
The essential companion to your JavaScript Bible . . .
Even the giant 4th Edition and massive Gold Edition of the JavaScript Bible couldn’t hold all of the superior
knowledge and experience of scripting guru Danny Goodman. Examples sections from reference Parts III and IV
appeared only on the CD-ROMs of those two books. Now, in this JavaScript Examples Bible, we bring you the
Document Object Model (DOM) and core JavaScript language examples sections in their entirety in convenient
form — plus new introductory sections by Danny to guide you to the most important concepts and examples in
each chapter.

Inside, you’ll find ready-to-run examples
and step-by-step guides
• Interact with DOM and JavaScript core language terminology

in real time with Danny’s exclusive workbench: The Evaluator

• Experiment with proprietary and industry-standard DOM
features in Internet Explorer 5.x and Netscape Navigator 6

• See the latest object-detection coding techniques to
accommodate a wide range of browsers today and tomorrow

• Learn how to apply language specifics to real application
challenges

• Gain insight from extensive code listings and Danny’s
analysis of coding strategy and design decisions

Shelving Category:
Web Development/JavaScript

Reader Level:
Beginning to Advanced

System Requirements:
PC running Windows 95 or later, Windows NT 4
or later; Power Macintosh running System 7.6 or
later. See Appendix A for details and complete
system requirements. ISBN 0-7645-4855-7

$29.99 USA
$44.99 Canada
£24.99 UK incl. VAT

JavaScript
™Exam

ples Bible

Immerse yourself in
a JavaScript master’s
code examples and
analysis

Learn JavaScript and
DOM behavior via
interactive labs

Complete your
JavaScript Bible
library with this
invaluable
supplement JavaScript

Examples
Bible

Danny Goodman

The perfect complement to your 4th or
Gold Edition JavaScript Bible

,!7IA7G4-feiffa!:p;M;t;t;T
CD-ROM
INSIDE!
Over 300 Ready-to-Run
Example Scripts and More
on CD-ROM!

w w w . h u n g r y m i n d s . c o m

100%
O N E H U N D R E D P E R C E N T

C O M P R E H E N S I V E
A U T H O R I T A T I V E
W H A T Y O U N E E D
O N E H U N D R E D P E R C E N T

CD-ROM includes:
• A searchable e-version of this book

• Over 300 ready-to-run scripts from the
JavaScript Bible, Gold Edition

JavaScript
Examples

Bible
GOODMAN

Author of the bestselling JavaScript Bible

*85555-AJEEFb The Essential Companion
to JavaScript™ Bible

T
he E

ssential C
om

panion to JavaScript
™B

ible
Hundreds of

Example Scripts
on CD-ROM!

™™

Apply
concepts
to real

applications

Experiment in
interactive labs

100%
C O M P R E H E N S I V E

4855-7 Cover 6/19/01 9:16 AM Page 1

Praise for Danny Goodman’s JavaScript Bible
“JavaScript Bible is the definitive resource in JavaScript programming. I am never

more than three feet from my copy.”

— Steve Reich, CEO, PageCoders

“This book is a must-have for any Web developer or programmer.”

— Thoma Lile, President, Kanis Technologies, Inc.

“Outstanding book. I would recommend this book to anyone interested in learning to

develop advanced Web sites. Mr. Goodman did an excellent job of organizing this

book and writing it so that even a beginning programmer can understand it.”

— Jason Hensley, Director of Internet Services, NetVoice, Inc.

“Goodman is always great at delivering clear and concise technical books!”

— Dwayne King, Chief Technology Officer, White Horse

“JavaScript Bible is well worth the money spent!”

— Yen C.Y. Leong, IT Director, Moo Mooltimedia, a member of SmartTransact Group

“A must-have book for any Internet developer.”

— Uri Fremder, Senior Consultant, TopTier Software

“I love this book! I use it all the time, and it always delivers. It’s the only JavaScript

book I use!”

— Jason Badger, Web Developer

“Whether you are a professional or a beginner, this is a great book to get.”

— Brant Mutch, Web Application Developer, Wells Fargo Card Services, Inc.

“I never thought I’d ever teach programming before reading your book [JavaScript
Bible]. It’s so simple to use — the Programming Fundamentals section brought it all

back! Thank you for such a wonderful book, and for breaking through my program-

ming block!”

— Susan Sann Mahon, Certified Lotus Instructor, TechNet Training

“I continue to get so much benefit from JavaScript Bible. What an amazing book! Danny

Goodman is the greatest!”

— Patrick Moss

“Danny Goodman is very good at leading the reader into the subject. JavaScript Bible
has everything we could possibly need.”

— Philip Gurdon

4855-7 FM.F 6/26/01 8:33 AM Page i

“An excellent book that builds solidly from whatever level the reader is at. A book that

is both witty and educational.”

— Dave Vane

“I continue to use the book on a daily basis and would be lost without it.”

— Mike Warner, Founder, Oak Place Productions

“JavaScript Bible is by far the best JavaScript resource I’ve ever seen (and I’ve seen

quite a few).”

— Robert J. Mirro, Independent Consultant, RJM Consulting

4855-7 FM.F 6/26/01 8:33 AM Page ii

JavaScript™

Examples Bible:
The Essential
Companion to

JavaScript™ Bible

4855-7 FM.F 6/26/01 8:33 AM Page iii

4855-7 FM.F 6/26/01 8:33 AM Page iv

JavaScript™

Examples Bible:
The Essential
Companion to

JavaScript ™ Bible

Danny Goodman

Best-Selling Books • Digital Downloads • e-Books • Answer Networks • e-Newsletters • Branded Web Sites • e-Learning

Indianapolis, IN ✦ Cleveland, OH ✦ New York, NY

4855-7 FM.F 6/26/01 8:33 AM Page v

JavaScript™ Examples Bible: The Essential
Companion to JavaScript™ Bible

Published by:
Hungry Minds, Inc.
909 Third Avenue
New York, NY 10022
www.hungryminds.com
Copyright © 2001 Danny Goodman. All rights
reserved. No part of this book, including interior
design, cover design, and icons, may be reproduced
or transmitted in any form, by any means
(electronic, photocopying, recording, or otherwise)
without the prior written permission of the
publisher.

Library of Congress Control No.: 2001091964

ISBN: 0-7645-4855-7

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/RY/QX/QR/IN

Distributed in the United States by
Hungry Minds, Inc.

Distributed by CDG Books Canada Inc. for Canada;
by Transworld Publishers Limited in the United
Kingdom; by IDG Norge Books for Norway; by IDG
Sweden Books for Sweden; by IDG Books Australia
Publishing Corporation Pty. Ltd. for Australia and
New Zealand; by TransQuest Publishers Pte Ltd. for
Singapore, Malaysia, Thailand, Indonesia, and Hong
Kong; by Gotop Information Inc. for Taiwan; by ICG
Muse, Inc. for Japan; by Intersoft for South Africa;
by Eyrolles for France; by International Thomson
Publishing for Germany, Austria, and Switzerland;
by Distribuidora Cuspide for Argentina; by LR
International for Brazil; by Galileo Libros for
Chile; by Ediciones ZETA S.C.R. Ltda. for Peru;

by WS Computer Publishing Corporation, Inc., for
the Philippines; by Contemporanea de Ediciones
for Venezuela; by Express Computer Distributors
for the Caribbean and West Indies; by Micronesia
Media Distributor, Inc. for Micronesia; by Chips
Computadoras S.A. de C.V. for Mexico; by Editorial
Norma de Panama S.A. for Panama; by American
Bookshops for Finland.

For general information on Hungry Minds’ products
and services please contact our Customer Care
department; within the U.S. at 800-762-2974, outside
the U.S. at 317-572-3993 or fax 317-572-4002.

For sales inquiries and resellers information,
including discounts, premium and bulk quantity
sales and foreign language translations please
contact our Customer Care department at
800-434-3422, fax 317-572-4002 or write to Hungry
Minds, Inc., Attn: Customer Care department, 10475
Crosspoint Boulevard, Indianapolis, IN 46256.

For information on licensing foreign or domestic
rights, please contact our Sub-Rights Customer
Care department at 212-884-5000.

For information on using Hungry Minds’ products
and services in the classroom or for ordering
examination copies, please contact our Educational
Sales department at 800-434-2086 or fax
317-572-4005.

For press review copies, author interviews, or
other publicity information, please contact our
Public Relations department at 317-572-3168 or fax
317-572-4168.

For authorization to photocopy items for
corporate, personal, or educational use, please
contact Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, or fax 978-750-4470.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND AUTHOR HAVE USED THEIR
BEST EFFORTS IN PREPARING THIS BOOK. THE PUBLISHER AND AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS BOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. THERE ARE NO WARRANTIES WHICH
EXTEND BEYOND THE DESCRIPTIONS CONTAINED IN THIS PARAGRAPH. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE
ACCURACY AND COMPLETENESS OF THE INFORMATION PROVIDED HEREIN AND THE OPINIONS
STATED HEREIN ARE NOT GUARANTEED OR WARRANTED TO PRODUCE ANY PARTICULAR RESULTS,
AND THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY
INDIVIDUAL. NEITHER THE PUBLISHER NOR AUTHOR SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR
ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL,
CONSEQUENTIAL, OR OTHER DAMAGES.

Trademarks: JavaScript is a registered trademark or trademark of Sun Microsystems, Inc. All other
trademarks are property of their respective owners. Hungry Minds, Inc., is not associated with any product
or vendor mentioned in this book.

is a trademark of Hungry Minds, Inc.

4855-7 FM.F 6/26/01 8:33 AM Page vi

About the Author
Danny Goodman is the author of numerous critically acclaimed and bestselling

books, including The Complete HyperCard Handbook, Danny Goodman’s AppleScript
Handbook, and Dynamic HTML: The Definitive Reference. He is a renowned authority

and expert teacher of computer scripting languages and is widely known for his

“JavaScript Apostle” articles in Netscape’s ViewSource online developer newsletter.

His writing style and pedagogy continue to earn praise from readers and teachers

around the world. To help keep his finger on the pulse of real-world programming

challenges, Goodman frequently lends his touch as consulting programmer and

designer to leading-edge World Wide Web and intranet sites from his home base in

the San Francisco area.

4855-7 FM.F 6/26/01 8:33 AM Page vii

Credits
Acquisitions Editor

Sharon Cox

Project Editor

Neil Romanosky

Technical Editor

David Wall

Copy Editors

Jerelind Charles

Victoria Lee O’Malley

Editorial Manager

Colleen Totz

Project Coordinator

Regina Snyder

Graphics and Production Specialists

Gabriele McCann

Betty Schulte

Jeremey Unger

Erin Zeltner

Quality Control Technicians

Laura Albert

David Faust

Andy Hollandbeck

Permissions Editor

Laura Moss

Media Development Specialist

Greg Stephens

Media Development Coordinator

Marisa Pearman

Book Designer

Kurt Krames

Proofreading and Indexing

TECHBOOKS Production Services

Cover Illustrator

Kate Shaw

4855-7 FM.F 6/26/01 8:33 AM Page viii

Preface

Acommon thread running throughout most of my computer-book–writing

career is that I tend to write a book I wish I had had in order to learn a new

technology in the first place. Because I must write that book without the benefit of

existing models, I begin by doing my best to master the technology, and then I write

the book to help other newcomers learn as much as I did, but more quickly and

with less pain, anguish, and confusion. To accomplish that goal, I write as much

content as I feel is necessary to cover the topic in the depth that my readers

require.

When I started on what became the 4th and Gold editions of the JavaScript Bible,

there were models to follow (my previous three editions) plus a substantial amount

of brand new material, much of which had not yet been documented anywhere. I

also assumed the responsibility of integrating the frequently conflicting and com-

peting philosophies of the ways the JavaScript language is applied to a variety of

browser brands and versions. Resolving these conflicts is a challenge that I face in

my own programming work with clients, and I take great pleasure in sharing my

solutions and approaches with other programmers floating in the same boat.

As my editor and I began counting the pages I had assembled for these new edi-

tions, we discovered that the number of pages far outstripped the printer’s binding

capabilities, even in a thicker volume made possible by using a hard cover (the

Gold edition). Certainly not all of the words that I had written were so precious that

some of them couldn’t be cut. But we were hundreds of pages beyond capacity. To

cut that much content would have forced exclusion of coverage of language or doc-

ument object model vocabulary.

Fortunately, as had been done in previous editions, the plan for the new editions

included Adobe Acrobat versions of the books on the accompanying CD-ROM.

Although a significant compromise to ease of reading, it was possible to move some

of the book’s content to the CD-ROM and leave the most important parts on the

printed page. For the softcover 4th edition, reference chapters covering less-used or

advanced subjects were pulled from print; for the hardcover Gold edition, which

was longer and targeted more for professional scripters, the advanced chapters

were put back into the book (along with 15 additional chapters for that edition),

and the JavaScript tutorial was exiled to the CD-ROM.

But even after making the difficult decisions about which chapters could go to the

CD-ROMs, the page counts for both volumes were still excessive. Something else —

something big — had to go. The remaining bundle that could free us from the page

4855-7 FM.F 6/26/01 8:33 AM Page ix

x JavaScript Example Bible: The Essential Companion to JavaScript Bible

count devil was all of the Example sections from the reference vocabulary. By being

nondiscriminatory about these extractions — that is, extracting all of them instead

of only selected sections — we could convey to readers a consistent organizational

model.

In the end, the extracted Example sections from Parts III and IV found their way into

Appendix F on the CD-ROMs of both editions of the larger tome. I knew that as a

reader of my own books (and one of a certain age at that) I would not enjoy having

to flip back and forth between book and screen to refresh my memory about a term

and see it in action. A more pleasing solution for many JavaScript Bible readers

would be a separate volume containing a printed version of the Examples sections.

The new volume would act as a companion to both the 4th and Gold editions of the

JavaScript Bible.

Using Appendix F as a starting point, I divided the content into chapters along the

same lines as the JavaScript Bible reference sections. This also gave me a chance to

study the examples for each chapter with fresh eyes. The examples haven’t

changed, but I had the opportunity to direct the reader’s attention to examples that

I thought were particularly helpful in mastering a document-level or core language

object. Thus, each chapter of this book begins with a scene-setting introduction and

a list of highlights to which you should pay special attention. Also, since you will

likely be scanning through the book from time to time, I added many illustrations of

the pages produced from the code listings. These figures will help you visualize what

important listing code does when the page is loaded into a browser.

Now you know the story behind the JavaScript Examples Bible. Some budget-

conscious readers may not be thrilled to pay more for what appears to be a printout

of content they already own in electronic format. If so, then please continue using

the Acrobat version. But if, like me, you enjoy the portability and visual scanability

of a printed work, then keeping this book near your JavaScript Bible volume will

enhance your learning and research activities.

Organization and Features of This Book
Almost all chapters in this book correspond to similarly named chapters in Parts III

and IV from the JavaScript Bible 4th and Gold editions. Although chapters in this

book are consecutively numbered starting with Chapter 1, each chapter title

includes a reference to the corresponding chapter number from the big books. For

example, Chapter 1 of this book provides the Examples sections for terms related

to generic HTML elements. That subject is covered in Chapter 15 of the big books.

There is not always a one-to-one relationship between chapters. Several chapters of

the big books have no Examples sections in them because sample code is embed-

ded as part of the big book text. Therefore, don’t be surprised to see gaps in pointers

to JavaScript Bible reference chapters.

4855-7 FM.F 6/26/01 8:33 AM Page x

xiPreface

Listing numbers are derived from their original order in what had been planned as a

contiguous volume. Such listing numbers are the ones referred to in the “On the

CD-ROM” pointers throughout Parts III and IV of the big books. This should help

you locate an example’s listing when you reach one of those pointers in the

JavaScript Bible. Notice, too, that the big books’ running footers with property,

method, and event handler names appear in this book, too. Therefore, if you should

be looking at an example listing of this book and wish to consult the more detailed

discussion of the subject in the large book, turn to the corresponding big book

chapter and locate the corresponding terminology within the object’s chapter.

Many examples throughout this book refer to The Evaluator. This Web page applica-

tion is described at length in Chapter 13 of the big books. You can find the file for

The Evaluator within the Listings\Chap13 folder on the CD-ROM for either the big

book or this book.

CD-ROM
The accompanying CD-ROM contains the complete set of over 300 ready-to-run

HTML documents from the JavaScript Bible, Gold Edition. These include listings for

both the Examples sections in this book and all other listings from the Gold edition.

You can run these examples with your JavaScript-enabled browser, but be sure to

use the index.html page in the Listings folder as a gateway to running the listings.

This page shows you the browsers that are compatible with each example listing.

The Quick Reference from Appendix A of the big books is in .pdf format on the

CD-ROM for you to print out and assemble as a handy reference, if desired. Adobe

Acrobat Reader is included on the CD-ROM so that you can read this .pdf file. Finally,

the text of the book is in a .pdf file format on the CD-ROM for easy searching.

Formatting and Naming Conventions
The script listings and words in this book are presented in a monospace font to

set them apart from the rest of the text. Because of restrictions in page width, lines

of script listings may, from time to time, break unnaturally. In such cases, the

remainder of the script appears in the following line, flush with the left margin of

the listing, just as they would appear in a text editor with word wrapping turned on.

If these line breaks cause you problems when you type a script listing into a docu-

ment yourself, I encourage you to access the corresponding listing on the CD-ROM

to see how it should look when you type it.

To make it easier to spot in the text when a particular browser and browser version

is required, most browser references consist of a two-letter abbreviation and a ver-

sion number. For example, IE5 means Internet Explorer 5 for any operating system;

4855-7 FM.F 6/26/01 8:33 AM Page xi

xii JavaScript Example Bible: The Essential Companion to JavaScript Bible

NN6 means Netscape Navigator 6 for any operating system. If a feature is intro-

duced with a particular version of browser and is supported in subsequent ver-

sions, a plus symbol (+) follows the number. For example, a feature marked IE4+

indicates that Internet Explorer 4 is required at a minimum, but the feature is also

available in IE5, IE5.5, and so on. Occasionally, a feature or some highlighted behav-

ior applies to only one operating system. For example, a feature marked

IE4+/Windows means that it works only on Windows versions of Internet Explorer 4

or later. As points of reference, the first scriptable browsers were NN2,

IE3/Windows, and IE3.01/Macintosh. Moreover, IE3 for Windows can be equipped

with one of two versions of the JScript.dll file. A reference to the earlier version

is cited as IE3/J1, while the later version is cited as IE3/J2. You will see this notation

primarily in the compatibility charts throughout the reference chapters.

4855-7 FM.F 6/26/01 8:33 AM Page xii

Acknowledgments

Because most of the content of this volume was created as part of the

JavaScript Bible, the acknowledgments that you see in your copy of the 4th or

Gold editions apply equally to this volume. But this JavaScript Examples Bible did

not come into being without additional effort on the part of dedicated Hungry

Minds, Inc., staff. In particular, I want to thank Sharon Cox for turning my idea into a

title, and editor Neil Romanosky, who, even after marshaling over 4,000 pages of

content for the 4th and Gold editions, took charge of this volume to maintain conti-

nuity across the entire series. Thanks, too, to my friends and family, who certainly

must have grown weary of my tales of reaching schedule milestones on this project

not once, not twice, but three times over many, many months.

4855-7 FM.F 6/26/01 8:33 AM Page xiii

Contents at a Glance
Preface. ix

Acknowledgments . xiii

Chapter 1: Generic HTML Element Objects (Chapter 15) 1

Chapter 2: Window and Frame Objects (Chapter 16) 127

Chapter 3: Location and History Objects (Chapter 17) 205

Chapter 4: The Document and Body Objects (Chapter 18) 223

Chapter 5: Body Text Objects (Chapter 19) . 265

Chapter 6: Image, Area, and Map Objects (Chapter 22) 317

Chapter 7: The Form and Related Objects (Chapter 23) 335

Chapter 8: Button Objects (Chapter 24) . 343

Chapter 9: Text-Related Form Objects (Chapter 25) 357

Chapter 10: Select, Option, and Optgroup Objects (Chapter 26) 369

Chapter 11: Table and List Objects (Chapter 27) 381

Chapter 12: Navigator and Other Environment Objects (Chapter 28) 397

Chapter 13: Event Objects (Chapter 29) . 409

Chapter 14: Style Sheet Objects (Chapter 30) . 435

Chapter 15: The NN4 Layer Object (Chapter 31) 441

Chapter 16: String and Number Objects (Chapters 34 and 35) 469

Chapter 17: The Array Object (Chapter 37) . 487

Appendix: What’s on the CD-ROM . 497

Index . 499

End-User License Agreement . 528

CD-ROM Installation Instructions . 532

4855-7 FM.F 6/26/01 8:33 AM Page xiv

Contents
Preface. ix

Acknowledgments . xiii

Chapter 1: Generic HTML Element Objects (Chapter 15) 1
Examples Highlights . 1
Generic Objects . 3

Properties . 3
Methods . 50
Event handlers . 95

Chapter 2: Window and Frame Objects (Chapter 16) 127
Examples Highlights . 128
Window Object . 129

Properties . 129
Methods . 153
Event handlers . 188

FRAME Element Object . 190
Properties . 190

FRAMESET Element Object . 194
Properties . 194

IFRAME Element Object . 198
Properties . 198

popup Object . 201
Properties . 201
Methods . 202

Chapter 3: Location and History Objects (Chapter 17) 205
Examples Highlights . 205
Location Object . 206

Properties . 206
Methods . 216

History Object . 218
Properties . 218
Methods . 219

4855-7 FM.F 6/26/01 8:33 AM Page xv

xvi JavaScript Example Bible: The Essential Companion to JavaScript Bible

Chapter 4: The Document and Body Objects (Chapter 18) 223
Examples Highlights . 224
Document Object . 224

Properties . 224
Methods . 243
Event Handlers . 256

BODY Element Object . 257
Properties . 257
Methods . 261
Event Handlers . 262

Chapter 5: Body Text Objects (Chapter 19) 265
Examples Highlights . 266
FONT Element Object . 266

Properties . 266
HR Element Object . 269

Properties . 269
MARQUEE Element Object . 273

Properties . 273
Methods . 276
Range Object . 276

Properties . 276
Methods . 279

selection Object . 291
Properties . 291
Methods . 292

Text and TextNode Objects . 293
Properties . 293
Methods . 294

TextRange Object . 297
Properties . 297
Methods . 300

TextRectangle Object . 315
Properties . 315

Chapter 6: Image, Area, and Map Objects (Chapter 22) 317
Examples Highlights . 317
Image and IMG Element Objects . 318

Properties . 318
Event handlers . 329

AREA Element Object . 331
Properties . 331

MAP Element Object . 331
Property . 331

4855-7 FM.F 6/26/01 8:33 AM Page xvi

xviiContents

Chapter 7: The Form and Related Objects (Chapter 23) 335
Examples Highlights . 335
FORM Object . 336

Properties . 336
Methods . 340
Event handlers . 341

LABEL Element Object . 342
Property . 342

Chapter 8: Button Objects (Chapter 24) 343
Examples Highlights . 343
The BUTTON Element Object and the Button, Submit, and

Reset Input Objects . 344
Properties . 344
Methods . 345
Event handlers . 346

Checkbox Input Object . 347
Properties . 347
Event handlers . 349

Radio Input Object . 352
Properties . 352
Event handlers . 355

Chapter 9: Text-Related Form Objects (Chapter 25) 357
Examples Highlights . 358
Text Input Object . 358

Properties . 358
Methods . 363
Event handlers . 365

TEXTAREA Element Object . 368
Properties . 368
Methods . 368

Chapter 10: Select, Option, and Optgroup Objects (Chapter 26) . . 369
Examples Highlights . 370
SELECT Element Object . 370

Properties . 370
Methods . 376
Event handlers . 377

OPTION Element Object . 378
Properties . 378

OPTGROUP Element Object . 378
Properties . 378

4855-7 FM.F 6/26/01 8:34 AM Page xvii

xviii JavaScript Example Bible: The Essential Companion to JavaScript Bible

Chapter 11: Table and List Objects (Chapter 27) 381
Examples Highlights . 382
TABLE Element Object . 382

Properties . 382
Methods . 390

TBODY, TFOOT, and THEAD Element Objects 390
Properties . 390

COL and COLGROUP Element Objects . 391
Properties . 391

TR Element Object . 391
Properties . 391

TD and TH Element Objects . 392
Properties . 392

OL Element Object . 394
Properties . 394

UL Element Object . 395
Properties . 395

LI Element Object . 395
Properties . 395

Chapter 12: Navigator and Other Environment Objects
(Chapter 28) . 397

Examples Highlights . 398
clientInformation Object (IE4+) and navigator Object (All) 398

Properties . 398
Methods . 405

screen Object . 407
Properties . 407

userProfile Object . 407
Methods . 407

Chapter 13: Event Objects (Chapter 29) 409
Examples Highlights . 410
NN4 event Object . 410

Properties . 410
IE4+ event Object . 413

Properties . 413
NN6+ event Object . 423

Chapter 14: Style Sheet Objects (Chapter 30) 435
Examples Highlights . 435
styleSheet Object . 436

Properties . 436
Methods . 438

cssRule and rule Objects . 440
Properties . 440

4855-7 FM.F 6/26/01 8:34 AM Page xviii

xixContents

Chapter 15: The NN4 Layer Object (Chapter 31) 441
Examples Highlights . 441
NN4 Layer Object . 442

Properties . 442
Methods . 462

Chapter 16: String and Number Objects (Chapters 34 and 35) . . . 469
Examples Highlights . 470
String Object . 470

Properties . 470
Parsing methods . 471

Number Object . 484
Properties . 484
Methods . 485

Chapter 17: The Array Object (Chapter 37) 487
Examples Highlights . 487
Array Object Methods . 488

Appendix: What’s on the CD-ROM . 497

Index . 499

End-User License Agreement . 528

CD-ROM Installation Instructions . 532

4855-7 FM.F 6/26/01 8:34 AM Page xix

4855-7 FM.F 6/26/01 8:34 AM Page xx

Generic HTML
Element Objects
(Chapter 15)

Document object models for both IE4+ and NN6 expose all

HTML elements as scriptable objects. A beneficial

byproduct of this concept is that object model designers find it

easier to implement their models according to genuinely object-

oriented principles. (In truth, modern HTML and DOM industry

standards encourage browser makers to think in object-oriented

terms anyway.) The object-oriented principle most applicable to

the way we work with objects is that all HTML elements inherit

properties, methods, and event handlers from a generic (and

unseen) HTML element object. Thus, specifications for any

HTML element object start with those of the generic object, and

then pile on element-specific features, such as the src property

of an IMG element. This chapter deals almost exclusively with

the properties, methods, and event handlers that all HTML

elements have in common.

Examples Highlights
✦ Modern object models and the scripting world now pay

much attention to the containment hierarchy of ele-

ments and text nodes in a document. The function

shown in Listing 15-3 demonstrates how vital the

childNodes property is to scripts that need to inspect

(and then perhaps modify) page content.

✦ Element containment is also at the forefront in Listing

15-10, where W3C DOM syntax demonstrates how to use

the firstChild and lastChild properties, plus the

insertBefore(), appendChild(), and replaceChild()
methods, to change portions of page content on the fly.

✦ In the IE/Windows world, data binding can be a powerful

tool that requires only tiny amounts of your code in a

page. You can get a good sense of the possibilities in

the extended examples for the dataFld and related

properties.

11C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding
element containment
relationships

Common properties
and methods of all
HTML element objects

Event handlers of all
element objects

✦ ✦ ✦ ✦

4855-7 ch01.F 6/26/01 8:34 AM Page 1

2 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

✦ Follow the steps for the disabled property to see how form controls can be

disabled in IE4+ and NN6. IE5.5 lets you disable any element on the page, as

you can witness in real time when you follow the example steps.

✦ Long-time IE scripters know the powers of the innerHTML and innerText
properties. Listing 15-11 solidifies by example the precise differences between

the two related properties. Only one of these properties, innerHTML, is

implemented in NN6.

✦ Grasping the details of properties that govern element positions and dimen-

sions is not easy, as noted in the JavaScript Bible text. But you can work through

the examples of the client-, offset-, and scroll-related properties for IE4+ and the

offset-related properties in NN6 to help you visualize what these properties con-

trol. If you are scripting cross-browser applications, be sure to work through the

offset-related properties in both browsers to compare the results.

✦ Compare the IE5+ attachEvent() method and NN6 addEventListener()
method for modern ways to assign event handlers to element objects.

Although the method names are different, the two work identically.

✦ Observe how the getAttribute() method returns an object’s property value

when the property name is a string and the name is the same as an assigned

element attribute name. The getAttribute() method is the prescribed way

to retrieve property values according to the W3C DOM.

✦ You can see how the getElementsByTagName() method returns an array of

nested elements with a particular tag. This is a great way, for example, to get a

one-dimensional array of all cells within a table.

✦ Spend time comparing how the various insert- and replace-related methods

operate from different points of view. In the IE world, most operate on the cur-

rent element; in the W3C DOM world, the methods operate on child nodes of

the current element.

✦ For IE5+/Windows, check out the way dynamic properties are managed

through the getExpression(), setExpression(), and recalc() methods.

Listing 15-32 demonstrates a neat graphical clock that employs these methods.

✦ IE5+/Windows provides a number of event handlers, such as onBeforeCopy,

onBeforePaste, onCopy, onCut, and onPaste that let scripts manage the

specific information preserved in the clipboard. These event handlers can

also be used with the onContextMenu event handler to facilitate custom

context menus.

✦ Another set of IE5+/Windows event handlers provides excellent control over

user dragging and dropping of elements on a page. Listing 15-37 is particularly

interesting in this regard.

✦ Listing 15-41 shows a cross-browser laboratory for understanding the three

keyboard events and how to get key and character information from the event.

You see event-handling that works with IE4+, NN4, and NN6 event models.

✦ Numerous mouse-related events belong to all HTML elements. Listings 15-42

and 15-43 demonstrate simplified image swapping and element dragging.

4855-7 ch01.F 6/26/01 8:34 AM Page 2

3Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

Generic Objects
Properties

accessKey

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
When you load the script in Listing 15-1, adjust the height of the browser window

so that you can see nothing below the second dividing rule. Enter any character

into the Settings portion of the page and press Enter. (The Enter key may cause

your computer to beep.) Then hold down the Alt (Windows) or Ctrl (Mac) key while

pressing the same keyboard key. The element from below the second divider

should come into view.

Listing 15-1: Controlling the accessKey Property

<HTML>
<HEAD>
<TITLE>accessKey Property</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function assignKey(type, elem) {

if (window.event.keyCode == 13) {
switch (type) {

case “button”:
document.forms[“output”].access1.accessKey = elem.value
break

case “text”:
document.forms[“output”].access2.accessKey = elem.value
break

case “table”:
document.all.myTable.accessKey = elem.value

}
return false

}
}
</SCRIPT>
</HEAD>
<BODY>
<H1>accessKey Property Lab</H1>
<HR>
Settings:

Continued

elementObject.accessKey

4855-7 ch01.F 6/26/01 8:34 AM Page 3

4 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-1 (continued)

<FORM NAME=”input”>
Assign an accessKey value to the Button below and press Return:
<INPUT TYPE=”text” SIZE=2 MAXLENGTH=1
onKeyPress=”return assignKey(‘button’, this)”>

Assign an accessKey value to the Text Box below and press Return:
<INPUT TYPE=”text” SIZE=2 MAXLENGTH=1
onKeyPress=”return assignKey(‘text’, this)”>

Assign an accessKey value to the Table below (IE5.5 only) and press Return:
<INPUT TYPE=”text” SIZE=2 MAXLENGTH=1
onKeyPress=”return assignKey(‘table’, this)”>
</FORM>

Then press Alt (Windows) or Control (Mac) + the key.

<I>Size the browser window to view nothing lower than this line.</I>
<HR>

<FORM NAME=”output” onSubmit=”return false”>
<INPUT TYPE=”button” NAME=”access1” VALUE=”Standard Button”>
<P></P>
<INPUT TYPE=”text” NAME=”access2”>
<P></P>
</FORM>
<TABLE ID=”myTable” CELLPADDING=”10” BORDER=2>
<TR>
<TH>Quantity<TH>Description<TH>Price
</TR>
<TBODY BGCOLOR=”red”>
<TR>

<TD WIDTH=100>4<TD>Primary Widget<TD>$14.96
</TR>
<TR>

<TD>10<TD>Secondary Widget<TD>$114.96
</TR>
</TBODY>
</TABLE>

</BODY>
</HTML>

In IE5, the keyboard combination may bring focus to the input field. This anomalous
behavior does not affect the normal script setting of the accessKey property.

Note

elementObject.accessKey

4855-7 ch01.F 6/26/01 8:34 AM Page 4

5Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

all

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

all collection. Enter the following statements one at a time into the lower text box,

and review the results in the textarea for each.

document.all
myTable.all
myP.all

If you encounter a numbered element within a collection, you can explore that

element to see which tag is associated with it. For example, if one of the results for

the document.all collection says document.all.8=[object], enter the following

statement into the topmost text box:

document.all[8].tagName

attributes

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to examine the values of

the attributes array for some of the elements in that document. Enter each of the

following expressions into the lower text field, and see the array contents in the

Results textarea for each:

document.body.attributes
document.getElementById(“myP”).attributes
document.getElementById(“myTable”).attributes

If you have both NN6 and IE5, compare the results you get for each of these

expressions. To view the properties of a single attribute in IE5/Windows, enter the

following statement into the bottom text field:

document.getElementById(“myP”).attributes[“class”]

For NN6 and IE5/Mac, use the W3C DOM syntax:

document.getElementById(“myP”).attributes.getNamedItem(“class”)

elementObject.attributes

4855-7 ch01.F 6/26/01 8:34 AM Page 5

6 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

behaviorUrns

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
The following function is embedded within a more complete example of

IE/Windows HTML behaviors (Listing 15-19 in this chapter). It reports the length of

the behaviorUrns array and shows — if the values are returned — the URL of the

attached behavior.

function showBehaviors() {
var num = document.all.myP.behaviorUrns.length
var msg = “The myP element has “ + num + “ behavior(s). “
if (num > 0) {

msg += “Name(s): \r\n”
for (var i = 0; i < num; i++) {

msg += document.all.myP.behaviorUrns[i] + “\r\n”
}

}
alert(msg)

}

canHaveChildren

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Listing 15-2 uses color to demonstrate the difference between an element that can

have children and one that cannot. The first button sets the color style property of

every visible element on the page to red. Thus, elements (including the normally

non-childbearing ones such as HR and INPUT) are affected by the color change.

But if you reset the page and click the largest button, only those elements that can

contain nested elements receive the color change.

Listing 15-2: Reading the canHaveChildren Property

<HTML>
<HEAD>
<TITLE>canHaveChildren Property</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>

elementObject.canHaveChildren

4855-7 ch01.F 6/26/01 8:34 AM Page 6

7Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

function colorAll() {
for (var i = 0; i < document.all.length; i++) {

document.all[i].style.color = “red”
}

}

function colorChildBearing() {
for (var i = 0; i < document.all.length; i++) {

if (document.all[i].canHaveChildren) {
document.all[i].style.color = “red”

}
}

}
</SCRIPT>
</HEAD>
<BODY>
<H1>canHaveChildren Property Lab</H1>
<HR>
<FORM NAME=”input”>
<INPUT TYPE=”button” VALUE=”Color All Elements” onClick=”colorAll()”>

<INPUT TYPE=”button” VALUE=”Reset” onClick=”history.go(0)”>

<INPUT TYPE=”button” VALUE=”Color Only Elements That Can Have Children”
onClick=”colorChildBearing()”>
</FORM>

<HR>

<FORM NAME=”output”>
<INPUT TYPE=”checkbox” CHECKED>Your basic checkbox
<P></P>
<INPUT TYPE=”text” NAME=”access2” VALUE=”Some textbox text.”>
<P></P>
</FORM>
<TABLE ID=”myTable” CELLPADDING=”10” BORDER=2>
<TR>
<TH>Quantity<TH>Description<TH>Price
</TR>
<TBODY>
<TR>

<TD WIDTH=100>4<TD>Primary Widget<TD>$14.96
</TR>
<TR>

<TD>10<TD>Secondary Widget<TD>$114.96
</TR>
</TBODY>
</TABLE>

</BODY>
</HTML>

elementObject.canHaveChildren

4855-7 ch01.F 6/26/01 8:34 AM Page 7

8 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

canHaveHTML

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

canHaveHTML property. Enter the following statements into the top text field and

observe the results:

document.all.input.canHaveHTML
document.all.myP.canHaveHTML

The first statement returns false because an INPUT element (the top text field

in this case) cannot have nested HTML. But the myP element is a P element that

gladly accepts HTML content.

childNodes

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
The walkChildNodes() function shown in Listing 15-3 accumulates and returns

a hierarchical list of child nodes from the point of view of the document’s HTML

element (the default) or any element whose ID you pass as a string parameter. This

function is embedded in The Evaluator so that you can inspect the child node

hierarchy of that page or (when using evaluator.js for debugging as described in

Chapter 45 of the JavaScript Bible) the node hierarchy within any page you have

under construction. Try it out in The Evaluator by entering the following statements

into the top text field:

walkChildNodes()
walkChildNodes(getElementById(“myP”))

The results of this function show the nesting relationships among all child nodes

within the scope of the initial object. It also shows the act of drilling down to further

childNodes collections until all child nodes are exposed and catalogued. Text nodes

are labeled accordingly. The first 15 characters of the actual text are placed in the

results to help you identify the nodes when you compare the results against your

HTML source code. The early NN6 phantom text nodes that contain carriage returns

display <cr> in the results for each return character.

elementObject.childNodes

4855-7 ch01.F 6/26/01 8:34 AM Page 8

9Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

Listing 15-3: Collecting Child Nodes

function walkChildNodes(objRef, n) {
var obj
if (objRef) {

if (typeof objRef == “string”) {
obj = document.getElementById(objRef)

} else {
obj = objRef

}
} else {

obj = (document.body.parentElement) ?
document.body.parentElement : document.body.parentNode

}
var output = “”
var indent = “”
var i, group, txt
if (n) {

for (i = 0; i < n; i++) {
indent += “+---”

}
} else {

n = 0
output += “Child Nodes of <” + obj.tagName
output += “>\n=====================\n”

}
group = obj.childNodes
for (i = 0; i < group.length; i++) {

output += indent
switch (group[i].nodeType) {

case 1:
output += “<” + group[i].tagName
output += (group[i].id) ? “ ID=” + group[i].id : “”
output += (group[i].name) ? “ NAME=” + group[i].name : “”
output += “>\n”
break

case 3:
txt = group[i].nodeValue.substr(0,15)
output += “[Text:\”” + txt.replace(/[\r\n]/g,”<cr>”)
if (group[i].nodeValue.length > 15) {

output += “...”
}
output += “\”]\n”
break

case 8:
output += “[!COMMENT!]\n”
break

default:
output += “[Node Type = “ + group[i].nodeType + “]\n”

}

Continued

elementObject.childNodes

4855-7 ch01.F 6/26/01 8:34 AM Page 9

10 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-3 (continued)

if (group[i].childNodes.length > 0) {
output += walkChildNodes(group[i], n+1)

}
}
return output

}

children

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
The walkChildren() function in Listing 15-4 accumulates and returns a

hierarchical list of child elements from the point of view of the document’s HTML

element (the default) or any element whose ID you pass as a string parameter. This

function is embedded in The Evaluator so that you can inspect the parent–child

hierarchy of that page or (when using evaluator.js for debugging, as described in

Chapter 45 of the JavaScript Bible) the element hierarchy within any page you have

under construction. Try it out in The Evaluator in IE5+ by entering the following

statements into the top text field:

walkChildren()
walkChildren(“myP”)

The results of this function show the nesting relationships among all parent and

child elements within the scope of the initial object. It also shows the act of drilling

down to further children collections until all child elements are exposed and

catalogued. The element tags also display their ID and/or NAME attribute values if

any are assigned to the elements in the HTML source code.

Listing 15-4: Collecting Child Elements

function walkChildren(objRef, n) {
var obj
if (objRef) {

if (typeof objRef == “string”) {
obj = document.getElementById(objRef)

} else {
obj = objRef

elementObject.children

4855-7 ch01.F 6/26/01 8:34 AM Page 10

11Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

}
} else {

obj = document.body.parentElement
}
var output = “”
var indent = “”
var i, group
if (n) {

for (i = 0; i < n; i++) {
indent += “+---”

}
} else {

n = 0
output += “Children of <” + obj.tagName
output += “>\n=====================\n”

}
group = obj.children
for (i = 0; i < group.length; i++) {

output += indent + “<” + group[i].tagName
output += (group[i].id) ? “ ID=” + group[i].id : “”
output += (group[i].name) ? “ NAME=” + group[i].name : “”
output += “>\n”
if (group[i].children.length > 0) {

output += walkChildren(group[i], n+1)
}

}
return output

}

className

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
The style of an element toggles between “on” and “off” in Listing 15-5 by virtue of

setting the element’s className property alternatively to an existing style sheet

class selector name and an empty string. When you set the className to an empty

string, the default behavior of the H1 element governs the display of the first

header. A click of the button forces the style sheet rule to override the default

behavior in the first H1 element.

elementObject.className

4855-7 ch01.F 6/26/01 8:34 AM Page 11

12 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-5: Working with the className Property

<HTML>
<HEAD>
<TITLE>className Property</TITLE>
<STYLE TYPE=”text/css”>
.special {font-size:16pt; color:red}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
function toggleSpecialStyle(elemID) {

var elem = (document.all) ? document.all(elemID) :
document.getElementById(elemID)

if (elem.className == “”) {
elem.className = “special”

} else {
elem.className = “”

}
}
</SCRIPT>
</HEAD>
<BODY>
<H1>className Property Lab</H1>
<HR>
<FORM NAME=”input”>
<INPUT TYPE=”button” VALUE=”Toggle Class Name”
onClick=”toggleSpecialStyle(‘head1’)”>
</FORM>

<H1 ID=”head1”>ARTICLE I</H1>
<P>Congress shall make no law respecting an establishment of religion, or
prohibiting the free exercise thereof; or abridging the freedom of speech, or of
the press; or the right of the people peaceably to assemble, and to petition the
government for a redress of grievances.</P>

<H1>ARTICLE II</H1>
<P>A well regulated militia, being necessary to the security of a free state,
the right of the people to keep and bear arms, shall not be infringed.</P>
</BODY>
</HTML>

You can also create multiple versions of a style rule with different class selector

identifiers and apply them at will to a given element.

elementObject.className

4855-7 ch01.F 6/26/01 8:34 AM Page 12

13Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

clientHeight
clientWidth

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Listing 15-6 calls upon the clientHeight and clientWidth properties of a DIV

element that contains a paragraph element. Only the width of the DIV element is

specified in its style sheet rule, which means that the paragraph’s text wraps inside

that width and extends as deeply as necessary to show the entire paragraph. The

clientHeight property describes that depth. The clientHeight property then

calculates where a logo image should be positioned immediately after DIV, regardless

of the length of the text. As a bonus, the clientWidth property helps the script

center the image horizontally with respect to the paragraph’s text.

Listing 15-6: Using clientHeight and clientWidth Properties

<HTML>
<HEAD>
<TITLE>clientHeight and clientWidth Properties</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function showLogo() {

var paragraphW = document.all.myDIV.clientWidth
var paragraphH = document.all.myDIV.clientHeight
// correct for Windows/Mac discrepancies
var paragraphTop = (document.all.myDIV.clientTop) ?

document.all.myDIV.clientTop : document.all.myDIV.offsetTop
var logoW = document.all.logo.style.pixelWidth
// center logo horizontally against paragraph
document.all.logo.style.pixelLeft = (paragraphW-logoW)/2
// position image immediately below end of paragraph
document.all.logo.style.pixelTop = paragraphTop + paragraphH
document.all.logo.style.visibility = “visible”

}
</SCRIPT>
</HEAD>
<BODY>
<BUTTON onClick=”showLogo()”>Position and Show Logo Art</BUTTON>
<DIV ID=”logo” STYLE=”position:absolute; width:120px; visibility:hidden”></DIV>
<DIV ID=”myDIV” STYLE=”width:200px”>

Continued

elementObject.clientHeight

4855-7 ch01.F 6/26/01 8:34 AM Page 13

14 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-6 (continued)

<P>Lorem ipsum dolor sit amet, consectetaur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim adminim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit involuptate velit esse cillum dolore eu
fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident.</P>
</DIV>
</BODY>
</HTML>

To assist in the vertical positioning of the logo, the offsetTop property of the

DIV object provides the position of the start of the DIV with respect to its outer

container (the BODY). Unfortunately, IE/Mac uses the clientTop property to obtain

the desired dimension. That measure (assigned to the paragraphTop variable), plus

the clientHeight of the DIV, provides the top coordinate of the image.

If you use only IE5, you can eliminate the DIV wrapper around the P element and

assign the STYLE attribute directly to the P element. The script can then read the

clientHeight and clientWidth of the P object.

contentEditable

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Listing 15-7 is a simplified demonstration of how to turn some text inside a

document into an editable element. When you click the button of a freshly loaded

page, the toggleEdit() function captures the opposite of the current editable

state via the isContentEditable property of the DIV that is subject to edit. You

switch on editing for that element in the next statement by assigning the new value

to the contentEditable property of the DIV. For added impact, turn the text of the

DIV to red to provide additional user feedback about what is editable on the page.

You can also switch the button label to one that indicates the action invoked by the

next click on it.

Listing 15-7: Using the contentEditable Property

<HTML>
<HEAD>
<STYLE TYPE=”text/css”>
.normal {color: black}
.editing {color: red}

elementObject.contentEditable

4855-7 ch01.F 6/26/01 8:34 AM Page 14

15Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
function toggleEdit() {

var newState = !editableText.isContentEditable
editableText.contentEditable = newState
editableText.className = (newState) ? “editing” : “normal”
editBtn.innerText = (newState) ? “Disable Editing” : “Enable Editing”

}
</SCRIPT>
<BODY>
<H1>Editing Contents</H1>
<HR>
<P>Turn on editing to modify the following text:</P>
<DIV ID=”editableText”>Edit this text on the fly....</DIV>
<P><BUTTON ID=”editBtn” onClick=”toggleEdit()” onFocus=”this.blur()”>
Enable Editing
</BUTTON></P>
</BODY>
</HTML>

The BUTTON element has an onFocus event handler that immediately invokes

the blur() method on the button. This prevents a press of the spacebar (during

editing) from accidentally triggering the button.

currentStyle

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to compare the properties

of the currentStyle and style objects of an element. For example, an unmodified

copy of The Evaluator contains an EM element whose ID is “myEM”. Enter document.
all.myEM.style into the bottom property listing text box and press Enter. Notice

how most of the property values are empty. Now enter document.all.myEM.
currentStyle into the property listing text box and press Enter. Every property

has a value associated with it.

elementObject.currentStyle

4855-7 ch01.F 6/26/01 8:34 AM Page 15

16 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

dataFld
dataFormatAs
dataSrc

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Listing 15-8 is a simple document that has two TDC objects associated with it.

The external files are different formats of the U.S. Bill of Rights document. One file is

a traditional, tab-delimited data file consisting of only two records. The first record

is a tab-delimited sequence of field names (named “Article1”, “Article2”, and

so on); the second record is a tab-delimited sequence of article content defined in

HTML:

<H1>ARTICLE I</H1><P>Congress shall make...</P>

The second file is a raw text file consisting of the full Bill of Rights with no HTML

formatting attached.

When you load Listing 15-8, only the first article of the Bill of Rights appears in a

blue-bordered box. Buttons enable you to navigate to the previous and next articles

in the series. Because the data source is a traditional, tab-delimited file, the

nextField() and prevField() functions calculate the name of the next source

field and assign the new value to the dataFld property. All of the data is already in

the browser after the page loads, so cycling through the records is as fast as the

browser can reflow the page to accommodate the new content.

Listing 15-8: Changing dataFld and dataSrc Properties

<HTML>
<HEAD>
<TITLE>Data Binding</TITLE>
<STYLE TYPE=”text/css”>
#display {width:500px; border:10px ridge blue; padding:20px}
.hiddenControl {display:none}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
function nextField() {

var elem = document.all.display
var fieldName = elem.dataFld
var currFieldNum = parseInt(fieldName.substring(7, fieldName.length),10)
currFieldNum = (currFieldNum == 10) ? 1 : ++currFieldNum
elem.dataFld = “Article” + currFieldNum

}

elementObject.dataFld

4855-7 ch01.F 6/26/01 8:34 AM Page 16

17Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

function prevField() {
var elem = document.all.display
var fieldName = elem.dataFld
var currFieldNum = parseInt(fieldName.substring(7, fieldName.length),10)
currFieldNum = (currFieldNum == 1) ? 10 : --currFieldNum
elem.dataFld = “Article” + currFieldNum

}

function toggleComplete() {
if (document.all.buttonWrapper.className == “”) {

document.all.display.dataSrc = “#rights_raw”
document.all.display.dataFld = “column1”
document.all.display.dataFormatAs = “text”
document.all.buttonWrapper.className = “hiddenControl”

} else {
document.all.display.dataSrc = “#rights_html”
document.all.display.dataFld = “Article1”
document.all.display.dataFormatAs = “HTML”
document.all.buttonWrapper.className = “”

}
}
</SCRIPT>
</HEAD>
<BODY>
<P>U.S. Bill of Rights</P>
<FORM>
<INPUT TYPE=”button” VALUE=”Toggle Complete/Individual”
onClick=”toggleComplete()”>

<INPUT TYPE=”button” VALUE=”Prev” onClick=”prevField()”>
<INPUT TYPE=”button” VALUE=”Next” onClick=”nextField()”>

</FORM>

<DIV ID=”display” DATASRC=”#rights_html” DATAFLD=”Article1”
DATAFORMATAS=”HTML”></DIV>

<OBJECT ID=”rights_html” CLASSID=”clsid:333C7BC4-460F-11D0-BC04-0080C7055A83”>
<PARAM NAME=”DataURL” VALUE=”Bill of Rights.txt”>
<PARAM NAME=”UseHeader” VALUE=”True”>
<PARAM NAME=”FieldDelim” VALUE=”	”>

</OBJECT>
<OBJECT ID=”rights_raw” CLASSID=”clsid:333C7BC4-460F-11D0-BC04-0080C7055A83”>

<PARAM NAME=”DataURL” VALUE=”Bill of Rights (no format).txt”>
<PARAM NAME=”FieldDelim” VALUE=”\”>
<PARAM NAME=”RowDelim” VALUE=”\”>

</OBJECT>
</BODY>
</HTML>

elementObject.dataFld

4855-7 ch01.F 6/26/01 8:34 AM Page 17

18 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Another button on the page enables you to switch between the initial piecemeal

version of the document and the unformatted version in its entirety. To load the

entire document as a single record, the FieldDelim and RowDelim parameters of

the second OBJECT element eliminate their default values by replacing them with

characters that don’t appear in the document at all. And because the external file

does not have a field name in the file, the default value (column1 for the lone col-

umn in this document) is the data field. Thus, in the toggleComplete() function,

the dataSrc property is changed to the desired OBJECT element ID, the dataFld
property is set to the correct value for the data source, and the dataFormatAs
property is changed to reflect the different intention of the source content (to be

rendered as HTML or as plain text). When the display shows the entire document,

you can hide the two radio buttons by assigning a className value to the SPAN

element that surrounds the buttons. The className value is the identifier of the

class selector in the document’s style sheet. When the toggleComplete() function

resets the className property to empty, the default properties (normal inline

display style) take hold.

One further example demonstrates the kind of power available to the TDC under

script control. Listing 15-9 displays table data from a tab-delimited file of Academy

Award information. The data file has eight columns of data, and each column heading

is treated as a field name: Year, Best Picture, Best Director, Best Director Film, Best

Actress, Best Actress Film, Best Actor, and Best Actor Film. For the design of the

page, only five fields from each record appear: Year, Film, Director, Actress, and Actor.

Notice in the listing how the HTML for the table and its content is bound to the data

source object and the fields within the data.

The “dynamic” part of this example is apparent in how you can sort and filter the

data, once loaded into the browser, without further access to the original source

data. The TDC object features Sort and Filter properties that enable you to act on

the data currently loaded in the browser. The simplest kind of sorting indicates on

which field (or fields, via a semicolon delimited list of field names) the entire data

set should be sorted. Leading the name of the sort field is either a plus (to indicate

ascending) or minus (descending) symbol. After setting the data object’s Sort
property, invoke its Reset() method to tell the object to apply the new property.

The data in the bound table is immediately redrawn to reflect any changes.

Similarly, you can tell a data collection to display records that meet specific criteria.

In Listing 15-9, two select lists and a pair of radio buttons provide the interface to the

Filter property’s settings (see Figure 1-1). For example, you can filter the output to

display only those records in which the Best Picture was the same picture of the

winning Best Actress’s performance. Simple filter expressions are based on field

names:

dataObj.Filter = “Best Picture” = “Best Actress Film”

Listing 15-9: Sorting and Filtering Bound Data

<HTML>
<HEAD>
<TITLE>Data Binding—Sorting</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>

elementObject.dataFld

4855-7 ch01.F 6/26/01 8:34 AM Page 18

19Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

function sortByYear(type) {
oscars.Sort = (type == “normal”) ? “-Year” : “+Year”
oscars.Reset()

}
function filterInCommon(form) {

var filterExpr1 = form.filter1.options[form.filter1.selectedIndex].value
var filterExpr2 = form.filter2.options[form.filter2.selectedIndex].value
var operator = (form.operator[0].checked) ? “=” : “<>”
var filterExpr = filterExpr1 + operator + filterExpr2
oscars.Filter = filterExpr
oscars.Reset()

}
</SCRIPT>

</HEAD>
<BODY>
<P>Academy Awards 1978-1997</P>
<FORM>
<P>Sort list by year from newest to
oldest or from oldest to
newest.</P>
<P>Filter listings for records whose
<SELECT NAME=”filter1” onChange=”filterInCommon(this.form)”>

<OPTION VALUE=””>
<OPTION VALUE=”Best Picture”>Best Picture
<OPTION VALUE=”Best Director Film”>Best Director’s Film
<OPTION VALUE=”Best Actress Film”>Best Actress’s Film
<OPTION VALUE=”Best Actor Film”>Best Actor’s Film

</SELECT>
<INPUT TYPE=”radio” NAME=”operator” CHECKED
onClick=”filterInCommon(this.form)”>is
<INPUT TYPE=”radio” NAME=”operator” onClick=”filterInCommon(this.form)”>is not
<SELECT NAME=”filter2” onChange=”filterInCommon(this.form)”>

<OPTION VALUE=””>
<OPTION VALUE=”Best Picture”>Best Picture
<OPTION VALUE=”Best Director Film”>Best Director’s Film
<OPTION VALUE=”Best Actress Film”>Best Actress’s Film
<OPTION VALUE=”Best Actor Film”>Best Actor’s Film

</SELECT>
</P>
</FORM>
<TABLE DATASRC=”#oscars” BORDER=1 ALIGN=”center”>
<THEAD STYLE=”background-color:yellow; text-align:center”>
<TR><TD>Year</TD>

<TD>Film</TD>
<TD>Director</TD>
<TD>Actress</TD>
<TD>Actor</TD>

</TR>
</THEAD>
<TR>

Continued

elementObject.dataFld

4855-7 ch01.F 6/26/01 8:34 AM Page 19

20 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-9 (continued)

<TD><DIV ID=”col1” DATAFLD=”Year” ></DIV></TD>
<TD><DIV ID=”col2” DATAFLD=”Best Picture”></DIV></TD>
<TD><DIV ID=”col3” DATAFLD=”Best Director”></DIV></TD>
<TD><DIV ID=”col4” DATAFLD=”Best Actress”></DIV></TD>
<TD><DIV ID=”col5” DATAFLD=”Best Actor”></DIV></TD>

</TR>
</TABLE>

<OBJECT ID=”oscars” CLASSID=”clsid:333C7BC4-460F-11D0-BC04-0080C7055A83”>
<PARAM NAME=”DataURL” VALUE=”Academy Awards.txt”>
<PARAM NAME=”UseHeader” VALUE=”True”>
<PARAM NAME=”FieldDelim” VALUE=”	”>

</OBJECT>
</BODY>
</HTML>

For more detailed information on Data Source Objects and their properties, visit

http://msdn.microsoft.com and search for “Data Binding.”

Figure 1-1: IE/Windows data binding puts filtering, sorting, and display under
script control.

elementObject.dataFld

4855-7 ch01.F 6/26/01 8:34 AM Page 20

21Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

dir

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Changing this property value in a standard U.S. version of the browser only

makes the right margin the starting point for each new line of text (in other words,

the characters are not rendered in reverse order). You can experiment with this in

The Evaluator by entering the following statements into the expression evaluation

field:

document.getElementById(“myP”).dir = “rtl”

disabled

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility (�) � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

disabled property on both form elements (IE4+ and NN6) and regular HTML

elements (IE5.5). For IE4+ and NN6, see what happens when you disable the output

textarea by entering the following statement into the top text box:

document.forms[0].output.disabled = true

The textarea is disabled for user entry, although you can still set the field’s value
property via script (which is how the true returned value got there).

If you have IE5.5+, disable the myP element by entering the following statement

into the top text box:

document.all.myP.disabled = true

The sample paragraph’s text turns gray.

document

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

elementObject.document

4855-7 ch01.F 6/26/01 8:34 AM Page 21

22 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example
The following simplified function accepts a parameter that can be any object in a

document hierarchy. The script finds out the reference of the object’s containing

document for further reference to other objects:

function getCompanionFormCount(obj) {
var ownerDoc = obj.document
return ownerDoc.forms.length

}

Because the ownerDoc variable contains a valid reference to a document object, the

return statement uses that reference to return a typical property of the document

object hierarchy.

firstChild
lastChild

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
These two properties come in handy for Listing 15-10, whose job it is to either

add or replace LI elements to an existing OL element. You can enter any text you

want to appear at the beginning or end of the list. Using the firstChild and

lastChild properties simplifies access to the ends of the list. For the functions

that replace child nodes, the example uses the replaceChild() method.

Alternatively for IE4+, you can modify the innerText property of the objects

returned by the firstChild or lastChild property. This example is especially

interesting to watch when you add items to the list: The browser automatically

renumbers items to fit the current state of the list.

Listing 15-10: Using firstChild and lastChild Properties

<HTML>
<HEAD>
<TITLE>firstChild and lastChild Properties</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// helper function for prepend() and append()
function makeNewLI(txt) {

var newItem = document.createElement(“LI”)
newItem.innerHTML = txt
return newItem

}
function prepend(form) {

var newItem = makeNewLI(form.input.value)
var firstLI = document.getElementById(“myList”).firstChild
document.getElementById(“myList”).insertBefore(newItem, firstLI)

elementObject.firstChild

4855-7 ch01.F 6/26/01 8:34 AM Page 22

23Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

}
function append(form) {

var newItem = makeNewLI(form.input.value)
var lastLI = document.getElementById(“myList”).lastChild
document.getElementById(“myList”).appendChild(newItem)

}
function replaceFirst(form) {

var newItem = makeNewLI(form.input.value)
var firstLI = document.getElementById(“myList”).firstChild
document.getElementById(“myList”).replaceChild(newItem, firstLI)

}
function replaceLast(form) {

var newItem = makeNewLI(form.input.value)
var lastLI = document.getElementById(“myList”).lastChild
document.getElementById(“myList”).replaceChild(newItem, lastLI)

}
</SCRIPT>

</HEAD>
<BODY>
<H1>firstChild and lastChild Property Lab</H1>
<HR>
<FORM>
<LABEL>Enter some text to add to or replace in the OL element:</LABEL>

<INPUT TYPE=”text” NAME=”input” SIZE=50>

<INPUT TYPE=”button” VALUE=”Insert at Top” onClick=”prepend(this.form)”>
<INPUT TYPE=”button” VALUE=”Append to Bottom” onClick=”append(this.form)”>

<INPUT TYPE=”button” VALUE=”Replace First Item”
onClick=”replaceFirst(this.form)”>
<INPUT TYPE=”button” VALUE=”Replace Last Item” onClick=”replaceLast(this.form)”>
</FORM>
<P></P>
<OL ID=”myList”>Initial Item 1
Initial Item 2
Initial Item 3
Initial Item 4

</BODY>
</HTML>

height
width

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

elementObject.height

4855-7 ch01.F 6/26/01 8:34 AM Page 23

24 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example
The following example increases the width of a table by 10 percent.

var tableW = parseInt(document.all.myTable.width)
document.all.myTable.width = (tableW * 1.1) + “%”

Because the initial setting for the WIDTH attribute of the TABLE element is set as a

percentage value, the script calculation extracts the number from the percentage

width string value. In the second statement, the old number is increased by 10 percent

and turned into a percentage string by appending the percentage symbol to the value.

The resulting string value is assigned to the width property of the table.

hideFocus

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

hideFocus property in IE5.5. Enter the following statement into the top text field to

assign a tabIndex value to the myP element so that, by default, the element

receives focus and the dotted rectangle:

document.all.myP.tabIndex = 1

Press the Tab key several times until the paragraph receives focus. Now, disable

the focus rectangle:

document.all.myP.hideFocus = true

If you now press the Tab key several times, the dotted rectangle does not appear

around the paragraph. To prove that the element still receives focus, scroll the page

down to the bottom so that the paragraph is not visible (you may have to resize the

window). Click one of the focusable elements at the bottom of the page, and then

press the Tab key slowly until the Address field toolbar has focus. Press the Tab

key once. The page scrolls to bring the paragraph into view, but there is no focus

rectangle around the element.

id

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

elementObject.id

4855-7 ch01.F 6/26/01 8:34 AM Page 24

25Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

Example
Rarely do you need to access this property in a script — unless you write an

authoring tool that iterates through all elements of a page to extract the IDs

assigned by the author. You can retrieve an object reference once you know the

object’s id property (via the document.getElementById(elemID) method). But if

for some reason your script doesn’t know the ID of, say, the second paragraph of a

document, you can extract that ID as follows:

var elemID = document.all.tags(“P”)[1].id

innerHTML
innerText

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility (�) � � �

Example
The IE4+ page generated by Listing 15-11 contains an H1 element label and a

paragraph of text. The purpose is to demonstrate how the innerHTML and innerText
properties differ in their intent. Two text boxes contain the same combination of text

and HTML tags that replaces the inner content of the paragraph’s label.

If you apply the default content of the first text box to the innerHTML property of

the label1 object, the italic style is rendered as such for the first word. In addition,

the text in parentheses is rendered with the help of the small style sheet rule

assigned by virtue of the surrounding tags. But if you apply that same

content to the innerText property of the label object, the tags are rendered as is.

Use this as a laboratory to experiment with some other content in both text

boxes. See what happens when you insert a
 tag within some text of both

text boxes.

Listing 15-11: Using innerHTML and innerText Properties

<HTML>
<HEAD>
<TITLE>innerHTML and innerText Properties</TITLE>
<STYLE TYPE=”text/css”>
H1 {font-size:18pt; font-weight:bold; font-family:”Comic Sans MS”, Arial, sans-
serif}
.small {font-size:12pt; font-weight:400; color:gray}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>

function setGroupLabelAsText(form) {
var content = form.textInput.value

Continued

elementObject.innerHTML

4855-7 ch01.F 6/26/01 8:34 AM Page 25

26 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-11 (continued)

if (content) {
document.all.label1.innerText = content

}
}
function setGroupLabelAsHTML(form) {

var content = form.HTMLInput.value
if (content) {

document.all.label1.innerHTML = content
}

}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
<P>

<INPUT TYPE=”text” NAME=”HTMLInput”
VALUE=”<I>First</I> Article (of ten)”
SIZE=50>
<INPUT TYPE=”button” VALUE=”Change Heading HTML”
onClick=”setGroupLabelAsHTML(this.form)”>

</P>
<P>

<INPUT TYPE=”text” NAME=”textInput”
VALUE=”<I>First</I> Article (of ten)”
SIZE=50>
<INPUT TYPE=”button” VALUE=”Change Heading Text”
onClick=”setGroupLabelAsText(this.form)”>

</P>
</FORM>
<H1 ID=”label1”>ARTICLE I</H1>
<P>
Congress shall make no law respecting an establishment of religion, or
prohibiting the free exercise thereof; or abridging the freedom of speech, or of
the press; or the right of the people peaceably to assemble, and to petition the
government for a redress of grievances.
</P>
</BODY>
</HTML>

isContentEditable

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

elementObject.isContentEditable

4855-7 ch01.F 6/26/01 8:34 AM Page 26

27Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with both

the contentEditable and isContentEditable properties on the myP and nested

myEM elements (reload the page to start with a known version). Check the current

setting for the myEM element by typing the following statement into the top text field:

myEM.isContentEditable

This value is false because no element upward in the element containment

hierarchy is set to be editable yet. Next, turn on editing for the surrounding myP
element:

myP.contentEditable = true

At this point, the entire myP element is editable because its child element is set,

by default, to inherit the edit state of its parent. Prove it by entering the following

statement into the top text box:

myEM.isContentEditable

While the myEM element is shown to be editable, no change has accrued to its

contentEditable property:

myEM.contentEditable

This property value remains the default inherit. You can see an additional example

of these two properties in use in Listing 15-7.

isDisabled

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with both

the disabled and isDisabled properties on the myP and nested myEM elements

(reload the page to start with a known version). Check the current setting for the

myEM element by typing the following statement into the top text field:

myEM.isDisabled

This value is false because no element upward in the element containment

hierarchy is set for disabling yet. Next, disable the surrounding myP element:

myP.disabled = true

At this point, the entire myP element (including its children) is disabled. Prove it by

entering the following statement into the top text box:

myEM.isDisabled

elementObject.isDisabled

4855-7 ch01.F 6/26/01 8:34 AM Page 27

28 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

While the myEM element is shown as disabled, no change has accrued to its

disabled property:

myEM.disabled

This property value remains the default false.

isMultiLine

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to read the isMultiLine

property for elements on that page. Try the following statements in the top text box:

document.body.isMultiLine
document.forms[0].input.isMultiLine
myP.isMultiLine
myEM.isMultiLine

All but the text field form control report that they are capable of occupying multiple

lines.

isTextEdit

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Good coding practice dictates that your script check for this property before

invoking the createTextRange() method on any object. A typical implementation

is as follows:

if (document.all.myObject.isTextEdit) {
var myRange = document.all.myObject.createTextRange()
[more statements that act on myRange]

}

lang

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

elementObject.lang

4855-7 ch01.F 6/26/01 8:34 AM Page 28

29Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

Example
Values for the lang property consist of strings containing valid ISO language

codes. Such codes have, at the minimum, a primary language code (for example,

“fr” for French) plus an optional region specifier (for example, “fr-ch” for Swiss

French). The code to assign a Swiss German value to an element looks like the

following:

document.all.specialSpan.lang = “de-ch”

language

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Although it is unlikely that you will modify this property, the following example

shows you how to do it for a table cell object:

document.all.cellA3.language = “vbs”

lastChild
See firstchild.

length

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
You can try the following sequence of statements in the top text box of The

Evaluator (Chapter 13 in the JavaScript Bible) to see how the length property

returns values (and sets them for some objects). Note that some statements work

in only some browser versions.

(All browsers) document.forms.length
(All browsers) document.forms[0].elements.length
(NN3+, IE4+) document.images.length
(NN4+) document.layers.length
(IE4+) document.all.length
(IE5+, NN6) document.getElementById(“myTable”).childNodes.length

elementObject.length

4855-7 ch01.F 6/26/01 8:34 AM Page 29

30 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

nextSibling
previousSibling

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
The following function assigns the same class name to all child nodes of an

element:

function setAllChildClasses(parentElem, className) {
var childElem = parentElem.firstChild
while (childElem.nextSibling) {

childElem.className = className
childElem = childElem.nextSibling

}
}

This example is certainly not the only way to achieve the same results. Using a

for loop to iterate through the childNodes collection of the parent element is an

equally valid approach.

nodeName

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
The following function demonstrates one (not very efficient) way to assign a new

class name to every P element in an IE5+ document:

function setAllPClasses(className) {
for (var i = 0; i < document.all.length; i++) {

if (document.all[i].nodeName == “P”) {
document.all[i].className = className

}
}

}

A more efficient approach uses the getElementsByTagName() method to

retrieve a collection of all P elements and then iterate through them directly.

elementObject.nodeName

4855-7 ch01.F 6/26/01 8:34 AM Page 30

31Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

nodeType

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
You can experiment with viewing nodeType property values in The Evaluator.

The P element whose ID is myP is a good place to start. The P element itself is a

nodeType of 1:

document.getElementById(“myP”).nodeType

This element has three child nodes: a string of text (nodeName #text); an EM

element (nodeName EM); and the rest of the text of the element content (nodeName
#text). If you view the nodeType of either of the text portions, the value comes

back as 3:

document.getElementById(“myP”).childNodes[0].nodeType

In NN6 and IE5/Mac, you can inspect the nodeType of the one attribute of this

element (the ID attribute):

document.getElementById(“myP”).attributes[0].nodeType

With NN6 and IE5/Mac, you can see how the document object returns a

nodeType of 9:

document.nodeType

When IE5 does not support a nodeType constant for a node, its value is sometimes

reported as 1. However, more likely the value is undefined.

nodeValue

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
The first example increases the width of a TEXTAREA object by 10 percent. The

nodeValue is converted to an integer (for NN6’s string values) before performing

the math and reassignment:

function widenCols(textareaElem) {
var colWidth = parseInt(textareaElem.attributes[“cols”].nodeValue, 10)
textareaElem.attributes[“cols”].nodeValue = (colWidth * 1.1)

}

elementObject.nodeValue

4855-7 ch01.F 6/26/01 8:34 AM Page 31

32 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

The second example replaces the text of an element, assuming that the element

contains no further nested elements:

function replaceText(elem, newText) {
if (elem.childNodes.length == 1 && elem.firstChild.nodeType == 3) {

elem.firstChild.nodeValue = newText
}

}

The function builds in one final verification that the element contains just one child

node and that it is a text type. An alternative version of the assignment statement of

the second example uses the innerText property in IE with identical results:

elem.innerText = newText

offsetHeight
offsetWidth

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
With IE4+, you can substitute the offsetHeight and offsetWidth properties

for clientHeight and clientWidth in Listing 15-6. The reason is that the two

elements in question have their widths hard-wired in style sheets. Thus, the

offsetWidth property follows that lead rather than observing the default width of

the parent (BODY) element.

With IE5+ and NN6, you can use The Evaluator to inspect the offsetHeight and

offsetWidth property values of various objects on the page. Enter the following

statements into the top text box:

document.getElementById(“myP”).offsetWidth
document.getElementById(“myEM”).offsetWidth
document.getElementById(“myP”).offsetHeight
document.getElementById(“myTable”).offsetWidth

offsetLeft
offsetTop

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

elementObject.offsetLeft

4855-7 ch01.F 6/26/01 8:34 AM Page 32

33Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

Example
The following IE script statements utilize all four “offset” dimensional properties

to size and position a DIV element so that it completely covers a SPAN element

located within a P element. This can be for a fill-in-the-blank quiz that provides text

entry fields elsewhere on the page. As the user gets an answer correct, the blocking

DIV element is hidden to reveal the correct answer.

document.all.blocker.style.pixelLeft = document.all.span2.offsetLeft
document.all.blocker.style.pixelTop = document.all.span2.offsetTop
document.all.blockImg.height = document.all.span2.offsetHeight
document.all.blockImg.width = document.all.span2.offsetWidth

Because the offsetParent property for the SPAN element is the BODY element,

the positioned DIV element can use the same positioning context (it’s the default

context, anyway) for setting the pixelLeft and pixelTop style properties.

(Remember that positioning properties belong to an element’s style object.) The

offsetHeight and offsetWidth properties can read the dimensions of the SPAN

element (the example has no borders, margins, or padding to worry about) and

assign them to the dimensions of the image contained by the blocker DIV element.

This example is also a bit hazardous in some implementations. If the text of span2
wraps to a new line, the new offsetHeight value has enough pixels to accommodate

both lines. But the blockImg and blocker DIV elements are block-level elements that

render as a simple rectangle. In other words, the blocker element doesn’t turn into

two separate strips to cover the pieces of span2 that spread across two lines.

offsetParent

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
You can use the offsetParent property to help you locate the position of a

nested element on the page. Listing 15-12 demonstrates how a script can “walk” up

the hierarchy of offsetParent objects in IE for Windows to assemble the location of

a nested element on a page. The goal of the exercise in Listing 15-12 is to position an

image at the upper-left corner of the second table cell. The entire table is centered

on the page.

The onLoad event handler invokes the setImagePosition() function. The

function first sets a Boolean flag that determines whether the calculations should

be based on the client or offset sets of properties. IE4/Windows and IE5/Mac rely

on client properties, while IE5+/Windows works with the offset properties. The

discrepancies even out, however, with the while loop. This loop traverses the

offsetParent hierarchy starting with the offsetParent of the cell out to, but not

including, the document.body object. The body object is not included because that

is the positioning context for the image. In IE5, the while loop executes only once

elementObject.offsetParent

4855-7 ch01.F 6/26/01 8:34 AM Page 33

34 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

because just the TABLE element exists between the cell and the body; in IE4, the

loop executes twice to account for the TR and TABLE elements up the hierarchy.

Finally, the cumulative values of left and top measures are applied to the positioning

properties of the DIV object’s style and the image is made visible.

Listing 15-12: Using the offsetParent Property

<HTML>
<HEAD>
<TITLE>offsetParent Property</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function setImagePosition(){

var cElement = document.all.myCell
// Set flag for whether calculations should use
// client- or offset- property measures. Use
// client- for IE5/Mac and IE4/Windows; otherwise
// use offset- properties. An ugly, but necessary
// workaround.
var useClient = (cElement.offsetTop == 0) ?

((cElement.offsetParent.tagName == “TR”) ? false : true) : false
if (useClient) {

var x = cElement.clientLeft
var y = cElement.clientTop

} else {
var x = cElement.offsetLeft
var y = cElement.offsetTop

}
var pElement = document.all.myCell.offsetParent
while (pElement != document.body) {

if (useClient) {
x += pElement.clientLeft
y += pElement.clientTop

} else {
x += pElement.offsetLeft
y += pElement.offsetTop

}
pElement = pElement.offsetParent

}
document.all.myDIV.style.pixelLeft = x
document.all.myDIV.style.pixelTop = y
document.all.myDIV.style.visibility = “visible”

}
</SCRIPT>
</HEAD>
<BODY onload=”setImagePosition()”>
<SCRIPT LANGUAGE=”JavaScript”>
</SCRIPT>
<H1>The offsetParent Property</H1>
<HR>
<P>After the document loads, the script positions a small image in the upper
left corner of the second table cell.</P>
<TABLE BORDER=1 ALIGN=”center”>

elementObject.offsetParent

4855-7 ch01.F 6/26/01 8:34 AM Page 34

35Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

<TR>
<TD>This is the first cell</TD>
<TD ID=”myCell”>This is the second cell.</TD>

</TR>
</TABLE>
<DIV ID=”myDIV” STYLE=”position:absolute; visibility:hidden; height:12;
width:12”>
</DIV>
</BODY>
</HTML>

outerHTML
outerText

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
The page generated by Listing 15-13 (IE4+/Windows only) contains an H1 element

label and a paragraph of text. The purpose is to demonstrate how the outerHTML
and outerText properties differ in their intent. Two text boxes contain the same

combination of text and HTML tags that replaces the element that creates the

paragraph’s label.

If you apply the default content of the first text box to the outerHTML property

of the label1 object, the H1 element is replaced by a SPAN element whose CLASS
attribute acquires a different style sheet rule defined earlier in the document.

Notice that the ID of the new SPAN element is the same as the original H1 element.

This allows the script attached to the second button to address the object. But this

second script replaces the element with the raw text (including tags). The element

is now gone, and any attempt to change the outerHTML or outerText properties of

the label1 object causes an error because there is no longer a label1 object in

the document.

Use this laboratory to experiment with some other content in both text boxes.

Listing 15-13: Using outerHTML and outerText Properties

<HTML>
<HEAD>
<TITLE>outerHTML and outerText Properties</TITLE>
<STYLE TYPE=”text/css”>

Continued

elementObject.outerHTML

4855-7 ch01.F 6/26/01 8:34 AM Page 35

36 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-13 (continued)

H1 {font-size:18pt; font-weight:bold; font-family:”Comic Sans MS”, Arial, sans-
serif}
.heading {font-size:20pt; font-weight:bold; font-family:”Arial Black”, Arial,
sans-serif}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>

function setGroupLabelAsText(form) {
var content = form.textInput.value
if (content) {

document.all.label1.outerText = content
}

}
function setGroupLabelAsHTML(form) {

var content = form.HTMLInput.value
if (content) {

document.all.label1.outerHTML = content
}

}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
<P>

<INPUT TYPE=”text” NAME=”HTMLInput”
VALUE=”Article the First” SIZE=55>
<INPUT TYPE=”button” VALUE=”Change Heading HTML”
onClick=”setGroupLabelAsHTML(this.form)”>

</P>
<P>

<INPUT TYPE=”text” NAME=”textInput”
VALUE=”Article the First” SIZE=55>
<INPUT TYPE=”button” VALUE=”Change Heading Text”
onClick=”setGroupLabelAsText(this.form)”>

</P>
</FORM>
<H1 ID=”label1”>ARTICLE I</H1>
<P>
Congress shall make no law respecting an establishment of religion, or
prohibiting the free exercise thereof; or abridging the freedom of speech, or of
the press; or the right of the people peaceably to assemble, and to petition the
government for a redress of grievances.
</P>
</BODY>
</HTML>

elementObject.outerHTML

4855-7 ch01.F 6/26/01 8:34 AM Page 36

37Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

ownerDocument

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to explore the

ownerDocument property in NN6. Enter the following statement into the top

text box:

document.body.childNodes[5].ownerDocument

The result is a reference to the document object. You can use that to inspect a

property of the document, as shown in the following statement you should enter

into the top text box:

document.body.childNodes[5].ownerDocument.URL

This returns the document.URL property for the document that owns the

child node.

parentElement

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
You can experiment with the parentElement property in The Evaluator. The

document contains a P element named myP. Type each of the following statements

from the left column into the upper expression evaluation text box and press Enter

to see the results.

Expression Result

document.all.myP.tagName P

document.all.myP.parentElement [object]

document.all.myP.parentElement.tagName BODY

document.all.myP.parentElement.parentElement [object]

document.all.myP.parentElement.parentElement.tagName HTML

document.all.myP.parentElement.parentElement.parentElement null

elementObject.parentElement

4855-7 ch01.F 6/26/01 8:34 AM Page 37

38 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

parentNode

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator to examine the parentNode property values of both an element

and a non-element node. Begin with the following two statements and watch the

results of each:

document.getElementById(“myP”).parentNode.tagName
document.getElementById(“myP”).parentElement.tagName (IE only)

Now examine the properties from the point of view of the first text fragment

node of the myP paragraph element:

document.getElementById(“myP”).childNodes[0].nodeValue
document.getElementById(“myP”).childNodes[0].parentNode.tagName
document.getElementById(“myP”).childNodes[0].parentElement (IE only)

Notice (in IE) that the text node does not have a parentElement property.

parentTextEdit

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
The page resulting from Listing 15-14 contains a paragraph of Greek text and

three radio buttons that select the size of a paragraph chunk: one character, one

word, or one sentence. If you click anywhere within the large paragraph, the

onClick event handler invokes the selectChunk() function. The function first

examines which of the radio buttons is selected to determine how much of the

paragraph to highlight (select) around the point at which the user clicks.

After the script employs the parentTextEdit property to test whether the

clicked element has a valid parent capable of creating a text range, it calls upon the

property again to help create the text range. From there, TextRange object methods

shrink the range to a single insertion point, move that point to the spot nearest the

cursor location at click time, expand the selection to encompass the desired chunk,

and select that bit of text.

Notice one workaround for the TextRange object’s expand() method anomaly: If

you specify a sentence, IE doesn’t treat the beginning of a P element as the starting

end of a sentence automatically. A camouflaged (white text color) period is appended

to the end of the previous element to force the TextRange object to expand only to

the beginning of the first sentence of the targeted P element.

elementObject.parentTextEdit

4855-7 ch01.F 6/26/01 8:34 AM Page 38

39Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

Listing 15-14: Using the parentTextEdit Property

<HTML>
<HEAD>
<TITLE>parentTextEdit Property</TITLE>
<STYLE TYPE=”text/css”>
P {cursor:hand}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
function selectChunk() {

var chunk, range
for (var i = 0; i < document.forms[0].chunk.length; i++) {

if (document.forms[0].chunk[i].checked) {
chunk = document.forms[0].chunk[i].value
break

}
}
var x = window.event.clientX
var y = window.event.clientY
if (window.event.srcElement.parentTextEdit) {

range = window.event.srcElement.parentTextEdit.createTextRange()
range.collapse()
range.moveToPoint(x, y)
range.expand(chunk)
range.select()

}
}
</SCRIPT>
</HEAD>

<BODY BGCOLOR=”white”>
<FORM>
<P>Choose how much of the paragraph is to be selected when you click anywhere in
it:

<INPUT TYPE=”radio” NAME=”chunk” VALUE=”character” CHECKED>Character
<INPUT TYPE=”radio” NAME=”chunk” VALUE=”word”>Word
<INPUT TYPE=”radio” NAME=”chunk” VALUE=”sentence”>Sentence
.</P>
</FORM>

<P onClick=”selectChunk()”>
Lorem ipsum dolor sit amet, consectetaur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim adminim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit involuptate velit esse cillum dolore eu
fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.
</P>
</BODY>
</HTML>

elementObject.parentTextEdit

4855-7 ch01.F 6/26/01 8:34 AM Page 39

40 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

previousSibling
See nextSibling.

readyState

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
To witness a readyState property other than complete for standard HTML, you

can try examining the property in a script that immediately follows an tag:

...

<SCRIPT LANGUAGE=”JavaScript”>
alert(document.all.myImg.readyState)
</SCRIPT>
...

Putting this fragment into a document that is accessible across a slow network

helps. If the image is not in the browser’s cache, you might get the uninitialized
or loading result. The former means that the IMG object exists, but it has not

started receiving the image data from the server yet. If you reload the page,

chances are that the image will load instantaneously from the cache and the

readyState property will report complete.

recordNumber

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
You can see the recordNumber property in action in Listing 15-15. The data

source is a small, tab-delimited file consisting of 20 records of Academy Award data.

Thus, the table that displays a subset of the fields is bound to the data source

object. Also bound to the data source object are three SPAN objects embedded

within a paragraph near the top of the page. As the user clicks a row of data, three

fields from that clicked record are placed into the bound SPAN objects.

The script part of this page is a mere single statement. When the user triggers the

onClick event handler of the repeated TR object, the function receives a reference

to the TR object as a parameter. The data store object maintains an internal copy of

the data in a recordset object. One of the properties of this recordset object is

elementObject.recordNumber

4855-7 ch01.F 6/26/01 8:34 AM Page 40

41Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

the AbsolutePosition property, which is the integer value of the current record

that the data object points to (it can point to only one row at a time, and the default

row is the first row). The statement sets the AbsolutePosition property of the

recordset object to the recordNumber property for the row that the user clicks.

Because the three SPAN elements are bound to the same data source, they are

immediately updated to reflect the change to the data object’s internal pointer to

the current record. Notice, too, that the third SPAN object is bound to one of the

data source fields not shown in the table. You can reach any field of a record

because the Data Source Object holds the entire data source content.

Listing 15-15: Using the Data Binding recordNumber Property

<HTML>
<HEAD>
<TITLE>Data Binding (recordNumber)</TITLE>
<STYLE TYPE=”text/css”>
.filmTitle {font-style:italic}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
// set recordset pointer to the record clicked on in the table.
function setRecNum(row) {

document.oscars.recordset.AbsolutePosition = row.recordNumber
}
</SCRIPT>

</HEAD>
<BODY>
<P>Academy Awards 1978-1997 (Click on a table row to extract data from
one record.)</P>
<P>The award for Best Actor of
 went to
 for his outstanding achievement in the film
.</P>
<TABLE BORDER=1 DATASRC=”#oscars” ALIGN=”center”>
<THEAD STYLE=”background-color:yellow; text-align:center”>
<TR><TD>Year</TD>

<TD>Film</TD>
<TD>Director</TD>
<TD>Actress</TD>
<TD>Actor</TD>

</TR>
</THEAD>
<TR ID=repeatableRow onClick=”setRecNum(this)”>

<TD><DIV ID=”col1” DATAFLD=”Year”></DIV></TD>
<TD><DIV CLASS=”filmTitle” ID=”col2” DATAFLD=”Best Picture”></DIV></TD>
<TD><DIV ID=”col3” DATAFLD=”Best Director”></DIV></TD>
<TD><DIV ID=”col4” DATAFLD=”Best Actress”></DIV></TD>
<TD><DIV ID=”col5” DATAFLD=”Best Actor”></DIV></TD>

Continued

elementObject.recordNumber

4855-7 ch01.F 6/26/01 8:34 AM Page 41

42 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-15 (continued)

</TR>
</TABLE>

<OBJECT ID=”oscars” CLASSID=”clsid:333C7BC4-460F-11D0-BC04-0080C7055A83”>
<PARAM NAME=”DataURL” VALUE=”Academy Awards.txt”>
<PARAM NAME=”UseHeader” VALUE=”True”>
<PARAM NAME=”FieldDelim” VALUE=”	”>

</OBJECT>
</BODY>
</HTML>

runtimeStyle

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to compare the properties

of the runtimeStyle and style objects of an element. For example, an unmodified

copy of The Evaluator contains an EM element whose ID is “myEM”. Enter both

document.all.myEM.style.color

and

document.all.myEM.runtimeStyle.color

into the top text field in turn. Initially, both values are empty. Now assign a color to

the style property via the upper text box:

document.all.myEM.style.color = “red”

If you now type the two earlier statements into the upper box, you can see that

the style object reflects the change, while the runtimeStyle object still holds

onto its original (empty) value.

scopeName

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

elementObject.scopeName

4855-7 ch01.F 6/26/01 8:34 AM Page 42

43Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

Example
If you have a sample document that contains XML and a namespace spec, you

can use document.write() or alert() methods to view the value of the

scopeName property. The syntax is

document.all.elementID.scopeName

scrollHeight
scrollWidth

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with these

two properties of the TEXTAREA object, which displays the output of evaluations

and property listings. To begin, enter the following into the bottom one-line text

field to list the properties of the body object:

document.body

This displays a long list of properties for the body object. Now enter the follow-

ing property expression in the top one-line text field to see the scrollHeight prop-

erty of the output TEXTAREA when it holds the dozens of lines of property listings:

document.all.output.scrollHeight

The result, some number probably in the hundreds, is now displayed in the output

TEXTAREA. This means that you can scroll the content of the output element

vertically to reveal that number of pixels. Click the Evaluate button once more. The

result, 13 or 14, is a measure of the scrollHeight property of the TEXTAREA that

had only the previous result in it. The scrollable height of that content was only 13 or

14 pixels, the height of the font in the TEXTAREA. The scrollWidth property of the

output TEXTAREA is fixed by the width assigned to the element’s COLS attribute (as

calculated by the browser to determine how wide to make the textarea on the page).

scrollLeft
scrollTop

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

elementObject.scrollLeft

4855-7 ch01.F 6/26/01 8:34 AM Page 43

44 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with these

two properties of the TEXTAREA object, which displays the output of evaluations

and property listings. To begin, enter the following into the bottom one-line text

field to list the properties of the body object:

document.body

This displays a long list of properties for the body object. Use the TEXTAREA’s

scrollbar to page down a couple of times. Now enter the following property expres-

sion in the top one-line text field to see the scrollTop property of the output

TEXTAREA after you scroll:

document.all.output.scrollTop

The result, some number, is now displayed in the output TEXTAREA. This means

that the content of the output element was scrolled vertically. Click the Evaluate

button once more. The result, 0, is a measure of the scrollTop property of the

TEXTAREA that had only the previous result in it. There wasn’t enough content in

the TEXTAREA to scroll, so the content was not scrolled at all. The scrollTop
property, therefore, is zero. The scrollLeft property of the output is always zero

because the TEXTAREA element is set to wrap any text that overflows the width of

the element. No horizontal scrollbar appears in this case, and the scrollLeft
property never changes.

sourceIndex

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
While the operation of this property is straightforward, the sequence of ele-

ments exposed by the document.all property may not be. To that end, you can

use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment in IE4+ with

the values that the sourceIndex property returns to see how the index values of

the document.all collection follow the source code.

To begin, reload The Evaluator. Enter the following statement in the top text box

to set a preinitialized global variable:

a = 0

When you evaluate this expression, a zero should appear in the Results box.

Next, enter the following statement into the top text box:

document.all[a].tagName + “ [“ + a++ + “]”

There are a lot of plus signs in this statement, so be sure you enter it correctly. As

you successively evaluate this statement (by repeatedly clicking the Evaluate but-

ton), the global variable (a) is incremented, thus enabling you to “walk through” the

elementObject.sourceIndex

4855-7 ch01.F 6/26/01 8:34 AM Page 44

45Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

elements in source code order. The sourceIndex value for each HTML tag appears in

square brackets in the Results box. You generally begin with the following sequence:

HTML [0]
HEAD [1]
TITLE [2]

You can continue until there are no more elements, at which point an error message

appears because the value of a exceeds the number of elements in the document.all
array. Compare your findings against the HTML source code view of The Evaluator.

style

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Most of the action with the style property has to do with the style object’s

properties, so you can use The Evaluator here to simply explore the lists of style
object properties available on as many DHTML-compatible browsers as you have

running. To begin, enter the following statement into the lower, one-line text box to

inspect the style property for the document.body object:

document.body.style

Now inspect the style property of the table element that is part of the original

version of The Evaluator. Enter the following statement into the lower text box:

document.getElementById(“myTable”).style

In both cases, the values assigned to the style object’s properties are quite limited

by default.

tabIndex

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
The HTML and scripting in Listing 15-16 demonstrate not only the way you can

modify the tabbing behavior of a form on the fly, but also how to force form ele-

ments out of the tabbing sequence entirely in IE. In this page, the upper form

(named lab) contains four elements. Scripts invoked by buttons in the lower form

control the tabbing sequence. Notice that the TABINDEX attributes of all lower form

elements are set to -1, which means that these control buttons are not part of the

tabbing sequence in IE.

elementObject.tabIndex

4855-7 ch01.F 6/26/01 8:34 AM Page 45

46 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

When you load the page, the default tabbing order for the lab form control ele-

ments (default setting of zero) takes charge. If you start pressing the Tab key, the

precise results at first depend on the browser you use. In IE, the Address field is

first selected; next the Tab sequence gives focus to the window (or frame, if this

page were in a frameset); finally the tabbing reaches the lab form. Continue press-

ing the Tab key and watch how the browser assigns focus to each of the element

types. In NN6, however, you must click anywhere on the content to get the Tab key

to start working on form controls.

The sample script inverts the tabbing sequence with the help of a for loop that

initializes two variables that work in opposite directions as the looping progresses.

This gives the last element the lowest tabIndex value. The skip2() function sim-

ply sets the tabIndex property of the second text box to -1, removing it from the

tabbing entirely (IE only). Notice, however, that you can click in the field and still

enter text. (See the disabled property earlier in this chapter to see how to prevent

field editing.) NN6 does not provide a tabIndex property setting that forces the

browser to skip over a form control. You should disable the control instead.

Listing 15-16: Controlling the tabIndex Property

<HTML>
<HEAD>
<TITLE>tabIndex Property</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function invert() {

var form = document.lab
for (var i = 0, j = form.elements.length; i < form.elements.length;
i++, j--) {

form.elements[i].tabIndex = j
}

}

function skip2() {
document.lab.text2.tabIndex = -1

}

function resetTab() {
var form = document.lab
for (var i = 0; i < form.elements.length; i++) {

form.elements[i].tabIndex = 0
}

}
</SCRIPT>
</HEAD>

<BODY>
<H1>tabIndex Property Lab</H1>
<HR>
<FORM NAME=”lab”>
Text box no. 1: <INPUT TYPE=”text” NAME=”text1”>

Text box no. 2: <INPUT TYPE=”text” NAME=”text2”>

<INPUT TYPE=”button” VALUE=”A Button”>

elementObject.tabIndex

4855-7 ch01.F 6/26/01 8:34 AM Page 46

47Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

<INPUT TYPE=”checkbox”>And a checkbox
</FORM>
<HR>
<FORM NAME=”control”>
<INPUT TYPE=”button” VALUE=”Invert Tabbing Order” TABINDEX=-1
onClick=”invert()”>

<INPUT TYPE=”button” VALUE=”Skip Text box no. 2 (IE Only)” TABINDEX=-1
onClick=”skip2()”>

<INPUT TYPE=”button” VALUE=”Reset to Normal Order” TABINDEX=-1
onClick=”resetTab()”>
</FORM>
</BODY>
</HTML>

The final function, resetTab(), sets the tabIndex property value to zero for all

lab form elements. This restores the default order; but in IE5.5/Windows, you may

experience buggy behavior that prevents you from tabbing to items after you reset

them. Only the reloading of the page provides a complete restoration of default

behavior.

tagName

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
You can see the tagName property in action for the example associated with the

sourceIndex property discussed earlier. In that example, the tagName property is

read from a sequence of objects in source code order.

tagUrn

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
If you have a sample document that contains XML and a Namespace spec, you

can use document.write() or alert() methods to view the value of the tagUrn
property. The syntax is

document.all.elementID.tagUrn

elementObject.tagUrn

4855-7 ch01.F 6/26/01 8:34 AM Page 47

48 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

title

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
You can see how dynamic a tooltip is in Listing 15-17. A simple paragraph ele-

ment has its TITLE attribute set to “First Time!”, which is what the tooltip dis-

plays if you roll the pointer atop the paragraph and pause after the page loads. But

an onMouseOver event handler for that element increments a global variable

counter in the script, and the title property of the paragraph object is modified

with each mouseover action. The count value is made part of a string assigned to

the title property. Notice that there is not a live connection between the title
property and the variable; instead, the new value explicitly sets the title property.

Listing 15-17: Controlling the title Property

<HTML>
<HEAD>
<TITLE>title Property</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// global counting variable
var count = 0

function setToolTip(elem) {
elem.title = “You have previously rolled atop this paragraph “ +

count + “ time(s).”
}

function incrementCount(elem) {
count++
setToolTip(elem)

}
</SCRIPT>

</HEAD>
<BODY>
<H1>title Property Lab</H1>
<HR>
<P ID=”myP” TITLE=”First Time!” onMouseOver=”incrementCount(this)”>
Roll the mouse over this paragraph a few times.

Then pause atop it to view the tooltip.</P>
</BODY>
</HTML>

elementObject.title

4855-7 ch01.F 6/26/01 8:34 AM Page 48

49Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

uniqueID

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Listing 15-18 demonstrates the recommended syntax for obtaining and applying

a browser-generated identifier for an object. After you enter some text into the text

box and click the button, the addRow() function appends a row to the table. The

left column displays the identifier generated via the table row object’s uniqueID
property. IE5+ generates identifiers in the format “ms__idn”, where n is an integer

starting with zero for the current browser session. Because the addRow() function

assigns uniqueID values to the row and the cells in each row, the integer for each

row is three greater than the previous one. There is no guarantee that future gener-

ations of the browser will follow this format, so do not rely on the format or

sequence in your scripts.

Listing 15-18: Using the uniqueID Property

<HTML>
<HEAD>
<TITLE>Inserting an IE5+/Windows Table Row</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function addRow(item1) {

if (item1) {
// assign long reference to shorter var name
var theTable = document.all.myTable
// append new row to the end of the table
var newRow = theTable.insertRow(theTable.rows.length)
// give the row its own ID
newRow.id = newRow.uniqueID

// declare cell variable
var newCell

// an inserted row has no cells, so insert the cells
newCell = newRow.insertCell(0)
// give this cell its own id
newCell.id = newCell.uniqueID
// display the row’s id as the cell text
newCell.innerText = newRow.id
newCell.bgColor = “yellow”
// reuse cell var for second cell insertion
newCell = newRow.insertCell(1)
newCell.id = newCell.uniqueID

Continued

elementObject.uniqueID

4855-7 ch01.F 6/26/01 8:34 AM Page 49

50 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-18 (continued)

newCell.innerText = item1
}

}
</SCRIPT>
</HEAD>

<BODY>
<TABLE ID=”myTable” BORDER=1>
<TR>
<TH>Row ID</TH>
<TH>Data</TH>
</TR>

<TR ID=”firstDataRow”>
<TD>firstDataRow
<TD>Fred
</TR>
<TR ID=”secondDataRow”>
<TD>secondDataRow
<TD>Jane
</TR>
</TABLE>
<HR>
<FORM>
Enter text to be added to the table:

<INPUT TYPE=”text” NAME=”input” SIZE=25>

<INPUT TYPE=’button’ VALUE=’Insert Row’ onClick=’addRow(this.form.input.value)’>
</FORM>
</BODY>
</HTML>

Methods
addBehavior(“URL”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Listing 15-19a is the JavaScript code for an external component named

makeHot.htc. Its purpose is to turn the color style property of an object to either a

elementObject.addBehavior()

4855-7 ch01.F 6/26/01 8:34 AM Page 50

51Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

default color (“red”) or any other color that is passed to the component. For details

on the syntax of the <PUBLIC> tags, see Chapter 48 of the JavaScript Bible. The code

presented here helps you see how the page and scripts in Listing 15-19b work.

