frame Objects (Chapter16) |37/

Listing 16-8: Showing Various Window Properties

<HTML>

<HEAD>

KTITLE>Window Revealer TIK/TITLE>
<SCRIPT LANGUAGE="JavaScript">
function gatherWindowData() {

var msg =
msg += "From the point of view of this frame:
"
msg += "window.frames.length: " + window.frames.length + "
"
msg += "window.name: " + window.name + "<P>"
msg += "From the point of view of the framesetting document:
"
msg += "parent.frames.length: " + parent.frames.length + "
"
msg += "parent.frames[0].name: " + parent.frames[0].name
return msg

}

</SCRIPT>

</HEAD>

<BODY>

<{SCRIPT LANGUAGE="JavaScript">
document.write(gatherWindowData())
</SCRIPT>

</BODY>

</HTML>

[window.frames property - Netscape 6 {Build ID: 2000080712}
Fle Edit Wiew Search Go EBookmarks Tasks Help

(] ®ist16-07.htm M

From the point of view of this frame: From the point of view of this frame:

window frames length: 0 window frames length: 0

window name: JustAFid1 window name: JustAFid2

From the point of view of the framesetting document: From the point of view of the framesetting document:
parent. frames length: 2 parent frames length: 2

parent. frames[0].name: TustAKid1 parent frames[0].name: JustARid1

He- Document: Done (0,99 secs)
"Wk M 7 Al Charinels Taals Busi Free Time Shopping

Figure 2-1: Property readouts from both frames loaded from Listing 16-7

windowObject.frames

138 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

The last statement in the example shows how to use the array syntax (brackets)
to refer to a specific frame. All array indexes start with 0 for the first entry. Because
the document asks for the name of the first frame (parent.frames[0]), the
response is JustAKidl for both frames.

innerHeight

innerWidth
outerHeight
outerWidth
NN2 NN3 NN4 NN6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v/ v
Example

In Listing 16-9, a number of buttons let you see the results of setting the
innerHeight, innerWidth, outerHeight, and outerWidth properties.

Listing 16-9: Setting Window Height and Width

<HTML>

<HEAD>

KTITLE>Window Sizer</TITLE>

<{SCRIPT LANGUAGE="JavaScript">

// store original outer dimensions as page Tloads

var originalWidth = window.outerWidth

var originalHeight = window.outerHeight

// generic function to set inner dimensions

function setInner(width, height) {
window.innerWidth = width
window.innerHeight = height

}

// generic function to set outer dimensions

function setOuter(width, height) {
window.outerWidth = width
window.outerHeight = height

}

// restore window to original dimensions

function restore() {
window.outerWidth = originalWidth
window.outerHeight = originalHeight

}

</SCRIPT>

</HEAD>

<BODY>

<FORM>

Setting Inner Sizes

windowObject.innerHeight

Chapter 2 4+ Window and Frame Objects (Chapter 16) |1 39

<INPUT TYPE="button" VALUE="600 Pixels Square" onClick="setInner(600,600)">

<INPUT TYPE="button" VALUE="300 Pixels Square" onClick="setInner(300,300)">

<INPUT TYPE="button" VALUE="Available Screen Space"
onClick="setInner(screen.availWlidth, screen.availHeight)">

<HR>

Setting Outer Sizes

<INPUT TYPE="button" VALUE="600 Pixels Square" onClick="setOuter(600,600)">

<INPUT TYPE="button" VALUE="300 Pixels Square" onClick="setOuter(300,300)">

<INPUT TYPE="button" VALUE="Available Screen Space"
onClick="setOuter(screen.availWlidth, screen.availHeight)">

<HR>

<INPUT TYPE="button" VALUE="Cinch up for Win95" onClick="setInner(273,304)">

<INPUT TYPE="button" VALUE="Cinch up for Mac" onClick="setInner(273,304)">

<INPUT TYPE="button" VALUE="Restore Original" onClick="restore()">

</FORM>

</BODY>

<THTML

As the document loads, it saves the current outer dimensions in global variables.
One of the buttons restores the windows to these settings. Two parallel sets of but-
tons set the inner and outer dimensions to the same pixel values so that you can
see the effects on the overall window and document area when a script changes the
various properties.

Because Navigator 4 displays different-looking buttons in different platforms (as
well as other elements), the two buttons contain script instructions to size the win-
dow to best display the window contents. Unfortunately, no measure of the active
area of a document is available, so that the dimension values were determined by
trial and error before being hard-wired into the script.

navigator

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v v/ v v

Example

This book is littered with examples of using the navigator object, primarily for
performing browser detection. Examples of specific navigator object properties
can be found in Chapter 28 of the JavaScript Bible and Chapter 12 of this book.

offscreenBuffering

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v/ v v

windowObject.offscreenBuffering

14(Q JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example

If you want to turn off buffering for an entire page, include the following state-
ment at the beginning of your script statements:

window.offscreenBuffering = false

onerror
NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v/ v/ v v/ v v
Example

In Listing 16-10, one button triggers a script that contains an error. I've added an
error-handling function to process the error so that it opens a separate window and
fills in a textarea form element (see Figure 2-2). If you load Listing 16-10 in NNG6,
some of the reporting categories report “undefined” because the browser unfortu-
nately does not pass error properties to the handTeError () function. A Submit
button is also provided to mail the bug information to a support center e-mail
address — an example of how to handle the occurrence of a bug in your scripts.

Listing 16-10: Controlling Script Errors

<HTML>
<TITLE>Error Dialog Control</TITLE>
<SCRIPT LANGUAGE="JavaScriptl.1">
// function with invalid variable value
function goWrong() {
var x = fred
}
// turn off error dialogs
function err0ff() {
window.onerror = doNothing
}
// turn on error dialogs with hard reload
function errOn() {
window.onerror = handleError
}

// assign default error handler
window.onerror = handleError

// error handler when errors are turned off...prevents error dialog
function doNothing() {return true}

function handleError(msg, URL, TineNum) {

var errWind = window.open("","errors","HEIGHT=270,WIDTH=400")
var wintxt = "<HTML><BODY BGCOLOR=RED>"

windowObject.onerror

Chapter 2 + Window and Frame Objects (Chapter 16) |4]

wintxt += "An error has occurred on this page.
wintxt += "Please report it to Tech Support."
wintxt += "<FORM METHOD=POST ENCTYPE='text/plain' "
wintxt += "ACTION=mailTo:supportd4@dannyg.com >"
wintxt += "<TEXTAREA NAME='errMsg' COLS=45 ROWS=8 WRAP=VIRTUAL>"

wintxt += "Error: " + msg + "\n"

wintxt += "URL: " + URL + "\n"

wintxt += "Line: " + lineNum + "\n"

wintxt += "Client: " + navigator.userAgent + "\n"
Wintxt += "------ooo oo \n"

wintxt += "Please describe what you were doing when the error occurred:"
wintxt += "</TEXTAREA><P>"
wintxt += "<INPUT TYPE=SUBMIT VALUE='Send Error Report'>"
wintxt += "<INPUT TYPE=button VALUE='Close' onClick="'self.close()'>"
wintxt += "</FORM></BODY></HTML>"
errWind.document.write(wintxt)
errWind.document.close()
return true
}
</SCRIPT>
</HEAD>
<BODY>
<FORM NAME="myform">
<INPUT TYPE="button" VALUE="Cause an Error" onClick="goWrong()"><P>
<INPUT TYPE="button" VALUE="Turn Off Error Dialogs" onClick="errOff()">
<INPUT TYPE="button" VALUE="Turn On Error Dialogs" onClick="errOn()">
</FORM>
</BODY>
</HTML>

/2 \\Lightning\New Examples\Chap16\lst16-10.htm - Micr... [Hi[=] E3

Error: 'fred' is undefined

URL: file://%%Chaplghlsti6-10.htm

Line: &

Client: Mozilla/4.0 (compatible; N3IE 5.0;
Tindows 98; DigExt)

Flease describe what you were doing when the
error occurred: LI

Send Errar Report

Figure 2-2: An example of a self-reporting
error window

I provide a button that performs a hard reload, which, in turn, resets the window.
onerror property to its default value. With error dialog boxes turned off, the error-
handling function does not run.

windowObject.onerror

1472 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

opener
NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v 4 v v v v v
Example

To demonstrate the importance of the opener property, take a look at how a new
window can define itself from settings in the main window (Listing 16-11). The
doNew () function generates a small subwindow and loads the file in Listing 16-12
into the window. Notice the initial conditional statements in doNew () to make sure
that if the new window already exists, it comes to the front by invoking the new
window’s focus () method. You can see the results in Figure 2-3. Because the
doNew () function in Listing 16-11 uses window methods and properties not avail-
able in [E3, this example does not work correctly in IE3.

Listing 16-11: Contents of a Main Window Document That
Generates a Second Window

<HTML>
<HEAD>
<TITLE>Master of all Windows</TITLE>
{SCRIPT LANGUAGE="JavaScriptl.1">
var myWind
function doNew() {
if (ImyWind || myWind.closed) f
myWind = window.open("1st16-12.htm","subWindow",
"HEIGHT=200,WIDTH=350,resizable")
} else {
// bring existing subwindow to the front
myWind. focus()
}
}
</SCRIPT>
</HEAD>
<BODY>
<FORM NAME="input">
Select a color for a new window:
<INPUT TYPE="radio" NAME="color" VALUE="red" CHECKED>Red
<INPUT TYPE="radio" NAME="color" VALUE="yellow">Yellow
<INPUT TYPE="radio" NAME="color" VALUE="blue">Blue
<INPUT TYPE="button" NAME="storage" VALUE="Make a Window" onClick="doNew()">
<HR>
This field will be filled from an entry in another window:
<INPUT TYPE="text" NAME="entry" SIZE=25>
</FORM>
</BODY>
</HTMLY

windowObject.opener

Chapter 2 4+ Window and Frame Objects (Chapter 16)

The window.open() method doesn’t provide parameters for setting the new
window’s background color, so I let the getColor () function in the new window do
the job as the document loads. The function uses the opener property to find out
which radio button on the main page is selected.

Listing 16-12: References to the opener Property

<HTML>
<HEAD>
<TITLE>New Window on the Block</TITLE>
{SCRIPT LANGUAGE="JavaScript">
function getColor() {

// shorten the reference

colorButtons = self.opener.document.forms[0].color

// see which radio button is checked

for (var i = 0; i < colorButtons.length; i++) {

if (colorButtons[i].checked) {
return colorButtons[il.value
}

}

return "white"
}
</SCRIPT>
</HEAD>
<SCRIPT LANGUAGE="JavaScript">
document.write("<BODY BGCOLOR="" + getColor() + "'>")
</SCRIPT>
<H1>This is a new window.</H1>
<FORM>
<INPUT TYPE="button" VALUE="Who's in the Main window?"
onClick="alert(self.opener.document.title)"><P>
Type text here for the main window:
<INPUT TYPE="text" SIZE=25 onChange="self.opener.document.forms[0].entry.value =
this.value">
</FORM>
</BODY>
<IHTML>

In the getColor () function, the multiple references to the radio button array
can be very long. To simplify the references, the getColor () function starts out by
assigning the radio button array to a variable I arbitrarily call coTorButtons. That
shorthand now stands in for lengthy references as I loop through the radio buttons
to determine which button is checked and retrieve its value property.

A button in the second window simply fetches the title of the opener window’s
document. Even if another document loads in the main window in the meantime,
the opener reference still points to the main window: Its document object, however,
will change.

windowObject.opener

143

144 javaScript Examples Bible: The Essential Companion to JavaScript Bible

=] x
J Fle Edit View Favoites Toole Help ‘
J@-*.@ Q ‘%é@,@jm
Back Farward Stop Refresh Home Search Favoites Historp b ail PFrint Edit RealGuide
Select a color for a new window: @ Red © Tellow ¢ Blue __Make aWindow |
This field will be filled from an entry in another window: [Hello from the subwindow
2 1st16-12_htm - Microsoft Internet Explorer !EE
oo tom v subanion |
=

@ Done ’7’7 25| Local intraret
Figure 2-3: The main and subwindows, inextricably linked via the window.opener
property

Finally, the second window contains a text input object. Enter any text there that
you like and either tab or click out of the field. The onChange event handler updates
the field in the opener’s document (provided that document is still loaded).

pageXOffset
pageYOffset

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/ v/

Example

The script in Listing 16-13 is an unusual construction that creates a frameset
and creates the content for each of the two frames all within a single HTML docu-
ment (see “Frame Object” in Chapter 16 of the JavaScript Bible for more details).
The purpose of this example is to provide you with a playground to become famil-
iar with the page offset concept and how the values of these properties correspond
to physical activity in a scrollable document.

In the left frame of the frameset are two fields that are ready to show the pixel
values of the right frame’s pageX0ffset and pageYOffset properties. The content

windowObject.pageXOffset

Chapter 2 4+ Window and Frame Objects (Chapter 16) |45

of the right frame is a 30-row table of fixed width (800 pixels). Mouse click events
are captured by the document level (see Chapter 18 of the JavaScript Bible), allow-
ing you to click any table or cell border or outside the table to trigger the
showOffsets() function in the right frame. That function is a simple script that
displays the page offset values in their respective fields in the left frame.

Listing 16-13: Viewing the pageXOffset and pageYOffset
Properties

<HTML>

<HEAD>

<TITLE>Master of all Windows</TITLE>

<{SCRIPT LANGUAGE="JavaScript">

function TeftFrame() {
var output = "<HTML><BODY><H3>Page Offset Values</H3><HR>\n"
output += "<FORM>PageXOffset:<INPUT TYPE='text' NAME='xOffset' SIZE=4>
\n"
output += "PageYOffset:<INPUT TYPE="text' NAME='yOffset' SIZE=4>
\n"
output += "</FORM></BODY></HTML>"
return output

}

function rightFrame() {

var output = "<HTML><HEAD><SCRIPT LANGUAGE='JavaScript'>\n"

output += "function showOffsets() {\n"

output += "parent.readout.document.forms[0].x0ffset.value =
self.pageXOffset\n"

output += "parent.readout.document.forms[0].yO0ffset.value
self.pageYOffset\n}\n"

output += "document.captureEvents(Event.CLICK)\n"

output += "document.onclick = showOffsets\n"

output += "<\/SCRIPT></HEAD><BODY><H3>Content Page</H3>\n"

output += "Scroll this frame and click on a table border to view " +

"page offset values.
<HR>\n"
output += "<TABLE BORDER=5 WIDTH=800>"
var oneRow = "<TD>Cell 1</TD><TD>Cell 2</TD><TD>Cell 3</TD>" +
"<TD>Cell 4</TD><TD>Cell 5</TD>"
for (var i =1; i <= 30; i++) {
output += "<TRX>KTD>Row " + i + "</TD>" + oneRow + "</TR>"

}
output += "</TABLE></BODY></HTML>"
return output
}
</SCRIPT>
</HEAD>
<FRAMESET COLS="30%,70%">
<FRAME NAME="readout" SRC="javascript:parent.leftFrame()">
{FRAME NAME="display" SRC="javascript:parent.rightFrame()">
</FRAMESET>
</HTML>

windowObject.pageXOffset

146 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

To gain an understanding of how the offset values work, scroll the window
slightly in the horizontal direction and notice that the pageX0ffset value
increases; the same goes for the pageY0ffset value as you scroll down. Remember
that these values reflect the coordinate in the document that is currently under the
top-left corner of the window (frame) holding the document. You can see an [E4+
version of this example in Listing 18-20 (in Chapter 4 of this book). A cross-browser
version would require very little browser branching.

parent
NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v v v v v v
Example

To demonstrate how various window object properties refer to window levels in
a multiframe environment, use your browser to load the Listing 16-14 document. It,
in turn, sets each of two equal-size frames to the same document: Listing 16-15. This
document extracts the values of several window properties, plus the
document.title properties of two different window references.

Listing 16-14: Framesetting Document for Listing 16-15

<HTML>

<HEAD>

<TITLE>The Parent Property Example</TITLE>
<SCRIPT LANGUAGE="JavaScript">

self.name = "Framesetter"

</SCRIPT>

</HEAD>

<FRAMESET COLS="50%,50%" onUnload="self.name = '"'">

<FRAME NAME="JustAKidl" SRC="1stl6-15.htm">
<FRAME NAME="JustAKid2" SRC="T1stl6-15.htm">
</FRAMESET>
STHTMLY

Listing 16-15: Revealing Various Window-Related Properties

<HTML>
<HEAD>
<TITLE>Window Revealer TI<K/TITLE>
<SCRIPT LANGUAGE="JavaScript">
function gatherWindowData() {

var msg = ""

windowObject.parent

Chapter 2 + Window and Frame Objects (Chapter16) 147/

msg = msg + "top name: " + top.name + "
"
msg = msg + "parent name: " + parent.name + "
"
msg = msg + "parent.document.title: " + parent.document.title + "<P>"
msg = msg + "window name: " + window.name + "
"
msg = msg + "self name: " + self.name + "
"
msg = msg + "self.document.title: " + self.document.title
return msg
}
</SCRIPT>
</HEAD>
<BODY>

<SCRIPT LANGUAGE="JavaScript">
document.write(gatherWindowData())
</SCRIPT>

</BODY>

</HTML>

In the two frames (Figure 2-4), the references to the window and sel f object
names return the name assigned to the frame by the frameset definition
(JustAKidl for the left frame, JustAKid2 for the right frame). In other words, from
each frame’s point of view, the window object is its own frame. References to
self.document.title refer only to the document loaded into that window frame.
But references to the top and parent windows (which are one and the same in this
example) show that those object properties are shared between both frames.

_|Fx
J File Edit View Favoites Tools Help ‘
. = . ® 2] o Q EZ]] - S R L
Back Fariyand Stop Refresh Home Search Favortes History b zil Frint. Edit RealGuide
top name: Framesetter top name: Framesetter
parent name: Framesetter parent name: Framesetter
parent. document title: The Parent Property Example parent. document. title: The Parent Property Example
window narne: JustAFid1 window name: JustAKid2
self name: JustAKidl self name: JustAKid2
self document. title: Window Revealer IT self document. title: Window Revealer IT
@ Done ’_ ’_ Local intranet

Figure 2-4: Parent and top properties being shared by both frames

windowObject.parent

148 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

A couple other fine points are worth highlighting. First, the name of the frameset-
ting window is set as Listing 16-14 loads, rather than in response to an onlLoad
event handler in the <FRAMESET> tag. The reason for this is that the name must be
set in time for the documents loading in the frames to get that value. If I had waited
until the frameset’s onLoad event handler, the name wouldn’t be set until after the
frame documents had loaded. Second, I restore the parent window’s name to an
empty string when the framesetting document unloads. This is to prevent future
pages from getting confused about the window name.

returnValue

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

See Listing 16-39 for the showModalDialog() method for an example of how to
get data back from a dialog box in [E4+.

screenLeft
screenTop
NN2 NN3 NN4 NNé6 IE3/J1 1E3/)2 IE4 IE5 IE5.5
Compatibility v v
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
screenlLeft and screenTop properties. Start with the browser window maximized
(if you are using Windows). Enter the following property name into the top text box:

window.screenlLeft
Click the Evaluate button to see the current setting. Unmaximize the window and

drag it around the screen. Each time you finish dragging, click the Evaluate button
again to see the current value. Do the same for window.screenTop.

screenX
screenY
NN2 NN3 NN4 NN6é6 IE3/J1 1E3/)2 1E4 IE5 1IE5.5
Compatibility v

windowObject.screenX

Chapter 2 4+ Window and Frame Objects (Chapter 16) |49

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
screenX and screenY properties in NN6. Start with the browser window maxi-
mized (if you are using Windows). Enter the following property name into the top
text box:

window.screenY

Click the Evaluate button to see the current setting. Unmaximize the window and
drag it around the screen. Each time you finish dragging, click the Evaluate button
again to see the current value. Do the same for window.screeny.

scroll1X
scrollyY
NN2 NN3 NN4 NN6 |IE3/J)1 IE3/J)2 IE4 IE5 IE5.5
Compatibility v
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
scrollX and scrol1Y properties in NN6. Enter the following property into the top
text box:

window.scrollY

Now manually scroll the page down so that you can still see the Evaluate button.
Click the button to see how far the window has scrolled along the y-axis.

self

NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE55
Compatibility v v ooV v v ooV
Example

Listing 16-16 uses the same operations as Listing 16-5 but substitutes the se1f
property for all window object references. The application of this reference is
entirely optional, but it can be helpful for reading and debugging scripts if the
HTML document is to appear in one frame of a multiframe window — especially if
other JavaScript code in this document refers to documents in other frames. The
self reference helps anyone reading the code know precisely which frame was
being addressed.

windowObject.self

150 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-16: Using the self Property

<HTML>

<HEAD>

<TITLE>self Property</TITLE>

<SCRIPT LANGUAGE="JavaScript">
self.defaultStatus = "Welcome to my Web site."

</SCRIPT>
</HEAD>
<BODY>
<A HREF="http:// www.microsoft.com"
onMouseOver="self.status = '"Visit Microsoft\'s Home page.';return true"
onMouseQut="self.status = "';return true">Microsoft<{/A><P>
<A HREF="http://home.netscape.com"
onMouseOver="self.status = 'Visit Netscape\'s Home page.';return true"
onMouseOut="self.status = self.defaultStatus;return true">Netscape
</BODY>
</HTML>
status
NN2 NN3 NN4 NN6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v v v v/ 4 v
Example

In Listing 16-17, the status property is set in a handler embedded in the
onMouseQver attribute of two HTML link tags. Notice that the handler requires a
return true statement (or any expression that evaluates to return true) as the
last statement of the handler. This statement is required or the status message will
not display, particularly in early browsers.

Listing 16-17: Links with Custom Statusbar Messages

<HTML>

<HEAD>

<TITLE>window.status Property</TITLE>

</HEAD>

<BODY>

<A HREF="http://www.dannyg.com" onMouseOver="window.status = 'Go to my Home
page. (www.dannyg.com)'; return true">Home<P>

<A HREF="http://home.netscape.com" onMouseOver="window.status = 'Visit Netscape
Home page. (home.netscape.com)'; return true">Netscape

</BODY>

<THTML>

windowObject.status

Chapter 2 4+ Window and Frame Objects (Chapter16) 151

As a safeguard against platform-specific anomalies that affect the behavior of
onMouseOver event handlers and the window.status property, you should also
include an onMouseOut event handler for links and client-side image map area
objects. Such onMouseQut event handlers should set the status property to an
empty string. This setting ensures that the statusbar message returns to the
defaultStatus setting when the pointer rolls away from these objects. If you want
to write a generalizable function that handles all window status changes, you can
do so, but word the onMouseOQver attribute carefully so that the event handler eval-
uates to return true. Listing 16-18 shows such an alternative.

Listing 16-18: Handling Status Message Changes

<HTML>
<HEAD>
<TITLE>Generalizable window.status Property</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function showStatus(msg) {
window.status = msg
return true
}
</SCRIPT>
</HEAD>
<BODY>
<A HREF="http:// www.dannyg.com " onMouseOver="return showStatus('Go to my Home
page (www.dannyg.com).')" onMouseQut="return showStatus('"')">Home<P>
<A HREF="http://home.netscape.com" onMouseOver="return showStatus('Visit
Netscape Home page.')" onMouseOut="return showStatus('"')">Netscape
</BODY>
<IHTMLY

Notice how the event handlers return the results of the showStatus () method
to the event handler, allowing the entire handler to evaluate to return true.

One final example of setting the statusbar (shown in Listing 16-19) also demon-
strates how to create a simple scrolling banner in the statusbar.

Listing 16-19: Creating a Scrolling Banner

<HTML>

<HEAD>

<TITLE>Message Scroller</TITLE>
{SCRIPT LANGUAGE="JavaScript">
<l--

var msg = "Welcome to my world..."
var delay = 150

var timerld

var maxCount = 0

var currCount = 1

Continued

windowObject.status

152 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-19 (continued)

function scrollMsg() {
// set the number of times scrolling message is to run
if (maxCount == 0) {
maxCount = 3 * msg.length
}
window.status = msg
// keep track of how many characters have scrolled
currCount++
// shift first character of msg to end of msg
msg = msg.substring (1, msg.length) + msg.substring (0, 1)
// test whether we've reached maximum character count
if (currCount >= maxCount) {

timerID = 0 // zero out the timer
window.status = "" // clear the status bar
return // break out of function

} else {

// recursive call to this function
timerld = setTimeout("scrollMsg()", delay)
1
}
/] -=>
</SCRIPT>
</HEAD>
<BODY onlLoad="scrol1Msg()">
</BODY>
</HTML>

Because the statusbar is being set by a standalone function (rather than by an
onMouseOver event handler), you do not have to append a return true statement to
set the status property. The scrol1Msg() function uses more advanced JavaScript
concepts, such as the window.setTimeout () method (covered later in this chapter)
and string methods (covered in Chapter 34 of the JavaScript Bible). To speed the pace
at which the words scroll across the statusbar, reduce the value of delay.

Many Web surfers (myself included) don’t care for these scrollers that run for-
ever in the statusbar. Rolling the mouse over links disturbs the banner display.
Scrollers can also crash earlier browsers, because the setTimeout () method eats
application memory in Navigator 2. Use scrolling bars sparingly or design them to
run only a few times after the document loads.

Tip Setting the status property with onMouseOver event handlers has had a check-
ered career along various implementations in Navigator. A script that sets the sta-
tusbar is always in competition against the browser itself, which uses the statusbar
to report loading progress. When a “hot” area on a page is at the edge of a frame,
many times the onMouseOQut event fails to fire, thus preventing the statusbar from
clearing itself. Be sure to torture test any such implementations before declaring
your page ready for public access.

windowObject.status

W

Chapter 2 + Window and Frame Objects (Chapter16) |53

Methods
alert("message")

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v VR v

Example

The parameter for the example in Listing 16-20 is a concatenated string. It joins
together two fixed strings and the value of the browser’s navigator.appName prop-
erty. Loading this document causes the alert dialog box to appear, as shown in sev-
eral configurations in Figure 2-5. The JavaScript Alert: line cannot be deleted from
the dialog box in earlier browsers, nor can the title bar be changed in later browsers.

Listing 16-20: Displaying an Alert Dialog Box

<HTML>

<HEAD>

<TITLEDwindow.alert() Method</TITLE>

</HEAD>

<BODY>

{SCRIPT LANGUAGE="JavaScript">

alert("You are running the " + navigator.appName + " browser.")

</SCRIPT>
</BODY>
</HTML>
Wictosolt intemet Exploer |

& ‘You are wnning the Microsoft Intemet Esplorer browser.

Alert

& You are running the Netscape browser,

Figure 2-5: Results of the alert() method in Listing 16-20
in Internet Explorer 5 (top) and Navigator 6 (bottom)
for Windows 98

windowObject.alert()

154 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

capturekvents(eventTypelist)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

The page in Listing 16-21 is an exercise in capturing and releasing click events in
the window object. Whenever the window is capturing click events, the flash()
function runs. In that function, the event is examined so that only if the Control key
is also being held down and the name of the button starts with “button” does the
document background color flash red. For all click events (that is, those directed at
objects on the page capable of their own onC11ck event handlers), the click is pro-
cessed with the routeEvent () method to make sure the target buttons execute
their own onC11ck event handlers.

Listing 16-21: Capturing Click Events in the Window

<HTML>
<HEAD>
<TITLE>Window Event Capture</TITLE>
(SCRIPT LANGUAGE="JavaScriptl.2">
// function to run when window captures a click event
function flash(e) {
if (e.modifiers = Event.CONTROL_MASK &&
e.target.name.indexOf("button") == 0) {
document.bgColor = "red"
setTimeout("document.bgColor = 'white'", 500)
}
// Tet event continue to target
routekEvent(e)
}
// default setting to capture click events
window.captureEvents(Event.CLICK)
// assign flash() function to click events captured by window
window.onclick = flash
</SCRIPT>
</HEAD>
<BODY BGCOLOR="white">
<FORM NAME="buttons">
Turn window click event capture on or off (Default is "On")<P>
<INPUT NAME="captureOn" TYPE="button" VALUE="Capture On"
onClick="window.capturektvents(Event.CLICK)">
<INPUT NAME="captureQff" TYPE="button" VALUE="Capture Off"
onClick="window.releaseEvents(Event.CLICK)">
<HR>
Ctrl1+Click on a button to see if clicks are being captured by the window
(background color will flash red):<P>
<UL

windowObject.captureEvents()

Chapter 2 4+ Window and Frame Objects (Chapter16) |55

<INPUT NAME="buttonl" TYPE="button" VALUE="Informix" onClick="alert('You
clicked on Informix.')">

<INPUT NAME="button2" TYPE="button" VALUE="Oracle" onClick="alert('You
clicked on Oracle.')">

CLI><INPUT NAME="button3" TYPE="button" VALUE="Sybase" onClick="alert('You
clicked on Sybase.')">

<UL

</FORM>

</BODY>

</HTML>

When you try this page, also turn off window event capture. Now only the but-
tons’ onC11ck event handlers execute, and the page does not flash red.

clearInterval(intervalIDnumber)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v

Example

See Listings 16-36 and 16-37 for an example of how setInterval () and
clearInterval() are used together on a page.

clearTimeout(timeoutIDnumber)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v v v v

Example

The page in Listing 16-22 features one text field and two buttons (Figure 2-6). One
button starts a countdown timer coded to last one minute (easily modifiable for
other durations); the other button interrupts the timer at any time while it is run-
ning. When the minute is up, an alert dialog box lets you know.

Listing 16-22: A Countdown Timer

<HTML>

<HEAD>

<TITLE>Count Down Timer</TITLE>
<SCRIPT LANGUAGE="JavaScript">
<l--

var running = false

Continued

windowObject.clearTimeout()

156 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-22 (continued)

var endTime = null
var timerlD ull

function startTimer() {
running = true
now = new Date()
now = now.getTime()
// change last multiple for the number of minutes
endTime = now + (1000 * 60 * 1)
showCountDown ()
}

function showCountDown() {
var now = new Date()
now = now.getTime()
if (endTime - now <= 0) {
stopTimer()
alert("Time is up. Put down your pencils.")
} else {
var delta = new Date(endTime - now)
var theMin = delta.getMinutes()

var theSec = delta.getSeconds()
var theTime = theMin
theTime += ((theSec < 10) ? ":0" : ":") + theSec

document.forms[0].timerDisplay.value = theTime
if (running) {

timerID = setTimeout("showCountDown()",1000)
1

}

function stopTimer() {
clearTimeout(timerID)
running = false
document.forms[0].timerDisplay.value = "0:00"
}
/]/-->
</SCRIPT>
</HEAD>

<BODY>

<FORM>

<INPUT TYPE="button" NAME="startTime" VALUE="Start 1 min. Timer"
onClick="startTimer()">

<INPUT TYPE="button" NAME="clearTime" VALUE="Clear Timer"
onClick="stopTimer()"><P>

<INPUT TYPE="text" NAME="timerDisplay" VALUE="">

</FORM>

</BODY>

</HTML>

windowObject.clearTimeout()

Chapter 2 + Window and Frame Objects (Chapter16) |57/

Notice that the script establishes three variables with global scope in the win-
dow: running, endTime, and timerID. These values are needed inside multiple
functions, so they are initialized outside of the functions.

J File Edit View Favoites Tools Help |
= o= @ al a @ @ &
Back Farivard Stop Refresh Home Search Favortes History
| Address [\\Lightningew Examples\Chap] Evlst16-22 him = @60 ||k
Start 1 min. Timer Clear Timer |
IU:51
|@ Done ,7’7 28 Local intranst A

Figure 2-6: The countdown timer page as it displays the time remaining

In the startTimer () function, you switch the running flag on, meaning that the
timer should be going. Using some date functions (see Chapter 36 of the JavaScript
Bible), you extract the current time in milliseconds and add the number of millisec-
onds for the next minute (the extra multiplication by one is the place where you
can change the amount to the desired number of minutes). With the end time
stored in a global variable, the function now calls another function that compares
the current and end times and displays the difference in the text field.

Early in the showCountDown () function, check to see if the timer has wound
down. If so, you stop the timer and alert the user. Otherwise, the function continues
to calculate the difference between the two times and formats the time in mm:ss
format. As long as the running flag is set to true, the function sets the one-second
timeout timer before repeating itself. To stop the timer before it has run out (in the
stopTimer () function), the most important step is to cancel the timeout running
inside the browser. The clearTimeout () method uses the global timerID value to
do that. Then the function turns off the running switch and zeros out the display.

When you run the timer, you may occasionally notice that the time skips a sec-
ond. It’s not cheating. It just takes slightly more than one second to wait for the
timeout and then finish the calculations for the next second’s display. What you're
seeing is the display catching up with the real time left.

close()

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v VR v

windowObject.close()

158 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example

See Listing 16-4 (for the window.closed property), which provides an elaborate,
cross-platform, bug-accommodating example of applying the window.close()
method across multiple windows.

confirm("message")

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v VR v

Example

The example in Listing 16-23 shows the user interface part of how you can use a
confirm dialog box to query a user before clearing a table full of user-entered data.
The line in the title bar, as shown in Figure 2-7, or the “JavaScript Confirm” legend in
earlier browser versions, cannot be removed from the dialog box.

Listing 16-23: The Confirm Dialog Box

<HTML>
<HEAD>
KTITLE>window.confirm() Method</TITLE>
{SCRIPT LANGUAGE="JavaScript">
function clearTable() {
if (confirm("Are you sure you want to empty the table?")) {
alert("Emptying the table...") // for demo purposes
//statements that actually empty the fields
}
}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
<l-- other statements that display and populate a large table -->
<INPUT TYPE="button" NAME="clear" VALUE="Reset Table" onClick="clearTable()">
</FORM>
</BODY>
<IHTMLY

Microsoft Intemet Explorer

@ Are pou sure you want bo empty the table?

Cancel

Figure 2-7: A JavaScript confirm
dialog box (IE5/Windows format)

windowObject.confirm()

Chapter 2 4+ Window and Frame Objects (Chapter 16) 159

createPopup()
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v
Example

See Listing 16-49 later in this chapter for an example of the createPopup ()
method.

disableExternalCapture()
enableExternalCapture()

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

As this was a little-used feature of NN4 even while the browser enjoyed a sub-
stantial installed base, it becomes less important as that browser version recedes
into history. You can find an example of this feature at the Support Center for this
book (http://www.dannyg.com/update.html) or on pp.213-214 of the JavaScript
Bible, 3rd edition.

execScript("exprList"[, languagel)

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v/ v v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
execScript() method. The Evaluator has predeclared global variables for the low-
ercase letters a through z. Enter each of the following statements into the top text
box and observe the results for each.

a

When first loaded, the variable is declared but assigned no value, so it is
undefined.

window.execScript("a = 5")

windowObject.execScript()

160 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

The method returns no value, so the mechanism inside The Evaluator says that the
statement is undefined.

a
The variable is now 5.

window.execScript("b = a * 50")
b

The b global variable has a value of 250. Continue exploring with additional
script statements. Use semicolons to separate multiple statements within the string
parameter.

find(["searchString" [, matchCaseBoolean,
searchUpBooleanl])

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example
A simple call to the window. find () method looks as follows:

var success = window.find("contract")

If you want the search to be case-sensitive, add at least one of the two optional
parameters:

success = wind.find(matchString,caseSensitive,backward)

Because this method works only in NN4, refer to discussions of the TextRange
and Range objects in Chapter 19 of the JavaScript Bible for more modern implemen-
tations of body text searching.

GetAttention()

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) in NN6 to set a timer that
gives you enough time to switch to another application and wait for the attention
signal to fire. Enter the following statement into the top text box, click the Evaluate
button, and then quickly switch to another program:

setTimeout("GetAttention()", 5000)

After a total of five seconds, the attention signal fires.

windowObject.GetAttention()

Chapter 2 4+ Window and Frame Objects (Chapter16) 16]

moveBy(deltaX,deltaY)

moveTo(x,y)
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v/ v v/ v v
Example

Several examples of using the window.moveTo() and window.moveBy () meth-
ods are shown in Listing 16-24. The page presents four buttons, each of which per-
forms a different kind of browser window movement.

Listing 16-24: Window Boogie

<HTML>
<HEAD>
<TITLE>Window Gymnastics</TITLE>
<SCRIPT LANGUAGE="JavaScriptl.2">
var isNav4 = ((navigator.appName == "Netscape") &&
(parselnt(navigator.appVersion) >= 4))
// wait in onlLoad for page to load and settle in IE
function init() {
// i1l missing IE properties
if (lwindow.outerWidth) {
window.outerWidth = document.body.clientWidth
window.outerHeight = document.body.clientHeight + 30
}
// fi11 missing IE4 properties
if (!screen.availWidth) {
screen.availWidth = 640
screen.availHeight = 480
}
}
// function to run when window captures a click event
function moveOffScreen() {
// branch for NN security
if (isNav4d) {
netscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserWrite")
}
var maxX = screen.width
var maxY = screen.height
window.moveTo(maxX+1, maxY+1)
setTimeout ("window.moveTo(0,0)",500)
if (isNav4) {
netscape.security.PrivilegeManager.disablePrivilege("UniversalBrowserWrite")

}

Continued

windowObject.moveBy()

162 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-24 (continued)

}
// moves window in a circular motion
function revolve() {
var winX = (screen.availWidth - window.outerWidth) / 2
var winY = 50
window.resizeTo(400,300)
window.moveTo(winX, winY)

for (var i =1; 1 < 36; i++) {
winX += Math.cos(i * (Math.PI/18)) * 5
winY += Math.sin(i * (Math.PI/18)) * 5
window.moveTo(winX, winY)
}
}
// moves window in a horizontal zig-zag pattern
function zigzag() {
window.resizeTo(400,300)
window.moveTo(0,80)
var incrementX = 2
var incrementY = 2
var floor = screen.availHeight - window.outerHeight
var rightEdge = screen.availWidth - window.outerWidth
for (var i = 0; i < rightEdge; i += 2) {
window.moveBy(incrementX, incrementY)
if (i%60 == 0) {
incrementY = -incrementY
1
}
}
// resizes window to occupy all available screen real estate
function maximize() {
window.moveTo(0,0)
window.resizeTo(screen.availWidth, screen.availHeight)
}
</SCRIPT>
</HEAD>
<BODY onlLoad="init()">
<FORM NAME="buttons">
Window Gymnastics<P>

CLI><INPUT NAME="offscreen" TYPE="button" VALUE="Disappear a Second"
onClick="moveOffScreen()">
<INPUT NAME="circles" TYPE="button" VALUE="Circular Motion"
onClick="revolve()">
<INPUT NAME="bouncer" TYPE="button" VALUE="Zig Zag" onClick="zigzag()">
INPUT NAME="expander" TYPE="button" VALUE="Maximize" onClick="maximize()">
<UL
</FORM>
</BODY>
</HTML>

windowObject.moveBy()

Chapter 2 + Window and Frame Objects (Chapter16) |63

To run successfully in NN, the first button requires that you have codebase prin-
cipals turned on (see Chapter 46 of the JavaScript Bible) to take advantage of what
would normally be a signed script. The moveOffScreen() function momentarily
moves the window entirely out of view. Notice how the script determines the size of
the screen before deciding where to move the window. After the journey off screen,
the window comes back into view at the upper-left corner of the screen.

If using the Web sometimes seems like going around in circles, then the second
function, revolve(), should feel just right. After reducing the size of the window
and positioning it near the top center of the screen, the script uses a bit of math to
position the window along 36 places around a perfect circle (at 10-degree incre-
ments). This is an example of how to control a window’s position dynamically
based on math calculations. IE complicates the job a bit by not providing proper-
ties that reveal the outside dimensions of the browser window.

To demonstrate the moveBy () method, the third function, zigzag(), uses a for
loop to increment the coordinate points to make the window travel in a saw tooth
pattern across the screen. The x coordinate continues to increment linearly until
the window is at the edge of the screen (also calculated on the fly to accommodate
any size monitor). The y coordinate must increase and decrease as that parameter
changes direction at various times across the screen.

In the fourth function, you see some practical code (finally) that demonstrates
how best to simulate maximizing the browser window to fill the entire available
screen space on the visitor’s monitor.

navigate("URL")

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v/ v v

Example
Supply any valid URL as the parameter to the method, as in

window.navigate("http://www.dannyg.com")

open("URL", "windowName" [,
"windowFeatures"1[,replaceFlag]l)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v/ v v v v

Example

The page rendered by Listing 16-26 displays a single button that generates a new
window of a specific size that has only the statusbar turned on. The script here

windowObject.open()

164 J1avaScript Examples Bible: The Essential Companion to JavaScript Bible

shows all the elements necessary to create a new window that has all the right stuff
on most platforms. The new window object reference is assigned to a global vari-
able, newlWindow. Before a new window is generated, the script looks to see if the
window has never been generated before (in which case newlWindow would be
null) or, for newer browsers, the window is closed. If either condition is true, the
window is created with the open () method. Otherwise, the existing window is
brought forward with the focus () method (NN3+ and IE4+).

As a safeguard against older browsers, the script manually adds an opener prop-
erty to the new window if one is not already assigned by the open () method. The
current window object reference is assigned to that property.

Due to the timing problem that afflicts all IE generations, the HTML assembly and
writing to the new window is separated into its own function that is invoked after a
50 millisecond delay (NN goes along for the ride, but it could accommodate the
assembly and writing without the delay). To build the string that is eventually writ-
ten to the document, [use the += (add-by-value) operator, which appends the string
on the right side of the operator to the string stored in the variable on the left side.
In this example, the new window is handed an <H1>-level line of text to display.

Listing 16-26: Creating a New Window

<HTML>
<HEAD>
<TITLE>New Window</TITLE>
{SCRIPT LANGUAGE="JavaScript">
var newWindow
function makeNewWindow() {
if (InewWindow || newWindow.closed) {
newWindow = window.open("","","status,height=200,width=300")
if (InewWindow.opener) {
newWindow.opener = window
}
/] force small delay for IE to catch up
setTimeout ("writeToWindow()", 50)
} else {
// window's already open; bring to front
newlindow. focus()
1
}
function writeToWindow() {
// assemble content for new window
var newContent = "<HTML><HEAD><TITLE>One Sub Window</TITLE></HEAD>"
newContent += "<BODY><H1>This window is brand new.</H1>"
newContent += "</BODY></HTML>"
// write HTML to new window document
newlWindow.document.write(newContent)
newWindow.document.close() // close Tayout stream
}
</SCRIPT>
</HEAD>
<BODY>
<FORM>

windowObject.open()

Chapter 2 4+ Window and Frame Objects (Chapter 16) |1 65

<INPUT TYPE="button" NAME="newOne" VALUE="Create New Window"
onClick="makeNewWindow()">

</FORM>

</BODY>

</HTML>

If you need to create a new window for the lowest common denominator of
scriptable browser, you will have to omit the focus () method and the
window.closed property from the script (as well as add the NN2 bug workaround
described earlier). Or you may prefer to forego a subwindow for all browsers below
a certain level. See Listing 16-3 (in the window. cTosed property discussion) for
other ideas about cross-browser authoring for subwindows.

print()
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE55
Compatibility v v v v
Example

Listing 16-27 is a frameset that loads Listing 16-28 into the top frame and a copy
of the Bill of Rights into the bottom frame.

Listing 16-27: Print Frameset

<HTML>

<HEAD>

KTITLE>window.print() method</TITLE>

</HEAD>

<FRAMESET ROWS="25%,75%">
{FRAME NAME="controls" SRC="1stl16-28.htm">
<FRAME NAME="display" SRC="bofright.htm">

</FRAMESET>

<THTML>

Two buttons in the top control panel (Listing 16-28) let you print the whole
frameset (in those browsers and OSs that support it) or just the lower frame. To
print the entire frameset, the reference includes the parent window; to print the
lower frame, the reference is directed at the parent.display frame.

windowObject.print()

166 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-28: Printing Control

<HTML>

<HEAD>

KTITLE>Print()</TITLE>

</HEAD>

<BODY>

<FORM>

<INPUT TYPE="button" NAME="printWhole" VALUE="Print Entire Frameset"
onClick="parent.print()"><pP>

<INPUT TYPE="button" NAME="printFrame" VALUE="Print Bottom Frame Only"
onClick="parent.display.print()"><P>

</FORM>

</BODY>

</HTML>

If you don’t like some facet of the printed output, blame the browser’s print
engine, and not JavaScript. The print () method merely invokes the browser’s reg-
ular printing routines. Pages whose content is generated entirely by JavaScript
print only in NN3+ and IE4+.

prompt("message", "defaultReply")

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v VS v

Example

The function that receives values from the prompt dialog box in Listing 16-29
(see the dialog box in Figure 2-8) does some data-entry validation (but certainly not
enough for a commercial site). The function first checks to make sure that the
returned value is neither nu11 (Cancel) nor an empty string (the user clicked OK
without entering any values). See Chapter 43 of the JavaScript Bible for more about
data-entry validation.

Listing 16-29: The Prompt Dialog Box

<HTML>

<HEAD>

KTITLE>window.prompt() Method</TITLE>

<SCRIPT LANGUAGE="JavaScript">

function populateTable() {
var howMany = prompt("Fill in table for how many factors?","")
if (howMany != null && howMany != "") {

windowObject.prompt()

Chapter 2 + Window and Frame Objects (Chapter16) 167/

alert("Filling the table for " + howMany) // for demo
//statements that validate the entry and
//actually populate the fields of the table
}
}
</SCRIPT>
<{/HEAD>
<BODY>
<FORM>
{I-- other statements that display and populate a large table -->
<INPUT TYPE="button" NAME="fill" VALUE="Fill Table..."
onClick="populateTable()">
</FORM>
</BODY>
</HTML>

Explorer User Prompt

JavaSeript Prompt:

Fill in table for haw many factors?
Cancel |

@

Figure 2-8: The prompt dialog box displayed from
Listing 16-29 (Windows format)

Notice one important user interface element in Listing 16-29. Because clicking
the button leads to a dialog box that requires more information from the user, the
button’s label ends in an ellipsis (or, rather, three periods acting as an ellipsis char-
acter). The ellipsis is a common courtesy to let users know that a user interface ele-
ment leads to a dialog box of some sort. As in similar situations in Windows and
Macintosh programs, the user should be able to cancel out of that dialog box and
return to the same screen state that existed before the button was clicked.

resizeBy(deltaX,deltaY)
resizeTo(outerwidth,outerheight)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v 4 v

Example

You can experiment with the resize methods with the page in Listing 16-30. Two
parts of a form let you enter values for each method. The one for window.resize()
also lets you enter a number of repetitions to better see the impact of the values.
Enter zero and negative values to see how those affect the method. Also test the
limits of different browsers.

windowObject.resizeBy()

168 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-30: Window Resize Methods

<HTML>

<HEAD>

KTITLE>Window Resize Methods</TITLE>

<{SCRIPT LANGUAGE="JavaScript">

function doResizeBy(form) {
var x = parselnt(form.resizeByX.value)
var y = parselnt(form.resizeByY.value)
var count = parselnt(form.count.value)
for (var i = 0; i < count; i++) {

window.resizeBy(x, y)

1

}

function doResizeTo(form) {
var x = parselnt(form.resizeToX.value)
var y = parselnt(form.resizeToY.value)
window.resizeTo(x, y)

}

</SCRIPT>

</HEAD>

<BODY>

<FORM>

<{B>Enter the x and y increment, plus how many times the window should be resized
by these increments:

Horiz:<INPUT TYPE="text" NAME="resizeByX" SIZE=4>
Vert:<INPUT TYPE="text" NAME="resizeByY" SIZE=4>

How Many:<INPUT TYPE="text" NAME="count" SIZE=4>

<INPUT TYPE="button" NAME="ResizeBy" VALUE="Show resizeBy()"
onClick="doResizeBy(this.form)">

<HR>

<{B>Enter the desired width and height of the current window:

Width:<INPUT TYPE="text" NAME="resizeToX" SIZE=4>
Height:<INPUT TYPE="text" NAME="resizeToY" SIZE=4>

<INPUT TYPE="button" NAME="ResizeTo" VALUE="Show resizeTo()"
onClick="doResizeTo(this.form)">

</FORM>

</BODY>

<IHTML>

routeEvent(event)

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v

windowObject.routeEvent()

Chapter 2 4+ Window and Frame Objects (Chapter 16) 169

Example

The window.routeEvent () method is used in the example for
window.captureEvents(), Listing 16-21.

scroll(horizontalCoord, verticalCoord)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v

Example

To demonstrate the scrol1() method, Listing 16-31 defines a frameset with a
document in the top frame (Listing 16-32) and a control panel in the bottom frame
(Listing 16-33). A series of buttons and text fields in the control panel frame directs
the scrolling of the document. I've selected an arbitrary, large GIF image to use in
the example. To see results of some horizontal scrolling values, you may need to
shrink the width of the browser window until a horizontal scrollbar appears in the
top frame. Figure 2-9 shows the results in a shrunken window with modest horizon-
tal and vertical scroll values entered into the bottom text boxes. If you substitute
scrol1To() for the scrol1() methods in Listing 16-33, the results will be the
same, but you will need version browsers at a minimum to run it.

Listing 16-31: A Frameset for the scroll() Demonstration

<HTML>
<HEAD>
<TITLE>window.scroll() Method</TITLE>
</HEAD>

<FRAMESET ROWS="50%,50%">
<FRAME SRC="Tst16-32.htm" NAME="display">
<{FRAME SRC="Tstl16-33.htm" NAME="control">
</FRAMESET>
</HTML>

Listing 16-32: The Image to Be Scrolled

CHTML>

<HEAD>
KTITLE>Arch</TITLE>
</HEAD>

Continued

windowObject.scroll()

170 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-32 (continued)

<BODY>

<HI>A Picture is Worth...</H1>
<HR>

<CENTER>

<TABLE BORDER=3>

<CAPTION ALIGN=bottom>A Splendid Arch</CAPTION>
<TD>

</TD></TABLE></CENTER>

</BODY>

</HTML>

Listing 16-33: Controls to Adjust Scrolling of the Upper Frame

<HTML>
<HEAD>
<TITLE>Scroll Controller</TITLE>
<SCRIPT LANGUAGE="JavaScriptl.1">
function scroll(x,y) {
parent.frames[0].scroll(x,y)
}
function customScroll(form) {
parent.frames[0].scroll(parselnt(form.x.value),parselnt(form.y.value))
}
</SCRIPT>
</HEAD>
<BODY>
<H2>Scroll Controller</H2>
<HR>
<FORM NAME="f1ixed">
Click on a scroll coordinate for the upper frame:<P>
<INPUT TYPE="button" VALUE="0,0" onClick="scrol1(0,0)">
<INPUT TYPE="button" VALUE="0,100" onClick="scrol1(0,100)">
<INPUT TYPE="button" VALUE="100,0" onClick="scrol1(100,0)">
<P>
<INPUT TYPE="button" VALUE="-100,100" onClick="scrol1(-100,100)">
<INPUT TYPE="button" VALUE="20,200" onClick="scrol1(20,200)">
<INPUT TYPE="button" VALUE="1000,3000" onClick="scrol1(1000,3000)">
</FORM>
<HR>
<FORM NAME="custom">
Enter a Horizontal
<INPUT TYPE="text" NAME="x" VALUE="0" SIZE=4>
and Vertical
<INPUT TYPE="text" NAME="y" VALUE="0" SIZE=4>
value. Then

windowObject.scroll()

Chapter 2 + Window and Frame Objects (Chapter16) |7/]

<INPUT TYPE="button" VALUE="click to scroll" onClick="customScroll(this.form)">
</FORM>
</BODY>
</HTML>

AListings/Chapl6/Ist1e™

.| # Home g g % Ti ai ™ Bugzila

Scroll Controller

Click on a scroll coordinate for the upper frame:

09| na00| so00| r

Enter a Horizontal B9 and Vertical |25 value. Then q -

Figure 2-9: Scripts control the scrolling of the top frame

Notice that in the customScrol1 () function, JavaScript must convert the string
values from the two text boxes to integers (with the parseInt () method) for the
scrol1() method to accept them. Nonnumeric data can produce very odd results.
Also be aware that although this example shows how to adjust the scroll values in
another frame, you can set such values in the same frame or window as the script,
as well as in subwindows, provided that you use the correct object references to
the window.

scrol1By(deltaX,deltaY)
scrol1To(x,y)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v 4 4

windowObject.scrollBy()

172 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example

To work with the scrol1To() method, you can use Listings 16-31 through 16-33
(thewindow.scrol1() method) but substitute window.scrol1To() for window.
scrol1(). The results should be the same. For scrol1By (), the example starts with
the frameset in Listing 16-34. It loads the same content document as the window.
scrol1() example (Listing 16-32), but the control panel (Listing 16-35) provides
input to experiment with the scrol1By () method.

Listing 16-34: Frameset for ScrollBy Controller

<HTML>
<HEAD>
KTITLE>window.scrol1By() Method</TITLE>
</HEAD>

<FRAMESET ROWS="50%,50%">
<{FRAME SRC="Tstl1l6-32.htm" NAME="display">
<{FRAME SRC="T1stl16-35.htm" NAME="control">
</FRAMESET>
</HTML>

Notice in Listing 16-35 that all references to window properties and methods are
directed to the display frame. String values retrieved from text fields are con-
verted to number with the parseInt () global function.

Listing 16-35: ScrollBy Controller

<HTML>
<HEAD>
<TITLE>Scrol1By Controller</TITLE>
{SCRIPT LANGUAGE="JavaScriptl.2">
function page(direction) {
var pixFrame = parent.display
var deltaY = (pixFrame.innerHeight) ? pixFrame.innerHeight :
pixFrame.document.body.scrollHeight
if (direction == "up") {
deltaY = -deltaY
}
parent.display.scroll1By(0, deltaY)
}
function customScroll(form) {
parent.display.scrollBy(parselnt(form.x.value), parselnt(form.y.value))
}
</SCRIPT>
</HEAD>
<BODY>
Scrol1By Controller
<FORM NAME="custom">
Enter an Horizontal increment

windowObject.scrollBy()

Chapter 2 4+ Window and Frame Objects (Chapter16) |73

CINPUT TYPE="text" NAME="x" VALUE="0" SIZE=4">

and Vertical

<INPUT TYPE="text" NAME="y" VALUE="0" SIZE=4")>

value.
Then

<INPUT TYPE="button" VALUE="click to scrollBy()"
onClick="customScroll(this.form)">

<HR>

<INPUT TYPE="button" VALUE="PageDown" onClick="page('down')">
<INPUT TYPE="button" VALUE="PageUp" onClick="page('up')">

</FORM>

</BODY>
</HTML>

setCursor("cursorType")

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) in NN6 to experiment with
setting the cursor. After clicking the top text box in preparation for typing, roll the
cursor to a location atop an empty spot on the page. Then enter the following state-
ments one at a time into the top text box and press Enter/Return:

setCursor("wait")
setCursor("spinning"
setCursor("move")

After evaluating each statement, roll the cursor around the page, and notice
where the cursor reverts to its normal appearance.
setInterval("expr", msecDelay [, languagel])
setInterval(funcRef, msecDelay [, funcargl,
..., funcargnl)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v

Example

The demonstration of the setInterval () method entails a two-framed environ-
ment. The framesetting document is shown in Listing 16-36.

windowObject.setinterval()

174 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-36: setinterval() Demonstration Frameset

<HTML>
<HEAD>
KTITLE>setInterval() Method</TITLE>
</HEAD>

<FRAMESET ROWS="50%,50%">
<FRAME SRC="1st16-37.htm" NAME="control">
<FRAME SRC="bofright.htm" NAME="display">
</FRAMESET>
</HTML>

In the top frame is a control panel with several buttons that control the automatic
scrolling of the Bill of Rights text document in the bottom frame. Listing 16-37 shows
the control panel document. Many functions here control the interval, scrolling jump
size, and direction, and they demonstrate several aspects of applying setInterval ().

Notice that in the beginning the script establishes a number of global variables.
Three of them are parameters that control the scrolling; the last one is for the ID
value returned by the setInterval () method. The script needs that value to be a
global value so that a separate function can halt the scrolling with the
clearInterval() method.

All scrolling is performed by the autoScrol1() function. For the sake of simplic-
ity, all controlling parameters are global variables. In this application, placement of
those values in global variables helps the page restart autoscrolling with the same
parameters as it had when it last ran.

Listing 16-37: setinterval() Control Panel

<HTML>

<HEAD>

<TITLE>Scrol1By Controller</TITLE>
{SCRIPT LANGUAGE="JavaScriptl.2">
var scrollSpeed = 500

var scrollJump = 1

var scrollDirection = "down"

var intervallD

function autoScroll() {

if (scrollDirection == "down") {
scrolldump = Math.abs(scrollJump)

} else if (scrollDirection == "up" && scrollJdump > 0) {
scrolldump = -scrolldump

}
parent.display.scrol1By(0, scrolldump)
if (parent.display.pageYOffset <= 0) {

windowObject.setinterval()

Chapter 2 4+ Window and Frame Objects (Chapter16) | 7/5

clearInterval(intervallD)
1

function reducelnterval() {
stopScroll()
scrol1Speed -= 200
startScroll()

}

function increaselnterval() {
stopScroll()
scrol1Speed += 200
startScroll()

}

function reducedump() {
scrolTdump -= 2

}

function increasedump() {
scrolTdump += 2

}

function swapDirection() {
scrol1Direction = (scrollDirection == "down") ? "up

: "down"
}
function startScroll() {

parent.display.scroll1By(0, scrolldump)

if (intervallD) {

clearInterval(intervallD)

}

intervallD = setInterval("autoScroll()",scrollSpeed)
}
function stopScroll() f

clearInterval(intervallD)
}
</SCRIPT>
</HEAD>
<BODY onlLoad="startScroll()">
AutoScroll by setInterval() Controller
<FORM NAME="custom">
<INPUT TYPE="button" VALUE="Start Scrolling" onClick="startScroll()">
<INPUT TYPE="button" VALUE="Stop Scrolling" onClick="stopScroll()"><P>
<INPUT TYPE="button" VALUE="Shorter Time Interval" onClick="reducelnterval()">
<INPUT TYPE="button" VALUE="Longer Time Interval"
onClick="increaselnterval()"><P>
<INPUT TYPE="button" VALUE="Bigger Scroll Jumps" onClick="increasedump()">
<INPUT TYPE="button" VALUE="Smaller Scroll Jumps" onClick="reducedump()"><P>
<INPUT TYPE="button" VALUE="Change Direction" onClick="swapDirection()">

</FORM>

</BODY>
</HTML>

windowObject.setinterval()

176 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

The setInterval() method is invoked inside the startScrol1() function.
This function initially “burps” the page by one scrol1Jump interval so that the test
in autoScrol1() for the page being scrolled all the way to the top doesn’t halt a
page from scrolling before it gets started. Notice, too, that the function checks for
the existence of an interval ID. If one is there, it is cleared before the new one is set.
This is crucial within the design of the example page, because repeated clicking of
the Start Scrolling button triggers multiple interval timers inside the browser. Only
the most recent one’s ID would be stored in intervalID, allowing no way to clear
the older ones. But this little side trip makes sure that only one interval timer is
running. One of the global variables, scrol1Speed, is used to fill the delay parame-
ter for setInterval (). To change this value on the fly, the script must stop the
current interval process, change the scrol1Speed value, and start a new process.
The intensely repetitive nature of this application is nicely handled by the
setInterval() method.

setTimeout("expr", msecDelay [, languagel)
setTimeout(functionRef, msecDelay [,
funcargl, ..., funcargnl)

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v v v v

Example

When you load the HTML page in Listing 16-38, it triggers the updateTime()
function, which displays the time (in hh:mm am/pm format) in the statusbar.
Instead of showing the seconds incrementing one by one (which may be distracting
to someone trying to read the page), this function alternates the last character of
the display between an asterisk and nothing, like a visual “heartbeat.”

Listing 16-38: Display the Current Time

<HTML>
<HEAD>
<TITLE>Status Bar Clock</TITLE>
<SCRIPT LANGUAGE="JavaScript">
==
var flasher = false
// calculate current time, determine flasher state,
// and insert time into status bar every second
function updateTime() {
var now = new Date()
var theHour = now.getHours()
var theMin = now.getMinutes()
var theTime = "" + ((theHour > 12) ? theHour - 12 : theHour)
theTime += ((theMin < 10) ? ":0" : ":") + theMin

windowObject.setTimeout()

Chapter 2 4+ Window and Frame Objects (Chapter 16)

theTime += (theHour >= 12) ? " pm" : " am"
theTime += ((flasher) ? " " . "*")
flasher = !flasher

window.status = theTime
// recursively call this function every second to keep timer going
timerID = setTimeout("updateTime()",1000)

}

//-->

</SCRIPT>

</HEAD>

<BODY onLoad="updateTime()">
</BODY>
</HTML>

In this function, the setTimeout () method works in the following way: Once the
current time (including the flasher status) appears in the statusbar, the function
waits approximately one second (1,000 milliseconds) before calling the same func-
tion again. You don’t have to clear the timerID value in this application because
JavaScript does it for you every time the 1,000 milliseconds elapse.

Alogical question to ask is whether this application should be using
setInterval() instead of setTimeout (). This is a case in which either one does
the job. To use setInterval () here would require that the interval process start
outside of the updateTime () function, because you need only one process running
that repeatedly calls updateTime (). It would be a cleaner implementation in that
regard, instead of the tons of timeout processes spawned by Listing 16-38. On the
other hand, the application would not run in any browsers before NN4 or IE4, as
Listing 16-38 does.

To demonstrate passing parameters, you can modify the updateTime () function
to add the number of times it gets invoked to the display in the statusbar. For that
to work, the function must have a parameter variable so that it can catch a new
value each time it is invoked by setTimeout ()’s expression. For all browsers, the
function would be modified as follows (unchanged lines are represented by the
ellipsis):

function updateTime(i) {

window.status = theTime + " (" + i + ")"

// pass updated counter value with next call to this function
timerID = setTimeout("updateTime(" + i+1 + ")",1000)

}

If you were running this exclusively in NN4+, you could use its more convenient way
of passing parameters to the function:

timerID = setTimeout(updateTime,1000, i+1)

In either case, the onlLoad event handler would also have to be modified to get the
ball rolling with an initial parameter:

onlLoad = "updateTime(0)"

windowObject.setTimeout()

177

178 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Caution One warning about setTimeout () functions that dive into themselves as fre-
quently as this one does: Each call eats up a bit more memory for the browser
application in Navigator 2. If you let this clock run for a while, some browsers may
encounter memory difficulties, depending on which operating system they're
using. But considering the amount of time the typical user spends on Web pages
(even if only 10 or 15 minutes), the function shouldn't present a problem. And any
reloading invoked by the user (such as by resizing the window in Navigator 2)
frees up memory once again.

showModalDialog("URL"[, arguments]

[, features])
showModelessDialog("URL"[, arguments]
[, features])

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility V) v v

Example

To demonstrate the two styles of dialog boxes, I have implemented the same
functionality (setting some session visual preferences) for both modal and mode-
less dialog boxes. This tactic shows you how to pass data back and forth between
the main page and both styles of dialog box windows.

The first example demonstrates how to use a modal dialog box. In the process,
data is passed into the dialog box window and values are returned. Listing 16-39 is
the HTML and scripting for the main page. A button’s onC11ck event handler invokes
a function that opens the modal dialog box. The dialog box’s document (Listing
16-40) contains several form elements for entering a user name and selecting a few
color styles for the main page. Data from the dialog is fashioned into an array to be
sent back to the main window. That array is initially assigned to a local variable,
prefs, as the dialog box closes. If the user cancels the dialog box, the returned value
is an empty string, so nothing more in getPrefsData() executes. But when the user
clicks OK, the array comes back. Each of the array items is read and assigned to its
respective form value or style property. These values are also preserved in the global
currPrefs array. This allows the settings to be sent to the modal dialog box (as the
second parameter to showModalDialog()) the next time the dialog box is opened.

Listing 16-39: Main Page for showModalDialog()

<HTML>

<HEAD>

<TITLE>window.setModalDialog() Method</TITLE>
{SCRIPT LANGUAGE="JavaScript">

var currPrefs = new Array()

windowObject.showModalDialog()

Chapter 2 4+ Window and Frame Objects (Chapter 16)

function getPrefsData() {
var prefs = showModalDialog("1st16-40.htm", currPrefs,
"dialogWidth:400px; dialogHeight:300px")
if (prefs) {
if (prefs["name"]) {
document.all.firstName.innerText = prefs["name"]
currPrefs["name"] = prefs["name"]
}
if (prefs["bgColor"]) f
document.body.style.backgroundColor = prefs["bgColor"]
currPrefs["bgColor"] = prefs["bgColor"]
}
if (prefs["textColor"]) {
document.body.style.color = prefs["textColor"]
currPrefs["textColor"] = prefs["textColor"]
1
if (prefs["h1Size"]) {
document.all.welcomeHeader.style.fontSize = prefs["h1Size"]
currPrefs["hlSize"] = prefs["hlSize"]

t
}
function init() {
document.all.firstName.innerText = "friend"
}
</SCRIPT>

</HEAD>

<BODY BGCOLOR="steeeeee" STYLE="margin:20px" onLoad="init()">
<H1>window.setModalDialog() Method</H1>

<HR>

<H2 ID="welcomeHeader">Welcome, I</H2>
<HR>

<P>Use this button to set style preferences for this page:
<BUTTON ID="prefsButton" onClick="getPrefsData()">
Preferences

</BUTTON>

</BODY>

</HTML>

The dialog box’s document, shown in Listing 16-40, is responsible for reading the
incoming data (and setting the form elements accordingly) and assembling form
data for return to the main window’s script. Notice when you load the example that
the TITLE element of the dialog box’s document appears in the dialog box window’s
title bar.

When the page loads into the dialog box window, the init () function examines
the window.dialogArguments property. If it has any data, the data is used to pre-
set the form elements to mirror the current settings of the main page. A utility func-
tion, setSelected(), pre-selects the option of a SELECT element to match the
current settings.

windowObject.showModalDialog()

179

180 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Buttons at the bottom of the page are explicitly positioned to be at the lower-
right corner of the window. Each button invokes a function to do what is needed
to close the dialog box. In the case of the OK button, the hand1e0K() function
sets the window.returnValue property to the data that come back from the
getFormData () function. This latter function reads the form element values and
packages them in an array using the form elements’ names as array indices. This
helps keep everything straight back in the main window’s script, which uses the
index names, and is therefore not dependent upon the precise sequence of the form
elements in the dialog box window.

Listing 16-40: Document for the Modal Dialog

<HTML>

<HEAD>

<TITLE>User Preferences</TITLE>

<SCRIPT LANGUAGE="JavaScript">

// Close the dialog

function closeme() {
window.close()

}

// Handle click of OK button

function handleOK() {
window.returnValue = getFormData()
closeme()

}

// Handle click of Cancel button

function handleCancel() {
window.returnValue =
closeme()

nn

}
// Generic function converts form element name-value pairs
// into an array
function getFormData() {
var form = document.prefs
var returnedData = new Array()
// Harvest values for each type of form element
for (var i = 0; i < form.elements.length; i++) {

if (form.elements[i].type == "text") {
returnedDatalform.elements[i].name] = form.elements[i].value
} else if (form.elements[i].type.indexOf("select") != -1) {

returnedDatalform.elements[i].name] =
form.elements[i].options[form.elements[i].selectedIndex].value

} else if (form.elements[i].type == "radio") {
returnedDatalform.elements[i].name] = form.elements[i].value
} else if (form.elements[i].type == "checkbox") {

returnedDatalform.elements[i].name] = form.elements[il.value
} else continue
}
return returnedData

windowObject.showModalDialog()

Chapter 2 4+ Window and Frame Objects (Chapter 16)

// Initialize by setting form elements from passed data
function init() {
if (window.dialogArguments) {
var args = window.dialogArguments
var form = document.prefs
if (args["name"]) {
form.name.value = args["name"]
1
if (args["bgColor"]) {
setSelected(form.bgColor, args["bgColor"])
}
if (args["textColor"]) {
setSelected(form.textColor, args["textColor"])
}
if (args["h1Size"]) {
setSelected(form.h1Size, args["h1Size"])
1
}
}
// Utility function to set a SELECT element to one value
function setSelected(select, value) {
for (var i = 0; i < select.options.length; i++) {
if (select.options[i].value == value) {
select.selectedIndex = i
break
}
1
return
}
// Utility function to accept a press of the
// Enter key in the text field as a click of 0K
function checkEnter() {
if (window.event.keyCode == 13) {
hand1eOK()
1
}
</SCRIPT>
</HEAD>

<BODY BGCOLOR="#teeeeee" onLoad="init()">

<H2>Web Site Preferences</H2>

<HR>

<TABLE BORDER=0 CELLSPACING=2>

<FORM NAME="prefs" onSubmit="return false">

<TR>

<TD>Enter your first name:<INPUT NAME="name" TYPE="text" VALUE="" SIZE=20
onKeyDown="checkEnter()">

</TR>

<TR>
<TD>Select a background color:
(SELECT NAME="bgColor">
<OPTION VALUE="beige">Beige
<OPTION VALUE="antiquewhite">Antique White

Continued

windowObject.showModalDialog()

181

182 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-40 (continued)

<OPTION VALUE="goldenrod">Goldenrod
<OPTION VALUE="Time">Lime
<OPTION VALUE="powderblue">Powder Blue
<OPTION VALUE="slategray">Slate Gray
</SELECT>
</TR>

<TR>

<TD>Select a text color:

<SELECT NAME="textColor">
<OPTION VALUE="black">Black
<OPTION VALUE="white">White
<OPTION VALUE="navy">Navy Blue
<OPTION VALUE="darkorange">Dark Orange
<OPTION VALUE="seagreen">Sea Green
<OPTION VALUE="teal">Teal

</SELECT>

</TR>

<TR>
<TD>Select "Welcome" heading font point size:
{SELECT NAME="h1Size">
<OPTION VALUE="12">12
<OPTION VALUE="14">14
<OPTION VALUE="18">18
<OPTION VALUE="24">24
<OPTION VALUE="32">32
<OPTION VALUE="48">48
</SELECT>
</TR>
</TABLE>
</FORM>
<DIV STYLE="position:absolute; Teft:200px; top:220px">
<BUTTON STYLE="width:80px" onClick="hand1e0K()">0K</BUTTON>
<BUTTON STYLE="width:80px" onClick="handleCancel()">Cancel</BUTTON>
</DIVS
</BODY>
<THTML>

One last convenience feature of the dialog box window is the onKeyPress event
handler in the text box. The function it invokes looks for the Enter key. If that key is
pressed while the box has focus, the same hand1e0K() function is invoked, as if the
user had clicked the OK button. This feature makes the dialog box behave as if the
OK button is an automatic default, just as “real” dialog boxes.

You should observe several important structural changes that were made to turn
the modal approach into a modeless one. Listing 16-41 shows the version of the
main window modified for use with a modeless dialog box. Another global variable,
prefsDlog, is initialized to eventually store the reference to the modeless window

windowObject.showModalDialog()

Chapter 2 4+ Window and Frame Objects (Chapter 16)

returned by the showModelessWindow() method. The variable gets used to invoke
the init () function inside the modeless dialog box, but also as conditions in an if
construction surrounding the generation of the dialog box. The reason this is
needed is to prevent multiple instances of the dialog box being created (the button
is still alive while the modeless window is showing). The dialog box won’t be created
again as long as there is a value in prefsD1og, and the dialog box window has not
been closed (picking up the window. closed property of the dialog box window).

The showModelessDialog() method’s second parameter is a reference to the
function in the main window that updates the main document. As you see in a
moment, that function is invoked from the dialog box when the user clicks the OK
or Apply buttons.

Listing 16-41: Main Page for showModelessDialog()

<HTML>

<HEAD>

<TITLE>window.setModelessDialog() Method</TITLE>

{SCRIPT LANGUAGE="JavaScript">

var currPrefs = new Array()

var prefsDlog

function getPrefsData() {

if (lprefsDlog || prefsDlog.closed) {

prefsDlog = showModelessDialog("1stl16-42.htm", setPrefs,
"dialogWidth:400px; dialogHeight:300px")
prefsDlog.init(currPrefs)

}

function setPrefs(prefs) {

if (prefs["bgColor"]) {
document.body.style.backgroundColor = prefs["bgColor"]
currPrefs["bgColor"] = prefs["bgColor"]

}

if (prefs["textColor"]) {
document.body.style.color = prefs["textColor"]
currPrefs["textColor"] = prefs["textColor"]

}

if (prefs["hlSize"]) {
document.all.welcomeHeader.style.fontSize = prefs["h1Size"]
currPrefs["h1Size"] = prefs["h1Size"]

}

if (prefs["name"]) {
document.all.firstName.innerText = prefs["name"]
currPrefs["name"] = prefs["name"]

}

function init() {
document.all.firstName.innerText = "friend"

}

</SCRIPT>

Continued

windowObject.showModalDialog()

183

184 1avaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-41 (continued)

</HEAD>

<BODY BGCOLOR="steeeeee" STYLE="margin:20px" onLoad="init()">
<H1>window.setModelessDialog() Method</H1>

<HR>

<H2 ID="welcomeHeader">Welcome, I</H2>
<HR>

<P>Use this button to set style preferences for this page:
<BUTTON ID="prefsButton" onClick="getPrefsData()">
Preferences

</BUTTON>

</BODY>

</HTML>

Changes to the dialog box window document for a modeless version (Listing 16-42)
are rather limited. A new button is added to the bottom of the screen for an Apply but-
ton. As in many dialog box windows you see in Microsoft products, the Apply button
lets current settings in dialog boxes be applied to the current document but without
closing the dialog box. This approach makes experimenting with settings easier.

The Apply button invokes a hand1eApply () function, which works the same as
hand1e0K (), except the dialog box is not closed. But these two functions communi-
cate back to the main window differently than a modal dialog box. The main window’s
processing function is passed as the second parameter of showModelessDialog()
and is available as the window.dialogArguments property in the dialog box win-
dow’s script. That function reference is assigned to a local variable in both functions,
and the remote function is invoked, passing the results of the getFormData () func-
tion as parameter values back to the main window.

Listing 16-42: Document for the Modeless Dialog Box

<HTML>

<HEAD>

<TITLE>User Preferences</TITLE>

<SCRIPT LANGUAGE="JavaScript">

// Close the dialog

function closeme() {
window.close()

}

// Handle click of OK button

function handleOK() {
var returnfunc = window.dialogArguments
returnFunc(getFormData())
closeme()

windowObject.showModalDialog()

Chapter 2 4+ Window and Frame Objects (Chapter 16) |1 85

// Handle click of Apply button

function handleApply() {
var returnfFunc = window.dialogArguments
returnfFunc(getFormData())

}

// Handle click of Cancel button

function handleCancel() {
window.returnValue =
closeme()

nn

}
// Generic function converts form element name-value pairs
// into an array
function getFormData() {
var form = document.prefs
var returnedData = new Array()
// Harvest values for each type of form element
for (var 1 = 0; i < form.elements.length; i++) {

if (form.elements[i].type == "text") {
returnedDatalform.elements[il.name] = form.elements[il.value
} else if (form.elements[i].type.index0f("select") != -1) {

returnedDatalform.elements[i].name] =
form.elements[i].options[form.elements[i].selectedIndex].value

} else if (form.elements[i].type == "radio") {
returnedDatalform.elements[i].name] = form.elements[i].value
} else if (form.elements[i].type == "checkbox") {

returnedDatalform.elements[i].name] = form.elements[i].value
} else continue
}
return returnedData
}
// Initialize by setting form elements from passed data
function init(currPrefs) {
if (currPrefs) {
var form = document.prefs
if (currPrefs["name"]) {
form.name.value = currPrefs["name"]
1
if (currPrefs["bgColor"]) {
setSelected(form.bgColor, currPrefs["bgColor"])
1
if (currPrefs["textColor"]) {
setSelected(form.textColor, currPrefs["textColor"])
1
if (currPrefs["h1Size"]) {
setSelected(form.h1Size, currPrefs["h1Size"])
1
}

}
// Utility function to set a SELECT element to one value

function setSelected(select, value) {
for (var i = 0; i < select.options.length; i++) {
if (select.options[i].value == value) {

Continued

windowObject.showModalDialog()

186 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-42 (continued)

select.selectedIndex = i
break
1
}
return
}
// Utility function to accept a press of the
// Enter key in the text field as a click of OK
function checkEnter() {
if (window.event.keyCode == 13) {
hand1e0K()
}
}
</SCRIPT>
</HEAD>

<BODY BGCOLOR="#eeeeee" onLoad="init()">

<H2>Web Site Preferences</H2>

<HR>

<TABLE BORDER=0 CELLSPACING=2>

<FORM NAME="prefs" onSubmit="return false">

<TR>

<TD>Enter your first name:<INPUT NAME="name" TYPE="text" VALUE="" SIZE=20
onKeyDown="checkEnter()">

</TR>

<TR>
<TD>Select a background color:
{SELECT NAME="bgColor">
<OPTION VALUE="beige">Beige
<OPTION VALUE="antiquewhite">Antique White
<OPTION VALUE="goldenrod">Goldenrod
<OPTION VALUE="Time">Lime
<OPTION VALUE="powderblue">Powder Blue
<OPTION VALUE="slategray">Slate Gray
</SELECT>
</TR>

<TR>

<TD>Select a text color:

<(SELECT NAME="textColor">
<OPTION VALUE="black">Black
<OPTION VALUE="white">White
<OPTION VALUE="navy">Navy Blue
<OPTION VALUE="darkorange">Dark Orange
<OPTION VALUE="seagreen">Sea Green
<OPTION VALUE="teal">Teal

</SELECT>

</TR>

windowObject.showModalDialog()

Chapter 2 4+ Window and Frame Objects (Chapter16) 187

<TR>
<TD>Select "Welcome" heading font point size:
{SELECT NAME="h1Size">
<OPTION VALUE="12">12
<OPTION VALUE="14">14
<OPTION VALUE="18">18
<OPTION VALUE="24">24
<OPTION VALUE="32">32
<OPTION VALUE="48">48
</SELECT>
</TR>
</TABLE>
</FORM>
<DIV STYLE="position:absolute; left:120px; top:220px">
<BUTTON STYLE="width:80px" onClick="hand1e0K()">0K</BUTTON>
<BUTTON STYLE="width:80px" onClick="handleCancel()">Cancel</BUTTON>
<BUTTON STYLE="width:80px" onClick="handleApply()">Apply</BUTTON>
</DIVY
</BODY>
<THTML>

The biggest design challenge you probably face with respect to these windows is
deciding between a modal and modeless dialog box style. Some designers insist
that modality has no place in a graphical user interface; others say that there are
times when you need to focus the user on a very specific task before any further
processing can take place. That’s where a modal dialog box makes perfect sense.

sizeToContent()

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) in NN6 to try the
sizeToContent () method. Assuming that you are running The Evaluator from the
Chap13 directory on the CD-ROM (or the directory copied as-is to your hard disk),
you can open a subwindow with one of the other files in the directory, and then size
the subwindow. Enter the following statements into the top text box:

a = window.open("1st13-02.htm","")
a.sizeToContent()

The resized subwindow is at the minimum recommended width for a browser win-
dow, and at a height tall enough to display the little bit of content in the document.

windowObject.sizeToContent()

188 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Event handlers

onAfterPrint
onBeforePrint

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v v

Example

The following script fragment assumes that the page includes a DIV element
whose style sheet includes a setting of display:none as the page loads.
Somewhere in the Head, the print-related event handlers are set as properties:

function showPrintCopyright() {
document.all.printCopyright.style.display = "block"

}

function hidePrintCopyright() {
document.all.printCopyright.style.display

"none"
}

window.onbeforeprint = showPrintCopyright
window.onafterprint = hidePrintCopyright

onBeforeUnload

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v
Example
The simple page in Listing 16-43 shows you how to give the user a chance to stay
on the page.

Listing 16-43: Using the onBeforeUnload Event Handler

<HTML>
<HEAD>
<TITLE>onBeforeUnload Event Handler</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function verifyClose() {
event.returnValue = "We really like you and hope you will stay longer."
}

windowObject.onBeforeUnload

Chapter 2 4+ Window and Frame Objects (Chapter 16) |1 89

window.onbeforeunload = verifyClose
</SCRIPT>

</HEAD>

<BODY>

<H1>onBeforeUnload Event Handler</H1>

<HR>

<P>Use this button to navigate to the previous page:
<BUTTON ID="go" onClick="history.back()">

Go Back

</BUTTON>

</BODY>

</HTML>

onHelp

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v/ v v

Example

The following script fragment can be embedded in the IE5-only modeless dialog
box code in Listing 16-44 to provide context-sensitive help within the dialog box.
Help messages for only two of the form elements are shown here, but in a real appli-
cation you add messages for the rest.

function showHelp() {
switch (event.srcElement.name) {
case "bgColor" :
alert("Choose a color for the main window\'s background.")
break
case "name" :
alert("Enter your first name for a friendly greeting.")
break
default :
alert("Make preference settings for the main page styles.")
1
event.returnValue = false
}
window.onhelp = showHelp

Because this page’s help focuses on form elements, the switch construction
cases are based on the name properties of the form elements. For other kinds of
pages, the id properties may be more appropriate.

windowObject.onHelp

190 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

FRAME Element Object

Properties
borderColor

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

Although you may experience problems (especially in IE5) changing the color of
a single frame border, the W3C DOM syntax would look like the following if the
script were inside the framesetting document:

document.getETementById("contentsFrame").borderColor = "red"
The IE-only version would be:
document.all["contentsFrame"].borderColor = "red"

These examples assume the frame name arrives to a script function as a string. If
the script is executing in one of the frames of the frameset, add a reference to parent
in the preceding statements.

contentDocument

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v

Example

A framesetting document script might be using the ID of a FRAME element to
read or adjust one of the element properties, and then need to perform some action
on the content of the page through its document object. You can get the reference
to the document object via a statement, such as the following:

var doc = document.getElementById("FRAME3").contentDocument
Then your script can, for example, dive into a form in the document:

var val = doc.mainForm.entry.value

FRAME.contentDocument

Chapter 2 4+ Window and Frame Objects (Chapter16) 19]

Document
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v
Example

While you have far easier ways to reach the document object of another frame
(parent.otherFrameName.document), the following statement takes the long way
to get there to retrieve the number of forms in the document of another frame:

var formCount = parent.document.all.contentsFrame.Document.forms.length

Using the Document property only truly makes sense when a function is passed a
FRAME or IFRAME element object reference as a parameter, and the script must,
among other things more related to those objects, access the document contained
by those elements.

frameBorder

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v 4 4

Example

The default value for the frameBorder property is yes. You can use this setting
to create a toggle script (which, unfortunately, does not change the appearance in
IE). The W3C-compatible version looks like the following:

function toggleFrameScroll(framelD) {
var thefFrame = document.getElementById(framelD)

if (theFrame.frameBorder == "yes") {
theFrame.frameBorder = "no"
} else {
theFrame.frameBorder = "yes"
}
}
height
width

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/ v v

1972 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example

The following fragment assumes a frameset defined with two frames set up as
two columns within the frameset. The statements here live in the framesetting doc-
ument. They retrieve the current width of the left frame and increase the width of
that frame by ten percent. Syntax shown here is for the W3C DOM, but can be easily
adapted to IE-only terminology.

var frameWidth = document.getElementById("leftFrame").width
document.getElementById("mainFrameset").cols = (Math.round(frameWidth * 1.1)) +

noxn
B

Notice how the numeric value of the existing frame width is first increased by ten
percent and then concatenated to the rest of the string property assigned to the
frameset’s cols property. The asterisk after the comma means that the browser
should figure out the remaining width and assign it to the right-hand frame.

noResize
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v/ v v v
Example

The following statement turns off the ability for a frame to be resized:
parent.document.getElementById("myFramel"”).noResize = true

Because of the negative nature of the property name, it may be difficult to keep
the logic straight (setting noResize to true means that resizability is turned off).
Keep a watchful eye on your Boolean values.

scrolling

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v 4

Example

Listing 16-45 produces a frameset consisting of eight frames. The content for the
frames is generated by a script within the frameset (via the fi11Frame() function).
Event handlers in the Body of each frame invoke the toggleFrameScrol1() func-
tion. Both ways of referencing the FRAME element object are shown, with the IE-
only version commented out.

FRAME.scrolling

Chapter 2 4+ Window and Frame Objects (Chapter16) 193

In the toggleFrameScroll() function, the if condition checks whether the
property is set to something other than no. This allows the condition to evaluate to
true if the property is set to either auto (the first time) or yes (as set by the func-
tion). Note that the scrollbars don’t disappear from the frames in IE5.5 or NN6.

Listing 16-45: Controlling the FRAME.scrolling Property

<HTML>
<HEAD>
<TITLE>frame.scrolling Property</TITLE>
</HEAD>
{SCRIPT LANGUAGE="JavaScript">
function toggleFrameScroll(framelD) {
// T1E5 & NN6 version
var theframe = document.getElementById(framelD)
// TE4+ version
// var theFrame = document.all[framelD]

if (theFrame.scrolling != "no") {
theFrame.scrolling = "no"
} else {

thefFrame.scrolling = "yes"
}
}
// generate content for each frame
function fillFrame(framelD) {
var page = "<HTML><BODY onClick='parent.toggleFrameScroll(\"" +
frameID + "\")'>"
page += "<P>This frame has the ID of:</P><P>" + framelD + ".</P>"
page += "</BODY></HTML>"
return page
}
</SCRIPT>
<FRAMESET ID="outerFrameset" COLS="50%,50%">
{FRAMESET ID="innerFramesetl" ROWS="25%,25%,25%,25%">
<FRAME ID="myFramel" SRC="javascript:parent.fillFrame('myFramel")">
<FRAME 1D="myFrame2" SRC="javascript:parent.fillFrame('myFrame2')">
<FRAME 1ID="myFrame3" SRC="javascript:parent.fillFrame('myFrame3')">
<FRAME ID="myFrame4" SRC="javascript:parent.fillFrame('myFrame4')">
</FRAMESET>
{FRAMESET ID="innerFrameset2" ROWS="25%,25%,25%,25%">
<FRAME ID="myFrame5" SRC="javascript:parent.fillFrame("'myFrame5")">
<FRAME 1D="myFrame6" SRC="javascript:parent.fillFrame('myFrame6')">
<FRAME ID="myFrame7" SRC="javascript:parent.fillFrame('myFrame7"')">
<FRAME ID="myFrame8" SRC="javascript:parent.fillFrame('myFrame8")">
</FRAMESET>
</FRAMESET>
</HTML>

FRAME.scrolling

194 1avaScript Examples Bible: The Essential Companion to JavaScript Bible

src
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v
Example
For best results, use fully formed URLs as value for the src property, as shown
here:
parent.document.getElementById("mainFrame").src = "http://www.dannyg.com"

Relative URLs and javascript: pseudo-URLs will also work most of the time.