Listing 15-19a: The makeHot.htc Behavior Component

<PUBLIC:ATTACH EVENT=”onmousedown” ONEVENT=”makeHot()” />
<PUBLIC:ATTACH EVENT=”onmouseup” ONEVENT=”makeNormal()” />
<PUBLIC:PROPERTY NAME=”hotColor” />
<PUBLIC:METHOD NAME=”setHotColor” />
<SCRIPT LANGUAGE=”JScript”>
var oldColor
var hotColor = “red”

function setHotColor(color) {
hotColor = color

}

function makeHot() {
if (event.srcElement == element) {

oldColor = style.color
runtimeStyle.color = hotColor

}
}

function makeNormal() {
if (event.srcElement == element) {

runtimeStyle.color = oldColor
}

}
</SCRIPT>

The object to which the component is attached is a simple paragraph object,

shown in Listing 15-19b. When the page loads, the behavior is not attached, so

clicking the paragraph text has no effect.

When you turn on the behavior by invoking the turnOn() function, the

addBehavior() method attaches the code of the makeHot.htc component to the

myP object. At this point, the myP object has one more property, one more method,

and two more event handlers that are written to be made public by the component’s

code. If you want the behavior to apply to more than one paragraph in the document,

you have to invoke the addBehavior() method for each paragraph object.

After the behavior file is instructed to start loading, the setInitialColor() func-

tion is called to set the new color property of the paragraph to the user’s choice from

the SELECT list. But this can happen only if the component is fully loaded. Therefore,

the function checks the readyState property of myP for completeness before invok-

ing the component’s function. If IE is still loading the component, the function is

invoked again in 500 milliseconds.

elementObject.addBehavior()

4855-7 ch01.F 6/26/01 8:34 AM Page 51

52 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

As long as the behavior is loaded, you can change the color used to turn the

paragraph “hot.” The function first ensures that the component is loaded by check-

ing that the object has the new color property. If it does, then (as a demonstration

of how to expose and invoke a component method) the method of the component

is invoked. You can also simply set the property value.

Listing 15-19b: Using addBehavior() and removeBehavior()

<HTML>
<HEAD>
<TITLE>addBehavior() and removeBehavior() Methods</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var myPBehaviorID

function turnOn() {
myPBehaviorID = document.all.myP.addBehavior(“makeHot.htc”)
setInitialColor()

}

function setInitialColor() {
if (document.all.myP.readyState == “complete”) {

var select = document.forms[0].colorChoice
var color = select.options[select.selectedIndex].value
document.all.myP.setHotColor(color)

} else {
setTimeout(“setInitialColor()”, 500)

}
}

function turnOff() {
document.all.myP.removeBehavior(myPBehaviorID)

}

function setColor(select, color) {
if (document.all.myP.hotColor) {

document.all.myP.setHotColor(color)
} else {

alert(“This feature is not available. Turn on the Behavior first.”)
select.selectedIndex = 0

}
}
function showBehaviorCount() {

var num = document.all.myP.behaviorUrns.length
var msg = “The myP element has “ + num + “ behavior(s). “
if (num > 0) {

msg += “Name(s): \r\n”
for (var i = 0; i < num; i++) {

msg += document.all.myP.behaviorUrns[i] + “\r\n”
}

}
alert(msg)

}

elementObject.addBehavior()

4855-7 ch01.F 6/26/01 8:34 AM Page 52

53Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

</SCRIPT>
</HEAD>
<BODY>
<H1>addBehavior() and removeBehavior() Method Lab</H1>
<HR>
<P ID=”myP”>This is a sample paragraph. After turning on the behavior,
it will turn your selected color when you mouse down anywhere in this
paragraph.</P>
<FORM>
<INPUT TYPE=”button” VALUE=”Switch On Behavior” onClick=”turnOn()”>
Choose a ‘hot’ color:
<SELECT NAME=”colorChoice” onChange=”setColor(this, this.value)”>
<OPTION VALUE=”red”>red
<OPTION VALUE=”blue”>blue
<OPTION VALUE=”cyan”>cyan
</SELECT>

<INPUT TYPE=”button” VALUE=”Switch Off Behavior” onClick=”turnOff()”>
<P><INPUT TYPE=”button” VALUE=”Count the URNs”
onClick=”showBehaviorCount()”></P>
</BODY>
</HTML>

To turn off the behavior, the removeBehavior() method is invoked. Notice that

the removeBehavior() method is associated with the myP object, and the parame-

ter is the ID of the behavior added earlier. If you associate multiple behaviors with

an object, you can remove one without disturbing the others because each has its

own unique ID.

addEventListener(“eventType”, listenerFunc,
useCapture)
removeEventListener(“eventType”,
listenerFunc, useCapture)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Listing 15-20 provides a compact workbench to explore and experiment with the

basic W3C DOM event model. When the page loads, no event listeners are regis-

tered with the browser (except for the control buttons, of course). But you can add

an event listener for a click event in bubble and/or capture mode to the BODY ele-

ment or the P element that surrounds the SPAN holding the line of text. If you add

an event listener and click the text, you see a readout of the element processing the

elementObject.addEventListener()

4855-7 ch01.F 6/26/01 8:34 AM Page 53

54 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

event and information indicating whether the event phase is bubbling (3) or cap-

ture (1). With all event listeners engaged, notice the sequence of events being pro-

cessed. Remove listeners one at a time to see the effect on event processing.

Listing 15-20 includes code for event capture that does not operate in NN6. Event
capture facilities should work in a future version of the browser.

Listing 15-20: W3C Event Lab

<HTML>
<HEAD>
<TITLE>W3C Event Model Lab</TITLE>
<STYLE TYPE=”text/css”>
TD {text-align:center}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
// add event listeners
function addBubbleListener(elemID) {

document.getElementById(elemID).addEventListener(“click”, reportEvent, false)
}
function addCaptureListener(elemID) {

document.getElementById(elemID).addEventListener(“click”, reportEvent, true)
}
// remove event listeners
function removeBubbleListener(elemID) {

document.getElementById(elemID).removeEventListener(“click”, reportEvent, false)
}
function removeCaptureListener(elemID) {

document.getElementById(elemID).removeEventListener(“click”, reportEvent, true)
}
// display details about any event heard
function reportEvent(evt) {

if (evt.target.parentNode.id == “mySPAN”) {
var msg = “Event processed at “ + evt.currentTarget.tagName +

“ element (event phase = “ + evt.eventPhase + “).\n”
document.controls.output.value += msg

}
}
// clear the details textarea
function clearTextArea() {

document.controls.output.value = “”
}
</SCRIPT>
</HEAD>
<BODY ID=”myBODY”>
<H1>W3C Event Model Lab</H1>
<HR>
<P ID=”myP”>This paragraph (a SPAN element nested inside a P
element) can be set to listen for “click” events.</P>
<HR>
<TABLE CELLPADDING=5 BORDER=1>

Note

elementObject.addEventListener()

4855-7 ch01.F 6/26/01 8:34 AM Page 54

55Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

<CAPTION STYLE=”font-weight:bold”>Control Panel</CAPTION>
<FORM NAME=”controls”>
<TR STYLE=”background-color:#ffff99”><TD ROWSPAN=2>”Bubble”-type click listener:

<TD><INPUT TYPE=”button” VALUE=”Add to BODY”
onClick=”addBubbleListener(‘myBODY’)”>

<TD><INPUT TYPE=”button” VALUE=”Remove from BODY”
onClick=”removeBubbleListener(‘myBODY’)”>

</TR>
<TR STYLE=”background-color:#ffff99”>

<TD><INPUT TYPE=”button” VALUE=”Add to P”
onClick=”addBubbleListener(‘myP’)”>

<TD><INPUT TYPE=”button” VALUE=”Remove from P”
onClick=”removeBubbleListener(‘myP’)”>

</TR>
<TR STYLE=”background-color:#ff9999”><TD ROWSPAN=2>”Capture”-type click
listener:

<TD><INPUT TYPE=”button” VALUE=”Add to BODY”
onClick=”addCaptureListener(‘myBODY’)”>

<TD><INPUT TYPE=”button” VALUE=”Remove from BODY”
onClick=”removeCaptureListener(‘myBODY’)”>

</TR>
<TR STYLE=”background-color:#ff9999”>

<TD><INPUT TYPE=”button” VALUE=”Add to P”
onClick=”addCaptureListener(‘myP’)”>

<TD><INPUT TYPE=”button” VALUE=”Remove from P”
onClick=”removeCaptureListener(‘myP’)”>

</TR>
<P>Examine click event characteristics: <INPUT TYPE=”button” VALUE=”Clear”
onClick=”clearTextArea()”>

<TEXTAREA NAME=”output” COLS=”80” ROWS=”6” WRAP=”virtual”></TEXTAREA>
</FORM>
</TABLE>
</BODY>
</HTML>

appendChild(elementObject)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Scripts in Listing 15-21 demonstrate how the three major child-related methods

work in IE5+ and NN6. The page includes a simple, two-item list. A form enables you

to add items to the end of the list or replace the last item with a different entry.

elementObject.appendChild()

4855-7 ch01.F 6/26/01 8:34 AM Page 55

56 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

The append() function creates a new LI element and then uses the

appendChild() method to attach the text box text as the displayed text for the

item. The nested expression, document.createTextNode(form.input.value),

evaluates to a legitimate node that is appended to the new LI item. All of this occurs

before the new LI item is added to the document. In the final statement of the func-

tion, appendChild() is invoked from the vantage point of the UL element — thus

adding the LI element as a child node of the UL element.

Invoking the replaceChild() method in the replace() function utilizes some

of the same code. The main difference is that the replaceChild() method requires

a second parameter: a reference to the child element to be replaced. This demon-

stration replaces the final child node of the UL list, so the function takes advantage

of the lastChild property of all elements to get a reference to that final nested

child. That reference becomes the second parameter to replaceChild().

Listing 15-21: Various Child Methods

<HTML>
<HEAD>
<TITLE>appendChild(), removeChild(), and replaceChild() Methods</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function append(form) {

if (form.input.value) {
var newItem = document.createElement(“LI”)
newItem.appendChild(document.createTextNode(form.input.value))
document.getElementById(“myUL”).appendChild(newItem)

}
}

function replace(form) {
if (form.input.value) {

var newItem = document.createElement(“LI”)
var lastChild = document.getElementById(“myUL”).lastChild
newItem.appendChild(document.createTextNode(form.input.value))
document.getElementById(“myUL”).replaceChild(newItem, lastChild)

}
}

function restore() {
var oneChild
var mainObj = document.getElementById(“myUL”)
while (mainObj.childNodes.length > 2) {

oneChild = mainObj.lastChild
mainObj.removeChild(oneChild)

}
}
</SCRIPT>
</HEAD>
<BODY>
<H1>Child Methods</H1>
<HR>
Here is a list of items:
<UL ID=”myUL”>First Item

elementObject.appendChild()

4855-7 ch01.F 6/26/01 8:34 AM Page 56

57Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

Second Item

<FORM>
Enter some text to add/replace in the list:
<INPUT TYPE=”text” NAME=”input” SIZE=30>

<INPUT TYPE=”button” VALUE=”Append to List” onClick=”append(this.form)”>
<INPUT TYPE=”button” VALUE=”Replace Final Item” onClick=”replace(this.form)”>
<INPUT TYPE=”button” VALUE=”Restore List” onClick=”restore()”>
</BODY>
</HTML>

The final part of the demonstration uses the removeChild() method to peel

away all children of the UL element until just the two original items are left standing.

Again, the lastChild property comes in handy as the restore() function keeps

removing the last child until only two remain. Upon restoring the list, IE5/Mac fails to

render the list bullets; but in the browser’s object model, the UL element still exists.

applyElement(elementObject[, type])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
To help you visualize the impact of the applyElement() method with its differ-

ent parameter settings, Listing 15-22 enables you to apply a new element (an EM

element) to a SPAN element inside a paragraph. At any time, you can view the

HTML of the entire P element to see where the EM element is applied, as well as its

impact on the element containment hierarchy for the paragraph.

After you load the page, inspect the HTML for the paragraph before doing any-

thing else. Notice the SPAN element and its nested FONT element, both of which

surround the one-word content. If you apply the EM element inside the SPAN ele-

ment (click the middle button), the SPAN element’s first (and only) child element

becomes the EM element; the FONT element is now a child of the new EM element.

Listing 15-22: Using the applyElement() Method

<HTML>
<HEAD>
<TITLE>applyElement() Method</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function applyOutside() {

var newItem = document.createElement(“EM”)
newItem.id = newItem.uniqueID
document.all.mySpan.applyElement(newItem)

Continued

elementObject.applyElement()

4855-7 ch01.F 6/26/01 8:34 AM Page 57

58 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-22 (continued)

}

function applyInside() {
var newItem = document.createElement(“EM”)
newItem.id = newItem.uniqueID
document.all.mySpan.applyElement(newItem, “inside”)

}

function showHTML() {
alert(document.all.myP.outerHTML)

}
</SCRIPT>
</HEAD>
<BODY>
<H1>applyElement() Method</H1>
<HR>
<P ID=”myP”>A simple paragraph with a
special word in it.</P>
<FORM>
<INPUT TYPE=”button” VALUE=”Apply Outside” onClick=”applyOutside()”>
<INPUT TYPE=”button” VALUE=”Apply Inside” onClick=”applyInside()”>
<INPUT TYPE=”button” VALUE=”Show <P> HTML...” onClick=”showHTML()”>

<INPUT TYPE=”button” VALUE=”Restore Paragraph” onClick=”location.reload()”>
</FORM>
</BODY>
</HTML>

The visible results of applying the EM element inside and outside the SPAN ele-

ment in this case are the same. But you can see from the HTML results that each

element impacts the element hierarchy quite differently.

attachEvent(“eventName”, functionRef)
detachEvent(“eventName”, functionRef)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to create an anonymous

function that is called in response to an onmousedown event of the first paragraph

on the page. Begin by assigning the anonymous function to global variable a
(already initialized in The Evaluator) in the upper text box:

a = new Function(“alert(‘Function created at “ + (new Date()) + “‘)”)

elementObject.attachEvent()

4855-7 ch01.F 6/26/01 8:34 AM Page 58

59Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

The quote marks and parentheses can get jumbled easily, so enter this expres-

sion carefully. When you enter the expression successfully, the Results box shows

the function’s text. Now assign this function to the onmousedown event of the myP
element by entering the following statement into the upper text box:

document.all.myP.attachEvent(“onmousedown”, a)

The Results box displays true when successful. If you mouse down on the first

paragraph, an alert box displays the date and time that the anonymous function

was created (when the new Date() expression was evaluated).

Now, disconnect the event relationship from the object by entering the following

statement into the upper text box:

document.all.myP.detachEvent(“onmousedown”, a)

blur()
focus()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
To show how both the window.focus() method and its opposite

(window.blur()) operate, Listing 15-23 for NN3+ and IE4+ creates a two-window

environment. From each window, you can bring the other window to the front. The

main window uses the object returned by window.open() to assemble the refer-

ence to the new window. In the subwindow (whose content is created entirely on

the fly by JavaScript), self.opener is summoned to refer to the original window,

while self.blur() operates on the subwindow itself (except for the buggy behav-

ior of NN6 noted earlier). Blurring one window and focusing on another window

yields the same result of sending the window to the back of the pile.

Listing 15-23: The window.focus() and window.blur()
Methods

<HTML>
<HEAD>
<TITLE>Window Focus() and Blur()</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.1”>
// declare global variable name
var newWindow = null
function makeNewWindow() {

// check if window already exists
if (!newWindow || newWindow.closed) {

// store new window object in global variable

Continued

elementObject.blur()

4855-7 ch01.F 6/26/01 8:34 AM Page 59

60 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-23 (continued)

newWindow = window.open(“”,””,”width=250,height=250”)
// pause briefly to let IE3 window finish opening
setTimeout(“fillWindow()”,100)

} else {
// window already exists, so bring it forward
newWindow.focus()

}
}
// assemble new content and write to subwindow
function fillWindow() {

var newContent = “<HTML><HEAD><TITLE>Another Subwindow</TITLE></HEAD>”
newContent += “<BODY bgColor=’salmon’>”
newContent += “<H1>A Salmon-Colored Subwindow.</H1>”
newContent += “<FORM><INPUT TYPE=’button’ VALUE=’Bring Main to Front’

onClick=’self.opener.focus()’>”
// the following button doesn’t work in NN6
newContent += “<FORM><INPUT TYPE=’button’ VALUE=’Put Me in Back’

onClick=’self.blur()’>”
newContent += “</FORM></BODY></HTML>”
// write HTML to new window document
newWindow.document.write(newContent)
newWindow.document.close()

}
</SCRIPT>
</HEAD>
<BODY>
<H1>Window focus() and blur() Methods</H1>
<HR>
<FORM>
<INPUT TYPE=”button” NAME=”newOne” VALUE=”Show New Window”
onClick=”makeNewWindow()”>
</FORM>
</BODY>
</HTML>

A key ingredient to the success of the makeNewWindow() function in Listing 15-23

is the first conditional expression. Because newWind is initialized as a null value

when the page loads, that is its value the first time through the function. But after

you open the subwindow the first time, newWind is assigned a value (the subwin-

dow object) that remains intact even if the user closes the window. Thus, the value

doesn’t revert to null by itself. To catch the possibility that the user has closed the

window, the conditional expression also sees if the window is closed. If it is, a new

subwindow is generated, and that new window’s reference value is reassigned to

the newWind variable. On the other hand, if the window reference exists and the

window is not closed, the focus() method brings that subwindow to the front. You

can see the focus() method for a text object in action in JavaScript Bible Chapter

25’s description of the select() method for text objects.

elementObject.blur()

4855-7 ch01.F 6/26/01 8:34 AM Page 60

61Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

clearAttributes()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to examine the attributes

of an element before and after you apply clearAttributes(). To begin, display

the HTML for the table element on the page by entering the following statement

into the upper text field:

myTable.outerHTML

Notice the attributes associated with the <TABLE> tag. Look at the rendered

table to see how attributes such as BORDER and WIDTH affect the display of the

table. Now, enter the following statement in the top text box to remove all remov-

able attributes from this element:

myTable.clearAttributes()

First, look at the table. The border is gone, and the table is rendered only as wide

as is necessary to display the content with no cell padding. Lastly, view the results

of the clearAttributes() method in the outerHTML of the table again:

myTable.outerHTML

The source code file has not changed, but the object model in the browser’s mem-

ory reflects the changes you made.

click()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

click() method. The page includes various types of buttons at the bottom. You

can “click” the checkbox, for example, by entering the following statement in the

topmost text field:

document.myForm2.myCheckbox.click()

If you use a recent browser version, you most likely can see the checkbox change

states between checked and unchecked each time you execute the statement.

elementObject.click()

4855-7 ch01.F 6/26/01 8:34 AM Page 61

62 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

cloneNode(deepBoolean)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to clone, rename, and

append an element found in The Evaluator’s source code. Begin by cloning the

paragraph element named myP along with all of its content. Enter the following

statement into the topmost text field:

a = document.getElementById(“myP”).cloneNode(true)

The variable a now holds the clone of the original node, so you can change its ID
attribute at this point by entering the following statement:

a.setAttribute(“ID”, “Dolly”)

If you want to see the properties of the cloned node, enter a into the lower text

field. The precise listing of properties you see depends on whether you use NN or

IE; in either case, you should be able to locate the id property, whose value is now

Dolly.

As a final step, append this newly named node to the end of the body element by

entering the following statement into the topmost text field:

document.body.appendChild(a)

You can now scroll down to the bottom of the page and see a duplicate of the con-

tent. But because the two nodes have different ID attributes, they cannot confuse

scripts that need to address one or the other.

componentFromPoint(x,y)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
You can experiment with this method in the code supplied with Listing 15-24. As

presented, the method is associated with a TEXTAREA object that is specifically

sized to display both vertical and horizontal scrollbars. As you click various areas

of the TEXTAREA and the rest of the page, the status bar displays information about

the location of the event with the help of the componentFromPoint() method.

The script utilizes a combination of the event.srcElement property and the

componentFromPoint() method to help you distinguish how you can use each one

elementObject.componentFromPoint()

4855-7 ch01.F 6/26/01 8:34 AM Page 62

63Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

for different types of event processing. The srcElement property is used initially as

a filter to decide whether the status bar will reveal further processing about the

TEXTAREA element’s event details.

The onMouseDown event handler in the BODY element triggers all event process-

ing. IE events bubble up the hierarchy (and no events are cancelled in this page), so

all mouseDown events eventually reach the BODY element. Then, the

whereInWorld() function can compare each mouseDown event from any element

against the textarea’s geography.

Listing 15-24: Using the componentFromPoint() Method

<HTML>
<HEAD>
<TITLE>componentFromPoint() Method</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function whereInWorld(elem) {

var x = event.clientX
var y = event.clientY
var component = document.all.myTextarea.componentFromPoint(x,y)
if (window.event.srcElement == document.all.myTextarea) {

if (component == “”) {
status = “mouseDown event occurred inside the element”

} else {
status = “mouseDown occurred on the element\’s “ + component

}
} else {

status = “mouseDown occurred “ + component + “ of the element”
}

}
</SCRIPT>
</HEAD>
<BODY onMouseDown=”whereInWorld()”>
<H1>componentFromPoint() Method</H1>
<HR>
<P>Tracking the mouseDown event relative to the textarea object. View results in
status bar.</P>
<FORM>
<TEXTAREA NAME=”myTextarea” WRAP=”off” COLS=12 ROWS=4>
This is Line 1
This is Line 2
This is Line 3
This is Line 4
This is Line 5
This is Line 6
</TEXTAREA>
</FORM>
</BODY>
</HTML>

elementObject.componentFromPoint()

4855-7 ch01.F 6/26/01 8:34 AM Page 63

64 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

contains(elementObjectReference)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Using The Evaluator (Chapter 13 in the JavaScript Bible), see how the contains()

method responds to the object combinations in each of the following statements as

you enter them into the upper text box:

document.body.contains(document.all.myP)
document.all.myP.contains(document.all.item(“myEM”))
document.all.myEM.contains(document.all.myEM)
document.all.myEM.contains(document.all.myP)

Feel free to test other object combinations within this page.

detachEvent()
See attachEvent().

dispatchEvent(eventObject)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Listing 15-25 demonstrates the dispatchEvent() method as defined in the W3C

DOM Level 2. The behavior is identical to that of Listing 15-26, which demonstrates

the IE5.5 equivalent: fireEvent(). This example does not perform all intended

actions in the first release of NN6 because the browser does not fully implement the

document.createEvent() method. The example is designed to operate more com-

pletely in a future version that supports event generation.

Listing 15-25: Using the dispatchEvent() Method

<HTML>
<HEAD>
<STYLE TYPE=”text/css”>
#mySPAN {font-style:italic}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
// assemble a couple event object properties

elementObject.dispatchEvent()

4855-7 ch01.F 6/26/01 8:34 AM Page 64

65Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

function getEventProps(evt) {
var msg = “”
var elem = evt.target
msg += “event.target.nodeName: “ + elem.nodeName + “\n”
msg += “event.target.parentNode: “ + elem.parentNode.id + “\n”
msg += “event button: “ + evt.button
return msg

}

// onClick event handlers for body, myP, and mySPAN
function bodyClick(evt) {

var msg = “Click event processed in BODY\n\n”
msg += getEventProps(evt)
alert(msg)
checkCancelBubble(evt)

}
function pClick(evt) {

var msg = “Click event processed in P\n\n”
msg += getEventProps(evt)
alert(msg)
checkCancelBubble(evt)

}
function spanClick(evt) {

var msg = “Click event processed in SPAN\n\n”
msg += getEventProps(evt)
alert(msg)
checkCancelBubble(evt)

}

// cancel event bubbling if check box is checked
function checkCancelBubble(evt) {

if (document.controls.bubbleOn.checked) {
evt.stopPropagation()

}
}

// assign onClick event handlers to three elements
function init() {

document.body.onclick = bodyClick
document.getElementById(“myP”).onclick = pClick
document.getElementById(“mySPAN”).onclick = spanClick

}

// invoke fireEvent() on object whose ID is passed as parameter
function doDispatch(objID, evt) {

// don’t let button clicks bubble
evt.stopPropagation()
var newEvt = document.createEvent(“MouseEvent”)
if (newEvt) {

newEvt.button = 3
document.getElementById(objID).dispatchEvent(newEvt)

} else {

Continued

elementObject.dispatchEvent()

4855-7 ch01.F 6/26/01 8:34 AM Page 65

66 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-25 (continued)

alert(“This browser version does not support the feature.”)
}

}
</SCRIPT>
</HEAD>
<BODY ID=”myBODY” onLoad=”init()”>
<H1>fireEvent() Method</H1>
<HR>
<P ID=”myP”>This is a paragraph (with a nested SPAN)
that receives click events.</P>
<HR>
<P>Control Panel</P>
<FORM NAME=”controls”>
<P><INPUT TYPE=”checkbox” NAME=”bubbleOn”
onClick=”event.stopPropagation()”>Cancel event bubbling.</P>
<P><INPUT TYPE=”button” VALUE=”Fire Click Event on BODY”
onClick=”doDispatch(‘myBODY’, event)”></P>
<P><INPUT TYPE=”button” VALUE=”Fire Click Event on myP”
onClick=”doDispatch(‘myP’, event)”></P>
<P><INPUT TYPE=”button” VALUE=”Fire Click Event on mySPAN”
onClick=”doDispatch(‘mySPAN’, event)”></P>
</FORM>
</BODY>
</HTML>

fireEvent(“eventType”[, eventObjectRef])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
The small laboratory of Listing 15-26 enables you to explore the possibilities of

the IE5.5 fireEvent() method while reinforcing event bubbling concepts in IE.

Three nested element objects are assigned separate onClick event handlers (via

the init() function invoked after the page loads — although you can also set these

event handlers via onClick attributes in the tags). Each handler displays an alert

whose content reveals which object’s event handler was triggered and the tag name

and ID of the object that received the event. The default behavior of the page is to

allow event bubbling, but a checkbox enables you to turn off bubbling.

After you load the page, click the italic segment (a nested SPAN element) to

receive a series of three alert boxes. The first advises you that the SPAN element’s

onClick event handler is processing the event and that the SPAN element (whose ID

elementObject.fireEvent()

4855-7 ch01.F 6/26/01 8:34 AM Page 66

67Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

is mySPAN) is, indeed, the source element of the event. Because event bubbling is

enabled by default, the event bubbles upward to the SPAN element’s next outermost

container: the myP paragraph element. (However, mySPAN is still the source element.)

Finally, the event reaches the BODY element. If you click in the H1 element at the top

of the page, the event is not processed until it reaches the BODY element — although

the H1 element is the source element because that’s what you clicked. In all cases,

when you explicitly click something to generate the onclick event, the event’s

button property shows zero to signify the primary mouse button in IE.

Now onto the real purpose of this example: the fireEvent() method. Three but-

tons enable you to direct a click event to each of the three elements that have event

handlers defined for them. The events fired this way are artificial, generated via the

createEventObject() method. For demonstration purposes, the button property

of these scripted events is set to 3. This property value is assigned to the event
object that eventually gets directed to an element. With event bubbling left on, the

events sent via fireEvent() behave just like the physical clicks on the elements.

Similarly, if you disable event bubbling, the first event handler to process the event

cancels bubbling, and no further processing of that event occurs. Notice that event

bubbling is cancelled within the event handlers that process the event. To prevent

the clicks of the checkbox and action buttons from triggering the BODY element’s

onClick event handlers, event bubbling is turned off for the buttons right away.

Listing 15-26: Using the fireEvent() Method

<HTML>
<HEAD>
<STYLE TYPE=”text/css”>
#mySPAN {font-style:italic}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
// assemble a couple event object properties
function getEventProps() {

var msg = “”
var elem = event.srcElement
msg += “event.srcElement.tagName: “ + elem.tagName + “\n”
msg += “event.srcElement.id: “ + elem.id + “\n”
msg += “event button: “ + event.button
return msg

}

// onClick event handlers for body, myP, and mySPAN
function bodyClick() {

var msg = “Click event processed in BODY\n\n”
msg += getEventProps()
alert(msg)
checkCancelBubble()

}
function pClick() {

var msg = “Click event processed in P\n\n”
msg += getEventProps()
alert(msg)

Continued

elementObject.fireEvent()

4855-7 ch01.F 6/26/01 8:34 AM Page 67

68 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-26 (continued)

checkCancelBubble()
}
function spanClick() {

var msg = “Click event processed in SPAN\n\n”
msg += getEventProps()
alert(msg)
checkCancelBubble()

}

// cancel event bubbling if check box is checked
function checkCancelBubble() {

event.cancelBubble = document.controls.bubbleOn.checked
}

// assign onClick event handlers to three elements
function init() {

document.body.onclick = bodyClick
document.all.myP.onclick = pClick
document.all.mySPAN.onclick = spanClick

}

// invoke fireEvent() on object whose ID is passed as parameter
function doFire(objID) {

var newEvt = document.createEventObject()
newEvt.button = 3
document.all(objID).fireEvent(“onclick”, newEvt)
// don’t let button clicks bubble
event.cancelBubble = true

}
</SCRIPT>
</HEAD>
<BODY ID=”myBODY” onLoad=”init()”>
<H1>fireEvent() Method</H1>
<HR>
<P ID=”myP”>This is a paragraph (with a nested SPAN)
that receives click events.</P>
<HR>
<P>Control Panel</P>
<FORM NAME=”controls”>
<P><INPUT TYPE=”checkbox” NAME=”bubbleOn”
onClick=”event.cancelBubble=true”>Cancel event bubbling.</P>
<P><INPUT TYPE=”button” VALUE=”Fire Click Event on BODY”
onClick=”doFire(‘myBODY’)”></P>
<P><INPUT TYPE=”button” VALUE=”Fire Click Event on myP”
onClick=”doFire(‘myP’)”></P>
<P><INPUT TYPE=”button” VALUE=”Fire Click Event on mySPAN”
onClick=”doFire(‘mySPAN’)”></P>
</FORM>
</BODY>
</HTML>

elementObject.fireEvent()

4855-7 ch01.F 6/26/01 8:34 AM Page 68

69Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

focus()
See blur().

getAdjacentText(“position”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to examine all four adja-

cent text possibilities for the myP and nested myEM elements in that document.

Enter each of the following statements into the upper text box, and view the results:

document.all.myP.getAdjacentText(“beforeBegin”)
document.all.myP.getAdjacentText(“afterBegin”)
document.all.myP.getAdjacentText(“beforeEnd”)
document.all.myP.getAdjacentText(“afterEnd”)

The first and last statements return empty strings because the myP element has

no text fragments surrounding it. The afterBegin version returns the text frag-

ment of the myP element up to, but not including, the EM element nested inside. The

beforeEnd string picks up after the end of the nested EM element and returns all

text to the end of myP.

Now, see what happens with the nested myEM element:

document.all.myEM.getAdjacentText(“beforeBegin”)
document.all.myEM.getAdjacentText(“afterBegin”)
document.all.myEM.getAdjacentText(“beforeEnd”)
document.all.myEM.getAdjacentText(“afterEnd”)

Because this element has no nested elements, the afterBegin and beforeEnd
strings are identical: the same value as the innerText property of the element.

getAttribute(“attributeName”
[, caseSensitivity])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

getAttribute() method for the elements in the page. For IE4, use the document.all

elementObject.getAttribute()

4855-7 ch01.F 6/26/01 8:34 AM Page 69

70 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

notation. IE5 and NN6 understand the W3C standard getElementById() method of

addressing an element. You can enter the following sample statements into the top

text box to view attribute values.

IE4:

document.all.myTable.getAttribute(“width”)
document.all.myTable.getAttribute(“border”)

IE5/NN6:

document.getElementById(“myTable”).getAttribute(“width”)
document.getElementById(“myTable”).getAttribute(“border”)

getAttributeNode(“attributeName”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to explore the

getAttributeNode() method in NN6. The Results TEXTAREA element provides

several attributes to check out. Because the method returns an object, enter the fol-

lowing statements into the bottom text field so you can view the properties of the

attribute node object returned by the method:

document.getElementById(“output”).getAttributeNode(“COLS”)
document.getElementById(“output”).getAttributeNode(“ROWS”)
document.getElementById(“output”).getAttributeNode(“wrap”)
document.getElementById(“output”).getAttributeNode(“style”)

All (except the last) statements display a list of properties for each attribute

node object. The last statement, however, returns nothing because the STYLE
attribute is not specified for the element.

getBoundingClientRect()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Listing 15-27 employs both the getBoundingClientRect() and

getClientRects() methods in a demonstration of how they differ. A set of ele-

ments is grouped within a SPAN element named main. The group consists of two

paragraphs and an unordered list.

elementObject.getBoundingClientRect()

4855-7 ch01.F 6/26/01 8:34 AM Page 70

71Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

Two controls enable you to set the position of an underlying highlight rectangle

to any line of your choice. A checkbox enables you to set whether the highlight

rectangle should be only as wide as the line or the full width of the bounding rect-

angle for the entire SPAN element.

All the code is located in the hilite() function. The SELECT and checkbox ele-

ments invoke this function. Early in the function, the getClientRects() method is

invoked for the main element to capture a snapshot of all TextRectangles for the

entire element. This array comes in handy when the script needs to get the coordi-

nates of a rectangle for a single line, as chosen in the SELECT element.

Whenever the user chooses a number from the SELECT list and the value is less

than the total number of TextRectangle objects in clientRects, the function

begins calculating the size and location of the underlying yellow highlighter. When

the Full Width checkbox is checked, the left and right coordinates are obtained

from the getBoundingClientRect() method because the entire SPAN element’s

rectangle is the space you’re interested in; otherwise, you pull the left and right
properties from the chosen rectangle in the clientRects array.

Next comes the assignment of location and dimension values to the hiliter
object’s style property. The top and bottom are always pegged to whatever line is

selected, so the clientRects array is polled for the chosen entry’s top and bottom
properties. The previously calculated left value is assigned to the hiliter object’s

pixelLeft property, while the width is calculated by subtracting the left from the

right coordinates. Notice that the top and left coordinates also take into account

any vertical or horizontal scrolling of the entire body of the document. If you resize

the window to a smaller size, line wrapping throws off the original line count.

However, an invocation of hilite() from the onResize event handler applies the

currently chosen line number to whatever content falls in that line after resizing.

Listing 15-27: Using getBoundingClientRect()

<HTML>
<HEAD>
<TITLE>getClientRects() and getBoundClientRect() Methods</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function hilite() {

var hTop, hLeft, hRight, hBottom, hWidth
var select = document.forms[0].choice
var n = parseInt(select.options[select.selectedIndex].value) - 1
var clientRects = document.all.main.getClientRects()
var mainElem = document.all.main
if (n >= 0 && n < clientRects.length) {

if (document.forms[0].fullWidth.checked) {
hLeft = mainElem.getBoundingClientRect().left
hRight = mainElem.getBoundingClientRect().right

} else {
hLeft = clientRects[n].left
hRight = clientRects[n].right

}
document.all.hiliter.style.pixelTop = clientRects[n].top +

Continued

elementObject.getBoundingClientRect()

4855-7 ch01.F 6/26/01 8:34 AM Page 71

72 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-27 (continued)

document.body.scrollTop
document.all.hiliter.style.pixelBottom = clientRects[n].bottom
document.all.hiliter.style.pixelLeft = hLeft + document.body.scrollLeft
document.all.hiliter.style.pixelWidth = hRight - hLeft
document.all.hiliter.style.visibility = “visible”

} else if (n > 0) {
alert(“The content does not have that many lines.”)
document.all.hiliter.style.visibility = “hidden”

}
}
</SCRIPT>
</HEAD>
<BODY onResize=”hilite()”>
<H1>getClientRects() and getBoundClientRect() Methods</H1>
<HR>
<FORM>
Choose a line to highlight:
<SELECT NAME=”choice” onChange=”hilite()”>
<OPTION VALUE=0>
<OPTION VALUE=1>1
<OPTION VALUE=2>2
<OPTION VALUE=3>3
<OPTION VALUE=4>4
<OPTION VALUE=5>5
<OPTION VALUE=6>6
<OPTION VALUE=7>7
<OPTION VALUE=8>8
<OPTION VALUE=9>9
<OPTION VALUE=10>10
<OPTION VALUE=11>11
<OPTION VALUE=12>12
<OPTION VALUE=13>13
<OPTION VALUE=14>14
<OPTION VALUE=15>15
</SELECT>

<INPUT NAME=”fullWidth” TYPE=”checkbox” onClick=”hilite()”>
Full Width (bounding rectangle)
</FORM>

<P>Lorem ipsum dolor sit amet, consectetaur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim adminim veniam, quis nostrud exercitation ullamco:</P>

laboris
nisi
aliquip ex ea commodo

<P>Duis aute irure dolor in reprehenderit involuptate velit esse
cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deseruntmollit

elementObject.getBoundingClientRect()

4855-7 ch01.F 6/26/01 8:34 AM Page 72

73Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

anim id est laborum Et harumd und lookum like Greek to me, dereud
facilis est er expedit distinct.</P>

<DIV ID=”hiliter”
STYLE=”position:absolute; background-color:yellow; z-index:-1;
visibility:hidden”>
</DIV>
</BODY>
</HTML>

Because the z-index style property of the hiliter element is set to -1, the ele-

ment always appears beneath the primary content on the page. If the user selects a

line number beyond the current number of lines in the main element, the hiliter
element is hidden.

getClientRects()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
See Listing 15-27, which demonstrates the differences between getClientRects()

and getBoundingClientRect() and shows how you can use the two together.

getElementsByTagName(“tagName”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

getElementsByTagName() method. Enter the following statements one at a time

into the upper text box and study the results:

document.body.getElementsByTagName(“DIV”)
document.body.getElementsByTagName(“DIV”).length
document.getElementById(“myTable”).getElementsByTagName(“TD”).length

Because the getElementsByTagName() method returns an array of objects, you

can use one of those returned values as a valid element reference:

document.getElementsByTagName(“FORM”)[0].getElementsByTagName(“INPUT”).length

elementObject.getElementsByTagName()

4855-7 ch01.F 6/26/01 8:34 AM Page 73

74 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

getExpression(“attributeName”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
See Listing 15-32 for the setExpression() method. This listing demonstrates

the kinds of values returned by getExpression().

hasChildNodes()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

hasChildNodes() method. If you enter the following statement into the topmost

text box:

document.getElementById(“myP”).hasChildNodes()

the returned value is true. You can find out how many nodes there are by getting

the length of the childNodes array:

document.getElementById(“myP”).childNodes.length

This expression reveals a total of three nodes: the two text nodes and the EM ele-

ment between them. Check out whether the first text node has any children:

document.getElementById(“myP”).childNodes[0].hasChildNodes()

The response is false because text fragments do not have any nested nodes.

But check out the EM element, which is the second child node of the myP element:

document.getElementById(“myP”).childNodes[1].hasChildNodes()

The answer is true because the EM element has a text fragment node nested

within it. Sure enough, the statement

document.getElementById(“myP”).childNodes[1].childNodes.length

yields a node count of 1. You can also go directly to the EM element in your

references:

document.getElementById(“myEM”).hasChildNodes()
document.getElementById(“myEM”).childNodes.length

elementObject.hasChildNodes()

4855-7 ch01.F 6/26/01 8:34 AM Page 74

75Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

If you want to see the properties of the text fragment node inside the EM ele-

ment, enter the following into the lower text box:

document.getElementById(“myEM”).childNodes[0]

You can see that the data and nodeValue properties for the text fragment return

the text “all”.

insertAdjacentElement(“location”,
elementObject)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Use The Evaluator (Chapter 13 in JavaScript Bible) to experiment with the

insertAdjacentElement() method. The goal of the experiment is to insert a new

H1 element above the myP element.

All actions require you to enter a sequence of statements in the topmost text

box. Begin by storing a new element in the global variable a:

a = document.createElement(“H1”)

Give the new object some text:

a.innerText = “New Header”

Now, insert this element before the start of the myP object:

myP.insertAdjacentElement(“beforeBegin”, a)

Notice that you have not assigned an id property value to the new element. But

because the element was inserted by reference, you can modify the inserted object

by changing the object stored in the a variable:

a.style.color = “red”

The inserted element is also part of the document hierarchy, so you can access it

through hierarchy references such as myP.previousSibling.

The parent element of the newly inserted element is the BODY. Thus, you can

inspect the current state of the HTML for the rendered page by entering the follow-

ing statement into the topmost text box:

document.body.innerHTML

If you scroll down past the first form, you can find the <H1> element that you added

along with the STYLE attribute.

elementObject.insertAdjacentElement()

4855-7 ch01.F 6/26/01 8:34 AM Page 75

76 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

insertAdjacentHTML(“location”, “HTMLtext”)
insertAdjacentText(“location”, “text”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with these

two methods. The example here demonstrates the result of employing both meth-

ods in an attempt to add some HTML to the beginning of the myP element.

Begin by assigning a string of HTML code to the global variable a:

a = “<B ID=’myB’>Important News!”

Because this HTML is to go on the same line as the start of the myP paragraph, use

the afterBegin parameter for the insert method:

myP.insertAdjacentHTML(“afterBegin”, a)

Notice that there is no space after the exclamation mark of the inserted HTML.

But to prove that the inserted HTML is genuinely part of the document’s object

model, you can now insert the text of a space after the B element whose ID is myB:

myB.insertAdjacentText(“afterEnd”, “ “)

Each time you evaluate the preceding statement (by repeatedly clicking the

Evaluate button or pressing Enter with the cursor in the topmost field), an addi-

tional space is added.

You should also see what happens when the string to be inserted with

insertAdjacentText() contains HTML tags. Reload The Evaluator and enter the

following two statements into the topmost field, evaluating each one in turn:

a = “<B ID=’myB’>Important News!”
myP.insertAdjacentText(“afterBegin”, a)

The HTML is not interpreted but is displayed as plain text. There is no object

named myB after executing this latest insert method.

insertBefore(newChildNodeObject[,
referenceChildNode])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

elementObject.insertBefore()

4855-7 ch01.F 6/26/01 8:34 AM Page 76

77Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

Example
Listing 15-28 demonstrates how the insertBefore() method can insert child

elements (LI) inside a parent (OL) at different locations, depending on the second

parameter. A text box enables you to enter your choice of text and/or HTML for

insertion at various locations within the OL element. If you don’t specify a position,

the second parameter of insertBefore() is passed as null— meaning that the

new child node is added to the end of the existing children. But choose a spot from

the select list where you want to insert the new item. The value of each SELECT list

option is an index of one of the first three child nodes of the OL element.

Listing 15-28: Using the insertBefore() Method

<HTML>
<HEAD>
<TITLE>insertBefore() Method</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function doInsert(form) {

if (form.newText) {
var newChild = document.createElement(“LI”)
newChild.innerHTML = form.newText.value
var choice = form.itemIndex.options[form.itemIndex.selectedIndex].value
var insertPoint = (isNaN(choice)) ?

null : document.getElementById(“myUL”).childNodes[choice]
document.getElementById(“myUL”).insertBefore(newChild, insertPoint)

}
}
</SCRIPT>
</HEAD>
<BODY>
<H1>insertBefore() Method</H1>
<HR>
<FORM onSubmit=”return false”>
<P>Enter text or HTML for a new list item:
<INPUT TYPE=”text” NAME=”newText” SIZE=40 VALUE=””></P>
<P>Before which existing item?
<SELECT NAME=”itemIndex”>

<OPTION VALUE=null>None specified
<OPTION VALUE=0>1
<OPTION VALUE=1>2
<OPTION VALUE=2>3

</SELECT></P>
<INPUT TYPE=”button” VALUE=”Insert Item” onClick=”doInsert(this.form)”>
</FORM>

<OL ID=”myUL”>
Originally the First Item
Originally the Second Item
Originally the Third Item

</BODY>
</HTML>

elementObject.insertBefore()

4855-7 ch01.F 6/26/01 8:34 AM Page 77

78 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

item(index | “index” [, subIndex])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

item() method. Type the following statements into the topmost text box and view

the results for each:

NN6 and IE5

document.getElementById(“myP”).childNodes.length
document.getElementById(“myP”).childNodes.item(0).data
document.getElementById(“myP”).childNodes.item(1).nodeName

NN6, IE4, and IE5

document.forms[1].elements.item(0).type

IE4 and IE5

document.all.item(“myP”).outerHTML
myP.outerHTML

In the last two examples, both statements return the same string. The first exam-

ple is helpful when your script is working with a string version of an object’s name.

If your script already knows the object reference, then the second approach is more

efficient and compact.

mergeAttributes(“sourceObject”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Listing 15-29 demonstrates the usage of mergeAttributes() in the process of

replicating the same form input field while assigning a unique ID to each new field.

So you can see the results as you go, I display the HTML for each input field in the

field.

The doMerge() function begins by generating two new elements: a P and an

INPUT element. Because these newly created elements have no properties associ-

ated with them, a unique ID is assigned to the INPUT element via the uniqueID
property. Attributes from the field in the source code (field1) are merged into the

new INPUT element. Thus, all attributes except name and id are copied to the new

element. The INPUT element is inserted into the P element, and the P element is

elementObject.mergeAttributes()

4855-7 ch01.F 6/26/01 8:34 AM Page 78

79Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

appended to the document’s form element. Finally, the outerHTML of the new ele-

ment is displayed in its field. Notice that except for the NAME and ID attributes, all

others are copied. This includes style sheet attributes and event handlers. To prove

that the event handler works in the new elements, you can add a space to any one

of them and press Tab to trigger the onChange event handler that changes the con-

tent to all uppercase characters.

Listing 15-29: Using the mergeAttributes() Method

<HTML>
<HEAD>
<TITLE>mergeAttributes() Method</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function doMerge(form) {

var newPElem = document.createElement(“P”)
var newInputElem = document.createElement(“INPUT”)
newInputElem.id = newInputElem.uniqueID
newInputElem.mergeAttributes(form.field1)
newPElem.appendChild(newInputElem)
form.appendChild(newPElem)
newInputElem.value = newInputElem.outerHTML

}
// called by onChange event handler of fields
function upperMe(field) {

field.value = field.value.toUpperCase()
}
</SCRIPT>
</HEAD>
<BODY onLoad=”document.expandable.field1.value =
document.expandable.field1.outerHTML”>
<H1>mergeAttributes() Method</H1>
<HR>
<FORM NAME=”expandable” onSubmit=”return false”>
<P><INPUT TYPE=”button” VALUE=”Append Field ‘Clone’”
onClick=”doMerge(this.form)”></P>
<P><INPUT TYPE=”text” NAME=”field1” ID=”FIELD1” SIZE=120 VALUE=”” STYLE=”font-
size:9pt” onChange=”upperMe(this)”></P>
</FORM>
</BODY>
</HTML>

normalize()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

elementObject.normalize()

4855-7 ch01.F 6/26/01 8:34 AM Page 79

80 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example
Use The Evaluator to experiment with the normalize() method in NN6. The fol-

lowing sequence adds a text node adjacent to one in the myP element. A subsequent

invocation of the normalize() method removes the division between the adjacent

text nodes.

Begin by confirming the number of child nodes of the myP element:

document.getElementById(“myP”).childNodes.length

Three nodes initially inhabit the element. Next, create a text node and append it as

the last child of the myP element:

a = document.createTextNode(“This means you!”)
document.getElementById(“myP”).appendChild(a)

With the new text now rendered on the page, the number of child nodes

increases to four:

document.getElementById(“myP”).childNodes.length

You can see that the last child node of myP is the text node you just created:

document.getElementById(“myP”).lastChild.nodeValue

But by invoking normalize() on myP, all adjacent text nodes are accumulated into

single nodes:

document.getElementById(“myP”).normalize()

You can now see that the myP element is back to three child nodes, and the last

child is a combination of the two previously distinct, but adjacent, text nodes:

document.getElementById(“myP”).childNodes.length
document.getElementById(“myP”).lastChild.nodeValue

releaseCapture()
setCapture(containerBoolean)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Listing 15-30 demonstrates the usage of setCapture() and releaseCapture()

in a “quick-and-dirty” context menu for IE5+/Windows. The job of the context menu

is to present a list of numbering styles for the ordered list of items on the page.

Whenever the user brings up the context menu atop the OL element, the custom

context menu appears. Event capture is turned on in the process to prevent mouse

actions elsewhere on the page from interrupting the context menu choice. Even a

click on the link set up as the title of the list is inhibited while the context menu is

visible. A click anywhere outside of the context menu hides the menu. Clicking a

elementObject.releaseCapture()

4855-7 ch01.F 6/26/01 8:34 AM Page 80

81Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

choice in the menu changes the listStyleType property of the OL object and

hides the menu. Whenever the context menu is hidden, event capture is turned off

so that clicking on the page (such as the link) works as normal.

For this design, onClick, onMouseOver, and onMouseOut event handlers are

assigned to the DIV element that contains the context menu. To trigger the display

of the context menu, the OL element has an onContextMenu event handler. This

handler invokes the showContextMenu() function. In this function, event capture is

assigned to the context menu DIV object. The DIV is also positioned at the location

of the click before it is set to be visible. To prevent the system’s regular context

menu from also appearing, the event object’s returnValue property is set to

false. The context menu is shown activated in Figure 1-2.

Figure 1-2: Displaying a customized context menu

Now that all mouse events on the page go through the contextMenu DIV object,

let’s examine what happens with different kinds of events triggered by user action. As

the user rolls the mouse, a flood of mouseover and mouseout events fire. The event

handlers assigned to the DIV manage these events. But notice that the two event han-

dlers, highlight() and unhighlight(), perform action only when the srcElement
property of the event is one of the menu items in the DIV. Because the page has no

other onMouseOver or onMouseOut event handlers defined for elements up the con-

tainment hierarchy, you do not have to cancel event bubbling for these events.

When a user clicks the mouse button, different things happen depending on

whether event capture is enabled. Without event capture, the click event bubbles

up from wherever it occurred to the onClick event handler in the BODY element.

(An alert dialog box displays to let you know when the event reaches the BODY.)

But with event capture turned on (the context menu is showing), the

handleClick() event handler takes over to apply the desired choice whenever the

click is atop one of the context menu items. For all click events handled by this

function, the context menu is hidden and the click event is canceled from bub-

bling up any higher (no alert dialog box appears). This takes place whether the

user makes a choice in the context menu or clicks anywhere else on the page. In the

latter case, all you need is for the context menu to go away like the real context

menu does. For added insurance, the onLoseCapture event handler hides the con-

text menu when a user performs any of the actions just listed that cancel capture.

elementObject.releaseCapture()

4855-7 ch01.F 6/26/01 8:34 AM Page 81

82 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-30: Using setCapture() and releaseCapture()

<HTML>
<STYLE TYPE=”text/css”>
#contextMenu {position:absolute; background-color:#cfcfcf;

border-style:solid; border-width:1px;
border-color:#EFEFEF #505050 #505050 #EFEFEF;
padding:3px 10px; font-size:8pt; font-family:Arial, Helvetica;
line-height:150%; visibility:hidden}

.menuItem {color:black}

.menuItemOn {color:white}
OL {list-style-position:inside; font-weight:bold; cursor:nw-resize}
LI {font-weight:normal}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
function showContextMenu() {

contextMenu.setCapture()
contextMenu.style.pixelTop = event.clientY + document.body.scrollTop
contextMenu.style.pixelLeft = event.clientX + document.body.scrollLeft
contextMenu.style.visibility = “visible”
event.returnValue = false

}

function revert() {
document.releaseCapture()
hideMenu()

}

function hideMenu() {
contextMenu.style.visibility = “hidden”

}

function handleClick() {
var elem = window.event.srcElement
if (elem.id.indexOf(“menuItem”) == 0) {

shapesList.style.listStyleType = elem.LISTTYPE
}
revert()
event.cancelBubble = true

}

function highlight() {
var elem = event.srcElement
if (elem.className == “menuItem”) {

elem.className = “menuItemOn”
}

}

function unhighlight() {
var elem = event.srcElement
if (elem.className == “menuItemOn”) {

elementObject.releaseCapture()

4855-7 ch01.F 6/26/01 8:34 AM Page 82

83Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

elem.className = “menuItem”
}

}
</SCRIPT>
<BODY onClick=”alert(‘You reached the document object.’)” >
<OL ID=”shapesList” onContextMenu=”showContextMenu()”>
Three-Dimensional Shapes
Circular Cylinder
Cube
Rectangular Prism
Regular Right Pyramid
Right Circular Cone
Sphere

<DIV ID=”contextMenu” onLoseCapture=”hideMenu()” onClick=”handleClick()”
onMouseOver=”highlight()” onMouseOut=”unhighlight()”>
<SPAN ID=”menuItem1” CLASS=”menuItem” LISTTYPE=”upper-
alpha”>A,B,C,...

<SPAN ID=”menuItem2” CLASS=”menuItem” LISTTYPE=”lower-
alpha”>a,b,c,...

<SPAN ID=”menuItem3” CLASS=”menuItem” LISTTYPE=”upper-
roman”>I,II,III,...

<SPAN ID=”menuItem4” CLASS=”menuItem” LISTTYPE=”lower-
roman”>i,ii,iii,...

1,2,3,...

</DIV>
</BODY>
</HTML>

removeAttribute(“attributeName”
[, caseSensitivity])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

removeAttribute() method for the elements in the page. See the examples for the

setAttribute() method later in this chapter, and enter the corresponding

removeAttribute() statements in the top text box. Interlace statements using

getAttribute() to verify the presence or absence of each attribute.

elementObject.removeAttribute()

4855-7 ch01.F 6/26/01 8:34 AM Page 83

84 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

removeAttributeNode(attributeNode)
setAttributeNode(attributeNode)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

setAttributeNode() and removeAttributeNode() methods for the P element in

the page. The task is to create and add a STYLE attribute to the P element. Begin by

creating a new attribute and storing it temporarily in the global variable a:

a = document.createAttribute(“style”)

Assign a value to the attribute object:

a.nodeValue = “color:red”

Now insert the new attribute into the P element:

document.getElementById(“myP”).setAttributeNode(a)

The paragraph changes color in response to the newly added attribute.

Due to the NN6 bug that won’t allow the method to return a reference to the

newly inserted attribute node, you can artificially obtain such a reference:

b = document.getElementById(“myP”).getAttributeNode(“style”)

Finally, use the reference to the newly added attribute to remove it from the

element:

document.getElementById(“myP”).removeAttribute(b)

Upon removing the attribute, the paragraph resumes its initial color. See the

example for the setAttribute() method later in this chapter to discover how you

can perform this same kind of operation with setAttribute().

removeBehavior(ID)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
See Listings 15-19a and 15-19b earlier in this chapter for examples of how to use

addBehavior() and removeBehavior().

elementObject.removeBehavior()

4855-7 ch01.F 6/26/01 8:34 AM Page 84

85Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

removeChild(nodeObject)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
You can see an example of removeChild() as part of Listing 15-21 earlier in this

chapter.

removeEventListener()
See addEventListener().

removeExpression(“propertyName”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
You can experiment with all three expression methods in The Evaluator (Chapter

13 in the JavaScript Bible). The following sequence adds an expression to a style

sheet property of the myP element on the page and then removes it.

To begin, enter the number 24 in the bottom one-line text box in The Evaluator

(but don’t press Enter or click the List Properties button). This is the value used in

the expression to govern the fontSize property of the myP object. Next, assign an

expression to the myP object’s style object by entering the following statement

into the topmost text box:

myP.style.setExpression(“fontSize”,”document.forms[0].inspector.value”,”JScript”)

You can now enter different font sizes into the lower text box and have the val-

ues immediately applied to the fontSize property. (Keyboard events in the text

box automatically trigger the recalculation.) The default unit is px, but you can also

append other units (such as pt) to the value in the text field to see how different

measurement units influence the same numeric value.

Before proceeding to the next step, enter a value other than 16 (the default

fontSize value). Finally, enter the following statement in the topmost text box to

disconnect the expression from the property:

myP.style.removeExpression(“fontSize”)

elementObject.removeExpression()

4855-7 ch01.F 6/26/01 8:34 AM Page 85

86 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Notice that although you can no longer adjust the font size from the lower text

box, the most recent value assigned to it still sticks to the element. To prove it,

enter the following statement in the topmost text box to see the current value:

myP.style.fontSize

removeNode(removeChildrenFlag)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Examine Listing 15-21 for the appendChild() method to understand the differ-

ence between removeChild() and removeNode(). In the restore() function, you

can replace this statement

mainObj.removeChild(oneChild)

in IE5+ with

oneChild.removeNode(true)

The difference is subtle, but it is important to understand. See Listing 15-31 later

in this chapter for another example of the removeNode() method.

replaceAdjacentText(“location”, “text”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

replaceAdjacentText() method. Enter each of the following statements into the

top text box and watch the results in the myP element (and its nested myEM element)

below the solid rule:

document.all.myEM.replaceAdjacentText(“afterBegin”, “twenty”)

Notice that the myEM element’s new text picks up the behavior of the element. In

the meantime, the replaced text (all) is returned by the method and displayed in

the Results box.

document.all.myEM.replaceAdjacentText(“beforeBegin”, “We need “)

elementObject.replaceAdjacentText()

4855-7 ch01.F 6/26/01 8:34 AM Page 86

87Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

All characters of the text fragment, including spaces, are replaced. Therefore,

you may need to supply a trailing space, as shown here, if the fragment you replace

has a space.

document.all.myP.replaceAdjacentText(“beforeEnd”, “ good people.”)

This is another way to replace the text fragment following the myEM element, but

it is also relative to the surrounding myP element. If you now attempt to replace text

after the end of the myP block-level element,

document.all.myP.replaceAdjacentText(“afterEnd”, “Hooray!”)

the text fragment is inserted after the end of the myP element’s tag set. The fragment

is just kind of floating in the document object model as an unlabeled text node.

replaceChild(newNodeObject, oldNodeObject)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
You can see an example of replaceChild() as part of Listing 15-21 earlier in

this chapter.

replaceNode(“newNodeObject”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Listing 15-31 demonstrates three node-related methods: removeNode(),

replaceNode(), and swapNode(). These methods work in IE5+ only.

The page rendered from Listing 15-31 begins with a UL type list of four items. Four

buttons control various aspects of the node structure of this list element. The first

button invokes the replace() function, which changes the UL type to OL. To do this,

the function must temporarily tuck away all child nodes of the original UL element so

that they can be added back into the new OL element. At the same time, the old UL

node is stored in a global variable (oldNode) for restoration in another function.

To replace the UL node with an OL, the replace() function creates a new, empty

OL element and assigns the myOL ID to it. Next, the children (LI elements) are stored

en masse as an array in the variable innards. The child nodes are then inserted into

the empty OL element, using the insertBefore() method. Notice that as each

child element from the innards array is inserted into the OL element, the child ele-

ment is removed from the innards array. That’s why the loop to insert the child

nodes is a while loop that constantly inserts the first item of the innards array to

elementObject.replaceNode()

4855-7 ch01.F 6/26/01 8:34 AM Page 87

88 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

the new element. Finally, the replaceNode() method puts the new node in the old

node’s place, while the old node (just the UL element) is stored in oldNode.

The restore() function operates in the inverse direction of the replace()
function. The same juggling of nested child nodes is required.

The third button invokes the swap() function, whose script exchanges the first

and last nodes. The swapNode() method, like the others in this discussion, oper-

ates from the point of view of the node. Therefore, the method is attached to one of

the swapped nodes, while the other node is specified as a parameter. Because of

the nature of the OL element, the number sequence remains fixed but the text of

the LI node swaps.

To demonstrate the removeNode() method, the fourth function removes the last

child node of the list. Each call to removeNode() passes the true parameter to

guarantee that the text nodes nested inside each LI node are also removed.

Experiment with this method by setting the parameter to false (the default).

Notice how the parent–child relationship changes when you remove the LI node.

Listing 15-31: Using Node-Related Methods

<HTML>
<HEAD>
<TITLE>removeNode(), replaceNode(), and swapNode() Methods</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// store original node between changes
var oldNode

// replace UL node with OL
function replace() {

if (document.all.myUL) {
var newNode = document.createElement(“OL”)
newNode.id = “myOL”
var innards = document.all.myUL.children
while (innards.length > 0) {

newNode.insertBefore(innards[0])
}
oldNode = document.all.myUL.replaceNode(newNode)

}
}

// restore OL to UL
function restore() {

if (document.all.myOL && oldNode) {
var innards = document.all.myOL.children
while (innards.length > 0) {

oldNode.insertBefore(innards[0])
}
document.all.myOL.replaceNode(oldNode)

}
}

// swap first and last nodes
function swap() {

elementObject.replaceNode()

4855-7 ch01.F 6/26/01 8:34 AM Page 88

89Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

if (document.all.myUL) {
document.all.myUL.firstChild.swapNode(document.all.myUL.lastChild)

}
if (document.all.myOL) {

document.all.myOL.firstChild.swapNode(document.all.myOL.lastChild)
}

}

// remove last node
function remove() {

if (document.all.myUL) {
document.all.myUL.lastChild.removeNode(true)

}
if (document.all.myOL) {

document.all.myOL.lastChild.removeNode(true)
}

}
</SCRIPT>
</HEAD>
<BODY>
<H1>Node Methods</H1>
<HR>
Here is a list of items:
<UL ID=”myUL”>
First Item
Second Item
Third Item
Fourth Item

<FORM>
<INPUT TYPE=”button” VALUE=”Change to OL List” onClick=”replace()”>
<INPUT TYPE=”button” VALUE=”Restore LI List” onClick=”restore()”>
<INPUT TYPE=”button” VALUE=”Swap First/Last” onClick=”swap()”>
<INPUT TYPE=”button” VALUE=”Remove Last” onClick=”remove()”>
</BODY>
</HTML>

You can accomplish the same functionality shown in Listing 15-31 in a cross-

browser fashion using the W3C DOM. In place of the removeNode() and

replaceNode() methods, use removeChild() and replaceChild() methods to

shift the point of view (and object references) to the parent of the UL and OL

objects: the document.body. Also, you need to change the document.all refer-

ences to document.getElementById().

scrollIntoView(topAlignFlag)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

elementObject.scrollIntoView()

4855-7 ch01.F 6/26/01 8:34 AM Page 89

90 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

scrollIntoView() method. Resize the browser window height so that you can see

only the topmost text box and the Results textarea. Enter each of the following

statements into the top text box and see where the myP element comes into view:

myP.scrollIntoView()
myP.scrollIntoView(false)

Expand the height of the browser window until you can see part of the table

lower on the page. If you enter

myTable.scrollIntoView(false)

into the top text box, the page scrolls to bring the bottom of the table to the bottom

of the window. But if you use the default parameter (true or empty),

myTable.scrollIntoView()

the page scrolls as far as it can in an effort to align the top of the element as closely

as possible to the top of the window. The page cannot scroll beyond its normal

scrolling maximum (although if the element is a positioned element, you can use

dynamic positioning to place it wherever you want — including “off the page”).

Also, if you shrink the window and try to scroll the top of the table to the top of the

window, be aware that the TABLE element contains a CAPTION element so the cap-

tion is flush with the top of the window.

setActive()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to compare the

setActive() and focus() methods. With the page scrolled to the top and the win-

dow sized so that you cannot see the sample check box near the bottom of the

page, enter the following statement into the top text box:

document.forms[1].myCheckbox.setActive()

Scroll down to see that the checkbox has operational focus (press the spacebar

to see). Now, scroll back to the top and enter the following:

document.forms[1].myCheckbox.focus()

This time, the checkbox gets focus and the page automatically scrolls the object

into view.

elementObject.setActive()

4855-7 ch01.F 6/26/01 8:34 AM Page 90

91Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

setAttribute(“attributeName”, value
[, caseSensitivity])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

setAttribute() method for the elements in the page. For IE4, use the document.
all notation; IE5 and NN6 understand the W3C standard getElementById()
method of addressing an element.

Setting attributes can have immediate impact on the layout of the page (just as

setting an object’s properties can). Enter these sample statements into the top text

box to view attribute values:

IE4+:

document.all.myTable.setAttribute(“width”, “80%”)
document.all.myTable.setAttribute(“border”, “5”)

IE5+/NN6:

document.getElementById(“myTable”).setAttribute(“width”, “80%”)
document.getElementById(“myTable”).setAttribute(“border”, “5”)

setAttributeNode()
See removeAttributeNode().

setCapture(containerBoolean)
See releaseCapture().

setExpression(“propertyName”,
“expression”,”language”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Listing 15-32 shows the setExpression(), recalc(), and getExpression()

methods at work in a DHTML-based clock. Figure 1-3 shows the clock. As time clicks

elementObject.setExpression()

4855-7 ch01.F 6/26/01 8:34 AM Page 91

92 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

by, the bars for hours, minutes, and seconds adjust their widths to reflect the cur-

rent time. At the same time, the innerHTML of SPAN elements to the right of each

bar display the current numeric value for the bar.

The dynamically calculated values in this example are based on the creation of

a new date object over and over again to get the current time from the client com-

puter clock. It is from the date object (stored in the variable called now) that the

hour, minute, and second values are retrieved. Some other calculations are

involved so that a value for one of these time components is converted into a

pixel value for the width of the bars. The bars are divided into 24 (for the hours)

and 60 (for the minutes and seconds) parts, so the scale for the two types differs.

For the 60-increment bars in this application, each increment is set to 5 pixels

(stored in shortWidth); the 24-increment bars are 2.5 times the shortWidth.

As the document loads, the three SPAN elements for the colored bars are given

no width, which means that they assume the default width of zero. But after the

page loads, the onLoad event handler invokes the init() function, which sets the

initial values for each bar’s width and the text (innerHTML) of the three labeled

spans. Once these initial values are set, the init() function invokes the

updateClock() function.

In the updateClock() function, a new date object is created for the current

instant. The document.recalc() method is called, instructing the browser to

recalculate the expressions that were set in the init() function and assign the new

values to the properties. To keep the clock “ticking,” the setTimeout() method is

set to invoke this same updateClock() function in one second.

To see what the getExpression() method does, you can click the button on the

page. It simply displays the returned value for one of the attributes that you assign

using setExpression().

Listing 15-32: Dynamic Properties

<HTML>
<HEAD>
<TITLE>getExpression(), setExpression(), and recalc() Methods</TITLE>
<STYLE TYPE=”text/css”>
TH {text-align:right}
SPAN {vertical-align:bottom}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>

var now = new Date()
var shortWidth = 5
var multiple = 2.5

function init() {
with (document.all) {

hoursBlock.style.setExpression(“width”,
“now.getHours() * shortWidth * multiple”,”jscript”)

hoursLabel.setExpression(“innerHTML”,
“now.getHours()”,”jscript”)

minutesBlock.style.setExpression(“width”,
“now.getMinutes() * shortWidth”,”jscript”)

elementObject.setExpression()

4855-7 ch01.F 6/26/01 8:34 AM Page 92

93Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

minutesLabel.setExpression(“innerHTML”,
“now.getMinutes()”,”jscript”)

secondsBlock.style.setExpression(“width”,
“now.getSeconds() * shortWidth”,”jscript”)

secondsLabel.setExpression(“innerHTML”,
“now.getSeconds()”,”jscript”)

}

updateClock()
}

function updateClock() {
now = new Date()
document.recalc()
setTimeout(“updateClock()”,1000)

}

function showExpr() {
alert(“Expression for the \’Hours\’ innerHTML property is:\r\n” +

document.all.hoursLabel.getExpression(“innerHTML”) + “.”)
}
</SCRIPT>
</HEAD>
<BODY onLoad=”init()”>
<H1>getExpression(), setExpression(), recalc() Methods</H1>
<HR>
<P>This clock uses Dynamic Properties to calculate bar width and time
numbers:</P>
<TABLE BORDER=0>
<TR>

<TH>Hours:</TH>
<TD>

 </TD>
</TR>
<TR>

<TH>Minutes:</TH>
<TD>

 </TD>
</TR>
<TR>

<TH>Seconds:</TH>
<TD>

 </TD>
</TR>
</TABLE>
<HR>
<FORM>
<INPUT TYPE=”button” VALUE=”Show ‘Hours’ number innerHTML Expression”
onClick=”showExpr()”
</FORM>
</BODY>
</HTML>

elementObject.setExpression()

4855-7 ch01.F 6/26/01 8:34 AM Page 93

94 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Figure 1-3: A clock controlled by dynamic properties

swapNode(otherNodeObject)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
See Listing 15-31 (the replaceNode() method) for an example of the

swapNode() method in action.

tags(“tagName”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

elementObject.tags()

4855-7 ch01.F 6/26/01 8:34 AM Page 94

95Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

tags() method. Enter the following statements one at a time into the upper text

box and study the results:

document.all.tags(“DIV”)
document.all.tags(“DIV”).length
myTable.all.tags(“TD”).length

Because the tags() method returns an array of objects, you can use one of

those returned values as a valid element reference:

document.all.tags(“FORM”)[1].elements.tags(“INPUT”).length

urns(“behaviorURN”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
In case the urns() method is reconnected in the future, you can add a button

and function to Listing 15-19b that reveals whether the makeHot.htc behavior is

attached to the myP element. Such a function looks like this:

function behaviorAttached() {
if (document.all.urns(“makeHot”)) {

alert(“There is at least one element set to \’makeHot\’.”)
}

}

Event handlers
onActivate
onBeforeDeactivate
onDeactivate

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
You can modify Listing 15-34 later in this chapter by substituting onActivate for

onFocus and onDeactivate for onBlur.

elementObject.onActivate

4855-7 ch01.F 6/26/01 8:34 AM Page 95

96 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

onBeforeDeactivate event handler. To begin, set the myP element so it can accept

focus:

myP.tabIndex = 1

If you repeatedly press the Tab key, the myP paragraph will eventually receive

focus — indicated by the dotted rectangle around it. To see how you can prevent

the element from losing focus, assign an anonymous function to the

onBeforeDeactivate event handler, as shown in the following statement:

myP.onbeforedeactivate = new Function(“event.returnValue=false”)

Now you can press Tab all you like or click other focusable elements all you like,

and the myP element will not lose focus until you reload the page (which clears

away the event handler). Please do not do this on your pages unless you want to

infuriate and alienate your site visitors.

onBeforeCopy

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
You can use the onBeforeCopy event handler to preprocess information prior to

an actual copy action. In Listing 15-33, the function invoked by the second para-

graph element’s onBeforeCopy event handler selects the entire paragraph so that

the user can select any character(s) in the paragraph to copy the entire paragraph

into the clipboard. You can paste the results into the textarea to verify the opera-

tion. By assigning the paragraph selection to the onBeforeCopy event handler, the

page notifies the user about what the copy operation will entail prior to making the

menu choice. Had the operation been deferred to the onCopy event handler, the

selection would have been made after the user chose Copy from the menu.

Listing 15-33: The onBeforeCopy Event Handler

<HTML>
<HEAD>
<TITLE>onBeforeCopy Event Handler</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function selectWhole() {

var obj = window.event.srcElement
var range = document.body.createTextRange()
range.moveToElementText(obj)
range.select()
event.returnValue = false

}
</SCRIPT>

elementObject.onBeforeCopy

4855-7 ch01.F 6/26/01 8:34 AM Page 96

97Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

</HEAD>
<BODY>
<H1>onBeforeCopy Event Handler</H1>
<HR>
<P>Select one or more characters in the following paragraph. Then
execute a Copy command via Edit or context menu.</P>
<P ID=”myP” onBeforeCopy=”selectWhole()”>Lorem ipsum dolor sit amet,
consectetaur adipisicing elit, sed do eiusmod tempor incididunt ut
labore et dolore magna aliqua. Ut enim adminim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.</P>
<FORM>
<P>Paste results here:

<TEXTAREA NAME=”output” COLS=”60” ROWS=”5”></TEXTAREA>
</P>
</FORM>
</BODY>
</HTML>

onBeforeCut

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
You can use the onBeforeCut event handler to preprocess information prior to

an actual cut action. You can try this by editing a copy of Listing 15-33, changing the

onBeforeCopy event handler to onBeforeCut. Notice that in its original form, the

example does not activate the Cut item in either the context or Edit menu when you

select some text in the second paragraph. But by assigning a function to the

onBeforeCut event handler, the menu item is active, and the entire paragraph is

selected from the function that is invoked.

onBeforeDeactivate
See onActivate.

onBeforeEditFocus

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

elementObject.onBeforeEditFocus

4855-7 ch01.F 6/26/01 8:34 AM Page 97

98 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example
Use The Evaluator to explore the onBeforeEditFocus in IE5.5+. In the following

sequence, you assign an anonymous function to the onBeforeEditFocus event

handler of the myP element. The function turns the text color of the element to red

when the event handler fires:

myP.onbeforeeditfocus = new Function(“myP.style.color=’red’”)

Now turn on content editing for the myP element:

myP.contentEditable = true

If you now click inside the myP element on the page to edit its content, the text

turns to red before you begin editing. In a page scripted for this kind of user inter-

face, you would include some control that turns off editing and changes the color to

normal.

If you wish to learn more about HTML content editing via the DHTML Editing

ActiveX control, visit http://msdn.microsoft.com/workshop/browser/mshtml/.

onBeforePaste

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
See Listing 15-45 for the onPaste event handler (later in this chapter) to see how

the onBeforePaste and onPaste event handlers work together.

onBlur

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
More often than not, a page author uses the onBlur event handler to exert

extreme control over the user, such as preventing a user from exiting out of a text

box unless that user types something into the box. This is not a Web-friendly prac-

tice, and it is one that I discourage because there are intelligent ways to ensure a

field has something typed into it before a form is submitted (see Chapter 43 of the

JavaScript Bible). Listing 15-34 simply demonstrates the impact of the TABINDEX
attribute in an IE5/Windows element with respect to the onBlur and onFocus
events. Notice that as you press the Tab key, only the second paragraph issues the

events even though all three paragraphs have event handlers assigned to them.

elementObject.onBlur

4855-7 ch01.F 6/26/01 8:34 AM Page 98

99Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

Listing 15-34: onBlur and onFocus Event Handlers

<HTML>
<HEAD>
<TITLE>onBlur and onBlur Event Handlers</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function showBlur() {

var id = event.srcElement.id
alert(“Element \”” + id + “\” has blurred.”)

}
function showFocus() {

var id = event.srcElement.id
alert(“Element \”” + id + “\” has received focus.”)

}
</SCRIPT>
</HEAD>
<BODY>
<H1 ID=”H1” TABINDEX=2>onBlur and onBlur Event Handlers</H1>
<HR>
<P ID=”P1” onBlur=”showBlur()” onFocus=”showFocus()”>Lorem ipsum
dolor sit amet, consectetaur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim adminim veniam,
quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea
commodo consequat.</P>

<P ID=”P2” TABINDEX=1 onBlur=”showBlur()” onFocus=”showFocus()”>Bis
nostrud exercitation ullam mmodo consequet. Duis aute involuptate
velit esse cillum dolore eu fugiat nulla pariatur. At vver eos et
accusam dignissum qui blandit est praesent luptatum delenit
aigueexcepteur sint occae.</P>

<P ID=”P3” onBlur=”showBlur()” onFocus=”showFocus()”>Unte af phen
neigepheings atoot Prexs eis phat eit sakem eit vory gast te Plok
peish ba useing phen roxas. Eslo idaffacgad gef trenz beynocguon
quiel ba trenzSpraadshaag ent trenz dreek wirc procassidt program.</P>

</BODY>
</HTML>

onClick

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

elementObject.onClick

4855-7 ch01.F 6/26/01 8:34 AM Page 99

100 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example
The onClick event handler is one of the simplest to grasp and use. Listing 15-35

demonstrates its interaction with the onDblClick event handler and shows you

how to prevent a link’s intrinsic action from activating when combined with click
events. As you click and/or double-click the link, the status bar displays a message

associated with each event. Notice that if you double-click, the click event fires

first with the first message immediately replaced by the second. For demonstration

purposes, I show both backward-compatible ways of cancelling the link’s intrinsic

action. In practice, decide on one style and stick with it.

Listing 15-35: Using onClick and onDblClick Event Handlers

<HTML>
<HEAD>
<TITLE>onClick and onDblClick Event Handlers</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var msg = “”
function showClick() {

msg = “The element has been clicked. “
status = msg

}
function showDblClick() {

msg = “The element has been double-clicked.”
status = msg
return false

}
</SCRIPT>
</HEAD>
<BODY>
<H1>onClick and onDblClick Event Handlers</H1>
<HR>
<A HREF=”#” onClick=”showClick();return false”
onDblClick=”return showDblClick()”>
A sample link.
</BODY>
</HTML>

onContextMenu

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

elementObject.onContextMenu

4855-7 ch01.F 6/26/01 8:34 AM Page 100

101Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

Example
See Listing 15-30 earlier in this chapter for an example of using the onContextMenu

event handler with a custom context menu.

onCopy
onCut

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Listing 15-36 shows both the onBeforeCut and onCut event handlers in action

(as well as onBeforePaste and onPaste). Notice how the handleCut() function

not only stuffs the selected word into the clipboardData object, but it also erases

the selected text from the table cell element from where it came. If you replace the

onBeforeCut and onCut event handlers with onBeforeCopy and onCopy (and

change handleCut() to not eliminate the inner text of the event source element),

the operation works with copy and paste instead of cut and paste. I demonstrate

this later in the chapter in Listing 15-45.

Listing 15-36: Cutting and Pasting under Script Control

<HTML>
<HEAD>
<TITLE>onBeforeCut and onCut Event Handlers</TITLE>
<STYLE TYPE=”text/css”>
TD {text-align:center}
TH {text-decoration:underline}
.blanks {text-decoration:underline}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
function selectWhole() {

var obj = window.event.srcElement
var range = document.body.createTextRange()
range.moveToElementText(obj)
range.select()
event.returnValue = false

}
function handleCut() {

var rng = document.selection.createRange()
clipboardData.setData(“Text”,rng.text)
var elem = event.srcElement

Continued

elementObject.onCopy

4855-7 ch01.F 6/26/01 8:34 AM Page 101

102 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-36 (continued)

elem.innerText = “”
event.returnValue = false

}

function handlePaste() {
var elem = window.event.srcElement
if (elem.className == “blanks”) {

elem.innerHTML = clipboardData.getData(“Text”)
}
event.returnValue = false

}
function handleBeforePaste() {

var elem = window.event.srcElement
if (elem.className == “blanks”) {

event.returnValue = false
}

}
</SCRIPT>
</HEAD>
<BODY>
<H1>onBeforeCut and onCut Event Handlers</H1>
<HR>
<P>Your goal is to cut and paste one noun and one
adjective from the following table into the blanks
of the sentence. Select a word from the table and
use the Edit or context menu to cut it from the table.
Select one or more spaces of the blanks in the
sentence and choose Paste to replace the blank with
the clipboard contents.</P>

<TABLE CELLPADDING=5 onBeforeCut=”selectWhole()” onCut=”handleCut()” >
<TR><TH>Nouns</TH><TH>Adjectives</TH></TR>
<TR><TD>truck</TD><TD>round</TD></TR>
<TR><TD>doll</TD><TD>red</TD></TR>
<TR><TD>ball</TD><TD>pretty</TD></TR>
</TABLE>

<P ID=”myP” onBeforePaste=”handleBeforePaste()” onPaste=”handlePaste()”>
Pat said, “Oh my, the

is so
 !”</P>

<BUTTON onClick=”location.reload()”>Reset</BUTTON>
</BODY>
</HTML>

elementObject.onCopy

4855-7 ch01.F 6/26/01 8:34 AM Page 102

103Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

onDblClick

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Example
See Listing 15-35 (for the onClick event handler) to see the onDblClick event in

action.

onDrag

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Listing 15-37 shows several drag-related event handlers in action. The page

resembles the example in Listing 15-36, but the scripting behind the page is quite

different. In this example, the user is encouraged to select individual words from

the Nouns and Adjectives columns and drag them to the blanks of the sentence. To

beef up the demonstration, Listing 15-37 shows you how to pass the equivalent of

array data from a drag source to a drag target. At the same time, the user has a

fixed amount of time (two seconds) to complete each drag operation.

The onDragStart and onDrag event handlers are placed in the <BODY> tag

because those events bubble up from any element that the user tries to drag. The

scripts invoked by these event handlers filter the events so that the desired action

is triggered only by the “hot” elements inside the table. This approach to event han-

dlers prevents you from having to duplicate event handlers (or IE <SCRIPT FOR=>
tags) for each table cell.

The onDragStart event handler invokes setupDrag(). This function cancels the

onDragStart event except when the target element (in other words, the one about

to be dragged) is one of the TD elements inside the table. To make this application

smarter about what kind of word is dragged to which blank, it passes not only the

word’s text, but also some extra information about the word. This lets another event

handler verify that a noun has been dragged to the first blank, while an adjective has

been dragged to the second blank. To help with this effort, class names are assigned

to the TD elements to distinguish the words from the Nouns column from the words

of the Adjectives column. The setupDrag() function generates an array consisting of

the innerText of the event’s source element plus the element’s class name. But the

event.dataTransfer object cannot store array data types, so the Array.join()
method converts the array to a string with a colon separating the entries. This string,

then, is stuffed into the event.dataTransfer object. The object is instructed to ren-

der the cursor display during the drag-and-drop operation so that when the cursor is

elementObject.onDrag

4855-7 ch01.F 6/26/01 8:34 AM Page 103

104 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

atop a drop target, the cursor is the “copy” style. Figure 1-4 shows the cursor effect

as the user drags a selected word from the columns to a blank field that is scripted as

a drop target. Finally, the setupDrag() function is the first to execute in the drag

operation, so a timer is set to the current clock time to time the drag operation.

Figure 1-4: The cursor turns to a “copy” icon atop a designated drop target

The onDrag event handler (in the BODY) captures the onDrag events that are

generated by whichever table cell element is the source element for the action.

Each time the event fires (which is a lot during the action), the timeIt() function

is invoked to compare the current time against the reference time (global timer)

set when the drag starts. If the time exceeds two seconds (2,000 milliseconds), an

alert dialog box notifies the user. To close the alert dialog box, the user must

unclick the mouse button to end the drag operation.

To turn the blank SPAN elements into drop targets, their onDragEnter,

onDragOver, and onDrop event handlers must set event.returnValue to false;

also, the event.dataTransfer.dropEffect property should be set to the desired

effect (copy in this case). These event handlers are placed in the P element that

contains the two SPAN elements, again for simplicity. Notice, however, that the

cancelDefault() functions do their work only if the target element is one of the

SPAN elements whose ID begins with “blank.”

As the user releases the mouse button, the onDrop event handler invokes the

handleDrop() function. This function retrieves the string data from event.
dataTransfer and restores it to an array data type (using the String.split()
method). A little bit of testing makes sure that the word type (“noun” or “adjec-

tive”) is associated with the desired blank. If so, the source element’s text is set to

the drop target’s innerText property; otherwise, an error message is assembled to

help the user know what went wrong.

elementObject.onDrag

4855-7 ch01.F 6/26/01 8:34 AM Page 104

105Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

Listing 15-37: Using Drag-Related Event Handlers

<HTML>
<HEAD>
<TITLE>Dragging Event Handlers</TITLE>
<STYLE TYPE=”text/css”>
TD {text-align:center}
TH {text-decoration:underline}
.blanks {text-decoration:underline}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
var timer
function setupDrag() {

if (event.srcElement.tagName != “TD”) {
// don’t allow dragging for any other elements
event.returnValue = false

} else {
// setup array of data to be passed to drop target
var passedData = [event.srcElement.innerText,

event.srcElement.className]
// store it as a string
event.dataTransfer.setData(“Text”, passedData.join(“:”))
event.dataTransfer.effectAllowed = “copy”
timer = new Date()

}
}
function timeIt() {

if (event.srcElement.tagName == “TD” && timer) {
if ((new Date()) - timer > 2000) {

alert(“Sorry, time is up. Try again.”)
timer = 0

}
}

}
function handleDrop() {

var elem = event.srcElement
var passedData = event.dataTransfer.getData(“Text”)
var errMsg = “”
if (passedData) {

// reconvert passed string to an array
passedData = passedData.split(“:”)
if (elem.id == “blank1”) {

if (passedData[1] == “noun”) {
event.dataTransfer.dropEffect = “copy”
event.srcElement.innerText = passedData[0]

} else {
errMsg = “You can’t put an adjective into the noun placeholder.”

}
} else if (elem.id == “blank2”) {

if (passedData[1] == “adjective”) {
event.dataTransfer.dropEffect = “copy”

Continued

elementObject.onDrag

4855-7 ch01.F 6/26/01 8:34 AM Page 105

106 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-37 (continued)

event.srcElement.innerText = passedData[0]
} else {

errMsg = “You can’t put a noun into the adjective placeholder.”
}

}
if (errMsg) {

alert(errMsg)
}

}
}
function cancelDefault() {

if (event.srcElement.id.indexOf(“blank”) == 0) {
event.dataTransfer.dropEffect = “copy”
event.returnValue = false

}
}
</SCRIPT>
</HEAD>
<BODY onDragStart=”setupDrag()” onDrag=”timeIt()”>
<H1>Dragging Event Handlers</H1>
<HR>
<P>Your goal is to drag one noun and one
adjective from the following table into the blanks
of the sentence. Select a word from the table and
drag it to the desired blank. When you release the
mouse, the word will appear in the blank. You have
two seconds to complete each blank.</P>

<TABLE CELLPADDING=5>
<TR><TH>Nouns</TH><TH>Adjectives</TH></TR>
<TR><TD class=”noun”>truck</TD><TD class=”adjective”>round</TD></TR>
<TR><TD class=”noun”>doll</TD><TD class=”adjective”>red</TD></TR>
<TR><TD class=”noun”>ball</TD><TD class=”adjective”>pretty</TD></TR>
</TABLE>

<P ID=”myP” onDragEnter=”cancelDefault()” onDragOver=”cancelDefault()”
onDrop=”handleDrop()”>
Pat said, “Oh my, the

is so
 !”</P>

<BUTTON onClick=”location.reload()”>Reset</BUTTON>
</BODY>
</HTML>

One event handler not shown in Listing 15-37 is onDragEnd. You can use this

event to display the elapsed time for each successful drag operation. Because the

elementObject.onDrag

4855-7 ch01.F 6/26/01 8:34 AM Page 106

107Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

event fires on the drag source element, you can implement it in the <BODY> tag and

filter events similar to the way the onDragStart or onDrag event handlers filter

events for the TD element.

onDragEnter
onDragLeave

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Listing 15-38 shows the onDragEnter and onDragLeave event handlers in use.

The simple page displays (via the status bar) the time of entry to one element of

the page. When the dragged cursor leaves the element, the onDragLeave event

handler hides the status bar message. No drop target is defined for this page, so

when you drag the item, the cursor remains as the “no drop” cursor.

Listing 15-38: Using onDragEnter and onDragLeave Event
Handlers

<HTML>
<HEAD>
<TITLE>onDragEnter and onDragLeave Event Handlers</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function showEnter() {

status = “Entered at: “ + new Date()
event.returnValue = false

}
function clearMsg() {

status = “”
event.returnValue = false

}
</SCRIPT>
</HEAD>
<BODY>
<H1 onDragEnter=”showEnter()” onDragLeave=”clearMsg()”>
onDragEnter and onDragLeave Event Handlers
</H1>
<HR>
<P>Select any character(s) from this paragraph,
and slowly drag it around the page. When the dragging action enters the
large header above, the status bar displays when the onDragEnter
event handler fires. When you leave the header, the message is cleared
via the onDragLeave event handler.</P>
</BODY>
</HTML>

elementObject.onDragEnter

4855-7 ch01.F 6/26/01 8:34 AM Page 107

108 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

onDragOver

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
See Listing 15-37 of the onDrag event handler to see how the onDragOver event

handler contributes to making an element a drop target.

onDragStart

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See Listing 15-37 of the onDrag event handler to see how to apply the

onDragStart event handler in a typical drag-and-drop scenario.

onDrop

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
See Listing 15-37 of the onDrag event handler to see how to apply the onDrop

event handler in a typical drag-and-drop scenario.

onFilterChange

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Listing 15-39 demonstrates how the onFilterChange event handler can trigger

a second transition effect after another one completes. The onLoad event handler

elementObject.onFilterChange

4855-7 ch01.F 6/26/01 8:34 AM Page 108

109Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

triggers the first effect. Although the onFilterChange event handler works with

most of the same objects in IE4 as IE5, the filter object transition properties are not

reflected in a convenient form. The syntax shown in Listing 15-39 uses the new

ActiveX filter control found in IE5.5 (described in Chapter 30 of the JavaScript Bible).

Listing 15-39: Using the onFilterChange Event Handler

<HTML>
<HEAD>
<TITLE>onFilterChange Event Handler</TITLE>
<SCRIPT LANGUAGE=JavaScript>
function init() {

image1.filters[0].apply()
image2.filters[0].apply()
start()

}

function start() {
image1.style.visibility = “hidden”
image1.filters[0].play()

}

function finish() {
// verify that first transition is done (optional)
if (image1.filters[0].status == 0) {

image2.style.visibility = “visible”
image2.filters[0].play()

}
}
</SCRIPT>
</HEAD>
<BODY onLoad=”init()”>
<H1>onFilterChange Event Handler</H1>
<HR>
<P>The completion of the first transition (“circle-in”)
triggers the second (“circle-out”).
<BUTTON onClick=”location.reload()”>Play It Again</BUTTON></P>
<DIV ID=”image1” STYLE=”visibility:visible;

position:absolute; top:150px; left:150px;
filter:progID:DXImageTransform.Microsoft.Iris(irisstyle=’CIRCLE’,
motion=’in’)”
onFilterChange=”finish()”><IMG SRC=”desk1.gif” HEIGHT=90
WIDTH=120></DIV>

<DIV ID=”image2” STYLE=”visibility:hidden;
position:absolute; top:150px; left:150px;
filter:progID:DXImageTransform.Microsoft.Iris(irisstyle=’CIRCLE’,
motion=’out’)”>
</DIV>

</BODY>
</HTML>

elementObject.onFilterChange

4855-7 ch01.F 6/26/01 8:34 AM Page 109

110 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

onFocus

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
See Listing 15-34 earlier in this chapter for an example of the onFocus and

onBlur event handlers.

onHelp

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Listing 15-40 is a rudimentary example of a context-sensitive help system that

displays help messages tailored to the kind of text input required by different text

fields. When the user gives focus to either of the text fields, a small legend appears

to remind the user that help is available by a press of the F1 help key. IE5/Mac pro-

vides only generic help.

Listing 15-40: Creating Context-Sensitive Help

<HTML>
<HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
function showNameHelp() {

alert(“Enter your first and last names.”)
event.cancelBubble = true
return false

}
function showYOBHelp() {

alert(“Enter the four-digit year of your birth. For example: 1972”)
event.cancelBubble = true
return false

}
function showGenericHelp() {

alert(“All fields are required.”)
event.cancelBubble = true
return false

}
function showLegend() {

document.all.legend.style.visibility = “visible”/
}

elementObject.onHelp

4855-7 ch01.F 6/26/01 8:34 AM Page 110

111Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

function hideLegend() {
document.all.legend.style.visibility = “hidden”

}
function init() {

var msg = “”
if (navigator.userAgent.indexOf(“Mac”) != -1) {

msg = “Press \’help\’ key for help.”
} else if (navigator.userAgent.indexOf(“Win”) != -1) {

msg = “Press F1 for help.”
}
document.all.legend.style.visibility = “hidden”
document.all.legend.innerHTML = msg

}
</SCRIPT>
</HEAD>

<BODY onLoad=”init()” onHelp=”return showGenericHelp()”>
<H1>onHelp Event Handler</H1>
<HR>
<P ID=”legend” STYLE=”visibility:hidden; font-size:10px”> </P>
<FORM>
Name: <INPUT TYPE=”text” NAME=”name” SIZE=30

onFocus=”showLegend()” onBlur=”hideLegend()”
onHelp=”return showNameHelp()”>

Year of Birth: <INPUT TYPE=”text” NAME=”YOB” SIZE=30

onFocus=”showLegend()” onBlur=”hideLegend()”
onHelp=”return showYOBHelp()”>

</FORM>
</BODY>
</HTML>

onKeyDown
onKeyPress
onKeyUp

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Example
Listing 15-41 is a working laboratory that you can use to better understand the

way keyboard event codes and modifier keys work in IE5+ and NN6. The actual code

of the listing is less important than watching the page while you use it. For every key

or key combination that you press, the page shows the keyCode value for the

elementObject.onKeyDown

4855-7 ch01.F 6/26/01 8:34 AM Page 111

112 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

onKeyDown, onKeyPress, and onKeyUp events. If you hold down one or more modi-

fier keys while performing the key press, the modifier key name is highlighted for

each of the three events. Note that when run in NN6, the keyCode value is not the

character code (which doesn’t show up in this example for NN6). Also, you may need

to click the NN6 page for the document object to recognize the keyboard events.

The best way to watch what goes on during keyboard events is to press and hold

a key to see the key codes for the onKeyDown and onKeyPress events (see Figure

1-5). Then release the key to see the code for the onKeyUp event. Notice, for

instance, that if you press the A key without any modifier key, the onKeyDown event

key code is 65 (A) but the onKeyPress key code in IE (and the charCode property

in NN6 if it were displayed here) is 97 (a). If you then repeat the exercise but hold

the Shift key down, all three events generate the 65 (A) key code (and the Shift mod-

ifier labels are highlighted). Releasing the Shift key causes the onKeyUp event to

show the key code for the Shift key.

Figure 1-5: Pressing Ctrl+Alt+J in the keyboard event lab page

In another experiment, press any of the four arrow keys. No key code is passed

for the onKeyPress event because those keys don’t generate those events. They

do, however, generate onKeyDown and onKeyUp events.

Listing 15-41: Keyboard Event Handler Laboratory

<HTML>
<HEAD>
<TITLE>Keyboard Event Handler Lab</TITLE>
<STYLE TYPE=”text/css”>
TD {text-align:center}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
function init() {

document.onkeydown = showKeyDown
document.onkeyup = showKeyUp

elementObject.onKeyDown

4855-7 ch01.F 6/26/01 8:34 AM Page 112

113Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

document.onkeypress = showKeyPress
}

function showKeyDown(evt) {
evt = (evt) ? evt : window.event
document.getElementById(“pressKeyCode”).innerHTML = 0
document.getElementById(“upKeyCode”).innerHTML = 0
document.getElementById(“pressCharCode”).innerHTML = 0
document.getElementById(“upCharCode”).innerHTML = 0
restoreModifiers(“”)
restoreModifiers(“Down”)
restoreModifiers(“Up”)
document.getElementById(“downKeyCode”).innerHTML = evt.keyCode
if (evt.charCode) {

document.getElementById(“downCharCode”).innerHTML = evt.charCode
}
showModifiers(“Down”, evt)

}
function showKeyUp(evt) {

evt = (evt) ? evt : window.event
document.getElementById(“upKeyCode”).innerHTML = evt.keyCode
if (evt.charCode) {

document.getElementById(“upCharCode”).innerHTML = evt.charCode
}
showModifiers(“Up”, evt)
return false

}
function showKeyPress(evt) {

evt = (evt) ? evt : window.event
document.getElementById(“pressKeyCode”).innerHTML = evt.keyCode
if (evt.charCode) {

document.getElementById(“pressCharCode”).innerHTML = evt.charCode
}
showModifiers(“”, evt)
return false

}
function showModifiers(ext, evt) {

restoreModifiers(ext)
if (evt.shiftKey) {

document.getElementById(“shift” + ext).style.backgroundColor = “#ff0000”
}
if (evt.ctrlKey) {

document.getElementById(“ctrl” + ext).style.backgroundColor = “#00ff00”
}
if (evt.altKey) {

document.getElementById(“alt” + ext).style.backgroundColor = “#0000ff”
}

}

Continued

elementObject.onKeyDown

4855-7 ch01.F 6/26/01 8:34 AM Page 113

114 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-41 (continued)

function restoreModifiers(ext) {
document.getElementById(“shift” + ext).style.backgroundColor = “#ffffff”
document.getElementById(“ctrl” + ext).style.backgroundColor = “#ffffff”
document.getElementById(“alt” + ext).style.backgroundColor = “#ffffff”

}
</SCRIPT>
</HEAD>

<BODY onLoad=”init()”>
<H1>Keyboard Event Handler Lab</H1>
<HR>
<FORM>
<TABLE BORDER=2 CELLPADDING=2>
<TR><TH></TH><TH>onKeyDown</TH><TH>onKeyPress</TH><TH>onKeyUp</TH></TR>
<TR><TH>Key Codes</TH>

<TD ID=”downKeyCode”>0</TD>
<TD ID=”pressKeyCode”>0</TD>
<TD ID=”upKeyCode”>0</TD>

</TR>
<TR><TH>Char Codes (IE5/Mac; NN6)</TH>

<TD ID=”downCharCode”>0</TD>
<TD ID=”pressCharCode”>0</TD>
<TD ID=”upCharCode”>0</TD>

</TR>
<TR><TH ROWSPAN=3>Modifier Keys</TH>

<TD>Shift</TD>
<TD>Shift</TD>
<TD>Shift</TD>

</TR>
<TR>

<TD>Ctrl</TD>
<TD>Ctrl</TD>
<TD>Ctrl</TD>

</TR>
<TR>

<TD>Alt</TD>
<TD>Alt</TD>
<TD>Alt</TD>

</TR>
</TABLE>
</FORM>
</BODY>
</HTML>

Spend some time with this lab, and try all kinds of keys and key combinations

until you understand the way the events and key codes work.

elementObject.onKeyDown

4855-7 ch01.F 6/26/01 8:34 AM Page 114

115Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

onLoseCapture

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
See Listing 15-30 earlier in this chapter for an example of how to use

onLoseCapture with an event-capturing scenario for displaying a context menu.