FRAMESET Element Object

Properties
border
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v
Example

Even though the property is read/write in IE4+, changing the value does not
change the thickness of the border you see in the browser. If you need to find the
thickness of the border, a script reference from one of the frame’s documents would
look like the following:

var thickness = parent.document.all.outerframeset.border

borderColor

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

To retrieve the current color setting in a frameset, a script reference from one of
the frame’s documents would look like the following:

var borderColor = parent.document.all.outerfFrameset.borderColor

FRAMESET.borderColor

Chapter 2 + Window and Frame Objects (Chapter 16) 195

cols
rows
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v/ v/ v/ v/
Example

Listings 16-46 through 16-48 show the HTML for a frameset and two of the three
documents that go into the frameset. The final document is an HTML version of the
U.S. Bill of Rights, which is serving here as a content frame for the demonstration.

The frameset listing (16-46) shows a three-frame setup. Down the left column is a
table of contents (16-47). The right column is divided into two rows. In the top row
is a simple control (16-48) that hides and shows the table of contents frame. As the
user clicks the hot text of the control (located inside a SPAN element), the onC1ick
event handler invokes the toggleTOC () function in the frameset. Figure 2-10 shows
the frameset with the menu exposed.

0 ame 3 B DS0 erne are —|Ex
J File Edit View Favorites Tools Help ‘
J] at Q E7| 3 2 S = >
Back Fornward Stop Refresh Home Search Favorites History Mail Print Edit
Table of <<I—B%J’Show>> Table of Contents
Contents
i ARTICLE I
e Apticle IT
o Agticle I Congress shall make no law respecting an establishment of religon, or prohibitmg the free exercise
o Asticle IV thereof, or abridging the freedom of speech, or of the press; or the right of the people peaceably to
. Aricde ¥ assemble, and to petition the government for a redress of grievances
» Agticle V1
o Aticle VI ARTICLE II
* Article WIIT
o Asticle I3 A well regulated militia, being necessary to the security of a free state, the right of the people to keep
* Article X and bear arms, shall not be mfnged
ARTICLE III
Mo soldier shall, in time of peace, be quartered in any house, without the consent of the owner, nor in
time of war, but in in a manner to be prescribed by law
ARTICLE TV o
2] [[Emy computer

Figure 2-10: Frameset specifications are modified on the fly when you click on the top
control link.

FRAMESET.cols

196 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Syntax used in this example is W3C-compatible. To modify this for [E-only, you
replace document.getElementById("outerFrameset") with document.all.
outerfFrameset and elem.firstChild.nodeValuetoelem.innerText. You can
also branch within the scripts to accommodate both styles.

Listing 16-46: Frameset and Script for Hiding/Showing a

Frame
<HTML>
<HEAD>
<TITLE>Hide/Show Frame Example</TITLE>
</HEAD>

{SCRIPT LANGUAGE="JavaScript">
var origCols
function toggleTOC(elem, frm) {
if (origCols) {
showTOC(elem)
} else {
hideTOC(elem, frm)
}
}
function hideTOC(elem, frm) {
var frameset = document.getElementById("outerFrameset")
origCols = frameset.cols
frameset.cols = "0,*"
}
function showTOC(elem) {
if (origCols) {
document.getETementById("outerFrameset").cols = origCols
origCols = null
}
}
</SCRIPT>
<FRAMESET ID="outerFrameset" FRAMEBORDER="no" COLS="150,*">
<FRAME ID="TOC" NAME="TOCFrame" SRC="1st16-47.htm">
{FRAMESET ID="innerFramesetl" ROWS="80,*">
<FRAME ID="controls" NAME="controlsFrame" SRC="1st16-48.htm">
<FRAME ID="content" NAME="contentFrame" SRC="bofright.htm">
<{/FRAMESET>
</FRAMESET>
</HTML>

When a user clicks the hot spot to hide the frame, the script copies the original
cols property settings to a global variable. The variable is used in showT0C() to
restore the frameset to its original proportions. This allows a designer to modify
the HTML for the frameset without also having to dig into scripts to hard-wire the
restored size.

FRAMESET.cols

Chapter 2 4+ Window and Frame Objects (Chapter16) 197/

Listing 16-47: Table of Contents Frame Content

<HTML>

<HEAD>

<TITLE>Table of Contents</TITLE>
</HEAD>

<BODY BGCOLOR="#feeeeee">
<H3>Table of Contents</H3>

<HR>

<UL STYLE="font-size:10pt">
<A HREF="bofright.htmffartic
<A HREF="bofright.htmffartic
<A HREF="bofright.htmffartic
<A HREF="bofright.htmffartic
<A HREF="bofright.htmffartic
<A HREF="bofright.htmffartic
<A HREF="bofright.htmffartic
<A HREF="bofright.htmffartic
<A HREF="bofright.htmffartic
<A HREF="bofright.htmffartic
<UL

</BODY>

</HTML>

el" TARGET="contentFrame">Article I
e2" TARGET="contentFrame">Article II
e3" TARGET="contentFrame">Article III
ed4" TARGET="contentFrame">Article IV/AX
eb" TARGET="contentFrame">Article V
e6" TARGET="contentFrame">Article VI
e7" TARGET="contentFrame">Article VIIK/A>/LI>
e8" TARGET="contentFrame">Article VIIIK/AX/LI>
e9" TARGET="contentFrame">Article IX
el0" TARGET="contentFrame">Article X

Listing 16-48: Control Panel Frame

<HTMLY

<HEAD>

<TITLE>Control Panel</TITLE>

</HEAD>

<BODY>

<P>

<SPAN ID="tocToggle"
STYLE="text-decoration:underline; cursor:hand"
onClick="parent.toggleTOC(this)"> &1t;&1t;Hide/Show>>

Table of Contents

</P>
</BODY>
<IHTML>
frameBorder
NN2 NN3 NN4 NNé6 IE3/J1 1E3/)2 1E4 1E5 1E5.5
Compatibility v v v

FRAMESET.frameBorder

198 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example

The default value for the frameBorder property is yes. You can use this setting
to create a toggle script (which, unfortunately, does not change the appearance in
IE). The I[E4+-compatible version looks like the following:

function togglefFrameScroll(framesetID) {
var thefFrameset = document.all(framesetID)

if (theFrameset.frameBorder == "yes") {
thefFrameset.frameBorder = "no"
} else {

theFrameset.frameBorder "yes"

}
}

frameSpacing

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

Even though the property is read/write in [E4+, changing the value does not
change the thickness of the frame spacing you see in the browser. If you need to
find the spacing as set by the tag’s attribute, a script reference from one of the
frame’s documents would look like the following:

var spacing = parent.document.all.outerFrameset.frameSpacing

IFRAME Element Object

Properties
align
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v
Example

The default setting for an IFRAME alignment is baseline. A script can shift the
IFRAME to be flush with the right edge of the containing element as follows:

document.getElementById("iframel").align = "right"

IFRAME.align

Chapter 2 4+ Window and Frame Objects (Chapter 16) |1 99O

contentDocument

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

A document script might be using the ID of an IFRAME element to read or adjust
one of the element properties; it then needs to perform some action on the content
of the page through its document object. You can get the reference to the document
object via a statement, such as the following:

var doc = document.getElementById("FRAME3").contentDocument
Then your script can, for example, dive into a form in the document:

var val = doc.mainForm.entry.value

frameBorder

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v/ v v
Example
See the example for the FRAME . frameBorder property earlier in this chapter.
hspace
vspace
NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v/ v v
Example

The following fragment sets the white space surrounding an IFRAME element to
an equal amount:

20
20

document.all.myIframe.hspace
document.all.mylframe.vspace

Unfortunately these changes do not work for [E5/Windows.

200 lavaScript Examples Bible: The Essential Companion to JavaScript Bible

scrolling

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v

Example

The following togglelFrameScroll () function accepts a string of the [IFRAME
element’s ID as a parameter and switches between on and off scroll bars in the
IFRAME. The if condition checks whether the property is set to something other
than no. This test allows the condition to evaluate to true if the property is set to
either auto (the first time) or yes (as set by the function).

function toggleframeScroll(framelID) {
// TE5 & NN6 version
var thefFrame = document.getElementById(framelD)
// TE4+ version
// var theFrame = document.all[framelD]

if (theFrame.scrolling != "no") {
thefFrame.scrolling = "no"
} else {

theFrame.scrolling = "yes"
1

src
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v
Example
For best results, use fully formed URLs as value for the src property, as shown
here:

document.getETementById("mylframe").src = "http://www.dannyg.com"

Relative URLs and javascript: pseudo-URLs also work most of the time.

Chapter 2 4+ Window and Frame Objects (Chapter 16) 2]

popup Object

Properties
document
NN2 NN3 NN4 NNé6é IE3/J1 1E3/)2 IE4 IE5 IE5.5
Compatibility v
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
popup object and its properties. Enter the following statements into the top text
box. The first statement creates a pop-up window, whose reference is assigned to
the a global variable. Next, a reference to the body of the pop-up’s document is pre-
served in the b variable for the sake of convenience. Further statements work with
these two variables.

= window.createPopup()

= a.document.body

.style.border = "solid 2px black"

.style.padding = "5px"

.innerHTML = "<P>Here is some text in a popup window</P>"
.show(200,100, 200, 50, document.body)

O O O T T o

See the description of the show() method for details on the parameters.

isOpen
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
isOpen property. Enter the following statements into the top text box. The
sequence begins with a creation of a simple pop-up window, whose reference is
assigned to the a global variable. Note that the final statement is actually two state-
ments, which are designed so that the second statement executes while the pop-up
window is still open.

a = window.createPopup()
a.document.body.innerHTML = "<P>Here is a popup window</P>"
a.show(200,100, 200, 50, document.body); alert("Popup is open:" + a.isOpen)

popupObject.isOpen

202 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

If you then click into the main window to hide the pop-up, you will see a different
result if you enter the following statement into the top text box by itself:

alert("Popup is open:" + a.isOpen)

Methods

hide()
show(left, top, width, height[,
positioningElementRef])

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

Listing 16-49 demonstrates both the show() and hide () methods for a popup
object. A click of the button on the page invokes the sel1fTimer () function, which
acts as the main routine for this page. The goal is to produce a pop-up window that
“self-destructs” five seconds after it appears. Along the way, a message in the pop-
up counts down the seconds.

A reference to the pop-up window is preserved as a global variable, called
popup. After the popup object is created, the initContent () function stuffs the
content into the pop-up by way of assigning sty1e properties and some innerHTML
for the body of the document that is automatically created when the pop-up is gen-
erated. A SPAN element is defined so that another function later on can modify the
content of just that segment of text in the pop-up. Notice that the assignment of
content to the pop-up is predicated on the pop-up window having been initialized
(by virtue of the popup variable having a value assigned to it) and that the pop-up
window is not showing. While invoking initContent () under any other circum-
stances is probably impossible, the validation of the desired conditions is good pro-
gramming practice.

Backin selfTimer(), the popup object is displayed. Defining the desired size
requires some trial and error to make sure the pop-up window comfortably accom-
modates the text that is put into the pop-up in the initContent () function.

With the pop-up window showing, now is the time to invoke the countDown ()
function. Before the function performs any action, it validates that the pop-up has
been initialized and is still visible. If a user clicks the main window while the
counter is counting down, this changes the value of the isOpen property to false,
and nothing inside the if condition executes.

This countDown () function grabs the inner text of the SPAN and uses
paresInt() to extract just the integer number (using base 10 numbering, because
we're dealing with zero-leading numbers that can potentially be regarded as octal
values). The condition of the if construction decreases the retrieved integer by
one. If the decremented value is zero, then the time is up, and the pop-up window is

popupObject.hide()

Chapter 2 4+ Window and Frame Objects (Chapter 16) (03

hidden with the popup global variable returned to its original, nu11 value. But if the
value is other than zero, then the inner text of the SPAN is set to the decremented
value (with a leading zero), and the setTimeout () method is called upon to rein-
voke the countDown () function in one second (1000 milliseconds).

Listing 16-49: Hiding and Showing a Pop-up

<HTML>

<HEAD>

<TITLE>popup Object</TITLE>

{SCRIPT LANGUAGE="JavaScript">

var popup

function initContent() {

if (popup && !popup.isOpen) {

var popBody = popup.document.body
popBody.style.border = "solid 3px red"
popBody.style.padding = "10px"
popBody.style.fontSize = "24pt"
popBody.style.textAlign = "center"
var bodyText = "<P>This popup will self-destruct in
bodyText += "05"
bodyText += " seconds...</P>"
popBody.innerHTML = bodyText

}
}
function countDown() {
if (popup && popup.isOpen) {
var currCount = parselnt(popup.document.all.counter.innerText, 10)

if (--currCount == 0) {
popup.hide()
popup = null
} else {
popup.document.all.counter.innerText = "0" + currCount

setTimeout("countDown()", 1000)

}

}

function selfTimer() {
popup = window.createPopup()
initContent()
popup.show(200,200,400,100,document.body)
setTimeout("countDown()", 1000)

}

</SCRIPT>

</HEAD>

<BODY>

<FORM>

<INPUT TYPE="button" VALUE="Impossible Mission" onClick="selfTimer()">

</FORM>

</BODY>

</HTML>

popupObject.hide()

204 javaScript Examples Bible: The Essential Companion to JavaScript Bible

The hide () method here is invoked by a script that is running while the pop-up
window is showing. Because a pop-up window automatically goes away if a user
clicks the main window, it is highly unlikely that the hide () method would ever be
invoked by itself in response to user action in the main window. If you want a script
in the pop-up window to close the pop-up, use parentWindow.close().

+ o+ 0+

popupObject.hide()

CHAPIXTER

Window and
Frame Objects
(Chapter 16)

¢+ 4+ o+

In This Chapter

As physical containers of documents, window and frame
objects play huge rolls in scripting. The window object
has been scriptable in one form or another since the first
scriptable browsers. Of course the object has gained numer-
ous properties, methods, and event handlers over time, but
you also often find many object-model-specific items that you
probably wish were available across all browsers.

While scripts permit Web authors to manage multiple
windows — and many of the examples in this chapter support
that facility —try to think about your visitors, too. Very often
multiple windows get in the way of site navigation and con-
tent, regardless of your good intentions. As some examples
also demonstrate, you must include safety nets for your code
to counteract the unpredictable actions of users who close or
hide windows precisely when you don’t want them to do so.
Therefore, do not regard the multi-window examples here as
user interface recommendations; rather consider them as rec-
ommended ways to handle a potentially tricky user-interface
element.

Possible exceptions to my multi-window admonitions are the
modal and modeless dialog box windows provided by various
versions of IE for Windows. For other platforms, a modal
dialog box can be simulated (search for details at www .
dannyg.com). IE5.5 for Windows also adds a popup type win-
dow, which can be a helpful user interface element that exists
between a tooltip and a modal dialog box.

Modern browsers, however, provide ample script control
over framesets. As examples in this chapter demonstrate,
your scripts can hide and show frames, or completely rearchi-
tect a frameset without loading a new frameset.

Scripting
communication
among multiple
frames

Creating and
managing new

windows

Controlling the size,
position, and
appearance of the
browser window

Dynamically
adjusting frame sizes
and frameset
compositions

¢+ 0+ o+

128 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Examples Highlights
4 Listing 16-4 for the window.closed property demonstrates an industrial-

strength treatment of new window creation, which works with all scriptable
browsers (taking into account shortcomings of earlier browsers).

4 NN4+ allows dynamic control over the presence of window chrome (statusbar,
toolbar, et al.) with the help of signed scripts, as shown in Listing 16-6.
Without signed scripts, or for IE, you must use window.open() to create a
separate window with the characteristics of your choice.

4 The example listings for the window. opener property show you how scripts
from a subwindow communicate with the window that opened it.

4 In the example listings for the window.parent property, you see how refer-
ences to the various synonyms for a window object within a frameset evaluate.
Thus, you can see what the references window, top, parent, and self mean
within a frameset.

4+ Compare Listings 16-20, 16-23, and 16-29 to understand not only the different
looks of the three native dialog box windows (alert, confirm, and prompt), but
also how values returned from two of them can influence script processing
sequences.

4 A simple countdown timer in Listing 16-22 shows a practical application of the
window.clearTimeout () method. Here the method stops the looping timer
when the count reaches zero.

4 Watch the browser window dance in Listing 16-24. The window.moveBy () and
window.moveTo() methods put window positioning through its paces.

4 Examples for window.setInterval () and window.setTimeout () apply
these two similar methods to applications that are ideal for each one. You find
other applications of setTimeout () in examples for the window.closed
property and window.open () method.

4 Internet Explorer’s modal and modeless dialog box windows get workouts in
Listings 16-39 through 16-42.

4 The composition of a frameset, including the sizes of the frames, can be con-
trolled dynamically in I[E4+ and NN6, as shown in examples for the FRAMESET .
cols and FRAMESET. rows properties.

Chapter 2 + Window and Frame Objects (Chapter 16) |29

Window Object

Properties
clipboardData

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

Example

See Listings 15-30 and 15-39 (in Chapter 1 of this book) to see how the
clipboardData object is used with a variety of edit-related event handlers.

closed
NN2 NN3 NN4 NNé6 IE3/J1 1E3/)2 IE4 IE5 IE5.5
Compatibility v v v v v v
Example

In Listing 16-4, I have created the ultimate cross-platform window opening and
closing sample. It takes into account the lack of the opener property in Navigator 2,
the missing c1osed property in Navigator 2 and Internet Explorer 3, and it even pro-
vides an ugly but necessary workaround for the inability of Internet Explorer 3 to
gracefully see if a subwindow is still open.

The script begins by initializing a global variable, newWind, which is used to hold
the object reference to the second window. This value needs to be global so that
other functions can reference the window for tasks, such as closing. Another global
variable, is1E3, is a Boolean flag that lets the window closing routines know
whether the visitor is using Internet Explorer 3 (see details about the navigator.
appVersion property in Chapter 28 of the JavaScript Bible).

For this example, the new window contains some HTML code written dynamically
to it, rather than loading an existing HTML file into it. Therefore, the URL parameter
of the window.open() method is left as an empty string. It is vital, however, to
assign a name in the second parameter to accommodate the Internet Explorer 3
workaround for closing the window. After the new window is opened, an opener
property is assigned to the object if one is not already assigned (this property is
needed only for Navigator 2). Next comes a brief delay to allow Internet Explorer
(especially versions 3 and 4) to catch up with opening the window so that content

windowObject.closed

130 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

can be written to it. The delay (using the setTimeout () method described later in
this chapter) invokes the finishNewWindow() function, which uses the global
newWind variable to reference the window for writing. The document.close()
method closes writing to the document — a different kind of close than a window
close.

A separate function, closeWindow(), is responsible for closing the subwindow.
To accommodate Internet Explorer 3, the script appears to create another window
with the same characteristics as the one opened earlier in the script. This is the
trick: If the earlier window exists (with exactly the same parameters and a name
other than an empty string), Internet Explorer does not create a new window even
with the window.open () method executing in plain sight. To the user, nothing
unusual appears on the screen. Things look weird for Internet Explorer 3 users only
if the user has closed the subwindow. The window.open() method momentarily
creates that subwindow. This subwindow is necessary because a “living” window
object must be available for the upcoming test of window existence. (Internet
Explorer 3 displays a script error if you try to address a missing window, while
NN2+ and [E4+ simply return friendly nul1 values.)

As a final test, an if condition looks at two conditions: 1) if the window object
has ever been initialized with a value other than nul1 (in case you click the window
closing button before ever having created the new window) and 2) if the window’s
closed property is null or false. If either condition is true, the cl1ose () method
is sent to the second window.

Listing 16-4: Checking Before Closing a Window

<HTML>
<HEAD>
KTITLE>window.closed Property</TITLE>
{SCRIPT LANGUAGE="JavaScript">
// initialize global var for new window object
// so it can be accessed by all functions on the page
var newWind
// set flag to help out with special handling for window closing
var isIE3 = (navigator.appVersion.indexOf("MSIE 3") I= -1) ? true : false
// make the new window and put some stuff in it
function newWindow() {
newWind = window.open("","subwindow","HEIGHT=200,WIDTH=200")
// take care of Navigator 2
if (newWind.opener == null) {
newWind.opener = window
}
setTimeout("finishNewWindow()", 100)
}
function finishNewWindow() {
var output = ""
output += "<HTML><BODY><H1>A Sub-window</H1>"
output += "<FORM><INPUT TYPE="button' VALUE='Close Main Window"'"
output +="onClick="window.opener.close()'></FORM></BODY></HTML>"

windowObject.closed

Chapter 2 4+ Window and Frame Objects (Chapter16)]3]

newWind.document.write(output)
newWind.document.close()
}
// close subwindow, including ugly workaround for IE3
function closeWindow() {
if (isIE3) {
// if window is already open, nothing appears to happen
// but if not, the subwindow flashes momentarily (yech!)
newWind = window.open("","subwindow","HEIGHT=200,WIDTH=200")
}
if (newWind && !newWind.closed) {
newWind.close()
}
}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
<INPUT TYPE="button" VALUE="Open Window" onClick="newWindow()">

<INPUT TYPE="button" VALUE="Close it if Still Open" onClick="closeWindow()">
</FORM>
</BODY>
<THTML

To complete the example of the window opening and closing, notice that the sub-
window is given a button whose onC11ck event handler closes the main window. In
Navigator 2 and Internet Explorer 3, this occurs without complaint. But in NN3+ and
IE4+, the user is presented with an alert asking to confirm the closure of the main
browser window.

defaultStatus
NN2 NN3 NN4 NN6 |IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v v v v v v
Example

Unless you plan to change the default statusbar text while a user spends time at
your Web page, the best time to set the property is when the document loads. In
Listing 16-5, notice how I also read this property to reset the statusbar in an
onMouseOut event handler. Setting the status property to empty also resets the
statusbar to the defaultStatus setting.

windowObject.defaultStatus

132 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-5: Setting the Default Status Message

<HTML>

<HEAD>

KTITLE>window.defaultStatus property</TITLE>
<SCRIPT LANGUAGE="JavaScript">

window.defaultStatus = "Welcome to my Web site."

</SCRIPT>

</HEAD>

<BODY>

<A HREF="http://www.microsoft.com"

onMouseOver="window.status = 'Visit Microsoft\'s Home page.';return true"
onMouseOut="window.status = '';return true">Microsoft<{/A><P>

<A HREF="http://home.netscape.com"

onMouseOver="window.status = 'Visit Netscape\'s Home page.';return true"
onMouseOut="window.status = window.defaultStatus;return true">Netscape
</BODY>

</HTML>

If you need to display single or double quotes in the statusbar (as in the second
link in Listing 16-5), use escape characters (\' and \ ") as part of the strings being
assigned to these properties.

dialogArguments

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

See Listing 16-38 for the window.showModalDialog() method to see how argu-
ments can be passed to a dialog box and retrieved via the dialogArguments

property.
dialogHeight
dialogWidth
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v

windowObject.dialogHeight

Chapter 2 4+ Window and Frame Objects (Chapter16)]33

Example

Dialog boxes sometimes provide a button or icon that reveals more details or
more complex settings for advanced users. You can create a function that handles
the toggle between two sizes. The following function assumes that the document in
the dialog box has a button whose label also toggles between “Show Details” and
“Hide Details.” The button’s onC11ick event handler invokes the function as
toggleDetails(this).

function toggleDetails(btn) {
if (dialogHeight == "200px") {
dialogHeight = "350px"

btn.value = "Hide Details"
} else {

dialogHeight = "200px"

btn.value = "Show Details"

In practice, you also have to toggle the dispTlay style sheet property of the extra
material between none and b1ock to make sure that the dialog box does not display
scrollbars in the smaller dialog box version.

dialoglLeft
dialogTop
NN2 NN3 NN4 NNé6 IE3/J1 1E3/)2 IE4 IE5 IE55
Compatibility v/ v v
Example

Although usually not a good idea because of the potentially jarring effect on a
user, you can reposition a dialog box window that has been resized by script (or by
the user if you let the dialog box be resizable). The following statements in a dialog
box window document’s script recenter the dialog box window.

dialogLeft = (screen.availWidth/2) - (parselnt(dialogWidth)/2) + "px"
dialogHeight = (screen.availHeight/2) - (parselnt(dialogHeight)/2) + "px"

Note that the parselInt () functions are used to read the numeric portion of the
dialogWidth and dialogHeight properties so that the values can be used for
arithmetic.

windowObject.dialogLeft

134 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

directories
locationbar
menubar
personalbar
scrollbars

statusbar
toolbar
NN2 NN3 NN4 NN6é IE3/J1 IE3/)2 1IE4 IE5 IE5.5
Compatibility v v
Example

In Listing 16-6, you can experiment with the look of a browser window with any
of the chrome elements turned on and off. To run this script, you must either sign
the scripts or turn on codebase principals (see Chapter 46 of the JavaScript Bible).
Java must also be enabled to use the signed script statements.

As the page loads, it stores the current state of each chrome element. One but-
ton for each chrome element triggers the toggleBar () function. This function
inverts the visible property for the chrome object passed as a parameter to the
function. Finally, the Restore button returns visibility to their original settings.
Notice that the restore() function is also called by the onUnload event handler
for the document. Also, if you load this example into NN6, non-fatal script errors
occur when the scrollbars are turned on or off.

Listing 16-6: Controlling Window Chrome

<HTML>

<HEAD>

<TITLE>Bars Bars Bars</TITLE>

<SCRIPT LANGUAGE="JavaScript">

// store original outer dimensions as page loads

var originallocationbar = window.locationbar.visible
var originalMenubar = window.menubar.visible

var originalPersonalbar = window.personalbar.visible
var originalScrollbars = window.scrollbars.visible
var originalStatusbar = window.statusbar.visible

var originalToolbar = window.toolbar.visible

// generic function to set inner dimensions

function toggleBar(bar) {
netscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserWrite")
bar.visible = lbar.visible
netscape.security.PrivilegeManager.revertPrivilege("UniversalBrowserWrite")

windowObject.directories

Chapter 2 4+ Window and Frame Objects (Chapter 16) |35

// restore settings
function restore() {
netscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserWrite")
window.locationbar.visible = originallocationbar
window.menubar.visible = originalMenubar
window.personalbar.visible = originalPersonalbar
window.scrollbars.visible = originalScrollbars
window.statusbar.visible = originalStatusbar
window.toolbar.visible = originalToolbar
netscape.security.PrivilegeManager.revertPrivilege("UniversalBrowserWrite")
}
</SCRIPT>
</HEAD>
<BODY onUnload="restore()">
<FORM>
Toggle Window Bars

<INPUT TYPE="button" VALUE="Location Bar"
onClick="toggleBar(window.locationbar)">

<INPUT TYPE="button" VALUE="Menu Bar" onClick="toggleBar(window.menubar)">

<INPUT TYPE="button" VALUE="Personal Bar"
onClick="toggleBar(window.personalbar)">

<INPUT TYPE="button" VALUE="Scrollbars"
onClick="toggleBar(window.scrollbars)">

<INPUT TYPE="button" VALUE="Status Bar"
onClick="toggleBar(window.statusbar)">

<INPUT TYPE="button" VALUE="Tool Bar" onClick="toggleBar(window.toolbar)">

<HR>
<INPUT TYPE="button" VALUE="Restore Original Settings" onClick="restore()">

</FORM>

</BODY>
</HTML>
external
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v/ v v
Example

The first example asks the user if it is okay to add a Web site to the Active
Desktop. If Active Desktop is not enabled, the user is given the choice of enabling it
at this point.

external.AddDesktopComponent("http://www.nytimes.com", "website", 200, 100, 400, 400)

windowObject.external

136 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

In the next example, the user is asked to approve the addition of a URL to the
Favorites list. The user can follow the normal procedure for filing the item in a
folder in the list.

external.AddFavorite("http://www.dannyg.com/update6.html",
"JSBible 4 Support Center")

The final example assumes that a user makes a choice from a SELECT list of items.
The onChange event handler of the SELECT list invokes the following function to navi-
gate to a fictitious page and locate listings for a chosen sports team on the page.

function locate(list) f

var choice = Tist.options[list.selectedIndex].value
external.NavigateAndFind("http://www.collegesports.net/scores.html", choice,
"scores")
}
frames

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v v v 4

Example

Listings 16-7 and 16-8 demonstrate how JavaScript treats values of frame refer-
ences from objects inside a frame. The same document is loaded into each frame. A
script in that document extracts info about the current frame and the entire frame-
set. Figure 2-1 shows the results after loading the HTML document in Listing 16-7.

Listing 16-7: Framesetting Document for Listing 16-8

<HTML>

<HEAD>

KTITLE>window.frames property</TITLE>

<{/HEAD>

<FRAMESET COLS="50%,50%">
{FRAME NAME="JustAKidl" SRC="1st16-08.htm">
{FRAME NAME="JustAKid2" SRC="1st16-08.htm">

</FRAMESET>

</HTML>

A call to determine the number (length) of frames returns 0 from the point of
view of the current frame referenced. That’s because each frame here is a window
that has no nested frames within it. But add the parent property to the reference,
and the scope zooms out to take into account all frames generated by the parent
window’s document.

windowObject.frames

Chapter 2 + Window and Frame Objects (Chapter16) |37/

Listing 16-8: Showing Various Window Properties

<HTML>

<HEAD>

KTITLE>Window Revealer TIK/TITLE>
<SCRIPT LANGUAGE="JavaScript">
function gatherWindowData() {

var msg =
msg += "From the point of view of this frame:
"
msg += "window.frames.length: " + window.frames.length + "
"
msg += "window.name: " + window.name + "<P>"
msg += "From the point of view of the framesetting document:
"
msg += "parent.frames.length: " + parent.frames.length + "
"
msg += "parent.frames[0].name: " + parent.frames[0].name
return msg

}

</SCRIPT>

</HEAD>

<BODY>

<{SCRIPT LANGUAGE="JavaScript">
document.write(gatherWindowData())
</SCRIPT>

</BODY>

</HTML>

[window.frames property - Netscape 6 {Build ID: 2000080712}
Fle Edit Wiew Search Go EBookmarks Tasks Help

(] ®ist16-07.htm M

From the point of view of this frame: From the point of view of this frame:

window frames length: 0 window frames length: 0

window name: JustAFid1 window name: JustAFid2

From the point of view of the framesetting document: From the point of view of the framesetting document:
parent. frames length: 2 parent frames length: 2

parent. frames[0].name: TustAKid1 parent frames[0].name: JustARid1

He- Document: Done (0,99 secs)
"Wk M 7 Al Charinels Taals Busi Free Time Shopping

Figure 2-1: Property readouts from both frames loaded from Listing 16-7

windowObject.frames

138 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

The last statement in the example shows how to use the array syntax (brackets)
to refer to a specific frame. All array indexes start with 0 for the first entry. Because
the document asks for the name of the first frame (parent.frames[0]), the
response is JustAKidl for both frames.

innerHeight

innerWidth
outerHeight
outerWidth
NN2 NN3 NN4 NN6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v/ v
Example

In Listing 16-9, a number of buttons let you see the results of setting the
innerHeight, innerWidth, outerHeight, and outerWidth properties.

Listing 16-9: Setting Window Height and Width

<HTML>

<HEAD>

KTITLE>Window Sizer</TITLE>

<{SCRIPT LANGUAGE="JavaScript">

// store original outer dimensions as page Tloads

var originalWidth = window.outerWidth

var originalHeight = window.outerHeight

// generic function to set inner dimensions

function setInner(width, height) {
window.innerWidth = width
window.innerHeight = height

}

// generic function to set outer dimensions

function setOuter(width, height) {
window.outerWidth = width
window.outerHeight = height

}

// restore window to original dimensions

function restore() {
window.outerWidth = originalWidth
window.outerHeight = originalHeight

}

</SCRIPT>

</HEAD>

<BODY>

<FORM>

Setting Inner Sizes

windowObject.innerHeight

Chapter 2 4+ Window and Frame Objects (Chapter 16) |1 39

<INPUT TYPE="button" VALUE="600 Pixels Square" onClick="setInner(600,600)">

<INPUT TYPE="button" VALUE="300 Pixels Square" onClick="setInner(300,300)">

<INPUT TYPE="button" VALUE="Available Screen Space"
onClick="setInner(screen.availWlidth, screen.availHeight)">

<HR>

Setting Outer Sizes

<INPUT TYPE="button" VALUE="600 Pixels Square" onClick="setOuter(600,600)">

<INPUT TYPE="button" VALUE="300 Pixels Square" onClick="setOuter(300,300)">

<INPUT TYPE="button" VALUE="Available Screen Space"
onClick="setOuter(screen.availWlidth, screen.availHeight)">

<HR>

<INPUT TYPE="button" VALUE="Cinch up for Win95" onClick="setInner(273,304)">

<INPUT TYPE="button" VALUE="Cinch up for Mac" onClick="setInner(273,304)">

<INPUT TYPE="button" VALUE="Restore Original" onClick="restore()">

</FORM>

</BODY>

<THTML

As the document loads, it saves the current outer dimensions in global variables.
One of the buttons restores the windows to these settings. Two parallel sets of but-
tons set the inner and outer dimensions to the same pixel values so that you can
see the effects on the overall window and document area when a script changes the
various properties.

Because Navigator 4 displays different-looking buttons in different platforms (as
well as other elements), the two buttons contain script instructions to size the win-
dow to best display the window contents. Unfortunately, no measure of the active
area of a document is available, so that the dimension values were determined by
trial and error before being hard-wired into the script.

navigator

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v v/ v v

Example

This book is littered with examples of using the navigator object, primarily for
performing browser detection. Examples of specific navigator object properties
can be found in Chapter 28 of the JavaScript Bible and Chapter 12 of this book.

offscreenBuffering

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v/ v v

windowObject.offscreenBuffering

14(Q JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example

If you want to turn off buffering for an entire page, include the following state-
ment at the beginning of your script statements:

window.offscreenBuffering = false

onerror
NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v/ v/ v v/ v v
Example

In Listing 16-10, one button triggers a script that contains an error. I've added an
error-handling function to process the error so that it opens a separate window and
fills in a textarea form element (see Figure 2-2). If you load Listing 16-10 in NNG6,
some of the reporting categories report “undefined” because the browser unfortu-
nately does not pass error properties to the handTeError () function. A Submit
button is also provided to mail the bug information to a support center e-mail
address — an example of how to handle the occurrence of a bug in your scripts.

Listing 16-10: Controlling Script Errors

<HTML>
<TITLE>Error Dialog Control</TITLE>
<SCRIPT LANGUAGE="JavaScriptl.1">
// function with invalid variable value
function goWrong() {
var x = fred
}
// turn off error dialogs
function err0ff() {
window.onerror = doNothing
}
// turn on error dialogs with hard reload
function errOn() {
window.onerror = handleError
}

// assign default error handler
window.onerror = handleError

// error handler when errors are turned off...prevents error dialog
function doNothing() {return true}

function handleError(msg, URL, TineNum) {

var errWind = window.open("","errors","HEIGHT=270,WIDTH=400")
var wintxt = "<HTML><BODY BGCOLOR=RED>"

windowObject.onerror

Chapter 2 + Window and Frame Objects (Chapter 16) |4]

wintxt += "An error has occurred on this page.
wintxt += "Please report it to Tech Support."
wintxt += "<FORM METHOD=POST ENCTYPE='text/plain' "
wintxt += "ACTION=mailTo:supportd4@dannyg.com >"
wintxt += "<TEXTAREA NAME='errMsg' COLS=45 ROWS=8 WRAP=VIRTUAL>"

wintxt += "Error: " + msg + "\n"

wintxt += "URL: " + URL + "\n"

wintxt += "Line: " + lineNum + "\n"

wintxt += "Client: " + navigator.userAgent + "\n"
Wintxt += "------ooo oo \n"

wintxt += "Please describe what you were doing when the error occurred:"
wintxt += "</TEXTAREA><P>"
wintxt += "<INPUT TYPE=SUBMIT VALUE='Send Error Report'>"
wintxt += "<INPUT TYPE=button VALUE='Close' onClick="'self.close()'>"
wintxt += "</FORM></BODY></HTML>"
errWind.document.write(wintxt)
errWind.document.close()
return true
}
</SCRIPT>
</HEAD>
<BODY>
<FORM NAME="myform">
<INPUT TYPE="button" VALUE="Cause an Error" onClick="goWrong()"><P>
<INPUT TYPE="button" VALUE="Turn Off Error Dialogs" onClick="errOff()">
<INPUT TYPE="button" VALUE="Turn On Error Dialogs" onClick="errOn()">
</FORM>
</BODY>
</HTML>

/2 \\Lightning\New Examples\Chap16\lst16-10.htm - Micr... [Hi[=] E3

Error: 'fred' is undefined

URL: file://%%Chaplghlsti6-10.htm

Line: &

Client: Mozilla/4.0 (compatible; N3IE 5.0;
Tindows 98; DigExt)

Flease describe what you were doing when the
error occurred: LI

Send Errar Report

Figure 2-2: An example of a self-reporting
error window

I provide a button that performs a hard reload, which, in turn, resets the window.
onerror property to its default value. With error dialog boxes turned off, the error-
handling function does not run.

windowObject.onerror

1472 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

opener
NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v 4 v v v v v
Example

To demonstrate the importance of the opener property, take a look at how a new
window can define itself from settings in the main window (Listing 16-11). The
doNew () function generates a small subwindow and loads the file in Listing 16-12
into the window. Notice the initial conditional statements in doNew () to make sure
that if the new window already exists, it comes to the front by invoking the new
window’s focus () method. You can see the results in Figure 2-3. Because the
doNew () function in Listing 16-11 uses window methods and properties not avail-
able in [E3, this example does not work correctly in IE3.

Listing 16-11: Contents of a Main Window Document That
Generates a Second Window

<HTML>
<HEAD>
<TITLE>Master of all Windows</TITLE>
{SCRIPT LANGUAGE="JavaScriptl.1">
var myWind
function doNew() {
if (ImyWind || myWind.closed) f
myWind = window.open("1st16-12.htm","subWindow",
"HEIGHT=200,WIDTH=350,resizable")
} else {
// bring existing subwindow to the front
myWind. focus()
}
}
</SCRIPT>
</HEAD>
<BODY>
<FORM NAME="input">
Select a color for a new window:
<INPUT TYPE="radio" NAME="color" VALUE="red" CHECKED>Red
<INPUT TYPE="radio" NAME="color" VALUE="yellow">Yellow
<INPUT TYPE="radio" NAME="color" VALUE="blue">Blue
<INPUT TYPE="button" NAME="storage" VALUE="Make a Window" onClick="doNew()">
<HR>
This field will be filled from an entry in another window:
<INPUT TYPE="text" NAME="entry" SIZE=25>
</FORM>
</BODY>
</HTMLY

windowObject.opener

Chapter 2 4+ Window and Frame Objects (Chapter 16)

The window.open() method doesn’t provide parameters for setting the new
window’s background color, so I let the getColor () function in the new window do
the job as the document loads. The function uses the opener property to find out
which radio button on the main page is selected.

Listing 16-12: References to the opener Property

<HTML>
<HEAD>
<TITLE>New Window on the Block</TITLE>
{SCRIPT LANGUAGE="JavaScript">
function getColor() {

// shorten the reference

colorButtons = self.opener.document.forms[0].color

// see which radio button is checked

for (var i = 0; i < colorButtons.length; i++) {

if (colorButtons[i].checked) {
return colorButtons[il.value
}

}

return "white"
}
</SCRIPT>
</HEAD>
<SCRIPT LANGUAGE="JavaScript">
document.write("<BODY BGCOLOR="" + getColor() + "'>")
</SCRIPT>
<H1>This is a new window.</H1>
<FORM>
<INPUT TYPE="button" VALUE="Who's in the Main window?"
onClick="alert(self.opener.document.title)"><P>
Type text here for the main window:
<INPUT TYPE="text" SIZE=25 onChange="self.opener.document.forms[0].entry.value =
this.value">
</FORM>
</BODY>
<IHTML>

In the getColor () function, the multiple references to the radio button array
can be very long. To simplify the references, the getColor () function starts out by
assigning the radio button array to a variable I arbitrarily call coTorButtons. That
shorthand now stands in for lengthy references as I loop through the radio buttons
to determine which button is checked and retrieve its value property.

A button in the second window simply fetches the title of the opener window’s
document. Even if another document loads in the main window in the meantime,
the opener reference still points to the main window: Its document object, however,
will change.

windowObject.opener

143

144 javaScript Examples Bible: The Essential Companion to JavaScript Bible

=] x
J Fle Edit View Favoites Toole Help ‘
J@-*.@ Q ‘%é@,@jm
Back Farward Stop Refresh Home Search Favoites Historp b ail PFrint Edit RealGuide
Select a color for a new window: @ Red © Tellow ¢ Blue __Make aWindow |
This field will be filled from an entry in another window: [Hello from the subwindow
2 1st16-12_htm - Microsoft Internet Explorer !EE
oo tom v subanion |
=

@ Done ’7’7 25| Local intraret
Figure 2-3: The main and subwindows, inextricably linked via the window.opener
property

Finally, the second window contains a text input object. Enter any text there that
you like and either tab or click out of the field. The onChange event handler updates
the field in the opener’s document (provided that document is still loaded).

pageXOffset
pageYOffset

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/ v/

Example

The script in Listing 16-13 is an unusual construction that creates a frameset
and creates the content for each of the two frames all within a single HTML docu-
ment (see “Frame Object” in Chapter 16 of the JavaScript Bible for more details).
The purpose of this example is to provide you with a playground to become famil-
iar with the page offset concept and how the values of these properties correspond
to physical activity in a scrollable document.

In the left frame of the frameset are two fields that are ready to show the pixel
values of the right frame’s pageX0ffset and pageYOffset properties. The content

windowObject.pageXOffset

Chapter 2 4+ Window and Frame Objects (Chapter 16) |45

of the right frame is a 30-row table of fixed width (800 pixels). Mouse click events
are captured by the document level (see Chapter 18 of the JavaScript Bible), allow-
ing you to click any table or cell border or outside the table to trigger the
showOffsets() function in the right frame. That function is a simple script that
displays the page offset values in their respective fields in the left frame.

Listing 16-13: Viewing the pageXOffset and pageYOffset
Properties

<HTML>

<HEAD>

<TITLE>Master of all Windows</TITLE>

<{SCRIPT LANGUAGE="JavaScript">

function TeftFrame() {
var output = "<HTML><BODY><H3>Page Offset Values</H3><HR>\n"
output += "<FORM>PageXOffset:<INPUT TYPE='text' NAME='xOffset' SIZE=4>
\n"
output += "PageYOffset:<INPUT TYPE="text' NAME='yOffset' SIZE=4>
\n"
output += "</FORM></BODY></HTML>"
return output

}

function rightFrame() {

var output = "<HTML><HEAD><SCRIPT LANGUAGE='JavaScript'>\n"

output += "function showOffsets() {\n"

output += "parent.readout.document.forms[0].x0ffset.value =
self.pageXOffset\n"

output += "parent.readout.document.forms[0].yO0ffset.value
self.pageYOffset\n}\n"

output += "document.captureEvents(Event.CLICK)\n"

output += "document.onclick = showOffsets\n"

output += "<\/SCRIPT></HEAD><BODY><H3>Content Page</H3>\n"

output += "Scroll this frame and click on a table border to view " +

"page offset values.
<HR>\n"
output += "<TABLE BORDER=5 WIDTH=800>"
var oneRow = "<TD>Cell 1</TD><TD>Cell 2</TD><TD>Cell 3</TD>" +
"<TD>Cell 4</TD><TD>Cell 5</TD>"
for (var i =1; i <= 30; i++) {
output += "<TRX>KTD>Row " + i + "</TD>" + oneRow + "</TR>"

}
output += "</TABLE></BODY></HTML>"
return output
}
</SCRIPT>
</HEAD>
<FRAMESET COLS="30%,70%">
<FRAME NAME="readout" SRC="javascript:parent.leftFrame()">
{FRAME NAME="display" SRC="javascript:parent.rightFrame()">
</FRAMESET>
</HTML>

windowObject.pageXOffset

146 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

To gain an understanding of how the offset values work, scroll the window
slightly in the horizontal direction and notice that the pageX0ffset value
increases; the same goes for the pageY0ffset value as you scroll down. Remember
that these values reflect the coordinate in the document that is currently under the
top-left corner of the window (frame) holding the document. You can see an [E4+
version of this example in Listing 18-20 (in Chapter 4 of this book). A cross-browser
version would require very little browser branching.

parent
NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v v v v v v
Example

To demonstrate how various window object properties refer to window levels in
a multiframe environment, use your browser to load the Listing 16-14 document. It,
in turn, sets each of two equal-size frames to the same document: Listing 16-15. This
document extracts the values of several window properties, plus the
document.title properties of two different window references.

Listing 16-14: Framesetting Document for Listing 16-15

<HTML>

<HEAD>

<TITLE>The Parent Property Example</TITLE>
<SCRIPT LANGUAGE="JavaScript">

self.name = "Framesetter"

</SCRIPT>

</HEAD>

<FRAMESET COLS="50%,50%" onUnload="self.name = '"'">

<FRAME NAME="JustAKidl" SRC="1stl6-15.htm">
<FRAME NAME="JustAKid2" SRC="T1stl6-15.htm">
</FRAMESET>
STHTMLY

Listing 16-15: Revealing Various Window-Related Properties

<HTML>
<HEAD>
<TITLE>Window Revealer TI<K/TITLE>
<SCRIPT LANGUAGE="JavaScript">
function gatherWindowData() {

var msg = ""

windowObject.parent

Chapter 2 + Window and Frame Objects (Chapter16) 147/

msg = msg + "top name: " + top.name + "
"
msg = msg + "parent name: " + parent.name + "
"
msg = msg + "parent.document.title: " + parent.document.title + "<P>"
msg = msg + "window name: " + window.name + "
"
msg = msg + "self name: " + self.name + "
"
msg = msg + "self.document.title: " + self.document.title
return msg
}
</SCRIPT>
</HEAD>
<BODY>

<SCRIPT LANGUAGE="JavaScript">
document.write(gatherWindowData())
</SCRIPT>

</BODY>

</HTML>

In the two frames (Figure 2-4), the references to the window and sel f object
names return the name assigned to the frame by the frameset definition
(JustAKidl for the left frame, JustAKid2 for the right frame). In other words, from
each frame’s point of view, the window object is its own frame. References to
self.document.title refer only to the document loaded into that window frame.
But references to the top and parent windows (which are one and the same in this
example) show that those object properties are shared between both frames.

_|Fx
J File Edit View Favoites Tools Help ‘
. = . ® 2] o Q EZ]] - S R L
Back Fariyand Stop Refresh Home Search Favortes History b zil Frint. Edit RealGuide
top name: Framesetter top name: Framesetter
parent name: Framesetter parent name: Framesetter
parent. document title: The Parent Property Example parent. document. title: The Parent Property Example
window narne: JustAFid1 window name: JustAKid2
self name: JustAKidl self name: JustAKid2
self document. title: Window Revealer IT self document. title: Window Revealer IT
@ Done ’_ ’_ Local intranet

Figure 2-4: Parent and top properties being shared by both frames

windowObject.parent

148 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

A couple other fine points are worth highlighting. First, the name of the frameset-
ting window is set as Listing 16-14 loads, rather than in response to an onlLoad
event handler in the <FRAMESET> tag. The reason for this is that the name must be
set in time for the documents loading in the frames to get that value. If I had waited
until the frameset’s onLoad event handler, the name wouldn’t be set until after the
frame documents had loaded. Second, I restore the parent window’s name to an
empty string when the framesetting document unloads. This is to prevent future
pages from getting confused about the window name.

returnValue

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

See Listing 16-39 for the showModalDialog() method for an example of how to
get data back from a dialog box in [E4+.

screenLeft
screenTop
NN2 NN3 NN4 NNé6 IE3/J1 1E3/)2 IE4 IE5 IE5.5
Compatibility v v
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
screenlLeft and screenTop properties. Start with the browser window maximized
(if you are using Windows). Enter the following property name into the top text box:

window.screenlLeft
Click the Evaluate button to see the current setting. Unmaximize the window and

drag it around the screen. Each time you finish dragging, click the Evaluate button
again to see the current value. Do the same for window.screenTop.

screenX
screenY
NN2 NN3 NN4 NN6é6 IE3/J1 1E3/)2 1E4 IE5 1IE5.5
Compatibility v

windowObject.screenX

Chapter 2 4+ Window and Frame Objects (Chapter 16) |49

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
screenX and screenY properties in NN6. Start with the browser window maxi-
mized (if you are using Windows). Enter the following property name into the top
text box:

window.screenY

Click the Evaluate button to see the current setting. Unmaximize the window and
drag it around the screen. Each time you finish dragging, click the Evaluate button
again to see the current value. Do the same for window.screeny.

scroll1X
scrollyY
NN2 NN3 NN4 NN6 |IE3/J)1 IE3/J)2 IE4 IE5 IE5.5
Compatibility v
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
scrollX and scrol1Y properties in NN6. Enter the following property into the top
text box:

window.scrollY

Now manually scroll the page down so that you can still see the Evaluate button.
Click the button to see how far the window has scrolled along the y-axis.

self

NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE55
Compatibility v v ooV v v ooV
Example

Listing 16-16 uses the same operations as Listing 16-5 but substitutes the se1f
property for all window object references. The application of this reference is
entirely optional, but it can be helpful for reading and debugging scripts if the
HTML document is to appear in one frame of a multiframe window — especially if
other JavaScript code in this document refers to documents in other frames. The
self reference helps anyone reading the code know precisely which frame was
being addressed.

windowObject.self

150 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-16: Using the self Property

<HTML>

<HEAD>

<TITLE>self Property</TITLE>

<SCRIPT LANGUAGE="JavaScript">
self.defaultStatus = "Welcome to my Web site."

</SCRIPT>
</HEAD>
<BODY>
<A HREF="http:// www.microsoft.com"
onMouseOver="self.status = '"Visit Microsoft\'s Home page.';return true"
onMouseQut="self.status = "';return true">Microsoft<{/A><P>
<A HREF="http://home.netscape.com"
onMouseOver="self.status = 'Visit Netscape\'s Home page.';return true"
onMouseOut="self.status = self.defaultStatus;return true">Netscape
</BODY>
</HTML>
status
NN2 NN3 NN4 NN6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v v v v/ 4 v
Example

In Listing 16-17, the status property is set in a handler embedded in the
onMouseQver attribute of two HTML link tags. Notice that the handler requires a
return true statement (or any expression that evaluates to return true) as the
last statement of the handler. This statement is required or the status message will
not display, particularly in early browsers.

Listing 16-17: Links with Custom Statusbar Messages

<HTML>

<HEAD>

<TITLE>window.status Property</TITLE>

</HEAD>

<BODY>

<A HREF="http://www.dannyg.com" onMouseOver="window.status = 'Go to my Home
page. (www.dannyg.com)'; return true">Home<P>

<A HREF="http://home.netscape.com" onMouseOver="window.status = 'Visit Netscape
Home page. (home.netscape.com)'; return true">Netscape

</BODY>

<THTML>

windowObject.status

Chapter 2 4+ Window and Frame Objects (Chapter16) 151

As a safeguard against platform-specific anomalies that affect the behavior of
onMouseOver event handlers and the window.status property, you should also
include an onMouseOut event handler for links and client-side image map area
objects. Such onMouseQut event handlers should set the status property to an
empty string. This setting ensures that the statusbar message returns to the
defaultStatus setting when the pointer rolls away from these objects. If you want
to write a generalizable function that handles all window status changes, you can
do so, but word the onMouseOQver attribute carefully so that the event handler eval-
uates to return true. Listing 16-18 shows such an alternative.

Listing 16-18: Handling Status Message Changes

<HTML>
<HEAD>
<TITLE>Generalizable window.status Property</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function showStatus(msg) {
window.status = msg
return true
}
</SCRIPT>
</HEAD>
<BODY>
<A HREF="http:// www.dannyg.com " onMouseOver="return showStatus('Go to my Home
page (www.dannyg.com).')" onMouseQut="return showStatus('"')">Home<P>
<A HREF="http://home.netscape.com" onMouseOver="return showStatus('Visit
Netscape Home page.')" onMouseOut="return showStatus('"')">Netscape
</BODY>
<IHTMLY

Notice how the event handlers return the results of the showStatus () method
to the event handler, allowing the entire handler to evaluate to return true.

One final example of setting the statusbar (shown in Listing 16-19) also demon-
strates how to create a simple scrolling banner in the statusbar.

Listing 16-19: Creating a Scrolling Banner

<HTML>

<HEAD>

<TITLE>Message Scroller</TITLE>
{SCRIPT LANGUAGE="JavaScript">
<l--

var msg = "Welcome to my world..."
var delay = 150

var timerld

var maxCount = 0

var currCount = 1

Continued

windowObject.status

152 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-19 (continued)

function scrollMsg() {
// set the number of times scrolling message is to run
if (maxCount == 0) {
maxCount = 3 * msg.length
}
window.status = msg
// keep track of how many characters have scrolled
currCount++
// shift first character of msg to end of msg
msg = msg.substring (1, msg.length) + msg.substring (0, 1)
// test whether we've reached maximum character count
if (currCount >= maxCount) {

timerID = 0 // zero out the timer
window.status = "" // clear the status bar
return // break out of function

} else {

// recursive call to this function
timerld = setTimeout("scrollMsg()", delay)
1
}
/] -=>
</SCRIPT>
</HEAD>
<BODY onlLoad="scrol1Msg()">
</BODY>
</HTML>

Because the statusbar is being set by a standalone function (rather than by an
onMouseOver event handler), you do not have to append a return true statement to
set the status property. The scrol1Msg() function uses more advanced JavaScript
concepts, such as the window.setTimeout () method (covered later in this chapter)
and string methods (covered in Chapter 34 of the JavaScript Bible). To speed the pace
at which the words scroll across the statusbar, reduce the value of delay.

Many Web surfers (myself included) don’t care for these scrollers that run for-
ever in the statusbar. Rolling the mouse over links disturbs the banner display.
Scrollers can also crash earlier browsers, because the setTimeout () method eats
application memory in Navigator 2. Use scrolling bars sparingly or design them to
run only a few times after the document loads.

Tip Setting the status property with onMouseOver event handlers has had a check-
ered career along various implementations in Navigator. A script that sets the sta-
tusbar is always in competition against the browser itself, which uses the statusbar
to report loading progress. When a “hot” area on a page is at the edge of a frame,
many times the onMouseOQut event fails to fire, thus preventing the statusbar from
clearing itself. Be sure to torture test any such implementations before declaring
your page ready for public access.

windowObject.status

W

Chapter 2 + Window and Frame Objects (Chapter16) |53

Methods
alert("message")

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v VR v

Example

The parameter for the example in Listing 16-20 is a concatenated string. It joins
together two fixed strings and the value of the browser’s navigator.appName prop-
erty. Loading this document causes the alert dialog box to appear, as shown in sev-
eral configurations in Figure 2-5. The JavaScript Alert: line cannot be deleted from
the dialog box in earlier browsers, nor can the title bar be changed in later browsers.

Listing 16-20: Displaying an Alert Dialog Box

<HTML>

<HEAD>

<TITLEDwindow.alert() Method</TITLE>

</HEAD>

<BODY>

{SCRIPT LANGUAGE="JavaScript">

alert("You are running the " + navigator.appName + " browser.")

</SCRIPT>
</BODY>
</HTML>
Wictosolt intemet Exploer |

& ‘You are wnning the Microsoft Intemet Esplorer browser.

Alert

& You are running the Netscape browser,

Figure 2-5: Results of the alert() method in Listing 16-20
in Internet Explorer 5 (top) and Navigator 6 (bottom)
for Windows 98

windowObject.alert()

154 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

capturekvents(eventTypelist)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

The page in Listing 16-21 is an exercise in capturing and releasing click events in
the window object. Whenever the window is capturing click events, the flash()
function runs. In that function, the event is examined so that only if the Control key
is also being held down and the name of the button starts with “button” does the
document background color flash red. For all click events (that is, those directed at
objects on the page capable of their own onC11ck event handlers), the click is pro-
cessed with the routeEvent () method to make sure the target buttons execute
their own onC11ck event handlers.

Listing 16-21: Capturing Click Events in the Window

<HTML>
<HEAD>
<TITLE>Window Event Capture</TITLE>
(SCRIPT LANGUAGE="JavaScriptl.2">
// function to run when window captures a click event
function flash(e) {
if (e.modifiers = Event.CONTROL_MASK &&
e.target.name.indexOf("button") == 0) {
document.bgColor = "red"
setTimeout("document.bgColor = 'white'", 500)
}
// Tet event continue to target
routekEvent(e)
}
// default setting to capture click events
window.captureEvents(Event.CLICK)
// assign flash() function to click events captured by window
window.onclick = flash
</SCRIPT>
</HEAD>
<BODY BGCOLOR="white">
<FORM NAME="buttons">
Turn window click event capture on or off (Default is "On")<P>
<INPUT NAME="captureOn" TYPE="button" VALUE="Capture On"
onClick="window.capturektvents(Event.CLICK)">
<INPUT NAME="captureQff" TYPE="button" VALUE="Capture Off"
onClick="window.releaseEvents(Event.CLICK)">
<HR>
Ctrl1+Click on a button to see if clicks are being captured by the window
(background color will flash red):<P>
<UL

windowObject.captureEvents()

Chapter 2 4+ Window and Frame Objects (Chapter16) |55

<INPUT NAME="buttonl" TYPE="button" VALUE="Informix" onClick="alert('You
clicked on Informix.')">

<INPUT NAME="button2" TYPE="button" VALUE="Oracle" onClick="alert('You
clicked on Oracle.')">

CLI><INPUT NAME="button3" TYPE="button" VALUE="Sybase" onClick="alert('You
clicked on Sybase.')">

<UL

</FORM>

</BODY>

</HTML>

When you try this page, also turn off window event capture. Now only the but-
tons’ onC11ck event handlers execute, and the page does not flash red.

clearInterval(intervalIDnumber)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v

Example

See Listings 16-36 and 16-37 for an example of how setInterval () and
clearInterval() are used together on a page.

clearTimeout(timeoutIDnumber)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v v v v

Example

The page in Listing 16-22 features one text field and two buttons (Figure 2-6). One
button starts a countdown timer coded to last one minute (easily modifiable for
other durations); the other button interrupts the timer at any time while it is run-
ning. When the minute is up, an alert dialog box lets you know.

Listing 16-22: A Countdown Timer

<HTML>

<HEAD>

<TITLE>Count Down Timer</TITLE>
<SCRIPT LANGUAGE="JavaScript">
<l--

var running = false

Continued

windowObject.clearTimeout()

156 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-22 (continued)

var endTime = null
var timerlD ull

function startTimer() {
running = true
now = new Date()
now = now.getTime()
// change last multiple for the number of minutes
endTime = now + (1000 * 60 * 1)
showCountDown ()
}

function showCountDown() {
var now = new Date()
now = now.getTime()
if (endTime - now <= 0) {
stopTimer()
alert("Time is up. Put down your pencils.")
} else {
var delta = new Date(endTime - now)
var theMin = delta.getMinutes()

var theSec = delta.getSeconds()
var theTime = theMin
theTime += ((theSec < 10) ? ":0" : ":") + theSec

document.forms[0].timerDisplay.value = theTime
if (running) {

timerID = setTimeout("showCountDown()",1000)
1

}

function stopTimer() {
clearTimeout(timerID)
running = false
document.forms[0].timerDisplay.value = "0:00"
}
/]/-->
</SCRIPT>
</HEAD>

<BODY>

<FORM>

<INPUT TYPE="button" NAME="startTime" VALUE="Start 1 min. Timer"
onClick="startTimer()">

<INPUT TYPE="button" NAME="clearTime" VALUE="Clear Timer"
onClick="stopTimer()"><P>

<INPUT TYPE="text" NAME="timerDisplay" VALUE="">

</FORM>

</BODY>

</HTML>

windowObject.clearTimeout()

Chapter 2 + Window and Frame Objects (Chapter16) |57/

Notice that the script establishes three variables with global scope in the win-
dow: running, endTime, and timerID. These values are needed inside multiple
functions, so they are initialized outside of the functions.

J File Edit View Favoites Tools Help |
= o= @ al a @ @ &
Back Farivard Stop Refresh Home Search Favortes History
| Address [\\Lightningew Examples\Chap] Evlst16-22 him = @60 ||k
Start 1 min. Timer Clear Timer |
IU:51
|@ Done ,7’7 28 Local intranst A

Figure 2-6: The countdown timer page as it displays the time remaining

In the startTimer () function, you switch the running flag on, meaning that the
timer should be going. Using some date functions (see Chapter 36 of the JavaScript
Bible), you extract the current time in milliseconds and add the number of millisec-
onds for the next minute (the extra multiplication by one is the place where you
can change the amount to the desired number of minutes). With the end time
stored in a global variable, the function now calls another function that compares
the current and end times and displays the difference in the text field.

Early in the showCountDown () function, check to see if the timer has wound
down. If so, you stop the timer and alert the user. Otherwise, the function continues
to calculate the difference between the two times and formats the time in mm:ss
format. As long as the running flag is set to true, the function sets the one-second
timeout timer before repeating itself. To stop the timer before it has run out (in the
stopTimer () function), the most important step is to cancel the timeout running
inside the browser. The clearTimeout () method uses the global timerID value to
do that. Then the function turns off the running switch and zeros out the display.

When you run the timer, you may occasionally notice that the time skips a sec-
ond. It’s not cheating. It just takes slightly more than one second to wait for the
timeout and then finish the calculations for the next second’s display. What you're
seeing is the display catching up with the real time left.

close()

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v VR v

windowObject.close()

158 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example

See Listing 16-4 (for the window.closed property), which provides an elaborate,
cross-platform, bug-accommodating example of applying the window.close()
method across multiple windows.

confirm("message")

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v VR v

Example

The example in Listing 16-23 shows the user interface part of how you can use a
confirm dialog box to query a user before clearing a table full of user-entered data.
The line in the title bar, as shown in Figure 2-7, or the “JavaScript Confirm” legend in
earlier browser versions, cannot be removed from the dialog box.

Listing 16-23: The Confirm Dialog Box

<HTML>
<HEAD>
KTITLE>window.confirm() Method</TITLE>
{SCRIPT LANGUAGE="JavaScript">
function clearTable() {
if (confirm("Are you sure you want to empty the table?")) {
alert("Emptying the table...") // for demo purposes
//statements that actually empty the fields
}
}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
<l-- other statements that display and populate a large table -->
<INPUT TYPE="button" NAME="clear" VALUE="Reset Table" onClick="clearTable()">
</FORM>
</BODY>
<IHTMLY

Microsoft Intemet Explorer

@ Are pou sure you want bo empty the table?

Cancel

Figure 2-7: A JavaScript confirm
dialog box (IE5/Windows format)

windowObject.confirm()

Chapter 2 4+ Window and Frame Objects (Chapter 16) 159

createPopup()
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v
Example

See Listing 16-49 later in this chapter for an example of the createPopup ()
method.

disableExternalCapture()
enableExternalCapture()

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

As this was a little-used feature of NN4 even while the browser enjoyed a sub-
stantial installed base, it becomes less important as that browser version recedes
into history. You can find an example of this feature at the Support Center for this
book (http://www.dannyg.com/update.html) or on pp.213-214 of the JavaScript
Bible, 3rd edition.

execScript("exprList"[, languagel)

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v/ v v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
execScript() method. The Evaluator has predeclared global variables for the low-
ercase letters a through z. Enter each of the following statements into the top text
box and observe the results for each.

a

When first loaded, the variable is declared but assigned no value, so it is
undefined.

window.execScript("a = 5")

windowObject.execScript()

160 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

The method returns no value, so the mechanism inside The Evaluator says that the
statement is undefined.

a
The variable is now 5.

window.execScript("b = a * 50")
b

The b global variable has a value of 250. Continue exploring with additional
script statements. Use semicolons to separate multiple statements within the string
parameter.

find(["searchString" [, matchCaseBoolean,
searchUpBooleanl])

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example
A simple call to the window. find () method looks as follows:

var success = window.find("contract")

If you want the search to be case-sensitive, add at least one of the two optional
parameters:

success = wind.find(matchString,caseSensitive,backward)

Because this method works only in NN4, refer to discussions of the TextRange
and Range objects in Chapter 19 of the JavaScript Bible for more modern implemen-
tations of body text searching.

GetAttention()

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) in NN6 to set a timer that
gives you enough time to switch to another application and wait for the attention
signal to fire. Enter the following statement into the top text box, click the Evaluate
button, and then quickly switch to another program:

setTimeout("GetAttention()", 5000)

After a total of five seconds, the attention signal fires.

windowObject.GetAttention()

Chapter 2 4+ Window and Frame Objects (Chapter16) 16]

moveBy(deltaX,deltaY)

moveTo(x,y)
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v/ v v/ v v
Example

Several examples of using the window.moveTo() and window.moveBy () meth-
ods are shown in Listing 16-24. The page presents four buttons, each of which per-
forms a different kind of browser window movement.

Listing 16-24: Window Boogie

<HTML>
<HEAD>
<TITLE>Window Gymnastics</TITLE>
<SCRIPT LANGUAGE="JavaScriptl.2">
var isNav4 = ((navigator.appName == "Netscape") &&
(parselnt(navigator.appVersion) >= 4))
// wait in onlLoad for page to load and settle in IE
function init() {
// i1l missing IE properties
if (lwindow.outerWidth) {
window.outerWidth = document.body.clientWidth
window.outerHeight = document.body.clientHeight + 30
}
// fi11 missing IE4 properties
if (!screen.availWidth) {
screen.availWidth = 640
screen.availHeight = 480
}
}
// function to run when window captures a click event
function moveOffScreen() {
// branch for NN security
if (isNav4d) {
netscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserWrite")
}
var maxX = screen.width
var maxY = screen.height
window.moveTo(maxX+1, maxY+1)
setTimeout ("window.moveTo(0,0)",500)
if (isNav4) {
netscape.security.PrivilegeManager.disablePrivilege("UniversalBrowserWrite")

}

Continued

windowObject.moveBy()

162 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-24 (continued)

}
// moves window in a circular motion
function revolve() {
var winX = (screen.availWidth - window.outerWidth) / 2
var winY = 50
window.resizeTo(400,300)
window.moveTo(winX, winY)

for (var i =1; 1 < 36; i++) {
winX += Math.cos(i * (Math.PI/18)) * 5
winY += Math.sin(i * (Math.PI/18)) * 5
window.moveTo(winX, winY)
}
}
// moves window in a horizontal zig-zag pattern
function zigzag() {
window.resizeTo(400,300)
window.moveTo(0,80)
var incrementX = 2
var incrementY = 2
var floor = screen.availHeight - window.outerHeight
var rightEdge = screen.availWidth - window.outerWidth
for (var i = 0; i < rightEdge; i += 2) {
window.moveBy(incrementX, incrementY)
if (i%60 == 0) {
incrementY = -incrementY
1
}
}
// resizes window to occupy all available screen real estate
function maximize() {
window.moveTo(0,0)
window.resizeTo(screen.availWidth, screen.availHeight)
}
</SCRIPT>
</HEAD>
<BODY onlLoad="init()">
<FORM NAME="buttons">
Window Gymnastics<P>

CLI><INPUT NAME="offscreen" TYPE="button" VALUE="Disappear a Second"
onClick="moveOffScreen()">
<INPUT NAME="circles" TYPE="button" VALUE="Circular Motion"
onClick="revolve()">
<INPUT NAME="bouncer" TYPE="button" VALUE="Zig Zag" onClick="zigzag()">
INPUT NAME="expander" TYPE="button" VALUE="Maximize" onClick="maximize()">
<UL
</FORM>
</BODY>
</HTML>

windowObject.moveBy()

Chapter 2 + Window and Frame Objects (Chapter16) |63

To run successfully in NN, the first button requires that you have codebase prin-
cipals turned on (see Chapter 46 of the JavaScript Bible) to take advantage of what
would normally be a signed script. The moveOffScreen() function momentarily
moves the window entirely out of view. Notice how the script determines the size of
the screen before deciding where to move the window. After the journey off screen,
the window comes back into view at the upper-left corner of the screen.

If using the Web sometimes seems like going around in circles, then the second
function, revolve(), should feel just right. After reducing the size of the window
and positioning it near the top center of the screen, the script uses a bit of math to
position the window along 36 places around a perfect circle (at 10-degree incre-
ments). This is an example of how to control a window’s position dynamically
based on math calculations. IE complicates the job a bit by not providing proper-
ties that reveal the outside dimensions of the browser window.

To demonstrate the moveBy () method, the third function, zigzag(), uses a for
loop to increment the coordinate points to make the window travel in a saw tooth
pattern across the screen. The x coordinate continues to increment linearly until
the window is at the edge of the screen (also calculated on the fly to accommodate
any size monitor). The y coordinate must increase and decrease as that parameter
changes direction at various times across the screen.

In the fourth function, you see some practical code (finally) that demonstrates
how best to simulate maximizing the browser window to fill the entire available
screen space on the visitor’s monitor.

navigate("URL")

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v/ v v

Example
Supply any valid URL as the parameter to the method, as in

window.navigate("http://www.dannyg.com")

open("URL", "windowName" [,
"windowFeatures"1[,replaceFlag]l)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v/ v v v v

Example

The page rendered by Listing 16-26 displays a single button that generates a new
window of a specific size that has only the statusbar turned on. The script here

windowObject.open()

164 J1avaScript Examples Bible: The Essential Companion to JavaScript Bible

shows all the elements necessary to create a new window that has all the right stuff
on most platforms. The new window object reference is assigned to a global vari-
able, newlWindow. Before a new window is generated, the script looks to see if the
window has never been generated before (in which case newlWindow would be
null) or, for newer browsers, the window is closed. If either condition is true, the
window is created with the open () method. Otherwise, the existing window is
brought forward with the focus () method (NN3+ and IE4+).

As a safeguard against older browsers, the script manually adds an opener prop-
erty to the new window if one is not already assigned by the open () method. The
current window object reference is assigned to that property.

Due to the timing problem that afflicts all IE generations, the HTML assembly and
writing to the new window is separated into its own function that is invoked after a
50 millisecond delay (NN goes along for the ride, but it could accommodate the
assembly and writing without the delay). To build the string that is eventually writ-
ten to the document, [use the += (add-by-value) operator, which appends the string
on the right side of the operator to the string stored in the variable on the left side.
In this example, the new window is handed an <H1>-level line of text to display.

Listing 16-26: Creating a New Window

<HTML>
<HEAD>
<TITLE>New Window</TITLE>
{SCRIPT LANGUAGE="JavaScript">
var newWindow
function makeNewWindow() {
if (InewWindow || newWindow.closed) {
newWindow = window.open("","","status,height=200,width=300")
if (InewWindow.opener) {
newWindow.opener = window
}
/] force small delay for IE to catch up
setTimeout ("writeToWindow()", 50)
} else {
// window's already open; bring to front
newlindow. focus()
1
}
function writeToWindow() {
// assemble content for new window
var newContent = "<HTML><HEAD><TITLE>One Sub Window</TITLE></HEAD>"
newContent += "<BODY><H1>This window is brand new.</H1>"
newContent += "</BODY></HTML>"
// write HTML to new window document
newlWindow.document.write(newContent)
newWindow.document.close() // close Tayout stream
}
</SCRIPT>
</HEAD>
<BODY>
<FORM>

windowObject.open()

Chapter 2 4+ Window and Frame Objects (Chapter 16) |1 65

<INPUT TYPE="button" NAME="newOne" VALUE="Create New Window"
onClick="makeNewWindow()">

</FORM>

</BODY>

</HTML>

If you need to create a new window for the lowest common denominator of
scriptable browser, you will have to omit the focus () method and the
window.closed property from the script (as well as add the NN2 bug workaround
described earlier). Or you may prefer to forego a subwindow for all browsers below
a certain level. See Listing 16-3 (in the window. cTosed property discussion) for
other ideas about cross-browser authoring for subwindows.

print()
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE55
Compatibility v v v v
Example

Listing 16-27 is a frameset that loads Listing 16-28 into the top frame and a copy
of the Bill of Rights into the bottom frame.

Listing 16-27: Print Frameset

<HTML>

<HEAD>

KTITLE>window.print() method</TITLE>

</HEAD>

<FRAMESET ROWS="25%,75%">
{FRAME NAME="controls" SRC="1stl16-28.htm">
<FRAME NAME="display" SRC="bofright.htm">

</FRAMESET>

<THTML>

Two buttons in the top control panel (Listing 16-28) let you print the whole
frameset (in those browsers and OSs that support it) or just the lower frame. To
print the entire frameset, the reference includes the parent window; to print the
lower frame, the reference is directed at the parent.display frame.

windowObject.print()

166 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-28: Printing Control

<HTML>

<HEAD>

KTITLE>Print()</TITLE>

</HEAD>

<BODY>

<FORM>

<INPUT TYPE="button" NAME="printWhole" VALUE="Print Entire Frameset"
onClick="parent.print()"><pP>

<INPUT TYPE="button" NAME="printFrame" VALUE="Print Bottom Frame Only"
onClick="parent.display.print()"><P>

</FORM>

</BODY>

</HTML>

If you don’t like some facet of the printed output, blame the browser’s print
engine, and not JavaScript. The print () method merely invokes the browser’s reg-
ular printing routines. Pages whose content is generated entirely by JavaScript
print only in NN3+ and IE4+.

prompt("message", "defaultReply")

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v VS v

Example

The function that receives values from the prompt dialog box in Listing 16-29
(see the dialog box in Figure 2-8) does some data-entry validation (but certainly not
enough for a commercial site). The function first checks to make sure that the
returned value is neither nu11 (Cancel) nor an empty string (the user clicked OK
without entering any values). See Chapter 43 of the JavaScript Bible for more about
data-entry validation.

Listing 16-29: The Prompt Dialog Box

<HTML>

<HEAD>

KTITLE>window.prompt() Method</TITLE>

<SCRIPT LANGUAGE="JavaScript">

function populateTable() {
var howMany = prompt("Fill in table for how many factors?","")
if (howMany != null && howMany != "") {

windowObject.prompt()

Chapter 2 + Window and Frame Objects (Chapter16) 167/

alert("Filling the table for " + howMany) // for demo
//statements that validate the entry and
//actually populate the fields of the table
}
}
</SCRIPT>
<{/HEAD>
<BODY>
<FORM>
{I-- other statements that display and populate a large table -->
<INPUT TYPE="button" NAME="fill" VALUE="Fill Table..."
onClick="populateTable()">
</FORM>
</BODY>
</HTML>

Explorer User Prompt

JavaSeript Prompt:

Fill in table for haw many factors?
Cancel |

@

Figure 2-8: The prompt dialog box displayed from
Listing 16-29 (Windows format)

Notice one important user interface element in Listing 16-29. Because clicking
the button leads to a dialog box that requires more information from the user, the
button’s label ends in an ellipsis (or, rather, three periods acting as an ellipsis char-
acter). The ellipsis is a common courtesy to let users know that a user interface ele-
ment leads to a dialog box of some sort. As in similar situations in Windows and
Macintosh programs, the user should be able to cancel out of that dialog box and
return to the same screen state that existed before the button was clicked.

resizeBy(deltaX,deltaY)
resizeTo(outerwidth,outerheight)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v 4 v

Example

You can experiment with the resize methods with the page in Listing 16-30. Two
parts of a form let you enter values for each method. The one for window.resize()
also lets you enter a number of repetitions to better see the impact of the values.
Enter zero and negative values to see how those affect the method. Also test the
limits of different browsers.

windowObject.resizeBy()

168 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-30: Window Resize Methods

<HTML>

<HEAD>

KTITLE>Window Resize Methods</TITLE>

<{SCRIPT LANGUAGE="JavaScript">

function doResizeBy(form) {
var x = parselnt(form.resizeByX.value)
var y = parselnt(form.resizeByY.value)
var count = parselnt(form.count.value)
for (var i = 0; i < count; i++) {

window.resizeBy(x, y)

1

}

function doResizeTo(form) {
var x = parselnt(form.resizeToX.value)
var y = parselnt(form.resizeToY.value)
window.resizeTo(x, y)

}

</SCRIPT>

</HEAD>

<BODY>

<FORM>

<{B>Enter the x and y increment, plus how many times the window should be resized
by these increments:

Horiz:<INPUT TYPE="text" NAME="resizeByX" SIZE=4>
Vert:<INPUT TYPE="text" NAME="resizeByY" SIZE=4>

How Many:<INPUT TYPE="text" NAME="count" SIZE=4>

<INPUT TYPE="button" NAME="ResizeBy" VALUE="Show resizeBy()"
onClick="doResizeBy(this.form)">

<HR>

<{B>Enter the desired width and height of the current window:

Width:<INPUT TYPE="text" NAME="resizeToX" SIZE=4>
Height:<INPUT TYPE="text" NAME="resizeToY" SIZE=4>

<INPUT TYPE="button" NAME="ResizeTo" VALUE="Show resizeTo()"
onClick="doResizeTo(this.form)">

</FORM>

</BODY>

<IHTML>

routeEvent(event)

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v

windowObject.routeEvent()

Chapter 2 4+ Window and Frame Objects (Chapter 16) 169

Example

The window.routeEvent () method is used in the example for
window.captureEvents(), Listing 16-21.

scroll(horizontalCoord, verticalCoord)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v

Example

To demonstrate the scrol1() method, Listing 16-31 defines a frameset with a
document in the top frame (Listing 16-32) and a control panel in the bottom frame
(Listing 16-33). A series of buttons and text fields in the control panel frame directs
the scrolling of the document. I've selected an arbitrary, large GIF image to use in
the example. To see results of some horizontal scrolling values, you may need to
shrink the width of the browser window until a horizontal scrollbar appears in the
top frame. Figure 2-9 shows the results in a shrunken window with modest horizon-
tal and vertical scroll values entered into the bottom text boxes. If you substitute
scrol1To() for the scrol1() methods in Listing 16-33, the results will be the
same, but you will need version browsers at a minimum to run it.

Listing 16-31: A Frameset for the scroll() Demonstration

<HTML>
<HEAD>
<TITLE>window.scroll() Method</TITLE>
</HEAD>

<FRAMESET ROWS="50%,50%">
<FRAME SRC="Tst16-32.htm" NAME="display">
<{FRAME SRC="Tstl16-33.htm" NAME="control">
</FRAMESET>
</HTML>

Listing 16-32: The Image to Be Scrolled

CHTML>

<HEAD>
KTITLE>Arch</TITLE>
</HEAD>

Continued

windowObject.scroll()

170 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-32 (continued)

<BODY>

<HI>A Picture is Worth...</H1>
<HR>

<CENTER>

<TABLE BORDER=3>

<CAPTION ALIGN=bottom>A Splendid Arch</CAPTION>
<TD>

</TD></TABLE></CENTER>

</BODY>

</HTML>

Listing 16-33: Controls to Adjust Scrolling of the Upper Frame

<HTML>
<HEAD>
<TITLE>Scroll Controller</TITLE>
<SCRIPT LANGUAGE="JavaScriptl.1">
function scroll(x,y) {
parent.frames[0].scroll(x,y)
}
function customScroll(form) {
parent.frames[0].scroll(parselnt(form.x.value),parselnt(form.y.value))
}
</SCRIPT>
</HEAD>
<BODY>
<H2>Scroll Controller</H2>
<HR>
<FORM NAME="f1ixed">
Click on a scroll coordinate for the upper frame:<P>
<INPUT TYPE="button" VALUE="0,0" onClick="scrol1(0,0)">
<INPUT TYPE="button" VALUE="0,100" onClick="scrol1(0,100)">
<INPUT TYPE="button" VALUE="100,0" onClick="scrol1(100,0)">
<P>
<INPUT TYPE="button" VALUE="-100,100" onClick="scrol1(-100,100)">
<INPUT TYPE="button" VALUE="20,200" onClick="scrol1(20,200)">
<INPUT TYPE="button" VALUE="1000,3000" onClick="scrol1(1000,3000)">
</FORM>
<HR>
<FORM NAME="custom">
Enter a Horizontal
<INPUT TYPE="text" NAME="x" VALUE="0" SIZE=4>
and Vertical
<INPUT TYPE="text" NAME="y" VALUE="0" SIZE=4>
value. Then

windowObject.scroll()

Chapter 2 + Window and Frame Objects (Chapter16) |7/]

<INPUT TYPE="button" VALUE="click to scroll" onClick="customScroll(this.form)">
</FORM>
</BODY>
</HTML>

AListings/Chapl6/Ist1e™

.| # Home g g % Ti ai ™ Bugzila

Scroll Controller

Click on a scroll coordinate for the upper frame:

09| na00| so00| r

Enter a Horizontal B9 and Vertical |25 value. Then q -

Figure 2-9: Scripts control the scrolling of the top frame

Notice that in the customScrol1 () function, JavaScript must convert the string
values from the two text boxes to integers (with the parseInt () method) for the
scrol1() method to accept them. Nonnumeric data can produce very odd results.
Also be aware that although this example shows how to adjust the scroll values in
another frame, you can set such values in the same frame or window as the script,
as well as in subwindows, provided that you use the correct object references to
the window.

scrol1By(deltaX,deltaY)
scrol1To(x,y)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v 4 4

windowObject.scrollBy()

172 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example

To work with the scrol1To() method, you can use Listings 16-31 through 16-33
(thewindow.scrol1() method) but substitute window.scrol1To() for window.
scrol1(). The results should be the same. For scrol1By (), the example starts with
the frameset in Listing 16-34. It loads the same content document as the window.
scrol1() example (Listing 16-32), but the control panel (Listing 16-35) provides
input to experiment with the scrol1By () method.

Listing 16-34: Frameset for ScrollBy Controller

<HTML>
<HEAD>
KTITLE>window.scrol1By() Method</TITLE>
</HEAD>

<FRAMESET ROWS="50%,50%">
<{FRAME SRC="Tstl1l6-32.htm" NAME="display">
<{FRAME SRC="T1stl16-35.htm" NAME="control">
</FRAMESET>
</HTML>

Notice in Listing 16-35 that all references to window properties and methods are
directed to the display frame. String values retrieved from text fields are con-
verted to number with the parseInt () global function.

Listing 16-35: ScrollBy Controller

<HTML>
<HEAD>
<TITLE>Scrol1By Controller</TITLE>
{SCRIPT LANGUAGE="JavaScriptl.2">
function page(direction) {
var pixFrame = parent.display
var deltaY = (pixFrame.innerHeight) ? pixFrame.innerHeight :
pixFrame.document.body.scrollHeight
if (direction == "up") {
deltaY = -deltaY
}
parent.display.scroll1By(0, deltaY)
}
function customScroll(form) {
parent.display.scrollBy(parselnt(form.x.value), parselnt(form.y.value))
}
</SCRIPT>
</HEAD>
<BODY>
Scrol1By Controller
<FORM NAME="custom">
Enter an Horizontal increment

windowObject.scrollBy()

Chapter 2 4+ Window and Frame Objects (Chapter16) |73

CINPUT TYPE="text" NAME="x" VALUE="0" SIZE=4">

and Vertical

<INPUT TYPE="text" NAME="y" VALUE="0" SIZE=4")>

value.
Then

<INPUT TYPE="button" VALUE="click to scrollBy()"
onClick="customScroll(this.form)">

<HR>

<INPUT TYPE="button" VALUE="PageDown" onClick="page('down')">
<INPUT TYPE="button" VALUE="PageUp" onClick="page('up')">

</FORM>

</BODY>
</HTML>

setCursor("cursorType")

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) in NN6 to experiment with
setting the cursor. After clicking the top text box in preparation for typing, roll the
cursor to a location atop an empty spot on the page. Then enter the following state-
ments one at a time into the top text box and press Enter/Return:

setCursor("wait")
setCursor("spinning"
setCursor("move")

After evaluating each statement, roll the cursor around the page, and notice
where the cursor reverts to its normal appearance.
setInterval("expr", msecDelay [, languagel])
setInterval(funcRef, msecDelay [, funcargl,
..., funcargnl)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v

Example

The demonstration of the setInterval () method entails a two-framed environ-
ment. The framesetting document is shown in Listing 16-36.

windowObject.setinterval()

174 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-36: setinterval() Demonstration Frameset

<HTML>
<HEAD>
KTITLE>setInterval() Method</TITLE>
</HEAD>

<FRAMESET ROWS="50%,50%">
<FRAME SRC="1st16-37.htm" NAME="control">
<FRAME SRC="bofright.htm" NAME="display">
</FRAMESET>
</HTML>

In the top frame is a control panel with several buttons that control the automatic
scrolling of the Bill of Rights text document in the bottom frame. Listing 16-37 shows
the control panel document. Many functions here control the interval, scrolling jump
size, and direction, and they demonstrate several aspects of applying setInterval ().

Notice that in the beginning the script establishes a number of global variables.
Three of them are parameters that control the scrolling; the last one is for the ID
value returned by the setInterval () method. The script needs that value to be a
global value so that a separate function can halt the scrolling with the
clearInterval() method.

All scrolling is performed by the autoScrol1() function. For the sake of simplic-
ity, all controlling parameters are global variables. In this application, placement of
those values in global variables helps the page restart autoscrolling with the same
parameters as it had when it last ran.