The onLoseCapture event handler hides the context menu when the user performs

any action that causes the menu to lose mouse capture.

onMouseDown
onMouseUp

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Example
To demonstrate a likely scenario of changing button images in response to

rolling atop an image, pressing down on it, releasing the mouse button, and roll-

ing away from the image, Listing 15-42 presents a pair of small navigation buttons

(left- and right-arrow buttons). Because the image object is not part of the docu-

ment object model for NN2 or IE3 (which reports itself as Navigator version 2),

the page is designed to accept all browsers. Only those browsers that support

precached images and image swapping (and thus pass the test for the presence of

the document.images array) can execute those statements. For a browser with an

image object, images are preloaded into the browser cache as the page loads so

that response to the user is instantaneous the first time the user calls upon new

versions of the images.

Listing 15-42: Using onMouseDown and onMouseUp Event
Handlers

<HTML>
<HEAD>
<TITLE>onMouseDown and onMouseUp Event Handlers</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
if (document.images) {

var RightNormImg = new Image(16,16)
var RightUpImg = new Image(16,16)

Continued

elementObject.onMouseDown

4855-7 ch01.F 6/26/01 8:34 AM Page 115

116 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-42 (continued)

var RightDownImg = new Image(16,16)
var LeftNormImg = new Image(16,16)
var LeftUpImg = new Image(16,16)
var LeftDownImg = new Image(16,16)

RightNormImg.src = “RightNorm.gif”
RightUpImg.src = “RightUp.gif”
RightDownImg.src = “RightDown.gif”
LeftNormImg.src = “LeftNorm.gif”
LeftUpImg.src = “LeftUp.gif”
LeftDownImg.src = “LeftDown.gif”

}
function setImage(imgName, type) {

if (document.images) {
var imgFile = eval(imgName + type + “Img.src”)
document.images[imgName].src = imgFile
return false

}
}
</SCRIPT>
</HEAD>
<BODY>
<H1>onMouseDown and onMouseUp Event Handlers</H1>
<HR>
<P>Roll atop and click on the buttons to see how the link event handlers swap
images:</P>
<CENTER>
<A HREF=”javascript:void(0)”

onMouseOver=”return setImage(‘Left’,’Up’)”
onMouseDown=”return setImage(‘Left’,’Down’)”
onMouseUp=”return setImage(‘Left’,’Up’)”
onMouseOut=”return setImage(‘Left’,’Norm’)”

>

<A HREF=”javascript:void(0)”

onMouseOver=”return setImage(‘Right’,’Up’)”
onMouseDown=”return setImage(‘Right’,’Down’)”
onMouseUp=”return setImage(‘Right’,’Up’)”
onMouseOut=”return setImage(‘Right’,’Norm’)”

>

</CENTER>
</BODY>
</HTML>

elementObject.onMouseDown

4855-7 ch01.F 6/26/01 8:34 AM Page 116

117Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

IE4+ and NN6+ simplify the implementation of this kind of three-state image but-

ton by allowing you to assign the event handlers directly to IMG element objects.

Wrapping images inside links is a backward compatibility approach that allows older

browsers to respond to clicks on images for navigation or other scripting tasks.

onMouseEnter
onMouseLeave

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
You can modify Listing 15-43 with the IE5.5 syntax by substituting onMouseEnter

for onMouseOver and onMouseLeave for onMouseOut. The effect is the same.

onMouseMove

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility (�) � � � �

Example
Listing 15-43 is a simplified example of dragging elements in IE4+. (See Chapter

31 of the JavaScript Bible for more dragging examples.) Three images are individu-

ally positioned on the page. Most of the scripting code concerns itself with the

geography of click locations, the stacking order of the images, and the management

of the onMouseMove event handler so that it is active only when an item is dragged.

Scripts assign the onMouseDown and onMouseUp event handlers to the document
object, invoking the engage() and release() functions, respectively. When a user

mouses down anywhere in the document, the engage() function starts by invoking

setSelectedObj(). This function examines the target of the mouseDown event. If it

is one of the map images, the selectedObj global variable is set to the image
object and the element is brought to the front of the stacking order of images (any

previously stacked image is returned to its normal position in the stack).

MouseDown events on any other element simply make sure that the selectedObj
variable is null. The presence of a value assigned to selectedObj serves as a kind

of switch for other functions: When the variable contains a value, it means that the

user is doing something associated with dragging an element.

Back at the engage() function — provided the user mouses down on one of the

draggable images — the onMouseMove event handler is assigned to the document
object, setting it to invoke the dragIt() function. For the sake of users, the offset

of the mouse down event from the top-left corner of the image is preserved in the

elementObject.onMouseMove

4855-7 ch01.F 6/26/01 8:34 AM Page 117

118 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

offsetX and offsetY variables (minus any scrolling that the body is subject to at

that instant). These offset values are necessary to let the scripts set the location of

the image during dragging (the location is set for the top-left corner of the image)

while keeping the cursor in the same location within the image as when the user

first presses the mouse.

As the user drags the image, the onMouseDown event handler fires repeatedly,

allowing the dragIt() function to continually update the location of the element

relative to the current cursor position (the event.clientX and event.clientY
properties). The global offset variables are subtracted from the cursor position to

preserve the relation of the image’s top-left corner to the initial cursor position at

mouse down.

Upon the user releasing the mouse button, the release() function turns off the

onMouseMove event handler (setting it to null). This prevents the event from being

processed at all during normal usage of the page. The selectedObj global variable

is also set to null, turning off the “switch” that indicates dragging is in session.

Listing 15-43: Dragging Elements with onMouseMove

<HTML>
<HEAD><TITLE>onMouseMove Event Handler</TITLE>
<STYLE TYPE=”text/css”>

#camap {position:absolute; left:20; top:120}
#ormap {position:absolute; left:80; top:120}
#wamap {position:absolute; left:140; top:120}

</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
// global variables used while dragging
var offsetX = 0
var offsetY = 0
var selectedObj
var frontObj

// set document-level event handlers
document.onmousedown = engage
document.onmouseup = release

// positioning an object at a specific pixel coordinate
function shiftTo(obj, x, y) {

obj.style.pixelLeft = x
obj.style.pixelTop = y

}

// setting the z-order of an object
function bringToFront(obj) {

if (frontObj) {
frontObj.style.zIndex = 0

}
frontObj = obj
frontObj.style.zIndex = 1

}

elementObject.onMouseMove

4855-7 ch01.F 6/26/01 8:34 AM Page 118

119Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

// set global var to a reference to dragged element
function setSelectedObj() {

var imgObj = window.event.srcElement
if (imgObj.id.indexOf(“map”) == 2) {

selectedObj = imgObj
bringToFront(selectedObj)
return

}
selectedObj = null
return

}

// do the dragging (called repeatedly by onMouseMove)
function dragIt() {

if (selectedObj) {
shiftTo(selectedObj, (event.clientX - offsetX), (event.clientY -

offsetY))
return false

}
}

// set global vars and turn on mousemove trapping (called by onMouseDown)
function engage() {

setSelectedObj()
if (selectedObj) {

document.onmousemove = dragIt
offsetX = window.event.offsetX - document.body.scrollLeft
offsetY = window.event.offsetY - document.body.scrollTop

}
}

// restore everything as before (called by onMouseUp)
function release() {

if (selectedObj) {
document.onmousemove = null
selectedObj = null

}
}

</SCRIPT>
</HEAD>
<BODY>
<H1>onMouseMove Event Handler</H1>
<HR>
Click and drag the images:

</SCRIPT>
</BODY>
</HTML>

elementObject.onMouseMove

4855-7 ch01.F 6/26/01 8:34 AM Page 119

120 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

onMouseOut
onMouseOver

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Listing 15-44 uses the U.S. Pledge of Allegiance with four links to demonstrate

how to use the onMouseOver and onMouseOut event handlers. Notice that for each

link, the handler runs a general-purpose function that sets the window’s status mes-

sage. The function returns a true value, which the event handler call evaluates to

replicate the required return true statement needed for setting the status bar. In

one status message, I supply a URL in parentheses to let you evaluate how helpful

you think it is for users.

Listing 15-44: Using onMouseOver and onMouseOut Event
Handlers

<HTML>
<HEAD>
<TITLE>onMouseOver and onMouseOut Event Handlers</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function setStatus(msg) {

status = msg
return true

}
// destination of all link HREFs
function emulate() {

alert(“Not going there in this demo.”)
}
</SCRIPT>
</HEAD>
<BODY>
<H1>onMouseOver and onMouseOut Event Handlers
</H1>
<HR>
<H1>Pledge of Allegiance</H1>
<HR>

elementObject.onMouseOut

4855-7 ch01.F 6/26/01 8:34 AM Page 120

121Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

I pledge <A HREF=”javascript:emulate()” onMouseOver=”return setStatus(‘View
dictionary definition’)” onMouseOut=”return setStatus(‘’)”>allegiance to the
<A HREF=”javascript:emulate()” onMouseOver=”return setStatus(‘Learn about the
U.S. flag (http://lcweb.loc.gov)’)” onMouseOut=”return setStatus(‘’)”>flag
of the <A HREF=”javascript:emulate()” onMouseOver=”return setStatus(‘View info
about the U.S. government’)” onMouseOut=”return setStatus(‘’)”>United States of
America, and to the Republic for which it stands, one nation <A
HREF=”javascript:emulate()” onMouseOver=”return setStatus(‘Read about the
history of this phrase in the Pledge’)” onMouseOut=”return setStatus(‘’)”>under
God, indivisible, with liberty and justice for all.
</BODY>
</HTML>

onPaste

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Listing 15-45 demonstrates how to use the onBeforePaste and onPaste event

handlers (in conjunction with onBeforeCopy and onCopy) to let scripts control the

data transfer process during a copy-and-paste user operation. A table contains

words to be copied (one column of nouns, one column of adjectives) and then

pasted into blanks in a paragraph. The onBeforeCopy and onCopy event handlers

are assigned to the TABLE element because the events from the TD elements bub-

ble up to the TABLE container and there is less HTML code to contend with.

Inside the paragraph, two SPAN elements contain underscored blanks. To paste

text into the blanks, the user must first select at least one character of the blanks.

(See Listing 15-37, which gives a drag-and-drop version of this application.) The

onBeforePaste event handler in the paragraph (which gets the event as it bubbles

up from either SPAN) sets the event.returnValue property to false, thus allow-

ing the Paste item to appear in the context and Edit menus (not a normal occur-

rence in HTML body content).

At paste time, the innerHTML property of the target SPAN is set to the text data

stored in the clipboard. The event.returnValue property is set to false here, as

well, to prevent normal system pasting from interfering with the controlled version.

elementObject.onPaste

4855-7 ch01.F 6/26/01 8:34 AM Page 121

122 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-45: Using onBeforePaste and onPaste Event
Handlers

<HTML>
<HEAD>
<TITLE>onBeforePaste and onPaste Event Handlers</TITLE>
<STYLE TYPE=”text/css”>
TD {text-align:center}
TH {text-decoration:underline}
.blanks {text-decoration:underline}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
function selectWhole() {

var obj = window.event.srcElement
var range = document.body.createTextRange()
range.moveToElementText(obj)
range.select()
event.returnValue = false

}
function handleCopy() {

var rng = document.selection.createRange()
clipboardData.setData(“Text”,rng.text)
event.returnValue = false

}

function handlePaste() {
var elem = window.event.srcElement
if (elem.className == “blanks”) {

elem.innerHTML = clipboardData.getData(“Text”)
}
event.returnValue = false

}
function handleBeforePaste() {

var elem = window.event.srcElement
if (elem.className == “blanks”) {

event.returnValue = false
}

}
</SCRIPT>
</HEAD>
<BODY>
<H1>onBeforePaste and onPaste Event Handlers</H1>
<HR>
<P>Your goal is to copy and paste one noun and one
adjective from the following table into the blanks
of the sentence. Select a word from the table and
copy it to the clipboard. Select one or more spaces
of the blanks in the sentence and choose Paste to
replace the blank with the clipboard contents.</P>

<TABLE CELLPADDING=5 onBeforeCopy=”selectWhole()” onCopy=”handleCopy()” >
<TR><TH>Nouns</TH><TH>Adjectives</TH></TR>

elementObject.onPaste

4855-7 ch01.F 6/26/01 8:34 AM Page 122

123Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

elementObject.onPropertyChange

<TR><TD>truck</TD><TD>round</TD></TR>
<TR><TD>doll</TD><TD>red</TD></TR>
<TR><TD>ball</TD><TD>pretty</TD></TR>
</TABLE>

<P ID=”myP” onBeforePaste=”handleBeforePaste()” onPaste=”handlePaste()”>
Pat said, “Oh my, the

is so
 !”</P>

<BUTTON onClick=”location.reload()”>Reset</BUTTON>
</BODY>
</HTML>

onPropertyChange

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
The page generated by Listing 15-46 contains four radio buttons that alter the

innerHTML and style.color properties of a paragraph. The paragraph’s

onPropertyChange event handler invokes the showChange() function, which

extracts information about the event and displays the data in the status bar of the

window. Notice how the property name includes style. when you modify the style

sheet property.

Listing 15-46: Using the onPropertyChange Property

<HTML>
<HEAD>
<TITLE>onPropertyChange Event Handler</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function normalText() {

myP.innerText = “This is a sample paragraph.”
}
function shortText() {

myP.innerText = “Short stuff.”
}
function normalColor() {

myP.style.color = “black”
}

Continued

4855-7 ch01.F 6/26/01 8:34 AM Page 123

124 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-46 (continued)

function hotColor() {
myP.style.color = “red”

}
function showChange() {

var objID = event.srcElement.id
var propName = event.propertyName
var newValue = eval(objID + “.” + propName)
status = “The “ + propName + “ property of the “ + objID
status += “ object has changed to \”” + newValue + “\”.”

}
</SCRIPT>
</HEAD>
<BODY>
<H1>onPropertyChange Event Handler</H1>
<HR>
<P ID=”myP” onPropertyChange = “showChange()”>This is a sample paragraph.</P>
<FORM>
Text: <INPUT TYPE=”radio” NAME=”btn1” CHECKED onClick=”normalText()”>Normal

<INPUT TYPE=”radio” NAME=”btn1” onClick=”shortText()”>Short

Color: <INPUT TYPE=”radio” NAME=”btn2” CHECKED onClick=”normalColor()”>Black

<INPUT TYPE=”radio” NAME=”btn2” onClick=”hotColor()”>Red
</FORM>
</BODY>
</HTML>

onReadyStateChange

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
You can use the onReadyStateChange event handler to assist with a status dis-

play while a long external file, such as a Java applet, loads. For example, you might

have a small image on a page that changes with the state change of an applet. The

<APPLET> tag assigns a function to the onReadyStateChange event handler:

<APPLET ... onReadyStateChange=”showState(this)”>

elementObject.onReadyStateChange

4855-7 ch01.F 6/26/01 8:34 AM Page 124

125Chapter 1 ✦ Generic HTML Element Objects (Chapter 15)

Then the function changes the image for each state type:

function showState(obj) {
var img = document.all.statusImage
switch (obj.readyState) {

case “uninitialized” :
img.src = uninit.src
break

case “loading” :
img.src = loading.src
break

case “complete” :
img.src = ready.src

}
}

The preceding function assumes that the state images are precached as the page

loads.

onResize

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Example
If you want to capture the user’s resizing of the browser window (or frame), you

can assign a function to the onResize event handler either via script

window.onresize = handleResize

or by an HTML attribute of the BODY element:

<BODY onResize=”handleResize()”>

onSelectStart

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use the page from Listing 15-47 to see how the onSelectStart event handler

works when a user selects across multiple elements on a page. As the user begins a

selection anywhere on the page, the ID of the object receiving the event appears in

the status bar. Notice that the event doesn’t fire until you actually make a selection.

When no other element is under the cursor, the BODY element fires the event.

elementObject.onSelectStart

4855-7 ch01.F 6/26/01 8:34 AM Page 125

126 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 15-47: Using the onSelectStart Event Handler

<HTML>
<HEAD>
<TITLE>onSelectStart Event Handler</TITLE>
<STYLE TYPE=”text/css”>
TD {text-align:center}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
function showObj() {

var objID = event.srcElement.id
status = “Selection started with object: “ + objID

}
</SCRIPT>
</HEAD>
<BODY ID=”myBody” onSelectStart=”showObj()”>
<H1 ID=”myH1”>onSelectStart Event Handler</H1>
<HR ID=”myHR”>
<P ID=”myP”>This is a sample paragraph.</P>
<TABLE BORDER=”1”>
<TR ID=”row1”>

<TH ID=”header1”>Column A</TH>
<TH ID=”header2”>Column B</TH>
<TH ID=”header3”>Column C</TH>

</TR>
<TR ID=”row2”>

<TD ID=”cellA2”>text</TD>
<TD ID=”cellB2”>text</TD>
<TD ID=”cellC2”>text</TD>

</TR>
<TR ID=”row3”>

<TD ID=”cellA3”>text</TD>
<TD ID=”cellB3”>text</TD>
<TD ID=”cellC3”>text</TD>

</TR>
</TABLE>
</BODY>
</HTML>

✦ ✦ ✦

elementObject.onSelectStart

4855-7 ch01.F 6/26/01 8:34 AM Page 126

Window and
Frame Objects
(Chapter 16)

As physical containers of documents, window and frame

objects play huge rolls in scripting. The window object

has been scriptable in one form or another since the first

scriptable browsers. Of course the object has gained numer-

ous properties, methods, and event handlers over time, but

you also often find many object-model-specific items that you

probably wish were available across all browsers.

While scripts permit Web authors to manage multiple

windows — and many of the examples in this chapter support

that facility — try to think about your visitors, too. Very often

multiple windows get in the way of site navigation and con-

tent, regardless of your good intentions. As some examples

also demonstrate, you must include safety nets for your code

to counteract the unpredictable actions of users who close or

hide windows precisely when you don’t want them to do so.

Therefore, do not regard the multi-window examples here as

user interface recommendations; rather consider them as rec-

ommended ways to handle a potentially tricky user-interface

element.

Possible exceptions to my multi-window admonitions are the

modal and modeless dialog box windows provided by various

versions of IE for Windows. For other platforms, a modal

dialog box can be simulated (search for details at www.
dannyg.com). IE5.5 for Windows also adds a popup type win-

dow, which can be a helpful user interface element that exists

between a tooltip and a modal dialog box.

Modern browsers, however, provide ample script control

over framesets. As examples in this chapter demonstrate,

your scripts can hide and show frames, or completely rearchi-

tect a frameset without loading a new frameset.

22C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Scripting
communication
among multiple
frames

Creating and
managing new
windows

Controlling the size,
position, and
appearance of the
browser window

Dynamically
adjusting frame sizes
and frameset
compositions

✦ ✦ ✦ ✦

4855-7 ch02.F 6/26/01 8:34 AM Page 127

128 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Examples Highlights
✦ Listing 16-4 for the window.closed property demonstrates an industrial-

strength treatment of new window creation, which works with all scriptable

browsers (taking into account shortcomings of earlier browsers).

✦ NN4+ allows dynamic control over the presence of window chrome (statusbar,

toolbar, et al.) with the help of signed scripts, as shown in Listing 16-6.

Without signed scripts, or for IE, you must use window.open() to create a

separate window with the characteristics of your choice.

✦ The example listings for the window.opener property show you how scripts

from a subwindow communicate with the window that opened it.

✦ In the example listings for the window.parent property, you see how refer-

ences to the various synonyms for a window object within a frameset evaluate.

Thus, you can see what the references window, top, parent, and self mean

within a frameset.

✦ Compare Listings 16-20, 16-23, and 16-29 to understand not only the different

looks of the three native dialog box windows (alert, confirm, and prompt), but

also how values returned from two of them can influence script processing

sequences.

✦ A simple countdown timer in Listing 16-22 shows a practical application of the

window.clearTimeout() method. Here the method stops the looping timer

when the count reaches zero.

✦ Watch the browser window dance in Listing 16-24. The window.moveBy() and

window.moveTo() methods put window positioning through its paces.

✦ Examples for window.setInterval() and window.setTimeout() apply

these two similar methods to applications that are ideal for each one. You find

other applications of setTimeout() in examples for the window.closed
property and window.open() method.

✦ Internet Explorer’s modal and modeless dialog box windows get workouts in

Listings 16-39 through 16-42.

✦ The composition of a frameset, including the sizes of the frames, can be con-

trolled dynamically in IE4+ and NN6, as shown in examples for the FRAMESET.
cols and FRAMESET.rows properties.

4855-7 ch02.F 6/26/01 8:34 AM Page 128

129Chapter 2 ✦ Window and Frame Objects (Chapter 16)

Window Object
Properties

clipboardData

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
See Listings 15-30 and 15-39 (in Chapter 1 of this book) to see how the

clipboardData object is used with a variety of edit-related event handlers.

closed

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

Example
In Listing 16-4, I have created the ultimate cross-platform window opening and

closing sample. It takes into account the lack of the opener property in Navigator 2,

the missing closed property in Navigator 2 and Internet Explorer 3, and it even pro-

vides an ugly but necessary workaround for the inability of Internet Explorer 3 to

gracefully see if a subwindow is still open.

The script begins by initializing a global variable, newWind, which is used to hold

the object reference to the second window. This value needs to be global so that

other functions can reference the window for tasks, such as closing. Another global

variable, isIE3, is a Boolean flag that lets the window closing routines know

whether the visitor is using Internet Explorer 3 (see details about the navigator.
appVersion property in Chapter 28 of the JavaScript Bible).

For this example, the new window contains some HTML code written dynamically

to it, rather than loading an existing HTML file into it. Therefore, the URL parameter

of the window.open() method is left as an empty string. It is vital, however, to

assign a name in the second parameter to accommodate the Internet Explorer 3

workaround for closing the window. After the new window is opened, an opener
property is assigned to the object if one is not already assigned (this property is

needed only for Navigator 2). Next comes a brief delay to allow Internet Explorer

(especially versions 3 and 4) to catch up with opening the window so that content

windowObject.closed

4855-7 ch02.F 6/26/01 8:34 AM Page 129

130 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

can be written to it. The delay (using the setTimeout() method described later in

this chapter) invokes the finishNewWindow() function, which uses the global

newWind variable to reference the window for writing. The document.close()
method closes writing to the document — a different kind of close than a window

close.

A separate function, closeWindow(), is responsible for closing the subwindow.

To accommodate Internet Explorer 3, the script appears to create another window

with the same characteristics as the one opened earlier in the script. This is the

trick: If the earlier window exists (with exactly the same parameters and a name

other than an empty string), Internet Explorer does not create a new window even

with the window.open() method executing in plain sight. To the user, nothing

unusual appears on the screen. Things look weird for Internet Explorer 3 users only

if the user has closed the subwindow. The window.open() method momentarily

creates that subwindow. This subwindow is necessary because a “living” window
object must be available for the upcoming test of window existence. (Internet

Explorer 3 displays a script error if you try to address a missing window, while

NN2+ and IE4+ simply return friendly null values.)

As a final test, an if condition looks at two conditions: 1) if the window object

has ever been initialized with a value other than null (in case you click the window

closing button before ever having created the new window) and 2) if the window’s

closed property is null or false. If either condition is true, the close() method

is sent to the second window.

Listing 16-4: Checking Before Closing a Window

<HTML>
<HEAD>
<TITLE>window.closed Property</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// initialize global var for new window object
// so it can be accessed by all functions on the page
var newWind
// set flag to help out with special handling for window closing
var isIE3 = (navigator.appVersion.indexOf(“MSIE 3”) != -1) ? true : false
// make the new window and put some stuff in it
function newWindow() {

newWind = window.open(“”,”subwindow”,”HEIGHT=200,WIDTH=200”)
// take care of Navigator 2
if (newWind.opener == null) {

newWind.opener = window
}
setTimeout(“finishNewWindow()”, 100)

}
function finishNewWindow() {

var output = “”
output += “<HTML><BODY><H1>A Sub-window</H1>”
output += “<FORM><INPUT TYPE=’button’ VALUE=’Close Main Window’”
output +=”onClick=’window.opener.close()’></FORM></BODY></HTML>”

windowObject.closed

4855-7 ch02.F 6/26/01 8:34 AM Page 130

131Chapter 2 ✦ Window and Frame Objects (Chapter 16)

newWind.document.write(output)
newWind.document.close()

}
// close subwindow, including ugly workaround for IE3
function closeWindow() {

if (isIE3) {
// if window is already open, nothing appears to happen
// but if not, the subwindow flashes momentarily (yech!)
newWind = window.open(“”,”subwindow”,”HEIGHT=200,WIDTH=200”)

}
if (newWind && !newWind.closed) {

newWind.close()
}

}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
<INPUT TYPE=”button” VALUE=”Open Window” onClick=”newWindow()”>

<INPUT TYPE=”button” VALUE=”Close it if Still Open” onClick=”closeWindow()”>
</FORM>
</BODY>
</HTML>

To complete the example of the window opening and closing, notice that the sub-

window is given a button whose onClick event handler closes the main window. In

Navigator 2 and Internet Explorer 3, this occurs without complaint. But in NN3+ and

IE4+, the user is presented with an alert asking to confirm the closure of the main

browser window.

defaultStatus

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Unless you plan to change the default statusbar text while a user spends time at

your Web page, the best time to set the property is when the document loads. In

Listing 16-5, notice how I also read this property to reset the statusbar in an

onMouseOut event handler. Setting the status property to empty also resets the

statusbar to the defaultStatus setting.

windowObject.defaultStatus

4855-7 ch02.F 6/26/01 8:34 AM Page 131

132 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-5: Setting the Default Status Message

<HTML>
<HEAD>
<TITLE>window.defaultStatus property</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
window.defaultStatus = “Welcome to my Web site.”
</SCRIPT>
</HEAD>
<BODY>
<A HREF=”http://www.microsoft.com”
onMouseOver=”window.status = ‘Visit Microsoft\’s Home page.’;return true”
onMouseOut=”window.status = ‘’;return true”>Microsoft<P>
<A HREF=”http://home.netscape.com”
onMouseOver=”window.status = ‘Visit Netscape\’s Home page.’;return true”
onMouseOut=”window.status = window.defaultStatus;return true”>Netscape
</BODY>
</HTML>

If you need to display single or double quotes in the statusbar (as in the second

link in Listing 16-5), use escape characters (\’ and \”) as part of the strings being

assigned to these properties.

dialogArguments

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See Listing 16-38 for the window.showModalDialog() method to see how argu-

ments can be passed to a dialog box and retrieved via the dialogArguments
property.

dialogHeight
dialogWidth

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

windowObject.dialogHeight

4855-7 ch02.F 6/26/01 8:34 AM Page 132

133Chapter 2 ✦ Window and Frame Objects (Chapter 16)

Example
Dialog boxes sometimes provide a button or icon that reveals more details or

more complex settings for advanced users. You can create a function that handles

the toggle between two sizes. The following function assumes that the document in

the dialog box has a button whose label also toggles between “Show Details” and

“Hide Details.” The button’s onClick event handler invokes the function as

toggleDetails(this).

function toggleDetails(btn) {
if (dialogHeight == “200px”) {

dialogHeight = “350px”
btn.value = “Hide Details”

} else {
dialogHeight = “200px”
btn.value = “Show Details”

}
}

In practice, you also have to toggle the display style sheet property of the extra

material between none and block to make sure that the dialog box does not display

scrollbars in the smaller dialog box version.

dialogLeft
dialogTop

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Although usually not a good idea because of the potentially jarring effect on a

user, you can reposition a dialog box window that has been resized by script (or by

the user if you let the dialog box be resizable). The following statements in a dialog

box window document’s script recenter the dialog box window.

dialogLeft = (screen.availWidth/2) - (parseInt(dialogWidth)/2) + “px”
dialogHeight = (screen.availHeight/2) - (parseInt(dialogHeight)/2) + “px”

Note that the parseInt() functions are used to read the numeric portion of the

dialogWidth and dialogHeight properties so that the values can be used for

arithmetic.

windowObject.dialogLeft

4855-7 ch02.F 6/26/01 8:34 AM Page 133

134 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

directories
locationbar
menubar
personalbar
scrollbars
statusbar
toolbar

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
In Listing 16-6, you can experiment with the look of a browser window with any

of the chrome elements turned on and off. To run this script, you must either sign

the scripts or turn on codebase principals (see Chapter 46 of the JavaScript Bible).

Java must also be enabled to use the signed script statements.

As the page loads, it stores the current state of each chrome element. One but-

ton for each chrome element triggers the toggleBar() function. This function

inverts the visible property for the chrome object passed as a parameter to the

function. Finally, the Restore button returns visibility to their original settings.

Notice that the restore() function is also called by the onUnload event handler

for the document. Also, if you load this example into NN6, non-fatal script errors

occur when the scrollbars are turned on or off.

Listing 16-6: Controlling Window Chrome

<HTML>
<HEAD>
<TITLE>Bars Bars Bars</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// store original outer dimensions as page loads
var originalLocationbar = window.locationbar.visible
var originalMenubar = window.menubar.visible
var originalPersonalbar = window.personalbar.visible
var originalScrollbars = window.scrollbars.visible
var originalStatusbar = window.statusbar.visible
var originalToolbar = window.toolbar.visible

// generic function to set inner dimensions
function toggleBar(bar) {

netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserWrite”)
bar.visible = !bar.visible
netscape.security.PrivilegeManager.revertPrivilege(“UniversalBrowserWrite”)

}

windowObject.directories

4855-7 ch02.F 6/26/01 8:34 AM Page 134

135Chapter 2 ✦ Window and Frame Objects (Chapter 16)

// restore settings
function restore() {

netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserWrite”)
window.locationbar.visible = originalLocationbar
window.menubar.visible = originalMenubar
window.personalbar.visible = originalPersonalbar
window.scrollbars.visible = originalScrollbars
window.statusbar.visible = originalStatusbar
window.toolbar.visible = originalToolbar
netscape.security.PrivilegeManager.revertPrivilege(“UniversalBrowserWrite”)

}
</SCRIPT>
</HEAD>
<BODY onUnload=”restore()”>
<FORM>
Toggle Window Bars

<INPUT TYPE=”button” VALUE=”Location Bar”
onClick=”toggleBar(window.locationbar)”>

<INPUT TYPE=”button” VALUE=”Menu Bar” onClick=”toggleBar(window.menubar)”>

<INPUT TYPE=”button” VALUE=”Personal Bar”
onClick=”toggleBar(window.personalbar)”>

<INPUT TYPE=”button” VALUE=”Scrollbars”
onClick=”toggleBar(window.scrollbars)”>

<INPUT TYPE=”button” VALUE=”Status Bar”
onClick=”toggleBar(window.statusbar)”>

<INPUT TYPE=”button” VALUE=”Tool Bar” onClick=”toggleBar(window.toolbar)”>

<HR>
<INPUT TYPE=”button” VALUE=”Restore Original Settings” onClick=”restore()”>

</FORM>
</BODY>
</HTML>

external

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
The first example asks the user if it is okay to add a Web site to the Active

Desktop. If Active Desktop is not enabled, the user is given the choice of enabling it

at this point.

external.AddDesktopComponent(“http://www.nytimes.com”,”website”, 200, 100, 400, 400)

windowObject.external

4855-7 ch02.F 6/26/01 8:34 AM Page 135

136 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

In the next example, the user is asked to approve the addition of a URL to the

Favorites list. The user can follow the normal procedure for filing the item in a

folder in the list.

external.AddFavorite(“http://www.dannyg.com/update6.html”,
“JSBible 4 Support Center”)

The final example assumes that a user makes a choice from a SELECT list of items.

The onChange event handler of the SELECT list invokes the following function to navi-

gate to a fictitious page and locate listings for a chosen sports team on the page.

function locate(list) {
var choice = list.options[list.selectedIndex].value
external.NavigateAndFind(“http://www.collegesports.net/scores.html”, choice,

“scores”)
}

frames

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Listings 16-7 and 16-8 demonstrate how JavaScript treats values of frame refer-

ences from objects inside a frame. The same document is loaded into each frame. A

script in that document extracts info about the current frame and the entire frame-

set. Figure 2-1 shows the results after loading the HTML document in Listing 16-7.

Listing 16-7: Framesetting Document for Listing 16-8

<HTML>
<HEAD>
<TITLE>window.frames property</TITLE>
</HEAD>
<FRAMESET COLS=”50%,50%”>

<FRAME NAME=”JustAKid1” SRC=”lst16-08.htm”>
<FRAME NAME=”JustAKid2” SRC=”lst16-08.htm”>

</FRAMESET>
</HTML>

A call to determine the number (length) of frames returns 0 from the point of

view of the current frame referenced. That’s because each frame here is a window

that has no nested frames within it. But add the parent property to the reference,

and the scope zooms out to take into account all frames generated by the parent

window’s document.

windowObject.frames

4855-7 ch02.F 6/26/01 8:34 AM Page 136

137Chapter 2 ✦ Window and Frame Objects (Chapter 16)

Listing 16-8: Showing Various Window Properties

<HTML>
<HEAD>
<TITLE>Window Revealer II</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function gatherWindowData() {

var msg = “”
msg += “From the point of view of this frame:
”
msg += “window.frames.length: “ + window.frames.length + “
”
msg += “window.name: “ + window.name + “<P>”
msg += “From the point of view of the framesetting document:
”
msg += “parent.frames.length: “ + parent.frames.length + “
”
msg += “parent.frames[0].name: “ + parent.frames[0].name
return msg

}
</SCRIPT>
</HEAD>
<BODY>
<SCRIPT LANGUAGE=”JavaScript”>
document.write(gatherWindowData())
</SCRIPT>
</BODY>
</HTML>

Figure 2-1: Property readouts from both frames loaded from Listing 16-7

windowObject.frames

4855-7 ch02.F 6/26/01 8:34 AM Page 137

138 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

The last statement in the example shows how to use the array syntax (brackets)

to refer to a specific frame. All array indexes start with 0 for the first entry. Because

the document asks for the name of the first frame (parent.frames[0]), the

response is JustAKid1 for both frames.

innerHeight
innerWidth
outerHeight
outerWidth

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
In Listing 16-9, a number of buttons let you see the results of setting the

innerHeight, innerWidth, outerHeight, and outerWidth properties.

Listing 16-9: Setting Window Height and Width

<HTML>
<HEAD>
<TITLE>Window Sizer</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// store original outer dimensions as page loads
var originalWidth = window.outerWidth
var originalHeight = window.outerHeight
// generic function to set inner dimensions
function setInner(width, height) {

window.innerWidth = width
window.innerHeight = height

}
// generic function to set outer dimensions
function setOuter(width, height) {

window.outerWidth = width
window.outerHeight = height

}
// restore window to original dimensions
function restore() {

window.outerWidth = originalWidth
window.outerHeight = originalHeight

}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
Setting Inner Sizes

windowObject.innerHeight

4855-7 ch02.F 6/26/01 8:34 AM Page 138

139Chapter 2 ✦ Window and Frame Objects (Chapter 16)

<INPUT TYPE=”button” VALUE=”600 Pixels Square” onClick=”setInner(600,600)”>

<INPUT TYPE=”button” VALUE=”300 Pixels Square” onClick=”setInner(300,300)”>

<INPUT TYPE=”button” VALUE=”Available Screen Space”
onClick=”setInner(screen.availWidth, screen.availHeight)”>

<HR>
Setting Outer Sizes

<INPUT TYPE=”button” VALUE=”600 Pixels Square” onClick=”setOuter(600,600)”>

<INPUT TYPE=”button” VALUE=”300 Pixels Square” onClick=”setOuter(300,300)”>

<INPUT TYPE=”button” VALUE=”Available Screen Space”
onClick=”setOuter(screen.availWidth, screen.availHeight)”>

<HR>
<INPUT TYPE=”button” VALUE=”Cinch up for Win95” onClick=”setInner(273,304)”>

<INPUT TYPE=”button” VALUE=”Cinch up for Mac” onClick=”setInner(273,304)”>

<INPUT TYPE=”button” VALUE=”Restore Original” onClick=”restore()”>

</FORM>
</BODY>
</HTML>

As the document loads, it saves the current outer dimensions in global variables.

One of the buttons restores the windows to these settings. Two parallel sets of but-

tons set the inner and outer dimensions to the same pixel values so that you can

see the effects on the overall window and document area when a script changes the

various properties.

Because Navigator 4 displays different-looking buttons in different platforms (as

well as other elements), the two buttons contain script instructions to size the win-

dow to best display the window contents. Unfortunately, no measure of the active

area of a document is available, so that the dimension values were determined by

trial and error before being hard-wired into the script.

navigator

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
This book is littered with examples of using the navigator object, primarily for

performing browser detection. Examples of specific navigator object properties

can be found in Chapter 28 of the JavaScript Bible and Chapter 12 of this book.

offscreenBuffering

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

windowObject.offscreenBuffering

4855-7 ch02.F 6/26/01 8:34 AM Page 139

140 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example
If you want to turn off buffering for an entire page, include the following state-

ment at the beginning of your script statements:

window.offscreenBuffering = false

onerror

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

Example
In Listing 16-10, one button triggers a script that contains an error. I’ve added an

error-handling function to process the error so that it opens a separate window and

fills in a textarea form element (see Figure 2-2). If you load Listing 16-10 in NN6,

some of the reporting categories report “undefined” because the browser unfortu-

nately does not pass error properties to the handleError() function. A Submit

button is also provided to mail the bug information to a support center e-mail

address — an example of how to handle the occurrence of a bug in your scripts.

Listing 16-10: Controlling Script Errors

<HTML>
<TITLE>Error Dialog Control</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.1”>
// function with invalid variable value
function goWrong() {

var x = fred
}
// turn off error dialogs
function errOff() {

window.onerror = doNothing
}
// turn on error dialogs with hard reload
function errOn() {

window.onerror = handleError
}

// assign default error handler
window.onerror = handleError

// error handler when errors are turned off...prevents error dialog
function doNothing() {return true}

function handleError(msg, URL, lineNum) {
var errWind = window.open(“”,”errors”,”HEIGHT=270,WIDTH=400”)
var wintxt = “<HTML><BODY BGCOLOR=RED>”

windowObject.onerror

4855-7 ch02.F 6/26/01 8:34 AM Page 140

141Chapter 2 ✦ Window and Frame Objects (Chapter 16)

wintxt += “An error has occurred on this page. “
wintxt += “Please report it to Tech Support.”
wintxt += “<FORM METHOD=POST ENCTYPE=’text/plain’ “
wintxt += “ACTION=mailTo:support4@dannyg.com >”
wintxt += “<TEXTAREA NAME=’errMsg’ COLS=45 ROWS=8 WRAP=VIRTUAL>”
wintxt += “Error: “ + msg + “\n”
wintxt += “URL: “ + URL + “\n”
wintxt += “Line: “ + lineNum + “\n”
wintxt += “Client: “ + navigator.userAgent + “\n”
wintxt += “---\n”
wintxt += “Please describe what you were doing when the error occurred:”
wintxt += “</TEXTAREA><P>”
wintxt += “<INPUT TYPE=SUBMIT VALUE=’Send Error Report’>”
wintxt += “<INPUT TYPE=button VALUE=’Close’ onClick=’self.close()’>”
wintxt += “</FORM></BODY></HTML>”
errWind.document.write(wintxt)
errWind.document.close()
return true

}
</SCRIPT>
</HEAD>
<BODY>
<FORM NAME=”myform”>
<INPUT TYPE=”button” VALUE=”Cause an Error” onClick=”goWrong()”><P>
<INPUT TYPE=”button” VALUE=”Turn Off Error Dialogs” onClick=”errOff()”>
<INPUT TYPE=”button” VALUE=”Turn On Error Dialogs” onClick=”errOn()”>
</FORM>
</BODY>
</HTML>

Figure 2-2: An example of a self-reporting
error window

I provide a button that performs a hard reload, which, in turn, resets the window.
onerror property to its default value. With error dialog boxes turned off, the error-

handling function does not run.

windowObject.onerror

4855-7 ch02.F 6/26/01 8:34 AM Page 141

142 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

opener

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � �

Example
To demonstrate the importance of the opener property, take a look at how a new

window can define itself from settings in the main window (Listing 16-11). The

doNew() function generates a small subwindow and loads the file in Listing 16-12

into the window. Notice the initial conditional statements in doNew() to make sure

that if the new window already exists, it comes to the front by invoking the new

window’s focus() method. You can see the results in Figure 2-3. Because the

doNew() function in Listing 16-11 uses window methods and properties not avail-

able in IE3, this example does not work correctly in IE3.

Listing 16-11: Contents of a Main Window Document That
Generates a Second Window

<HTML>
<HEAD>
<TITLE>Master of all Windows</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.1”>
var myWind
function doNew() {

if (!myWind || myWind.closed) {
myWind = window.open(“lst16-12.htm”,”subWindow”,

“HEIGHT=200,WIDTH=350,resizable”)
} else {

// bring existing subwindow to the front
myWind.focus()

}
}
</SCRIPT>
</HEAD>
<BODY>
<FORM NAME=”input”>
Select a color for a new window:
<INPUT TYPE=”radio” NAME=”color” VALUE=”red” CHECKED>Red
<INPUT TYPE=”radio” NAME=”color” VALUE=”yellow”>Yellow
<INPUT TYPE=”radio” NAME=”color” VALUE=”blue”>Blue
<INPUT TYPE=”button” NAME=”storage” VALUE=”Make a Window” onClick=”doNew()”>
<HR>
This field will be filled from an entry in another window:
<INPUT TYPE=”text” NAME=”entry” SIZE=25>
</FORM>
</BODY>
</HTML>

windowObject.opener

4855-7 ch02.F 6/26/01 8:34 AM Page 142

143Chapter 2 ✦ Window and Frame Objects (Chapter 16)

The window.open() method doesn’t provide parameters for setting the new

window’s background color, so I let the getColor() function in the new window do

the job as the document loads. The function uses the opener property to find out

which radio button on the main page is selected.

Listing 16-12: References to the opener Property

<HTML>
<HEAD>
<TITLE>New Window on the Block</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function getColor() {

// shorten the reference
colorButtons = self.opener.document.forms[0].color
// see which radio button is checked
for (var i = 0; i < colorButtons.length; i++) {

if (colorButtons[i].checked) {
return colorButtons[i].value

}
}
return “white”

}
</SCRIPT>
</HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
document.write(“<BODY BGCOLOR=’” + getColor() + “‘>”)
</SCRIPT>
<H1>This is a new window.</H1>
<FORM>
<INPUT TYPE=”button” VALUE=”Who’s in the Main window?”
onClick=”alert(self.opener.document.title)”><P>
Type text here for the main window:
<INPUT TYPE=”text” SIZE=25 onChange=”self.opener.document.forms[0].entry.value =
this.value”>
</FORM>
</BODY>
</HTML>

In the getColor() function, the multiple references to the radio button array

can be very long. To simplify the references, the getColor() function starts out by

assigning the radio button array to a variable I arbitrarily call colorButtons. That

shorthand now stands in for lengthy references as I loop through the radio buttons

to determine which button is checked and retrieve its value property.

A button in the second window simply fetches the title of the opener window’s

document. Even if another document loads in the main window in the meantime,

the opener reference still points to the main window: Its document object, however,

will change.

windowObject.opener

4855-7 ch02.F 6/26/01 8:34 AM Page 143

144 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Figure 2-3: The main and subwindows, inextricably linked via the window.opener
property

Finally, the second window contains a text input object. Enter any text there that

you like and either tab or click out of the field. The onChange event handler updates

the field in the opener’s document (provided that document is still loaded).

pageXOffset
pageYOffset

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
The script in Listing 16-13 is an unusual construction that creates a frameset

and creates the content for each of the two frames all within a single HTML docu-

ment (see “Frame Object” in Chapter 16 of the JavaScript Bible for more details).

The purpose of this example is to provide you with a playground to become famil-

iar with the page offset concept and how the values of these properties correspond

to physical activity in a scrollable document.

In the left frame of the frameset are two fields that are ready to show the pixel

values of the right frame’s pageXOffset and pageYOffset properties. The content

windowObject.pageXOffset

4855-7 ch02.F 6/26/01 8:34 AM Page 144

145Chapter 2 ✦ Window and Frame Objects (Chapter 16)

of the right frame is a 30-row table of fixed width (800 pixels). Mouse click events

are captured by the document level (see Chapter 18 of the JavaScript Bible), allow-

ing you to click any table or cell border or outside the table to trigger the

showOffsets() function in the right frame. That function is a simple script that

displays the page offset values in their respective fields in the left frame.

Listing 16-13: Viewing the pageXOffset and pageYOffset
Properties

<HTML>
<HEAD>
<TITLE>Master of all Windows</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function leftFrame() {

var output = “<HTML><BODY><H3>Page Offset Values</H3><HR>\n”
output += “<FORM>PageXOffset:<INPUT TYPE=’text’ NAME=’xOffset’ SIZE=4>
\n”
output += “PageYOffset:<INPUT TYPE=’text’ NAME=’yOffset’ SIZE=4>
\n”
output += “</FORM></BODY></HTML>”
return output

}

function rightFrame() {
var output = “<HTML><HEAD><SCRIPT LANGUAGE=’JavaScript’>\n”
output += “function showOffsets() {\n”
output += “parent.readout.document.forms[0].xOffset.value =

self.pageXOffset\n”
output += “parent.readout.document.forms[0].yOffset.value =

self.pageYOffset\n}\n”
output += “document.captureEvents(Event.CLICK)\n”
output += “document.onclick = showOffsets\n”
output += “<\/SCRIPT></HEAD><BODY><H3>Content Page</H3>\n”
output += “Scroll this frame and click on a table border to view “ +

“page offset values.
<HR>\n”
output += “<TABLE BORDER=5 WIDTH=800>”
var oneRow = “<TD>Cell 1</TD><TD>Cell 2</TD><TD>Cell 3</TD>” +

“<TD>Cell 4</TD><TD>Cell 5</TD>”
for (var i = 1; i <= 30; i++) {

output += “<TR><TD>Row “ + i + “</TD>” + oneRow + “</TR>”
}
output += “</TABLE></BODY></HTML>”
return output

}
</SCRIPT>
</HEAD>
<FRAMESET COLS=”30%,70%”>

<FRAME NAME=”readout” SRC=”javascript:parent.leftFrame()”>
<FRAME NAME=”display” SRC=”javascript:parent.rightFrame()”>

</FRAMESET>
</HTML>

windowObject.pageXOffset

4855-7 ch02.F 6/26/01 8:34 AM Page 145

146 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

To gain an understanding of how the offset values work, scroll the window

slightly in the horizontal direction and notice that the pageXOffset value

increases; the same goes for the pageYOffset value as you scroll down. Remember

that these values reflect the coordinate in the document that is currently under the

top-left corner of the window (frame) holding the document. You can see an IE4+

version of this example in Listing 18-20 (in Chapter 4 of this book). A cross-browser

version would require very little browser branching.

parent

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
To demonstrate how various window object properties refer to window levels in

a multiframe environment, use your browser to load the Listing 16-14 document. It,

in turn, sets each of two equal-size frames to the same document: Listing 16-15. This

document extracts the values of several window properties, plus the

document.title properties of two different window references.

Listing 16-14: Framesetting Document for Listing 16-15

<HTML>
<HEAD>
<TITLE>The Parent Property Example</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
self.name = “Framesetter”
</SCRIPT>
</HEAD>
<FRAMESET COLS=”50%,50%” onUnload=”self.name = ‘’”>

<FRAME NAME=”JustAKid1” SRC=”lst16-15.htm”>
<FRAME NAME=”JustAKid2” SRC=”lst16-15.htm”>

</FRAMESET>
</HTML>

Listing 16-15: Revealing Various Window-Related Properties

<HTML>
<HEAD>
<TITLE>Window Revealer II</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function gatherWindowData() {

var msg = “”

windowObject.parent

4855-7 ch02.F 6/26/01 8:34 AM Page 146

147Chapter 2 ✦ Window and Frame Objects (Chapter 16)

msg = msg + “top name: “ + top.name + “
”
msg = msg + “parent name: “ + parent.name + “
”
msg = msg + “parent.document.title: “ + parent.document.title + “<P>”
msg = msg + “window name: “ + window.name + “
”
msg = msg + “self name: “ + self.name + “
”
msg = msg + “self.document.title: “ + self.document.title
return msg

}
</SCRIPT>
</HEAD>
<BODY>
<SCRIPT LANGUAGE=”JavaScript”>
document.write(gatherWindowData())
</SCRIPT>
</BODY>
</HTML>

In the two frames (Figure 2-4), the references to the window and self object

names return the name assigned to the frame by the frameset definition

(JustAKid1 for the left frame, JustAKid2 for the right frame). In other words, from

each frame’s point of view, the window object is its own frame. References to

self.document.title refer only to the document loaded into that window frame.

But references to the top and parent windows (which are one and the same in this

example) show that those object properties are shared between both frames.

Figure 2-4: Parent and top properties being shared by both frames

windowObject.parent

4855-7 ch02.F 6/26/01 8:34 AM Page 147

148 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

A couple other fine points are worth highlighting. First, the name of the frameset-

ting window is set as Listing 16-14 loads, rather than in response to an onLoad
event handler in the <FRAMESET> tag. The reason for this is that the name must be

set in time for the documents loading in the frames to get that value. If I had waited

until the frameset’s onLoad event handler, the name wouldn’t be set until after the

frame documents had loaded. Second, I restore the parent window’s name to an

empty string when the framesetting document unloads. This is to prevent future

pages from getting confused about the window name.

returnValue

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See Listing 16-39 for the showModalDialog() method for an example of how to

get data back from a dialog box in IE4+.

screenLeft
screenTop

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

screenLeft and screenTop properties. Start with the browser window maximized

(if you are using Windows). Enter the following property name into the top text box:

window.screenLeft

Click the Evaluate button to see the current setting. Unmaximize the window and

drag it around the screen. Each time you finish dragging, click the Evaluate button

again to see the current value. Do the same for window.screenTop.

screenX
screenY

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

windowObject.screenX

4855-7 ch02.F 6/26/01 8:34 AM Page 148

149Chapter 2 ✦ Window and Frame Objects (Chapter 16)

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

screenX and screenY properties in NN6. Start with the browser window maxi-

mized (if you are using Windows). Enter the following property name into the top

text box:

window.screenY

Click the Evaluate button to see the current setting. Unmaximize the window and

drag it around the screen. Each time you finish dragging, click the Evaluate button

again to see the current value. Do the same for window.screenY.

scrollX
scrollY

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

scrollX and scrollY properties in NN6. Enter the following property into the top

text box:

window.scrollY

Now manually scroll the page down so that you can still see the Evaluate button.

Click the button to see how far the window has scrolled along the y-axis.

self

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Listing 16-16 uses the same operations as Listing 16-5 but substitutes the self

property for all window object references. The application of this reference is

entirely optional, but it can be helpful for reading and debugging scripts if the

HTML document is to appear in one frame of a multiframe window — especially if

other JavaScript code in this document refers to documents in other frames. The

self reference helps anyone reading the code know precisely which frame was

being addressed.

windowObject.self

4855-7 ch02.F 6/26/01 8:34 AM Page 149

150 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-16: Using the self Property

<HTML>
<HEAD>
<TITLE>self Property</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
self.defaultStatus = “Welcome to my Web site.”
</SCRIPT>
</HEAD>
<BODY>
<A HREF=”http:// www.microsoft.com”
onMouseOver=”self.status = ‘Visit Microsoft\’s Home page.’;return true”
onMouseOut=”self.status = ‘’;return true”>Microsoft<P>
<A HREF=”http://home.netscape.com”
onMouseOver=”self.status = ‘Visit Netscape\’s Home page.’;return true”
onMouseOut=”self.status = self.defaultStatus;return true”>Netscape
</BODY>
</HTML>

status

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
In Listing 16-17, the status property is set in a handler embedded in the

onMouseOver attribute of two HTML link tags. Notice that the handler requires a

return true statement (or any expression that evaluates to return true) as the

last statement of the handler. This statement is required or the status message will

not display, particularly in early browsers.

Listing 16-17: Links with Custom Statusbar Messages

<HTML>
<HEAD>
<TITLE>window.status Property</TITLE>
</HEAD>
<BODY>
<A HREF=”http://www.dannyg.com” onMouseOver=”window.status = ‘Go to my Home
page. (www.dannyg.com)’; return true”>Home<P>
<A HREF=”http://home.netscape.com” onMouseOver=”window.status = ‘Visit Netscape
Home page. (home.netscape.com)’; return true”>Netscape
</BODY>
</HTML>

windowObject.status

4855-7 ch02.F 6/26/01 8:34 AM Page 150

151Chapter 2 ✦ Window and Frame Objects (Chapter 16)

As a safeguard against platform-specific anomalies that affect the behavior of

onMouseOver event handlers and the window.status property, you should also

include an onMouseOut event handler for links and client-side image map area

objects. Such onMouseOut event handlers should set the status property to an

empty string. This setting ensures that the statusbar message returns to the

defaultStatus setting when the pointer rolls away from these objects. If you want

to write a generalizable function that handles all window status changes, you can

do so, but word the onMouseOver attribute carefully so that the event handler eval-

uates to return true. Listing 16-18 shows such an alternative.

Listing 16-18: Handling Status Message Changes

<HTML>
<HEAD>
<TITLE>Generalizable window.status Property</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function showStatus(msg) {

window.status = msg
return true

}
</SCRIPT>
</HEAD>
<BODY>
<A HREF=”http:// www.dannyg.com “ onMouseOver=”return showStatus(‘Go to my Home
page (www.dannyg.com).’)” onMouseOut=”return showStatus(‘’)”>Home<P>
<A HREF=”http://home.netscape.com” onMouseOver=”return showStatus(‘Visit
Netscape Home page.’)” onMouseOut=”return showStatus(‘’)”>Netscape
</BODY>
</HTML>

Notice how the event handlers return the results of the showStatus() method

to the event handler, allowing the entire handler to evaluate to return true.

One final example of setting the statusbar (shown in Listing 16-19) also demon-

strates how to create a simple scrolling banner in the statusbar.

Listing 16-19: Creating a Scrolling Banner

<HTML>
<HEAD>
<TITLE>Message Scroller</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
<!--
var msg = “Welcome to my world...”
var delay = 150
var timerId
var maxCount = 0
var currCount = 1

Continued

windowObject.status

4855-7 ch02.F 6/26/01 8:34 AM Page 151

152 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-19 (continued)

function scrollMsg() {
// set the number of times scrolling message is to run
if (maxCount == 0) {

maxCount = 3 * msg.length
}
window.status = msg
// keep track of how many characters have scrolled
currCount++
// shift first character of msg to end of msg
msg = msg.substring (1, msg.length) + msg.substring (0, 1)
// test whether we’ve reached maximum character count
if (currCount >= maxCount) {

timerID = 0 // zero out the timer
window.status = “” // clear the status bar
return // break out of function

} else {
// recursive call to this function
timerId = setTimeout(“scrollMsg()”, delay)

}
}
// -->
</SCRIPT>
</HEAD>
<BODY onLoad=”scrollMsg()”>
</BODY>
</HTML>

Because the statusbar is being set by a standalone function (rather than by an

onMouseOver event handler), you do not have to append a return true statement to

set the status property. The scrollMsg() function uses more advanced JavaScript

concepts, such as the window.setTimeout() method (covered later in this chapter)

and string methods (covered in Chapter 34 of the JavaScript Bible). To speed the pace

at which the words scroll across the statusbar, reduce the value of delay.

Many Web surfers (myself included) don’t care for these scrollers that run for-

ever in the statusbar. Rolling the mouse over links disturbs the banner display.

Scrollers can also crash earlier browsers, because the setTimeout() method eats

application memory in Navigator 2. Use scrolling bars sparingly or design them to

run only a few times after the document loads.

Setting the status property with onMouseOver event handlers has had a check-
ered career along various implementations in Navigator. A script that sets the sta-
tusbar is always in competition against the browser itself, which uses the statusbar
to report loading progress. When a “hot” area on a page is at the edge of a frame,
many times the onMouseOut event fails to fire, thus preventing the statusbar from
clearing itself. Be sure to torture test any such implementations before declaring
your page ready for public access.

Tip

windowObject.status

4855-7 ch02.F 6/26/01 8:35 AM Page 152

153Chapter 2 ✦ Window and Frame Objects (Chapter 16)

Methods
alert(“message”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The parameter for the example in Listing 16-20 is a concatenated string. It joins

together two fixed strings and the value of the browser’s navigator.appName prop-

erty. Loading this document causes the alert dialog box to appear, as shown in sev-

eral configurations in Figure 2-5. The JavaScript Alert: line cannot be deleted from

the dialog box in earlier browsers, nor can the title bar be changed in later browsers.

Listing 16-20: Displaying an Alert Dialog Box

<HTML>
<HEAD>
<TITLE>window.alert() Method</TITLE>
</HEAD>
<BODY>
<SCRIPT LANGUAGE=”JavaScript”>
alert(“You are running the “ + navigator.appName + “ browser.”)
</SCRIPT>
</BODY>
</HTML>

Figure 2-5: Results of the alert() method in Listing 16-20
in Internet Explorer 5 (top) and Navigator 6 (bottom)
for Windows 98

windowObject.alert()

4855-7 ch02.F 6/26/01 8:35 AM Page 153

154 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

captureEvents(eventTypeList)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
The page in Listing 16-21 is an exercise in capturing and releasing click events in

the window object. Whenever the window is capturing click events, the flash()
function runs. In that function, the event is examined so that only if the Control key

is also being held down and the name of the button starts with “button” does the

document background color flash red. For all click events (that is, those directed at

objects on the page capable of their own onClick event handlers), the click is pro-

cessed with the routeEvent() method to make sure the target buttons execute

their own onClick event handlers.

Listing 16-21: Capturing Click Events in the Window

<HTML>
<HEAD>
<TITLE>Window Event Capture</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.2”>
// function to run when window captures a click event
function flash(e) {

if (e.modifiers = Event.CONTROL_MASK &&
e.target.name.indexOf(“button”) == 0) {

document.bgColor = “red”
setTimeout(“document.bgColor = ‘white’”, 500)

}
// let event continue to target
routeEvent(e)

}
// default setting to capture click events
window.captureEvents(Event.CLICK)
// assign flash() function to click events captured by window
window.onclick = flash
</SCRIPT>
</HEAD>
<BODY BGCOLOR=”white”>
<FORM NAME=”buttons”>
Turn window click event capture on or off (Default is “On”)<P>
<INPUT NAME=”captureOn” TYPE=”button” VALUE=”Capture On”
onClick=”window.captureEvents(Event.CLICK)”>
<INPUT NAME=”captureOff” TYPE=”button” VALUE=”Capture Off”
onClick=”window.releaseEvents(Event.CLICK)”>
<HR>
Ctrl+Click on a button to see if clicks are being captured by the window
(background color will flash red):<P>

windowObject.captureEvents()

4855-7 ch02.F 6/26/01 8:35 AM Page 154

155Chapter 2 ✦ Window and Frame Objects (Chapter 16)

<INPUT NAME=”button1” TYPE=”button” VALUE=”Informix” onClick=”alert(‘You
clicked on Informix.’)”>
<INPUT NAME=”button2” TYPE=”button” VALUE=”Oracle” onClick=”alert(‘You
clicked on Oracle.’)”>
<INPUT NAME=”button3” TYPE=”button” VALUE=”Sybase” onClick=”alert(‘You
clicked on Sybase.’)”>

</FORM>
</BODY>
</HTML>

When you try this page, also turn off window event capture. Now only the but-

tons’ onClick event handlers execute, and the page does not flash red.

clearInterval(intervalIDnumber)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Example
See Listings 16-36 and 16-37 for an example of how setInterval() and

clearInterval() are used together on a page.

clearTimeout(timeoutIDnumber)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The page in Listing 16-22 features one text field and two buttons (Figure 2-6). One

button starts a countdown timer coded to last one minute (easily modifiable for

other durations); the other button interrupts the timer at any time while it is run-

ning. When the minute is up, an alert dialog box lets you know.

Listing 16-22: A Countdown Timer

<HTML>
<HEAD>
<TITLE>Count Down Timer</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
<!--
var running = false

Continued

windowObject.clearTimeout()

4855-7 ch02.F 6/26/01 8:35 AM Page 155

156 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-22 (continued)

var endTime = null
var timerID = null

function startTimer() {
running = true
now = new Date()
now = now.getTime()
// change last multiple for the number of minutes
endTime = now + (1000 * 60 * 1)
showCountDown()

}

function showCountDown() {
var now = new Date()
now = now.getTime()
if (endTime - now <= 0) {

stopTimer()
alert(“Time is up. Put down your pencils.”)

} else {
var delta = new Date(endTime - now)
var theMin = delta.getMinutes()
var theSec = delta.getSeconds()
var theTime = theMin
theTime += ((theSec < 10) ? “:0” : “:”) + theSec
document.forms[0].timerDisplay.value = theTime
if (running) {

timerID = setTimeout(“showCountDown()”,1000)
}

}
}

function stopTimer() {
clearTimeout(timerID)
running = false
document.forms[0].timerDisplay.value = “0:00”

}
//-->
</SCRIPT>
</HEAD>

<BODY>
<FORM>
<INPUT TYPE=”button” NAME=”startTime” VALUE=”Start 1 min. Timer”
onClick=”startTimer()”>
<INPUT TYPE=”button” NAME=”clearTime” VALUE=”Clear Timer”
onClick=”stopTimer()”><P>
<INPUT TYPE=”text” NAME=”timerDisplay” VALUE=””>
</FORM>
</BODY>
</HTML>

windowObject.clearTimeout()

4855-7 ch02.F 6/26/01 8:35 AM Page 156

157Chapter 2 ✦ Window and Frame Objects (Chapter 16)

Notice that the script establishes three variables with global scope in the win-

dow: running, endTime, and timerID. These values are needed inside multiple

functions, so they are initialized outside of the functions.

Figure 2-6: The countdown timer page as it displays the time remaining

In the startTimer() function, you switch the running flag on, meaning that the

timer should be going. Using some date functions (see Chapter 36 of the JavaScript
Bible), you extract the current time in milliseconds and add the number of millisec-

onds for the next minute (the extra multiplication by one is the place where you

can change the amount to the desired number of minutes). With the end time

stored in a global variable, the function now calls another function that compares

the current and end times and displays the difference in the text field.

Early in the showCountDown() function, check to see if the timer has wound

down. If so, you stop the timer and alert the user. Otherwise, the function continues

to calculate the difference between the two times and formats the time in mm:ss

format. As long as the running flag is set to true, the function sets the one-second

timeout timer before repeating itself. To stop the timer before it has run out (in the

stopTimer() function), the most important step is to cancel the timeout running

inside the browser. The clearTimeout() method uses the global timerID value to

do that. Then the function turns off the running switch and zeros out the display.

When you run the timer, you may occasionally notice that the time skips a sec-

ond. It’s not cheating. It just takes slightly more than one second to wait for the

timeout and then finish the calculations for the next second’s display. What you’re

seeing is the display catching up with the real time left.

close()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

windowObject.close()

4855-7 ch02.F 6/26/01 8:35 AM Page 157

158 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example
See Listing 16-4 (for the window.closed property), which provides an elaborate,

cross-platform, bug-accommodating example of applying the window.close()
method across multiple windows.

confirm(“message”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The example in Listing 16-23 shows the user interface part of how you can use a

confirm dialog box to query a user before clearing a table full of user-entered data.

The line in the title bar, as shown in Figure 2-7, or the “JavaScript Confirm” legend in

earlier browser versions, cannot be removed from the dialog box.

Listing 16-23: The Confirm Dialog Box

<HTML>
<HEAD>
<TITLE>window.confirm() Method</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function clearTable() {

if (confirm(“Are you sure you want to empty the table?”)) {
alert(“Emptying the table...”) // for demo purposes
//statements that actually empty the fields

}
}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
<!-- other statements that display and populate a large table -->
<INPUT TYPE=”button” NAME=”clear” VALUE=”Reset Table” onClick=”clearTable()”>
</FORM>
</BODY>
</HTML>

Figure 2-7: A JavaScript confirm
dialog box (IE5/Windows format)

windowObject.confirm()

4855-7 ch02.F 6/26/01 8:35 AM Page 158

159Chapter 2 ✦ Window and Frame Objects (Chapter 16)

createPopup()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
See Listing 16-49 later in this chapter for an example of the createPopup()

method.

disableExternalCapture()
enableExternalCapture()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
As this was a little-used feature of NN4 even while the browser enjoyed a sub-

stantial installed base, it becomes less important as that browser version recedes

into history. You can find an example of this feature at the Support Center for this

book (http://www.dannyg.com/update.html) or on pp.213–214 of the JavaScript
Bible, 3rd edition.

execScript(“exprList”[, language])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

execScript() method. The Evaluator has predeclared global variables for the low-

ercase letters a through z. Enter each of the following statements into the top text

box and observe the results for each.

a

When first loaded, the variable is declared but assigned no value, so it is

undefined.

window.execScript(“a = 5”)

windowObject.execScript()

4855-7 ch02.F 6/26/01 8:35 AM Page 159

160 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

The method returns no value, so the mechanism inside The Evaluator says that the

statement is undefined.

a

The variable is now 5.

window.execScript(“b = a * 50”)
b

The b global variable has a value of 250. Continue exploring with additional

script statements. Use semicolons to separate multiple statements within the string

parameter.

find([“searchString” [, matchCaseBoolean,
searchUpBoolean]])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
A simple call to the window.find() method looks as follows:

var success = window.find(“contract”)

If you want the search to be case-sensitive, add at least one of the two optional

parameters:

success = wind.find(matchString,caseSensitive,backward)

Because this method works only in NN4, refer to discussions of the TextRange
and Range objects in Chapter 19 of the JavaScript Bible for more modern implemen-

tations of body text searching.

GetAttention()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) in NN6 to set a timer that

gives you enough time to switch to another application and wait for the attention

signal to fire. Enter the following statement into the top text box, click the Evaluate

button, and then quickly switch to another program:

setTimeout(“GetAttention()”, 5000)

After a total of five seconds, the attention signal fires.

windowObject.GetAttention()

4855-7 ch02.F 6/26/01 8:35 AM Page 160

161Chapter 2 ✦ Window and Frame Objects (Chapter 16)

moveBy(deltaX,deltaY)
moveTo(x,y)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Example
Several examples of using the window.moveTo() and window.moveBy() meth-

ods are shown in Listing 16-24. The page presents four buttons, each of which per-

forms a different kind of browser window movement.

Listing 16-24: Window Boogie

<HTML>
<HEAD>
<TITLE>Window Gymnastics</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.2”>
var isNav4 = ((navigator.appName == “Netscape”) &&
(parseInt(navigator.appVersion) >= 4))
// wait in onLoad for page to load and settle in IE
function init() {

// fill missing IE properties
if (!window.outerWidth) {

window.outerWidth = document.body.clientWidth
window.outerHeight = document.body.clientHeight + 30

}
// fill missing IE4 properties
if (!screen.availWidth) {

screen.availWidth = 640
screen.availHeight = 480

}
}
// function to run when window captures a click event
function moveOffScreen() {

// branch for NN security
if (isNav4) {

netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserWrite”)
}
var maxX = screen.width
var maxY = screen.height
window.moveTo(maxX+1, maxY+1)
setTimeout(“window.moveTo(0,0)”,500)
if (isNav4) {

netscape.security.PrivilegeManager.disablePrivilege(“UniversalBrowserWrite”)
}

Continued

windowObject.moveBy()

4855-7 ch02.F 6/26/01 8:35 AM Page 161

162 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-24 (continued)

}
// moves window in a circular motion
function revolve() {

var winX = (screen.availWidth - window.outerWidth) / 2
var winY = 50
window.resizeTo(400,300)
window.moveTo(winX, winY)

for (var i = 1; i < 36; i++) {
winX += Math.cos(i * (Math.PI/18)) * 5
winY += Math.sin(i * (Math.PI/18)) * 5
window.moveTo(winX, winY)

}
}
// moves window in a horizontal zig-zag pattern
function zigzag() {

window.resizeTo(400,300)
window.moveTo(0,80)
var incrementX = 2
var incrementY = 2
var floor = screen.availHeight - window.outerHeight
var rightEdge = screen.availWidth - window.outerWidth
for (var i = 0; i < rightEdge; i += 2) {

window.moveBy(incrementX, incrementY)
if (i%60 == 0) {

incrementY = -incrementY
}

}
}
// resizes window to occupy all available screen real estate
function maximize() {

window.moveTo(0,0)
window.resizeTo(screen.availWidth, screen.availHeight)

}
</SCRIPT>
</HEAD>
<BODY onLoad=”init()”>
<FORM NAME=”buttons”>
Window Gymnastics<P>

<INPUT NAME=”offscreen” TYPE=”button” VALUE=”Disappear a Second”
onClick=”moveOffScreen()”>
<INPUT NAME=”circles” TYPE=”button” VALUE=”Circular Motion”
onClick=”revolve()”>
<INPUT NAME=”bouncer” TYPE=”button” VALUE=”Zig Zag” onClick=”zigzag()”>
<INPUT NAME=”expander” TYPE=”button” VALUE=”Maximize” onClick=”maximize()”>

</FORM>
</BODY>
</HTML>

windowObject.moveBy()

4855-7 ch02.F 6/26/01 8:35 AM Page 162

163Chapter 2 ✦ Window and Frame Objects (Chapter 16)

To run successfully in NN, the first button requires that you have codebase prin-

cipals turned on (see Chapter 46 of the JavaScript Bible) to take advantage of what

would normally be a signed script. The moveOffScreen() function momentarily

moves the window entirely out of view. Notice how the script determines the size of

the screen before deciding where to move the window. After the journey off screen,

the window comes back into view at the upper-left corner of the screen.

If using the Web sometimes seems like going around in circles, then the second

function, revolve(), should feel just right. After reducing the size of the window

and positioning it near the top center of the screen, the script uses a bit of math to

position the window along 36 places around a perfect circle (at 10-degree incre-

ments). This is an example of how to control a window’s position dynamically

based on math calculations. IE complicates the job a bit by not providing proper-

ties that reveal the outside dimensions of the browser window.

To demonstrate the moveBy() method, the third function, zigzag(), uses a for
loop to increment the coordinate points to make the window travel in a saw tooth

pattern across the screen. The x coordinate continues to increment linearly until

the window is at the edge of the screen (also calculated on the fly to accommodate

any size monitor). The y coordinate must increase and decrease as that parameter

changes direction at various times across the screen.

In the fourth function, you see some practical code (finally) that demonstrates

how best to simulate maximizing the browser window to fill the entire available

screen space on the visitor’s monitor.

navigate(“URL”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Example
Supply any valid URL as the parameter to the method, as in

window.navigate(“http://www.dannyg.com”)

open(“URL”, “windowName” [,
“windowFeatures”][,replaceFlag])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The page rendered by Listing 16-26 displays a single button that generates a new

window of a specific size that has only the statusbar turned on. The script here

windowObject.open()

4855-7 ch02.F 6/26/01 8:35 AM Page 163

164 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

shows all the elements necessary to create a new window that has all the right stuff

on most platforms. The new window object reference is assigned to a global vari-

able, newWindow. Before a new window is generated, the script looks to see if the

window has never been generated before (in which case newWindow would be

null) or, for newer browsers, the window is closed. If either condition is true, the

window is created with the open() method. Otherwise, the existing window is

brought forward with the focus() method (NN3+ and IE4+).

As a safeguard against older browsers, the script manually adds an opener prop-

erty to the new window if one is not already assigned by the open() method. The

current window object reference is assigned to that property.

Due to the timing problem that afflicts all IE generations, the HTML assembly and

writing to the new window is separated into its own function that is invoked after a

50 millisecond delay (NN goes along for the ride, but it could accommodate the

assembly and writing without the delay). To build the string that is eventually writ-

ten to the document, I use the += (add-by-value) operator, which appends the string

on the right side of the operator to the string stored in the variable on the left side.

In this example, the new window is handed an <H1>-level line of text to display.

Listing 16-26: Creating a New Window

<HTML>
<HEAD>
<TITLE>New Window</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var newWindow
function makeNewWindow() {

if (!newWindow || newWindow.closed) {
newWindow = window.open(“”,””,”status,height=200,width=300”)
if (!newWindow.opener) {
newWindow.opener = window
}
// force small delay for IE to catch up
setTimeout(“writeToWindow()”, 50)

} else {
// window’s already open; bring to front
newWindow.focus()

}
}
function writeToWindow() {

// assemble content for new window
var newContent = “<HTML><HEAD><TITLE>One Sub Window</TITLE></HEAD>”
newContent += “<BODY><H1>This window is brand new.</H1>”
newContent += “</BODY></HTML>”
// write HTML to new window document
newWindow.document.write(newContent)
newWindow.document.close() // close layout stream

}
</SCRIPT>
</HEAD>
<BODY>
<FORM>

windowObject.open()

4855-7 ch02.F 6/26/01 8:35 AM Page 164

165Chapter 2 ✦ Window and Frame Objects (Chapter 16)

<INPUT TYPE=”button” NAME=”newOne” VALUE=”Create New Window”
onClick=”makeNewWindow()”>
</FORM>
</BODY>
</HTML>

If you need to create a new window for the lowest common denominator of

scriptable browser, you will have to omit the focus() method and the

window.closed property from the script (as well as add the NN2 bug workaround

described earlier). Or you may prefer to forego a subwindow for all browsers below

a certain level. See Listing 16-3 (in the window.closed property discussion) for

other ideas about cross-browser authoring for subwindows.

print()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Listing 16-27 is a frameset that loads Listing 16-28 into the top frame and a copy

of the Bill of Rights into the bottom frame.

Listing 16-27: Print Frameset

<HTML>
<HEAD>
<TITLE>window.print() method</TITLE>
</HEAD>
<FRAMESET ROWS=”25%,75%”>

<FRAME NAME=”controls” SRC=”lst16-28.htm”>
<FRAME NAME=”display” SRC=”bofright.htm”>

</FRAMESET>
</HTML>

Two buttons in the top control panel (Listing 16-28) let you print the whole

frameset (in those browsers and OSs that support it) or just the lower frame. To

print the entire frameset, the reference includes the parent window; to print the

lower frame, the reference is directed at the parent.display frame.

windowObject.print()

4855-7 ch02.F 6/26/01 8:35 AM Page 165

166 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-28: Printing Control

<HTML>
<HEAD>
<TITLE>Print()</TITLE>
</HEAD>
<BODY>
<FORM>
<INPUT TYPE=”button” NAME=”printWhole” VALUE=”Print Entire Frameset”
onClick=”parent.print()”><P>
<INPUT TYPE=”button” NAME=”printFrame” VALUE=”Print Bottom Frame Only”
onClick=”parent.display.print()”><P>
</FORM>
</BODY>
</HTML>

If you don’t like some facet of the printed output, blame the browser’s print

engine, and not JavaScript. The print() method merely invokes the browser’s reg-

ular printing routines. Pages whose content is generated entirely by JavaScript

print only in NN3+ and IE4+.

prompt(“message”, “defaultReply”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The function that receives values from the prompt dialog box in Listing 16-29

(see the dialog box in Figure 2-8) does some data-entry validation (but certainly not

enough for a commercial site). The function first checks to make sure that the

returned value is neither null (Cancel) nor an empty string (the user clicked OK

without entering any values). See Chapter 43 of the JavaScript Bible for more about

data-entry validation.

Listing 16-29: The Prompt Dialog Box

<HTML>
<HEAD>
<TITLE>window.prompt() Method</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function populateTable() {

var howMany = prompt(“Fill in table for how many factors?”,””)
if (howMany != null && howMany != “”) {

windowObject.prompt()

4855-7 ch02.F 6/26/01 8:35 AM Page 166

167Chapter 2 ✦ Window and Frame Objects (Chapter 16)

alert(“Filling the table for “ + howMany) // for demo
//statements that validate the entry and
//actually populate the fields of the table

}
}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
<!-- other statements that display and populate a large table -->
<INPUT TYPE=”button” NAME=”fill” VALUE=”Fill Table...”
onClick=”populateTable()”>
</FORM>
</BODY>
</HTML>

Figure 2-8: The prompt dialog box displayed from
Listing 16-29 (Windows format)

Notice one important user interface element in Listing 16-29. Because clicking

the button leads to a dialog box that requires more information from the user, the

button’s label ends in an ellipsis (or, rather, three periods acting as an ellipsis char-

acter). The ellipsis is a common courtesy to let users know that a user interface ele-

ment leads to a dialog box of some sort. As in similar situations in Windows and

Macintosh programs, the user should be able to cancel out of that dialog box and

return to the same screen state that existed before the button was clicked.

resizeBy(deltaX,deltaY)
resizeTo(outerwidth,outerheight)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Example
You can experiment with the resize methods with the page in Listing 16-30. Two

parts of a form let you enter values for each method. The one for window.resize()
also lets you enter a number of repetitions to better see the impact of the values.

Enter zero and negative values to see how those affect the method. Also test the

limits of different browsers.

windowObject.resizeBy()

4855-7 ch02.F 6/26/01 8:35 AM Page 167

168 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-30: Window Resize Methods

<HTML>
<HEAD>
<TITLE>Window Resize Methods</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function doResizeBy(form) {

var x = parseInt(form.resizeByX.value)
var y = parseInt(form.resizeByY.value)
var count = parseInt(form.count.value)
for (var i = 0; i < count; i++) {

window.resizeBy(x, y)
}

}
function doResizeTo(form) {

var x = parseInt(form.resizeToX.value)
var y = parseInt(form.resizeToY.value)
window.resizeTo(x, y)

}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
Enter the x and y increment, plus how many times the window should be resized
by these increments:

Horiz:<INPUT TYPE=”text” NAME=”resizeByX” SIZE=4>
Vert:<INPUT TYPE=”text” NAME=”resizeByY” SIZE=4>
How Many:<INPUT TYPE=”text” NAME=”count” SIZE=4>
<INPUT TYPE=”button” NAME=”ResizeBy” VALUE=”Show resizeBy()”
onClick=”doResizeBy(this.form)”>
<HR>
Enter the desired width and height of the current window:

Width:<INPUT TYPE=”text” NAME=”resizeToX” SIZE=4>
Height:<INPUT TYPE=”text” NAME=”resizeToY” SIZE=4>
<INPUT TYPE=”button” NAME=”ResizeTo” VALUE=”Show resizeTo()”
onClick=”doResizeTo(this.form)”>
</FORM>
</BODY>
</HTML>

routeEvent(event)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

windowObject.routeEvent()

4855-7 ch02.F 6/26/01 8:35 AM Page 168

169Chapter 2 ✦ Window and Frame Objects (Chapter 16)

Example
The window.routeEvent() method is used in the example for

window.captureEvents(), Listing 16-21.

scroll(horizontalCoord, verticalCoord)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

Example
To demonstrate the scroll() method, Listing 16-31 defines a frameset with a

document in the top frame (Listing 16-32) and a control panel in the bottom frame

(Listing 16-33). A series of buttons and text fields in the control panel frame directs

the scrolling of the document. I’ve selected an arbitrary, large GIF image to use in

the example. To see results of some horizontal scrolling values, you may need to

shrink the width of the browser window until a horizontal scrollbar appears in the

top frame. Figure 2-9 shows the results in a shrunken window with modest horizon-

tal and vertical scroll values entered into the bottom text boxes. If you substitute

scrollTo() for the scroll() methods in Listing 16-33, the results will be the

same, but you will need version browsers at a minimum to run it.

Listing 16-31: A Frameset for the scroll() Demonstration

<HTML>
<HEAD>
<TITLE>window.scroll() Method</TITLE>
</HEAD>

<FRAMESET ROWS=”50%,50%”>
<FRAME SRC=”lst16-32.htm” NAME=”display”>
<FRAME SRC=”lst16-33.htm” NAME=”control”>

</FRAMESET>
</HTML>

Listing 16-32: The Image to Be Scrolled

<HTML>
<HEAD>
<TITLE>Arch</TITLE>
</HEAD>

Continued

windowObject.scroll()

4855-7 ch02.F 6/26/01 8:35 AM Page 169

170 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-32 (continued)

<BODY>
<H1>A Picture is Worth...</H1>
<HR>
<CENTER>
<TABLE BORDER=3>
<CAPTION ALIGN=bottom>A Splendid Arch</CAPTION>
<TD>

</TD></TABLE></CENTER>
</BODY>
</HTML>

Listing 16-33: Controls to Adjust Scrolling of the Upper Frame

<HTML>
<HEAD>
<TITLE>Scroll Controller</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.1”>
function scroll(x,y) {

parent.frames[0].scroll(x,y)
}
function customScroll(form) {

parent.frames[0].scroll(parseInt(form.x.value),parseInt(form.y.value))
}
</SCRIPT>
</HEAD>
<BODY>
<H2>Scroll Controller</H2>
<HR>
<FORM NAME=”fixed”>
Click on a scroll coordinate for the upper frame:<P>
<INPUT TYPE=”button” VALUE=”0,0” onClick=”scroll(0,0)”>
<INPUT TYPE=”button” VALUE=”0,100” onClick=”scroll(0,100)”>
<INPUT TYPE=”button” VALUE=”100,0” onClick=”scroll(100,0)”>
<P>
<INPUT TYPE=”button” VALUE=”-100,100” onClick=”scroll(-100,100)”>
<INPUT TYPE=”button” VALUE=”20,200” onClick=”scroll(20,200)”>
<INPUT TYPE=”button” VALUE=”1000,3000” onClick=”scroll(1000,3000)”>
</FORM>
<HR>
<FORM NAME=”custom”>
Enter a Horizontal
<INPUT TYPE=”text” NAME=”x” VALUE=”0” SIZE=4>
and Vertical
<INPUT TYPE=”text” NAME=”y” VALUE=”0” SIZE=4>
value. Then

windowObject.scroll()

4855-7 ch02.F 6/26/01 8:35 AM Page 170

171Chapter 2 ✦ Window and Frame Objects (Chapter 16)

<INPUT TYPE=”button” VALUE=”click to scroll” onClick=”customScroll(this.form)”>
</FORM>
</BODY>
</HTML>

Figure 2-9: Scripts control the scrolling of the top frame

Notice that in the customScroll() function, JavaScript must convert the string

values from the two text boxes to integers (with the parseInt() method) for the

scroll() method to accept them. Nonnumeric data can produce very odd results.

Also be aware that although this example shows how to adjust the scroll values in

another frame, you can set such values in the same frame or window as the script,

as well as in subwindows, provided that you use the correct object references to

the window.

scrollBy(deltaX,deltaY)
scrollTo(x,y)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

windowObject.scrollBy()

4855-7 ch02.F 6/26/01 8:35 AM Page 171

172 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example
To work with the scrollTo() method, you can use Listings 16-31 through 16-33

(the window.scroll() method) but substitute window.scrollTo() for window.
scroll(). The results should be the same. For scrollBy(), the example starts with

the frameset in Listing 16-34. It loads the same content document as the window.
scroll() example (Listing 16-32), but the control panel (Listing 16-35) provides

input to experiment with the scrollBy() method.

Listing 16-34: Frameset for ScrollBy Controller

<HTML>
<HEAD>
<TITLE>window.scrollBy() Method</TITLE>
</HEAD>

<FRAMESET ROWS=”50%,50%”>
<FRAME SRC=”lst16-32.htm” NAME=”display”>
<FRAME SRC=”lst16-35.htm” NAME=”control”>

</FRAMESET>
</HTML>

Notice in Listing 16-35 that all references to window properties and methods are

directed to the display frame. String values retrieved from text fields are con-

verted to number with the parseInt() global function.

Listing 16-35: ScrollBy Controller

<HTML>
<HEAD>
<TITLE>ScrollBy Controller</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.2”>
function page(direction) {

var pixFrame = parent.display
var deltaY = (pixFrame.innerHeight) ? pixFrame.innerHeight :

pixFrame.document.body.scrollHeight
if (direction == “up”) {

deltaY = -deltaY
}
parent.display.scrollBy(0, deltaY)

}
function customScroll(form) {

parent.display.scrollBy(parseInt(form.x.value), parseInt(form.y.value))
}
</SCRIPT>
</HEAD>
<BODY>
ScrollBy Controller
<FORM NAME=”custom”>
Enter an Horizontal increment

windowObject.scrollBy()

4855-7 ch02.F 6/26/01 8:35 AM Page 172

173Chapter 2 ✦ Window and Frame Objects (Chapter 16)

<INPUT TYPE=”text” NAME=”x” VALUE=”0” SIZE=4”>
and Vertical
<INPUT TYPE=”text” NAME=”y” VALUE=”0” SIZE=4”>
value.
Then
<INPUT TYPE=”button” VALUE=”click to scrollBy()”
onClick=”customScroll(this.form)”>
<HR>
<INPUT TYPE=”button” VALUE=”PageDown” onClick=”page(‘down’)”>
<INPUT TYPE=”button” VALUE=”PageUp” onClick=”page(‘up’)”>

</FORM>
</BODY>
</HTML>

setCursor(“cursorType”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) in NN6 to experiment with

setting the cursor. After clicking the top text box in preparation for typing, roll the

cursor to a location atop an empty spot on the page. Then enter the following state-

ments one at a time into the top text box and press Enter/Return:

setCursor(“wait”)
setCursor(“spinning”
setCursor(“move”)

After evaluating each statement, roll the cursor around the page, and notice

where the cursor reverts to its normal appearance.

setInterval(“expr”, msecDelay [, language])
setInterval(funcRef, msecDelay [, funcarg1,
..., funcargn])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Example
The demonstration of the setInterval() method entails a two-framed environ-

ment. The framesetting document is shown in Listing 16-36.

windowObject.setInterval()

4855-7 ch02.F 6/26/01 8:35 AM Page 173

174 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-36: setInterval() Demonstration Frameset

<HTML>
<HEAD>
<TITLE>setInterval() Method</TITLE>
</HEAD>

<FRAMESET ROWS=”50%,50%”>
<FRAME SRC=”lst16-37.htm” NAME=”control”>
<FRAME SRC=”bofright.htm” NAME=”display”>

</FRAMESET>
</HTML>

In the top frame is a control panel with several buttons that control the automatic

scrolling of the Bill of Rights text document in the bottom frame. Listing 16-37 shows

the control panel document. Many functions here control the interval, scrolling jump

size, and direction, and they demonstrate several aspects of applying setInterval().

Notice that in the beginning the script establishes a number of global variables.

Three of them are parameters that control the scrolling; the last one is for the ID

value returned by the setInterval() method. The script needs that value to be a

global value so that a separate function can halt the scrolling with the

clearInterval() method.

All scrolling is performed by the autoScroll() function. For the sake of simplic-

ity, all controlling parameters are global variables. In this application, placement of

those values in global variables helps the page restart autoscrolling with the same

parameters as it had when it last ran.

Listing 16-37: setInterval() Control Panel

<HTML>
<HEAD>
<TITLE>ScrollBy Controller</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.2”>
var scrollSpeed = 500
var scrollJump = 1
var scrollDirection = “down”
var intervalID

function autoScroll() {
if (scrollDirection == “down”) {

scrollJump = Math.abs(scrollJump)
} else if (scrollDirection == “up” && scrollJump > 0) {

scrollJump = -scrollJump
}
parent.display.scrollBy(0, scrollJump)
if (parent.display.pageYOffset <= 0) {

windowObject.setInterval()

4855-7 ch02.F 6/26/01 8:35 AM Page 174

175Chapter 2 ✦ Window and Frame Objects (Chapter 16)

clearInterval(intervalID)
}

}

function reduceInterval() {
stopScroll()
scrollSpeed -= 200
startScroll()

}
function increaseInterval() {

stopScroll()
scrollSpeed += 200
startScroll()

}
function reduceJump() {

scrollJump -= 2
}
function increaseJump() {

scrollJump += 2
}
function swapDirection() {

scrollDirection = (scrollDirection == “down”) ? “up” : “down”
}
function startScroll() {

parent.display.scrollBy(0, scrollJump)
if (intervalID) {

clearInterval(intervalID)
}
intervalID = setInterval(“autoScroll()”,scrollSpeed)

}
function stopScroll() {

clearInterval(intervalID)
}
</SCRIPT>
</HEAD>
<BODY onLoad=”startScroll()”>
AutoScroll by setInterval() Controller
<FORM NAME=”custom”>
<INPUT TYPE=”button” VALUE=”Start Scrolling” onClick=”startScroll()”>
<INPUT TYPE=”button” VALUE=”Stop Scrolling” onClick=”stopScroll()”><P>
<INPUT TYPE=”button” VALUE=”Shorter Time Interval” onClick=”reduceInterval()”>
<INPUT TYPE=”button” VALUE=”Longer Time Interval”
onClick=”increaseInterval()”><P>
<INPUT TYPE=”button” VALUE=”Bigger Scroll Jumps” onClick=”increaseJump()”>
<INPUT TYPE=”button” VALUE=”Smaller Scroll Jumps” onClick=”reduceJump()”><P>
<INPUT TYPE=”button” VALUE=”Change Direction” onClick=”swapDirection()”>

</FORM>
</BODY>
</HTML>

windowObject.setInterval()

4855-7 ch02.F 6/26/01 8:35 AM Page 175

176 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

The setInterval() method is invoked inside the startScroll() function.

This function initially “burps” the page by one scrollJump interval so that the test

in autoScroll() for the page being scrolled all the way to the top doesn’t halt a

page from scrolling before it gets started. Notice, too, that the function checks for

the existence of an interval ID. If one is there, it is cleared before the new one is set.

This is crucial within the design of the example page, because repeated clicking of

the Start Scrolling button triggers multiple interval timers inside the browser. Only

the most recent one’s ID would be stored in intervalID, allowing no way to clear

the older ones. But this little side trip makes sure that only one interval timer is

running. One of the global variables, scrollSpeed, is used to fill the delay parame-

ter for setInterval(). To change this value on the fly, the script must stop the

current interval process, change the scrollSpeed value, and start a new process.

The intensely repetitive nature of this application is nicely handled by the

setInterval() method.

setTimeout(“expr”, msecDelay [, language])
setTimeout(functionRef, msecDelay [,
funcarg1, ..., funcargn])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
When you load the HTML page in Listing 16-38, it triggers the updateTime()

function, which displays the time (in hh:mm am/pm format) in the statusbar.

Instead of showing the seconds incrementing one by one (which may be distracting

to someone trying to read the page), this function alternates the last character of

the display between an asterisk and nothing, like a visual “heartbeat.”

Listing 16-38: Display the Current Time

<HTML>
<HEAD>
<TITLE>Status Bar Clock</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
<!--
var flasher = false
// calculate current time, determine flasher state,
// and insert time into status bar every second
function updateTime() {

var now = new Date()
var theHour = now.getHours()
var theMin = now.getMinutes()
var theTime = “” + ((theHour > 12) ? theHour - 12 : theHour)
theTime += ((theMin < 10) ? “:0” : “:”) + theMin

windowObject.setTimeout()

4855-7 ch02.F 6/26/01 8:35 AM Page 176

177Chapter 2 ✦ Window and Frame Objects (Chapter 16)

theTime += (theHour >= 12) ? “ pm” : “ am”
theTime += ((flasher) ? “ “ : “*”)
flasher = !flasher
window.status = theTime
// recursively call this function every second to keep timer going
timerID = setTimeout(“updateTime()”,1000)

}
//-->
</SCRIPT>
</HEAD>

<BODY onLoad=”updateTime()”>
</BODY>
</HTML>

In this function, the setTimeout() method works in the following way: Once the

current time (including the flasher status) appears in the statusbar, the function

waits approximately one second (1,000 milliseconds) before calling the same func-

tion again. You don’t have to clear the timerID value in this application because

JavaScript does it for you every time the 1,000 milliseconds elapse.

A logical question to ask is whether this application should be using

setInterval() instead of setTimeout(). This is a case in which either one does

the job. To use setInterval() here would require that the interval process start

outside of the updateTime() function, because you need only one process running

that repeatedly calls updateTime(). It would be a cleaner implementation in that

regard, instead of the tons of timeout processes spawned by Listing 16-38. On the

other hand, the application would not run in any browsers before NN4 or IE4, as

Listing 16-38 does.

To demonstrate passing parameters, you can modify the updateTime() function

to add the number of times it gets invoked to the display in the statusbar. For that

to work, the function must have a parameter variable so that it can catch a new

value each time it is invoked by setTimeout()’s expression. For all browsers, the

function would be modified as follows (unchanged lines are represented by the

ellipsis):

function updateTime(i) {
...
window.status = theTime + “ (“ + i + “)”
// pass updated counter value with next call to this function
timerID = setTimeout(“updateTime(“ + i+1 + “)”,1000)

}

If you were running this exclusively in NN4+, you could use its more convenient way

of passing parameters to the function:

timerID = setTimeout(updateTime,1000, i+1)

In either case, the onLoad event handler would also have to be modified to get the

ball rolling with an initial parameter:

onLoad = “updateTime(0)”

windowObject.setTimeout()

4855-7 ch02.F 6/26/01 8:35 AM Page 177

178 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

One warning about setTimeout() functions that dive into themselves as fre-
quently as this one does: Each call eats up a bit more memory for the browser
application in Navigator 2. If you let this clock run for a while, some browsers may
encounter memory difficulties, depending on which operating system they’re
using. But considering the amount of time the typical user spends on Web pages
(even if only 10 or 15 minutes), the function shouldn’t present a problem. And any
reloading invoked by the user (such as by resizing the window in Navigator 2)
frees up memory once again.

showModalDialog(“URL”[, arguments]
[, features])
showModelessDialog(“URL”[, arguments]
[, features])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility (�) � �

Example
To demonstrate the two styles of dialog boxes, I have implemented the same

functionality (setting some session visual preferences) for both modal and mode-

less dialog boxes. This tactic shows you how to pass data back and forth between

the main page and both styles of dialog box windows.

The first example demonstrates how to use a modal dialog box. In the process,

data is passed into the dialog box window and values are returned. Listing 16-39 is

the HTML and scripting for the main page. A button’s onClick event handler invokes

a function that opens the modal dialog box. The dialog box’s document (Listing

16-40) contains several form elements for entering a user name and selecting a few

color styles for the main page. Data from the dialog is fashioned into an array to be

sent back to the main window. That array is initially assigned to a local variable,

prefs, as the dialog box closes. If the user cancels the dialog box, the returned value

is an empty string, so nothing more in getPrefsData() executes. But when the user

clicks OK, the array comes back. Each of the array items is read and assigned to its

respective form value or style property. These values are also preserved in the global

currPrefs array. This allows the settings to be sent to the modal dialog box (as the

second parameter to showModalDialog()) the next time the dialog box is opened.

Listing 16-39: Main Page for showModalDialog()

<HTML>
<HEAD>
<TITLE>window.setModalDialog() Method</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var currPrefs = new Array()

Caution

windowObject.showModalDialog()

4855-7 ch02.F 6/26/01 8:35 AM Page 178

179Chapter 2 ✦ Window and Frame Objects (Chapter 16)

function getPrefsData() {
var prefs = showModalDialog(“lst16-40.htm”, currPrefs,

“dialogWidth:400px; dialogHeight:300px”)
if (prefs) {

if (prefs[“name”]) {
document.all.firstName.innerText = prefs[“name”]
currPrefs[“name”] = prefs[“name”]

}
if (prefs[“bgColor”]) {

document.body.style.backgroundColor = prefs[“bgColor”]
currPrefs[“bgColor”] = prefs[“bgColor”]

}
if (prefs[“textColor”]) {

document.body.style.color = prefs[“textColor”]
currPrefs[“textColor”] = prefs[“textColor”]

}
if (prefs[“h1Size”]) {

document.all.welcomeHeader.style.fontSize = prefs[“h1Size”]
currPrefs[“h1Size”] = prefs[“h1Size”]

}
}

}
function init() {

document.all.firstName.innerText = “friend”
}
</SCRIPT>

</HEAD>
<BODY BGCOLOR=”#eeeeee” STYLE=”margin:20px” onLoad=”init()”>
<H1>window.setModalDialog() Method</H1>
<HR>
<H2 ID=”welcomeHeader”>Welcome, !</H2>
<HR>
<P>Use this button to set style preferences for this page:
<BUTTON ID=”prefsButton” onClick=”getPrefsData()”>
Preferences
</BUTTON>
</BODY>
</HTML>

The dialog box’s document, shown in Listing 16-40, is responsible for reading the

incoming data (and setting the form elements accordingly) and assembling form

data for return to the main window’s script. Notice when you load the example that

the TITLE element of the dialog box’s document appears in the dialog box window’s

title bar.