Listing 16-37: setinterval() Control Panel

<HTML>

<HEAD>

<TITLE>Scrol1By Controller</TITLE>
{SCRIPT LANGUAGE="JavaScriptl.2">
var scrollSpeed = 500

var scrollJump = 1

var scrollDirection = "down"

var intervallD

function autoScroll() {

if (scrollDirection == "down") {
scrolldump = Math.abs(scrollJump)

} else if (scrollDirection == "up" && scrollJdump > 0) {
scrolldump = -scrolldump

}
parent.display.scrol1By(0, scrolldump)
if (parent.display.pageYOffset <= 0) {

windowObject.setinterval()

Chapter 2 4+ Window and Frame Objects (Chapter16) | 7/5

clearInterval(intervallD)
1

function reducelnterval() {
stopScroll()
scrol1Speed -= 200
startScroll()

}

function increaselnterval() {
stopScroll()
scrol1Speed += 200
startScroll()

}

function reducedump() {
scrolTdump -= 2

}

function increasedump() {
scrolTdump += 2

}

function swapDirection() {
scrol1Direction = (scrollDirection == "down") ? "up

: "down"
}
function startScroll() {

parent.display.scroll1By(0, scrolldump)

if (intervallD) {

clearInterval(intervallD)

}

intervallD = setInterval("autoScroll()",scrollSpeed)
}
function stopScroll() f

clearInterval(intervallD)
}
</SCRIPT>
</HEAD>
<BODY onlLoad="startScroll()">
AutoScroll by setInterval() Controller
<FORM NAME="custom">
<INPUT TYPE="button" VALUE="Start Scrolling" onClick="startScroll()">
<INPUT TYPE="button" VALUE="Stop Scrolling" onClick="stopScroll()"><P>
<INPUT TYPE="button" VALUE="Shorter Time Interval" onClick="reducelnterval()">
<INPUT TYPE="button" VALUE="Longer Time Interval"
onClick="increaselnterval()"><P>
<INPUT TYPE="button" VALUE="Bigger Scroll Jumps" onClick="increasedump()">
<INPUT TYPE="button" VALUE="Smaller Scroll Jumps" onClick="reducedump()"><P>
<INPUT TYPE="button" VALUE="Change Direction" onClick="swapDirection()">

</FORM>

</BODY>
</HTML>

windowObject.setinterval()

176 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

The setInterval() method is invoked inside the startScrol1() function.
This function initially “burps” the page by one scrol1Jump interval so that the test
in autoScrol1() for the page being scrolled all the way to the top doesn’t halt a
page from scrolling before it gets started. Notice, too, that the function checks for
the existence of an interval ID. If one is there, it is cleared before the new one is set.
This is crucial within the design of the example page, because repeated clicking of
the Start Scrolling button triggers multiple interval timers inside the browser. Only
the most recent one’s ID would be stored in intervalID, allowing no way to clear
the older ones. But this little side trip makes sure that only one interval timer is
running. One of the global variables, scrol1Speed, is used to fill the delay parame-
ter for setInterval (). To change this value on the fly, the script must stop the
current interval process, change the scrol1Speed value, and start a new process.
The intensely repetitive nature of this application is nicely handled by the
setInterval() method.

setTimeout("expr", msecDelay [, languagel)
setTimeout(functionRef, msecDelay [,
funcargl, ..., funcargnl)

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v v v v

Example

When you load the HTML page in Listing 16-38, it triggers the updateTime()
function, which displays the time (in hh:mm am/pm format) in the statusbar.
Instead of showing the seconds incrementing one by one (which may be distracting
to someone trying to read the page), this function alternates the last character of
the display between an asterisk and nothing, like a visual “heartbeat.”

Listing 16-38: Display the Current Time

<HTML>
<HEAD>
<TITLE>Status Bar Clock</TITLE>
<SCRIPT LANGUAGE="JavaScript">
==
var flasher = false
// calculate current time, determine flasher state,
// and insert time into status bar every second
function updateTime() {
var now = new Date()
var theHour = now.getHours()
var theMin = now.getMinutes()
var theTime = "" + ((theHour > 12) ? theHour - 12 : theHour)
theTime += ((theMin < 10) ? ":0" : ":") + theMin

windowObject.setTimeout()

Chapter 2 4+ Window and Frame Objects (Chapter 16)

theTime += (theHour >= 12) ? " pm" : " am"
theTime += ((flasher) ? " " . "*")
flasher = !flasher

window.status = theTime
// recursively call this function every second to keep timer going
timerID = setTimeout("updateTime()",1000)

}

//-->

</SCRIPT>

</HEAD>

<BODY onLoad="updateTime()">
</BODY>
</HTML>

In this function, the setTimeout () method works in the following way: Once the
current time (including the flasher status) appears in the statusbar, the function
waits approximately one second (1,000 milliseconds) before calling the same func-
tion again. You don’t have to clear the timerID value in this application because
JavaScript does it for you every time the 1,000 milliseconds elapse.

Alogical question to ask is whether this application should be using
setInterval() instead of setTimeout (). This is a case in which either one does
the job. To use setInterval () here would require that the interval process start
outside of the updateTime () function, because you need only one process running
that repeatedly calls updateTime (). It would be a cleaner implementation in that
regard, instead of the tons of timeout processes spawned by Listing 16-38. On the
other hand, the application would not run in any browsers before NN4 or IE4, as
Listing 16-38 does.

To demonstrate passing parameters, you can modify the updateTime () function
to add the number of times it gets invoked to the display in the statusbar. For that
to work, the function must have a parameter variable so that it can catch a new
value each time it is invoked by setTimeout ()’s expression. For all browsers, the
function would be modified as follows (unchanged lines are represented by the
ellipsis):

function updateTime(i) {

window.status = theTime + " (" + i + ")"

// pass updated counter value with next call to this function
timerID = setTimeout("updateTime(" + i+1 + ")",1000)

}

If you were running this exclusively in NN4+, you could use its more convenient way
of passing parameters to the function:

timerID = setTimeout(updateTime,1000, i+1)

In either case, the onlLoad event handler would also have to be modified to get the
ball rolling with an initial parameter:

onlLoad = "updateTime(0)"

windowObject.setTimeout()

177

178 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Caution One warning about setTimeout () functions that dive into themselves as fre-
quently as this one does: Each call eats up a bit more memory for the browser
application in Navigator 2. If you let this clock run for a while, some browsers may
encounter memory difficulties, depending on which operating system they're
using. But considering the amount of time the typical user spends on Web pages
(even if only 10 or 15 minutes), the function shouldn't present a problem. And any
reloading invoked by the user (such as by resizing the window in Navigator 2)
frees up memory once again.

showModalDialog("URL"[, arguments]

[, features])
showModelessDialog("URL"[, arguments]
[, features])

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility V) v v

Example

To demonstrate the two styles of dialog boxes, I have implemented the same
functionality (setting some session visual preferences) for both modal and mode-
less dialog boxes. This tactic shows you how to pass data back and forth between
the main page and both styles of dialog box windows.

The first example demonstrates how to use a modal dialog box. In the process,
data is passed into the dialog box window and values are returned. Listing 16-39 is
the HTML and scripting for the main page. A button’s onC11ck event handler invokes
a function that opens the modal dialog box. The dialog box’s document (Listing
16-40) contains several form elements for entering a user name and selecting a few
color styles for the main page. Data from the dialog is fashioned into an array to be
sent back to the main window. That array is initially assigned to a local variable,
prefs, as the dialog box closes. If the user cancels the dialog box, the returned value
is an empty string, so nothing more in getPrefsData() executes. But when the user
clicks OK, the array comes back. Each of the array items is read and assigned to its
respective form value or style property. These values are also preserved in the global
currPrefs array. This allows the settings to be sent to the modal dialog box (as the
second parameter to showModalDialog()) the next time the dialog box is opened.

Listing 16-39: Main Page for showModalDialog()

<HTML>

<HEAD>

<TITLE>window.setModalDialog() Method</TITLE>
{SCRIPT LANGUAGE="JavaScript">

var currPrefs = new Array()

windowObject.showModalDialog()

Chapter 2 4+ Window and Frame Objects (Chapter 16)

function getPrefsData() {
var prefs = showModalDialog("1st16-40.htm", currPrefs,
"dialogWidth:400px; dialogHeight:300px")
if (prefs) {
if (prefs["name"]) {
document.all.firstName.innerText = prefs["name"]
currPrefs["name"] = prefs["name"]
}
if (prefs["bgColor"]) f
document.body.style.backgroundColor = prefs["bgColor"]
currPrefs["bgColor"] = prefs["bgColor"]
}
if (prefs["textColor"]) {
document.body.style.color = prefs["textColor"]
currPrefs["textColor"] = prefs["textColor"]
1
if (prefs["h1Size"]) {
document.all.welcomeHeader.style.fontSize = prefs["h1Size"]
currPrefs["hlSize"] = prefs["hlSize"]

t
}
function init() {
document.all.firstName.innerText = "friend"
}
</SCRIPT>

</HEAD>

<BODY BGCOLOR="steeeeee" STYLE="margin:20px" onLoad="init()">
<H1>window.setModalDialog() Method</H1>

<HR>

<H2 ID="welcomeHeader">Welcome, I</H2>
<HR>

<P>Use this button to set style preferences for this page:
<BUTTON ID="prefsButton" onClick="getPrefsData()">
Preferences

</BUTTON>

</BODY>

</HTML>

The dialog box’s document, shown in Listing 16-40, is responsible for reading the
incoming data (and setting the form elements accordingly) and assembling form
data for return to the main window’s script. Notice when you load the example that
the TITLE element of the dialog box’s document appears in the dialog box window’s
title bar.

When the page loads into the dialog box window, the init () function examines
the window.dialogArguments property. If it has any data, the data is used to pre-
set the form elements to mirror the current settings of the main page. A utility func-
tion, setSelected(), pre-selects the option of a SELECT element to match the
current settings.

windowObject.showModalDialog()

179

180 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Buttons at the bottom of the page are explicitly positioned to be at the lower-
right corner of the window. Each button invokes a function to do what is needed
to close the dialog box. In the case of the OK button, the hand1e0K() function
sets the window.returnValue property to the data that come back from the
getFormData () function. This latter function reads the form element values and
packages them in an array using the form elements’ names as array indices. This
helps keep everything straight back in the main window’s script, which uses the
index names, and is therefore not dependent upon the precise sequence of the form
elements in the dialog box window.

Listing 16-40: Document for the Modal Dialog

<HTML>

<HEAD>

<TITLE>User Preferences</TITLE>

<SCRIPT LANGUAGE="JavaScript">

// Close the dialog

function closeme() {
window.close()

}

// Handle click of OK button

function handleOK() {
window.returnValue = getFormData()
closeme()

}

// Handle click of Cancel button

function handleCancel() {
window.returnValue =
closeme()

nn

}
// Generic function converts form element name-value pairs
// into an array
function getFormData() {
var form = document.prefs
var returnedData = new Array()
// Harvest values for each type of form element
for (var i = 0; i < form.elements.length; i++) {

if (form.elements[i].type == "text") {
returnedDatalform.elements[i].name] = form.elements[i].value
} else if (form.elements[i].type.indexOf("select") != -1) {

returnedDatalform.elements[i].name] =
form.elements[i].options[form.elements[i].selectedIndex].value

} else if (form.elements[i].type == "radio") {
returnedDatalform.elements[i].name] = form.elements[i].value
} else if (form.elements[i].type == "checkbox") {

returnedDatalform.elements[i].name] = form.elements[il.value
} else continue
}
return returnedData

windowObject.showModalDialog()

Chapter 2 4+ Window and Frame Objects (Chapter 16)

// Initialize by setting form elements from passed data
function init() {
if (window.dialogArguments) {
var args = window.dialogArguments
var form = document.prefs
if (args["name"]) {
form.name.value = args["name"]
1
if (args["bgColor"]) {
setSelected(form.bgColor, args["bgColor"])
}
if (args["textColor"]) {
setSelected(form.textColor, args["textColor"])
}
if (args["h1Size"]) {
setSelected(form.h1Size, args["h1Size"])
1
}
}
// Utility function to set a SELECT element to one value
function setSelected(select, value) {
for (var i = 0; i < select.options.length; i++) {
if (select.options[i].value == value) {
select.selectedIndex = i
break
}
1
return
}
// Utility function to accept a press of the
// Enter key in the text field as a click of 0K
function checkEnter() {
if (window.event.keyCode == 13) {
hand1eOK()
1
}
</SCRIPT>
</HEAD>

<BODY BGCOLOR="#teeeeee" onLoad="init()">

<H2>Web Site Preferences</H2>

<HR>

<TABLE BORDER=0 CELLSPACING=2>

<FORM NAME="prefs" onSubmit="return false">

<TR>

<TD>Enter your first name:<INPUT NAME="name" TYPE="text" VALUE="" SIZE=20
onKeyDown="checkEnter()">

</TR>

<TR>
<TD>Select a background color:
(SELECT NAME="bgColor">
<OPTION VALUE="beige">Beige
<OPTION VALUE="antiquewhite">Antique White

Continued

windowObject.showModalDialog()

181

182 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-40 (continued)

<OPTION VALUE="goldenrod">Goldenrod
<OPTION VALUE="Time">Lime
<OPTION VALUE="powderblue">Powder Blue
<OPTION VALUE="slategray">Slate Gray
</SELECT>
</TR>

<TR>

<TD>Select a text color:

<SELECT NAME="textColor">
<OPTION VALUE="black">Black
<OPTION VALUE="white">White
<OPTION VALUE="navy">Navy Blue
<OPTION VALUE="darkorange">Dark Orange
<OPTION VALUE="seagreen">Sea Green
<OPTION VALUE="teal">Teal

</SELECT>

</TR>

<TR>
<TD>Select "Welcome" heading font point size:
{SELECT NAME="h1Size">
<OPTION VALUE="12">12
<OPTION VALUE="14">14
<OPTION VALUE="18">18
<OPTION VALUE="24">24
<OPTION VALUE="32">32
<OPTION VALUE="48">48
</SELECT>
</TR>
</TABLE>
</FORM>
<DIV STYLE="position:absolute; Teft:200px; top:220px">
<BUTTON STYLE="width:80px" onClick="hand1e0K()">0K</BUTTON>
<BUTTON STYLE="width:80px" onClick="handleCancel()">Cancel</BUTTON>
</DIVS
</BODY>
<THTML>

One last convenience feature of the dialog box window is the onKeyPress event
handler in the text box. The function it invokes looks for the Enter key. If that key is
pressed while the box has focus, the same hand1e0K() function is invoked, as if the
user had clicked the OK button. This feature makes the dialog box behave as if the
OK button is an automatic default, just as “real” dialog boxes.

You should observe several important structural changes that were made to turn
the modal approach into a modeless one. Listing 16-41 shows the version of the
main window modified for use with a modeless dialog box. Another global variable,
prefsDlog, is initialized to eventually store the reference to the modeless window

windowObject.showModalDialog()

Chapter 2 4+ Window and Frame Objects (Chapter 16)

returned by the showModelessWindow() method. The variable gets used to invoke
the init () function inside the modeless dialog box, but also as conditions in an if
construction surrounding the generation of the dialog box. The reason this is
needed is to prevent multiple instances of the dialog box being created (the button
is still alive while the modeless window is showing). The dialog box won’t be created
again as long as there is a value in prefsD1og, and the dialog box window has not
been closed (picking up the window. closed property of the dialog box window).

The showModelessDialog() method’s second parameter is a reference to the
function in the main window that updates the main document. As you see in a
moment, that function is invoked from the dialog box when the user clicks the OK
or Apply buttons.

Listing 16-41: Main Page for showModelessDialog()

<HTML>

<HEAD>

<TITLE>window.setModelessDialog() Method</TITLE>

{SCRIPT LANGUAGE="JavaScript">

var currPrefs = new Array()

var prefsDlog

function getPrefsData() {

if (lprefsDlog || prefsDlog.closed) {

prefsDlog = showModelessDialog("1stl16-42.htm", setPrefs,
"dialogWidth:400px; dialogHeight:300px")
prefsDlog.init(currPrefs)

}

function setPrefs(prefs) {

if (prefs["bgColor"]) {
document.body.style.backgroundColor = prefs["bgColor"]
currPrefs["bgColor"] = prefs["bgColor"]

}

if (prefs["textColor"]) {
document.body.style.color = prefs["textColor"]
currPrefs["textColor"] = prefs["textColor"]

}

if (prefs["hlSize"]) {
document.all.welcomeHeader.style.fontSize = prefs["h1Size"]
currPrefs["h1Size"] = prefs["h1Size"]

}

if (prefs["name"]) {
document.all.firstName.innerText = prefs["name"]
currPrefs["name"] = prefs["name"]

}

function init() {
document.all.firstName.innerText = "friend"

}

</SCRIPT>

Continued

windowObject.showModalDialog()

183

184 1avaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-41 (continued)

</HEAD>

<BODY BGCOLOR="steeeeee" STYLE="margin:20px" onLoad="init()">
<H1>window.setModelessDialog() Method</H1>

<HR>

<H2 ID="welcomeHeader">Welcome, I</H2>
<HR>

<P>Use this button to set style preferences for this page:
<BUTTON ID="prefsButton" onClick="getPrefsData()">
Preferences

</BUTTON>

</BODY>

</HTML>

Changes to the dialog box window document for a modeless version (Listing 16-42)
are rather limited. A new button is added to the bottom of the screen for an Apply but-
ton. As in many dialog box windows you see in Microsoft products, the Apply button
lets current settings in dialog boxes be applied to the current document but without
closing the dialog box. This approach makes experimenting with settings easier.

The Apply button invokes a hand1eApply () function, which works the same as
hand1e0K (), except the dialog box is not closed. But these two functions communi-
cate back to the main window differently than a modal dialog box. The main window’s
processing function is passed as the second parameter of showModelessDialog()
and is available as the window.dialogArguments property in the dialog box win-
dow’s script. That function reference is assigned to a local variable in both functions,
and the remote function is invoked, passing the results of the getFormData () func-
tion as parameter values back to the main window.

Listing 16-42: Document for the Modeless Dialog Box

<HTML>

<HEAD>

<TITLE>User Preferences</TITLE>

<SCRIPT LANGUAGE="JavaScript">

// Close the dialog

function closeme() {
window.close()

}

// Handle click of OK button

function handleOK() {
var returnfunc = window.dialogArguments
returnFunc(getFormData())
closeme()

windowObject.showModalDialog()

Chapter 2 4+ Window and Frame Objects (Chapter 16) |1 85

// Handle click of Apply button

function handleApply() {
var returnfFunc = window.dialogArguments
returnfFunc(getFormData())

}

// Handle click of Cancel button

function handleCancel() {
window.returnValue =
closeme()

nn

}
// Generic function converts form element name-value pairs
// into an array
function getFormData() {
var form = document.prefs
var returnedData = new Array()
// Harvest values for each type of form element
for (var 1 = 0; i < form.elements.length; i++) {

if (form.elements[i].type == "text") {
returnedDatalform.elements[il.name] = form.elements[il.value
} else if (form.elements[i].type.index0f("select") != -1) {

returnedDatalform.elements[i].name] =
form.elements[i].options[form.elements[i].selectedIndex].value

} else if (form.elements[i].type == "radio") {
returnedDatalform.elements[i].name] = form.elements[i].value
} else if (form.elements[i].type == "checkbox") {

returnedDatalform.elements[i].name] = form.elements[i].value
} else continue
}
return returnedData
}
// Initialize by setting form elements from passed data
function init(currPrefs) {
if (currPrefs) {
var form = document.prefs
if (currPrefs["name"]) {
form.name.value = currPrefs["name"]
1
if (currPrefs["bgColor"]) {
setSelected(form.bgColor, currPrefs["bgColor"])
1
if (currPrefs["textColor"]) {
setSelected(form.textColor, currPrefs["textColor"])
1
if (currPrefs["h1Size"]) {
setSelected(form.h1Size, currPrefs["h1Size"])
1
}

}
// Utility function to set a SELECT element to one value

function setSelected(select, value) {
for (var i = 0; i < select.options.length; i++) {
if (select.options[i].value == value) {

Continued

windowObject.showModalDialog()

186 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-42 (continued)

select.selectedIndex = i
break
1
}
return
}
// Utility function to accept a press of the
// Enter key in the text field as a click of OK
function checkEnter() {
if (window.event.keyCode == 13) {
hand1e0K()
}
}
</SCRIPT>
</HEAD>

<BODY BGCOLOR="#eeeeee" onLoad="init()">

<H2>Web Site Preferences</H2>

<HR>

<TABLE BORDER=0 CELLSPACING=2>

<FORM NAME="prefs" onSubmit="return false">

<TR>

<TD>Enter your first name:<INPUT NAME="name" TYPE="text" VALUE="" SIZE=20
onKeyDown="checkEnter()">

</TR>

<TR>
<TD>Select a background color:
{SELECT NAME="bgColor">
<OPTION VALUE="beige">Beige
<OPTION VALUE="antiquewhite">Antique White
<OPTION VALUE="goldenrod">Goldenrod
<OPTION VALUE="Time">Lime
<OPTION VALUE="powderblue">Powder Blue
<OPTION VALUE="slategray">Slate Gray
</SELECT>
</TR>

<TR>

<TD>Select a text color:

<(SELECT NAME="textColor">
<OPTION VALUE="black">Black
<OPTION VALUE="white">White
<OPTION VALUE="navy">Navy Blue
<OPTION VALUE="darkorange">Dark Orange
<OPTION VALUE="seagreen">Sea Green
<OPTION VALUE="teal">Teal

</SELECT>

</TR>

windowObject.showModalDialog()

Chapter 2 4+ Window and Frame Objects (Chapter16) 187

<TR>
<TD>Select "Welcome" heading font point size:
{SELECT NAME="h1Size">
<OPTION VALUE="12">12
<OPTION VALUE="14">14
<OPTION VALUE="18">18
<OPTION VALUE="24">24
<OPTION VALUE="32">32
<OPTION VALUE="48">48
</SELECT>
</TR>
</TABLE>
</FORM>
<DIV STYLE="position:absolute; left:120px; top:220px">
<BUTTON STYLE="width:80px" onClick="hand1e0K()">0K</BUTTON>
<BUTTON STYLE="width:80px" onClick="handleCancel()">Cancel</BUTTON>
<BUTTON STYLE="width:80px" onClick="handleApply()">Apply</BUTTON>
</DIVY
</BODY>
<THTML>

The biggest design challenge you probably face with respect to these windows is
deciding between a modal and modeless dialog box style. Some designers insist
that modality has no place in a graphical user interface; others say that there are
times when you need to focus the user on a very specific task before any further
processing can take place. That’s where a modal dialog box makes perfect sense.

sizeToContent()

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) in NN6 to try the
sizeToContent () method. Assuming that you are running The Evaluator from the
Chap13 directory on the CD-ROM (or the directory copied as-is to your hard disk),
you can open a subwindow with one of the other files in the directory, and then size
the subwindow. Enter the following statements into the top text box:

a = window.open("1st13-02.htm","")
a.sizeToContent()

The resized subwindow is at the minimum recommended width for a browser win-
dow, and at a height tall enough to display the little bit of content in the document.

windowObject.sizeToContent()

188 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Event handlers

onAfterPrint
onBeforePrint

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v v

Example

The following script fragment assumes that the page includes a DIV element
whose style sheet includes a setting of display:none as the page loads.
Somewhere in the Head, the print-related event handlers are set as properties:

function showPrintCopyright() {
document.all.printCopyright.style.display = "block"

}

function hidePrintCopyright() {
document.all.printCopyright.style.display

"none"
}

window.onbeforeprint = showPrintCopyright
window.onafterprint = hidePrintCopyright

onBeforeUnload

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v
Example
The simple page in Listing 16-43 shows you how to give the user a chance to stay
on the page.

Listing 16-43: Using the onBeforeUnload Event Handler

<HTML>
<HEAD>
<TITLE>onBeforeUnload Event Handler</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function verifyClose() {
event.returnValue = "We really like you and hope you will stay longer."
}

windowObject.onBeforeUnload

Chapter 2 4+ Window and Frame Objects (Chapter 16) |1 89

window.onbeforeunload = verifyClose
</SCRIPT>

</HEAD>

<BODY>

<H1>onBeforeUnload Event Handler</H1>

<HR>

<P>Use this button to navigate to the previous page:
<BUTTON ID="go" onClick="history.back()">

Go Back

</BUTTON>

</BODY>

</HTML>

onHelp

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v/ v v

Example

The following script fragment can be embedded in the IE5-only modeless dialog
box code in Listing 16-44 to provide context-sensitive help within the dialog box.
Help messages for only two of the form elements are shown here, but in a real appli-
cation you add messages for the rest.

function showHelp() {
switch (event.srcElement.name) {
case "bgColor" :
alert("Choose a color for the main window\'s background.")
break
case "name" :
alert("Enter your first name for a friendly greeting.")
break
default :
alert("Make preference settings for the main page styles.")
1
event.returnValue = false
}
window.onhelp = showHelp

Because this page’s help focuses on form elements, the switch construction
cases are based on the name properties of the form elements. For other kinds of
pages, the id properties may be more appropriate.

windowObject.onHelp

190 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

FRAME Element Object

Properties
borderColor

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

Although you may experience problems (especially in IE5) changing the color of
a single frame border, the W3C DOM syntax would look like the following if the
script were inside the framesetting document:

document.getETementById("contentsFrame").borderColor = "red"
The IE-only version would be:
document.all["contentsFrame"].borderColor = "red"

These examples assume the frame name arrives to a script function as a string. If
the script is executing in one of the frames of the frameset, add a reference to parent
in the preceding statements.

contentDocument

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v

Example

A framesetting document script might be using the ID of a FRAME element to
read or adjust one of the element properties, and then need to perform some action
on the content of the page through its document object. You can get the reference
to the document object via a statement, such as the following:

var doc = document.getElementById("FRAME3").contentDocument
Then your script can, for example, dive into a form in the document:

var val = doc.mainForm.entry.value

FRAME.contentDocument

Chapter 2 4+ Window and Frame Objects (Chapter16) 19]

Document
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v
Example

While you have far easier ways to reach the document object of another frame
(parent.otherFrameName.document), the following statement takes the long way
to get there to retrieve the number of forms in the document of another frame:

var formCount = parent.document.all.contentsFrame.Document.forms.length

Using the Document property only truly makes sense when a function is passed a
FRAME or IFRAME element object reference as a parameter, and the script must,
among other things more related to those objects, access the document contained
by those elements.

frameBorder

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v 4 4

Example

The default value for the frameBorder property is yes. You can use this setting
to create a toggle script (which, unfortunately, does not change the appearance in
IE). The W3C-compatible version looks like the following:

function toggleFrameScroll(framelD) {
var thefFrame = document.getElementById(framelD)

if (theFrame.frameBorder == "yes") {
theFrame.frameBorder = "no"
} else {
theFrame.frameBorder = "yes"
}
}
height
width

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/ v v

1972 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example

The following fragment assumes a frameset defined with two frames set up as
two columns within the frameset. The statements here live in the framesetting doc-
ument. They retrieve the current width of the left frame and increase the width of
that frame by ten percent. Syntax shown here is for the W3C DOM, but can be easily
adapted to IE-only terminology.

var frameWidth = document.getElementById("leftFrame").width
document.getElementById("mainFrameset").cols = (Math.round(frameWidth * 1.1)) +

noxn
B

Notice how the numeric value of the existing frame width is first increased by ten
percent and then concatenated to the rest of the string property assigned to the
frameset’s cols property. The asterisk after the comma means that the browser
should figure out the remaining width and assign it to the right-hand frame.

noResize
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v/ v v v
Example

The following statement turns off the ability for a frame to be resized:
parent.document.getElementById("myFramel"”).noResize = true

Because of the negative nature of the property name, it may be difficult to keep
the logic straight (setting noResize to true means that resizability is turned off).
Keep a watchful eye on your Boolean values.

scrolling

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v 4

Example

Listing 16-45 produces a frameset consisting of eight frames. The content for the
frames is generated by a script within the frameset (via the fi11Frame() function).
Event handlers in the Body of each frame invoke the toggleFrameScrol1() func-
tion. Both ways of referencing the FRAME element object are shown, with the IE-
only version commented out.

FRAME.scrolling

Chapter 2 4+ Window and Frame Objects (Chapter16) 193

In the toggleFrameScroll() function, the if condition checks whether the
property is set to something other than no. This allows the condition to evaluate to
true if the property is set to either auto (the first time) or yes (as set by the func-
tion). Note that the scrollbars don’t disappear from the frames in IE5.5 or NN6.

Listing 16-45: Controlling the FRAME.scrolling Property

<HTML>
<HEAD>
<TITLE>frame.scrolling Property</TITLE>
</HEAD>
{SCRIPT LANGUAGE="JavaScript">
function toggleFrameScroll(framelD) {
// T1E5 & NN6 version
var theframe = document.getElementById(framelD)
// TE4+ version
// var theFrame = document.all[framelD]

if (theFrame.scrolling != "no") {
theFrame.scrolling = "no"
} else {

thefFrame.scrolling = "yes"
}
}
// generate content for each frame
function fillFrame(framelD) {
var page = "<HTML><BODY onClick='parent.toggleFrameScroll(\"" +
frameID + "\")'>"
page += "<P>This frame has the ID of:</P><P>" + framelD + ".</P>"
page += "</BODY></HTML>"
return page
}
</SCRIPT>
<FRAMESET ID="outerFrameset" COLS="50%,50%">
{FRAMESET ID="innerFramesetl" ROWS="25%,25%,25%,25%">
<FRAME ID="myFramel" SRC="javascript:parent.fillFrame('myFramel")">
<FRAME 1D="myFrame2" SRC="javascript:parent.fillFrame('myFrame2')">
<FRAME 1ID="myFrame3" SRC="javascript:parent.fillFrame('myFrame3')">
<FRAME ID="myFrame4" SRC="javascript:parent.fillFrame('myFrame4')">
</FRAMESET>
{FRAMESET ID="innerFrameset2" ROWS="25%,25%,25%,25%">
<FRAME ID="myFrame5" SRC="javascript:parent.fillFrame("'myFrame5")">
<FRAME 1D="myFrame6" SRC="javascript:parent.fillFrame('myFrame6')">
<FRAME ID="myFrame7" SRC="javascript:parent.fillFrame('myFrame7"')">
<FRAME ID="myFrame8" SRC="javascript:parent.fillFrame('myFrame8")">
</FRAMESET>
</FRAMESET>
</HTML>

FRAME.scrolling

194 1avaScript Examples Bible: The Essential Companion to JavaScript Bible

src
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v
Example
For best results, use fully formed URLs as value for the src property, as shown
here:
parent.document.getElementById("mainFrame").src = "http://www.dannyg.com"

Relative URLs and javascript: pseudo-URLs will also work most of the time.

FRAMESET Element Object

Properties
border
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v
Example

Even though the property is read/write in IE4+, changing the value does not
change the thickness of the border you see in the browser. If you need to find the
thickness of the border, a script reference from one of the frame’s documents would
look like the following:

var thickness = parent.document.all.outerframeset.border

borderColor

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

To retrieve the current color setting in a frameset, a script reference from one of
the frame’s documents would look like the following:

var borderColor = parent.document.all.outerfFrameset.borderColor

FRAMESET.borderColor

Chapter 2 + Window and Frame Objects (Chapter 16) 195

cols
rows
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v/ v/ v/ v/
Example

Listings 16-46 through 16-48 show the HTML for a frameset and two of the three
documents that go into the frameset. The final document is an HTML version of the
U.S. Bill of Rights, which is serving here as a content frame for the demonstration.

The frameset listing (16-46) shows a three-frame setup. Down the left column is a
table of contents (16-47). The right column is divided into two rows. In the top row
is a simple control (16-48) that hides and shows the table of contents frame. As the
user clicks the hot text of the control (located inside a SPAN element), the onC1ick
event handler invokes the toggleTOC () function in the frameset. Figure 2-10 shows
the frameset with the menu exposed.

0 ame 3 B DS0 erne are —|Ex
J File Edit View Favorites Tools Help ‘
J] at Q E7| 3 2 S = >
Back Fornward Stop Refresh Home Search Favorites History Mail Print Edit
Table of <<I—B%J’Show>> Table of Contents
Contents
i ARTICLE I
e Apticle IT
o Agticle I Congress shall make no law respecting an establishment of religon, or prohibitmg the free exercise
o Asticle IV thereof, or abridging the freedom of speech, or of the press; or the right of the people peaceably to
. Aricde ¥ assemble, and to petition the government for a redress of grievances
» Agticle V1
o Aticle VI ARTICLE II
* Article WIIT
o Asticle I3 A well regulated militia, being necessary to the security of a free state, the right of the people to keep
* Article X and bear arms, shall not be mfnged
ARTICLE III
Mo soldier shall, in time of peace, be quartered in any house, without the consent of the owner, nor in
time of war, but in in a manner to be prescribed by law
ARTICLE TV o
2] [[Emy computer

Figure 2-10: Frameset specifications are modified on the fly when you click on the top
control link.

FRAMESET.cols

196 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Syntax used in this example is W3C-compatible. To modify this for [E-only, you
replace document.getElementById("outerFrameset") with document.all.
outerfFrameset and elem.firstChild.nodeValuetoelem.innerText. You can
also branch within the scripts to accommodate both styles.

Listing 16-46: Frameset and Script for Hiding/Showing a

Frame
<HTML>
<HEAD>
<TITLE>Hide/Show Frame Example</TITLE>
</HEAD>

{SCRIPT LANGUAGE="JavaScript">
var origCols
function toggleTOC(elem, frm) {
if (origCols) {
showTOC(elem)
} else {
hideTOC(elem, frm)
}
}
function hideTOC(elem, frm) {
var frameset = document.getElementById("outerFrameset")
origCols = frameset.cols
frameset.cols = "0,*"
}
function showTOC(elem) {
if (origCols) {
document.getETementById("outerFrameset").cols = origCols
origCols = null
}
}
</SCRIPT>
<FRAMESET ID="outerFrameset" FRAMEBORDER="no" COLS="150,*">
<FRAME ID="TOC" NAME="TOCFrame" SRC="1st16-47.htm">
{FRAMESET ID="innerFramesetl" ROWS="80,*">
<FRAME ID="controls" NAME="controlsFrame" SRC="1st16-48.htm">
<FRAME ID="content" NAME="contentFrame" SRC="bofright.htm">
<{/FRAMESET>
</FRAMESET>
</HTML>

When a user clicks the hot spot to hide the frame, the script copies the original
cols property settings to a global variable. The variable is used in showT0C() to
restore the frameset to its original proportions. This allows a designer to modify
the HTML for the frameset without also having to dig into scripts to hard-wire the
restored size.

FRAMESET.cols

Chapter 2 4+ Window and Frame Objects (Chapter16) 197/

Listing 16-47: Table of Contents Frame Content

<HTML>

<HEAD>

<TITLE>Table of Contents</TITLE>
</HEAD>

<BODY BGCOLOR="#feeeeee">
<H3>Table of Contents</H3>

<HR>

<UL STYLE="font-size:10pt">
<A HREF="bofright.htmffartic
<A HREF="bofright.htmffartic
<A HREF="bofright.htmffartic
<A HREF="bofright.htmffartic
<A HREF="bofright.htmffartic
<A HREF="bofright.htmffartic
<A HREF="bofright.htmffartic
<A HREF="bofright.htmffartic
<A HREF="bofright.htmffartic
<A HREF="bofright.htmffartic
<UL

</BODY>

</HTML>

el" TARGET="contentFrame">Article I
e2" TARGET="contentFrame">Article II
e3" TARGET="contentFrame">Article III
ed4" TARGET="contentFrame">Article IV/AX
eb" TARGET="contentFrame">Article V
e6" TARGET="contentFrame">Article VI
e7" TARGET="contentFrame">Article VIIK/A>/LI>
e8" TARGET="contentFrame">Article VIIIK/AX/LI>
e9" TARGET="contentFrame">Article IX
el0" TARGET="contentFrame">Article X

Listing 16-48: Control Panel Frame

<HTMLY

<HEAD>

<TITLE>Control Panel</TITLE>

</HEAD>

<BODY>

<P>

<SPAN ID="tocToggle"
STYLE="text-decoration:underline; cursor:hand"
onClick="parent.toggleTOC(this)"> &1t;&1t;Hide/Show>>

Table of Contents

</P>
</BODY>
<IHTML>
frameBorder
NN2 NN3 NN4 NNé6 IE3/J1 1E3/)2 1E4 1E5 1E5.5
Compatibility v v v

FRAMESET.frameBorder

198 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example

The default value for the frameBorder property is yes. You can use this setting
to create a toggle script (which, unfortunately, does not change the appearance in
IE). The I[E4+-compatible version looks like the following:

function togglefFrameScroll(framesetID) {
var thefFrameset = document.all(framesetID)

if (theFrameset.frameBorder == "yes") {
thefFrameset.frameBorder = "no"
} else {

theFrameset.frameBorder "yes"

}
}

frameSpacing

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

Even though the property is read/write in [E4+, changing the value does not
change the thickness of the frame spacing you see in the browser. If you need to
find the spacing as set by the tag’s attribute, a script reference from one of the
frame’s documents would look like the following:

var spacing = parent.document.all.outerFrameset.frameSpacing

IFRAME Element Object

Properties
align
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v
Example

The default setting for an IFRAME alignment is baseline. A script can shift the
IFRAME to be flush with the right edge of the containing element as follows:

document.getElementById("iframel").align = "right"

IFRAME.align

Chapter 2 4+ Window and Frame Objects (Chapter 16) |1 99O

contentDocument

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

A document script might be using the ID of an IFRAME element to read or adjust
one of the element properties; it then needs to perform some action on the content
of the page through its document object. You can get the reference to the document
object via a statement, such as the following:

var doc = document.getElementById("FRAME3").contentDocument
Then your script can, for example, dive into a form in the document:

var val = doc.mainForm.entry.value

frameBorder

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v/ v v
Example
See the example for the FRAME . frameBorder property earlier in this chapter.
hspace
vspace
NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v/ v v
Example

The following fragment sets the white space surrounding an IFRAME element to
an equal amount:

20
20

document.all.myIframe.hspace
document.all.mylframe.vspace

Unfortunately these changes do not work for [E5/Windows.

200 lavaScript Examples Bible: The Essential Companion to JavaScript Bible

scrolling

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v

Example

The following togglelFrameScroll () function accepts a string of the [IFRAME
element’s ID as a parameter and switches between on and off scroll bars in the
IFRAME. The if condition checks whether the property is set to something other
than no. This test allows the condition to evaluate to true if the property is set to
either auto (the first time) or yes (as set by the function).

function toggleframeScroll(framelID) {
// TE5 & NN6 version
var thefFrame = document.getElementById(framelD)
// TE4+ version
// var theFrame = document.all[framelD]

if (theFrame.scrolling != "no") {
thefFrame.scrolling = "no"
} else {

theFrame.scrolling = "yes"
1

src
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v
Example
For best results, use fully formed URLs as value for the src property, as shown
here:

document.getETementById("mylframe").src = "http://www.dannyg.com"

Relative URLs and javascript: pseudo-URLs also work most of the time.

Chapter 2 4+ Window and Frame Objects (Chapter 16) 2]

popup Object

Properties
document
NN2 NN3 NN4 NNé6é IE3/J1 1E3/)2 IE4 IE5 IE5.5
Compatibility v
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
popup object and its properties. Enter the following statements into the top text
box. The first statement creates a pop-up window, whose reference is assigned to
the a global variable. Next, a reference to the body of the pop-up’s document is pre-
served in the b variable for the sake of convenience. Further statements work with
these two variables.

= window.createPopup()

= a.document.body

.style.border = "solid 2px black"

.style.padding = "5px"

.innerHTML = "<P>Here is some text in a popup window</P>"
.show(200,100, 200, 50, document.body)

O O O T T o

See the description of the show() method for details on the parameters.

isOpen
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
isOpen property. Enter the following statements into the top text box. The
sequence begins with a creation of a simple pop-up window, whose reference is
assigned to the a global variable. Note that the final statement is actually two state-
ments, which are designed so that the second statement executes while the pop-up
window is still open.

a = window.createPopup()
a.document.body.innerHTML = "<P>Here is a popup window</P>"
a.show(200,100, 200, 50, document.body); alert("Popup is open:" + a.isOpen)

popupObject.isOpen

202 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

If you then click into the main window to hide the pop-up, you will see a different
result if you enter the following statement into the top text box by itself:

alert("Popup is open:" + a.isOpen)

Methods

hide()
show(left, top, width, height[,
positioningElementRef])

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

Listing 16-49 demonstrates both the show() and hide () methods for a popup
object. A click of the button on the page invokes the sel1fTimer () function, which
acts as the main routine for this page. The goal is to produce a pop-up window that
“self-destructs” five seconds after it appears. Along the way, a message in the pop-
up counts down the seconds.

A reference to the pop-up window is preserved as a global variable, called
popup. After the popup object is created, the initContent () function stuffs the
content into the pop-up by way of assigning sty1e properties and some innerHTML
for the body of the document that is automatically created when the pop-up is gen-
erated. A SPAN element is defined so that another function later on can modify the
content of just that segment of text in the pop-up. Notice that the assignment of
content to the pop-up is predicated on the pop-up window having been initialized
(by virtue of the popup variable having a value assigned to it) and that the pop-up
window is not showing. While invoking initContent () under any other circum-
stances is probably impossible, the validation of the desired conditions is good pro-
gramming practice.

Backin selfTimer(), the popup object is displayed. Defining the desired size
requires some trial and error to make sure the pop-up window comfortably accom-
modates the text that is put into the pop-up in the initContent () function.

With the pop-up window showing, now is the time to invoke the countDown ()
function. Before the function performs any action, it validates that the pop-up has
been initialized and is still visible. If a user clicks the main window while the
counter is counting down, this changes the value of the isOpen property to false,
and nothing inside the if condition executes.

This countDown () function grabs the inner text of the SPAN and uses
paresInt() to extract just the integer number (using base 10 numbering, because
we're dealing with zero-leading numbers that can potentially be regarded as octal
values). The condition of the if construction decreases the retrieved integer by
one. If the decremented value is zero, then the time is up, and the pop-up window is

popupObject.hide()

Chapter 2 4+ Window and Frame Objects (Chapter 16) (03

hidden with the popup global variable returned to its original, nu11 value. But if the
value is other than zero, then the inner text of the SPAN is set to the decremented
value (with a leading zero), and the setTimeout () method is called upon to rein-
voke the countDown () function in one second (1000 milliseconds).

Listing 16-49: Hiding and Showing a Pop-up

<HTML>

<HEAD>

<TITLE>popup Object</TITLE>

{SCRIPT LANGUAGE="JavaScript">

var popup

function initContent() {

if (popup && !popup.isOpen) {

var popBody = popup.document.body
popBody.style.border = "solid 3px red"
popBody.style.padding = "10px"
popBody.style.fontSize = "24pt"
popBody.style.textAlign = "center"
var bodyText = "<P>This popup will self-destruct in
bodyText += "05"
bodyText += " seconds...</P>"
popBody.innerHTML = bodyText

}
}
function countDown() {
if (popup && popup.isOpen) {
var currCount = parselnt(popup.document.all.counter.innerText, 10)

if (--currCount == 0) {
popup.hide()
popup = null
} else {
popup.document.all.counter.innerText = "0" + currCount

setTimeout("countDown()", 1000)

}

}

function selfTimer() {
popup = window.createPopup()
initContent()
popup.show(200,200,400,100,document.body)
setTimeout("countDown()", 1000)

}

</SCRIPT>

</HEAD>

<BODY>

<FORM>

<INPUT TYPE="button" VALUE="Impossible Mission" onClick="selfTimer()">

</FORM>

</BODY>

</HTML>

popupObject.hide()

204 javaScript Examples Bible: The Essential Companion to JavaScript Bible

The hide () method here is invoked by a script that is running while the pop-up
window is showing. Because a pop-up window automatically goes away if a user
clicks the main window, it is highly unlikely that the hide () method would ever be
invoked by itself in response to user action in the main window. If you want a script
in the pop-up window to close the pop-up, use parentWindow.close().

+ o+ 0+

popupObject.hide()

CHAPTER

Location and
History Objects .
(Chapter 17)

Loading new pages
and other media

types via the
Tocation object
hile both the Tocation and history objects contain
. valuable information about the user’s Web surfing Passing data between
habits and even the content of forms, they could also be pages via URLs

abused by nefarious scripts that wish to invade the privacy of
unsuspecting site visitors. As a result, browsers do not
expose the private details to scripts (except in NN4+ via
signed scripts and the user’s express permission).

The Tocation object, however, is still an important object
to know and exploit. As shown in the examples here, you can + + + +
use it as one cookie-free way to pass text data from one page
to another. And the object remains the primary way scripts
load a new page into the browser.

Navigating through
the browser history
under script control

Examples Highlights

4 The frameset listing for the Tocation.host property
demonstrates several Tocation object properties. You
also find an example of how signed scripts can be used
in NN4+ to access Tocation object properties for pages
served by a different domain.

4 Listings for the Tocation.search property pass data
from one page to another via a URL. In this case, a script
in a page not only makes sure that your site gets served
within the prescribed frameset, but the specific page
also gets loaded into one of the frames, even if it is not
the page specified in the frameset’s definition.

4 Observe the 1Tocation.replace() method’s example.
This method comes in handy when you don’t want one
of your pages to become part of the browser’s history:
Clicking the Back button skips over the replaced page.

4 Run Listings 17-12 and 17-13 for the history.back()
method to see how the behavior of this method varies
among browsers. Consult the JavaScript Bible text for
details on the evolution of this method.

206 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Location Object

Properties
hash
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v v v VA v
Example

When you load the script in Listing 17-1, adjust the size of the browser window so
only one section is visible at a time. When you click a button, its script navigates to
the next logical section in the progression and eventually takes you back to the top.

Listing 17-1: A Document with Anchors

<HTML>

<HEAD>

<TITLE>Tocation.hash Property</TITLE>

<SCRIPT LANGUAGE="JavaScript">

function goNextAnchor(where) {
window.location.hash = where

}

</SCRIPT>

</HEAD>

<BODY>

<H1>Top</H1>

<FORM>

<INPUT TYPE="button" NAME="next" VALUE="NEXT" onClick="goNextAnchor('secl')">
</FORM>

<HR>

<HI1>Section 1</HI>

<FORM>

<INPUT TYPE="button" NAME="next" VALUE="NEXT" onClick="goNextAnchor('sec2')">
</FORM>

<HR>

<H1>Section 2</H1>

<FORM>

<INPUT TYPE="button" NAME="next" VALUE="NEXT" onClick="goNextAnchor('sec3')">
</FORM>

<HR>

<H1>Section 3</HI>

<FORM>

windowObject.location.hash

Chapter 3 4 Location and History Objects (Chapter 17) 2(07

<INPUT TYPE="button" NAME="next" VALUE="BACK TO TOP"
onClick="goNextAnchor('start')">
</FORM>

</BODY>
</HTML>

Anchor names are passed as parameters with each button’s onC11ck event han-
dler. Instead of going through the work of assembling a window. Tocation value in
the function by appending a literal hash mark and the value for the anchor, here I
simply modify the hash property of the current window’s location. This is the pre-
ferred, cleaner method.

If you attempt to read back the window.Tocation.hash property in an added line
of script, however, the window’s actual URL probably will not have been updated yet,
and the browser will appear to be giving your script false information. To prevent this
problem in subsequent statements of the same function, construct the URLs of those
statements from the same variable values you use to set the window.location.hash
property —don’t rely on the browser to give you the values you expect.

host

NN2 NN3 NN4 NNé6 IE3/J1 1IE3/)2 IE4 IE5 IE5.5
Compatibility v A v v R
Example

Use the documents in Listings 17-2 through 17-4 as tools to help you learn the
values that the various window. Tocation properties return. In the browser, open
the file for Listing 17-2. This file creates a two-frame window. The left frame contains
a temporary placeholder (Listing 17-4) that displays some instructions. The right
frame has a document (Listing 17-3) that enables you to load URLs into the left
frame and get readings on three different windows available: the parent window
(which creates the multiframe window), the left frame, and the right frame.

Listing 17-2: Frameset for the Property Picker

<HTML>

<HEAD>

<TITLE>window.location Properties</TITLE>

</HEAD>

<FRAMESET COLS="50%,50%" BORDER=1 BORDERCOLOR="black">
<{FRAME NAME="Framel" SRC="1st17-04.htm">
<{FRAME NAME="Frame2" SRC="1st17-03.htm">

</FRAMESET>

</HTML>

windowObject.location.host

208 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 17-3: Property Picker

<HTML>

<HEAD>

KTITLE>Property Picker</TITLE>

{SCRIPT LANGUAGE="JavaScript">

var isNav4 = (navigator.appName == "Netscape" &&
navigator.appVersion.charAt(0) >= 4) ? true : false

function filllLeftFrame() {
newURL = prompt("Enter the URL of a document to show in the left frame:","")
if (newURL != null && newURL != "") {
parent.frames[0].location = newURL
}
}

function showlLocationData(form) {

for (var i = 0; i <3; i++) {

if (form.whichFrame[i].checked) f{

var windName = form.whichFramel[i].value
break

1
}
var theWind = "" + windName + ".location"
if (isNav4d) {
netscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserRead")
}
var theObj = eval(theWind)
form.windName.value = windName
form.windHash.value = the0Obj.hash
form.windHost.value = theObj.host
form.windHostname.value = theObj.hostname
form.windHref.value = theObj.href
form.windPath.value = theObj.pathname
form.windPort.value = theObj.port
form.windProtocol.value = theObj.protocol
form.windSearch.value = theObj.search
if (isNav4d) {
netscape.security.PrivilegeManager.disablePrivilege("UniversalBrowserRead")
1

}

</SCRIPT>

</HEAD>

<BODY>

Click the "Open URL" button to enter the location of an HTML document to display
in the Teft frame of this window.

<FORM>

<INPUT TYPE="button" NAME="opener" VALUE="Open URL..."
onClick="filllLeftFrame()">

<HR>

<CENTER>

Select a window/frame. Then click the "Show Location Properties" button to view
each window.location property value for the desired window.<P>

windowObject.location.host

Chapter 3 4 Location and History Objects (Chapter 17) 2(09

<INPUT TYPE="radio" NAME="whichFrame" VALUE="parent" CHECKED>Parent window
<INPUT TYPE="radio" NAME="whichFrame" VALUE="parent.frames[0]">Left frame
<INPUT TYPE="radio" NAME="whichFrame" VALUE="parent.frames[1]">This frame
<P>

<INPUT TYPE="button" NAME="getProperties" VALUE="Show Location Properties"
onClick="showlLocationData(this.form)">

<INPUT TYPE="reset" VALUE="Clear"><P>

<TABLE BORDER=2>

<TRX><TD ALIGN=right>Window:</TD><TD><INPUT TYPE="text" NAME="windName"
SIZE=30></TD></TR>

<TR><TD ALIGN=right>hash:</TD>

<TD><INPUT TYPE="text" NAME="windHash" SIZE=30></TD></TR>

<TR><TD ALIGN=right>host:</TD>
<TD><INPUT TYPE="text" NAME="windHost" SIZE=30></TD></TR>

<TR>CTD ALIGN=right>hostname:</TD>
<TD><INPUT TYPE="text" NAME="windHostname" SIZE=30></TD></TR>

<TR><TD ALIGN=right>href:</TD>
<TD><TEXTAREA NAME="windHref" ROWS=3 COLS=30 WRAP="soft">
</TEXTAREA></TD></TR>

<TR><TD ALIGN=right>pathname:</TD>
<TD><TEXTAREA NAME="windPath" ROWS=3 COLS=30 WRAP="soft">
</TEXTAREA>S/TD></TR>

<TR><TD ALIGN=right>port:</TD>
<TD>CINPUT TYPE="text" NAME="windPort" SIZE=30></TD></TR>

<TR><TD ALIGN=right>protocol:</TD>
<TD><INPUT TYPE="text" NAME="windProtocol" SIZE=30></TD></TR>

<TR><TD ALIGN=right>search:</TD>

<TD><TEXTAREA NAME="windSearch" ROWS=3 COLS=30 WRAP="soft">
</TEXTAREA>/TD></TR>

</TABLE>

</CENTER>

</FORM>

</BODY>

</HTML>

Listing 17-4: Placeholder Document for Listing 17-2
<HTML>

<HEAD>
KTITLE>Opening Placeholder</TITLE>

Continued

windowObject.location.host

210 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 17-4 (continued)

</HEAD>
<BODY>
Initial placeholder. Experiment with other URLs for this frame (see right).
</BODY>
</HTML>

Figure 3-1 shows the dual-frame browser window with the left frame loaded with
a page from my Web site.

[window location Properties - Netscape 6 {Build 1D: 2000080712}
File Edit W¥isw Search Go Bookmarks Tasks Help

g

Click the "Cpen TRL" butten to enter the location of an
HTML decument to display m the left fame of this window.

Cpen URL...

Select a wndowiframe. Then chck the "Show Location
Properties" button to wiew each window location property
value for the desired window

[] ®ilst17-02.htm

Computer Press Association
Book Awards

Best Product Specific Book {1957):

The Complete HyperCard Handbook

Eest Product Specific Book (1588

Danny Goodman's HyperCard Developer's Cwde
Best Introductory How-To Book, Systems {1952)
Danny Goodman's Macmtosh Handbook

2 Parent window ® Left frame 2 This frame =

| Show Location Properties E Clearl

_—
Window|[[parent . frames[0]

hash||[#Computer Press lssociation Boc

Commercial Software

host|||vww . dannyy. com

Focal Point ipersonal information manager for Bdac)
(1987, Actwision)

Focal Point IT {1988, Activision)

Business Class [interactive world travel mformation)
(1987, Activision)

Sharp Wizard-to-Macintosh Link (1988, Sharp
Electronics Corp.)

hostnatne |||[vww - dannyg. com

http://www. dannyy. com/credits. htr
bref
KN] ¥

fcredits.html

£ e 1000 i1

T, D Aot |
He- Document: Done {1.16 secs) &
= 7

Free Time

Figure 3-1: Browser window loaded to investigate window.location properties

For the best results, open a URL to a Web document on the network from the
same domain and server from which you load the listings (perhaps your local hard
disk). If possible, load a document that includes anchor points to navigate through
a long document. Click the Left frame radio button, and then click the button that
shows all properties. This action fills the table in the right frame with all the avail-
able Tocation properties for the selected window. Figure 3-2 shows the complete
results for a page from my Web site that is set to an anchor point.

windowObject.location.host

Chapter 3 + Location and History Objects (Chapter17) 2]]

-
Window||parent . frames [0]

hash:|[#Computer Press Association Boc

host:|||[www. dannyg . com

hostname:| [wow. dannyg . com

http://wuy, dannyg . com/ credics, hor
href!
4l il [+

/ocredits.html

pathmarme:

port:

protocol| [http:

search:

Figure 3-2: Readout of all window.location
properties for the left frame

Attempts to retrieve these properties from URLs outside of your domain and
server result in a variety of responses based on your browser and browser version.
NN2 returns nul1 values for all properties. NN3 presents an “access disallowed”
security alert. With codebase principals turned on in NN4 (see Chapter 46 of the
JavaScript Bible), the proper values appear in their fields. IE3 does not have the same
security restrictions that Navigator does, so all values appear in their fields. But in
[E4+, you get a “permission denied” error alert. See the following discussion for the
meanings of the other listed properties and instructions on viewing their values.

hostname

NN2 NN3 NN4 NNé6 IE3/J1 1E3/)2 1E4 1E5 1E5.5
Compatibility v v v v v v V4 v
Example

See Listings 17-2 through 17-4 for a set of related pages to help you view the host-
name data for a variety of other pages.

href

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v VA v

windowObject.location.href

212 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example

Listing 17-5 includes the unescape () function in front of the part of the script
that captures the URL. This function serves cosmetic purposes by displaying the
pathname in alert dialog boxes for browsers that normally display the ASCII-
encoded version.

Listing 17-5: Extracting the Directory of the Current
Document

<HTML>
<HEAD>
KTITLE>Extract pathname</TITLE>
<SCRIPT LANGUAGE="JavaScript">
// general purpose function to extract URL of current directory
function getDirPath(URL) {
var result = unescape(URL.substring(0, (URL.TastIndex0f("/")) + 1))
return result
}
// handle button event, passing work onto general purpose function
function showDirPath(URL) {
alert(getDirPath(URL))
}
</SCRIPT>
</HEAD>

<BODY>

<FORM>

<INPUT TYPE="button" VALUE="View directory URL"
onClick="showDirPath(window.location.href)">
</FORM>

</BODY>

</HTML>

pathname

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v VR v

Example

See Listings 17-2 through 17-4 earlier in this chapter for a multiple-frame example
you can use to view the Tocation.pathname property for a variety of URLs of your
choice.

windowObject.location.pathname

Chapter 3 + Location and History Objects (Chapter17) 213

port
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v A v v R
Example

If you have access to URLs containing port numbers, use the documents in
Listings 17-2 through 17-4 to experiment with the output of the Tocation.port
property.

protocol
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v v v VA v
Example

See Listings 17-2 through 17-4 for a multiple-frame example you can use to view
the Tocation.protocol property for a variety of URLs. Also try loading an FTP
site to see the Tocation.protocol value for that type of URL.

search

NN2 NN3 NN4 NNé6 IE3/J)1 1E3/)2 1E4 1IE5 1E5.5
Compatibility v v v v v v V4 v
Example

As mentioned in the opening of Chapter 16 of the JavaScript Bible about frames,
you can force a particular HTML page to open inside the frameset for which it is
designed. But with the help of the search string, you can reuse the same framesetting
document to accommodate any number of content pages that go into one of the
frames (rather than specifying a separate frameset for each possible combination of
pages in the frameset). The listings in this section create a simple example of how to
force a page to load in a frameset by passing some information about the page to the
frameset. Thus, if a user has a URL to one of the content frames (perhaps it has been
bookmarked by right-clicking the frame or it comes up as a search engine result), the
page appears in its designated frameset the next time the user visits the page.

The fundamental task going on in this scheme has two parts. The first is in each
of the content pages where a script checks whether the page is loaded inside a
frameset. If the frameset is missing, then a search string is composed and appended

windowObject.location.search

214 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

to the URL for the framesetting document. The framesetting document has its own
short script that looks for the presence of the search string. If the string is there,
then the script extracts the search string data and uses it to load that specific page
into the content frame of the frameset.

Listing 17-6 is the framesetting document. The getSearchAsArray () function is
more complete than necessary for this simple example, but you can use it in other
instances to convert any number of name/value pairs passed in the search string
(in traditional format of namel=valuel&name2=value2&etc.) into an array whose
indexes are the names (making it easier for scripts to extract a specific piece of
passed data). Version branching takes place because, for convenience, the
getSearchAsArray () function uses text and array methods that don’t exist in
browsers prior to NN3 or IE4.

Listing 17-6: A Smart Frameset

<HTML>
<HEAD>
<TITLE>Example Frameset</TITLE>
{SCRIPT LANGUAGE="JavaScript">
// Convert Tocation.search into an array of values
// indexed by name.
function getSearchAsArray() {
var minNav3 = (navigator.appName == "Netscape" &&
parselnt(navigator.appVersion) >= 3)
var minlE4 = (navigator.appName.index0f("Microsoft") >= 0 &&
parselnt(navigator.appVersion) >= 4)
var minDOM = minNav3 || minIE4 // baseline DOM required for this function
var results = new Array()
if (minDOM) {
var input = unescape(location.search.substr(1l))
if (input) {
var srchArray = input.split("&")
var tempArray = new Array()
for (var i = 0; i < srchArray.length; i++) {
tempArray = srchArray[i].split("=")
resultsftempArray[0]1] = tempArray[1]

}
}
return results
}
function ToadFrame() {
if (location.search) {
var srchArray = getSearchAsArray()
if (srchArray["content"]) {
self.content.location.href = srchArray["content"]
}
}
}
</SCRIPT>
{/HEAD>

windowObject.location.search

Chapter 3 4 Location and History Objects (Chapter17) 215

{FRAMESET COLS="250,*" onlLoad="loadFrame()">
<FRAME NAME="toc" SRC="Tstl17-07.htm">
{FRAME NAME="content" SRC="1st17-08.htm">

</FRAMESET>

</HTMLY

Listing 17-7 is the HTML for the table of contents frame. Nothing elaborate goes
on here, but you can see how normal navigation works for this simplified frameset.

Listing 17-7: The Table of Contents

<HTML>

<HEAD>

<TITLE>Table of Contents</TITLE>

</HEAD>

<BODY BGCOLOR="#feeeeee">

<H3>Table of Contents</H3>

<HR>

Page 1
Page 2
Page 3
<UL

</BODY>

</HTMLY

Listing 17-8 shows one of the content pages. As the page loads, the
checkFrameset () function is invoked. If the window does not load inside a frame-
set, then the script navigates to the framesetting page, passing the current content
URL as a search string. Notice that for browsers that support the Tocation.
replace() method, the loading of this page on its own does not get recorded to
the browser’s history and isn’t accessed if the user hits the Back button.

Listing 17-8: A Content Page

<HTML>
<HEAD>
<TITLE>Page 1</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function checkFrameset() {
var minNav3 = (navigator.appName == "Netscape" &&
parselnt(navigator.appVersion) >= 3)
var minlE4 = (navigator.appName.index0f("Microsoft") >= 0 &&
parselnt(navigator.appVersion) >= 4)

Continued

windowObject.location.search

216 lavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 17-8 (continued)

var minDOM = minNav3 || minIE4 // baseline DOM required for this function
var isNav4 = (navigator.appName == "Netscape" &&
parselnt(navigator.appVersion) == 4)
if (parent == window) {
// Don't do anything if running NN4
// so that the frame can be printed on its own
if (isNav4 && window.innerWidth == 0) {
return
}
if (minDOM) {
// Use replace() to keep current page out of history
location.replace("1st17-06.htm?content=" + escape(location.href))
} else {
location.href = " 1st17-06.htm?content=" + escape(location.href)
}
}
}
// Invoke the function
checkFrameset()
</SCRIPT>
</HEAD>
<BODY>
<H1>Page 1</H1>
<HR>
</BODY>
</HTML>

In practice, I recommend placing the code for the checkFrameset () function and
call to it inside an external . js library and linking that library into each content doc-
ument of the frameset. That’s why the function assigns the generic 1ocation.href
property to the search string—you can use it on any content page.

Methods
reload(unconditional GETBoolean)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v

Example

To experience the difference between the two loading styles, load the document
in Listing 17-9. Click a radio button, enter some new text, and make a choice in the
SELECT object. Clicking the Soft Reload/Refresh button invokes a method that

windowObject.location.reload()

Chapter 3 + Location and History Objects (Chapter17) 217

reloads the document as if you had clicked the browser’s Reload/Refresh button. It
also preserves the visible properties of form elements. The Hard Reload button
invokes the Tocation.reload() method, which resets all objects to their default
settings.

Listing 17-9: Hard versus Soft Reloading

<HTML>
<HEAD>
<TITLE>Reload Comparisons</TITLE>
{SCRIPT LANGUAGE="JavaScriptl.1">
function hardReload() {
location.reload(true)
}
function softReload() {
history.go(0)
}
</SCRIPT>
</HEAD>
<BODY>
<FORM NAME="myForm">
<INPUT TYPE="radio" NAME="radl" VALUE = 1>Radio 1

<INPUT TYPE="radio" NAME="radl" VALUE 2>Radio 2

<INPUT TYPE="radio" NAME="radl" VALUE = 3>Radio 3<P>
<INPUT TYPE="text" NAME="entry" VALUE="Original"><P>
{SELECT NAME="theList">
<OPTION>Red
<OPTION>Green
<OPTION>Blue
</SELECT>
<HR>
<INPUT TYPE="button" VALUE="Soft Reload" onClick="softReload()">
<INPUT TYPE="button" VALUE="Hard Reload" onClick="hardReload()">
</FORM>
</B0ODY>
</HTML>

replace("URL")

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v

Example

Calling the Tocation.replace() method navigates to another URL similarly to
assigning a URL to the location. The difference is that the document doing the calling

windowObject.location.replace()

218 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

doesn’t appear in the history list after the new document loads. Check the history
listing (in your browser’s usual spot for this information) before and after clicking
Replace Me in Listing 17-10.

Listing 17-10: Invoking the location.replace() Method

<HTML>

<HEAD>

<TITLE>Tocation.replace() Method</TITLE>

<SCRIPT LANGUAGE="JavaScriptl.1">

function doReplace() {
location.replace("1stl7-01.htm")

}

</SCRIPT>

</HEAD>

<BODY>

<FORM NAME="myForm">

<INPUT TYPE="button" VALUE="Replace Me" onClick="doReplace()">

</FORM>

</BODY>

</HTML>

History Object

Properties
length
NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v v v v v 4
Example

The simple function in Listing 17-11 displays one of two alert messages based on
the number of items in the browser’s history.

Listing 17-11: A Browser History Count

<HTML>
<HEAD>
<TITLE>History Object</TITLE>
<{SCRIPT LANGUAGE="JavaScript">

windowObject.history.length

Chapter 3 4 Location and History Objects (Chapter17) 219

function showCount() {
var histCount = window.history.length
if (histCount > 5) {
alert("My, my, you\'ve been busy. You have visited " + histCount +
" pages so far.")
} else {
alert("You have been to " + histCount + " Web pages this session.")
}
}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
<INPUT TYPE="button" NAME="activity" VALUE="My Activity" onClick="showCount()">
</FORM>
</BODY>
</HTML>

Methods
back()

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v v v v

Example

Listings 17-12 and 17-13 provide a little workshop in which you can test the
behavior of a variety of backward and forward navigation in different browsers. The
frameset appears in Figure 3-3. Some features work only in NN4+.

Listing 17-12: Navigation Lab Frameset

<HTML>

<HEAD>

<TITLE>Back and Forward</TITLE>

</HEAD>

<FRAMESET COLS="45%,55%">
<FRAME NAME="controller" SRC="1stl17-13.htm">
<FRAME NAME="display" SRC="1st17-01.htm">

</FRAMESET>

</HTML>

windowObject.history.back()

220 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Ba 3 0 3 050 Brne Dre —|Ex
J File Edit View Favorites Tools Help ‘
- . s 2 2] - & N »
Back Forward Stop Refresh Home Search Favorites History Mail Print Edit
Load a series of documents into the right frame I~ T [~
by clicking some of these links {make a note of Op
the sequence you click on):
MNEXT
Listing 17-1
Listing 17-5
Listing 17-9
.
Section 1

Click on the various buttons helow to see the
results in this frameset: MNEXT

+ NN4+ Substitute for toolbar buttens --

window.back() and window. forward [
Back | Forward .
Section 2
e history.back() and history.forvard()
for righthand frame| < | Forward M
s history.back(] for this frame: HAEk —
« history.back() for parent; DCK [” Section 3 <
€] Done [[Emy computer

Figure 3-3: Experiment with back and forward behaviors in different browsers

The top portion of Listing 17-13 contains simple links to other example files from
this chapter. A click of any link loads a different document into the right-hand frame
to let you build some history inside the frame.

Listing 17-13: Navigation Lab Control Panel

<HTMLY

<HEAD>

<TITLE>Lab Controls</TITLE>

</HEAD>

<BODY>

Load a series of documents into the right frame by clicking some of these
links (make a note of the sequence you click on):<P>

Listing 17-1

Listing 17-5

Listing 17-9

<HR>

<FORM NAME="input">

C1ick on the various buttons below to see the results in this
frameset:<P>

NN4+ Substitute for toolbar buttons -- <TT>window.back()</TT> and
<TT>window.forward()</TT>:<INPUT TYPE="button" VALUE="Back"
onClick="window.back()"><INPUT TYPE="button" VALUE="Forward"
onClick="window.forward()"><P>

windowObject.history.back()

Chapter 3 + Location and History Objects (Chapter 17) 272]

KLIXKTT> history.back()</TT> and <TT>history.forward()</TT> for righthand frame:
<INPUT TYPE="button" VALUE="Back" onClick="parent.display.history.back()"><INPUT
TYPE="button" VALUE="Forward" onClick="parent.display.history.forward()"><P>

<TT>history.back()</TT> for this frame:<INPUT TYPE="button" VALUE="Back"
onClick="history.back()"><P>

LI>KTT>history.back()</TT> for parent:<INPUT TYPE="button" VALUE="Back"
onClick="parent.history.back()"><P>

<UL

</FORM>

</BODY>

</HTML>

go(relativeNumber | "URLOrTitleSubstring™)

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v VR v

Example

Fill in either the number or text field of the page in Listing 17-14 and then click
the associated button. The script passes the appropriate kind of data to the go()
method. Be sure to use negative numbers for visiting a page earlier in the history.

Listing 17-14: Navigating to an Item in History

<HTML>

<HEAD>

<TITLE>history.go() Method</TITLE>

{SCRIPT LANGUAGE="JavaScript">

function doGoNum(form) {
window.history.go(parselnt(form.histNum.value))

}

function doGoTxt(form) {
window.history.go(form.histWord.value)

}

</SCRIPT>

</HEAD>

<BODY>

<FORM>

Calling the history.go() method:
<HR>

Continued

windowObject.history.go()

27272 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 17-14 (continued)

Enter a number (+/-):<INPUT TYPE="text" NAME="histNum" SIZE=3 VALUE="0">
<INPUT TYPE="button" VALUE="Go to Offset" onClick="doGoNum(this.form)"><P>
Enter a word in a title:<INPUT TYPE="text" NAME="histWord">

<INPUT TYPE="button" VALUE="Go to Match" onClick="doGoTxt(this.form)">
</FORM>

</BODY>

</HTML>

windowObject.history.go()

CHAPTER

The Document

and Body L

Obl eCts In This Chapter
Acs:essing arrays of

(Chapter 18) i

Writing new
document content to

a window or frame
To include coverage of the document object and BODY ele- :
ment object in the same chapter is logical, provided you Managing BQDY_
don’t fall into a conceptual trap that has been set during the element scrolling in IE
evolution of document object models. The document object
has been with us since the beginning. Even though it is an + + + +

abstract object (that is to say, the object exists simply by virtue
of a page loading into the browser, rather than associated with
any HTML tag), a number of its properties reflect attributes
that are defined in a page’s <BODY > tag. For instance, the prop-
erties for link colors and background images, whose behaviors
are set in BODY element attributes, have been exposed via the
document object since the earliest days.

In more modern object models (IE4+ and W3C DOM), the
BODY element is its own object. The document object
strengthens its role as a “super-container” of all the HTML ele-
ment objects in the page. Thus, the BODY element object is a
child element of the root document object (see Chapter 14 of
the JavaScript Bible for more details). But now that the BODY
element object can expose its own attributes as properties,
the document object no longer needs to play that role, except
for the sake of backward compatibility with scripts written for
older browsers. Instead, the document object assumes an
even greater role, especially in the W3C DOM, by providing
critical properties and methods of a global nature for the
entire document.

224 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

It is clear, of course, that the BODY element has an important role to play. Both
the IE4+ and W3C DOMs expose the document.body property, which returns a ref-
erence to the BODY element of the current document. The IE4+ DOM, however,
bestows even more importance to the BODY element, by forcing it to be the frame
of reference for how much a document’s content scrolls inside a window or frame.
All other DOMs put that control into the hands of the window (that is, scrolling the
window rather than the BODY element inside the window).

Examples Highlights

4 Observe in Listing 18-1 how (backward-compatible) document object proper-
ties for various colors (alinkColor and the like) impact the look of the page.
It may be even more important to experience the lack of dynamic control that
these properties provide in a variety of browsers.

4+ See how [E4+/Windows exposes date information about the document in
Listing 18-4.

4 Listings 18-11 and 18-12 provide a workshop to let you test how well your tar-
get browsers support the document.referrer property. You may need to put
them on your server for the real test. Unfortunately, [E/Windows doesn’t
always provide the desired information.

4 If you script for W3C-DOM compatibility, be sure to grasp the

document.getElementById() and document.getETementsByName () meth-
ods with the help of the example steps provided.

4 The document.write() method is one of the most important ones in the
vocabulary. Listings 18-16 through 18-18 demonstrate its power.

4 See examples for document.body.scrolllLeft and
document.body.doScrol1() to control document scrolling in IE, and the

onScrol1 event handler example (Listing 18-21) to see how to keep a page
scrolled at a fixed position.

Document Object

Properties
activeElement

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v

document.activeElement

Chapter 4 4+ The Document and Body Objects (Chapter 18) 25

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) with I[E4+ to experiment with
the activeETement property. Type the following statement into the top text box:

document.activeElement.value

After you press the Enter key, the Results box shows the value of the text box
you just typed into (the very same expression you just typed). But if you then click
the Evaluate button, you will see the value property of that button object appear in
the Results box.

alinkColor
bgColor
fgColor
linkColor

vlinkColor

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v 4 4 4 4 v 4 v v

Example

I select some color values at random to plug into three settings of the ugly colors
group for Listing 18-1. The smaller window displays a dummy button so that you
can see how its display contrasts with color settings. Notice that the script sets the
colors of the smaller window by rewriting the entire window’s HTML code. After
changing colors, the script displays the color values in the original window’s
textarea. Even though some colors are set with the color constant values, proper-
ties come back in the hexadecimal triplet values. You can experiment to your
heart’s content by changing color values in the listing. Every time you change the
values in the script, save the HTML file and reload it in the browser.

Listing 18-1: Color Sampler

<HTML>
<HEAD>
<TITLE>Color Me</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function defaultColors() {
return "BGCOLOR="#c0c0c0' VLINK="#551a8b"' LINK="#0000ff""
}

function uglyColors() {
return "BGCOLOR="yelTow"' VLINK="pink' LINK='lawngreen'"
}

Continued

document.alinkColor

226 lavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 18-1 (continued)

function showColorValues() {

var result = ""
result += "bgColor: " + newWindow.document.bgColor + "\n"
result += "vlinkColor: " + newWindow.document.vlinkColor + "\n"

result += "TinkColor: + newWindow.document.linkColor + "\n"
document.forms[0].results.value = result
}
// dynamically writes contents of another window
function drawPage(colorStyle) {
var thePage = ""
thePage += "<HTML><HEAD><TITLE>Color Sampler</TITLE></HEAD><BODY "
if (colorStyle == "default") {
thePage += defaultColors()
} else {
thePage += uglyColors()
}
thePage += ">Just so you can see the variety of items and color, <A "
thePage += "HREF="http://www.nowhere.com'>here\'s a 1ink, and " +
" here is another Tink " +
"you can use on-line to visit and see how its color differs " +
"from the standard Tink."
thePage += "<FORM>"
thePage += "<INPUT TYPE='button' NAME='sample' VALUE='Just a Button'>"
thePage += "</FORM></BODY></HTML>"
newWindow.document.write(thePage)
newWindow.document.close()
showColorValues()
}
// the following works properly only in Windows Navigator
function setColors(colorStyle) {

if (colorStyle == "default") {
document.bgColor = "#c0c0c0"
} else {

document.bgColor = "yellow"
}
}
var newWindow = window.open("","","height=150,width=300")
</SCRIPT>

</HEAD>

<BODY>

Try the two color schemes on the document in the small window.

<FORM>

<INPUT TYPE="button" NAME="default" VALUE='Default Colors'
onClick="drawPage('default')">

<INPUT TYPE="button" NAME="weird" VALUE="Ugly Colors"
onClick="drawPage('ugly")"><P>

<TEXTAREA NAME="results" ROWS=3 COLS=20></TEXTAREA><P><HR>

These buttons change the current document, but not correctly on all platforms<P>

document.alinkColor

Chapter 4 + The Document and Body Objects (Chapter 18) 7/

<INPUT TYPE="button" NAME="default" VALUE='Default Colors"'
onClick="setColors('default')">

<INPUT TYPE="button" NAME="weird" VALUE="Ugly Colors"
onClick="setColors('ugly")"><P>

</FORM>

<{SCRIPT LANGUAGE="JavaScript">

drawPage("default")

</SCRIPT>

</BODY>

</HTML>

To satisfy the curiosity of those who want to change the color of a loaded docu-
ment on the fly, the preceding example includes a pair of buttons that set the color
properties of the current document. If you're running browsers and versions capa-
ble of this power (see Table 18-1), everything will look fine; but in other platforms
or earlier versions, you may lose the buttons and other document content behind
the color. You can still click and activate these items, but the color obscures them.
Unless you know for sure that users of your Web page use only browsers and
clients empowered for background color changes, do not change colors by setting
properties of an existing document.

/\Iote If you are using Internet Explorer 3 for the Macintosh, you will experience some

Y~ (difficulties with Listing 18-1. The script in the main document loses its connection
with the subwindow; it does not redraw the second window with other colors.
You can, however, change the colors in the main document. The significant flicker
you may experience is related to the way the Mac version redraws content after
changing colors.

anchors
NN2 NN3 NN4 NNé6 IE3/J1 1E3/)2 1E4 1IE5 1E5.5
Compatibility v v v v v v ooV v
Example

In Listing 18-2, I append an extra script to Listing 17-1 (in Chapter 3 of this
book) to demonstrate how to extract the number of anchors in the document.
The document dynamically writes the number of anchors found in the document.
You will not likely ever need to reveal such information to users of your page, and
the document.anchors property is not one that you will call frequently. The object
model defines it automatically as a document property while defining actual anchor
objects.

228 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 18-2: Reading the Number of Anchors

<HTML>

<HEAD>

<TITLE>document.anchors Property</TITLE>

<SCRIPT LANGUAGE="JavaScript">

function goNextAnchor(where) {
window.location.hash = where

}

</SCRIPT>

</HEAD>

<BODY>

<HI>Top</H1>

<FORM>

<INPUT TYPE="button" NAME="next" VALUE="NEXT" onClick="goNextAnchor('secl')">
</FORM>

<HR>

<HI1>Section 1</HI>

<FORM>

<INPUT TYPE="button" NAME="next" VALUE="NEXT" onClick="goNextAnchor('sec2')">
</FORM>

<HR>

<H1>Section 2</HI>

<FORM>

<INPUT TYPE="button" NAME="next" VALUE="NEXT" onClick="goNextAnchor('sec3')">
</FORM>

<HR>

<HI1>Section 3</HI>

<FORM>

<INPUT TYPE="button" NAME="next" VALUE="BACK TO TOP"
onClick="goNextAnchor('start')">

</FORM>

<HR><P>

<{SCRIPT LANGUAGE="JavaScript">
document.write("<I>There are " + document.anchors.length +
" anchors defined for this document</I>")

</SCRIPT>

</BODY>

<THTML>

Chapter 4 4+ The Document and Body Objects (Chapter 18) 2290

applets
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v 4 4 v v v
Example

The document.applets property is defined automatically as the browser builds
the object model for a document that contains applet objects. You will rarely access
this property, except to determine how many applet objects a document has.

bgColor
See alinkColor.
body
NN2 NN3 NN4 NN6 IE3/J)1 1E3/)2 IE4 IE5 IE5.5
Compatibility v v/ v v
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to examine properties of
the BODY element object. First, to prove that the document.body is the same as
the element object that comes back from longer references, enter the following
statement into the top text box with either IE5 or NN6:

document.body == document.getElementsByTagName("BODY")[0]

Next, check out the BODY object’s property listings later in this chapter and
enter the listings into the top text box to review their results. For example:

document.body.bgColor
document.body.tagName

charset

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/ v v

23(0 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
charset property. To see the default setting applied to the page, enter the follow-
ing statement into the top text box:

document.charset

If you are running IE5+ for Windows 98 and you enter the following statement,
the browser will apply a different character set to the page:

document.charset = "is0-8859-2"
If your version of Windows does not have that character set installed in the sys-
tem, the browser may ask permission to download and install the character set.

characterSet

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
characterSet property in NN6. To see the default setting applied to the page,
enter the following statement into the top text box:

document.characterSet

cookie
NN2 NN3 NN4 NN6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v v v V4 v
Example

Experiment with the last group of statements in Listing 18-3 to create, retrieve,
and delete cookies. You can also experiment with The Evaluator by assigning a
name/value pair string to document.cookie, and then examining the value of the
cookie property.

defaultCharset

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/ v v

document.defaultCharset

Chapter 4 4+ The Document and Body Objects (Chapter 18) 23]

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
defaultCharset property. To see the default setting applied to the page, enter the
following statement into the top text box:

document.defaultCharset

documentElement

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to examine the behavior
of the documentElement property. In [E5+ or NN6, enter the following statement
into the top text field:

document.documentElement.tagName

The result is HTML, as expected.

expando
NN2 NN3 NN4 NN6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v/ v v
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
document.expando property in [E4+. Begin by proving that the document object
can normally accept custom properties. Type the following statement into the top
text field:

document.spooky = "Boo!"

This property is now set and stays that way until the page is either reloaded or
unloaded.
Now freeze the document object’s properties with the following statement:

document.expando = false
If you try to add a new property, such as the following, you receive an error:
document.happy = "tra la"

Interestingly, even though document.expando is turned off, the first custom prop-
erty is still accessible and modifiable.

2372 JlavaScript Examples Bible: The Essential Companion to JavaScript Bible

fgColor

See alinkCoTlor.

fileCreatedDate
fileModifiedDate
fileSize

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

Listing 18-4 dynamically generates several pieces of content relating to the cre-
ation and modification dates of the file, as well as its size. More importantly, the list-
ing demonstrates how to turn a value returned by the file date properties into a
genuine date object that can be used for date calculations. In the case of Listing
18-4, the calculation is the number of full days between the creation date and the
day someone views the file. Notice that the dynamically generated content is added
very simply via the innerText properties of carefully-located SPAN elements in the
body content.

Listing 18-4: Viewing File Dates

<HTML>

<HEAD>

KTITLE>fileCreatedDate and fileModifiedDate Properties</TITLE>

<{SCRIPT LANGUAGE="JavaScript">

function fi11InBlanks() {
var created = document.fileCreatedDate
var modified = document.fileModifiedDate
document.all.created.innerText = created
document.all.modified.innerText = modified
var createdDate = new Date(created).getTime()
var today = new Date().getTime()
var diff = Math.floor((today - createdDate) / (1000%60*60%24))
document.all.diff.innerText = diff
document.all.size.innerText = document.fileSize

}

</SCRIPT>

</HEAD>

<BODY onLoad="fillInBlanks()">

<H1>fileCreatedDate and fileModifiedDate Properties</H1>
<HR>

document.fileCreatedDate

Chapter 4 4+ The Document and Body Objects (Chapter 18) 33

<P>This file (<KSPAN ID="size"> bytes) was created

on and most

recently modified on .</P>

<P>It has been days since this file was
created.</P>

</BODY>
<THTML>
forms

NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE55
Compatibility v v oo v v ooV
Example

The document in Listing 18-5 is set up to display an alert dialog box that simu-
lates navigation to a particular music site, based on the checked status of the
“bluish” check box. The user input here is divided into two forms: one form with
the check box and the other form with the button that does the navigation. A block
of copy fills the space in between. Clicking the bottom button (in the second form)
triggers the function that fetches the checked property of the “bluish” checkbox by
using the document.forms[1] array as part of the address.

Listing 18-5: Using the document.forms Property

<HTML>
<HEAD>
<TITLE>document.forms example</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function goMusic() {
if (document.forms[0].bluish.checked) {

alert("Now going to the Blues music area...")
} else {
alert("Now going to Rock music area...")
}
}
</SCRIPT>
</HEAD>
<BODY>

<FORM NAME="theBlues">

<INPUT TYPE="checkbox" NAME="bluish">Check here if you've got the blues.
</FORM>

<HR>

Continued

234 lavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 18-5 (continued)

M

0

r

e

C

0

p

y

<HR>

<FORM NAME="visit">
<INPUT TYPE="button" VALUE="Visit music site" onClick="goMusic()">
</FORM>

</BODY>

</HTML>

frames

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v 4

Example

See Listings 16-7 and 16-8 (in Chapter 2 of this book) for examples of using the
frames property with window objects. The listings work with IE4+ if you swap ref-
erences to the window with document.

height
width
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to examine the height
and width properties of that document. Enter the following statement into the top
text box and click the Evaluate button:

"height=" + document.height + "; width=" + document.width

document.height

Chapter 4 4+ The Document and Body Objects (Chapter 18) 235

Resize the window so that you see both vertical and horizontal scrollbars in the
browser window and click the Evaluate button again. If either or both numbers get
smaller, the values in the Results box are the exact size of the space occupied by
the document. But if you expand the window to well beyond where the scrollbars
are needed, the values extend to the number of pixels in each dimension of the win-
dow’s content region.

images
NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v) v v v
Example

The document.images property is defined automatically as the browser builds
the object model for a document that contains image objects. See the discussion
about the Image object in Chapter 22 of the JavaScript Bible for reference examples.

implementation

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
document.implementation.hasFeature() method in NN6. Enter the following
statements one at a time into the top text field and examine the results:

document.implementation.hasFeature("HTML","1.0")
document.implementation.hasFeature("HTML","2.0")
document.implementation.hasFeature("HTML","3.0")
document.implementation.hasFeature("CSS","2.0")

document.implementation.hasFeature("CSS2","2.0")

Feel free to try other values.

lastModified

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v v v/ v v v v/ v v

document.lastModified

236 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example

Experiment with the document.lastModified property with Listing 18-6. But
also be prepared for inaccurate readings if the file is located on some servers or
local hard disks.

Listing 18-6: document.lastModified Property in Another

Format
<HTML>
<HEAD>
<TITLE>Time Stamper</TITLE>
</HEAD>
<BODY>

<CENTER> <H1>GiantCo Home Page</H1></CENTER>
<SCRIPT LANGUAGE="JavaScript">

update = new Date(document.lastModified)
theMonth = update.getMonth() + 1

theDate = update.getDate()

theYear = update.getFullYear()
document.writeln("<I>Last updated:" + theMonth + "/" + theDate + "/" + theYear +
"SI

</SCRIPT>

<HR>

</BODY>

</HTML>

As noted at great length in the Date object discussion in Chapter 36 of the
JavaScript Bible, you should be aware that date formats vary greatly from country
to country. Some of these formats use a different order for date elements. When you
hard-code a date format, it may take a form that is unfamiliar to other users of your

page.
layers
NN2 NN3 NN4 NN6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v
Example

Listing 18-7 demonstrates only for NN4 how to use the document.layers prop-
erty to crawl through the entire set of nested layers in a document. Using reflexive
calls to the crawlLayers () function, the script builds an indented list of layers in

Chapter 4 4+ The Document and Body Objects (Chapter 18) 237/

the same hierarchy as the objects themselves and displays the results in an alert
dialog box. After you load this document (the script is triggered by the onlLoad
event handler), compare the alert dialog box contents against the structure of
<LAYER> tags in the document.

Listing 18-7: A Navigator 4 Layer Crawler

<HTML>
<HEAD>
<{SCRIPT LANGUAGE="JavaScriptl.2">
var output = ""
function crawllayers(layerArray, indent) {
for (var i = 0; i < layerArray.length; i++) {
output += indent + layerArray[i].name + "\n"
if (layerArray[i].document.layers.length) {
var newlLayerArray = layerArray[i].document.layers
crawllayers(newlLayerArray, indent + " ")
1
t
return output
}
function reveallayers() {
alert(crawllayers(document.layers, ""))
}
</SCRIPT>
</HEAD>
<BODY onLoad="reveallayers()">
<LAYER NAME="Europe">
<LAYER NAME="Germany"></LAYER>
<LAYER NAME="Netherlands">
{LAYER NAME="Amsterdam"></LAYER>
<LAYER NAME="Rotterdam"></LAYER>
</LAYER>
<LAYER NAME="France"></LAYER>
</LAYER>
<LAYER NAME="Africa">
<LAYER NAME="South Africa"></LAYER>
<LAYER NAME="Ivory Coast"></LAYER>
</LAYER>
</BODY>
</HTML>

linkColor

See alinkColor.

document.linkColor

238 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

1inks
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v v R
Example

The document. Tinks property is defined automatically as the browser builds
the object model for a document that contains link objects. You rarely access this
property, except to determine the number of link objects in the document.

location
URL
NN2 NN3 NN4 NNé6 IE3/J1 1E3/)2 1IE4 IE5 IE5.5
Compatibility V) v v v V) V) VR v
Example

HTML documents in Listing 18-8 through 18-10 create a test lab that enables you
to experiment with viewing the document.URL property for different windows and
frames in a multiframe environment. Results are displayed in a table, with an addi-
tional listing of the document.tit1e property to help you identify documents
being referred to. The same security restrictions that apply to retrieving
window.location object properties also apply to retrieving the document . URL
property from another window or frame.

Listing 18-8: Frameset for document.URL Property Reader

<HTML>

<HEAD>

<TITLE>document.URL Reader</TITLE>

</HEAD>

<FRAMESET ROWS="60%,40%">
<FRAME NAME="Framel" SRC="1st18-10.htm">
{FRAME NAME="Frame2" SRC="1st18-09.htm">

</FRAMESET>

</HTML>

document.location

Chapter 4 4+ The Document and Body Objects (Chapter 18) 2390

Listing 18-9: document.URL Property Reader

<HTML>
<HEAD>
<TITLE>URL Property Reader</TITLE>
<SCRIPT LANGUAGE="JavaScriptl.1">
function fillTopFrame() {
newURL=prompt("Enter the URL of a document to show in the top frame:","")
if (newURL != null && newURL != "") {
top.frames[0].Tocation = newURL
}
}

function showlLoc(form,item) {
var windName = item.value
var theRef = windName + ".document"
form.dLoc.value = unescape(eval(theRef + ".URL"))
form.dTitle.value = unescape(eval(theRef + ".title"))
}
</SCRIPT>
</HEAD>

<BODY>

Click the "Open URL" button to enter the location of an HTML document to display
in the upper frame of this window.

<FORM>

<INPUT TYPE="button" NAME="opener" VALUE="Open URL..." onClick="fillTopFrame()">
</FORM>

<HR>

<FORM>

Select a window or frame to view each document property values.<P>

<INPUT TYPE="radio" NAME="whichFrame" VALUE="parent"
onClick="showlLoc(this.form,this)">Parent window

<INPUT TYPE="radio" NAME="whichFrame" VALUE="top.frames[0]"
onClick="showlLoc(this.form,this)">Upper frame

<INPUT TYPE="radio" NAME="whichFrame" VALUE="top.frames[1]"
onClick="showlLoc(this.form,this)">This frame<P>

<TABLE BORDER=2>

{TR><TD ALIGN=RIGHT>document.URL:</TD>

<TD><TEXTAREA NAME="dLoc" ROWS=3 COLS=30 WRAP="soft"></TEXTAREA></TD></TR>

<TR><TD ALIGN=RIGHT>document.title:</TD>

<TD><TEXTAREA NAME="dTitle" ROWS=3 COLS=30 WRAP="soft"></TEXTAREA></TD></TR>
</TABLE>

</FORM>

</BODY>

</HTML>

document.location

240 lavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 18-10: Placeholder for Listing 18-8

<HTML>

<HEAD>

<TITLE>Opening Placeholder</TITLE>

</HEAD>

<BODY>

Initial place holder. Experiment with other URLs for this frame (see below).
</BODY>

</HTML>

parentWindow

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/ v v

Example

To prove the parentWindow property points to the document’s window, you can
enter the following statement into the top text field of The Evaluator (Chapter 13 in
the JavaScript Bible):

document.parentWindow == self

This expression evaluates to true only if both references are of the same object.

protocol
NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v 4
Example

If you use The Evaluator (Chapter 13 in the JavaScript Bible) to test the document .
protocol property, you will find that it displays File Protocol in the results
because you are accessing the listing from a local hard disk or CD-ROM.

referrer

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v v/ 4 v

document.referrer

Chapter 4 + The Document and Body Objects (Chapter 18) 24]

Example

This demonstration requires two documents (and for IE, you’ll also need to
access the documents from a Web server). The first document, in Listing 18-11, sim-
ply contains one line of text as a link to the second document. In the second docu-
ment (Listing 18-12), a script verifies the document from which the user came via a
link. If the script knows about that link, it displays a message relevant to the experi-
ence the user had at the first document. Also try opening Listing 18-12 in a new
browser window from the Open File command in the File menu to see how the
script won'’t recognize the referrer.

Listing 18-11: A Source Document

<HTML>

<HEAD>

<TITLE>document.referrer Property 1</TITLE>
</HEAD>

<BODY>
<HI>Visit my sister document
</BODY>
</HTML>

Listing 18-12: Checking document.referrer

<HTML>

<HEAD>

<TITLE>document.referrer Property 2</TITLE>
</HEAD>

<BODY><H1>
<SCRIPT LANGUAGE="JavaScript">
if(document.referrer.length > 0 &&

document.referrer.index0f("18-11.htm") != -1){
document.write("How is my brother document?")
} else {

document.write("Hello, and thank you for stopping by.")
}
</SCRIPT>
</H1></BODY>
<IHTMLY

document.referrer

247 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

scripts
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v
Example

You can experiment with the document.scripts array in The Evaluator
(Chapter 13 in the JavaScript Bible). For example, you can see that only one SCRIPT
element object is in The Evaluator page if you enter the following statement into the
top text field:

document.scripts.length

If you want to view all of the properties of that lone SCRIPT element object, enter
the following statement into the bottom text field:

document.scripts[0]

Among the properties are both innerText and text. If you assign an empty
string to either property, the scripts are wiped out from the object model, but not
from the browser. The scripts disappear because after the scripts loaded, they were
cached outside of the object model. Therefore, if you enter the following statement
into the top field:

document.scripts[0].text =

the script contents are gone from the object model, yet subsequent clicks of the
Evaluate and List Properties buttons (which invoke functions of the SCRIPT element
object) still work.

selection

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/ v v

Example

See Listings 15-30 and 15-39 in Chapter 1 of this book to see the
document.selection property in action for script-controlled copying and pasting
(IE/Windows only).

URL

See Tocation.

document.URL

Chapter 4 4+ The Document and Body Objects (Chapter 18) 243

vliinkColor

See alinkCoTlor.

width

See height.

Methods
captureEvents(eventTypelList)

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v

Example

See the example for the NN4 window.captureEvents () method (Listing 16-21
from Chapter 2 of this book) to see how to capture events on their way to other
objects. In that example, you can substitute the document reference for the window
reference to see how the document version of the method works just like the win-
dow version. If you understand the mechanism for windows, you understand it for
documents. The same is true for the other NN4 event methods.

close()
NN2 NN3 NN4 NN6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility R v A
Example

Before you experiment with the document.close() method, be sure you under-
stand the document.write() method described later in this chapter. After that,
make a separate set of the three documents for that method’s example (Listings
18-16 through 18-18 in a different directory or folder). In the takePulse() function
listing, comment out the document.close() statement, as shown here:

msg += "<P>Make it a great day!</BODY></HTML>"
parent.frames[1].document.write(msg)
//parent.frames[1].document.close()

document.close()

244 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Now try the pages on your browser. You see that each click of the upper button
appends text to the bottom frame, without first removing the previous text. The
reason is that the previous layout stream was never closed. The document thinks
that you're still writing to it. Also, without properly closing the stream, the last line
of text may not appear in the most recently written batch.

createAttribute("attributeName")

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

Unfortunately, the setAttributeNode () method in NN6 does not yet work with
attributes generated by the createAttribute() method. This will be fixed eventu-
ally, and you can experiment adding attributes to sample elements in The Evaluator.
In the meantime, you can still create an attribute and inspect its properties. Enter
the following text into the top text box:

a = document.createAttribute("author")

Now enter a into the bottom text box to inspect the properties of an Attr object.

createElement (" tagName")

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v/ v v

Example

Chapter 15 of the JavaScript Bible contains numerous examples of the document.
createElement () method in concert with methods that add or replace content to a
document. See Listings 15-10, 15-21, 15-22,15-28, 15-29, and 15-31 in Chapter 1 of this
book.

createEventObject([eventObject])

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

document.createEventObject()

Chapter 4 4+ The Document and Body Objects (Chapter 18) 245

Example

See the discussion of the fireEvent () method in Chapter 15 of the JavaScript
Bible for an example of the sequence to follow when creating an event to fire on an
element.

createStyleSheet(["URL"[, index]])

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

Listing 18-13 demonstrates adding an internal and external style sheet to a docu-
ment. For the internal addition, the addStylel() function invokes document.
createStyleSheet () and adds a rule governing the P elements of the page (not
available for IE5/Mac). In the addSty1e2() function, an external file is loaded. That
file contains the following two style rules:

H2 {font-size:20pt; color:blue)
P {color:blue}

Notice that by specifying a position of zero for the imported style sheet, the
addition of the internal style sheet always comes afterward in styleSheet object
sequence. Thus, except when you deploy only the external style sheet, the red text
color of the P elements overrides the blue color of the external style sheet. If you
remove the second parameter of the createStyleSheet () method in addStyle2(),
the external style sheet is appended to the end of the list. If it is the last style sheet to
be added, the blue color prevails. Repeatedly clicking the buttons in this example
continues to add the style sheets to the document.

Listing 18-13: Using document.createStyleSheet()

<HTML>
<HEAD>
<TITLE>document.createStyleSheet() Method</TITLE>
{SCRIPT LANGUAGE="JavaScript">
function addStylel() {
var newStyle = document.createStyleSheet()
newStyle.addRule("P", "font-size:16pt; color:red")
}

function addStyle2() {

var newStyle = document.createStyleSheet("1st18-13.css",0)
}

Continued

document.createStyleSheet()

246 lavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 18-13 (continued)

</SCRIPT>
</HEAD>

<BODY>

<Hl>document.createStyleSheet() Method</H1>

<HR>

<FORM>

<INPUT TYPE="button" VALUE="Add Internal" onClick="addStylel()">
<INPUT TYPE="button" VALUE="Add External" onClick="addStyle2()">
</FORM>

<H2>Section 1</H2>

<P>Lorem ipsum dolor sit amet, consectetaur adipisicing elit,

sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim adminim veniam, quis nostrud exercitation ullamco Taboris
nisi ut aliquip ex ea commodo consequat.</P>

<H2>Section 2</H2>

<P>Duis aute irure dolor in reprehenderit involuptate velit esse
cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deseruntmollit
anim id est laborum.</P>

</BODY>

</HTML>

createTextNode(" text")

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v 4 4

Example

While Chapter 14 and 15 of the JavaScript Bible (Listing 15-21 in Chapter 1, for
instance) provide numerous examples of the createTextNode () method at work,
using The Evaluator (Chapter 13 in the JavaScript Bible) is instructive to see just
what the method generates in IE5+ and NN6. You can use one of the built-in global
variables of The Evaluator to hold a reference to a newly generated text node by
entering the following statement into the top text field:

a = document.createTextNode("Hello")

document.createTextNode()

Chapter 4 + The Document and Body Objects (Chapter 18) 247/

The Results box shows that an object was created. Now, look at the properties of
the object by typing a into the bottom text field. The precise listings of properties
varies between [E5+ and NN6, but the W3C DOM properties that they share in com-
mon indicate that the object is a node type 3 with a node name of #text. No par-
ents, children, or siblings exist yet because the object created here is not part of
the document hierarchy tree until it is explicitly added to the document.

To see how insertion works, enter the following statement into the top text field
to append the text node to the myP paragraph:

document.getElementById("myP").appendChild(a)

The word “Hello” appears at the end of the simple paragraph lower on the page.
Now you can modify the text of that node either via the reference from the point of
view of the containing P element or via the global variable reference for the newly
created node:

document.getETementById("myP").lastChild.nodeValue = "Howdy"
or

a.nodeValue = "Howdy"

elementFromPoint(x, y)

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/ v v

Example

Listing 18-14 is a document that contains many different types of elements, each
of which has an ID attribute assigned to it. The onMouseQOver event handler for the
document object invokes a function that finds out which element the cursor is over
when the event fires. Notice that the event coordinates are event.clientX and
event.clientY, which use the same coordinate plane as the page for their point of
reference. As you roll the mouse over every element, its ID appears on the page. In
Figure 4-1, the pointer is inside a table cell, whose ID appears in bold at the end of
the first paragraph. Some elements, such as BR and TR, occupy no space in the doc-
ument, so you cannot get their IDs to appear. On a typical browser screen size, a
positioned element rests atop one of the paragraph elements so that you can see
how the elementFromPoint () method handles overlapping elements. If you scroll
the page, the coordinates for the event and the page’s elements stay in sync.

document.elementFromPoint()

248

JavaScript Examples Bible: The Essential Companion to JavaScript Bible

0 omPoint) Metho S0 Brne Dre =l ES

JEiIe Edit View Favorites Tools Help ‘

5 = . D 3] at Bl] = >

J Back | Forward Stop Refresh Home Search Favorites History ‘ Mail Print Edit

|»

document.elementFromPoint() Method

Foll the mouse around the page. The coordinates of the mouse pointer are currently atop an element
whose ID is:"td_B2"

Sample Button |

Cell AT|[Cell E1
Cell 42|\ Cell BR

Section 1

Lorem ipsum dolor sit amet, consectetaur adipisicing elit, sed do emsmeod tempor incididunt ut labore et dolore magna aliqua.
Tt eritn adminim veniam, quis nostrud exercitatidHere is a positioned element ip ex ea commodo consequat.

Section 2

Dmis aute irure dolor in reprehenderit involuptate velit esse cillum dolore en fugiat nulla pariatur. Excepteur sint occaecat

cupidatat non proident. sunt in culpa o officia deseruntrollit anim id est laborum =l
€] Done [[Emy computer

Figure 4-1: Revealing the object located at an event screen position

Listing 18-14: Using the elementFromPoint() Method

<HTML>
<HEAD>
<TITLE>document.elementFromPoint() Method</TITLE>
{SCRIPT LANGUAGE="JavaScript">
function showElemUnderneath() {
var elem = document.elementFromPoint(event.clientX, event.clientY)
document.all.mySpan.innerText = elem.id
}
document.onmouseover = showElemUnderneath
</SCRIPT>
</HEAD>

<BODY ID="myBody">

<H1 ID="header">document.elementFromPoint() Method</H1>

<HR ID="myHR">

<P ID="instructions">Rol1 the mouse around the page. The coordinates

of the mouse pointer are currently atop an element<BR ID="myBR">whose ID
is:"".</P>

<FORM ID="myForm">

<INPUT ID="myButton" TYPE="button" VALUE="Sample Button" onClick="">
</FORM>

{TABLE BORDER=1 ID="myTable">

Chapter 4 4+ The Document and Body Objects (Chapter 18) 249

<TR ID="trl">
<TD ID="td_Al">Cell AL</TD>
<TD ID="td_B1">Cell BI<K/TD>
</TR>
<TR ID="tr2">
<TD ID="td_A2">Cell A2</TD>
<TD ID="td_B2">Cell B2</TD>
</TR>
</TABLE>
<H2 ID="secl">Section 1</H2>
<P ID="pl">Lorem ipsum dolor sit amet, consectetaur adipisicing elit,
sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim adminim veniam, quis nostrud exercitation ullamco Tlaboris
nisi ut aliquip ex ea commodo consequat.</P>
<H2 ID="sec2">Section 2</H2>
<P ID="p2">Duis aute irure dolor in reprehenderit involuptate velit esse
cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deseruntmollit
anim id est laborum.</P>
<DIV ID="myDIV" STYLE="position:absolute; top:340; left:300; background-
color:yellow">
Here is a positioned element.</DIV>
</BODY>
</HTML>

execCommand (" commandName"[, UIFTlag]l [,

param])
NN2 NN3 NN4 NN6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v/ v v
Example

You can find many examples of the execCommand () method for the TextRange
object in Chapter 19 of the JavaScript Bible. But you can try out the document-
specific commands in The Evaluator (Chapter 13 in the JavaScript Bible) if you like.
Try each of the following statements in the top text box and click the Evaluate button:

document.execCommand("Refresh")
document.execCommand("SelectAll")
document.execCommand("Unselect")

All methods return true in the Results box.

Because any way you can evaluate a statement in The Evaluator forces a body
selection to become deselected before the evaluation takes place, you can’t experi-
ment this way with the selection-oriented commands.

document.execCommand()

250 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

getElementById("elementID")

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

You can find many examples of this method in use throughout this book, but you
can take a closer look at how it works by experimenting in The Evaluator (Chapter
13 in the JavaScript Bible). A number of elements in The Evaluator have IDs
assigned to them, so that you can use the method to inspect the objects and their
properties. Enter the following statements into both the top and bottom text fields
of The Evaluator. Results from the top field are references to the objects; results
from the bottom field are lists of properties for the particular object.

document.getETementById("myP")
document.getElementById("myEM")
document.getElementById("myTitle")
document.getElementById("myScript")

As you see in the Results field, NN6 is more explicit about the type of HTML ele-
ment object being referenced in the top text field than IE5. But nevertheless, both
browsers are pointing to the same objects.

getETementsByName("elementName")

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

Use The Evaluator to test out the getElementsByName () method. All form ele-
ments in the upper part of the page have names associated with them. Enter the fol-
lowing statements into the top text field and observe the results:

document.getElementsByName("output")
document.getElementsByName("speed").length
document.getElementsByName("speed")[0].value

You can also explore all of the properties of the text field by typing the following
expression into the bottom field:

document.getElementsByName("speed")[0]

document.getElementsByName()

Chapter 4 4+ The Document and Body Objects (Chapter 18) 25]

getSelection()
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v
Example

The document in Listing 18-15 provides a cross-browser (but not IE5/Mac) solu-
tion to capturing text that a user selects in the page. Selected text is displayed in
the textarea. The script uses browser detection and branching to accommodate the
diverse ways of recognizing the event and reading the selected text.

Listing 18-15: Capturing a Text Selection

<HTML>
<HEAD>
<TITLE>Getting Selected Text</TITLE>
{SCRIPT LANGUAGE="JavaScript">
var isNav4 = (navigator.appName == "Netscape"
&& parselnt(navigator.appVersion) == 4)
var isNav4Min = (navigator.appName == "Netscape" &&
parselnt(navigator.appVersion) >= 4)
var isIE4Min = (navigator.appName.indexOf("Microsoft") != -1 &&
parselnt(navigator.appVersion) >= 4)
function showSelection() {
if (isNav4Min) {
document.forms[0].selectedText.value = document.getSelection()
} else if (islE4Min) {
if (document.selection) {
document.forms[0].selectedText.value =
document.selection.createRange().text
event.cancelBubble = true

}
}
if (isNavd) {
document.captureEvents(Event.MOUSEUP)
}
document.onmouseup = showSelection
</SCRIPT>
</HEAD>

<BODY>

<H1>Getting Selected Text</H1>

<HR>

<P>Select some text and see how JavaScript can capture the selection:</P>
<H2>ARTICLE I</H2>

<P>

Continued

document.getSelection()

2572 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 18-15 (continued)

Congress shall make no law respecting an establishment of religion, or
prohibiting the

free exercise thereof; or abridging the freedom of speech, or of the press; or
the right of the people peaceably to assemble, and to petition the government
for a redress of grievances.

</P>

</HR>

<FORM>

<TEXTAREA NAME="selectedText" ROWS=3 COLS=40 WRAP="virtual"></TEXTAREA>
</FORM>

</BODY>

</HTML>

open(["mimeType"]1 [, replacel)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v VR v

Example
You can see an example of where the document.open() method fits in the

scheme of dynamically creating content for another frame in the discussion of the

document.write() method later in this chapter.
queryCommandEnabled (" commandName")
queryCommandIndterm(" commandName")
queryCommandCommandState(" commandName")
queryCommandSupported (" commandName")
queryCommandText (" commandName")
queryCommandValue(" commandName")

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

See the examples for these methods covered under the TextRange object in
Chapter 19 of the JavaScript Bible.

document.queryCommandEnabled()

Chapter 4 4+ The Document and Body Objects (Chapter 18) 2573

recalc([allFlag])
NN2 NN3 NN4 NNé6 IE3/J1 1E3/)2 IE4 IE5 IE5.5
Compatibility v v
Example

You can see an example of recalc() in Listing 15-32 (in Chapter 1 of this book)
for the setExpression() method. In that example, the dependencies are between
the current time and properties of standard element objects.

write("stringl" [,"string2" ...
[, "stringn"11)

writeln("stringl™ [,"string2" ...
[, "stringn"11)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v VR v

Example

The example in Listings 18-16 through 18-18 demonstrates several important
points about using the document.write() or document.writeln() methods for
writing to another frame. First is the fact that you can write any HTML code to a
frame, and the browser accepts it as if the source code came from an HTML file
somewhere. In the example, [assemble a complete HTML document, including
basic HTML tags for completeness.

Listing 18-16: Frameset for document.write() Example

<HTML>

<HEAD>

KTITLE>Writin' to the doc</TITLE>

</HEAD>

<FRAMESET ROWS="50%,50%">
<FRAME NAME="Framel" SRC="1st18-17.htm">
<FRAME NAME="Framez2" SRC="T1st18-18.htm">

</FRAMESET>

</HTML>

254 javaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 18-17: document.write() Example

<HTML>
<HEAD>
<TITLE>Document Write Controller</TITLE>
<{SCRIPT LANGUAGE="JavaScript">
function takePulse(form) {
var msg = "<HTML><HEAD>XTITLE>On The Fly with " + form.yourName.value +
"</TITLE></HEAD>"
msg += "<BODY BGCOLOR="salmon'><H1>Good Day " + form.yourName.value +
"T<C/HI><KHR> "
for (var i = 0; i < form.how.length; i++) {
if (form.how[i].checked) {
msg += form.how[i].value
break
}
}
msg += "<P>Make it a great day!</BODY></HTML>"
parent.Frame2.document.write(msg)
parent.Frame2.document.close()
}
function getTitle() {
alert("Lower frame document.title is now:" + parent.Frame2.document.title)
}
</SCRIPT>
</HEAD>

<BODY>

Fill in a name, and select how that person feels today. Then click "Write To

Below"

to see the results in the bottom frame.

<FORM>

Enter your first name:<INPUT TYPE="text" NAME="yourName" VALUE="Dave"><P>

How are you today? <INPUT TYPE="radio" NAME="how"

VALUE="T hope that feeling continues forever." CHECKED>Swell

<INPUT TYPE="radio" NAME="how" VALUE="You may be on your way to feeling Swell">

Pretty Good

<INPUT TYPE="radio" NAME="how" VALUE="Things can only get better from here.">

So-So<P>

<INPUT TYPE="button" NAME="enter" VALUE="Write To Below"
onClick="takePulse(this.form)">

<HR>

<INPUT TYPE="button" NAME="peek" VALUE="Check Lower Frame Title"
onClick="getTitle()">

</BODY>

</HTML>

Chapter 4 4 The Document and Body Objects (Chapter 18)

Listing 18-18: Placeholder for Listing 18-16

<HTML>

<HEAD>
<TITLE>Placeholder</TITLE>
<BODY>

</BODY>

</HTML>

Figure 4-2 shows an example of the frame written by the script.

|7 X
J File Edit View Favoites Tools Help ‘
) o e Gl # Ey- & = Lirks
Back Fariwand Stop Refresh Home Search Favortes History M ail Frint. Edit RealGuide

Fill in a name, and select how that person feels today. Then click "Write To Below" to see the results in the bottom frame.

Enter your first name ISuzanne

How are youtoday? @ Swell O Pretty Good © So-So

Microzoft Intemnet Explorer
‘White To Below

Check Lower Frame Title QJ

& Lawer frame document.title is now:0On The Fly with Suzanne

@ Done ’_ ’_ Local intranet |

Figure 4-2: Clicking the Write To Below button in the upper frame causes a script to
assemble and write HTML for the bottom frame.

A second point to note is that this example customizes the content of the docu-
ment based on user input. This customization makes the experience of working
with your Web page feel far more interactive to the user —yet you’re doing it with-
out any CGI programs running on the server.

The third point I want to bring home is that the document created in the separate
frame by the document.write() method is a genuine document object. In this exam-
ple, for instance, the <TITLE> tag of the written document changes if you redraw the
lower frame after changing the entry of the name field in the upper frame. If you click
the lower button after updating the bottom frame, you see that the document.title
property has, indeed, changed to reflect the <TITLE> tag written to the browser in

255

256 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

the course of displaying the frame’s page (except in NN4/Mac, which exhibits a bug
for this property in a dynamically written document). The fact that you can artificially
create full-fledged JavaScript document objects on the fly represents one of the most
important powers of serverless CGI scripting (for information delivery to the user)
with JavaScript. You have much to take advantage of here if your imagination is up to
the task.

Notice that except for NN2, you can easily modify Listing 18-17 to write the
results to the same frame as the document containing the field and buttons. Instead
of specifying the lower frame

parent.frames[1].document.open()
parent.frames[1].document.write(msg)
parent.frames[1].document.close()

the code simply can use

document.open()
document.write(msg)
document.close()

This code would replace the form document with the results and not require any
frames in the first place. Because the code assembles all of the content for the new
document into one variable value, that data survives the one document.write()
method.

The frameset document (Listing 18-18) creates a blank frame by loading a blank
document (Listing 18-18). An alternative I highly recommend is to have the frame-
setting document fill the frame with a blank document of its own creation. See
“Blank Frames” in Chapter 16 of the JavaScript Bible for further details about this
technique for NN3+ and IE3+.

Event Handlers

onStop
NN2 NN3 NN4 NN6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v
Example

Listing 18-19 provides a simple example of an intentional infinitely looping script.
In case you load this page into a browser other than IE5, you can click the Halt
Counter button to stop the looping. The Halt Counter button and the onStop event
handler invoke the same function.

Listing 18-19: Scripting the Browser Stop Button

<HTML>
<HEAD>

document.onStop

Chapter 4 4+ The Document and Body Objects (Chapter 18) 257

<TITLE>onStop Event Handler</TITLE>
<{SCRIPT LANGUAGE="JavaScript">
var counter =0
var timerlD
function startCounter() {
document.forms[0].display.value = ++counter
//clearTimeout(timerID)
timerID = setTimeout("startCounter()", 10)
1
function haltCounter() {
clearTimeout(timerlID)
counter = 0
}
document.onstop = haltCounter
</SCRIPT>
</HEAD>

<BODY>

<H1>onStop Event Handler</H1>

<HR>

<P>Click the browser's Stop button (in IE) to stop the script counter.</P>
<FORM>

<P>INPUT TYPE="text" NAME="display"></P>

<INPUT TYPE="button" VALUE="Start Counter" onClick="startCounter()">
<INPUT TYPE="button" VALUE="Halt Counter" onClick="haltCounter()">
</FORM>

</BODY>

</HTML>

BODY Element Object

Properties

aLink
bgColor
1ink
text
vLink

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v

document.body.aLink

258 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example

You can modify Listing 18-1 for use with [E4+ and NN6+ only by using the new
property names instead. Replace all references to the document properties with
their document . body equivalents. For example, the function would be reworked as
the following (changes in boldface):

function showColorValues() {
var result = ""
result += "bgColor: " + newWindow.document.body.bgColor + "\n"
result += "vLink: " + newWindow.document.body.vLink + "\n"
result += "Tink: " + newWindow.document.body.link + "\n"
document.forms[0].results.value = result

background
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v
Example

If you have a background image file named images/10goBG.gif, a script can set
the background via the following statement:
document.body.background = "images/logoBG.gif"
To clear the background image:

document.body.background =

If a background color has been previously set, the color becomes visible after the
image disappears.

bgColor
See alLink.
bgProperties
NN2 NN3 NN4 NN6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v/ v v
Example

Both of the following statements change the default behavior of background
image scrolling in [E4+:

document.body.bgProperties

Chapter 4 4+ The Document and Body Objects (Chapter 18) 2590

document.body.bgProperties = "fixed"
or
document.body.style.backgroundAttachment = "fixed"

The added benefit of using the style sheet version is that it also works in NN6.

bottomMargin
leftMargin
rightMargin
topMargin

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example
Both of the following statements change the default left margin in [E4+:

document.body.leftMargin = 30
or

document.body.style.marginLeft = 30

leftMargin

See bottomMargin.
Tink
See alLink.

noWrap

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example
To change the word wrapping behavior from the default, the statement is:

document.body.noWrap = true

document.body.noWrap

260 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

rightMargin
See bottomMargin.
scroll
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v/ v v
Example

To change the scrollbar appearance from the default, the statement is:

document.body.scroll = "no"

scrollLeft

scroll1Top
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v
Example

Listing 18-20 is the IE4+ version of the NN example for pageX0ffset and
pageYOffset properties (Listing 16-13 in Chapter 2). Everything about these two
examples is the same except for the syntax that retrieves the values indicating how
much the document is scrolled in a window.

Listing 18-20: Viewing the scrollLeft and scrollTop Properties

<HTML>
<HEAD>
<TITLE>Master of all Windows</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function TeftFrame() {
var output = "<HTML><BODY><H3>Body Scroll Values</H3><HR>\n"
output += "<FORM>body.scrollLeft:<INPUT TYPE="text' NAME='xOffset'
SIZE=4>
\n"
output += "body.scrollTop:<INPUT TYPE="text' NAME='yOffset' SIZE=4>
\n"
output += "</FORM></BODY></HTML>"
return output

document.body.scrollLeft

Chapter 4 4 The Document and Body Objects (Chapter 18)

function rightFrame() {

}

var output = "<HTML><HEAD><SCRIPT LANGUAGE='JavaScript'>\n"

output += "function showOffsets() {\n"

output += "parent.readout.document.forms[0].x0ffset.value
"document.body.scrolllLeft\n"

output += "parent.readout.document.forms[0].y0ffset.value = +
"document.body.scrol1Top\n}\n"

output += "document.onclick = showOffsets\n"

output += "<\/SCRIPT></HEAD><BODY><H3>Content Page</H3>\n"

output += "Scroll this frame and click on a table border to view " +
"page offset values.
<HR>\n"

output += "<TABLE BORDER=5 WIDTH=800>"

var oneRow = "<TD>Cell 1</TD><TD>Cell 2</TD><TD>Cell 3</TD><TD>Cell 4</TD>" +
"<TD>Cell 5</TD>"

for (var i = 1; i <= 30; i++) {
output += "<TRXXTD>Row " + i + "</TD>" + oneRow + "</TR>"

I
+

}
output += "</TABLE></BODY></HTML>"
return output

</SCRIPT>
</HEAD>
<FRAMESET COLS="30%,70%">

<FRAME NAME="readout" SRC="javascript:parent.leftFrame()">
{FRAME NAME="display" SRC="javascript:parent.rightFrame()">

</FRAMESET>
</HTML>

text

See alLink.

topMargin

See bottomMargin.

vLink

See alLink.

Methods
createTextRange()

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

document.body.createTextRange()

261

2672 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example
See Listing 19-8 (in Chapter 5 of this book) for an example of the
createTextRange () method in action.

doScrol1(["scrollAction"])

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
doScrol1() method in IE5+. Size the browser window so that at least the vertical
scrollbar is active (meaning it has a thumb region). Enter the following statement
into the top text field and press Enter a few times to simulate clicking the PgDn key:

document.body.doScrol1()

Return to the top of the page and now do the same for scrolling by the increment of
the scrollbar down arrow:

document.body.doScrol1("down")

You can also experiment with upward scrolling. Enter the desired statement in
the top text field and leave the text cursor in the field. Manually scroll to the bot-
tom of the page and then press Enter to activate the command.

Event Handlers

onAfterPrint
onBeforePrint
See the onAfterPrint event handler for the window object, Chapter 16 of the

JavaScript Bible.
onScroll
NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v/ v v
Example

Listing 18-21 is a highly artificial demonstration of what can be a useful tool for
some page designs. Consider a document that occupies a window or frame, but one
that you don’t want scrolled, even by accident with one of the newer mouse wheels

document.body.onScroll

Chapter 4 4+ The Document and Body Objects (Chapter 18) 263

that are popular with Wintel PCs. If scrolling of the content would destroy the
appearance or value of the content, then you want to make sure that the page
always zips back to the top. The onScrol1 event handler in Listing 18-21 does just
that. Notice that the event handler is set as a property of the document.body
object after the page has loaded. While the event handler can also be set as an
attribute of the <BODY > tag, to assign it as a property requires the page to load first.
Until then, the document.body object does not yet officially exist in the object
model for this page.

Listing 18-21: Forcing Scrolling to Stay at the Page Top

<HTML>

<HEAD>

<TITLE>onScroll Event Handler</TITLE>

<SCRIPT LANGUAGE="JavaScript">

function zipBack() {
window.scrol1(0,0)

}

function init() {
document.body.onscroll = zipBack

}

</SCRIPT>

</HEAD>

<BODY onlLoad="init()">

<H1>onScroll Event Handler</H1>

<HR>

This page always zips back to the top if you try to scroll it.

<P>

<IFRAME FRAMEBORDER=0 SCROLLING="no" HEIGHT=1000 SRC="bofright.htm"></IFRAME>
<P

</BODY>

</HTML>

document.body.onScroll

CHAPTER

Body Text
Objects -
(Chapter 19)

Using the NN Range
and IE TextRange

objects

The subject of body text objects encompasses both HTML Working with text

element objects and several abstract DOM objects that selections
make it easier for scripts to manipulate text-oriented body
content that may not be contained within its own element tag. Scripting search and
While the HTML element objects are easy to grasp, the replqce actions
abstract objects that work with stretches of visible body text
have their own vocabularies and peculiarities. + + + +

Many HTML element objects in this category may become
obsolete when the installed base of browsers capable of sup-
porting Cascading Style Sheets reaches critical mass. CSS
adherents would much rather use style sheets for font specifi-
cations in place of the old-fashioned tag. But other
elements in this group, such as the header elements (H1, H2,
and so on), provide context for content that scripts may find
useful for tasks such as creating a table of contents on the fly.

More intriguing is the concept of a text range, which is
essentially an object that represents an arbitrary series of text
characters within a document. A text ranges can work within
an element (or text node) or extend beyond element borders,
just as if a user selected a bunch of text that includes portions
of what are HTML elements behind the scenes.

Unfortunately for scripters, the vocabulary for text range
manipulation is very different for the IE4+/Windows and W3C
object models. Moreover, the two objects do not always share
the same functionality, making it even more difficult to pro-
gram cross-browser implementations using text ranges. Be
alert to the compatibility ratings for each example before try-
ing out a listing or step-by-step sequence.

266 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

- L
Examples Highlights
4 Many site visitors (this author included) frown on the application of the
scrolling MARQUEE element because it tends to distract visitors, rather than
convey meaningful information. But if you insist on using it, Listing 19-3
demonstrates how scripts can control numerous behaviors.

4 Listing 19-4 lets you examine how the NN6 (W3C DOM) Range object treats
boundary points within the node hierarchy of a document.

4 To insert a node into an arbitrary point within another, see Listing 19-5’s appli-
cation of the Range.insertNode() method.

4+ Walk through the steps for Range.selectNode () method to see how to set a
range to encompass an entire node or its contents.

4 Run Listing 19-8 to see how NN6 (W3C DOM) provides additional facilities
for manipulating text content within a node. The listing also demonstrates
try-catch error handling.

4 Listing 19-10 shows the [E4+/Windows TextRange object’s way of comparing
range boundaries (the IE version of Listing 19-4).

4+ The TextRange object provides practical text search facilities, which are
demonstrated in Listing 19-11. In the process, several TextRange properties
and methods get a workout, including the use of bookmarks within a range. A
simple undo buffer adds to the user friendliness of the application.

FONT Element Object

Properties
color
NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v/ v v v
Example

Listing 19-1 contains a page that demonstrates changes to the three FONT ele-
ment object properties: color, face, and size. Along the way, you can see an eco-
nomical use of the setAttribute() method to do the work for all of the property
changes. This page loads successfully in all browsers, but the SELECT lists make
changes to the text only in [E4+ and NN6+.

A P element contains a nested FONT element that encompasses three words
whose appearance is controlled by three select lists. Each list controls one of the

Chapter 5 + Body Text Objects (Chapter 19) 267/

three FONT object properties, and their NAME attributes are strategically assigned
the names of the properties (as you see in a moment). VALUE attributes for OPTION
elements contain strings that are to be assigned to the various properties. Each
SELECT element invokes the same setFontAttr () function, passing a reference to
itself so that the function can inspect details of the element.

The first task of the setFontAttr() function is to make sure that only browsers
capable of treating the FONT element as an object get to the meat of the function.
The test for the existence of document.all and the myFONT element blocks all
older browsers from changing the font characteristics. As the page loads, the
document.all property is set for NN6 by using a variation of the normalization
technique described in Chapter 14 of the JavaScript Bible.

For suitably equipped browsers, the function next extracts the string from the
value property of the SELECT object that was passed to the function. If a selection
is made (meaning other than the first, empty one), then the single nested statement
uses the setAttribute() method to assign the value to the attribute whose name
matches the name of the SELECT element.

/\lote An odd bug in IE5/Mac doesn't let the rendered color change when changing the
~—— color property. But the setting is valid, as proven by selecting any of the other
two property choices.

Listing 19-1: Controlling FONT Object Properties

<HTML>

<HEAD>

KTITLE>FONT Object Properties</TITLE>

{SCRIPT LANGUAGE="JavaScript">

// document.all normalization trick for NN6

if (navigator.appName == "Netscape" && parselnt(navigator.appVersion) >= 5) {
document.all = document.getElementsByTagName("*")

}

// one function does all!
function setFontAttr(select) {
if (document.all && document.all.myFONT) {
var choice = select.options[select.selectedIndex].value
if (choice) {
document.all.myFONT.setAttribute(select.name, choice)
}
}
}
</SCRIPT>
</HEAD>

<BODY>

<H1>Font Object Properties</H1>

Continued

268 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 19-1 (continued)

<P>This may look like a simple sentence, but
THESE THREE WORDS
are contained by a FONT element.</P>

<FORM>
Select a text color:
<SELECT NAME="color" onChange="setFontAttr(this)">
<OPTION></OPTION>
<OPTION VALUE="red">Red</OPTION>
<OPTION VALUE="green">Green</0OPTION>
<OPTION VALUE="blue">Blue</OPTION>
<OPTION VALUE="#FA8072">Some Hex Triplet Value</OPTION>
</SELECT>

Select a font face:
<SELECT NAME="face" onChange="setFontAttr(this)">
<OPTION></OPTION>
<OPTION VALUE="Helvetica">Helvetica</OPTION>
<OPTION VALUE="Times">Times</OPTION>
<OPTION VALUE="Comic Sans MS, sans-serif">Comic Sans MS, sans-serif</Q0PTION>
<OPTION VALUE="Courier, monospace">Courier, monospace</OPTION>
<OPTION VALUE="Zapf Dingbats, serif">Zapf Dingbats, serif</OPTION>
</SELECT>

Select a font size:
(SELECT NAME="size" onChange="setFontAttr(this)">
<OPTION></OPTION>
<OPTION VALUE="3">3 (Default)</OPTION>
<OPTION VALUE="+1">Increase Default by 1</OPTION>
<OPTION VALUE="-1">Decrease Default by 1</0PTION>
<OPTION VALUE="1">Smallest</OPTION>
<OPTION VALUE="7">Biggest</OPTION>
</SELECT>
</BODY>
</HTML>

face
|

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v v/ v v

Chapter 5 + Body Text Objects (Chapter 19) 269

Example

See Listing 19-1 for an example of values that can be used to set the face prop-
erty of a FONT element object. While you will notice visible changes to most
choices on the page, the font face selections may not change from one choice to
another; this all depends on the fonts that are installed on your PC.

size
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v/ v/ v v
Example

See Listing 19-1 for an example of values that can be used to set the size prop-
erty of a FONT element object. Notice that incrementing or decrementing the size
property is applied only to the size assigned to the SIZE attribute of the element
(or the default, if none is specified) and not the current setting adjusted by script.

HR Element Object

Properties
align
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE55
Compatibility v v v v
Example

Listing 19-2 contains a page that demonstrates the changes to the five HR ele-
ment object properties: align, color, noShade, size, and width. Along the way,
you can see an economical use of the setAttribute() method to do the work for
all of the property changes. This page loads successfully in all browsers, but the
SELECT lists make changes to the text only in IE4+ and NN6+ (because they treat
the element as an object).

An HR element (whose ID is myHR) is displayed with the browser default settings
(100% width, centered, and its “magic” color). Each list controls one of the five HR
object properties, and their NAME attributes are strategically assigned the names of
the properties (as you see in a moment). VALUE attributes for OPTION elements con-
tain strings that are to be assigned to the various properties. Each SELECT element

270 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

invokes the same setHRAttr () function, passing a reference to itself so that the
function can inspect details of the element. Figure 5-1 shows the page after several
choices have modified the HR element.

“A HR Object Properties - Microsoft Internet Explorer = (0] =]
J File Edit View Favorites Tools Help
J] i Q 3|] ‘ B 2
Back Forward Stop Refresh Home Search Favorites History Mail
|
HR Object Properties
Here iz the HR element you will be controlling:
Select an alignment: | Center 'I
Select a rule color (IE only): |Blue =
Select a rule shading: 'I
Select a rule height Im Pixels =
Select a rule width: [80% =
100% {Defauli)
80%
J |
|@ Done FF@ My Computer 4

Figure 5-1: Modifying HR element properties

The first task of the setHRAttr () function is to make sure that only browsers
capable of treating the HR element as an object get to the meat of the function. As
the page loads, the document.al1 property is set for NN6 using a normalization
technique described in Chapter 14 of the JavaScript Bible.

For suitably equipped browsers, the function next reads the string from the
value property of the SELECT object that is passed to the function. If a selection is
made (that is, other than the first, empty one), then the single, nested statement
uses the setAttribute() method to assign the value to the attribute whose name
matches the name of the SELECT element.

Listing 19-2: Controlling HR Object Properties

<HTML>

<HEAD>

<TITLE>HR Object Properties</TITLE>

<SCRIPT LANGUAGE="JavaScript">

// document.all normalization trick for NN6

if (navigator.appName == "Netscape" && parselnt(navigator.appVersion) >= 5) {
document.all = document.getElementsByTagName("*")

}

// one function does all!
function setHRAttr(select) {

Chapter 5 + Body Text Objects (Chapter 19) 27/]

if (document.all && document.all.myHR) {
var choice = select.options[select.selectedIndex].value
if (choice) {
document.all.myHR.setAttribute(select.name, choice)
}
}
}
</SCRIPT>
</HEAD>

<BODY>
<H1>HR Object Properties</H1>

<P>Here is the HR element you will be controlling:</P>
<HR ID="myHR">
<FORM>
Select an alignment:
<{SELECT NAME="align" onChange="setHRAttr(this)">
<OPTION></OPTION>
<OPTION VALUE="Teft">Left</OPTION>
<OPTION VALUE="center">Center</OPTION>
<OPTION VALUE="right">Right</0PTION>
</SELECT>

Select a rule color (IE only):
<SELECT NAME="color" onChange="setHRAttr(this)">
<OPTION></QPTION>
<OPTION VALUE="red">Red</OPTION>
<OPTION VALUE="green">Green</OPTION>
<OPTION VALUE="blue">Blue</OPTION>
<OPTION VALUE="#FAB072">Some Hex Triplet Value</OPTION>
</SELECT>

Select a rule shading:
(SELECT NAME="noShade" onChange="setHRAttr(this)">
<OPTION></QPTION>
<OPTION VALUE=true>No Shading</OPTION>
<OPTION VALUE=false>Shading</OPTION>
</SELECT>

Select a rule height:
<SELECT NAME="size" onChange="setHRAttr(this)">
<OPTION></OPTION>
<OPTION VALUE=2>2 (Default)</OPTION>
<OPTION VALUE=4>4 Pixels</OPTION>
<OPTION VALUE=10>10 Pixels</OPTION>
</SELECT>

Select a rule width:
(SELECT NAME="width" onChange="setHRAttr(this)">
<OPTION></QPTION>
<OPTION VALUE="100%">100% (Default)</OPTION>

Continued

HR.align

272 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 19-2 (continued)

<OPTION VALUE="80%">80%</0PTION>
<OPTION VALUE=300>300 Pixels </0PTION>
</SELECT>
</BODY>
</HTML>

color

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v/ v v

Example
See Listing 19-2 earlier in this chapter for an example of values that can be used
to set the color property of an HR element object.

noShade
NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v/ v v
Example

See Listing 19-2 earlier in this chapter for an example of values that can be used
to set the noShade property of an HR element object. Because of the buggy behav-
ior associated with setting this property, adjusting the property in the example has
unexpected (and usually undesirable) consequences.

size
NN2 NN3 NN4 NN6 |IE3/)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v/ v v
Example

See Listing 19-2 earlier in this chapter for an example of values that can be used
to set the size property of an HR element object.

Chapter 5 4 Body Text Objects (Chapter19) 273

width
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v
Example

See Listing 19-2 earlier in this chapter for an example of values that can be used
to set the width property of an HR element object.

MARQUEE Element Object

Properties
behavior
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v
Example

Listing 19-3 contains a page that demonstrates the changes to several MARQUEE
element object properties: behavior, bgColor, direction, scrollAmount, and
scrollDelay. This page and scripts are intended only for [E4+. See the description
of Listing 19-1 for details on the attribute setting script.

Listing 19-3: Controlling MARQUEE Object Properties

<HTML>

<HEAD>

<TITLE>MARQUEE Object Properties</TITLE>

<SCRIPT LANGUAGE="JavaScript">

// one function does all!

function setMARQUEEAttr(select) {

if (document.all && document.all.myMARQUEE) {
var choice = select.options[select.selectedIndex].value
if (choice) {
document.all.myMARQUEE.setAttribute(select.name, choice)

1

Continued

274 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 19-3 (continued)

</SCRIPT>
</HEAD>

<BODY>
<H1>MARQUEE Object Properties</H1>

<HR>
<MARQUEE ID="myMARQUEE" WIDTH=400 HEIGHT=24>This is the MARQUEE element object
you will be controlling.</MARQUEE>
<FORM>
<INPUT TYPE="button" VALUE="Start Marquee"
onClick="document.all.myMARQUEE.start()">
<INPUT TYPE="button" VALUE="Stop Marquee"
onClick="document.all.myMARQUEE.stop()">

Select a behavior:
<SELECT NAME="behavior" onChange="setMARQUEEAttr(this)">
<OPTION></OPTION>
<OPTION VALUE="alternate">Alternate</OPTION>
<OPTION VALUE="scrol1">Scrol1</0PTION>
<OPTION VALUE="s1ide">S1ide</OPTION>
</SELECT>

Select a background color:
<SELECT NAME="bgColor" onChange="setMARQUEEAttr(this)">
<OPTION></OPTION>
<OPTION VALUE="red">Red</0PTION>
<OPTION VALUE="green">Green</0OPTION>
<OPTION VALUE="blue">Blue</0PTION>
<OPTION VALUE="#FA8072">Some Hex Triplet Value</OPTION>
</SELECT>

Select a scrolling direction:
(SELECT NAME="direction" onChange="setMARQUEEAttr(this)">
<OPTION></OPTION>
<OPTION VALUE="Teft">Left</OPTION>
<OPTION VALUE="right">Right</0PTION>
<OPTION VALUE="up">Up</OPTION>
<OPTION VALUE="down">Down</OPTION>
</SELECT>

Select a scroll amount:
(SELECT NAME="scrollAmount" onChange="setMARQUEEAttr(this)">
<OPTION></OPTION>
<OPTION VALUE=4>4</0PTION>
<OPTION VALUE=6>6 (Default)</OPTION>
<OPTION VALUE=10>10</0PTION>
</SELECT>

Select a scroll delay:

Chapter 5 4 Body Text Objects (Chapter 19) 275

<SELECT NAME="scrollDelay" onChange="setMARQUEEAttr(this)">
<OPTION></OPTION>
<OPTION VALUE=50>Short</OPTION>
<OPTION VALUE=85>Normal</OPTION>
<OPTION VALUE=125>Long</0PTION>
</SELECT>
</BODY>
<THTML

bgColor

- ___]
NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

See Listing 19-3 earlier in this chapter for an example of how to apply values to
the bgColor property.

direction
|
NN2 NN3 NN4 NN6é IE3/J1 1E3/)2 IE4 IE5 1E5.5

Compatibility v v v

Example
See Listing 19-3 earlier in this chapter for an example of how to apply values to

the direction property.
scrolTAmount
scrollDelay

- ___]
NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

See Listing 19-3 earlier in this chapter for an example of how to apply values to
the scrolTAmount and scrol1Delay properties.

MARQUEE.scrollAmount

276 lavaScript Examples Bible: The Essential Companion to JavaScript Bible

Methods

start()
stop()
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v
Example

See Listing 19-3 earlier in this chapter for examples of both the start () and
stop() methods, which are invoked in event handlers of separate controlling but-
tons on the page. Notice, too, that when you have the behavior set to s1ide, stop-
ping and restarting the MARQUEE does not cause the scroll action to start from a
blank region.

Range Object

Properties
collapsed
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
collapsed property. Reload the page and assign a new range to the a global vari-
able by typing the following statement into the top text box:

a = document.createRange()
Next, set the range to encompass a node:
a.selectNode(document.body)

Enter a.collapsed into the top text box . The expression returns false because
the end points of the range are not the same.

Range.collapsed

Chapter 5 + Body Text Objects (Chapter19) 277/

commonAncestorContainer

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
commonAncestorContainer property. Reload the page and assign a new range to
the a global variable by typing the following statement into the top text box:

a = document.createRange()

Now set the start point to the beginning of the contents of the my EM element and
set the end point to the end of the surrounding myP element:

a.setStartBefore(document.getElementById("myEM").firstChild)
a.setEndAfter(document.getElementById("myP").lastChild)

Verify that the text range is set to encompass content from the my EM node (the
word “all”) and end of myP nodes:

a.toString()
Verify, too, that the two end point containers are different nodes:

a.startContainer.tagName
a.endContainer.tagName

Finally, see what node contains both of these two end points:
a.commonAncestorContainer.id
The result is the myP element, which both the myP and myEM nodes have in
common.
endContainer
startContainer

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
endContainer and startContainer properties. Reload the page and assign a new
range to the a global variable by typing the following statement into the top text box:

a = document.createRange()

Range.endContainer

278 lavaScript Examples Bible: The Essential Companion to JavaScript Bible

Now set the range to encompass the myEM element:
a.selectNode(document.getElementById("myEM")
Inspect the containers for both the start and end points of the selection:

a.startContainer.id
a.endContainer.id

The range encompasses the entire my EM element, so the start and end points are
outside of the element. Therefore, the container of both start and end points is the
myP element that also surrounds the myEM element.

endOffset
startOffset
NN2 NN3 NN4 NNé6 IE3/J1 1E3/)2 IE4 IE5 IE5.5
Compatibility v
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
endOffset and startOffset properties, following similar paths you just saw in
the description. Reload the page and assign a new range to the a global variable by
typing the following statement into the top text box:

a = document.createRange()

Now set the range to encompass the myEM element and then move the start point
outward to a character within the myP element’s text node:

a.selectNode(document.getElementById("myEM"))
a.setStart(document.getElementById("myP").firstChild, 7)

Inspect the node types of the containers for both the start and end points of the
selection:

a.startContainer.nodeType
a.endContainer.nodeType

The startContainer node type is 3 (text node), while the endContainer node
type is 1 (element). Now inspect the offsets for both the start and end points of the
selection:

a.startOffset
a.end0ffset

Range.endOffset

Chapter 5 4 Body Text Objects (Chapter19) 279

Methods

cloneContents()
cloneRange()

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v

Example

When Netscape outfits the NN6 browser with the cloneContents () method, use
The Evaluator (Chapter 13 in the JavaScript Bible) to see the method in action.
Begin by creating a new range object that contains the text of the myP paragraph
element.

a = document.createRange()
a.selectNode(document.getElementById("myP")

Next, clone the original range and preserve the copy in variable b:
b = a.cloneContents()

Move the original range so that it is an insertion point at the end of the body by
first expanding it to encompass the entire body and then collapse it to the end

a.selectNode(document.body)
a.collapse(false)

Now, insert the copy at the very end of the body:
a.insertNode(b)

If you scroll to the bottom of the page, you see a copy of the text.
See the description of the compareBoundaryPoints () method later in this
chapter to see an example of the cloneRange () method.

collapse([startBoolean])

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/

Example

See Listings 19-11 (in this chapter) and 15-14 (in Chapter 1 of this book) to see
the collapse() method at work (albeit with the IE TextRange object).

Range.collapse()

280 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

compareBoundaryPoints(typelnteger,
sourceRangeRef)

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/

Example

The page rendered by Listing 19-4 lets you experiment with text range compar-
isons in NN6+. The bottom paragraph contains a SPAN element that has a Range
object assigned to its nested text node after the page loads (in the init () func-
tion). That fixed range becomes a solid reference point for you to use while you
select text in the paragraph.

/\lote Unfortunately, the window object method that converts a user selection into an
’ object is not connected correctly in the first release of NN6. Even if it were, the
inverted values returned by the compareBoundaryPoints() method would
give you incorrect results. Try this example on subsequent versions of NN6.

After you make a selection, all four versions of the compareBoundaryPoints()
method run to compare the start and end points of the fixed range against your
selection. One column of the results table shows the raw value returned by the
compareBoundaryPoints () method, while the third column puts the results into
plain language.

To see how this page works, begin by selecting the first word of the fixed text
range (carefully drag the selection from the first red character). You can see that
the starting positions of both ranges are the same, because the returned value is 0.
Because all of the invocations of the compareBoundaryPoints () method are on
the fixed text range, all comparisons are from the point of view of that range. Thus,
the first row of the table for the START_TO_END parameter indicates that the start
point of the fixed range comes before the end point of the selection, yielding a
return value of - 1.

Other selections to make include:

4+ Text that starts before the fixed range and ends inside the range

4 Text that starts inside the fixed range and ends beyond the range
4+ Text that starts and ends precisely at the fixed range boundaries
4 Text that starts and ends before the fixed range

4+ Text that starts after the fixed range

Study the returned values and the plain language results and see how they align
with the selection you made.

Range.compareBoundaryPoints()

Chapter 5 4 Body Text Objects (Chapter 19) 28]

Listing 19-4: Lab for NN6 compareBoundaryPoints() Method

<HTML>

<HEAD>

<TITLE>TextRange.compareBoundaryPoints() Method</TITLE>
<STYLE TYPE="text/css">

TD {text-align:center}

.propName {font-family:Courier, monospace}
J#fixedRangeElem {color:red; font-weight:bold}

</STYLED>

{SCRIPT LANGUAGE="JavaScript">

var fixedRange

function setAndShowRangeData() {
try {

var selectedRange = window.getSelection()

selectedRange = selectedRange.getRangeAt(0)

var resultl = fixedRange.compareBoundaryPoints(Range.START_TO_END,
selectedRange)

var result? = fixedRange.compareBoundaryPoints(Range.START_TO_START,
selectedRange)

var result3 = fixedRange.compareBoundaryPoints(Range.END_TO_START,
selectedRange)

var result4 = fixedRange.compareBoundaryPoints(Range.END_TO_END,
selectedRange)

document.getElementById("B1").innerHTML = resultl
document.getElementById("comparel").innerHTML = getDescription(resultl)
document.getElementById("B2").innerHTML = result?2
document.getElementById("compare2").innerHTML = getDescription(result?)
document.getElementById("B3").innerHTML = result3
document.getElementById("compare3").innerHTML = getDescription(result3)
document.getElementById("B4").innerHTML = result4
document.getElementById("compared").innerHTML = getDescription(result4)

}

catch(err) {

alert("Vital Range object services are not yet implemented in this

browser.")

}
}

function getDescription(comparisonValue) {
switch (comparisonValue) {

case -1 :
return "comes before"
break

case 0 :
return "is the same as"
break

case 1 :

Continued

Range.compareBoundaryPoints()

282 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 19-4 (continued)

return "comes after"

break
default :

return

vs.
}

function init() {
fixedRange = document.createRange()
fixedRange.selectNodeContents(document.getElementById("fixedRangeElem").
firstChild)
fixedRange.setEnd(fixedRange.endContainer,
fixedRange.endContainer.nodeValue.length)
}
</SCRIPT>
</HEAD>

<BODY onLoad="init()">
<H1>TextRange.compareBoundaryPoints() Method</H1>
<HR>
<P>Select text in the paragraph in various places relative to
the fixed text range (shown in red). See the relations between
the fixed and selected ranges with respect to their start
and end points.</P>
<TABLE ID="results" BORDER=1 CELLSPACING=2 CELLPADDING=2>
<TR><TH>Property</TH><TH>Returned Value</TH><TH>Fixed Range vs. Selection</TR>
<TR>
<TD CLASS="propName">StartTokEnd</TD>
<TD CLASS="count" ID="B1"> </TD>
<TD CLASS="count" ID="C1">Start of Fixed vs.
End of Selection</TD>
</TR>
<TR>
<TD CLASS="propName">StartToStart</TD>
<TD CLASS="count" ID="B2"> </TD>
<TD CLASS="count" ID="C2">Start of Fixed vs.
Start of Selection</TD>
</TR>
<TR>
<TD CLASS="propName">EndToStart</TD>
<TD CLASS="count" ID="B3"> </TD>
<TD CLASS="count" ID="C3">End of Fixed vs.
Start of Selection</TD>
</TR>
<TR>
<TD CLASS="propName">EndToEnd</TD>
<TD CLASS="count" ID="B4"> </TD>
<TD CLASS="count" ID="C4">End of Fixed vs.
End of Selection</TD>
</TR>

Range.compareBoundaryPoints()

Chapter 5 4 Body Text Objects (Chapter 19) 283

</TABLE>

<HR>

<P onMouseUp="setAndShowRangeData()">

Lorem ipsum dolor sit, consectetaur adipisicing
elit</SPAND>,

sed do eiusmod tempor incididunt ut Tabore et dolore aliqua. Ut enim adminim
veniam,

quis nostrud exercitation ullamco Tlaboris nisi ut aliquip ex ea commodo
consequat.</P>

</BODY>

</HTML>

createContextualFragment (" text")

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to create a document frag-
ment and replace an existing document tree node with the fragment. Begin by creat-
ing the range and fragment:

a = document.createRange()

a.selectNode(document.body)

b = a.createContextualFragment("a bunch of
™)

This fragment consists of a SPAN element node with a text node nested inside. At
this point, you can inspect the properties of the document fragment by entering b
into the bottom text box.

To replace the myEM element on the page with this new fragment, use the
replaceChild() method on the enclosing myP element:

document.getElementById("myP").replaceChild(b, document.getElementById("myEM"))

The fragment now becomes a legitimate child node of the myP element and can be
referenced like any node in the document tree. For example, if you enter the follow-
ing statement into the top text box of The Evaluator, you can retrieve a copy of the
text node inside the new SPAN element:

document.getElementById("myP").childNodes[1].firstChild.nodeValue

Range.createContextualFragment()

284 javaScript Examples Bible: The Essential Companion to JavaScript Bible

deleteContents()

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with delet-
ing contents of both a text node and a complete element node. Begin by creating a
text range for the text node inside the myEM element (enter the third statement,
which wraps below, as one continuous expression):

a = document.createRange()

a.setStart(document.getElementById("myEM").firstChild, 0)

a.setbEnd(document.getElementById("myEM").TastChild,
document.getETementById("myEM").TastChild.length)

Verify the makeup of the range by entering a into the bottom text box and
inspect its properties. Both containers are text nodes (they happen to be the same
text node), and offsets are measured by character positions.

Now, delete the contents of the range:

a.deleteContents()

The italicized word “all” is gone from the tree, but the myEM element is still there. To
prove it, put some new text inside the element:

document.getETementById("myEM").innerHTML = "a band of "

The italic style of the EM element applies to the text, as it should.
Next, adjust the range boundaries to include the my EM element tags, as well:

a.selectNode(document.getElementById("myEM"))

Inspect the Range object’s properties again by entering a into the bottom text
box. The container nodes are the P element that surrounds the EM element; the off-
set values are measured in nodes. Delete the range’s contents:

a.deleteContents()

Not only is the italicized text gone, but the myEM element is gone, too. The myP
element now has but one child node, the text node inside. The following entries
into the top text box of The Evaluator verify this fact:

document.getElementById("myP").childNodes.length
document.getETementById("myP").childNodes[0].nodeValue

If you try this example in early versions of NN6, however, you see that the
deleteContents () method also removes the text node following the myEM ele-
ment. This is buggy behavior, demonstrating that the method works best on text
nodes, rather than elements.

Range.deleteContents()

Chapter 5 + Body Text Objects (Chapter 19) 285

extractContents ()

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

When Netscape outfits the NN6 browser with the extractContents() method,
use The Evaluator (Chapter 13 in the JavaScript Bible) to see how the method
works. Begin by creating a new range object that contains the text of the myP para-
graph element.

a = document.createRange()
a.selectNode(document.getElementById("myP"))

Next, extract the original range’s content and preserve the copy in variable b:
b = a.extractContents()

Move the original range so that it is an insertion point at the end of the body by
first expanding it to encompass the entire body and then collapse it to the end

a.selectNode(document.body)
a.collapse(false)

Now, insert the extracted fragment at the very end of the body:
a.insertNode(b)

If you scroll to the bottom of the page, you see a copy of the text.

insertNode(nodeReference)

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v

Example

Listing 19-5, which relies on selection and Range object features not imple-
mented in the first release of NN6, demonstrates the insertNode () method plus
some additional items from the NN6 selection object. The example even includes
a rudimentary undo buffer for scripted changes to a text range. In the page gener-
ated by this listing, users can select any text in a paragraph and have the script
automatically convert the text to all uppercase characters. The task of replacing a
selection with other text requires several steps, starting with the selection, which is
retrieved via the window.getSelection() method. After making sure the selection
contains some text (that is, the selection isn’t collapsed), the selection is preserved
as a range object so that the starting text can be stored in a global variable (as a

JavaScript Examples Bible: The Essential Companion to JavaScript Bible

property of the undoBuf fer global variable object). After that, the selection is
deleted from the document tree, leaving the selection as a collapsed insertion
point. A copy of that selection in the form of a range object is preserved in the
undoBuffer object so that the undo script knows where to reinsert the original
text. A new text node is created with an uppercase version of the original text, and,
finally, the insertNode () method is invoked to stick the converted text into the
collapsed range.

Undoing this operation works in reverse. Original locations and strings are
copied from the undoBuffer object. After creating the range with the old start and
end points (which represent a collapsed insertion point), the resurrected text (con-
verted to a text node) is inserted into the collapsed range. For good housekeeping,
the undoBuffer object is restored to its unused form.

Listing 19-5: Inserting a Node into a Range

<HTML>
<HEAD>
{TITLE>NN Selection Object Replacement</TITLE>
{SCRIPT LANGUAGE="JavaScript">
var undoBuffer = {rng:null, txt:""}
function convertSelection() {
var sel, grossRng, netRng, newText
try {
sel = window.getSelection()
if (lsel.isCollapsed) {
grossRng = sel.getRangeAt(0)
undoBuffer.txt = grossRng.toString()
sel.deleteFromDocument()
netRng = sel.getRangeAt(0)
undoBuffer.rng = netRng
newText = document.createTextNode(undoBuffer.txt.toUpperCase())
netRng.insertNode(newText)
1
}
catch(err) {
alert("Vital Range object services are not yet implemented in this
browser.")
}
}
function undoConversion() {
var rng, oldText
if (undoBuffer.rng) {
rng = document.createRange()
rng.setStart(undoBuffer.rng.startParent, undoBuffer.rng.startOffset)
rng.setEnd(undoBuffer.rng.endParent, undoBuffer.rng.end0ffset)
0ldText = document.createTextNode(undoBuffer.txt)
rng.insertNode(oldText)
undoBuffer.rng = null
undoBuffer.txt = ""

Chapter 5 4 Body Text Objects (Chapter 19) 287/

</SCRIPT>

</HEAD>

<BODY>

<H1 ID="HI_1">NN6 Selection Object Replacement</H1>

<HR>

<P ID="P_1" onMouselUp="convertSelection()">This paragraph
contains text that you can select. Selections are deleted and
replaced by all uppercase versions of the selected text.</P>
<BUTTON onCTlick="undoConversion()">Undo Last</BUTTON>
<BUTTON onClick="Tlocation.reload(true)">Start Over</BUTTON>
</BODY>

<IHTML>

isValidFragment("HTMLText")

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

You can try the validity of any strings that you like in The Evaluator (Chapter 13
in the JavaScript Bible). You will discover, however, that the object model can make
a document fragment out of just about any string. For instance, if you attempt to
create a document fragment out of some random text and an end tag, the document
fragment will consist of a text node and an element node of the type indicated by
the end tag.

selectNode(nodeReference)
selectNodeContents(nodeReference)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to see the behavior of
both the selectNode() and selectNodeContents () methods work. Begin by cre-
ating a new range object.

a = document.createRange()
Set the range boundaries to include the myP element node:

a.selectNode(document.getETementById("myP"))

Range.selectNode()

288 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Enter a into the bottom text box to view the properties of the range. Notice that
because the range has selected the entire paragraph node, the container of the
range’s start and end points is the BODY element of the page (the parent element of
the myP element).

Now change the range so that it encompasses only the contents of the myP
element:

a.selectNodeContents(document.getElementById("myP"))

Click the List Properties button to view the current properties of the range. The
container of the range’s boundary points is the P element that holds the element’s
contents.

setEnd(nodeReference, offset)
setStart(nodeReference, offset)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with both
the setStart() and setEnd() methods. Begin by creating a new range object.

a = document.createRange()

For the first range, set the start and end points to encompass the second node
(the myEM element) inside the myP element:

a.setStart(document.getElementById("myP"), 1)
a.setEnd(document.getElementById("myP"), 2)

The text encompassed by the range consists of the word “all” plus the trailing
space that is contained by the myEM element. Prove this by entering the following
statement into the top text box:

a.toString()

If you then click the Results box to the right of the word “all,” you see that the
results contain the trailing space. Yet, if you examine the properties of the range
(enter a into the bottom text box), you see that the range is defined as actually
starting before the myEM element and ending after it.

Next, adjust the start point of the range to a character position inside the first
text node of the myP element:

a.setStart(document.getElementById("myP").firstChild, 11)

Click the List Properties button to see that the startContainer property of the
range is the text node, and that the start0ffset measures the character position.
All end boundary properties, however, have not changed. Enter a.toString() in
the top box again to see that the range now encompasses text from two of the
nodes inside the myP element.

Chapter 5 + Body Text Objects (Chapter 19) 289

You can continue to experiment by setting the start and end points to other ele-
ment and text nodes on the page. After each adjustment, verify the properties of
the a range object and the text it encompasses (via a.toString()).

setEndAfter(nodeReference)
setEndBefore(nodeReference)
setStartAfter(nodeReference)
setStartBefore(nodeReference)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with all four
methods. Begin by creating a new range object.

a = document.createRange()

For the first range, set the start and end points to encompass the myEM element
inside the myP element:

a.setStartBefore(document.getElementById("myEM"))
a.setbEndAfter(document.getElementById("myEM"))

The text encompassed by the range consists of the word “all” plus the trailing
space that is contained by the my EM element. Prove this by entering the following
statement into the top text box:

a.toString()

Next, adjust the start point of the range to the beginning of the first text node of
the myP element:

a.setStartBefore(document.getElementById("myP").firstChild)

Enter a into the bottom text box to see that the startParent property of the range is
the P element node, while the endParent property points to the EM element.

You can continue to experiment by setting the start and end points to before and
after other element and text nodes on the page. After each adjustment, verify the
properties of the a range object and the text it encompasses (via a.toString()).

surroundContents(nodeReference)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/

Range.surroundContents()

290 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example

Listing 19-6, which relies on selection and Range object features not imple-
mented in the first release of NN6, demonstrates how the surroundContents()
method wraps a range inside a new element. As the page loads, a global variable
(newSpan) stores a SPAN element that is used as a prototype for elements to be
used as new surrounding parent nodes. When you select text in either of the two
paragraphs, the selection is converted to a range. The surroundContents ()
method then wraps the range with the newSpan element. Because that SPAN ele-
ment has a class name of hi11ite, the element and its contents pick up the style
sheet properties as defined for that class selector.

Listing 19-6: Using the Range.surroundContents() Method

<HTML>

<HEAD>

<TITLE>Range.surroundContents() Method</TITLE>

(STYLE TYPE="text/css">

.hilite {background-color:yellow; color:red; font-weight:bold}
</STYLED>

<SCRIPT LANGUAGE="JavaScript">

var newSpan = document.createElement("SPAN")

newSpan.className = "hilite"

function highlightSelection() {
var sel, rng
try {
sel = window.getSelection()
if (lsel.isCollapsed) {
rng = sel.getRangeAt(0)
rng.surroundContents(newSpan.cloneNode(false))
}
}
catch(err) {
alert("Vital Range object services are not yet implemented in this
browser.")
}
}
</SCRIPT>
</HEAD>
<BODY>
<H1>Range.surroundContents() Method</H1>
<HR>
<P onMouseUp="highlightSelection()">These paragraphs
contain text that you can select. Selections are surrounded
by SPAN elements that share a stylesheet class selector
for special font and display characteristics.</P>

<P onMouseUp="highlightSelection()">Lorem ipsum dolor

sit amet, consectetaur adipisicing elit,
sed do eiusmod tempor incididunt ut Tabore et dolore magna

Range.surroundContents()

Chapter 5 4 Body Text Objects (Chapter 19) 291

aliqua. Ut enim adminim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.</P>

</BODY>
</HTML>
toString()
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to see the results of the
toString() method. Enter the following sequence of statements into the top
text box:

a = document.createRange()
a.selectNode(document.getElementById("myP"))
a.toString()

If you type only a into the top text box, you see the text contents of the range,
but don’t be fooled. Internal workings of The Evaluator attempt to evaluate any
expression entered into that text field. Assigning a range object to a text box forces
an internal application of the toString() method (just as the Date object does
when you create a new object instance in The Evaluator).

selection Object

Properties
type
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE55
Compatibility v/ v v
Example

Listing 19-7 contains a page that demonstrates several features of the selection
object. When you make a selection with the Deselect radio button selected, you see
the value of the selection.type property (in the statusbar) before and after the
selection is deselected. After the selection goes away, the type property returns

None.
selection.type

2972 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 19-7: Using the document.selection Object

<HTML>

<HEAD>

<TITLE>selection Object</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function processSelection() {

if (document.choices.process[0].checked) {
status = "Selection is type: " + document.selection.type
setTimeout("emptySelection()", 2000)

} else if (document.choices.process[1].checked) {
var rng = document.selection.createRange()
document.selection.clear()

}

}
function emptySelection() {
document.selection.empty()

status = "Selection is type: " + document.selection.type
}
</SCRIPT>
</HEAD>
<BODY>
<HI>IE selection Object</H1>
<HR>

<FORM NAME="choices">

<INPUT TYPE="radio" NAME="process" CHECKED>De-select after two seconds

<INPUT TYPE="radio" NAME="process">Delete selected text.

</FORM>

<P onMouseUp="processSelection()">Lorem ipsum dolor sit amet, consectetaur
adipisicing elit, sed do eiusmod tempor incididunt ut Tabore et dolore magna
aliqua. Ut enim adminim veniam, quis nostrud exercitation ullamco Taboris nisi
ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit
involuptate velit esse cillum dolore eu fugiat nulla pariatur.

</BODY>

<THTMLY

Methods
clear()

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/ v v

selection.clear()

Chapter 5 4 Body Text Objects (Chapter 19) 2973

Example

See Listing 19-7 earlier in this chapter to see the selection.clear () method at
work.

createRange()

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

See Listings 15-36 and 15-45 to see the selection.createRange() method turn
user selections into text ranges.

empty ()
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v
Example
See Listing 19-7 earlier in this chapter to view the selection.empty () method
at work.
Text and TextNode Objects
Properties
data
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v
Example

In the example for the nodeValue property used in a text replacement script (in
Chapter 1 of this book), you can substitute the data property for nodeValue to
accomplish the same result.

TextNode.data

294 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Methods

appendData("text")
deleteData(offset, count)
insertData(offset, "text")
replaceData(offset, count, "text")
substringData(offset, count)

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v

Example

The page created by Listing 19-8 is a working laboratory that you can use to
experiment with the five data-related methods in NN6+. The text node that invokes
the methods is a simple sentence in a P element. Each method has its own clickable
button, followed by two or three text boxes into which you enter values for method
parameters. Don’t be put off by the length of the listing. Each method’s operation is
confined to its own function and is fairly simple.

Each of the data-related methods throws exceptions of different kinds. To help
handle these errors gracefully, the method calls are wrapped inside a try/catch
construction. All caught exceptions are routed to the handleError () function
where details of the error are inspected and friendly alert messages are displayed
to the user. See Chapter 39 of the JavaScript Bible for details on the try/catch
approach to error handling in W3C DOM-capable browsers.

Listing 19-8: Text object Data Method Laboratory

<HTML>
<HEAD>
<TITLE>Data Methods of a W3C Text Object</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function doAppend(form) {
var node = document.getETementById("myP").firstChild
var newString = form.appendStr.value
try {
node.appendData(newString)
}
catch(err) {
handleError(err)
}
}
function doDelete(form) ({
var node = document.getElementById("myP").firstChild
var offset = form.deleteOffset.value

TextNode.appendData()

Chapter 5 4 Body Text Objects (Chapter 19) 295

var count = form.deleteCount.value
try {
node.deleteData(offset, count)
1
catch(err) {
handleError(err)
1
}
function doInsert(form) {
var node = document.getElementById("myP").firstChild
var offset = form.insertOffset.value
var newString = form.insertStr.value
try {
node.insertData(offset, newString)
}
catch(err) {
handleError(err)
}

}

function doReplace(form) {
var node = document.getElementById("myP").firstChild
var offset = form.replaceOffset.value
var count = form.replaceCount.value
var newString = form.replaceStr.value
try {
node.replaceData(offset, count, newString)
}
catch(err) {
handleError(err)
}
1
function showSubstring(form) {
var node = document.getElementById("myP").firstChild
var offset = form.substrOffset.value
var count = form.substrCount.value
try {
alert(node.substringData(offset, count))
1
catch(err) {
handleError(err)
1
}
// error handler for these methods
function handleError(err) {
switch (err.name) {
case "NS_ERROR_DOM_INDEX_SIZE_ERR":
alert("The offset number is outside the allowable range.")
break
case "NS_ERROR_DOM_NOT_NUMBER_ERR":
alert("Make sure each numeric entry is a valid number.")

Continued

TextNode.appendData()

296 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 19-8 (continued)

break
default:
alert("Double-check your text box entries.")
}

}
</SCRIPT>
</HEAD>
<BODY>
<Hl1>Data Methods of a W3C Text Object</H1>
<HR>
<P ID="myP" STYLE="font-weight:bold; text-align:center">
So I called myself Pip, and became to be called Pip.</P>
<FORM NAME="choices">
<P><INPUT TYPE="button" onClick="doAppend(this.form)" VALUE="appendData()">
String:<INPUT TYPE="text" NAME="appendStr" SIZE=30></P>

<P>INPUT TYPE="button" onClick="doDelete(this.form)" VALUE="deleteData()">
O0ffset:<INPUT TYPE="text" NAME="deleteOffset" SIZE=3>
Count:<INPUT TYPE="text" NAME="deleteCount" SIZE=3></P>

<P>CINPUT TYPE="button" onClick="doInsert(this.form)" VALUE="insertData()">
Offset:<INPUT TYPE="text" NAME="insertOffset" SIZE=3>
String:<INPUT TYPE="text" NAME="insertStr" SIZE=30></P>

<P>CINPUT TYPE="button" onClick="doReplace(this.form)" VALUE="replaceData()">
Offset:<INPUT TYPE="text" NAME="replaceOffset" SIZE=3>

Count:<INPUT TYPE="text" NAME="replaceCount" SIZE=3>

String:<INPUT TYPE="text" NAME="replaceStr" SIZE=30></P>

<P>CINPUT TYPE="button" onClick="showSubstring(this.form)"
VALUE="substringData()">

0ffset:<INPUT TYPE="text" NAME="substrOffset" SIZE=3>
Count:<INPUT TYPE="text" NAME="substrCount" SIZE=3></P>

</FORM>
</BODY>
</HTML>
splitText(offset)
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v 4

TextNode.splitText()

Chapter 5 4 Body Text Objects (Chapter 19) 297/

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to see the sp1itText ()
method in action. Begin by verifying that the myEM element has but one child node,
and that its nodeValue is the string “all”:

document.getETementById("myEM").childNodes.length
document.getElementById("myEM").firstChild.nodeValue

Next, split the text node into two pieces after the first character:
document.getETementById("myEM").firstChild.splitText(1l)
Two text nodes are now inside the element:
document.getElementById("myEM").childNodes.length
Each text node contains its respective portion of the original text:

document.getETementById("myEM").firstChild.nodeValue
document.getETlementById("myEM").TastChild.nodeValue

If you are using NN6, now bring the text nodes back together:

document.getElementById("myEM").normalize()
document.getETementById("myEM").childNodes.length

At no time during these statement executions does the rendered text change.

TextRange Object

Properties

boundingHeight
boundinglLeft
boundingTop
boundingWidth

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/ v v

Example

Listing 19-9 provides a simple playground to explore the four bounding proper-
ties (and two offset properties) of a TextRange object. As you select text in the big
paragraph, the values of all six properties are displayed in the table. Values are also
updated if you resize the window via an onResize event handler.

Notice, for example, if you simply click in the paragraph without dragging a
selection, the boundingWidth property shows up as zero. This action is the equiva-
lent of a TextRange acting as an insertion point.

TextRange.boundingHeight

298 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 19-9: Exploring the Bounding TextRange Properties

<HTML>

<HEAD>

<TITLE>TextRange Object Dimension Properties</TITLE>

(STYLE TYPE="text/css">

TD {text-align:center}

.propName {font-family: Courier, monospace}

</STYLED

{SCRIPT LANGUAGE="JavaScript">

function setAndShowRangeData() {
var range = document.selection.createRange()
Bl.innerText = range.boundingHeight
B2.innerText = range.boundingWidth
B3.innerText = range.boundingTop
B4.innerText = range.boundinglLeft
B5.innerText = range.offsetTop
B6.innerText = range.offsetleft

}

</SCRIPT>

</HEAD>

<BODY onResize="setAndShowRangeData()">
<H1>TextRange Object Dimension Properties</H1>
<HR>
<{P>Select text in the paragraph below and observe the "bounding"
property values for the TextRange object created for that selection.</P>
<TABLE ID="results" BORDER=1 CELLSPACING=2 CELLPADDING=2>
<TRX><TH>Property</TH><TH>Pixel Value</TH></TR>
<TR>
<TD CLASS="propName">boundingHeight</TD>
<TD CLASS="count" ID="B1"> </TD>
</TR>
<TR>
<TD CLASS="propName">boundingWidth</TD>
<TD CLASS="count" ID="B2"> </TD>
</TR>
<TR>
<TD CLASS="propName">boundingTop</TD>
<TD CLASS="count" ID="B3"> </TD>
</TR>
<TR>
<TD CLASS="propName">boundinglLeft</TD>
<TD CLASS="count" ID="B4"> </TD>
</TR>
<TR>
<TD CLASS="propName">offsetTop</TD>
<TD CLASS="count" ID="B5"> </TD>
</TR>
<TR>
<{TD CLASS="propName">offsetLeft</TD>
<TD CLASS="count" ID="B6"> </TD>

TextRange.boundingHeight

Chapter 5 4 Body Text Objects (Chapter 19) 299Q

</TR>

</TABLE>

<HR>

<P onMouseUp="setAndShowRangeData()">

Lorem ipsum dolor sit amet, consectetaur adipisicing elit, sed do eiusmod
tempor incididunt ut Tabore et dolore magna aliqua. Ut enim adminim veniam,
quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit involuptate velit esse
cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat
non proident, sunt in culpa qui officia deseruntmollit anim id est laborum
Et harumd und Tookum 1ike Greek to me, dereud facilis est er expedit.

<P

</BODY>

</HTML>

htmlText

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to investigate values
returned by the htm1Text property. Use the top text box to enter the following
statements and see the values in the Results box.

Begin by creating a TextRange object for the entire body and store the range in
local variable a:

a = document.body.createTextRange()

Next, use the findText () method to set the start and end points of the text range
around the word “all,” which is an EM element inside the myP paragraph:

a.findText("all")

The method returns true (see the findText () method) if the text is found and
the text range adjusts to surround it. To prove that the text of the text range is what
you think it is, examine the text property of the range:

a.text

Because the text range encompasses all of the text of the element, the htm1Text
property contains the tags for the element as well:

a.htmlText

TextRange.htmlIText

300 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

If you want to experiment by finding other chunks of text and looking at both the
text and htmlText properties, first restore the text range to encompass the entire
body with the following statement:

a.expand("textEdit")
You can read about the expand () method later in this chapter. In other tests, use

findText () to set the range to “for all” and just “for al.” Then, see how the
htmlText property exposes the EM element’s tags.

text
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v
Example

See Listing 19-11 later in this chapter for the findText () method to see the
text property used to perform the replace action of a search-and-replace function.

Methods
collapse([startBoolean])

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/ v v

Example

See Listings 19-11 (in this chapter) and 15-14 (in Chapter 1 of this book) to see
the collapse() method at work.

compareEndPoints(" type", rangeRef)

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

The page rendered by Listing 19-10 lets you experiment with text range compar-
isons. The bottom paragraph contains a SPAN element that has a TextRange
object assigned to its text after the page loads (in the init () function). That fixed
range becomes a solid reference point for you to use while you select text in the

TextRange.compareEndPoints()

Chapter 5 4 Body Text Objects (Chapter 19) 3]

paragraph. After you make a selection, all four versions of the compareEndPoints()
method run to compare the start and end points of the fixed range against your
selection. One column of the results table shows the raw value returned by the
comparekEndPoints () method, while the third column puts the results into plain
language.

To see how this page works, begin by selecting the first word of the fixed text
range (double-click the word). You can see that the starting positions of both
ranges are the same, because the returned value is 0. Because all of the invocations
of the compareEndPoints () method are on the fixed text range, all comparisons
are from the point of view of that range. Thus, the first row of the table for the
StartToEnd parameter indicates that the start point of the fixed range comes
before the end point of the selection, yielding a return value of - 1.

Other selections to make include:

4+ Text that starts before the fixed range and ends inside the range
4+ Text that starts inside the fixed range and ends beyond the range
4+ Text that starts and ends precisely at the fixed range boundaries
4 Text that starts and ends before the fixed range

4+ Text that starts after the fixed range

Study the returned values and the plain language results and see how they align
with the selection you make.

Listing 19-10: Lab for compareEndPoints() Method

<HTML>

<HEAD>

<TITLE>TextRange.compareEndPoints() Method</TITLE>
(STYLE TYPE="text/css">

TD {text-align:center}

.propName {font-family:Courier, monospace}
#fixedRangeElem {color:red; font-weight:bold}
</STYLE>

<{SCRIPT LANGUAGE="JavaScript">

var fixedRange

function setAndShowRangeData() {
var selectedRange = document.selection.createRange()
var resultl = fixedRange.compareEndPoints("StartToEnd", selectedRange)
var result?2 = fixedRange.compareEndPoints("StartToStart", selectedRange)
var result3 = fixedRange.compareEndPoints("EndToStart", selectedRange)
var resultd = fixedRange.compareEndPoints("EndToEnd", selectedRange)

Bl.innerText = resultl
comparel.innerText = getDescription(resultl)
B2.innerText = result?
compare?.innerText = getDescription(result?2)

Continued

TextRange.compareEndPoints()

3072 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 19-10 (continued)

B3.innerText = result3

compare3.innerText = getDescription(result3)

B4.innerText = result4

compared4.innerText = getDescription(result4)
}

function getDescription(comparisonValue) {
switch (comparisonValue) {
case -1 :
return "comes before"
break
case 0 :
return "is the same as"
break
case 1 :
return "comes after"
break
default :
return

vs.
}

function init() {
fixedRange = document.body.createTextRange()
fixedRange.moveToElementText (fixedRangeElem)
}
</SCRIPT>
</HEAD>

<BODY onLoad="init()">
<H1>TextRange.comparetndPoints() Method</H1>
<HR>
<P>Select text in the paragraph in various places relative to
the fixed text range (shown in red). See the relations between
the fixed and selected ranges with respect to their start
and end points.</P>
<TABLE ID="results" BORDER=1 CELLSPACING=2 CELLPADDING=2>
<TR><TH>Property</TH><TH>Returned Value</TH><TH>Fixed Range vs. Selection</TR>
<TR>

<TD CLASS="propName">StartTokEnd</TD>

<TD CLASS="count" ID="B1"> </TD>

<TD CLASS="count" ID="C1">Start of Fixed

vs. End of Selection</TD>
</TR>
<TR>

<TD CLASS="propName">StartToStart</TD>

<TD CLASS="count" ID="B2"> </TD>

<TD CLASS="count" ID="C2">Start of Fixed

vs. Start of Selection</TD>
</TR>

TextRange.compareEndPoints()

Chapter 5 4 Body Text Objects (Chapter 19) 303

<TR>
<TD CLASS="propName">EndToStart</TD>
<TD CLASS="count" ID="B3"> </TD>
<TD CLASS="count" ID="C3">End of Fixed
vs. Start of Selection</TD>
</TR>
<TR>
<TD CLASS="propName">EndToEnd</TD>
<TD CLASS="count" ID="B4"> </TD>
<TD CLASS="count" ID="C4">End of Fixed
{SPAN ID="compare4">vs. End of Selection</TD>
</TR>
</TABLE>
<HR>
<P onMouselUp="setAndShowRangeData()">
Lorem ipsum dolor sit, consectetaur adipisicing
elit</SPAND,
sed do eiusmod tempor incididunt ut Tabore et dolore aliqua. Ut enim adminim
veniam,
quis nostrud exercitation ullamco Tlaboris nisi ut aliquip ex ea commodo
consequat.</P>
</BODY>
</HTML>

duplicate()

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to see how the duplicate()
method works. Begin by creating a new TextRange object that contains the text of the
my P paragraph element.

a = document.body.createTextRange()
a.moveToElementText (myP)

Next, clone the original range and preserve the copy in variable b:
b = a.duplicate()

The method returns no value, so don’t be alarmed by the “undefined” that appears

in the Results box. Move the original range so that it is an insertion point at the end
of the body by first expanding it to encompass the entire body, and then collapse it
to the end:

a.expand("textedit")
a.collapse(false)

TextRange.duplicate()

304 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Now, insert the copy at the very end of the body:
a.text = b.text

If you scroll to the bottom of the page, you’ll see a copy of the text.

execCommand (" commandName" [, UIFlag[,

valuell)
NN2 NN3 NN4 NN6é IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to see how to copy a text
range’s text into the client computer’s Clipboard. Begin by setting the text range to
the myP element:

a = document.body.createTextRange()
a.moveToElementText (myP)

Now use execCommand () to copy the range into the Clipboard:
a.execCommand("Copy")

To prove that the text is in the Clipboard, click the bottom text field and choose
Paste from the Edit menu (or press Ctri1+V).

expand("unit")

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v/ v v

Example
You can find examples of the expand () method in Listing 15-14.

findText("searchString"[, searchScope,
flags])

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v/ v v

TextRange.findText()

Chapter 5 4 Body Text Objects (Chapter 19) 305

Example

Listing 19-11 implements two varieties of a text search-and-replace operation,
while showing you how to include extra parameters for case-sensitive and whole
word searches. Both approaches begin by creating a TextRange for the entire body,
but they immediately shift the starting point to the beginning of the DIV element
that contains the text to search.