When the page loads into the dialog box window, the init() function examines

the window.dialogArguments property. If it has any data, the data is used to pre-

set the form elements to mirror the current settings of the main page. A utility func-

tion, setSelected(), pre-selects the option of a SELECT element to match the

current settings.

windowObject.showModalDialog()

4855-7 ch02.F 6/26/01 8:35 AM Page 179

180 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Buttons at the bottom of the page are explicitly positioned to be at the lower-

right corner of the window. Each button invokes a function to do what is needed

to close the dialog box. In the case of the OK button, the handleOK() function

sets the window.returnValue property to the data that come back from the

getFormData() function. This latter function reads the form element values and

packages them in an array using the form elements’ names as array indices. This

helps keep everything straight back in the main window’s script, which uses the

index names, and is therefore not dependent upon the precise sequence of the form

elements in the dialog box window.

Listing 16-40: Document for the Modal Dialog

<HTML>
<HEAD>
<TITLE>User Preferences</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// Close the dialog
function closeme() {

window.close()
}

// Handle click of OK button
function handleOK() {

window.returnValue = getFormData()
closeme()

}

// Handle click of Cancel button
function handleCancel() {

window.returnValue = “”
closeme()

}
// Generic function converts form element name-value pairs
// into an array
function getFormData() {

var form = document.prefs
var returnedData = new Array()
// Harvest values for each type of form element
for (var i = 0; i < form.elements.length; i++) {

if (form.elements[i].type == “text”) {
returnedData[form.elements[i].name] = form.elements[i].value

} else if (form.elements[i].type.indexOf(“select”) != -1) {
returnedData[form.elements[i].name] =
form.elements[i].options[form.elements[i].selectedIndex].value

} else if (form.elements[i].type == “radio”) {
returnedData[form.elements[i].name] = form.elements[i].value

} else if (form.elements[i].type == “checkbox”) {
returnedData[form.elements[i].name] = form.elements[i].value

} else continue
}
return returnedData

}

windowObject.showModalDialog()

4855-7 ch02.F 6/26/01 8:35 AM Page 180

181Chapter 2 ✦ Window and Frame Objects (Chapter 16)

// Initialize by setting form elements from passed data
function init() {

if (window.dialogArguments) {
var args = window.dialogArguments
var form = document.prefs
if (args[“name”]) {

form.name.value = args[“name”]
}
if (args[“bgColor”]) {

setSelected(form.bgColor, args[“bgColor”])
}
if (args[“textColor”]) {

setSelected(form.textColor, args[“textColor”])
}
if (args[“h1Size”]) {

setSelected(form.h1Size, args[“h1Size”])
}

}
}
// Utility function to set a SELECT element to one value
function setSelected(select, value) {

for (var i = 0; i < select.options.length; i++) {
if (select.options[i].value == value) {

select.selectedIndex = i
break

}
}
return

}
// Utility function to accept a press of the
// Enter key in the text field as a click of OK
function checkEnter() {

if (window.event.keyCode == 13) {
handleOK()

}
}
</SCRIPT>
</HEAD>

<BODY BGCOLOR=”#eeeeee” onLoad=”init()”>
<H2>Web Site Preferences</H2>
<HR>
<TABLE BORDER=0 CELLSPACING=2>
<FORM NAME=”prefs” onSubmit=”return false”>
<TR>
<TD>Enter your first name:<INPUT NAME=”name” TYPE=”text” VALUE=”” SIZE=20
onKeyDown=”checkEnter()”>
</TR>

<TR>
<TD>Select a background color:
<SELECT NAME=”bgColor”>

<OPTION VALUE=”beige”>Beige
<OPTION VALUE=”antiquewhite”>Antique White

Continued

windowObject.showModalDialog()

4855-7 ch02.F 6/26/01 8:35 AM Page 181

182 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-40 (continued)

<OPTION VALUE=”goldenrod”>Goldenrod
<OPTION VALUE=”lime”>Lime
<OPTION VALUE=”powderblue”>Powder Blue
<OPTION VALUE=”slategray”>Slate Gray

</SELECT>
</TR>

<TR>
<TD>Select a text color:
<SELECT NAME=”textColor”>

<OPTION VALUE=”black”>Black
<OPTION VALUE=”white”>White
<OPTION VALUE=”navy”>Navy Blue
<OPTION VALUE=”darkorange”>Dark Orange
<OPTION VALUE=”seagreen”>Sea Green
<OPTION VALUE=”teal”>Teal

</SELECT>
</TR>

<TR>
<TD>Select “Welcome” heading font point size:
<SELECT NAME=”h1Size”>

<OPTION VALUE=”12”>12
<OPTION VALUE=”14”>14
<OPTION VALUE=”18”>18
<OPTION VALUE=”24”>24
<OPTION VALUE=”32”>32
<OPTION VALUE=”48”>48

</SELECT>
</TR>
</TABLE>
</FORM>
<DIV STYLE=”position:absolute; left:200px; top:220px”>
<BUTTON STYLE=”width:80px” onClick=”handleOK()”>OK</BUTTON>
<BUTTON STYLE=”width:80px” onClick=”handleCancel()”>Cancel</BUTTON>
</DIV>
</BODY>
</HTML>

One last convenience feature of the dialog box window is the onKeyPress event

handler in the text box. The function it invokes looks for the Enter key. If that key is

pressed while the box has focus, the same handleOK() function is invoked, as if the

user had clicked the OK button. This feature makes the dialog box behave as if the

OK button is an automatic default, just as “real” dialog boxes.

You should observe several important structural changes that were made to turn

the modal approach into a modeless one. Listing 16-41 shows the version of the

main window modified for use with a modeless dialog box. Another global variable,

prefsDlog, is initialized to eventually store the reference to the modeless window

windowObject.showModalDialog()

4855-7 ch02.F 6/26/01 8:35 AM Page 182

183Chapter 2 ✦ Window and Frame Objects (Chapter 16)

returned by the showModelessWindow() method. The variable gets used to invoke

the init() function inside the modeless dialog box, but also as conditions in an if
construction surrounding the generation of the dialog box. The reason this is

needed is to prevent multiple instances of the dialog box being created (the button

is still alive while the modeless window is showing). The dialog box won’t be created

again as long as there is a value in prefsDlog, and the dialog box window has not

been closed (picking up the window.closed property of the dialog box window).

The showModelessDialog() method’s second parameter is a reference to the

function in the main window that updates the main document. As you see in a

moment, that function is invoked from the dialog box when the user clicks the OK

or Apply buttons.

Listing 16-41: Main Page for showModelessDialog()

<HTML>
<HEAD>
<TITLE>window.setModelessDialog() Method</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var currPrefs = new Array()
var prefsDlog
function getPrefsData() {

if (!prefsDlog || prefsDlog.closed) {
prefsDlog = showModelessDialog(“lst16-42.htm”, setPrefs,
“dialogWidth:400px; dialogHeight:300px”)
prefsDlog.init(currPrefs)

}
}

function setPrefs(prefs) {
if (prefs[“bgColor”]) {

document.body.style.backgroundColor = prefs[“bgColor”]
currPrefs[“bgColor”] = prefs[“bgColor”]

}
if (prefs[“textColor”]) {

document.body.style.color = prefs[“textColor”]
currPrefs[“textColor”] = prefs[“textColor”]

}
if (prefs[“h1Size”]) {

document.all.welcomeHeader.style.fontSize = prefs[“h1Size”]
currPrefs[“h1Size”] = prefs[“h1Size”]

}
if (prefs[“name”]) {

document.all.firstName.innerText = prefs[“name”]
currPrefs[“name”] = prefs[“name”]

}
}

function init() {
document.all.firstName.innerText = “friend”

}
</SCRIPT>

Continued

windowObject.showModalDialog()

4855-7 ch02.F 6/26/01 8:35 AM Page 183

184 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-41 (continued)

</HEAD>
<BODY BGCOLOR=”#eeeeee” STYLE=”margin:20px” onLoad=”init()”>
<H1>window.setModelessDialog() Method</H1>
<HR>
<H2 ID=”welcomeHeader”>Welcome, !</H2>
<HR>
<P>Use this button to set style preferences for this page:
<BUTTON ID=”prefsButton” onClick=”getPrefsData()”>
Preferences
</BUTTON>
</BODY>
</HTML>

Changes to the dialog box window document for a modeless version (Listing 16-42)

are rather limited. A new button is added to the bottom of the screen for an Apply but-

ton. As in many dialog box windows you see in Microsoft products, the Apply button

lets current settings in dialog boxes be applied to the current document but without

closing the dialog box. This approach makes experimenting with settings easier.

The Apply button invokes a handleApply() function, which works the same as

handleOK(), except the dialog box is not closed. But these two functions communi-

cate back to the main window differently than a modal dialog box. The main window’s

processing function is passed as the second parameter of showModelessDialog()
and is available as the window.dialogArguments property in the dialog box win-

dow’s script. That function reference is assigned to a local variable in both functions,

and the remote function is invoked, passing the results of the getFormData() func-

tion as parameter values back to the main window.

Listing 16-42: Document for the Modeless Dialog Box

<HTML>
<HEAD>
<TITLE>User Preferences</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// Close the dialog
function closeme() {

window.close()
}

// Handle click of OK button
function handleOK() {

var returnFunc = window.dialogArguments
returnFunc(getFormData())
closeme()

}

windowObject.showModalDialog()

4855-7 ch02.F 6/26/01 8:35 AM Page 184

185Chapter 2 ✦ Window and Frame Objects (Chapter 16)

// Handle click of Apply button
function handleApply() {

var returnFunc = window.dialogArguments
returnFunc(getFormData())

}

// Handle click of Cancel button
function handleCancel() {

window.returnValue = “”
closeme()

}
// Generic function converts form element name-value pairs
// into an array
function getFormData() {

var form = document.prefs
var returnedData = new Array()
// Harvest values for each type of form element
for (var i = 0; i < form.elements.length; i++) {

if (form.elements[i].type == “text”) {
returnedData[form.elements[i].name] = form.elements[i].value

} else if (form.elements[i].type.indexOf(“select”) != -1) {
returnedData[form.elements[i].name] =
form.elements[i].options[form.elements[i].selectedIndex].value

} else if (form.elements[i].type == “radio”) {
returnedData[form.elements[i].name] = form.elements[i].value

} else if (form.elements[i].type == “checkbox”) {
returnedData[form.elements[i].name] = form.elements[i].value

} else continue
}
return returnedData

}
// Initialize by setting form elements from passed data
function init(currPrefs) {

if (currPrefs) {
var form = document.prefs
if (currPrefs[“name”]) {

form.name.value = currPrefs[“name”]
}
if (currPrefs[“bgColor”]) {

setSelected(form.bgColor, currPrefs[“bgColor”])
}
if (currPrefs[“textColor”]) {

setSelected(form.textColor, currPrefs[“textColor”])
}
if (currPrefs[“h1Size”]) {

setSelected(form.h1Size, currPrefs[“h1Size”])
}

}
}
// Utility function to set a SELECT element to one value
function setSelected(select, value) {

for (var i = 0; i < select.options.length; i++) {
if (select.options[i].value == value) {

Continued

windowObject.showModalDialog()

4855-7 ch02.F 6/26/01 8:35 AM Page 185

186 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-42 (continued)

select.selectedIndex = i
break

}
}
return

}
// Utility function to accept a press of the
// Enter key in the text field as a click of OK
function checkEnter() {

if (window.event.keyCode == 13) {
handleOK()

}
}
</SCRIPT>
</HEAD>

<BODY BGCOLOR=”#eeeeee” onLoad=”init()”>
<H2>Web Site Preferences</H2>
<HR>
<TABLE BORDER=0 CELLSPACING=2>
<FORM NAME=”prefs” onSubmit=”return false”>
<TR>
<TD>Enter your first name:<INPUT NAME=”name” TYPE=”text” VALUE=”” SIZE=20
onKeyDown=”checkEnter()”>
</TR>

<TR>
<TD>Select a background color:
<SELECT NAME=”bgColor”>

<OPTION VALUE=”beige”>Beige
<OPTION VALUE=”antiquewhite”>Antique White
<OPTION VALUE=”goldenrod”>Goldenrod
<OPTION VALUE=”lime”>Lime
<OPTION VALUE=”powderblue”>Powder Blue
<OPTION VALUE=”slategray”>Slate Gray

</SELECT>
</TR>

<TR>
<TD>Select a text color:
<SELECT NAME=”textColor”>

<OPTION VALUE=”black”>Black
<OPTION VALUE=”white”>White
<OPTION VALUE=”navy”>Navy Blue
<OPTION VALUE=”darkorange”>Dark Orange
<OPTION VALUE=”seagreen”>Sea Green
<OPTION VALUE=”teal”>Teal

</SELECT>
</TR>

windowObject.showModalDialog()

4855-7 ch02.F 6/26/01 8:35 AM Page 186

187Chapter 2 ✦ Window and Frame Objects (Chapter 16)

<TR>
<TD>Select “Welcome” heading font point size:
<SELECT NAME=”h1Size”>

<OPTION VALUE=”12”>12
<OPTION VALUE=”14”>14
<OPTION VALUE=”18”>18
<OPTION VALUE=”24”>24
<OPTION VALUE=”32”>32
<OPTION VALUE=”48”>48

</SELECT>
</TR>
</TABLE>
</FORM>
<DIV STYLE=”position:absolute; left:120px; top:220px”>
<BUTTON STYLE=”width:80px” onClick=”handleOK()”>OK</BUTTON>
<BUTTON STYLE=”width:80px” onClick=”handleCancel()”>Cancel</BUTTON>
<BUTTON STYLE=”width:80px” onClick=”handleApply()”>Apply</BUTTON>
</DIV>
</BODY>
</HTML>

The biggest design challenge you probably face with respect to these windows is

deciding between a modal and modeless dialog box style. Some designers insist

that modality has no place in a graphical user interface; others say that there are

times when you need to focus the user on a very specific task before any further

processing can take place. That’s where a modal dialog box makes perfect sense.

sizeToContent()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) in NN6 to try the

sizeToContent() method. Assuming that you are running The Evaluator from the

Chap13 directory on the CD-ROM (or the directory copied as-is to your hard disk),

you can open a subwindow with one of the other files in the directory, and then size

the subwindow. Enter the following statements into the top text box:

a = window.open(“lst13-02.htm”,””)
a.sizeToContent()

The resized subwindow is at the minimum recommended width for a browser win-

dow, and at a height tall enough to display the little bit of content in the document.

windowObject.sizeToContent()

4855-7 ch02.F 6/26/01 8:35 AM Page 187

188 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Event handlers
onAfterPrint
onBeforePrint

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
The following script fragment assumes that the page includes a DIV element

whose style sheet includes a setting of display:none as the page loads.

Somewhere in the Head, the print-related event handlers are set as properties:

function showPrintCopyright() {
document.all.printCopyright.style.display = “block”

}
function hidePrintCopyright() {

document.all.printCopyright.style.display = “none”
}
window.onbeforeprint = showPrintCopyright
window.onafterprint = hidePrintCopyright

onBeforeUnload

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
The simple page in Listing 16-43 shows you how to give the user a chance to stay

on the page.

Listing 16-43: Using the onBeforeUnload Event Handler

<HTML>
<HEAD>
<TITLE>onBeforeUnload Event Handler</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function verifyClose() {

event.returnValue = “We really like you and hope you will stay longer.”
}

windowObject.onBeforeUnload

4855-7 ch02.F 6/26/01 8:35 AM Page 188

189Chapter 2 ✦ Window and Frame Objects (Chapter 16)

window.onbeforeunload = verifyClose
</SCRIPT>

</HEAD>
<BODY>
<H1>onBeforeUnload Event Handler</H1>
<HR>
<P>Use this button to navigate to the previous page:
<BUTTON ID=”go” onClick=”history.back()”>
Go Back
</BUTTON>
</BODY>
</HTML>

onHelp

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
The following script fragment can be embedded in the IE5-only modeless dialog

box code in Listing 16-44 to provide context-sensitive help within the dialog box.

Help messages for only two of the form elements are shown here, but in a real appli-

cation you add messages for the rest.

function showHelp() {
switch (event.srcElement.name) {

case “bgColor” :
alert(“Choose a color for the main window\’s background.”)
break

case “name” :
alert(“Enter your first name for a friendly greeting.”)
break

default :
alert(“Make preference settings for the main page styles.”)

}
event.returnValue = false

}
window.onhelp = showHelp

Because this page’s help focuses on form elements, the switch construction

cases are based on the name properties of the form elements. For other kinds of

pages, the id properties may be more appropriate.

windowObject.onHelp

4855-7 ch02.F 6/26/01 8:35 AM Page 189

190 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

FRAME Element Object
Properties

borderColor

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Although you may experience problems (especially in IE5) changing the color of

a single frame border, the W3C DOM syntax would look like the following if the

script were inside the framesetting document:

document.getElementById(“contentsFrame”).borderColor = “red”

The IE-only version would be:

document.all[“contentsFrame”].borderColor = “red”

These examples assume the frame name arrives to a script function as a string. If

the script is executing in one of the frames of the frameset, add a reference to parent
in the preceding statements.

contentDocument

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
A framesetting document script might be using the ID of a FRAME element to

read or adjust one of the element properties, and then need to perform some action

on the content of the page through its document object. You can get the reference

to the document object via a statement, such as the following:

var doc = document.getElementById(“FRAME3”).contentDocument

Then your script can, for example, dive into a form in the document:

var val = doc.mainForm.entry.value

FRAME.contentDocument

4855-7 ch02.F 6/26/01 8:35 AM Page 190

191Chapter 2 ✦ Window and Frame Objects (Chapter 16)

Document

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
While you have far easier ways to reach the document object of another frame

(parent.otherFrameName.document), the following statement takes the long way

to get there to retrieve the number of forms in the document of another frame:

var formCount = parent.document.all.contentsFrame.Document.forms.length

Using the Document property only truly makes sense when a function is passed a

FRAME or IFRAME element object reference as a parameter, and the script must,

among other things more related to those objects, access the document contained

by those elements.

frameBorder

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
The default value for the frameBorder property is yes. You can use this setting

to create a toggle script (which, unfortunately, does not change the appearance in

IE). The W3C-compatible version looks like the following:

function toggleFrameScroll(frameID) {
var theFrame = document.getElementById(frameID)
if (theFrame.frameBorder == “yes”) {

theFrame.frameBorder = “no”
} else {

theFrame.frameBorder = “yes”
}

}

height
width

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

FRAME.height

4855-7 ch02.F 6/26/01 8:35 AM Page 191

192 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example
The following fragment assumes a frameset defined with two frames set up as

two columns within the frameset. The statements here live in the framesetting doc-

ument. They retrieve the current width of the left frame and increase the width of

that frame by ten percent. Syntax shown here is for the W3C DOM, but can be easily

adapted to IE-only terminology.

var frameWidth = document.getElementById(“leftFrame”).width
document.getElementById(“mainFrameset”).cols = (Math.round(frameWidth * 1.1)) +
“,*”

Notice how the numeric value of the existing frame width is first increased by ten

percent and then concatenated to the rest of the string property assigned to the

frameset’s cols property. The asterisk after the comma means that the browser

should figure out the remaining width and assign it to the right-hand frame.

noResize

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
The following statement turns off the ability for a frame to be resized:

parent.document.getElementById(“myFrame1”).noResize = true

Because of the negative nature of the property name, it may be difficult to keep

the logic straight (setting noResize to true means that resizability is turned off).

Keep a watchful eye on your Boolean values.

scrolling

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Listing 16-45 produces a frameset consisting of eight frames. The content for the

frames is generated by a script within the frameset (via the fillFrame() function).

Event handlers in the Body of each frame invoke the toggleFrameScroll() func-

tion. Both ways of referencing the FRAME element object are shown, with the IE-

only version commented out.

FRAME.scrolling

4855-7 ch02.F 6/26/01 8:35 AM Page 192

193Chapter 2 ✦ Window and Frame Objects (Chapter 16)

In the toggleFrameScroll() function, the if condition checks whether the

property is set to something other than no. This allows the condition to evaluate to

true if the property is set to either auto (the first time) or yes (as set by the func-

tion). Note that the scrollbars don’t disappear from the frames in IE5.5 or NN6.

Listing 16-45: Controlling the FRAME.scrolling Property

<HTML>
<HEAD>
<TITLE>frame.scrolling Property</TITLE>
</HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
function toggleFrameScroll(frameID) {

// IE5 & NN6 version
var theFrame = document.getElementById(frameID)
// IE4+ version
// var theFrame = document.all[frameID]

if (theFrame.scrolling != “no”) {
theFrame.scrolling = “no”

} else {
theFrame.scrolling = “yes”

}
}
// generate content for each frame
function fillFrame(frameID) {

var page = “<HTML><BODY onClick=’parent.toggleFrameScroll(\”” +
frameID + “\”)’>”

page += “<P>This frame has the ID of:</P><P>” + frameID + “.</P>”
page += “</BODY></HTML>”
return page

}
</SCRIPT>
<FRAMESET ID=”outerFrameset” COLS=”50%,50%”>

<FRAMESET ID=”innerFrameset1” ROWS=”25%,25%,25%,25%”>
<FRAME ID=”myFrame1” SRC=”javascript:parent.fillFrame(‘myFrame1’)”>
<FRAME ID=”myFrame2” SRC=”javascript:parent.fillFrame(‘myFrame2’)”>
<FRAME ID=”myFrame3” SRC=”javascript:parent.fillFrame(‘myFrame3’)”>
<FRAME ID=”myFrame4” SRC=”javascript:parent.fillFrame(‘myFrame4’)”>

</FRAMESET>
<FRAMESET ID=”innerFrameset2” ROWS=”25%,25%,25%,25%”>

<FRAME ID=”myFrame5” SRC=”javascript:parent.fillFrame(‘myFrame5’)”>
<FRAME ID=”myFrame6” SRC=”javascript:parent.fillFrame(‘myFrame6’)”>
<FRAME ID=”myFrame7” SRC=”javascript:parent.fillFrame(‘myFrame7’)”>
<FRAME ID=”myFrame8” SRC=”javascript:parent.fillFrame(‘myFrame8’)”>

</FRAMESET>
</FRAMESET>
</HTML>

FRAME.scrolling

4855-7 ch02.F 6/26/01 8:35 AM Page 193

194 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

src

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
For best results, use fully formed URLs as value for the src property, as shown

here:

parent.document.getElementById(“mainFrame”).src = “http://www.dannyg.com”

Relative URLs and javascript: pseudo-URLs will also work most of the time.

FRAMESET Element Object
Properties

border

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Even though the property is read/write in IE4+, changing the value does not

change the thickness of the border you see in the browser. If you need to find the

thickness of the border, a script reference from one of the frame’s documents would

look like the following:

var thickness = parent.document.all.outerFrameset.border

borderColor

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
To retrieve the current color setting in a frameset, a script reference from one of

the frame’s documents would look like the following:

var borderColor = parent.document.all.outerFrameset.borderColor

FRAMESET.borderColor

4855-7 ch02.F 6/26/01 8:35 AM Page 194

195Chapter 2 ✦ Window and Frame Objects (Chapter 16)

cols
rows

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Listings 16-46 through 16-48 show the HTML for a frameset and two of the three

documents that go into the frameset. The final document is an HTML version of the

U.S. Bill of Rights, which is serving here as a content frame for the demonstration.

The frameset listing (16-46) shows a three-frame setup. Down the left column is a

table of contents (16-47). The right column is divided into two rows. In the top row

is a simple control (16-48) that hides and shows the table of contents frame. As the

user clicks the hot text of the control (located inside a SPAN element), the onClick
event handler invokes the toggleTOC() function in the frameset. Figure 2-10 shows

the frameset with the menu exposed.

Figure 2-10: Frameset specifications are modified on the fly when you click on the top
control link.

FRAMESET.cols

4855-7 ch02.F 6/26/01 8:35 AM Page 195

196 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Syntax used in this example is W3C-compatible. To modify this for IE-only, you

replace document.getElementById(“outerFrameset”) with document.all.
outerFrameset and elem.firstChild.nodeValue to elem.innerText. You can

also branch within the scripts to accommodate both styles.

Listing 16-46: Frameset and Script for Hiding/Showing a
Frame

<HTML>
<HEAD>
<TITLE>Hide/Show Frame Example</TITLE>
</HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
var origCols
function toggleTOC(elem, frm) {

if (origCols) {
showTOC(elem)

} else {
hideTOC(elem, frm)

}
}
function hideTOC(elem, frm) {

var frameset = document.getElementById(“outerFrameset”)
origCols = frameset.cols
frameset.cols = “0,*”

}
function showTOC(elem) {

if (origCols) {
document.getElementById(“outerFrameset”).cols = origCols
origCols = null

}
}
</SCRIPT>
<FRAMESET ID=”outerFrameset” FRAMEBORDER=”no” COLS=”150,*”>

<FRAME ID=”TOC” NAME=”TOCFrame” SRC=”lst16-47.htm”>
<FRAMESET ID=”innerFrameset1” ROWS=”80,*”>

<FRAME ID=”controls” NAME=”controlsFrame” SRC=”lst16-48.htm”>
<FRAME ID=”content” NAME=”contentFrame” SRC=”bofright.htm”>

</FRAMESET>
</FRAMESET>
</HTML>

When a user clicks the hot spot to hide the frame, the script copies the original

cols property settings to a global variable. The variable is used in showTOC() to

restore the frameset to its original proportions. This allows a designer to modify

the HTML for the frameset without also having to dig into scripts to hard-wire the

restored size.

FRAMESET.cols

4855-7 ch02.F 6/26/01 8:35 AM Page 196

197Chapter 2 ✦ Window and Frame Objects (Chapter 16)

Listing 16-47: Table of Contents Frame Content

<HTML>
<HEAD>
<TITLE>Table of Contents</TITLE>
</HEAD>
<BODY BGCOLOR=”#eeeeee”>
<H3>Table of Contents</H3>
<HR>
<UL STYLE=”font-size:10pt”>
Article I
Article II
Article III
Article IV
Article V
Article VI
Article VII
Article VIII
Article IX
Article X

</BODY>
</HTML>

Listing 16-48: Control Panel Frame

<HTML>
<HEAD>
<TITLE>Control Panel</TITLE>
</HEAD>
<BODY>
<P>
<SPAN ID=”tocToggle”

STYLE=”text-decoration:underline; cursor:hand”
onClick=”parent.toggleTOC(this)”> <<Hide/Show>>

Table of Contents
</P>
</BODY>
</HTML>

frameBorder

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

FRAMESET.frameBorder

4855-7 ch02.F 6/26/01 8:35 AM Page 197

198 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example
The default value for the frameBorder property is yes. You can use this setting

to create a toggle script (which, unfortunately, does not change the appearance in

IE). The IE4+-compatible version looks like the following:

function toggleFrameScroll(framesetID) {
var theFrameset = document.all(framesetID)
if (theFrameset.frameBorder == “yes”) {

theFrameset.frameBorder = “no”
} else {

theFrameset.frameBorder = “yes”
}

}

frameSpacing

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Even though the property is read/write in IE4+, changing the value does not

change the thickness of the frame spacing you see in the browser. If you need to

find the spacing as set by the tag’s attribute, a script reference from one of the

frame’s documents would look like the following:

var spacing = parent.document.all.outerFrameset.frameSpacing

IFRAME Element Object
Properties

align

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
The default setting for an IFRAME alignment is baseline. A script can shift the

IFRAME to be flush with the right edge of the containing element as follows:

document.getElementById(“iframe1”).align = “right”

IFRAME.align

4855-7 ch02.F 6/26/01 8:35 AM Page 198

199Chapter 2 ✦ Window and Frame Objects (Chapter 16)

contentDocument

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
A document script might be using the ID of an IFRAME element to read or adjust

one of the element properties; it then needs to perform some action on the content

of the page through its document object. You can get the reference to the document
object via a statement, such as the following:

var doc = document.getElementById(“FRAME3”).contentDocument

Then your script can, for example, dive into a form in the document:

var val = doc.mainForm.entry.value

frameBorder

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
See the example for the FRAME.frameBorder property earlier in this chapter.

hspace
vspace

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
The following fragment sets the white space surrounding an IFRAME element to

an equal amount:

document.all.myIframe.hspace = 20
document.all.myIframe.vspace = 20

Unfortunately these changes do not work for IE5/Windows.

IFRAME.hspace

4855-7 ch02.F 6/26/01 8:35 AM Page 199

200 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

scrolling

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
The following toggleIFrameScroll() function accepts a string of the IFRAME

element’s ID as a parameter and switches between on and off scroll bars in the

IFRAME. The if condition checks whether the property is set to something other

than no. This test allows the condition to evaluate to true if the property is set to

either auto (the first time) or yes (as set by the function).

function toggleFrameScroll(frameID) {
// IE5 & NN6 version
var theFrame = document.getElementById(frameID)
// IE4+ version
// var theFrame = document.all[frameID]
if (theFrame.scrolling != “no”) {

theFrame.scrolling = “no”
} else {

theFrame.scrolling = “yes”
}

}

src

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
For best results, use fully formed URLs as value for the src property, as shown

here:

document.getElementById(“myIframe”).src = “http://www.dannyg.com”

Relative URLs and javascript: pseudo-URLs also work most of the time.

IFRAME.src

4855-7 ch02.F 6/26/01 8:35 AM Page 200

201Chapter 2 ✦ Window and Frame Objects (Chapter 16)

popup Object
Properties

document

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

popup object and its properties. Enter the following statements into the top text

box. The first statement creates a pop-up window, whose reference is assigned to

the a global variable. Next, a reference to the body of the pop-up’s document is pre-

served in the b variable for the sake of convenience. Further statements work with

these two variables.

a = window.createPopup()
b = a.document.body
b.style.border = “solid 2px black”
b.style.padding = “5px”
b.innerHTML = “<P>Here is some text in a popup window</P>”
a.show(200,100, 200, 50, document.body)

See the description of the show() method for details on the parameters.

isOpen

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

isOpen property. Enter the following statements into the top text box. The

sequence begins with a creation of a simple pop-up window, whose reference is

assigned to the a global variable. Note that the final statement is actually two state-

ments, which are designed so that the second statement executes while the pop-up

window is still open.

a = window.createPopup()
a.document.body.innerHTML = “<P>Here is a popup window</P>”
a.show(200,100, 200, 50, document.body); alert(“Popup is open:” + a.isOpen)

popupObject.isOpen

4855-7 ch02.F 6/26/01 8:35 AM Page 201

202 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

If you then click into the main window to hide the pop-up, you will see a different

result if you enter the following statement into the top text box by itself:

alert(“Popup is open:” + a.isOpen)

Methods
hide()
show(left, top, width, height[,
positioningElementRef])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Listing 16-49 demonstrates both the show() and hide() methods for a popup

object. A click of the button on the page invokes the selfTimer() function, which

acts as the main routine for this page. The goal is to produce a pop-up window that

“self-destructs” five seconds after it appears. Along the way, a message in the pop-

up counts down the seconds.

A reference to the pop-up window is preserved as a global variable, called

popup. After the popup object is created, the initContent() function stuffs the

content into the pop-up by way of assigning style properties and some innerHTML
for the body of the document that is automatically created when the pop-up is gen-

erated. A SPAN element is defined so that another function later on can modify the

content of just that segment of text in the pop-up. Notice that the assignment of

content to the pop-up is predicated on the pop-up window having been initialized

(by virtue of the popup variable having a value assigned to it) and that the pop-up

window is not showing. While invoking initContent() under any other circum-

stances is probably impossible, the validation of the desired conditions is good pro-

gramming practice.

Back in selfTimer(), the popup object is displayed. Defining the desired size

requires some trial and error to make sure the pop-up window comfortably accom-

modates the text that is put into the pop-up in the initContent() function.

With the pop-up window showing, now is the time to invoke the countDown()
function. Before the function performs any action, it validates that the pop-up has

been initialized and is still visible. If a user clicks the main window while the

counter is counting down, this changes the value of the isOpen property to false,

and nothing inside the if condition executes.

This countDown() function grabs the inner text of the SPAN and uses

paresInt() to extract just the integer number (using base 10 numbering, because

we’re dealing with zero-leading numbers that can potentially be regarded as octal

values). The condition of the if construction decreases the retrieved integer by

one. If the decremented value is zero, then the time is up, and the pop-up window is

popupObject.hide()

4855-7 ch02.F 6/26/01 8:35 AM Page 202

203Chapter 2 ✦ Window and Frame Objects (Chapter 16)

hidden with the popup global variable returned to its original, null value. But if the

value is other than zero, then the inner text of the SPAN is set to the decremented

value (with a leading zero), and the setTimeout() method is called upon to rein-

voke the countDown() function in one second (1000 milliseconds).

Listing 16-49: Hiding and Showing a Pop-up

<HTML>
<HEAD>
<TITLE>popup Object</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var popup
function initContent() {

if (popup && !popup.isOpen) {
var popBody = popup.document.body
popBody.style.border = “solid 3px red”
popBody.style.padding = “10px”
popBody.style.fontSize = “24pt”
popBody.style.textAlign = “center”
var bodyText = “<P>This popup will self-destruct in “
bodyText += “05”
bodyText += “ seconds...</P>”
popBody.innerHTML = bodyText

}
}
function countDown() {

if (popup && popup.isOpen) {
var currCount = parseInt(popup.document.all.counter.innerText, 10)
if (--currCount == 0) {

popup.hide()
popup = null

} else {
popup.document.all.counter.innerText = “0” + currCount
setTimeout(“countDown()”, 1000)

}
}

}
function selfTimer() {

popup = window.createPopup()
initContent()
popup.show(200,200,400,100,document.body)
setTimeout(“countDown()”, 1000)

}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
<INPUT TYPE=”button” VALUE=”Impossible Mission” onClick=”selfTimer()”>
</FORM>
</BODY>
</HTML>

popupObject.hide()

4855-7 ch02.F 6/26/01 8:35 AM Page 203

204 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

The hide() method here is invoked by a script that is running while the pop-up

window is showing. Because a pop-up window automatically goes away if a user

clicks the main window, it is highly unlikely that the hide() method would ever be

invoked by itself in response to user action in the main window. If you want a script

in the pop-up window to close the pop-up, use parentWindow.close().

✦ ✦ ✦

popupObject.hide()

4855-7 ch02.F 6/26/01 8:35 AM Page 204

Window and
Frame Objects
(Chapter 16)

As physical containers of documents, window and frame

objects play huge rolls in scripting. The window object

has been scriptable in one form or another since the first

scriptable browsers. Of course the object has gained numer-

ous properties, methods, and event handlers over time, but

you also often find many object-model-specific items that you

probably wish were available across all browsers.

While scripts permit Web authors to manage multiple

windows — and many of the examples in this chapter support

that facility — try to think about your visitors, too. Very often

multiple windows get in the way of site navigation and con-

tent, regardless of your good intentions. As some examples

also demonstrate, you must include safety nets for your code

to counteract the unpredictable actions of users who close or

hide windows precisely when you don’t want them to do so.

Therefore, do not regard the multi-window examples here as

user interface recommendations; rather consider them as rec-

ommended ways to handle a potentially tricky user-interface

element.

Possible exceptions to my multi-window admonitions are the

modal and modeless dialog box windows provided by various

versions of IE for Windows. For other platforms, a modal

dialog box can be simulated (search for details at www.
dannyg.com). IE5.5 for Windows also adds a popup type win-

dow, which can be a helpful user interface element that exists

between a tooltip and a modal dialog box.

Modern browsers, however, provide ample script control

over framesets. As examples in this chapter demonstrate,

your scripts can hide and show frames, or completely rearchi-

tect a frameset without loading a new frameset.

22C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Scripting
communication
among multiple
frames

Creating and
managing new
windows

Controlling the size,
position, and
appearance of the
browser window

Dynamically
adjusting frame sizes
and frameset
compositions

✦ ✦ ✦ ✦

4855-7 ch02.F 6/26/01 8:34 AM Page 127

128 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Examples Highlights
✦ Listing 16-4 for the window.closed property demonstrates an industrial-

strength treatment of new window creation, which works with all scriptable

browsers (taking into account shortcomings of earlier browsers).

✦ NN4+ allows dynamic control over the presence of window chrome (statusbar,

toolbar, et al.) with the help of signed scripts, as shown in Listing 16-6.

Without signed scripts, or for IE, you must use window.open() to create a

separate window with the characteristics of your choice.

✦ The example listings for the window.opener property show you how scripts

from a subwindow communicate with the window that opened it.

✦ In the example listings for the window.parent property, you see how refer-

ences to the various synonyms for a window object within a frameset evaluate.

Thus, you can see what the references window, top, parent, and self mean

within a frameset.

✦ Compare Listings 16-20, 16-23, and 16-29 to understand not only the different

looks of the three native dialog box windows (alert, confirm, and prompt), but

also how values returned from two of them can influence script processing

sequences.

✦ A simple countdown timer in Listing 16-22 shows a practical application of the

window.clearTimeout() method. Here the method stops the looping timer

when the count reaches zero.

✦ Watch the browser window dance in Listing 16-24. The window.moveBy() and

window.moveTo() methods put window positioning through its paces.

✦ Examples for window.setInterval() and window.setTimeout() apply

these two similar methods to applications that are ideal for each one. You find

other applications of setTimeout() in examples for the window.closed
property and window.open() method.

✦ Internet Explorer’s modal and modeless dialog box windows get workouts in

Listings 16-39 through 16-42.

✦ The composition of a frameset, including the sizes of the frames, can be con-

trolled dynamically in IE4+ and NN6, as shown in examples for the FRAMESET.
cols and FRAMESET.rows properties.

4855-7 ch02.F 6/26/01 8:34 AM Page 128

129Chapter 2 ✦ Window and Frame Objects (Chapter 16)

Window Object
Properties

clipboardData

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
See Listings 15-30 and 15-39 (in Chapter 1 of this book) to see how the

clipboardData object is used with a variety of edit-related event handlers.

closed

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

Example
In Listing 16-4, I have created the ultimate cross-platform window opening and

closing sample. It takes into account the lack of the opener property in Navigator 2,

the missing closed property in Navigator 2 and Internet Explorer 3, and it even pro-

vides an ugly but necessary workaround for the inability of Internet Explorer 3 to

gracefully see if a subwindow is still open.

The script begins by initializing a global variable, newWind, which is used to hold

the object reference to the second window. This value needs to be global so that

other functions can reference the window for tasks, such as closing. Another global

variable, isIE3, is a Boolean flag that lets the window closing routines know

whether the visitor is using Internet Explorer 3 (see details about the navigator.
appVersion property in Chapter 28 of the JavaScript Bible).

For this example, the new window contains some HTML code written dynamically

to it, rather than loading an existing HTML file into it. Therefore, the URL parameter

of the window.open() method is left as an empty string. It is vital, however, to

assign a name in the second parameter to accommodate the Internet Explorer 3

workaround for closing the window. After the new window is opened, an opener
property is assigned to the object if one is not already assigned (this property is

needed only for Navigator 2). Next comes a brief delay to allow Internet Explorer

(especially versions 3 and 4) to catch up with opening the window so that content

windowObject.closed

4855-7 ch02.F 6/26/01 8:34 AM Page 129

130 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

can be written to it. The delay (using the setTimeout() method described later in

this chapter) invokes the finishNewWindow() function, which uses the global

newWind variable to reference the window for writing. The document.close()
method closes writing to the document — a different kind of close than a window

close.

A separate function, closeWindow(), is responsible for closing the subwindow.

To accommodate Internet Explorer 3, the script appears to create another window

with the same characteristics as the one opened earlier in the script. This is the

trick: If the earlier window exists (with exactly the same parameters and a name

other than an empty string), Internet Explorer does not create a new window even

with the window.open() method executing in plain sight. To the user, nothing

unusual appears on the screen. Things look weird for Internet Explorer 3 users only

if the user has closed the subwindow. The window.open() method momentarily

creates that subwindow. This subwindow is necessary because a “living” window
object must be available for the upcoming test of window existence. (Internet

Explorer 3 displays a script error if you try to address a missing window, while

NN2+ and IE4+ simply return friendly null values.)

As a final test, an if condition looks at two conditions: 1) if the window object

has ever been initialized with a value other than null (in case you click the window

closing button before ever having created the new window) and 2) if the window’s

closed property is null or false. If either condition is true, the close() method

is sent to the second window.

Listing 16-4: Checking Before Closing a Window

<HTML>
<HEAD>
<TITLE>window.closed Property</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// initialize global var for new window object
// so it can be accessed by all functions on the page
var newWind
// set flag to help out with special handling for window closing
var isIE3 = (navigator.appVersion.indexOf(“MSIE 3”) != -1) ? true : false
// make the new window and put some stuff in it
function newWindow() {

newWind = window.open(“”,”subwindow”,”HEIGHT=200,WIDTH=200”)
// take care of Navigator 2
if (newWind.opener == null) {

newWind.opener = window
}
setTimeout(“finishNewWindow()”, 100)

}
function finishNewWindow() {

var output = “”
output += “<HTML><BODY><H1>A Sub-window</H1>”
output += “<FORM><INPUT TYPE=’button’ VALUE=’Close Main Window’”
output +=”onClick=’window.opener.close()’></FORM></BODY></HTML>”

windowObject.closed

4855-7 ch02.F 6/26/01 8:34 AM Page 130

131Chapter 2 ✦ Window and Frame Objects (Chapter 16)

newWind.document.write(output)
newWind.document.close()

}
// close subwindow, including ugly workaround for IE3
function closeWindow() {

if (isIE3) {
// if window is already open, nothing appears to happen
// but if not, the subwindow flashes momentarily (yech!)
newWind = window.open(“”,”subwindow”,”HEIGHT=200,WIDTH=200”)

}
if (newWind && !newWind.closed) {

newWind.close()
}

}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
<INPUT TYPE=”button” VALUE=”Open Window” onClick=”newWindow()”>

<INPUT TYPE=”button” VALUE=”Close it if Still Open” onClick=”closeWindow()”>
</FORM>
</BODY>
</HTML>

To complete the example of the window opening and closing, notice that the sub-

window is given a button whose onClick event handler closes the main window. In

Navigator 2 and Internet Explorer 3, this occurs without complaint. But in NN3+ and

IE4+, the user is presented with an alert asking to confirm the closure of the main

browser window.

defaultStatus

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Unless you plan to change the default statusbar text while a user spends time at

your Web page, the best time to set the property is when the document loads. In

Listing 16-5, notice how I also read this property to reset the statusbar in an

onMouseOut event handler. Setting the status property to empty also resets the

statusbar to the defaultStatus setting.

windowObject.defaultStatus

4855-7 ch02.F 6/26/01 8:34 AM Page 131

132 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-5: Setting the Default Status Message

<HTML>
<HEAD>
<TITLE>window.defaultStatus property</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
window.defaultStatus = “Welcome to my Web site.”
</SCRIPT>
</HEAD>
<BODY>
<A HREF=”http://www.microsoft.com”
onMouseOver=”window.status = ‘Visit Microsoft\’s Home page.’;return true”
onMouseOut=”window.status = ‘’;return true”>Microsoft<P>
<A HREF=”http://home.netscape.com”
onMouseOver=”window.status = ‘Visit Netscape\’s Home page.’;return true”
onMouseOut=”window.status = window.defaultStatus;return true”>Netscape
</BODY>
</HTML>

If you need to display single or double quotes in the statusbar (as in the second

link in Listing 16-5), use escape characters (\’ and \”) as part of the strings being

assigned to these properties.

dialogArguments

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See Listing 16-38 for the window.showModalDialog() method to see how argu-

ments can be passed to a dialog box and retrieved via the dialogArguments
property.

dialogHeight
dialogWidth

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

windowObject.dialogHeight

4855-7 ch02.F 6/26/01 8:34 AM Page 132

133Chapter 2 ✦ Window and Frame Objects (Chapter 16)

Example
Dialog boxes sometimes provide a button or icon that reveals more details or

more complex settings for advanced users. You can create a function that handles

the toggle between two sizes. The following function assumes that the document in

the dialog box has a button whose label also toggles between “Show Details” and

“Hide Details.” The button’s onClick event handler invokes the function as

toggleDetails(this).

function toggleDetails(btn) {
if (dialogHeight == “200px”) {

dialogHeight = “350px”
btn.value = “Hide Details”

} else {
dialogHeight = “200px”
btn.value = “Show Details”

}
}

In practice, you also have to toggle the display style sheet property of the extra

material between none and block to make sure that the dialog box does not display

scrollbars in the smaller dialog box version.

dialogLeft
dialogTop

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Although usually not a good idea because of the potentially jarring effect on a

user, you can reposition a dialog box window that has been resized by script (or by

the user if you let the dialog box be resizable). The following statements in a dialog

box window document’s script recenter the dialog box window.

dialogLeft = (screen.availWidth/2) - (parseInt(dialogWidth)/2) + “px”
dialogHeight = (screen.availHeight/2) - (parseInt(dialogHeight)/2) + “px”

Note that the parseInt() functions are used to read the numeric portion of the

dialogWidth and dialogHeight properties so that the values can be used for

arithmetic.

windowObject.dialogLeft

4855-7 ch02.F 6/26/01 8:34 AM Page 133

134 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

directories
locationbar
menubar
personalbar
scrollbars
statusbar
toolbar

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
In Listing 16-6, you can experiment with the look of a browser window with any

of the chrome elements turned on and off. To run this script, you must either sign

the scripts or turn on codebase principals (see Chapter 46 of the JavaScript Bible).

Java must also be enabled to use the signed script statements.

As the page loads, it stores the current state of each chrome element. One but-

ton for each chrome element triggers the toggleBar() function. This function

inverts the visible property for the chrome object passed as a parameter to the

function. Finally, the Restore button returns visibility to their original settings.

Notice that the restore() function is also called by the onUnload event handler

for the document. Also, if you load this example into NN6, non-fatal script errors

occur when the scrollbars are turned on or off.

Listing 16-6: Controlling Window Chrome

<HTML>
<HEAD>
<TITLE>Bars Bars Bars</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// store original outer dimensions as page loads
var originalLocationbar = window.locationbar.visible
var originalMenubar = window.menubar.visible
var originalPersonalbar = window.personalbar.visible
var originalScrollbars = window.scrollbars.visible
var originalStatusbar = window.statusbar.visible
var originalToolbar = window.toolbar.visible

// generic function to set inner dimensions
function toggleBar(bar) {

netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserWrite”)
bar.visible = !bar.visible
netscape.security.PrivilegeManager.revertPrivilege(“UniversalBrowserWrite”)

}

windowObject.directories

4855-7 ch02.F 6/26/01 8:34 AM Page 134

135Chapter 2 ✦ Window and Frame Objects (Chapter 16)

// restore settings
function restore() {

netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserWrite”)
window.locationbar.visible = originalLocationbar
window.menubar.visible = originalMenubar
window.personalbar.visible = originalPersonalbar
window.scrollbars.visible = originalScrollbars
window.statusbar.visible = originalStatusbar
window.toolbar.visible = originalToolbar
netscape.security.PrivilegeManager.revertPrivilege(“UniversalBrowserWrite”)

}
</SCRIPT>
</HEAD>
<BODY onUnload=”restore()”>
<FORM>
Toggle Window Bars

<INPUT TYPE=”button” VALUE=”Location Bar”
onClick=”toggleBar(window.locationbar)”>

<INPUT TYPE=”button” VALUE=”Menu Bar” onClick=”toggleBar(window.menubar)”>

<INPUT TYPE=”button” VALUE=”Personal Bar”
onClick=”toggleBar(window.personalbar)”>

<INPUT TYPE=”button” VALUE=”Scrollbars”
onClick=”toggleBar(window.scrollbars)”>

<INPUT TYPE=”button” VALUE=”Status Bar”
onClick=”toggleBar(window.statusbar)”>

<INPUT TYPE=”button” VALUE=”Tool Bar” onClick=”toggleBar(window.toolbar)”>

<HR>
<INPUT TYPE=”button” VALUE=”Restore Original Settings” onClick=”restore()”>

</FORM>
</BODY>
</HTML>

external

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
The first example asks the user if it is okay to add a Web site to the Active

Desktop. If Active Desktop is not enabled, the user is given the choice of enabling it

at this point.

external.AddDesktopComponent(“http://www.nytimes.com”,”website”, 200, 100, 400, 400)

windowObject.external

4855-7 ch02.F 6/26/01 8:34 AM Page 135

136 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

In the next example, the user is asked to approve the addition of a URL to the

Favorites list. The user can follow the normal procedure for filing the item in a

folder in the list.

external.AddFavorite(“http://www.dannyg.com/update6.html”,
“JSBible 4 Support Center”)

The final example assumes that a user makes a choice from a SELECT list of items.

The onChange event handler of the SELECT list invokes the following function to navi-

gate to a fictitious page and locate listings for a chosen sports team on the page.

function locate(list) {
var choice = list.options[list.selectedIndex].value
external.NavigateAndFind(“http://www.collegesports.net/scores.html”, choice,

“scores”)
}

frames

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Listings 16-7 and 16-8 demonstrate how JavaScript treats values of frame refer-

ences from objects inside a frame. The same document is loaded into each frame. A

script in that document extracts info about the current frame and the entire frame-

set. Figure 2-1 shows the results after loading the HTML document in Listing 16-7.

Listing 16-7: Framesetting Document for Listing 16-8

<HTML>
<HEAD>
<TITLE>window.frames property</TITLE>
</HEAD>
<FRAMESET COLS=”50%,50%”>

<FRAME NAME=”JustAKid1” SRC=”lst16-08.htm”>
<FRAME NAME=”JustAKid2” SRC=”lst16-08.htm”>

</FRAMESET>
</HTML>

A call to determine the number (length) of frames returns 0 from the point of

view of the current frame referenced. That’s because each frame here is a window

that has no nested frames within it. But add the parent property to the reference,

and the scope zooms out to take into account all frames generated by the parent

window’s document.

windowObject.frames

4855-7 ch02.F 6/26/01 8:34 AM Page 136

137Chapter 2 ✦ Window and Frame Objects (Chapter 16)

Listing 16-8: Showing Various Window Properties

<HTML>
<HEAD>
<TITLE>Window Revealer II</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function gatherWindowData() {

var msg = “”
msg += “From the point of view of this frame:
”
msg += “window.frames.length: “ + window.frames.length + “
”
msg += “window.name: “ + window.name + “<P>”
msg += “From the point of view of the framesetting document:
”
msg += “parent.frames.length: “ + parent.frames.length + “
”
msg += “parent.frames[0].name: “ + parent.frames[0].name
return msg

}
</SCRIPT>
</HEAD>
<BODY>
<SCRIPT LANGUAGE=”JavaScript”>
document.write(gatherWindowData())
</SCRIPT>
</BODY>
</HTML>

Figure 2-1: Property readouts from both frames loaded from Listing 16-7

windowObject.frames

4855-7 ch02.F 6/26/01 8:34 AM Page 137

138 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

The last statement in the example shows how to use the array syntax (brackets)

to refer to a specific frame. All array indexes start with 0 for the first entry. Because

the document asks for the name of the first frame (parent.frames[0]), the

response is JustAKid1 for both frames.

innerHeight
innerWidth
outerHeight
outerWidth

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
In Listing 16-9, a number of buttons let you see the results of setting the

innerHeight, innerWidth, outerHeight, and outerWidth properties.

Listing 16-9: Setting Window Height and Width

<HTML>
<HEAD>
<TITLE>Window Sizer</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// store original outer dimensions as page loads
var originalWidth = window.outerWidth
var originalHeight = window.outerHeight
// generic function to set inner dimensions
function setInner(width, height) {

window.innerWidth = width
window.innerHeight = height

}
// generic function to set outer dimensions
function setOuter(width, height) {

window.outerWidth = width
window.outerHeight = height

}
// restore window to original dimensions
function restore() {

window.outerWidth = originalWidth
window.outerHeight = originalHeight

}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
Setting Inner Sizes

windowObject.innerHeight

4855-7 ch02.F 6/26/01 8:34 AM Page 138

139Chapter 2 ✦ Window and Frame Objects (Chapter 16)

<INPUT TYPE=”button” VALUE=”600 Pixels Square” onClick=”setInner(600,600)”>

<INPUT TYPE=”button” VALUE=”300 Pixels Square” onClick=”setInner(300,300)”>

<INPUT TYPE=”button” VALUE=”Available Screen Space”
onClick=”setInner(screen.availWidth, screen.availHeight)”>

<HR>
Setting Outer Sizes

<INPUT TYPE=”button” VALUE=”600 Pixels Square” onClick=”setOuter(600,600)”>

<INPUT TYPE=”button” VALUE=”300 Pixels Square” onClick=”setOuter(300,300)”>

<INPUT TYPE=”button” VALUE=”Available Screen Space”
onClick=”setOuter(screen.availWidth, screen.availHeight)”>

<HR>
<INPUT TYPE=”button” VALUE=”Cinch up for Win95” onClick=”setInner(273,304)”>

<INPUT TYPE=”button” VALUE=”Cinch up for Mac” onClick=”setInner(273,304)”>

<INPUT TYPE=”button” VALUE=”Restore Original” onClick=”restore()”>

</FORM>
</BODY>
</HTML>

As the document loads, it saves the current outer dimensions in global variables.

One of the buttons restores the windows to these settings. Two parallel sets of but-

tons set the inner and outer dimensions to the same pixel values so that you can

see the effects on the overall window and document area when a script changes the

various properties.

Because Navigator 4 displays different-looking buttons in different platforms (as

well as other elements), the two buttons contain script instructions to size the win-

dow to best display the window contents. Unfortunately, no measure of the active

area of a document is available, so that the dimension values were determined by

trial and error before being hard-wired into the script.

navigator

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
This book is littered with examples of using the navigator object, primarily for

performing browser detection. Examples of specific navigator object properties

can be found in Chapter 28 of the JavaScript Bible and Chapter 12 of this book.

offscreenBuffering

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

windowObject.offscreenBuffering

4855-7 ch02.F 6/26/01 8:34 AM Page 139

140 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example
If you want to turn off buffering for an entire page, include the following state-

ment at the beginning of your script statements:

window.offscreenBuffering = false

onerror

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

Example
In Listing 16-10, one button triggers a script that contains an error. I’ve added an

error-handling function to process the error so that it opens a separate window and

fills in a textarea form element (see Figure 2-2). If you load Listing 16-10 in NN6,

some of the reporting categories report “undefined” because the browser unfortu-

nately does not pass error properties to the handleError() function. A Submit

button is also provided to mail the bug information to a support center e-mail

address — an example of how to handle the occurrence of a bug in your scripts.

Listing 16-10: Controlling Script Errors

<HTML>
<TITLE>Error Dialog Control</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.1”>
// function with invalid variable value
function goWrong() {

var x = fred
}
// turn off error dialogs
function errOff() {

window.onerror = doNothing
}
// turn on error dialogs with hard reload
function errOn() {

window.onerror = handleError
}

// assign default error handler
window.onerror = handleError

// error handler when errors are turned off...prevents error dialog
function doNothing() {return true}

function handleError(msg, URL, lineNum) {
var errWind = window.open(“”,”errors”,”HEIGHT=270,WIDTH=400”)
var wintxt = “<HTML><BODY BGCOLOR=RED>”

windowObject.onerror

4855-7 ch02.F 6/26/01 8:34 AM Page 140

141Chapter 2 ✦ Window and Frame Objects (Chapter 16)

wintxt += “An error has occurred on this page. “
wintxt += “Please report it to Tech Support.”
wintxt += “<FORM METHOD=POST ENCTYPE=’text/plain’ “
wintxt += “ACTION=mailTo:support4@dannyg.com >”
wintxt += “<TEXTAREA NAME=’errMsg’ COLS=45 ROWS=8 WRAP=VIRTUAL>”
wintxt += “Error: “ + msg + “\n”
wintxt += “URL: “ + URL + “\n”
wintxt += “Line: “ + lineNum + “\n”
wintxt += “Client: “ + navigator.userAgent + “\n”
wintxt += “---\n”
wintxt += “Please describe what you were doing when the error occurred:”
wintxt += “</TEXTAREA><P>”
wintxt += “<INPUT TYPE=SUBMIT VALUE=’Send Error Report’>”
wintxt += “<INPUT TYPE=button VALUE=’Close’ onClick=’self.close()’>”
wintxt += “</FORM></BODY></HTML>”
errWind.document.write(wintxt)
errWind.document.close()
return true

}
</SCRIPT>
</HEAD>
<BODY>
<FORM NAME=”myform”>
<INPUT TYPE=”button” VALUE=”Cause an Error” onClick=”goWrong()”><P>
<INPUT TYPE=”button” VALUE=”Turn Off Error Dialogs” onClick=”errOff()”>
<INPUT TYPE=”button” VALUE=”Turn On Error Dialogs” onClick=”errOn()”>
</FORM>
</BODY>
</HTML>

Figure 2-2: An example of a self-reporting
error window

I provide a button that performs a hard reload, which, in turn, resets the window.
onerror property to its default value. With error dialog boxes turned off, the error-

handling function does not run.

windowObject.onerror

4855-7 ch02.F 6/26/01 8:34 AM Page 141

142 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

opener

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � �

Example
To demonstrate the importance of the opener property, take a look at how a new

window can define itself from settings in the main window (Listing 16-11). The

doNew() function generates a small subwindow and loads the file in Listing 16-12

into the window. Notice the initial conditional statements in doNew() to make sure

that if the new window already exists, it comes to the front by invoking the new

window’s focus() method. You can see the results in Figure 2-3. Because the

doNew() function in Listing 16-11 uses window methods and properties not avail-

able in IE3, this example does not work correctly in IE3.

Listing 16-11: Contents of a Main Window Document That
Generates a Second Window

<HTML>
<HEAD>
<TITLE>Master of all Windows</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.1”>
var myWind
function doNew() {

if (!myWind || myWind.closed) {
myWind = window.open(“lst16-12.htm”,”subWindow”,

“HEIGHT=200,WIDTH=350,resizable”)
} else {

// bring existing subwindow to the front
myWind.focus()

}
}
</SCRIPT>
</HEAD>
<BODY>
<FORM NAME=”input”>
Select a color for a new window:
<INPUT TYPE=”radio” NAME=”color” VALUE=”red” CHECKED>Red
<INPUT TYPE=”radio” NAME=”color” VALUE=”yellow”>Yellow
<INPUT TYPE=”radio” NAME=”color” VALUE=”blue”>Blue
<INPUT TYPE=”button” NAME=”storage” VALUE=”Make a Window” onClick=”doNew()”>
<HR>
This field will be filled from an entry in another window:
<INPUT TYPE=”text” NAME=”entry” SIZE=25>
</FORM>
</BODY>
</HTML>

windowObject.opener

4855-7 ch02.F 6/26/01 8:34 AM Page 142

143Chapter 2 ✦ Window and Frame Objects (Chapter 16)

The window.open() method doesn’t provide parameters for setting the new

window’s background color, so I let the getColor() function in the new window do

the job as the document loads. The function uses the opener property to find out

which radio button on the main page is selected.

Listing 16-12: References to the opener Property

<HTML>
<HEAD>
<TITLE>New Window on the Block</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function getColor() {

// shorten the reference
colorButtons = self.opener.document.forms[0].color
// see which radio button is checked
for (var i = 0; i < colorButtons.length; i++) {

if (colorButtons[i].checked) {
return colorButtons[i].value

}
}
return “white”

}
</SCRIPT>
</HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
document.write(“<BODY BGCOLOR=’” + getColor() + “‘>”)
</SCRIPT>
<H1>This is a new window.</H1>
<FORM>
<INPUT TYPE=”button” VALUE=”Who’s in the Main window?”
onClick=”alert(self.opener.document.title)”><P>
Type text here for the main window:
<INPUT TYPE=”text” SIZE=25 onChange=”self.opener.document.forms[0].entry.value =
this.value”>
</FORM>
</BODY>
</HTML>

In the getColor() function, the multiple references to the radio button array

can be very long. To simplify the references, the getColor() function starts out by

assigning the radio button array to a variable I arbitrarily call colorButtons. That

shorthand now stands in for lengthy references as I loop through the radio buttons

to determine which button is checked and retrieve its value property.

A button in the second window simply fetches the title of the opener window’s

document. Even if another document loads in the main window in the meantime,

the opener reference still points to the main window: Its document object, however,

will change.

windowObject.opener

4855-7 ch02.F 6/26/01 8:34 AM Page 143

144 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Figure 2-3: The main and subwindows, inextricably linked via the window.opener
property

Finally, the second window contains a text input object. Enter any text there that

you like and either tab or click out of the field. The onChange event handler updates

the field in the opener’s document (provided that document is still loaded).

pageXOffset
pageYOffset

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
The script in Listing 16-13 is an unusual construction that creates a frameset

and creates the content for each of the two frames all within a single HTML docu-

ment (see “Frame Object” in Chapter 16 of the JavaScript Bible for more details).

The purpose of this example is to provide you with a playground to become famil-

iar with the page offset concept and how the values of these properties correspond

to physical activity in a scrollable document.

In the left frame of the frameset are two fields that are ready to show the pixel

values of the right frame’s pageXOffset and pageYOffset properties. The content

windowObject.pageXOffset

4855-7 ch02.F 6/26/01 8:34 AM Page 144

145Chapter 2 ✦ Window and Frame Objects (Chapter 16)

of the right frame is a 30-row table of fixed width (800 pixels). Mouse click events

are captured by the document level (see Chapter 18 of the JavaScript Bible), allow-

ing you to click any table or cell border or outside the table to trigger the

showOffsets() function in the right frame. That function is a simple script that

displays the page offset values in their respective fields in the left frame.

Listing 16-13: Viewing the pageXOffset and pageYOffset
Properties

<HTML>
<HEAD>
<TITLE>Master of all Windows</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function leftFrame() {

var output = “<HTML><BODY><H3>Page Offset Values</H3><HR>\n”
output += “<FORM>PageXOffset:<INPUT TYPE=’text’ NAME=’xOffset’ SIZE=4>
\n”
output += “PageYOffset:<INPUT TYPE=’text’ NAME=’yOffset’ SIZE=4>
\n”
output += “</FORM></BODY></HTML>”
return output

}

function rightFrame() {
var output = “<HTML><HEAD><SCRIPT LANGUAGE=’JavaScript’>\n”
output += “function showOffsets() {\n”
output += “parent.readout.document.forms[0].xOffset.value =

self.pageXOffset\n”
output += “parent.readout.document.forms[0].yOffset.value =

self.pageYOffset\n}\n”
output += “document.captureEvents(Event.CLICK)\n”
output += “document.onclick = showOffsets\n”
output += “<\/SCRIPT></HEAD><BODY><H3>Content Page</H3>\n”
output += “Scroll this frame and click on a table border to view “ +

“page offset values.
<HR>\n”
output += “<TABLE BORDER=5 WIDTH=800>”
var oneRow = “<TD>Cell 1</TD><TD>Cell 2</TD><TD>Cell 3</TD>” +

“<TD>Cell 4</TD><TD>Cell 5</TD>”
for (var i = 1; i <= 30; i++) {

output += “<TR><TD>Row “ + i + “</TD>” + oneRow + “</TR>”
}
output += “</TABLE></BODY></HTML>”
return output

}
</SCRIPT>
</HEAD>
<FRAMESET COLS=”30%,70%”>

<FRAME NAME=”readout” SRC=”javascript:parent.leftFrame()”>
<FRAME NAME=”display” SRC=”javascript:parent.rightFrame()”>

</FRAMESET>
</HTML>

windowObject.pageXOffset

4855-7 ch02.F 6/26/01 8:34 AM Page 145

146 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

To gain an understanding of how the offset values work, scroll the window

slightly in the horizontal direction and notice that the pageXOffset value

increases; the same goes for the pageYOffset value as you scroll down. Remember

that these values reflect the coordinate in the document that is currently under the

top-left corner of the window (frame) holding the document. You can see an IE4+

version of this example in Listing 18-20 (in Chapter 4 of this book). A cross-browser

version would require very little browser branching.

parent

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
To demonstrate how various window object properties refer to window levels in

a multiframe environment, use your browser to load the Listing 16-14 document. It,

in turn, sets each of two equal-size frames to the same document: Listing 16-15. This

document extracts the values of several window properties, plus the

document.title properties of two different window references.

Listing 16-14: Framesetting Document for Listing 16-15

<HTML>
<HEAD>
<TITLE>The Parent Property Example</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
self.name = “Framesetter”
</SCRIPT>
</HEAD>
<FRAMESET COLS=”50%,50%” onUnload=”self.name = ‘’”>

<FRAME NAME=”JustAKid1” SRC=”lst16-15.htm”>
<FRAME NAME=”JustAKid2” SRC=”lst16-15.htm”>

</FRAMESET>
</HTML>

Listing 16-15: Revealing Various Window-Related Properties

<HTML>
<HEAD>
<TITLE>Window Revealer II</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function gatherWindowData() {

var msg = “”

windowObject.parent

4855-7 ch02.F 6/26/01 8:34 AM Page 146

147Chapter 2 ✦ Window and Frame Objects (Chapter 16)

msg = msg + “top name: “ + top.name + “
”
msg = msg + “parent name: “ + parent.name + “
”
msg = msg + “parent.document.title: “ + parent.document.title + “<P>”
msg = msg + “window name: “ + window.name + “
”
msg = msg + “self name: “ + self.name + “
”
msg = msg + “self.document.title: “ + self.document.title
return msg

}
</SCRIPT>
</HEAD>
<BODY>
<SCRIPT LANGUAGE=”JavaScript”>
document.write(gatherWindowData())
</SCRIPT>
</BODY>
</HTML>

In the two frames (Figure 2-4), the references to the window and self object

names return the name assigned to the frame by the frameset definition

(JustAKid1 for the left frame, JustAKid2 for the right frame). In other words, from

each frame’s point of view, the window object is its own frame. References to

self.document.title refer only to the document loaded into that window frame.

But references to the top and parent windows (which are one and the same in this

example) show that those object properties are shared between both frames.

Figure 2-4: Parent and top properties being shared by both frames

windowObject.parent

4855-7 ch02.F 6/26/01 8:34 AM Page 147

148 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

A couple other fine points are worth highlighting. First, the name of the frameset-

ting window is set as Listing 16-14 loads, rather than in response to an onLoad
event handler in the <FRAMESET> tag. The reason for this is that the name must be

set in time for the documents loading in the frames to get that value. If I had waited

until the frameset’s onLoad event handler, the name wouldn’t be set until after the

frame documents had loaded. Second, I restore the parent window’s name to an

empty string when the framesetting document unloads. This is to prevent future

pages from getting confused about the window name.

returnValue

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See Listing 16-39 for the showModalDialog() method for an example of how to

get data back from a dialog box in IE4+.

screenLeft
screenTop

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

screenLeft and screenTop properties. Start with the browser window maximized

(if you are using Windows). Enter the following property name into the top text box:

window.screenLeft

Click the Evaluate button to see the current setting. Unmaximize the window and

drag it around the screen. Each time you finish dragging, click the Evaluate button

again to see the current value. Do the same for window.screenTop.

screenX
screenY

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

windowObject.screenX

4855-7 ch02.F 6/26/01 8:34 AM Page 148

149Chapter 2 ✦ Window and Frame Objects (Chapter 16)

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

screenX and screenY properties in NN6. Start with the browser window maxi-

mized (if you are using Windows). Enter the following property name into the top

text box:

window.screenY

Click the Evaluate button to see the current setting. Unmaximize the window and

drag it around the screen. Each time you finish dragging, click the Evaluate button

again to see the current value. Do the same for window.screenY.

scrollX
scrollY

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

scrollX and scrollY properties in NN6. Enter the following property into the top

text box:

window.scrollY

Now manually scroll the page down so that you can still see the Evaluate button.

Click the button to see how far the window has scrolled along the y-axis.

self

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Listing 16-16 uses the same operations as Listing 16-5 but substitutes the self

property for all window object references. The application of this reference is

entirely optional, but it can be helpful for reading and debugging scripts if the

HTML document is to appear in one frame of a multiframe window — especially if

other JavaScript code in this document refers to documents in other frames. The

self reference helps anyone reading the code know precisely which frame was

being addressed.

windowObject.self

4855-7 ch02.F 6/26/01 8:34 AM Page 149

150 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-16: Using the self Property

<HTML>
<HEAD>
<TITLE>self Property</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
self.defaultStatus = “Welcome to my Web site.”
</SCRIPT>
</HEAD>
<BODY>
<A HREF=”http:// www.microsoft.com”
onMouseOver=”self.status = ‘Visit Microsoft\’s Home page.’;return true”
onMouseOut=”self.status = ‘’;return true”>Microsoft<P>
<A HREF=”http://home.netscape.com”
onMouseOver=”self.status = ‘Visit Netscape\’s Home page.’;return true”
onMouseOut=”self.status = self.defaultStatus;return true”>Netscape
</BODY>
</HTML>

status

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
In Listing 16-17, the status property is set in a handler embedded in the

onMouseOver attribute of two HTML link tags. Notice that the handler requires a

return true statement (or any expression that evaluates to return true) as the

last statement of the handler. This statement is required or the status message will

not display, particularly in early browsers.

Listing 16-17: Links with Custom Statusbar Messages

<HTML>
<HEAD>
<TITLE>window.status Property</TITLE>
</HEAD>
<BODY>
<A HREF=”http://www.dannyg.com” onMouseOver=”window.status = ‘Go to my Home
page. (www.dannyg.com)’; return true”>Home<P>
<A HREF=”http://home.netscape.com” onMouseOver=”window.status = ‘Visit Netscape
Home page. (home.netscape.com)’; return true”>Netscape
</BODY>
</HTML>

windowObject.status

4855-7 ch02.F 6/26/01 8:34 AM Page 150

151Chapter 2 ✦ Window and Frame Objects (Chapter 16)

As a safeguard against platform-specific anomalies that affect the behavior of

onMouseOver event handlers and the window.status property, you should also

include an onMouseOut event handler for links and client-side image map area

objects. Such onMouseOut event handlers should set the status property to an

empty string. This setting ensures that the statusbar message returns to the

defaultStatus setting when the pointer rolls away from these objects. If you want

to write a generalizable function that handles all window status changes, you can

do so, but word the onMouseOver attribute carefully so that the event handler eval-

uates to return true. Listing 16-18 shows such an alternative.

Listing 16-18: Handling Status Message Changes

<HTML>
<HEAD>
<TITLE>Generalizable window.status Property</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function showStatus(msg) {

window.status = msg
return true

}
</SCRIPT>
</HEAD>
<BODY>
<A HREF=”http:// www.dannyg.com “ onMouseOver=”return showStatus(‘Go to my Home
page (www.dannyg.com).’)” onMouseOut=”return showStatus(‘’)”>Home<P>
<A HREF=”http://home.netscape.com” onMouseOver=”return showStatus(‘Visit
Netscape Home page.’)” onMouseOut=”return showStatus(‘’)”>Netscape
</BODY>
</HTML>

Notice how the event handlers return the results of the showStatus() method

to the event handler, allowing the entire handler to evaluate to return true.

One final example of setting the statusbar (shown in Listing 16-19) also demon-

strates how to create a simple scrolling banner in the statusbar.

Listing 16-19: Creating a Scrolling Banner

<HTML>
<HEAD>
<TITLE>Message Scroller</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
<!--
var msg = “Welcome to my world...”
var delay = 150
var timerId
var maxCount = 0
var currCount = 1

Continued

windowObject.status

4855-7 ch02.F 6/26/01 8:34 AM Page 151

152 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-19 (continued)

function scrollMsg() {
// set the number of times scrolling message is to run
if (maxCount == 0) {

maxCount = 3 * msg.length
}
window.status = msg
// keep track of how many characters have scrolled
currCount++
// shift first character of msg to end of msg
msg = msg.substring (1, msg.length) + msg.substring (0, 1)
// test whether we’ve reached maximum character count
if (currCount >= maxCount) {

timerID = 0 // zero out the timer
window.status = “” // clear the status bar
return // break out of function

} else {
// recursive call to this function
timerId = setTimeout(“scrollMsg()”, delay)

}
}
// -->
</SCRIPT>
</HEAD>
<BODY onLoad=”scrollMsg()”>
</BODY>
</HTML>

Because the statusbar is being set by a standalone function (rather than by an

onMouseOver event handler), you do not have to append a return true statement to

set the status property. The scrollMsg() function uses more advanced JavaScript

concepts, such as the window.setTimeout() method (covered later in this chapter)

and string methods (covered in Chapter 34 of the JavaScript Bible). To speed the pace

at which the words scroll across the statusbar, reduce the value of delay.

Many Web surfers (myself included) don’t care for these scrollers that run for-

ever in the statusbar. Rolling the mouse over links disturbs the banner display.

Scrollers can also crash earlier browsers, because the setTimeout() method eats

application memory in Navigator 2. Use scrolling bars sparingly or design them to

run only a few times after the document loads.

Setting the status property with onMouseOver event handlers has had a check-
ered career along various implementations in Navigator. A script that sets the sta-
tusbar is always in competition against the browser itself, which uses the statusbar
to report loading progress. When a “hot” area on a page is at the edge of a frame,
many times the onMouseOut event fails to fire, thus preventing the statusbar from
clearing itself. Be sure to torture test any such implementations before declaring
your page ready for public access.

Tip

windowObject.status

4855-7 ch02.F 6/26/01 8:35 AM Page 152

153Chapter 2 ✦ Window and Frame Objects (Chapter 16)

Methods
alert(“message”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The parameter for the example in Listing 16-20 is a concatenated string. It joins

together two fixed strings and the value of the browser’s navigator.appName prop-

erty. Loading this document causes the alert dialog box to appear, as shown in sev-

eral configurations in Figure 2-5. The JavaScript Alert: line cannot be deleted from

the dialog box in earlier browsers, nor can the title bar be changed in later browsers.

Listing 16-20: Displaying an Alert Dialog Box

<HTML>
<HEAD>
<TITLE>window.alert() Method</TITLE>
</HEAD>
<BODY>
<SCRIPT LANGUAGE=”JavaScript”>
alert(“You are running the “ + navigator.appName + “ browser.”)
</SCRIPT>
</BODY>
</HTML>

Figure 2-5: Results of the alert() method in Listing 16-20
in Internet Explorer 5 (top) and Navigator 6 (bottom)
for Windows 98

windowObject.alert()

4855-7 ch02.F 6/26/01 8:35 AM Page 153

154 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

captureEvents(eventTypeList)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
The page in Listing 16-21 is an exercise in capturing and releasing click events in

the window object. Whenever the window is capturing click events, the flash()
function runs. In that function, the event is examined so that only if the Control key

is also being held down and the name of the button starts with “button” does the

document background color flash red. For all click events (that is, those directed at

objects on the page capable of their own onClick event handlers), the click is pro-

cessed with the routeEvent() method to make sure the target buttons execute

their own onClick event handlers.

Listing 16-21: Capturing Click Events in the Window

<HTML>
<HEAD>
<TITLE>Window Event Capture</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.2”>
// function to run when window captures a click event
function flash(e) {

if (e.modifiers = Event.CONTROL_MASK &&
e.target.name.indexOf(“button”) == 0) {

document.bgColor = “red”
setTimeout(“document.bgColor = ‘white’”, 500)

}
// let event continue to target
routeEvent(e)

}
// default setting to capture click events
window.captureEvents(Event.CLICK)
// assign flash() function to click events captured by window
window.onclick = flash
</SCRIPT>
</HEAD>
<BODY BGCOLOR=”white”>
<FORM NAME=”buttons”>
Turn window click event capture on or off (Default is “On”)<P>
<INPUT NAME=”captureOn” TYPE=”button” VALUE=”Capture On”
onClick=”window.captureEvents(Event.CLICK)”>
<INPUT NAME=”captureOff” TYPE=”button” VALUE=”Capture Off”
onClick=”window.releaseEvents(Event.CLICK)”>
<HR>
Ctrl+Click on a button to see if clicks are being captured by the window
(background color will flash red):<P>

windowObject.captureEvents()

4855-7 ch02.F 6/26/01 8:35 AM Page 154

155Chapter 2 ✦ Window and Frame Objects (Chapter 16)

<INPUT NAME=”button1” TYPE=”button” VALUE=”Informix” onClick=”alert(‘You
clicked on Informix.’)”>
<INPUT NAME=”button2” TYPE=”button” VALUE=”Oracle” onClick=”alert(‘You
clicked on Oracle.’)”>
<INPUT NAME=”button3” TYPE=”button” VALUE=”Sybase” onClick=”alert(‘You
clicked on Sybase.’)”>

</FORM>
</BODY>
</HTML>

When you try this page, also turn off window event capture. Now only the but-

tons’ onClick event handlers execute, and the page does not flash red.

clearInterval(intervalIDnumber)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Example
See Listings 16-36 and 16-37 for an example of how setInterval() and

clearInterval() are used together on a page.

clearTimeout(timeoutIDnumber)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The page in Listing 16-22 features one text field and two buttons (Figure 2-6). One

button starts a countdown timer coded to last one minute (easily modifiable for

other durations); the other button interrupts the timer at any time while it is run-

ning. When the minute is up, an alert dialog box lets you know.

Listing 16-22: A Countdown Timer

<HTML>
<HEAD>
<TITLE>Count Down Timer</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
<!--
var running = false

Continued

windowObject.clearTimeout()

4855-7 ch02.F 6/26/01 8:35 AM Page 155

156 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-22 (continued)

var endTime = null
var timerID = null

function startTimer() {
running = true
now = new Date()
now = now.getTime()
// change last multiple for the number of minutes
endTime = now + (1000 * 60 * 1)
showCountDown()

}

function showCountDown() {
var now = new Date()
now = now.getTime()
if (endTime - now <= 0) {

stopTimer()
alert(“Time is up. Put down your pencils.”)

} else {
var delta = new Date(endTime - now)
var theMin = delta.getMinutes()
var theSec = delta.getSeconds()
var theTime = theMin
theTime += ((theSec < 10) ? “:0” : “:”) + theSec
document.forms[0].timerDisplay.value = theTime
if (running) {

timerID = setTimeout(“showCountDown()”,1000)
}

}
}

function stopTimer() {
clearTimeout(timerID)
running = false
document.forms[0].timerDisplay.value = “0:00”

}
//-->
</SCRIPT>
</HEAD>

<BODY>
<FORM>
<INPUT TYPE=”button” NAME=”startTime” VALUE=”Start 1 min. Timer”
onClick=”startTimer()”>
<INPUT TYPE=”button” NAME=”clearTime” VALUE=”Clear Timer”
onClick=”stopTimer()”><P>
<INPUT TYPE=”text” NAME=”timerDisplay” VALUE=””>
</FORM>
</BODY>
</HTML>

windowObject.clearTimeout()

4855-7 ch02.F 6/26/01 8:35 AM Page 156

157Chapter 2 ✦ Window and Frame Objects (Chapter 16)

Notice that the script establishes three variables with global scope in the win-

dow: running, endTime, and timerID. These values are needed inside multiple

functions, so they are initialized outside of the functions.

Figure 2-6: The countdown timer page as it displays the time remaining

In the startTimer() function, you switch the running flag on, meaning that the

timer should be going. Using some date functions (see Chapter 36 of the JavaScript
Bible), you extract the current time in milliseconds and add the number of millisec-

onds for the next minute (the extra multiplication by one is the place where you

can change the amount to the desired number of minutes). With the end time

stored in a global variable, the function now calls another function that compares

the current and end times and displays the difference in the text field.

Early in the showCountDown() function, check to see if the timer has wound

down. If so, you stop the timer and alert the user. Otherwise, the function continues

to calculate the difference between the two times and formats the time in mm:ss

format. As long as the running flag is set to true, the function sets the one-second

timeout timer before repeating itself. To stop the timer before it has run out (in the

stopTimer() function), the most important step is to cancel the timeout running

inside the browser. The clearTimeout() method uses the global timerID value to

do that. Then the function turns off the running switch and zeros out the display.

When you run the timer, you may occasionally notice that the time skips a sec-

ond. It’s not cheating. It just takes slightly more than one second to wait for the

timeout and then finish the calculations for the next second’s display. What you’re

seeing is the display catching up with the real time left.

close()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

windowObject.close()

4855-7 ch02.F 6/26/01 8:35 AM Page 157

158 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example
See Listing 16-4 (for the window.closed property), which provides an elaborate,

cross-platform, bug-accommodating example of applying the window.close()
method across multiple windows.

confirm(“message”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The example in Listing 16-23 shows the user interface part of how you can use a

confirm dialog box to query a user before clearing a table full of user-entered data.

The line in the title bar, as shown in Figure 2-7, or the “JavaScript Confirm” legend in

earlier browser versions, cannot be removed from the dialog box.

Listing 16-23: The Confirm Dialog Box

<HTML>
<HEAD>
<TITLE>window.confirm() Method</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function clearTable() {

if (confirm(“Are you sure you want to empty the table?”)) {
alert(“Emptying the table...”) // for demo purposes
//statements that actually empty the fields

}
}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
<!-- other statements that display and populate a large table -->
<INPUT TYPE=”button” NAME=”clear” VALUE=”Reset Table” onClick=”clearTable()”>
</FORM>
</BODY>
</HTML>

Figure 2-7: A JavaScript confirm
dialog box (IE5/Windows format)

windowObject.confirm()

4855-7 ch02.F 6/26/01 8:35 AM Page 158

159Chapter 2 ✦ Window and Frame Objects (Chapter 16)

createPopup()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
See Listing 16-49 later in this chapter for an example of the createPopup()

method.

disableExternalCapture()
enableExternalCapture()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
As this was a little-used feature of NN4 even while the browser enjoyed a sub-

stantial installed base, it becomes less important as that browser version recedes

into history. You can find an example of this feature at the Support Center for this

book (http://www.dannyg.com/update.html) or on pp.213–214 of the JavaScript
Bible, 3rd edition.

execScript(“exprList”[, language])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

execScript() method. The Evaluator has predeclared global variables for the low-

ercase letters a through z. Enter each of the following statements into the top text

box and observe the results for each.

a

When first loaded, the variable is declared but assigned no value, so it is

undefined.

window.execScript(“a = 5”)

windowObject.execScript()

4855-7 ch02.F 6/26/01 8:35 AM Page 159

160 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

The method returns no value, so the mechanism inside The Evaluator says that the

statement is undefined.

a

The variable is now 5.

window.execScript(“b = a * 50”)
b

The b global variable has a value of 250. Continue exploring with additional

script statements. Use semicolons to separate multiple statements within the string

parameter.

find([“searchString” [, matchCaseBoolean,
searchUpBoolean]])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
A simple call to the window.find() method looks as follows:

var success = window.find(“contract”)

If you want the search to be case-sensitive, add at least one of the two optional

parameters:

success = wind.find(matchString,caseSensitive,backward)

Because this method works only in NN4, refer to discussions of the TextRange
and Range objects in Chapter 19 of the JavaScript Bible for more modern implemen-

tations of body text searching.

GetAttention()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) in NN6 to set a timer that

gives you enough time to switch to another application and wait for the attention

signal to fire. Enter the following statement into the top text box, click the Evaluate

button, and then quickly switch to another program:

setTimeout(“GetAttention()”, 5000)

After a total of five seconds, the attention signal fires.

windowObject.GetAttention()

4855-7 ch02.F 6/26/01 8:35 AM Page 160

161Chapter 2 ✦ Window and Frame Objects (Chapter 16)

moveBy(deltaX,deltaY)
moveTo(x,y)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Example
Several examples of using the window.moveTo() and window.moveBy() meth-

ods are shown in Listing 16-24. The page presents four buttons, each of which per-

forms a different kind of browser window movement.

Listing 16-24: Window Boogie

<HTML>
<HEAD>
<TITLE>Window Gymnastics</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.2”>
var isNav4 = ((navigator.appName == “Netscape”) &&
(parseInt(navigator.appVersion) >= 4))
// wait in onLoad for page to load and settle in IE
function init() {

// fill missing IE properties
if (!window.outerWidth) {

window.outerWidth = document.body.clientWidth
window.outerHeight = document.body.clientHeight + 30

}
// fill missing IE4 properties
if (!screen.availWidth) {

screen.availWidth = 640
screen.availHeight = 480

}
}
// function to run when window captures a click event
function moveOffScreen() {

// branch for NN security
if (isNav4) {

netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserWrite”)
}
var maxX = screen.width
var maxY = screen.height
window.moveTo(maxX+1, maxY+1)
setTimeout(“window.moveTo(0,0)”,500)
if (isNav4) {

netscape.security.PrivilegeManager.disablePrivilege(“UniversalBrowserWrite”)
}

Continued

windowObject.moveBy()

4855-7 ch02.F 6/26/01 8:35 AM Page 161

162 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-24 (continued)

}
// moves window in a circular motion
function revolve() {

var winX = (screen.availWidth - window.outerWidth) / 2
var winY = 50
window.resizeTo(400,300)
window.moveTo(winX, winY)

for (var i = 1; i < 36; i++) {
winX += Math.cos(i * (Math.PI/18)) * 5
winY += Math.sin(i * (Math.PI/18)) * 5
window.moveTo(winX, winY)

}
}
// moves window in a horizontal zig-zag pattern
function zigzag() {

window.resizeTo(400,300)
window.moveTo(0,80)
var incrementX = 2
var incrementY = 2
var floor = screen.availHeight - window.outerHeight
var rightEdge = screen.availWidth - window.outerWidth
for (var i = 0; i < rightEdge; i += 2) {

window.moveBy(incrementX, incrementY)
if (i%60 == 0) {

incrementY = -incrementY
}

}
}
// resizes window to occupy all available screen real estate
function maximize() {

window.moveTo(0,0)
window.resizeTo(screen.availWidth, screen.availHeight)

}
</SCRIPT>
</HEAD>
<BODY onLoad=”init()”>
<FORM NAME=”buttons”>
Window Gymnastics<P>

<INPUT NAME=”offscreen” TYPE=”button” VALUE=”Disappear a Second”
onClick=”moveOffScreen()”>
<INPUT NAME=”circles” TYPE=”button” VALUE=”Circular Motion”
onClick=”revolve()”>
<INPUT NAME=”bouncer” TYPE=”button” VALUE=”Zig Zag” onClick=”zigzag()”>
<INPUT NAME=”expander” TYPE=”button” VALUE=”Maximize” onClick=”maximize()”>

</FORM>
</BODY>
</HTML>

windowObject.moveBy()

4855-7 ch02.F 6/26/01 8:35 AM Page 162

163Chapter 2 ✦ Window and Frame Objects (Chapter 16)

To run successfully in NN, the first button requires that you have codebase prin-

cipals turned on (see Chapter 46 of the JavaScript Bible) to take advantage of what

would normally be a signed script. The moveOffScreen() function momentarily

moves the window entirely out of view. Notice how the script determines the size of

the screen before deciding where to move the window. After the journey off screen,

the window comes back into view at the upper-left corner of the screen.

If using the Web sometimes seems like going around in circles, then the second

function, revolve(), should feel just right. After reducing the size of the window

and positioning it near the top center of the screen, the script uses a bit of math to

position the window along 36 places around a perfect circle (at 10-degree incre-

ments). This is an example of how to control a window’s position dynamically

based on math calculations. IE complicates the job a bit by not providing proper-

ties that reveal the outside dimensions of the browser window.

To demonstrate the moveBy() method, the third function, zigzag(), uses a for
loop to increment the coordinate points to make the window travel in a saw tooth

pattern across the screen. The x coordinate continues to increment linearly until

the window is at the edge of the screen (also calculated on the fly to accommodate

any size monitor). The y coordinate must increase and decrease as that parameter

changes direction at various times across the screen.

In the fourth function, you see some practical code (finally) that demonstrates

how best to simulate maximizing the browser window to fill the entire available

screen space on the visitor’s monitor.

navigate(“URL”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Example
Supply any valid URL as the parameter to the method, as in

window.navigate(“http://www.dannyg.com”)

open(“URL”, “windowName” [,
“windowFeatures”][,replaceFlag])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The page rendered by Listing 16-26 displays a single button that generates a new

window of a specific size that has only the statusbar turned on. The script here

windowObject.open()

4855-7 ch02.F 6/26/01 8:35 AM Page 163

164 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

shows all the elements necessary to create a new window that has all the right stuff

on most platforms. The new window object reference is assigned to a global vari-

able, newWindow. Before a new window is generated, the script looks to see if the

window has never been generated before (in which case newWindow would be

null) or, for newer browsers, the window is closed. If either condition is true, the

window is created with the open() method. Otherwise, the existing window is

brought forward with the focus() method (NN3+ and IE4+).

As a safeguard against older browsers, the script manually adds an opener prop-

erty to the new window if one is not already assigned by the open() method. The

current window object reference is assigned to that property.

Due to the timing problem that afflicts all IE generations, the HTML assembly and

writing to the new window is separated into its own function that is invoked after a

50 millisecond delay (NN goes along for the ride, but it could accommodate the

assembly and writing without the delay). To build the string that is eventually writ-

ten to the document, I use the += (add-by-value) operator, which appends the string

on the right side of the operator to the string stored in the variable on the left side.

In this example, the new window is handed an <H1>-level line of text to display.

Listing 16-26: Creating a New Window

<HTML>
<HEAD>
<TITLE>New Window</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var newWindow
function makeNewWindow() {

if (!newWindow || newWindow.closed) {
newWindow = window.open(“”,””,”status,height=200,width=300”)
if (!newWindow.opener) {
newWindow.opener = window
}
// force small delay for IE to catch up
setTimeout(“writeToWindow()”, 50)

} else {
// window’s already open; bring to front
newWindow.focus()

}
}
function writeToWindow() {

// assemble content for new window
var newContent = “<HTML><HEAD><TITLE>One Sub Window</TITLE></HEAD>”
newContent += “<BODY><H1>This window is brand new.</H1>”
newContent += “</BODY></HTML>”
// write HTML to new window document
newWindow.document.write(newContent)
newWindow.document.close() // close layout stream

}
</SCRIPT>
</HEAD>
<BODY>
<FORM>

windowObject.open()

4855-7 ch02.F 6/26/01 8:35 AM Page 164

165Chapter 2 ✦ Window and Frame Objects (Chapter 16)

<INPUT TYPE=”button” NAME=”newOne” VALUE=”Create New Window”
onClick=”makeNewWindow()”>
</FORM>
</BODY>
</HTML>

If you need to create a new window for the lowest common denominator of

scriptable browser, you will have to omit the focus() method and the

window.closed property from the script (as well as add the NN2 bug workaround

described earlier). Or you may prefer to forego a subwindow for all browsers below

a certain level. See Listing 16-3 (in the window.closed property discussion) for

other ideas about cross-browser authoring for subwindows.

print()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Listing 16-27 is a frameset that loads Listing 16-28 into the top frame and a copy

of the Bill of Rights into the bottom frame.

Listing 16-27: Print Frameset

<HTML>
<HEAD>
<TITLE>window.print() method</TITLE>
</HEAD>
<FRAMESET ROWS=”25%,75%”>

<FRAME NAME=”controls” SRC=”lst16-28.htm”>
<FRAME NAME=”display” SRC=”bofright.htm”>

</FRAMESET>
</HTML>

Two buttons in the top control panel (Listing 16-28) let you print the whole

frameset (in those browsers and OSs that support it) or just the lower frame. To

print the entire frameset, the reference includes the parent window; to print the

lower frame, the reference is directed at the parent.display frame.

windowObject.print()

4855-7 ch02.F 6/26/01 8:35 AM Page 165

166 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-28: Printing Control

<HTML>
<HEAD>
<TITLE>Print()</TITLE>
</HEAD>
<BODY>
<FORM>
<INPUT TYPE=”button” NAME=”printWhole” VALUE=”Print Entire Frameset”
onClick=”parent.print()”><P>
<INPUT TYPE=”button” NAME=”printFrame” VALUE=”Print Bottom Frame Only”
onClick=”parent.display.print()”><P>
</FORM>
</BODY>
</HTML>

If you don’t like some facet of the printed output, blame the browser’s print

engine, and not JavaScript. The print() method merely invokes the browser’s reg-

ular printing routines. Pages whose content is generated entirely by JavaScript

print only in NN3+ and IE4+.

prompt(“message”, “defaultReply”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The function that receives values from the prompt dialog box in Listing 16-29

(see the dialog box in Figure 2-8) does some data-entry validation (but certainly not

enough for a commercial site). The function first checks to make sure that the

returned value is neither null (Cancel) nor an empty string (the user clicked OK

without entering any values). See Chapter 43 of the JavaScript Bible for more about

data-entry validation.

Listing 16-29: The Prompt Dialog Box

<HTML>
<HEAD>
<TITLE>window.prompt() Method</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function populateTable() {

var howMany = prompt(“Fill in table for how many factors?”,””)
if (howMany != null && howMany != “”) {

windowObject.prompt()

4855-7 ch02.F 6/26/01 8:35 AM Page 166

167Chapter 2 ✦ Window and Frame Objects (Chapter 16)

alert(“Filling the table for “ + howMany) // for demo
//statements that validate the entry and
//actually populate the fields of the table

}
}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
<!-- other statements that display and populate a large table -->
<INPUT TYPE=”button” NAME=”fill” VALUE=”Fill Table...”
onClick=”populateTable()”>
</FORM>
</BODY>
</HTML>

Figure 2-8: The prompt dialog box displayed from
Listing 16-29 (Windows format)

Notice one important user interface element in Listing 16-29. Because clicking

the button leads to a dialog box that requires more information from the user, the

button’s label ends in an ellipsis (or, rather, three periods acting as an ellipsis char-

acter). The ellipsis is a common courtesy to let users know that a user interface ele-

ment leads to a dialog box of some sort. As in similar situations in Windows and

Macintosh programs, the user should be able to cancel out of that dialog box and

return to the same screen state that existed before the button was clicked.

resizeBy(deltaX,deltaY)
resizeTo(outerwidth,outerheight)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Example
You can experiment with the resize methods with the page in Listing 16-30. Two

parts of a form let you enter values for each method. The one for window.resize()
also lets you enter a number of repetitions to better see the impact of the values.

Enter zero and negative values to see how those affect the method. Also test the

limits of different browsers.

windowObject.resizeBy()

4855-7 ch02.F 6/26/01 8:35 AM Page 167

168 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-30: Window Resize Methods

<HTML>
<HEAD>
<TITLE>Window Resize Methods</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function doResizeBy(form) {

var x = parseInt(form.resizeByX.value)
var y = parseInt(form.resizeByY.value)
var count = parseInt(form.count.value)
for (var i = 0; i < count; i++) {

window.resizeBy(x, y)
}

}
function doResizeTo(form) {

var x = parseInt(form.resizeToX.value)
var y = parseInt(form.resizeToY.value)
window.resizeTo(x, y)

}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
Enter the x and y increment, plus how many times the window should be resized
by these increments:

Horiz:<INPUT TYPE=”text” NAME=”resizeByX” SIZE=4>
Vert:<INPUT TYPE=”text” NAME=”resizeByY” SIZE=4>
How Many:<INPUT TYPE=”text” NAME=”count” SIZE=4>
<INPUT TYPE=”button” NAME=”ResizeBy” VALUE=”Show resizeBy()”
onClick=”doResizeBy(this.form)”>
<HR>
Enter the desired width and height of the current window:

Width:<INPUT TYPE=”text” NAME=”resizeToX” SIZE=4>
Height:<INPUT TYPE=”text” NAME=”resizeToY” SIZE=4>
<INPUT TYPE=”button” NAME=”ResizeTo” VALUE=”Show resizeTo()”
onClick=”doResizeTo(this.form)”>
</FORM>
</BODY>
</HTML>

routeEvent(event)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

windowObject.routeEvent()

4855-7 ch02.F 6/26/01 8:35 AM Page 168

169Chapter 2 ✦ Window and Frame Objects (Chapter 16)

Example
The window.routeEvent() method is used in the example for

window.captureEvents(), Listing 16-21.

scroll(horizontalCoord, verticalCoord)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

Example
To demonstrate the scroll() method, Listing 16-31 defines a frameset with a

document in the top frame (Listing 16-32) and a control panel in the bottom frame

(Listing 16-33). A series of buttons and text fields in the control panel frame directs

the scrolling of the document. I’ve selected an arbitrary, large GIF image to use in

the example. To see results of some horizontal scrolling values, you may need to

shrink the width of the browser window until a horizontal scrollbar appears in the

top frame. Figure 2-9 shows the results in a shrunken window with modest horizon-

tal and vertical scroll values entered into the bottom text boxes. If you substitute

scrollTo() for the scroll() methods in Listing 16-33, the results will be the

same, but you will need version browsers at a minimum to run it.