One search-and-replace function prompts the user to accept or decline replace-
ment for each instance of a found string. The select() and scrollIntoView()
methods are invoked to help the user see what is about to be replaced. Notice that
even when the user declines to accept the replacement, the text range is collapsed
to the end of the found range so that the next search can begin after the previously
found text. Without the collapse() method, the search can get caught in an infi-
nite loop as it keeps finding the same text over and over (with no replacement
made). Because no counting is required, this search-and-replace operation is imple-
mented inside a whi1e repeat loop.

The other search-and-replace function goes ahead and replaces every match and
then displays the number of replacements made. After the loop exits (because
there are no more matches), the loop counter is used to display the number of
replacements made.

Listing 19-11: Two Search and Replace Approaches
(with Undo)

<HTML>

<HEAD>

<TITLE>TextRange.findText() Method</TITLE>
{SCRIPT LANGUAGE="JavaScript">

// global range var for use with Undo

var rng

// return findText() third parameter arguments

function getArgs(form) {
var isCaseSensitive = (form.caseSensitive.checked) ? 4 : 0
var isWholeWord = (form.wholeWord.checked) ? 2 : 0
return isCaseSensitive * isWholeWord

}

// prompted search and replace
function sAndR(form) {
var srchString = form.searchString.value
var replString = form.replaceString.value
if (srchString) {
var args = getArgs(form)
rng = document.body.createTextRange()
rng.moveToETementText(rights)
clearUndoBuffer()
while (rng.findText(srchString, 10000, args)) {
rng.select()

Continued

TextRange.findText()

306 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 19-11 (continued)

rng.scrollIntoView()
if (confirm("Replace?")) {
rng.text = replString
pushUndoNew(rng, srchString, replString)
1
rng.collapse(false)

}

// unprompted search and replace with counter
function sAndRCount(form) {
var srchString = form.searchString.value
var replString = form.replaceString.value
var i
if (srchString) {
var args = getArgs(form)
rng = document.body.createTextRange()
rng.moveToETementText(rights)
for (i = 0; rng.findText(srchString, 10000, args); i++) {
rng.text = replString
pushUndoNew(rng, srchString, replString)
rng.collapse(false)
}
if (1 >1) ¢
clearUndoBuffer()
}
}
document.all.counter.innerText = i
}

// BEGIN UNDO BUFFER CODE
// buffer global variables
var newRanges = new Array()
var origSearchString

// store original search string and bookmarks of each replaced range
function pushUndoNew(rng, srchString, replString) {
origSearchString = srchString
rng.moveStart("character", -replString.length)
newRanges[newRanges.length] = rng.getBookmark()
}

// empty array and search string global

function clearUndoBuffer() {
document.all.counter.innerText = "0"
origSearchString = ""
newRanges.length = 0

TextRange.findText()

Chapter 5 4 Body Text Objects (Chapter 19) 37/

// perform the undo
function undoReplace() {
if (newRanges.length && origSearchString) {
for (var i = 0; i < newRanges.length; i++) {
rng.moveToBookmark(newRanges[i])
rng.text = origSearchString

1

document.all.counter.innerText = i

clearUndoBuffer()

}

}
</SCRIPT>
</HEAD>
<BODY>
<H1>TextRange.findText() Method</H1>
<HR>
<FORM>
<P>Enter a string to search for in the following text:
<INPUT TYPE="text" NAME="searchString" SIZE=20 VALUE="Law">
<INPUT TYPE="checkbox" NAME="caseSensitive">Case-sensitive
<INPUT TYPE="checkbox" NAME="wholeWord">Whole words only</P>
<P>Enter a string with which to replace found text:
<INPUT TYPE="text" NAME="replaceString" SIZE=20 VALUE="legislation"></P>
<P>CINPUT TYPE="button" VALUE="Search and Replace (with prompt)"
onClick="sAndR(this.form)"></P>
<P><INPUT TYPE="button" VALUE="Search, Replace, and Count (no prompt)"
onClick="sAndRCount(this.form)">
0 items found and replaced.</P>
<P>INPUT TYPE="button" VALUE="Undo Search and Replace"
onClick="undoReplace()"></P>
</FORM>

<DIV ID="rights">

<H2>ARTICLE I</H2>

<A

<P>

Congress shall make no law respecting an establishment of religion, or
prohibiting the free exercise thereof; or abridging the freedom of speech, or of
the press; or the right of the people peaceably to assemble, and to petition the
government for a redress of grievances.

</P>

[The rest of the text is snipped for printing here, but it is on the CD-ROM
version.]

</DIVY

</BODY>

</HTML>

Having a search-and-replace function available in a document is only one-half of
the battle. The other half is offering the facilities to undo the changes. To that end,

TextRange.findText()

308 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 19-11 includes an undo buffer that accurately undoes only the changes made
in the initial replacement actions.

The undo buffer stores its data in two global variables. The first,
origSearchString, is simply the string used to perform the original search. This
variable is the string that has to be put back in the places where it had been
replaced. The second global variable is an array that stores TextRange bookmarks
(see getBookmark() later in this chapter). These references are string values that
don’t mean much to humans, but the browser can use them to recreate a range
with its desired start and end points. Values for both the global search string and
bookmark specifications are stored in calls to the pushUndoNew() method each
time text is replaced.

A perhaps unexpected action of setting the text property of a text range is that
the start and end points collapse to the end of the new text. Because the stored
bookmark must include the replaced text as part of its specification, the start point
of the current range must be adjusted back to the beginning of the replacement text
before the bookmark can be saved. Thus, the pushUndoNew () function receives the
replacement text string so that the moveStart () method can be adjusted by the
number of characters matching the length of the replacement string.

After all of the bookmarks are stored in the array, the undo action can do its job
in a rather simple for loop inside the undoReplace() function. After verifying that
the undo buffer has data stored in it, the function loops through the array of book-
marks and replaces the bookmarked text with the old string. The benefit of using
the bookmarks rather than using the replacement function again is that only those
ranges originally affected by the search-and-replace operation are touched in the
undo operation. For example, in this document if you replace a case-sensitive
“states” with “States” two replacements are performed. At that point, however, the
document has four instances of “States,” two of which existed before. Redoing the
replacement function by inverting the search-and-replace strings would convert all
four back to the lowercase version —not the desired effect.

getBookmark()

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v/ v v

Example

Listing 19-11 earlier in this chapter shows how the getBookmark () method is
used to preserve specifications for text ranges so that they can be called upon
again to be used to undo changes made to the text range. The getBookmark()
method is used to save the snapshots, while the moveToBookmark() method is
used during the undo process.

TextRange.getBookmark()

Chapter 5 4 Body Text Objects (Chapter 19) 309

inRange(otherRangeRef)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to see the inRange ()
method in action. The following statements generate two distinct text ranges, one
for the myP paragraph element and the other for the myEM element nested within.

a = document.body.createTextRange()
a.moveToElementText (myP)
b = document.body.createTextRange()
b.moveToElementText (myEM)

Because the myP text range is larger than the other, invoke the inRange()
method on it, fully expecting the return value of true

a.inRange(b)

But if you switch the references, you see that the larger text range is not “in” the
smaller one:

b.inRange(a)

isEqual (otherRangeRef)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to try the isEqual ()
method. Begin by creating two separate TextRange objects, one for the myP ele-
ment and one for myEM.

a = document.body.createTextRange()
a.moveToElement (myP)
b = document.body.createTextRange()
b.moveToElement (myEM)

Because these two ranges encompass different sets of text, they are not equal, as
the results show from the following statement:

a.isEqual(b)

TextRange.isEqual()

310 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

But if you now adjust the first range boundaries to surround the myEM element,
both ranges are the same values:

a.moveToElement (myEM)
a.isEqual(b)

move("unit"[, count])

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
move () method. To see how the method returns just the number of units it moves
the pointer, begin by creating a text range and set it to enclose the myP element:

a = document.body.createTextRange()
a.moveToElementText (myP)

Now enter the following statement to collapse and move the range backward by
20 words.

a.move("word", -20)

Continue to click the Evaluate button and watch the returned value in the Results
box. The value shows 20 while it can still move backward by 20 words. But eventu-
ally the last movement will be some other value closer to zero. And after the range
is at the beginning of the BODY element, the range can move no more in that direc-
tion, so the result is zero.

moveEnd("unit"[, count])
moveStart("unit"[, count])

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v/ v v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
moveEnd () and moveStart () methods. Begin by creating a text range and set it to
enclose the myEM element:

a = document.body.createTextRange()
a.moveToElementText(myEM)

TextRange.moveEnd()

Chapter 5 + Body Text Objects (Chapter 19) 3]]

To help you see how movements of the pointers affect the text enclosed by the
range, type a into the bottom text box and view all the properties of the text range.
Note especially the htm1Text and text properties. Now enter the following state-
ment to move the end of the range forward by one word.

a.moveknd("word")

Click on the List Properties button to see that the text of the range now includes
the word following the EM element. Try each of the following statements in the top
text box and examine both the integer results and (by clicking the List Properties
button) the properties of the range after each statement:

a.moveStart("word", -1)
a.moveknd("sentence")

Notice that for a sentence, a default unit of 1 expands to the end of the current
sentence. And if you move the start point backward by one sentence, you’ll see that
the lack of a period-ending sentence prior to the myP element causes strange
results.

Finally, force the start point backward in increments of 20 words and watch the
results as the starting point nears and reaches the start of the BODY:

a.moveStart("word", -20)

Eventually the last movement will be some other value closer to zero. And as soon
as the range is at the beginning of the BODY element, the range can move no more
in that direction, so the result is zero.

moveToBookmark("bookmarkString")

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

Listing 19-11 earlier in this chapter shows how to use the moveToBookmark()
method to restore a text range so that changes that created the state saved by the
bookmark can be undone. The getBookmark () method is used to save the snap-
shots, while the moveToBookmark () method is used during the undo process.

moveToETlementText(elemObjRef)

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v/ v v

TextRange.moveToElementText()

312 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example

A majority of examples for other TextRange object methods in this chapter use
the moveToElementText () method. Listings 19-10 and 19-11 earlier in this chapter
show the method within an application context.

moveToPoint(x, y)

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

Use The Evaluator to see the moveToPoint () method in action. Begin by creat-
ing a text range for the entire BODY element:

a = document.body.createTextRange()

Now, invoke the moveToPoint () method to a location 100, 100, which turns out to
be in the rectangle space of the Results textarea:

a.moveToPoint(100,100)

If you type a into the bottom text box and view the properties, both the
htmlText and text properties are empty because the insertion point represents no
visible text content. But if you gradually move, for example, the start point back-
ward one character at a time, you will see the htm1Text and text properties begin
to fill in with the body text that comes before the TEXTAREA element, namely the
“Results:” label and the
 tag between it and the TEXTAREA element. Enter the
following statement into the top text box and click the Evaluate button several
times.

a.moveStart("character", -1)
Enter a into the bottom text box after each evaluation to list the properties of the
range.

parentElement ()

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/ v v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
parentElement () method. Begin by setting the text range to the myEM element:

a = document.body.createTextRange()
a.moveToElementText (myEM)

TextRange.parentElement()

Chapter 5 4 Body Text Objects (Chapter19) 313

To inspect the object returned by the parentElement () method, enter the fol-
lowing statement in the lower text box:

a.parentElement()

If you scroll down to the outerHTML property, you see that the parent of the text
range is the myEM element, tag and all.
Next, extend the end point of the text range by one word:

a.movektnd("word")

Because part of the text range now contains text of the myP object, the outerHTML
property of a.parentETement () shows the entire myP element and tags.

pasteHTML("HTMLText")

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
pasteHTML () method. The goal of the following sequence is to change the tag
to a tag whose STYLE attribute sets the color of the original text that was in
the EM element.

Begin by creating the text range and setting the boundaries to the myEM element:

a = document.body.createTextRange()
a.moveToETementText (myEM)

While you can pass the HTML string directly as a parameter to pasteHTML(), stor-
ing the HTML string in its own temporary variable may be more convenient (and
more easily testable), such as:

b = "" + a.text + ""

Notice that we concatenate the text of the current text range, because it has not
yet been modified. Now we can paste the new HTML string into the current text
range

a.pasteHTML(b)

At this point the EM element is gone from the object model, and the SPAN ele-
ment is in its place. Prove it to yourself by looking at the HTML for the myP element:

myP.innerHTML

As noted earlier, the pasteHTML () method is not the only way to insert or
replace HTML in a document. This method makes excellent sense when the
user selects some text in the document to be replaced, because you can use the
document.selection.createRange() method to get the text range for the selec-
tion. But if you're not using text ranges for other related operations, consider the
other generic object properties and methods available to you.

TextRange.pasteHTML()

314 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

select()
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v
Example
See Listing 19-11 earlier in this chapter for an example of the select () method
in use.

setEndPoint (" type", otherRangeRef)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

Use The Evaluator to experiment with the setEndPoint () method. Begin by cre-
ating two independent text ranges, one for the myP element and one for my EM:

a = document.body.createTextRange()
a.moveToElementText (myP)
b = document.body.createTextRange()
b.moveToETementText (myEM)

Before moving any end points, compare the HTML for each of those ranges:

a.htmlText
b.htmlText

Now, move the start point of the a text range to the end point of the b text range:
a.setEndPoint("StartToEnd", b)

If you now view the HTML for the a range,
a.htmlText

you see that the <P> tag of the original a text range is nowhere to be found. This
demonstration is a good lesson to use the setEndPoint () method primarily if you
are concerned only with visible body text being inside ranges, rather than an ele-
ment with its tags.

TextRange.setEndPoint()

Chapter 5 + Body Text Objects (Chapter19) 315

TextRectangle Object

Properties

bottom
left
right
top

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

Example

Listing 19-12 lets you click one of four nested elements to see how the
TextRectangle is treated. When you click one of the elements, that element’s
TextRectangle dimension properties are used to set the size of a positioned ele-
ment that highlights the space of the rectangle. Be careful not to confuse the visible
rectangle object that you see on the page with the abstract TextRectangle object
that is associated with each of the clicked elements.

An important part of the listing is the way the action of sizing and showing the
positioned element is broken out as a separate function (setHiTiter()) from the
one that is the onC11ick event handler function (handleC1lick()). This is done so
that the onResize event handler can trigger a script that gets the current rectangle
for the last element clicked, and the positioned element can be sized and moved to
maintain the highlight of the same text. As an experiment, try removing the
onResize event handler from the <BODY> tag and watch what happens to the high-
lighted rectangle after you resize the browser window: the rectangle that represents
the TextRectangle remains unchanged and loses track of the abstract
TextRectangle associated with the actual element object.

Listing 19-12: Using the TextRectangle Object Properties

<HTML>

<HEAD>

<TITLE>TextRectangle Object</TITLE>

<{SCRIPT LANGUAGE="JavaScript">

// preserve reference to Tast clicked elem so resize can re-use it

var lastElem

// TextRectangle left tends to be out of registration by a couple of pixels
var rectlLeftCorrection = 2

Continued

TextRectangle.bottom

316 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 19-12 (continued)

// process mouse click
function handleClick() {
var elem = event.srcElement
if (elem.className && elem.className == "sample") {
// set hiliter element only on a subset of elements
lastElem = elem
setHiliter()
} else {
// otherwise, hide the hiliter
hideHiliter()
}
}
function setHiliter() {
if (lastElem) {
var textRect = lastElem.getBoundingClientRect()
hiliter.style.pixelTop = textRect.top + document.body.scrollTop
hiliter.style.pixelleft = textRect.left + document.body.scrollleft -
rectLeftCorrection
hiliter.style.pixelHeight = textRect.bottom - textRect.top
hiliter.style.pixelWidth = textRect.right - textRect.left
hiliter.style.visibility = "visible"
}
}
function hideHiliter() {
hiliter.style.visibility = "hidden"
lastElem = null
}
</SCRIPT>
</HEAD>
<BODY onClick="handleClick()" onResize="setHiliter()">
<H1>TextRectangle Object</H1>
<HR>
<P>Click on any of the four colored elements in the paragraph below and watch
the highlight rectangle adjust itself to the element's TextRectangle object.

<P CLASS="sample">Lorem ipsum dolor sit amet, <SPAN CLASS="sample"
STYLE="color:red">consectetaur adipisicing elit, sed do eiusmod tempor
incididunt ut Tabore et dolore magna aliqua. Ut enim adminim veniam,
quis nostrud exercitation ullamco Taboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit involuptate velit esse cillum
dolore eu fugiat nulla pariatur.</P>

<DIV ID="hiliter" STYLE="position:absolute; background-color:salmon; z-index:-1;
visibility:hidden"></DIV>

</BODY>

</HTML>

+ o+

TextRectangle.bottom

Image, Area,
and Map Objects
(Chapter 22)

The IMG element object is a popular scripting target,
largely because it is easy to script it for effects such as
mouse rollovers. Moreover, the element’s scriptability extends
backward in time to all but the very first generation of script-
able browsers. Playing a supporting role in image rollovers is
the abstract Image object, which scripts use to pre-load
images into the browser’s cache for instantaneous image
swapping. Even though the two objects manifest themselves
differently within script operations, they share properties and
methods, making it easy to learn their capabilities side by
side.

AREA and MAP element objects work closely with each
other. In practice, an AREA element resembles an A element
that is set to work as a link. Both elements create clickable
“hot spots” on the page that typically lead the user to other
locations within the site or elsewhere on the Web. They also
share a number of URL-related properties.

L] -
Examples Highlights
4 Most IE browsers can load both still and motion images
(such as MPEG movies) into an IMG element. Listing 22-3

shows how to swap between still and motion images via
the dynsrc property.

4 The page created from Listing 22-4 lets you compare the
performance of swapping images with and without pre-
caching. You also see how to have scripts rotate images
on a timed schedule.

4 Watch how the IMG element’s onlLoad event handler can
trigger actions in Listing 22-5.

4+ A powerful Listing 22-7 demonstrates how scripts can
fashion new client-side area maps when a different pic-
ture file loads into an IMG element.

CHAPTER

¢+ 0+ o+
In This Chapter

How to precache and
swap images

Invoking action
immediately after an
image loads

Creating interactive,
clientside image

maps

+ o+ o+

318 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Image and IMG Element Objects

Properties
align

NN2 NN3 NN4 NNé6 1E3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v

Example

Listing 22-1 enables you to choose from the different al1ign property values as
they influence the layout of an image whose HTML is embedded inline with some
other text. Resize the window to see different perspectives on word-wrapping on a
page and their effects on the alignment choices. Not all browsers provide distinc-
tive alignments for each choice, so experiment in multiple supported browsers.

Listing 22-1: Testing an Image’s align Property

<HTML>

<HEAD>

<TITLE>IMG align Property</TITLE>
{SCRIPT LANGUAGE="JavaScript">

function setAlignment(sel) {
document.myIMG.align = sel.options[sel.selectedIndex].text
}
</SCRIPT>
</HEAD>
<BODY>
<H1>IMG align Property</H1>
<HR>
<FORM>
Choose the image alignment:
<{SELECT onChange="setAlignment(this)">
<OPTION>absbottom
<OPTION>absmiddle
<OPTION>baseline
<OPTION SELECTED >bottom
<OPTION >Teft
<OPTION>middle
<OPTION>right
<OPTION>texttop
<OPTION>top

</SELECT>
</FORM>

Chapter 6 4+ Image, Area, and Map Objects (Chapter22) 319

<HR>

<P>Lorem ipsum dolor sit amet, consectetaur adipisicing elit,
sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua.
Ut enim adminim veniam, quis nostrud exercitation

ullamco laboris nisi ut aliquip ex ea commodo consequat.</P>

</BODY>
</HTML>
alt
NN2 NN3 NN4 NN6 1E3/)1 1IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v
Example

Use The Evaluator (Chapter 13 in JavaScript Bible) to assign a string to the alt
property of the document .my IMG image on the page. First, assign a nonexistent
image to the src property to remove the existing image:

document.myIMG.src = "fred.gif"

Scroll down to the image, and you can see a space for the image. Now, assign a
string to the a1t property:

document.myIMG.src = "Fred\'s face"

The extra backslash is required to escape the apostrophe inside the string. Scroll
down to see the new alt text in the image space.

border
NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v/ v v
Example

Feel free to experiment with the document.myIMG.border property for the
image in The Evaluator (Chapter 13 in JavaScript Bible) by assigning different inte-
ger values to the property.

320 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

complete
NN2 NN3 NN4 NN6 1E3/11 IE3/)2 IE4 IE5 IE5.5
Compatibility 4 v v v v v
Example

To experiment with the image.complete property, quit and relaunch your
browser before loading Listing 22-2 (in case the images are in memory cache). As
each image loads, click the “Is it loaded yet?” button to see the status of the com-
plete property for the image object. The value is false until the loading finishes;
then, the value becomes true. The arch image is the bigger of the two image files.
You may have to quit and relaunch your browser between trials to clear the arch
image from the cache (or empty the browser’s memory cache). If you experience
difficulty with this property in your scripts, try adding an onLoad event handler
(even if it is empty, as in Listing 22-2) to your tag.

Listing 22-2: Scripting image.complete

<HTML>
<HEAD>
<{SCRIPT LANGUAGE="JavaScriptl.1">
function loadIt(thelmage,form) {
form.result.value = ""
document.images[0].src = thelmage
}
function checkLoad(form) {
form.result.value = document.images[0].complete
}
</SCRIPT>
</HEAD>
<BODY>

<FORM>
<INPUT TYPE="button" VALUE="Load keyboard"
onClick="ToadlIt('cpu2.gif',this.form)">
<INPUT TYPE="button" VALUE="Load arch"
onClick="loadIt("'arch.gif',this.form)"><P>
<INPUT TYPE="button" VALUE="Is it loaded yet?" onClick="checklLoad(this.form)">
<INPUT TYPE="text" NAME="result">
</FORM>
</BODY>
</HTML>

IMG.complete

Chapter 6 + Image, Area, and Map Objects (Chapter 22)

321

dynsrc
NN2 NN3 NN4 NN6 1E3/)1 1E3/)2 IE4 IE5 IE5.5
Compatibility v v v
Example

To swap between still and video sources, simply empty the opposite property.
Listing 22-3 shows a simplified example that swaps between one fixed image and
one video image. This listing exhibits most of the bugs associated with changing
between static image and video sources described in the text.

Listing 22-3: Changing Between Still and Motion Images

<HTML>

<HEAD>

<TITLE>IMG dynsrc Property</TITLE>
<SCRIPT LANGUAGE="JavaScript">

var trainlmg = new Image(160,120)
trainimg.src = "amtrak.jpg"
trainlmg.dynsrc = "amtrak.mpg"

function setlLoop() {

var selector = document.forms[0].Tooper

document.myIMG.loop = selector.options[selector.selectedIndex].value
}

function setImage(type) {
if (type == "jpg") {
document.myIMG.dynsrc =
document.myIMG.src = trainImg.src
} else {

document.myIMG.
document.myIMG.
setlLoop()
document.myIMG.
1

}

</SCRIPT>

</HEAD>

<BODY>

src =
start = "fileopen"

dynsrc = trainlImg.dynsrc

<H1>IMG dynsrc Property</H1>

<HR>
<FORM>
Choose image type:

CINPUT TYPE="radio" NAME="imgGroup" CHECKED onClick="setImage('jpg')">Still

Continued

3272 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 22-3 (continued)

<INPUT TYPE="radio" NAME="imgGroup" onClick="setImage('mpg')">Video
<P>PTay video how many times after loading:
<SELECT NAME="Tooper" onChange="setlLoop()">
<OPTION VALUE=1 SELECTED>Once
<OPTION VALUE=2>Twice
<OPTION VALUE=-1>Continuously
</SELECT></P>
</FORM>
<HR>

</BODY>
<THTML>

If you don’t explicitly set the start property to fileopen (as shown in Listing
22-3), users of IE for the Macintosh have to double-click (IE4) or click (IE5) the
movie image to make it run.

fileCreatedDate
fileModifiedDate
fileSize

NN2 NN3 NN4 NNé6 1E3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

These properties are similar to the same-named properties of the document
object. You can see these properties in action in Listing 18-4. Make a copy of that
listing, and supply an image before modifying the references from the document
object to the image object to see how these properties work with the IMG element

object.
height
width
NN2 NN3 NN4 NN6 1E3/11 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v v v

Chapter 6 4+ Image, Area, and Map Objects (Chapter22) 393

Example

Use The Evaluator (Chapter 13 in JavaScript Bible) to experiment with the
height and width properties. Begin retrieving the default values by entering the
following two statements into the top text box:

document.myIMG.height
document.myIMG.width

Increase the height of the image from its default 90 to 180:
document.myIMG.height = 180

If you scroll down to the image, you see that the image has scaled in proportion.
Next, exaggerate the width:

document.myIMG.width = 400

View the resulting image.

hspace
vspace
NN2 NN3 NN4 NN6 1E3/11 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v v v
Example

Use The Evaluator (Chapter 13 in JavaScript Bible) to experiment with the
hspace and vspace properties. Begin by noticing that the image near the bottom of
the page has no margins specified for it and is flush left with the page. Now assign a
horizontal margin spacing of 30 pixels:

document.myIMG.hspace = 30
The image has shifted to the right by 30 pixels. An invisible margin also exists to
the right of the image.

isMap

NN2 NN3 NN4 NNé6 1E3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v 4

324 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example

The image in The Evaluator page is not defined as an image map. Thus, if you
type the following statement into the top text box, the property returns false:

document.myIMG.isMap

loop
NN2 NN3 NN4 NNé6 1E3/)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v/ v v
Example
See Listing 22-3 for the dynsrc property to see the 100p property in action.
lowsrc
lowSrc
NN2 NN3 NN4 NNé6 IE3/)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v/ v v
Example

See Listing 22-5 for the image object’s onLoad event handler to see how the
source-related properties affect event processing.

name
NN2 NN3 NN4 NN6 1E3/)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v v) v/ v v
Example

You can use The Evaluator to examine the value returned by the name property
of the image on that page. Enter the following statement into the top text box:

document.myIMG.name

Of course, this is redundant because the name is part of the reference to the object.

Chapter 6 4+ Image, Area, and Map Objects (Chapter22) 35

nameProp
NN2 NN3 NN4 NN6 1E3/11 IE3/)2 IE4 IE5 IE5.5
Compatibility v v
Example

You can use The Evaluator to compare the results of the src and nameProp prop-
erties in IE5+/Windows. Enter each of the following statements into the top text box:

document.myIMG.src
document.myIMG.nameProp

protocol
NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v
Example

You can use The Evaluator to examine the protocol property of the image on
the page. Enter the following statement into the top text box:

document.myIMG.protocol

src
NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4 IE5 IE55
Compatibility v v v) v v v
Example

In the following example (Listing 22-4), you see a few applications of image
objects. Of prime importance is a comparison of how precached and regular images
feel to the user. As a bonus, you see an example of how to set a timer to automati-
cally change the images displayed in an image object. This feature is a popular
request among sites that display advertising banners.

As the page loads, a global variable is handed an array of image objects. Entries
of the array are assigned string names as index values ("desk1", "desk?2", and so
on). The intention is that these names ultimately will be used as addresses to the
array entries. Each image object in the array has a URL assigned to it, which pre-
caches the image.

326 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

The page (see Figure 6-1) includes two IMG elements: one that displays non-
cached images and one that displays cached images. Under each image is a SELECT
element that you can use to select one of four possible image files for each element.
The onChange event handler for each SELECT list invokes a different function to
change the noncached (ToadIndividual()) or cached (1oadCached()) images.
Both of these functions take as their single parameter a reference to the form that
contains the SELECT elements.

To cycle through images at five-second intervals, the checkTimer () function
looks to see if the timer check box is checked. If so, the selectedIndex property of
the cached image SELECT control is copied and incremented (or reset to zero if the
index is at the maximum value). The SELECT element is adjusted, so you can now
invoke the ToadCached () function to read the currently selected item and set the
image accordingly.

For some extra style points, the <BODY> tag includes an onUnToad event handler
that invokes the resetSelects () function. This general-purpose function loops
through all forms on the page and all elements within each form. For every SELECT
element, the selectedIndex property is reset to zero. Thus, if a user reloads the
page, or returns to the page via the Back button, the images start in their original
sequence. An onlLoad event handler makes sure that the images are in sync with the
SELECT choices and the checkTimer () function is invoked with a five-second delay.
Unless the timer check box is checked, however, the cached images don’t cycle.

Listing 22-4: A Scripted Image Object and Rotating Images

<HTML>
<HEAD>
<TITLE>Image Object</TITLE>
<{SCRIPT LANGUAGE="JavaScript">
// global declaration for 'desk' images array
var imageDB
// pre-cache the 'desk' images
if (document.images) {
// Tist array index names for convenience
var deskImages = new Array("deskl", "desk2", "desk3", "desk4")
// build image array and pre-cache them
imageDB = new Array(4)
for (var i = 0; i < imageDB.length ; i++) {
imageDB[deskImages[i]] = new Image(120,90)
imageDB[deskImages[i]].src = deskImages[i] + ".gif"
}
}
// change image of 'individual' image
function loadIndividual(form) {
if (document.images) {
var gifName = form.individual.options[form.individual.selectedIndex].value
document.thumbnaill.src = gifName + ".gif"
}
}
// change image of 'cached' image
function loadCached(form) {
if (document.images) {

Chapter 6 + Image, Area, and Map Objects (Chapter 22)

var giflndex = form.cached.options[form.cached.selectedIndex].value
document.thumbnail2.src = imageDB[gifIndex].src
}
}
// if switched on, cycle 'cached' image to next in queue
function checkTimer() {
if (document.images && document.Timer.timerBox.checked) {
var giflIndex = document.selections.cached.selectedIndex
if (++giflIndex > imageDB.length - 1) {
gifIndex = 0
1
document.selections.cached.selectedIndex = giflIndex
loadCached(document.selections)
var timeoutID = setTimeout("checkTimer()",5000)
}
}
// reset form controls to defaults on unload
function resetSelects() {
for (var i = 0; i < document.forms.length; i++) {
for (var j = 0; j < document.forms[i].elements.length; j++) {
if (document.forms[i].elements[j].type == "select-one") {
document.forms[i].elements[j].selectedIndex = 0

}

1

}

// get things rolling

function init() {
loadIndividual(document.selections)
loadCached(document.selections)
setTimeout("checkTimer()",5000)

}

</SCRIPT>

</HEAD>

<BODY onlLoad="init()" onUnload="resetSelects ()">

<H1>Image Object</H1>

<HR>

<CENTER>

<TABLE BORDER=3 CELLPADDING=3>

CTRO>CTH>C/TH>XTH> Individually Loaded</TH><TH>Pre-cached</TH></TR>
<TR><TD ALIGN=RIGHT>Image:</TD>

<TD></TD>
<TD></TD>
</TR>

<TR>TD ALIGN=RIGHT>Select image:</TD>

<FORM NAME="selections">

<TD>

<SELECT NAME="individual" onChange="loadIndividual(this.form)">
<OPTION VALUE="cpul">Wires

<OPTION VALUE="cpu2">Keyboard

Continued

327

JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 22-4 (continued)

<OPTION VALUE="cpu3">Desks

<OPTION VALUE="cpu4d">Cables

</SELECT>

</TD>

<TD>

<SELECT NAME="cached" onChange="TloadCached(this.form)">
<OPTION VALUE="deskl">Bands

<OPTION VALUE="desk2">C1ips

<OPTION VALUE="desk3">Lamp

<OPTION VALUE="desk4">Erasers

</SELECT></TD>

</FORM>

</TR></TABLE>

<FORM NAME="Timer">

<INPUT TYPE="checkbox" NAME="timerBox" onClick="checkTimer()">Auto-cycle through
pre-cached images

</FORM>

</CENTER>

</BODY>

</HTML>

e Ohje 050 Brne nre _|Flx
JEiIe Edit View Favorites Tools Help ‘

= . @ o] 5|] By = "Hunks”

J Back - Eorward Stop Refresh Home Search Favorites History Mail Print

Image Object

|Individually Loaded | Pre-cached

> |efTe
))r%ﬁb}%(

Select image: ||W\res | | Bands =]
Bands

Image:

Clips
Larr

[Auto-cycle through pre-cac

] Done ’_’_ Local intranet

Figure 6-1: The image object demonstration page (Images © Aris Multimedia
Entertainment, Inc., 1994)

Chapter 6 4+ Image, Area, and Map Objects (Chapter22) 3990

start
NN2 NN3 NN4 NN6 1E3/)1 1E3/)2 IE4 IE5 IE5.5
Compatibility v v v
Example

See Listing 22-3 earlier in this chapter for an example of how you can use the
start property with a page that loads a movie clip into an IMG element object.

X
Yy
NN2 NN3 NN4 NN6 1IE3/)1 1E3/)2 IE4 IE5 IE5.5
Compatibility v
Example
If you want to scroll the document so that the link is a few pixels below the top of
the window, use a statement such as this:
window.scrollTo(document.images[0].x, (document.images[0].y - 3))
Event handlers
onAbort
onError

NN2 NN3 NN4 NNé6 IE3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v/ v v

Example

Listing 22-5 includes an onAbort event handler. If the images already exist in the
cache, you must quit and relaunch the browser to try to stop the image from load-
ing. In that example, I provide a reload option for the entire page. How you handle
the exception depends a great deal on your page design. Do your best to smooth
over any difficulties that users may encounter.

IMG.onAbort

33(0 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

onLoad
NN2 NN3 NN4 NN6 1E3/)1 1E3/)2 IE4 IE5 IE5.5
Compatibility 4 v v v v v
Example

Quit and restart your browser to get the most from Listing 22-5. As the document
first loads, the LOWSRC image file (the picture of pencil erasers) loads ahead of the
computer keyboard image. When the erasers are loaded, the onLoad event handler
writes “done” to the text field even though the main image is not loaded yet. You
can experiment further by loading the arch image. This image takes longer to load,
so the LOWSRC image (set on the fly, in this case) loads way ahead of it.

Listing 22-5: The Image onLoad Event Handler

<HTML>
<HEAD>
<SCRIPT LANGUAGE="JavaScript">
function loadlt(thelmage,form) {
if (document.images) {
form.result.value = ""
document.images[0].Towsrc = "deskl.gif"
document.images[0].src = thelmage
}
}
function checkLoad(form) {
if (document.images) {
form.result.value = document.images[0].complete
}
}
function signal() {
if(confirm("You have stopped the image from loading. Do you want to try
again?")) {
location.reload()
}
}
</SCRIPT>
</HEAD>
<BODY>
<IMG SRC="cpu2.gif" LOWSRC="desk4.gif" WIDTH=120 HEIGHT=90
onLoad="1if (document.forms[0].result) document.forms[0].result.value="done
onAbort="signal()">
<FORM>
<INPUT TYPE="button" VALUE="Load keyboard"
onClick="ToadlIt('cpu2.gif',this.form)">
<INPUT TYPE="button" VALUE="Load arch"
onClick="TloadIt('arch.gif',this.form)"><pP>

IMG.onLoad

Chapter 6 4+ Image, Area, and Map Objects (Chapter22) 33]

<INPUT TYPE="button" VALUE="Is it loaded yet?" onClick="checklLoad(this.form)">
<INPUT TYPE="text" NAME="result">

</FORM>

</BODY>

</HTML>

AREA Element Object

Properties

coords
shape

NN2 NN3 NN4 NNé6 IE3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v/ v v

Example

See Listing 22-7 for a demonstration of the coords and shape properties in the
context of scripting MAP element objects.

MAP Element Object

Property
areas
NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v/ v v
Example

Listing 22-7 demonstrates how to use scripting to replace the AREA element
objects inside a MAP element. The scenario is that the page loads with one image of
a computer keyboard. This image is linked to the keyboardMap client-side image
map, which specifies details for three hot spots on the image. If you then switch the

337 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

image displayed in that IMG element, scripts change the useMap property of the
IMG element object to point to a second MAP that has specifications more suited to
the desk lamp in the second image. Roll the mouse pointer atop the images, and
view the URLs associated with each area in the statusbar (for this example, the
URLs do not lead to other pages).

Another button on the page, however, invokes the makeAreas () function (not
working in IE5/Mac), which creates four new AREA element objects and (through
DOM-specific pathways) adds those new area specifications to the image. If you roll
the mouse atop the image after the function executes, you can see that the URLs
now reflect those of the new areas. Also note the addition of a fourth area, whose
status bar message appears in Figure 6-2.

Listing 22-7: Modifying AREA Elements on the Fly

<HTML>
<HEAD>
<TITLE>MAP Element Object</TITLE>
{SCRIPT LANGUAGE="JavaScript">
// generate area elements on the fly
function makeAreas() {
document.myIMG.src = "desk3.gif"
// build area element objects
var areal = document.createElement("AREA")
areal.href = "Script-Made-Shade.html"
areal.shape = "polygon"
areal.coords = "52,28,108,35,119,29,119,8,63,0,52,28"
var area2 = document.createElement("AREA")
area2.href = "Script-Made-Base.html"
area2.shape = "rect"
areaz.coords = "75,65,117,87"
var area3 = document.createElement("AREA")
areald.href = "Script-Made-Chain.html"
area3.shape = "polygon"
areal3.coords = "68,51,73,51,69,32,68,51"
var area4 = document.createElement("AREA")
aread.href = "Script-Made-Emptyness.html"
aread.shape = "rect"
area4.coords = "0,0,50,120"
// stuff new elements into MAP child nodes
if (document.all) {
// works for IE4+
document.all.lampMap.areas.length = 0
document.all.lampMap.areas[0] areal
document.all.lampMap.areas[1] = area?
document.all.lampMap.areas[2] = area3
document.all.lampMap.areas[3] = area4d

Chapter 6 4+ Image, Area, and Map Objects (Chapter22) 3373

} else if (document.getElementBylId) {
// NN6 adheres to node model
var map0Obj = document.getElementById("Tamp_map")
while (mapObj.childNodes.length) {

mapObj.removeChild(mapObj.firstChild)

1
mapObj.appendChild(areal)
mapObj.appendChild(area?2)
mapObj.appendChild(area3)
mapObj.appendChild(aread)
// workaround NN6 display bug
document.myIMG.style.display = "inline"

}

function changeToKeyboard() {
document.myIMG.src = "cpu2.gif"
document.myIMG.useMap = "ffkeyboardMap"
}

function changeTolLamp() {
document.myIMG.src = "desk3.gif"
document.myIMG.useMap = "f#lampMap"
}
</SCRIPT>
</HEAD>
<BODY>
<HI1>MAP Element 0Object</H1>
<HR>

<FORM>
<P>INPUT TYPE="button" VALUE="Load Lamp Image" onClick="changeTolLamp()">
<INPUT TYPE="button" VALUE="Write Map on the Fly" onClick="makeAreas()"></P>
<P>
<INPUT TYPE="button" VALUE="Load Keyboard Image"
onClick="changeToKeyboard()"></P>
</FORM>
<MAP NAME="keyboardMap">
<AREA HREF="ATpaKeys.htm" SHAPE="rect" COORDS="0,0,26,42">
<AREA HREF="ArrowKeys.htm" SHAPE="polygon"
COORDS="48,89,57,77,69,82,77,70,89,78,84,89,48,89">
<AREA HREF="PageKeys.htm" SHAPE="circle" COORDS="104,51,14">
</MAP>
<MAP NAME="TampMap">
<AREA HREF="Shade.htm" SHAPE="polygon"
COORDS="52,28,108,35,119,29,119,8,63,0,52,28">
<AREA HREF="Base.htm" SHAPE="rect" COORDS="75,65,117,87">
<AREA HREF="Chain.htm" SHAPE="polygon" COORDS="68,51,73,51,69,32,68,51">
</MAP>
</BODY>
</HTML>

334 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

A MAP Element Object - Microsoft Internet Explorer

Figure 6-2: Scripts created a special client-side image map for the image.

+ o+ 0+

The Form and
Related Objects
(Chapter 23)

Because HTML forms have been scriptable since the earli-
est days of scriptable browsers, they tend to attract the
attention of a lot of page and site designers. Even though the
FORM element is primarily the container of the interactive
form controls (covered in succeeding chapters), it’s not
uncommon to find scripts modifying the action property
(corresponding to the ACTION attribute) based on user input.
Moreover, the onSubmit event handler is a vital trigger for
batch validation just before the form data goes up to the
server.

The other HTML element for which this chapter contains an
example is the LABEL element object. A LABEL element is a
container of text that is associated with a form control. This is
a practical user interface enhancement in modern browsers in
that such labels can essentially forward mouse events to their
controls, thus widening the physical target for mouse clicks of
radio buttons and checkboxes, much like “real” applications.
The value of scriptability for this element, however, accrues
predominantly when scripts dynamically modify page content.

Examples Highlights

4 Listing 23-2 puts the form.elements array to work in a
generic function that resets all text fields in a form to
empty, without touching the settings of other types of
controls.

4 If you prefer to use images for your form'’s reset and sub-
mit actions, Listing 22-3 shows you how to do just that
with the form.reset() and form.submit() methods.

CHAPTER

¢+ 0+ o+
In This Chapter

Customizing FORM
object behavior prior
to submission

Preventing accidental
form submissions or
resets

Using images for
Reset and Submit
buttons

Processing form
validations

¢+ 4+ o+

336 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

4 While batch form validations are shown in several places throughout the
JavaScript Bible, Listing 23-4 demonstrates how both the onReset and
onSubmit event handlers, in concert with the window.confirm() method, let
scripts permit or prevent a form from being reset or submitted.

FORM Object

Properties
action

NN2 NN3 NN4 NNé6 IE3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v v v v

Example
The following statement assigns amailto: URL to the first form of a page:

document.forms[0].action = "mailto:jdoe@giantco.com"

elements
NN2 NN3 NN4 NN6é IE3/)1 IE3/)2 IE4 IE5 IE55
Compatibility v v v v v v v v v
Example

The document in Listing 23-2 demonstrates a practical use of the eTements
property. A form contains four fields and some other elements mixed in between
(see Figure 7-1). The first part of the function that acts on these items repeats
through all the elements in the form to find out which ones are text box objects and
which text box objects are empty. Notice how I use the type property to separate
text box objects from the rest, even when radio buttons appear amid the fields. If
one field has nothing in it, [alert the user and use that same index value to place
the insertion point at the field with the field’s focus () method.

FORM.elements

Chapter 7 4 The Form and Related Objects (Chapter 23)

Listing 23-2: Using the form.elements Array

<HTML>
<HEAD>
<TITLE>Elements Array</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function verifyIt() {
var form = document.forms[0]
for (i = 0; 1 < form.elements.length; i++) {
if (form.elements[i].type == "text" && form.elements[il.value == ""){
alert("Please fill out all fields.")
form.elements[i].focus()
break
1
// more tests
1
// more statements
}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
Enter your first name:<INPUT TYPE="text" NAME="firstName"><P>
Enter your Tast name:<INPUT TYPE="text" NAME="TlastName"><P>
<INPUT TYPE="radio" NAME="gender">Male
<INPUT TYPE="radio" NAME="gender">Female <P>
Enter your address:<INPUT TYPE="text" NAME="address"><P>
Enter your city:<INPUT TYPE="text" NAME="city"><P>
<INPUT TYPE="checkbox" NAME="retired">I am retired
</FORM>
<FORM>
<INPUT TYPE="button" NAME="act" VALUE="Verify" onClick="verifyIt()">
</FORM>
</BODY>
</HTML>

FORM.elements

3357

338 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Arra 050 Brne ore =5 x
J File Edit View Favorites Tools Help ‘
J] = - @ l%' = »H Links >

Back T Forward Stop Refresh Home ‘ Search Favorites History Mail Print

Enter your first name IThEDdDre
Enter your last name|Cleaver

@ Idale © Female

Enter your address:
Microsoft Internet Explorer =]
Enter your ciT:y:If\ﬁ’lfily’flEId
& Please fill out all fields.
T am retired

Wearify

] Done || & Local intranet
Figure 7-1: The elements array helps find text fields for validation.

encoding
enctype
NN2 NN3 NN4 NN6 1E3/11 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v v v v v v
Example

If you need to modify the first form in a document so that the content is sent in
non-URL-encoded text at the user’s request, the statement is:

document.forms[0].encoding = "text/plain”

FORM.encoding

Chapter 7 4 The Form and Related Objects (Chapter23) 3390

length

NN2 NN3 NN4 NNé6 1E3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v oo/ v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to determine the number
of form controls in the first form of the page. Enter the following statement into the
top text box:

document.forms[0].Tength

method

NN2 NN3 NN4 NNé6 IE3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v v v v

Example

If you need to modify the first form in a document so that the content is sent via
the POST method, the statement is:

document.forms[0].method = "POST"

target

NN2 NN3 NN4 NN6 1E3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v oo v

Example

If you want to direct the response from the first form’s CGI to a new window
(rather than the target specified in the form’s tag), use this statement:

document.forms[0].target = "_blank"

FORM.target

34(0 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Methods

reset()

NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v/ v v
Example

In Listing 23-3, I assign the act of resetting the form to the HREF attribute of a link
object (that is attached to a graphic called reset. jpg). [use the javascript: URL
to invoke the reset () method for the form directly (in other words, without doing
it via function). Note that the form’s action in this example is to a nonexistent URL.
If you click the Submit icon, you receive an “unable to locate” error from the
browser.

Listing 23-3: form.reset() and form.submit() Methods

<HTML>

<HEAD>

<TITLE>Registration Form</TITLE>

</HEAD>

<BODY>

<FORM NAME="entries" METHOD=POST ACTION="http://www.u.edu/pub/cgi-bin/register">
Enter your first name:<INPUT TYPE="text" NAME="firstName"><P>

Enter your Tast name:<INPUT TYPE="text" NAME="TlastName"><P>

Enter your address:<INPUT TYPE="text" NAME="address"><P>

Enter your city:<INPUT TYPE="text" NAME="city"><P>

<INPUT TYPE="radio" NAME="gender" CHECKED>Male

<INPUT TYPE="radio" NAME="gender">Female <P>

<INPUT TYPE="checkbox" NAME="retired">I am retired

</FORM>

<P>

<IMG SRC="submit.jpg" HEIGHT=25
WIDTH=100 BORDER=0>

<IMG SRC="reset.jpg" HEIGHT=25
WIDTH=100 BORDER=0>

</BODY>

</HTML>

FORM.reset()

Chapter 7 4 The Form and Related Objects (Chapter23) 34]

submit()
NN2 NN3 NN4 NN6 1E3/11 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v v v R
Example

Consult Listing 23-3 for an example of using the submit () method from outside
of a form.

Event handlers

onReset
NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v/ v v
Example

Listing 23-4 demonstrates one way to prevent accidental form resets or submis-
sions. Using standard Reset and Submit buttons as interface elements, the <FORM>
object definition includes both event handlers. Each event handler calls its own
function that offers a choice for users. Notice how each event handler includes the
word return and takes advantage of the Boolean values that come back from the
confirm() method dialog boxes in both functions.

Listing 23-4: The onReset and onSubmit Event Handlers

<HTML>
<HEAD>
<TITLE>Submit and Reset Confirmation</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function allowReset() {
return window.confirm("Go ahead and clear the form?")
}
function allowSend() {
return window.confirm("Go ahead and mail this info?")
}
</SCRIPT>
</HEAD>
<BODY>
<FORM METHOD=POST ENCTYPE="text/plain" ACTION="mailto:trash4@dannyg.com"
onReset="return allowReset()" onSubmit="return allowSend()">

Continued

FORM.onReset

347 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 23-4 (continued)

Enter your first name:<INPUT TYPE="text" NAME="firstName"><P>
Enter your Tast name:<INPUT TYPE="text" NAME="TastName"><P>
Enter your address:<INPUT TYPE="text" NAME="address"><P>
Enter your city:<INPUT TYPE="text" NAME="city"><P>

<INPUT TYPE="radio" NAME="gender" CHECKED>Male

<INPUT TYPE="radio" NAME="gender">Female <P>

<INPUT TYPE="checkbox" NAME="retired">I am retired<P>
<INPUT TYPE="reset">

<INPUT TYPE="submit">

</FORM>

</BODY>

</HTML>

onSubmit

NN2 NN3 NN4 NNé6 IE3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v VS v

Example
See Listing 23-4 for an example of trapping a submission via the onSubmit event
handler.

LABEL Element Object

Property
htmlFor

NN2 NN3 NN4 NNé6 1E3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v

Example

The following statement uses W3C DOM-compatible syntax (IE5+ and NN6) to
assign a form control reference to the htmlFor property of a label:

document.getETementById("myLabel").htmlFor = document.getElementById("myField")

+ o+ 0+

LABEL.htmlFor

Button Objects
(Chapter 24)

The topic of button form controls encompasses clickable
user interface elements that have a variety of applica-
tions, some of which are quite specific. For example, radio
buttons should be presented in groups offering two or more
mutually exclusive choices. A checkbox, on the other hand, is
used to signify an “on” or “off” setting related to whatever
label is associated with the button. The only tricky part of
these special behaviors is that radio buttons assigned to a
single group must share the same name, and the document
object model provides access to single buttons within the
group by way of an array of objects that share the name. For
a script to determine which radio button is currently selected,
a for loop through the array then allows the script to inspect
the checked property of each button to find the one whose
value is true.

Then there are what appear to be plain old rounded rectan-
gle buttons. Two versions —the INPUT element of type button
and the newer BUTTON element — work very much alike,
although the latter is not obligated to appear nested inside a
FORM element. A common mistake among newcomers, how-
ever, is to use the INPUT element of type submit to behave as
a button whose sole job is to trigger some script function
without any form submission. Genuine submit buttons force
the form to submit itself, even if the button’s onC11ick event
handler invokes a script function. If the form has no ACTION
attribute assigned to it, then the default action of the submis-
sion causes the page to reload, probably destroying whatever
tentative script variable values and other data have been
gathered on the page.

Examples Highlights

4 If a button’s event handler passes that button object’s
reference to the handler function, the object’s form
property provides the function with a valid reference to
the containing form, allowing the script an easy way to
access information about the form or create references
to other form controls.

CHAPTER

¢+ 0+ o+
In This Chapter

Triggering action
from a user’s click of
a button

Using checkboxes to
control display of
other form controls

Distinguishing
between radio button
families and their
individual buttons

¢+ 4+ o+

344 ravaScript Examples Bible: The Essential Companion to JavaScript Bible

4 Of course, the onC11ick event handler is the most important for button con-
trols. Listing 24-1 demonstrates passing button references to event handler
functions.

4 Listing 24-4 shows how a checkbox setting can influence the URL of the form’s
action.

4 Sometimes a complex form requires that checking a checkbox makes other
items in the form visible. Listing 24-5 employs scriptable style sheets to assist
in the job.

4 Use Listing 24-6 as a model for how to find which radio button among those of
a single group is checked.

The BUTTON Element Object and the Button,
Submit, and Reset Input Objects

Properties
form

NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v oo/ v

Example

The following function fragment receives a reference to a button element as the
parameter. The button reference is needed to decide which branch to follow; then
the form is submitted.

function setAction(btn) {

if (btn.name == "normal") {
btn.form.action = "cgi-bin/normal.pl"

} else if (btn.name == "special") {
btn.form.action = "cgi-bin/specialHandling.pl"

}
btn.form.submit()

Notice how this function doesn’t have to worry about the form reference,
because its job is to work with whatever form encloses the button that triggers this
function. Down in the form, two buttons invoke the same function. Only their names
ultimately determine the precise processing of the button click:

<FORM>

<INPUT TYPE="button" NAME="normal" VALUE="Regular Handling"
onClick="setAction(this)">

document.formObject.buttonObject.form

Chapter 8 4 Button Objects (Chapter24) 345

<INPUT TYPE="button" NAME="special" VALUE="Special Handling"
onClick="setAction(this)">
</FORM>

name

NN2 NN3 NN4 NNé6 1E3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v VS v

Example

See the example for the form property earlier in this chapter for a practical
application of the name property.

value

NN2 NN3 NN4 NNé6 1E3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v ooV v

Example

In the following excerpt, the statement toggles the label of a button from “Play”
to “Stop” (except in NN/Mac through version 4):

var btn = document.forms[0].controlButton

btn.value = (btn.value == "Play") ? "Stop" : "Play"
Methods
click()
NN2 NN3 NN4 NN6 1IE3/)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v v v v v v
Example

The following statement demonstrates how to script a click action on a button
form control named sender:

document.forms[0].sender.click()

document.formObject.buttonObject.click()

346 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Event handlers

onClick
NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4 IE5 IE55
Compatibility v v v v v v v v v
Example

Listing 24-1 demonstrates not only the onC1ick event handler of a button but
also how you may need to extract a particular button’s name or value properties
from a general-purpose function that services multiple buttons. In this case, each
button passes its own object as a parameter to the displayTeam() function. The
function then displays the results in an alert dialog box. A real-world application
would probably use a more complex if...else decision tree to perform more
sophisticated actions based on the button clicked (or use a switch construction on
the btn.value expression for NN4+ and IE4+).

Listing 24-1: Three Buttons Sharing One Function

<HTML>

<HEAD>

<TITLE>Button Click</TITLE>

<{SCRIPT LANGUAGE="JavaScript">

function displayTeam(btn) {
if (btn.value == "Abbott") {alert("Abbott & Costello")}
if (btn.value == "Rowan") {alert("Rowan & Martin")}
if (btn.value == "Martin") {alert("Martin & Lewis")}

1

</SCRIPT>

</HEAD>

<BODY>

Click on your favorite half of a popular comedy team:<P>

<FORM>

<INPUT TYPE="button" VALUE="Abbott" onClick="displayTeam(this)">
<INPUT TYPE="button" VALUE="Rowan" onClick="displayTeam(this)">
<INPUT TYPE="button" VALUE="Martin" onClick="displayTeam(this)">
</FORM>

</BODY>

<THTMLY

document.formObject.buttonObject.onClick

Chapter 8 4 Button Objects (Chapter24) 347/

Checkbox Input Object

Properties
checked

NN2 NN3 NN4 NNé6 1E3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v VS v

Example

The simple example in Listing 24-2 passes a form object reference to the
JavaScript function. The function, in turn, reads the checked value of the form’s
checkbox object (checkThis.checked) and uses its Boolean value as the test
result for the if...else construction.

Listing 24-2: The checked Property as a Conditional

<HTML>
<HEAD>
KTITLE>Checkbox Inspector</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function inspectBox(form) {
if (form.checkThis.checked) {
alert("The box is checked.")
} else {
alert("The box is not checked at the moment.")
}
}
</SCRIPT>
</HEAD>

<BODY>

<FORM>

<INPUT TYPE="checkbox" NAME="checkThis">Check here<P>
<INPUT TYPE="button" NAME="boxChecker" VALUE="Inspect Box"
onClick="inspectBox(this.form)">

</FORM>

</BODY>

</HTML>

document.formObject.checkboxObject.checked

348 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

defaultChecked

NN2 NN3 NN4 NNé6 1E3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v oo/ v

Example

The function in Listing 24-3 (this fragment is not in the CD-ROM listings) is
designed to compare the current setting of a checkbox against its default value. The
if construction compares the current status of the box against its default status.
Both are Boolean values, so they can be compared against each other. If the current
and default settings don’t match, the function goes on to handle the case in which
the current setting is other than the default.

Listing 24-3: Examining the defaultChecked Property

function compareBrowser(thisBox) {
if (thisBox.checked != thisBox.defaultChecked) {
/] statements about using a different set of HTML pages
}

value
NN2 NN3 NN4 NN6 1E3/11 1E3/)2 IE4 IE5 IE5.5
Compatibility v v v v v v v v v
Example

The scenario for the skeleton HTML page in Listing 24-4 is a form with a check-
box whose selection determines which of two actions to follow for submission to
the server. After the user clicks the Submit button, a JavaScript function examines
the checkbox’s checked property. If the property is true (the button is checked),
the script sets the action property for the entire form to the content of the value
property —thus influencing where the form goes on the server side. If you try this
listing on your computer, the result you see varies widely with the browser version
you use. For most browsers, you see some indication (an error alert or other screen
notation) that a file with the name primaryURL or alternateURL doesn’t exist.
Unfortunately, IE5.5/Windows does not display the name of the file that can’t be
opened. Try the example in another browser if you have one. The names and the
error message come from the submission process for this demonstration.

document.formObject.checkboxObject.value

Chapter 8 4 Button Objects (Chapter24) 349

Listing 24-4: Adjusting a CGl Submission Action

<HTML>
<HEAD>
<TITLE>Checkbox Submission</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function setAction(form) {
if (form.checkThis.checked) {
form.action = form.checkThis.value
} else {
form.action = "file://primaryURL"
}
return true
}
</SCRIPT>
</HEAD>
<BODY>
<FORM METHOD="POST" ACTION="">
<INPUT TYPE="checkbox" NAME="checkThis" VALUE="file://alternateURL">Use
alternate<P>
CINPUT TYPE="submit" NAME="boxChecker" onClick="return setAction(this.form)">
</FORM>
</BODY>
</HTML>

Event handlers

onClick
NN2 NN3 NN4 NN6 1E3/)1 1IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v v v v v v
Example

The page in Listing 24-5 shows how to trap the click event in one checkbox to
influence the visibility and display of other form controls. After you turn on the
Monitor checkbox, a list of radio buttons for monitor sizes appears. Similarly,
engaging the Communications checkbox makes two radio buttons visible. Your
choice of radio button brings up one of two further choices within the same table
cell (see Figure 8-1).

document.formObject.checkboxObject.onClick

350 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

2} Checkbox Event Handler - Microsoft Internet Explorer =1 E3
J File Edit View Favorites Tools Help |
J «- . == _ @ ot Q | %] ‘ P &
Back Fornward Stop Refresh Home Search Favorites History Mail
|
Check all accessories for your computer:
| ™ Monitor ‘
Eﬂf.;.'[;éModem © Networl
V' Communications
© <56kbps © S6kbps O ISDH (any speed) © Cable
-]
[&] Done [= my computer v

Figure 8-1: Clicking on button choices reveals additional relevant choices

Notice how the toggle() function was written as a generalizable function. This
function can accept a reference to any checkbox object and any related span. If five
more groups like this were added to the table, no additional functions would be
needed.

In the swap () function, an application of a nested if. . .else shortcut construc-
tion is used to convert the Boolean values of the checked property to the strings
needed for the display style property. The nesting is used to allow a single state-
ment to take care of two conditions: the group of buttons to be controlled and the
checked property of the button invoking the function. This function is not general-
izable, because it contains explicit references to objects in the document. The
swap () function can be made generalizable, but due to the special relationships
between pairs of span elements (meaning one has to be hidden while the other dis-
played in its place), the function would require more parameters to fill in the blanks
where explicit references are needed.

/\Iote A rendering bug in NN6 causes the form controls in the lower right frame to lose

" their settings when the elements have their display style property set to none.
The problem is related to the inclusion of P or similar block elements inside a
table cell that contains controls. Therefore, if you uncheck and recheck the
Communications checkbox in the example page, the previously displayed sub-
group shows up even though no radio buttons are selected. You can script around
this bug by preserving radio button settings in a global variable as you hide the
group, and restoring the settings when you show the group again.

document.formObject.checkboxObject.onClick

Chapter 8 4 Button Objects (Chapter24) 351

Syntax used to address elements here is the W3C DOM-compatible form, so this
listing runs as is with I[E5+ and NN6+. You can modify the listing to run in IE4 by
adapting references to the document.all format.

Listing 24-5: A Checkbox and an onClick event Handler

<HTML>

<HEAD>

<TITLE>Checkbox Event Handler</TITLE>

(STYLE TYPE="text/css">

fimonGroup f{visibility:hidden}

jtcomGroup f{visibility:hidden}

</STYLED

<SCRIPT LANGUAGE="JavaScript">

// toggle visibility of a main group spans

function toggle(chkbox, group) {
var visSetting = (chkbox.checked) ? "visible" : "hidden"
document.getElementById(group).style.visibility = visSetting

}

// swap display of communications sub group spans

function swap(radBtn, group) f{
var modemsVisSetting = (group == "modems") ?

((radBtn.checked) ? "" : "none") : "none"
var netwksVisSetting = (group == "netwks") ?
((radBtn.checked) ? "" : "none") : "none"

document.getElementById("modems").style.display = modemsVisSetting
document.getElementById("netwks").style.display = netwksVisSetting

}

</SCRIPT>

</HEAD>

<BODY>
<FORM>
<H3>Check all accessories for your computer:</H3>
<TABLE BORDER=2 CELLPADDING=5>
<TR>
<TD>
<INPUT TYPE="checkbox" NAME="monitor"
onClick="toggle(this, "monGroup')">Monitor
</TD>
<TD>

<INPUT TYPE="radio" NAME="monitorType">15"
<INPUT TYPE="radio" NAME="monitorType">17"
<INPUT TYPE="radio" NAME="monitorType">21"
<INPUT TYPE="radio" NAME="monitorType">>21"

</TD>
</TR>
<TR>
<TD>

Continued

document.formObject.checkboxObject.onClick

357 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 24-5 (continued)

<INPUT TYPE="checkbox" NAME="comms"
onClick="toggle(this, 'comGroup')">Communications
</TD>
<TD>
<{SPAN ID="comGroup">
<P>INPUT TYPE="radio" NAME="commType"
onClick="swap(this, 'modems')">Modem
CINPUT TYPE="radio" NAME="commType"
onClick="swap(this, 'netwks"')">Network</P>
<{P>
CINPUT TYPE="radio" NAME="modemType"><56kbps
<INPUT TYPE="radio" NAME="modemType">56kbps
<INPUT TYPE="radio" NAME="modemType">ISDN (any speed)
<INPUT TYPE="radio" NAME="modemType">Cable

(SPAN ID="netwks" STYLE="display:none">
<INPUT TYPE="radio" NAME="netwkType">Ethernet 10Mbps (10-Base T)
<INPUT TYPE="radio" NAME="netwkType">Ethernet 100Mbps (10/100)
<INPUT TYPE="radio" NAME="netwkType">T1 or greater
 </P>

</TD>
</TR>

</TABLE>
</FORM>

</BODY>
</HTML>

Radio Input Object

Properties
checked

NN2 NN3 NN4 NNé6 IE3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v v v v

Example

Listing 24-6 uses a repeat loop in a function to look through all buttons in the
Stooges group in search of the checked button. After the loop finds the one whose

document.formObject.radioObject.checked

Chapter 8 4 Button Objects (Chapter24) 3573

checked property is true, it returns the value of the index. In one instance, that
index value is used to extract the value property for display in the alert dialog box;
in the other instance, the value helps determine which button in the group is next
in line to have its checked property set to true.

Listing 24-6: Finding the Selected Button in a Radio Group

<HTML>
<HEAD>
<TITLE>Extracting Highlighted Radio Button</TITLE>
{SCRIPT LANGUAGE="JavaScript">
function getSelectedButton(buttonGroup){
for (var i = 0; i < buttonGroup.length; i++) {
if (buttonGroupl[il.checked) {
return i
}
}
return 0
}
function fullName(form) {
var i = getSelectedButton(form.stooges)
alert("You chose " + form.stooges[i].value + ".")
}
function cycle(form) {
var i = getSelectedButton(form.stooges)
if (i+1 == form.stooges.length) {
form.stooges[0].checked = true
} else {
form.stooges[i+1].checked = true
}
}
</SCRIPT>
</HEAD>

<BODY>

<FORM>

Select your favorite Stooge:

<{P>INPUT TYPE="radio" NAME="stooges" VALUE="Moe Howard" CHECKED>Moe
<INPUT TYPE="radio" NAME="stooges" VALUE="Larry Fine" >Larry
<INPUT TYPE="radio" NAME="stooges" VALUE="Curly Howard" >Curly
{INPUT TYPE="radio" NAME="stooges" VALUE="Shemp Howard" >Shemp</P>
<P>CINPUT TYPE="button" NAME="Viewer" VALUE="View Full Name..."
onClick="fullName(this.form)"></P>

<P>INPUT TYPE="button" NAME="Cycler" VALUE="Cycle Buttons"
onClick="cycle(this.form)"> </P>

</FORM>

</BODY>

</HTML>

document.formObject.radioObject.checked

354 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

defaultChecked
NN2 NN3 NN4 NN6 1E3/11 1E3/)2 1E4 1E5 1E5.5
Compatibility v v v v v v v v v
Example

In the script fragment of Listing 24-7 (not among the CD-ROM files), a function is
passed a reference to a form containing the Stooges radio buttons. The goal is to
see, in as general a way as possible (supplying the radio group name where
needed), if the user changed the default setting. Looping through each of the radio
buttons, you look for the one whose CHECKED attribute is set in the <INPUT> defini-
tion. With that index value (i) in hand, you then look to see if that entry is still
checked. If not (notice the ! negation operator), you display an alert dialog box
about the change.

Listing 24-7: Has a Radio Button Changed?

function groupChanged(form) {
for (var i = 0; i < form.stooges.length; i++) {
if (form.stooges[i].defaultChecked) {
if (!form.stooges[i].checked) {
alert("This radio group has been changed.")

}

length
NN2 NN3 NN4 NN6 1E3/11 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v v v v v v
Example

See the loop construction within the function of Listing 24-7 for one way to apply
the Tength property.

document.formObject.radioObject.length

Chapter 8 4 Button Objects (Chapter24) 355

value
NN2 NN3 NN4 NN6 1E3/11 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v v v v v
Example

Listing 24-6 (earlier in this chapter) demonstrates how a function extracts the
value property of a radio button to display otherwise hidden information stored
with a button. In this case, it lets the alert dialog box show the full name of the
selected Stooge.

Event handlers

onClick
NN2 NN3 NN4 NN6 1IE3/J1 1IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v v v v v v
Example

Every time a user clicks one of the radio buttons in Listing 24-8, he or she sets a
global variable to true or false, depending on whether the person is a Shemp
lover. This action is independent of the action that is taking place if the user clicks
on the View Full Name button. An onUnload event handler in the <BODY> definition
triggers a function that displays a message to Shemp lovers just before the page
clears (click the browser’s Reload button to leave the current page prior to reload-
ing). Here I use an initialize function triggered by onLoad so that the current radio
button selection sets the global value upon a reload.

Listing 24-8: An onClick event Handler for Radio Buttons

<HTML>
<HEAD>
<TITLE>Radio Button onClick Handler</TITLE>
<SCRIPT LANGUAGE="JavaScript">
var ShempOPhile = false
function initValue() {

ShempOPhile = document.forms[0].stooges[3].checked
}
function fullName(form) {

for (var i = 0; i < form.stooges.length; i++) {

if (form.stooges[i].checked) f{
break

Continued

document.formObject.radioObject.onClick

356 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 24-8 (continued)

1
1
alert("You chose " + form.stooges[i].value + ".")
}
function setShemp(setting) {
ShempOPhile = setting
}
function exitMsg() {
if (ShempOPhile) {
alert("You Tike SHEMP?")
1
}
</SCRIPT>
</HEAD>

<BODY onlLoad="initValue()" onUnload="exitMsg()">

<FORM>

<{B>Select your favorite Stooge:<P>

<INPUT TYPE="radio" NAME="stooges" VALUE="Moe Howard" CHECKED
onClick="setShemp(false)">Moe

<INPUT TYPE="radio" NAME="stooges" VALUE="Larry Fine"
onClick="setShemp(false)">Larry

<INPUT TYPE="radio" NAME="stooges" VALUE="Curly Howard"
onClick="setShemp(false)">Curly

<INPUT TYPE="radio" NAME="stooges" VALUE="Shemp Howard"
onClick="setShemp(true)">Shemp<P>

<INPUT TYPE="button" NAME="Viewer" VALUE="View Full Name..."
onClick="fullName(this.form)">

</FORM>

</BODY>

<IHTML>

See also Listing 24-5 for further examples of scripting onC1ick event handlers for
radio buttons —this time to hide and show related items in a form.

+ o+

document.formObject.radioObject.onclick

CHAPTER

Text-Related
Form Objects L
(Chapter 25) i e

Capturing and
modifying text field

contents

When your page needs input from visitors beyond Triggering action and
“yes” or “no” answers, text fields are the interface entering fext

elements that provide the blank spaces. Whether you specify
the one-line INPUT element or the multi-line TEXTAREA ele- Giving focus to a text
ment, this is where visitors can not only express themselves, field and selecting its
but also enter information in formats that might cause your contents
carefully constructed back-end database to go haywire. More
often than not, it is the text box that benefits most from client- + + + +

side form validation.

Despite the fact that the primary user action in a text box
is typing, keyboard events became available to scripters only
starting with the version 4 browsers from both Microsoft and
Netscape. But they arrived fully formed, with a suite of events
for the downstroke, upstroke, and complete press-and-release
action of typing a character. From there, the event object
takes over to help scripts uncover the character code and
whether the user held down any modifier keys while typing
the character. You can find examples of this kind of event han-
dling in the examples for Chapters 1 and 13 of this book.

Text boxes are not always as scriptable as you might like
them to be. Modern browsers can apply style sheets to adjust
font characteristics of the complete text box, but you cannot,
say, set some of the words inside a text box to bold. Even
something as common (in other programs) as having the text
insertion pointer automatically plant itself at the end of exist-
ing text is possible so far only in IE4+/Windows via the
TEXTAREA's createTextRange () method and associated
TextRange object methods (see TextRange object examples
in Chapter 5 of this book). The moral of the story is to keep
your expectations for the powers of text fields at moderate
levels.

358 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

- L
Examples Highlights
4 Because the value property holds the string value of the text box, it is also
the property you use to dump new text into a box. Listings 25-2 and 25-3 read

from and write to a text box, transforming the entered contents along the way.
You see three different approaches to the task.

4 During client-side validation, you help the visitor by directing the text inser-
tion pointer to the text field that failed a validation. Listing 25-4 shows how to
use the focus () and select () methods along with a workaround for an
[E/Windows timing problem that normally gets in the way.

4+ Use the onChange event handler (not onBTur) as a trigger for real-time data
validation, as demonstrated in Listing 25-6. You also see the syntax that pre-
vents form submission when validation fails.

4 In I[E4+ and NNG6, you can adjust the size of a TEXTAREA element after the page
has loaded. The example for the cols and rows properties lets you see the
results in The Evaluator.

Text Input Object

Properties
defaultValue

NN2 NN3 NN4 NNé6 1E3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v v v v

Example

Important: Listings 25-1, 25-2, and 25-3 feature a form with only one text INPUT
element. The rules of HTML forms say that such a form submits itself if the user
presses the Enter key whenever the field has focus. Such a submission to a form
whose action is undefined causes the page to reload, thus stopping any scripts that
are running at the time. FORM elements for of these example listings contain an
onSubmit event handler that both blocks the submission and attempts to trigger
the text box onChange event handler to run the demonstration script. In some
browsers, such as [E5/Mac, you may have to press the Tab key or click outside of
the text box to trigger the onChange event handler after you enter a new value.

Listing 25-1 has a simple form with a single field that has a default value set in its
tag. A function (resetField()) restores the contents of the page’s lone field to the
value assigned to it in the <INPUT> definition. For a single-field page such as this,
defining a TYPE="reset" button or calling form.reset () works the same way
because such buttons reestablish default values of all elements of a form. But if you

document.formObject.textObject.defaultValue

Chapter 9 + Text-Related Form Objects (Chapter25) 359

want to reset only a subset of fields in a form, follow the example button and func-
tion in Listing 25-1.

Listing 25-1: Resetting a Text Object to Default Value

<HTML>
<HEAD>
<TITLE>Text Object DefaultValue</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function upperMe(field) {
field.value = field.value.toUpperCase()
}
function resetField(form) {
form.converter.value = form.converter.defaultValue
}
</SCRIPT>
</HEAD>

<BODY>

<FORM onSubmit="window.focus(); return false">

Enter lTowercase letters for conversion to uppercase: <INPUT TYPE="text"
NAME="converter" VALUE="sample" onChange="upperMe(this)">

<INPUT TYPE="button" VALUE="Reset Field"
onClick="resetField(this.form)">

</FORM>

</BODY>

</HTML>

form

NN2 NN3 NN4 NNé6 1E3/11 IE3/)2 IE4 IE5 IE5.5

Compatibility v/ v v v v v VS v

Example

The following function fragment receives a reference to a text element as the
parameter. The text element reference is needed to decide which branch to follow;
then the form is submitted.

function setAction(fld) {

if (fld.value.index0f("@") != -1) {
fld.form.action = "mailto:" + fld.value
} else {
fld.form.action = "cgi-bin/normal.pl1"

}
f1d.form.submit()

document.formObject.textObject.form

36(0 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Notice how this function doesn’t have to worry about the form reference,
because its job is to work with whatever form encloses the text field that triggers
this function.

maxLength
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v 4
Example

Use The Evaluator (Chapter 13 in JavaScript Bible) to experiment with the
maxLength property. The top text field has no default value, but you can temporar-
ily set it to only a few characters and see how it affects entering new values:

document.forms[0].input.maxLength = 3

Try typing into the field to see the results of the change. To restore the default
value, reload the page.

name
NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4 IE5 IE55
Compatibility v v v v v v v v v
Example

Consult Listing 25-2 later in this chapter, where I use the text object’s name, con-
vertor, as part of the reference when assigning a value to the field. To extract the
name of a text object, you can use the property reference. Therefore, assuming that
your script doesn’t know the name of the first object in the first form of a docu-
ment, the statement is

var objectName = document.forms[0].elements[0].name

readOnly

NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v/ v v
Example

Use The Evaluator (Chapter 13 in JavaScript Bible) to set the bottom text box to
be read-only. Begin by typing anything you want in the bottom text box. Then enter
the following statement into the top text box:

document.formObject.textObject.readOnly

Chapter 9 + Text-Related Form Objects (Chapter25) 36]

document.forms[0].inspector.readOnly = true

While existing text in the box is selectable (and therefore can be copied into the
clipboard), it cannot be modified or removed.

size
NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v
Example

Resize the bottom text box of The Evaluator (Chapter 13 in JavaScript Bible) by
entering the following statements into the top text box:

document.forms[0].inspector.size = 20
document.forms[0].inspector.size = 400

Reload the page to return the size back to normal (or set the value to 80).

value
NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4 IE5 IE55
Compatibility v v v v v v v v v
Example

As a demonstration of how to retrieve and assign values to a text object, Listing
25-2 shows how the action in an onChange event handler is triggered. Enter any
lowercase letters into the field and click out of the field. I pass a reference to the
entire form object as a parameter to the event handler. The function extracts the
value, converts it to uppercase (using one of the JavaScript string object methods),
and assigns it back to the same field in that form.

Listing 25-2: Getting and Setting a Text Object’s Value

<HTML>

<HEAD>

<TITLE>Text Object Value</TITLE>

(SCRIPT LANGUAGE="JavaScript">

function upperMe(form) {
inputStr = form.converter.value
form.converter.value = inputStr.toUpperCase()

}

</SCRIPT>

</HEAD>

Continued

document.formObject.textObject.value

362 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 25-2 (continued)

<BODY>

<FORM onSubmit="window.focus(); return false">

Enter Towercase letters for conversion to uppercase: <INPUT TYPE="text"
NAME="converter" VALUE="sample" onChange="upperMe(this.form)">

</FORM>

</BODY>

</HTML>

I also show two other ways to accomplish the same task, each one more efficient
than the previous example. Both utilize the shortcut object reference to get at the
heart of the text object. Listing 25-3 passes the text object —contained in the this
reference —to the function handler. Because that text object contains a complete
reference to it (out of sight, but there just the same), you can access the value
property of that object and assign a string to that object’s value property in a sim-
ple assignment statement.

Listing 25-3: Passing a Text Object (as this) to the Function

<HTML>
<HEAD>
<TITLE>Text Object Value</TITLE>
{SCRIPT LANGUAGE="JavaScript">
function upperMe(field) {
field.value = field.value.toUpperCase()
}
</SCRIPT>
</HEAD>

<BODY>

<FORM onSubmit="window.focus(); return false">

Enter Towercase letters for conversion to uppercase: <INPUT TYPE="text"
NAME="converter" VALUE="sample" onChange="upperMe(this)">

</FORM>

</BODY>

</HTML>

Yet another way is to deal with the field values directly in an embedded event
handler —instead of calling an external function (which is easier to maintain
because all scripts are grouped together in the Head). With the function removed
from the document, the event handler attribute of the <INPUT> tag changes to do
all the work:

{INPUT TYPE="text" NAME="converter" VALUE="sample"
onChange="this.value = this.value.toUpperCase()">

document.formObject.textObject.value

Chapter 9 + Text-Related Form Objects (Chapter25) 363

The right-hand side of the assignment expression extracts the current contents
of the field and (with the help of the toUpperCase() method of the string object)
converts the original string to all uppercase letters. The result of this operation is
assigned to the value property of the field.

The application of the this keyword in the previous examples may be confusing
at first, but these examples represent the range of ways in which you can use such
references effectively. Using this by itself as a parameter to an object’s event han-
dler refers only to that single object — a text object in Listing 25-3. If you want to
pass along a broader scope of objects that contain the current object, use the this
keyword along with the outer object layer that you want. In Listing 25-2, I sent a ref-
erence to the entire form along by specifying this.form—meaning the form that
contains “this” object, which is being defined in the line of HTML code.

At the other end of the scale, you can use similar-looking syntax to specify a par-
ticular property of the this object. Thus, in the last example, [zeroed in on just the
value property of the current object being defined—this.value. Although the
formats of this.formand this.value appear the same, the fact that one is a ref-
erence to an object and the other just a value can influence the way your functions
work. When you pass a reference to an object, the function can read and modify
properties of that object (as well as invoke its functions); but when the parameter
passed to a function is just a property value, you cannot modify that value without
building a complete reference to the object and its value.

Methods
blur()

NN2 NN3 NN4 NNé6 IE3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v v v v

Example

The following statement invokes the b1ur () method on a text box named
vanishText:

document.forms[0].vanishText.blur()

focus ()
NN2 NN3 NN4 NN6 1E3/11 IE3/12 IE4 IE5 IE5.5
Compatibility v+ v v v v v R
Example

See Listing 25-4 for an example of an application of the focus () method in con-
cert with the select () method.

document.formObject.textObject.focus()

364 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

select()
NN2 NN3 NN4 NN6 1E3/11 1E3/)2 1E4 1IE5 1E5.5
Compatibility v v v v v v v v v
Example

A click of the Verify button in Listing 25-4 performs a validation on the contents
of the text box, making sure the entry consists of all numbers. All work is controlled
by the checkNumeric() function, which receives a reference to the field needing
inspection as a parameter. Because of the way the delayed call to the doSelection()
function has to be configured, various parts of what will become a valid reference
to the form are extracted from the field’s and form’s properties. If the validation
(performed in the i sNumber () function) fails, the setSelection() method is
invoked after an artificial delay of zero milliseconds. As goofy as this sounds, this
method is all that IE needs to recover from the display and closure of the alert dia-
log box. Because the first parameter of the setTimeout () method must be a string,
the example assembles a string invocation of the setSelection() function via
string versions of the form and field names. All that the setSelection() function
does is focus and select the field whose reference is passed as a parameter. This
function is now generalizable to work with multiple text boxes in a more complex
form.

Listing 25-4: Selecting a Field

<HTML>
<HEAD>
<TITLE>Text Object Select/Focus</TITLE>
<{SCRIPT LANGUAGE="JavaScript">
// general purpose function to see if a suspected numeric input is a number
function isNumber(inputStr) {
for (var i = 0; i < inputStr.length; i++) {
var oneChar = inputStr.charAt(i)
if (oneChar < "0" || oneChar > "9") {
alert("Please make sure entries are integers only.")
return false
1
}
return true
}
function checkNumeric(fld) {
var inputStr = fld.value
var fldName = fld.name
var formName = fl1d.form.name
if (isNumber(inputStr)) {
/] statements if true
} else {

document.formObject.textObject.select()

Chapter 9 + Text-Related Form Objects (Chapter25) 365

setTimeout("doSelection(document." + formName + ". " + fldName + ")", 0)

}

function doSelection(fld) {
f1d.focus()
fld.select()

}

</SCRIPT>

</HEAD>

<BODY>

<FORM NAME="entryForm" onSubmit="return false">

Enter any positive integer: <INPUT TYPE="text" NAME="numeric"><P>

<INPUT TYPE="button" VALUE="Verify" onClick="checkNumeric(this.form.numeric)">
</FORM>

</BODY>

<IHTML>

Event handlers

onBlur
onFocus
onSelect
NN2 NN3 NN4 NNe6 1E3/)1 1E3/)2 1IE4 IE5 1IE5.5
Compatibility v v/ v/ v/ v/ v/ v v/ v/
Example

To demonstrate one of these event handlers, Listing 25-5 shows how you may
use the window’s statusbar as a prompt message area after a user activates any
field of a form. When the user tabs to or clicks on a field, the prompt message asso-
ciated with that field appears in the statusbar. In Figure 9-1, the user has tabbed to
the second text box, which caused the statusbar message to display a prompt for
the field.

Listing 25-5: The onFocus event Handler

<HTML>
<HEAD>
KTITLE>ETlements Array</TITLE>
<SCRIPT LANGUAGE="JavaScript">

Continued

document.formObject.textObject.onBlur

366 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 25-5 (continued)

function prompt(msg) {

window.status = "Please enter your " + msg + "."
}
</SCRIPT>

</HEAD>

<BODY>

<FORM>

Enter your first name:<INPUT TYPE="text" NAME="firstName"
onfFocus="prompt('first name")"><P>

Enter your Tast name:<INPUT TYPE="text" NAME="TlastName"
onFocus="prompt('last name')"><P>

Enter your address:<INPUT TYPE="text" NAME="address"
onfFocus="prompt('address"')"><P>

Enter your city:<INPUT TYPE="text" NAME="city" onFocus="prompt('city")"><P>
</FORM>

</BODY>

<THTML>

2 Elements Array - Microsoft Internet Explorer

Enter your first name W
Enter your last name‘l|—
Enter your address:l—
Enter your c1ty.l—

Figure 9-1: An onFocus event handler triggers a statusbar display.

document.formObject.textObject.onBlur

Chapter 9 + Text-Related Form Objects (Chapter25) 367/

onChange
NN2 NN3 NN4 NN6 1E3/)1 1E3/)2 IE4 IE5 IE5.5
Compatibility v v v v v v v v v
Example

Whenever a user makes a change to the text in a field in Listing 25-6 and then
either tabs or clicks out of the field, the change event is sent to that field, triggering
the onChange event handler.

Because the form in Listing 25-6 has only one field, the example demonstrates a
technique you can use that prevents a form from being “submitted” if the user acci-
dentally presses the Enter key. The technique is as simple as defeating the submis-
sion via the onSubmit event handler of the form. At the same time, the onSubmit
event handler invokes the checkIt () function, so that pressing the Enter key (as
well as pressing Tab or clicking outside the field) triggers the function.

Listing 25-6: Data Validation via an onChange event Handler

<HTML>
<HEAD>
<TITLE>Text Object Select/Focus</TITLE>
<SCRIPT LANGUAGE="JavaScript">
// general purpose function to see if a suspected numeric input is a number
function isNumber(inputStr) f{
for (var i = 0; i < inputStr.length; i++)
var oneChar = inputStr.substring(i, i
if (oneChar < "0" || oneChar > "9") {
alert("Please make sure entries are numbers only.")
return false

{
+ 1)

1
}
return true
}
function checkIt(form) {
inputStr = form.numeric.value
if (isNumber(inputStr)) {
// statements if true
} else {
form.numeric.focus()
form.numeric.select()
}
}
</SCRIPT>
</HEAD>

<BODY onSubmit="checkIt(this); return false">

Continued

document.formObject.textObject.onChange

368 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 25-6 (continued)

<FORM>

Enter any positive integer: <INPUT TYPE="text" NAME="numeric"
onChange="checkIt(this.form)"><pP>

</FORM>

</BODY>

<THTML>

TEXTAREA Element Object

Properties

cols
rows

NN2 NN3 NN4 NNé6 IE3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v

Example

Use The Evaluator to play with the cols and rows property settings for the
Results textarea on that page. Shrink the width of the textarea by entering the fol-
lowing statement into the top text box:

document.forms[0].output.cols = 30
And make the textarea one row deeper:

document.forms[0].output.rows++

Methods
createTextRange()

NN2 NN3 NN4 NNé6 IE3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/ v v

Example

See the example for the TextRange.move () method in Chapter 5 of this book to
see how to control the text insertion pointer inside a TEXTAREA element.

+ o+ ¢

TEXTAREA.createTextRange ()

CHAPTER

Select, Option,

and Optgroup L
Objects -
(Chapter 26)

or select list

Reading hidden and

visible values of
The SELECT element is the best space-saving device in the _OPTION element
HTML form repertoire. Whether you choose the pop-up izt
menu or scrolling list display style, your page can provide vis- .
itors with a visually compact list of literally hundreds of items Scr.lphng SELECT
from which to choose. From a scripter’s point of view, how- °b|?Ct5 that °|!°W
ever, it is a complex item to manage, especially in older multiple selections
browsers.
In truth, the SELECT element is an outer wrapper for the + + + +
OPTION element items nested within. Each OPTION element
contains the text that the user sees in the list, as well as a hid-
den value that may be more meaningful to a server database
or client script. The difficulty with browsers prior to IE4 and
NNG6 is that reading the hidden value of the currently chosen
item in the list requires an extensive reference to not only the
SELECT element, but to the item in the array of OPTION ele-
ment objects. To reach that specific item, the script uses a ref-
erence to the SELECT object’s selectedIndex property as
the options array index. Newer browsers simplify the matter
by providing a single value property for the SELECT object
that returns the value of the currently selected item (or of the
first item when multiple choices are allowed).
Many browser versions provide script facilities for modify-
ing the content of a SELECT list. But the effect is not perfect in
browsers that don’t also reflow the page to reflect the poten-
tially resized width of the list.
A user interface debate rages about whether a SELECT list,
whose purpose is obviously intended to direct site navigation,
should navigate immediately upon making a choice or if the
user should also click on an explicit “Go” button next to the
list. The former is faster for the impatient visitor, but the lat-
ter doesn’t shoot off to an undesired page when the user
makes a wrong selection. Good luck with that decision.

370 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Examples Highlights
4 To harvest the values of all selected items in a multiple list, your script needs

to cycle through the SELECT element’s options array and inspect the
selected property of each, as shown in Listing 26-4.

4+ Scripts can also retrieve the text of the selected item, instead of the hidden
value. Compare two similar applications that work with the text (Listing 26-5)
and value (Listing 26-6) properties.

4 Listings 26-5 and 26-6 show the backward-compatible, long reference to
retrieve a chosen option’s details. The modern alternative accompanies the
example for the SELECT.value property.

4 See Listing 26-8 for another example of triggering a script via the onChange
event handler of a SELECT object.

4+ Implementations of the OPTGROUP element object may need improvement
before Listing 26-9 behaves as it should to modify hierarchical labels within a

SELECT list.
SELECT Element Object
Properties
length
NN2 NN3 NN4 NN6 1E3/11 IE3/12 IE4 IE5 IE5.5
Compatibility v v v v v v v 4 4
Example

See Listing 26-1 in Chapter 26 of the JavaScript Bible for an illustration of the way
you use the Tength property to help determine how often to cycle through the
repeat loop in search of selected items. Because the loop counter, i, must start at 0,
the counting continues until the loop counter is one less than the actual length
value (which starts its count with 1).

multiple
NN2 NN3 NN4 NN6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v
Example

The following statement toggles between single and multiple selections on a
SELECT element object whose SIZE attribute is set to a value greater than 1:

SELECT.multiple

Chapter 10 + Select, Option, and Optgroup Objects (Chapter26) 37/]

document.forms[0].mySelect.multiple = !document.forms[0].mySelect.multiple

options[index]

NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v VS v

Example

See Listings 26-1 through 26-3 in Chapter 26 of the JavaScript Bible for examples
of how the options array references information about the options inside a
SELECT element.

options[index].defaultSelected

NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v VS v

Example

The following statement preserves a Boolean value if the first option of the
SELECT list is the default selected item:

var zerolsDefault = document.forms[0].1istName.options[0].defaultSelected

options[index].index

NN2 NN3 NN4 NNeé IE3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v v/ v v

Example

The following statement assigns the index integer of the first option of a SELECT
element named 11istName to a variable named itemIndex.

var itemIndex = document.forms[0].1istName.options[0].index

options[index].selected

NN2 NN3 NN4 NNé6 1E3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v VS v

SELECT.options[index].selected

372 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example

To accumulate a list of all items selected by the user, the seelist () function in
Listing 26-4 systematically examines the options[index].selected property of
each item in the list. The text of each item whose selected property is true is
appended to the list. [add the "\n " inline carriage returns and spaces to make the
list in the alert dialog box look nice and indented. If you assign other values to the
VALUE attributes of each option, the script can extract the options[index].value
property to collect those values instead.

Listing 26-4: Cycling through a Multiple-Selection List

<HTML>
<HEAD>
<TITLE>Accessories List</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function seelList(form) {
var result = ""
for (var i = 0; i < form.accList.length; i++) {
if (form.acclist.options[i].selected) {
result += "\n " + form.accList.options[i].text
}
}
alert("You have selected:" + result)
}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
<P>Control/Command-click on all accessories you use:
<SELECT NAME="acclist" SIZE=9 MULTIPLE>
<OPTION SELECTED>Color Monitor
<OPTION>Modem
<OPTION>Scanner
<OPTION>Laser Printer
<OPTION>Tape Backup
<OPTION>MO Drive
<OPTION>Video Camera
</SELECT> </P>
<P>INPUT TYPE="button" VALUE="View Summary..."
onClick="seelist(this.form)"></P>
</FORM>
</BODY>
</HTML>

SELECT.options[index].selected

Chapter 10 + Select, Option, and Optgroup Objects (Chapter26) 373

options[index].text

NN2 NN3 NN4 NNé6 1E3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v oo/ v

Example

To demonstrate the text property of an option, Listing 26-5 applies the text from
a selected option to the document.bgColor property of a document in the current
window. The color names are part of the collection built into all scriptable
browsers; fortunately, the values are case-insensitive so that you can capitalize the
color names displayed and assign them to the property.

Listing 26-5: Using the options[index].text Property

<HTML>

<HEAD>

<TITLE>Color Changer 1</TITLE>

<SCRIPT LANGUAGE="JavaScript">

function seeColor(form) {
var newColor = (form.colorsList.options[form.colorsList.selectedIndex].text)
document.bgColor = newColor

}

</SCRIPT>

</HEAD>

<BODY>

<FORM>

<P>Choose a background color:

<SELECT NAME="colorsList">
<OPTION SELECTED>Gray
<OPTION>Lime
<OPTION>Ivory
<OPTION>Red

</SELECT></P>

<P>CINPUT TYPE="button" VALUE="Change It" onClick="seeColor(this.form)"></P>

</FORM>

</BODY>

</HTML>

SELECT.options[index].text

374 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

options[index].value

NN2 NN3 NN4 NNé6 1E3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v oo/ v

Example

Listing 26-6 requires the option text that the user sees to be in familiar, multiple-
word form. But to set the color using the browser’s built-in color palette, you must
use the one-word form. Those one-word values are stored in the VALUE attributes of
each <OPTION> definition. The function then reads the value property, assigning it
to the bgColor of the current document. If you prefer to use the hexadecimal
triplet form of color specifications, those values are assigned to the VALUE
attributes (<OPTION VALUE="#e9967a">Dark Salmon).

Listing 26-6: Using the options[index].value Property

<HTML>
<HEAD>
<TITLE>Color Changer 2</TITLE>
{SCRIPT LANGUAGE="JavaScript">
function seeColor(form) {
var newColor =
(form.colorsList.options[form.colorsList.selectedIndex].value)
document.bgColor = newColor
}
</SCRIPT>
</HEAD>

<BODY>

<FORM>

<P>Choose a background color:

(SELECT NAME="colorsList">
<OPTION SELECTED VALUE="cornflowerblue">Cornflower Blue
<OPTION VALUE="darksalmon">Dark Salmon
<OPTION VALUE="Tlightgoldenrodyellow">Light Goldenrod Yellow
COPTION VALUE="seagreen">Sea Green

</SELECT></P>

<P>CINPUT TYPE="button" VALUE="Change It" onClick="seeColor(this.form)"></P>

</FORM>

</BODY>

</HTML>

SELECT.options[index].value

Chapter 10 + Select, Option, and Optgroup Objects (Chapter26) 375

selectedIndex

NN2 NN3 NN4 NNé6 1E3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v oo/ v

Example

In the inspect () function of Listing 26-7, notice that the value inside the
options property index brackets is a reference to the object’s selectedIndex
property. Because this property always returns an integer value, it fulfills the needs
of the index value for the options property. Therefore, if you select Green in the
pop-up menu, form.colorsList.selectedIndex returns a value of 1; that
reduces the rest of the reference to form.colorsList.options[1].text, which
equals “Green.”

Listing 26-7: Using the selectedindex Property

<HTML>

<HEAD>

KTITLE>Select Inspector</TITLE>

<SCRIPT LANGUAGE="JavaScript">

function inspect(form) {
alert(form.colorsList.options[form.colorsList.selectedIndex].text)

}

</SCRIPT>

</HEAD>

<BODY>
<FORM>
<P><SELECT NAME="colorsList">
<OPTION SELECTED>Red
<OPTION VALUE="Plants"><I>Green</I>
<OPTION>Blue
</SELECT></P>
<P><INPUT TYPE="button" VALUE="Show Selection" onClick="inspect(this.form)"></P>
</FORM>
</BODY>
<THTML>

SELECT.selectedIindex

376 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

size
NN2 NN3 NN4 NN6 1E3/)1 1E3/)2 IE4 IE5 IE5.5
Compatibility v v v 4
Example

The following statement sets the number of visible items to 5:

document.forms[0].mySelect.size = 5

value
NN2 NN3 NN4 NN6é IE3/)1 IE3/)2 IE4 IE5 IE55
Compatibility v v v v
Example

The function in Listing 26-6 that accesses the chosen value the long way can be
simplified for newer browsers only with the following construction:

function seeColor(form) {
document.bgColor = form.colorsList.value
}

Methods

item(7ndex)
namedItem("optionID")

NN2 NN3 NN4 NNé6 1E3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example
The following statement assigns an OPTION element reference to a variable:

var oneOption = document.forms[0].mySelect.namedItem("option3_2")

SELECT.item()

Chapter 10 + Select, Option, and Optgroup Objects (Chapter26) 377/

Event handlers

onChange
NN2 NN3 NN4 NN6 1E3/)1 1IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v v v v v v
Example

Listing 26-8 is a version of Listing 26-6 that invokes all action as the result of a
user making a selection from the pop-up menu. The onChange event handler in the
<SELECT> tag replaces the action button. For this application —when you desire a
direct response to user input — an appropriate method is to have the action trig-
gered from the pop-up menu rather than by a separate action button.

Notice two other important changes. First, the SELECT element now contains a
blank first option. When a user visits the page, nothing is selected yet, so you
should present a blank option to encourage the user to make a selection. The func-
tion also makes sure that the user selects one of the color-valued items before it
attempts to change the background color.

Second, the BODY element contains an onUnload event handler that resets the
form. The purpose behind this is that if the user navigates to another page and uses
the Back button to return to the page, the script-adjusted background color does
not persist. | recommend you return the SELECT element to its original setting.
Unfortunately, the reset does not stick to the form in I[E4 and IE5 for Windows
(although this problem appears to be repaired in IE5.5). Another way to approach
this issue is to use the onlLoad event handler to invoke seeColor (), passing as a
parameter a reference to the SELECT element. Thus, if the SELECT element choice
persists, the background color is adjusted accordingly after the page loads.

Listing 26-8: Triggering a Color Change from a Pop-Up Menu

<HTML>

<HEAD>

<TITLE>Color Changer 2</TITLE>

(SCRIPT LANGUAGE="JavaScript">

function seeColor(list) {
var newColor = (list.options[list.selectedIndex].value)
if (newColor) {

document.bgColor = newColor

}

}

</SCRIPT>

</HEAD>

<BODY onUnload="document.forms[0].reset()">
<FORM>

Continued

SELECT.onChange

378 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 26-8 (continued)

<P>Choose a background color:

<SELECT NAME="colorsList" onChange="seeColor(this)">
<OPTION SELECTED VALUE="">
<OPTION VALUE="cornflowerblue">Cornflower Blue
<OPTION VALUE="darksalmon">Dark Salmon
<OPTION VALUE="Tlightgoldenrodyellow">Light Goldenrod Yellow
COPTION VALUE="seagreen">Sea Green

</SELECT></P>

</FORM>

</BODY>

</HTML>

OPTION Element Object

Properties
label
NN2 NN3 NN4 NN6 1E3/11 IE3/)2 IE4 IE5 IE5.5
Compatibility v v
Example
The following statement modifies the text that appears as the selected text in a
pop-up list:

document.forms[0].mySelect.options[3].1abel = "Widget 9000"

If this option is the currently selected one, the text on the pop-up list at rest
changes to the new label.

OPTGROUP Element Object

Properties
label

NN2 NN3 NN4 NNé6 IE3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

OPTGROUP.label

Chapter 10 + Select, Option, and Optgroup Objects (Chapter26) 379

Example

I present Listing 26-9 in the hope that Microsoft and Netscape will eventually
eradicate the bugs that afflict their current implementations of the Tabel property.
When the feature works as intended, Listing 26-9 demonstrates how a script can
alter the text of option group labels. This page is an enhanced version of the back-
ground color setters used in other examples of this chapter. Be aware that IE5/Mac
does not alter the last OPTGROUP element’s label, and NN6 achieves only a partial
change to the text displayed in the SELECT element.

Listing 26-9: Modifying OPTGROUP Element Labels

<HTML>
<HEAD>
<TITLE>Color Changer 3</TITLE>
{SCRIPT LANGUAGE="JavaScript">
var regularlLabels = ["Reds","Greens","Blues"]
var naturallabels = ["Apples","Leaves","Sea"]
function setRegularLabels(list) {
var optGrps = list.getElementsByTagName("OPTGROUP")
for (var i = 0; i < optGrps.length; i++) {
optGrps[il.Tabel = regularLabels[i]
}
}
function setNaturallabels(list) f{
var optGrps = list.getElementsByTagName("OPTGROUP")
for (var i = 0; i < optGrps.length; i++) {
optGrps[il.Tabel = naturallabels[i]
}
}
function seeColor(list) f{
var newColor = (list.options[list.selectedIndex].value)
if (newColor) {
document.bgColor = newColor
}
}
</SCRIPT>
</HEAD>

<BODY onUnload="document.forms[0].reset()">
<FORM>
<P>Choose a background color:
<SELECT name="colorsList" onChange="seeColor(this)">
<OPTGROUP ID="optGrpl" Tlabel="Reds">
<OPTION value="#ff9999">Light Red
<OPTION value="#ff3366">Medium Red
<OPTION value="#ff0000">Bright Red
<OPTION value="#660000">Dark Red
</OPTGROUP>
<OPTGROUP ID="optGrp2" label="Greens">
<OPTION value="fccff66">Light Green

Continued

OPTGROUP.label

380 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 26-9 (continued)

<OPTION value="#99ff33">Medium Green
<OPTION value="#00ff00">Bright Green
<OPTION value="#006600">Dark Green
</OPTGROUP>
<OPTGROUP ID="optGrp3" Tabel="Blues">
<OPTION value="fccffff">Light Blue
<OPTION value="#66ccff">Medium Blue
<OPTION value="#f0000ff">Bright Blue
<OPTION value="#000066">Dark Blue
</OPTGROUP>
</SELECT></P>
<P>
<INPUT TYPE="radio" NAME="Tabels" CHECKED
onClick="setRegularLabels(this.form.colorsList)">Regular Label Names
<INPUT TYPE="radio" NAME="Tlabels"
onClick="setNaturallabels(this.form.colorsList)">Label Names from Nature</P>
</FORM>
</BODY>
</HTML>

OPTGROUP.label

CHAPTEIR

Table and
List Objects
(Chapter 27)

¢+ 4+ o+

In This Chapter

Dynamic object models that take advantage of automatic
page reflow create huge opportunities for creative Web
designers. Nowhere is that more apparent than in the TABLE
element object and all the other objects that nest within (TR,
TH, TD, and so on). Not only is it possible to swap the content
of a table cell at any time, but the object models provide pow-
erful methods for completely remolding the composition of a
table on the fly.

HTML tables are at once elegant because they provide a lot
of pleasing organization to a page with little code, and also
complex due to the large number of related elements and sub-
stantial list of attributes for each element. Those attributes
become object properties in the modern object model, so it
means that scripters have much to choose from (and be con-
fused by) when bringing tables to life.

Using the special-purpose methods that insert rows and
cells also takes some initial adjustment for many scripters.
For example, inserting a row has almost no visual effect on an
existing table until you not only insert cells into the row, but
also plant content in the cells. Code examples for these opera-
tions are part of the general discussion of the TABLE object in
the JavaScript Bible.

Designers whose browser targets are IE4+/Windows can
also take advantage of Microsoft’s data binding technology:.
Data from external sources can fill tables with only the slight-
est bit of HTML markup. Chapter 15 contains examples of this
in its discussion of the dataF1d and related properties.

This chapter also includes objects for ordered and
unordered lists (and list items nested within). In concert with
style sheets that can include or exclude elements from page
rendering, these objects provide additional layout opportuni-
ties for clever designers.

Modifying table cell

content

Adding and deleting
table rows

Modifying table
dimensions, colors,
and borders

Changing numbering
sequences and bullet
symbols for LI element
objects

¢+ 4+ o+

382 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Examples Highlights
4 Scripts can adjust the value of a TABLE object’s width property, including

switching between a fixed pixel size and a percentage of the table container’s
width.

4 Compare the examples for the IE5/Windows TABLE . cel1s property and the
TR.cells property for [E4+ and NN6.

4+ Follow the example for the TD.colSpan property to observe how a table
responds to such changes in real time.

4 Examples for list-related elements show how to set the list types for script-
generated lists.

TABLE Element Object

Properties
align
NN2 NN3 NN4 NN6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v/ v/ v v
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to see the align property
at work. The default value (1eft) is in force when the page loads. But you can shift
the table to right-align with the body by entering the following statement into the
top text box for IE5+ and NN6+:

document.getETementById("myTable").align = "right"

background
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v/ v v
Example

Treat the background property of a table like you do the src property of an IMG
element object. If you precache an image, you can assign the src property of the
precached image object to the background property of the table for quick image
changing. Such an assignment statement looks like the following:

document.all.myTable.background = imgArray["myTableAlternate"].src

TABLE.background

Chapter 11 + Table and List Objects (Chapter27) 3873

bgColor
NN2 NN3 NN4 NN6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to assign a color to the
table. After looking at the table to see its initial state, enter the following IE5+/NN6+
statement into the top text box:

document.getElementById("myTable").bgColor = "Tightgreen"

When you look at the table again, you see that only some of the cells turned to
green. This is because colors also are assigned to table elements nested inside the
outermost table element, and the color specification closest to the actual element
wins the contest.

border
NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v
Example

To remove all traces of an outside border of a table (and, in some combinations
of attributes of other table elements, borders between cells), use the following
statement (in [E5+/NN6+ syntax):

document.getElementById("myTable").border = 0

borderColor
borderColorDark

borderColorLight
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v/ v v
Example

Assuming that you have set the initial light and dark color attributes of a table,
the following function swaps the light and dark colors to shift the light source to
the opposite corner:

TABLE.borderColor

384 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

function swapColors(tableRef) {
var oldLight = tableRef.borderColorlLight
tableRef.borderColorLight = tableRef.borderColorDark
tableRef.borderColorDark = oldLight

While you can easily invoke this function over and over by ending it with a
setTimeout () method that calls this function after a fraction of a second, the
results are very distracting to the person trying to read your page. Please don’t do it.

caption
NN2 NN3 NN4 NNé6 IE3/J1 1E3/)2 IE4 IE5 IE5.5
Compatibility v v v 4
Example

The following example, for use with The Evaluator (Chapter 13 in the JavaScript
Bible) in NN6+, demonstrates the sequence of assigning a new CAPTION element
object to a table. While the table in The Evaluator already has a CAPTION element,
the following statements replace it with an entirely new one. Enter each of the
following statements into the top text box, starting with the one that saves a long
reference into a variable for multiple uses at the end:

= document.getElementById("myTable")
document.createtlement ("CAPTION")

= document.createTextNode("A Brand New Caption")
.appendChild(b)

t.replaceChild(a, t.caption)

o T @ ot
]

A view of the table shows that the new caption has replaced the old one because a
table can have only one CAPTION element.

cellPadding
cellSpacing
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v/ v v
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to adjust the
cellPadding and cellSpacing properties of the demonstrator table. First, adjust
the padding (IE5+/NN6 syntax):

document.getETementById("myTable").cellPadding = 50

TABLE.cellPadding

Chapter 11 + Table and List Objects (Chapter27) 385

Now, adjust the cell spacing:
document.getETementById("myTable").cel1Spacing = 15

Notice how cel1Spacing affected the thickness of inter-cell borders.

cells
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v
Example

Use The Evaluator with IE5+ for Windows to have JavaScript calculate the num-
ber of columns in the demonstrator table with the help of the cel1s and rows
properties. Enter the following statement into the top text box:

document.all.myTable.cells.length/document.all.myTable.rows.length

The result is the number of columns in the table.

dataPageSize
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v
Example

If you want to change the number of visible rows of linked data in the table to 15,
use the following statement:

document.all.myTable.dataPageSize = 15

frame
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v/ v v
Example

Listing 27-4 presents a page that cycles through all possible settings for the
frame property. The frame property value is displayed in the table’s caption. (Early
versions of NN6 might fail to refresh part of the page after adjusting the frame
property.)

TABLE.frame

386 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 27-4: Cycling Through Table frame Property Values

<HTML>
<HEAD>
KTITLE>TABLE.frame Property</TITLE>

<SCRIPT LANGUAGE="JavaScript">

var timeoutID

var frameValues = ["box", "above",

"border", "void"]

function rotateBorder(i) {
document.getElementById("myTABLE").frame = frameValues[i]
document.getETementById("myCAPTION").innerHTML = frameValues[i]
i = (++i == frameValues.length) ? 0 : i
timeoutID = setTimeout("rotateBorder(" + i + ")", 2000)

rhs", "below", "Ths", "hsides", "vsides",

}

function stopRotate() {
clearTimeout(timeoutID)
document.getElementById("myTABLE").frame = "box"
document.getElementById("myCAPTION").innerHTML = "box"

}

</SCRIPT>

</HEAD>

<BODY>
<HI>TABLE.frame Property</H1>
<HR>
<FORM NAME="controls">
<FIELDSET>
<LEGEND>Cycle Table Edge Visibility</LEGEND>
<TABLE WIDTH="100%" CELLSPACING=20><TR>
<TD><INPUT TYPE="button" VALUE="Cycle" onClick="rotateBorder(0)"></TD>
<TD><INPUT TYPE="button" VALUE="Stop" onClick="stopRotate()"></TD>
/TR
</TABLE>
</FIELDSET>
</TABLE>
</FIELDSET>
</FORM>
<HR>
<TABLE ID="myTABLE" CELLPADDING=5 BORDER=3 ALIGN="center">
<CAPTION ID="myCAPTION">Default</CAPTION>
<THEAD ID="myTHEAD">
<TR>
<TH>River<TH>Qutflow<TH>MiTes<TH>Kilometers
/TR
</THEAD>
<TBODY>
<TR>
<TD>Nile<TD>Mediterranean<TD>4160<TD>6700
/TR
<TR>
<TD>Congo<TD>AtTantic 0cean<TD>2900<TD>4670

TABLE.frame

Chapter 11 + Table and List Objects (Chapter27) 387/

</TR>
<TR>
<TD>Niger<TD>AtTantic 0cean<TD>2600<TD>4180
</TR>
<TR>
<TD>Zambezi<TD>Indian 0cean<TD>1700<TD>2740
</TR>
</TABLE>
</BODY>
</HTML>

height
width

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v/ v v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to adjust the width of the
demonstrator table. Begin by increasing the width to the full width of the page:

document.getElementById("myTable").width = "100%"

To restore the table to its minimum width, assign a very small value to the
property:
document.getElementById("myTable").width = 50

If you have IE4+, you can perform similar experiments with the height property of
the table.

rows
NN2 NN3 NN4 NNé6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v/ v v
Example

Use The Evaluator to examine the number of rows in the demonstrator table.
Enter the following statement into the top text box:

document.getElementById("myTable").rows.length

In contrast, notice how the rows property sees only the rows within the demon-
strator table’s TBODY element:

document.getElementById("myTbody").rows.length

TABLE.rows

388 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

rules
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v
Example

Listing 27-5 presents a page that cycles through all possible settings for the
rules property. The rules property value is displayed in the table’s caption. When
you run this script, notice the nice border display for this table’s combination of
COLGROUP and table row segment elements. Figure 11-1 shows the IE/Windows
rendition for the groups type of table rules. Early versions of NN6 may not render
the altered table correctly, and scripted changes won’t appear on the page.

Listing 27-5: Cycling Through Table rules Property Values

<HTML>
<HEAD>
{TITLE>TABLE.rules Property</TITLE>

<SCRIPT LANGUAGE="JavaScript">

var timeoutID

var rulesValues = ["all", "cols", "groups", "none", "rows"]

function rotateBorder(i) {
document.getElementById("myTABLE").rules = rulesValues[i]
document.getETementById("myCAPTION").innerHTML = rulesValues[i]
i = (++i == rulesValues.length) ? 0 : i
timeoutID = setTimeout("rotateBorder(" + i + ")", 2000)

}

function stopRotate() {
clearTimeout(timeoutID)
document.getElementById("myTABLE").rules = "all"
document.getElementById("myCAPTION").innerHTML = "all"

1

</SCRIPT>

</HEAD>

<BODY>

<HI>TABLE.rules Property</H1>

<HR>

<FORM NAME="controls">

<FIELDSET>

<LEGEND>Cycle Table Rule Visibility</LEGEND>

<TABLE WIDTH="100%" CELLSPACING=20><TR>

<TD><INPUT TYPE="button" VALUE="Cycle" onClick="rotateBorder(0)"></TD>
<TD><INPUT TYPE="button" VALUE="Stop" onClick="stopRotate()"></TD>
</TR>

</TABLE>

</FIELDSET>

</TABLE>

</FIELDSET>

</FORM>

TABLE.rules

Chapter 11 + Table and List Objects (Chapter27) 389

<HR>
<TABLE ID="myTABLE" CELLPADDING=5 BORDER=3 ALIGN="center">
<CAPTION ID="myCAPTION">Default</CAPTION>
<COLGROUP SPAN=1>
<COLGROUP SPAN=3>
<THEAD ID="myTHEAD">
<TR>
<TH>River<TH>Qutflow<TH>MiTes<TH>Kilometers
/TR
</THEAD>
<TBODY>
<TR>
<TD>Nile<TD>Mediterranean<TD>4160<TD>6700
<ITR>
<TR>
<TD>Congo<TD>AtTantic 0cean<TD>2900<TD>4670
</TR>
<TR>
<TD>Niger<TD>AtTantic 0cean<TD>2600<TD>4180
</TR>
<TR>
<TD>Zambezi<TD>Indian 0cean<TD>1700<TD>2740
</TR>
</TABLE>
</BODY>
</HTML>

22 TABLE.rules Property - Microsoft Internet Explorer

TABLE.rules Property

r Cycle Table Fule Wisibilit

Gl o]

aroups

River Qutflow Miles Kilometers

Tile Mediterranean 4160 £700
Congo || Atlantic Ocean 2800 4670
Miger Atlantic Ocean 2600 4130

2740

Indian Ocean 1700

Figure 11-1: The TABLE.rules property set to “groups”

TABLE.rules

39(0 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

tBodies
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to access the tBodies
array and reveal the number of rows in the one TBODY segment of the demonstra-
tor table. Enter the following statement into the top text box:

document.getETlementById("myTable").tBodies[0].rows.length

Methods
moveRow(sourceRowIndex, destinationRowIndex)

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

Example

If you want to shift the bottom row of a table to the top, you can use the shortcut
reference to the last item’s index value (- 1) for the first parameter:

var movedRow = document.all.someTable.moveRow(-1, 0)

TBODY, TFOOT, and THEAD Element Objects

Properties
vAlign
NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4 IE5 IE55
Compatibility v v v v
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to modify the vertical align-
ment of the content of the TBODY element in the demonstrator table. Enter the fol-
lowing statement in the top text box to shift the content to the bottom of the cells:

document.getETementById("myTBody").vAlign = "bottom"

TBODY.vAlign

Chapter 11 + Table and List Objects (Chapter27) 391

Notice that the cells of the THEAD element are untouched by the action imposed on
the TBODY element.

COL and COLGROUP Element Objects

Properties
span

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v 4

Example

The following statement assigns a span of 3 to a newly created COLGROUP element
stored in the variable colGroupA:

colGroupA.span = 3

TR Element Object

Properties
cells
NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v 4
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to retrieve the number of
TD elements in the second row of the demonstrator table. Enter the following state-
ment into the top text box (W3C DOM syntax shown here):

document.getElementById("myTable").rows[1].cells.length

height

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

3972 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) in IE4+ to expand the
height of the second row of the demonstrator table. Enter the following statement
into the top text box:

document.all.myTable.rows[1].height = 300

If you attempt to set the value very low, the rendered height goes no smaller than
the default height.

rowIndex
sectionRowIndex

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v/ v/ v v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to explore the rowIndex
and sectionRowIndex property values for the second physical row in the demon-
strator table. Enter each of the following statements into the top text box (W3C
DOM syntax shown here):

document.getETementById("myTable").rows[1].rowlndex
document.getElementById("myTable").rows[1].sectionRowIndex

The result of the first statement is 1 because the second row is the second row
of the entire table. But the sectionRowIndex property returns 0 because this row
is the first row of the TBODY element in this particular table.

TD and TH Element Objects

Properties
cellIndex
NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v/ v/ v v
Example

You can rewrite the cell addition portion of Listing 27-2 (in Chapter 27 in the
JavaScript Bible) to utilize the ce11Index property. The process entails modifying
the insertTableRow() function so that it uses a do. . .whiTe construction to keep
adding cells to match the number of data slots. The function looks like the following
(changes shown in boldface):

TD.cellindex

Chapter 11 + Table and List Objects (Chapter27) 3973

function insertTableRow(form, where) {

var now = new Date()

var nowData = [now.getHours(), now.getMinutes(), now.getSeconds(),
now.getMilliseconds()]

clearBGColors()

var newCell

var newRow = theTableBody.insertRow(where)

var i =0

do {
newCell = newRow.insertCell1(i)
newCell.innerHTML = nowData[i++]
newCell.style.backgroundColor = "salmon"

} while (newCell.cellIndex < nowData.length)

updateRowCounters(form)

This version is merely for demonstration purposes and is not as efficient as the
sequence shown in Listing 27-2. But the cel1Index property version can give you
some implementation ideas for the property. It also shows how dynamic the prop-
erty is, even for brand new cells.

colSpan
rowSpan
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v 4
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to witness how modifying
either of these properties in an existing table can destroy the table. Enter the fol-
lowing statement into the top text box:

document.getElementById("myTable").rows[1].cel1s[0].colSpan = 3

Now that the first cell of the second row occupies the space of three columns,
the browser has no choice but to shift the two other defined cells for that row out
beyond the original boundary of the table. Experiment with the rowSpan property
the same way. To restore the original settings, assign 1 to each property.

height
width
NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v 4

394 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to see the results of set-
ting the height and width properties of an existing table cell. Enter each of the fol-
lowing statements into the top text box and study the results in the demonstrator
table (W3C DOM syntax used here):

document.getElementById("myTable").rows[1].cell1[1].height = 100
document.getElementById("myTable").rows[2].cell1[0].width = 300

You can restore both cells to their original sizes by assigning very small values,
such as 1 or 0, to the properties. The browser prevents the cells from rendering any
smaller than is necessary to show the content.

noWrap
NN2 NN3 NN4 NN6 IE3/J1 IE3/)2 IE4 IE5 IE55
Compatibility v v/ v v
Example

The following statement creates a new cell in a row and sets its noWrap property
to prevent text from word-wrapping inside the cell:

newCell = newRow.insertCell(-1)
newCell.noWrap = true

You need to set this property only if the cell must behave differently than the
default, word-wrapping style.

OL Element Object

Properties
start
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v
Example

The following statements generate a new OL element and assign a value to the
start property:

var newOL = document.createElement("0L")
newOL.start = 5

OL.start

Chapter 11 + Table and List Objects (Chapter27) 395

type
NN2 NN3 NN4 NNé |IE3/)1 IE3/)2 IE4 IE5 IE55
Compatibility v v v v
Example

The following statements generate a new OL element and assign a value to the
type property so that the sequence letters are uppercase Roman numerals:

var newOL = document.createElement("0L")
newOL.type = "I"

UL Element Object

Properties
type
NN2 NN3 NN4 NN6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v
Example

The following statements generate a new UL element and assign a value to the
type property so that the bullet characters are empty circles:

var newUL = document.createElement("UL")
newUL.type = "circle"

LI Element Object

Properties
type

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v/ v v

396 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example
See the examples for the OL.type and UL. type properties earlier in this chapter.
value
___|
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE55
Compatibility v v v v
Example

The following statements generate a new LI element and assign a value to the
start property:

var newlLI = document.createElement("LI")
newlLI.start =5

+ o+ ¢

CHAPTER

[|
Navigator
and Other .
E“VI ron m e“t In This Chapter
- Detelrmining the
Objects e

and video monitor

(Chapter 28)

Modifying NN4+

browser preferences

Retrieving IE4+ user

profile information
bjects covered in this chapter are somewhat distant
from the document and its content, but they are no less +* +* * *

important to scripters. Any script branching that relies on
knowing details about the browser version or other aspects
of the environment running the browser calls upon the
navigator object. Properties of the navigator object (also
named the clientInformation object in [E4+), reveal
browser brand and version information, as well as operating
system and, in some cases, encryption powers of the browser.
Using signed scripts with NN4+, you can even script modifica-
tion to browser preferences.

Avoid using navigator object properties for browser
version branching when more sophisticated techniques —
notably object detection as described in Chapter 14 of the
JavaScript Bible — are less dependent upon future quirks in
object model developments. But version detection is perfect
when you know that a special workaround is needed for some
glitch in a specific version or class of browser. For example,
NN4/Windows can exhibit some strange behavior when
attempting to print a page whose content relies on script
execution. Provided you have a code workaround for the
problem, you can divert script execution for just that version
of NN in just the Windows version.

Examples in this chapter also touch upon the screen
object and the IE/Windows userProfile object. The screen
object is useful in determining the size of a new window, but
there is little need to script the userProfile object.

398 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

- L
Examples Highlights
4 Listing 28-1 provides numerous functions that examine navigator object
properties. The functions examples are provided more as demonstrations of
specific values your scripts may need to look for, rather than as some super
“browser sniffer.” Determining specific IE versions is a bit tricky, so observe
how to go about it by way of the navigator.appVersion property.

4 NN4+ provides access to browser preferences via the navigator.
preference() method, as shown in Listing 28-2. To implement this feature in
a production page, you'll need to use signed scripts.

4 Experiment with the screen.availleft and screen.availTop properties in
NN4+, especially in the Windows environment to see how the taskbar affects
these property values.

4+ For I[E4+/Windows, follow the sequence of examples for the userProfile
object’s methods to see how scripts can read user profile fields.

clientinformation Object (IE4+)
and navigator Object (All)

Properties

appCodeName
appName
appVersion
userAgent

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v VR v

Example

Listing 28-1 provides a number of reusable functions that your scripts can
employ to determine a variety of information about the currently running browser.
This is not intended in any way to be an all-inclusive browser-sniffing routine;
instead, I offer samples of how to extract information from the key navigator
properties to determine various browser conditions.

All functions in Listing 28-1 return a Boolean value inline with the pseudo-
question presented in the function’s name. For example, the isWindows () function
returns true if the browser is any type of Windows browser; otherwise, it returns
false. (In Internet Explorer 3, the values are 0 for false and -1 for true, but those

navigator.appCodeName

Chapter 12 + Navigator and Other Environment Objects (Chapter28) 3990

values are perfectly usable in if conditional phrases). If this kind of browser detec-
tion occurs frequently in your pages, consider moving these functions into an exter-
nal . js source library for inclusion in your pages (see Chapter 13 of the JavaScript
Bible for tips on creating . js libraries). When you load this page, it presents fields
that display the results of each function depending on the type of browser and
client operating system you use.

Listing 28-1: Functions to Examine Browsers

<HTML>
<HEAD>
<TITLE>UserAgent Property Library</TITLE>
{SCRIPT LANGUAGE="JavaScript">
// basic brand determination
function isNav() {
return (navigator.appName == "Netscape")
}

function isIE() {
return (navigator.appName == "Microsoft Internet Explorer")
}

// operating system platforms
function isWindows() {

return (navigator.appVersion.indexOf("Win") != -1)
}

function isWin9bNT() {
return (isWindows() && (navigator.appVersion.indexOf("Winl6") == -1 &&
navigator.appVersion.indexOf("Windows 3.1") == -1))

}

function isMac() {
return (navigator.appVersion.index0f("Mac") != -1)
}

function isMacPPC() {
return (isMac() && (navigator.appVersion.indexOf("PPC") != -1 ||
navigator.appVersion.index0f("PowerPC") = -1))

}

function isUnix() {
return (navigator.appVersion.indexOf("X11") != -1)
}

// browser versions
function isGeneration2() {
return (parselnt(navigator.appVersion) == 2)

}

Continued

navigator.appCodeName

400 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 28-1 (continued)

function isGeneration3() {
return (parselnt(navigator.appVersion) == 3)
}

function isGeneration3Min() {
return (parselnt(navigator.appVersion.charAt(0)) >= 3)
}
function isNavd_7() {
return (isNav() && parseFloat(navigator.appVersion) == 4.7)
}

function isMSIE4Min() {
return (isIE() && navigator.appVersion.indexOf("MSIE") != -1)
}

function isMSIE5_5() {
return (navigator.appVersion.index0f("MSIE 5.5") != -1)
}

function isNN6Min() {
return (isNav() && parselnt(navigator.appVersion) >= 5)
}

// element referencing syntax
function isDocAT1() {

return (document.all) ? true : false
}

function isDocW3C() {
return (document.getElementById) ? true : false
}

// fill in the blanks

function checkBrowser() {
var form = document.forms[0]
form.brandNN.value = isNav()
form.brandIE.value = isIE()
form.win.value = isWindows()
form.win32.value = isWin95NT()
form.mac.value = isMac()
form.ppc.value = isMacPPC()
form.unix.value = isUnix()
form.ver30nly.value = isGeneration3()
form.ver3Up.value = isGeneration3Min()
form.Nav4_7.value = isNav4d_7()
form.Nav6Up.value = isNN6Min()
form.MSIE4.value = isMSIE4Min()
form.MSIE5_5.value = isMSIE5_5()

navigator.appCodeName

Chapter 12 + Navigator and Other Environment Objects (Chapter28) 4 (]

form.doc_all.value = isDocAl1()
form.doc_w3c.value = isDocW3C()
1
</SCRIPT>
</HEAD>

<BODY onLoad="checkBrowser()">

<H1>About This Browser</H1>

<FORM>

<H2>Brand</H2>

Netscape Navigator:<INPUT TYPE="text" NAME="brandNN" SIZE=5>
Internet Explorer:<INPUT TYPE="text" NAME="brandIE" SIZE=5)>

<HR>

<HZ2>Browser Version</HZ2>

3.0x Only (any brand):<INPUT TYPE="text" NAME="ver30Only" SIZE=5><P>
3 or Later (any brand): <INPUT TYPE="text" NAME="ver3Up" SIZE=5><P>
Navigator 4.7: <INPUT TYPE="text" NAME="Nav4_7" SIZE=5><P>
Navigator 6+: <INPUT TYPE="text" NAME="NavéUp" SIZE=5><P>

MSTE 4+: <INPUT TYPE="text" NAME="MSIE4" SIZE=5><P>

MSIE 5.5:<INPUT TYPE="text" NAME="MSIES5_H" SIZE=5><P>

<HR>

<H2>0S Platform</H2>

Windows: <INPUT TYPE="text" NAME="win" SIZE=5>

Windows 95/98/2000/NT: <INPUT TYPE="text" NAME="win32" SIZE=5><P>
Macintosh: <INPUT TYPE="text" NAME="mac" SIZE=5>

Mac PowerPC: <INPUT TYPE="text" NAME="ppc" SIZE=5><P>

Unix: <INPUT TYPE="text" NAME="unix" SIZE=5><P>

<HR>

<H2>Element Referencing Style</H2>

Use <TT>document.all</TT>: <INPUT TYPE="text" NAME="doc_all" SIZE=5><P>
Use <TT>document.getElementById()</TT>: <INPUT TYPE="text" NAME="doc_w3c"
STZE=5><P>

</FORM>

</BODY>

<THTML

Sometimes you may need to use more than one of these functions together. For
example, if you want to create a special situation for the window.open () bug that
afflicts UNIX and Macintosh versions of Navigator 2, then you have to put your
Boolean operator logic powers to work to construct a fuller examination of the
browser:

function isWindowBuggy() {
return (isGeneration2() && (isMac() || isUnix()))
}

You can see many more examples of browser sniffing, including more details
about handling AOL browsers, in an article by Eric Krock at: http://developer.
netscape.com:80/docs/examples/javascript/browser_type.html.

navigator.appCodeName

402 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

appMinorVersion

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to examine the two
related version properties of your IE browser(s). Type the following two statements
into the top text box and observe the results:

navigator.appVersion
navigator.minorAppVersion

There is a good chance that the values returned are not related to the browser ver-
sion number shown after MSTE in the appVersion value.

cookieEnabled

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v v/ v v

Example

Use The Evaluator to see the value of the navigator.cookieEnabled property
on your browsers. Enter the following statement into the top text box:

navigator.cookieEnabled

Feel free to change the cookie preferences setting temporarily to see the new
value of the property. You do not have to relaunch the browser for the new setting
to take effect.

cpuClass
NN2 NN3 NN4 NN6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to see how IE reports the
cpuClass of your PC. Enter the following statement into the top text box:

navigator.cpuClass

navigator.cpuClass

Chapter 12 + Navigator and Other Environment Objects (Chapter28) 4()3

mimeTypes
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v)
Example

For examples of the mimeTypes property and details about using the mimeType
object, see the discussion of this object later in the chapter. A number of simple
examples showing how to use this property to see whether the navigator object
has a particular MIME type do not go far enough in determining whether a plug-in is
installed and enabled to play the incoming data.

onLine
NN2 NN3 NN4 NN6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to see the online state of
your IE browsers. Enter the following statement into the top text box:

navigator.onlLine

Verify your browsing mode by checking the Work Offline choice in the File menu.
If it is checked, the onlLine property should return false.

oscpu
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) with NN6 to see what your
client machine reports to you by entering the following statement into the top text
box:

navigator.oscpu

404 javaScript Examples Bible: The Essential Companion to JavaScript Bible

platform
NN2 NN3 NN4 NN6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v 4 v
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to see what your com-
puter reports as its operating system. Enter the following statement into the top
text box:

navigator.platform

product
productSub
vendor
vendorSub

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) on your copy of NN6 to see
the values returned for these four properties. Enter each of the following statements
into the top text box of the page and see the values for each in the Results box:

navigator.product
navigator.productSub
navigator.vendor
navigator.vendorSub

Also check the value of the navigator.userAgent property to see how many of
these four property values are revealed in the userAgent property.
systemLanguage
userlLanguage

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/ v v

navigator.systemLanguage

Chapter 12 4 Navigator and Other Environment Objects (Chapter28) 4(5

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) with your IE4+ browser to
compare the values of the three language-related properties running on your com-
puter. Enter each of the following statements into the top text box:

navigator.browserlLanguage
navigator.systemlanguage
navigator.userlanguage

Don’t be surprised if all three properties return the same value.

Methods
preference(name [, vall)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

Example

The page in Listing 28-2 displays checkboxes for several preference settings, plus
one text box to show a preference setting value for the size of the browser’s disk
cache. To run this script without signing the scripts, turn on codebase principals as
directed in Chapter 46 of the JavaScript Bible. (The listing file on the CD-ROM does
not employ signed scripts.)

One function reads all the preferences and sets the form control values accord-
ingly. Another function sets a preference when you click its checkbox. Because of
the interaction among three of the cookie settings, it is easier to have the script
rerun the showPreferences () function after each setting rather than you trying to
manually control the properties of the three checkboxes. Rerunning that function
also helps verify that you set the preference.

Listing 28-2: Reading and Writing Browser Preferences

<HTML>
<HEAD>
<TITLE>Reading/Writing Browser Preferences</TITLE>
{SCRIPT LANGUAGE="JavaScriptl.2">
function setPreference(pref, value) {
netscape.security.PrivilegeManager.enablePrivilege(
"UniversalPreferencesWrite")
navigator.preference(pref, value)
netscape.security.PrivilegeManager.revertPrivilege(
"UniversalPreferencesWrite")
showPreferences()

Continued

navigator.preference()

406 lavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 28-2 (continued)

function showPreferences() {
var form = document.forms[0]
netscape.security.PrivilegeManager.enablePrivilege(
"UniversalPreferencesRead")
form.imglLoad.checked = navigator.preference("general.always_load_images")
form.cacheSize.value = navigator.preference("browser.cache.disk cache_size")
form.ssknable.checked = navigator.preference("browser.enable_style_sheets")
form.autolEnable.checked = navigator.preference("autoupdate.enabled")
var cookieSetting = navigator.preference("network.cookie.cookieBehavior")
for (var i = 0; i < 3; i++) |
form.elements["cookie" + i].checked = (i == cookieSetting) ? true :
false
}
form.cookieWarn.checked =
navigator.preference("network.cookie.warnAboutCookies")
netscape.security.PrivilegeManager.revertPrivilege(
"UniversalPreferencesRead")
}
</SCRIPT>
</HEAD>

<BODY onlLoad="showPreferences()">

<H1>Browser Preferences Settings Sampler</H1>

<HR>

<FORM>

<INPUT TYPE="checkbox" NAME="imglLoad"
onClick="setPreference('general.always_load_images',this.checked)">
Automatically Load Images

<INPUT TYPE="checkbox" NAME="ssEnable"
onClick="setPreference('browser.enable_style_sheets',this.checked)">
Style Sheets Enabled

<INPUT TYPE="checkbox" NAME="autolEnable"
onClick="setPreference('autoupdate.enabled',this.checked)">
AutoInstall Enabled

<INPUT TYPE="checkbox" NAME="cookie0"
onClick="setPreference('network.cookie.cookieBehavior',0)">

Accept A1l Cookies

<INPUT TYPE="checkbox" NAME="cookiel"
onClick="setPreference('network.cookie.cookieBehavior',1)">

Accept Only Cookies Sent Back to Server

<INPUT TYPE="checkbox" NAME="cookie2"
onClick="setPreference('network.cookie.cookieBehavior',2)">

Disable Cookies

<INPUT TYPE="checkbox" NAME="cookieWarn"
onClick="setPreference('network.cookie.warnAboutCookies"',this.checked)">
Warn Before Accepting Cookies

Disk cache is <INPUT TYPE="text" NAME="cacheSize" SIZE=10> KB

</FORM>

</BODY>

</HTML>

navigator.preference()

Chapter 12 4 Navigator and Other Environment Objects (Chapter28) 4()7/

screen Object

Properties
availlLeft
availTop
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v/
Example

If you are a Windows user, you can experiment with these NN4+ properties via
The Evaluator (Chapter 13 in the JavaScript Bible). With the taskbar at the bottom
of the screen, enter these two statements into the top text box:

screen.availleft
screen.availTop

Next, drag the taskbar to the top of the screen and try both statements again. Now,
drag the taskbar to the left edge of the screen and try the statements once more.

userProfile Object

Methods
addReadRequest("attributeName™)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

See Listing 28-4 in Chapter 28 in the JavaScript Bible for an example of the
addReadRequest () method in action. You can also invoke it from the top text box
in The Evaluator (Chapter 13 in the JavaScript Bible). For example, enter the follow-
ing statement to queue one request:

navigator.userProfile.addReadRequest("vCard.LastName")

To continue the process, see examples for doReadRequest () and getAttribute()
later in this chapter.

userProfile.addReadRequest()

408 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

doReadRequest(reasonCode, identificationl,
domainl[, path[, expirationl]l])

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/ v v

Example

See Listing 28-4 in the JavaScript Bible for an example of the doReadRequest ()
method in action. If you entered the addReadRequest () example for The Evaluator
earlier in this chapter, you can now bring up the permissions dialog box (if you
have a user profile for your version of Windows) by entering the following state-
ment into the top text box:

navigator.userProfile.doReadRequest(1, "Just me!")

getAttribute("attributeName")

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

See Listing 28-4 in Chapter 28 in the JavaScript Bible for an example of the
getAttribute() method in action. Also, if you followed The Evaluator examples
for this object, you can now extract the desired information (provided it is in your
user profile). Enter the following statement into the top text box:

navigator.userProfile.getAttribute("vCard.LastName")

+ o+

userProfile.getAttribute()

CHAPTER

Event Objects
(Chapter 29)

¢+ 4+ o+

In This Chapter

Uncovering the
coordinates and
target element of a
mouse event

As earlier generations of scriptable browsers fade from
the installed base, the event models of newer browsers
become that much more important to scripters. Although
cross-browser developers must concern themselves with the
incompatibilities of as many as three distinct event models Int tina kevboard
(NN4, IE4+, and W3C DOM used in NN6), scripts increasingly ntercepling keyboar
rely on information conveyed by the event object to know DHEUS

where the event came from.

The importance of event object properties is clear when you
see how modern DOMs bind events to objects. Although the
“old-fashioned” event handler attribute inside an element tag
still works, the prescribed ways to bind events to elements sim-
ply assign a function reference to an event type belonging to
the event. The significance of this approach is that event han-
dlers no longer receive custom parameters, such as references
to the element that used to be passed via the this operator. It
becomes the job of the function to inspect the event object
property that contains a reference to the target of the event.

Fortunately for scripters, the event object model (regard-
less of which ones you need to support) endows each event
object with a list of valuable properties that enhance what
event handler functions can do. In addition to character key
and mouse button data, you can uncover the coordinates of a
mouse event, the condition of modifier keys, and even a refer-
ence to the object from which the cursor has just rolled (or
where it went after leaving the bounds of the current object).

The code examples in this chapter are grouped by the event
object model family. This means that the examples are written
to work only within the associated DOM. For cross-browser
handling of event objects, see the rest of the discussion in
Chapter 29 of the JavaScript Bible. But use the examples here to
fully understand the meaning of each event object’s properties
and (in NN6) methods. Where possible, the listings that demon-
strate parallel properties in multiple object models look and
behave the same to the user; the differences are in the code. As
an exercise for the inquisitive, you could write a single-page
version that combines syntax from multiple event objects mod-
els. Listings 29-17 and 29-22 would be good places to start.

Observing event
propagation in
different event object
models

¢+ 4+ o+

410 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

- L
Examples Highlights
4+ No fewer than four pairs of coordinate value properties arrive with the [E4+
event object. Listing 29-14 helps you understand what each pair of values rep-
resent with respect to regular body elements as well as positioned elements.
Follow the suggested steps to experience the meaning of the properties in a
variety of contexts.

4 Load Listing 29-16 to see keyboard character data for all three keyboard
events. Again, follow the suggested steps to understand important differences
among keyboard event types and also different kinds of keys (characters ver-
sus non-characters).

4 Listing 29-17 demonstrates how to derive a reference to the element that
receives the event in the [E4+ event model.

4 NN6 keyboard events get a workout in Listing 29-18, particularly the way the
character and key codes reveal important details for different keyboard event

types.

4+ All four pairs of event coordinate properties for NN6 are reported when you
run Listing 29-19 and click on different elements.

4 The important concepts associated with the NN6 event object’s
currentTarget and eventPhase properties are demonstrated in Listing
29-20. Be prepared to spend time with the page and the source code to under-
stand how events propagate through the element hierarchy.

4 Listing 29-23 uses the NN6 event.timeStamp property to calculate the
instantaneous typing speed within a text field.

NN4 event Object

Properties
data
NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4 IE5 IE55
Compatibility v
Example

The page in Listing 29-12 contains little more than a TEXTAREA in which the
URLs of dragged items are listed. To run this script without signing the scripts, turn
on codebase principals, as directed in Chapter 46 of the JavaScript Bible.

To experiment with this listing, load the page and drag any desktop icons that
represent files, applications, or folders to the window. Select multiple items and
drag them all at once. Because the onDragDrop event handler evaluates to return
false, the files are not loaded into the window. If you want merely to look at the

(NN4) eventObject.data

Chapter 13 + Event Objects (Chapter29) 41]

URL and allow only some to process, you would generate an if...else construc-
tion to return true or false to the event handler as needed. A value of return
true allows the normal processing of the DragDrop event to take place after your
event handler function has completed its processing.

Listing 29-12: Obtaining URLs of a DragDrop Event's
data Property

<HTML>
<HEAD>
(TITLE>Drag and Drop</TITLE>
<{SCRIPT LANGUAGE="JavaScriptl.2">
function handleDrag(evt) {
netscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserRead")
var URLArray = evt.data
netscape.security.PrivilegeManager.disablePrivilege("UniversalBrowserRead")
if (URLArray) {
document.forms[0].output.value = URLArray.join("\n")
} else {
document.forms[0].output.value = "Nothing found."

t
return false
}
</SCRIPT>
</HEAD>
<BODY onDragDrop="return handleDrag(event)">
Drag a URL to this window (NN4 only).
<HR>
<FORM>
URLs :

{TEXTAREA NAME="output" COLS=70 ROWS=4></TEXTAREA>

<INPUT TYPE="reset">
</FORM>
</B0ODY>
</HTML>

layerX
layerY
pageX
pageY
screenX
screenY

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

(NN4) eventObject.layerX

412 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example

You can see the effects of the coordinate systems and associated properties with
the page in Listing 29-13. Part of the page contains a three-field readout of the layer-,
page-, and screen-level properties. Two clickable objects are provided so that you
can see the differences between an object not in any layer and an object residing
within a layer. The object not confined by a layer has its layer and page coordinates
the same in the event object properties.

Additional readouts display the event object coordinates for resizing and moving
a window. If you maximize the window under Windows, the Navigator browser’s
top-left corner is actually out of sight, four pixels up and to the left. That’s why the
screenX and screenY values are both -4.

Listing 29-13: NN4 Event Coordinate Properties

<HTML>
<HEAD>
<TITLE>X and Y Event Properties</TITLE>
{SCRIPT LANGUAGE="JavaScript">
function checkCoords(evt) {
var form = document.forms[0]

form.layerCoords.value = evt.layerX + "," + evt.layerY
form.pageCoords.value = evt.pageX + "," + evt.pageY
form.screenCoords.value = evt.screenX + "," + evt.screenY

return false

}

function checkSize(evt) {
document.forms[0].resizeCoords.value = evt.layerX +

non
B

+ evt.layerY

}

function checkloc(evt) {
document.forms[0].moveCoords.value = evt.screenX +

non
B

+ evt.screenY
}

</SCRIPT>

</HEAD>

<BODY onResize="checkSize(event)" onMove="checkLoc(event)">

<H1>X and Y Event Properties (NN4)</H1>

<HR>

<P>CTick on the button and in the layer/image to see the coordinate values for
the event object.</P>

<FORM NAME="output">

<TABLE>

<TR><TD COLSPAN=2>Mouse Event Coordinates:</TD></TR>

{TR>XTD ALIGN="right">TlayerX, layerY:</TD><TD><INPUT TYPE="text"
NAME="TayerCoords" SIZE=10></TD></TR>

<TR>TD ALIGN="right">pageX, pageY:</TD>XTD><INPUT TYPE="text" NAME="pageCoords"
SIZE=10></TD></TR>

{TR>TD ALIGN="right">screenX, screenY:</TD><TD>INPUT TYPE="text"
NAME="screenCoords" SIZE=10></TD></TR>

{TR>XTD ALIGN="right"><INPUT TYPE="button" VALUE="Click Here"
onMouseDown="checkCoords(event)"></TD></TR>

<TR>CTD COLSPAN=2><HR></TD></TR>

(NN4) eventObject.layerX

Chapter 13 + Event Objects (Chapter 29)

<TR>CTD COLSPAN=2>Window Resize Coordinates:</TD></TR>

<TR>TD ALIGN="right">TayerX, TayerY:</TD><TD><INPUT TYPE="text"
NAME="resizeCoords" SIZE=10></TD></TR>

{TR>TD COLSPAN=2><HR></TD></TR>

<TR>TD COLSPAN=2>Window Move Coordinates:</TD></TR>

<TR>TD ALIGN="right">screenX, screenY:</TD><TD><INPUT TYPE="text"
NAME="moveCoords" SIZE=10></TD></TR>

</TABLE>

</FORM>

<LAYER NAME="display" BGCOLOR="coral" TOP=140 LEFT=300 HEIGHT=250 WIDTH=330>

</LAYER>

</BODY>

</HTML>

IE4+ event Object

Properties

clientX
clientY
offsetX
offsetY
screenX
screenY

X
y

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v/ v v

Example

Listing 29-14 provides readings of all event coordinate properties in an interac-
tive way. An onMouseDown event handler triggers all event handling, and you can
click the mouse anywhere on the page to see what happens. You see the tag of the
element targeted by the mouse event to help you visualize how some of the coordi-
nate properties are determined. An image is encased inside a positioned DIV ele-
ment to help you see what happens to some of the properties when the event is
targeted inside a positioned element.

(IE) event.clientX

413

414 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 29-14: 1E4+ Event Coordinate Properties

<HTML>

<HEAD>

KTITLE>X and Y Event Properties (IE4+)</TITLED>

<SCRIPT LANGUAGE="JavaScript">

function checkCoords() {
var form = document.forms[0]
form.srcElemTag.value = "<" + event.srcElement.tagName + ">"
form.clientCoords.value = event.clientX + "," + event.clientY
form.pageCoords.value = (event.clientX + document.body.scrollleft) +

"," + (event.clientY + document.body.scrollTop)

form.offsetCoords.value = event.offsetX + "," + event.offsetY
form.screenCoords.value = event.screenX + "," + event.screenY
form.xyCoords.value = event.x + "," + event.y
form.parElem.value = "<" + event.srcElement.offsetParent.tagName + ">"
return false

}

function handleSize() {
document.forms[0].resizeCoords.value = event.clientX + "," + event.clientY

}

</SCRIPT>

</HEAD>

<BODY onMouseDown="checkCoords()" onResize="handleSize()">

<H1>X and Y Event Properties (IE4+)</H1>

<HR>

<P>Click on the button and in the DIV/image to see the coordinate values for the

event object.</P>

<FORM NAME="output">

<TABLE>

<TR><TD COLSPAN=2>IE Mouse Event Coordinates:</TD></TR>

<TR>CTD ALIGN="right">srcElement:</TD><TD><INPUT TYPE="text" NAME="srcElemTag"

SIZE=10></TD></TR>

{TR>TD ALIGN="right">clientX, clientY:</TD>TD><INPUT TYPE="text"

NAME="cTlientCoords" SIZE=10></TD>

<TD ALIGN="right">...With scrolling:</TD><XTD><INPUT TYPE="text"

NAME="pageCoords" SIZE=10></TD></TR>

<TR>TD ALIGN="right">offsetX, offsetY:</TD><TD>INPUT TYPE="text"

NAME="offsetCoords" SIZE=10></TD></TR>

{TR>TD ALIGN="right">screenX, screenY:</TD><XTD><INPUT TYPE="text"

NAME="screenCoords" SIZE=10></TD></TR>

<TR>TD ALIGN="right">x, y:</TD>TD><INPUT TYPE="text" NAME="xyCoords"

SIZE=10></TD>

<TD ALIGN="right">...Relative to:</TD><TD>INPUT TYPE="text" NAME="parElem"

SIZE=10></TD></TR>

<TR>TD ALIGN="right"><INPUT TYPE="button" VALUE="Click Here"></TD></TR>

<TR>TD COLSPAN=2><HR></TD></TR>

<TR>CTD COLSPAN=2>Window Resize Coordinates:</TD></TR>

{TR>TD ALIGN="right">clientX, clientY:</TD>TD><INPUT TYPE="text"

NAME="resizeCoords" SIZE=10></TD></TR>

</TABLE>

(IE) event.clientX

Chapter 13 4 Event Objects (Chapter29) 415

</FORMD>

<DIV ID="display" STYLE="position:relative; Tleft:100">

</DIV>

</BODY>

</HTML>

Here are some tasks to try with the page that loads from Listing 29-14 to help you
understand the relationships among the various pairs of coordinate properties:

1. Click the dot above the “i” on the “Click Here” button label. The target ele-
ment is the button (INPUT) element, whose offsetParent is a table cell
element. The offsetY value is very low because you are near the top of the
element’s own coordinate space. The client coordinates (and x and y), how-
ever, are relative to the viewable area in the window. If your browser window
is maximized in Windows, the screenX and c1ientX values will be the same;
the difference between screenY and clientY is the height of all the window
chrome above the content region. With the window not scrolled at all, the
client coordinates are the same with and without scrolling taken into account.

2. Jot down the various coordinate values and then scroll the page down slightly
(clicking the scrollbar fires an event) and click the dot on the button again.
The clientY value shrinks because the page has moved upward relative to
the viewable area, making the measure between the top of the area smaller
with respect to the button. The Windows version does the right thing with the
offset properties, by continuing to return values relative to the element’s own
coordinate space; the Mac, unfortunately, subtracts the scrolled amount from
the offset properties.

3. Click the large image. The client properties perform as expected for both
Windows and Mac, as do the screen properties. For Windows, the x and y
properties correctly return the event coordinates relative to the IMG ele-
ment’s of fsetParent, which is the DIV element that surrounds it. Note, how-
ever, that the browser “sees” the DIV as starting 10 pixels to the left of the
image. In IE5.5/Windows, you can click within those ten transparent pixels to
the left of the image to click the DIV element. This padding is inserted auto-
matically and impacts the coordinates of the x and y properties. A more reli-
able measure of the event inside the image is the offset properties. The same
is true in the Macintosh version, as long as the page isn’t scrolled, in which
case the scroll, just as in Step 2, affects the values above.

4. Click the top HR element under the heading. It may take a couple of tries to
actually hit the element (you’ve made it when the HR element shows up in the
srcElement box). This is to reinforce the way the client properties provide
coordinates within the element itself (again, accept on the Mac when the page
is scrolled). Clicking at the very left end of the rule, you eventually find the 0,0
coordinate.

(IE) event.clientX

416 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Finally, if you are a Windows user, here are two examples to try to see some of
the unexpected behavior of coordinate properties.

1. With the page not scrolled, click anywhere along the right side of the page,
away from any text so that the BODY element is srcElement. Because the
BODY element theoretically fills the entire content region of the browser win-
dow, all coordinate pairs except for the screen coordinates should be the
same. But offset properties are two pixels less than all the others. By and
large, this difference won’t matter in your scripts, but you should be aware of
this potential discrepancy if precise positioning is important. For inexplicable
reasons, the offset properties are measured in a space that is inset two pixels
from the left and top of the window. This is not the case in the Macintosh ver-
sion, where all value pairs are the same from the BODY perspective.

2. Click the text of the H1 or P elements (just above and below the long horizon-
tal rule at the top of the page). In theory, the offset properties should be rela-
tive to the rectangles occupied by these elements (they’re block elements,
after all). But instead, they’re measured in the same space as the client prop-
erties (plus the two pixels). This unexpected behavior doesn’t have anything
to do with the cursor being a text cursor, because if you click inside any of the
text box elements, their offset properties are properly relative to their own
rectangles. This problem does not afflict the Macintosh version.

You can see further examples of important event coordinate properties in action
in the discussion of dragging elements around the IE page in Chapter 31 of the

JavaScript Bible.
fromElement
toElement
NN2 NN3 NN4 NNé6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v
Example

Listing 29-15 provides an example of how the fromETement and toETement
properties can reveal the life of the cursor action before and after it rolls into an
element. When you roll the cursor to the center box (a table cell), its onMouseQver
event handler displays the text from the table cell from which the cursor arrived. In
Figure 13-1, for example, the user has just rolled the cursor into the center box from
the West box. If the cursor comes in from one of the corners (not easy to do), a dif-
ferent message is displayed.

(IE) event.fromElement

Chapter 13 4 Event Objects (Chapter29) 417/

Listing 29-15: Using the toElement and fromElement
Properties

<HTML>
<HEAD>
KTITLE>fromElement and toElement Properties</TITLE>
(STYLE TYPE="text/CSS">
.direction {background-color:f#f00FFFF; width:100; height:50; text-align:center}
#imain {background-color:#FF6666; text-align:center}
</STYLED
<SCRIPT LANGUAGE="JavaScript">
function showArrival() {
var direction = (event.fromElement.innerText) ? event.fromElement.innerText

"parts unknown"
status = "Arrived from:

+ direction

}

function showDeparture() {
var direction = (event.toElement.innerText) ? event.toElement.innerText :
"parts unknown"
status = "Departed to:

+ direction

}

</SCRIPT>

</HEAD>

<BODY>

<H1>fromElement and toElement Properties</H1>

<HR>

<P>Ro11 the mouse to the center box and look for arrival information

in the status bar. Roll the mouse away from the center box and look for
departure information in the status bar.</P>

<TABLE CELLSPACING=0 CELLPADDING=5>

<TRX>CTD>K/TD>KTD CLASS="direction">North</TD><TD></TD></TR>

{TR>XTD CLASS="direction">West</TD>

<TD ID="main" onMouseOver="showArrival ()" onMouseQut="showDeparture()">Rol11</TD>
<TD CLASS="direction">East</TD></TR>

{TRYKTD></TD>TD CLASS="direction">South</TD>XTD></TD></TR>

</TABLE>

</BODY>

<THTML>

418

JavaScript Examples Bible: The Essential Companion to JavaScript Bible

2l fromElement and toElement Properties - Microsoft Internet Explorer [=[O] <]
J File Edit View Favorites Tools Help |
J «- . == _ @ ot a | %] ‘ Bl &
Back Fornward Stop Refresh Home Search Favorites History Mail
=
.
fromElement and toElement Properties
Foll the mouse to the center box and look for arrival information in the status bar. Eoll the mouse away
from the center box and lock for departure information in the status bar
North
West East
South
[
|@ Arrived from: West l_’_ My Computer 7

Figure 13-1: onMouseOver event object knows whence the pointer
came.

This is a good example to experiment with in the browser, because it also reveals
a potential limitation. The element registered as the toETement or fromElement
must fire a mouse event to register itself with the browser. If not, the next element
in the sequence that registers itself is the one acknowledged by these properties.
For example, if you roll the mouse into the center box and then extremely quickly
roll the cursor to the bottom of the page, you may bypass the South box entirely.
The text that appears in the statusbar is actually the inner text of the BODY ele-
ment, which is the element that caught the first mouse event to register itself as the
toElement for the center table cell.

keyCode
NN2 NN3 NN4 NN6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v
Example

Listing 29-16 provides an additional play area to view the keyCode property for
all three keyboard events while you type into a TEXTAREA. You can use this page
later as an authoring tool to grab the precise codes for keyboard keys you may not
be familiar with.

(IE) event.keyCode

Chapter 13 + Event Objects (Chapter29) 419

Listing 29-16: Displaying keyCode Property Values

<HTML>
<HEAD>
<TITLE>keyCode Property</TITLE>
{STYLE TYPE="text/css">
TD {text-align:center}
</STYLED
<{SCRIPT LANGUAGE="JavaScript">
function showCode(which) {
document.forms[0].elements[which].value = event.keyCode
}
function clearEm() {
for (var i = 1; i < document.forms[0].elements.length; i++) {
document.forms[0].elements[i].value = ""
1
}
</SCRIPT>
</HEAD>
<BODY>
<{H1>keyCode Property</H1>
<HR>
<PXL/P>
<FORM>
<P>
<TEXTAREA NAME="scratchpad" COLS="40" ROWS="5" WRAP="hard"
onKeyDown="clearkm(); showCode('down')" onKeyUp="showCode('up"')"
onKeyPress="showCode('press')"></TEXTAREA>
</P>
<TABLE CELLPADDING="5">
<TR><TH>Event</TH><TH>event.keyCode</TH></TR>
<TR><TD>onKeyDown:</TD><TD><INPUT TYPE="text" NAME="down" SIZE="3"></TD></TR>
<TR><TD>onKeyPress:</TD><TD><INPUT TYPE="text" NAME="press" SIZE="3"></TD></TR>
<TR><TD>onKeyUp:</TD>KTD>KINPUT TYPE="text" NAME="up" SIZE="3"></TD></TR>
</TABLE>
</FORM>
</BODY>
</HTML>

The following are some specific tasks to try with the page to examine key codes
(if you are not using a browser set for English and a Latin-based keyboard, your
results may vary):

1. Enter a lowercase letter “a”. Notice how the onKeyPress event handler shows
the code to be 97, which is the Unicode (and ASCII) value for the first of the
lowercase letters of the Latin alphabet. But the other two events record just
the key’s code: 65.

2. Type an uppercase “A” via the Shift key. If you watch closely, you see that the
Shift key, itself, generates the code 16 for the onKeyDown and onKeyUp events.

(IE) event.keyCode

4790 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

But the character key then shows the value 65 for all three events, because
the ASCII value of the uppercase letter happens to match the keyboard key
code for that letter.

3. Press and release the Down Arrow key (be sure the cursor still flashes in the
TEXTAREA, because that’s where the keyboard events are being monitored).
As a non-character key, it does not fire an onKeyPress event. But it does fire
the other events, and assigns 40 as the code for this key.

4. Poke around with other non-character keys. Some may produce dialog boxes
or menus, but their key codes are recorded nonetheless. Note that not all keys
on a Macintosh keyboard register with IE/Mac.

returnValue

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

You can find several examples of the returnValue property at work in Chapter
15 of the JavaScript Bible and in Listings 15-30, 33, 36, 37, 38, and 45 in Chapter 1 of
this book. Moreover, many of the other examples in Chapter 15 of the JavaScript
Bible can substitute the returnValue property way of canceling the default action
if the scripts were to be run exclusively on IE4+.

srcElement

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/ v v

Example

As a simplified demonstration of the power of the srcElement property, Listing
29-17 has but two event handlers defined for the BODY element, each invoking a
single function. The idea is that the onMouseDown and onMouseUp events will bub-
ble up from whatever their targets are, and the event handler functions will find out
which element is the target and modify the color style of that element.

An extra flair is added to the script in that each function also checks the
className property of the target element. If the cTassName is bold —a class name
shared by three SPAN elements in the paragraph —the style sheet rule for that
class is modified so that all items share the same color (see Figure 13-2). Your
scripts can do even more in the way of filtering objects that arrive at the functions
to perform special operations on certain objects or groups of objects.

Chapter 13 + Event Objects (Chapter29) 42]

2 srcElement Property - Microsoft Internet Explorer [=[O] <]
J File Edit View Favorites Tools Help |
J «- . == _ @ B ot a | %] ‘ Bl &
Back Fornward Stop Refresh Home Search Favorites History Mail
|
srcElement Property
COne event handler...
+ Can
* Cover
o NMany
+ Objects
Lorem psum delor st amet, consectetaur adipisicing elit, sed do ewsmod tempeor meididunt ut labore
2t dolore magna aliqua, Tt enim adminim verdam, quis nostrdd exercitation ullameo laboris nisi vt
aliquip ex ea commodo consequat
-]
[&] Done [= my computer v
Figure 13-2: Clicking on one SPAN element highlights fellow class
members.

Notice that the scripts don’t have to know anything about the objects on the
page to address each clicked one individually. That’s because the srcETement
property provides all of the specificity needed for acting on the target element.

Listing 29-17: Using the srcElement property

<HTML>
<HEAD>
<TITLE>srcElement Property</TITLE>
(STYLE TYPE="text/css">
.bold {font-weight:bold}
.ital {font-style:italic}
</STYLED
{SCRIPT LANGUAGE="JavaScript">
function highlight() {
var elem = event.srcElement

if (elem.className == "bold") {
document.styleSheets[0].rules[0].style.color = "red"
} else {

elem.style.color = "#FFCCO0"
1
}
function restore() {
var elem = event.srcElement
if (elem.className == "bold") {

Continued

(IE) event.srcElement

477 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 29-17 (continued)
document.styleSheets[0].rules[0].style.color = ""
} else {
elem.style.color = ""
}
}
</SCRIPT>
</HEAD>
<BODY onMouseDown="highlight()" onMouseUp="restore()">
<H1>srcElement Property</H1>
<HR>
<P>0ne event handler...</P>
<UL
Can
Cover
Many
0bjects
<UL
<P>
Lorem ipsum dolor sit amet, consectetaur adipisicing elit,
sed do eiusmod tempor incididunt
ut Tlabore et dolore magna aliqua.
Ut enim adminim veniam, quis nostrud
exercitation ullamco Tlaboris nisi ut aliquip ex ea
{SPAN CLASS="bold">commodo consequat.
</P>
</BODY>
<THTML>

type

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to see values returned by
the type property. Enter the following object name into the bottom text box and
press Enter/Return:

event

If necessary, scroll the Results box to view the type property, which should read
keypress. Now click the List Properties button. The type changes to c1ick. The
reason for these types is that the event object whose properties are being shown

(IE) event.type

Chapter 13 + Event Objects (Chapter29) 4273

here is the event that triggers the function to show the properties. From the text
box, an onKeyPress event handler triggers that process; from the button, an
onC11ick event handler does the job.

NN6+ event Object

charCode
keyCode
NN2 NN3 NN4 NNé6 IE3/J1 1E3/)2 IE4 IE5 IE5.5
Compatibility v
Example

Listing 29-18 provides a play area to view the charCode and keyCode properties
for all three keyboard events while you type into a TEXTAREA. You can use this
later as an authoring tool to grab the precise codes for keyboard keys you may not
be familiar with.

Listing 29-18: Displaying charCode and keyCode
Property Values

<HTML>
<HEAD>
<TITLE>charCode and keyCode Properties</TITLE>
(STYLE TYPE="text/css">
TD {text-align:center}
</STYLED
{SCRIPT LANGUAGE="JavaScript">
function showCode(which, evt) {
document.forms[0].elements[which + "Char"].value = evt.charCode
document.forms[0].elements[which + "Key"J.value = evt.keyCode
}
function clearEm() {
for (var i = 1; i < document.forms[0].elements.length; i++) {
document.forms[0].elements[i].value = ""
}
}
</SCRIPT>
</HEAD>
<BODY>
<{Hl1>charCode and keyCode Properties</H1>
<HR>
<PYL/PY
<FORM>
<P>

Continued

(NN6) eventObject.charCode

474 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 29-18 (continued)

<TEXTAREA NAME="scratchpad" COLS="40" ROWS="5" WRAP="hard"
onKeyDown="clearkm(); showCode('down', event)" onKeyUp="showCode('up"',
onKeyPress="showCode('press"', event)"></TEXTAREA>

<P

<TABLE CELLPADDING="5">
<TR>CTH>Event</TH><TH>event.charCode</TH><TH>event.keyCode</TH></TR>
<TR><TD>onKeyDown: </TD><TD><INPUT TYPE="text" NAME="downChar" SIZE="3"></TD>
<TD><INPUT TYPE="text" NAME="downKey" SIZE="3"></TD></TR>
<TR><TD>onKeyPress:</TD><TD>INPUT TYPE="text" NAME="pressChar" SIZE="3"></TD>
<TD><INPUT TYPE="text" NAME="pressKey" SIZE="3"></TD></TR>
<TR><TD>onKeyUp:</TD><TD>INPUT TYPE="text" NAME="upChar" SIZE="3"></TD>
<TD><INPUT TYPE="text" NAME="upKey" SIZE="3"></TD></TR>

</TABLE>

</FORM>

</BODY>

</HTML>

event)"

Here are some specific tasks to try with the page to examine key codes (if you
are not using a browser set for English and a Latin-based keyboard, your results
may vary):

1. Enter a lowercase letter “a”. Notice how the onKeyPress event handler shows
the charCode to be 97, which is the Unicode (and ASCII) value for the first of
the lowercase letters of the Latin alphabet. But the other two event types
record just the key’s code: 65.

2. Type an uppercase “A” via the Shift key. If you watch closely, you see that the
Shift key, itself, generates the key code 16 for the onKeyDown and onKeyUp
events. But the character key then shows the value 65 for all three events
(until you release the Shift key), because the ASCII value of the uppercase
letter happens to match the keyboard key code for that letter.

3. Press and release the Down Arrow key (be sure the cursor still flashes in the
TEXTAREA, because that’s where the keyboard events are being monitored).
As a non-character key, all three events stuff a value into the keyCode prop-
erty, but zero into charCode. The keyCode value for this key is 40.

4. Poke around with other non-character keys. Some may produce dialog boxes
or menus, but their key codes are recorded nonetheless.

(NN6) eventObject.charCode

Chapter 13 + Event Objects (Chapter29) 425

clientX
clientY
layerX
layerY
pageX
pageY
screenX
screenY

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/

Example

You can see the effects of the coordinate systems and associated NN6 properties
with the page in Listing 29-19. You can view coordinate values for all four measuring
systems, as well as some calculated value. Two clickable objects are provided so
that you can see the differences between an object not in any layer and an object
residing within a layer (although anything you see is clickable, including text
nodes). Figure 13-3 shows the results of a click inside the positioned layer.

[X and Y Event Properties (NN6+) - Netscape 6
! File Edit Miew Search Go Bookmarks Tasks Help

U file:A//RAListings/Chap29/1st29-19, bt Search

X and Y Event Properties (NN6+)

Click on the button and in the DIV /image to see the coordinate values for the event object.

M Mouse Event Coordinates

target: |< IHG:
client, chentY: llzqu TWith scrolling IJ-Z‘LT
layerZ, layer Y. IIE,E—
page, pageT: llzqu TWithin Element: IT
screenc(, screend: IIZ‘LT
Click Here |

Figure 13-3: NN6 event coordinates for a click inside a positioned element

(NN6) eventObject.clientX

476 lavaScript Examples Bible: The Essential Companion to JavaScript Bible

One of the calculated fields applies window scrolling values to the client coordi-
nates. But, as you will see, these calculated values are the same as the more conve-
nient page coordinates. The other calculated field shows the coordinates relative to
the rectangular space of the target element. Notice in the code that if the nodeType
of the target indicates a text node, that node’s parent node (an element) is used for
the calculation.

Listing 29-19: NN6 Event Coordinate Properties

<HTML>
<HEAD>
<TITLE>X and Y Event Properties (NN6+)</TITLE>
{SCRIPT LANGUAGE="JavaScript">
function checkCoords(evt) {
var form = document.forms["output"]
var targText, targElem
if (evt.target.nodeType == 3) {

targText = "[textnode] inside <" + evt.target.parentNode.tagName + ">"
targElem = evt.target.parentNode
} else {

targText = "<" + evt.target.tagName + ">"
targElem = evt.target
t
form.srcElemTag.value = targText
form.clientCoords.value = evt.clientX + "," + evt.clientY
form.clientScroll1Coords.value = (evt.clientX + window.scrollX) +
"," + (evt.clientY + window.scrollY)
form.layerCoords.value = evt.layerX + "," + evt.layerY
form.pageCoords.value = evt.pageX + "," + evt.pageV
form.inElemCoords.value =
(evt.pageX - targElem.offsetlLeft - document.body.offsetleft) +
"," + (evt.pageY - targElem.offsetTop - document.body.offsetTop)
form.screenCoords.value = evt.screenX + "," + evt.screenY
return false
}
<{/SCRIPT>
</HEAD>
<BODY onMouseDown="checkCoords(event)">
<H1>X and Y Event Properties (NN6+)</H1>
<HR>
<P>Click on the button and in the DIV/image to see the coordinate values for the
event object.</P>
<FORM NAME="output">
<TABLE>
{TR>XTD COLSPAN=2>NN6 Mouse Event Coordinates:</TD></TR>
<TR>TD ALIGN="right">target:</TD>
<TD COLSPAN=3><INPUT TYPE="text" NAME="srcElemTag" SIZE=25></TD></TR>
{TR>XTD ALIGN="right">clientX, clientY:</TD>
<TD><INPUT TYPE="text" NAME="clientCoords" SIZE=10></TD>
<TD ALIGN="right">...With scrolling:</TD>
{TD><INPUT TYPE="text" NAME="clientScrollCoords" SIZE=10></TD></TR>

(NN6) eventObject.clientX

Chapter 13 4 Event Objects (Chapter29) 47/

<TR><TD ALIGN="right">TayerX, TayerY:</TD>

<TD><INPUT TYPE="text" NAME="layerCoords" SIZE=10></TD></TR>
<TRX>TD ALIGN="right">pageX, pageY:</TD>

(TD>INPUT TYPE="text" NAME="pageCoords" SIZE=10></TD>

<TD ALIGH="right">Within Element:</TD>

<TD><INPUT TYPE="text" NAME="inElemCoords" SIZE=10></TR>
<TR><TD ALIGN="right">screenX, screenY:</TD>

<TD><INPUT TYPE="text" NAME="screenCoords" SIZE=10></TD></TR>
<TRY>TD ALIGN="right"><INPUT TYPE="button" VALUE="Click Here"></TD></TR>
</TABLE>
</FORM>
<DIV ID="display" STYLE="position:relative; left:100">

</DIVY
</BODY>
</HTML>

currentTarget

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v

Example

Listing 29-20 shows the power of the currentTarget property to reveal the ele-
ment that is processing an event during event propagation. Similar to the code in
Listing 29-7, this example is made simpler because it lets the event object’s proper-
ties do more of the work to reveal the identity of each element that processes the
event. Event listeners assigned for various propagation modes are assigned to a
variety of nodes in the document. After you click the button, each listener in the
propagation chain fires in sequence. The alert dialog shows which node is process-
ing the event. And, as in Listing 29-7, the eventPhase property is used to help dis-
play the propagation mode in force at the time the event is processed by each
node.

Listing 29-20: currentTarget and eventPhase Properties

<HTML>
<HEAD>
<TITLE>currentTarget and eventPhase Properties</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function init() {
// using old syntax to assign bubble-type event handlers
document.onclick = processEvent
document.body.onclick = processEvent

Continued

(NN6) eventObject.currentTarget

498 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 29-20 (continued)

// turn on click event capture for document and form
document.addEventlListener("click", processEvent, true)
document.forms[0].addEventListener("click", processtvent,
// set bubble event listener for form
document.forms[0].addEventListener("click", processtvent,
}
function processEvent(evt) {
var currTargTag, msg

if (evt.currentTarget.nodeType == 1) {
currTargTag = "<" + evt.currentTarget.tagName + ">"
} else {

currTargTag = evt.currentTarget.nodeName
}
msg = "Event is now at the " + currTargTag + " Tevel
msg += "(" + getPhase(evt) + ")."
alert(msg)

}
// reveal event phase of current event object
function getPhase(evt) {

switch (evt.eventPhase) {

case 1:
return "CAPTURING"
break
case 2:
return "AT TARGET"
break
case 3:
return "BUBBLING"
break
default:
return ""
1
}
</SCRIPT>

</HEAD>

<BODY onLoad="init()">

<Hl>currentTarget and eventPhase Properties</H1>

<HR>

<FORM>

<INPUT TYPE="button" VALUE="A Button" NAME="mainl"
onClick="processEvent(event)">

</FORM>

</BODY>

</HTML>

true)

false)

You can also click other places on the page. For example, if you click to the right
of the button, you will be clicking the FORM element. Event propagation and pro-
cessing adjusts accordingly. Similarly, if you click the header text, the only event lis-

teners that see the event are in the document and BODY levels.

(NN6) eventObject.currentTarget

Chapter 13 + Event Objects (Chapter29) 429

eventPhase
NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v
Example

See Listing 29-20 earlier in this chapter for an example of how you can use a
switch construction to branch function processing based on the event phase of
the current event object.

relatedTarget
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v
Example

Listing 29-21 provides an example of how the relatedTarget property can
reveal the life of the cursor action before and after it rolls into an element. When
you roll the cursor to the center box (a table cell), its onMouseOver event handler
displays the text from the table cell from which the cursor arrived (the nodeValue
of the text node inside the table cell). If the cursor comes in from one of the corners
(not easy to do), a different message is displayed.

The two functions that report the results employ a bit of filtering to make sure
that they process the event object only if the event occurs on an element and if the
relatedTarget element is anything other than a nested text node of the central
table cell element. Because nodes respond to events in NNG6, this extra filtering
prevents processing whenever the cursor makes the transition from the central TD
element to its nested text node.

Listing 29-21: Using the relatedTarget Property

<HTML>
<HEAD>
<TITLE>relatedTarget Properties</TITLE>
(STYLE TYPE="text/CSS">
.direction {background-color:f#f00FFFF; width:100; height:50; text-align:center}
fimain {background-color:#fFF6666; text-align:center}
</STYLED>
<SCRIPT LANGUAGE="JavaScript">
function showArrival(evt) {

if (evt.target.nodeType == 1) {

if (evt.relatedTarget != evt.target.firstChild) f{

Continued

(NN6) eventObject.relatedTarget

473(JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 29-21 (continued)

var direction = (evt.relatedTarget.firstChild) ?
evt.relatedTarget.firstChild.nodeValue : "parts unknown"
status = "Arrived from: " + direction

}
}
function showDeparture(evt) {
if (evt.target.nodeType == 1) {
if (evt.relatedTarget != evt.target.firstChild) {
var direction = (evt.relatedTarget.firstChild) ?

evt.relatedTarget.firstChild.nodeValue : "parts unknown"
status = "Departed to: " + direction
}
}
}
</SCRIPT>
</HEAD>
<BODY>
<{Hl>relatedTarget Properties</H1>
<HR>

<P>Ro11 the mouse to the center box and look for arrival information
in the status bar. Roll the mouse away from the center box and look for
departure information in the status bar.</P>

<TABLE CELLSPACING=0 CELLPADDING=5>

LTRYKTD></TD>TD CLASS="direction">North</TD><TD></TD></TR>

<TR><TD CLASS="direction">West</TD>

<TD ID="main" onMouseOver="showArrival(event)"
onMouseOut="showDeparture(event)">Ro11</TD>

<TD CLASS="direction">East</TD></TR>

{TRYKTD></TD>TD CLASS="direction">South</TD><TD></TD></TR>

</TABLE>

</BODY>

</HTML>

target

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v

Example

As a simplified demonstration of the power of the target property, Listing 29-22
has but two event handlers defined for the BODY element, each invoking a single

(NN6) eventObject.target

Chapter 13 + Event Objects (Chapter29) 431

function. The idea is that the onMouseDown and onMouseUp events will bubble up
from whatever their targets are, and the event handler functions will find out which
element is the target and modify the color style of that element.

An extra flair is added to the script in that each function also checks the
className property of the target element. If the cTassName is bold —a class name
shared by three SPAN elements in the paragraph —the style sheet rule for that
class is modified so that all items share the same color. Your scripts can do even
more in the way of filtering objects that arrive at the functions to perform special
operations on certain objects or groups of objects.

Notice that the scripts don’t have to know anything about the objects on the
page to address each clicked one individually. That’s because the target property
provides all of the specificity needed for acting on the target element.

Listing 29-22: Using the target Property

<HTML>

<HEAD>

<TITLE>target Property</TITLE>
(STYLE TYPE="text/css">

.bold {font-weight:bold}

.ital {font-style:italic}
</STYLED

<SCRIPT LANGUAGE="JavaScript">
function highlight(evt) {

var elem = (evt.target.nodeType == 3) ? evt.target.parentNode : evt.target

if (elem.className == "bold") {
document.styleSheets[0].cssRules[0].style.color = "red"

} else {

elem.style.color = "#FFCCO0"
}
}
function restore(evt) {

var elem = (evt.target.nodeType == 3) ? evt.target.parentNode : evt.target
if (elem.className == "bold") {
document.styleSheets[0].cssRules[0].style.color = "black"
} else {
elem.style.color = "black"
1
}
</SCRIPT>
</HEAD>

<BODY onMouseDown="highlight(event)" onMouseUp="restore(event)">
<Hl>target Property</H1>

<HR>

<{P>0One event handler...</P>

<UL

Can

Cover

Many

0bjects

Continued

(NN6) eventObject.target

437 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 29-22 (continued)

<P>

Lorem ipsum dolor sit amet, consectetaur adipisicing elit,
{SPAN CLASS="bold">sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua.
Ut enim adminim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea
commodo consequat.

</P>

</BODY>

</HTML>

timeStamp

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

Listing 29-23 uses the timeStamp property to calculate the instantaneous typing
speed when you type into a TEXTAREA (see Figure 13-4). The calculations are
pretty raw and work only on intra-keystroke times without any averaging or
smoothing that a more sophisticated typing tutor might perform. Calculated values
are rounded to the nearest integer.