Listing 16-31: A Frameset for the scroll() Demonstration

<HTML>
<HEAD>
<TITLE>window.scroll() Method</TITLE>
</HEAD>

<FRAMESET ROWS=”50%,50%”>
<FRAME SRC=”lst16-32.htm” NAME=”display”>
<FRAME SRC=”lst16-33.htm” NAME=”control”>

</FRAMESET>
</HTML>

Listing 16-32: The Image to Be Scrolled

<HTML>
<HEAD>
<TITLE>Arch</TITLE>
</HEAD>

Continued

windowObject.scroll()

4855-7 ch02.F 6/26/01 8:35 AM Page 169

170 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-32 (continued)

<BODY>
<H1>A Picture is Worth...</H1>
<HR>
<CENTER>
<TABLE BORDER=3>
<CAPTION ALIGN=bottom>A Splendid Arch</CAPTION>
<TD>

</TD></TABLE></CENTER>
</BODY>
</HTML>

Listing 16-33: Controls to Adjust Scrolling of the Upper Frame

<HTML>
<HEAD>
<TITLE>Scroll Controller</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.1”>
function scroll(x,y) {

parent.frames[0].scroll(x,y)
}
function customScroll(form) {

parent.frames[0].scroll(parseInt(form.x.value),parseInt(form.y.value))
}
</SCRIPT>
</HEAD>
<BODY>
<H2>Scroll Controller</H2>
<HR>
<FORM NAME=”fixed”>
Click on a scroll coordinate for the upper frame:<P>
<INPUT TYPE=”button” VALUE=”0,0” onClick=”scroll(0,0)”>
<INPUT TYPE=”button” VALUE=”0,100” onClick=”scroll(0,100)”>
<INPUT TYPE=”button” VALUE=”100,0” onClick=”scroll(100,0)”>
<P>
<INPUT TYPE=”button” VALUE=”-100,100” onClick=”scroll(-100,100)”>
<INPUT TYPE=”button” VALUE=”20,200” onClick=”scroll(20,200)”>
<INPUT TYPE=”button” VALUE=”1000,3000” onClick=”scroll(1000,3000)”>
</FORM>
<HR>
<FORM NAME=”custom”>
Enter a Horizontal
<INPUT TYPE=”text” NAME=”x” VALUE=”0” SIZE=4>
and Vertical
<INPUT TYPE=”text” NAME=”y” VALUE=”0” SIZE=4>
value. Then

windowObject.scroll()

4855-7 ch02.F 6/26/01 8:35 AM Page 170

171Chapter 2 ✦ Window and Frame Objects (Chapter 16)

<INPUT TYPE=”button” VALUE=”click to scroll” onClick=”customScroll(this.form)”>
</FORM>
</BODY>
</HTML>

Figure 2-9: Scripts control the scrolling of the top frame

Notice that in the customScroll() function, JavaScript must convert the string

values from the two text boxes to integers (with the parseInt() method) for the

scroll() method to accept them. Nonnumeric data can produce very odd results.

Also be aware that although this example shows how to adjust the scroll values in

another frame, you can set such values in the same frame or window as the script,

as well as in subwindows, provided that you use the correct object references to

the window.

scrollBy(deltaX,deltaY)
scrollTo(x,y)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

windowObject.scrollBy()

4855-7 ch02.F 6/26/01 8:35 AM Page 171

172 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example
To work with the scrollTo() method, you can use Listings 16-31 through 16-33

(the window.scroll() method) but substitute window.scrollTo() for window.
scroll(). The results should be the same. For scrollBy(), the example starts with

the frameset in Listing 16-34. It loads the same content document as the window.
scroll() example (Listing 16-32), but the control panel (Listing 16-35) provides

input to experiment with the scrollBy() method.

Listing 16-34: Frameset for ScrollBy Controller

<HTML>
<HEAD>
<TITLE>window.scrollBy() Method</TITLE>
</HEAD>

<FRAMESET ROWS=”50%,50%”>
<FRAME SRC=”lst16-32.htm” NAME=”display”>
<FRAME SRC=”lst16-35.htm” NAME=”control”>

</FRAMESET>
</HTML>

Notice in Listing 16-35 that all references to window properties and methods are

directed to the display frame. String values retrieved from text fields are con-

verted to number with the parseInt() global function.

Listing 16-35: ScrollBy Controller

<HTML>
<HEAD>
<TITLE>ScrollBy Controller</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.2”>
function page(direction) {

var pixFrame = parent.display
var deltaY = (pixFrame.innerHeight) ? pixFrame.innerHeight :

pixFrame.document.body.scrollHeight
if (direction == “up”) {

deltaY = -deltaY
}
parent.display.scrollBy(0, deltaY)

}
function customScroll(form) {

parent.display.scrollBy(parseInt(form.x.value), parseInt(form.y.value))
}
</SCRIPT>
</HEAD>
<BODY>
ScrollBy Controller
<FORM NAME=”custom”>
Enter an Horizontal increment

windowObject.scrollBy()

4855-7 ch02.F 6/26/01 8:35 AM Page 172

173Chapter 2 ✦ Window and Frame Objects (Chapter 16)

<INPUT TYPE=”text” NAME=”x” VALUE=”0” SIZE=4”>
and Vertical
<INPUT TYPE=”text” NAME=”y” VALUE=”0” SIZE=4”>
value.
Then
<INPUT TYPE=”button” VALUE=”click to scrollBy()”
onClick=”customScroll(this.form)”>
<HR>
<INPUT TYPE=”button” VALUE=”PageDown” onClick=”page(‘down’)”>
<INPUT TYPE=”button” VALUE=”PageUp” onClick=”page(‘up’)”>

</FORM>
</BODY>
</HTML>

setCursor(“cursorType”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) in NN6 to experiment with

setting the cursor. After clicking the top text box in preparation for typing, roll the

cursor to a location atop an empty spot on the page. Then enter the following state-

ments one at a time into the top text box and press Enter/Return:

setCursor(“wait”)
setCursor(“spinning”
setCursor(“move”)

After evaluating each statement, roll the cursor around the page, and notice

where the cursor reverts to its normal appearance.

setInterval(“expr”, msecDelay [, language])
setInterval(funcRef, msecDelay [, funcarg1,
..., funcargn])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Example
The demonstration of the setInterval() method entails a two-framed environ-

ment. The framesetting document is shown in Listing 16-36.

windowObject.setInterval()

4855-7 ch02.F 6/26/01 8:35 AM Page 173

174 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-36: setInterval() Demonstration Frameset

<HTML>
<HEAD>
<TITLE>setInterval() Method</TITLE>
</HEAD>

<FRAMESET ROWS=”50%,50%”>
<FRAME SRC=”lst16-37.htm” NAME=”control”>
<FRAME SRC=”bofright.htm” NAME=”display”>

</FRAMESET>
</HTML>

In the top frame is a control panel with several buttons that control the automatic

scrolling of the Bill of Rights text document in the bottom frame. Listing 16-37 shows

the control panel document. Many functions here control the interval, scrolling jump

size, and direction, and they demonstrate several aspects of applying setInterval().

Notice that in the beginning the script establishes a number of global variables.

Three of them are parameters that control the scrolling; the last one is for the ID

value returned by the setInterval() method. The script needs that value to be a

global value so that a separate function can halt the scrolling with the

clearInterval() method.

All scrolling is performed by the autoScroll() function. For the sake of simplic-

ity, all controlling parameters are global variables. In this application, placement of

those values in global variables helps the page restart autoscrolling with the same

parameters as it had when it last ran.

Listing 16-37: setInterval() Control Panel

<HTML>
<HEAD>
<TITLE>ScrollBy Controller</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.2”>
var scrollSpeed = 500
var scrollJump = 1
var scrollDirection = “down”
var intervalID

function autoScroll() {
if (scrollDirection == “down”) {

scrollJump = Math.abs(scrollJump)
} else if (scrollDirection == “up” && scrollJump > 0) {

scrollJump = -scrollJump
}
parent.display.scrollBy(0, scrollJump)
if (parent.display.pageYOffset <= 0) {

windowObject.setInterval()

4855-7 ch02.F 6/26/01 8:35 AM Page 174

175Chapter 2 ✦ Window and Frame Objects (Chapter 16)

clearInterval(intervalID)
}

}

function reduceInterval() {
stopScroll()
scrollSpeed -= 200
startScroll()

}
function increaseInterval() {

stopScroll()
scrollSpeed += 200
startScroll()

}
function reduceJump() {

scrollJump -= 2
}
function increaseJump() {

scrollJump += 2
}
function swapDirection() {

scrollDirection = (scrollDirection == “down”) ? “up” : “down”
}
function startScroll() {

parent.display.scrollBy(0, scrollJump)
if (intervalID) {

clearInterval(intervalID)
}
intervalID = setInterval(“autoScroll()”,scrollSpeed)

}
function stopScroll() {

clearInterval(intervalID)
}
</SCRIPT>
</HEAD>
<BODY onLoad=”startScroll()”>
AutoScroll by setInterval() Controller
<FORM NAME=”custom”>
<INPUT TYPE=”button” VALUE=”Start Scrolling” onClick=”startScroll()”>
<INPUT TYPE=”button” VALUE=”Stop Scrolling” onClick=”stopScroll()”><P>
<INPUT TYPE=”button” VALUE=”Shorter Time Interval” onClick=”reduceInterval()”>
<INPUT TYPE=”button” VALUE=”Longer Time Interval”
onClick=”increaseInterval()”><P>
<INPUT TYPE=”button” VALUE=”Bigger Scroll Jumps” onClick=”increaseJump()”>
<INPUT TYPE=”button” VALUE=”Smaller Scroll Jumps” onClick=”reduceJump()”><P>
<INPUT TYPE=”button” VALUE=”Change Direction” onClick=”swapDirection()”>

</FORM>
</BODY>
</HTML>

windowObject.setInterval()

4855-7 ch02.F 6/26/01 8:35 AM Page 175

176 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

The setInterval() method is invoked inside the startScroll() function.

This function initially “burps” the page by one scrollJump interval so that the test

in autoScroll() for the page being scrolled all the way to the top doesn’t halt a

page from scrolling before it gets started. Notice, too, that the function checks for

the existence of an interval ID. If one is there, it is cleared before the new one is set.

This is crucial within the design of the example page, because repeated clicking of

the Start Scrolling button triggers multiple interval timers inside the browser. Only

the most recent one’s ID would be stored in intervalID, allowing no way to clear

the older ones. But this little side trip makes sure that only one interval timer is

running. One of the global variables, scrollSpeed, is used to fill the delay parame-

ter for setInterval(). To change this value on the fly, the script must stop the

current interval process, change the scrollSpeed value, and start a new process.

The intensely repetitive nature of this application is nicely handled by the

setInterval() method.

setTimeout(“expr”, msecDelay [, language])
setTimeout(functionRef, msecDelay [,
funcarg1, ..., funcargn])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
When you load the HTML page in Listing 16-38, it triggers the updateTime()

function, which displays the time (in hh:mm am/pm format) in the statusbar.

Instead of showing the seconds incrementing one by one (which may be distracting

to someone trying to read the page), this function alternates the last character of

the display between an asterisk and nothing, like a visual “heartbeat.”

Listing 16-38: Display the Current Time

<HTML>
<HEAD>
<TITLE>Status Bar Clock</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
<!--
var flasher = false
// calculate current time, determine flasher state,
// and insert time into status bar every second
function updateTime() {

var now = new Date()
var theHour = now.getHours()
var theMin = now.getMinutes()
var theTime = “” + ((theHour > 12) ? theHour - 12 : theHour)
theTime += ((theMin < 10) ? “:0” : “:”) + theMin

windowObject.setTimeout()

4855-7 ch02.F 6/26/01 8:35 AM Page 176

177Chapter 2 ✦ Window and Frame Objects (Chapter 16)

theTime += (theHour >= 12) ? “ pm” : “ am”
theTime += ((flasher) ? “ “ : “*”)
flasher = !flasher
window.status = theTime
// recursively call this function every second to keep timer going
timerID = setTimeout(“updateTime()”,1000)

}
//-->
</SCRIPT>
</HEAD>

<BODY onLoad=”updateTime()”>
</BODY>
</HTML>

In this function, the setTimeout() method works in the following way: Once the

current time (including the flasher status) appears in the statusbar, the function

waits approximately one second (1,000 milliseconds) before calling the same func-

tion again. You don’t have to clear the timerID value in this application because

JavaScript does it for you every time the 1,000 milliseconds elapse.

A logical question to ask is whether this application should be using

setInterval() instead of setTimeout(). This is a case in which either one does

the job. To use setInterval() here would require that the interval process start

outside of the updateTime() function, because you need only one process running

that repeatedly calls updateTime(). It would be a cleaner implementation in that

regard, instead of the tons of timeout processes spawned by Listing 16-38. On the

other hand, the application would not run in any browsers before NN4 or IE4, as

Listing 16-38 does.

To demonstrate passing parameters, you can modify the updateTime() function

to add the number of times it gets invoked to the display in the statusbar. For that

to work, the function must have a parameter variable so that it can catch a new

value each time it is invoked by setTimeout()’s expression. For all browsers, the

function would be modified as follows (unchanged lines are represented by the

ellipsis):

function updateTime(i) {
...
window.status = theTime + “ (“ + i + “)”
// pass updated counter value with next call to this function
timerID = setTimeout(“updateTime(“ + i+1 + “)”,1000)

}

If you were running this exclusively in NN4+, you could use its more convenient way

of passing parameters to the function:

timerID = setTimeout(updateTime,1000, i+1)

In either case, the onLoad event handler would also have to be modified to get the

ball rolling with an initial parameter:

onLoad = “updateTime(0)”

windowObject.setTimeout()

4855-7 ch02.F 6/26/01 8:35 AM Page 177

178 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

One warning about setTimeout() functions that dive into themselves as fre-
quently as this one does: Each call eats up a bit more memory for the browser
application in Navigator 2. If you let this clock run for a while, some browsers may
encounter memory difficulties, depending on which operating system they’re
using. But considering the amount of time the typical user spends on Web pages
(even if only 10 or 15 minutes), the function shouldn’t present a problem. And any
reloading invoked by the user (such as by resizing the window in Navigator 2)
frees up memory once again.

showModalDialog(“URL”[, arguments]
[, features])
showModelessDialog(“URL”[, arguments]
[, features])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility (�) � �

Example
To demonstrate the two styles of dialog boxes, I have implemented the same

functionality (setting some session visual preferences) for both modal and mode-

less dialog boxes. This tactic shows you how to pass data back and forth between

the main page and both styles of dialog box windows.

The first example demonstrates how to use a modal dialog box. In the process,

data is passed into the dialog box window and values are returned. Listing 16-39 is

the HTML and scripting for the main page. A button’s onClick event handler invokes

a function that opens the modal dialog box. The dialog box’s document (Listing

16-40) contains several form elements for entering a user name and selecting a few

color styles for the main page. Data from the dialog is fashioned into an array to be

sent back to the main window. That array is initially assigned to a local variable,

prefs, as the dialog box closes. If the user cancels the dialog box, the returned value

is an empty string, so nothing more in getPrefsData() executes. But when the user

clicks OK, the array comes back. Each of the array items is read and assigned to its

respective form value or style property. These values are also preserved in the global

currPrefs array. This allows the settings to be sent to the modal dialog box (as the

second parameter to showModalDialog()) the next time the dialog box is opened.

Listing 16-39: Main Page for showModalDialog()

<HTML>
<HEAD>
<TITLE>window.setModalDialog() Method</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var currPrefs = new Array()

Caution

windowObject.showModalDialog()

4855-7 ch02.F 6/26/01 8:35 AM Page 178

179Chapter 2 ✦ Window and Frame Objects (Chapter 16)

function getPrefsData() {
var prefs = showModalDialog(“lst16-40.htm”, currPrefs,

“dialogWidth:400px; dialogHeight:300px”)
if (prefs) {

if (prefs[“name”]) {
document.all.firstName.innerText = prefs[“name”]
currPrefs[“name”] = prefs[“name”]

}
if (prefs[“bgColor”]) {

document.body.style.backgroundColor = prefs[“bgColor”]
currPrefs[“bgColor”] = prefs[“bgColor”]

}
if (prefs[“textColor”]) {

document.body.style.color = prefs[“textColor”]
currPrefs[“textColor”] = prefs[“textColor”]

}
if (prefs[“h1Size”]) {

document.all.welcomeHeader.style.fontSize = prefs[“h1Size”]
currPrefs[“h1Size”] = prefs[“h1Size”]

}
}

}
function init() {

document.all.firstName.innerText = “friend”
}
</SCRIPT>

</HEAD>
<BODY BGCOLOR=”#eeeeee” STYLE=”margin:20px” onLoad=”init()”>
<H1>window.setModalDialog() Method</H1>
<HR>
<H2 ID=”welcomeHeader”>Welcome, !</H2>
<HR>
<P>Use this button to set style preferences for this page:
<BUTTON ID=”prefsButton” onClick=”getPrefsData()”>
Preferences
</BUTTON>
</BODY>
</HTML>

The dialog box’s document, shown in Listing 16-40, is responsible for reading the

incoming data (and setting the form elements accordingly) and assembling form

data for return to the main window’s script. Notice when you load the example that

the TITLE element of the dialog box’s document appears in the dialog box window’s

title bar.

When the page loads into the dialog box window, the init() function examines

the window.dialogArguments property. If it has any data, the data is used to pre-

set the form elements to mirror the current settings of the main page. A utility func-

tion, setSelected(), pre-selects the option of a SELECT element to match the

current settings.

windowObject.showModalDialog()

4855-7 ch02.F 6/26/01 8:35 AM Page 179

180 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Buttons at the bottom of the page are explicitly positioned to be at the lower-

right corner of the window. Each button invokes a function to do what is needed

to close the dialog box. In the case of the OK button, the handleOK() function

sets the window.returnValue property to the data that come back from the

getFormData() function. This latter function reads the form element values and

packages them in an array using the form elements’ names as array indices. This

helps keep everything straight back in the main window’s script, which uses the

index names, and is therefore not dependent upon the precise sequence of the form

elements in the dialog box window.

Listing 16-40: Document for the Modal Dialog

<HTML>
<HEAD>
<TITLE>User Preferences</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// Close the dialog
function closeme() {

window.close()
}

// Handle click of OK button
function handleOK() {

window.returnValue = getFormData()
closeme()

}

// Handle click of Cancel button
function handleCancel() {

window.returnValue = “”
closeme()

}
// Generic function converts form element name-value pairs
// into an array
function getFormData() {

var form = document.prefs
var returnedData = new Array()
// Harvest values for each type of form element
for (var i = 0; i < form.elements.length; i++) {

if (form.elements[i].type == “text”) {
returnedData[form.elements[i].name] = form.elements[i].value

} else if (form.elements[i].type.indexOf(“select”) != -1) {
returnedData[form.elements[i].name] =
form.elements[i].options[form.elements[i].selectedIndex].value

} else if (form.elements[i].type == “radio”) {
returnedData[form.elements[i].name] = form.elements[i].value

} else if (form.elements[i].type == “checkbox”) {
returnedData[form.elements[i].name] = form.elements[i].value

} else continue
}
return returnedData

}

windowObject.showModalDialog()

4855-7 ch02.F 6/26/01 8:35 AM Page 180

181Chapter 2 ✦ Window and Frame Objects (Chapter 16)

// Initialize by setting form elements from passed data
function init() {

if (window.dialogArguments) {
var args = window.dialogArguments
var form = document.prefs
if (args[“name”]) {

form.name.value = args[“name”]
}
if (args[“bgColor”]) {

setSelected(form.bgColor, args[“bgColor”])
}
if (args[“textColor”]) {

setSelected(form.textColor, args[“textColor”])
}
if (args[“h1Size”]) {

setSelected(form.h1Size, args[“h1Size”])
}

}
}
// Utility function to set a SELECT element to one value
function setSelected(select, value) {

for (var i = 0; i < select.options.length; i++) {
if (select.options[i].value == value) {

select.selectedIndex = i
break

}
}
return

}
// Utility function to accept a press of the
// Enter key in the text field as a click of OK
function checkEnter() {

if (window.event.keyCode == 13) {
handleOK()

}
}
</SCRIPT>
</HEAD>

<BODY BGCOLOR=”#eeeeee” onLoad=”init()”>
<H2>Web Site Preferences</H2>
<HR>
<TABLE BORDER=0 CELLSPACING=2>
<FORM NAME=”prefs” onSubmit=”return false”>
<TR>
<TD>Enter your first name:<INPUT NAME=”name” TYPE=”text” VALUE=”” SIZE=20
onKeyDown=”checkEnter()”>
</TR>

<TR>
<TD>Select a background color:
<SELECT NAME=”bgColor”>

<OPTION VALUE=”beige”>Beige
<OPTION VALUE=”antiquewhite”>Antique White

Continued

windowObject.showModalDialog()

4855-7 ch02.F 6/26/01 8:35 AM Page 181

182 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-40 (continued)

<OPTION VALUE=”goldenrod”>Goldenrod
<OPTION VALUE=”lime”>Lime
<OPTION VALUE=”powderblue”>Powder Blue
<OPTION VALUE=”slategray”>Slate Gray

</SELECT>
</TR>

<TR>
<TD>Select a text color:
<SELECT NAME=”textColor”>

<OPTION VALUE=”black”>Black
<OPTION VALUE=”white”>White
<OPTION VALUE=”navy”>Navy Blue
<OPTION VALUE=”darkorange”>Dark Orange
<OPTION VALUE=”seagreen”>Sea Green
<OPTION VALUE=”teal”>Teal

</SELECT>
</TR>

<TR>
<TD>Select “Welcome” heading font point size:
<SELECT NAME=”h1Size”>

<OPTION VALUE=”12”>12
<OPTION VALUE=”14”>14
<OPTION VALUE=”18”>18
<OPTION VALUE=”24”>24
<OPTION VALUE=”32”>32
<OPTION VALUE=”48”>48

</SELECT>
</TR>
</TABLE>
</FORM>
<DIV STYLE=”position:absolute; left:200px; top:220px”>
<BUTTON STYLE=”width:80px” onClick=”handleOK()”>OK</BUTTON>
<BUTTON STYLE=”width:80px” onClick=”handleCancel()”>Cancel</BUTTON>
</DIV>
</BODY>
</HTML>

One last convenience feature of the dialog box window is the onKeyPress event

handler in the text box. The function it invokes looks for the Enter key. If that key is

pressed while the box has focus, the same handleOK() function is invoked, as if the

user had clicked the OK button. This feature makes the dialog box behave as if the

OK button is an automatic default, just as “real” dialog boxes.

You should observe several important structural changes that were made to turn

the modal approach into a modeless one. Listing 16-41 shows the version of the

main window modified for use with a modeless dialog box. Another global variable,

prefsDlog, is initialized to eventually store the reference to the modeless window

windowObject.showModalDialog()

4855-7 ch02.F 6/26/01 8:35 AM Page 182

183Chapter 2 ✦ Window and Frame Objects (Chapter 16)

returned by the showModelessWindow() method. The variable gets used to invoke

the init() function inside the modeless dialog box, but also as conditions in an if
construction surrounding the generation of the dialog box. The reason this is

needed is to prevent multiple instances of the dialog box being created (the button

is still alive while the modeless window is showing). The dialog box won’t be created

again as long as there is a value in prefsDlog, and the dialog box window has not

been closed (picking up the window.closed property of the dialog box window).

The showModelessDialog() method’s second parameter is a reference to the

function in the main window that updates the main document. As you see in a

moment, that function is invoked from the dialog box when the user clicks the OK

or Apply buttons.

Listing 16-41: Main Page for showModelessDialog()

<HTML>
<HEAD>
<TITLE>window.setModelessDialog() Method</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var currPrefs = new Array()
var prefsDlog
function getPrefsData() {

if (!prefsDlog || prefsDlog.closed) {
prefsDlog = showModelessDialog(“lst16-42.htm”, setPrefs,
“dialogWidth:400px; dialogHeight:300px”)
prefsDlog.init(currPrefs)

}
}

function setPrefs(prefs) {
if (prefs[“bgColor”]) {

document.body.style.backgroundColor = prefs[“bgColor”]
currPrefs[“bgColor”] = prefs[“bgColor”]

}
if (prefs[“textColor”]) {

document.body.style.color = prefs[“textColor”]
currPrefs[“textColor”] = prefs[“textColor”]

}
if (prefs[“h1Size”]) {

document.all.welcomeHeader.style.fontSize = prefs[“h1Size”]
currPrefs[“h1Size”] = prefs[“h1Size”]

}
if (prefs[“name”]) {

document.all.firstName.innerText = prefs[“name”]
currPrefs[“name”] = prefs[“name”]

}
}

function init() {
document.all.firstName.innerText = “friend”

}
</SCRIPT>

Continued

windowObject.showModalDialog()

4855-7 ch02.F 6/26/01 8:35 AM Page 183

184 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-41 (continued)

</HEAD>
<BODY BGCOLOR=”#eeeeee” STYLE=”margin:20px” onLoad=”init()”>
<H1>window.setModelessDialog() Method</H1>
<HR>
<H2 ID=”welcomeHeader”>Welcome, !</H2>
<HR>
<P>Use this button to set style preferences for this page:
<BUTTON ID=”prefsButton” onClick=”getPrefsData()”>
Preferences
</BUTTON>
</BODY>
</HTML>

Changes to the dialog box window document for a modeless version (Listing 16-42)

are rather limited. A new button is added to the bottom of the screen for an Apply but-

ton. As in many dialog box windows you see in Microsoft products, the Apply button

lets current settings in dialog boxes be applied to the current document but without

closing the dialog box. This approach makes experimenting with settings easier.

The Apply button invokes a handleApply() function, which works the same as

handleOK(), except the dialog box is not closed. But these two functions communi-

cate back to the main window differently than a modal dialog box. The main window’s

processing function is passed as the second parameter of showModelessDialog()
and is available as the window.dialogArguments property in the dialog box win-

dow’s script. That function reference is assigned to a local variable in both functions,

and the remote function is invoked, passing the results of the getFormData() func-

tion as parameter values back to the main window.

Listing 16-42: Document for the Modeless Dialog Box

<HTML>
<HEAD>
<TITLE>User Preferences</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// Close the dialog
function closeme() {

window.close()
}

// Handle click of OK button
function handleOK() {

var returnFunc = window.dialogArguments
returnFunc(getFormData())
closeme()

}

windowObject.showModalDialog()

4855-7 ch02.F 6/26/01 8:35 AM Page 184

185Chapter 2 ✦ Window and Frame Objects (Chapter 16)

// Handle click of Apply button
function handleApply() {

var returnFunc = window.dialogArguments
returnFunc(getFormData())

}

// Handle click of Cancel button
function handleCancel() {

window.returnValue = “”
closeme()

}
// Generic function converts form element name-value pairs
// into an array
function getFormData() {

var form = document.prefs
var returnedData = new Array()
// Harvest values for each type of form element
for (var i = 0; i < form.elements.length; i++) {

if (form.elements[i].type == “text”) {
returnedData[form.elements[i].name] = form.elements[i].value

} else if (form.elements[i].type.indexOf(“select”) != -1) {
returnedData[form.elements[i].name] =
form.elements[i].options[form.elements[i].selectedIndex].value

} else if (form.elements[i].type == “radio”) {
returnedData[form.elements[i].name] = form.elements[i].value

} else if (form.elements[i].type == “checkbox”) {
returnedData[form.elements[i].name] = form.elements[i].value

} else continue
}
return returnedData

}
// Initialize by setting form elements from passed data
function init(currPrefs) {

if (currPrefs) {
var form = document.prefs
if (currPrefs[“name”]) {

form.name.value = currPrefs[“name”]
}
if (currPrefs[“bgColor”]) {

setSelected(form.bgColor, currPrefs[“bgColor”])
}
if (currPrefs[“textColor”]) {

setSelected(form.textColor, currPrefs[“textColor”])
}
if (currPrefs[“h1Size”]) {

setSelected(form.h1Size, currPrefs[“h1Size”])
}

}
}
// Utility function to set a SELECT element to one value
function setSelected(select, value) {

for (var i = 0; i < select.options.length; i++) {
if (select.options[i].value == value) {

Continued

windowObject.showModalDialog()

4855-7 ch02.F 6/26/01 8:35 AM Page 185

186 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 16-42 (continued)

select.selectedIndex = i
break

}
}
return

}
// Utility function to accept a press of the
// Enter key in the text field as a click of OK
function checkEnter() {

if (window.event.keyCode == 13) {
handleOK()

}
}
</SCRIPT>
</HEAD>

<BODY BGCOLOR=”#eeeeee” onLoad=”init()”>
<H2>Web Site Preferences</H2>
<HR>
<TABLE BORDER=0 CELLSPACING=2>
<FORM NAME=”prefs” onSubmit=”return false”>
<TR>
<TD>Enter your first name:<INPUT NAME=”name” TYPE=”text” VALUE=”” SIZE=20
onKeyDown=”checkEnter()”>
</TR>

<TR>
<TD>Select a background color:
<SELECT NAME=”bgColor”>

<OPTION VALUE=”beige”>Beige
<OPTION VALUE=”antiquewhite”>Antique White
<OPTION VALUE=”goldenrod”>Goldenrod
<OPTION VALUE=”lime”>Lime
<OPTION VALUE=”powderblue”>Powder Blue
<OPTION VALUE=”slategray”>Slate Gray

</SELECT>
</TR>

<TR>
<TD>Select a text color:
<SELECT NAME=”textColor”>

<OPTION VALUE=”black”>Black
<OPTION VALUE=”white”>White
<OPTION VALUE=”navy”>Navy Blue
<OPTION VALUE=”darkorange”>Dark Orange
<OPTION VALUE=”seagreen”>Sea Green
<OPTION VALUE=”teal”>Teal

</SELECT>
</TR>

windowObject.showModalDialog()

4855-7 ch02.F 6/26/01 8:35 AM Page 186

187Chapter 2 ✦ Window and Frame Objects (Chapter 16)

<TR>
<TD>Select “Welcome” heading font point size:
<SELECT NAME=”h1Size”>

<OPTION VALUE=”12”>12
<OPTION VALUE=”14”>14
<OPTION VALUE=”18”>18
<OPTION VALUE=”24”>24
<OPTION VALUE=”32”>32
<OPTION VALUE=”48”>48

</SELECT>
</TR>
</TABLE>
</FORM>
<DIV STYLE=”position:absolute; left:120px; top:220px”>
<BUTTON STYLE=”width:80px” onClick=”handleOK()”>OK</BUTTON>
<BUTTON STYLE=”width:80px” onClick=”handleCancel()”>Cancel</BUTTON>
<BUTTON STYLE=”width:80px” onClick=”handleApply()”>Apply</BUTTON>
</DIV>
</BODY>
</HTML>

The biggest design challenge you probably face with respect to these windows is

deciding between a modal and modeless dialog box style. Some designers insist

that modality has no place in a graphical user interface; others say that there are

times when you need to focus the user on a very specific task before any further

processing can take place. That’s where a modal dialog box makes perfect sense.

sizeToContent()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) in NN6 to try the

sizeToContent() method. Assuming that you are running The Evaluator from the

Chap13 directory on the CD-ROM (or the directory copied as-is to your hard disk),

you can open a subwindow with one of the other files in the directory, and then size

the subwindow. Enter the following statements into the top text box:

a = window.open(“lst13-02.htm”,””)
a.sizeToContent()

The resized subwindow is at the minimum recommended width for a browser win-

dow, and at a height tall enough to display the little bit of content in the document.

windowObject.sizeToContent()

4855-7 ch02.F 6/26/01 8:35 AM Page 187

188 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Event handlers
onAfterPrint
onBeforePrint

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
The following script fragment assumes that the page includes a DIV element

whose style sheet includes a setting of display:none as the page loads.

Somewhere in the Head, the print-related event handlers are set as properties:

function showPrintCopyright() {
document.all.printCopyright.style.display = “block”

}
function hidePrintCopyright() {

document.all.printCopyright.style.display = “none”
}
window.onbeforeprint = showPrintCopyright
window.onafterprint = hidePrintCopyright

onBeforeUnload

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
The simple page in Listing 16-43 shows you how to give the user a chance to stay

on the page.

Listing 16-43: Using the onBeforeUnload Event Handler

<HTML>
<HEAD>
<TITLE>onBeforeUnload Event Handler</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function verifyClose() {

event.returnValue = “We really like you and hope you will stay longer.”
}

windowObject.onBeforeUnload

4855-7 ch02.F 6/26/01 8:35 AM Page 188

189Chapter 2 ✦ Window and Frame Objects (Chapter 16)

window.onbeforeunload = verifyClose
</SCRIPT>

</HEAD>
<BODY>
<H1>onBeforeUnload Event Handler</H1>
<HR>
<P>Use this button to navigate to the previous page:
<BUTTON ID=”go” onClick=”history.back()”>
Go Back
</BUTTON>
</BODY>
</HTML>

onHelp

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
The following script fragment can be embedded in the IE5-only modeless dialog

box code in Listing 16-44 to provide context-sensitive help within the dialog box.

Help messages for only two of the form elements are shown here, but in a real appli-

cation you add messages for the rest.

function showHelp() {
switch (event.srcElement.name) {

case “bgColor” :
alert(“Choose a color for the main window\’s background.”)
break

case “name” :
alert(“Enter your first name for a friendly greeting.”)
break

default :
alert(“Make preference settings for the main page styles.”)

}
event.returnValue = false

}
window.onhelp = showHelp

Because this page’s help focuses on form elements, the switch construction

cases are based on the name properties of the form elements. For other kinds of

pages, the id properties may be more appropriate.

windowObject.onHelp

4855-7 ch02.F 6/26/01 8:35 AM Page 189

190 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

FRAME Element Object
Properties

borderColor

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Although you may experience problems (especially in IE5) changing the color of

a single frame border, the W3C DOM syntax would look like the following if the

script were inside the framesetting document:

document.getElementById(“contentsFrame”).borderColor = “red”

The IE-only version would be:

document.all[“contentsFrame”].borderColor = “red”

These examples assume the frame name arrives to a script function as a string. If

the script is executing in one of the frames of the frameset, add a reference to parent
in the preceding statements.

contentDocument

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
A framesetting document script might be using the ID of a FRAME element to

read or adjust one of the element properties, and then need to perform some action

on the content of the page through its document object. You can get the reference

to the document object via a statement, such as the following:

var doc = document.getElementById(“FRAME3”).contentDocument

Then your script can, for example, dive into a form in the document:

var val = doc.mainForm.entry.value

FRAME.contentDocument

4855-7 ch02.F 6/26/01 8:35 AM Page 190

191Chapter 2 ✦ Window and Frame Objects (Chapter 16)

Document

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
While you have far easier ways to reach the document object of another frame

(parent.otherFrameName.document), the following statement takes the long way

to get there to retrieve the number of forms in the document of another frame:

var formCount = parent.document.all.contentsFrame.Document.forms.length

Using the Document property only truly makes sense when a function is passed a

FRAME or IFRAME element object reference as a parameter, and the script must,

among other things more related to those objects, access the document contained

by those elements.

frameBorder

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
The default value for the frameBorder property is yes. You can use this setting

to create a toggle script (which, unfortunately, does not change the appearance in

IE). The W3C-compatible version looks like the following:

function toggleFrameScroll(frameID) {
var theFrame = document.getElementById(frameID)
if (theFrame.frameBorder == “yes”) {

theFrame.frameBorder = “no”
} else {

theFrame.frameBorder = “yes”
}

}

height
width

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

FRAME.height

4855-7 ch02.F 6/26/01 8:35 AM Page 191

192 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example
The following fragment assumes a frameset defined with two frames set up as

two columns within the frameset. The statements here live in the framesetting doc-

ument. They retrieve the current width of the left frame and increase the width of

that frame by ten percent. Syntax shown here is for the W3C DOM, but can be easily

adapted to IE-only terminology.

var frameWidth = document.getElementById(“leftFrame”).width
document.getElementById(“mainFrameset”).cols = (Math.round(frameWidth * 1.1)) +
“,*”

Notice how the numeric value of the existing frame width is first increased by ten

percent and then concatenated to the rest of the string property assigned to the

frameset’s cols property. The asterisk after the comma means that the browser

should figure out the remaining width and assign it to the right-hand frame.

noResize

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
The following statement turns off the ability for a frame to be resized:

parent.document.getElementById(“myFrame1”).noResize = true

Because of the negative nature of the property name, it may be difficult to keep

the logic straight (setting noResize to true means that resizability is turned off).

Keep a watchful eye on your Boolean values.

scrolling

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Listing 16-45 produces a frameset consisting of eight frames. The content for the

frames is generated by a script within the frameset (via the fillFrame() function).

Event handlers in the Body of each frame invoke the toggleFrameScroll() func-

tion. Both ways of referencing the FRAME element object are shown, with the IE-

only version commented out.

FRAME.scrolling

4855-7 ch02.F 6/26/01 8:35 AM Page 192

193Chapter 2 ✦ Window and Frame Objects (Chapter 16)

In the toggleFrameScroll() function, the if condition checks whether the

property is set to something other than no. This allows the condition to evaluate to

true if the property is set to either auto (the first time) or yes (as set by the func-

tion). Note that the scrollbars don’t disappear from the frames in IE5.5 or NN6.

Listing 16-45: Controlling the FRAME.scrolling Property

<HTML>
<HEAD>
<TITLE>frame.scrolling Property</TITLE>
</HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
function toggleFrameScroll(frameID) {

// IE5 & NN6 version
var theFrame = document.getElementById(frameID)
// IE4+ version
// var theFrame = document.all[frameID]

if (theFrame.scrolling != “no”) {
theFrame.scrolling = “no”

} else {
theFrame.scrolling = “yes”

}
}
// generate content for each frame
function fillFrame(frameID) {

var page = “<HTML><BODY onClick=’parent.toggleFrameScroll(\”” +
frameID + “\”)’>”

page += “<P>This frame has the ID of:</P><P>” + frameID + “.</P>”
page += “</BODY></HTML>”
return page

}
</SCRIPT>
<FRAMESET ID=”outerFrameset” COLS=”50%,50%”>

<FRAMESET ID=”innerFrameset1” ROWS=”25%,25%,25%,25%”>
<FRAME ID=”myFrame1” SRC=”javascript:parent.fillFrame(‘myFrame1’)”>
<FRAME ID=”myFrame2” SRC=”javascript:parent.fillFrame(‘myFrame2’)”>
<FRAME ID=”myFrame3” SRC=”javascript:parent.fillFrame(‘myFrame3’)”>
<FRAME ID=”myFrame4” SRC=”javascript:parent.fillFrame(‘myFrame4’)”>

</FRAMESET>
<FRAMESET ID=”innerFrameset2” ROWS=”25%,25%,25%,25%”>

<FRAME ID=”myFrame5” SRC=”javascript:parent.fillFrame(‘myFrame5’)”>
<FRAME ID=”myFrame6” SRC=”javascript:parent.fillFrame(‘myFrame6’)”>
<FRAME ID=”myFrame7” SRC=”javascript:parent.fillFrame(‘myFrame7’)”>
<FRAME ID=”myFrame8” SRC=”javascript:parent.fillFrame(‘myFrame8’)”>

</FRAMESET>
</FRAMESET>
</HTML>

FRAME.scrolling

4855-7 ch02.F 6/26/01 8:35 AM Page 193

194 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

src

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
For best results, use fully formed URLs as value for the src property, as shown

here:

parent.document.getElementById(“mainFrame”).src = “http://www.dannyg.com”

Relative URLs and javascript: pseudo-URLs will also work most of the time.

FRAMESET Element Object
Properties

border

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Even though the property is read/write in IE4+, changing the value does not

change the thickness of the border you see in the browser. If you need to find the

thickness of the border, a script reference from one of the frame’s documents would

look like the following:

var thickness = parent.document.all.outerFrameset.border

borderColor

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
To retrieve the current color setting in a frameset, a script reference from one of

the frame’s documents would look like the following:

var borderColor = parent.document.all.outerFrameset.borderColor

FRAMESET.borderColor

4855-7 ch02.F 6/26/01 8:35 AM Page 194

195Chapter 2 ✦ Window and Frame Objects (Chapter 16)

cols
rows

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Listings 16-46 through 16-48 show the HTML for a frameset and two of the three

documents that go into the frameset. The final document is an HTML version of the

U.S. Bill of Rights, which is serving here as a content frame for the demonstration.

The frameset listing (16-46) shows a three-frame setup. Down the left column is a

table of contents (16-47). The right column is divided into two rows. In the top row

is a simple control (16-48) that hides and shows the table of contents frame. As the

user clicks the hot text of the control (located inside a SPAN element), the onClick
event handler invokes the toggleTOC() function in the frameset. Figure 2-10 shows

the frameset with the menu exposed.

Figure 2-10: Frameset specifications are modified on the fly when you click on the top
control link.

FRAMESET.cols

4855-7 ch02.F 6/26/01 8:35 AM Page 195

196 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Syntax used in this example is W3C-compatible. To modify this for IE-only, you

replace document.getElementById(“outerFrameset”) with document.all.
outerFrameset and elem.firstChild.nodeValue to elem.innerText. You can

also branch within the scripts to accommodate both styles.

Listing 16-46: Frameset and Script for Hiding/Showing a
Frame

<HTML>
<HEAD>
<TITLE>Hide/Show Frame Example</TITLE>
</HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
var origCols
function toggleTOC(elem, frm) {

if (origCols) {
showTOC(elem)

} else {
hideTOC(elem, frm)

}
}
function hideTOC(elem, frm) {

var frameset = document.getElementById(“outerFrameset”)
origCols = frameset.cols
frameset.cols = “0,*”

}
function showTOC(elem) {

if (origCols) {
document.getElementById(“outerFrameset”).cols = origCols
origCols = null

}
}
</SCRIPT>
<FRAMESET ID=”outerFrameset” FRAMEBORDER=”no” COLS=”150,*”>

<FRAME ID=”TOC” NAME=”TOCFrame” SRC=”lst16-47.htm”>
<FRAMESET ID=”innerFrameset1” ROWS=”80,*”>

<FRAME ID=”controls” NAME=”controlsFrame” SRC=”lst16-48.htm”>
<FRAME ID=”content” NAME=”contentFrame” SRC=”bofright.htm”>

</FRAMESET>
</FRAMESET>
</HTML>

When a user clicks the hot spot to hide the frame, the script copies the original

cols property settings to a global variable. The variable is used in showTOC() to

restore the frameset to its original proportions. This allows a designer to modify

the HTML for the frameset without also having to dig into scripts to hard-wire the

restored size.

FRAMESET.cols

4855-7 ch02.F 6/26/01 8:35 AM Page 196

197Chapter 2 ✦ Window and Frame Objects (Chapter 16)

Listing 16-47: Table of Contents Frame Content

<HTML>
<HEAD>
<TITLE>Table of Contents</TITLE>
</HEAD>
<BODY BGCOLOR=”#eeeeee”>
<H3>Table of Contents</H3>
<HR>
<UL STYLE=”font-size:10pt”>
Article I
Article II
Article III
Article IV
Article V
Article VI
Article VII
Article VIII
Article IX
Article X

</BODY>
</HTML>

Listing 16-48: Control Panel Frame

<HTML>
<HEAD>
<TITLE>Control Panel</TITLE>
</HEAD>
<BODY>
<P>
<SPAN ID=”tocToggle”

STYLE=”text-decoration:underline; cursor:hand”
onClick=”parent.toggleTOC(this)”> <<Hide/Show>>

Table of Contents
</P>
</BODY>
</HTML>

frameBorder

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

FRAMESET.frameBorder

4855-7 ch02.F 6/26/01 8:35 AM Page 197

198 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example
The default value for the frameBorder property is yes. You can use this setting

to create a toggle script (which, unfortunately, does not change the appearance in

IE). The IE4+-compatible version looks like the following:

function toggleFrameScroll(framesetID) {
var theFrameset = document.all(framesetID)
if (theFrameset.frameBorder == “yes”) {

theFrameset.frameBorder = “no”
} else {

theFrameset.frameBorder = “yes”
}

}

frameSpacing

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Even though the property is read/write in IE4+, changing the value does not

change the thickness of the frame spacing you see in the browser. If you need to

find the spacing as set by the tag’s attribute, a script reference from one of the

frame’s documents would look like the following:

var spacing = parent.document.all.outerFrameset.frameSpacing

IFRAME Element Object
Properties

align

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
The default setting for an IFRAME alignment is baseline. A script can shift the

IFRAME to be flush with the right edge of the containing element as follows:

document.getElementById(“iframe1”).align = “right”

IFRAME.align

4855-7 ch02.F 6/26/01 8:35 AM Page 198

199Chapter 2 ✦ Window and Frame Objects (Chapter 16)

contentDocument

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
A document script might be using the ID of an IFRAME element to read or adjust

one of the element properties; it then needs to perform some action on the content

of the page through its document object. You can get the reference to the document
object via a statement, such as the following:

var doc = document.getElementById(“FRAME3”).contentDocument

Then your script can, for example, dive into a form in the document:

var val = doc.mainForm.entry.value

frameBorder

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
See the example for the FRAME.frameBorder property earlier in this chapter.

hspace
vspace

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
The following fragment sets the white space surrounding an IFRAME element to

an equal amount:

document.all.myIframe.hspace = 20
document.all.myIframe.vspace = 20

Unfortunately these changes do not work for IE5/Windows.

IFRAME.hspace

4855-7 ch02.F 6/26/01 8:35 AM Page 199

200 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

scrolling

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
The following toggleIFrameScroll() function accepts a string of the IFRAME

element’s ID as a parameter and switches between on and off scroll bars in the

IFRAME. The if condition checks whether the property is set to something other

than no. This test allows the condition to evaluate to true if the property is set to

either auto (the first time) or yes (as set by the function).

function toggleFrameScroll(frameID) {
// IE5 & NN6 version
var theFrame = document.getElementById(frameID)
// IE4+ version
// var theFrame = document.all[frameID]
if (theFrame.scrolling != “no”) {

theFrame.scrolling = “no”
} else {

theFrame.scrolling = “yes”
}

}

src

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
For best results, use fully formed URLs as value for the src property, as shown

here:

document.getElementById(“myIframe”).src = “http://www.dannyg.com”

Relative URLs and javascript: pseudo-URLs also work most of the time.

IFRAME.src

4855-7 ch02.F 6/26/01 8:35 AM Page 200

201Chapter 2 ✦ Window and Frame Objects (Chapter 16)

popup Object
Properties

document

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

popup object and its properties. Enter the following statements into the top text

box. The first statement creates a pop-up window, whose reference is assigned to

the a global variable. Next, a reference to the body of the pop-up’s document is pre-

served in the b variable for the sake of convenience. Further statements work with

these two variables.

a = window.createPopup()
b = a.document.body
b.style.border = “solid 2px black”
b.style.padding = “5px”
b.innerHTML = “<P>Here is some text in a popup window</P>”
a.show(200,100, 200, 50, document.body)

See the description of the show() method for details on the parameters.

isOpen

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

isOpen property. Enter the following statements into the top text box. The

sequence begins with a creation of a simple pop-up window, whose reference is

assigned to the a global variable. Note that the final statement is actually two state-

ments, which are designed so that the second statement executes while the pop-up

window is still open.

a = window.createPopup()
a.document.body.innerHTML = “<P>Here is a popup window</P>”
a.show(200,100, 200, 50, document.body); alert(“Popup is open:” + a.isOpen)

popupObject.isOpen

4855-7 ch02.F 6/26/01 8:35 AM Page 201

202 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

If you then click into the main window to hide the pop-up, you will see a different

result if you enter the following statement into the top text box by itself:

alert(“Popup is open:” + a.isOpen)

Methods
hide()
show(left, top, width, height[,
positioningElementRef])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Listing 16-49 demonstrates both the show() and hide() methods for a popup

object. A click of the button on the page invokes the selfTimer() function, which

acts as the main routine for this page. The goal is to produce a pop-up window that

“self-destructs” five seconds after it appears. Along the way, a message in the pop-

up counts down the seconds.

A reference to the pop-up window is preserved as a global variable, called

popup. After the popup object is created, the initContent() function stuffs the

content into the pop-up by way of assigning style properties and some innerHTML
for the body of the document that is automatically created when the pop-up is gen-

erated. A SPAN element is defined so that another function later on can modify the

content of just that segment of text in the pop-up. Notice that the assignment of

content to the pop-up is predicated on the pop-up window having been initialized

(by virtue of the popup variable having a value assigned to it) and that the pop-up

window is not showing. While invoking initContent() under any other circum-

stances is probably impossible, the validation of the desired conditions is good pro-

gramming practice.

Back in selfTimer(), the popup object is displayed. Defining the desired size

requires some trial and error to make sure the pop-up window comfortably accom-

modates the text that is put into the pop-up in the initContent() function.

With the pop-up window showing, now is the time to invoke the countDown()
function. Before the function performs any action, it validates that the pop-up has

been initialized and is still visible. If a user clicks the main window while the

counter is counting down, this changes the value of the isOpen property to false,

and nothing inside the if condition executes.

This countDown() function grabs the inner text of the SPAN and uses

paresInt() to extract just the integer number (using base 10 numbering, because

we’re dealing with zero-leading numbers that can potentially be regarded as octal

values). The condition of the if construction decreases the retrieved integer by

one. If the decremented value is zero, then the time is up, and the pop-up window is

popupObject.hide()

4855-7 ch02.F 6/26/01 8:35 AM Page 202

203Chapter 2 ✦ Window and Frame Objects (Chapter 16)

hidden with the popup global variable returned to its original, null value. But if the

value is other than zero, then the inner text of the SPAN is set to the decremented

value (with a leading zero), and the setTimeout() method is called upon to rein-

voke the countDown() function in one second (1000 milliseconds).

Listing 16-49: Hiding and Showing a Pop-up

<HTML>
<HEAD>
<TITLE>popup Object</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var popup
function initContent() {

if (popup && !popup.isOpen) {
var popBody = popup.document.body
popBody.style.border = “solid 3px red”
popBody.style.padding = “10px”
popBody.style.fontSize = “24pt”
popBody.style.textAlign = “center”
var bodyText = “<P>This popup will self-destruct in “
bodyText += “05”
bodyText += “ seconds...</P>”
popBody.innerHTML = bodyText

}
}
function countDown() {

if (popup && popup.isOpen) {
var currCount = parseInt(popup.document.all.counter.innerText, 10)
if (--currCount == 0) {

popup.hide()
popup = null

} else {
popup.document.all.counter.innerText = “0” + currCount
setTimeout(“countDown()”, 1000)

}
}

}
function selfTimer() {

popup = window.createPopup()
initContent()
popup.show(200,200,400,100,document.body)
setTimeout(“countDown()”, 1000)

}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
<INPUT TYPE=”button” VALUE=”Impossible Mission” onClick=”selfTimer()”>
</FORM>
</BODY>
</HTML>

popupObject.hide()

4855-7 ch02.F 6/26/01 8:35 AM Page 203

204 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

The hide() method here is invoked by a script that is running while the pop-up

window is showing. Because a pop-up window automatically goes away if a user

clicks the main window, it is highly unlikely that the hide() method would ever be

invoked by itself in response to user action in the main window. If you want a script

in the pop-up window to close the pop-up, use parentWindow.close().

✦ ✦ ✦

popupObject.hide()

4855-7 ch02.F 6/26/01 8:35 AM Page 204

Location and
History Objects
(Chapter 17)

While both the location and history objects contain

valuable information about the user’s Web surfing

habits and even the content of forms, they could also be

abused by nefarious scripts that wish to invade the privacy of

unsuspecting site visitors. As a result, browsers do not

expose the private details to scripts (except in NN4+ via

signed scripts and the user’s express permission).

The location object, however, is still an important object

to know and exploit. As shown in the examples here, you can

use it as one cookie-free way to pass text data from one page

to another. And the object remains the primary way scripts

load a new page into the browser.

Examples Highlights
✦ The frameset listing for the location.host property

demonstrates several location object properties. You

also find an example of how signed scripts can be used

in NN4+ to access location object properties for pages

served by a different domain.

✦ Listings for the location.search property pass data

from one page to another via a URL. In this case, a script

in a page not only makes sure that your site gets served

within the prescribed frameset, but the specific page

also gets loaded into one of the frames, even if it is not

the page specified in the frameset’s definition.

✦ Observe the location.replace() method’s example.

This method comes in handy when you don’t want one

of your pages to become part of the browser’s history:

Clicking the Back button skips over the replaced page.

✦ Run Listings 17-12 and 17-13 for the history.back()
method to see how the behavior of this method varies

among browsers. Consult the JavaScript Bible text for

details on the evolution of this method.

33C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Loading new pages
and other media
types via the
location object

Passing data between
pages via URLs

Navigating through
the browser history
under script control

✦ ✦ ✦ ✦

4855-7 ch03.F 6/26/01 8:35 AM Page 205

206 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Location Object
Properties

hash

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
When you load the script in Listing 17-1, adjust the size of the browser window so

only one section is visible at a time. When you click a button, its script navigates to

the next logical section in the progression and eventually takes you back to the top.

Listing 17-1: A Document with Anchors

<HTML>
<HEAD>
<TITLE>location.hash Property</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function goNextAnchor(where) {

window.location.hash = where
}
</SCRIPT>
</HEAD>

<BODY>

<H1>Top</H1>
<FORM>
<INPUT TYPE=”button” NAME=”next” VALUE=”NEXT” onClick=”goNextAnchor(‘sec1’)”>
</FORM>
<HR>
<H1>Section 1</H1>
<FORM>
<INPUT TYPE=”button” NAME=”next” VALUE=”NEXT” onClick=”goNextAnchor(‘sec2’)”>
</FORM>
<HR>
<H1>Section 2</H1>
<FORM>
<INPUT TYPE=”button” NAME=”next” VALUE=”NEXT” onClick=”goNextAnchor(‘sec3’)”>
</FORM>
<HR>
<H1>Section 3</H1>
<FORM>

windowObject.location.hash

4855-7 ch03.F 6/26/01 8:35 AM Page 206

207Chapter 3 ✦ Location and History Objects (Chapter 17)

<INPUT TYPE=”button” NAME=”next” VALUE=”BACK TO TOP”
onClick=”goNextAnchor(‘start’)”>
</FORM>

</BODY>
</HTML>

Anchor names are passed as parameters with each button’s onClick event han-

dler. Instead of going through the work of assembling a window.location value in

the function by appending a literal hash mark and the value for the anchor, here I

simply modify the hash property of the current window’s location. This is the pre-

ferred, cleaner method.

If you attempt to read back the window.location.hash property in an added line

of script, however, the window’s actual URL probably will not have been updated yet,

and the browser will appear to be giving your script false information. To prevent this

problem in subsequent statements of the same function, construct the URLs of those

statements from the same variable values you use to set the window.location.hash
property — don’t rely on the browser to give you the values you expect.

host

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Use the documents in Listings 17-2 through 17-4 as tools to help you learn the

values that the various window.location properties return. In the browser, open

the file for Listing 17-2. This file creates a two-frame window. The left frame contains

a temporary placeholder (Listing 17-4) that displays some instructions. The right

frame has a document (Listing 17-3) that enables you to load URLs into the left

frame and get readings on three different windows available: the parent window

(which creates the multiframe window), the left frame, and the right frame.

Listing 17-2: Frameset for the Property Picker

<HTML>
<HEAD>
<TITLE>window.location Properties</TITLE>
</HEAD>
<FRAMESET COLS=”50%,50%” BORDER=1 BORDERCOLOR=”black”>

<FRAME NAME=”Frame1” SRC=”lst17-04.htm”>
<FRAME NAME=”Frame2” SRC=”lst17-03.htm”>

</FRAMESET>
</HTML>

windowObject.location.host

4855-7 ch03.F 6/26/01 8:35 AM Page 207

208 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 17-3: Property Picker

<HTML>
<HEAD>
<TITLE>Property Picker</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var isNav4 = (navigator.appName == “Netscape” &&
navigator.appVersion.charAt(0) >= 4) ? true : false

function fillLeftFrame() {
newURL = prompt(“Enter the URL of a document to show in the left frame:”,””)
if (newURL != null && newURL != “”) {
parent.frames[0].location = newURL
}

}

function showLocationData(form) {
for (var i = 0; i <3; i++) {

if (form.whichFrame[i].checked) {
var windName = form.whichFrame[i].value
break

}
}
var theWind = “” + windName + “.location”
if (isNav4) {
netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserRead”)
}
var theObj = eval(theWind)
form.windName.value = windName
form.windHash.value = theObj.hash
form.windHost.value = theObj.host
form.windHostname.value = theObj.hostname
form.windHref.value = theObj.href
form.windPath.value = theObj.pathname
form.windPort.value = theObj.port
form.windProtocol.value = theObj.protocol
form.windSearch.value = theObj.search
if (isNav4) {
netscape.security.PrivilegeManager.disablePrivilege(“UniversalBrowserRead”)
}

}
</SCRIPT>
</HEAD>
<BODY>
Click the “Open URL” button to enter the location of an HTML document to display
in the left frame of this window.
<FORM>
<INPUT TYPE=”button” NAME=”opener” VALUE=”Open URL...”
onClick=”fillLeftFrame()”>
<HR>
<CENTER>
Select a window/frame. Then click the “Show Location Properties” button to view
each window.location property value for the desired window.<P>

windowObject.location.host

4855-7 ch03.F 6/26/01 8:35 AM Page 208

209Chapter 3 ✦ Location and History Objects (Chapter 17)

<INPUT TYPE=”radio” NAME=”whichFrame” VALUE=”parent” CHECKED>Parent window
<INPUT TYPE=”radio” NAME=”whichFrame” VALUE=”parent.frames[0]”>Left frame
<INPUT TYPE=”radio” NAME=”whichFrame” VALUE=”parent.frames[1]”>This frame
<P>
<INPUT TYPE=”button” NAME=”getProperties” VALUE=”Show Location Properties”
onClick=”showLocationData(this.form)”>
<INPUT TYPE=”reset” VALUE=”Clear”><P>
<TABLE BORDER=2>
<TR><TD ALIGN=right>Window:</TD><TD><INPUT TYPE=”text” NAME=”windName”
SIZE=30></TD></TR>
<TR><TD ALIGN=right>hash:</TD>
<TD><INPUT TYPE=”text” NAME=”windHash” SIZE=30></TD></TR>

<TR><TD ALIGN=right>host:</TD>
<TD><INPUT TYPE=”text” NAME=”windHost” SIZE=30></TD></TR>

<TR><TD ALIGN=right>hostname:</TD>
<TD><INPUT TYPE=”text” NAME=”windHostname” SIZE=30></TD></TR>

<TR><TD ALIGN=right>href:</TD>
<TD><TEXTAREA NAME=”windHref” ROWS=3 COLS=30 WRAP=”soft”>
</TEXTAREA></TD></TR>

<TR><TD ALIGN=right>pathname:</TD>
<TD><TEXTAREA NAME=”windPath” ROWS=3 COLS=30 WRAP=”soft”>
</TEXTAREA></TD></TR>

<TR><TD ALIGN=right>port:</TD>
<TD><INPUT TYPE=”text” NAME=”windPort” SIZE=30></TD></TR>

<TR><TD ALIGN=right>protocol:</TD>
<TD><INPUT TYPE=”text” NAME=”windProtocol” SIZE=30></TD></TR>

<TR><TD ALIGN=right>search:</TD>
<TD><TEXTAREA NAME=”windSearch” ROWS=3 COLS=30 WRAP=”soft”>
</TEXTAREA></TD></TR>
</TABLE>
</CENTER>
</FORM>
</BODY>
</HTML>

Listing 17-4: Placeholder Document for Listing 17-2

<HTML>
<HEAD>
<TITLE>Opening Placeholder</TITLE>

Continued

windowObject.location.host

4855-7 ch03.F 6/26/01 8:35 AM Page 209

210 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 17-4 (continued)

</HEAD>
<BODY>
Initial placeholder. Experiment with other URLs for this frame (see right).
</BODY>
</HTML>

Figure 3-1 shows the dual-frame browser window with the left frame loaded with

a page from my Web site.

Figure 3-1: Browser window loaded to investigate window.location properties

For the best results, open a URL to a Web document on the network from the

same domain and server from which you load the listings (perhaps your local hard

disk). If possible, load a document that includes anchor points to navigate through

a long document. Click the Left frame radio button, and then click the button that

shows all properties. This action fills the table in the right frame with all the avail-

able location properties for the selected window. Figure 3-2 shows the complete

results for a page from my Web site that is set to an anchor point.

windowObject.location.host

4855-7 ch03.F 6/26/01 8:35 AM Page 210

211Chapter 3 ✦ Location and History Objects (Chapter 17)

Figure 3-2: Readout of all window.location
properties for the left frame

Attempts to retrieve these properties from URLs outside of your domain and

server result in a variety of responses based on your browser and browser version.

NN2 returns null values for all properties. NN3 presents an “access disallowed”

security alert. With codebase principals turned on in NN4 (see Chapter 46 of the

JavaScript Bible), the proper values appear in their fields. IE3 does not have the same

security restrictions that Navigator does, so all values appear in their fields. But in

IE4+, you get a “permission denied” error alert. See the following discussion for the

meanings of the other listed properties and instructions on viewing their values.

hostname

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
See Listings 17-2 through 17-4 for a set of related pages to help you view the host-

name data for a variety of other pages.

href

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

windowObject.location.href

4855-7 ch03.F 6/26/01 8:35 AM Page 211

212 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example
Listing 17-5 includes the unescape() function in front of the part of the script

that captures the URL. This function serves cosmetic purposes by displaying the

pathname in alert dialog boxes for browsers that normally display the ASCII-

encoded version.

Listing 17-5: Extracting the Directory of the Current
Document

<HTML>
<HEAD>
<TITLE>Extract pathname</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// general purpose function to extract URL of current directory
function getDirPath(URL) {

var result = unescape(URL.substring(0,(URL.lastIndexOf(“/”)) + 1))
return result

}
// handle button event, passing work onto general purpose function
function showDirPath(URL) {

alert(getDirPath(URL))
}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
<INPUT TYPE=”button” VALUE=”View directory URL”
onClick=”showDirPath(window.location.href)”>
</FORM>
</BODY>
</HTML>

pathname

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
See Listings 17-2 through 17-4 earlier in this chapter for a multiple-frame example

you can use to view the location.pathname property for a variety of URLs of your

choice.

windowObject.location.pathname

4855-7 ch03.F 6/26/01 8:35 AM Page 212

213Chapter 3 ✦ Location and History Objects (Chapter 17)

port

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
If you have access to URLs containing port numbers, use the documents in

Listings 17-2 through 17-4 to experiment with the output of the location.port
property.

protocol

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
See Listings 17-2 through 17-4 for a multiple-frame example you can use to view

the location.protocol property for a variety of URLs. Also try loading an FTP

site to see the location.protocol value for that type of URL.

search

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
As mentioned in the opening of Chapter 16 of the JavaScript Bible about frames,

you can force a particular HTML page to open inside the frameset for which it is

designed. But with the help of the search string, you can reuse the same framesetting

document to accommodate any number of content pages that go into one of the

frames (rather than specifying a separate frameset for each possible combination of

pages in the frameset). The listings in this section create a simple example of how to

force a page to load in a frameset by passing some information about the page to the

frameset. Thus, if a user has a URL to one of the content frames (perhaps it has been

bookmarked by right-clicking the frame or it comes up as a search engine result), the

page appears in its designated frameset the next time the user visits the page.

The fundamental task going on in this scheme has two parts. The first is in each

of the content pages where a script checks whether the page is loaded inside a

frameset. If the frameset is missing, then a search string is composed and appended

windowObject.location.search

4855-7 ch03.F 6/26/01 8:35 AM Page 213

214 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

to the URL for the framesetting document. The framesetting document has its own

short script that looks for the presence of the search string. If the string is there,

then the script extracts the search string data and uses it to load that specific page

into the content frame of the frameset.

Listing 17-6 is the framesetting document. The getSearchAsArray() function is

more complete than necessary for this simple example, but you can use it in other

instances to convert any number of name/value pairs passed in the search string

(in traditional format of name1=value1&name2=value2&etc.) into an array whose

indexes are the names (making it easier for scripts to extract a specific piece of

passed data). Version branching takes place because, for convenience, the

getSearchAsArray() function uses text and array methods that don’t exist in

browsers prior to NN3 or IE4.

Listing 17-6: A Smart Frameset

<HTML>
<HEAD>
<TITLE>Example Frameset</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// Convert location.search into an array of values
// indexed by name.
function getSearchAsArray() {

var minNav3 = (navigator.appName == “Netscape” &&
parseInt(navigator.appVersion) >= 3)

var minIE4 = (navigator.appName.indexOf(“Microsoft”) >= 0 &&
parseInt(navigator.appVersion) >= 4)

var minDOM = minNav3 || minIE4 // baseline DOM required for this function
var results = new Array()
if (minDOM) {

var input = unescape(location.search.substr(1))
if (input) {

var srchArray = input.split(“&”)
var tempArray = new Array()
for (var i = 0; i < srchArray.length; i++) {

tempArray = srchArray[i].split(“=”)
results[tempArray[0]] = tempArray[1]

}
}

}
return results

}
function loadFrame() {

if (location.search) {
var srchArray = getSearchAsArray()
if (srchArray[“content”]) {

self.content.location.href = srchArray[“content”]
}

}
}
</SCRIPT>
</HEAD>

windowObject.location.search

4855-7 ch03.F 6/26/01 8:35 AM Page 214

215Chapter 3 ✦ Location and History Objects (Chapter 17)

<FRAMESET COLS=”250,*” onLoad=”loadFrame()”>
<FRAME NAME=”toc” SRC=”lst17-07.htm”>
<FRAME NAME=”content” SRC=”lst17-08.htm”>

</FRAMESET>
</HTML>

Listing 17-7 is the HTML for the table of contents frame. Nothing elaborate goes

on here, but you can see how normal navigation works for this simplified frameset.

Listing 17-7: The Table of Contents

<HTML>
<HEAD>
<TITLE>Table of Contents</TITLE>
</HEAD>
<BODY BGCOLOR=”#eeeeee”>
<H3>Table of Contents</H3>
<HR>

Page 1
Page 2
Page 3

</BODY>
</HTML>

Listing 17-8 shows one of the content pages. As the page loads, the

checkFrameset() function is invoked. If the window does not load inside a frame-

set, then the script navigates to the framesetting page, passing the current content

URL as a search string. Notice that for browsers that support the location.
replace() method, the loading of this page on its own does not get recorded to

the browser’s history and isn’t accessed if the user hits the Back button.

Listing 17-8: A Content Page

<HTML>
<HEAD>
<TITLE>Page 1</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function checkFrameset() {

var minNav3 = (navigator.appName == “Netscape” &&
parseInt(navigator.appVersion) >= 3)

var minIE4 = (navigator.appName.indexOf(“Microsoft”) >= 0 &&
parseInt(navigator.appVersion) >= 4)

Continued

windowObject.location.search

4855-7 ch03.F 6/26/01 8:35 AM Page 215

216 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 17-8 (continued)

var minDOM = minNav3 || minIE4 // baseline DOM required for this function
var isNav4 = (navigator.appName == “Netscape” &&

parseInt(navigator.appVersion) == 4)
if (parent == window) {

// Don’t do anything if running NN4
// so that the frame can be printed on its own
if (isNav4 && window.innerWidth == 0) {

return
}
if (minDOM) {

// Use replace() to keep current page out of history
location.replace(“lst17-06.htm?content=” + escape(location.href))

} else {
location.href = “ lst17-06.htm?content=” + escape(location.href)

}
}

}
// Invoke the function
checkFrameset()
</SCRIPT>
</HEAD>
<BODY>
<H1>Page 1</H1>
<HR>
</BODY>
</HTML>

In practice, I recommend placing the code for the checkFrameset() function and

call to it inside an external .js library and linking that library into each content doc-

ument of the frameset. That’s why the function assigns the generic location.href
property to the search string — you can use it on any content page.

Methods
reload(unconditionalGETBoolean)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

Example
To experience the difference between the two loading styles, load the document

in Listing 17-9. Click a radio button, enter some new text, and make a choice in the

SELECT object. Clicking the Soft Reload/Refresh button invokes a method that

windowObject.location.reload()

4855-7 ch03.F 6/26/01 8:35 AM Page 216

217Chapter 3 ✦ Location and History Objects (Chapter 17)

reloads the document as if you had clicked the browser’s Reload/Refresh button. It

also preserves the visible properties of form elements. The Hard Reload button

invokes the location.reload() method, which resets all objects to their default

settings.

Listing 17-9: Hard versus Soft Reloading

<HTML>
<HEAD>
<TITLE>Reload Comparisons</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.1”>
function hardReload() {

location.reload(true)
}
function softReload() {

history.go(0)
}
</SCRIPT>
</HEAD>
<BODY>
<FORM NAME=”myForm”>
<INPUT TYPE=”radio” NAME=”rad1” VALUE = 1>Radio 1

<INPUT TYPE=”radio” NAME=”rad1” VALUE = 2>Radio 2

<INPUT TYPE=”radio” NAME=”rad1” VALUE = 3>Radio 3<P>
<INPUT TYPE=”text” NAME=”entry” VALUE=”Original”><P>
<SELECT NAME=”theList”>
<OPTION>Red
<OPTION>Green
<OPTION>Blue
</SELECT>
<HR>
<INPUT TYPE=”button” VALUE=”Soft Reload” onClick=”softReload()”>
<INPUT TYPE=”button” VALUE=”Hard Reload” onClick=”hardReload()”>
</FORM>
</BODY>
</HTML>

replace(“URL”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

Example
Calling the location.replace() method navigates to another URL similarly to

assigning a URL to the location. The difference is that the document doing the calling

windowObject.location.replace()

4855-7 ch03.F 6/26/01 8:35 AM Page 217

218 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

doesn’t appear in the history list after the new document loads. Check the history

listing (in your browser’s usual spot for this information) before and after clicking

Replace Me in Listing 17-10.

Listing 17-10: Invoking the location.replace() Method

<HTML>
<HEAD>
<TITLE>location.replace() Method</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.1”>
function doReplace() {

location.replace(“lst17-01.htm”)
}
</SCRIPT>
</HEAD>
<BODY>
<FORM NAME=”myForm”>
<INPUT TYPE=”button” VALUE=”Replace Me” onClick=”doReplace()”>
</FORM>
</BODY>
</HTML>

History Object
Properties

length

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The simple function in Listing 17-11 displays one of two alert messages based on

the number of items in the browser’s history.

Listing 17-11: A Browser History Count

<HTML>
<HEAD>
<TITLE>History Object</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>

windowObject.history.length

4855-7 ch03.F 6/26/01 8:35 AM Page 218

219Chapter 3 ✦ Location and History Objects (Chapter 17)

function showCount() {
var histCount = window.history.length
if (histCount > 5) {

alert(“My, my, you\’ve been busy. You have visited “ + histCount +
“ pages so far.”)

} else {
alert(“You have been to “ + histCount + “ Web pages this session.”)

}
}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
<INPUT TYPE=”button” NAME=”activity” VALUE=”My Activity” onClick=”showCount()”>
</FORM>
</BODY>
</HTML>

Methods
back()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Listings 17-12 and 17-13 provide a little workshop in which you can test the

behavior of a variety of backward and forward navigation in different browsers. The

frameset appears in Figure 3-3. Some features work only in NN4+.

Listing 17-12: Navigation Lab Frameset

<HTML>
<HEAD>
<TITLE>Back and Forward</TITLE>
</HEAD>
<FRAMESET COLS=”45%,55%”>

<FRAME NAME=”controller” SRC=”lst17-13.htm”>
<FRAME NAME=”display” SRC=”lst17-01.htm”>

</FRAMESET>
</HTML>

windowObject.history.back()

4855-7 ch03.F 6/26/01 8:35 AM Page 219

220 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Figure 3-3: Experiment with back and forward behaviors in different browsers

The top portion of Listing 17-13 contains simple links to other example files from

this chapter. A click of any link loads a different document into the right-hand frame

to let you build some history inside the frame.

Listing 17-13: Navigation Lab Control Panel

<HTML>
<HEAD>
<TITLE>Lab Controls</TITLE>
</HEAD>
<BODY>
Load a series of documents into the right frame by clicking some of these
links (make a note of the sequence you click on):<P>
Listing 17-1

Listing 17-5

Listing 17-9

<HR>
<FORM NAME=”input”>
Click on the various buttons below to see the results in this
frameset:<P>

NN4+ Substitute for toolbar buttons -- <TT>window.back()</TT> and
<TT>window.forward()</TT>:<INPUT TYPE=”button” VALUE=”Back”
onClick=”window.back()”><INPUT TYPE=”button” VALUE=”Forward”
onClick=”window.forward()”><P>

windowObject.history.back()

4855-7 ch03.F 6/26/01 8:35 AM Page 220

221Chapter 3 ✦ Location and History Objects (Chapter 17)

<TT> history.back()</TT> and <TT>history.forward()</TT> for righthand frame:
<INPUT TYPE=”button” VALUE=”Back” onClick=”parent.display.history.back()”><INPUT
TYPE=”button” VALUE=”Forward” onClick=”parent.display.history.forward()”><P>

<TT>history.back()</TT> for this frame:<INPUT TYPE=”button” VALUE=”Back”
onClick=”history.back()”><P>

<TT>history.back()</TT> for parent:<INPUT TYPE=”button” VALUE=”Back”
onClick=”parent.history.back()”><P>

</FORM>
</BODY>
</HTML>

go(relativeNumber | “URLOrTitleSubstring”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Fill in either the number or text field of the page in Listing 17-14 and then click

the associated button. The script passes the appropriate kind of data to the go()
method. Be sure to use negative numbers for visiting a page earlier in the history.

Listing 17-14: Navigating to an Item in History

<HTML>
<HEAD>
<TITLE>history.go() Method</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function doGoNum(form) {

window.history.go(parseInt(form.histNum.value))
}
function doGoTxt(form) {

window.history.go(form.histWord.value)
}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
Calling the history.go() method:
<HR>

Continued

windowObject.history.go()

4855-7 ch03.F 6/26/01 8:35 AM Page 221

222 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 17-14 (continued)

Enter a number (+/-):<INPUT TYPE=”text” NAME=”histNum” SIZE=3 VALUE=”0”>
<INPUT TYPE=”button” VALUE=”Go to Offset” onClick=”doGoNum(this.form)”><P>
Enter a word in a title:<INPUT TYPE=”text” NAME=”histWord”>
<INPUT TYPE=”button” VALUE=”Go to Match” onClick=”doGoTxt(this.form)”>
</FORM>
</BODY>
</HTML>

✦ ✦ ✦

windowObject.history.go()

4855-7 ch03.F 6/26/01 8:35 AM Page 222

The Document
and Body
Objects
(Chapter 18)

To include coverage of the document object and BODY ele-

ment object in the same chapter is logical, provided you

don’t fall into a conceptual trap that has been set during the

evolution of document object models. The document object

has been with us since the beginning. Even though it is an

abstract object (that is to say, the object exists simply by virtue

of a page loading into the browser, rather than associated with

any HTML tag), a number of its properties reflect attributes

that are defined in a page’s <BODY> tag. For instance, the prop-

erties for link colors and background images, whose behaviors

are set in BODY element attributes, have been exposed via the

document object since the earliest days.

In more modern object models (IE4+ and W3C DOM), the

BODY element is its own object. The document object

strengthens its role as a “super-container” of all the HTML ele-

ment objects in the page. Thus, the BODY element object is a

child element of the root document object (see Chapter 14 of

the JavaScript Bible for more details). But now that the BODY

element object can expose its own attributes as properties,

the document object no longer needs to play that role, except

for the sake of backward compatibility with scripts written for

older browsers. Instead, the document object assumes an

even greater role, especially in the W3C DOM, by providing

critical properties and methods of a global nature for the

entire document.

44C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Accessing arrays of
objects contained by
the document object

Writing new
document content to
a window or frame

Managing BODY
element scrolling in IE

✦ ✦ ✦ ✦

4855-7 ch04.F 6/26/01 8:35 AM Page 223

224 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

It is clear, of course, that the BODY element has an important role to play. Both

the IE4+ and W3C DOMs expose the document.body property, which returns a ref-

erence to the BODY element of the current document. The IE4+ DOM, however,

bestows even more importance to the BODY element, by forcing it to be the frame

of reference for how much a document’s content scrolls inside a window or frame.

All other DOMs put that control into the hands of the window (that is, scrolling the

window rather than the BODY element inside the window).

Examples Highlights
✦ Observe in Listing 18-1 how (backward-compatible) document object proper-

ties for various colors (alinkColor and the like) impact the look of the page.

It may be even more important to experience the lack of dynamic control that

these properties provide in a variety of browsers.

✦ See how IE4+/Windows exposes date information about the document in

Listing 18-4.

✦ Listings 18-11 and 18-12 provide a workshop to let you test how well your tar-

get browsers support the document.referrer property. You may need to put

them on your server for the real test. Unfortunately, IE/Windows doesn’t

always provide the desired information.

✦ If you script for W3C-DOM compatibility, be sure to grasp the

document.getElementById() and document.getElementsByName() meth-

ods with the help of the example steps provided.

✦ The document.write() method is one of the most important ones in the

vocabulary. Listings 18-16 through 18-18 demonstrate its power.

✦ See examples for document.body.scrollLeft and

document.body.doScroll() to control document scrolling in IE, and the

onScroll event handler example (Listing 18-21) to see how to keep a page

scrolled at a fixed position.

Document Object
Properties

activeElement

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

document.activeElement

4855-7 ch04.F 6/26/01 8:35 AM Page 224

225Chapter 4 ✦ The Document and Body Objects (Chapter 18)

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) with IE4+ to experiment with

the activeElement property. Type the following statement into the top text box:

document.activeElement.value

After you press the Enter key, the Results box shows the value of the text box

you just typed into (the very same expression you just typed). But if you then click

the Evaluate button, you will see the value property of that button object appear in

the Results box.

alinkColor
bgColor
fgColor
linkColor
vlinkColor

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
I select some color values at random to plug into three settings of the ugly colors

group for Listing 18-1. The smaller window displays a dummy button so that you

can see how its display contrasts with color settings. Notice that the script sets the

colors of the smaller window by rewriting the entire window’s HTML code. After

changing colors, the script displays the color values in the original window’s

textarea. Even though some colors are set with the color constant values, proper-

ties come back in the hexadecimal triplet values. You can experiment to your

heart’s content by changing color values in the listing. Every time you change the

values in the script, save the HTML file and reload it in the browser.

Listing 18-1: Color Sampler

<HTML>
<HEAD>
<TITLE>Color Me</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function defaultColors() {

return “BGCOLOR=’#c0c0c0’ VLINK=’#551a8b’ LINK=’#0000ff’”
}

function uglyColors() {
return “BGCOLOR=’yellow’ VLINK=’pink’ LINK=’lawngreen’”

}

Continued

document.alinkColor

4855-7 ch04.F 6/26/01 8:35 AM Page 225

226 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 18-1 (continued)

function showColorValues() {
var result = “”
result += “bgColor: “ + newWindow.document.bgColor + “\n”
result += “vlinkColor: “ + newWindow.document.vlinkColor + “\n”
result += “linkColor: “ + newWindow.document.linkColor + “\n”
document.forms[0].results.value = result

}
// dynamically writes contents of another window
function drawPage(colorStyle) {

var thePage = “”
thePage += “<HTML><HEAD><TITLE>Color Sampler</TITLE></HEAD><BODY “
if (colorStyle == “default”) {

thePage += defaultColors()
} else {

thePage += uglyColors()
}
thePage += “>Just so you can see the variety of items and color, <A “
thePage += “HREF=’http://www.nowhere.com’>here\’s a link, and “ +

“ here is another link “ +
“you can use on-line to visit and see how its color differs “ +
“from the standard link.”

thePage += “<FORM>”
thePage += “<INPUT TYPE=’button’ NAME=’sample’ VALUE=’Just a Button’>”
thePage += “</FORM></BODY></HTML>”
newWindow.document.write(thePage)
newWindow.document.close()
showColorValues()

}
// the following works properly only in Windows Navigator
function setColors(colorStyle) {

if (colorStyle == “default”) {
document.bgColor = “#c0c0c0”

} else {
document.bgColor = “yellow”

}
}
var newWindow = window.open(“”,””,”height=150,width=300”)
</SCRIPT>
</HEAD>

<BODY>
Try the two color schemes on the document in the small window.
<FORM>
<INPUT TYPE=”button” NAME=”default” VALUE=’Default Colors’

onClick=”drawPage(‘default’)”>
<INPUT TYPE=”button” NAME=”weird” VALUE=”Ugly Colors”

onClick=”drawPage(‘ugly’)”><P>
<TEXTAREA NAME=”results” ROWS=3 COLS=20></TEXTAREA><P><HR>
These buttons change the current document, but not correctly on all platforms<P>

document.alinkColor

4855-7 ch04.F 6/26/01 8:35 AM Page 226

227Chapter 4 ✦ The Document and Body Objects (Chapter 18)

<INPUT TYPE=”button” NAME=”default” VALUE=’Default Colors’
onClick=”setColors(‘default’)”>

<INPUT TYPE=”button” NAME=”weird” VALUE=”Ugly Colors”
onClick=”setColors(‘ugly’)”><P>

</FORM>
<SCRIPT LANGUAGE=”JavaScript”>
drawPage(“default”)
</SCRIPT>
</BODY>
</HTML>

To satisfy the curiosity of those who want to change the color of a loaded docu-

ment on the fly, the preceding example includes a pair of buttons that set the color

properties of the current document. If you’re running browsers and versions capa-

ble of this power (see Table 18-1), everything will look fine; but in other platforms

or earlier versions, you may lose the buttons and other document content behind

the color. You can still click and activate these items, but the color obscures them.

Unless you know for sure that users of your Web page use only browsers and

clients empowered for background color changes, do not change colors by setting

properties of an existing document.

If you are using Internet Explorer 3 for the Macintosh, you will experience some
difficulties with Listing 18-1. The script in the main document loses its connection
with the subwindow; it does not redraw the second window with other colors.
You can, however, change the colors in the main document. The significant flicker
you may experience is related to the way the Mac version redraws content after
changing colors.

anchors

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
In Listing 18-2, I append an extra script to Listing 17-1 (in Chapter 3 of this

book) to demonstrate how to extract the number of anchors in the document.

The document dynamically writes the number of anchors found in the document.

You will not likely ever need to reveal such information to users of your page, and

the document.anchors property is not one that you will call frequently. The object

model defines it automatically as a document property while defining actual anchor

objects.

Note

document.anchors

4855-7 ch04.F 6/26/01 8:35 AM Page 227

228 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 18-2: Reading the Number of Anchors

<HTML>
<HEAD>
<TITLE>document.anchors Property</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function goNextAnchor(where) {

window.location.hash = where
}
</SCRIPT>
</HEAD>

<BODY>

<H1>Top</H1>
<FORM>
<INPUT TYPE=”button” NAME=”next” VALUE=”NEXT” onClick=”goNextAnchor(‘sec1’)”>
</FORM>
<HR>

<H1>Section 1</H1>
<FORM>
<INPUT TYPE=”button” NAME=”next” VALUE=”NEXT” onClick=”goNextAnchor(‘sec2’)”>
</FORM>
<HR>

<H1>Section 2</H1>
<FORM>
<INPUT TYPE=”button” NAME=”next” VALUE=”NEXT” onClick=”goNextAnchor(‘sec3’)”>
</FORM>
<HR>

<H1>Section 3</H1>
<FORM>
<INPUT TYPE=”button” NAME=”next” VALUE=”BACK TO TOP”
onClick=”goNextAnchor(‘start’)”>
</FORM>
<HR><P>
<SCRIPT LANGUAGE=”JavaScript”>
document.write(“<I>There are “ + document.anchors.length +
“ anchors defined for this document</I>”)
</SCRIPT>
</BODY>
</HTML>

document.anchors

4855-7 ch04.F 6/26/01 8:35 AM Page 228

229Chapter 4 ✦ The Document and Body Objects (Chapter 18)

applets

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

Example
The document.applets property is defined automatically as the browser builds

the object model for a document that contains applet objects. You will rarely access

this property, except to determine how many applet objects a document has.

bgColor
See alinkColor.

body

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to examine properties of

the BODY element object. First, to prove that the document.body is the same as

the element object that comes back from longer references, enter the following

statement into the top text box with either IE5 or NN6:

document.body == document.getElementsByTagName(“BODY”)[0]

Next, check out the BODY object’s property listings later in this chapter and

enter the listings into the top text box to review their results. For example:

document.body.bgColor
document.body.tagName

charset

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

document.charset

4855-7 ch04.F 6/26/01 8:35 AM Page 229

230 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

charset property. To see the default setting applied to the page, enter the follow-

ing statement into the top text box:

document.charset

If you are running IE5+ for Windows 98 and you enter the following statement,

the browser will apply a different character set to the page:

document.charset = “iso-8859-2”

If your version of Windows does not have that character set installed in the sys-

tem, the browser may ask permission to download and install the character set.

characterSet

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

characterSet property in NN6. To see the default setting applied to the page,

enter the following statement into the top text box:

document.characterSet

cookie

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Experiment with the last group of statements in Listing 18-3 to create, retrieve,

and delete cookies. You can also experiment with The Evaluator by assigning a

name/value pair string to document.cookie, and then examining the value of the

cookie property.

defaultCharset

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

document.defaultCharset

4855-7 ch04.F 6/26/01 8:35 AM Page 230

231Chapter 4 ✦ The Document and Body Objects (Chapter 18)

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

defaultCharset property. To see the default setting applied to the page, enter the

following statement into the top text box:

document.defaultCharset

documentElement

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to examine the behavior

of the documentElement property. In IE5+ or NN6, enter the following statement

into the top text field:

document.documentElement.tagName

The result is HTML, as expected.

expando

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

document.expando property in IE4+. Begin by proving that the document object

can normally accept custom properties. Type the following statement into the top

text field:

document.spooky = “Boo!”

This property is now set and stays that way until the page is either reloaded or

unloaded.

Now freeze the document object’s properties with the following statement:

document.expando = false

If you try to add a new property, such as the following, you receive an error:

document.happy = “tra la”

Interestingly, even though document.expando is turned off, the first custom prop-

erty is still accessible and modifiable.

document.expando

4855-7 ch04.F 6/26/01 8:35 AM Page 231

232 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

fgColor
See alinkColor.

fileCreatedDate
fileModifiedDate
fileSize

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Listing 18-4 dynamically generates several pieces of content relating to the cre-

ation and modification dates of the file, as well as its size. More importantly, the list-

ing demonstrates how to turn a value returned by the file date properties into a

genuine date object that can be used for date calculations. In the case of Listing

18-4, the calculation is the number of full days between the creation date and the

day someone views the file. Notice that the dynamically generated content is added

very simply via the innerText properties of carefully-located SPAN elements in the

body content.

Listing 18-4: Viewing File Dates

<HTML>
<HEAD>
<TITLE>fileCreatedDate and fileModifiedDate Properties</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function fillInBlanks() {

var created = document.fileCreatedDate
var modified = document.fileModifiedDate
document.all.created.innerText = created
document.all.modified.innerText = modified
var createdDate = new Date(created).getTime()
var today = new Date().getTime()
var diff = Math.floor((today - createdDate) / (1000*60*60*24))
document.all.diff.innerText = diff
document.all.size.innerText = document.fileSize

}
</SCRIPT>
</HEAD>

<BODY onLoad=”fillInBlanks()”>
<H1>fileCreatedDate and fileModifiedDate Properties</H1>
<HR>

document.fileCreatedDate

4855-7 ch04.F 6/26/01 8:35 AM Page 232

233Chapter 4 ✦ The Document and Body Objects (Chapter 18)

<P>This file (bytes) was created
on and most
recently modified on .</P>
<P>It has been days since this file was
created.</P>
</BODY>
</HTML>

forms

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The document in Listing 18-5 is set up to display an alert dialog box that simu-

lates navigation to a particular music site, based on the checked status of the

“bluish” check box. The user input here is divided into two forms: one form with

the check box and the other form with the button that does the navigation. A block

of copy fills the space in between. Clicking the bottom button (in the second form)

triggers the function that fetches the checked property of the “bluish” checkbox by

using the document.forms[i] array as part of the address.

Listing 18-5: Using the document.forms Property

<HTML>
<HEAD>
<TITLE>document.forms example</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function goMusic() {

if (document.forms[0].bluish.checked) {
alert(“Now going to the Blues music area...”)

} else {
alert(“Now going to Rock music area...”)

}
}
</SCRIPT>
</HEAD>

<BODY>
<FORM NAME=”theBlues”>
<INPUT TYPE=”checkbox” NAME=”bluish”>Check here if you’ve got the blues.
</FORM>
<HR>

Continued

document.forms

4855-7 ch04.F 6/26/01 8:35 AM Page 233

234 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 18-5 (continued)

M

o

r

e

C

o

p

y

<HR>
<FORM NAME=”visit”>
<INPUT TYPE=”button” VALUE=”Visit music site” onClick=”goMusic()”>
</FORM>
</BODY>
</HTML>

frames

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See Listings 16-7 and 16-8 (in Chapter 2 of this book) for examples of using the

frames property with window objects. The listings work with IE4+ if you swap ref-

erences to the window with document.

height
width

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to examine the height

and width properties of that document. Enter the following statement into the top

text box and click the Evaluate button:

“height=” + document.height + “; width=” + document.width

document.height

4855-7 ch04.F 6/26/01 8:35 AM Page 234

235Chapter 4 ✦ The Document and Body Objects (Chapter 18)

Resize the window so that you see both vertical and horizontal scrollbars in the

browser window and click the Evaluate button again. If either or both numbers get

smaller, the values in the Results box are the exact size of the space occupied by

the document. But if you expand the window to well beyond where the scrollbars

are needed, the values extend to the number of pixels in each dimension of the win-

dow’s content region.

images

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � (�) � � �

Example
The document.images property is defined automatically as the browser builds

the object model for a document that contains image objects. See the discussion

about the Image object in Chapter 22 of the JavaScript Bible for reference examples.

implementation

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

document.implementation.hasFeature() method in NN6. Enter the following

statements one at a time into the top text field and examine the results:

document.implementation.hasFeature(“HTML”,”1.0”)
document.implementation.hasFeature(“HTML”,”2.0”)
document.implementation.hasFeature(“HTML”,”3.0”)
document.implementation.hasFeature(“CSS”,”2.0”)
document.implementation.hasFeature(“CSS2”,”2.0”)

Feel free to try other values.

lastModified

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

document.lastModified

4855-7 ch04.F 6/26/01 8:35 AM Page 235

236 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example
Experiment with the document.lastModified property with Listing 18-6. But

also be prepared for inaccurate readings if the file is located on some servers or

local hard disks.

Listing 18-6: document.lastModified Property in Another
Format

<HTML>
<HEAD>
<TITLE>Time Stamper</TITLE>
</HEAD>
<BODY>
<CENTER> <H1>GiantCo Home Page</H1></CENTER>
<SCRIPT LANGUAGE=”JavaScript”>
update = new Date(document.lastModified)
theMonth = update.getMonth() + 1
theDate = update.getDate()
theYear = update.getFullYear()
document.writeln(“<I>Last updated:” + theMonth + “/” + theDate + “/” + theYear +
“</I>”)
</SCRIPT>
<HR>
</BODY>
</HTML>

As noted at great length in the Date object discussion in Chapter 36 of the

JavaScript Bible, you should be aware that date formats vary greatly from country

to country. Some of these formats use a different order for date elements. When you

hard-code a date format, it may take a form that is unfamiliar to other users of your

page.

layers

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Listing 18-7 demonstrates only for NN4 how to use the document.layers prop-

erty to crawl through the entire set of nested layers in a document. Using reflexive

calls to the crawlLayers() function, the script builds an indented list of layers in

document.layers

4855-7 ch04.F 6/26/01 8:35 AM Page 236

237Chapter 4 ✦ The Document and Body Objects (Chapter 18)

the same hierarchy as the objects themselves and displays the results in an alert

dialog box. After you load this document (the script is triggered by the onLoad
event handler), compare the alert dialog box contents against the structure of

<LAYER> tags in the document.

Listing 18-7: A Navigator 4 Layer Crawler

<HTML>
<HEAD>
<SCRIPT LANGUAGE=”JavaScript1.2”>
var output = “”
function crawlLayers(layerArray, indent) {

for (var i = 0; i < layerArray.length; i++) {
output += indent + layerArray[i].name + “\n”
if (layerArray[i].document.layers.length) {

var newLayerArray = layerArray[i].document.layers
crawlLayers(newLayerArray, indent + “ “)

}
}
return output

}
function revealLayers() {

alert(crawlLayers(document.layers, “”))
}
</SCRIPT>
</HEAD>
<BODY onLoad=”revealLayers()”>
<LAYER NAME=”Europe”>

<LAYER NAME=”Germany”></LAYER>
<LAYER NAME=”Netherlands”>

<LAYER NAME=”Amsterdam”></LAYER>
<LAYER NAME=”Rotterdam”></LAYER>

</LAYER>
<LAYER NAME=”France”></LAYER>

</LAYER>
<LAYER NAME=”Africa”>

<LAYER NAME=”South Africa”></LAYER>
<LAYER NAME=”Ivory Coast”></LAYER>

</LAYER>
</BODY>
</HTML>

linkColor
See alinkColor.

document.linkColor

4855-7 ch04.F 6/26/01 8:35 AM Page 237

238 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

links

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The document.links property is defined automatically as the browser builds

the object model for a document that contains link objects. You rarely access this

property, except to determine the number of link objects in the document.

location
URL

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility (�) � � � (�) (�) � � �

Example
HTML documents in Listing 18-8 through 18-10 create a test lab that enables you

to experiment with viewing the document.URL property for different windows and

frames in a multiframe environment. Results are displayed in a table, with an addi-

tional listing of the document.title property to help you identify documents

being referred to. The same security restrictions that apply to retrieving

window.location object properties also apply to retrieving the document.URL
property from another window or frame.

Listing 18-8: Frameset for document.URL Property Reader

<HTML>
<HEAD>
<TITLE>document.URL Reader</TITLE>
</HEAD>
<FRAMESET ROWS=”60%,40%”>

<FRAME NAME=”Frame1” SRC=”lst18-10.htm”>
<FRAME NAME=”Frame2” SRC=”lst18-09.htm”>

</FRAMESET>
</HTML>

document.location

4855-7 ch04.F 6/26/01 8:35 AM Page 238

239Chapter 4 ✦ The Document and Body Objects (Chapter 18)

Listing 18-9: document.URL Property Reader

<HTML>
<HEAD>
<TITLE>URL Property Reader</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.1”>
function fillTopFrame() {

newURL=prompt(“Enter the URL of a document to show in the top frame:”,””)
if (newURL != null && newURL != “”) {

top.frames[0].location = newURL
}

}

function showLoc(form,item) {
var windName = item.value
var theRef = windName + “.document”
form.dLoc.value = unescape(eval(theRef + “.URL”))
form.dTitle.value = unescape(eval(theRef + “.title”))

}
</SCRIPT>
</HEAD>

<BODY>
Click the “Open URL” button to enter the location of an HTML document to display
in the upper frame of this window.
<FORM>
<INPUT TYPE=”button” NAME=”opener” VALUE=”Open URL...” onClick=”fillTopFrame()”>
</FORM>
<HR>
<FORM>
Select a window or frame to view each document property values.<P>
<INPUT TYPE=”radio” NAME=”whichFrame” VALUE=”parent”
onClick=”showLoc(this.form,this)”>Parent window
<INPUT TYPE=”radio” NAME=”whichFrame” VALUE=”top.frames[0]”
onClick=”showLoc(this.form,this)”>Upper frame
<INPUT TYPE=”radio” NAME=”whichFrame” VALUE=”top.frames[1]”
onClick=”showLoc(this.form,this)”>This frame<P>
<TABLE BORDER=2>
<TR><TD ALIGN=RIGHT>document.URL:</TD>
<TD><TEXTAREA NAME=”dLoc” ROWS=3 COLS=30 WRAP=”soft”></TEXTAREA></TD></TR>

<TR><TD ALIGN=RIGHT>document.title:</TD>
<TD><TEXTAREA NAME=”dTitle” ROWS=3 COLS=30 WRAP=”soft”></TEXTAREA></TD></TR>
</TABLE>
</FORM>
</BODY>
</HTML>

document.location

4855-7 ch04.F 6/26/01 8:35 AM Page 239

240 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 18-10: Placeholder for Listing 18-8

<HTML>
<HEAD>
<TITLE>Opening Placeholder</TITLE>
</HEAD>
<BODY>
Initial place holder. Experiment with other URLs for this frame (see below).
</BODY>
</HTML>

parentWindow

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
To prove the parentWindow property points to the document’s window, you can

enter the following statement into the top text field of The Evaluator (Chapter 13 in

the JavaScript Bible):

document.parentWindow == self

This expression evaluates to true only if both references are of the same object.

protocol

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
If you use The Evaluator (Chapter 13 in the JavaScript Bible) to test the document.

protocol property, you will find that it displays File Protocol in the results

because you are accessing the listing from a local hard disk or CD-ROM.

referrer

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

document.referrer

4855-7 ch04.F 6/26/01 8:35 AM Page 240

241Chapter 4 ✦ The Document and Body Objects (Chapter 18)

Example
This demonstration requires two documents (and for IE, you’ll also need to

access the documents from a Web server). The first document, in Listing 18-11, sim-

ply contains one line of text as a link to the second document. In the second docu-

ment (Listing 18-12), a script verifies the document from which the user came via a

link. If the script knows about that link, it displays a message relevant to the experi-

ence the user had at the first document. Also try opening Listing 18-12 in a new

browser window from the Open File command in the File menu to see how the

script won’t recognize the referrer.