Listing 29-23: Using the timeStamp property

<HTML>
<HEAD>
KTITLE>timeStamp Property</TITLE>
<SCRIPT LANGUAGE="JavaScript">
var stamp
function calcSpeed(evt) {
if (stamp) {
var gross = evt.timeStamp - stamp
var wpm = Math.round(6000/gross)
document.getElementById("wpm").firstChild.nodeValue = wpm + " wpm."
}
stamp = evt.timeStamp

}

</SCRIPT>
</HEAD>

(NN6) eventObject.timeStamp

Chapter 13 + Event Objects (Chapter29) 433

<BODY>

<H1>timeStamp Property</HI1>

<HR>

<P>Start typing, and watch your instantaneous typing speed below:</P>

<P>

<TEXTAREA COLS=60 ROWS=10 WRAP="hard" onKeyPress="calcSpeed(event)"></TEXTAREA>
</P>

<P>Typing Speed: </P>

</BODY>

</HTML>

[timeStamp Property - Netscape 6

timeStamp Property

Start typing, and watch your instantane ous typing speed below:

Mow is the time fm:l

Typmg Speed: 54 wpm

= Dol

nt: Done

Figure 13-4: The timeStamp property helps calculate
typing speed.

¢+ o+ 0+

(NN6) eventObject.timeStamp

Style Sheet
Objects
Chapter 30)

Examples in this chapter focus on the properties and
methods of the styleSheet object. As described in
Chapter 30 of the JavaScript Bible, object models that support
scriptable style sheets define both the STYLE element object
(representing the element created with a <STYLE> tag pair)
and the more abstract styleSheet object. The latter may be
created by virtue of a STYLE element or perhaps imported
from an external style sheet definition file.

Use the styleSheet object to gain access to the details of
the rules defined for a given style sheet. Methods of the
styleSheet object (different syntax for IE4+ and W3C object
models) allow dynamic creation or deletion of rules within a
style sheet. Properties of the styleSheet object (again, dif-
ferent syntax) return arrays of objects representing the style
rules contained by the style sheet. The rule objects them-
selves have properties allowing reading and writing of rule
selectors and even individual style attributes within that rule
(since a single rule can list multiple style attributes).

Examples Highlights
4 Compare examples for the styleSheet.cssRules and

styleSheet.rules properties to see how different
browsers provide access to arrays of rule objects.

4 You can observe in The Evaluator (Chapter 13 in the
JavaScript Bible) how the styleSheet.disabled prop-
erty can switch a style sheet on and off dynamically.

4 Compare the styleSheet object method pairs for
inserting and deleting rules to an existing style sheet.
The walk-through examples let you follow the same
steps for both the I[E4+ and NN6 syntaxes.

4 The final example in this chapter demonstrates how

scripts can modify a single attribute of a style sheet rule.

CHAPTER

¢+ 0+ o+
In This Chapter

Enabling and
disabling entire style
sheets

Accessing an
individual style rule
from a style sheet

Adding and deleting

style sheet rules

+ o+ o+

436 lavaScript Examples Bible: The Essential Companion to JavaScript Bible

The syntax in the demonstration is for NN6 and IE5/Mac, but referencing the
cssRules property provides the same access for the [E4+ object model.

styleSheet Object

Properties
cssRules
NN2 NN3 NN4 NNé6 IE3/J1 1E3/)2 IE4 IE5 IE5.5
Compatibility v V))
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to look at the cssRules
property in NN6+ or IE5+/Mac. First, view how many rules are in the first styleSheet
object of the page by entering the following statement into the top text box:

document.styleSheets[0].cssRules.length

Now use the array with an index value to access one of the rule objects to view
the rule object’s properties list. Enter the following statement into the bottom text
box:

document.styleSheets[0].cssRules[1]

You use this syntax to modify the style details of an individual rule belonging to
the styleSheet object.

cssText
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v
Example

Use The Evaluator (Chapter 13) to replace the style rules in one blast via the
cssText property. Begin by examining the value returned from the property for the
initially disabled style sheet by entering the following statement into the top text
box:

document.styleSheets[0].cssText

Next, enable the style sheet so that its rules are applied to the document:
document.styleSheets[0].disabled = false

styleSheetObject.cssText

Chapter 14 + Style Sheet Objects (Chapter30) 437/

Finally, enter the following statement into the top text box to overwrite the style
sheet with entirely new rules.

document.styleSheets[0].cssText = "P {color:red}"

Reload the page after you are finished to restore the original state.

disabled
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to toggle between the
enabled and disabled state of the first styleSheet object on the page. Enter the fol-
lowing statement into the top text box:

document.styleSheets[0].disabled = (!document.styleSheets[0].disabled)

The inclusion of the NOT operator (!) forces the state to change from true to
false or false to true with each click of the Evaluate button.

ownerNode
NN2 NN3 NN4 NNé6 IE3/J1 1E3/)2 IE4 IE5 IE5.5
Compatibility v
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) with NN6 to inspect the
ownerNode of the first styleSheet object in the document. Enter the following state-
ment into the top text box:

document.styleSheets[0].ownerNode.tagName

The returned value is the STYLE element tag name.

owningElement

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

styleSheetObject.owningElement

438 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example

Use The Evaluator (Chapter 13 in JavaScript Bible) with IE4+ to inspect the
owningElement of the first styleSheet object in the document. Enter the following
statement into the top text box:

document.styleSheets[0].owningElement.tagName

The returned value is the STYLE element tag name.

rules
NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) with IE4+ to examine the
rules property of the first styleSheet object in the page. First, find out how many
rules are in the first styleSheet object by entering the following statement into the
top text box:

document.styleSheets[0].rules.length

Next, examine the properties of one of the rules by entering the following state-
ment into the bottom text box:

document.styleSheets[0].rules[1]

You now see the all the properties that [E4+ exposes for a rule object.

Methods

addRule("selector", "styleSpec"[, index])
removeRule(index)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) with IE4+ to add a style
sheet rule to the first styleSheet object of the page. First, make sure the style sheet
is enabled by entering the following statement into the top text box:

document.styleSheets[0].disabled = false

styleSheetObject.addRule()

Chapter 14 + Style Sheet Objects (Chapter30) 439

Next, append a style that sets the color of the TEXTAREA element:
document.styleSheets[0].addRule("TEXTAREA", "color:red")

Enter any valid object (such as document.body) into the bottom text box to see
how the style has been applied to the TEXTAREA element on the page.

Now remove the style, using the index of the last item of the rules collection as
the index:

document.styleSheets[0].removeRule(document.styleSheets[0].rules.length - 1)
The text in the TEXTAREA returns to its default color.

deleteRule(index)
insertRule("rule"™, index)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) with NN6+ to add a style
sheet rule to the first styleSheet object of the page. First, make sure the style sheet
is enabled by entering the following statement into the top text box:

document.styleSheets[0].disabled = false
Next, append a style that sets the color of the TEXTAREA element:

document.styleSheets[0].insertRule("TEXTAREA {color:red}",
document.styleSheets[0].cssRules.length)

Enter any valid object (such as document.body) into the bottom text box to see
how the style has been applied to the TEXTAREA element on the page.

Now remove the style, using the index of the last item of the rules collection as
the index:

document.styleSheets[0].deleteRule(document.styleSheets[0].cssRules.length - 1)

The first release of NN6 processes most, but not all, of the internal actions in
response to the deleteRule () method. The method returns no value, so the
Results box correctly reports undefined after evaluating the deleteRule()
example statement. At the same time, the method has genuinely removed the rule
from the styleSheet object (as proven by inspecting the Tength property of the
document.styleSheets[0].cssRules array). But the browser does not refresh
the page display to reflect the removal of the rule.

styleSheetObject.deleteRule()

440 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

cssRule and rule Objects

Properties
selectorText

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v 4

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to examine the
selectorText property of rules in the first styleSheet object of the page. Enter
each of the following statements in the top text box:

document.styleSheets[0].rules[0].selectorText
document.styleSheets[0].rules[1].selectorText

Compare these values against the source code view for the STYLE element in the

page.
style
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v/ v/ v v
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to modify a sty1e prop-
erty of one of the styleSheet rules in the page. The syntax shown here is for [E4+,
but you can substitute the cssRules reference for the rules collection reference in
NN6 (and IE5/Mac) if you like.

Begin by reloading the page and making sure the style sheet is enabled. Enter the
following statement into the top text box:

document.styleSheets[0].disabled = false

The first rule is for the myP element on the page. Change the rule’s font-size
style:

document.styleSheets[0].rules[0].style.fontSize = "20pt"

Look over the style object properties in the discussion of the sty1e object
later in this chapter and have fun experimenting with different style properties.
After you are finished, reload the page to restore the styles to their default states.

¢+ ¢

ruleObject.style

CHAPLER

The NN4
Layer Object L
Chapter 31) i e

Using NN4-specific
syntax for positioned

elements

‘ hapter 31 of the JavaScript Bible is devoted to positioned How to move, hide,

objects in all object models. Only Navigator 4 has its and show positioned
own set of dedicated positionable objects: the LAYER and content in NN4
ILAYER element objects. In the [E4+ and W3C DOMs, virtually
any renderable element is positionable, although it is common Setting the cIipping
practice to restrict such activity to SPAN and DIV elements. rectangle of a layer
Because properties of the SPAN, DIV, and other HTML element in NN4
objects are covered in detail in other chapters, Chapter 31
provides the details of the NN4 layer object. + + + +

Examples shown here support NN4 layer object details, but
the rest of the discussion and code listings in JavaScript Bible
Chapter 31 go to great lengths to recreate the same behaviors
in both the IE4+ and W3C (NN6) object models. This will help
those scripters who developed extensively for NN4’s Dynamic
HTML make the transition to NN6 and its support for Dynamic
HTML (which is not much different from that in the IE4+ object
model). Obviously, all examples shown below require NN4.

L] -
Examples Highlights

4+ Clipping of layer rectangles is not an easy concept to
grasp at first (in any object model). Listing 31-2 provides
a workbench to explore the various properties associ-
ated with the clipping rectangle. Listing 31-5 demon-
strates the relationship between moving a layer and
adjusting its clipping rectangle.

4 Listing 31-6 is an extensive demonstration of a variety of
layer coordinate system properties.

4 Most layer object properties are handled in later object
models through style sheet property manipulation.
Listing 31-8 shows the NN4 layer way of handling a
layer’s visibility, while Listing 31-9 demonstrates adjust-
ing the stacking order of layers.

447 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

4 Scripts for dragging a layer (with the help of the layer object’s move methods)
appear in Listing 31-11. Another type of dragging— dragging a corner to resize
a layer —takes center stage in Listing 31-12a.

NN4 Layer Object

Properties

above
below
siblingAbove
siblingBelow

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v/

Example

Listing 31-1 enables you to experiment with just one set of these properties:
layerObject.above and TayerObject .below. The page is almost in the form of a
laboratory/quiz that enables you to query yourself about the values of these prop-
erties for two swappable layers.

Listing 31-1: A Layer Quiz

<HTML>
<HEAD>
{SCRIPT LANGUAGE="JavaScript">
function checkAbove(onelayer) {
document.forms[0].errors.value = ""
document.forms[0].output.value = onelayer.above.name
}
function checkBelow(onelayer) {
document.forms[0].errors.value = ""
document.forms[0].output.value = onelayer.below.name
}
function swaplayers() {
if (document.yeller.above) {
document.yeller.moveAbove(document.greeny)
} else {
document.greeny.moveAbove(document.yeller)
}

document./ayerObject.above

Chapter 15 + The NN4 Layer Object (Chapter31) 443

function onerror(msg) {
document.forms[0].output.value =
document.forms[0].errors.value = msg
return true

}

</SCRIPT>

</HEAD>

<BODY>

<H1>Layer Ordering</H1>

<HR>

<FORM>

Results:<INPUT TYPE="text" NAME="output"><P>

<INPUT TYPE="button" VALUE="Who's ABOVE the Yellow layer?"
onClick="checkAbove(document.yeller)">

<INPUT TYPE="button" VALUE="Who's BELOW the Yellow layer?"
onClick="checkBelow(document.yeller)"><P>

<INPUT TYPE="button" VALUE="Who's ABOVE the Green layer?"
onClick="checkAbove(document.greeny)">

<INPUT TYPE="button" VALUE="Who's BELOW the Green layer?"
onClick="checkBelow(document.greeny)"><P>

<INPUT TYPE="button" VALUE="Swap Layers" onCLick="swaplLayers()"><P>
If there are any errors caused by missing

properties, they will appear below:

<TEXTAREA NAME="errors" COLS=30 ROWS=3 WRAP="virtual"></TEXTAREA>
</FORM>

<LAYER NAME="yeller" BGCOLOR="yellow" TOP=110 LEFT=300 WIDTH=200 HEIGHT=200>
This is just a yellow Tlayer.

</LAYER>

<LAYER NAME="greeny" BGCOLOR="1ightgreen" TOP=150 LEFT=340 WIDTH=200 HEIGHT=200>
This is just a green layer.

</LAYER>

</BODY>

<IHTML>

The page contains two layers: one colored yellow and the other light green.
Legends on four buttons ask you to guess whether one layer is above or below the
other. For example, if you click the button labeled “Who’s ABOVE the Yellow layer?”
and the green layer is above it, the name of that green layer appears in the Results
field. But if layers are oriented such that the returned value is nul1, the error mes-
sage (indicating that the nonexistent object doesn’t have a name property) appears
in the error field at the bottom. Another button enables you to swap the order of
the layers so you can try your hand at predicting the results based on your knowl-
edge of layers and the above and below properties. Positioned objects in [E4+ and
NN6 have no comparable properties to the four described in this section.

document./ayerObject.above

444 avaScript Examples Bible: The Essential Companion to JavaScript Bible

background
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v
Example

A simple example (Listing 31-2) defines one layer that features five buttons to
change the background image of a second layer. I put the buttons in a layer because
[want to make sure the buttons and background layer rectangles align themselves
along their top edges on all platforms.

As the second layer loads, [merely assign a gray background color to it and
write some reverse (white) text. Most of the images are of the small variety that
repeat in the layer. One is a large photograph to demonstrate how images are
clipped to the layer’s rectangle. Along the way, I hope you also heed the lesson of
readability demonstrated by the difficulty of reading text on a wild-looking back-
ground. For an example compatible with IE5+ and NN6+, see Listing 31-13.

Listing 31-2: Setting Layer Backgrounds

<HTML>
<HEAD>
{SCRIPT LANGUAGE="JavaScript">
function setBg(URL) {
document.bgExpo.background.src = URL
}
</SCRIPT>
</HEAD>
<BODY>
<H1>Layer Backgrounds</H1>
<HR>
<LAYER NAME="buttons" TOP=100>
<FORM>
<INPUT TYPE="button" VALUE="The Usual"
onClick="setBg('cr_kraft.gif"')">

<INPUT TYPE="button" VALUE="A Big One" onClick="setBg('arch.gif")">

<INPUT TYPE="button" VALUE="Not So Usual"
onClick="setBg('wh86.gif")">

<INPUT TYPE="button" VALUE="Decidedly Unusual"
onClick="setBg('sb23.gif")">

<INPUT TYPE="button" VALUE="Quick as..."
onClick="setBg('lightnin.gif"')">

</FORM>
</LAYER>
<LAYER NAME="bgExpo" BGCOLOR="gray" TOP=100 LEFT=250 WIDTH=300 HEIGHT=260>
CFONT COLOR="white">Some text, which may or may not read well with the
various backgrounds.

document./ayerObject.background

Chapter 15 + The NN4 Layer Object (Chapter31) 445

</LAYER>
</BODY>
</HTML>

bgColor

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

You can have some fun with Listing 31-3, which uses a number of layer scripting
techniques. The page presents a kind of palette of eight colors, each one created as
a small layer (see Figure 15-1). Another, larger layer’s bgColor property changes as
you roll the mouse over any color in the palette.

$ Netscape

File Edit Wiew Go Communicator Help

<« » A D} 2 £ I &
Back Fonward Reload Home Search Guide Print Security
PR

Layer Background Colors

Some reversed text to test
against hackground colors.

@| | Document: Done

Figure 15-1: Drag the mouse across the palette to change the
layer’s background color.

To save HTML lines to create those eight color palette layers, I use a script to
establish an array of colors and then document.write() the <LAYER> tags with
appropriate attribute settings so the layers all line up in a contiguous row. By pre-
defining a number of variable values for the size of the color layers, I can make all of
them larger or smaller with the change of only a few script characters.

The document object handles the job of capturing the mouseOver events. I turn
on the document’s captureEvents() method such that it traps all mouseOver

document./ayerObject.bgColor

446 lavaScript Examples Bible: The Essential Companion to JavaScript Bible

events and hands them to the setColor () function. The setColor () function
reads the target object’s bgCoTor and sets the larger layer’s bgColor property to
the same. If this page had other objects that could receive mouseOver events for
other purposes, [would use routeEvents() to let those events pass on to their
intended targets. For the purposes of this example, however, the events need to go
no further. Listing 31-14 in the JavaScript Bible shows the same functionality work-
ing in [E5+ and NN6+.

Listing 31-3: Layer Background Colors

<HTML>

<HEAD>

{SCRIPT LANGUAGE="JavaScript">

function setColor(e) {
document.display.bgColor = e.target.bgColor

}

document.captureEvents(Event.MOUSEQVER)

document.onmouseover = setColor

</SCRIPT>

</HEAD>

<BODY>

<H1>Layer Background Colors</H1>

<HR>

<SCRIPT LANGUAGE="JavaScript">

var onelayer

var colorTop = 100

var colorLeft = 20

var colorWidth = 40

var colorHeight = 40

var colorPalette = new

Array("aquamarine","coral","forestgreen","goldenrod","red",
"magenta","navy","teal")
for (var i = 0; i < colorPalette.length; i++) {
onelLayer = "<LAYER NAME=swatch" + i + " TOP=" + colorTop
onelLayer += " LEFT=" + ((colorWidth * i) + colorlLeft)
onelayer += " WIDTH=" + colorWidth + " HEIGHT=" + colorHeight
onelLayer += " BGCOLOR=" + colorPalette[i] + "></LAYER>\n"
document.write(onelayer)
}
</SCRIPT>
<LAYER NAME="display" BGCOLOR="gray" TOP=150 LEFT=80 WIDTH=200 HEIGHT=200>
CFONT COLOR="white"><CENTER>Some reversed text to test against background
colors.</CENTER>
</LAYER>
</BODY>
</HTML>

document./ayerObject.bgColor

Chapter 15 4+ The NN4 Layer Object (Chapter31) 447

clip

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

Because of the edge movement behavior of adjustments to 7ayerObject.clip
properties, Listing 31-4 enables you to experiment with adjustments to each of the
six properties. The document loads one layer that you can adjust by entering alter-
native values into six text fields — one per property. Figure 15-2 shows the page.

7 Layer Clip - Netscape

File Edit Wiew Go Communicator Help

2 = A % 2o £ S & 4 N
Back Fonward Reload Home Search Guide Frint Securty Stop

Layer Clipping Properties

Enter new clipping walues to adjust the wisible area of the layer.

layer clip left: ID_
layer.clip top: ID_
layer clip right: |360
layer. clip bottom: 180

laver. clip width: [380

layer clip height [180

Reveal Original Layer |

@| | Document: Done

Figure 15-2: Experiment with layer.clip properties.

As you enter values, all properties are updated to show their current values (via
the showValues () function). Pay particular attention to the apparent motion of the
edge and the effect the change has on at least one other property. For example, a
change to the TayerObject.clip.left value also affects the TayerObject.clip.
width property value.

Listing 31-4: Adjusting layer.clip Properties

<HTML>

<HEAD>

<TITLE>Layer Clip</TITLE>
{SCRIPT LANGUAGE="JavaScript">
var origlLayerWidth = 0

var origlayerHeight = 0

Continued

document./ayerObject.clip

448 lavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 31-4 (continued)

function initializeXY() {
origlayerWidth = document.display.clip.width
origlLayerHeight = document.display.clip.height
showValues()

}

function setClip(field) {
var clipVal = parselnt(field.value)
document.display.clip[field.name] = clipVal
showValues()
}
function showValues() {
var form = document.layers[0].document.forms[0]
var propName
for (var i = 0; i < form.elements.length; i++) {
propName = form.elements[i].name
if (form.elements[i].type == "text") {
form.elements[i].value = document.display.cliplpropName]
1
}
}
var intervallD
function revealClip() {
var midWidth = Math.round(origlLayerWidth /2)
var midHeight = Math.round(origlLayerHeight /2)
document.display.clip.left = midWidth
document.display.clip.top = midHeight
document.display.clip.right = midWidth
document.display.clip.bottom = midHeight
intervallD = setInterval("stepClip()",1)
}
function stepClip() {
var widthDone = false
var heightDone = false
if (document.display.clip.left > 0) {
document.display.clip.left += -2
document.display.clip.right += 2
} else {
widthDone = true
}
if (document.display.clip.top > 0) {
document.display.clip.top += -1
document.display.clip.bottom += 1
} else {
heightDone = true
}
showValues()
if (widthDone && heightDone) {
clearInterval(intervallD)

document./ayerObject.clip

Chapter 15 + The NN4 Layer Object (Chapter31) 449

}
}
</SCRIPT>
</HEAD>
<BODY onLoad="initializeXY()">
<H1>Layer Clipping Properties</H1>
<HR>
Enter new clipping values to adjust the visible area of the Tayer.<P>
<LAYER TOP=130>
<FORM>
<TABLE>
<TR>
<TD ALIGN="right">Tayer.clip.left:</TD>
<TD><INPUT TYPE="text" NAME="left" SIZE=3 onChange="setClip(this)"></TD>
</TR>
<TR>
<TD ALIGN="right">Tayer.clip.top:</TD>
<TD><INPUT TYPE="text" NAME="top" SIZE=3 onChange="setClip(this)"></TD>
</TR>
<TR>
<TD ALIGN="right">Tayer.clip.right:</TD>
(TD>CINPUT TYPE="text" NAME="right" SIZE=3 onChange="setClip(this)"></TD>
</TR>
<TR>
<TD ALIGN="right">Tayer.clip.bottom:</TD>
<TD><INPUT TYPE="text" NAME="bottom" SIZE=3 onChange="setClip(this)"></TD>
</TR>
<TR>
<TD ALIGN="right">layer.clip.width:</TD>
<TD><INPUT TYPE="text" NAME="width" SIZE=3 onChange="setClip(this)"></TD>
</TR>
<TR>
<TD ALIGN="right">Tayer.clip.height:</TD>
(TD>INPUT TYPE="text" NAME="height" SIZE=3 onChange="setClip(this)"></TD>
</TR>
</TABLE>
<INPUT TYPE="button" VALUE="Reveal Original Layer" onClick="revealClip()">
</FORM>
</LAYER>
<LAYER NAME="display" BGCOLOR="coral" TOP=130 LEFT=200 WIDTH=360 HEIGHT=180>
<H2>ARTICLE I</H2>
<P>
Congress shall make no law respecting an establishment of religion, or
prohibiting the free exercise thereof; or abridging the freedom of speech, or of
the press; or the right of the people peaceably to assemble, and to petition the
government for a redress of grievances.
</P>
</LAYER>
</BODY>
<THTML

document./ayerObject.clip

450 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 31-4 has a lot of other scripting in it to demonstrate a couple of other clip
area techniques. After the document loads, the onlLoad event handler initializes two
global variables that represent the starting height and width of the layer as deter-
mined by the clip.height and cT1ip.width properties. Because the <LAYER> tag
does not specify any CLIP attributes, the TayerObject.clip region is ensured of
being the same as the layer’s dimensions at load time.

I preserve the initial values for a somewhat advanced set of functions that act in
response to the Reveal Original Layer button. The goal of this button is to tem-
porarily shrink the clipping area to nothing and then expand the clip rectangle
gradually from the very center of the layer. The effect is analogous to a zoom-out
visual effect.

The clip region shrinks to practically nothing by setting all four edges to the
same point midway along the height and width of the layer. The script then uses
setInterval () to control the animation in setC1ip(). To make the zoom even on
both axes, I first make sure that the initial size of the layer is an even ratio: twice as
wide as it is tall. Each time through the setC1ip() function, the clip.Teft and
clip.right values are adjusted in their respective directions by two pixels and
clip.topand clip.bottomare adjusted by one pixel.

To make sure the animation stops when the layer is at its original size, I check
whether the clip.top and clip.Teft values are their original zero values. If they
are, [set a Boolean variable for each side. When both variables indicate that the
clip rectangle is its original size, the script cancels the setInterval() action.
Listing 31-15 in the JavaScript Bible demonstrates how to adjust clipping in IE5+
and NN6+ syntax.

left

top
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v
Example

To enable you to experiment with manually setting /ayerObject.top and
lTayerObject.left properties, Listing 31-5 is a modified version of the Tayer.clip
example (Listing 31-4). The current example again has the one modifiable layer, but
it has only four text fields in which you can enter values. Two fields are for the
layerObject.left and layerObject.top properties; the other two are for the
layerObject.clip.left and /ayerObject.clip.top properties. I present both
sets of values here to help reinforce the lack of connection between layer and clip
location properties in the same layer object. You can find the corresponding syntax
for IE5+ and NN6+ in Listing 31-16 of the JavaScript Bible.

document./ayerObject.left

Chapter 15 + The NN4 Layer Object (Chapter31) 45 1]

Listing 31-5: Comparison of Layer and Clip Location
Properties

<HTML>
<HEAD>
KTITLE>Layer vs. Clip</TITLE>
{SCRIPT LANGUAGE="JavaScript">
function setClip(field) {
var clipVal = parselnt(field.value)
document.display.clip[field.name] = clipVal
showValues()
}
function setlayer(field) {
var layerVal = parselnt(field.value)
document.display[field.name] = layerVal
showValues()
}
function showValues() f
var form = document.layers[0].document.forms[0]
form.elements[0].value = document.display.left
form.elements[1].value = document.display.top
form.elements[2].value = document.display.clip.left
form.elements[3].value = document.display.clip.top
}
</SCRIPT>
</HEAD>
<BODY onLoad="showValues()">
Layer vs. Clip Location Properties
<HR>
Enter new layer and clipping values to adjust the Tayer.<P>
<LAYER TOP=80>
<FORM>
<TABLE>
<TR>
<TD ALIGN="right">layer.left:</TD>
(TD>INPUT TYPE="text" NAME="left" SIZE=3 onChange="setlayer(this)"></TD>
</TR>
<TR>
<TD ALIGN="right">Tayer.top:</TD>
<TD><INPUT TYPE="text" NAME="top" SIZE=3 onChange="setlayer(this)"></TD>
</TR>
<TR>
<TD ALIGN="right">layer.clip.left:</TD>
(TD>CINPUT TYPE="text" NAME="Tleft" SIZE=3 onChange="setClip(this)"></TD>
</TR>
<TR>
<TD ALIGN="right">Tayer.clip.top:</TD>
{TD>INPUT TYPE="text" NAME="top" SIZE=3 onChange="setClip(this)"></TD>
</TR>
</TABLE>
</FORM>

Continued

document./ayerObject.left

457 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 31-5 (continued)

</LAYERD>

<LAYER NAME="display" BGCOLOR="coral" TOP=80 LEFT=200 WIDTH=360 HEIGHT=180>
<HZ>ARTICLE I</H2>

<P>

Congress shall make no law respecting an establishment of religion, or
prohibiting the free exercise thereof; or abridging the freedom of speech, or of
the press; or the right of the people peaceably to assemble, and to petition the
government for a redress of grievances.

</P>

</LAYER>

</BODY>

</HTML>

pageX
pageY

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

Listing 31-6 defines one outer layer and one nested inner layer of different colors
(see Figure 15-3). The inner layer contains some text content; the outer layer is
sized initially to present a colorful border by being below the inner layer and 10 pix-
els wider and taller.

Two sets of fields display (and enable you to change) the TayerObject.pageX,
layerObject .pageY, layerObject.left,and layerObject.top properties for
each of the nested layers. Each set of fields is color-coded to its corresponding
layer.

When you change any value, all values are recalculated and displayed in the
other fields. For example, the initial pageX position for the outer layer is 200 pixels;
for the inner layer, the pageX value is 205 pixels (accounting for the 5-pixel “border”
around the inner layer). If you change the outer layer’s pageX value to 220, the
outer layer moves to the right by 20 pixels, taking the inner layer along for the ride.
The Tayer.pageX value for the inner layer after the move is 225 pixels.

The outer layer values for the pairs of values are always the same no matter
what. But for the inner layer, the page values are significantly different from the
layer.left and Tayer.top values because these latter values are measured rela-
tive to their containing layer — the outer layer. If you move the outer layer, the
inner layer values for TayerObject.left and TayerObject.top don’t change
one iota. Listing 31-17 in the JavaScript Bible shows the comparable syntax for IE5+
and NN6+.

document./ayerObject.pageX

Chapter 15 + The NN4 Layer Object (Chapter31) 4573

" Mested Layer PageX/PageY - Netscape
File Edit “iew Go Communicator Help
A v A D e s &

Back Fonward Reload Home Search Guide Frint Securty Stop
—rrro

Coordinate Systems for Nested Layers

Enter new page and layer coordinates for the outer laver and objects.

ARTICLE 1

Congress shall make no law respecting an establishment of
relimon, or prohlbiting the free exercise thereof, or abridgmg
the freedom of speech, or of the press; or the right of the
people peaceably to assemble, and to petition the government
for aredress of grievances

layer page3l: IE
layer page¥: l?
layer left: |5_
layer.top |5_

@| | Document: Done

Figure 15-3: Testing the position properties of nested layers

Listing 31-6: Testing Nested Layer Coordinate Systems

<HTML>

<HEAD>

<TITLE>Nested Layer PageX/PageY</TITLE>

<{SCRIPT LANGUAGE="JavaScript">

function setOuterPage(field) {
var layerVal = parselnt(field.value)
document.outerDisplay[field.name] = TayerVal
showValues()

}

function setOuterLayer(field) {
var layerVal = parselnt(field.value)
document.outerDisplay[field.name] = TayerVal
showValues()

}

function setInnerPage(field) {
var layerVal = parselnt(field.value)
document.outerDisplay.document.innerDisplay[field.name] = layerVal
showValues()

}

function setInnerlLayer(field) {
var layerVal = parselnt(field.value)
document.outerDisplay.document.innerDisplay[field.name] = TlayerVal
showValues()

Continued

document./ayerObject.pageX

454 javaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 31-6 (continued)

function showValues() {

var

form = document.layers[0].document.forms[0]

form.elements[0].value = document.outerDisplay.pageX
form.elements[1].value = document.outerDisplay.pageY
form.elements[2].value = document.outerDisplay.left

form.elements[3].value = document.outerDisplay.top

form.elements[4].value = document.outerDisplay.document.innerDisplay.pageX
form.elements[5].value = document.outerDisplay.document.innerDisplay.pageY
form.elements[6].value = document.outerDisplay.document.innerDisplay.left
form.elements[7].value = document.outerDisplay.document.innerDisplay.top

}

</SCRIPT>

</HEAD>

<BODY onLoad="showValues()">
Coordinate Systems for Nested Layers

<HR>

Enter new page and layer coordinates for the outer
layer and inner layer objects.<P>
<LAYER TOP=80>

<FORM>

<TABLE>

<TR>
<TD
<TD

</TR>

<TR>
<TD
<TD

<ITR>

<TR>
<TD
<TD

</TR>

<TR>
<TD
<TD

</TR>

<TR>
<TD
<TD

<ITR>

<TR>
<TD
<TD

</TR>

ALIGN="right" BGCOLOR="coral">layer.pageX:</TD>
BGCOLOR="coral"><INPUT TYPE="text" NAME="pageX" SIZE=3
onChange="setOuterPage(this)"></TD>

ALIGN="right" BGCOLOR="coral">layer.pageY:</TD>
BGCOLOR="coral"><INPUT TYPE="text" NAME="pageY" SIZE=3
onChange="setOuterPage(this)"></TD>

ALIGN="right" BGCOLOR="coral">layer.left:</TD>
BGCOLOR="coral"><INPUT TYPE="text" NAME="Tleft" SIZE=3
onChange="setOQuterlLayer(this)"></TD>

ALIGN="right" BGCOLOR="coral">layer.top:</TD>
BGCOLOR="coral"><INPUT TYPE="text" NAME="top" SIZE=3
onChange="setOuterlayer(this)"></TD>

ALIGN="right" BGCOLOR="aquamarine">layer.pageX:</TD>
BGCOLOR="aquamarine"><INPUT TYPE="text" NAME="pageX" SIZE=3
onChange="setInnerPage(this)"></TD>

ALIGN="right" BGCOLOR="aquamarine">layer.pageY:</TD>
BGCOLOR="aquamarine"><INPUT TYPE="text" NAME="pageY" SIZE=3
onChange="setInnerPage(this)"></TD>

document./ayerObject.pageX

Chapter 15 + The NN4 Layer Object (Chapter31) 455

<TR>
<TD ALIGN="right" BGCOLOR="aquamarine">layer.left:</TD>
<TD BGCOLOR="aquamarine"><INPUT TYPE="text" NAME="left" SIZE=3
onChange="setInnerLayer(this)"></TD>
</TR>
<TR>
<TD ALIGN="right" BGCOLOR="aquamarine">Tayer.top:</TD>
<TD BGCOLOR="aquamarine"><INPUT TYPE="text" NAME="top" SIZE=3
onChange="setInnerLayer(this)"></TD>
</TR>
</TABLED>
</FORM>
</LAYER>
<LAYER NAME="outerDisplay" BGCOLOR="coral" TOP=80 LEFT=200 WIDTH=370 HEIGHT=190>
<LAYER NAME="innerDisplay" BGCOLOR="aquamarine" TOP=5 LEFT=5 WIDTH=360
HEIGHT=180>
<H2>ARTICLE I</H2>
<P>
Congress shall make no law respecting an establishment of religion, or
prohibiting the free exercise thereof; or abridging the freedom of speech, or of
the press; or the right of the people peaceably to assemble, and to petition the
government for a redress of grievances.
</P>
</LAYER>
</LAYER>
</BODY>
<IHTML>

src

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

Setting the 7ayerObject.src property of a layer that is a member of a layer
family (that is, a family with at least one parent and one child) can be tricky busi-
ness if you're not careful. Listing 31-7 presents a workspace for you to see how
changing the src property of outer and inner layers affects the scenery.

When you first load the document, one outer layer contains one inner layer (each
with a different background color). Control buttons on the page enable you to set
the TayerObject .src property of each layer independently. Changes to the inner
layer content affect only that layer. Long content forces the inner layer to expand its
depth, but the inner layer’s view is automatically clipped by its parent layer.

Changing the outer layer content, however, removes the inner layer completely.
Code in the following listing shows one way to examine for the presence of a
particular layer before attempting to load new content in it. If the inner layer doesn’t
exist, the script creates a new layer on the fly to replace the original inner layer.

document./ayerObject.src

456 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 31-7: Setting Nested Layer Source Content

<HTML>
<HEAD>
<TITLE>Layer Source</TITLE>
<{SCRIPT LANGUAGE="JavaScript">
function loadOuter(doc) {
document.outerDisplay.src = doc
}
function loadInner(doc) {
var nested = document.outerDisplay.document.layers
if (nested.length > 0) {
// inner layer exists, so load content or restore

if (doc) {
nested[0].src = doc
} else {

restorelnner(nested[0])
1
} else {
// prompt user about restoring inner Tlayer
if (confirm("The inner layer has been removed by loading an " +
"outer document. Restore the original Tayers?")) {
restorelayers(doc)
1
1
}
function restorelayers(doc) {
// reset appearance of outer Tayer
document.outerDisplay.bgColor = "coral"
document.outerDisplay.resizeTo(370,190) // sets clip
document.outerDisplay.document.write("")
document.outerDisplay.document.close()
// generate new inner layer
var newlnner = new Layer(360, document.layers["outerDisplay"])
newInner.bgColor = "aquamarine"
newlnner.moveTo(5,5)
if (doc) {
// user clicked an inner content button
newlnner.src = doc
} else {
// return to pristine look
restorelnner(newlnner)
1
newlnner.visibility = "show"
}
function restorelnner(inner) {
inner.document.write("<HTML><BODY><P>PTaceholder text for raw inner " +
"Tayer.</P></BODY></HTML>")
inner.document.close()
inner.resizeTo(360,180) // sets clip
}
</SCRIPT>

document./ayerObject.src

Chapter 15 + The NN4 Layer Object (Chapter31) 457

</HEAD>
<BODY>
Setting the <TT>Tayer.src</TT> Property of Nested Layers
<HR>
Click the buttons to see what happens when you load new source documents into
the outer Tayer and inner
layer objects.<P>
<LAYER TOP=100 BGCOLOR="coral">
<FORM>
Load into outer layer:

<INPUT TYPE="button" VALUE="Article I" onClick="ToadOuter('articlel.htm')">

<INPUT TYPE="button" VALUE="Entire Bill of Rights"
onClick="TloadOuter('bofright.htm')">

</FORM>
</LAYERD>
<LAYER TOP=220 BGCOLOR="aquamarine">
<FORM>
Load into inner Tayer:

<INPUT TYPE="button" VALUE="Article I" onClick="loadInner('articlel.htm")">

<INPUT TYPE="button" VALUE="Entire Bill of Rights"
onClick="TloadInner('bofright.htm')">

<INPUT TYPE="button" VALUE="Restore Original" onClick="ToadInner()">

</FORM>
</LAYERD>
<LAYER NAME="outerDisplay" BGCOLOR="coral" TOP=100 LEFT=200 WIDTH=370
HEIGHT=190>
<LAYER NAME="innerDisplay" BGCOLOR="aquamarine" TOP=5 LEFT=5 WIDTH=360
HEIGHT=180>
<P><{B>Placeholder text for raw inner layer.</P>
</LAYER>
</LAYER>
</BODY>
</HTML>

Restoring the original layers via script (as opposed to reloading the document)
does not perform a perfect restoration. The key difference is that the scripts use
the TayerObject.resizeTo() method to set the layers to the height and width
established by the <LAYER> tags that create the layers in the first place. This
method, however, sets the clipping rectangle of the layer — not the layer’s size.
Therefore, if you use the script to restore the layers, loading the longer text file into
either layer does not force the layer to expand to display all the content; the clip-
ping region governs the view.

visibility

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v

document./ayerObject.visibility

458 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example

Use the page in Listing 31-8 to see how the TayerObject.visibility property
settings affect a pair of nested layers. When the page first loads, the default
inherit setting is in effect. Changes you make to the outer layer by clicking the
outer layer buttons affect the inner layer, but setting the inner layer’s properties to
hide or show severs the visibility relationship between parent and child. Listing
31-19 in the JavaScript Bible shows this example with IE5+ and NN6+ syntax.

Listing 31-8: Nested Layer Visibility Relationships

<HTML>
<HEAD>
<TITLE>Layer Source</TITLE>
{SCRIPT LANGUAGE="JavaScript">
function setQuterVis(type) {
document.outerDisplay.visibility = type
1
function setlnnerVis(type) {
document.outerDisplay.document.innerDisplay.visibility = type
}
</SCRIPT>
</HEAD>
<BODY>
Setting the <TT>layer.visibility</TT> Property of Nested Layers
<HR>
Click the buttons to see what happens when you change the visibility of the
outer Tayer and inner
layer objects.<P>
<LAYER TOP=100 BGCOLOR="coral">
<FORM>
Control outer Tlayer property:

<INPUT TYPE="button" VALUE="Hide Quter Layer" onClick="setOuterVis('hide")">

<INPUT TYPE="button" VALUE="Show Quter Layer" onClick="setOQuterVis('show')">

</FORM>
</LAYERD>
<LAYER TOP=220 BGCOLOR="aquamarine">
<FORM>
Control inner Tlayer property:

<INPUT TYPE="button" VALUE="Hide Inner Layer" onClick="setInnerVis('hide')">

<INPUT TYPE="button" VALUE="Show Inner Layer" onClick="setInnerVis('show')">

<INPUT TYPE="button" VALUE="Inherit Outer Layer"
onClick="setInnerVis("'inherit"')">

</FORM>
</LAYER>
<LAYER NAME="outerDisplay" BGCOLOR="coral" TOP=100 LEFT=200 WIDTH=370
HEIGHT=190>
<LAYER NAME="innerDisplay" BGCOLOR="aquamarine" TOP=5 LEFT=5 WIDTH=360
HEIGHT=180>
{P>PTaceholder text for raw inner Tayer.</P>
</LAYER>
</LAYERD
</BODY>
</HTML>

document./ayerObject.visibility

Chapter 15 + The NN4 Layer Object (Chapter31) 459

zIndex
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v
Example

The relationships among the three stacking property values can be difficult to visu-
alize. Listing 31-9 offers a way to see the results of changing the 7TayerObject.zIndex
properties of three overlapping sibling layers. Figure 15-4 shows the beginning organi-
zation of layers after the page loads.

++~ Layer zIndex - Netscape
File Edit Wiew Go Communicator Help

Back Fomward Reload Home Seach Guide Frint Secuwity Siop
—rrro

Setting the layer.zIndex Property of Sibling Layers

bl B

Enter new zlndex values to see the effect on three layers.

Rt
T
Control Onginal Middle Layer:
Laver zlndex ID—
Layer abawve: Itop—
Layer helow: Im
Control Original Top Layer,
Layer zlndex IEI_
Layer above: W
Layer helow: W

S| KN

@| | Document: Done = E
Figure 15-4: A place to play with zIndex property settings

The sequence of the <LAYER> tags in the document governs the original stacking
order. Because the attribute is not set in the HTML, the initial values appear as zero
for all three layers. But, as the page reveals, the TayerObject.above and
layerObject .below properties are automatically established. When a layer has no
other layer object above it, the page shows (none). Also, if the layer below the
bottom of the stack is the main window, a strange inner layer name is assigned
(something like _js_Tayer_21).

To experiment with this page, first make sure you understand the
layerObject.above and Tayer0Object.below readings for the default order of
the layers. Then, assign different orders to the layers with value sequences such as

document./ayerObject.zIndex

46(0 lavaScript Examples Bible: The Essential Companion to JavaScript Bible

3-2-1, 1-3-2, 2-2-2, and so on. Each time you enter one new value, check the actual
layers to see if their stacking order changed and how that affected the other prop-
erties of all layers. Listing 31-20 in the JavaScript Bible shows how to achieve the
same action with IE5+ and NN6+ syntax.

Listing 31-9: Relationships Among zIndex, above, and below

<HTML>
<HEAD>
<TITLE>Layer zIndex</TITLE>
{SCRIPT LANGUAGE="JavaScript">
function setZ(field) {
switch (field.name) {
case "top" :
document.top.zIndex = parselnt(field.value)
break
case "mid" :
document.middle.zIndex = parselnt(field.value)
break
case "bot" :
document.bottom.zIndex = parselnt(field.value)

}
showValues()

}

function showValues() {
document.layers[0].document.forms[0].bot.value = document.bottom.zIndex
document.layers[1].document.forms[0].mid.value = document.middle.zIndex
document.layers[2].document.forms[0].top.value = document.top.zIndex

document.layers[0].document.forms[0].above.value = (document.bottom.above) ?

document.bottom.above.name : "(none)"
document.layers[1].document.forms[0].above.value = (document.middle.above) ?
document.middle.above.name : "(none)"
document.layers[2].document.forms[0].above.value = (document.top.above) ?
document.top.above.name : "(none)"

document.layers[0].document.forms[0].below.value = (document.bottom.below) ?
document.bottom.below.name : "(none)"
document.layers[1].document.forms[0].below.value = (document.middle.below) ?
document.middle.below.name : "(none)"
document.layers[2].document.forms[0].below.value = (document.top.below) ?
document.top.below.name : "(none)"
}
</SCRIPT>
</HEAD>
<BODY onlLoad="showValues()">
<{B>Setting the <TT>layer.zIndex</TT> Property of Sibling Layers
<HR>
Enter new zIndex values to see the effect on three layers.<P>
<LAYER TOP=90 WIDTH=240 BGCOLOR="coral">

document./ayerObject.zindex

Chapter 15 + The NN4 Layer Object (Chapter31) 46]

<FORM>

Control Original Bottom Layer:

<TABLE>

<TR>TD ALIGN="right">Layer zIndex:</TD>XTD><INPUT TYPE="text" NAME="bot" SIZE=3

onChange="setZ(this)"></TD></TR>

<TR><TD ALIGN="right">Layer above:</TD><TD><INPUT TYPE="text" NAME="above"

SIZE=13></TD></TR>

{TR>TD ALIGN="right">Layer below:</TD>TD><INPUT TYPE="text" NAME="below"

STIZE=13></TD></TR>

</TABLE>

</FORM>

</LAYERD

<LAYER TOP=220 WIDTH=240 BGCOLOR="aquamarine">

<FORM>

Control Original Middle Layer:

<TABLE>

{TR>XTD ALIGN="right">Layer zIndex:</TD>XTD><INPUT TYPE="text" NAME="mid" SIZE=3

onChange="setZ(this)"></TD></TR>

<TR>TD ALIGN="right">Layer above:</TD><TD><INPUT TYPE="text" NAME="above"

SIZE=13></TD></TR>

<TR><TD ALIGN="right">Layer below:</TD><TD><INPUT TYPE="text" NAME="below"

SIZE=13></TD></TR>

</TABLE></FORM>

</LAYERD

<LAYER TOP=350 WIDTH=240 BGCOLOR="yellow">

<FORM>

Control Original Top Layer:

{TABLE>XTR>XTD ALIGN="right">Layer zIndex:</TD>XTD><INPUT TYPE="text" NAME="top"

SIZE=3 onChange="setZ(this)"></TD></TR>

<TR><TD ALIGN="right">Layer above:</TD><TD><INPUT TYPE="text" NAME="above"

SIZE=13></TD></TR>

<TR>TD ALIGN="right">Layer below:</TD>TD><INPUT TYPE="text" NAME="below"

STIZE=13></TD></TR>

</TABLE>

</FORM>

</LAYERD

<LAYER NAME="bottom" BGCOLOR="coral" TOP=90 LEFT=260 WIDTH=300 HEIGHT=190>
<P>0riginal Bottom Layer</P>

</LAYERD
{LAYER NAME="middle" BGCOLOR="aquamarine" TOP=110 LEFT=280 WIDTH=300
HEIGHT=190>
<P>0riginal Middle Layer</P>

</LAYER>

<LAYER NAME="top" BGCOLOR="yellow" TOP=130 LEFT=300 WIDTH=300 HEIGHT=190>
<P>0riginal Top Layer</P>

</LAYER>

</LAYERD

</BODY>

</HTML>

document./ayerObject.zIndex

4672 lavaScript Examples Bible: The Essential Companion to JavaScript Bible

Methods
load("URL", newlLayerWidth)

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v

Example

Buttons in Listing 31-10 enable you to load short and long documents into a
layer. The first two buttons don’t change the width (in fact, the second parameter
to TayerObject.load() isthe TayerObject.clip.left value). For the second
two buttons, a narrower width than the original is specified. Click the Restore but-
ton frequently to return to a known state.

Listing 31-10: Loading Documents into Layers

<HTML>
<HEAD>
<TITLE>Layer Loading</TITLE>
{SCRIPT LANGUAGE="JavaScript">
function loadDoc(URL,width) {
if (lwidth) {
width = document.mylayer.clip.width
}
document.mylLayer.load(URL, width)
1
</SCRIPT>
</HEAD>
<BODY>
Loading New Documents
<HR>
<LAYER TOP=90 WIDTH=240 BGCOLOR="yellow">
<FORM>
Loading new documents:

<INPUT TYPE="button" VALUE="Small Doc/Existing Width"
onClick="1oadDoc('articlel.htm')">

<INPUT TYPE="button" VALUE="Large Doc/Existing Width"
onClick="TloadDoc('bofright.htm")"><P>
<INPUT TYPE="button" VALUE="Small Doc/Narrower Width"
onClick="ToadDoc("'articlel.htm',200)">

<INPUT TYPE="button" VALUE="Large Doc/Narrower Width"
onClick="1oadDoc('bofright.htm"',200)"><P>
<INPUT TYPE="button" VALUE="Restore" onClick="Tocation.reload()"></FORM>
</LAYER>
<LAYER NAME="mylayer" BGCOLOR="yellow" TOP=90 LEFT=300 WIDTH=300 HEIGHT=190>
{P>Text loaded in original document.</P>

document./ayerObject.load()

Chapter 15 4+ The NN4 Layer Object (Chapter31) 463

</LAYER>
</BODY>
</HTML>

moveAbove(layerObject)
moveBelow(7ayerObject)

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v/

Example
You can see the TayerObject . .moveAbove () method at work in Listing 31-1.

moveBy(deltaX,deltaY)
moveTo(x,y)
moveToAbsolute(x,y)

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/

Example

Listing 31-11 shows a demonstration of the TayerObject.moveTo() method. It
is a simple script that enables you to click and drag a layer around the screen. The
script employs the coordinate values of the mouseMove event; after compensating
for the offset within the layer at which the click occurs, the script moves the layer
to track the mouse action.

I want to present this example for an additional reason: to explain an important
user interface difference between Windows and Macintosh versions of NN4. In
Windows versions, you can click and hold the mouse button down on an object and
let the object receive all the mouseMove events as you drag the cursor around the
screen. On the Macintosh, however, NN4 tries to compensate for the lack of a sec-
ond mouse button by popping up a context-sensitive menu at the cursor position
when the user holds the mouse button down for more than just a click. To prevent
the pop-up menu from appearing, the engage () method invoked by the
onMouseDown event handler ends with return false.

Notice in the following listing how the layer captures a number of mouse events.
Each one plays an important role in creating a mode that is essentially like a
mouseStil1Down event (which doesn’t exist in NN4’s event model). The mouseDown
event sets a Boolean flag (engaged) indicating that the user clicked down in the

document./ayerObject.moveBy()

464 iavaScript Examples Bible: The Essential Companion to JavaScript Bible

layer. At the same time, the script records how far away from the layer’s top-left
corner the mouseDown event occurred. This offset information is needed so that any
setting of the layer’s location takes this offset into account (otherwise, the top-left
corner of the layer would jump to the cursor position and be dragged from there).

During the drag (mouseDown events firing with each mouse movement), the
draglt() function checks whether the drag mode is engaged. If so, the layer is
moved to the page location calculated by subtracting the original downstroke offset
from the mouseMove event location on the page. When the user releases the mouse
button, the mouseUp event turns off the drag mode Boolean value. Listing 31-21 in
the JavaScript Bible shows a version of this example for I[E5+ and NNG6.

Listing 31-11: Dragging a Layer

<HTML>
<HEAD>
<TITLE>Layer Dragging</TITLE>
{SCRIPT LANGUAGE="JavaScript">
var engaged = false
var offsetX =0
var offsety 0
function draglt(e) {

if (engaged) {

document.mylayer.moveTo(e.pageX - offsetX, e.pageY - offsetY)

}
}
function engage(e) {
engaged = true
offsetX = e.pageX - document.mylayer.left
offsetY = e.pageY - document.mylayer.top
return false
}
function release() {
engaged = false
}
</SCRIPT>
</HEAD>
<BODY>
Dragging a Layer
<HR>
<LAYER NAME="mylayer" BGCOLOR="1ightgreen" TOP=90 LEFT=100 WIDTH=300 HEIGHT=190>
<P>Drag me around the window.</P>
</LAYER>
<SCRIPT LANGUAGE="JavaScript">
document.mylayer.captureEvents(Event .MOUSEDOWN | Event.MOUSEUP
Event .MOUSEMOVE)
document.mylLayer.onMouseDown = engage
document.mylayer.onMouselUp = release
document.mylLayer.onMouseMove = draglt
</SCRIPT>
</BODY>
<IHTML

document./ayerObject.moveBy()

Chapter 15 4+ The NN4 Layer Object (Chapter31) 465

resizeBy(deltaX,deltaY)
resizeTo(width, height)

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/

Example

It is important to understand the ramifications of content flow when these two
methods resize a layer. Listing 31-12a (and the companion document Listing 31-12b)
shows you how to set the lower-right corner of a layer to be dragged by a user for
resizing the layer (much like grabbing the resize corner of a document window).
Three radio buttons enable you to choose whether and when the content should be
redrawn to the layer —never, after resizing, or during resizing.

Event capture is very much like that in Listing 31-11 for layer dragging. The pri-
mary difference is that drag mode is engaged only when the mouse event takes
place in the region of the lower-right corner. A different kind of offset value is saved
here because, for resizing, the script needs to know the mouse event offset from the
right and bottom edges of the layer.

Condition statements in the resizelt() and release() functions verify
whether a specific radio button is checked to determine when (or if) the content
should be redrawn. I designed this page with the knowledge that its content might
be redrawn. Therefore, I built the content of the layer as a separate HTML docu-
ment that loads in the <LAYER> tag.

Redrawing the content requires reloading the document into the layer. | use the
layerObject.load() method because [want to send the current
layerObject.clip.width as a parameter for the width of the clip region to
accommodate the content as it loads.

An important point to know about reloading content into a layer is that all prop-
erty settings for the layer’s event capture are erased when the document loads.
Overcoming this behavior requires setting the layer’s onLoad event handler to set
the layer’s event capture mechanism. If the layer event capturing is specified as part
of the statements at the end of the document, the layer ignores some important
events needed for the dynamic resizing after the document reloads the first time.

As you experiment with the different ways to resize and redraw, you see that
redrawing during resizing is a slow process because of the repetitive loading (from
cache) needed each time. On slower client machines, it is easy for the cursor to
outrun the layer region, causing the layer to not get mouseQOver events at all. It may
not be the best-looking solution, but I prefer to redraw after resizing the layer.

Listing 31-22 in the JavaScript Bible shows a version designed for the IE5+ and
NN6 object models. Because content automatically reflows in those browsers,
you do not have to load the content of the positioned element from an external
document.

document./layerObject.resizeBy()

466 lavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 31-12a: Resizing a Layer

<HTML>
<HEAD>
<TITLE>Layer Resizing</TITLE>
<{SCRIPT LANGUAGE="JavaScript">
var engaged = false
var offsetX 0
var offsetY 0
function resizelt(e) {
if (engaged) {
document.mylayer.resizeTo(e.pageX + offsetX, e.pageY + offsetY)
if (document.forms[0].redraw[2].checked) {
document.mylayer.load("1st31-12b.htm", document.mylayer.clip.width)

}
}
}

function engage(e) {
if (e.pageX > (document.mylayer.clip.right - 10) &&
e.pageY > (document.mylayer.clip.bottom - 10)) {
engaged = true

offsetX = document.mylayer.clip.right - e.pageX
offsetY = document.mylayer.clip.bottom - e.pageY
}
}
function release() {
if (engaged && document.forms[0].redraw[1].checked) {
document.mylayer.load("1st31-12b.htm", document.mylayer.clip.width)
}
engaged = false
}
function grabEvents() {
document.mylayer.captureEvents(Event.MOUSEDOWN | Event.MOUSEUP
Event.MOUSEMOVE)
}
</SCRIPT>
</HEAD>
<BODY>
<{B>Resizing a Layer
<HR>
<FORM>
Redraw Tayer content:

<INPUT TYPE="radio" NAME="redraw" CHECKED>Never
<INPUT TYPE="radio" NAME="redraw">After resize
<INPUT TYPE="radio" NAME="redraw">During resize
</FORM>
<LAYER NAME="mylayer" SRC="1st31-12b.htm" BGCOLOR="1ightblue" TOP=120 LEFT=100
WIDTH=300 HEIGHT=190 onlLoad="grabEvents()">
</LAYER>
{SCRIPT LANGUAGE="JavaScript">

document./ayerObject.resizeBy()

Chapter 15 + The NN4 Layer Object (Chapter31) 467

document.mylayer.onMouseDown = engage
document.mylayer.onMouselUp = release
document.mylLayer.onMouseMove = resizelt
</SCRIPT>

</BODY>

</HTML>

Listing 31-12b: Content for the Resizable Layer

<HTML>
<BODY>
<P><{B>Resize me by dragging the lower-right corner.</P>
{SCRIPT LANGUAGE="JavaScript">
if (navigator.userAgent.index0f("Mac") != -1) {
document.write("(Mac users: Ctr1-Click me first; then Click to stop
dragging.)")
}
</SCRIPT>
</BODY>
</HTML>

document./ayerObject.resizeBy()

String and
Number Objects
(Chapters 34
and 35)

Knowing how to manipulate strings of text characters is a
vital programming skill. You may not have to do it all
the time, but you should be fully aware of the possibilities for
this manipulation that are built into whatever programming
language you use. In JavaScript (as in any object-based or
object-oriented language), strings are objects that have
numerous properties and methods to assist in assembling,
tearing apart, extracting, and copying chunks of strings.

Any characters that users enter into text boxes become
parts of string objects. In [E4+ and NN6, text inside HTML
element tags can be treated as strings. In IE4+, you can even
work with the HTML tags as strings. Therefore, of all the core
language objects to implant in your scripting consciousness,
the string object is it (arrays, whose examples come in the
next chapter of this book, rank Number Two on the list).

Numbers are much less frequently thought of as objects
because they tend to be used as-is for calculations. JavaScript
1.5 in recent browsers, however, endows the number object
with practical methods, especially one that (finally) offers
built-in control over the number of digits displayed to the
right of the decimal point for floating-point numbers.

When examples in this chapter encourage you to enter a
sequence of expressions in The Evaluator, be sure to follow
through with every step. But also make sure you understand
the results of each expression in order to visualize the partic-
ular method operates.

CHAP TaE R

¢+ 0+ o+
In This Chapter

Parsing text at the
character level

Performing search-
and-replace
operations with
regular expressions

Converting between
character codes and

text

Setting number
format and precision

¢+ 4+ o+

470 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

- L
Examples Highlights
4 Study the code and operation of Listing 34-2 to see how to use JavaScript to
convert characters to character codes and vice versa. Converting ASCII or

Unicode numeric values to their corresponding characters requires the
String.fromCharCode () method of the static String object.

4+ Compare the sequence of steps for the string.index0f () and
string.lastIndex0f () methods to grasp fully the behavior of each and the
differences between them.

4 Listing 34-4 lets you experiment with the string.replace() and
string.search() methods, both of which utilize regular expression powers
available in JavaScript 1.2 of NN4+ and [E4+. Notice how the script functions
assemble the regular expression objects with global modifiers.

4 Walk through the steps of the string.split() method example to convert a
string to an array.

4+ Compare the behaviors and coding of Listings 34-6 and 34-7 to distinguish the
subtle differences between the string.substr() and string.substring()
methods.

4 Study the example for string.tolLowerCase() and string.toUpperCase()
to see how to remove case sensitivity issues for some operations.

4+ Convert a long floating-point number to a dollars-and-cents string by following
the steps for the number.toFixed() method.

String Object

Properties
constructor
NN2 NN3 NN4 NN6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v/ v/ v/ v v
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to test the value of the
constructor property. Enter the following statements into the top text box:

a = new String("abcd")
a.constructor == String
a.constructor == Number

stringObject.constructor

Chapter 16 4 String and Number Objects (Chapters 34 and35) 47 |

Parsing methods
string.charAt(index)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v VR v

Example
Enter each of the following statements into the top text box of The Evaluator:

a = "banana daiquiri"
a.charAt(0)
a.charAt(s)
a.charAt(6)
a.charAt(20)

Results from each of the charAt () methods should be b, a (the third “a” in

“banana”), a space character, and an empty string, respectively.
string.charCodeAt ([index])
String.fromCharCode(numl [, num2 [, ...

numnl])
NN2 NN3 NN4 NN6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v 4
Example

Listing 34-2 provides examples of both methods on one page. Moreover, because
one of the demonstrations relies on the automatic capture of selected text on the
page, the scripts include code to accommodate the different handling of selection
events and capture of the selected text in Navigator and Internet Explorer 4.

After you load the page, select part of the body text anywhere on the page. If you
start the selection with the lowercase letter “a,” the character code displays as 97.
If you select no text, the result is NaN.

Try entering numeric values in the three fields at the bottom of the page. Values
below 32 are ASCII control characters that most fonts represent as hollow squares.
But try all other values to see what you get. Notice that the script passes all three
values as a group to the String. fromCharCode () method, and the result is a com-
bined string. Thus, Figure 16-1 shows what happens when you enter the uppercase
ASCII values for a three-letter animal name.

stringObject.charCodeAt()

477 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 34-2: Character Conversions

<HTML>
<HEAD>
<TITLE>Character Codes</TITLE>
<SCRIPT LANGUAGE="JavaScript">
var isNav = (navigator.appName == "Netscape")
var isNav4d = (isNav && parselnt(navigator.appVersion == 4))
function showCharCode() {
if (isNav) {
var theText
} else {
var theText = document.selection.createRange().text

document.getSelection()

}

if (theText) {
document.forms[0].charCodeDisplay.value

} else {
document.forms[0].charCodeDisplay.value =

theText.charCodeAt()

}
}
function showString(form) {
form.result.value =
String.fromCharCode(form.entryl.value,form.entry2.value,form.entry3.value)
}
if (isNav4) {
document.captureEvents(Event.MOUSEUP)
}
document.onmouseup = showCharCode
</SCRIPT>
</HEAD>
<BODY>
<{B>Capturing Character Codes
<FORM>
Select any of this text, and see the character code of the first character.<P>
Character Code:<INPUT TYPE="text" NAME="charCodeDisplay" SIZE=3>

<HR>
Converting Codes to Characters

Enter a value 0-255:<INPUT TYPE="text" NAME="entryl" SIZE=4>

Enter a value 0-255:<INPUT TYPE="text" NAME="entry2" SIZE=4>

Enter a value 0-255:<INPUT TYPE="text" NAME="entry3" SIZE=4>

<INPUT TYPE="button" VALUE="Show String" onClick="showString(this.form)">
Result:<INPUT TYPE="text" NAME="result" SIZE=5>
</FORM>
</BODY>
<IHTML>

stringObject.charCodeAt()

Chapter 16 + String and Number Objects (Chapters 34 and35) 473

2} Character Codes - Microsoft Internet Explorer

Capturing Character Codes

Select any of this text, and see the character %fthe first character.

Character Code:|99

Converting Codes to Characters
Enter a value 0-255]57_
Enter a value 0-255]5‘5_
Enter a value 0-255]34_

[SRBRSHRG] st AT

Figure 16-1: Conversions from text characters to ASCII values and
vice versa

string.index0f(searchString [, startIndex])

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v/ v v v/ v v/ v v

Example

Enter each of the following statements (up to, but not including the “//” comment
symbols) into the top text box of The Evaluator (you can simply replace the param-
eters of the index0f () method for each statement after the first one). Compare
your results with the results shown below.

a = "bananas"

a.index0f("b") // result = 0 (index of 1st letter is zero)
a.index0f("a") // result =1

a.index0f("a",1) // result = 1 (start from 2nd letter)
a.index0f("a",2) // result = 3 (start from 3rd letter)
a.index0f("a",4) // result =5 (start from 5th Tetter)
a.index0f("nan") // result = 2

a.index0Of("nas") // result = 4

a.index0f("s") // result =6

a.index0f("z") // result = -1 (no "z" in string)

stringObject.indexOf()

474 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

string.lastIndex0f(searchStringl,

startIndex])

NN2 NN3 NN4 NN6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v v v V4 v
Example

Enter each of the following statements (up to, but not including the “//” comment
symbols) into the top text box of The Evaluator (you can simply replace the param-
eters of the TastIndex0f () method for each statement after the first one).
Compare your results with the results shown below.

a = "bananas"

a.lastIndex0f("b") // result = 0 (index of 1st Tetter is zero)
a.lastIndex0Of("a") // result =5
a.lastIndex0f("a",1) // result = 1 (from 2nd Tetter toward the front)
a.lastIndex0f("a",2) // result =1 (start from 3rd letter working toward front)
a.lastIndex0f("a",4) // result = 3 (start from 5th letter)

a.lastIndexOf("nan") // result = 2 [except for -1 Nav 2.0 bug]
a.lastIndex0f("nas") // result =4

a.lastIndex0f("s") // result =6

a _

.lastIndex0f("z") // result = -1 (no "z" in string)

string.match(regExpression)

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v v v/ v v

Example

To help you understand the string.match() method, Listing 34-3 provides a
workshop area for experimentation. Two fields occur for data entry: the first is for
the long string to be examined by the method; the second is for a regular expres-
sion. Some default values are provided in case you're not yet familiar with the syn-
tax of regular expressions (see Chapter 38 of the JavaScript Bible). A check box lets
you specify whether the search through the string for matches should be case-
sensitive. After you click the “Execute match()” button, the script creates a regular
expression object out of your input, performs the string.match() method on the
big string, and reports two kinds of results to the page. The primary result is a
string version of the array returned by the method; the other is a count of items
returned.

stringObject.match()

Chapter 16 + String and Number Objects (Chapters 34 and35) 475

Listing 34-3: Regular Expression Match Workshop

<HTML>
<HEAD>
<TITLE>Regular Expression Match</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function doMatch(form) {
var str = form.entry.value
var delim = (form.caseSens.checked) ? "/g" : "/gi"
var regexp = eval("/" + form.regexp.value + delim)
var resultArray = str.match(regexp)
if (resultArray) {
form.result.value = resultArray.toString()
form.count.value = resultArray.length
} else {
form.result.value = "<no matches>"
form.count.value = ""
}
}
</SCRIPT>
</HEAD>
<BODY>
String Match with Regular Expressions
<HR>
<FORM>
Enter a main string:<INPUT TYPE="text" NAME="entry" SIZE=60
VALUE="Many a maN and womAN have meant to visit GerMAny.">

Enter a regular expression to match:<INPUT TYPE="text" NAME="regexp" SIZE=25
VALUE="\wa\w">
<INPUT TYPE="checkbox" NAME="caseSens">Case-sensitive<P>
<INPUT TYPE="button" VALUE="Execute match()" onClick="doMatch(this.form)">
<INPUT TYPE="reset"><P>
Result:<INPUT TYPE="text" NAME="result" SIZE=40>

Count:<INPUT TYPE="text" NAME="count" SIZE=3>

</FORM>
</BODY>
</HTML>

The default value for the main string has unusual capitalization intentionally. The
capitalization lets you see more clearly where some of the matches come from. For
example, the default regular expression looks for any three-character string that
has the letter “a” in the middle. Six string segments match that expression. With the
help of capitalization, you can see where each of the four strings containing “man”
are extracted from the main string. The following table lists some other regular
expressions to try with the default main string.

stringObject.match()

476 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

RegExp Description

man Both case-sensitive and not

man\b Where “man” is at the end of a word

\bman Where “man” is at the start of a word

me*an Where zero or more “e” letters occur between “m” and “a”

.a. Where “a” is surrounded by any one character (including
space)

\sa\s Where “a” is surrounded by a space on both sides

z Where a “z" occurs (none in the default string)

In the scripts for Listing 34-3, if the string.match() method returns null, you
are informed politely, and the count field is emptied.

string.replace(regkxpression, replaceString)

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/ v/ v/ v v

Example

The page in Listing 34-4 lets you practice with the string.replace() and
string.search() methods and regular expressions in a friendly environment. The
source text is a five-line excerpt from Hamlet. You can enter the regular expression
to search for, and the replacement text as well. Note that the script completes the
job of creating the regular expression object, so that you can focus on the other
special characters used to define the matching string. All replacement activities act
globally, because the g parameter is automatically appended to any expression you
enter.

Default values in the fields replace the contraction ‘tis with “it is” after you click
the “Execute replace()” button (see Figure 16-2). Notice that the backslash charac-
ter in front of the apostrophe of ‘tis (in the string assembled in mainString) makes
the apostophe a non-word boundary, and thus allows the \B't regular expression
to find a match there. As described in the section on the string.search()
method, the button connected to that method returns the offset character number
of the matching string (or -1 if no match occurs).

stringObject.replace()

Chapter 16 4 String and Number Objects (Chapters 34 and35) 477

[l Regular Expression Replace and Search - Netscape 6

Eile Edit Wiew Search Go Bookmarks Tasks Help

m‘ U file:A/R 0 AListings/Chap34/st34-04, bt 'I Search ﬁ“

String Replace and Search with Regular Expressions

Text used for string replace() and string search() methods:
To be, or not to he: that is the question:

‘Whether "tis nobler in the mind to suffer

The slings and arrows of outrageous fortune,

Or to take arms against a sea of troubles,

And by opposing end them.

Enter a regular expression to match:l\ B't [~ Case-sensitive
Enter a string to replace the matching :31:r‘mgs:|ic

I Reset | Execute searchi) |

el

Result

To be, or not to be: that is the cquestion:
Thether it is nobler in the mind to suffer
The =lings and arrows of outrageous fortune,
Or to take arms against a sea of troubles,
lind by opposing end them.

s e DocomentiDone | |
Figure 16-2: Using the default replacement regular expression

You could modify the listing so that it actually replaces text in the HTML para-
graph for IE4+ and NN6. The steps include wrapping the paragraph in its own ele-
ment (for example, a SPAN), and invoking the replace () method on the
innerHTML of that element. Assign the results to the innerHTML property of that
element to complete the job.

Listing 34-4: Lab for string.replace() and string.search()

<HTML>

<HEAD>

<TITLE>Regular Expression Replace and Search</TITLE>

{SCRIPT LANGUAGE="JavaScript">

var mainString = "To be, or not to be: that is the question:\n"
mainString += "Whether \'tis nobler in the mind to suffer\n"
mainString += "The slings and arrows of outrageous fortune,\n"
mainString += "Or to take arms against a sea of troubles,\n"
mainString += "And by opposing end them."

function doReplace(form) {
var replaceStr = form.replacekntry.value
var delim = (form.caseSens.checked) ? "/g" : "/gi"
var regexp = eval("/" + form.regexp.value + delim)
form.result.value = mainString.replace(regexp, replaceStr)

Continued

stringObject.replace()

478 lavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 34-4 (continued)

function doSearch(form) {
var replaceStr = form.replaceEntry.value
var delim = (form.caseSens.checked) ? "/g" : "/gi"
var regexp = eval("/" + form.regexp.value + delim)
form.result.value = mainString.search(regexp)

}

</SCRIPT>

</HEAD>

<BODY>

String Replace and Search with Regular Expressions

<HR>

Text used for string.replace() and string.search() methods:

To be, or not to be: that is the question:

Whether 'tis nobler in the mind to suffer

The slings and arrows of outrageous fortune,

Or to take arms against a sea of troubles,

And by opposing end them.

<FORM>
Enter a regular expression to match:<INPUT TYPE="text" NAME="regexp" SIZE=25
VALUE="\B't">

<INPUT TYPE="checkbox" NAME="caseSens">Case-sensitive

Enter a string to replace the matching strings:<INPUT TYPE="text"
NAME="replaceEntry" SIZE=30 VALUE="it "><P>

<INPUT TYPE="button" VALUE="Execute replace()" onClick="doReplace(this.form)">
<INPUT TYPE="reset">

<INPUT TYPE="button" VALUE="Execute search()" onClick="doSearch(this.form)"><P>
Result:

{TEXTAREA NAME="result" COLS=60 ROWS=5 WRAP="virtual"></TEXTAREA>

</FORM>

</BODY>

<IHTMLY

string.search(regExpression)

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v/ v v/ v v

Example

Listing 34-4, for the string.replace() method, also provides a laboratory to
experiment with the string.search() method.

stringObject.search()

Chapter 16 + String and Number Objects (Chapters 34 and35) 479

string.slice(startindex [, endIndex])

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v 4 v

Example

With Listing 34-5, you can try several combinations of parameters with the
string.slice() method (see Figure 16-3). A base string is provided (along with
character measurements). Select from the different choices available for parame-
ters and study the outcome of the slice.

Listing 34-5: Slicing a String

<HTML>
<HEAD>
<TITLE>String Slicing and Dicing, Part I</TITLE>
{SCRIPT LANGUAGE="JavaScript">
var mainString = "Electroencephalograph"
function showResults() {
var form = document.forms[0]
var paraml = parselnt(form.paraml.options[form.paraml.selectedindex].value)
var paramZ = parselnt(form.param2.options[form.param2.selectedIndex].value)
if (lparam2) {
form.resultl.value = mainString.slice(paraml)
} else {
form.resultl.value = mainString.slice(paraml, param?2)

}
}
</SCRIPT>
</HEAD>
<BODY onlLoad="showResults()">
String slice() Method
<HR>
Text used for the methods:

<TT>ETlectroencephalograph

—---5----5----5----5-</BX/TT>
<TABLE BORDER=1>
<FORM>
<TR><TH>String Method</TH><TH>Method Parameters</TH><TH>Results</TH></TR>
<TR>
<TD>string.s1ice()</TD><TD ROWSPAN=3 VALIGN=middle>
(<SELECT NAME="paraml" onChange="showResults()">
<OPTION VALUE=0>0
<OPTION VALUE=1>1
<OPTION VALUE=2>2
<OPTION VALUE=3>3
<OPTION VALUE=5>5

Continued

stringObject.slice()

480 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 34-5 (continued)

</SELECT>,
<SELECT NAME="param2" onChange="showResults()">
<OPTION >(None)
<OPTION VALUE=5>5
<OPTION VALUE=10>10
<OPTION VALUE=-1>-1
<OPTION VALUE=-5>-5
<OPTION VALUE=-10>-10
</SELECT>) </TD>
<TD>CINPUT TYPE="text" NAME="resultl" SIZE=25></TD>
</TR>
</FORM>
</TABLE>
</BODY>
<THTMLY

.| File Edit Wiew Search Go Bookmarks Tasks Help

x ™ Bonzai ™ Bugzila ™ Ope

String slice() Method

Text used for the methods
Electroencephalograph
--—-b-——-h-———-5———-5-

String Method| Method Parameters Results
string slice() (u] j I (Mong) j) IElectroencephalograph

1

4 Techa Fun4 Interact+

Figure 16-3: Lab for exploring the string.slice() method

string.split("delimiterCharacter" [,

limitInteger])
NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4 IE5 IE5.5
Compatibility v v v v v v
Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to see how the
string.split() method works. Begin by assigning a comma-delimited string to a
variable:

stringObject.split()

Chapter 16 + String and Number Objects (Chapters 34 and35) 48]

a = "Anderson,Smith,Johnson,Washington"

Now split the string at comma positions so that the string pieces become items
in an array, saved as b:

b =a.split(",")
To prove that the array contains four items, inspect the array’s Tength property:
b.length // result: 4

string.substr(start [, lengthl)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v

Example

Listing 34-6 lets you experiment with a variety of values to see how the
string.substr() method works.

Listing 34-6: Reading a Portion of a String

<HTML>
<HEAD>
<TITLE>String Slicing and Dicing, Part II</TITLE>
<{SCRIPT LANGUAGE="JavaScript">
var mainString = "Electroencephalograph”
function showResults() {
var form = document.forms[0]
var paraml = parselnt(form.paraml.options[form.paraml.selectedIndex].value)
var param2 = parselnt(form.param2.options[form.param2.selectedIndex].value)
if (lparam2) {
form.resultl.value = mainString.substr(paraml)
} else {
form.resultl.value = mainString.substr(paraml, param?2)
}
}
</SCRIPT>
</HEAD>
<BODY onLoad="showResults()">
String substr() Method
<HR>
Text used for the methods:

<TT>Electroencephalograph

coeBhe o b5 -5 C/BY/TTHS/FONTS
<TABLE BORDER=1>
<FORM>
<TR>CTH>String Method</TH><TH>Method Parameters</TH><{TH>Results</TH></TR>
<TR>

Continued

stringObject.substr()

4872 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 34-6 (continued)

<TD>string.substr()</TD><TD ROWSPAN=3 VALIGN=middle>
(<SELECT NAME="paraml" onChange="showResults()">
<OPTION VALUE=0>0
<OPTION VALUE=1>1
<OPTION VALUE=2>2
<OPTION VALUE=3>3
<OPTION VALUE=5>5
</SELECT>,
<SELECT NAME="param2" onChange="showResults()">
<OPTION >(None)
<OPTION VALUE=5>5
<OPTION VALUE=10>10
<OPTION VALUE=20>20
</SELECT>) </TD>
<TD><INPUT TYPE="text" NAME="resultl" SIZE=25></TD>
</TR>
</FORM>
</TABLE>
</BODY>
</HTML>

string.substring(indexA, indexB)

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v/ v/ v v v v/ v v

Example

Listing 34-7 lets you experiment with a variety of values to see how the
string.substring() method works. If you are using Navigator 4, try changing the
LANGUAGE attribute of the script to JavaScriptl.?2 and see the different behavior
when you set the parameters to 5 and 3. The parameters switch themselves, essen-
tially letting the second index value become the beginning of the extracted substring.

Listing 34-7: Reading a Portion of a String

<HTML>

<HEAD>

<TITLE>String Slicing and Dicing, Part ITI</TITLED>
{SCRIPT LANGUAGE="JavaScript">

var mainString = "Electroencephalograph”

function showResults() {

stringObject.substring()

Chapter 16 + String and Number Objects (Chapters 34 and 35) 483

var form = document.forms[0]
var paraml = parselnt(form.paraml.options{form.paraml.selectedIndex].value)
var param? = parselnt(form.paramZ.options[form.param?.selectedindex].value)
if (lparam2) {
form.resultl.value = mainString.substring(paraml)
} else {
form.resultl.value = mainString.substring(paraml, param?2)
}
}
</SCRIPT>
</HEAD>
<BODY onLoad="showResults()">
String substr() Method
<HR>
Text used for the methods:

<TT>Electroencephalograph

“===b-- -5 -5 -5 -/BX/TTXS/FONTD
<TABLE BORDER=1>
<FORM>
<TR>CTH>String Method</TH><TH>Method Parameters</TH><XTH>Results</TH></TR>
<TR>
<TD>string.substring()</TD><TD>
(<SELECT NAME="paraml" onChange="showResults()">
<OPTION VALUE=0>0
<OPTION VALUE=1>1
<OPTION VALUE=2>2
<OPTION VALUE=3>3
<OPTION VALUE=5>5
</SELECT>,
(SELECT NAME="param2" onChange="showResults()">
<OPTION >(None)
<OPTION VALUE=3>3
<OPTION VALUE=5>5
<OPTION VALUE=10>10
</SELECT>) </TD>
<TD><INPUT TYPE="text" NAME="resultl" SIZE=25></TD>
</TR>
</FORM>
</TABLE>
</BODY>
<THTML

string.tolLowerCase()
string.toUpperCase()

- __
NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v v v/ 4 v

stringObject.toLowerCase()

484 javaScript Examples Bible: The Essential Companion to JavaScript Bible

Example
You can use the tolLowerCase() and toUpperCase() methods on literal strings,
as follows:

"HTTP://www.Netscape.COM".toLowerCase()
"http://www.netscape.com"

var newString
// result

The methods are also helpful in comparing strings when case is not important, as
follows:

if (guess.toUpperCase() == answer.toUpperCase()) {...}
// comparing strings without case sensitivity

string.toString()
string.valueOf()

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v v v 4 4

Examples

Use The Evaluator to test the valueOf () method. Enter the following statements
into the top text box and examine the values that appear in the Results field:

a = new String("hello")
typeof a

b = a.valueOf()

typeof b

Because all other JavaScript core objects also have the valueOf () method, you can
build generic functions that receive a variety of object types as parameters, and the
script can branch its code based on the type of value that is stored in the object.

Number Object

Properties

MAX_VALUE
MIN_VALUE
NEGATIVE _INFINITY
POSITIVE_INFINITY

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v v v/ v v

Number.MAX_VALUE

Chapter 16 + String and Number Objects (Chapters 34 and 35) 485

Example

Enter each of the four Number object expressions into the top text field of The
Evaluator to see how the browser reports each value.

Number .MAX_VALUE
Number .MIN_VALUE
Number .NEGATIVE_INFINITY
Number .POSITIVE_INFINITY

Methods

number.toExponential (fractionDigits)
number.toFixed(fractionDigits)
number.toPrecision(precisionDigits)

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v

Example

You can use The Evaluator to experiment with all three of these methods with a
variety of parameter values. Before invoking any method, be sure to assign a
numeric value to one of the built-in global variables in The Evaluator (a through z).
a = 10/3

a.toFixed(4)
"$" + a.toFixed(2)

None of these methods works with number literals (for example,
123.tokExponential(2) does not work).

number.toString([radix])

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/ v/ v v v/ v v

Example
Use The Evaluator to experiment with the toString() method. Assign the num-
ber 12 to the variable a and see how the number is converted to strings in a variety
of number bases:
a =12
a.toString() // base 10
a
a

.toString(2)
.toString(16)

+ 0+ 0+

numberObject.toString()

CHAPTER

The Array Object
(Chapter 37)

¢+ 4+ o+

In This Chapter

Converting an array

Whenever you are faced with having to manage any to a delimited string

kind of list or series of related data chunks, the first
technique to turn to is stuffing those chunks into an array.
Once the data is inside an array, your scripts can then per-
form quick and easy lookups, based on for loops through
numerically indexed arrays, or via instant searching with the
help of string indexes (a la Java hash tables).

As the examples in this chapter demonstrate, the
JavaScript array object features numerous methods to facili-
tate managing the data inside an array. It also helps that
JavaScript is loose enough to allow arrays to grow or shrink
as their data requires.

Perhaps the two most important features of JavaScript
arrays to have in your hip pocket are converting arrays to
delimited string objects and sorting. Conversion to strings is
important when you wish to transport data from an array to
another venue that passes only strings, such as passing data
to another page via the URL search string. At the receiving
end, a script converts the search string to an array through
the inverse operation provided by the string.split()
method.

JavaScript’s array sorting feature is remarkably powerful and
flexible. Even if the array consists of objects, you can sort the
array based on values assigned to properties of those objects.

Sorting arrays

Combining arrays
and replacing items
in an array

¢+ 4+ 0+

Examples Highlights

4 Convert an array into a delimited string via the code
shown in Listing 37-7.

4+ To flip the order of an array without resorting to sorting,
see Example 37-8 for the array.reverse() method.

4 Listing 37-9 demonstrates a few important aspects of the
array.sort() method. In addition to the traditional
alphabetical sorting, one of the sorting functions oper-
ates on the 1ength property of the string object stored
in each entry of the array. Powerful stuff with very little
code.

488 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

4 Walk through the steps for the array.splice() method to observe how
JavaScript in NN4+ and IE5.5+ can replace entries inside an array. One exam-
ple replaces three items with one, indicating that you are not bound to main-
taining the same array length.

Array Object Methods

array.concat(array?2)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v v 4 4

Example

Listing 37-6 is a bit complex, but it demonstrates both how arrays can be joined
with the array.concat() method and how values and objects in the source arrays
do or do not propagate based on their data type. The page is shown in Figure 17-1.

= W Array Concatenation - Netscape6 ==k [_[=1x=]

! File Edit Miew Search Go Bookmarks Tasks Help

" Bonzai ™ Bugzila ™ Ope

array{ne array I'wo array Three
Jerry Ross Jerry
Elaine Rachel Elaine
Kramer [object HTMLInputElement] Kramer

Ross
Rachel
[object HTMLInputElement]

Enter new value for arrayThree[0]:|7=rT¥ Change arrayOne(d] |
Churrent arrayOne[0] i 72X T

Churrent arrayThree[(] is]T=CTF

textOby assigned to mayTW0[2]_IF
Enter new value for ﬂTaYT}wee[S]:IF Change arrayTwo[2] value

Current arrayTwo[2] value IS.IP hoebe

Current arrayThree[2]. value IS_IF
Reset

Figure 17-1: Object references remain “alive” in a concatenated array.

After you load the page, you see readouts of three arrays. The first array consists
of all string values; the second array has two string values and a reference to a form

Chapter 17 4 The Array Object (Chapter 37)

object on the page (a textbox named “original” in the HTML). In the initialization
routine of this page, not only are the two source arrays created, but they are joined
with the array.concat () method, and the result is shown in the third box. To
show the contents of these arrays in columns, [use the array.join() method,
which brings the elements of an array together as a string delimited in this case by
a return character —giving us an instant column of data.

Two series of fields and buttons let you experiment with the way values and
object references are linked across concatenated arrays. In the first group, if you
enter a new value to be assigned to arrayThree[0], the new value replaces the
string value in the combined array. Because regular values do not maintain a link
back to the original array, only the entry in the combined array is changed. A call to
showArrays () proves that only the third array is affected by the change.

More complex is the object relationship for this demonstration. A reference to the
first text box of the second grouping has been assigned to the third entry of arrayTwo.
After concatenation, the same reference is now in the last entry of the combined array.
If you enter a new value for a property of the object in the last slot of arrayThree, the
change goes all the way back to the original object —the first text box in the lower
grouping. Thus, the text of the original field changes in response to the change of
arrayThree[5]. And because all references to that object yield the same result, the
reference in arrayTwo[2] points to the same text object, yielding the same new
answer. The display of the array contents doesn’t change, because both arrays still
contain a reference to the same object (and the VALUE attribute showing in the
<INPUT> tag of the column listings refers to the default value of the tag, not to its cur-
rent algorithmically retrievable value shown in the last two fields of the page).

Listing 37-6: Array Concatenation

<HTML>
<HEAD>
{TITLE>Array Concatenation</TITLE>
{SCRIPT LANGUAGE="JavaScriptl.1">
// global variables
var arrayOne, arrayTwo, arrayThree, text0Obj
// initialize after load to access text object in form
function initialize() {
var form = document.forms[0]
textObj = form.original
arrayOne = new Array("Jerry", "Elaine","Kramer")
arrayTwo = new Array("Ross", "Rachel",textObj)
arrayThree = arrayOne.concat(arrayTwo)
updatel(form)
update2(form)
showArrays()
}
// display current values of all three arrays
function showArrays() {
var form = document.forms[0]
form.arrayl.value = arrayOne.join("\n")
form.array2.value = arrayTwo.join("\n")

Continued

array.concat()

489

49(JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 37-6 (continued)

form.array3.value = arrayThree.join("\n")
}
// change the value of first item in Array Three
function updatel(form) {
arrayThree[0] = form.sourcel.value
form.resultl.value = arrayOne[0]
form.result2.value = arrayThree[0]
showArrays()
}
// change value of object property pointed to in Array Three
function update2(form) {
arrayThree[5].value = form.source2.value
form.result3.value = arrayTwo[2].value
form.result4.value = arrayThree[5].value
showArrays()
}
</SCRIPT>
</HEAD>
<BODY onlLoad="initialize()">
<FORM>
<TABLE>
<TR><TH>arrayOne</TH><TH>arrayTwo</TH><TH>arrayThree</TH></TR>
<TR>
<TD><TEXTAREA NAME="arrayl" COLS=25 ROWS=6></TEXTAREA></TD>
<TD><TEXTAREA NAME="array2" COLS=25 ROWS=6></TEXTAREA></TD>
<TD><TEXTAREA NAME="array3" COLS=25 ROWS=6></TEXTAREA></TD>
</TR>
</TABLE>
Enter new value for arrayThree[0]:<INPUT TYPE="text" NAME="sourcel"
VALUE="Jerry">
<INPUT TYPE="button" VALUE="Change arrayThree[0]"
onClick="updatel(this.form)">

Current arrayOne[0] is:<INPUT TYPE="text" NAME="resultl">

Current arrayThree[0] is:<INPUT TYPE="text" NAME="result2">

<HR>

text0bj assigned to arrayTwol[2]:<INPUT TYPE="text" NAME="original"
onFocus="this.blur()"></BR>

Enter new value for arrayThree[5]:<INPUT TYPE="text" NAME="source2"
VALUE="Phoebe">

<INPUT TYPE="button" VALUE="Change arrayThree[5].value"
onClick="update2(this.form)">

Current arrayTwol[2].value is:<INPUT TYPE="text" NAME="result3">

Current arrayThree[5].value is:<INPUT TYPE="text" NAME="result4"><P>

<INPUT TYPE="button" VALUE="Reset" onClick="location.reload()">
</FORM>
</BODY>
</HTML>

Chapter 17 + The Array Object (Chapter37) 491

array.join(separatorString)

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v 4 4 v v v v

Example

The script in Listing 37-7 converts an array of planet names into a text string.
The page provides you with a field to enter the delimiter string of your choice and
shows the results in a textarea.

Listing 37-7: Using the Array.join() Method

<HTML>

<HEAD>
<TITLE>Array.join()</TITLE>
<SCRIPT LANGUAGE="JavaScriptl.1">
solarSys = new Array(9)
solarSys[0] = "Mercury"
solarSys[1] = "Venus"
solarSys[2] = "Earth"
solarSys[3] = "Mars"
solarSys[4] = "Jupiter"
solarSys[5] = "Saturn"
solarSys[6] = "Uranus"
solarSys[7] = "Neptune"
solarSys[8] = "Pluto"

// join array elements into a string
function convert(form) {
var delimiter = form.delim.value
form.output.value = unescape(solarSys.join(delimiter))
}
</SCRIPT>
<BODY>
<H2>Converting arrays to strings</H2>
This document contains an array of planets in our solar system.<HR>
<FORM>
Enter a string to act as a delimiter between entries:
<INPUT TYPE="text" NAME="delim" VALUE="," SIZE=5><P>
<INPUT TYPE="button" VALUE="Display as String" onClick="convert(this.form)">
<INPUT TYPE="reset">
<TEXTAREA NAME="output" ROWS=4 COLS=40 WRAP="virtual">
</TEXTAREA>
</FORM>
</BODY>
<IHTML>

array.join()

497 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Notice that this method takes the parameter very literally. If you want to include
nonalphanumeric characters, such as a newline or tab, do so with URL-encoded
characters (%00 for a carriage return; %09 for a tab) instead of inline string literals.
In Listing 37-7, the results of the array. join() method are subjected to the
unescape () function in order to display them in the TEXTAREA.

array.reverse()

NN2 NN3 NN4 NN6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v/ v/ v v v/ v v

Example

Listing 37-8 is an enhanced version of Listing 37-7, which includes another button
and function that reverse the array and display it as a string in a text area.

Listing 37-8: Array.reverse() Method

<HTML>

<HEAD>
<TITLE>Array.reverse()</TITLE>
{SCRIPT LANGUAGE="JavaScriptl.1">
solarSys = new Array(9)
solarSys[0] = "Mercury"
solarSys[1] = "Venus"
solarSys[2] = "Earth"
solarSys[3] = "Mars"
solarSys[4] = "Jupiter"
solarSys[5] = "Saturn"
solarSys[6] = "Uranus"
solarSys[7] = "Neptune"
solarSys[8] = "Pluto"

// show array as currently in memory
function showAsIs(form) {
var delimiter = form.delim.value
form.output.value = unescape(solarSys.join(delimiter))
}
// reverse array order, then display as string
function reverselt(form) {
var delimiter = form.delim.value
solarSys.reverse() // reverses original array
form.output.value = unescape(solarSys.join(delimiter))
}
</SCRIPT>
<BODY>
<H2>Reversing array element order</H2>
This document contains an array of planets in our solar system.<HR>
<FORM>

Chapter 17 + The Array Object (Chapter37) 493

Enter a string to act as a delimiter between entries:

<INPUT TYPE="text" NAME="delim" VALUE="," SIZE=5><P>

<INPUT TYPE="button" VALUE="Array as-is" onClick="showAsIs(this.form)">
<INPUT TYPE="button" VALUE="Reverse the array" onClick="reverselt(this.form)">
<INPUT TYPE="reset">

<INPUT TYPE="button" VALUE="Reload" onClick="self.location.reload()">
<TEXTAREA NAME="output" ROWS=4 COLS=60>

</TEXTAREA>

</FORM>

</BODY>

<THTML

Notice that the solarSys.reverse() method stands by itself (meaning, nothing
captures the returned value) because the method modifies the solarSys array. You
then run the now inverted solarSys array through the array.join() method for
your text display.

array.sort([compareFunction])

NN2 NN3 NN4 NN6 |IE3/J1 1E3/)2 IE4 IE5 IE5.5

Compatibility v/ v/ v v v/ v v

Example

You can look to Listing 37-9 for a few examples of sorting an array of string val-
ues (see Figure 17-2). Four buttons summon different sorting routines, three of
which invoke comparison functions. This listing sorts the planet array alphabeti-
cally (forward and backward) by the last character of the planet name and also by
the length of the planet name. Each comparison function demonstrates different
ways of comparing data sent during a sort.

Listing 37-9: Array.sort() Possibilities

<HTML>

<HEAD>
<TITLE>Array.sort()</TITLE>
<SCRIPT LANGUAGE="JavaScriptl.1">
solarSys = new Array(9)
solarSys[0] = "Mercury"
solarSys[1] = "Venus"
solarSys[2] = "Earth"
solarSys[3] = "Mars"
solarSys[4] = "Jupiter"
solarSys[5] = "Saturn"
solarSys[6] = "Uranus"

Continued

494 javaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 37-9 (continued)

solarSys[7] = "Neptune"
solarSys[8] = "Pluto"
// comparison functions
function comparel(a,b) {
// reverse alphabetical order
if (a > b) {return -1}
if (b > a) {return 1}
return 0
}
function compare2(a,b) {
// Tast character of planet names
var aComp = a.charAt(a.length - 1)

var bComp = b.charAt(b.length - 1)
if (aComp < bComp) {return -1}

if (aComp > bComp) f{return 1}
return 0

}

function compare3(a,b) {
// length of planet names
return a.length - b.length

}

// sort and display array

function sortIt(form, compFunc) {
var delimiter = ";"

if (compFunc == null) {
solarSys.sort()
} else {

solarSys.sort(compFunc)

}

// display results in field

form.output.value = unescape(solarSys.join(delimiter))
}
</SCRIPT>
<BODY onlLoad="document.forms[0].output.value = unescape(solarSys.join(';"'))">
<H2>Sorting array elements</H2>
This document contains an array of planets in our solar system.<HR>
<FORM>
Click on a button to sort the array:<P>
<INPUT TYPE="button" VALUE="Alphabetical A-Z" onClick="sortIt(this.form)">
<INPUT TYPE="button" VALUE="Alphabetical Z-A"
onClick="sortIt(this.form,comparel)">
<INPUT TYPE="button" VALUE="Last Character"
onClick="sortlIt(this.form,compare2)">
<INPUT TYPE="button" VALUE="Name Length" onClick="sortIt(this.form,compare3)">
<INPUT TYPE="button" VALUE="Reload Original" onClick="self.location.reload()">
<INPUT TYPE="text" NAME="output" SIZE=62>
</TEXTAREA>
</FORM>
</BODY>
</HTML>

Chapter 17 + The Array Object (Chapter37) 495

[™ Array.sort) - Netscape 6 |- [O]x]

AI File Edit Miew Search Go Bookmarks Tasks Help

M' S file:/7/R/Listings/Chap37/15t37-09 htm 'I Search ﬁu

Sorting array elements

This decument contans an array of planets i our solar system.

Clck on a butten to sort the array:

Alghabetical A-Z Alphabetical -4 [lCharacter,\J Mame Length Reload Original

INEptunE;Earth; Saturn;Pluto;Jupiter:Mars:Uranus;Venus: Hercury

Figure 17-2: Sorting an array of planet names alphabetically by last character

array.splice(startindex , deleteCountl,
iteml[, item2[,...7itemN]]1])

NN2 NN3 NN4 NNé6 |IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility v v/ v

Example

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the
splice() method. Begin by creating an array with a sequence of numbers:

a = new Array(1,2,3,4,5)
Next, remove the center three items, and replace them with one string item:
a.splice(l, 3, "two/three/four")

The Results box shows a string version of the three-item array returned by the
method. To view the current contents of the array, enter a into the top text box.

To put the original numbers back into the array, swap the string item with three
numeric items:

a.splice(l, 1, 2, 3, 4)

The method returns the single string, and the a array now has five items in it again.

+ o+ 0+

array.splice()

What's on the
CD-ROM

The accompanying Windows-Macintosh CD-ROM contains
a complete set of HTML document listings and an elec-
tronic version of this book, plus additional listings and the full
text of the JavaScript Bible, Gold Edition. You also receive
Adobe Acrobat Reader software to view and search the elec-
tronic versions of the books.

System Requirements

To derive the most benefit from the example listings, you
should have both Netscape Navigator 6 (or later) and Internet
Explorer 5 (or later) installed on your computer. While many
scripts run in both browsers, several scripts demonstrate fea-
tures that are available on only one browser or the other. To
write scripts, you can use a simple text editor, word proces-
sor, or dedicated HTML editor.

To use the Adobe Acrobat Reader, you need the following:

4 For Windows 95, Windows 98, or Windows NT 4.0 (with
SP3 or later), you should be using a 486 or Pentium com-
puter with 16MB of RAM and 10MB of hard disk space.

4 Macintosh users require a PowerPC, System 7.1,2 or
later, at least SMB of RAM, and 8MB of disk space.

Disc Contents

Platform-specific software is located in the appropriate
Windows and Macintosh directories on the CD-ROM. The con-
tents include the following items.

JavaScript listings for Windows and
Macintosh text editors

Almost all example listings from this book and the
JavaScript Bible, Gold Edition are on the CD-ROM in the form of
complete HTML files, which you can load into a browser to
see the language item in operation (a few others are plain text

APPENDIX

498 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

files, which you can view in your browser or text editor). A directory called Listings
contains the example files, with nested folders named for each chapter of the
JavaScript Bible. Each HTML file’s name is keyed to the Listing number in the book.
For example, the file for Listing 15-1 is named 1st15-01.htm. Note that the first
part of each listing number is keyed to a JavaScript Bible chapter number. Thus,
Listing 15-1 demonstrates a term discussed in Chapter 15 of the JavaScript Bible
(both editions), although the printed listing and discussion about the listing
appears in Chapter 1 of this book because Chapter 1 contains examples for
JavaScript Bible Chapter 15.

For your convenience, an index.htm] file in the Listings folder provides a front-
end table of contents to the HTML files for the book’s program listings. Open that
file from your browser whenever you want to access the program listing files. If you
intend to access that index page frequently, you can bookmark it in your
browser(s). Using the index file to access the listing files can be very important in
some cases, because several individual files must be opened within their associated
framesets to work properly. Accessing the files through the index.html file assures
that you open the frameset. The index.htm]1 file also shows browser compatibility
ratings for all the listings. This saves you time from opening listings that are not
intended to run on your browser. To examine and modify the HTML source files,
open them from your favorite text editor program (for Windows editors, be sure to
specify the . htm file extension in the Open File dialog box).

You can open all example files directly from the CD-ROM, but if you copy them to
your hard drive, access is faster and you will be able to experiment with modifying
the files more readily. Copy the folder named Listings from the CD-ROM to any loca-
tion on your hard drive.

Electronic versions of the books

These are complete, searchable versions of both this book and the JavaScript
Bible, Gold Edition, provided in Adobe Acrobat . pdf format. The Acrobat text for
this book is in the folder named JSExamples PDF, while the JavaScript Bible text is in
the JSBGold PDF folder.

Adobe Acrobat Reader

The Adobe Acrobat Reader is a helpful program that enables you to view the entire
contents of both this book and the JavaScript Bible, Gold Edition, which are in . pdf for-
mat on the CD-ROM. To install and run Adobe Acrobat Reader, follow these steps:

For Windows
1. Start Windows Explorer or Windows NT Explorer and then open the Acrobat
folder on the CD-ROM.

2. In the Acrobat folder, double-click the rs405eng.exe icon and follow the
instructions presented on-screen for installing Adobe Acrobat Reader.

For Macintosh
1. Open the Acrobat folder on the CD-ROM.

2. In the Acrobat folder, double-click the Adobe Acrobat Installer icon and follow
the instructions presented on-screen for installing Adobe Acrobat Reader.

+ o+

Index

A appMinorVersion property, 402
above property, 442-443 appName property, 398-401
accessKey property appVersion property, 398-401
compatibility, 3 AREA element object
controlling, 3-4 coords property, 331
example, 3-4 modifying, on the fly, 332-333
action property, 336 shape property, 331
activeElement property, 224-225 areas property, 331-334
addBehavior() method array object
compatibility, 50 concat () method, 488-490
example, 50-52 examples highlights, 487-488
invoking, for each paragraph object, 51 join() method, 491-492
using, 52-53 methods, 488-495
addEventListener() method reverse () method, 492-493
compatibility, 53 sort () method, 493-495
example, 53-55 splice() method, 495
addReadRequest () method, 407 arrays, concatenation, 489-490
addRule() method, 438-439 attachEvent () method
Adobe Acrobat Reader, 498 compatibility, 58
alert() method, 153 example, 58-59
alert dialog box, displaying, 153 attributes property, 5
align property availleft/availTop properties, 407
HR element object, 269-272
IFRAME element object, 198 B
IMG element object, 318-319 back () method, 219-221
TABLE element object, 382 background property
testing, 318-319 BODY element object, 258
alink property, 257-258 NN4 layer object, 444-445
alinkColor property, 225-227 TABLE element object, 382
all property, 5 behavior property, 273-275
alt property, 319 behaviors
anchors adding, 50-53
document with, 206-207 turning off, 53
names, 207 turning on, 51
reading number of, 228 behaviorUrns property, 6
anchors property, 227-228 below property, 442-443
appCodeName property, 398-401 bgColor property
appendChild() method BODY element object, 257-258
compatibility, 55 document object, 225-227
example, 55-57 MARQUEE element object, 275
use of, 1 NN4 layer object, 445-446
appendData() method, 294-296 TABLE element object, 383
applets property, 229 bgProperties property, 258-259
applyElement () method bTur() method
compatibility, 57 compatibility, 59
example, 57-58 example, 59-60

using, 57-58 text input object, 363

Index ¢+ B-C

BODY element object
alink property, 257-258
background property, 258
bgColor property, 257-258
bgProperties property, 258-259
bottomMargin/topMargin properties, 259
createTextRange () method, 261-262
doScrol1() method, 262
event handlers, 262-263
leftMargin/rightMargin properties, 259
1ink property, 257-258
methods, 261-262
noWrap property, 259
onC1ick event handler, 81
onMouseDown event handler, 63, 115-117
onScroll event handler, 262-263
onUnload event handler, 377
properties, 257-261
scroll property, 260
scrolllLeft/scrol1Top properties, 260-261
text property, 257-258
vLink property, 257-258
body property, 229
border property
FRAMESET element object, 194
IMG element object, 319
TABLE element object, 383
borderColor property
FRAME element object, 190
FRAMESET element object, 194
TABLE element object, 383-384
borderColorDark/borderColorlLight properties,
383-384
bottomMargin/topMargin properties, 259
bottom/top properties, 315-316
bound data
filtering, 18-20
sorting, 18-20
boundingHeight/boundingWidth properties, 297-299
boundingleft/boundingRight properties, 297-299
browsers
functions to examine, 399-401
reading and writing preferences, 405-406
BUTTON element object
click() method, 345
event handlers, 346
form property, 344-345
methods, 345
name property, 345
onC11ick event handler, 346
properties, 344-345
value property, 345

C

canHaveChildren property

compatibility, 6

example, 6-7

reading, 6-7
canHaveHTML property, 8
caption property, 384
capturekvents() method

document object, 243

window object, 154-155
Cascading Style Sheets (CSS), 265
CD-ROM

Adobe Acrobat Reader, 498

contents, 497-498

electronic versions of books, 498

JavaScript listings for text editors, 497-498

system requirements, 497
cellIndex property, 392-393
cel1Padding property, 384-385
cells property

TABLE element object, 385

TR element object, 391
cellSpacing property, 384-385
CGI submission action, adjusting, 349
character conversions, 472-473
characterSet property, 230
charCode property, 423-424
charset property, 229-230
checkbox input object

checked property, 347

defaultChecked property, 348

event handlers, 349-352

onC11ick event handler, 349-352

properties, 347-349

value property, 348-349
checked property

as a conditional, 347

checkbox input object, 347

radio input object, 352-353
child nodes

collecting, 9-10

hierarchy, inspecting, 8
childNodes property

compatibility, 8

example, 8-10

importance of, 1
children property

compatibility, 10

example, 10-11
className property

compatibility, 11

example, 11-12

set to empty, 11

working with, 12
clear() method, 292-293
clearAttributes() method, 61
clearInterval() method, 155
clearTimeout () method

compatibility, 155

example, 155-157

timerlID value, 157
click() method

BUTTON element object, 345

compatibility, 61

example, 61
clientHeight property, 13-14

compatibility, 13

defined, 13

example, 13-14

using, 13-14
clientInformation object. See navigator object
clientWidth property, 13-14

compatibility, 13

defined, 13

example, 13-14

using, 13-14
clientX/clientY properties

IE4+, 413-416

NN6+ event object, 425-427
clip property

adjusting, 447-449

compatibility, 447

example, 447-450
clipboardData property, 129
cloneContents () method, 279
cloneNode () method, 62
cloneRange () method, 279
close() method

document object, 243-244

window object, 157-158
closed property, 128, 129-131
COL element object, 391
COLGROUP element object, 391
collapse() method

Range object, 279

TextRange object, 300
collapsed property, 276
color property

FONT element object, 266-268

HR element object, 272
colors

change, triggering, 377-378

sampler, 225-227

Index ¢ C

cols property
FRAMESET element object, 195-197
TEXTAREA element object, 368
colSpan property, 393
commonAncestorContainer property, 277
compareBoundaryPoints () method
compatibility, 280
example, 280-283
lab for, 281-283
raw value returned, 280
comparekEndPoints() method
compatibility, 300
example, 300-303
invocations, 301
lab for, 301-303
raw value returned by, 301
complete property, 320
componentFromPoint () method
compatibility, 62
example, 62-63
using, 63
confirm() method, 158
confirm dialog box, 158
constructor property, 470
contains () method, 64
contentDocument property
FRAME element object, 190
IFRAME element object, 199
contentEditable property
compatibility, 14
example, 14-15
using, 14-15
context-sensitive help, creating, 110-111
cookie property, 230
cookieEnabled property, 402
coords property, 331
countdown timer
listing, 155-156
page illustration, 157
cpuClass property, 402
createAttribute() method, 244
createContexualFragment () method, 283
createElement () method, 244
createEventObject () method
document object, 244-245
fireEvent () method and, 67
createPopup() method, 159
createRange () method, 293
createStyleSheet () method, 245-246
createTextNode () method, 246-247

501

502

Index ¢+ C-D

createTextRange() method
element object, 261-262
TEXTAREA element object, 368

cssRule object, 440

cssText property, 436-437

current time, displaying, 176-177

currentStyle property, 15

currentTarget property, 427-428

cutting/pasting, under script control, 101-102

D

data binding
recordNumber property, 41-42
resource, 20
data property
NN4 event object, 410-411
Text and TextNode objects, 293
data validation, 367-368
dataF1d property, 16-20
changing, 16-17
compatibility, 16
example, 16-20
dataFormatAs property, 16-20
dataPageSize property, 385
dataSrc property
changing, 16-17
compatibility, 16
example, 16-20
defaultCharset property, 230-231
defaultChecked property
checkbox input object, 348
radio input object, 354
defaultStatus property
compatibility, 131
example, 131-132
setting, 132
defaultValue property, 358-359
deleteContents() method, 284
deleteData() method, 294-296
deleteRule() method, 439
detachEvent () method
compatibility, 58
example, 58-59
dialogArguments property, 132

dialogHeight/dialogWidth properties, 132-133

dialogleft/dialogTop properties, 133
dir property, 21
direction property, 275
directories property, 134-135
disabled property

compatibility, 21

example, 21

form control and, 2
styleSheet object, 437
disableExternalCapture() method, 159
dispatchEvent () method
compatibility, 64
example, 64-66
using, 64-66
DIV element
clientHeight property, 13-14
clientWidth property, 13-14
contentEditable property, 14
document object
activeElement property, 224-225
alinkColor property, 225-227
anchors, 227-228
anchors property, 227-228
applets property, 229
bgColor property, 225-227
body property, 229
captureEvents () method, 243
characterSet property, 230
charset property, 229-230
close() method, 243-244
cookie property, 230
createAttribute() method, 244
createElement () method, 244
createEventObject () method, 244-245
createStyleSheet () method, 245-246
createTextNode () method, 246-247
defaultCharset property, 230-231
documentElement property, 231
elementFromPoint () method, 247-249
event handlers, 256-257
examples highlights, 224
execCommand () method, 249
expando property, 231
fgColor property, 225-227
fileCreatedDate property, 232-233
fileModifiedDate property, 232-233
fileSize property, 232-233
forms property, 233-234
frames property, 234
getElementByID() method, 250
getElementsByName () method, 250
getSelection() method, 251-252
height property, 234-235
images property, 235
implementation property, 235
TastModified property, 235-236
layers property, 236-237
TinkColor property, 225-227
1inks property, 238

Tocation property, 238-240
methods, 243-256

onMouseOver event handler, 247

onStop event handler, 256-257
open () method, 252
parentWindow property, 240
properties, 224-243

protocol property, 240
queryCommand () methods, 252
recalc() method, 253

referrer property, 224, 240-241

role, 223
scripts property, 242
selection property, 242
URL property, 238-240
vlinkColor property, 225-227
width property, 234-235
write() method, 253-256
writelIn() method, 253-256
document property
compatibility, 21
example, 22
popup object, 201
Document property, 191
documentElement property, 231
documents
color, changing, 227

current, extracting directory of, 212

framesets, 146

loading, into layers, 462-463
doReadRequest () method, 408
doScrol1() method, 262
duplicate() method, 303-304
dynamic properties

clock controlled by, 94

listing, 92-93

E

elementFromPoint () method
compatibility, 247
example, 247-249
using, 248-249

elements property
compatibility, 336
example, 336-338
using, 337

empty () method, 293

enableExternalCapture() method, 159

encoding property, 338
enctype property, 338

endContainer/startContainer properties, 277-278
end0ffset/start0ffset properties, 278

event handlers
assigning, to element objects, 2
BODY element object, 262-263
BUTTON element object, 346
checkbox input object, 349-352
document object, 256-257
dragging/dropping control, 2
form object, 341-342
generic, 95-126
information management, 2
onAbort, 329
onActivate, 95-96
onAfterPrint, 188
onBeforeCopy, 96-97
onBeforeCut, 97
onBeforeDeactivate, 95-96
onBeforeEditFocus, 97-98
onBeforePaste, 98, 121-123
onBeforePrint, 188
onBeforeUnload, 188-189
onBlur, 98-99, 365-366
onChange, 367-368, 377-378

Index ¢ D-E

onClick, 66, 81, 99-100, 346, 349-352, 355-356

onContextMenu, 100-101
onCopy, 101-102

onCut, 101-102
onDb1C11ck, 100, 103
onDeactivate, 95-96
onDrag, 103-107
onDragEnd, 106
onDragEnter, 107
onDragleave, 107
onDragOver, 108
onDragStart, 103, 108
onDrop, 108
onkrror, 329
onFilterChange, 108-109
onFocus, 99, 110, 365-366
onHelp, 110-111, 189
onKeyDown, 111-114
onKeyPress, 111-114
onKeyUp, 111-114
onload, 33, 330-331
onlLoseCapture, 115
onMouseDown, 63, 115-117
onMouseEnter, 117
onMouseleave, 117
onMouseMove, 117-119
onMouseQut, 120-121
onMouseOver, 120-121
onMouseUp, 115-117

Continued

503

Index ¢ E-F

event handlers (continued)
onPaste, 121-123
onPropertyChange, 123-124
onReadyStateChange, 124-125
onReset, 341-342
onResize, 125
onScroll, 262-263
onSelect, 365-366
onSelectStart, 125-126
onStop, 256-257
onSubmit, 341-342
radio input object, 355-356
SELECT element object, 377-378
text input object, 365-368
window object, 188-189
event objects
examples highlights, 410
IE4+, 413-423
NN4, 410-413
NN6-+, 423-433
properties, value of, 409
eventPhase property, 427-429
execCommand () method
document object, 249
TextRange object, 304
execScript() method, 159-160
expand () method, 304
expando property, 231
external property, 135-136
extractContents() method, 285

F

face property, 268-269
fgColor property, 225-227
fields, selecting, 364-365
file dates, viewing, 232-233
fileCreatedDate property
document object, 232-233
IMG element object, 322
fileModifiedDate property
document object, 232-233
IMG element object, 322
fileSize property
document object, 232-233
IMG element object, 322
find() method, 160
findText () method
compatibility, 304
example, 305-308
fireEvent () method
compatibility, 66
example, 66-68
using, 67-68

firstChild property
compatibility, 22
example, 22-23
using, 1, 22-23

focus () method
compatibility, 59
example, 59-60
text input object, 363

FONT element object
color property, 266-268
face property, 268-269
properties, 266-269
properties, controlling, 267-268
size property, 269

fontSize property, 85

form controls, disabling, 2

form object
action property, 336
elements property, 336-338
encoding property, 338
enctype property, 338
event handlers, 341-342
examples highlights, 335
Tength property, 339
method property, 339
methods, 340-341
onReset event handler, 341-342
onSubmit event handler, 341-342
properties, 336-339
reset () method, 340
submit () method, 341
target property, 339

form property
BUTTON element object, 344-345
text input object, 359-360

forms property, 233-234

FRAME element object
borderColor property, 190
contentDocument property, 190
Document property, 191
height property, 191-192
noResize property, 192
properties, 190-194
scrolling property, 192-193
src property, 194
width property, 191-192

frame property
compatibility, 385
cycling through values, 386-387
example, 385-387

frameBorder property
FRAMESET element object, 197-198
IFRAME element object, 199

frames
border, 197-198, 199
control panel, 197
documents loaded into, 136
scrolling, 170-171
showing/hiding, 196
sizes, 128
spacing, 198
table of contents, 197
frames property
compatibility, 136
document object, 234
example, 136-138
FRAMESET element object
border property, 194
borderColor property, 194
cols property, 195-197
frameBorder property, 197-198
frameSpacing property, 198
properties, 194-198
rows property, 195-197
framesets
composition, 128

for document . URL property reader, 238

for document.write() example, 253
documents, 146
for hiding/showing frame, 196
name of, 148
navigation lab, 219
print, 165
for property picker, 207-209
for scrol1() demonstration, 169
smart, 214-215
specification modification, 195
frameSpacing property, 198
fromElement/toElement properties
compatibility, 416
example, 416-418
using, 417
functions
addRow(), 49
addStyle(), 245
append(), 56
cancelDefault(), 104
checkFrameset(), 215, 216
checkIt(), 367
checkNumeric(), 364
checkTimer(), 326
closeWindow(), 130
crawllayers(), 236
customScrol1(), 171
doMerge(), 78

doSelection(), 364
draglt(), 118
engage(), 117

for examining browsers, 399-401
finishNewWindow(), 130
flash(), 154
getColor(), 143
getFormData(), 184
getSearchArray(), 214
handleApply(), 184
handleCut(), 101
hand1e0K(), 182
hilite(), 71

init(), 92,179, 183
insertTableRow(), 392
isNumber(), 364
isWindows (), 398
makeAreas(), 332
makeNewWindow(), 60
moveOffScreen(), 163
nextField(), 16
parselnt(), 172
prevField(), 16
pushUndoNew(), 308
release(), 117, 118, 465
replace(), 87
resetSelects(), 326
resetTab(), 47
resizelt(), 465
restore(), 88, 134
revolve(), 163
selectChunk(), 38
setHRAttr(), 270
setImagePosition(), 33
setInitialColor(),51
setSelection(), 364
setupDrag(), 103, 104
showChange(), 123
showContextMenu(), 81
showCountDown(), 157
showPreferences(), 405
startTimer(), 157
stopTimer(), 157
swap(), 88, 350
timelt(), 104
toggle(), 350
toggleBar(), 134
toggleComplete(), 18
toggleEdit(), 14
turnOn(), 51
undoReplace(), 308

Index ¢ F

Continued

505

506

Index ¢ F-G

functions (continued)

G

unescape(), 212
updateClock(), 92
walkChildNodes(), 8
walkChildren(), 10
whereInWorld(), 63
zigzag(), 163

generic objects, 1-126

accessKey property, 3—4
addBehavior () method, 50-53
addEventlListener() method, 53-55
all property, 5

appendChild method, 55-57
applyElement () method, 57-58
attachEvent () method, 58-59
attributes property, 5
behaviorUrns property, 6

blur() method, 59-60
canHaveChildren property, 6-7
canHaveHTML property, 8
childNodes property, 1, 8-10
children property, 10-11
className property, 11-12
clearAttributes() method, 61
click() method, 61
clientHeight property, 13-14
clientWidth property, 13-14
cloneNode () method, 62
compatibility, 59
componentFromPoint () method, 62-63
contains() method, 64
contentEditable property, 14-15
currentStyle property, 15
dataF1d property, 16-20
dataFormatAs property, 16-20
dataSrc property, 16-20
detachEvent () method, 58-59
dir property, 21

disabled property, 2, 21
dispatchEvent () method, 64-66
document property, 21-22

event handlers, 95-126

examples highlights, 1-2
fireEvent () method, 66-68
firstChild property, 1, 22-23
focus () method, 59-60
getAdjacentText () method, 69
getAttribute() method, 2, 69-70
getAttributeNode () method, 70
getBoundingClientRect () method, 70-73

getClientRects() method, 73
getElementsByTagName() method, 73
getExpression() method, 74
hasChildNodes () method, 74-75
height property, 23-24

hideFocus property, 24

id property, 24-25

innerHTML property, 25-26

innerText property, 25-26
insertAdjacentElement () method, 75
insertAdjacentHTML() method, 76
insertAdjacentText () method, 76
insertBefore() method, 1, 76-77
isContentEditable property, 26-27
isDisabled property, 27-28
isMultiline property, 28
isTextEdit property, 28

item() method, 78

lang property, 28-29

Tanguage property, 29

lastChild property, 1, 22-23

lTength property, 29
mergeAttribute() method, 78-79
methods, 50-95

nextSibling property, 30

nodeName property, 30

nodeType property, 31

nodeValue property, 31-32
normalize() method, 79-80
offsetHeight property, 32
offsetlLeft property, 32-33
offsetParent property, 33-35
offsetTop property, 32-33
offsetWidth property, 32
onActivate event handler, 95-96
onBeforeCopy event handler, 96-97
onBeforeCut event handler, 97
onBeforeDeactivate event handler, 95-96
onBeforeEditFocus event handler, 97-98
onBeforePaste event handler, 98, 121-123
onBlur event handler, 98-99

onC11ick event handler, 66, 81, 99-100
onContextMenu event handler, 100-101
onCopy event handler, 101-102

onCut event handler, 101-102
onDb1C11ick event handler, 100, 103
onDeactivate event handler, 95-96
onDrag event handler, 103-107
onDragEnd event handler, 106
onDragEnter event handler, 107
onDraglLeave event handler, 107
onDragOver event handler, 108

onDragStart event handler, 103, 108
onDrop event handler, 108
onFilterChange event handler, 108-109
onFocus event handler, 99, 110
onHelp event handler, 110-111
onKeyDown event handler, 111-114
onKeyPress event handler, 111-114
onKeyUp event handler, 111-114
onlLoseCapture event handler, 115
onMouseEnter event handler, 117
onMouseleave event handler, 117
onMouseMove event handler, 117-119
onMouseQut event handler, 120-121
onMouseOver event handler, 120-121
onMouseUp event handler, 115-117
onPaste event handler, 121-123
onPropertyChange event handler, 123-124
onReadyStateChange event handler, 124-125
onResize event handler, 125
onSelectStart event handler, 125-126
outerHTML property, 35-36
outerText property, 35-36
ownerDocument property, 37
parentElement property, 37
parentNode property, 38
parentTextEdit property, 38-39
previousSibling property, 30
properties, 3-50

readyState property, 40, 51
recordNumber property, 40-42
releaseCapture() method, 80-83
removeAttribute() method, 83
removeAttributeNode () method, 84
removeBehavior() method, 52-53, 84
removeChild() method, 57, 85
removeEventListener method, 53-55
removeExpression() method, 85-86
removeNode () method, 86, 88-89
replaceAdjacentText () method, 86-87
replaceChild() method, 1, 56, 87
replaceNode () method, 87-89
runtimeStyle property, 42
scopeName property, 42-43
scrollHeight property, 43
scrollIntoView() method, 89-90
scrollLeft property, 43-44
scrol1Top property, 43-44
scrol1Width property, 43
setActive() method, 90
setAttribute() method, 91
setAttributeNode() method, 84
setCapture() method, 80-83

Index ¢ G-H

setExpression() method, 91-94

sourcelndex property, 44-45

style property, 45

swapNode () method, 88, 94

tabIndex property, 45-47

tagName property, 47

tags () method, 94-95

tagUrn property, 47

title property, 48

uniquelD property, 49-50

urns () method, 95

width property, 23-24
getAdjacentText () method, 69
GetAttention() method, 160
getAttribute() method

compatibility, 69

example, 69-70

return, 2

userProfile object, 408
getAttributeNode () method, 70
getBookmark() method, 308
getBoundingClientRect () method

compatibility, 70

example, 70-73

using, 71-73
getClientRects() method, 73
getElementByID() method, 250
getElementsByName () method, 250
getElementsByTagName () method

compatibility, 73

example, 73

return, 2
getExpression() method, 74
getSelection() method, 251-252
go() method, 219-221

H

handleError(), 140
hasChildNodes () method
compatibility, 74
example, 74-75
hash property, 206-207
height property
compatibility, 23
document object, 234-235
example, 24
FRAME element object, 191-192
IMG element object, 322-323
TABLE element object, 387
TD and TH element objects, 393-394
TR element object, 391-392

507

508 Index 4+ H-l

hide () method, 202-204 properties, 198-200
hideFocus property, 24 scrolling property, 200
history object src property, 200
back() method, 219-221 vspace property, 199
examples highlights, 205 Image object, 318-331
go() method, 221-222 images
Tength property, 218-219 changing between still and motion, 321-322
methods, 219-222 rotating, 326-328
properties, 218-219 images property, 235
host property IMG element object
compatibility, 207 align property, 318-319
example, 207-211 alt property, 319
hostname property, 211 border property, 319
HR element object complete property, 320
align property, 269-272 examples highlights, 317

color property, 272
noShade property, 272
properties, 269-273
properties, controlling, 270-272
size property, 272
width property, 273
href property, 211-212
hspace property
IFRAME element object, 199
IMG element object, 323
HTML element objects
generic, 1-126
specifications, 1

fileCreatedDate property, 322
fileModifiedDate property, 322
fileSize property, 322

height property, 322-323
hspace property, 323

isMap property, 323-324

1oop property, 324
Towsrc/TowSrc properties, 324
name property, 324

nameProp property, 325
onAbort event handler, 329
onError event handler, 329
onlLoad event handler, 330-331

htmlFor property, 342
htmlText property, 299-300

properties, 318-329
protocol property, 325
src property, 325-328

| start property, 329

id property vspace property, 323
compatibility, 24 width property, 322-323
example, 25 X property, 329

IE4+ event object y property, 329

clientX/clientY properties, 413-416
fromETlement/toETement properties, 416-418
keyCode property, 418-420 innerHTML property
offsetX/offsetY properties, 413-416 compatibility, 25
properties, 413-423 example, 25-26
returnValue property, 420 using, 25-26
srcElement property, 420-422 innerText property
type property, 422-423 compatibility, 25
x/y, 413-416 example, 25-26

IFRAME element object using, 25-26
align property, 198 inRange () method, 309
contentDocument property, 199 insertAdjacentElement () method, 75
frameBorder property, 199 insertAdjacentHTML() method, 76
hspace property, 199 insertAdjacentText () method, 76

implementation property, 235
innerHeight/innerWidth properties, 138-139

insertBefore() method

compatibility, 76

example, 77

second parameter, 77

use of, 1

using, 77
insertData() method, 294-296
insertNode () method

compatibility, 285

example, 285-287

listing, 286-287
insertRule() method, 439
isContentEditable property

compatibility, 26

example, 27
isDisabled property

compatibility, 27

example, 27-28
isEqual () method, 309-310
isMap property, 323-324
isMultiline property, 28
isOpen property, 201-202
isTextEdit property, 28
isValidFragment () method, 287
item() method

compatibility, 78

example, 78

SELECT element object, 376

K

keyCode property
compatibility, 418, 423
displaying values, 419, 423-424
example, 418-420, 423-424
NN6+ event object, 423-424
tasks, 419-420

L
LABEL element object
defined, 335
htmlFor property, 342
label property
OPTGROUP element object, 378-380
OPTION element object, 378
lang property
compatibility, 28
example, 29
language property, 29
lastChild property
compatibility, 22
example, 22-23
using, 1, 22-23

Index 4+ I-L

TastModified property, 235-236
layers
background colors, 446
backgrounds, setting, 444-445
dragging, 464
loading documents into, 462-463
nested, coordinate system testing, 453-455
nested, source content, 456-457
nested, visibility relationships, 458
resizing, 466-467
layers property, 236-237
layerX/layerY properties
NN4 event object, 411-413
NN6+ event object, 425-427
left property
NN4 layer object, 450-452
TextRectangle object, 315-316
leftMargin/rightMargin properties, 259
lTength property, 29
form object, 339
history object, 218-219
radio input object, 354
select () method, 370
LI element object
type property, 395-396
value property, 396
TinkColor property, 225-227
lTinks property
BODY element object, 257-258
document object, 238
1istStyleType property, 81
load() method, 462-463
lTocation object
examples highlights, 205
hash property, 206-207
host property, 207-211
hostname property, 211
href property, 211-212
methods, 216-218
pathname property, 212
port property, 213
properties, 206-216
protocol property, 213
reload() method, 216-217
replace() method, 217-218
search property, 213-216
using, 205
lTocation property, 238-240
lTocationbar property, 134-135
Toop property, 324
Towsrc/TowSrc properties, 324

509

510

Index ¢+ M

M

makeHot .htc behavior component, 50-51
MAP element object, 331-334
MARQUEE element object
behavior, 273-275
bgColor, 275
direction, 275
methods, 276
properties, 273-275
properties, controlling, 273-275
scrollAmount, 275
scrollDelay, 275
start() method, 276
stop() method, 276
maxLength property, 360
MAX_VALUE property, 484-485
menubar property, 134-135
mergeAttribute() method
compatibility, 78
example, 78-79
using, 79
method property, 339
methods
addBehavior(), 50-53
addEventListener(), 53-55
addReadRequest (), 407
addRule(), 438-439
alert(), 153
appendChild(), 1, 55-57
appendData(), 294-296
applyElement(), 57-58
array.concat(), 488-490
array.join(), 491-492
array object, 488-495
array.reverse(), 492-493
array.sort(), 493-495
array.splice(), 495
attachEvent(), 58-59
back(), 219-221
bTur(), 59-60, 363
BODY element object, 261-262
BUTTON element object, 345
captureEvents(), 154-155, 243
clear(), 292-293
clearAttributes(), 61
clearInterval(), 155
clearTimeout(), 128, 155-157
click(), 61,345
cloneContents(), 279
cloneNode(), 62
cloneRange(), 279

close(), 157-158, 243-244
collapse(), 279, 300
compareBoundaryPoints(), 280-283
compareEndPoints(), 300-303
componentFromPoint (), 62-63
confirm(), 158

contains(), 64
createAttribute(), 244
createContexualFragment(), 283
createElement(), 244
createEventObject(), 67, 244-245
createPopup(), 159
createRange(), 293
createStyleSheet(), 245-246
createTextNode(), 246-247
createTextRange(), 261-262, 368
deleteContents(), 284
deleteDatal(), 294-296
deleteRule(), 439
detachEvent (), 58-59
disableExternalCapture(), 159
dispatchEvent(), 64-66
document object, 243-256
doReadRequest(), 408
doScrol1(), 262

duplicate(), 303-304
elementFromPoint (), 247-249
empty(), 293
enableExternalCapture(), 159
execCommand(), 249, 304
execScript(), 159-160
expand(), 304
extractContents(), 285
find(), 160
findText (), 304-308
fireEvent(), 66-68
focus (), 59-60, 363

form object, 340-341

generic, 50-95
getAdjacentText(), 69
GetAttention(), 160
getAttribute(), 2, 69-70, 408
getAttributeNode(), 70
getBookmark(), 308
getBoundingClientRect(), 70-73
getClientRects(), 73
getElementByID(), 250
getElementsByName(), 250
getElementsByTagName(), 2, 73
getExpression(), 74
getSelection(), 251-252

go(), 221-222
hasChildNodes (), 74-75
hide(), 202-204

history object, 219-222
inRange(), 309
insertAdjacentElement(), 75
insertAdjacentHTML(), 76
insertAdjacentText(), 76
insertBefore(), 1, 76-77
insertData(), 294-296
insertNode(), 285-287
insertRule(), 439
isEqual(), 309-310
isValidFragment(), 287
item(), 78,376
Toad (), 462-463

location object, 216-218
MARQUEE element object, 276
mergeAttribute(), 78-79
move(), 310
moveAbove (), 463
moveBelow(), 463

moveBy (), 128, 161-163, 463-464
moveEnd(), 310-311
moveRow (), 390
moveStart(), 310-311
moveTo(), 128, 161-163, 463-464
moveToAbsolute(), 463-464
moveToBookmark(), 311
moveToElementText (), 311-312
moveToPoint(), 312
namedItem(), 376

navigator object, 405-406
NN4 layer object, 462-467
node-related, 88-89
normalize(), 79-80

Number object, 485
number.toExponential(), 485
number.toFixed(), 485
number.toPrecision(), 485
number.toString(), 485
open(), 129, 163-165, 252
parentElement (), 312-313
pasteHTML(), 313

popup object, 202-204
preference(), 405

print(), 165-166

prompt(), 166-167
queryCommand(), 252

Range object, 279-291
recalc(), 253

releaseCapture(), 80-83
reload(), 216-217
removeAttribute(), 83
removeAttributeNode(), 84
removeBehavior(), 52-53, 84
removeChild(), 57, 85
removeEventlListener, 53-55
removeExpression(), 85-86
removeNode (), 86, 88-89
removeRule(), 438-439
replace(), 217-218
replaceAdjacentText (), 86-87
replaceChild(), 1,56, 87
replaceData(), 294-296
replaceNode(), 87-89
reset(), 340

resizeBy(), 167-168, 465-467
resizeTo(), 167-168, 465-467
routeEvent(), 168-169
scroll(), 169-171
scrol1By(), 171-173
scrollIntoView(), 89-90
scrollTo(), 171-173
select(), 314, 364-365
SELECT element object, 376
selection object, 292-293

Index ¢+ M

selectNode()/selectNodeContents(), 287-288

setActive(), 90
setAttribute(), 91
setAttributeNode(), 84
setCapture(), 80-83
setEnd()/setStart(), 288-289

setEndAfter()/setEndBefore(), 289

setExpression(), 91-94
setInterval(), 128, 173-176

setStartAfter()/setStartBefore(), 289

setTimeout(), 128, 152, 176-178
show(), 202-204
showModalDialog(), 178-187
showModelessDialog(), 178-187
sizeToContent(), 187
splitText(), 296-297
start(), 276

stop(), 276
string.charAt(), 471
string.charCodeAt(), 471-473
string.index0f(), 473
string.lastIndex0f(), 474
string.match(), 474-476
string.replace(), 476-478

Continued

511

512 Index ¢+ M-N

moveToBookmark() method, 311
moveToElementText () method, 311-312
moveToPoint () method, 312

methods (continued)
string.search(), 478
string.slice(), 479-480

string.split(), 480-481
string.substr(), 481-482
string.substring(), 482-483

string.tolowerCase()/string.toUpperCase(),

483-484
string.toString(), 484
string.value0f(), 484
styleSheet object, 438-439
submit(), 341
substringData(), 294-296
surroundContents(), 289-291
swapNode(), 88, 94
TABLE element object, 390
tags(), 94-95
text input object, 363-365
Text object, 294-297
TEXTAREA element object, 368
TextRange object, 300-314
toString(), 291
toUpperCase(), 363
urns(), 95
userProfile object, 407-408
window object, 153-187
write(), 253-256
writeIn(), 253-256

mimeTypes property, 403
MIN_VALUE property, 484-485
modal dialog box
demonstration, 178-187
document for, 179, 180-182
opening, 178
simulation, 127
modeless dialog box
demonstration, 178-187
document for, 184-187
move () method, 310
moveAbove () method, 463
moveBelow() method, 463
moveBy () method
NN4 layer object, 463-464
window object, 161-163
moveEnd() method, 310-311
moveRow () method, 390
moveStart () method, 310-311
moveTo () method
NN4 layer object, 463-464
window object, 161-163

moveToAbsolute() method, 463-464

multiple property, 370-371

N

name property

BUTTON element object, 345
IMG element object, 324
text input object, 360

namedItem() method, 376

nameProp property, IMG element object, 325

navigation lab

control panel, 220-221
frameset, 219

navigator object

appCodeName property, 398-401
appMinorVersion property, 402
appName property, 398-401
appVersion property, 398-401
cookieEnabled property, 402
cpuClass property, 402

defined, 397

examples highlights, 398
methods, 405-406

mimeTypes property, 403
online property, 403

oscpu property, 403

platform property, 404
preference() method, 405-406
product/productSub properties, 404
properties, 398-405
systemlLanguage property, 404-405
userAgent property, 398-401
userlanguage property, 404-405
vendor/vendorSub properties, 404

navigator property, 139

NEGATIVE _INFINITY property, 484-485
nested elements, locating position of, 33
nested layers. See also layers

coordinate system testing, 453-455
source content, setting, 456-457
visibility relationships, 458

nextSib1ling property, 30
NN4 event object

data property, 410-411
lTayerX/layerY properties, 411-413
pageX/pageY properties, 411-413
properties, 410-413

screenX/screenY properties, 411-413

NN4 layer object

above property, 442-443
background property, 444-445
below property, 442-443
bgColor property, 445-446
c11ip property, 447-450
examples highlights, 441-442
left property, 450-452
load() method, 462-463
methods, 462-467
moveAbove () method, 463
moveBelow() method, 463
moveBy () method, 463-464
moveTo () method, 463-464
moveToAbsolute() method, 463-464
pageX/pageY properties, 452-455
properties, 442-461
resizeBy () method, 465-467
resizeTo() method, 465-467
siblingsAbove/siblingsBelow properties,
442-443
src property, 455-457
visibility property, 457-458
zIndex property, 459-461

NN6+ event object

charCode property, 423-424
clientX/clientY properties, 425-427
currentTarget property, 427-428
eventPhase property, 427-429
keyCode property, 423-424
layerX/layerY properties, 425-427
pageX/pageY properties, 425-427
properties, 423-433

relatedTarget property, 429-430
screenX/screenY properties, 425-427
target property, 430-432

timeStamp property, 432-433

nodeName property, 30
nodes

child, 8, 9-10
inserting, into range, 286-287

nodeType property, 31
nodeValue property

compatibility, 31
example, 31-32

noResize property, 192
normalize() method

compatibility, 79
example, 80

Index ¢ N-O

noShade property, 272
noWrap property
BODY element object, 259
TD and TH element objects, 394
Number object
MAX_VALUE property, 484-485
MIN_VALUE property, 484-485
NEGATIVE _INFINITY property, 484-485
number.toExponential() method, 485
number.toFixed() method, 485
number.toPrecision() method, 485
number.toString() method, 485
POSITIVE_INFINITY property, 484-485

0

offscreenBuffering property, 139-140
offsetHeight property, 32
offsetLeft property, 32-33
offsetParent property

compatibility, 33

example, 33-35

using, 34-35
offsetTop property, 32-33
offsetWidth property, 32
offsetX/offsetY properties, 413-416
OL element object

start property, 394

type property, 395
OL object, 81
onAbort event handler, 329
onActivate event handler, 95-96
onBeforeCopy event handler

compatibility, 96

example, 96-97

listing, 96-97
onBeforeCut event handler, 97
onBeforeDeactivate event handler, 95-96
onBeforeEditFocus event handler

compatibility, 97

example, 98
onBeforePaste event handler, 98, 121-123
onBlur event handler

compatibility, 98

example, 98-99

listing, 99

text input object, 365-366
onChange event handler

SELECT element object, 377-378

text input object, 367-368

513

514

Index ¢+ O

onC1ick event handler

BODY element object, 81

BUTTON element object, 346

checkbox input object, 349-352

compatibility, 99

example, 100

radio input object, 355-356

SPAN element object, 66

using, 100
onContextMenu event handler, 100-101
onCopy event handler, 101-102
onCut event handler, 101-102
onDb1CT1ick event handler

compatibility, 103

example, 103

using, 100
onDeactivate event handler, 95-96
onDrag event handler

in BODY element object, 104

compatibility, 103

example, 103-107

using, 105-106, 105-107
onDragEnd event handler, 106
onDragEnter event handler, 107
onDraglLeave event handler, 107
onDragOver event handler, 108
onDragStart event handler, 103, 108
onDrop event handler, 108
onError event handler, 329
onerror property, 140-141
onFilterChange event handler

compatibility, 108

example, 108-109

using, 109
onFocus event handler, 99, 110

text input object, 365-366

triggering statusbar display, 366
onHelp event handler

compatibility, 110

example, 110-111

window object, 189
onKeyDown event handler

arrow keys and, 112

compatibility, 111

example, 111-114

keyCode value for, 112

laboratory, 112-114
onKeyPress event handler

arrow keys and, 112

compatibility, 111

example, 111-114

keyCode value for, 112
laboratory, 112-114
in text box, 182
onKeyUp event handler
arrow keys and, 112
compatibility, 111
example, 111-114
keyCode value for, 112
laboratory, 112-114
onLine property, 403
onlLoad event handler
in <FRAMESET> tag, 148
IMG element object, 330-331
using, 33
onlLoseCapture event handler, 115
onMouseDown event handler
in BODY element object, 63
compatibility, 115
example, 115-117
using, 115-116
onMouseEnter event handler, 117
onMouseleave event handler, 117
onMouseMove event handler
compatibility, 117
dragging elements with, 118-119
example, 117-119
management of, 117
onMouseQut event handler, 120-121
onMouseOver event handler, 120-121
for document object, 247
setting status property with, 152
onMouseUp event handler
compatibility, 114
example, 115-117
using, 115-116
onPaste event handler
compatibility, 121
example, 121-123
using, 122-123
onPropertyChange event handler
compatibility, 123
example, 123-124
using, 123-124
onReadyStateChange event handler
compatibility, 124
defined, 124
example, 124-125
onReset event handler, 341-342
onResize event handler, 125
onScroll event handler, 262-263
onSelect event handler, 365-366

onSelectStart event handler
compatibility, 125
example, 125-126
using, 126
onStop event handler, 256-257
onSubmit event handler, 341-342
onUnload event handler
in <BODY> definition, 355
BODY element object, 377
open() method
compatibility, 163
document () object, 252
example, 163-165
window creation with, 164-165
opener property
compatibility, 142
example, 142-144
references to, 143
OPTGROUP element object
examples highlights, 370
label property, 378-380
labels, modifying, 379-380
OPTION element object, 378
options property
compatibility, 371
example, 371
options.defaultSelected, 371
options.index, 371
options.selected, 371-372
options.text, 373
options.value, 374
oscpu property, 403

outerHeight/outerWidth properties, 138-139

outerHTML property
compatibility, 35
example, 35-36
using, 35-36
outerText property
compatibility, 35
example, 35-36
using, 35-36
ownerDocument property, 37
ownerNode property, 437
owningElement property, 437-438

P

pageX/pageY properties
NN4 event object, 411-413
NN4 layer object, 452-455
NN6+ event object, 425-427

Index ¢+ O-P

pageX0ffset/pageYOffset properties
compatibility, 144
example, 144-146
values, 146
viewing, 145
parent property
compatibility, 146
example, 146-148
parentElement () method, 312-313
parentElement property, 37
parentNode property, 38
parentTextEdit property
compatibility, 38
example, 38-39
using, 39
parentWindow property, 240
pasteHTML () method, 313
pathname property, 212
personalbar property, 134-135
platform property, 404
popup object
document property, 201
hide() method, 202-204
isOpen property, 201-202
methods, 202-204
properties, 201-202
show () method, 202-204
pop-up windows
creating, 201
hiding/showing, 203
port property, 213
preference() method, 405-406
previousSibling property, 30
print() method, 165-166
printing control, 166
product/productSub properties, 404
prompt () method, 166-167
prompt dialog box, 166-167
properties
above, 442-443
AbsolutePosition, 41
accessKey, 3-4
action, 336
activeElement, 224-225
align, 198, 269-272, 318-319, 382
alink, 257-258
alinkColor, 225-227
all,5
alt, 319
appCodeName, 398-401
applets, 229

Continued

515

516 Index + P

properties (continued) constructor, 470
appMinorVersion, 402 contentDocument, 190, 199
appName, 398-401 contentEditable, 14-15
appVersion, 398-401 cookie, 230
AREA element object, 331 cookieEnabled, 402
areas, 331-334 coords, 331
attributes,5 cpuClass, 402
availleft/availTop, 407 cssRules, 436
background, 258, 382, 444-445 cssText, 436-437
behavior, 273-275 currentStyle, 15
behaviorUrns, 6 currentTarget, 427-428
below, 442-443 data, 293, 410-411
bgColor, 225-227, 257-258, 275, 383, 445-446 dataF1d, 16-20
bgProperties, 258-259 dataFormatAs, 16-20
body, 229 dataPageSize, 385
BODY element object, 257-261 dataSrc, 16-20
border, 194, 319, 383 defaultCharset, 230-231
borderColor, 190, 194, 383-384 defaultChecked, 348, 354
borderColorDark/borderColorLight, 383-384 defaultStatus, 131-132
bottom, 315-316 defaultValue, 358-359
bottomMargin/topMargin, 259 dialogArguments, 132
boundingHeight/boundingWidth, 297-299 dialogHeight/dialogWidth, 132-133
boundinglLeft/boundingRight, 297-299 dialogleft/dialogTop, 133
BUTTON element object, 344-345 dir, 21
canHaveChildren, 6-7 direction, 275
canHaveHTML, 8 directories, 134-135
caption, 384 disabled, 2, 21, 437
cellIndex, 392-393 document, 21-22, 201
cellPadding, 384-385 document object, 224-243
cells, 385, 391 Document, 191
cellSpacing, 384-385 documentElement, 231
characterSet, 230 dynamic, 2, 92-93
charCode, 423-424 elements, 336-338
charset, 229-230 encoding, 338
checkbox input object, 347-349 enctype, 338
checked, 347, 352-353 endContainer/startContainer, 277-278
childNodes, 1, 8-10 endOffset/startOffset, 278
children, 10-11 eventPhase, 427-429
className, 11-12 expando, 231
clientHeight, 13-14 external, 135-136
clientWidth, 13-14 face, 268-269
clientX/clientY, 413-416, 425-427 fgColor, 225-227
clip, 447-450 fileCreatedDate, 232-233, 322
clipboardData, 129 fileModifiedDate, 232-233, 322
closed, 128, 129-131 fileSize, 232-233, 322
collapsed, 276 firstChild, 1, 22-23
color, 266-268, 272 FONT element object, 266-269
cols, 195-197, 368 fontSize, 85
colSpan, 393 form, 344-345, 359-360
commonAncestorContainer, 277 form object, 336-339

complete, 320 forms, 233-234

frame, 385-387

FRAME element object, 190-194

frameBorder, 197-198, 199

frames, 136-138, 234

FRAMESET element object, 194-198

frameSpacing, 198

fromElement/toElement, 416-418

generic, 3-50

hash, 206-207

height, 23-24, 191-192, 234-235, 322-323, 387,
391-392, 393-394

hideFocus, 24

history object, 218-219

host, 207-211

hostname, 211

HR element object, 269-273

href, 211-212

hspace, 199, 323

htmlFor, 342

htmlText, 299-300

id, 24-25

IE4+ event object, 413-423

IFRAME element object, 198-200

images, 235

IMG element object, 318-329

implementation, 235

innerHeight/innerWidth, 138-139

innerHTML, 25-26

innerText, 25-26

isContentEditable, 26-27

isDisabled, 27-28

isMap, 323-324

isMultiline, 28

isOpen, 201-202

isTextEdit, 28

keyCode, 418-420, 423-424

label, 378, 378-380

LABEL element object, 342

lang, 28-29

language, 29

lastChild, 1,22-23

lastModified, 235-236

layers, 236-237

TayerX/layerY, 411-413, 425-427

left, 315-316, 450-452

leftMargin/rightMargin, 259

length, 29, 218-219, 339, 354, 370

1inkColor, 225-227

Tinks, 238, 257-258

TistStyleType, 81

location, 238-240

Index ¢ P

lTocation object, 206-216
lTocationbar, 134-135
Toop, 324
Towsrc/lowSrc, 324
MARQUEE element object, 273-275
maxLength, 360
MAX_VALUE, 484-485
menubar, 134-135
method, 339
mimeTypes, 403
MIN_VALUE, 484-485
multiple, 370-371
name, 324, 345, 360
nameProp, 325
navigator, 139
navigator object, 398-405
NEGATIVE _INFINITY, 484-485
nextSibling, 30
NN4 event object, 410-413
NN4 layer object, 442-461
NN6+ event object, 423-433
nodeName, 30
nodeType, 31
nodeValue, 31-32
noResize, 192
noShade, 272
noWrap, 259, 394
Number object, 484-485
offscreenBuffering, 139-140
offsetHeight, 32
offsetlLeft, 32-33
offsetParent, 33-35
offsetTop, 32-33
offsetWidth, 32
OL element object, 394-395
onerror, 140-141
onlLine, 403
opener, 128, 142-144
options, 371-374
oscpu, 403
outerHeight/outerWidth, 138-139
outerHTML, 35-36
outerText, 35-36
ownerDocument, 37
ownerNode, 437
owningElement, 437-438
pageX/pageY, 411-413, 425-427, 452-455
pageXOffset/pageYOffset, 144-146
parent, 146-148
parentElement, 37

Continued

517

518 Index + P

properties (continued) size, 269, 272, 361, 376
parentNode, 38 sourcelndex, 44-45
parentTextEdit, 38-39 span, 391
parentWindow, 240 src, 194, 200, 325-328, 455-457
pathname, 212 srcElement, 63, 420-422
personalbar, 134-135 start, 329, 394
platform, 404 status, 150-152
popup object, 201-202 statusbar, 134-135
port, 213 string object, 470
POSITIVE_INFINITY, 484-485 style, 45, 440
previousSibling, 30 styleSheet object, 436438
product/productSub, 404 systemlLanguage, 404-405
protocol, 213, 240, 325 tabIndex, 45-47
radio input object, 352-355 TABLE element object, 382-390
Range object, 276-278 tagName, 47
readOnly, 360-361 tagUrn, 47
readyState, 40, 51 target, 339, 430-432
recordNumber, 40-42 tBodies, 390
referrer, 224, 240-241 TD and TH element objects, 392-394
relatedTarget, 429-430 text, 257-258, 300
returnValue, 148, 420 text input object, 358-363
right, 315-316 TEXTAREA element object, 368
rowIndex, 392 TextRange object, 297-300
rows, 195-197, 368, 387 TextRectangle object, 315-316
rowSpan, 393 timeStamp, 432433
rules, 388-389, 438 title, 48
runtimeStyle, 42 toolbar, 134-135
screen object, 407 top, 315-316, 450-452
screenlLeft/screenTop, 148 TR element object, 391-392
screenX/screenY, 148-149, 411-413, 425-427 type, 291-292, 395-396, 422-423
scripts, 242 uniquelD, 49-50
scroll, 260 URL, 238-240
scrollAmount, 275 userAgent, 398-401
scrollbars, 134-135 userlLanguage, 404-405
scrollDelay, 275 vATlign, 390-391
scrollHeight, 43 value, 345, 348-349, 355, 361-363, 376, 396
scrolling, 192-193, 200 vendor/vendorSub, 404
scrolllLeft, 43-44, 260-261 visibility, 457-458
scrol1Top, 43-44, 260-261 vLink, 257-258
scrollWidth, 43 vlinkColor, 225-227
scrollX/scrolly, 149 vspace, 199, 323
search, 213-216 width, 23-24, 191-192, 234-235, 273, 322-323, 387,
sectionRowIndex, 392 393-394
SELECT element object, 370-376 window object, 129-152
selectedIndex, 375 X, 329
selection, 242 v, 329
selection object, 291-292 zIndex, 459-461
selectorText, 440 property values. See also specific properties
self, 149-150 assigning, 2
shape, 331 retrieving, 2

siblingsAbove/siblingsBelow, 442-443 return, when name is a string, 2

protocol property, 213
document object, 240
IMG element object, 325

Q

queryCommand () methods, 252

radio input object
checked property, 352-353
defaultChecked property, 354
event handlers, 355-356
Tength property, 354
onC11ck event handler, 355-356
properties, 352-355
value property, 355
Range object
cloneContents () method, 279
cloneRange () method, 279
collapse() method, 279
collapsed property, 276
commonAncestorContainer property, 277
compareBoundaryPoints () method, 280-283
createContexualFragment () method, 283
deleteContents() method, 284
endContainer/startContainer properties,
277-278
end0ffset/start0ffset properties, 278
extractContents() method, 285
insertNode () method, 285-287
isValidFragment () method, 287
methods, 279-291
properties, 276-278
selectNode()/selectNodeContents()
methods, 287-288
setEnd()/setStart() methods, 288-289
setEndAfter()/setEndBefore() methods, 289
setStartAfter()/setStartBefore()
methods, 289
surroundContents () method, 289-291
toString() method, 291
readOnly property, 360-361
readyState property, 40, 51
recalc() method, 253
recordNumber property
compatibility, 40
example, 40-42
using, 41-42
referrer property
browser support of, 224
checking, 241

Index ¢ P-R

compatibility, 240

example, 241
regular expression

default replacement, 477

match workshop, 475
relatedTarget property

compatibility, 429

example, 429-430

using, 429-430
releaseCapture() method

compatibility, 80

example, 80-83

using, 82-83
reload() method, 216-217
reloading, soft versus hard, 217
removeAttribute() method, 83
removeAttributeNode() method, 84
removeBehavior() method

compatibility, 84

example, 52-53, 84

using, 52-53
removeChild() method, 57, 85
removeEventListener method

compatibility, 53

example, 53-55
removeExpression() method

compatibility, 85

example, 85-86
removeNode () method, 86, 88-89
removeRule() method, 438-439
replace() method. See also 1Tocation object

compatibility, 217

example, 217-218

invoking, 218
replaceAdjacentText () method

compatibility, 86

example, 86-87
replaceChild() method, 1, 56
replaceNode () method

compatibility, 87

example, 87-89
reset () method, 340
resizeBy() method

NN4 layer object, 465-467

window object, 167-168
resizeTo() method

NN4 layer object, 465-467

window object, 167-168
returnValue property

[E4+ event object, 420

window object, 148

519

520

Index ¢+ R-S

right property, 315-316
routeEvent () method, 168-169
rowIndex property, 392
rows property
FRAMESET element object, 195-197
TABLE element object, 387
TEXTAREA element object, 368
rowSpan property, 393
rule object, 440
rules property
compatibility, 388
cycling through values, 388-389
example, 388-389
set to “groups,” 389
styleSheet object, 438
runtimeStyle property, 42

S

scopeName property
compatibility, 42
example, 43
screen object, 407
screenlLeft/screenTop properties, 148
screenX/screenY properties, 148-149
NN4 event object, 411-413
NN6+ event object, 425-427
scripts
for client-side image map, 334
errors, controlling, 140-141
scripts property, 242
scroll() method
compatibility, 169
frameset demonstration, 169
scroll property, 260
scrollAmount property, 275
scrollbars property, 134-135
scrol1By() method
compatibility, 171
controller, 172-173
controller frameset, 172
example, 172-173
scrollDelay property, 275
scrollHeight property, 43
scrolling
banner, creating, 151-152
forcing, 263
scrolling property
FRAME element object, 192-193
IFRAME element object, 200
scrollIntoView() method
compatibility, 89
example, 90

scrollLeft property
BODY element object, 260-261
compatibility, 43
example, 44
scroll1To() method, 171-173
scrollTop property
BODY element object, 260-261
compatibility, 43
example, 44
scrol1Width property, 43
scrol1X/scroll1Y properties, 149
search property
compatibility, 213
example, 213-216
sectionRowIndex property, 392
select() method
text input object, 364-365
TextRange object, 314
SELECT element object
defined, 369
event handlers, 377-378
examples highlights, 370
item() method, 376
lTength property, 370
methods, 376
multiple property, 370-371
namedItem() method, 376
onChange event handler, 377-378
options.defaultSelected property, 371
options.index property, 371
options property, 371
options.selected property, 371-372
options.text property, 373
options.value property, 374
properties, 370-376
selectedIndex, 375
size property, 376
value property, 376
selectedIndex. 375
selection object
clear() method, 292-293
createRange () method, 293
empty () method, 293
methods, 292-293
properties, 291-292
type property, 291-292
using, 292
selection property, 242

selectNode()/selectNodeContents () methods,

287-288
selectorText property, 440

self property

compatibility, 149

example, 149-150

using, 150
setActive() method, 90
setAttribute() method, 91
setAttributeNode () method, 84
setCapture() method

compatibility, 80

example, 80-83

using, 82-83
setEnd()/setStart() methods, 288-289
setEndAfter()/setEndBefore() methods, 289
setExpression() method

compatibility, 91

example, 91-93
setInterval () method

compatibility, 173

control panel, 174-175

demonstration frameset, 174

example, 173

invoking, 176
setStartAfter()/setStartBefore() methods, 289
setTimeout () method

application, 128

compatibility, 176

demonstrating passing parameters, 177

example, 176-178

in scrol1Msg() function, 152
shape property, 331
show () method, 202-204
showModalDialog() method

compatibility, 178

example, 178-187

main page for, 178-179
showModelessDialog() method

compatibility, 178

example, 178-187

main page, 183-184

parameters, 182, 183
siblingsAbove/siblingsBelow properties, 442-443
size property, 269

HR element object, 272

SELECT element object, 376

text input object, 361
sizeToContent () method, 187
sourcelndex property

compatibility, 44

example, 44-45

values, 45

Index ¢ S

span property, 391
splitText () method, 296-297
src property
FRAME element object, 194
IFRAME element object, 200
IMG element object, 325-328
NN4 layer object, 455-457
srcElement property
compatibility, 420
example, 420-422
as filter, 63
IE4+ event object, 420
using, 421-422
start() method, 276
start property
IMG element object, 329
OL element object, 394
status messages
changes, handling, 151
custom, links with, 150
status property
compatibility, 150
example, 150-152
setting, 152
statusbar property, 134-135
stop () method, 276
string object
charAt () method, 471
charCodeAt () method, 471-473
constructor property, 470
examples highlights, 470
index0f () method, 473
TastIndex0f () method, 474
match() method, 474-476
replace() method, 476-478
search() method, 478
s1ice() method, 479-480
split() method, 480-481
substr() method, 481-482
substring() method, 482-483
tolLowerCase()/toUpperCase() methods, 483-484
toString() method, 484
valueOf () method, 484
strings
reading portion of, 481-483
slicing, 479-480
style property
ccsRule and rule objects, 440
compatibility, 45
example, 45

521

Index ¢ S-T

styleSheet object
addRule() method, 438-439
cssRules property, 436
cssText property, 436-437
deleteRule() method, 439
disabled property, 437
examples highlights, 435
insertRule() method, 439
methods, 438-439
ownerNode property, 437
owningElement property, 437-438
properties, 436-438
removeRule () method, 438-439
rules property, 438
using, 435

submit () method, 341

surroundContents () method
compatibility, 289
example, 290-291
using, 290-291

swapNode () method, 88, 94

systemLanguage property, 404-405

T

tabbing, default order, 46

tabIndex property
compatibility, 45
controlling, 46-47
example, 45-47

TABLE element object
align property, 382
background property, 382
bgColor property, 383
border property, 383
borderColor property, 383-384
borderColorDark/borderColorLight properties,

383-384

caption property, 384
cellPadding property, 384-385
cells property, 385
cellSpacing property, 384-385
dataPageSize property, 385
examples highlights, 382
frame property, 385-387
height property, 387
methods, 390
moveRow () method, 390
properties, 382-390
rows property, 387
rules property, 388-389
tBodies property, 390
width property, 387

tagName property, 47

tags () method
compatibility, 94
example, 95

tagUrn property, 47

target property
compatibility, 430
example, 430-432
form object, 339
NN6+ event object, 430-432
using, 431-432

tBodies property, 390

TBODY element object, 390-391

TD and TH element objects
cellIndex property, 392-393
colSpan property, 393
height property, 393-394
noWrap property, 394
properties, 392-394
rowSpan property, 393
width property, 393-394

text input object
blur() method, 363
defaultValue property, 358-359
event handlers, 365-368
examples highlights, 358
focus () method, 363
form property, 359-360
maxlLength property, 360
methods, 363-365
name property, 360
onBlur event handler, 365-366
onChange event handler, 367-368
onFocus event handler, 365-366
onSelect event handler, 365-366
passing, 362
properties, 358-363
readOnly property, 360-361
select () method, 364-365
size property, 361
value property, 361-363

Text object
appendData () method, 294-296
data method laboratory, 294-296
data property, 293
deleteData() method, 294-296
insertData() method, 294-296
methods, 294-297
replaceData() method, 294-296
splitText () method, 296-297
substringData() method, 294-296

text property
BODY element object, 257-258
TextRange object, 300
text selection, capturing, 251-252
TEXTAREA element object
cols property, 368
createTextRange () method, 368
examples highlights, 358
rows property, 368
scrollHeight property, 43
scrolllLeft property, 43-44
scrollTop property, 43-44
scrollWidth property, 43
TextNode object, 293-297
TextRange object, 38
boundingHeight/boundingWidth properties,
297-299
boundinglLeft/boundingRight properties,
297-299
collapse() method, 300
compareEndPoints () method, 300-303
duplicate() method, 303-304
execCommand () method, 304
expand () method, 304
findText () method, 304-308
getBookmark() method, 308
htmlText property, 299-300
inRange () method, 309
isEqual () method, 309-310
methods, 300-314
move () method, 310
moveEnd() method, 310-311
moveStart () method, 310-311
moveToBookmark() method, 311
moveToETementText () method, 311-312
moveToPoint () method, 312
parentElement () method, 312-313
pasteHTML () method, 313
properties, 297-300
select() method, 314
text property, 300
TextRectangle object
bottom/top properties, 315-316
left/right properties, 315-316
properties, using, 315-316
TFOOT element object, 390-391
THEAD element object, 390-391
timeStamp property
compatibility, 432
example, 432-433
typing speed calculation, 433
using, 432-433

Index ¢ T-V

title property, 48
toolbar property, 134-135
top property
NN4 layer property, 450-452
TextRectangle object, 315-316
toString() method, 291
toUpperCase() method, 363
TR element object
cells property, 391
height property, 391-392
rowIndex property, 392
sectionRowIndex property, 392
type property
[E4+ event object, 422-423
LI element object, 395-396
OL element object, 395
selection object, 291-292
UL element object, 395

U

UL element object, 395

undo buffer, 308

uniquelD property
compatibility, 49
example, 49-50
using, 49-50

URL property, 238-240

urns () method, 95

userAgent property, 398-401

userlanguage property, 404-405

userProfile object
addReadRequest () method, 407
doReadRequest () method, 408
getAttribute() method, 408
methods, 407-408

v

vAT1ign property, 390-391
value property
BUTTON element object, 345
checkbox input object, 348-349
LI element object, 396
radio input object, 355
SELECT element object, 376
text input object, 361-363
vendor/vendorSub properties, 404
visibility property, 457-458
vLink property, 257-258
vlinkColor property, 225-227
vspace property
IFRAME element object, 199
IMG element object, 323

523

524

Index ¢+ W

W
W3C event lab, 54-55
width property
compatibility, 23
document object, 234-235
example, 24
FRAME element object, 191-192
HR element object, 273
IMG element object, 322-323
TABLE element object, 387
TD and TH element objects, 393-394
window object
alert() method, 153
capturetvents() method, 154-155
clearInterval() method, 155
clearTimeout () method, 128, 155-157
clipboardData property, 129
close() method, 157-158
closed property, 128, 129-131
confirm() method, 158
createPopup () method, 159
defaultStatus property, 131-132
dialogArguments property, 132
dialogHeight/dialogWidth properties, 132-133
dialogleft/dialogTop properties, 133
directories property, 134-135
disableExternalCapture() method, 159
enableExternalCapture() method, 159
event handlers, 188-189
examples highlights, 128
execScript() method, 159-160
external property, 135-136
find() method, 160
frames property, 136-138
GetAttention() method, 160
innerHeight/innerWidth properties, 138-139
lTocationbar property, 134-135
menubar property, 134-135
methods, 153-187
moveBy () method, 128, 161-163
moveTo() method, 128, 161-163
navigator property, 139
offscreenBuffering property, 139-140
onAfterPrint event handler, 188
onBeforePrint event handler, 188
onBeforeUnload event handler, 188-189
onerror property, 140-141
onHelp event handler, 189
open() method, 129, 163-165
opener property, 128, 142-144

outerHeight/outerWidth properties, 138-139
overview, 127

pageX0ffset/pageYOffset properties, 144-146
parent property, 146-148

personalbar property, 134-135

print () method, 165-166

prompt () method, 166-167

properties, 129-152
resizeBy()/resizeTo() methods, 167-168
returnValue property, 148

routetvent () method, 168-169
screenlLeft/screenTop properties, 148
screenX/screenY properties, 148-149
scroll() method, 169-171

scrollbars property, 134-135

scrol1By () method, 171-173

scroll1To() method, 171-173
scrol1X/scrollY properties, 149

self property, 149-150

setInterval() method, 128, 173-176
setTimeout () method, 128, 152, 176-178
showModalDialog() method, 178-187
showModelessDialog() method, 178-187
sizeToContent () method, 187

status property, 150-152

statusbar property, 134-135

toolbar property, 134-135

windows

boogie, 161-162

browser, dual-frame, 210

checking, before closing, 130-131
chrome, controlling, 128, 134-135
click events, capturing, 154-155
height/width, setting, 138-139
managing, with scripts, 127

modal dialog box, 127, 128, 178-187
modeless dialog box, 127, 128, 178-187
new, creating, 164-165

offsets, 144-146

pop-up, 127, 201-204

properties, showing, 137, 146-147
resize methods, 168

second, generating, 142-143
subwindow link, 144

write() method

compatibility, 253
example, 253-256

example frameset, 253
listing, 254

placeholder for listing, 255

writelIn() method, 253-256

Index ¢+ X-Z 525

X Y4
X property zIndex property
IE4+ event object, 413-416 above and below properties relationship, 460-461
IMG element object, 329 compatibility, 459
example, 459-461
Y
y property

IE4+ event object, 413-416
IMG element object, 329

Hungry Minds, Inc.
End-User License Agreement

READ THIS. You should carefully read these terms and conditions before opening
the software packet(s) included with this book (“Book”). This is a license agree-
ment (“Agreement”) between you and Hungry Minds, Inc. (“HMI”). By opening the
accompanying software packet(s), you acknowledge that you have read and accept
the following terms and conditions. If you do not agree and do not want to be
bound by such terms and conditions, promptly return the Book and the unopened
software packet(s) to the place you obtained them for a full refund.

1. License Grant. HMI grants to you (either an individual or entity) a nonexclu-
sive license to use one copy of the enclosed software program(s) (collectively,
the “Software”) solely for your own personal or business purposes on a single
computer (whether a standard computer or a workstation component of a
multi-user network). The Software is in use on a computer when it is loaded
into temporary memory (RAM) or installed into permanent memory (hard
disk, CD-ROM, or other storage device). HMI reserves all rights not expressly
granted herein.

2. Ownership. HMI is the owner of all right, title, and interest, including copy-
right, in and to the compilation of the Software recorded on the disk(s) or CD-
ROM (“Software Media”). Copyright to the individual programs recorded on
the Software Media is owned by the author or other authorized copyright
owner of each program. Ownership of the Software and all proprietary rights
relating thereto remain with HMI and its licensers.

3. Restrictions On Use and Transfer.

(@ You may only (i) make one copy of the Software for backup or archival
purposes, or (ii) transfer the Software to a single hard disk, provided
that you keep the original for backup or archival purposes. You may not
(i) rent or lease the Software, (ii) copy or reproduce the Software
through a LAN or other network system or through any computer sub-
scriber system or bulletin-board system, or (iii) modify, adapt, or create
derivative works based on the Software.

(b) You may not reverse engineer, decompile, or disassemble the Software.
You may transfer the Software and user documentation on a permanent
basis, provided that the transferee agrees to accept the terms and condi-
tions of this Agreement and you retain no copies. If the Software is an
update or has been updated, any transfer must include the most recent
update and all prior versions.

4. Restrictions on Use of Individual Programs. You must follow the individual
requirements and restrictions detailed for each individual program in the
Appendix of this Book. These limitations are also contained in the individual
license agreements recorded on the Software Media. These limitations may
include a requirement that after using the program for a specified period of
time, the user must pay a registration fee or discontinue use. By opening the
Software packet(s), you will be agreeing to abide by the licenses and restric-
tions for these individual programs that are detailed in the Appendix and on
the Software Media. None of the material on this Software Media or listed in
this Book may ever be redistributed, in original or modified form, for commer-
cial purposes.

5. Limited Warranty.

@

®)

©

HMI warrants that the Software and Software Media are free from defects
in materials and workmanship under normal use for a period of sixty
(60) days from the date of purchase of this Book. If HMI receives notifica-
tion within the warranty period of defects in materials or workmanship,
HMI will replace the defective Software Media.

HMI AND THE AUTHOR OF THE BOOK DISCLAIM ALL OTHER WAR-
RANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE, WITH RESPECT TO THE SOFTWARE, THE
PROGRAMS, THE SOURCE CODE CONTAINED THEREIN, AND/OR THE
TECHNIQUES DESCRIBED IN THIS BOOK. HMI DOES NOT WARRANT
THAT THE FUNCTIONS CONTAINED IN THE SOFTWARE WILL MEET
YOUR REQUIREMENTS OR THAT THE OPERATION OF THE SOFT-
WARE WILL BE ERROR FREE.

This limited warranty gives you specific legal rights, and you may have
other rights that vary from jurisdiction to jurisdiction.

6. Remedies.

@

HMTI'’s entire liability and your exclusive remedy for defects in materials
and workmanship shall be limited to replacement of the Software Media,
which may be returned to HMI with a copy of your receipt at the follow-
ing address: Software Media Fulfillment Department, Attn.: JavaScript
Examples Bible: The Essential Companion to JavaScript Bible, Hungry
Minds, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, or call
1-800-762-2974. Please allow four to six weeks for delivery. This Limited
Warranty is void if failure of the Software Media has resulted from acci-
dent, abuse, or misapplication. Any replacement Software Media will be
warranted for the remainder of the original warranty period or thirty
(30) days, whichever is longer.

(b) Inno event shall HMI or the author be liable for any damages whatso-
ever (including without limitation damages for loss of business profits,
business interruption, loss of business information, or any other pecu-
niary loss) arising from the use of or inability to use the Book or the
Software, even if HMI has been advised of the possibility of such
damages.

(©) Because some jurisdictions do not allow the exclusion or limitation of
liability for consequential or incidental damages, the above limitation or
exclusion may not apply to you.

. U.S. Government Restricted Rights. Use, duplication, or disclosure of the
Software for or on behalf of the United States of America, its agencies and/or
instrumentalities (the "U.S. Government") is subject to restrictions as stated
in paragraph (¢)(1)(ii) of the Rights in Technical Data and Computer Software
clause of DFARS 252.227-7013, or subparagraphs (c) (1) and (2) of the
Commercial Computer Software - Restricted Rights clause at FAR 52.227-19,
and in similar clauses in the NASA FAR supplement, as applicable.

. General. This Agreement constitutes the entire understanding of the parties
and revokes and supersedes all prior agreements, oral or written, between
them and may not be modified or amended except in a writing signed by both
parties hereto that specifically refers to this Agreement. This Agreement shall
take precedence over any other documents that may be in conflict herewith. If
any one or more provisions contained in this Agreement are held by any court
or tribunal to be invalid, illegal, or otherwise unenforceable, each and every
other provision shall remain in full force and effect.

CD-ROM Installation
Instructions

The files on this CD-ROM can be accessed and used from both Windows 95 (or
later) and Macintosh environments. Some Macintosh program files require
MacOS 8.6 or later, but program listing text files can be opened with any MacOS ver-
sion. For Windows, access the software with My Computer or Windows Explorer.
Macintosh users can access files by using the Finder.

You can open all of the example file listings directly from the CD-ROM, but access
will be faster — and you will be able to experiment with modifying the files more
readily — if you copy the listings to your hard drive. Copy the folder named
Listings from the CD-ROM to any location on your hard drive.

To open the listing scripts on this CD-ROM, you should have a copy of Microsoft
Internet Explorer 5 (or later), Netscape Navigator 6 (or later), or both browsers
installed on your computer.

To run the listing scripts from your browser, open the file named index.html in the
Listings folder. This page provides a table of contents consisting of direct links to
the listings, showing which browsers are compatible with each listing.

Access the Adobe Acrobat (PDF) files for the book’s contents from the CD-ROM. Be
sure to install the index files into your copy of Acrobat to take advantage of full-text
search.

For more details on installing and running the CD-ROM contents, see the Appendix.

	JavaScript™ Examples Bible:
	Praise for Danny GoodmanÌs
	About the Author
	Credits
	Preface
	Organization and Features of This Book
	CD-ROM
	Formatting and Naming Conventions

	Acknowledgments
	Contents at a Glance
	Contents

	Generic HTML Element Objects (Chapter 15)
	Examples Highlights
	Generic Objects
	Properties
	Methods
	Event handlers

	Window and Frame Objects (Chapter 16)
	Examples Highlights
	Window Object
	Properties
	Methods
	Event handlers

	FRAME Element Object
	Properties

	FRAMESET Element Object
	Properties

	IFRAME Element Object
	Properties

	popup Object
	Properties
	Methods

	Window and Frame Objects (Chapter 16)
	Examples Highlights
	Window Object
	Properties
	Methods
	Event handlers

	FRAME Element Object
	Properties

	FRAMESET Element Object
	Properties

	IFRAME Element Object
	Properties

	popup Object
	Properties
	Methods

	Location and History Objects (Chapter 17)
	Examples Highlights
	Location Object
	Properties
	Methods

	History Object
	Properties
	Methods

	The Document and Body Objects (Chapter 18)
	Examples Highlights
	Document Object
	Properties
	Methods
	Event Handlers

	BODY Element Object
	Properties
	Methods
	Event Handlers

	Body Text Objects (Chapter 19)
	Examples Highlights
	FONT Element Object
	Properties

	HR Element Object
	Properties

	MARQUEE Element Object
	Properties

	Methods
	Range Object
	Properties
	Methods

	selection Object
	Properties
	Methods

	Text and TextNode Objects
	Properties
	Methods

	TextRange Object
	Properties
	Methods

	TextRectangle Object
	Properties

	Image, Area, and Map Objects (Chapter 22)
	Examples Highlights
	Image and IMG Element Objects
	Properties
	Event handlers

	AREA Element Object
	Properties

	MAP Element Object
	Property

	The Form and Related Objects (Chapter 23)
	Examples Highlights
	FORM Object
	Properties
	Methods
	Event handlers

	LABEL Element Object
	Property

	Button Objects (Chapter 24)
	Examples Highlights
	The BUTTON Element Object and the Button, Submit, and Reset Input Objects
	Properties
	Methods
	Event handlers

	Checkbox Input Object
	Properties
	Event handlers

	Radio Input Object
	Properties
	Event handlers

	Text-Related Form Objects (Chapter 25)
	Examples Highlights
	Text Input Object
	Properties
	Methods
	Event handlers

	TEXTAREA Element Object
	Properties
	Methods

	Select, Option, and Optgroup Objects (Chapter 26)
	Examples Highlights
	SELECT Element Object
	Properties
	Methods
	Event handlers

	OPTION Element Object
	Properties

	OPTGROUP Element Object
	Properties

	Table and List Objects (Chapter 27)
	Examples Highlights
	TABLE Element Object
	Properties
	Methods

	TBODY, TFOOT, and THEAD Element Objects
	Properties

	COL and COLGROUP Element Objects
	Properties

	TR Element Object
	Properties

	TD and TH Element Objects
	Properties

	OL Element Object
	Properties

	UL Element Object
	Properties

	LI Element Object
	Properties

	Navigator and Other Environment Objects (Chapter 28)
	Examples Highlights
	clientInformation Object (IE4+) and navigator Object (All)
	Properties
	Methods

	screen Object
	Properties

	userProfile Object
	Methods

	Event Objects (Chapter 29)
	Examples Highlights
	NN4 event Object
	Properties

	IE4+ event Object
	Properties

	NN6+ event Object

	Style Sheet Objects (Chapter 30)
	Examples Highlights
	styleSheet Object
	Properties
	Methods

	cssRule and rule Objects
	Properties

	The NN4 Layer Object (Chapter 31)
	Examples Highlights
	NN4 Layer Object
	Properties
	Methods

	String and Number Objects (Chapters 34 and 35)
	Examples Highlights
	String Object
	Properties
	Parsing methods

	Number Object
	Properties
	Methods

	The Array Object (Chapter 37)
	Examples Highlights
	Array Object Methods

	What's on the CD- ROM
	System Requirements
	Disc Contents
	JavaScript listings for Windows and Macintosh text editors
	Electronic versions of the books
	Adobe Acrobat Reader

	Hungry Minds, Inc. End- User License Agreement

	CD-ROM Installation Instructions