Listing 18-11: A Source Document

<HTML>
<HEAD>
<TITLE>document.referrer Property 1</TITLE>
</HEAD>

<BODY>
<H1>Visit my sister document
</BODY>
</HTML>

Listing 18-12: Checking document.referrer

<HTML>
<HEAD>
<TITLE>document.referrer Property 2</TITLE>
</HEAD>

<BODY><H1>
<SCRIPT LANGUAGE=”JavaScript”>
if(document.referrer.length > 0 &&
document.referrer.indexOf(“18-11.htm”) != -1){

document.write(“How is my brother document?”)
} else {

document.write(“Hello, and thank you for stopping by.”)
}
</SCRIPT>
</H1></BODY>
</HTML>

document.referrer

4855-7 ch04.F 6/26/01 8:35 AM Page 241

242 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

scripts

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
You can experiment with the document.scripts array in The Evaluator

(Chapter 13 in the JavaScript Bible). For example, you can see that only one SCRIPT

element object is in The Evaluator page if you enter the following statement into the

top text field:

document.scripts.length

If you want to view all of the properties of that lone SCRIPT element object, enter

the following statement into the bottom text field:

document.scripts[0]

Among the properties are both innerText and text. If you assign an empty

string to either property, the scripts are wiped out from the object model, but not

from the browser. The scripts disappear because after the scripts loaded, they were

cached outside of the object model. Therefore, if you enter the following statement

into the top field:

document.scripts[0].text = “”

the script contents are gone from the object model, yet subsequent clicks of the

Evaluate and List Properties buttons (which invoke functions of the SCRIPT element

object) still work.

selection

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See Listings 15-30 and 15-39 in Chapter 1 of this book to see the

document.selection property in action for script-controlled copying and pasting

(IE/Windows only).

URL
See location.

document.URL

4855-7 ch04.F 6/26/01 8:35 AM Page 242

243Chapter 4 ✦ The Document and Body Objects (Chapter 18)

vlinkColor
See alinkColor.

width
See height.

Methods
captureEvents(eventTypeList)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
See the example for the NN4 window.captureEvents() method (Listing 16-21

from Chapter 2 of this book) to see how to capture events on their way to other

objects. In that example, you can substitute the document reference for the window
reference to see how the document version of the method works just like the win-

dow version. If you understand the mechanism for windows, you understand it for

documents. The same is true for the other NN4 event methods.

close()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Before you experiment with the document.close() method, be sure you under-

stand the document.write() method described later in this chapter. After that,

make a separate set of the three documents for that method’s example (Listings

18-16 through 18-18 in a different directory or folder). In the takePulse() function

listing, comment out the document.close() statement, as shown here:

msg += “<P>Make it a great day!</BODY></HTML>”
parent.frames[1].document.write(msg)
//parent.frames[1].document.close()

document.close()

4855-7 ch04.F 6/26/01 8:35 AM Page 243

244 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Now try the pages on your browser. You see that each click of the upper button

appends text to the bottom frame, without first removing the previous text. The

reason is that the previous layout stream was never closed. The document thinks

that you’re still writing to it. Also, without properly closing the stream, the last line

of text may not appear in the most recently written batch.

createAttribute(“attributeName”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Unfortunately, the setAttributeNode() method in NN6 does not yet work with

attributes generated by the createAttribute() method. This will be fixed eventu-

ally, and you can experiment adding attributes to sample elements in The Evaluator.

In the meantime, you can still create an attribute and inspect its properties. Enter

the following text into the top text box:

a = document.createAttribute(“author”)

Now enter a into the bottom text box to inspect the properties of an Attr object.

createElement(“tagName”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Chapter 15 of the JavaScript Bible contains numerous examples of the document.

createElement() method in concert with methods that add or replace content to a

document. See Listings 15-10, 15-21, 15-22,15-28, 15-29, and 15-31 in Chapter 1 of this

book.

createEventObject([eventObject])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

document.createEventObject()

4855-7 ch04.F 6/26/01 8:35 AM Page 244

245Chapter 4 ✦ The Document and Body Objects (Chapter 18)

Example
See the discussion of the fireEvent() method in Chapter 15 of the JavaScript

Bible for an example of the sequence to follow when creating an event to fire on an

element.

createStyleSheet([“URL”[, index]])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Listing 18-13 demonstrates adding an internal and external style sheet to a docu-

ment. For the internal addition, the addStyle1() function invokes document.
createStyleSheet() and adds a rule governing the P elements of the page (not

available for IE5/Mac). In the addStyle2() function, an external file is loaded. That

file contains the following two style rules:

H2 {font-size:20pt; color:blue}
P {color:blue}

Notice that by specifying a position of zero for the imported style sheet, the

addition of the internal style sheet always comes afterward in styleSheet object

sequence. Thus, except when you deploy only the external style sheet, the red text

color of the P elements overrides the blue color of the external style sheet. If you

remove the second parameter of the createStyleSheet() method in addStyle2(),

the external style sheet is appended to the end of the list. If it is the last style sheet to

be added, the blue color prevails. Repeatedly clicking the buttons in this example

continues to add the style sheets to the document.

Listing 18-13: Using document.createStyleSheet()

<HTML>
<HEAD>
<TITLE>document.createStyleSheet() Method</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function addStyle1() {

var newStyle = document.createStyleSheet()
newStyle.addRule(“P”, “font-size:16pt; color:red”)

}

function addStyle2() {
var newStyle = document.createStyleSheet(“lst18-13.css”,0)

}

Continued

document.createStyleSheet()

4855-7 ch04.F 6/26/01 8:35 AM Page 245

246 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 18-13 (continued)

</SCRIPT>
</HEAD>

<BODY>
<H1>document.createStyleSheet() Method</H1>
<HR>
<FORM>
<INPUT TYPE=”button” VALUE=”Add Internal” onClick=”addStyle1()”>
<INPUT TYPE=”button” VALUE=”Add External” onClick=”addStyle2()”>
</FORM>
<H2>Section 1</H2>
<P>Lorem ipsum dolor sit amet, consectetaur adipisicing elit,
sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim adminim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat.</P>
<H2>Section 2</H2>
<P>Duis aute irure dolor in reprehenderit involuptate velit esse
cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deseruntmollit
anim id est laborum.</P>
</BODY>
</HTML>

createTextNode(“text”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
While Chapter 14 and 15 of the JavaScript Bible (Listing 15-21 in Chapter 1, for

instance) provide numerous examples of the createTextNode() method at work,

using The Evaluator (Chapter 13 in the JavaScript Bible) is instructive to see just

what the method generates in IE5+ and NN6. You can use one of the built-in global

variables of The Evaluator to hold a reference to a newly generated text node by

entering the following statement into the top text field:

a = document.createTextNode(“Hello”)

document.createTextNode()

4855-7 ch04.F 6/26/01 8:35 AM Page 246

247Chapter 4 ✦ The Document and Body Objects (Chapter 18)

The Results box shows that an object was created. Now, look at the properties of

the object by typing a into the bottom text field. The precise listings of properties

varies between IE5+ and NN6, but the W3C DOM properties that they share in com-

mon indicate that the object is a node type 3 with a node name of #text. No par-

ents, children, or siblings exist yet because the object created here is not part of

the document hierarchy tree until it is explicitly added to the document.

To see how insertion works, enter the following statement into the top text field

to append the text node to the myP paragraph:

document.getElementById(“myP”).appendChild(a)

The word “Hello” appears at the end of the simple paragraph lower on the page.

Now you can modify the text of that node either via the reference from the point of

view of the containing P element or via the global variable reference for the newly

created node:

document.getElementById(“myP”).lastChild.nodeValue = “Howdy”

or

a.nodeValue = “Howdy”

elementFromPoint(x, y)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Listing 18-14 is a document that contains many different types of elements, each

of which has an ID attribute assigned to it. The onMouseOver event handler for the

document object invokes a function that finds out which element the cursor is over

when the event fires. Notice that the event coordinates are event.clientX and

event.clientY, which use the same coordinate plane as the page for their point of

reference. As you roll the mouse over every element, its ID appears on the page. In

Figure 4-1, the pointer is inside a table cell, whose ID appears in bold at the end of

the first paragraph. Some elements, such as BR and TR, occupy no space in the doc-

ument, so you cannot get their IDs to appear. On a typical browser screen size, a

positioned element rests atop one of the paragraph elements so that you can see

how the elementFromPoint() method handles overlapping elements. If you scroll

the page, the coordinates for the event and the page’s elements stay in sync.

document.elementFromPoint()

4855-7 ch04.F 6/26/01 8:35 AM Page 247

248 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Figure 4-1: Revealing the object located at an event screen position

Listing 18-14: Using the elementFromPoint() Method

<HTML>
<HEAD>
<TITLE>document.elementFromPoint() Method</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function showElemUnderneath() {

var elem = document.elementFromPoint(event.clientX, event.clientY)
document.all.mySpan.innerText = elem.id

}
document.onmouseover = showElemUnderneath
</SCRIPT>
</HEAD>

<BODY ID=”myBody”>
<H1 ID=”header”>document.elementFromPoint() Method</H1>
<HR ID=”myHR”>
<P ID=”instructions”>Roll the mouse around the page. The coordinates
of the mouse pointer are currently atop an element<BR ID=”myBR”>whose ID
is:””.</P>
<FORM ID=”myForm”>
<INPUT ID=”myButton” TYPE=”button” VALUE=”Sample Button” onClick=””>
</FORM>
<TABLE BORDER=1 ID=”myTable”>

4855-7 ch04.F 6/26/01 8:35 AM Page 248

249Chapter 4 ✦ The Document and Body Objects (Chapter 18)

<TR ID=”tr1”>
<TD ID=”td_A1”>Cell A1</TD>
<TD ID=”td_B1”>Cell B1</TD>

</TR>
<TR ID=”tr2”>

<TD ID=”td_A2”>Cell A2</TD>
<TD ID=”td_B2”>Cell B2</TD>

</TR>
</TABLE>
<H2 ID=”sec1”>Section 1</H2>
<P ID=”p1”>Lorem ipsum dolor sit amet, consectetaur adipisicing elit,
sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim adminim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat.</P>
<H2 ID=”sec2”>Section 2</H2>
<P ID=”p2”>Duis aute irure dolor in reprehenderit involuptate velit esse
cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deseruntmollit
anim id est laborum.</P>
<DIV ID=”myDIV” STYLE=”position:absolute; top:340; left:300; background-
color:yellow”>
Here is a positioned element.</DIV>
</BODY>
</HTML>

execCommand(“commandName”[, UIFlag] [,
param])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
You can find many examples of the execCommand() method for the TextRange

object in Chapter 19 of the JavaScript Bible. But you can try out the document-

specific commands in The Evaluator (Chapter 13 in the JavaScript Bible) if you like.

Try each of the following statements in the top text box and click the Evaluate button:

document.execCommand(“Refresh”)
document.execCommand(“SelectAll”)
document.execCommand(“Unselect”)

All methods return true in the Results box.

Because any way you can evaluate a statement in The Evaluator forces a body

selection to become deselected before the evaluation takes place, you can’t experi-

ment this way with the selection-oriented commands.

document.execCommand()

4855-7 ch04.F 6/26/01 8:35 AM Page 249

250 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

getElementById(“elementID”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
You can find many examples of this method in use throughout this book, but you

can take a closer look at how it works by experimenting in The Evaluator (Chapter

13 in the JavaScript Bible). A number of elements in The Evaluator have IDs

assigned to them, so that you can use the method to inspect the objects and their

properties. Enter the following statements into both the top and bottom text fields

of The Evaluator. Results from the top field are references to the objects; results

from the bottom field are lists of properties for the particular object.

document.getElementById(“myP”)
document.getElementById(“myEM”)
document.getElementById(“myTitle”)
document.getElementById(“myScript”)

As you see in the Results field, NN6 is more explicit about the type of HTML ele-

ment object being referenced in the top text field than IE5. But nevertheless, both

browsers are pointing to the same objects.

getElementsByName(“elementName”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator to test out the getElementsByName() method. All form ele-

ments in the upper part of the page have names associated with them. Enter the fol-

lowing statements into the top text field and observe the results:

document.getElementsByName(“output”)
document.getElementsByName(“speed”).length
document.getElementsByName(“speed”)[0].value

You can also explore all of the properties of the text field by typing the following

expression into the bottom field:

document.getElementsByName(“speed”)[0]

document.getElementsByName()

4855-7 ch04.F 6/26/01 8:35 AM Page 250

251Chapter 4 ✦ The Document and Body Objects (Chapter 18)

getSelection()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
The document in Listing 18-15 provides a cross-browser (but not IE5/Mac) solu-

tion to capturing text that a user selects in the page. Selected text is displayed in

the textarea. The script uses browser detection and branching to accommodate the

diverse ways of recognizing the event and reading the selected text.

Listing 18-15: Capturing a Text Selection

<HTML>
<HEAD>
<TITLE>Getting Selected Text</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var isNav4 = (navigator.appName == “Netscape”

&& parseInt(navigator.appVersion) == 4)
var isNav4Min = (navigator.appName == “Netscape” &&

parseInt(navigator.appVersion) >= 4)
var isIE4Min = (navigator.appName.indexOf(“Microsoft”) != -1 &&

parseInt(navigator.appVersion) >= 4)
function showSelection() {

if (isNav4Min) {
document.forms[0].selectedText.value = document.getSelection()

} else if (isIE4Min) {
if (document.selection) {

document.forms[0].selectedText.value =
document.selection.createRange().text

event.cancelBubble = true
}

}
}
if (isNav4) {

document.captureEvents(Event.MOUSEUP)
}
document.onmouseup = showSelection
</SCRIPT>
</HEAD>

<BODY>
<H1>Getting Selected Text</H1>
<HR>
<P>Select some text and see how JavaScript can capture the selection:</P>
<H2>ARTICLE I</H2>
<P>

Continued

document.getSelection()

4855-7 ch04.F 6/26/01 8:35 AM Page 251

252 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 18-15 (continued)

Congress shall make no law respecting an establishment of religion, or
prohibiting the
free exercise thereof; or abridging the freedom of speech, or of the press; or
the right of the people peaceably to assemble, and to petition the government
for a redress of grievances.
</P>
</HR>
<FORM>
<TEXTAREA NAME=”selectedText” ROWS=3 COLS=40 WRAP=”virtual”></TEXTAREA>
</FORM>
</BODY>
</HTML>

open([“mimeType”] [, replace])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
You can see an example of where the document.open() method fits in the

scheme of dynamically creating content for another frame in the discussion of the

document.write() method later in this chapter.

queryCommandEnabled(“commandName”)
queryCommandIndterm(“commandName”)
queryCommandCommandState(“commandName”)
queryCommandSupported(“commandName”)
queryCommandText(“commandName”)
queryCommandValue(“commandName”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See the examples for these methods covered under the TextRange object in

Chapter 19 of the JavaScript Bible.

document.queryCommandEnabled()

4855-7 ch04.F 6/26/01 8:35 AM Page 252

253Chapter 4 ✦ The Document and Body Objects (Chapter 18)

recalc([allFlag])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
You can see an example of recalc() in Listing 15-32 (in Chapter 1 of this book)

for the setExpression() method. In that example, the dependencies are between

the current time and properties of standard element objects.

write(“string1” [,”string2” ...
[, “stringn”]])
writeln(“string1” [,”string2” ...
[, “stringn”]])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The example in Listings 18-16 through 18-18 demonstrates several important

points about using the document.write() or document.writeln() methods for

writing to another frame. First is the fact that you can write any HTML code to a

frame, and the browser accepts it as if the source code came from an HTML file

somewhere. In the example, I assemble a complete HTML document, including

basic HTML tags for completeness.

Listing 18-16: Frameset for document.write() Example

<HTML>
<HEAD>
<TITLE>Writin’ to the doc</TITLE>
</HEAD>
<FRAMESET ROWS=”50%,50%”>

<FRAME NAME=”Frame1” SRC=”lst18-17.htm”>
<FRAME NAME=”Frame2” SRC=”lst18-18.htm”>

</FRAMESET>
</HTML>

document.write()

4855-7 ch04.F 6/26/01 8:35 AM Page 253

254 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 18-17: document.write() Example

<HTML>
<HEAD>
<TITLE>Document Write Controller</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function takePulse(form) {

var msg = “<HTML><HEAD><TITLE>On The Fly with “ + form.yourName.value +
“</TITLE></HEAD>”

msg += “<BODY BGCOLOR=’salmon’><H1>Good Day “ + form.yourName.value +
“!</H1><HR>”

for (var i = 0; i < form.how.length; i++) {
if (form.how[i].checked) {

msg += form.how[i].value
break

}
}
msg += “<P>Make it a great day!</BODY></HTML>”
parent.Frame2.document.write(msg)
parent.Frame2.document.close()

}
function getTitle() {

alert(“Lower frame document.title is now:” + parent.Frame2.document.title)
}
</SCRIPT>
</HEAD>

<BODY>
Fill in a name, and select how that person feels today. Then click “Write To
Below”
to see the results in the bottom frame.
<FORM>
Enter your first name:<INPUT TYPE=”text” NAME=”yourName” VALUE=”Dave”><P>
How are you today? <INPUT TYPE=”radio” NAME=”how”
VALUE=”I hope that feeling continues forever.” CHECKED>Swell
<INPUT TYPE=”radio” NAME=”how” VALUE=”You may be on your way to feeling Swell”>
Pretty Good
<INPUT TYPE=”radio” NAME=”how” VALUE=”Things can only get better from here.”>
So-So<P>
<INPUT TYPE=”button” NAME=”enter” VALUE=”Write To Below”

onClick=”takePulse(this.form)”>
<HR>
<INPUT TYPE=”button” NAME=”peek” VALUE=”Check Lower Frame Title”

onClick=”getTitle()”>
</BODY>
</HTML>

document.write()

4855-7 ch04.F 6/26/01 8:35 AM Page 254

255Chapter 4 ✦ The Document and Body Objects (Chapter 18)

Listing 18-18: Placeholder for Listing 18-16

<HTML>
<HEAD>
<TITLE>Placeholder</TITLE>
<BODY>
</BODY>
</HTML>

Figure 4-2 shows an example of the frame written by the script.

Figure 4-2: Clicking the Write To Below button in the upper frame causes a script to
assemble and write HTML for the bottom frame.

A second point to note is that this example customizes the content of the docu-

ment based on user input. This customization makes the experience of working

with your Web page feel far more interactive to the user — yet you’re doing it with-

out any CGI programs running on the server.

The third point I want to bring home is that the document created in the separate

frame by the document.write() method is a genuine document object. In this exam-

ple, for instance, the <TITLE> tag of the written document changes if you redraw the

lower frame after changing the entry of the name field in the upper frame. If you click

the lower button after updating the bottom frame, you see that the document.title
property has, indeed, changed to reflect the <TITLE> tag written to the browser in

document.write()

4855-7 ch04.F 6/26/01 8:35 AM Page 255

256 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

the course of displaying the frame’s page (except in NN4/Mac, which exhibits a bug

for this property in a dynamically written document). The fact that you can artificially

create full-fledged JavaScript document objects on the fly represents one of the most

important powers of serverless CGI scripting (for information delivery to the user)

with JavaScript. You have much to take advantage of here if your imagination is up to

the task.

Notice that except for NN2, you can easily modify Listing 18-17 to write the

results to the same frame as the document containing the field and buttons. Instead

of specifying the lower frame

parent.frames[1].document.open()
parent.frames[1].document.write(msg)
parent.frames[1].document.close()

the code simply can use

document.open()
document.write(msg)
document.close()

This code would replace the form document with the results and not require any

frames in the first place. Because the code assembles all of the content for the new

document into one variable value, that data survives the one document.write()
method.

The frameset document (Listing 18-18) creates a blank frame by loading a blank

document (Listing 18-18). An alternative I highly recommend is to have the frame-

setting document fill the frame with a blank document of its own creation. See

“Blank Frames” in Chapter 16 of the JavaScript Bible for further details about this

technique for NN3+ and IE3+.

Event Handlers
onStop

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Listing 18-19 provides a simple example of an intentional infinitely looping script.

In case you load this page into a browser other than IE5, you can click the Halt

Counter button to stop the looping. The Halt Counter button and the onStop event

handler invoke the same function.

Listing 18-19: Scripting the Browser Stop Button

<HTML>
<HEAD>

document.onStop

4855-7 ch04.F 6/26/01 8:35 AM Page 256

257Chapter 4 ✦ The Document and Body Objects (Chapter 18)

<TITLE>onStop Event Handler</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var counter = 0
var timerID
function startCounter() {

document.forms[0].display.value = ++counter
//clearTimeout(timerID)
timerID = setTimeout(“startCounter()”, 10)

}
function haltCounter() {

clearTimeout(timerID)
counter = 0

}
document.onstop = haltCounter
</SCRIPT>
</HEAD>

<BODY>
<H1>onStop Event Handler</H1>
<HR>
<P>Click the browser’s Stop button (in IE) to stop the script counter.</P>
<FORM>
<P><INPUT TYPE=”text” NAME=”display”></P>
<INPUT TYPE=”button” VALUE=”Start Counter” onClick=”startCounter()”>
<INPUT TYPE=”button” VALUE=”Halt Counter” onClick=”haltCounter()”>
</FORM>
</BODY>
</HTML>

BODY Element Object
Properties

aLink
bgColor
link
text
vLink

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

document.body.aLink

4855-7 ch04.F 6/26/01 8:35 AM Page 257

258 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example
You can modify Listing 18-1 for use with IE4+ and NN6+ only by using the new

property names instead. Replace all references to the document properties with

their document.body equivalents. For example, the function would be reworked as

the following (changes in boldface):

function showColorValues() {
var result = “”
result += “bgColor: “ + newWindow.document.body.bgColor + “\n”
result += “vLink: “ + newWindow.document.body.vLink + “\n”
result += “link: “ + newWindow.document.body.link + “\n”
document.forms[0].results.value = result

}

background

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
If you have a background image file named images/logoBG.gif, a script can set

the background via the following statement:

document.body.background = “images/logoBG.gif”

To clear the background image:

document.body.background = “”

If a background color has been previously set, the color becomes visible after the

image disappears.

bgColor
See aLink.

bgProperties

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Both of the following statements change the default behavior of background

image scrolling in IE4+:

document.body.bgProperties

4855-7 ch04.F 6/26/01 8:35 AM Page 258

259Chapter 4 ✦ The Document and Body Objects (Chapter 18)

document.body.bgProperties = “fixed”

or

document.body.style.backgroundAttachment = “fixed”

The added benefit of using the style sheet version is that it also works in NN6.

bottomMargin
leftMargin
rightMargin
topMargin

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Both of the following statements change the default left margin in IE4+:

document.body.leftMargin = 30

or

document.body.style.marginLeft = 30

leftMargin
See bottomMargin.

link
See aLink.

noWrap

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
To change the word wrapping behavior from the default, the statement is:

document.body.noWrap = true

document.body.noWrap

4855-7 ch04.F 6/26/01 8:35 AM Page 259

260 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

rightMargin
See bottomMargin.

scroll

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
To change the scrollbar appearance from the default, the statement is:

document.body.scroll = “no”

scrollLeft
scrollTop

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Listing 18-20 is the IE4+ version of the NN example for pageXOffset and

pageYOffset properties (Listing 16-13 in Chapter 2). Everything about these two

examples is the same except for the syntax that retrieves the values indicating how

much the document is scrolled in a window.

Listing 18-20: Viewing the scrollLeft and scrollTop Properties

<HTML>
<HEAD>
<TITLE>Master of all Windows</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function leftFrame() {

var output = “<HTML><BODY><H3>Body Scroll Values</H3><HR>\n”
output += “<FORM>body.scrollLeft:<INPUT TYPE=’text’ NAME=’xOffset’

SIZE=4>
\n”
output += “body.scrollTop:<INPUT TYPE=’text’ NAME=’yOffset’ SIZE=4>
\n”
output += “</FORM></BODY></HTML>”
return output

}

document.body.scrollLeft

4855-7 ch04.F 6/26/01 8:35 AM Page 260

261Chapter 4 ✦ The Document and Body Objects (Chapter 18)

function rightFrame() {
var output = “<HTML><HEAD><SCRIPT LANGUAGE=’JavaScript’>\n”
output += “function showOffsets() {\n”
output += “parent.readout.document.forms[0].xOffset.value = “ +

“document.body.scrollLeft\n”
output += “parent.readout.document.forms[0].yOffset.value = “ +

“document.body.scrollTop\n}\n”
output += “document.onclick = showOffsets\n”
output += “<\/SCRIPT></HEAD><BODY><H3>Content Page</H3>\n”
output += “Scroll this frame and click on a table border to view “ +

“page offset values.
<HR>\n”
output += “<TABLE BORDER=5 WIDTH=800>”
var oneRow = “<TD>Cell 1</TD><TD>Cell 2</TD><TD>Cell 3</TD><TD>Cell 4</TD>” +

“<TD>Cell 5</TD>”
for (var i = 1; i <= 30; i++) {

output += “<TR><TD>Row “ + i + “</TD>” + oneRow + “</TR>”
}
output += “</TABLE></BODY></HTML>”
return output

}
</SCRIPT>
</HEAD>
<FRAMESET COLS=”30%,70%”>

<FRAME NAME=”readout” SRC=”javascript:parent.leftFrame()”>
<FRAME NAME=”display” SRC=”javascript:parent.rightFrame()”>

</FRAMESET>
</HTML>

text
See aLink.

topMargin
See bottomMargin.

vLink
See aLink.

Methods
createTextRange()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

document.body.createTextRange()

4855-7 ch04.F 6/26/01 8:35 AM Page 261

262 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example
See Listing 19-8 (in Chapter 5 of this book) for an example of the

createTextRange() method in action.

doScroll([“scrollAction”])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

doScroll() method in IE5+. Size the browser window so that at least the vertical

scrollbar is active (meaning it has a thumb region). Enter the following statement

into the top text field and press Enter a few times to simulate clicking the PgDn key:

document.body.doScroll()

Return to the top of the page and now do the same for scrolling by the increment of

the scrollbar down arrow:

document.body.doScroll(“down”)

You can also experiment with upward scrolling. Enter the desired statement in

the top text field and leave the text cursor in the field. Manually scroll to the bot-

tom of the page and then press Enter to activate the command.

Event Handlers
onAfterPrint
onBeforePrint

See the onAfterPrint event handler for the window object, Chapter 16 of the

JavaScript Bible.

onScroll

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Listing 18-21 is a highly artificial demonstration of what can be a useful tool for

some page designs. Consider a document that occupies a window or frame, but one

that you don’t want scrolled, even by accident with one of the newer mouse wheels

document.body.onScroll

4855-7 ch04.F 6/26/01 8:35 AM Page 262

263Chapter 4 ✦ The Document and Body Objects (Chapter 18)

that are popular with Wintel PCs. If scrolling of the content would destroy the

appearance or value of the content, then you want to make sure that the page

always zips back to the top. The onScroll event handler in Listing 18-21 does just

that. Notice that the event handler is set as a property of the document.body
object after the page has loaded. While the event handler can also be set as an

attribute of the <BODY> tag, to assign it as a property requires the page to load first.

Until then, the document.body object does not yet officially exist in the object

model for this page.

Listing 18-21: Forcing Scrolling to Stay at the Page Top

<HTML>
<HEAD>
<TITLE>onScroll Event Handler</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function zipBack() {

window.scroll(0,0)
}
function init() {

document.body.onscroll = zipBack
}
</SCRIPT>
</HEAD>

<BODY onLoad=”init()”>
<H1>onScroll Event Handler</H1>
<HR>
This page always zips back to the top if you try to scroll it.
<P>
<IFRAME FRAMEBORDER=0 SCROLLING=”no” HEIGHT=1000 SRC=”bofright.htm”></IFRAME>
</P>
</BODY>
</HTML>

✦ ✦ ✦

document.body.onScroll

4855-7 ch04.F 6/26/01 8:35 AM Page 263

4855-7 ch04.F 6/26/01 8:35 AM Page 264

Body Text
Objects
(Chapter 19)

The subject of body text objects encompasses both HTML

element objects and several abstract DOM objects that

make it easier for scripts to manipulate text-oriented body

content that may not be contained within its own element tag.

While the HTML element objects are easy to grasp, the

abstract objects that work with stretches of visible body text

have their own vocabularies and peculiarities.

Many HTML element objects in this category may become

obsolete when the installed base of browsers capable of sup-

porting Cascading Style Sheets reaches critical mass. CSS

adherents would much rather use style sheets for font specifi-

cations in place of the old-fashioned tag. But other

elements in this group, such as the header elements (H1, H2,

and so on), provide context for content that scripts may find

useful for tasks such as creating a table of contents on the fly.

More intriguing is the concept of a text range, which is

essentially an object that represents an arbitrary series of text

characters within a document. A text ranges can work within

an element (or text node) or extend beyond element borders,

just as if a user selected a bunch of text that includes portions

of what are HTML elements behind the scenes.

Unfortunately for scripters, the vocabulary for text range

manipulation is very different for the IE4+/Windows and W3C

object models. Moreover, the two objects do not always share

the same functionality, making it even more difficult to pro-

gram cross-browser implementations using text ranges. Be

alert to the compatibility ratings for each example before try-

ing out a listing or step-by-step sequence.

55C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Using the NN Range
and IE TextRange
objects

Working with text
selections

Scripting search and
replace actions

✦ ✦ ✦ ✦

4855-7 ch05.F 6/26/01 8:35 AM Page 265

266 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Examples Highlights
✦ Many site visitors (this author included) frown on the application of the

scrolling MARQUEE element because it tends to distract visitors, rather than

convey meaningful information. But if you insist on using it, Listing 19-3

demonstrates how scripts can control numerous behaviors.

✦ Listing 19-4 lets you examine how the NN6 (W3C DOM) Range object treats

boundary points within the node hierarchy of a document.

✦ To insert a node into an arbitrary point within another, see Listing 19-5’s appli-

cation of the Range.insertNode() method.

✦ Walk through the steps for Range.selectNode() method to see how to set a

range to encompass an entire node or its contents.

✦ Run Listing 19-8 to see how NN6 (W3C DOM) provides additional facilities

for manipulating text content within a node. The listing also demonstrates

try-catch error handling.

✦ Listing 19-10 shows the IE4+/Windows TextRange object’s way of comparing

range boundaries (the IE version of Listing 19-4).

✦ The TextRange object provides practical text search facilities, which are

demonstrated in Listing 19-11. In the process, several TextRange properties

and methods get a workout, including the use of bookmarks within a range. A

simple undo buffer adds to the user friendliness of the application.

FONT Element Object
Properties

color

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Listing 19-1 contains a page that demonstrates changes to the three FONT ele-

ment object properties: color, face, and size. Along the way, you can see an eco-

nomical use of the setAttribute() method to do the work for all of the property

changes. This page loads successfully in all browsers, but the SELECT lists make

changes to the text only in IE4+ and NN6+.

A P element contains a nested FONT element that encompasses three words

whose appearance is controlled by three select lists. Each list controls one of the

FONT.color

4855-7 ch05.F 6/26/01 8:35 AM Page 266

267Chapter 5 ✦ Body Text Objects (Chapter 19)

three FONT object properties, and their NAME attributes are strategically assigned

the names of the properties (as you see in a moment). VALUE attributes for OPTION

elements contain strings that are to be assigned to the various properties. Each

SELECT element invokes the same setFontAttr() function, passing a reference to

itself so that the function can inspect details of the element.

The first task of the setFontAttr() function is to make sure that only browsers

capable of treating the FONT element as an object get to the meat of the function.

The test for the existence of document.all and the myFONT element blocks all

older browsers from changing the font characteristics. As the page loads, the

document.all property is set for NN6 by using a variation of the normalization

technique described in Chapter 14 of the JavaScript Bible.

For suitably equipped browsers, the function next extracts the string from the

value property of the SELECT object that was passed to the function. If a selection

is made (meaning other than the first, empty one), then the single nested statement

uses the setAttribute() method to assign the value to the attribute whose name

matches the name of the SELECT element.

An odd bug in IE5/Mac doesn’t let the rendered color change when changing the
color property. But the setting is valid, as proven by selecting any of the other
two property choices.

Listing 19-1: Controlling FONT Object Properties

<HTML>
<HEAD>
<TITLE>FONT Object Properties</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// document.all normalization trick for NN6
if (navigator.appName == “Netscape” && parseInt(navigator.appVersion) >= 5) {

document.all = document.getElementsByTagName(“*”)
}

// one function does all!
function setFontAttr(select) {

if (document.all && document.all.myFONT) {
var choice = select.options[select.selectedIndex].value
if (choice) {

document.all.myFONT.setAttribute(select.name, choice)
}

}
}
</SCRIPT>
</HEAD>

<BODY>
<H1>Font Object Properties</H1>

Continued

Note

FONT.color

4855-7 ch05.F 6/26/01 8:35 AM Page 267

268 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 19-1 (continued)

<P>This may look like a simple sentence, but
THESE THREE WORDS
are contained by a FONT element.</P>

<FORM>
Select a text color:
<SELECT NAME=”color” onChange=”setFontAttr(this)”>

<OPTION></OPTION>
<OPTION VALUE=”red”>Red</OPTION>
<OPTION VALUE=”green”>Green</OPTION>
<OPTION VALUE=”blue”>Blue</OPTION>
<OPTION VALUE=”#FA8072”>Some Hex Triplet Value</OPTION>

</SELECT>

Select a font face:
<SELECT NAME=”face” onChange=”setFontAttr(this)”>

<OPTION></OPTION>
<OPTION VALUE=”Helvetica”>Helvetica</OPTION>
<OPTION VALUE=”Times”>Times</OPTION>
<OPTION VALUE=”Comic Sans MS, sans-serif”>Comic Sans MS, sans-serif</OPTION>
<OPTION VALUE=”Courier, monospace”>Courier, monospace</OPTION>
<OPTION VALUE=”Zapf Dingbats, serif”>Zapf Dingbats, serif</OPTION>

</SELECT>

Select a font size:
<SELECT NAME=”size” onChange=”setFontAttr(this)”>

<OPTION></OPTION>
<OPTION VALUE=”3”>3 (Default)</OPTION>
<OPTION VALUE=”+1”>Increase Default by 1</OPTION>
<OPTION VALUE=”-1”>Decrease Default by 1</OPTION>
<OPTION VALUE=”1”>Smallest</OPTION>
<OPTION VALUE=”7”>Biggest</OPTION>

</SELECT>
</BODY>
</HTML>

face

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

FONT.face

4855-7 ch05.F 6/26/01 8:35 AM Page 268

269Chapter 5 ✦ Body Text Objects (Chapter 19)

Example
See Listing 19-1 for an example of values that can be used to set the face prop-

erty of a FONT element object. While you will notice visible changes to most

choices on the page, the font face selections may not change from one choice to

another; this all depends on the fonts that are installed on your PC.

size

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
See Listing 19-1 for an example of values that can be used to set the size prop-

erty of a FONT element object. Notice that incrementing or decrementing the size
property is applied only to the size assigned to the SIZE attribute of the element

(or the default, if none is specified) and not the current setting adjusted by script.

HR Element Object
Properties

align

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Listing 19-2 contains a page that demonstrates the changes to the five HR ele-

ment object properties: align, color, noShade, size, and width. Along the way,

you can see an economical use of the setAttribute() method to do the work for

all of the property changes. This page loads successfully in all browsers, but the

SELECT lists make changes to the text only in IE4+ and NN6+ (because they treat

the element as an object).

An HR element (whose ID is myHR) is displayed with the browser default settings

(100% width, centered, and its “magic” color). Each list controls one of the five HR

object properties, and their NAME attributes are strategically assigned the names of

the properties (as you see in a moment). VALUE attributes for OPTION elements con-

tain strings that are to be assigned to the various properties. Each SELECT element

HR.align

4855-7 ch05.F 6/26/01 8:35 AM Page 269

270 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

invokes the same setHRAttr() function, passing a reference to itself so that the

function can inspect details of the element. Figure 5-1 shows the page after several

choices have modified the HR element.

Figure 5-1: Modifying HR element properties

The first task of the setHRAttr() function is to make sure that only browsers

capable of treating the HR element as an object get to the meat of the function. As

the page loads, the document.all property is set for NN6 using a normalization

technique described in Chapter 14 of the JavaScript Bible.

For suitably equipped browsers, the function next reads the string from the

value property of the SELECT object that is passed to the function. If a selection is

made (that is, other than the first, empty one), then the single, nested statement

uses the setAttribute() method to assign the value to the attribute whose name

matches the name of the SELECT element.

Listing 19-2: Controlling HR Object Properties

<HTML>
<HEAD>
<TITLE>HR Object Properties</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// document.all normalization trick for NN6
if (navigator.appName == “Netscape” && parseInt(navigator.appVersion) >= 5) {

document.all = document.getElementsByTagName(“*”)
}

// one function does all!
function setHRAttr(select) {

HR.align

4855-7 ch05.F 6/26/01 8:35 AM Page 270

271Chapter 5 ✦ Body Text Objects (Chapter 19)

if (document.all && document.all.myHR) {
var choice = select.options[select.selectedIndex].value
if (choice) {

document.all.myHR.setAttribute(select.name, choice)
}

}
}
</SCRIPT>
</HEAD>

<BODY>
<H1>HR Object Properties</H1>

<P>Here is the HR element you will be controlling:</P>
<HR ID=”myHR”>
<FORM>
Select an alignment:
<SELECT NAME=”align” onChange=”setHRAttr(this)”>

<OPTION></OPTION>
<OPTION VALUE=”left”>Left</OPTION>
<OPTION VALUE=”center”>Center</OPTION>
<OPTION VALUE=”right”>Right</OPTION>

</SELECT>

Select a rule color (IE only):
<SELECT NAME=”color” onChange=”setHRAttr(this)”>

<OPTION></OPTION>
<OPTION VALUE=”red”>Red</OPTION>
<OPTION VALUE=”green”>Green</OPTION>
<OPTION VALUE=”blue”>Blue</OPTION>
<OPTION VALUE=”#FA8072”>Some Hex Triplet Value</OPTION>

</SELECT>

Select a rule shading:
<SELECT NAME=”noShade” onChange=”setHRAttr(this)”>

<OPTION></OPTION>
<OPTION VALUE=true>No Shading</OPTION>
<OPTION VALUE=false>Shading</OPTION>

</SELECT>

Select a rule height:
<SELECT NAME=”size” onChange=”setHRAttr(this)”>

<OPTION></OPTION>
<OPTION VALUE=2>2 (Default)</OPTION>
<OPTION VALUE=4>4 Pixels</OPTION>
<OPTION VALUE=10>10 Pixels</OPTION>

</SELECT>

Select a rule width:
<SELECT NAME=”width” onChange=”setHRAttr(this)”>

<OPTION></OPTION>
<OPTION VALUE=”100%”>100% (Default)</OPTION>

Continued

HR.align

4855-7 ch05.F 6/26/01 8:35 AM Page 271

272 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 19-2 (continued)

<OPTION VALUE=”80%”>80%</OPTION>
<OPTION VALUE=300>300 Pixels </OPTION>

</SELECT>
</BODY>
</HTML>

color

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
See Listing 19-2 earlier in this chapter for an example of values that can be used

to set the color property of an HR element object.

noShade

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
See Listing 19-2 earlier in this chapter for an example of values that can be used

to set the noShade property of an HR element object. Because of the buggy behav-

ior associated with setting this property, adjusting the property in the example has

unexpected (and usually undesirable) consequences.

size

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
See Listing 19-2 earlier in this chapter for an example of values that can be used

to set the size property of an HR element object.

HR.size

4855-7 ch05.F 6/26/01 8:35 AM Page 272

273Chapter 5 ✦ Body Text Objects (Chapter 19)

width

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
See Listing 19-2 earlier in this chapter for an example of values that can be used

to set the width property of an HR element object.

MARQUEE Element Object
Properties

behavior

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Listing 19-3 contains a page that demonstrates the changes to several MARQUEE

element object properties: behavior, bgColor, direction, scrollAmount, and

scrollDelay. This page and scripts are intended only for IE4+. See the description

of Listing 19-1 for details on the attribute setting script.

Listing 19-3: Controlling MARQUEE Object Properties

<HTML>
<HEAD>
<TITLE>MARQUEE Object Properties</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// one function does all!
function setMARQUEEAttr(select) {

if (document.all && document.all.myMARQUEE) {
var choice = select.options[select.selectedIndex].value
if (choice) {

document.all.myMARQUEE.setAttribute(select.name, choice)
}

}
}

Continued

MARQUEE.behavior

4855-7 ch05.F 6/26/01 8:35 AM Page 273

274 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 19-3 (continued)

</SCRIPT>
</HEAD>

<BODY>
<H1>MARQUEE Object Properties</H1>

<HR>
<MARQUEE ID=”myMARQUEE” WIDTH=400 HEIGHT=24>This is the MARQUEE element object
you will be controlling.</MARQUEE>
<FORM>
<INPUT TYPE=”button” VALUE=”Start Marquee”
onClick=”document.all.myMARQUEE.start()”>
<INPUT TYPE=”button” VALUE=”Stop Marquee”
onClick=”document.all.myMARQUEE.stop()”>

Select a behavior:
<SELECT NAME=”behavior” onChange=”setMARQUEEAttr(this)”>

<OPTION></OPTION>
<OPTION VALUE=”alternate”>Alternate</OPTION>
<OPTION VALUE=”scroll”>Scroll</OPTION>
<OPTION VALUE=”slide”>Slide</OPTION>

</SELECT>

Select a background color:
<SELECT NAME=”bgColor” onChange=”setMARQUEEAttr(this)”>

<OPTION></OPTION>
<OPTION VALUE=”red”>Red</OPTION>
<OPTION VALUE=”green”>Green</OPTION>
<OPTION VALUE=”blue”>Blue</OPTION>
<OPTION VALUE=”#FA8072”>Some Hex Triplet Value</OPTION>

</SELECT>

Select a scrolling direction:
<SELECT NAME=”direction” onChange=”setMARQUEEAttr(this)”>

<OPTION></OPTION>
<OPTION VALUE=”left”>Left</OPTION>
<OPTION VALUE=”right”>Right</OPTION>
<OPTION VALUE=”up”>Up</OPTION>
<OPTION VALUE=”down”>Down</OPTION>

</SELECT>

Select a scroll amount:
<SELECT NAME=”scrollAmount” onChange=”setMARQUEEAttr(this)”>

<OPTION></OPTION>
<OPTION VALUE=4>4</OPTION>
<OPTION VALUE=6>6 (Default)</OPTION>
<OPTION VALUE=10>10</OPTION>

</SELECT>

Select a scroll delay:

MARQUEE.behavior

4855-7 ch05.F 6/26/01 8:35 AM Page 274

275Chapter 5 ✦ Body Text Objects (Chapter 19)

<SELECT NAME=”scrollDelay” onChange=”setMARQUEEAttr(this)”>
<OPTION></OPTION>
<OPTION VALUE=50>Short</OPTION>
<OPTION VALUE=85>Normal</OPTION>
<OPTION VALUE=125>Long</OPTION>

</SELECT>
</BODY>
</HTML>

bgColor

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See Listing 19-3 earlier in this chapter for an example of how to apply values to

the bgColor property.

direction

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See Listing 19-3 earlier in this chapter for an example of how to apply values to

the direction property.

scrollAmount
scrollDelay

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See Listing 19-3 earlier in this chapter for an example of how to apply values to

the scrollAmount and scrollDelay properties.

MARQUEE.scrollAmount

4855-7 ch05.F 6/26/01 8:35 AM Page 275

276 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Methods
start()
stop()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See Listing 19-3 earlier in this chapter for examples of both the start() and

stop() methods, which are invoked in event handlers of separate controlling but-

tons on the page. Notice, too, that when you have the behavior set to slide, stop-

ping and restarting the MARQUEE does not cause the scroll action to start from a

blank region.

Range Object
Properties

collapsed

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

collapsed property. Reload the page and assign a new range to the a global vari-

able by typing the following statement into the top text box:

a = document.createRange()

Next, set the range to encompass a node:

a.selectNode(document.body)

Enter a.collapsed into the top text box . The expression returns false because

the end points of the range are not the same.

Range.collapsed

4855-7 ch05.F 6/26/01 8:35 AM Page 276

277Chapter 5 ✦ Body Text Objects (Chapter 19)

commonAncestorContainer

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

commonAncestorContainer property. Reload the page and assign a new range to

the a global variable by typing the following statement into the top text box:

a = document.createRange()

Now set the start point to the beginning of the contents of the myEM element and

set the end point to the end of the surrounding myP element:

a.setStartBefore(document.getElementById(“myEM”).firstChild)
a.setEndAfter(document.getElementById(“myP”).lastChild)

Verify that the text range is set to encompass content from the myEM node (the

word “all”) and end of myP nodes:

a.toString()

Verify, too, that the two end point containers are different nodes:

a.startContainer.tagName
a.endContainer.tagName

Finally, see what node contains both of these two end points:

a.commonAncestorContainer.id

The result is the myP element, which both the myP and myEM nodes have in

common.

endContainer
startContainer

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

endContainer and startContainer properties. Reload the page and assign a new

range to the a global variable by typing the following statement into the top text box:

a = document.createRange()

Range.endContainer

4855-7 ch05.F 6/26/01 8:35 AM Page 277

278 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Now set the range to encompass the myEM element:

a.selectNode(document.getElementById(“myEM”)

Inspect the containers for both the start and end points of the selection:

a.startContainer.id
a.endContainer.id

The range encompasses the entire myEM element, so the start and end points are

outside of the element. Therefore, the container of both start and end points is the

myP element that also surrounds the myEM element.

endOffset
startOffset

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

endOffset and startOffset properties, following similar paths you just saw in

the description. Reload the page and assign a new range to the a global variable by

typing the following statement into the top text box:

a = document.createRange()

Now set the range to encompass the myEM element and then move the start point

outward to a character within the myP element’s text node:

a.selectNode(document.getElementById(“myEM”))
a.setStart(document.getElementById(“myP”).firstChild, 7)

Inspect the node types of the containers for both the start and end points of the

selection:

a.startContainer.nodeType
a.endContainer.nodeType

The startContainer node type is 3 (text node), while the endContainer node

type is 1 (element). Now inspect the offsets for both the start and end points of the

selection:

a.startOffset
a.endOffset

Range.endOffset

4855-7 ch05.F 6/26/01 8:35 AM Page 278

279Chapter 5 ✦ Body Text Objects (Chapter 19)

Methods
cloneContents()
cloneRange()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
When Netscape outfits the NN6 browser with the cloneContents() method, use

The Evaluator (Chapter 13 in the JavaScript Bible) to see the method in action.

Begin by creating a new range object that contains the text of the myP paragraph

element.

a = document.createRange()
a.selectNode(document.getElementById(“myP”)

Next, clone the original range and preserve the copy in variable b:

b = a.cloneContents()

Move the original range so that it is an insertion point at the end of the body by

first expanding it to encompass the entire body and then collapse it to the end

a.selectNode(document.body)
a.collapse(false)

Now, insert the copy at the very end of the body:

a.insertNode(b)

If you scroll to the bottom of the page, you see a copy of the text.

See the description of the compareBoundaryPoints() method later in this

chapter to see an example of the cloneRange() method.

collapse([startBoolean])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
See Listings 19-11 (in this chapter) and 15-14 (in Chapter 1 of this book) to see

the collapse() method at work (albeit with the IE TextRange object).

Range.collapse()

4855-7 ch05.F 6/26/01 8:35 AM Page 279

280 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

compareBoundaryPoints(typeInteger,
sourceRangeRef)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
The page rendered by Listing 19-4 lets you experiment with text range compar-

isons in NN6+. The bottom paragraph contains a SPAN element that has a Range
object assigned to its nested text node after the page loads (in the init() func-

tion). That fixed range becomes a solid reference point for you to use while you

select text in the paragraph.

Unfortunately, the window object method that converts a user selection into an
object is not connected correctly in the first release of NN6. Even if it were, the
inverted values returned by the compareBoundaryPoints() method would
give you incorrect results. Try this example on subsequent versions of NN6.

After you make a selection, all four versions of the compareBoundaryPoints()
method run to compare the start and end points of the fixed range against your

selection. One column of the results table shows the raw value returned by the

compareBoundaryPoints() method, while the third column puts the results into

plain language.

To see how this page works, begin by selecting the first word of the fixed text

range (carefully drag the selection from the first red character). You can see that

the starting positions of both ranges are the same, because the returned value is 0.

Because all of the invocations of the compareBoundaryPoints() method are on

the fixed text range, all comparisons are from the point of view of that range. Thus,

the first row of the table for the START_TO_END parameter indicates that the start

point of the fixed range comes before the end point of the selection, yielding a

return value of -1.

Other selections to make include:

✦ Text that starts before the fixed range and ends inside the range

✦ Text that starts inside the fixed range and ends beyond the range

✦ Text that starts and ends precisely at the fixed range boundaries

✦ Text that starts and ends before the fixed range

✦ Text that starts after the fixed range

Study the returned values and the plain language results and see how they align

with the selection you made.

Note

Range.compareBoundaryPoints()

4855-7 ch05.F 6/26/01 8:35 AM Page 280

281Chapter 5 ✦ Body Text Objects (Chapter 19)

Listing 19-4: Lab for NN6 compareBoundaryPoints() Method

<HTML>
<HEAD>
<TITLE>TextRange.compareBoundaryPoints() Method</TITLE>
<STYLE TYPE=”text/css”>
TD {text-align:center}
.propName {font-family:Courier, monospace}
#fixedRangeElem {color:red; font-weight:bold}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
var fixedRange

function setAndShowRangeData() {
try {

var selectedRange = window.getSelection()
selectedRange = selectedRange.getRangeAt(0)
var result1 = fixedRange.compareBoundaryPoints(Range.START_TO_END,

selectedRange)
var result2 = fixedRange.compareBoundaryPoints(Range.START_TO_START,

selectedRange)
var result3 = fixedRange.compareBoundaryPoints(Range.END_TO_START,

selectedRange)
var result4 = fixedRange.compareBoundaryPoints(Range.END_TO_END,

selectedRange)

document.getElementById(“B1”).innerHTML = result1
document.getElementById(“compare1”).innerHTML = getDescription(result1)
document.getElementById(“B2”).innerHTML = result2
document.getElementById(“compare2”).innerHTML = getDescription(result2)
document.getElementById(“B3”).innerHTML = result3
document.getElementById(“compare3”).innerHTML = getDescription(result3)
document.getElementById(“B4”).innerHTML = result4
document.getElementById(“compare4”).innerHTML = getDescription(result4)

}
catch(err) {

alert(“Vital Range object services are not yet implemented in this
browser.”)

}
}

function getDescription(comparisonValue) {
switch (comparisonValue) {

case -1 :
return “comes before”
break

case 0 :
return “is the same as”
break

case 1 :

Continued

Range.compareBoundaryPoints()

4855-7 ch05.F 6/26/01 8:35 AM Page 281

282 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 19-4 (continued)

return “comes after”
break

default :
return “vs.”

}
}

function init() {
fixedRange = document.createRange()
fixedRange.selectNodeContents(document.getElementById(“fixedRangeElem”).

firstChild)
fixedRange.setEnd(fixedRange.endContainer,

fixedRange.endContainer.nodeValue.length)
}
</SCRIPT>
</HEAD>

<BODY onLoad=”init()”>
<H1>TextRange.compareBoundaryPoints() Method</H1>
<HR>
<P>Select text in the paragraph in various places relative to
the fixed text range (shown in red). See the relations between
the fixed and selected ranges with respect to their start
and end points.</P>
<TABLE ID=”results” BORDER=1 CELLSPACING=2 CELLPADDING=2>
<TR><TH>Property</TH><TH>Returned Value</TH><TH>Fixed Range vs. Selection</TR>
<TR>

<TD CLASS=”propName”>StartToEnd</TD>
<TD CLASS=”count” ID=”B1”> </TD>
<TD CLASS=”count” ID=”C1”>Start of Fixed vs.
End of Selection</TD>

</TR>
<TR>

<TD CLASS=”propName”>StartToStart</TD>
<TD CLASS=”count” ID=”B2”> </TD>
<TD CLASS=”count” ID=”C2”>Start of Fixed vs.
Start of Selection</TD>

</TR>
<TR>

<TD CLASS=”propName”>EndToStart</TD>
<TD CLASS=”count” ID=”B3”> </TD>
<TD CLASS=”count” ID=”C3”>End of Fixed vs.
Start of Selection</TD>

</TR>
<TR>

<TD CLASS=”propName”>EndToEnd</TD>
<TD CLASS=”count” ID=”B4”> </TD>
<TD CLASS=”count” ID=”C4”>End of Fixed vs.
End of Selection</TD>

</TR>

Range.compareBoundaryPoints()

4855-7 ch05.F 6/26/01 8:35 AM Page 282

283Chapter 5 ✦ Body Text Objects (Chapter 19)

</TABLE>
<HR>
<P onMouseUp=”setAndShowRangeData()”>
Lorem ipsum dolor sit, consectetaur adipisicing
elit,
sed do eiusmod tempor incididunt ut labore et dolore aliqua. Ut enim adminim
veniam,
quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat.</P>
</BODY>
</HTML>

createContextualFragment(“text”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to create a document frag-

ment and replace an existing document tree node with the fragment. Begin by creat-

ing the range and fragment:

a = document.createRange()
a.selectNode(document.body)
b = a.createContextualFragment(“a bunch of
”)

This fragment consists of a SPAN element node with a text node nested inside. At

this point, you can inspect the properties of the document fragment by entering b
into the bottom text box.

To replace the myEM element on the page with this new fragment, use the

replaceChild() method on the enclosing myP element:

document.getElementById(“myP”).replaceChild(b, document.getElementById(“myEM”))

The fragment now becomes a legitimate child node of the myP element and can be

referenced like any node in the document tree. For example, if you enter the follow-

ing statement into the top text box of The Evaluator, you can retrieve a copy of the

text node inside the new SPAN element:

document.getElementById(“myP”).childNodes[1].firstChild.nodeValue

Range.createContextualFragment()

4855-7 ch05.F 6/26/01 8:35 AM Page 283

284 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

deleteContents()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with delet-

ing contents of both a text node and a complete element node. Begin by creating a

text range for the text node inside the myEM element (enter the third statement,

which wraps below, as one continuous expression):

a = document.createRange()
a.setStart(document.getElementById(“myEM”).firstChild, 0)
a.setEnd(document.getElementById(“myEM”).lastChild,

document.getElementById(“myEM”).lastChild.length)

Verify the makeup of the range by entering a into the bottom text box and

inspect its properties. Both containers are text nodes (they happen to be the same

text node), and offsets are measured by character positions.

Now, delete the contents of the range:

a.deleteContents()

The italicized word “all” is gone from the tree, but the myEM element is still there. To

prove it, put some new text inside the element:

document.getElementById(“myEM”).innerHTML = “a band of “

The italic style of the EM element applies to the text, as it should.

Next, adjust the range boundaries to include the myEM element tags, as well:

a.selectNode(document.getElementById(“myEM”))

Inspect the Range object’s properties again by entering a into the bottom text

box. The container nodes are the P element that surrounds the EM element; the off-

set values are measured in nodes. Delete the range’s contents:

a.deleteContents()

Not only is the italicized text gone, but the myEM element is gone, too. The myP
element now has but one child node, the text node inside. The following entries

into the top text box of The Evaluator verify this fact:

document.getElementById(“myP”).childNodes.length
document.getElementById(“myP”).childNodes[0].nodeValue

If you try this example in early versions of NN6, however, you see that the

deleteContents() method also removes the text node following the myEM ele-

ment. This is buggy behavior, demonstrating that the method works best on text

nodes, rather than elements.

Range.deleteContents()

4855-7 ch05.F 6/26/01 8:35 AM Page 284

285Chapter 5 ✦ Body Text Objects (Chapter 19)

extractContents()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
When Netscape outfits the NN6 browser with the extractContents() method,

use The Evaluator (Chapter 13 in the JavaScript Bible) to see how the method

works. Begin by creating a new range object that contains the text of the myP para-

graph element.

a = document.createRange()
a.selectNode(document.getElementById(“myP”))

Next, extract the original range’s content and preserve the copy in variable b:

b = a.extractContents()

Move the original range so that it is an insertion point at the end of the body by

first expanding it to encompass the entire body and then collapse it to the end

a.selectNode(document.body)
a.collapse(false)

Now, insert the extracted fragment at the very end of the body:

a.insertNode(b)

If you scroll to the bottom of the page, you see a copy of the text.

insertNode(nodeReference)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Listing 19-5, which relies on selection and Range object features not imple-

mented in the first release of NN6, demonstrates the insertNode() method plus

some additional items from the NN6 selection object. The example even includes

a rudimentary undo buffer for scripted changes to a text range. In the page gener-

ated by this listing, users can select any text in a paragraph and have the script

automatically convert the text to all uppercase characters. The task of replacing a

selection with other text requires several steps, starting with the selection, which is

retrieved via the window.getSelection() method. After making sure the selection

contains some text (that is, the selection isn’t collapsed), the selection is preserved

as a range object so that the starting text can be stored in a global variable (as a

Range.insertNode()

4855-7 ch05.F 6/26/01 8:35 AM Page 285

286 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

property of the undoBuffer global variable object). After that, the selection is

deleted from the document tree, leaving the selection as a collapsed insertion

point. A copy of that selection in the form of a range object is preserved in the

undoBuffer object so that the undo script knows where to reinsert the original

text. A new text node is created with an uppercase version of the original text, and,

finally, the insertNode() method is invoked to stick the converted text into the

collapsed range.

Undoing this operation works in reverse. Original locations and strings are

copied from the undoBuffer object. After creating the range with the old start and

end points (which represent a collapsed insertion point), the resurrected text (con-

verted to a text node) is inserted into the collapsed range. For good housekeeping,

the undoBuffer object is restored to its unused form.

Listing 19-5: Inserting a Node into a Range

<HTML>
<HEAD>
<TITLE>NN Selection Object Replacement</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var undoBuffer = {rng:null, txt:””}
function convertSelection() {

var sel, grossRng, netRng, newText
try {

sel = window.getSelection()
if (!sel.isCollapsed) {

grossRng = sel.getRangeAt(0)
undoBuffer.txt = grossRng.toString()
sel.deleteFromDocument()
netRng = sel.getRangeAt(0)
undoBuffer.rng = netRng
newText = document.createTextNode(undoBuffer.txt.toUpperCase())
netRng.insertNode(newText)

}
}
catch(err) {

alert(“Vital Range object services are not yet implemented in this
browser.”)

}
}
function undoConversion() {

var rng, oldText
if (undoBuffer.rng) {

rng = document.createRange()
rng.setStart(undoBuffer.rng.startParent, undoBuffer.rng.startOffset)
rng.setEnd(undoBuffer.rng.endParent, undoBuffer.rng.endOffset)
oldText = document.createTextNode(undoBuffer.txt)
rng.insertNode(oldText)
undoBuffer.rng = null
undoBuffer.txt = “”

}
}

Range.insertNode()

4855-7 ch05.F 6/26/01 8:35 AM Page 286

287Chapter 5 ✦ Body Text Objects (Chapter 19)

</SCRIPT>
</HEAD>
<BODY>
<H1 ID=”H1_1”>NN6 Selection Object Replacement</H1>
<HR>
<P ID=”P_1” onMouseUp=”convertSelection()”>This paragraph
contains text that you can select. Selections are deleted and
replaced by all uppercase versions of the selected text.</P>
<BUTTON onClick=”undoConversion()”>Undo Last</BUTTON>
<BUTTON onClick=”location.reload(true)”>Start Over</BUTTON>
</BODY>
</HTML>

isValidFragment(“HTMLText”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
You can try the validity of any strings that you like in The Evaluator (Chapter 13

in the JavaScript Bible). You will discover, however, that the object model can make

a document fragment out of just about any string. For instance, if you attempt to

create a document fragment out of some random text and an end tag, the document

fragment will consist of a text node and an element node of the type indicated by

the end tag.

selectNode(nodeReference)
selectNodeContents(nodeReference)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to see the behavior of

both the selectNode() and selectNodeContents() methods work. Begin by cre-

ating a new range object.

a = document.createRange()

Set the range boundaries to include the myP element node:

a.selectNode(document.getElementById(“myP”))

Range.selectNode()

4855-7 ch05.F 6/26/01 8:35 AM Page 287

288 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Enter a into the bottom text box to view the properties of the range. Notice that

because the range has selected the entire paragraph node, the container of the

range’s start and end points is the BODY element of the page (the parent element of

the myP element).

Now change the range so that it encompasses only the contents of the myP
element:

a.selectNodeContents(document.getElementById(“myP”))

Click the List Properties button to view the current properties of the range. The

container of the range’s boundary points is the P element that holds the element’s

contents.

setEnd(nodeReference, offset)
setStart(nodeReference, offset)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with both

the setStart() and setEnd() methods. Begin by creating a new range object.

a = document.createRange()

For the first range, set the start and end points to encompass the second node

(the myEM element) inside the myP element:

a.setStart(document.getElementById(“myP”), 1)
a.setEnd(document.getElementById(“myP”), 2)

The text encompassed by the range consists of the word “all” plus the trailing

space that is contained by the myEM element. Prove this by entering the following

statement into the top text box:

a.toString()

If you then click the Results box to the right of the word “all,” you see that the

results contain the trailing space. Yet, if you examine the properties of the range

(enter a into the bottom text box), you see that the range is defined as actually

starting before the myEM element and ending after it.

Next, adjust the start point of the range to a character position inside the first

text node of the myP element:

a.setStart(document.getElementById(“myP”).firstChild, 11)

Click the List Properties button to see that the startContainer property of the

range is the text node, and that the startOffset measures the character position.

All end boundary properties, however, have not changed. Enter a.toString() in

the top box again to see that the range now encompasses text from two of the

nodes inside the myP element.

Range.setEnd()

4855-7 ch05.F 6/26/01 8:35 AM Page 288

289Chapter 5 ✦ Body Text Objects (Chapter 19)

You can continue to experiment by setting the start and end points to other ele-

ment and text nodes on the page. After each adjustment, verify the properties of

the a range object and the text it encompasses (via a.toString()).

setEndAfter(nodeReference)
setEndBefore(nodeReference)
setStartAfter(nodeReference)
setStartBefore(nodeReference)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with all four

methods. Begin by creating a new range object.

a = document.createRange()

For the first range, set the start and end points to encompass the myEM element

inside the myP element:

a.setStartBefore(document.getElementById(“myEM”))
a.setEndAfter(document.getElementById(“myEM”))

The text encompassed by the range consists of the word “all” plus the trailing

space that is contained by the myEM element. Prove this by entering the following

statement into the top text box:

a.toString()

Next, adjust the start point of the range to the beginning of the first text node of

the myP element:

a.setStartBefore(document.getElementById(“myP”).firstChild)

Enter a into the bottom text box to see that the startParent property of the range is

the P element node, while the endParent property points to the EM element.

You can continue to experiment by setting the start and end points to before and

after other element and text nodes on the page. After each adjustment, verify the

properties of the a range object and the text it encompasses (via a.toString()).

surroundContents(nodeReference)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Range.surroundContents()

4855-7 ch05.F 6/26/01 8:35 AM Page 289

290 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example
Listing 19-6, which relies on selection and Range object features not imple-

mented in the first release of NN6, demonstrates how the surroundContents()
method wraps a range inside a new element. As the page loads, a global variable

(newSpan) stores a SPAN element that is used as a prototype for elements to be

used as new surrounding parent nodes. When you select text in either of the two

paragraphs, the selection is converted to a range. The surroundContents()
method then wraps the range with the newSpan element. Because that SPAN ele-

ment has a class name of hilite, the element and its contents pick up the style

sheet properties as defined for that class selector.

Listing 19-6: Using the Range.surroundContents() Method

<HTML>
<HEAD>
<TITLE>Range.surroundContents() Method</TITLE>
<STYLE TYPE=”text/css”>
.hilite {background-color:yellow; color:red; font-weight:bold}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
var newSpan = document.createElement(“SPAN”)
newSpan.className = “hilite”

function highlightSelection() {
var sel, rng
try {

sel = window.getSelection()
if (!sel.isCollapsed) {

rng = sel.getRangeAt(0)
rng.surroundContents(newSpan.cloneNode(false))

}
}
catch(err) {

alert(“Vital Range object services are not yet implemented in this
browser.”)

}
}
</SCRIPT>
</HEAD>
<BODY>
<H1>Range.surroundContents() Method</H1>
<HR>
<P onMouseUp=”highlightSelection()”>These paragraphs
contain text that you can select. Selections are surrounded
by SPAN elements that share a stylesheet class selector
for special font and display characteristics.</P>

<P onMouseUp=”highlightSelection()”>Lorem ipsum dolor
sit amet, consectetaur adipisicing elit,
sed do eiusmod tempor incididunt ut labore et dolore magna

Range.surroundContents()

4855-7 ch05.F 6/26/01 8:35 AM Page 290

291Chapter 5 ✦ Body Text Objects (Chapter 19)

aliqua. Ut enim adminim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.</P>
</BODY>
</HTML>

toString()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to see the results of the

toString() method. Enter the following sequence of statements into the top

text box:

a = document.createRange()
a.selectNode(document.getElementById(“myP”))
a.toString()

If you type only a into the top text box, you see the text contents of the range,

but don’t be fooled. Internal workings of The Evaluator attempt to evaluate any

expression entered into that text field. Assigning a range object to a text box forces

an internal application of the toString() method (just as the Date object does

when you create a new object instance in The Evaluator).

selection Object
Properties

type

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Listing 19-7 contains a page that demonstrates several features of the selection

object. When you make a selection with the Deselect radio button selected, you see

the value of the selection.type property (in the statusbar) before and after the

selection is deselected. After the selection goes away, the type property returns

None.

selection.type

4855-7 ch05.F 6/26/01 8:35 AM Page 291

292 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 19-7: Using the document.selection Object

<HTML>
<HEAD>
<TITLE>selection Object</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function processSelection() {

if (document.choices.process[0].checked) {
status = “Selection is type: “ + document.selection.type
setTimeout(“emptySelection()”, 2000)

} else if (document.choices.process[1].checked) {
var rng = document.selection.createRange()
document.selection.clear()

}
}
function emptySelection() {

document.selection.empty()
status = “Selection is type: “ + document.selection.type

}
</SCRIPT>
</HEAD>
<BODY>
<H1>IE selection Object</H1>
<HR>
<FORM NAME=”choices”>
<INPUT TYPE=”radio” NAME=”process” CHECKED>De-select after two seconds

<INPUT TYPE=”radio” NAME=”process”>Delete selected text.
</FORM>
<P onMouseUp=”processSelection()”>Lorem ipsum dolor sit amet, consectetaur
adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim adminim veniam, quis nostrud exercitation ullamco laboris nisi
ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit
involuptate velit esse cillum dolore eu fugiat nulla pariatur.
</BODY>
</HTML>

Methods
clear()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

selection.clear()

4855-7 ch05.F 6/26/01 8:35 AM Page 292

293Chapter 5 ✦ Body Text Objects (Chapter 19)

Example
See Listing 19-7 earlier in this chapter to see the selection.clear() method at

work.

createRange()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See Listings 15-36 and 15-45 to see the selection.createRange() method turn

user selections into text ranges.

empty()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See Listing 19-7 earlier in this chapter to view the selection.empty() method

at work.

Text and TextNode Objects
Properties

data

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
In the example for the nodeValue property used in a text replacement script (in

Chapter 1 of this book), you can substitute the data property for nodeValue to

accomplish the same result.

TextNode.data

4855-7 ch05.F 6/26/01 8:35 AM Page 293

294 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Methods

appendData(“text”)
deleteData(offset, count)
insertData(offset, “text”)
replaceData(offset, count, “text”)
substringData(offset, count)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
The page created by Listing 19-8 is a working laboratory that you can use to

experiment with the five data-related methods in NN6+. The text node that invokes

the methods is a simple sentence in a P element. Each method has its own clickable

button, followed by two or three text boxes into which you enter values for method

parameters. Don’t be put off by the length of the listing. Each method’s operation is

confined to its own function and is fairly simple.

Each of the data-related methods throws exceptions of different kinds. To help

handle these errors gracefully, the method calls are wrapped inside a try/catch
construction. All caught exceptions are routed to the handleError() function

where details of the error are inspected and friendly alert messages are displayed

to the user. See Chapter 39 of the JavaScript Bible for details on the try/catch
approach to error handling in W3C DOM-capable browsers.

Listing 19-8: Text object Data Method Laboratory

<HTML>
<HEAD>
<TITLE>Data Methods of a W3C Text Object</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function doAppend(form) {

var node = document.getElementById(“myP”).firstChild
var newString = form.appendStr.value
try {

node.appendData(newString)
}
catch(err) {

handleError(err)
}

}
function doDelete(form) {

var node = document.getElementById(“myP”).firstChild
var offset = form.deleteOffset.value

TextNode.appendData()

4855-7 ch05.F 6/26/01 8:35 AM Page 294

295Chapter 5 ✦ Body Text Objects (Chapter 19)

var count = form.deleteCount.value
try {

node.deleteData(offset, count)
}
catch(err) {

handleError(err)
}

}
function doInsert(form) {

var node = document.getElementById(“myP”).firstChild
var offset = form.insertOffset.value
var newString = form.insertStr.value
try {

node.insertData(offset, newString)
}
catch(err) {

handleError(err)
}

}

function doReplace(form) {
var node = document.getElementById(“myP”).firstChild
var offset = form.replaceOffset.value
var count = form.replaceCount.value
var newString = form.replaceStr.value
try {

node.replaceData(offset, count, newString)
}
catch(err) {

handleError(err)
}

}
function showSubstring(form) {

var node = document.getElementById(“myP”).firstChild
var offset = form.substrOffset.value
var count = form.substrCount.value
try {

alert(node.substringData(offset, count))
}
catch(err) {

handleError(err)
}

}
// error handler for these methods
function handleError(err) {

switch (err.name) {
case “NS_ERROR_DOM_INDEX_SIZE_ERR”:

alert(“The offset number is outside the allowable range.”)
break

case “NS_ERROR_DOM_NOT_NUMBER_ERR”:
alert(“Make sure each numeric entry is a valid number.”)

Continued

TextNode.appendData()

4855-7 ch05.F 6/26/01 8:35 AM Page 295

296 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 19-8 (continued)

break
default:

alert(“Double-check your text box entries.”)
}

}
</SCRIPT>
</HEAD>
<BODY>
<H1>Data Methods of a W3C Text Object</H1>
<HR>
<P ID=”myP” STYLE=”font-weight:bold; text-align:center”>
So I called myself Pip, and became to be called Pip.</P>
<FORM NAME=”choices”>
<P><INPUT TYPE=”button” onClick=”doAppend(this.form)” VALUE=”appendData()”>
String:<INPUT TYPE=”text” NAME=”appendStr” SIZE=30></P>

<P><INPUT TYPE=”button” onClick=”doDelete(this.form)” VALUE=”deleteData()”>
Offset:<INPUT TYPE=”text” NAME=”deleteOffset” SIZE=3>
Count:<INPUT TYPE=”text” NAME=”deleteCount” SIZE=3></P>

<P><INPUT TYPE=”button” onClick=”doInsert(this.form)” VALUE=”insertData()”>
Offset:<INPUT TYPE=”text” NAME=”insertOffset” SIZE=3>
String:<INPUT TYPE=”text” NAME=”insertStr” SIZE=30></P>

<P><INPUT TYPE=”button” onClick=”doReplace(this.form)” VALUE=”replaceData()”>
Offset:<INPUT TYPE=”text” NAME=”replaceOffset” SIZE=3>
Count:<INPUT TYPE=”text” NAME=”replaceCount” SIZE=3>
String:<INPUT TYPE=”text” NAME=”replaceStr” SIZE=30></P>

<P><INPUT TYPE=”button” onClick=”showSubstring(this.form)”
VALUE=”substringData()”>
Offset:<INPUT TYPE=”text” NAME=”substrOffset” SIZE=3>
Count:<INPUT TYPE=”text” NAME=”substrCount” SIZE=3></P>

</FORM>
</BODY>
</HTML>

splitText(offset)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

TextNode.splitText()

4855-7 ch05.F 6/26/01 8:35 AM Page 296

297Chapter 5 ✦ Body Text Objects (Chapter 19)

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to see the splitText()

method in action. Begin by verifying that the myEM element has but one child node,

and that its nodeValue is the string “all”:

document.getElementById(“myEM”).childNodes.length
document.getElementById(“myEM”).firstChild.nodeValue

Next, split the text node into two pieces after the first character:

document.getElementById(“myEM”).firstChild.splitText(1)

Two text nodes are now inside the element:

document.getElementById(“myEM”).childNodes.length

Each text node contains its respective portion of the original text:

document.getElementById(“myEM”).firstChild.nodeValue
document.getElementById(“myEM”).lastChild.nodeValue

If you are using NN6, now bring the text nodes back together:

document.getElementById(“myEM”).normalize()
document.getElementById(“myEM”).childNodes.length

At no time during these statement executions does the rendered text change.

TextRange Object
Properties

boundingHeight
boundingLeft
boundingTop
boundingWidth

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Listing 19-9 provides a simple playground to explore the four bounding proper-

ties (and two offset properties) of a TextRange object. As you select text in the big

paragraph, the values of all six properties are displayed in the table. Values are also

updated if you resize the window via an onResize event handler.

Notice, for example, if you simply click in the paragraph without dragging a

selection, the boundingWidth property shows up as zero. This action is the equiva-

lent of a TextRange acting as an insertion point.

TextRange.boundingHeight

4855-7 ch05.F 6/26/01 8:35 AM Page 297

298 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 19-9: Exploring the Bounding TextRange Properties

<HTML>
<HEAD>
<TITLE>TextRange Object Dimension Properties</TITLE>
<STYLE TYPE=”text/css”>
TD {text-align:center}
.propName {font-family: Courier, monospace}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
function setAndShowRangeData() {

var range = document.selection.createRange()
B1.innerText = range.boundingHeight
B2.innerText = range.boundingWidth
B3.innerText = range.boundingTop
B4.innerText = range.boundingLeft
B5.innerText = range.offsetTop
B6.innerText = range.offsetLeft

}
</SCRIPT>
</HEAD>

<BODY onResize=”setAndShowRangeData()”>
<H1>TextRange Object Dimension Properties</H1>
<HR>
<P>Select text in the paragraph below and observe the “bounding”
property values for the TextRange object created for that selection.</P>
<TABLE ID=”results” BORDER=1 CELLSPACING=2 CELLPADDING=2>
<TR><TH>Property</TH><TH>Pixel Value</TH></TR>
<TR>

<TD CLASS=”propName”>boundingHeight</TD>
<TD CLASS=”count” ID=”B1”> </TD>

</TR>
<TR>

<TD CLASS=”propName”>boundingWidth</TD>
<TD CLASS=”count” ID=”B2”> </TD>

</TR>
<TR>

<TD CLASS=”propName”>boundingTop</TD>
<TD CLASS=”count” ID=”B3”> </TD>

</TR>
<TR>

<TD CLASS=”propName”>boundingLeft</TD>
<TD CLASS=”count” ID=”B4”> </TD>

</TR>
<TR>

<TD CLASS=”propName”>offsetTop</TD>
<TD CLASS=”count” ID=”B5”> </TD>

</TR>
<TR>

<TD CLASS=”propName”>offsetLeft</TD>
<TD CLASS=”count” ID=”B6”> </TD>

TextRange.boundingHeight

4855-7 ch05.F 6/26/01 8:35 AM Page 298

299Chapter 5 ✦ Body Text Objects (Chapter 19)

</TR>
</TABLE>
<HR>
<P onMouseUp=”setAndShowRangeData()”>
Lorem ipsum dolor sit amet, consectetaur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim adminim veniam,
quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit involuptate velit esse
cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat
non proident, sunt in culpa qui officia deseruntmollit anim id est laborum
Et harumd und lookum like Greek to me, dereud facilis est er expedit.
</P>
</BODY>
</HTML>

htmlText

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to investigate values

returned by the htmlText property. Use the top text box to enter the following

statements and see the values in the Results box.

Begin by creating a TextRange object for the entire body and store the range in

local variable a:

a = document.body.createTextRange()

Next, use the findText() method to set the start and end points of the text range

around the word “all,” which is an EM element inside the myP paragraph:

a.findText(“all”)

The method returns true (see the findText() method) if the text is found and

the text range adjusts to surround it. To prove that the text of the text range is what

you think it is, examine the text property of the range:

a.text

Because the text range encompasses all of the text of the element, the htmlText
property contains the tags for the element as well:

a.htmlText

TextRange.htmlText

4855-7 ch05.F 6/26/01 8:35 AM Page 299

300 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

If you want to experiment by finding other chunks of text and looking at both the

text and htmlText properties, first restore the text range to encompass the entire

body with the following statement:

a.expand(“textEdit”)

You can read about the expand() method later in this chapter. In other tests, use

findText() to set the range to “for all” and just “for al.” Then, see how the

htmlText property exposes the EM element’s tags.

text

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See Listing 19-11 later in this chapter for the findText() method to see the

text property used to perform the replace action of a search-and-replace function.

Methods
collapse([startBoolean])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See Listings 19-11 (in this chapter) and 15-14 (in Chapter 1 of this book) to see

the collapse() method at work.

compareEndPoints(“type”, rangeRef)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
The page rendered by Listing 19-10 lets you experiment with text range compar-

isons. The bottom paragraph contains a SPAN element that has a TextRange
object assigned to its text after the page loads (in the init() function). That fixed

range becomes a solid reference point for you to use while you select text in the

TextRange.compareEndPoints()

4855-7 ch05.F 6/26/01 8:35 AM Page 300

301Chapter 5 ✦ Body Text Objects (Chapter 19)

paragraph. After you make a selection, all four versions of the compareEndPoints()
method run to compare the start and end points of the fixed range against your

selection. One column of the results table shows the raw value returned by the

compareEndPoints() method, while the third column puts the results into plain

language.

To see how this page works, begin by selecting the first word of the fixed text

range (double-click the word). You can see that the starting positions of both

ranges are the same, because the returned value is 0. Because all of the invocations

of the compareEndPoints() method are on the fixed text range, all comparisons

are from the point of view of that range. Thus, the first row of the table for the

StartToEnd parameter indicates that the start point of the fixed range comes

before the end point of the selection, yielding a return value of -1.

Other selections to make include:

✦ Text that starts before the fixed range and ends inside the range

✦ Text that starts inside the fixed range and ends beyond the range

✦ Text that starts and ends precisely at the fixed range boundaries

✦ Text that starts and ends before the fixed range

✦ Text that starts after the fixed range

Study the returned values and the plain language results and see how they align

with the selection you make.

Listing 19-10: Lab for compareEndPoints() Method

<HTML>
<HEAD>
<TITLE>TextRange.compareEndPoints() Method</TITLE>
<STYLE TYPE=”text/css”>
TD {text-align:center}
.propName {font-family:Courier, monospace}
#fixedRangeElem {color:red; font-weight:bold}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
var fixedRange

function setAndShowRangeData() {
var selectedRange = document.selection.createRange()
var result1 = fixedRange.compareEndPoints(“StartToEnd”, selectedRange)
var result2 = fixedRange.compareEndPoints(“StartToStart”, selectedRange)
var result3 = fixedRange.compareEndPoints(“EndToStart”, selectedRange)
var result4 = fixedRange.compareEndPoints(“EndToEnd”, selectedRange)

B1.innerText = result1
compare1.innerText = getDescription(result1)
B2.innerText = result2
compare2.innerText = getDescription(result2)

Continued

TextRange.compareEndPoints()

4855-7 ch05.F 6/26/01 8:35 AM Page 301

302 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 19-10 (continued)

B3.innerText = result3
compare3.innerText = getDescription(result3)
B4.innerText = result4
compare4.innerText = getDescription(result4)

}

function getDescription(comparisonValue) {
switch (comparisonValue) {

case -1 :
return “comes before”
break

case 0 :
return “is the same as”
break

case 1 :
return “comes after”
break

default :
return “vs.”

}
}

function init() {
fixedRange = document.body.createTextRange()
fixedRange.moveToElementText(fixedRangeElem)

}
</SCRIPT>
</HEAD>

<BODY onLoad=”init()”>
<H1>TextRange.compareEndPoints() Method</H1>
<HR>
<P>Select text in the paragraph in various places relative to
the fixed text range (shown in red). See the relations between
the fixed and selected ranges with respect to their start
and end points.</P>
<TABLE ID=”results” BORDER=1 CELLSPACING=2 CELLPADDING=2>
<TR><TH>Property</TH><TH>Returned Value</TH><TH>Fixed Range vs. Selection</TR>
<TR>

<TD CLASS=”propName”>StartToEnd</TD>
<TD CLASS=”count” ID=”B1”> </TD>
<TD CLASS=”count” ID=”C1”>Start of Fixed
vs. End of Selection</TD>

</TR>
<TR>

<TD CLASS=”propName”>StartToStart</TD>
<TD CLASS=”count” ID=”B2”> </TD>
<TD CLASS=”count” ID=”C2”>Start of Fixed
vs. Start of Selection</TD>

</TR>

TextRange.compareEndPoints()

4855-7 ch05.F 6/26/01 8:35 AM Page 302

303Chapter 5 ✦ Body Text Objects (Chapter 19)

<TR>
<TD CLASS=”propName”>EndToStart</TD>
<TD CLASS=”count” ID=”B3”> </TD>
<TD CLASS=”count” ID=”C3”>End of Fixed
vs. Start of Selection</TD>

</TR>
<TR>

<TD CLASS=”propName”>EndToEnd</TD>
<TD CLASS=”count” ID=”B4”> </TD>
<TD CLASS=”count” ID=”C4”>End of Fixed
vs. End of Selection</TD>

</TR>
</TABLE>
<HR>
<P onMouseUp=”setAndShowRangeData()”>
Lorem ipsum dolor sit, consectetaur adipisicing
elit,
sed do eiusmod tempor incididunt ut labore et dolore aliqua. Ut enim adminim
veniam,
quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat.</P>
</BODY>
</HTML>

duplicate()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to see how the duplicate()

method works. Begin by creating a new TextRange object that contains the text of the

myP paragraph element.

a = document.body.createTextRange()
a.moveToElementText(myP)

Next, clone the original range and preserve the copy in variable b:

b = a.duplicate()

The method returns no value, so don’t be alarmed by the “undefined” that appears

in the Results box. Move the original range so that it is an insertion point at the end

of the body by first expanding it to encompass the entire body, and then collapse it

to the end:

a.expand(“textedit”)
a.collapse(false)

TextRange.duplicate()

4855-7 ch05.F 6/26/01 8:35 AM Page 303

304 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Now, insert the copy at the very end of the body:

a.text = b.text

If you scroll to the bottom of the page, you’ll see a copy of the text.

execCommand(“commandName”[, UIFlag[,
value]])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to see how to copy a text

range’s text into the client computer’s Clipboard. Begin by setting the text range to

the myP element:

a = document.body.createTextRange()
a.moveToElementText(myP)

Now use execCommand() to copy the range into the Clipboard:

a.execCommand(“Copy”)

To prove that the text is in the Clipboard, click the bottom text field and choose

Paste from the Edit menu (or press Ctrl+V).

expand(“unit”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
You can find examples of the expand() method in Listing 15-14.

findText(“searchString”[, searchScope,
flags])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

TextRange.findText()

4855-7 ch05.F 6/26/01 8:35 AM Page 304

305Chapter 5 ✦ Body Text Objects (Chapter 19)

Example
Listing 19-11 implements two varieties of a text search-and-replace operation,

while showing you how to include extra parameters for case-sensitive and whole

word searches. Both approaches begin by creating a TextRange for the entire body,

but they immediately shift the starting point to the beginning of the DIV element

that contains the text to search.

One search-and-replace function prompts the user to accept or decline replace-

ment for each instance of a found string. The select() and scrollIntoView()
methods are invoked to help the user see what is about to be replaced. Notice that

even when the user declines to accept the replacement, the text range is collapsed

to the end of the found range so that the next search can begin after the previously

found text. Without the collapse() method, the search can get caught in an infi-

nite loop as it keeps finding the same text over and over (with no replacement

made). Because no counting is required, this search-and-replace operation is imple-

mented inside a while repeat loop.

The other search-and-replace function goes ahead and replaces every match and

then displays the number of replacements made. After the loop exits (because

there are no more matches), the loop counter is used to display the number of

replacements made.

Listing 19-11: Two Search and Replace Approaches
(with Undo)

<HTML>
<HEAD>
<TITLE>TextRange.findText() Method</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// global range var for use with Undo
var rng

// return findText() third parameter arguments
function getArgs(form) {

var isCaseSensitive = (form.caseSensitive.checked) ? 4 : 0
var isWholeWord = (form.wholeWord.checked) ? 2 : 0
return isCaseSensitive ^ isWholeWord

}

// prompted search and replace
function sAndR(form) {

var srchString = form.searchString.value
var replString = form.replaceString.value
if (srchString) {

var args = getArgs(form)
rng = document.body.createTextRange()
rng.moveToElementText(rights)
clearUndoBuffer()
while (rng.findText(srchString, 10000, args)) {

rng.select()

Continued

TextRange.findText()

4855-7 ch05.F 6/26/01 8:35 AM Page 305

306 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 19-11 (continued)

rng.scrollIntoView()
if (confirm(“Replace?”)) {

rng.text = replString
pushUndoNew(rng, srchString, replString)

}
rng.collapse(false)

}
}

}

// unprompted search and replace with counter
function sAndRCount(form) {

var srchString = form.searchString.value
var replString = form.replaceString.value
var i
if (srchString) {

var args = getArgs(form)
rng = document.body.createTextRange()
rng.moveToElementText(rights)
for (i = 0; rng.findText(srchString, 10000, args); i++) {

rng.text = replString
pushUndoNew(rng, srchString, replString)
rng.collapse(false)

}
if (i > 1) {

clearUndoBuffer()
}

}
document.all.counter.innerText = i

}

// BEGIN UNDO BUFFER CODE
// buffer global variables
var newRanges = new Array()
var origSearchString

// store original search string and bookmarks of each replaced range
function pushUndoNew(rng, srchString, replString) {

origSearchString = srchString
rng.moveStart(“character”, -replString.length)
newRanges[newRanges.length] = rng.getBookmark()

}

// empty array and search string global
function clearUndoBuffer() {

document.all.counter.innerText = “0”
origSearchString = “”
newRanges.length = 0

}

TextRange.findText()

4855-7 ch05.F 6/26/01 8:35 AM Page 306

307Chapter 5 ✦ Body Text Objects (Chapter 19)

// perform the undo
function undoReplace() {

if (newRanges.length && origSearchString) {
for (var i = 0; i < newRanges.length; i++) {

rng.moveToBookmark(newRanges[i])
rng.text = origSearchString

}
document.all.counter.innerText = i
clearUndoBuffer()

}
}
</SCRIPT>
</HEAD>
<BODY>
<H1>TextRange.findText() Method</H1>
<HR>
<FORM>
<P>Enter a string to search for in the following text:
<INPUT TYPE=”text” NAME=”searchString” SIZE=20 VALUE=”Law”>
<INPUT TYPE=”checkbox” NAME=”caseSensitive”>Case-sensitive
<INPUT TYPE=”checkbox” NAME=”wholeWord”>Whole words only</P>
<P>Enter a string with which to replace found text:
<INPUT TYPE=”text” NAME=”replaceString” SIZE=20 VALUE=”legislation”></P>
<P><INPUT TYPE=”button” VALUE=”Search and Replace (with prompt)”
onClick=”sAndR(this.form)”></P>
<P><INPUT TYPE=”button” VALUE=”Search, Replace, and Count (no prompt)”
onClick=”sAndRCount(this.form)”>
0 items found and replaced.</P>
<P><INPUT TYPE=”button” VALUE=”Undo Search and Replace”
onClick=”undoReplace()”></P>
</FORM>

<DIV ID=”rights”>

<H2>ARTICLE I</H2>

<P>
Congress shall make no law respecting an establishment of religion, or
prohibiting the free exercise thereof; or abridging the freedom of speech, or of
the press; or the right of the people peaceably to assemble, and to petition the
government for a redress of grievances.
</P>
[The rest of the text is snipped for printing here, but it is on the CD-ROM
version.]
</DIV>
</BODY>
</HTML>

Having a search-and-replace function available in a document is only one-half of

the battle. The other half is offering the facilities to undo the changes. To that end,

TextRange.findText()

4855-7 ch05.F 6/26/01 8:35 AM Page 307

308 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 19-11 includes an undo buffer that accurately undoes only the changes made

in the initial replacement actions.

The undo buffer stores its data in two global variables. The first,

origSearchString, is simply the string used to perform the original search. This

variable is the string that has to be put back in the places where it had been

replaced. The second global variable is an array that stores TextRange bookmarks

(see getBookmark() later in this chapter). These references are string values that

don’t mean much to humans, but the browser can use them to recreate a range

with its desired start and end points. Values for both the global search string and

bookmark specifications are stored in calls to the pushUndoNew() method each

time text is replaced.

A perhaps unexpected action of setting the text property of a text range is that

the start and end points collapse to the end of the new text. Because the stored

bookmark must include the replaced text as part of its specification, the start point

of the current range must be adjusted back to the beginning of the replacement text

before the bookmark can be saved. Thus, the pushUndoNew() function receives the

replacement text string so that the moveStart() method can be adjusted by the

number of characters matching the length of the replacement string.

After all of the bookmarks are stored in the array, the undo action can do its job

in a rather simple for loop inside the undoReplace() function. After verifying that

the undo buffer has data stored in it, the function loops through the array of book-

marks and replaces the bookmarked text with the old string. The benefit of using

the bookmarks rather than using the replacement function again is that only those

ranges originally affected by the search-and-replace operation are touched in the

undo operation. For example, in this document if you replace a case-sensitive

“states” with “States” two replacements are performed. At that point, however, the

document has four instances of “States,” two of which existed before. Redoing the

replacement function by inverting the search-and-replace strings would convert all

four back to the lowercase version — not the desired effect.

getBookmark()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Listing 19-11 earlier in this chapter shows how the getBookmark() method is

used to preserve specifications for text ranges so that they can be called upon

again to be used to undo changes made to the text range. The getBookmark()
method is used to save the snapshots, while the moveToBookmark() method is

used during the undo process.

TextRange.getBookmark()

4855-7 ch05.F 6/26/01 8:35 AM Page 308

309Chapter 5 ✦ Body Text Objects (Chapter 19)

inRange(otherRangeRef)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to see the inRange()

method in action. The following statements generate two distinct text ranges, one

for the myP paragraph element and the other for the myEM element nested within.

a = document.body.createTextRange()
a.moveToElementText(myP)
b = document.body.createTextRange()
b.moveToElementText(myEM)

Because the myP text range is larger than the other, invoke the inRange()
method on it, fully expecting the return value of true

a.inRange(b)

But if you switch the references, you see that the larger text range is not “in” the

smaller one:

b.inRange(a)

isEqual(otherRangeRef)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to try the isEqual()

method. Begin by creating two separate TextRange objects, one for the myP ele-

ment and one for myEM.

a = document.body.createTextRange()
a.moveToElement(myP)
b = document.body.createTextRange()
b.moveToElement(myEM)

Because these two ranges encompass different sets of text, they are not equal, as

the results show from the following statement:

a.isEqual(b)

TextRange.isEqual()

4855-7 ch05.F 6/26/01 8:35 AM Page 309

310 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

But if you now adjust the first range boundaries to surround the myEM element,

both ranges are the same values:

a.moveToElement(myEM)
a.isEqual(b)

move(“unit”[, count])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

move() method. To see how the method returns just the number of units it moves

the pointer, begin by creating a text range and set it to enclose the myP element:

a = document.body.createTextRange()
a.moveToElementText(myP)

Now enter the following statement to collapse and move the range backward by

20 words.

a.move(“word”, -20)

Continue to click the Evaluate button and watch the returned value in the Results

box. The value shows 20 while it can still move backward by 20 words. But eventu-

ally the last movement will be some other value closer to zero. And after the range

is at the beginning of the BODY element, the range can move no more in that direc-

tion, so the result is zero.

moveEnd(“unit”[, count])
moveStart(“unit”[, count])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

moveEnd() and moveStart() methods. Begin by creating a text range and set it to

enclose the myEM element:

a = document.body.createTextRange()
a.moveToElementText(myEM)

TextRange.moveEnd()

4855-7 ch05.F 6/26/01 8:35 AM Page 310

311Chapter 5 ✦ Body Text Objects (Chapter 19)

To help you see how movements of the pointers affect the text enclosed by the

range, type a into the bottom text box and view all the properties of the text range.

Note especially the htmlText and text properties. Now enter the following state-

ment to move the end of the range forward by one word.

a.moveEnd(“word”)

Click on the List Properties button to see that the text of the range now includes

the word following the EM element. Try each of the following statements in the top

text box and examine both the integer results and (by clicking the List Properties

button) the properties of the range after each statement:

a.moveStart(“word”, -1)
a.moveEnd(“sentence”)

Notice that for a sentence, a default unit of 1 expands to the end of the current

sentence. And if you move the start point backward by one sentence, you’ll see that

the lack of a period-ending sentence prior to the myP element causes strange

results.

Finally, force the start point backward in increments of 20 words and watch the

results as the starting point nears and reaches the start of the BODY:

a.moveStart(“word”, -20)

Eventually the last movement will be some other value closer to zero. And as soon

as the range is at the beginning of the BODY element, the range can move no more

in that direction, so the result is zero.

moveToBookmark(“bookmarkString”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Listing 19-11 earlier in this chapter shows how to use the moveToBookmark()

method to restore a text range so that changes that created the state saved by the

bookmark can be undone. The getBookmark() method is used to save the snap-

shots, while the moveToBookmark() method is used during the undo process.

moveToElementText(elemObjRef)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

TextRange.moveToElementText()

4855-7 ch05.F 6/26/01 8:35 AM Page 311

312 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example
A majority of examples for other TextRange object methods in this chapter use

the moveToElementText() method. Listings 19-10 and 19-11 earlier in this chapter

show the method within an application context.

moveToPoint(x, y)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator to see the moveToPoint() method in action. Begin by creat-

ing a text range for the entire BODY element:

a = document.body.createTextRange()

Now, invoke the moveToPoint() method to a location 100, 100, which turns out to

be in the rectangle space of the Results textarea:

a.moveToPoint(100,100)

If you type a into the bottom text box and view the properties, both the

htmlText and text properties are empty because the insertion point represents no

visible text content. But if you gradually move, for example, the start point back-

ward one character at a time, you will see the htmlText and text properties begin

to fill in with the body text that comes before the TEXTAREA element, namely the

“Results:” label and the
 tag between it and the TEXTAREA element. Enter the

following statement into the top text box and click the Evaluate button several

times.

a.moveStart(“character”, -1)

Enter a into the bottom text box after each evaluation to list the properties of the

range.

parentElement()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

parentElement() method. Begin by setting the text range to the myEM element:

a = document.body.createTextRange()
a.moveToElementText(myEM)

TextRange.parentElement()

4855-7 ch05.F 6/26/01 8:35 AM Page 312

313Chapter 5 ✦ Body Text Objects (Chapter 19)

To inspect the object returned by the parentElement() method, enter the fol-

lowing statement in the lower text box:

a.parentElement()

If you scroll down to the outerHTML property, you see that the parent of the text

range is the myEM element, tag and all.

Next, extend the end point of the text range by one word:

a.moveEnd(“word”)

Because part of the text range now contains text of the myP object, the outerHTML
property of a.parentElement() shows the entire myP element and tags.

pasteHTML(“HTMLText”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

pasteHTML() method. The goal of the following sequence is to change the tag

to a tag whose STYLE attribute sets the color of the original text that was in

the EM element.

Begin by creating the text range and setting the boundaries to the myEM element:

a = document.body.createTextRange()
a.moveToElementText(myEM)

While you can pass the HTML string directly as a parameter to pasteHTML(), stor-

ing the HTML string in its own temporary variable may be more convenient (and

more easily testable), such as:

b = “” + a.text + “”

Notice that we concatenate the text of the current text range, because it has not

yet been modified. Now we can paste the new HTML string into the current text

range

a.pasteHTML(b)

At this point the EM element is gone from the object model, and the SPAN ele-

ment is in its place. Prove it to yourself by looking at the HTML for the myP element:

myP.innerHTML

As noted earlier, the pasteHTML() method is not the only way to insert or

replace HTML in a document. This method makes excellent sense when the

user selects some text in the document to be replaced, because you can use the

document.selection.createRange() method to get the text range for the selec-

tion. But if you’re not using text ranges for other related operations, consider the

other generic object properties and methods available to you.

TextRange.pasteHTML()

4855-7 ch05.F 6/26/01 8:35 AM Page 313

314 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

select()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See Listing 19-11 earlier in this chapter for an example of the select() method

in use.

setEndPoint(“type”, otherRangeRef)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator to experiment with the setEndPoint() method. Begin by cre-

ating two independent text ranges, one for the myP element and one for myEM:

a = document.body.createTextRange()
a.moveToElementText(myP)
b = document.body.createTextRange()
b.moveToElementText(myEM)

Before moving any end points, compare the HTML for each of those ranges:

a.htmlText
b.htmlText

Now, move the start point of the a text range to the end point of the b text range:

a.setEndPoint(“StartToEnd”, b)

If you now view the HTML for the a range,

a.htmlText

you see that the <P> tag of the original a text range is nowhere to be found. This

demonstration is a good lesson to use the setEndPoint() method primarily if you

are concerned only with visible body text being inside ranges, rather than an ele-

ment with its tags.

TextRange.setEndPoint()

4855-7 ch05.F 6/26/01 8:35 AM Page 314

315Chapter 5 ✦ Body Text Objects (Chapter 19)

TextRectangle Object
Properties

bottom
left
right
top

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Listing 19-12 lets you click one of four nested elements to see how the

TextRectangle is treated. When you click one of the elements, that element’s

TextRectangle dimension properties are used to set the size of a positioned ele-

ment that highlights the space of the rectangle. Be careful not to confuse the visible

rectangle object that you see on the page with the abstract TextRectangle object

that is associated with each of the clicked elements.

An important part of the listing is the way the action of sizing and showing the

positioned element is broken out as a separate function (setHiliter()) from the

one that is the onClick event handler function (handleClick()). This is done so

that the onResize event handler can trigger a script that gets the current rectangle

for the last element clicked, and the positioned element can be sized and moved to

maintain the highlight of the same text. As an experiment, try removing the

onResize event handler from the <BODY> tag and watch what happens to the high-

lighted rectangle after you resize the browser window: the rectangle that represents

the TextRectangle remains unchanged and loses track of the abstract

TextRectangle associated with the actual element object.

Listing 19-12: Using the TextRectangle Object Properties

<HTML>
<HEAD>
<TITLE>TextRectangle Object</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// preserve reference to last clicked elem so resize can re-use it
var lastElem
// TextRectangle left tends to be out of registration by a couple of pixels
var rectLeftCorrection = 2

Continued

TextRectangle.bottom

4855-7 ch05.F 6/26/01 8:35 AM Page 315

316 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 19-12 (continued)

// process mouse click
function handleClick() {

var elem = event.srcElement
if (elem.className && elem.className == “sample”) {

// set hiliter element only on a subset of elements
lastElem = elem
setHiliter()

} else {
// otherwise, hide the hiliter
hideHiliter()

}
}
function setHiliter() {

if (lastElem) {
var textRect = lastElem.getBoundingClientRect()
hiliter.style.pixelTop = textRect.top + document.body.scrollTop
hiliter.style.pixelLeft = textRect.left + document.body.scrollLeft –

rectLeftCorrection
hiliter.style.pixelHeight = textRect.bottom - textRect.top
hiliter.style.pixelWidth = textRect.right - textRect.left
hiliter.style.visibility = “visible”

}
}
function hideHiliter() {

hiliter.style.visibility = “hidden”
lastElem = null

}
</SCRIPT>
</HEAD>
<BODY onClick=”handleClick()” onResize=”setHiliter()”>
<H1>TextRectangle Object</H1>
<HR>
<P>Click on any of the four colored elements in the paragraph below and watch
the highlight rectangle adjust itself to the element’s TextRectangle object.

<P CLASS=”sample”>Lorem ipsum dolor sit amet, <SPAN CLASS=”sample”
STYLE=”color:red”>consectetaur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim adminim veniam,
quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit involuptate velit esse cillum
dolore eu fugiat nulla pariatur.</P>
<DIV ID=”hiliter” STYLE=”position:absolute; background-color:salmon; z-index:-1;
visibility:hidden”></DIV>
</BODY>
</HTML>

✦ ✦ ✦

TextRectangle.bottom

4855-7 ch05.F 6/26/01 8:35 AM Page 316

Image, Area,
and Map Objects
(Chapter 22)

The IMG element object is a popular scripting target,

largely because it is easy to script it for effects such as

mouse rollovers. Moreover, the element’s scriptability extends

backward in time to all but the very first generation of script-

able browsers. Playing a supporting role in image rollovers is

the abstract Image object, which scripts use to pre-load

images into the browser’s cache for instantaneous image

swapping. Even though the two objects manifest themselves

differently within script operations, they share properties and

methods, making it easy to learn their capabilities side by

side.

AREA and MAP element objects work closely with each

other. In practice, an AREA element resembles an A element

that is set to work as a link. Both elements create clickable

“hot spots” on the page that typically lead the user to other

locations within the site or elsewhere on the Web. They also

share a number of URL-related properties.

Examples Highlights
✦ Most IE browsers can load both still and motion images

(such as MPEG movies) into an IMG element. Listing 22-3

shows how to swap between still and motion images via

the dynsrc property.

✦ The page created from Listing 22-4 lets you compare the

performance of swapping images with and without pre-

caching. You also see how to have scripts rotate images

on a timed schedule.

✦ Watch how the IMG element’s onLoad event handler can

trigger actions in Listing 22-5.

✦ A powerful Listing 22-7 demonstrates how scripts can

fashion new client-side area maps when a different pic-

ture file loads into an IMG element.

66C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

How to precache and
swap images

Invoking action
immediately after an
image loads

Creating interactive,
client-side image
maps

✦ ✦ ✦ ✦

4855-7 ch06.F 6/26/01 8:35 AM Page 317

318 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Image and IMG Element Objects
Properties

align

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Listing 22-1 enables you to choose from the different align property values as

they influence the layout of an image whose HTML is embedded inline with some

other text. Resize the window to see different perspectives on word-wrapping on a

page and their effects on the alignment choices. Not all browsers provide distinc-

tive alignments for each choice, so experiment in multiple supported browsers.

Listing 22-1: Testing an Image’s align Property

<HTML>
<HEAD>
<TITLE>IMG align Property</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>

function setAlignment(sel) {
document.myIMG.align = sel.options[sel.selectedIndex].text

}
</SCRIPT>
</HEAD>
<BODY>
<H1>IMG align Property</H1>
<HR>
<FORM>
Choose the image alignment:
<SELECT onChange=”setAlignment(this)”>

<OPTION>absbottom
<OPTION>absmiddle
<OPTION>baseline
<OPTION SELECTED >bottom
<OPTION >left
<OPTION>middle
<OPTION>right
<OPTION>texttop
<OPTION>top

</SELECT>
</FORM>

IMG.align

4855-7 ch06.F 6/26/01 8:35 AM Page 318

319Chapter 6 ✦ Image, Area, and Map Objects (Chapter 22)

<HR>
<P>Lorem ipsum dolor sit amet, consectetaur adipisicing elit,
sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua.
Ut enim adminim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.</P>
</BODY>
</HTML>

alt

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator (Chapter 13 in JavaScript Bible) to assign a string to the alt

property of the document.myIMG image on the page. First, assign a nonexistent

image to the src property to remove the existing image:

document.myIMG.src = “fred.gif”

Scroll down to the image, and you can see a space for the image. Now, assign a

string to the alt property:

document.myIMG.src = “Fred\’s face”

The extra backslash is required to escape the apostrophe inside the string. Scroll

down to see the new alt text in the image space.

border

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

Example
Feel free to experiment with the document.myIMG.border property for the

image in The Evaluator (Chapter 13 in JavaScript Bible) by assigning different inte-

ger values to the property.

IMG.border

4855-7 ch06.F 6/26/01 8:35 AM Page 319

320 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

complete

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

Example
To experiment with the image.complete property, quit and relaunch your

browser before loading Listing 22-2 (in case the images are in memory cache). As

each image loads, click the “Is it loaded yet?” button to see the status of the com-
plete property for the image object. The value is false until the loading finishes;

then, the value becomes true. The arch image is the bigger of the two image files.

You may have to quit and relaunch your browser between trials to clear the arch

image from the cache (or empty the browser’s memory cache). If you experience

difficulty with this property in your scripts, try adding an onLoad event handler

(even if it is empty, as in Listing 22-2) to your tag.

Listing 22-2: Scripting image.complete

<HTML>
<HEAD>
<SCRIPT LANGUAGE=”JavaScript1.1”>
function loadIt(theImage,form) {

form.result.value = “”
document.images[0].src = theImage

}
function checkLoad(form) {

form.result.value = document.images[0].complete
}
</SCRIPT>
</HEAD>
<BODY>

<FORM>
<INPUT TYPE=”button” VALUE=”Load keyboard”
onClick=”loadIt(‘cpu2.gif’,this.form)”>
<INPUT TYPE=”button” VALUE=”Load arch”
onClick=”loadIt(‘arch.gif’,this.form)”><P>
<INPUT TYPE=”button” VALUE=”Is it loaded yet?” onClick=”checkLoad(this.form)”>
<INPUT TYPE=”text” NAME=”result”>
</FORM>
</BODY>
</HTML>

IMG.complete

4855-7 ch06.F 6/26/01 8:35 AM Page 320

321Chapter 6 ✦ Image, Area, and Map Objects (Chapter 22)

dynsrc

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
To swap between still and video sources, simply empty the opposite property.

Listing 22-3 shows a simplified example that swaps between one fixed image and

one video image. This listing exhibits most of the bugs associated with changing

between static image and video sources described in the text.

Listing 22-3: Changing Between Still and Motion Images

<HTML>
<HEAD>
<TITLE>IMG dynsrc Property</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>

var trainImg = new Image(160,120)
trainImg.src = “amtrak.jpg”
trainImg.dynsrc = “amtrak.mpg”

function setLoop() {
var selector = document.forms[0].looper
document.myIMG.loop = selector.options[selector.selectedIndex].value

}

function setImage(type) {
if (type == “jpg”) {

document.myIMG.dynsrc = “”
document.myIMG.src = trainImg.src

} else {
document.myIMG.src = “”
document.myIMG.start = “fileopen”
setLoop()
document.myIMG.dynsrc = trainImg.dynsrc

}
}
</SCRIPT>
</HEAD>
<BODY>
<H1>IMG dynsrc Property</H1>
<HR>
<FORM>
Choose image type:
<INPUT TYPE=”radio” NAME=”imgGroup” CHECKED onClick=”setImage(‘jpg’)”>Still

Continued

IMG.dynsrc

4855-7 ch06.F 6/26/01 8:35 AM Page 321

322 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 22-3 (continued)

<INPUT TYPE=”radio” NAME=”imgGroup” onClick=”setImage(‘mpg’)”>Video
<P>Play video how many times after loading:
<SELECT NAME=”looper” onChange=”setLoop()”>

<OPTION VALUE=1 SELECTED>Once
<OPTION VALUE=2>Twice
<OPTION VALUE=-1>Continuously

</SELECT></P>
</FORM>
<HR>

</BODY>
</HTML>

If you don’t explicitly set the start property to fileopen (as shown in Listing

22-3), users of IE for the Macintosh have to double-click (IE4) or click (IE5) the

movie image to make it run.

fileCreatedDate
fileModifiedDate
fileSize

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
These properties are similar to the same-named properties of the document

object. You can see these properties in action in Listing 18-4. Make a copy of that

listing, and supply an image before modifying the references from the document

object to the image object to see how these properties work with the IMG element

object.

height
width

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

IMG.height

4855-7 ch06.F 6/26/01 8:35 AM Page 322

323Chapter 6 ✦ Image, Area, and Map Objects (Chapter 22)

Example
Use The Evaluator (Chapter 13 in JavaScript Bible) to experiment with the

height and width properties. Begin retrieving the default values by entering the

following two statements into the top text box:

document.myIMG.height
document.myIMG.width

Increase the height of the image from its default 90 to 180:

document.myIMG.height = 180

If you scroll down to the image, you see that the image has scaled in proportion.

Next, exaggerate the width:

document.myIMG.width = 400

View the resulting image.

hspace
vspace

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

Example
Use The Evaluator (Chapter 13 in JavaScript Bible) to experiment with the

hspace and vspace properties. Begin by noticing that the image near the bottom of

the page has no margins specified for it and is flush left with the page. Now assign a

horizontal margin spacing of 30 pixels:

document.myIMG.hspace = 30

The image has shifted to the right by 30 pixels. An invisible margin also exists to

the right of the image.

isMap

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

IMG.isMap

4855-7 ch06.F 6/26/01 8:35 AM Page 323

324 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example
The image in The Evaluator page is not defined as an image map. Thus, if you

type the following statement into the top text box, the property returns false:

document.myIMG.isMap

loop

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See Listing 22-3 for the dynsrc property to see the loop property in action.

lowsrc
lowSrc

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

Example
See Listing 22-5 for the image object’s onLoad event handler to see how the

source-related properties affect event processing.

name

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � (�) � � �

Example
You can use The Evaluator to examine the value returned by the name property

of the image on that page. Enter the following statement into the top text box:

document.myIMG.name

Of course, this is redundant because the name is part of the reference to the object.

IMG.name

4855-7 ch06.F 6/26/01 8:35 AM Page 324

325Chapter 6 ✦ Image, Area, and Map Objects (Chapter 22)

nameProp

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
You can use The Evaluator to compare the results of the src and nameProp prop-

erties in IE5+/Windows. Enter each of the following statements into the top text box:

document.myIMG.src
document.myIMG.nameProp

protocol

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
You can use The Evaluator to examine the protocol property of the image on

the page. Enter the following statement into the top text box:

document.myIMG.protocol

src

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � (�) � � �

Example
In the following example (Listing 22-4), you see a few applications of image

objects. Of prime importance is a comparison of how precached and regular images

feel to the user. As a bonus, you see an example of how to set a timer to automati-

cally change the images displayed in an image object. This feature is a popular

request among sites that display advertising banners.

As the page loads, a global variable is handed an array of image objects. Entries

of the array are assigned string names as index values (“desk1”, “desk2”, and so

on). The intention is that these names ultimately will be used as addresses to the

array entries. Each image object in the array has a URL assigned to it, which pre-

caches the image.

IMG.src

4855-7 ch06.F 6/26/01 8:35 AM Page 325

326 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

The page (see Figure 6-1) includes two IMG elements: one that displays non-

cached images and one that displays cached images. Under each image is a SELECT

element that you can use to select one of four possible image files for each element.

The onChange event handler for each SELECT list invokes a different function to

change the noncached (loadIndividual()) or cached (loadCached()) images.

Both of these functions take as their single parameter a reference to the form that

contains the SELECT elements.

To cycle through images at five-second intervals, the checkTimer() function

looks to see if the timer check box is checked. If so, the selectedIndex property of

the cached image SELECT control is copied and incremented (or reset to zero if the

index is at the maximum value). The SELECT element is adjusted, so you can now

invoke the loadCached() function to read the currently selected item and set the

image accordingly.

For some extra style points, the <BODY> tag includes an onUnload event handler

that invokes the resetSelects() function. This general-purpose function loops

through all forms on the page and all elements within each form. For every SELECT

element, the selectedIndex property is reset to zero. Thus, if a user reloads the

page, or returns to the page via the Back button, the images start in their original

sequence. An onLoad event handler makes sure that the images are in sync with the

SELECT choices and the checkTimer() function is invoked with a five-second delay.

Unless the timer check box is checked, however, the cached images don’t cycle.

Listing 22-4: A Scripted Image Object and Rotating Images

<HTML>
<HEAD>
<TITLE>Image Object</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// global declaration for ‘desk’ images array
var imageDB
// pre-cache the ‘desk’ images
if (document.images) {

// list array index names for convenience
var deskImages = new Array(“desk1”, “desk2”, “desk3”, “desk4”)
// build image array and pre-cache them
imageDB = new Array(4)
for (var i = 0; i < imageDB.length ; i++) {

imageDB[deskImages[i]] = new Image(120,90)
imageDB[deskImages[i]].src = deskImages[i] + “.gif”

}
}
// change image of ‘individual’ image
function loadIndividual(form) {

if (document.images) {
var gifName = form.individual.options[form.individual.selectedIndex].value
document.thumbnail1.src = gifName + “.gif”

}
}
// change image of ‘cached’ image
function loadCached(form) {

if (document.images) {

IMG.src

4855-7 ch06.F 6/26/01 8:35 AM Page 326

327Chapter 6 ✦ Image, Area, and Map Objects (Chapter 22)

var gifIndex = form.cached.options[form.cached.selectedIndex].value
document.thumbnail2.src = imageDB[gifIndex].src

}
}
// if switched on, cycle ‘cached’ image to next in queue
function checkTimer() {

if (document.images && document.Timer.timerBox.checked) {
var gifIndex = document.selections.cached.selectedIndex
if (++gifIndex > imageDB.length - 1) {

gifIndex = 0
}
document.selections.cached.selectedIndex = gifIndex
loadCached(document.selections)
var timeoutID = setTimeout(“checkTimer()”,5000)

}
}
// reset form controls to defaults on unload
function resetSelects() {

for (var i = 0; i < document.forms.length; i++) {
for (var j = 0; j < document.forms[i].elements.length; j++) {

if (document.forms[i].elements[j].type == “select-one”) {
document.forms[i].elements[j].selectedIndex = 0

}
}

}
}
// get things rolling
function init() {

loadIndividual(document.selections)
loadCached(document.selections)
setTimeout(“checkTimer()”,5000)

}
</SCRIPT>
</HEAD>

<BODY onLoad=”init()” onUnload=”resetSelects ()”>
<H1>Image Object</H1>
<HR>
<CENTER>
<TABLE BORDER=3 CELLPADDING=3>
<TR><TH></TH><TH>Individually Loaded</TH><TH>Pre-cached</TH></TR>
<TR><TD ALIGN=RIGHT>Image:</TD>
<TD></TD>
<TD></TD>
</TR>
<TR><TD ALIGN=RIGHT>Select image:</TD>
<FORM NAME=”selections”>
<TD>
<SELECT NAME=”individual” onChange=”loadIndividual(this.form)”>
<OPTION VALUE=”cpu1”>Wires
<OPTION VALUE=”cpu2”>Keyboard

Continued

IMG.src

4855-7 ch06.F 6/26/01 8:35 AM Page 327

328 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 22-4 (continued)

<OPTION VALUE=”cpu3”>Desks
<OPTION VALUE=”cpu4”>Cables
</SELECT>
</TD>
<TD>
<SELECT NAME=”cached” onChange=”loadCached(this.form)”>
<OPTION VALUE=”desk1”>Bands
<OPTION VALUE=”desk2”>Clips
<OPTION VALUE=”desk3”>Lamp
<OPTION VALUE=”desk4”>Erasers
</SELECT></TD>
</FORM>
</TR></TABLE>
<FORM NAME=”Timer”>
<INPUT TYPE=”checkbox” NAME=”timerBox” onClick=”checkTimer()”>Auto-cycle through
pre-cached images
</FORM>
</CENTER>
</BODY>
</HTML>

Figure 6-1: The image object demonstration page (Images © Aris Multimedia
Entertainment, Inc., 1994)

IMG.src

4855-7 ch06.F 6/26/01 8:35 AM Page 328

329Chapter 6 ✦ Image, Area, and Map Objects (Chapter 22)

start

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See Listing 22-3 earlier in this chapter for an example of how you can use the

start property with a page that loads a movie clip into an IMG element object.

x
y

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
If you want to scroll the document so that the link is a few pixels below the top of

the window, use a statement such as this:

window.scrollTo(document.images[0].x, (document.images[0].y - 3))

Event handlers
onAbort
onError

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

Example
Listing 22-5 includes an onAbort event handler. If the images already exist in the

cache, you must quit and relaunch the browser to try to stop the image from load-

ing. In that example, I provide a reload option for the entire page. How you handle

the exception depends a great deal on your page design. Do your best to smooth

over any difficulties that users may encounter.

IMG.onAbort

4855-7 ch06.F 6/26/01 8:35 AM Page 329

330 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

onLoad

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

Example
Quit and restart your browser to get the most from Listing 22-5. As the document

first loads, the LOWSRC image file (the picture of pencil erasers) loads ahead of the

computer keyboard image. When the erasers are loaded, the onLoad event handler

writes “done” to the text field even though the main image is not loaded yet. You

can experiment further by loading the arch image. This image takes longer to load,

so the LOWSRC image (set on the fly, in this case) loads way ahead of it.

Listing 22-5: The Image onLoad Event Handler

<HTML>
<HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
function loadIt(theImage,form) {

if (document.images) {
form.result.value = “”
document.images[0].lowsrc = “desk1.gif”
document.images[0].src = theImage

}
}
function checkLoad(form) {

if (document.images) {
form.result.value = document.images[0].complete

}
}
function signal() {

if(confirm(“You have stopped the image from loading. Do you want to try
again?”)) {

location.reload()
}

}
</SCRIPT>
</HEAD>
<BODY>
<IMG SRC=”cpu2.gif” LOWSRC=”desk4.gif” WIDTH=120 HEIGHT=90
onLoad=”if (document.forms[0].result) document.forms[0].result.value=’done’”
onAbort=”signal()”>
<FORM>
<INPUT TYPE=”button” VALUE=”Load keyboard”
onClick=”loadIt(‘cpu2.gif’,this.form)”>
<INPUT TYPE=”button” VALUE=”Load arch”
onClick=”loadIt(‘arch.gif’,this.form)”><P>

IMG.onLoad

4855-7 ch06.F 6/26/01 8:35 AM Page 330

331Chapter 6 ✦ Image, Area, and Map Objects (Chapter 22)

<INPUT TYPE=”button” VALUE=”Is it loaded yet?” onClick=”checkLoad(this.form)”>
<INPUT TYPE=”text” NAME=”result”>
</FORM>
</BODY>
</HTML>

AREA Element Object
Properties

coords
shape

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
See Listing 22-7 for a demonstration of the coords and shape properties in the

context of scripting MAP element objects.

MAP Element Object
Property

areas

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Listing 22-7 demonstrates how to use scripting to replace the AREA element

objects inside a MAP element. The scenario is that the page loads with one image of

a computer keyboard. This image is linked to the keyboardMap client-side image

map, which specifies details for three hot spots on the image. If you then switch the

MAP.areas

4855-7 ch06.F 6/26/01 8:35 AM Page 331

332 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

image displayed in that IMG element, scripts change the useMap property of the

IMG element object to point to a second MAP that has specifications more suited to

the desk lamp in the second image. Roll the mouse pointer atop the images, and

view the URLs associated with each area in the statusbar (for this example, the

URLs do not lead to other pages).

Another button on the page, however, invokes the makeAreas() function (not

working in IE5/Mac), which creates four new AREA element objects and (through

DOM-specific pathways) adds those new area specifications to the image. If you roll

the mouse atop the image after the function executes, you can see that the URLs

now reflect those of the new areas. Also note the addition of a fourth area, whose

status bar message appears in Figure 6-2.

Listing 22-7: Modifying AREA Elements on the Fly

<HTML>
<HEAD>
<TITLE>MAP Element Object</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// generate area elements on the fly
function makeAreas() {

document.myIMG.src = “desk3.gif”
// build area element objects
var area1 = document.createElement(“AREA”)
area1.href = “Script-Made-Shade.html”
area1.shape = “polygon”
area1.coords = “52,28,108,35,119,29,119,8,63,0,52,28”
var area2 = document.createElement(“AREA”)
area2.href = “Script-Made-Base.html”
area2.shape = “rect”
area2.coords = “75,65,117,87”
var area3 = document.createElement(“AREA”)
area3.href = “Script-Made-Chain.html”
area3.shape = “polygon”
area3.coords = “68,51,73,51,69,32,68,51”
var area4 = document.createElement(“AREA”)
area4.href = “Script-Made-Emptyness.html”
area4.shape = “rect”
area4.coords = “0,0,50,120”
// stuff new elements into MAP child nodes
if (document.all) {

// works for IE4+
document.all.lampMap.areas.length = 0
document.all.lampMap.areas[0] = area1
document.all.lampMap.areas[1] = area2
document.all.lampMap.areas[2] = area3
document.all.lampMap.areas[3] = area4

MAP.areas

4855-7 ch06.F 6/26/01 8:35 AM Page 332

333Chapter 6 ✦ Image, Area, and Map Objects (Chapter 22)

} else if (document.getElementById) {
// NN6 adheres to node model
var mapObj = document.getElementById(“lamp_map”)
while (mapObj.childNodes.length) {

mapObj.removeChild(mapObj.firstChild)
}
mapObj.appendChild(area1)
mapObj.appendChild(area2)
mapObj.appendChild(area3)
mapObj.appendChild(area4)
// workaround NN6 display bug
document.myIMG.style.display = “inline”

}
}

function changeToKeyboard() {
document.myIMG.src = “cpu2.gif”
document.myIMG.useMap = “#keyboardMap”

}

function changeToLamp() {
document.myIMG.src = “desk3.gif”
document.myIMG.useMap = “#lampMap”

}
</SCRIPT>
</HEAD>
<BODY>
<H1>MAP Element Object</H1>
<HR>

<FORM>
<P><INPUT TYPE=”button” VALUE=”Load Lamp Image” onClick=”changeToLamp()”>
<INPUT TYPE=”button” VALUE=”Write Map on the Fly” onClick=”makeAreas()”></P>
<P>
<INPUT TYPE=”button” VALUE=”Load Keyboard Image”
onClick=”changeToKeyboard()”></P>
</FORM>
<MAP NAME=”keyboardMap”>
<AREA HREF=”AlpaKeys.htm” SHAPE=”rect” COORDS=”0,0,26,42”>
<AREA HREF=”ArrowKeys.htm” SHAPE=”polygon”
COORDS=”48,89,57,77,69,82,77,70,89,78,84,89,48,89”>
<AREA HREF=”PageKeys.htm” SHAPE=”circle” COORDS=”104,51,14”>
</MAP>
<MAP NAME=”lampMap”>
<AREA HREF=”Shade.htm” SHAPE=”polygon”
COORDS=”52,28,108,35,119,29,119,8,63,0,52,28”>
<AREA HREF=”Base.htm” SHAPE=”rect” COORDS=”75,65,117,87”>
<AREA HREF=”Chain.htm” SHAPE=”polygon” COORDS=”68,51,73,51,69,32,68,51”>
</MAP>
</BODY>
</HTML>

MAP.areas

4855-7 ch06.F 6/26/01 8:35 AM Page 333

334 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Figure 6-2: Scripts created a special client-side image map for the image.

✦ ✦ ✦

MAP.areas

4855-7 ch06.F 6/26/01 8:35 AM Page 334

The Form and
Related Objects
(Chapter 23)

Because HTML forms have been scriptable since the earli-

est days of scriptable browsers, they tend to attract the

attention of a lot of page and site designers. Even though the

FORM element is primarily the container of the interactive

form controls (covered in succeeding chapters), it’s not

uncommon to find scripts modifying the action property

(corresponding to the ACTION attribute) based on user input.

Moreover, the onSubmit event handler is a vital trigger for

batch validation just before the form data goes up to the

server.

The other HTML element for which this chapter contains an

example is the LABEL element object. A LABEL element is a

container of text that is associated with a form control. This is

a practical user interface enhancement in modern browsers in

that such labels can essentially forward mouse events to their

controls, thus widening the physical target for mouse clicks of

radio buttons and checkboxes, much like “real” applications.

The value of scriptability for this element, however, accrues

predominantly when scripts dynamically modify page content.

Examples Highlights
✦ Listing 23-2 puts the form.elements array to work in a

generic function that resets all text fields in a form to

empty, without touching the settings of other types of

controls.

✦ If you prefer to use images for your form’s reset and sub-

mit actions, Listing 22-3 shows you how to do just that

with the form.reset() and form.submit() methods.

77C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Customizing FORM
object behavior prior
to submission

Preventing accidental
form submissions or
resets

Using images for
Reset and Submit
buttons

Processing form
validations

✦ ✦ ✦ ✦

4855-7 ch07.F 6/26/01 8:35 AM Page 335

336 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

✦ While batch form validations are shown in several places throughout the

JavaScript Bible, Listing 23-4 demonstrates how both the onReset and

onSubmit event handlers, in concert with the window.confirm() method, let

scripts permit or prevent a form from being reset or submitted.

FORM Object
Properties

action

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The following statement assigns a mailto: URL to the first form of a page:

document.forms[0].action = “mailto:jdoe@giantco.com”

elements

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The document in Listing 23-2 demonstrates a practical use of the elements

property. A form contains four fields and some other elements mixed in between

(see Figure 7-1). The first part of the function that acts on these items repeats

through all the elements in the form to find out which ones are text box objects and

which text box objects are empty. Notice how I use the type property to separate

text box objects from the rest, even when radio buttons appear amid the fields. If

one field has nothing in it, I alert the user and use that same index value to place

the insertion point at the field with the field’s focus() method.

FORM.elements

4855-7 ch07.F 6/26/01 8:35 AM Page 336

337Chapter 7 ✦ The Form and Related Objects (Chapter 23)

Listing 23-2: Using the form.elements Array

<HTML>
<HEAD>
<TITLE>Elements Array</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function verifyIt() {

var form = document.forms[0]
for (i = 0; i < form.elements.length; i++) {

if (form.elements[i].type == “text” && form.elements[i].value == “”){
alert(“Please fill out all fields.”)
form.elements[i].focus()
break

}
// more tests

}
// more statements

}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
Enter your first name:<INPUT TYPE=”text” NAME=”firstName”><P>
Enter your last name:<INPUT TYPE=”text” NAME=”lastName”><P>
<INPUT TYPE=”radio” NAME=”gender”>Male
<INPUT TYPE=”radio” NAME=”gender”>Female <P>
Enter your address:<INPUT TYPE=”text” NAME=”address”><P>
Enter your city:<INPUT TYPE=”text” NAME=”city”><P>
<INPUT TYPE=”checkbox” NAME=”retired”>I am retired
</FORM>
<FORM>
<INPUT TYPE=”button” NAME=”act” VALUE=”Verify” onClick=”verifyIt()”>
</FORM>
</BODY>
</HTML>

FORM.elements

4855-7 ch07.F 6/26/01 8:35 AM Page 337

338 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Figure 7-1: The elements array helps find text fields for validation.

encoding
enctype

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
If you need to modify the first form in a document so that the content is sent in

non-URL-encoded text at the user’s request, the statement is:

document.forms[0].encoding = “text/plain”

FORM.encoding

4855-7 ch07.F 6/26/01 8:35 AM Page 338

339Chapter 7 ✦ The Form and Related Objects (Chapter 23)

length

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to determine the number

of form controls in the first form of the page. Enter the following statement into the

top text box:

document.forms[0].length

method

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
If you need to modify the first form in a document so that the content is sent via

the POST method, the statement is:

document.forms[0].method = “POST”

target

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
If you want to direct the response from the first form’s CGI to a new window

(rather than the target specified in the form’s tag), use this statement:

document.forms[0].target = “_blank”

FORM.target

4855-7 ch07.F 6/26/01 8:35 AM Page 339

340 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Methods
reset()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

Example
In Listing 23-3, I assign the act of resetting the form to the HREF attribute of a link

object (that is attached to a graphic called reset.jpg). I use the javascript: URL

to invoke the reset() method for the form directly (in other words, without doing

it via function). Note that the form’s action in this example is to a nonexistent URL.

If you click the Submit icon, you receive an “unable to locate” error from the

browser.

Listing 23-3: form.reset() and form.submit() Methods

<HTML>
<HEAD>
<TITLE>Registration Form</TITLE>
</HEAD>
<BODY>
<FORM NAME=”entries” METHOD=POST ACTION=”http://www.u.edu/pub/cgi-bin/register”>
Enter your first name:<INPUT TYPE=”text” NAME=”firstName”><P>
Enter your last name:<INPUT TYPE=”text” NAME=”lastName”><P>
Enter your address:<INPUT TYPE=”text” NAME=”address”><P>
Enter your city:<INPUT TYPE=”text” NAME=”city”><P>
<INPUT TYPE=”radio” NAME=”gender” CHECKED>Male
<INPUT TYPE=”radio” NAME=”gender”>Female <P>
<INPUT TYPE=”checkbox” NAME=”retired”>I am retired
</FORM>
<P>
<IMG SRC=”submit.jpg” HEIGHT=25
WIDTH=100 BORDER=0>
<IMG SRC=”reset.jpg” HEIGHT=25
WIDTH=100 BORDER=0>
</BODY>
</HTML>

FORM.reset()

4855-7 ch07.F 6/26/01 8:35 AM Page 340

341Chapter 7 ✦ The Form and Related Objects (Chapter 23)

submit()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Consult Listing 23-3 for an example of using the submit() method from outside

of a form.

Event handlers
onReset

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

Example
Listing 23-4 demonstrates one way to prevent accidental form resets or submis-

sions. Using standard Reset and Submit buttons as interface elements, the <FORM>
object definition includes both event handlers. Each event handler calls its own

function that offers a choice for users. Notice how each event handler includes the

word return and takes advantage of the Boolean values that come back from the

confirm() method dialog boxes in both functions.

Listing 23-4: The onReset and onSubmit Event Handlers

<HTML>
<HEAD>
<TITLE>Submit and Reset Confirmation</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function allowReset() {

return window.confirm(“Go ahead and clear the form?”)
}
function allowSend() {

return window.confirm(“Go ahead and mail this info?”)
}
</SCRIPT>
</HEAD>
<BODY>
<FORM METHOD=POST ENCTYPE=”text/plain” ACTION=”mailto:trash4@dannyg.com”
onReset=”return allowReset()” onSubmit=”return allowSend()”>

Continued

FORM.onReset

4855-7 ch07.F 6/26/01 8:35 AM Page 341

342 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 23-4 (continued)

Enter your first name:<INPUT TYPE=”text” NAME=”firstName”><P>
Enter your last name:<INPUT TYPE=”text” NAME=”lastName”><P>
Enter your address:<INPUT TYPE=”text” NAME=”address”><P>
Enter your city:<INPUT TYPE=”text” NAME=”city”><P>
<INPUT TYPE=”radio” NAME=”gender” CHECKED>Male
<INPUT TYPE=”radio” NAME=”gender”>Female <P>
<INPUT TYPE=”checkbox” NAME=”retired”>I am retired<P>
<INPUT TYPE=”reset”>
<INPUT TYPE=”submit”>
</FORM>
</BODY>
</HTML>

onSubmit

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
See Listing 23-4 for an example of trapping a submission via the onSubmit event

handler.

LABEL Element Object
Property

htmlFor

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
The following statement uses W3C DOM-compatible syntax (IE5+ and NN6) to

assign a form control reference to the htmlFor property of a label:

document.getElementById(“myLabel”).htmlFor = document.getElementById(“myField”)

✦ ✦ ✦

LABEL.htmlFor

4855-7 ch07.F 6/26/01 8:35 AM Page 342

Button Objects
(Chapter 24)

The topic of button form controls encompasses clickable

user interface elements that have a variety of applica-

tions, some of which are quite specific. For example, radio

buttons should be presented in groups offering two or more

mutually exclusive choices. A checkbox, on the other hand, is

used to signify an “on” or “off” setting related to whatever

label is associated with the button. The only tricky part of

these special behaviors is that radio buttons assigned to a

single group must share the same name, and the document

object model provides access to single buttons within the

group by way of an array of objects that share the name. For

a script to determine which radio button is currently selected,

a for loop through the array then allows the script to inspect

the checked property of each button to find the one whose

value is true.

Then there are what appear to be plain old rounded rectan-

gle buttons. Two versions — the INPUT element of type button

and the newer BUTTON element — work very much alike,

although the latter is not obligated to appear nested inside a

FORM element. A common mistake among newcomers, how-

ever, is to use the INPUT element of type submit to behave as

a button whose sole job is to trigger some script function

without any form submission. Genuine submit buttons force

the form to submit itself, even if the button’s onClick event

handler invokes a script function. If the form has no ACTION
attribute assigned to it, then the default action of the submis-

sion causes the page to reload, probably destroying whatever

tentative script variable values and other data have been

gathered on the page.

Examples Highlights
✦ If a button’s event handler passes that button object’s

reference to the handler function, the object’s form
property provides the function with a valid reference to

the containing form, allowing the script an easy way to

access information about the form or create references

to other form controls.

88C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Triggering action
from a user’s click of
a button

Using checkboxes to
control display of
other form controls

Distinguishing
between radio button
families and their
individual buttons

✦ ✦ ✦ ✦

4855-7 ch08.F 6/26/01 8:36 AM Page 343

344 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

✦ Of course, the onClick event handler is the most important for button con-

trols. Listing 24-1 demonstrates passing button references to event handler

functions.

✦ Listing 24-4 shows how a checkbox setting can influence the URL of the form’s

action.

✦ Sometimes a complex form requires that checking a checkbox makes other

items in the form visible. Listing 24-5 employs scriptable style sheets to assist

in the job.

✦ Use Listing 24-6 as a model for how to find which radio button among those of

a single group is checked.

The BUTTON Element Object and the Button,
Submit, and Reset Input Objects

Properties
form

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The following function fragment receives a reference to a button element as the

parameter. The button reference is needed to decide which branch to follow; then

the form is submitted.

function setAction(btn) {
if (btn.name == “normal”) {

btn.form.action = “cgi-bin/normal.pl”
} else if (btn.name == “special”) {

btn.form.action = “cgi-bin/specialHandling.pl”
}
btn.form.submit()

}

Notice how this function doesn’t have to worry about the form reference,

because its job is to work with whatever form encloses the button that triggers this

function. Down in the form, two buttons invoke the same function. Only their names

ultimately determine the precise processing of the button click:

<FORM>
...
<INPUT TYPE=”button” NAME=”normal” VALUE=”Regular Handling”
onClick=”setAction(this)”>

document.formObject.buttonObject.form

4855-7 ch08.F 6/26/01 8:36 AM Page 344

345Chapter 8 ✦ Button Objects (Chapter 24)

<INPUT TYPE=”button” NAME=”special” VALUE=”Special Handling”
onClick=”setAction(this)”>
</FORM>

name

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
See the example for the form property earlier in this chapter for a practical

application of the name property.

value

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
In the following excerpt, the statement toggles the label of a button from “Play”

to “Stop” (except in NN/Mac through version 4):

var btn = document.forms[0].controlButton
btn.value = (btn.value == “Play”) ? “Stop” : “Play”

Methods
click()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The following statement demonstrates how to script a click action on a button

form control named sender:

document.forms[0].sender.click()

document.formObject.buttonObject.click()

4855-7 ch08.F 6/26/01 8:36 AM Page 345

346 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Event handlers
onClick

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Listing 24-1 demonstrates not only the onClick event handler of a button but

also how you may need to extract a particular button’s name or value properties

from a general-purpose function that services multiple buttons. In this case, each

button passes its own object as a parameter to the displayTeam() function. The

function then displays the results in an alert dialog box. A real-world application

would probably use a more complex if...else decision tree to perform more

sophisticated actions based on the button clicked (or use a switch construction on

the btn.value expression for NN4+ and IE4+).

Listing 24-1: Three Buttons Sharing One Function

<HTML>
<HEAD>
<TITLE>Button Click</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function displayTeam(btn) {

if (btn.value == “Abbott”) {alert(“Abbott & Costello”)}
if (btn.value == “Rowan”) {alert(“Rowan & Martin”)}
if (btn.value == “Martin”) {alert(“Martin & Lewis”)}

}
</SCRIPT>
</HEAD>

<BODY>
Click on your favorite half of a popular comedy team:<P>
<FORM>
<INPUT TYPE=”button” VALUE=”Abbott” onClick=”displayTeam(this)”>
<INPUT TYPE=”button” VALUE=”Rowan” onClick=”displayTeam(this)”>
<INPUT TYPE=”button” VALUE=”Martin” onClick=”displayTeam(this)”>
</FORM>
</BODY>
</HTML>

document.formObject.buttonObject.onClick

4855-7 ch08.F 6/26/01 8:36 AM Page 346

347Chapter 8 ✦ Button Objects (Chapter 24)

Checkbox Input Object
Properties

checked

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The simple example in Listing 24-2 passes a form object reference to the

JavaScript function. The function, in turn, reads the checked value of the form’s

checkbox object (checkThis.checked) and uses its Boolean value as the test

result for the if...else construction.

Listing 24-2: The checked Property as a Conditional

<HTML>
<HEAD>
<TITLE>Checkbox Inspector</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function inspectBox(form) {

if (form.checkThis.checked) {
alert(“The box is checked.”)

} else {
alert(“The box is not checked at the moment.”)

}
}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
<INPUT TYPE=”checkbox” NAME=”checkThis”>Check here<P>
<INPUT TYPE=”button” NAME=”boxChecker” VALUE=”Inspect Box”
onClick=”inspectBox(this.form)”>
</FORM>
</BODY>
</HTML>

document.formObject.checkboxObject.checked

4855-7 ch08.F 6/26/01 8:36 AM Page 347

348 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

defaultChecked

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The function in Listing 24-3 (this fragment is not in the CD-ROM listings) is

designed to compare the current setting of a checkbox against its default value. The

if construction compares the current status of the box against its default status.

Both are Boolean values, so they can be compared against each other. If the current

and default settings don’t match, the function goes on to handle the case in which

the current setting is other than the default.

Listing 24-3: Examining the defaultChecked Property

function compareBrowser(thisBox) {
if (thisBox.checked != thisBox.defaultChecked) {

// statements about using a different set of HTML pages
}

}

value

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The scenario for the skeleton HTML page in Listing 24-4 is a form with a check-

box whose selection determines which of two actions to follow for submission to

the server. After the user clicks the Submit button, a JavaScript function examines

the checkbox’s checked property. If the property is true (the button is checked),

the script sets the action property for the entire form to the content of the value

property — thus influencing where the form goes on the server side. If you try this

listing on your computer, the result you see varies widely with the browser version

you use. For most browsers, you see some indication (an error alert or other screen

notation) that a file with the name primaryURL or alternateURL doesn’t exist.

Unfortunately, IE5.5/Windows does not display the name of the file that can’t be

opened. Try the example in another browser if you have one. The names and the

error message come from the submission process for this demonstration.

document.formObject.checkboxObject.value

4855-7 ch08.F 6/26/01 8:36 AM Page 348

349Chapter 8 ✦ Button Objects (Chapter 24)

Listing 24-4: Adjusting a CGI Submission Action

<HTML>
<HEAD>
<TITLE>Checkbox Submission</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function setAction(form) {

if (form.checkThis.checked) {
form.action = form.checkThis.value

} else {
form.action = “file://primaryURL”

}
return true

}
</SCRIPT>
</HEAD>
<BODY>
<FORM METHOD=”POST” ACTION=””>
<INPUT TYPE=”checkbox” NAME=”checkThis” VALUE=”file://alternateURL”>Use
alternate<P>
<INPUT TYPE=”submit” NAME=”boxChecker” onClick=”return setAction(this.form)”>
</FORM>
</BODY>
</HTML>

Event handlers
onClick

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The page in Listing 24-5 shows how to trap the click event in one checkbox to

influence the visibility and display of other form controls. After you turn on the

Monitor checkbox, a list of radio buttons for monitor sizes appears. Similarly,

engaging the Communications checkbox makes two radio buttons visible. Your

choice of radio button brings up one of two further choices within the same table

cell (see Figure 8-1).

document.formObject.checkboxObject.onClick

4855-7 ch08.F 6/26/01 8:36 AM Page 349

350 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Figure 8-1: Clicking on button choices reveals additional relevant choices

Notice how the toggle() function was written as a generalizable function. This

function can accept a reference to any checkbox object and any related span. If five

more groups like this were added to the table, no additional functions would be

needed.

In the swap() function, an application of a nested if...else shortcut construc-

tion is used to convert the Boolean values of the checked property to the strings

needed for the display style property. The nesting is used to allow a single state-

ment to take care of two conditions: the group of buttons to be controlled and the

checked property of the button invoking the function. This function is not general-

izable, because it contains explicit references to objects in the document. The

swap() function can be made generalizable, but due to the special relationships

between pairs of span elements (meaning one has to be hidden while the other dis-

played in its place), the function would require more parameters to fill in the blanks

where explicit references are needed.

A rendering bug in NN6 causes the form controls in the lower right frame to lose
their settings when the elements have their display style property set to none.
The problem is related to the inclusion of P or similar block elements inside a
table cell that contains controls. Therefore, if you uncheck and recheck the
Communications checkbox in the example page, the previously displayed sub-
group shows up even though no radio buttons are selected. You can script around
this bug by preserving radio button settings in a global variable as you hide the
group, and restoring the settings when you show the group again.

Note

document.formObject.checkboxObject.onClick

4855-7 ch08.F 6/26/01 8:36 AM Page 350

351Chapter 8 ✦ Button Objects (Chapter 24)

Syntax used to address elements here is the W3C DOM-compatible form, so this

listing runs as is with IE5+ and NN6+. You can modify the listing to run in IE4 by

adapting references to the document.all format.

Listing 24-5: A Checkbox and an onClick event Handler

<HTML>
<HEAD>
<TITLE>Checkbox Event Handler</TITLE>
<STYLE TYPE=”text/css”>
#monGroup {visibility:hidden}
#comGroup {visibility:hidden}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
// toggle visibility of a main group spans
function toggle(chkbox, group) {

var visSetting = (chkbox.checked) ? “visible” : “hidden”
document.getElementById(group).style.visibility = visSetting

}
// swap display of communications sub group spans
function swap(radBtn, group) {

var modemsVisSetting = (group == “modems”) ?
((radBtn.checked) ? “” : “none”) : “none”

var netwksVisSetting = (group == “netwks”) ?
((radBtn.checked) ? “” : “none”) : “none”

document.getElementById(“modems”).style.display = modemsVisSetting
document.getElementById(“netwks”).style.display = netwksVisSetting

}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
<H3>Check all accessories for your computer:</H3>
<TABLE BORDER=2 CELLPADDING=5>
<TR>

<TD>
<INPUT TYPE=”checkbox” NAME=”monitor”
onClick=”toggle(this, ‘monGroup’)”>Monitor
</TD>
<TD>

<INPUT TYPE=”radio” NAME=”monitorType”>15”
<INPUT TYPE=”radio” NAME=”monitorType”>17”
<INPUT TYPE=”radio” NAME=”monitorType”>21”
<INPUT TYPE=”radio” NAME=”monitorType”>>21”

</TD>

</TR>
<TR>

<TD>

Continued

document.formObject.checkboxObject.onClick

4855-7 ch08.F 6/26/01 8:36 AM Page 351

352 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 24-5 (continued)

<INPUT TYPE=”checkbox” NAME=”comms”
onClick=”toggle(this, ‘comGroup’)”>Communications

</TD>
<TD>

<P><INPUT TYPE=”radio” NAME=”commType”
onClick=”swap(this, ‘modems’)”>Modem

<INPUT TYPE=”radio” NAME=”commType”
onClick=”swap(this, ‘netwks’)”>Network</P>
<P>

<INPUT TYPE=”radio” NAME=”modemType”><56kbps
<INPUT TYPE=”radio” NAME=”modemType”>56kbps
<INPUT TYPE=”radio” NAME=”modemType”>ISDN (any speed)
<INPUT TYPE=”radio” NAME=”modemType”>Cable

<INPUT TYPE=”radio” NAME=”netwkType”>Ethernet 10Mbps (10-Base T)
<INPUT TYPE=”radio” NAME=”netwkType”>Ethernet 100Mbps (10/100)
<INPUT TYPE=”radio” NAME=”netwkType”>T1 or greater

 </P>

</TD>

</TR>

</TABLE>
</FORM>
</BODY>
</HTML>

Radio Input Object
Properties

checked

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Listing 24-6 uses a repeat loop in a function to look through all buttons in the

Stooges group in search of the checked button. After the loop finds the one whose

document.formObject.radioObject.checked

4855-7 ch08.F 6/26/01 8:36 AM Page 352

353Chapter 8 ✦ Button Objects (Chapter 24)

checked property is true, it returns the value of the index. In one instance, that

index value is used to extract the value property for display in the alert dialog box;

in the other instance, the value helps determine which button in the group is next

in line to have its checked property set to true.

Listing 24-6: Finding the Selected Button in a Radio Group

<HTML>
<HEAD>
<TITLE>Extracting Highlighted Radio Button</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function getSelectedButton(buttonGroup){

for (var i = 0; i < buttonGroup.length; i++) {
if (buttonGroup[i].checked) {

return i
}

}
return 0

}
function fullName(form) {

var i = getSelectedButton(form.stooges)
alert(“You chose “ + form.stooges[i].value + “.”)

}
function cycle(form) {

var i = getSelectedButton(form.stooges)
if (i+1 == form.stooges.length) {

form.stooges[0].checked = true
} else {

form.stooges[i+1].checked = true
}

}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
Select your favorite Stooge:
<P><INPUT TYPE=”radio” NAME=”stooges” VALUE=”Moe Howard” CHECKED>Moe
<INPUT TYPE=”radio” NAME=”stooges” VALUE=”Larry Fine” >Larry
<INPUT TYPE=”radio” NAME=”stooges” VALUE=”Curly Howard” >Curly
<INPUT TYPE=”radio” NAME=”stooges” VALUE=”Shemp Howard” >Shemp</P>
<P><INPUT TYPE=”button” NAME=”Viewer” VALUE=”View Full Name...”
onClick=”fullName(this.form)”></P>
<P><INPUT TYPE=”button” NAME=”Cycler” VALUE=”Cycle Buttons”
onClick=”cycle(this.form)”> </P>
</FORM>
</BODY>
</HTML>

document.formObject.radioObject.checked

4855-7 ch08.F 6/26/01 8:36 AM Page 353

354 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

defaultChecked

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
In the script fragment of Listing 24-7 (not among the CD-ROM files), a function is

passed a reference to a form containing the Stooges radio buttons. The goal is to

see, in as general a way as possible (supplying the radio group name where

needed), if the user changed the default setting. Looping through each of the radio

buttons, you look for the one whose CHECKED attribute is set in the <INPUT> defini-

tion. With that index value (i) in hand, you then look to see if that entry is still

checked. If not (notice the ! negation operator), you display an alert dialog box

about the change.

Listing 24-7: Has a Radio Button Changed?

function groupChanged(form) {
for (var i = 0; i < form.stooges.length; i++) {

if (form.stooges[i].defaultChecked) {
if (!form.stooges[i].checked) {

alert(“This radio group has been changed.”)
}

}
}

}

length

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
See the loop construction within the function of Listing 24-7 for one way to apply

the length property.

document.formObject.radioObject.length

4855-7 ch08.F 6/26/01 8:36 AM Page 354

355Chapter 8 ✦ Button Objects (Chapter 24)

value

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Listing 24-6 (earlier in this chapter) demonstrates how a function extracts the

value property of a radio button to display otherwise hidden information stored

with a button. In this case, it lets the alert dialog box show the full name of the

selected Stooge.

Event handlers
onClick

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Every time a user clicks one of the radio buttons in Listing 24-8, he or she sets a

global variable to true or false, depending on whether the person is a Shemp

lover. This action is independent of the action that is taking place if the user clicks

on the View Full Name button. An onUnload event handler in the <BODY> definition

triggers a function that displays a message to Shemp lovers just before the page

clears (click the browser’s Reload button to leave the current page prior to reload-

ing). Here I use an initialize function triggered by onLoad so that the current radio

button selection sets the global value upon a reload.

Listing 24-8: An onClick event Handler for Radio Buttons

<HTML>
<HEAD>
<TITLE>Radio Button onClick Handler</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var ShempOPhile = false
function initValue() {

ShempOPhile = document.forms[0].stooges[3].checked
}
function fullName(form) {

for (var i = 0; i < form.stooges.length; i++) {
if (form.stooges[i].checked) {

break

Continued

document.formObject.radioObject.onClick

4855-7 ch08.F 6/26/01 8:36 AM Page 355

356 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 24-8 (continued)

}
}
alert(“You chose “ + form.stooges[i].value + “.”)

}
function setShemp(setting) {

ShempOPhile = setting
}
function exitMsg() {

if (ShempOPhile) {
alert(“You like SHEMP?”)

}
}
</SCRIPT>
</HEAD>

<BODY onLoad=”initValue()” onUnload=”exitMsg()”>
<FORM>
Select your favorite Stooge:<P>
<INPUT TYPE=”radio” NAME=”stooges” VALUE=”Moe Howard” CHECKED
onClick=”setShemp(false)”>Moe
<INPUT TYPE=”radio” NAME=”stooges” VALUE=”Larry Fine”
onClick=”setShemp(false)”>Larry
<INPUT TYPE=”radio” NAME=”stooges” VALUE=”Curly Howard”
onClick=”setShemp(false)”>Curly
<INPUT TYPE=”radio” NAME=”stooges” VALUE=”Shemp Howard”
onClick=”setShemp(true)”>Shemp<P>
<INPUT TYPE=”button” NAME=”Viewer” VALUE=”View Full Name...”
onClick=”fullName(this.form)”>
</FORM>
</BODY>
</HTML>

See also Listing 24-5 for further examples of scripting onClick event handlers for

radio buttons — this time to hide and show related items in a form.

✦ ✦ ✦

document.formObject.radioObject.onclick

4855-7 ch08.F 6/26/01 8:36 AM Page 356

Text-Related
Form Objects
(Chapter 25)

When your page needs input from visitors beyond

“yes” or “no” answers, text fields are the interface

elements that provide the blank spaces. Whether you specify

the one-line INPUT element or the multi-line TEXTAREA ele-

ment, this is where visitors can not only express themselves,

but also enter information in formats that might cause your

carefully constructed back-end database to go haywire. More

often than not, it is the text box that benefits most from client-

side form validation.

Despite the fact that the primary user action in a text box

is typing, keyboard events became available to scripters only

starting with the version 4 browsers from both Microsoft and

Netscape. But they arrived fully formed, with a suite of events

for the downstroke, upstroke, and complete press-and-release

action of typing a character. From there, the event object

takes over to help scripts uncover the character code and

whether the user held down any modifier keys while typing

the character. You can find examples of this kind of event han-

dling in the examples for Chapters 1 and 13 of this book.

Text boxes are not always as scriptable as you might like

them to be. Modern browsers can apply style sheets to adjust

font characteristics of the complete text box, but you cannot,

say, set some of the words inside a text box to bold. Even

something as common (in other programs) as having the text

insertion pointer automatically plant itself at the end of exist-

ing text is possible so far only in IE4+/Windows via the

TEXTAREA’s createTextRange() method and associated

TextRange object methods (see TextRange object examples

in Chapter 5 of this book). The moral of the story is to keep

your expectations for the powers of text fields at moderate

levels.

99C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Capturing and
modifying text field
contents

Triggering action and
entering text

Giving focus to a text
field and selecting its
contents

✦ ✦ ✦ ✦

4855-7 ch09.F 6/26/01 8:36 AM Page 357

358 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Examples Highlights
✦ Because the value property holds the string value of the text box, it is also

the property you use to dump new text into a box. Listings 25-2 and 25-3 read

from and write to a text box, transforming the entered contents along the way.

You see three different approaches to the task.

✦ During client-side validation, you help the visitor by directing the text inser-

tion pointer to the text field that failed a validation. Listing 25-4 shows how to

use the focus() and select() methods along with a workaround for an

IE/Windows timing problem that normally gets in the way.

✦ Use the onChange event handler (not onBlur) as a trigger for real-time data

validation, as demonstrated in Listing 25-6. You also see the syntax that pre-

vents form submission when validation fails.

✦ In IE4+ and NN6, you can adjust the size of a TEXTAREA element after the page

has loaded. The example for the cols and rows properties lets you see the

results in The Evaluator.

Text Input Object
Properties

defaultValue

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Important: Listings 25-1, 25-2, and 25-3 feature a form with only one text INPUT

element. The rules of HTML forms say that such a form submits itself if the user

presses the Enter key whenever the field has focus. Such a submission to a form

whose action is undefined causes the page to reload, thus stopping any scripts that

are running at the time. FORM elements for of these example listings contain an

onSubmit event handler that both blocks the submission and attempts to trigger

the text box onChange event handler to run the demonstration script. In some

browsers, such as IE5/Mac, you may have to press the Tab key or click outside of

the text box to trigger the onChange event handler after you enter a new value.

Listing 25-1 has a simple form with a single field that has a default value set in its

tag. A function (resetField()) restores the contents of the page’s lone field to the

value assigned to it in the <INPUT> definition. For a single-field page such as this,

defining a TYPE=”reset” button or calling form.reset() works the same way

because such buttons reestablish default values of all elements of a form. But if you

document.formObject.textObject.defaultValue

4855-7 ch09.F 6/26/01 8:36 AM Page 358

359Chapter 9 ✦ Text-Related Form Objects (Chapter 25)

want to reset only a subset of fields in a form, follow the example button and func-

tion in Listing 25-1.

Listing 25-1: Resetting a Text Object to Default Value

<HTML>
<HEAD>
<TITLE>Text Object DefaultValue</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function upperMe(field) {

field.value = field.value.toUpperCase()
}
function resetField(form) {

form.converter.value = form.converter.defaultValue
}
</SCRIPT>
</HEAD>

<BODY>
<FORM onSubmit=”window.focus(); return false”>
Enter lowercase letters for conversion to uppercase: <INPUT TYPE=”text”
NAME=”converter” VALUE=”sample” onChange=”upperMe(this)”>
<INPUT TYPE=”button” VALUE=”Reset Field”
onClick=”resetField(this.form)”>
</FORM>
</BODY>
</HTML>

form

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The following function fragment receives a reference to a text element as the

parameter. The text element reference is needed to decide which branch to follow;

then the form is submitted.

function setAction(fld) {
if (fld.value.indexOf(“@”) != -1) {

fld.form.action = “mailto:” + fld.value
} else {

fld.form.action = “cgi-bin/normal.pl”
}
fld.form.submit()

}

document.formObject.textObject.form

4855-7 ch09.F 6/26/01 8:36 AM Page 359

360 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Notice how this function doesn’t have to worry about the form reference,

because its job is to work with whatever form encloses the text field that triggers

this function.

maxLength

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator (Chapter 13 in JavaScript Bible) to experiment with the

maxLength property. The top text field has no default value, but you can temporar-

ily set it to only a few characters and see how it affects entering new values:

document.forms[0].input.maxLength = 3

Try typing into the field to see the results of the change. To restore the default

value, reload the page.

name

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Consult Listing 25-2 later in this chapter, where I use the text object’s name, con-

vertor, as part of the reference when assigning a value to the field. To extract the

name of a text object, you can use the property reference. Therefore, assuming that

your script doesn’t know the name of the first object in the first form of a docu-

ment, the statement is

var objectName = document.forms[0].elements[0].name

readOnly

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator (Chapter 13 in JavaScript Bible) to set the bottom text box to

be read-only. Begin by typing anything you want in the bottom text box. Then enter

the following statement into the top text box:

document.formObject.textObject.readOnly

4855-7 ch09.F 6/26/01 8:36 AM Page 360

361Chapter 9 ✦ Text-Related Form Objects (Chapter 25)

document.forms[0].inspector.readOnly = true

While existing text in the box is selectable (and therefore can be copied into the

clipboard), it cannot be modified or removed.

size

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Resize the bottom text box of The Evaluator (Chapter 13 in JavaScript Bible) by

entering the following statements into the top text box:

document.forms[0].inspector.size = 20
document.forms[0].inspector.size = 400

Reload the page to return the size back to normal (or set the value to 80).

value

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
As a demonstration of how to retrieve and assign values to a text object, Listing

25-2 shows how the action in an onChange event handler is triggered. Enter any

lowercase letters into the field and click out of the field. I pass a reference to the

entire form object as a parameter to the event handler. The function extracts the

value, converts it to uppercase (using one of the JavaScript string object methods),

and assigns it back to the same field in that form.

Listing 25-2: Getting and Setting a Text Object’s Value

<HTML>
<HEAD>
<TITLE>Text Object Value</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function upperMe(form) {

inputStr = form.converter.value
form.converter.value = inputStr.toUpperCase()

}
</SCRIPT>
</HEAD>

Continued

document.formObject.textObject.value

4855-7 ch09.F 6/26/01 8:36 AM Page 361

362 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 25-2 (continued)

<BODY>
<FORM onSubmit=”window.focus(); return false”>
Enter lowercase letters for conversion to uppercase: <INPUT TYPE=”text”
NAME=”converter” VALUE=”sample” onChange=”upperMe(this.form)”>
</FORM>
</BODY>
</HTML>

I also show two other ways to accomplish the same task, each one more efficient

than the previous example. Both utilize the shortcut object reference to get at the

heart of the text object. Listing 25-3 passes the text object — contained in the this
reference — to the function handler. Because that text object contains a complete

reference to it (out of sight, but there just the same), you can access the value
property of that object and assign a string to that object’s value property in a sim-

ple assignment statement.

Listing 25-3: Passing a Text Object (as this) to the Function

<HTML>
<HEAD>
<TITLE>Text Object Value</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function upperMe(field) {

field.value = field.value.toUpperCase()
}
</SCRIPT>
</HEAD>

<BODY>
<FORM onSubmit=”window.focus(); return false”>
Enter lowercase letters for conversion to uppercase: <INPUT TYPE=”text”
NAME=”converter” VALUE=”sample” onChange=”upperMe(this)”>
</FORM>
</BODY>
</HTML>

Yet another way is to deal with the field values directly in an embedded event

handler — instead of calling an external function (which is easier to maintain

because all scripts are grouped together in the Head). With the function removed

from the document, the event handler attribute of the <INPUT> tag changes to do

all the work:

<INPUT TYPE=”text” NAME=”converter” VALUE=”sample”
onChange=”this.value = this.value.toUpperCase()”>

document.formObject.textObject.value

4855-7 ch09.F 6/26/01 8:36 AM Page 362

363Chapter 9 ✦ Text-Related Form Objects (Chapter 25)

The right-hand side of the assignment expression extracts the current contents

of the field and (with the help of the toUpperCase() method of the string object)

converts the original string to all uppercase letters. The result of this operation is

assigned to the value property of the field.

The application of the this keyword in the previous examples may be confusing

at first, but these examples represent the range of ways in which you can use such

references effectively. Using this by itself as a parameter to an object’s event han-

dler refers only to that single object — a text object in Listing 25-3. If you want to

pass along a broader scope of objects that contain the current object, use the this
keyword along with the outer object layer that you want. In Listing 25-2, I sent a ref-

erence to the entire form along by specifying this.form— meaning the form that

contains “this” object, which is being defined in the line of HTML code.

At the other end of the scale, you can use similar-looking syntax to specify a par-

ticular property of the this object. Thus, in the last example, I zeroed in on just the

value property of the current object being defined —this.value. Although the

formats of this.form and this.value appear the same, the fact that one is a ref-

erence to an object and the other just a value can influence the way your functions

work. When you pass a reference to an object, the function can read and modify

properties of that object (as well as invoke its functions); but when the parameter

passed to a function is just a property value, you cannot modify that value without

building a complete reference to the object and its value.

Methods
blur()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The following statement invokes the blur() method on a text box named

vanishText:

document.forms[0].vanishText.blur()

focus()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
See Listing 25-4 for an example of an application of the focus() method in con-

cert with the select() method.

document.formObject.textObject.focus()

4855-7 ch09.F 6/26/01 8:36 AM Page 363

364 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

select()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
A click of the Verify button in Listing 25-4 performs a validation on the contents

of the text box, making sure the entry consists of all numbers. All work is controlled

by the checkNumeric() function, which receives a reference to the field needing

inspection as a parameter. Because of the way the delayed call to the doSelection()
function has to be configured, various parts of what will become a valid reference

to the form are extracted from the field’s and form’s properties. If the validation

(performed in the isNumber() function) fails, the setSelection() method is

invoked after an artificial delay of zero milliseconds. As goofy as this sounds, this

method is all that IE needs to recover from the display and closure of the alert dia-

log box. Because the first parameter of the setTimeout() method must be a string,

the example assembles a string invocation of the setSelection() function via

string versions of the form and field names. All that the setSelection() function

does is focus and select the field whose reference is passed as a parameter. This

function is now generalizable to work with multiple text boxes in a more complex

form.

Listing 25-4: Selecting a Field

<HTML>
<HEAD>
<TITLE>Text Object Select/Focus</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// general purpose function to see if a suspected numeric input is a number
function isNumber(inputStr) {

for (var i = 0; i < inputStr.length; i++) {
var oneChar = inputStr.charAt(i)
if (oneChar < “0” || oneChar > “9”) {

alert(“Please make sure entries are integers only.”)
return false

}
}
return true

}
function checkNumeric(fld) {

var inputStr = fld.value
var fldName = fld.name
var formName = fld.form.name
if (isNumber(inputStr)) {

// statements if true
} else {

document.formObject.textObject.select()

4855-7 ch09.F 6/26/01 8:36 AM Page 364

365Chapter 9 ✦ Text-Related Form Objects (Chapter 25)

setTimeout(“doSelection(document.” + formName + “. “ + fldName + “)”, 0)
}

}

function doSelection(fld) {
fld.focus()
fld.select()

}
</SCRIPT>
</HEAD>

<BODY>
<FORM NAME=”entryForm” onSubmit=”return false”>
Enter any positive integer: <INPUT TYPE=”text” NAME=”numeric”><P>
<INPUT TYPE=”button” VALUE=”Verify” onClick=”checkNumeric(this.form.numeric)”>
</FORM>
</BODY>
</HTML>

Event handlers
onBlur
onFocus
onSelect

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
To demonstrate one of these event handlers, Listing 25-5 shows how you may

use the window’s statusbar as a prompt message area after a user activates any

field of a form. When the user tabs to or clicks on a field, the prompt message asso-

ciated with that field appears in the statusbar. In Figure 9-1, the user has tabbed to

the second text box, which caused the statusbar message to display a prompt for

the field.

Listing 25-5: The onFocus event Handler

<HTML>
<HEAD>
<TITLE>Elements Array</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>

Continued

document.formObject.textObject.onBlur

4855-7 ch09.F 6/26/01 8:36 AM Page 365

366 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 25-5 (continued)

function prompt(msg) {
window.status = “Please enter your “ + msg + “.”

}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
Enter your first name:<INPUT TYPE=”text” NAME=”firstName”
onFocus=”prompt(‘first name’)”><P>
Enter your last name:<INPUT TYPE=”text” NAME=”lastName”
onFocus=”prompt(‘last name’)”><P>
Enter your address:<INPUT TYPE=”text” NAME=”address”
onFocus=”prompt(‘address’)”><P>
Enter your city:<INPUT TYPE=”text” NAME=”city” onFocus=”prompt(‘city’)”><P>
</FORM>
</BODY>
</HTML>

Figure 9-1: An onFocus event handler triggers a statusbar display.

document.formObject.textObject.onBlur

4855-7 ch09.F 6/26/01 8:36 AM Page 366

367Chapter 9 ✦ Text-Related Form Objects (Chapter 25)

onChange

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Whenever a user makes a change to the text in a field in Listing 25-6 and then

either tabs or clicks out of the field, the change event is sent to that field, triggering

the onChange event handler.

Because the form in Listing 25-6 has only one field, the example demonstrates a

technique you can use that prevents a form from being “submitted” if the user acci-

dentally presses the Enter key. The technique is as simple as defeating the submis-

sion via the onSubmit event handler of the form. At the same time, the onSubmit
event handler invokes the checkIt() function, so that pressing the Enter key (as

well as pressing Tab or clicking outside the field) triggers the function.

Listing 25-6: Data Validation via an onChange event Handler

<HTML>
<HEAD>
<TITLE>Text Object Select/Focus</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// general purpose function to see if a suspected numeric input is a number
function isNumber(inputStr) {

for (var i = 0; i < inputStr.length; i++) {
var oneChar = inputStr.substring(i, i + 1)
if (oneChar < “0” || oneChar > “9”) {

alert(“Please make sure entries are numbers only.”)
return false

}
}
return true

}
function checkIt(form) {

inputStr = form.numeric.value
if (isNumber(inputStr)) {

// statements if true
} else {

form.numeric.focus()
form.numeric.select()

}
}
</SCRIPT>
</HEAD>

<BODY onSubmit=”checkIt(this); return false”>

Continued

document.formObject.textObject.onChange

4855-7 ch09.F 6/26/01 8:36 AM Page 367

368 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 25-6 (continued)

<FORM>
Enter any positive integer: <INPUT TYPE=”text” NAME=”numeric”
onChange=”checkIt(this.form)”><P>
</FORM>
</BODY>
</HTML>

TEXTAREA Element Object
Properties

cols
rows

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator to play with the cols and rows property settings for the

Results textarea on that page. Shrink the width of the textarea by entering the fol-

lowing statement into the top text box:

document.forms[0].output.cols = 30

And make the textarea one row deeper:

document.forms[0].output.rows++

Methods
createTextRange()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See the example for the TextRange.move() method in Chapter 5 of this book to

see how to control the text insertion pointer inside a TEXTAREA element.

✦ ✦ ✦

TEXTAREA.createTextRange ()

4855-7 ch09.F 6/26/01 8:36 AM Page 368

Select, Option,
and Optgroup
Objects
(Chapter 26)

The SELECT element is the best space-saving device in the

HTML form repertoire. Whether you choose the pop-up

menu or scrolling list display style, your page can provide vis-

itors with a visually compact list of literally hundreds of items

from which to choose. From a scripter’s point of view, how-

ever, it is a complex item to manage, especially in older

browsers.

In truth, the SELECT element is an outer wrapper for the

OPTION element items nested within. Each OPTION element

contains the text that the user sees in the list, as well as a hid-

den value that may be more meaningful to a server database

or client script. The difficulty with browsers prior to IE4 and

NN6 is that reading the hidden value of the currently chosen

item in the list requires an extensive reference to not only the

SELECT element, but to the item in the array of OPTION ele-

ment objects. To reach that specific item, the script uses a ref-

erence to the SELECT object’s selectedIndex property as

the options array index. Newer browsers simplify the matter

by providing a single value property for the SELECT object

that returns the value of the currently selected item (or of the

first item when multiple choices are allowed).

Many browser versions provide script facilities for modify-

ing the content of a SELECT list. But the effect is not perfect in

browsers that don’t also reflow the page to reflect the poten-

tially resized width of the list.

A user interface debate rages about whether a SELECT list,

whose purpose is obviously intended to direct site navigation,

should navigate immediately upon making a choice or if the

user should also click on an explicit “Go” button next to the

list. The former is faster for the impatient visitor, but the lat-

ter doesn’t shoot off to an undesired page when the user

makes a wrong selection. Good luck with that decision.

1010C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Triggering action
based on a user’s
selection in a pop-up
or select list

Reading hidden and
visible values of
OPTION element
items

Scripting SELECT
objects that allow
multiple selections

✦ ✦ ✦ ✦

4855-7 ch10.F 6/26/01 8:36 AM Page 369

370 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Examples Highlights
✦ To harvest the values of all selected items in a multiple list, your script needs

to cycle through the SELECT element’s options array and inspect the

selected property of each, as shown in Listing 26-4.

✦ Scripts can also retrieve the text of the selected item, instead of the hidden

value. Compare two similar applications that work with the text (Listing 26-5)

and value (Listing 26-6) properties.

✦ Listings 26-5 and 26-6 show the backward-compatible, long reference to

retrieve a chosen option’s details. The modern alternative accompanies the

example for the SELECT.value property.

✦ See Listing 26-8 for another example of triggering a script via the onChange
event handler of a SELECT object.

✦ Implementations of the OPTGROUP element object may need improvement

before Listing 26-9 behaves as it should to modify hierarchical labels within a

SELECT list.

SELECT Element Object
Properties

length

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
See Listing 26-1 in Chapter 26 of the JavaScript Bible for an illustration of the way

you use the length property to help determine how often to cycle through the

repeat loop in search of selected items. Because the loop counter, i, must start at 0,

the counting continues until the loop counter is one less than the actual length

value (which starts its count with 1).

multiple

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
The following statement toggles between single and multiple selections on a

SELECT element object whose SIZE attribute is set to a value greater than 1:

SELECT.multiple

4855-7 ch10.F 6/26/01 8:36 AM Page 370

371Chapter 10 ✦ Select, Option, and Optgroup Objects (Chapter 26)

document.forms[0].mySelect.multiple = !document.forms[0].mySelect.multiple

options[index]

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
See Listings 26-1 through 26-3 in Chapter 26 of the JavaScript Bible for examples

of how the options array references information about the options inside a

SELECT element.

options[index].defaultSelected

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The following statement preserves a Boolean value if the first option of the

SELECT list is the default selected item:

var zeroIsDefault = document.forms[0].listName.options[0].defaultSelected

options[index].index

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
The following statement assigns the index integer of the first option of a SELECT

element named listName to a variable named itemIndex.

var itemIndex = document.forms[0].listName.options[0].index

options[index].selected

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

SELECT.options[index].selected

4855-7 ch10.F 6/26/01 8:36 AM Page 371

372 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example
To accumulate a list of all items selected by the user, the seeList() function in

Listing 26-4 systematically examines the options[index].selected property of

each item in the list. The text of each item whose selected property is true is

appended to the list. I add the “\n “ inline carriage returns and spaces to make the

list in the alert dialog box look nice and indented. If you assign other values to the

VALUE attributes of each option, the script can extract the options[index].value
property to collect those values instead.

Listing 26-4: Cycling through a Multiple-Selection List

<HTML>
<HEAD>
<TITLE>Accessories List</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function seeList(form) {

var result = “”
for (var i = 0; i < form.accList.length; i++) {

if (form.accList.options[i].selected) {
result += “\n “ + form.accList.options[i].text

}
}

alert(“You have selected:” + result)
}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
<P>Control/Command-click on all accessories you use:
<SELECT NAME=”accList” SIZE=9 MULTIPLE>

<OPTION SELECTED>Color Monitor
<OPTION>Modem
<OPTION>Scanner
<OPTION>Laser Printer
<OPTION>Tape Backup
<OPTION>MO Drive
<OPTION>Video Camera

</SELECT> </P>
<P><INPUT TYPE=”button” VALUE=”View Summary...”
onClick=”seeList(this.form)”></P>
</FORM>
</BODY>
</HTML>

SELECT.options[index].selected

4855-7 ch10.F 6/26/01 8:36 AM Page 372

373Chapter 10 ✦ Select, Option, and Optgroup Objects (Chapter 26)

options[index].text

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
To demonstrate the text property of an option, Listing 26-5 applies the text from

a selected option to the document.bgColor property of a document in the current

window. The color names are part of the collection built into all scriptable

browsers; fortunately, the values are case-insensitive so that you can capitalize the

color names displayed and assign them to the property.

Listing 26-5: Using the options[index].text Property

<HTML>
<HEAD>
<TITLE>Color Changer 1</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function seeColor(form) {

var newColor = (form.colorsList.options[form.colorsList.selectedIndex].text)
document.bgColor = newColor

}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
<P>Choose a background color:
<SELECT NAME=”colorsList”>

<OPTION SELECTED>Gray
<OPTION>Lime
<OPTION>Ivory
<OPTION>Red

</SELECT></P>
<P><INPUT TYPE=”button” VALUE=”Change It” onClick=”seeColor(this.form)”></P>
</FORM>
</BODY>
</HTML>

SELECT.options[index].text

4855-7 ch10.F 6/26/01 8:36 AM Page 373

374 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

options[index].value

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Listing 26-6 requires the option text that the user sees to be in familiar, multiple-

word form. But to set the color using the browser’s built-in color palette, you must

use the one-word form. Those one-word values are stored in the VALUE attributes of

each <OPTION> definition. The function then reads the value property, assigning it

to the bgColor of the current document. If you prefer to use the hexadecimal

triplet form of color specifications, those values are assigned to the VALUE
attributes (<OPTION VALUE=”#e9967a”>Dark Salmon).

Listing 26-6: Using the options[index].value Property

<HTML>
<HEAD>
<TITLE>Color Changer 2</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function seeColor(form) {

var newColor =
(form.colorsList.options[form.colorsList.selectedIndex].value)

document.bgColor = newColor
}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
<P>Choose a background color:
<SELECT NAME=”colorsList”>

<OPTION SELECTED VALUE=”cornflowerblue”>Cornflower Blue
<OPTION VALUE=”darksalmon”>Dark Salmon
<OPTION VALUE=”lightgoldenrodyellow”>Light Goldenrod Yellow
<OPTION VALUE=”seagreen”>Sea Green

</SELECT></P>
<P><INPUT TYPE=”button” VALUE=”Change It” onClick=”seeColor(this.form)”></P>
</FORM>
</BODY>
</HTML>

SELECT.options[index].value

4855-7 ch10.F 6/26/01 8:36 AM Page 374

375Chapter 10 ✦ Select, Option, and Optgroup Objects (Chapter 26)

selectedIndex

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
In the inspect() function of Listing 26-7, notice that the value inside the

options property index brackets is a reference to the object’s selectedIndex
property. Because this property always returns an integer value, it fulfills the needs

of the index value for the options property. Therefore, if you select Green in the

pop-up menu, form.colorsList.selectedIndex returns a value of 1; that

reduces the rest of the reference to form.colorsList.options[1].text, which

equals “Green.”

Listing 26-7: Using the selectedIndex Property

<HTML>
<HEAD>
<TITLE>Select Inspector</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function inspect(form) {

alert(form.colorsList.options[form.colorsList.selectedIndex].text)
}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
<P><SELECT NAME=”colorsList”>

<OPTION SELECTED>Red
<OPTION VALUE=”Plants”><I>Green</I>
<OPTION>Blue

</SELECT></P>
<P><INPUT TYPE=”button” VALUE=”Show Selection” onClick=”inspect(this.form)”></P>
</FORM>
</BODY>
</HTML>

SELECT.selectedIndex

4855-7 ch10.F 6/26/01 8:36 AM Page 375

376 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

size

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
The following statement sets the number of visible items to 5:

document.forms[0].mySelect.size = 5

value

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
The function in Listing 26-6 that accesses the chosen value the long way can be

simplified for newer browsers only with the following construction:

function seeColor(form) {
document.bgColor = form.colorsList.value

}

Methods
item(index)
namedItem(“optionID”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
The following statement assigns an OPTION element reference to a variable:

var oneOption = document.forms[0].mySelect.namedItem(“option3_2”)

SELECT.item()

4855-7 ch10.F 6/26/01 8:36 AM Page 376

377Chapter 10 ✦ Select, Option, and Optgroup Objects (Chapter 26)

Event handlers
onChange

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Listing 26-8 is a version of Listing 26-6 that invokes all action as the result of a

user making a selection from the pop-up menu. The onChange event handler in the

<SELECT> tag replaces the action button. For this application — when you desire a

direct response to user input — an appropriate method is to have the action trig-

gered from the pop-up menu rather than by a separate action button.

Notice two other important changes. First, the SELECT element now contains a

blank first option. When a user visits the page, nothing is selected yet, so you

should present a blank option to encourage the user to make a selection. The func-

tion also makes sure that the user selects one of the color-valued items before it

attempts to change the background color.

Second, the BODY element contains an onUnload event handler that resets the

form. The purpose behind this is that if the user navigates to another page and uses

the Back button to return to the page, the script-adjusted background color does

not persist. I recommend you return the SELECT element to its original setting.

Unfortunately, the reset does not stick to the form in IE4 and IE5 for Windows

(although this problem appears to be repaired in IE5.5). Another way to approach

this issue is to use the onLoad event handler to invoke seeColor(), passing as a

parameter a reference to the SELECT element. Thus, if the SELECT element choice

persists, the background color is adjusted accordingly after the page loads.

Listing 26-8: Triggering a Color Change from a Pop-Up Menu

<HTML>
<HEAD>
<TITLE>Color Changer 2</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function seeColor(list) {

var newColor = (list.options[list.selectedIndex].value)
if (newColor) {

document.bgColor = newColor
}

}
</SCRIPT>
</HEAD>

<BODY onUnload=”document.forms[0].reset()”>
<FORM>

Continued

SELECT.onChange

4855-7 ch10.F 6/26/01 8:36 AM Page 377

378 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 26-8 (continued)

<P>Choose a background color:
<SELECT NAME=”colorsList” onChange=”seeColor(this)”>

<OPTION SELECTED VALUE=””>
<OPTION VALUE=”cornflowerblue”>Cornflower Blue
<OPTION VALUE=”darksalmon”>Dark Salmon
<OPTION VALUE=”lightgoldenrodyellow”>Light Goldenrod Yellow
<OPTION VALUE=”seagreen”>Sea Green

</SELECT></P>
</FORM>
</BODY>
</HTML>

OPTION Element Object
Properties

label

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
The following statement modifies the text that appears as the selected text in a

pop-up list:

document.forms[0].mySelect.options[3].label = “Widget 9000”

If this option is the currently selected one, the text on the pop-up list at rest

changes to the new label.

OPTGROUP Element Object
Properties

label

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

OPTGROUP.label

4855-7 ch10.F 6/26/01 8:36 AM Page 378

379Chapter 10 ✦ Select, Option, and Optgroup Objects (Chapter 26)

Example
I present Listing 26-9 in the hope that Microsoft and Netscape will eventually

eradicate the bugs that afflict their current implementations of the label property.

When the feature works as intended, Listing 26-9 demonstrates how a script can

alter the text of option group labels. This page is an enhanced version of the back-

ground color setters used in other examples of this chapter. Be aware that IE5/Mac

does not alter the last OPTGROUP element’s label, and NN6 achieves only a partial

change to the text displayed in the SELECT element.

Listing 26-9: Modifying OPTGROUP Element Labels

<HTML>
<HEAD>
<TITLE>Color Changer 3</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var regularLabels = [“Reds”,”Greens”,”Blues”]
var naturalLabels = [“Apples”,”Leaves”,”Sea”]
function setRegularLabels(list) {

var optGrps = list.getElementsByTagName(“OPTGROUP”)
for (var i = 0; i < optGrps.length; i++) {

optGrps[i].label = regularLabels[i]
}

}
function setNaturalLabels(list) {

var optGrps = list.getElementsByTagName(“OPTGROUP”)
for (var i = 0; i < optGrps.length; i++) {

optGrps[i].label = naturalLabels[i]
}

}
function seeColor(list) {

var newColor = (list.options[list.selectedIndex].value)
if (newColor) {

document.bgColor = newColor
}

}
</SCRIPT>
</HEAD>

<BODY onUnload=”document.forms[0].reset()”>
<FORM>
<P>Choose a background color:
<SELECT name=”colorsList” onChange=”seeColor(this)”>

<OPTGROUP ID=”optGrp1” label=”Reds”>
<OPTION value=”#ff9999”>Light Red
<OPTION value=”#ff3366”>Medium Red
<OPTION value=”#ff0000”>Bright Red
<OPTION value=”#660000”>Dark Red

</OPTGROUP>
<OPTGROUP ID=”optGrp2” label=”Greens”>

<OPTION value=”#ccff66”>Light Green

Continued

OPTGROUP.label

4855-7 ch10.F 6/26/01 8:36 AM Page 379

380 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 26-9 (continued)

<OPTION value=”#99ff33”>Medium Green
<OPTION value=”#00ff00”>Bright Green
<OPTION value=”#006600”>Dark Green

</OPTGROUP>
<OPTGROUP ID=”optGrp3” label=”Blues”>

<OPTION value=”#ccffff”>Light Blue
<OPTION value=”#66ccff”>Medium Blue
<OPTION value=”#0000ff”>Bright Blue
<OPTION value=”#000066”>Dark Blue

</OPTGROUP>
</SELECT></P>
<P>
<INPUT TYPE=”radio” NAME=”labels” CHECKED
onClick=”setRegularLabels(this.form.colorsList)”>Regular Label Names
<INPUT TYPE=”radio” NAME=”labels”
onClick=”setNaturalLabels(this.form.colorsList)”>Label Names from Nature</P>
</FORM>
</BODY>
</HTML>

✦ ✦ ✦

OPTGROUP.label

4855-7 ch10.F 6/26/01 8:36 AM Page 380

Table and
List Objects
(Chapter 27)

Dynamic object models that take advantage of automatic

page reflow create huge opportunities for creative Web

designers. Nowhere is that more apparent than in the TABLE

element object and all the other objects that nest within (TR,

TH, TD, and so on). Not only is it possible to swap the content

of a table cell at any time, but the object models provide pow-

erful methods for completely remolding the composition of a

table on the fly.

HTML tables are at once elegant because they provide a lot

of pleasing organization to a page with little code, and also

complex due to the large number of related elements and sub-

stantial list of attributes for each element. Those attributes

become object properties in the modern object model, so it

means that scripters have much to choose from (and be con-

fused by) when bringing tables to life.

Using the special-purpose methods that insert rows and

cells also takes some initial adjustment for many scripters.

For example, inserting a row has almost no visual effect on an

existing table until you not only insert cells into the row, but

also plant content in the cells. Code examples for these opera-

tions are part of the general discussion of the TABLE object in

the JavaScript Bible.

Designers whose browser targets are IE4+/Windows can

also take advantage of Microsoft’s data binding technology.

Data from external sources can fill tables with only the slight-

est bit of HTML markup. Chapter 15 contains examples of this

in its discussion of the dataFld and related properties.

This chapter also includes objects for ordered and

unordered lists (and list items nested within). In concert with

style sheets that can include or exclude elements from page

rendering, these objects provide additional layout opportuni-

ties for clever designers.

1111C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Modifying table cell
content

Adding and deleting
table rows

Modifying table
dimensions, colors,
and borders

Changing numbering
sequences and bullet
symbols for LI element
objects

✦ ✦ ✦ ✦

4855-7 ch11.F 6/26/01 8:36 AM Page 381

382 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Examples Highlights
✦ Scripts can adjust the value of a TABLE object’s width property, including

switching between a fixed pixel size and a percentage of the table container’s

width.

✦ Compare the examples for the IE5/Windows TABLE.cells property and the

TR.cells property for IE4+ and NN6.

✦ Follow the example for the TD.colSpan property to observe how a table

responds to such changes in real time.

✦ Examples for list-related elements show how to set the list types for script-

generated lists.

TABLE Element Object
Properties

align

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to see the align property

at work. The default value (left) is in force when the page loads. But you can shift

the table to right-align with the body by entering the following statement into the

top text box for IE5+ and NN6+:

document.getElementById(“myTable”).align = “right”

background

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Treat the background property of a table like you do the src property of an IMG

element object. If you precache an image, you can assign the src property of the

precached image object to the background property of the table for quick image

changing. Such an assignment statement looks like the following:

document.all.myTable.background = imgArray[“myTableAlternate”].src

TABLE.background

4855-7 ch11.F 6/26/01 8:36 AM Page 382

383Chapter 11 ✦ Table and List Objects (Chapter 27)

bgColor

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to assign a color to the

table. After looking at the table to see its initial state, enter the following IE5+/NN6+

statement into the top text box:

document.getElementById(“myTable”).bgColor = “lightgreen”

When you look at the table again, you see that only some of the cells turned to

green. This is because colors also are assigned to table elements nested inside the

outermost table element, and the color specification closest to the actual element

wins the contest.

border

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
To remove all traces of an outside border of a table (and, in some combinations

of attributes of other table elements, borders between cells), use the following

statement (in IE5+/NN6+ syntax):

document.getElementById(“myTable”).border = 0

borderColor
borderColorDark
borderColorLight

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Assuming that you have set the initial light and dark color attributes of a table,

the following function swaps the light and dark colors to shift the light source to

the opposite corner:

TABLE.borderColor

4855-7 ch11.F 6/26/01 8:36 AM Page 383

384 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

function swapColors(tableRef) {
var oldLight = tableRef.borderColorLight
tableRef.borderColorLight = tableRef.borderColorDark
tableRef.borderColorDark = oldLight

}

While you can easily invoke this function over and over by ending it with a

setTimeout() method that calls this function after a fraction of a second, the

results are very distracting to the person trying to read your page. Please don’t do it.

caption

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
The following example, for use with The Evaluator (Chapter 13 in the JavaScript

Bible) in NN6+, demonstrates the sequence of assigning a new CAPTION element

object to a table. While the table in The Evaluator already has a CAPTION element,

the following statements replace it with an entirely new one. Enter each of the

following statements into the top text box, starting with the one that saves a long

reference into a variable for multiple uses at the end:

t = document.getElementById(“myTable”)
a = document.createElement(“CAPTION”)
b = document.createTextNode(“A Brand New Caption”)
a.appendChild(b)
t.replaceChild(a, t.caption)

A view of the table shows that the new caption has replaced the old one because a

table can have only one CAPTION element.

cellPadding
cellSpacing

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to adjust the

cellPadding and cellSpacing properties of the demonstrator table. First, adjust

the padding (IE5+/NN6 syntax):

document.getElementById(“myTable”).cellPadding = 50

TABLE.cellPadding

4855-7 ch11.F 6/26/01 8:36 AM Page 384

385Chapter 11 ✦ Table and List Objects (Chapter 27)

Now, adjust the cell spacing:

document.getElementById(“myTable”).cellSpacing = 15

Notice how cellSpacing affected the thickness of inter-cell borders.

cells

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Use The Evaluator with IE5+ for Windows to have JavaScript calculate the num-

ber of columns in the demonstrator table with the help of the cells and rows
properties. Enter the following statement into the top text box:

document.all.myTable.cells.length/document.all.myTable.rows.length

The result is the number of columns in the table.

dataPageSize

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
If you want to change the number of visible rows of linked data in the table to 15,

use the following statement:

document.all.myTable.dataPageSize = 15

frame

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Listing 27-4 presents a page that cycles through all possible settings for the

frame property. The frame property value is displayed in the table’s caption. (Early

versions of NN6 might fail to refresh part of the page after adjusting the frame
property.)

TABLE.frame

4855-7 ch11.F 6/26/01 8:36 AM Page 385

386 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 27-4: Cycling Through Table frame Property Values

<HTML>
<HEAD>
<TITLE>TABLE.frame Property</TITLE>

<SCRIPT LANGUAGE=”JavaScript”>
var timeoutID
var frameValues = [“box”, “above”, “rhs”, “below”, “lhs”, “hsides”, “vsides”,

“border”, “void”]
function rotateBorder(i) {

document.getElementById(“myTABLE”).frame = frameValues[i]
document.getElementById(“myCAPTION”).innerHTML = frameValues[i]
i = (++i == frameValues.length) ? 0 : i
timeoutID = setTimeout(“rotateBorder(“ + i + “)”, 2000)

}
function stopRotate() {

clearTimeout(timeoutID)
document.getElementById(“myTABLE”).frame = “box”
document.getElementById(“myCAPTION”).innerHTML = “box”

}
</SCRIPT>
</HEAD>

<BODY>
<H1>TABLE.frame Property</H1>
<HR>
<FORM NAME=”controls”>
<FIELDSET>
<LEGEND>Cycle Table Edge Visibility</LEGEND>
<TABLE WIDTH=”100%” CELLSPACING=20><TR>
<TD><INPUT TYPE=”button” VALUE=”Cycle” onClick=”rotateBorder(0)”></TD>
<TD><INPUT TYPE=”button” VALUE=”Stop” onClick=”stopRotate()”></TD>
</TR>
</TABLE>
</FIELDSET>
</TABLE>
</FIELDSET>
</FORM>
<HR>
<TABLE ID=”myTABLE” CELLPADDING=5 BORDER=3 ALIGN=”center”>
<CAPTION ID=”myCAPTION”>Default</CAPTION>
<THEAD ID=”myTHEAD”>
<TR>

<TH>River<TH>Outflow<TH>Miles<TH>Kilometers
</TR>
</THEAD>
<TBODY>
<TR>

<TD>Nile<TD>Mediterranean<TD>4160<TD>6700
</TR>
<TR>

<TD>Congo<TD>Atlantic Ocean<TD>2900<TD>4670

TABLE.frame

4855-7 ch11.F 6/26/01 8:36 AM Page 386

387Chapter 11 ✦ Table and List Objects (Chapter 27)

</TR>
<TR>

<TD>Niger<TD>Atlantic Ocean<TD>2600<TD>4180
</TR>
<TR>

<TD>Zambezi<TD>Indian Ocean<TD>1700<TD>2740
</TR>
</TABLE>
</BODY>
</HTML>

height
width

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to adjust the width of the

demonstrator table. Begin by increasing the width to the full width of the page:

document.getElementById(“myTable”).width = “100%”

To restore the table to its minimum width, assign a very small value to the

property:

document.getElementById(“myTable”).width = 50

If you have IE4+, you can perform similar experiments with the height property of

the table.

rows

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator to examine the number of rows in the demonstrator table.

Enter the following statement into the top text box:

document.getElementById(“myTable”).rows.length

In contrast, notice how the rows property sees only the rows within the demon-

strator table’s TBODY element:

document.getElementById(“myTbody”).rows.length

TABLE.rows

4855-7 ch11.F 6/26/01 8:36 AM Page 387

388 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

rules

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Listing 27-5 presents a page that cycles through all possible settings for the

rules property. The rules property value is displayed in the table’s caption. When

you run this script, notice the nice border display for this table’s combination of

COLGROUP and table row segment elements. Figure 11-1 shows the IE/Windows

rendition for the groups type of table rules. Early versions of NN6 may not render

the altered table correctly, and scripted changes won’t appear on the page.

Listing 27-5: Cycling Through Table rules Property Values

<HTML>
<HEAD>
<TITLE>TABLE.rules Property</TITLE>

<SCRIPT LANGUAGE=”JavaScript”>
var timeoutID
var rulesValues = [“all”, “cols”, “groups”, “none”, “rows”]
function rotateBorder(i) {

document.getElementById(“myTABLE”).rules = rulesValues[i]
document.getElementById(“myCAPTION”).innerHTML = rulesValues[i]
i = (++i == rulesValues.length) ? 0 : i
timeoutID = setTimeout(“rotateBorder(“ + i + “)”, 2000)

}
function stopRotate() {

clearTimeout(timeoutID)
document.getElementById(“myTABLE”).rules = “all”
document.getElementById(“myCAPTION”).innerHTML = “all”

}
</SCRIPT>
</HEAD>

<BODY>
<H1>TABLE.rules Property</H1>
<HR>
<FORM NAME=”controls”>
<FIELDSET>
<LEGEND>Cycle Table Rule Visibility</LEGEND>
<TABLE WIDTH=”100%” CELLSPACING=20><TR>
<TD><INPUT TYPE=”button” VALUE=”Cycle” onClick=”rotateBorder(0)”></TD>
<TD><INPUT TYPE=”button” VALUE=”Stop” onClick=”stopRotate()”></TD>
</TR>
</TABLE>
</FIELDSET>
</TABLE>
</FIELDSET>
</FORM>

TABLE.rules

4855-7 ch11.F 6/26/01 8:36 AM Page 388

389Chapter 11 ✦ Table and List Objects (Chapter 27)

<HR>
<TABLE ID=”myTABLE” CELLPADDING=5 BORDER=3 ALIGN=”center”>
<CAPTION ID=”myCAPTION”>Default</CAPTION>
<COLGROUP SPAN=1>
<COLGROUP SPAN=3>
<THEAD ID=”myTHEAD”>
<TR>

<TH>River<TH>Outflow<TH>Miles<TH>Kilometers
</TR>
</THEAD>
<TBODY>
<TR>

<TD>Nile<TD>Mediterranean<TD>4160<TD>6700
</TR>
<TR>

<TD>Congo<TD>Atlantic Ocean<TD>2900<TD>4670
</TR>
<TR>

<TD>Niger<TD>Atlantic Ocean<TD>2600<TD>4180
</TR>
<TR>

<TD>Zambezi<TD>Indian Ocean<TD>1700<TD>2740
</TR>
</TABLE>
</BODY>
</HTML>

Figure 11-1: The TABLE.rules property set to “groups”

TABLE.rules

4855-7 ch11.F 6/26/01 8:36 AM Page 389

390 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

tBodies

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to access the tBodies

array and reveal the number of rows in the one TBODY segment of the demonstra-

tor table. Enter the following statement into the top text box:

document.getElementById(“myTable”).tBodies[0].rows.length

Methods
moveRow(sourceRowIndex, destinationRowIndex)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
If you want to shift the bottom row of a table to the top, you can use the shortcut

reference to the last item’s index value (-1) for the first parameter:

var movedRow = document.all.someTable.moveRow(-1, 0)

TBODY, TFOOT, and THEAD Element Objects
Properties

vAlign

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to modify the vertical align-

ment of the content of the TBODY element in the demonstrator table. Enter the fol-

lowing statement in the top text box to shift the content to the bottom of the cells:

document.getElementById(“myTBody”).vAlign = “bottom”

TBODY.vAlign

4855-7 ch11.F 6/26/01 8:36 AM Page 390

391Chapter 11 ✦ Table and List Objects (Chapter 27)

Notice that the cells of the THEAD element are untouched by the action imposed on

the TBODY element.

COL and COLGROUP Element Objects
Properties

span

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
The following statement assigns a span of 3 to a newly created COLGROUP element

stored in the variable colGroupA:

colGroupA.span = 3

TR Element Object
Properties

cells

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to retrieve the number of

TD elements in the second row of the demonstrator table. Enter the following state-

ment into the top text box (W3C DOM syntax shown here):

document.getElementById(“myTable”).rows[1].cells.length

height

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

TR.height

4855-7 ch11.F 6/26/01 8:36 AM Page 391

392 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) in IE4+ to expand the

height of the second row of the demonstrator table. Enter the following statement

into the top text box:

document.all.myTable.rows[1].height = 300

If you attempt to set the value very low, the rendered height goes no smaller than

the default height.

rowIndex
sectionRowIndex

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to explore the rowIndex

and sectionRowIndex property values for the second physical row in the demon-

strator table. Enter each of the following statements into the top text box (W3C

DOM syntax shown here):

document.getElementById(“myTable”).rows[1].rowIndex
document.getElementById(“myTable”).rows[1].sectionRowIndex

The result of the first statement is 1 because the second row is the second row

of the entire table. But the sectionRowIndex property returns 0 because this row

is the first row of the TBODY element in this particular table.

TD and TH Element Objects
Properties

cellIndex

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
You can rewrite the cell addition portion of Listing 27-2 (in Chapter 27 in the

JavaScript Bible) to utilize the cellIndex property. The process entails modifying

the insertTableRow() function so that it uses a do...while construction to keep

adding cells to match the number of data slots. The function looks like the following

(changes shown in boldface):

TD.cellIndex

4855-7 ch11.F 6/26/01 8:36 AM Page 392

393Chapter 11 ✦ Table and List Objects (Chapter 27)

function insertTableRow(form, where) {
var now = new Date()
var nowData = [now.getHours(), now.getMinutes(), now.getSeconds(),

now.getMilliseconds()]
clearBGColors()
var newCell
var newRow = theTableBody.insertRow(where)
var i = 0
do {

newCell = newRow.insertCell(i)
newCell.innerHTML = nowData[i++]
newCell.style.backgroundColor = “salmon”

} while (newCell.cellIndex < nowData.length)
updateRowCounters(form)

}

This version is merely for demonstration purposes and is not as efficient as the

sequence shown in Listing 27-2. But the cellIndex property version can give you

some implementation ideas for the property. It also shows how dynamic the prop-

erty is, even for brand new cells.

colSpan
rowSpan

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to witness how modifying

either of these properties in an existing table can destroy the table. Enter the fol-

lowing statement into the top text box:

document.getElementById(“myTable”).rows[1].cells[0].colSpan = 3

Now that the first cell of the second row occupies the space of three columns,

the browser has no choice but to shift the two other defined cells for that row out

beyond the original boundary of the table. Experiment with the rowSpan property

the same way. To restore the original settings, assign 1 to each property.

height
width

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

TD.height

4855-7 ch11.F 6/26/01 8:36 AM Page 393

394 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to see the results of set-

ting the height and width properties of an existing table cell. Enter each of the fol-

lowing statements into the top text box and study the results in the demonstrator

table (W3C DOM syntax used here):

document.getElementById(“myTable”).rows[1].cell[1].height = 100
document.getElementById(“myTable”).rows[2].cell[0].width = 300

You can restore both cells to their original sizes by assigning very small values,

such as 1 or 0, to the properties. The browser prevents the cells from rendering any

smaller than is necessary to show the content.

noWrap

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
The following statement creates a new cell in a row and sets its noWrap property

to prevent text from word-wrapping inside the cell:

newCell = newRow.insertCell(-1)
newCell.noWrap = true

You need to set this property only if the cell must behave differently than the

default, word-wrapping style.

OL Element Object
Properties

start

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
The following statements generate a new OL element and assign a value to the

start property:

var newOL = document.createElement(“OL”)
newOL.start = 5

OL.start

4855-7 ch11.F 6/26/01 8:36 AM Page 394

395Chapter 11 ✦ Table and List Objects (Chapter 27)

type

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
The following statements generate a new OL element and assign a value to the

type property so that the sequence letters are uppercase Roman numerals:

var newOL = document.createElement(“OL”)
newOL.type = “I”

UL Element Object
Properties

type

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
The following statements generate a new UL element and assign a value to the

type property so that the bullet characters are empty circles:

var newUL = document.createElement(“UL”)
newUL.type = “circle”

LI Element Object
Properties

type

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

LI.type

4855-7 ch11.F 6/26/01 8:36 AM Page 395

396 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example
See the examples for the OL.type and UL.type properties earlier in this chapter.

value

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
The following statements generate a new LI element and assign a value to the

start property:

var newLI = document.createElement(“LI”)
newLI.start = 5

✦ ✦ ✦

LI.value

4855-7 ch11.F 6/26/01 8:36 AM Page 396

Navigator
and Other
Environment
Objects
(Chapter 28)

Objects covered in this chapter are somewhat distant

from the document and its content, but they are no less

important to scripters. Any script branching that relies on

knowing details about the browser version or other aspects

of the environment running the browser calls upon the

navigator object. Properties of the navigator object (also

named the clientInformation object in IE4+), reveal

browser brand and version information, as well as operating

system and, in some cases, encryption powers of the browser.

Using signed scripts with NN4+, you can even script modifica-

tion to browser preferences.

Avoid using navigator object properties for browser

version branching when more sophisticated techniques —

notably object detection as described in Chapter 14 of the

JavaScript Bible — are less dependent upon future quirks in

object model developments. But version detection is perfect

when you know that a special workaround is needed for some

glitch in a specific version or class of browser. For example,

NN4/Windows can exhibit some strange behavior when

attempting to print a page whose content relies on script

execution. Provided you have a code workaround for the

problem, you can divert script execution for just that version

of NN in just the Windows version.

Examples in this chapter also touch upon the screen
object and the IE/Windows userProfile object. The screen
object is useful in determining the size of a new window, but

there is little need to script the userProfile object.

1212C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Determining the
user’s browser,
operating system,
and video monitor
settings

Modifying NN4+
browser preferences

Retrieving IE4+ user
profile information

✦ ✦ ✦ ✦

4855-7 ch12.F 6/26/01 8:36 AM Page 397

398 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Examples Highlights
✦ Listing 28-1 provides numerous functions that examine navigator object

properties. The functions examples are provided more as demonstrations of

specific values your scripts may need to look for, rather than as some super

“browser sniffer.” Determining specific IE versions is a bit tricky, so observe

how to go about it by way of the navigator.appVersion property.

✦ NN4+ provides access to browser preferences via the navigator.
preference() method, as shown in Listing 28-2. To implement this feature in

a production page, you’ll need to use signed scripts.

✦ Experiment with the screen.availLeft and screen.availTop properties in

NN4+, especially in the Windows environment to see how the taskbar affects

these property values.

✦ For IE4+/Windows, follow the sequence of examples for the userProfile
object’s methods to see how scripts can read user profile fields.

clientInformation Object (IE4+)
and navigator Object (All)

Properties
appCodeName
appName
appVersion
userAgent

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Listing 28-1 provides a number of reusable functions that your scripts can

employ to determine a variety of information about the currently running browser.

This is not intended in any way to be an all-inclusive browser-sniffing routine;

instead, I offer samples of how to extract information from the key navigator

properties to determine various browser conditions.

All functions in Listing 28-1 return a Boolean value inline with the pseudo-

question presented in the function’s name. For example, the isWindows() function

returns true if the browser is any type of Windows browser; otherwise, it returns

false. (In Internet Explorer 3, the values are 0 for false and -1 for true, but those

navigator.appCodeName

4855-7 ch12.F 6/26/01 8:36 AM Page 398

399Chapter 12 ✦ Navigator and Other Environment Objects (Chapter 28)

values are perfectly usable in if conditional phrases). If this kind of browser detec-

tion occurs frequently in your pages, consider moving these functions into an exter-

nal .js source library for inclusion in your pages (see Chapter 13 of the JavaScript
Bible for tips on creating .js libraries). When you load this page, it presents fields

that display the results of each function depending on the type of browser and

client operating system you use.

Listing 28-1: Functions to Examine Browsers

<HTML>
<HEAD>
<TITLE>UserAgent Property Library</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// basic brand determination
function isNav() {

return (navigator.appName == “Netscape”)
}

function isIE() {
return (navigator.appName == “Microsoft Internet Explorer”)

}

// operating system platforms
function isWindows() {

return (navigator.appVersion.indexOf(“Win”) != -1)
}

function isWin95NT() {
return (isWindows() && (navigator.appVersion.indexOf(“Win16”) == -1 &&

navigator.appVersion.indexOf(“Windows 3.1”) == -1))
}

function isMac() {
return (navigator.appVersion.indexOf(“Mac”) != -1)

}

function isMacPPC() {
return (isMac() && (navigator.appVersion.indexOf(“PPC”) != -1 ||

navigator.appVersion.indexOf(“PowerPC”) != -1))
}

function isUnix() {
return (navigator.appVersion.indexOf(“X11”) != -1)

}

// browser versions
function isGeneration2() {

return (parseInt(navigator.appVersion) == 2)
}

Continued

navigator.appCodeName

4855-7 ch12.F 6/26/01 8:36 AM Page 399

400 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 28-1 (continued)

function isGeneration3() {
return (parseInt(navigator.appVersion) == 3)

}

function isGeneration3Min() {
return (parseInt(navigator.appVersion.charAt(0)) >= 3)

}
function isNav4_7() {

return (isNav() && parseFloat(navigator.appVersion) == 4.7)
}

function isMSIE4Min() {
return (isIE() && navigator.appVersion.indexOf(“MSIE”) != -1)

}

function isMSIE5_5() {
return (navigator.appVersion.indexOf(“MSIE 5.5”) != -1)

}

function isNN6Min() {
return (isNav() && parseInt(navigator.appVersion) >= 5)

}

// element referencing syntax
function isDocAll() {

return (document.all) ? true : false
}

function isDocW3C() {
return (document.getElementById) ? true : false

}

// fill in the blanks
function checkBrowser() {

var form = document.forms[0]
form.brandNN.value = isNav()
form.brandIE.value = isIE()
form.win.value = isWindows()
form.win32.value = isWin95NT()
form.mac.value = isMac()
form.ppc.value = isMacPPC()
form.unix.value = isUnix()
form.ver3Only.value = isGeneration3()
form.ver3Up.value = isGeneration3Min()
form.Nav4_7.value = isNav4_7()
form.Nav6Up.value = isNN6Min()
form.MSIE4.value = isMSIE4Min()
form.MSIE5_5.value = isMSIE5_5()

navigator.appCodeName

4855-7 ch12.F 6/26/01 8:36 AM Page 400

401Chapter 12 ✦ Navigator and Other Environment Objects (Chapter 28)

form.doc_all.value = isDocAll()
form.doc_w3c.value = isDocW3C()

}
</SCRIPT>
</HEAD>

<BODY onLoad=”checkBrowser()”>
<H1>About This Browser</H1>
<FORM>
<H2>Brand</H2>
Netscape Navigator:<INPUT TYPE=”text” NAME=”brandNN” SIZE=5>
Internet Explorer:<INPUT TYPE=”text” NAME=”brandIE” SIZE=5>
<HR>
<H2>Browser Version</H2>
3.0x Only (any brand):<INPUT TYPE=”text” NAME=”ver3Only” SIZE=5><P>
3 or Later (any brand): <INPUT TYPE=”text” NAME=”ver3Up” SIZE=5><P>
Navigator 4.7: <INPUT TYPE=”text” NAME=”Nav4_7” SIZE=5><P>
Navigator 6+: <INPUT TYPE=”text” NAME=”Nav6Up” SIZE=5><P>
MSIE 4+: <INPUT TYPE=”text” NAME=”MSIE4” SIZE=5><P>
MSIE 5.5:<INPUT TYPE=”text” NAME=”MSIE5_5” SIZE=5><P>
<HR>
<H2>OS Platform</H2>
Windows: <INPUT TYPE=”text” NAME=”win” SIZE=5>
Windows 95/98/2000/NT: <INPUT TYPE=”text” NAME=”win32” SIZE=5><P>
Macintosh: <INPUT TYPE=”text” NAME=”mac” SIZE=5>
Mac PowerPC: <INPUT TYPE=”text” NAME=”ppc” SIZE=5><P>
Unix: <INPUT TYPE=”text” NAME=”unix” SIZE=5><P>
<HR>
<H2>Element Referencing Style</H2>
Use <TT>document.all</TT>: <INPUT TYPE=”text” NAME=”doc_all” SIZE=5><P>
Use <TT>document.getElementById()</TT>: <INPUT TYPE=”text” NAME=”doc_w3c”
SIZE=5><P>
</FORM>
</BODY>
</HTML>

Sometimes you may need to use more than one of these functions together. For

example, if you want to create a special situation for the window.open() bug that

afflicts UNIX and Macintosh versions of Navigator 2, then you have to put your

Boolean operator logic powers to work to construct a fuller examination of the

browser:

function isWindowBuggy() {
return (isGeneration2() && (isMac() || isUnix()))

}

You can see many more examples of browser sniffing, including more details

about handling AOL browsers, in an article by Eric Krock at: http://developer.
netscape.com:80/docs/examples/javascript/browser_type.html.

navigator.appCodeName

4855-7 ch12.F 6/26/01 8:36 AM Page 401

402 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

appMinorVersion

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to examine the two

related version properties of your IE browser(s). Type the following two statements

into the top text box and observe the results:

navigator.appVersion
navigator.minorAppVersion

There is a good chance that the values returned are not related to the browser ver-

sion number shown after MSIE in the appVersion value.

cookieEnabled

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator to see the value of the navigator.cookieEnabled property

on your browsers. Enter the following statement into the top text box:

navigator.cookieEnabled

Feel free to change the cookie preferences setting temporarily to see the new

value of the property. You do not have to relaunch the browser for the new setting

to take effect.

cpuClass

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to see how IE reports the

cpuClass of your PC. Enter the following statement into the top text box:

navigator.cpuClass

navigator.cpuClass

4855-7 ch12.F 6/26/01 8:36 AM Page 402

403Chapter 12 ✦ Navigator and Other Environment Objects (Chapter 28)

mimeTypes

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � (�) (�) (�)

Example
For examples of the mimeTypes property and details about using the mimeType

object, see the discussion of this object later in the chapter. A number of simple

examples showing how to use this property to see whether the navigator object

has a particular MIME type do not go far enough in determining whether a plug-in is

installed and enabled to play the incoming data.

onLine

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to see the online state of

your IE browsers. Enter the following statement into the top text box:

navigator.onLine

Verify your browsing mode by checking the Work Offline choice in the File menu.

If it is checked, the onLine property should return false.

oscpu

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) with NN6 to see what your

client machine reports to you by entering the following statement into the top text

box:

navigator.oscpu

navigator.oscpu

4855-7 ch12.F 6/26/01 8:36 AM Page 403

404 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

platform

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to see what your com-

puter reports as its operating system. Enter the following statement into the top

text box:

navigator.platform

product
productSub
vendor
vendorSub

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) on your copy of NN6 to see

the values returned for these four properties. Enter each of the following statements

into the top text box of the page and see the values for each in the Results box:

navigator.product
navigator.productSub
navigator.vendor
navigator.vendorSub

Also check the value of the navigator.userAgent property to see how many of

these four property values are revealed in the userAgent property.

systemLanguage
userLanguage

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

navigator.systemLanguage

4855-7 ch12.F 6/26/01 8:36 AM Page 404

405Chapter 12 ✦ Navigator and Other Environment Objects (Chapter 28)

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) with your IE4+ browser to

compare the values of the three language-related properties running on your com-

puter. Enter each of the following statements into the top text box:

navigator.browserLanguage
navigator.systemLanguage
navigator.userLanguage

Don’t be surprised if all three properties return the same value.

Methods
preference(name [, val])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
The page in Listing 28-2 displays checkboxes for several preference settings, plus

one text box to show a preference setting value for the size of the browser’s disk

cache. To run this script without signing the scripts, turn on codebase principals as

directed in Chapter 46 of the JavaScript Bible. (The listing file on the CD-ROM does

not employ signed scripts.)

One function reads all the preferences and sets the form control values accord-

ingly. Another function sets a preference when you click its checkbox. Because of

the interaction among three of the cookie settings, it is easier to have the script

rerun the showPreferences() function after each setting rather than you trying to

manually control the properties of the three checkboxes. Rerunning that function

also helps verify that you set the preference.

Listing 28-2: Reading and Writing Browser Preferences

<HTML>
<HEAD>
<TITLE>Reading/Writing Browser Preferences</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.2”>
function setPreference(pref, value) {

netscape.security.PrivilegeManager.enablePrivilege(
“UniversalPreferencesWrite”)

navigator.preference(pref, value)
netscape.security.PrivilegeManager.revertPrivilege(

“UniversalPreferencesWrite”)
showPreferences()

}

Continued

navigator.preference()

4855-7 ch12.F 6/26/01 8:36 AM Page 405

406 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 28-2 (continued)

function showPreferences() {
var form = document.forms[0]
netscape.security.PrivilegeManager.enablePrivilege(

“UniversalPreferencesRead”)
form.imgLoad.checked = navigator.preference(“general.always_load_images”)
form.cacheSize.value = navigator.preference(“browser.cache.disk_cache_size”)
form.ssEnable.checked = navigator.preference(“browser.enable_style_sheets”)
form.autoIEnable.checked = navigator.preference(“autoupdate.enabled”)
var cookieSetting = navigator.preference(“network.cookie.cookieBehavior”)
for (var i = 0; i < 3; i++) {

form.elements[“cookie” + i].checked = (i == cookieSetting) ? true :
false

}
form.cookieWarn.checked =

navigator.preference(“network.cookie.warnAboutCookies”)
netscape.security.PrivilegeManager.revertPrivilege(

“UniversalPreferencesRead”)
}
</SCRIPT>
</HEAD>

<BODY onLoad=”showPreferences()”>
<H1>Browser Preferences Settings Sampler</H1>
<HR>
<FORM>
<INPUT TYPE=”checkbox” NAME=”imgLoad”
onClick=”setPreference(‘general.always_load_images’,this.checked)”>
Automatically Load Images

<INPUT TYPE=”checkbox” NAME=”ssEnable”
onClick=”setPreference(‘browser.enable_style_sheets’,this.checked)”>
Style Sheets Enabled

<INPUT TYPE=”checkbox” NAME=”autoIEnable”
onClick=”setPreference(‘autoupdate.enabled’,this.checked)”>
AutoInstall Enabled

<INPUT TYPE=”checkbox” NAME=”cookie0”
onClick=”setPreference(‘network.cookie.cookieBehavior’,0)”>
Accept All Cookies

<INPUT TYPE=”checkbox” NAME=”cookie1”
onClick=”setPreference(‘network.cookie.cookieBehavior’,1)”>
Accept Only Cookies Sent Back to Server

<INPUT TYPE=”checkbox” NAME=”cookie2”
onClick=”setPreference(‘network.cookie.cookieBehavior’,2)”>
Disable Cookies

<INPUT TYPE=”checkbox” NAME=”cookieWarn”
onClick=”setPreference(‘network.cookie.warnAboutCookies’,this.checked)”>
Warn Before Accepting Cookies

Disk cache is <INPUT TYPE=”text” NAME=”cacheSize” SIZE=10> KB

</FORM>
</BODY>
</HTML>

navigator.preference()

4855-7 ch12.F 6/26/01 8:36 AM Page 406

407Chapter 12 ✦ Navigator and Other Environment Objects (Chapter 28)

screen Object
Properties

availLeft
availTop

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
If you are a Windows user, you can experiment with these NN4+ properties via

The Evaluator (Chapter 13 in the JavaScript Bible). With the taskbar at the bottom

of the screen, enter these two statements into the top text box:

screen.availLeft
screen.availTop

Next, drag the taskbar to the top of the screen and try both statements again. Now,

drag the taskbar to the left edge of the screen and try the statements once more.

userProfile Object
Methods

addReadRequest(“attributeName”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See Listing 28-4 in Chapter 28 in the JavaScript Bible for an example of the

addReadRequest() method in action. You can also invoke it from the top text box

in The Evaluator (Chapter 13 in the JavaScript Bible). For example, enter the follow-

ing statement to queue one request:

navigator.userProfile.addReadRequest(“vCard.LastName”)

To continue the process, see examples for doReadRequest() and getAttribute()
later in this chapter.

userProfile.addReadRequest()

4855-7 ch12.F 6/26/01 8:36 AM Page 407

408 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

doReadRequest(reasonCode, identification[,
domain[, path[, expiration]]])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See Listing 28-4 in the JavaScript Bible for an example of the doReadRequest()

method in action. If you entered the addReadRequest() example for The Evaluator

earlier in this chapter, you can now bring up the permissions dialog box (if you

have a user profile for your version of Windows) by entering the following state-

ment into the top text box:

navigator.userProfile.doReadRequest(1, “Just me!”)

getAttribute(“attributeName”)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
See Listing 28-4 in Chapter 28 in the JavaScript Bible for an example of the

getAttribute() method in action. Also, if you followed The Evaluator examples

for this object, you can now extract the desired information (provided it is in your

user profile). Enter the following statement into the top text box:

navigator.userProfile.getAttribute(“vCard.LastName”)

✦ ✦ ✦

userProfile.getAttribute()

4855-7 ch12.F 6/26/01 8:36 AM Page 408

Event Objects
(Chapter 29)

As earlier generations of scriptable browsers fade from

the installed base, the event models of newer browsers

become that much more important to scripters. Although

cross-browser developers must concern themselves with the

incompatibilities of as many as three distinct event models

(NN4, IE4+, and W3C DOM used in NN6), scripts increasingly

rely on information conveyed by the event object to know

where the event came from.

The importance of event object properties is clear when you

see how modern DOMs bind events to objects. Although the

“old-fashioned” event handler attribute inside an element tag

still works, the prescribed ways to bind events to elements sim-

ply assign a function reference to an event type belonging to

the event. The significance of this approach is that event han-

dlers no longer receive custom parameters, such as references

to the element that used to be passed via the this operator. It

becomes the job of the function to inspect the event object

property that contains a reference to the target of the event.

Fortunately for scripters, the event object model (regard-

less of which ones you need to support) endows each event

object with a list of valuable properties that enhance what

event handler functions can do. In addition to character key

and mouse button data, you can uncover the coordinates of a

mouse event, the condition of modifier keys, and even a refer-

ence to the object from which the cursor has just rolled (or

where it went after leaving the bounds of the current object).

The code examples in this chapter are grouped by the event

object model family. This means that the examples are written

to work only within the associated DOM. For cross-browser

handling of event objects, see the rest of the discussion in

Chapter 29 of the JavaScript Bible. But use the examples here to

fully understand the meaning of each event object’s properties

and (in NN6) methods. Where possible, the listings that demon-

strate parallel properties in multiple object models look and

behave the same to the user; the differences are in the code. As

an exercise for the inquisitive, you could write a single-page

version that combines syntax from multiple event objects mod-

els. Listings 29-17 and 29-22 would be good places to start.

1313C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Uncovering the
coordinates and
target element of a
mouse event

Intercepting keyboard
events

Observing event
propagation in
different event object
models

✦ ✦ ✦ ✦

4855-7 ch13.F 6/26/01 8:36 AM Page 409

410 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Examples Highlights
✦ No fewer than four pairs of coordinate value properties arrive with the IE4+

event object. Listing 29-14 helps you understand what each pair of values rep-

resent with respect to regular body elements as well as positioned elements.

Follow the suggested steps to experience the meaning of the properties in a

variety of contexts.

✦ Load Listing 29-16 to see keyboard character data for all three keyboard

events. Again, follow the suggested steps to understand important differences

among keyboard event types and also different kinds of keys (characters ver-

sus non-characters).

✦ Listing 29-17 demonstrates how to derive a reference to the element that

receives the event in the IE4+ event model.

✦ NN6 keyboard events get a workout in Listing 29-18, particularly the way the

character and key codes reveal important details for different keyboard event

types.

✦ All four pairs of event coordinate properties for NN6 are reported when you

run Listing 29-19 and click on different elements.

✦ The important concepts associated with the NN6 event object’s

currentTarget and eventPhase properties are demonstrated in Listing

29-20. Be prepared to spend time with the page and the source code to under-

stand how events propagate through the element hierarchy.

✦ Listing 29-23 uses the NN6 event.timeStamp property to calculate the

instantaneous typing speed within a text field.

NN4 event Object
Properties

data

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
The page in Listing 29-12 contains little more than a TEXTAREA in which the

URLs of dragged items are listed. To run this script without signing the scripts, turn

on codebase principals, as directed in Chapter 46 of the JavaScript Bible.

To experiment with this listing, load the page and drag any desktop icons that

represent files, applications, or folders to the window. Select multiple items and

drag them all at once. Because the onDragDrop event handler evaluates to return
false, the files are not loaded into the window. If you want merely to look at the

(NN4) eventObject.data

4855-7 ch13.F 6/26/01 8:36 AM Page 410

411Chapter 13 ✦ Event Objects (Chapter 29)

URL and allow only some to process, you would generate an if...else construc-

tion to return true or false to the event handler as needed. A value of return
true allows the normal processing of the DragDrop event to take place after your

event handler function has completed its processing.

Listing 29-12: Obtaining URLs of a DragDrop Event’s
data Property

<HTML>
<HEAD>
<TITLE>Drag and Drop</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.2”>
function handleDrag(evt) {

netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserRead”)
var URLArray = evt.data
netscape.security.PrivilegeManager.disablePrivilege(“UniversalBrowserRead”)
if (URLArray) {

document.forms[0].output.value = URLArray.join(“\n”)
} else {

document.forms[0].output.value = “Nothing found.”
}
return false

}
</SCRIPT>
</HEAD>
<BODY onDragDrop=”return handleDrag(event)”>
Drag a URL to this window (NN4 only).
<HR>
<FORM>
URLs:

<TEXTAREA NAME=”output” COLS=70 ROWS=4></TEXTAREA>

<INPUT TYPE=”reset”>
</FORM>
</BODY>
</HTML>

layerX
layerY
pageX
pageY
screenX
screenY

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

(NN4) eventObject.layerX

4855-7 ch13.F 6/26/01 8:36 AM Page 411

412 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example
You can see the effects of the coordinate systems and associated properties with

the page in Listing 29-13. Part of the page contains a three-field readout of the layer-,

page-, and screen-level properties. Two clickable objects are provided so that you

can see the differences between an object not in any layer and an object residing

within a layer. The object not confined by a layer has its layer and page coordinates

the same in the event object properties.

Additional readouts display the event object coordinates for resizing and moving

a window. If you maximize the window under Windows, the Navigator browser’s

top-left corner is actually out of sight, four pixels up and to the left. That’s why the

screenX and screenY values are both -4.

Listing 29-13: NN4 Event Coordinate Properties

<HTML>
<HEAD>
<TITLE>X and Y Event Properties</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function checkCoords(evt) {

var form = document.forms[0]
form.layerCoords.value = evt.layerX + “,” + evt.layerY
form.pageCoords.value = evt.pageX + “,” + evt.pageY
form.screenCoords.value = evt.screenX + “,” + evt.screenY
return false

}
function checkSize(evt) {

document.forms[0].resizeCoords.value = evt.layerX + “,” + evt.layerY
}
function checkLoc(evt) {

document.forms[0].moveCoords.value = evt.screenX + “,” + evt.screenY
}
</SCRIPT>
</HEAD>
<BODY onResize=”checkSize(event)” onMove=”checkLoc(event)”>
<H1>X and Y Event Properties (NN4)</H1>
<HR>
<P>Click on the button and in the layer/image to see the coordinate values for
the event object.</P>
<FORM NAME=”output”>
<TABLE>
<TR><TD COLSPAN=2>Mouse Event Coordinates:</TD></TR>
<TR><TD ALIGN=”right”>layerX, layerY:</TD><TD><INPUT TYPE=”text”
NAME=”layerCoords” SIZE=10></TD></TR>
<TR><TD ALIGN=”right”>pageX, pageY:</TD><TD><INPUT TYPE=”text” NAME=”pageCoords”
SIZE=10></TD></TR>
<TR><TD ALIGN=”right”>screenX, screenY:</TD><TD><INPUT TYPE=”text”
NAME=”screenCoords” SIZE=10></TD></TR>
<TR><TD ALIGN=”right”><INPUT TYPE=”button” VALUE=”Click Here”
onMouseDown=”checkCoords(event)”></TD></TR>
<TR><TD COLSPAN=2><HR></TD></TR>

(NN4) eventObject.layerX

4855-7 ch13.F 6/26/01 8:36 AM Page 412

413Chapter 13 ✦ Event Objects (Chapter 29)

<TR><TD COLSPAN=2>Window Resize Coordinates:</TD></TR>
<TR><TD ALIGN=”right”>layerX, layerY:</TD><TD><INPUT TYPE=”text”
NAME=”resizeCoords” SIZE=10></TD></TR>
<TR><TD COLSPAN=2><HR></TD></TR>
<TR><TD COLSPAN=2>Window Move Coordinates:</TD></TR>
<TR><TD ALIGN=”right”>screenX, screenY:</TD><TD><INPUT TYPE=”text”
NAME=”moveCoords” SIZE=10></TD></TR>
</TABLE>
</FORM>
<LAYER NAME=”display” BGCOLOR=”coral” TOP=140 LEFT=300 HEIGHT=250 WIDTH=330>

</LAYER>
</BODY>
</HTML>

IE4+ event Object
Properties

clientX
clientY
offsetX
offsetY
screenX
screenY
x
y

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Listing 29-14 provides readings of all event coordinate properties in an interac-

tive way. An onMouseDown event handler triggers all event handling, and you can

click the mouse anywhere on the page to see what happens. You see the tag of the

element targeted by the mouse event to help you visualize how some of the coordi-

nate properties are determined. An image is encased inside a positioned DIV ele-

ment to help you see what happens to some of the properties when the event is

targeted inside a positioned element.

(IE) event.clientX

4855-7 ch13.F 6/26/01 8:36 AM Page 413

414 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 29-14: IE4+ Event Coordinate Properties

<HTML>
<HEAD>
<TITLE>X and Y Event Properties (IE4+)</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function checkCoords() {

var form = document.forms[0]
form.srcElemTag.value = “<” + event.srcElement.tagName + “>”
form.clientCoords.value = event.clientX + “,” + event.clientY
form.pageCoords.value = (event.clientX + document.body.scrollLeft) +

“,” + (event.clientY + document.body.scrollTop)
form.offsetCoords.value = event.offsetX + “,” + event.offsetY
form.screenCoords.value = event.screenX + “,” + event.screenY
form.xyCoords.value = event.x + “,” + event.y
form.parElem.value = “<” + event.srcElement.offsetParent.tagName + “>”
return false

}
function handleSize() {

document.forms[0].resizeCoords.value = event.clientX + “,” + event.clientY
}
</SCRIPT>
</HEAD>
<BODY onMouseDown=”checkCoords()” onResize=”handleSize()”>
<H1>X and Y Event Properties (IE4+)</H1>
<HR>
<P>Click on the button and in the DIV/image to see the coordinate values for the
event object.</P>
<FORM NAME=”output”>
<TABLE>
<TR><TD COLSPAN=2>IE Mouse Event Coordinates:</TD></TR>
<TR><TD ALIGN=”right”>srcElement:</TD><TD><INPUT TYPE=”text” NAME=”srcElemTag”
SIZE=10></TD></TR>
<TR><TD ALIGN=”right”>clientX, clientY:</TD><TD><INPUT TYPE=”text”
NAME=”clientCoords” SIZE=10></TD>
<TD ALIGN=”right”>...With scrolling:</TD><TD><INPUT TYPE=”text”
NAME=”pageCoords” SIZE=10></TD></TR>
<TR><TD ALIGN=”right”>offsetX, offsetY:</TD><TD><INPUT TYPE=”text”
NAME=”offsetCoords” SIZE=10></TD></TR>
<TR><TD ALIGN=”right”>screenX, screenY:</TD><TD><INPUT TYPE=”text”
NAME=”screenCoords” SIZE=10></TD></TR>
<TR><TD ALIGN=”right”>x, y:</TD><TD><INPUT TYPE=”text” NAME=”xyCoords”
SIZE=10></TD>
<TD ALIGN=”right”>...Relative to:</TD><TD><INPUT TYPE=”text” NAME=”parElem”
SIZE=10></TD></TR>
<TR><TD ALIGN=”right”><INPUT TYPE=”button” VALUE=”Click Here”></TD></TR>
<TR><TD COLSPAN=2><HR></TD></TR>
<TR><TD COLSPAN=2>Window Resize Coordinates:</TD></TR>
<TR><TD ALIGN=”right”>clientX, clientY:</TD><TD><INPUT TYPE=”text”
NAME=”resizeCoords” SIZE=10></TD></TR>
</TABLE>

(IE) event.clientX

4855-7 ch13.F 6/26/01 8:36 AM Page 414

415Chapter 13 ✦ Event Objects (Chapter 29)

</FORM>
<DIV ID=”display” STYLE=”position:relative; left:100”>

</DIV>
</BODY>
</HTML>

Here are some tasks to try with the page that loads from Listing 29-14 to help you

understand the relationships among the various pairs of coordinate properties:

1. Click the dot above the “i” on the “Click Here” button label. The target ele-

ment is the button (INPUT) element, whose offsetParent is a table cell

element. The offsetY value is very low because you are near the top of the

element’s own coordinate space. The client coordinates (and x and y), how-

ever, are relative to the viewable area in the window. If your browser window

is maximized in Windows, the screenX and clientX values will be the same;

the difference between screenY and clientY is the height of all the window

chrome above the content region. With the window not scrolled at all, the

client coordinates are the same with and without scrolling taken into account.

2. Jot down the various coordinate values and then scroll the page down slightly

(clicking the scrollbar fires an event) and click the dot on the button again.

The clientY value shrinks because the page has moved upward relative to

the viewable area, making the measure between the top of the area smaller

with respect to the button. The Windows version does the right thing with the

offset properties, by continuing to return values relative to the element’s own

coordinate space; the Mac, unfortunately, subtracts the scrolled amount from

the offset properties.

3. Click the large image. The client properties perform as expected for both

Windows and Mac, as do the screen properties. For Windows, the x and y
properties correctly return the event coordinates relative to the IMG ele-

ment’s offsetParent, which is the DIV element that surrounds it. Note, how-

ever, that the browser “sees” the DIV as starting 10 pixels to the left of the

image. In IE5.5/Windows, you can click within those ten transparent pixels to

the left of the image to click the DIV element. This padding is inserted auto-

matically and impacts the coordinates of the x and y properties. A more reli-

able measure of the event inside the image is the offset properties. The same

is true in the Macintosh version, as long as the page isn’t scrolled, in which

case the scroll, just as in Step 2, affects the values above.

4. Click the top HR element under the heading. It may take a couple of tries to

actually hit the element (you’ve made it when the HR element shows up in the

srcElement box). This is to reinforce the way the client properties provide

coordinates within the element itself (again, accept on the Mac when the page

is scrolled). Clicking at the very left end of the rule, you eventually find the 0,0

coordinate.

(IE) event.clientX

4855-7 ch13.F 6/26/01 8:36 AM Page 415

416 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Finally, if you are a Windows user, here are two examples to try to see some of

the unexpected behavior of coordinate properties.

1. With the page not scrolled, click anywhere along the right side of the page,

away from any text so that the BODY element is srcElement. Because the

BODY element theoretically fills the entire content region of the browser win-

dow, all coordinate pairs except for the screen coordinates should be the

same. But offset properties are two pixels less than all the others. By and

large, this difference won’t matter in your scripts, but you should be aware of

this potential discrepancy if precise positioning is important. For inexplicable

reasons, the offset properties are measured in a space that is inset two pixels

from the left and top of the window. This is not the case in the Macintosh ver-

sion, where all value pairs are the same from the BODY perspective.

2. Click the text of the H1 or P elements (just above and below the long horizon-

tal rule at the top of the page). In theory, the offset properties should be rela-

tive to the rectangles occupied by these elements (they’re block elements,

after all). But instead, they’re measured in the same space as the client prop-

erties (plus the two pixels). This unexpected behavior doesn’t have anything

to do with the cursor being a text cursor, because if you click inside any of the

text box elements, their offset properties are properly relative to their own

rectangles. This problem does not afflict the Macintosh version.

You can see further examples of important event coordinate properties in action

in the discussion of dragging elements around the IE page in Chapter 31 of the

JavaScript Bible.

fromElement
toElement

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Listing 29-15 provides an example of how the fromElement and toElement

properties can reveal the life of the cursor action before and after it rolls into an

element. When you roll the cursor to the center box (a table cell), its onMouseOver
event handler displays the text from the table cell from which the cursor arrived. In

Figure 13-1, for example, the user has just rolled the cursor into the center box from

the West box. If the cursor comes in from one of the corners (not easy to do), a dif-

ferent message is displayed.

(IE) event.fromElement

4855-7 ch13.F 6/26/01 8:36 AM Page 416

417Chapter 13 ✦ Event Objects (Chapter 29)

Listing 29-15: Using the toElement and fromElement
Properties

<HTML>
<HEAD>
<TITLE>fromElement and toElement Properties</TITLE>
<STYLE TYPE=”text/CSS”>
.direction {background-color:#00FFFF; width:100; height:50; text-align:center}
#main {background-color:#FF6666; text-align:center}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
function showArrival() {

var direction = (event.fromElement.innerText) ? event.fromElement.innerText
:

“parts unknown”
status = “Arrived from: “ + direction

}
function showDeparture() {

var direction = (event.toElement.innerText) ? event.toElement.innerText :
“parts unknown”
status = “Departed to: “ + direction

}
</SCRIPT>
</HEAD>
<BODY>
<H1>fromElement and toElement Properties</H1>
<HR>
<P>Roll the mouse to the center box and look for arrival information
in the status bar. Roll the mouse away from the center box and look for
departure information in the status bar.</P>

<TABLE CELLSPACING=0 CELLPADDING=5>
<TR><TD></TD><TD CLASS=”direction”>North</TD><TD></TD></TR>
<TR><TD CLASS=”direction”>West</TD>
<TD ID=”main” onMouseOver=”showArrival()” onMouseOut=”showDeparture()”>Roll</TD>
<TD CLASS=”direction”>East</TD></TR>
<TR><TD></TD><TD CLASS=”direction”>South</TD><TD></TD></TR>
</TABLE>
</BODY>
</HTML>

(IE) event.fromElement

4855-7 ch13.F 6/26/01 8:36 AM Page 417

418 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Figure 13-1: onMouseOver event object knows whence the pointer
came.

This is a good example to experiment with in the browser, because it also reveals

a potential limitation. The element registered as the toElement or fromElement
must fire a mouse event to register itself with the browser. If not, the next element

in the sequence that registers itself is the one acknowledged by these properties.

For example, if you roll the mouse into the center box and then extremely quickly

roll the cursor to the bottom of the page, you may bypass the South box entirely.

The text that appears in the statusbar is actually the inner text of the BODY ele-

ment, which is the element that caught the first mouse event to register itself as the

toElement for the center table cell.

keyCode

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Listing 29-16 provides an additional play area to view the keyCode property for

all three keyboard events while you type into a TEXTAREA. You can use this page

later as an authoring tool to grab the precise codes for keyboard keys you may not

be familiar with.

(IE) event.keyCode

4855-7 ch13.F 6/26/01 8:36 AM Page 418

419Chapter 13 ✦ Event Objects (Chapter 29)

Listing 29-16: Displaying keyCode Property Values

<HTML>
<HEAD>
<TITLE>keyCode Property</TITLE>
<STYLE TYPE=”text/css”>
TD {text-align:center}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
function showCode(which) {

document.forms[0].elements[which].value = event.keyCode
}
function clearEm() {

for (var i = 1; i < document.forms[0].elements.length; i++) {
document.forms[0].elements[i].value = “”

}
}
</SCRIPT>
</HEAD>
<BODY>
<H1>keyCode Property</H1>
<HR>
<P></P>
<FORM>
<P>
<TEXTAREA NAME=”scratchpad” COLS=”40” ROWS=”5” WRAP=”hard”
onKeyDown=”clearEm(); showCode(‘down’)” onKeyUp=”showCode(‘up’)”
onKeyPress=”showCode(‘press’)”></TEXTAREA>
</P>
<TABLE CELLPADDING=”5”>
<TR><TH>Event</TH><TH>event.keyCode</TH></TR>
<TR><TD>onKeyDown:</TD><TD><INPUT TYPE=”text” NAME=”down” SIZE=”3”></TD></TR>
<TR><TD>onKeyPress:</TD><TD><INPUT TYPE=”text” NAME=”press” SIZE=”3”></TD></TR>
<TR><TD>onKeyUp:</TD><TD><INPUT TYPE=”text” NAME=”up” SIZE=”3”></TD></TR>
</TABLE>
</FORM>
</BODY>
</HTML>

The following are some specific tasks to try with the page to examine key codes

(if you are not using a browser set for English and a Latin-based keyboard, your

results may vary):

1. Enter a lowercase letter “a”. Notice how the onKeyPress event handler shows

the code to be 97, which is the Unicode (and ASCII) value for the first of the

lowercase letters of the Latin alphabet. But the other two events record just

the key’s code: 65.

2. Type an uppercase “A” via the Shift key. If you watch closely, you see that the

Shift key, itself, generates the code 16 for the onKeyDown and onKeyUp events.

(IE) event.keyCode

4855-7 ch13.F 6/26/01 8:36 AM Page 419

420 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

But the character key then shows the value 65 for all three events, because

the ASCII value of the uppercase letter happens to match the keyboard key

code for that letter.

3. Press and release the Down Arrow key (be sure the cursor still flashes in the

TEXTAREA, because that’s where the keyboard events are being monitored).

As a non-character key, it does not fire an onKeyPress event. But it does fire

the other events, and assigns 40 as the code for this key.

4. Poke around with other non-character keys. Some may produce dialog boxes

or menus, but their key codes are recorded nonetheless. Note that not all keys

on a Macintosh keyboard register with IE/Mac.

returnValue

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
You can find several examples of the returnValue property at work in Chapter

15 of the JavaScript Bible and in Listings 15-30, 33, 36, 37, 38, and 45 in Chapter 1 of

this book. Moreover, many of the other examples in Chapter 15 of the JavaScript
Bible can substitute the returnValue property way of canceling the default action

if the scripts were to be run exclusively on IE4+.

srcElement

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
As a simplified demonstration of the power of the srcElement property, Listing

29-17 has but two event handlers defined for the BODY element, each invoking a

single function. The idea is that the onMouseDown and onMouseUp events will bub-

ble up from whatever their targets are, and the event handler functions will find out

which element is the target and modify the color style of that element.

An extra flair is added to the script in that each function also checks the

className property of the target element. If the className is bold— a class name

shared by three SPAN elements in the paragraph — the style sheet rule for that

class is modified so that all items share the same color (see Figure 13-2). Your

scripts can do even more in the way of filtering objects that arrive at the functions

to perform special operations on certain objects or groups of objects.

(IE) event.srcElement

4855-7 ch13.F 6/26/01 8:36 AM Page 420

421Chapter 13 ✦ Event Objects (Chapter 29)

Figure 13-2: Clicking on one SPAN element highlights fellow class
members.

Notice that the scripts don’t have to know anything about the objects on the

page to address each clicked one individually. That’s because the srcElement
property provides all of the specificity needed for acting on the target element.

Listing 29-17: Using the srcElement property

<HTML>
<HEAD>
<TITLE>srcElement Property</TITLE>
<STYLE TYPE=”text/css”>
.bold {font-weight:bold}
.ital {font-style:italic}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
function highlight() {

var elem = event.srcElement
if (elem.className == “bold”) {

document.styleSheets[0].rules[0].style.color = “red”
} else {

elem.style.color = “#FFCC00”
}

}
function restore() {

var elem = event.srcElement
if (elem.className == “bold”) {

Continued

(IE) event.srcElement

4855-7 ch13.F 6/26/01 8:36 AM Page 421

422 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 29-17 (continued)

document.styleSheets[0].rules[0].style.color = “”
} else {

elem.style.color = “”
}

}
</SCRIPT>
</HEAD>
<BODY onMouseDown=”highlight()” onMouseUp=”restore()”>
<H1>srcElement Property</H1>
<HR>
<P>One event handler...</P>

Can
Cover
Many
Objects

<P>
Lorem ipsum dolor sit amet, consectetaur adipisicing elit,
sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua.
Ut enim adminim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea
commodo consequat.
</P>
</BODY>
</HTML>

type

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to see values returned by

the type property. Enter the following object name into the bottom text box and

press Enter/Return:

event

If necessary, scroll the Results box to view the type property, which should read

keypress. Now click the List Properties button. The type changes to click. The

reason for these types is that the event object whose properties are being shown

(IE) event.type

4855-7 ch13.F 6/26/01 8:36 AM Page 422

423Chapter 13 ✦ Event Objects (Chapter 29)

here is the event that triggers the function to show the properties. From the text

box, an onKeyPress event handler triggers that process; from the button, an

onClick event handler does the job.

NN6+ event Object
charCode
keyCode

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Listing 29-18 provides a play area to view the charCode and keyCode properties

for all three keyboard events while you type into a TEXTAREA. You can use this

later as an authoring tool to grab the precise codes for keyboard keys you may not

be familiar with.

Listing 29-18: Displaying charCode and keyCode
Property Values

<HTML>
<HEAD>
<TITLE>charCode and keyCode Properties</TITLE>
<STYLE TYPE=”text/css”>
TD {text-align:center}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
function showCode(which, evt) {

document.forms[0].elements[which + “Char”].value = evt.charCode
document.forms[0].elements[which + “Key”].value = evt.keyCode

}
function clearEm() {

for (var i = 1; i < document.forms[0].elements.length; i++) {
document.forms[0].elements[i].value = “”

}
}
</SCRIPT>
</HEAD>
<BODY>
<H1>charCode and keyCode Properties</H1>
<HR>
<P></P>
<FORM>
<P>

Continued

(NN6) eventObject.charCode

4855-7 ch13.F 6/26/01 8:36 AM Page 423

424 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 29-18 (continued)

<TEXTAREA NAME=”scratchpad” COLS=”40” ROWS=”5” WRAP=”hard”
onKeyDown=”clearEm(); showCode(‘down’, event)” onKeyUp=”showCode(‘up’, event)”
onKeyPress=”showCode(‘press’, event)”></TEXTAREA>
</P>
<TABLE CELLPADDING=”5”>
<TR><TH>Event</TH><TH>event.charCode</TH><TH>event.keyCode</TH></TR>
<TR><TD>onKeyDown:</TD><TD><INPUT TYPE=”text” NAME=”downChar” SIZE=”3”></TD>
<TD><INPUT TYPE=”text” NAME=”downKey” SIZE=”3”></TD></TR>
<TR><TD>onKeyPress:</TD><TD><INPUT TYPE=”text” NAME=”pressChar” SIZE=”3”></TD>
<TD><INPUT TYPE=”text” NAME=”pressKey” SIZE=”3”></TD></TR>
<TR><TD>onKeyUp:</TD><TD><INPUT TYPE=”text” NAME=”upChar” SIZE=”3”></TD>
<TD><INPUT TYPE=”text” NAME=”upKey” SIZE=”3”></TD></TR>
</TABLE>
</FORM>
</BODY>
</HTML>

Here are some specific tasks to try with the page to examine key codes (if you

are not using a browser set for English and a Latin-based keyboard, your results

may vary):

1. Enter a lowercase letter “a”. Notice how the onKeyPress event handler shows

the charCode to be 97, which is the Unicode (and ASCII) value for the first of

the lowercase letters of the Latin alphabet. But the other two event types

record just the key’s code: 65.

2. Type an uppercase “A” via the Shift key. If you watch closely, you see that the

Shift key, itself, generates the key code 16 for the onKeyDown and onKeyUp
events. But the character key then shows the value 65 for all three events

(until you release the Shift key), because the ASCII value of the uppercase

letter happens to match the keyboard key code for that letter.

3. Press and release the Down Arrow key (be sure the cursor still flashes in the

TEXTAREA, because that’s where the keyboard events are being monitored).

As a non-character key, all three events stuff a value into the keyCode prop-

erty, but zero into charCode. The keyCode value for this key is 40.

4. Poke around with other non-character keys. Some may produce dialog boxes

or menus, but their key codes are recorded nonetheless.

(NN6) eventObject.charCode

4855-7 ch13.F 6/26/01 8:36 AM Page 424

425Chapter 13 ✦ Event Objects (Chapter 29)

clientX
clientY
layerX
layerY
pageX
pageY
screenX
screenY

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
You can see the effects of the coordinate systems and associated NN6 properties

with the page in Listing 29-19. You can view coordinate values for all four measuring

systems, as well as some calculated value. Two clickable objects are provided so

that you can see the differences between an object not in any layer and an object

residing within a layer (although anything you see is clickable, including text

nodes). Figure 13-3 shows the results of a click inside the positioned layer.

Figure 13-3: NN6 event coordinates for a click inside a positioned element

(NN6) eventObject.clientX

4855-7 ch13.F 6/26/01 8:36 AM Page 425

426 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

One of the calculated fields applies window scrolling values to the client coordi-

nates. But, as you will see, these calculated values are the same as the more conve-

nient page coordinates. The other calculated field shows the coordinates relative to

the rectangular space of the target element. Notice in the code that if the nodeType
of the target indicates a text node, that node’s parent node (an element) is used for

the calculation.

Listing 29-19: NN6 Event Coordinate Properties

<HTML>
<HEAD>
<TITLE>X and Y Event Properties (NN6+)</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function checkCoords(evt) {

var form = document.forms[“output”]
var targText, targElem
if (evt.target.nodeType == 3) {

targText = “[textnode] inside <” + evt.target.parentNode.tagName + “>”
targElem = evt.target.parentNode

} else {
targText = “<” + evt.target.tagName + “>”
targElem = evt.target

}
form.srcElemTag.value = targText
form.clientCoords.value = evt.clientX + “,” + evt.clientY
form.clientScrollCoords.value = (evt.clientX + window.scrollX) +

“,” + (evt.clientY + window.scrollY)
form.layerCoords.value = evt.layerX + “,” + evt.layerY
form.pageCoords.value = evt.pageX + “,” + evt.pageY
form.inElemCoords.value =
(evt.pageX - targElem.offsetLeft - document.body.offsetLeft) +

“,” + (evt.pageY - targElem.offsetTop - document.body.offsetTop)
form.screenCoords.value = evt.screenX + “,” + evt.screenY
return false

}
</SCRIPT>
</HEAD>
<BODY onMouseDown=”checkCoords(event)”>
<H1>X and Y Event Properties (NN6+)</H1>
<HR>
<P>Click on the button and in the DIV/image to see the coordinate values for the
event object.</P>
<FORM NAME=”output”>
<TABLE>
<TR><TD COLSPAN=2>NN6 Mouse Event Coordinates:</TD></TR>
<TR><TD ALIGN=”right”>target:</TD>

<TD COLSPAN=3><INPUT TYPE=”text” NAME=”srcElemTag” SIZE=25></TD></TR>
<TR><TD ALIGN=”right”>clientX, clientY:</TD>

<TD><INPUT TYPE=”text” NAME=”clientCoords” SIZE=10></TD>
<TD ALIGN=”right”>...With scrolling:</TD>
<TD><INPUT TYPE=”text” NAME=”clientScrollCoords” SIZE=10></TD></TR>

(NN6) eventObject.clientX

4855-7 ch13.F 6/26/01 8:36 AM Page 426

427Chapter 13 ✦ Event Objects (Chapter 29)

<TR><TD ALIGN=”right”>layerX, layerY:</TD>
<TD><INPUT TYPE=”text” NAME=”layerCoords” SIZE=10></TD></TR>

<TR><TD ALIGN=”right”>pageX, pageY:</TD>
<TD><INPUT TYPE=”text” NAME=”pageCoords” SIZE=10></TD>
<TD ALIGH=”right”>Within Element:</TD>
<TD><INPUT TYPE=”text” NAME=”inElemCoords” SIZE=10></TR>

<TR><TD ALIGN=”right”>screenX, screenY:</TD>
<TD><INPUT TYPE=”text” NAME=”screenCoords” SIZE=10></TD></TR>

<TR><TD ALIGN=”right”><INPUT TYPE=”button” VALUE=”Click Here”></TD></TR>
</TABLE>
</FORM>
<DIV ID=”display” STYLE=”position:relative; left:100”>

</DIV>
</BODY>
</HTML>

currentTarget

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Listing 29-20 shows the power of the currentTarget property to reveal the ele-

ment that is processing an event during event propagation. Similar to the code in

Listing 29-7, this example is made simpler because it lets the event object’s proper-

ties do more of the work to reveal the identity of each element that processes the

event. Event listeners assigned for various propagation modes are assigned to a

variety of nodes in the document. After you click the button, each listener in the

propagation chain fires in sequence. The alert dialog shows which node is process-

ing the event. And, as in Listing 29-7, the eventPhase property is used to help dis-

play the propagation mode in force at the time the event is processed by each

node.

Listing 29-20: currentTarget and eventPhase Properties

<HTML>
<HEAD>
<TITLE>currentTarget and eventPhase Properties</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function init() {

// using old syntax to assign bubble-type event handlers
document.onclick = processEvent
document.body.onclick = processEvent

Continued

(NN6) eventObject.currentTarget

4855-7 ch13.F 6/26/01 8:36 AM Page 427

428 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 29-20 (continued)

// turn on click event capture for document and form
document.addEventListener(“click”, processEvent, true)
document.forms[0].addEventListener(“click”, processEvent, true)
// set bubble event listener for form
document.forms[0].addEventListener(“click”, processEvent, false)

}
function processEvent(evt) {

var currTargTag, msg
if (evt.currentTarget.nodeType == 1) {

currTargTag = “<” + evt.currentTarget.tagName + “>”
} else {

currTargTag = evt.currentTarget.nodeName
}
msg = “Event is now at the “ + currTargTag + “ level “
msg += “(“ + getPhase(evt) + “).”
alert(msg)

}
// reveal event phase of current event object
function getPhase(evt) {

switch (evt.eventPhase) {
case 1:

return “CAPTURING”
break

case 2:
return “AT TARGET”
break

case 3:
return “BUBBLING”
break

default:
return “”

}
}
</SCRIPT>
</HEAD>
<BODY onLoad=”init()”>
<H1>currentTarget and eventPhase Properties</H1>
<HR>
<FORM>
<INPUT TYPE=”button” VALUE=”A Button” NAME=”main1”

onClick=”processEvent(event)”>
</FORM>
</BODY>
</HTML>

You can also click other places on the page. For example, if you click to the right

of the button, you will be clicking the FORM element. Event propagation and pro-

cessing adjusts accordingly. Similarly, if you click the header text, the only event lis-

teners that see the event are in the document and BODY levels.

(NN6) eventObject.currentTarget

4855-7 ch13.F 6/26/01 8:36 AM Page 428

429Chapter 13 ✦ Event Objects (Chapter 29)

eventPhase

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
See Listing 29-20 earlier in this chapter for an example of how you can use a

switch construction to branch function processing based on the event phase of

the current event object.

relatedTarget

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Listing 29-21 provides an example of how the relatedTarget property can

reveal the life of the cursor action before and after it rolls into an element. When

you roll the cursor to the center box (a table cell), its onMouseOver event handler

displays the text from the table cell from which the cursor arrived (the nodeValue
of the text node inside the table cell). If the cursor comes in from one of the corners

(not easy to do), a different message is displayed.

The two functions that report the results employ a bit of filtering to make sure

that they process the event object only if the event occurs on an element and if the

relatedTarget element is anything other than a nested text node of the central

table cell element. Because nodes respond to events in NN6, this extra filtering

prevents processing whenever the cursor makes the transition from the central TD

element to its nested text node.

Listing 29-21: Using the relatedTarget Property

<HTML>
<HEAD>
<TITLE>relatedTarget Properties</TITLE>
<STYLE TYPE=”text/CSS”>
.direction {background-color:#00FFFF; width:100; height:50; text-align:center}
#main {background-color:#FF6666; text-align:center}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
function showArrival(evt) {

if (evt.target.nodeType == 1) {
if (evt.relatedTarget != evt.target.firstChild) {

Continued

(NN6) eventObject.relatedTarget

4855-7 ch13.F 6/26/01 8:36 AM Page 429

430 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 29-21 (continued)

var direction = (evt.relatedTarget.firstChild) ?
evt.relatedTarget.firstChild.nodeValue : “parts unknown”
status = “Arrived from: “ + direction

}
}

}
function showDeparture(evt) {

if (evt.target.nodeType == 1) {
if (evt.relatedTarget != evt.target.firstChild) {

var direction = (evt.relatedTarget.firstChild) ?
evt.relatedTarget.firstChild.nodeValue : “parts unknown”
status = “Departed to: “ + direction

}
}

}
</SCRIPT>
</HEAD>
<BODY>
<H1>relatedTarget Properties</H1>
<HR>
<P>Roll the mouse to the center box and look for arrival information
in the status bar. Roll the mouse away from the center box and look for
departure information in the status bar.</P>

<TABLE CELLSPACING=0 CELLPADDING=5>
<TR><TD></TD><TD CLASS=”direction”>North</TD><TD></TD></TR>
<TR><TD CLASS=”direction”>West</TD>
<TD ID=”main” onMouseOver=”showArrival(event)”

onMouseOut=”showDeparture(event)”>Roll</TD>
<TD CLASS=”direction”>East</TD></TR>
<TR><TD></TD><TD CLASS=”direction”>South</TD><TD></TD></TR>
</TABLE>
</BODY>
</HTML>

target

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
As a simplified demonstration of the power of the target property, Listing 29-22

has but two event handlers defined for the BODY element, each invoking a single

(NN6) eventObject.target

4855-7 ch13.F 6/26/01 8:36 AM Page 430

431Chapter 13 ✦ Event Objects (Chapter 29)

function. The idea is that the onMouseDown and onMouseUp events will bubble up

from whatever their targets are, and the event handler functions will find out which

element is the target and modify the color style of that element.

An extra flair is added to the script in that each function also checks the

className property of the target element. If the className is bold— a class name

shared by three SPAN elements in the paragraph — the style sheet rule for that

class is modified so that all items share the same color. Your scripts can do even

more in the way of filtering objects that arrive at the functions to perform special

operations on certain objects or groups of objects.

Notice that the scripts don’t have to know anything about the objects on the

page to address each clicked one individually. That’s because the target property

provides all of the specificity needed for acting on the target element.

Listing 29-22: Using the target Property

<HTML>
<HEAD>
<TITLE>target Property</TITLE>
<STYLE TYPE=”text/css”>
.bold {font-weight:bold}
.ital {font-style:italic}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
function highlight(evt) {

var elem = (evt.target.nodeType == 3) ? evt.target.parentNode : evt.target
if (elem.className == “bold”) {

document.styleSheets[0].cssRules[0].style.color = “red”
} else {

elem.style.color = “#FFCC00”
}

}
function restore(evt) {

var elem = (evt.target.nodeType == 3) ? evt.target.parentNode : evt.target
if (elem.className == “bold”) {

document.styleSheets[0].cssRules[0].style.color = “black”
} else {

elem.style.color = “black”
}

}
</SCRIPT>
</HEAD>
<BODY onMouseDown=”highlight(event)” onMouseUp=”restore(event)”>
<H1>target Property</H1>
<HR>
<P>One event handler...</P>

Can
Cover
Many
Objects

Continued

(NN6) eventObject.target

4855-7 ch13.F 6/26/01 8:36 AM Page 431

432 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 29-22 (continued)

<P>
Lorem ipsum dolor sit amet, consectetaur adipisicing elit,
sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua.
Ut enim adminim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea
commodo consequat.
</P>
</BODY>
</HTML>

timeStamp

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Listing 29-23 uses the timeStamp property to calculate the instantaneous typing

speed when you type into a TEXTAREA (see Figure 13-4). The calculations are

pretty raw and work only on intra-keystroke times without any averaging or

smoothing that a more sophisticated typing tutor might perform. Calculated values

are rounded to the nearest integer.

Listing 29-23: Using the timeStamp property

<HTML>
<HEAD>
<TITLE>timeStamp Property</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var stamp
function calcSpeed(evt) {

if (stamp) {
var gross = evt.timeStamp - stamp
var wpm = Math.round(6000/gross)
document.getElementById(“wpm”).firstChild.nodeValue = wpm + “ wpm.”

}
stamp = evt.timeStamp

}
</SCRIPT>
</HEAD>

(NN6) eventObject.timeStamp

4855-7 ch13.F 6/26/01 8:36 AM Page 432

433Chapter 13 ✦ Event Objects (Chapter 29)

<BODY>
<H1>timeStamp Property</H1>
<HR>
<P>Start typing, and watch your instantaneous typing speed below:</P>
<P>
<TEXTAREA COLS=60 ROWS=10 WRAP=”hard” onKeyPress=”calcSpeed(event)”></TEXTAREA>
</P>
<P>Typing Speed: </P>
</BODY>
</HTML>

Figure 13-4: The timeStamp property helps calculate
typing speed.

✦ ✦ ✦

(NN6) eventObject.timeStamp

4855-7 ch13.F 6/26/01 8:36 AM Page 433

4855-7 ch13.F 6/26/01 8:36 AM Page 434

Style Sheet
Objects
(Chapter 30)

Examples in this chapter focus on the properties and

methods of the styleSheet object. As described in

Chapter 30 of the JavaScript Bible, object models that support

scriptable style sheets define both the STYLE element object

(representing the element created with a <STYLE> tag pair)

and the more abstract styleSheet object. The latter may be

created by virtue of a STYLE element or perhaps imported

from an external style sheet definition file.

Use the styleSheet object to gain access to the details of

the rules defined for a given style sheet. Methods of the

styleSheet object (different syntax for IE4+ and W3C object

models) allow dynamic creation or deletion of rules within a

style sheet. Properties of the styleSheet object (again, dif-

ferent syntax) return arrays of objects representing the style

rules contained by the style sheet. The rule objects them-

selves have properties allowing reading and writing of rule

selectors and even individual style attributes within that rule

(since a single rule can list multiple style attributes).

Examples Highlights
✦ Compare examples for the styleSheet.cssRules and

styleSheet.rules properties to see how different

browsers provide access to arrays of rule objects.

✦ You can observe in The Evaluator (Chapter 13 in the

JavaScript Bible) how the styleSheet.disabled prop-

erty can switch a style sheet on and off dynamically.

✦ Compare the styleSheet object method pairs for

inserting and deleting rules to an existing style sheet.

The walk-through examples let you follow the same

steps for both the IE4+ and NN6 syntaxes.

✦ The final example in this chapter demonstrates how

scripts can modify a single attribute of a style sheet rule.

1414C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Enabling and
disabling entire style
sheets

Accessing an
individual style rule
from a style sheet

Adding and deleting
style sheet rules

✦ ✦ ✦ ✦

4855-7 ch14.F 6/26/01 8:36 AM Page 435

436 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

The syntax in the demonstration is for NN6 and IE5/Mac, but referencing the

cssRules property provides the same access for the IE4+ object model.

styleSheet Object
Properties

cssRules

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � (�) (�)

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to look at the cssRules

property in NN6+ or IE5+/Mac. First, view how many rules are in the first styleSheet

object of the page by entering the following statement into the top text box:

document.styleSheets[0].cssRules.length

Now use the array with an index value to access one of the rule objects to view

the rule object’s properties list. Enter the following statement into the bottom text

box:

document.styleSheets[0].cssRules[1]

You use this syntax to modify the style details of an individual rule belonging to

the styleSheet object.

cssText

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
Use The Evaluator (Chapter 13) to replace the style rules in one blast via the

cssText property. Begin by examining the value returned from the property for the

initially disabled style sheet by entering the following statement into the top text

box:

document.styleSheets[0].cssText

Next, enable the style sheet so that its rules are applied to the document:

document.styleSheets[0].disabled = false

styleSheetObject.cssText

4855-7 ch14.F 6/26/01 8:36 AM Page 436

437Chapter 14 ✦ Style Sheet Objects (Chapter 30)

Finally, enter the following statement into the top text box to overwrite the style

sheet with entirely new rules.

document.styleSheets[0].cssText = “P {color:red}”

Reload the page after you are finished to restore the original state.

disabled

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to toggle between the

enabled and disabled state of the first styleSheet object on the page. Enter the fol-

lowing statement into the top text box:

document.styleSheets[0].disabled = (!document.styleSheets[0].disabled)

The inclusion of the NOT operator (!) forces the state to change from true to

false or false to true with each click of the Evaluate button.

ownerNode

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) with NN6 to inspect the

ownerNode of the first styleSheet object in the document. Enter the following state-

ment into the top text box:

document.styleSheets[0].ownerNode.tagName

The returned value is the STYLE element tag name.

owningElement

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

styleSheetObject.owningElement

4855-7 ch14.F 6/26/01 8:36 AM Page 437

438 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example
Use The Evaluator (Chapter 13 in JavaScript Bible) with IE4+ to inspect the

owningElement of the first styleSheet object in the document. Enter the following

statement into the top text box:

document.styleSheets[0].owningElement.tagName

The returned value is the STYLE element tag name.

rules

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) with IE4+ to examine the

rules property of the first styleSheet object in the page. First, find out how many

rules are in the first styleSheet object by entering the following statement into the

top text box:

document.styleSheets[0].rules.length

Next, examine the properties of one of the rules by entering the following state-

ment into the bottom text box:

document.styleSheets[0].rules[1]

You now see the all the properties that IE4+ exposes for a rule object.

Methods
addRule(“selector”, “styleSpec”[, index])
removeRule(index)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) with IE4+ to add a style

sheet rule to the first styleSheet object of the page. First, make sure the style sheet

is enabled by entering the following statement into the top text box:

document.styleSheets[0].disabled = false

styleSheetObject.addRule()

4855-7 ch14.F 6/26/01 8:36 AM Page 438

439Chapter 14 ✦ Style Sheet Objects (Chapter 30)

Next, append a style that sets the color of the TEXTAREA element:

document.styleSheets[0].addRule(“TEXTAREA”, “color:red”)

Enter any valid object (such as document.body) into the bottom text box to see

how the style has been applied to the TEXTAREA element on the page.

Now remove the style, using the index of the last item of the rules collection as

the index:

document.styleSheets[0].removeRule(document.styleSheets[0].rules.length - 1)

The text in the TEXTAREA returns to its default color.

deleteRule(index)
insertRule(“rule”, index)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) with NN6+ to add a style

sheet rule to the first styleSheet object of the page. First, make sure the style sheet

is enabled by entering the following statement into the top text box:

document.styleSheets[0].disabled = false

Next, append a style that sets the color of the TEXTAREA element:

document.styleSheets[0].insertRule(“TEXTAREA {color:red}”,
document.styleSheets[0].cssRules.length)

Enter any valid object (such as document.body) into the bottom text box to see

how the style has been applied to the TEXTAREA element on the page.

Now remove the style, using the index of the last item of the rules collection as

the index:

document.styleSheets[0].deleteRule(document.styleSheets[0].cssRules.length - 1)

The first release of NN6 processes most, but not all, of the internal actions in

response to the deleteRule() method. The method returns no value, so the

Results box correctly reports undefined after evaluating the deleteRule()
example statement. At the same time, the method has genuinely removed the rule

from the styleSheet object (as proven by inspecting the length property of the

document.styleSheets[0].cssRules array). But the browser does not refresh

the page display to reflect the removal of the rule.

styleSheetObject.deleteRule()

4855-7 ch14.F 6/26/01 8:36 AM Page 439

440 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

cssRule and rule Objects
Properties

selectorText

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to examine the

selectorText property of rules in the first styleSheet object of the page. Enter

each of the following statements in the top text box:

document.styleSheets[0].rules[0].selectorText
document.styleSheets[0].rules[1].selectorText

Compare these values against the source code view for the STYLE element in the

page.

style

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to modify a style prop-

erty of one of the styleSheet rules in the page. The syntax shown here is for IE4+,

but you can substitute the cssRules reference for the rules collection reference in

NN6 (and IE5/Mac) if you like.

Begin by reloading the page and making sure the style sheet is enabled. Enter the

following statement into the top text box:

document.styleSheets[0].disabled = false

The first rule is for the myP element on the page. Change the rule’s font-size
style:

document.styleSheets[0].rules[0].style.fontSize = “20pt”

Look over the style object properties in the discussion of the style object

later in this chapter and have fun experimenting with different style properties.

After you are finished, reload the page to restore the styles to their default states.

✦ ✦ ✦

ruleObject.style

4855-7 ch14.F 6/26/01 8:36 AM Page 440

The NN4
Layer Object
(Chapter 31)

Chapter 31 of the JavaScript Bible is devoted to positioned

objects in all object models. Only Navigator 4 has its

own set of dedicated positionable objects: the LAYER and

ILAYER element objects. In the IE4+ and W3C DOMs, virtually

any renderable element is positionable, although it is common

practice to restrict such activity to SPAN and DIV elements.

Because properties of the SPAN, DIV, and other HTML element

objects are covered in detail in other chapters, Chapter 31

provides the details of the NN4 layer object.

Examples shown here support NN4 layer object details, but

the rest of the discussion and code listings in JavaScript Bible
Chapter 31 go to great lengths to recreate the same behaviors

in both the IE4+ and W3C (NN6) object models. This will help

those scripters who developed extensively for NN4’s Dynamic

HTML make the transition to NN6 and its support for Dynamic

HTML (which is not much different from that in the IE4+ object

model). Obviously, all examples shown below require NN4.

Examples Highlights
✦ Clipping of layer rectangles is not an easy concept to

grasp at first (in any object model). Listing 31-2 provides

a workbench to explore the various properties associ-

ated with the clipping rectangle. Listing 31-5 demon-

strates the relationship between moving a layer and

adjusting its clipping rectangle.

✦ Listing 31-6 is an extensive demonstration of a variety of

layer coordinate system properties.

✦ Most layer object properties are handled in later object

models through style sheet property manipulation.

Listing 31-8 shows the NN4 layer way of handling a

layer’s visibility, while Listing 31-9 demonstrates adjust-

ing the stacking order of layers.

1515C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Using NN4-specific
syntax for positioned
elements

How to move, hide,
and show positioned
content in NN4

Setting the clipping
rectangle of a layer
in NN4

✦ ✦ ✦ ✦

4855-7 ch15.F 6/26/01 8:36 AM Page 441

442 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

✦ Scripts for dragging a layer (with the help of the layer object’s move methods)

appear in Listing 31-11. Another type of dragging — dragging a corner to resize

a layer — takes center stage in Listing 31-12a.

NN4 Layer Object
Properties

above
below
siblingAbove
siblingBelow

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Listing 31-1 enables you to experiment with just one set of these properties:

layerObject.above and layerObject.below. The page is almost in the form of a

laboratory/quiz that enables you to query yourself about the values of these prop-

erties for two swappable layers.

Listing 31-1: A Layer Quiz

<HTML>
<HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
function checkAbove(oneLayer) {

document.forms[0].errors.value = “”
document.forms[0].output.value = oneLayer.above.name

}
function checkBelow(oneLayer) {

document.forms[0].errors.value = “”
document.forms[0].output.value = oneLayer.below.name

}
function swapLayers() {

if (document.yeller.above) {
document.yeller.moveAbove(document.greeny)

} else {
document.greeny.moveAbove(document.yeller)

}
}

document.layerObject.above

4855-7 ch15.F 6/26/01 8:36 AM Page 442

443Chapter 15 ✦ The NN4 Layer Object (Chapter 31)

function onerror(msg) {
document.forms[0].output.value = “”
document.forms[0].errors.value = msg
return true

}
</SCRIPT>
</HEAD>
<BODY>
<H1>Layer Ordering</H1>
<HR>
<FORM>
Results:<INPUT TYPE=”text” NAME=”output”><P>
<INPUT TYPE=”button” VALUE=”Who’s ABOVE the Yellow layer?”
onClick=”checkAbove(document.yeller)”>

<INPUT TYPE=”button” VALUE=”Who’s BELOW the Yellow layer?”
onClick=”checkBelow(document.yeller)”><P>
<INPUT TYPE=”button” VALUE=”Who’s ABOVE the Green layer?”
onClick=”checkAbove(document.greeny)”>

<INPUT TYPE=”button” VALUE=”Who’s BELOW the Green layer?”
onClick=”checkBelow(document.greeny)”><P>
<INPUT TYPE=”button” VALUE=”Swap Layers” onCLick=”swapLayers()”><P>
If there are any errors caused by missing

properties, they will appear below:

<TEXTAREA NAME=”errors” COLS=30 ROWS=3 WRAP=”virtual”></TEXTAREA>
</FORM>
<LAYER NAME=”yeller” BGCOLOR=”yellow” TOP=110 LEFT=300 WIDTH=200 HEIGHT=200>
This is just a yellow layer.
</LAYER>
<LAYER NAME=”greeny” BGCOLOR=”lightgreen” TOP=150 LEFT=340 WIDTH=200 HEIGHT=200>
This is just a green layer.
</LAYER>
</BODY>
</HTML>

The page contains two layers: one colored yellow and the other light green.

Legends on four buttons ask you to guess whether one layer is above or below the

other. For example, if you click the button labeled “Who’s ABOVE the Yellow layer?”

and the green layer is above it, the name of that green layer appears in the Results

field. But if layers are oriented such that the returned value is null, the error mes-

sage (indicating that the nonexistent object doesn’t have a name property) appears

in the error field at the bottom. Another button enables you to swap the order of

the layers so you can try your hand at predicting the results based on your knowl-

edge of layers and the above and below properties. Positioned objects in IE4+ and

NN6 have no comparable properties to the four described in this section.

document.layerObject.above

4855-7 ch15.F 6/26/01 8:36 AM Page 443

444 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

background

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
A simple example (Listing 31-2) defines one layer that features five buttons to

change the background image of a second layer. I put the buttons in a layer because

I want to make sure the buttons and background layer rectangles align themselves

along their top edges on all platforms.

As the second layer loads, I merely assign a gray background color to it and

write some reverse (white) text. Most of the images are of the small variety that

repeat in the layer. One is a large photograph to demonstrate how images are

clipped to the layer’s rectangle. Along the way, I hope you also heed the lesson of

readability demonstrated by the difficulty of reading text on a wild-looking back-

ground. For an example compatible with IE5+ and NN6+, see Listing 31-13.

Listing 31-2: Setting Layer Backgrounds

<HTML>
<HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
function setBg(URL) {

document.bgExpo.background.src = URL
}
</SCRIPT>
</HEAD>
<BODY>
<H1>Layer Backgrounds</H1>
<HR>
<LAYER NAME=”buttons” TOP=100>

<FORM>
<INPUT TYPE=”button” VALUE=”The Usual”

onClick=”setBg(‘cr_kraft.gif’)”>

<INPUT TYPE=”button” VALUE=”A Big One” onClick=”setBg(‘arch.gif’)”>

<INPUT TYPE=”button” VALUE=”Not So Usual”

onClick=”setBg(‘wh86.gif’)”>

<INPUT TYPE=”button” VALUE=”Decidedly Unusual”

onClick=”setBg(‘sb23.gif’)”>

<INPUT TYPE=”button” VALUE=”Quick as...”

onClick=”setBg(‘lightnin.gif’)”>

</FORM>

</LAYER>
<LAYER NAME=”bgExpo” BGCOLOR=”gray” TOP=100 LEFT=250 WIDTH=300 HEIGHT=260>
Some text, which may or may not read well with the
various backgrounds.

document.layerObject.background

4855-7 ch15.F 6/26/01 8:36 AM Page 444

445Chapter 15 ✦ The NN4 Layer Object (Chapter 31)

</LAYER>
</BODY>
</HTML>

bgColor

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
You can have some fun with Listing 31-3, which uses a number of layer scripting

techniques. The page presents a kind of palette of eight colors, each one created as

a small layer (see Figure 15-1). Another, larger layer’s bgColor property changes as

you roll the mouse over any color in the palette.

Figure 15-1: Drag the mouse across the palette to change the
layer’s background color.

To save HTML lines to create those eight color palette layers, I use a script to

establish an array of colors and then document.write() the <LAYER> tags with

appropriate attribute settings so the layers all line up in a contiguous row. By pre-

defining a number of variable values for the size of the color layers, I can make all of

them larger or smaller with the change of only a few script characters.

The document object handles the job of capturing the mouseOver events. I turn

on the document’s captureEvents() method such that it traps all mouseOver

document.layerObject.bgColor

4855-7 ch15.F 6/26/01 8:36 AM Page 445

446 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

events and hands them to the setColor() function. The setColor() function

reads the target object’s bgColor and sets the larger layer’s bgColor property to

the same. If this page had other objects that could receive mouseOver events for

other purposes, I would use routeEvents() to let those events pass on to their

intended targets. For the purposes of this example, however, the events need to go

no further. Listing 31-14 in the JavaScript Bible shows the same functionality work-

ing in IE5+ and NN6+.

Listing 31-3: Layer Background Colors

<HTML>
<HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
function setColor(e) {

document.display.bgColor = e.target.bgColor
}
document.captureEvents(Event.MOUSEOVER)
document.onmouseover = setColor
</SCRIPT>
</HEAD>
<BODY>
<H1>Layer Background Colors</H1>
<HR>
<SCRIPT LANGUAGE=”JavaScript”>
var oneLayer
var colorTop = 100
var colorLeft = 20
var colorWidth = 40
var colorHeight = 40
var colorPalette = new
Array(“aquamarine”,”coral”,”forestgreen”,”goldenrod”,”red”,

“magenta”,”navy”,”teal”)
for (var i = 0; i < colorPalette.length; i++) {

oneLayer = “<LAYER NAME=swatch” + i + “ TOP=” + colorTop
oneLayer += “ LEFT=” + ((colorWidth * i) + colorLeft)
oneLayer += “ WIDTH=” + colorWidth + “ HEIGHT=” + colorHeight
oneLayer += “ BGCOLOR=” + colorPalette[i] + “></LAYER>\n”
document.write(oneLayer)

}
</SCRIPT>
<LAYER NAME=”display” BGCOLOR=”gray” TOP=150 LEFT=80 WIDTH=200 HEIGHT=200>
<CENTER>Some reversed text to test against background
colors.</CENTER>
</LAYER>
</BODY>
</HTML>

document.layerObject.bgColor

4855-7 ch15.F 6/26/01 8:36 AM Page 446

447Chapter 15 ✦ The NN4 Layer Object (Chapter 31)

clip

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Because of the edge movement behavior of adjustments to layerObject.clip

properties, Listing 31-4 enables you to experiment with adjustments to each of the

six properties. The document loads one layer that you can adjust by entering alter-

native values into six text fields — one per property. Figure 15-2 shows the page.

Figure 15-2: Experiment with layer.clip properties.

As you enter values, all properties are updated to show their current values (via

the showValues() function). Pay particular attention to the apparent motion of the

edge and the effect the change has on at least one other property. For example, a

change to the layerObject.clip.left value also affects the layerObject.clip.
width property value.

Listing 31-4: Adjusting layer.clip Properties

<HTML>
<HEAD>
<TITLE>Layer Clip</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var origLayerWidth = 0
var origLayerHeight = 0

Continued

document.layerObject.clip

4855-7 ch15.F 6/26/01 8:36 AM Page 447

448 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 31-4 (continued)

function initializeXY() {
origLayerWidth = document.display.clip.width
origLayerHeight = document.display.clip.height
showValues()

}

function setClip(field) {
var clipVal = parseInt(field.value)
document.display.clip[field.name] = clipVal
showValues()

}
function showValues() {

var form = document.layers[0].document.forms[0]
var propName
for (var i = 0; i < form.elements.length; i++) {

propName = form.elements[i].name
if (form.elements[i].type == “text”) {

form.elements[i].value = document.display.clip[propName]
}

}
}
var intervalID
function revealClip() {

var midWidth = Math.round(origLayerWidth /2)
var midHeight = Math.round(origLayerHeight /2)
document.display.clip.left = midWidth
document.display.clip.top = midHeight
document.display.clip.right = midWidth
document.display.clip.bottom = midHeight
intervalID = setInterval(“stepClip()”,1)

}
function stepClip() {

var widthDone = false
var heightDone = false
if (document.display.clip.left > 0) {

document.display.clip.left += -2
document.display.clip.right += 2

} else {
widthDone = true

}
if (document.display.clip.top > 0) {

document.display.clip.top += -1
document.display.clip.bottom += 1

} else {
heightDone = true

}
showValues()
if (widthDone && heightDone) {

clearInterval(intervalID)

document.layerObject.clip

4855-7 ch15.F 6/26/01 8:36 AM Page 448

449Chapter 15 ✦ The NN4 Layer Object (Chapter 31)

}
}
</SCRIPT>
</HEAD>
<BODY onLoad=”initializeXY()”>
<H1>Layer Clipping Properties</H1>
<HR>
Enter new clipping values to adjust the visible area of the layer.<P>
<LAYER TOP=130>
<FORM>
<TABLE>
<TR>

<TD ALIGN=”right”>layer.clip.left:</TD>
<TD><INPUT TYPE=”text” NAME=”left” SIZE=3 onChange=”setClip(this)”></TD>

</TR>
<TR>

<TD ALIGN=”right”>layer.clip.top:</TD>
<TD><INPUT TYPE=”text” NAME=”top” SIZE=3 onChange=”setClip(this)”></TD>

</TR>
<TR>

<TD ALIGN=”right”>layer.clip.right:</TD>
<TD><INPUT TYPE=”text” NAME=”right” SIZE=3 onChange=”setClip(this)”></TD>

</TR>
<TR>

<TD ALIGN=”right”>layer.clip.bottom:</TD>
<TD><INPUT TYPE=”text” NAME=”bottom” SIZE=3 onChange=”setClip(this)”></TD>

</TR>
<TR>

<TD ALIGN=”right”>layer.clip.width:</TD>
<TD><INPUT TYPE=”text” NAME=”width” SIZE=3 onChange=”setClip(this)”></TD>

</TR>
<TR>

<TD ALIGN=”right”>layer.clip.height:</TD>
<TD><INPUT TYPE=”text” NAME=”height” SIZE=3 onChange=”setClip(this)”></TD>

</TR>
</TABLE>
<INPUT TYPE=”button” VALUE=”Reveal Original Layer” onClick=”revealClip()”>
</FORM>
</LAYER>
<LAYER NAME=”display” BGCOLOR=”coral” TOP=130 LEFT=200 WIDTH=360 HEIGHT=180>
<H2>ARTICLE I</H2>
<P>
Congress shall make no law respecting an establishment of religion, or
prohibiting the free exercise thereof; or abridging the freedom of speech, or of
the press; or the right of the people peaceably to assemble, and to petition the
government for a redress of grievances.
</P>
</LAYER>
</BODY>
</HTML>

document.layerObject.clip

4855-7 ch15.F 6/26/01 8:36 AM Page 449

450 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 31-4 has a lot of other scripting in it to demonstrate a couple of other clip

area techniques. After the document loads, the onLoad event handler initializes two

global variables that represent the starting height and width of the layer as deter-

mined by the clip.height and clip.width properties. Because the <LAYER> tag

does not specify any CLIP attributes, the layerObject.clip region is ensured of

being the same as the layer’s dimensions at load time.

I preserve the initial values for a somewhat advanced set of functions that act in

response to the Reveal Original Layer button. The goal of this button is to tem-

porarily shrink the clipping area to nothing and then expand the clip rectangle

gradually from the very center of the layer. The effect is analogous to a zoom-out

visual effect.

The clip region shrinks to practically nothing by setting all four edges to the

same point midway along the height and width of the layer. The script then uses

setInterval() to control the animation in setClip(). To make the zoom even on

both axes, I first make sure that the initial size of the layer is an even ratio: twice as

wide as it is tall. Each time through the setClip() function, the clip.left and

clip.right values are adjusted in their respective directions by two pixels and

clip.top and clip.bottom are adjusted by one pixel.

To make sure the animation stops when the layer is at its original size, I check

whether the clip.top and clip.left values are their original zero values. If they

are, I set a Boolean variable for each side. When both variables indicate that the

clip rectangle is its original size, the script cancels the setInterval() action.

Listing 31-15 in the JavaScript Bible demonstrates how to adjust clipping in IE5+

and NN6+ syntax.

left
top

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
To enable you to experiment with manually setting layerObject.top and

layerObject.left properties, Listing 31-5 is a modified version of the layer.clip
example (Listing 31-4). The current example again has the one modifiable layer, but

it has only four text fields in which you can enter values. Two fields are for the

layerObject.left and layerObject.top properties; the other two are for the

layerObject.clip.left and layerObject.clip.top properties. I present both

sets of values here to help reinforce the lack of connection between layer and clip

location properties in the same layer object. You can find the corresponding syntax

for IE5+ and NN6+ in Listing 31-16 of the JavaScript Bible.

document.layerObject.left

4855-7 ch15.F 6/26/01 8:36 AM Page 450

451Chapter 15 ✦ The NN4 Layer Object (Chapter 31)

Listing 31-5: Comparison of Layer and Clip Location
Properties

<HTML>
<HEAD>
<TITLE>Layer vs. Clip</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function setClip(field) {

var clipVal = parseInt(field.value)
document.display.clip[field.name] = clipVal
showValues()

}
function setLayer(field) {

var layerVal = parseInt(field.value)
document.display[field.name] = layerVal
showValues()

}
function showValues() {

var form = document.layers[0].document.forms[0]
form.elements[0].value = document.display.left
form.elements[1].value = document.display.top
form.elements[2].value = document.display.clip.left
form.elements[3].value = document.display.clip.top

}
</SCRIPT>
</HEAD>
<BODY onLoad=”showValues()”>
Layer vs. Clip Location Properties
<HR>
Enter new layer and clipping values to adjust the layer.<P>
<LAYER TOP=80>
<FORM>
<TABLE>
<TR>

<TD ALIGN=”right”>layer.left:</TD>
<TD><INPUT TYPE=”text” NAME=”left” SIZE=3 onChange=”setLayer(this)”></TD>

</TR>
<TR>

<TD ALIGN=”right”>layer.top:</TD>
<TD><INPUT TYPE=”text” NAME=”top” SIZE=3 onChange=”setLayer(this)”></TD>

</TR>
<TR>

<TD ALIGN=”right”>layer.clip.left:</TD>
<TD><INPUT TYPE=”text” NAME=”left” SIZE=3 onChange=”setClip(this)”></TD>

</TR>
<TR>

<TD ALIGN=”right”>layer.clip.top:</TD>
<TD><INPUT TYPE=”text” NAME=”top” SIZE=3 onChange=”setClip(this)”></TD>

</TR>
</TABLE>
</FORM>

Continued

document.layerObject.left

4855-7 ch15.F 6/26/01 8:36 AM Page 451

452 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 31-5 (continued)

</LAYER>
<LAYER NAME=”display” BGCOLOR=”coral” TOP=80 LEFT=200 WIDTH=360 HEIGHT=180>
<H2>ARTICLE I</H2>
<P>
Congress shall make no law respecting an establishment of religion, or
prohibiting the free exercise thereof; or abridging the freedom of speech, or of
the press; or the right of the people peaceably to assemble, and to petition the
government for a redress of grievances.
</P>
</LAYER>
</BODY>
</HTML>

pageX
pageY

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Listing 31-6 defines one outer layer and one nested inner layer of different colors

(see Figure 15-3). The inner layer contains some text content; the outer layer is

sized initially to present a colorful border by being below the inner layer and 10 pix-

els wider and taller.

Two sets of fields display (and enable you to change) the layerObject.pageX,

layerObject.pageY, layerObject.left, and layerObject.top properties for

each of the nested layers. Each set of fields is color-coded to its corresponding

layer.

When you change any value, all values are recalculated and displayed in the

other fields. For example, the initial pageX position for the outer layer is 200 pixels;

for the inner layer, the pageX value is 205 pixels (accounting for the 5-pixel “border”

around the inner layer). If you change the outer layer’s pageX value to 220, the

outer layer moves to the right by 20 pixels, taking the inner layer along for the ride.

The layer.pageX value for the inner layer after the move is 225 pixels.

The outer layer values for the pairs of values are always the same no matter

what. But for the inner layer, the page values are significantly different from the

layer.left and layer.top values because these latter values are measured rela-

tive to their containing layer — the outer layer. If you move the outer layer, the

inner layer values for layerObject.left and layerObject.top don’t change

one iota. Listing 31-17 in the JavaScript Bible shows the comparable syntax for IE5+

and NN6+.

document.layerObject.pageX

4855-7 ch15.F 6/26/01 8:36 AM Page 452

453Chapter 15 ✦ The NN4 Layer Object (Chapter 31)

Figure 15-3: Testing the position properties of nested layers

Listing 31-6: Testing Nested Layer Coordinate Systems

<HTML>
<HEAD>
<TITLE>Nested Layer PageX/PageY</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function setOuterPage(field) {

var layerVal = parseInt(field.value)
document.outerDisplay[field.name] = layerVal
showValues()

}
function setOuterLayer(field) {

var layerVal = parseInt(field.value)
document.outerDisplay[field.name] = layerVal
showValues()

}
function setInnerPage(field) {

var layerVal = parseInt(field.value)
document.outerDisplay.document.innerDisplay[field.name] = layerVal
showValues()

}
function setInnerLayer(field) {

var layerVal = parseInt(field.value)
document.outerDisplay.document.innerDisplay[field.name] = layerVal
showValues()

}

Continued

document.layerObject.pageX

4855-7 ch15.F 6/26/01 8:36 AM Page 453

454 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 31-6 (continued)

function showValues() {
var form = document.layers[0].document.forms[0]
form.elements[0].value = document.outerDisplay.pageX
form.elements[1].value = document.outerDisplay.pageY
form.elements[2].value = document.outerDisplay.left
form.elements[3].value = document.outerDisplay.top
form.elements[4].value = document.outerDisplay.document.innerDisplay.pageX
form.elements[5].value = document.outerDisplay.document.innerDisplay.pageY
form.elements[6].value = document.outerDisplay.document.innerDisplay.left
form.elements[7].value = document.outerDisplay.document.innerDisplay.top

}
</SCRIPT>
</HEAD>
<BODY onLoad=”showValues()”>
Coordinate Systems for Nested Layers
<HR>
Enter new page and layer coordinates for the outer
layer and inner layer objects.<P>
<LAYER TOP=80>
<FORM>
<TABLE>
<TR>

<TD ALIGN=”right” BGCOLOR=”coral”>layer.pageX:</TD>
<TD BGCOLOR=”coral”><INPUT TYPE=”text” NAME=”pageX” SIZE=3

onChange=”setOuterPage(this)”></TD>
</TR>
<TR>

<TD ALIGN=”right” BGCOLOR=”coral”>layer.pageY:</TD>
<TD BGCOLOR=”coral”><INPUT TYPE=”text” NAME=”pageY” SIZE=3

onChange=”setOuterPage(this)”></TD>
</TR>
<TR>

<TD ALIGN=”right” BGCOLOR=”coral”>layer.left:</TD>
<TD BGCOLOR=”coral”><INPUT TYPE=”text” NAME=”left” SIZE=3

onChange=”setOuterLayer(this)”></TD>
</TR>
<TR>

<TD ALIGN=”right” BGCOLOR=”coral”>layer.top:</TD>
<TD BGCOLOR=”coral”><INPUT TYPE=”text” NAME=”top” SIZE=3

onChange=”setOuterLayer(this)”></TD>
</TR>
<TR>

<TD ALIGN=”right” BGCOLOR=”aquamarine”>layer.pageX:</TD>
<TD BGCOLOR=”aquamarine”><INPUT TYPE=”text” NAME=”pageX” SIZE=3

onChange=”setInnerPage(this)”></TD>
</TR>
<TR>

<TD ALIGN=”right” BGCOLOR=”aquamarine”>layer.pageY:</TD>
<TD BGCOLOR=”aquamarine”><INPUT TYPE=”text” NAME=”pageY” SIZE=3

onChange=”setInnerPage(this)”></TD>
</TR>

document.layerObject.pageX

4855-7 ch15.F 6/26/01 8:36 AM Page 454

455Chapter 15 ✦ The NN4 Layer Object (Chapter 31)

<TR>
<TD ALIGN=”right” BGCOLOR=”aquamarine”>layer.left:</TD>
<TD BGCOLOR=”aquamarine”><INPUT TYPE=”text” NAME=”left” SIZE=3

onChange=”setInnerLayer(this)”></TD>
</TR>
<TR>

<TD ALIGN=”right” BGCOLOR=”aquamarine”>layer.top:</TD>
<TD BGCOLOR=”aquamarine”><INPUT TYPE=”text” NAME=”top” SIZE=3

onChange=”setInnerLayer(this)”></TD>
</TR>
</TABLE>
</FORM>
</LAYER>
<LAYER NAME=”outerDisplay” BGCOLOR=”coral” TOP=80 LEFT=200 WIDTH=370 HEIGHT=190>
<LAYER NAME=”innerDisplay” BGCOLOR=”aquamarine” TOP=5 LEFT=5 WIDTH=360
HEIGHT=180>
<H2>ARTICLE I</H2>
<P>
Congress shall make no law respecting an establishment of religion, or
prohibiting the free exercise thereof; or abridging the freedom of speech, or of
the press; or the right of the people peaceably to assemble, and to petition the
government for a redress of grievances.
</P>
</LAYER>
</LAYER>
</BODY>
</HTML>

src

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Setting the layerObject.src property of a layer that is a member of a layer

family (that is, a family with at least one parent and one child) can be tricky busi-

ness if you’re not careful. Listing 31-7 presents a workspace for you to see how

changing the src property of outer and inner layers affects the scenery.

When you first load the document, one outer layer contains one inner layer (each

with a different background color). Control buttons on the page enable you to set

the layerObject.src property of each layer independently. Changes to the inner

layer content affect only that layer. Long content forces the inner layer to expand its

depth, but the inner layer’s view is automatically clipped by its parent layer.

Changing the outer layer content, however, removes the inner layer completely.

Code in the following listing shows one way to examine for the presence of a

particular layer before attempting to load new content in it. If the inner layer doesn’t

exist, the script creates a new layer on the fly to replace the original inner layer.

document.layerObject.src

4855-7 ch15.F 6/26/01 8:36 AM Page 455

456 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 31-7: Setting Nested Layer Source Content

<HTML>
<HEAD>
<TITLE>Layer Source</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function loadOuter(doc) {

document.outerDisplay.src = doc
}
function loadInner(doc) {

var nested = document.outerDisplay.document.layers
if (nested.length > 0) {

// inner layer exists, so load content or restore
if (doc) {

nested[0].src = doc
} else {

restoreInner(nested[0])
}

} else {
// prompt user about restoring inner layer
if (confirm(“The inner layer has been removed by loading an “ +
“outer document. Restore the original layers?”)) {

restoreLayers(doc)
}

}
}
function restoreLayers(doc) {

// reset appearance of outer layer
document.outerDisplay.bgColor = “coral”
document.outerDisplay.resizeTo(370,190) // sets clip
document.outerDisplay.document.write(“”)
document.outerDisplay.document.close()
// generate new inner layer
var newInner = new Layer(360, document.layers[“outerDisplay”])
newInner.bgColor = “aquamarine”
newInner.moveTo(5,5)
if (doc) {

// user clicked an inner content button
newInner.src = doc

} else {
// return to pristine look
restoreInner(newInner)

}
newInner.visibility = “show”

}
function restoreInner(inner) {

inner.document.write(“<HTML><BODY><P>Placeholder text for raw inner “ +
“layer.</P></BODY></HTML>”)
inner.document.close()
inner.resizeTo(360,180) // sets clip

}
</SCRIPT>

document.layerObject.src

4855-7 ch15.F 6/26/01 8:36 AM Page 456

457Chapter 15 ✦ The NN4 Layer Object (Chapter 31)

</HEAD>
<BODY>
Setting the <TT>layer.src</TT> Property of Nested Layers
<HR>
Click the buttons to see what happens when you load new source documents into
the outer layer and inner
layer objects.<P>
<LAYER TOP=100 BGCOLOR=”coral”>
<FORM>
Load into outer layer:

<INPUT TYPE=”button” VALUE=”Article I” onClick=”loadOuter(‘article1.htm’)”>

<INPUT TYPE=”button” VALUE=”Entire Bill of Rights”
onClick=”loadOuter(‘bofright.htm’)”>

</FORM>
</LAYER>
<LAYER TOP=220 BGCOLOR=”aquamarine”>
<FORM>
Load into inner layer:

<INPUT TYPE=”button” VALUE=”Article I” onClick=”loadInner(‘article1.htm’)”>

<INPUT TYPE=”button” VALUE=”Entire Bill of Rights”
onClick=”loadInner(‘bofright.htm’)”>

<INPUT TYPE=”button” VALUE=”Restore Original” onClick=”loadInner()”>

</FORM>
</LAYER>
<LAYER NAME=”outerDisplay” BGCOLOR=”coral” TOP=100 LEFT=200 WIDTH=370
HEIGHT=190>

<LAYER NAME=”innerDisplay” BGCOLOR=”aquamarine” TOP=5 LEFT=5 WIDTH=360
HEIGHT=180>

<P>Placeholder text for raw inner layer.</P>
</LAYER>

</LAYER>
</BODY>
</HTML>

Restoring the original layers via script (as opposed to reloading the document)

does not perform a perfect restoration. The key difference is that the scripts use

the layerObject.resizeTo() method to set the layers to the height and width

established by the <LAYER> tags that create the layers in the first place. This

method, however, sets the clipping rectangle of the layer — not the layer’s size.

Therefore, if you use the script to restore the layers, loading the longer text file into

either layer does not force the layer to expand to display all the content; the clip-

ping region governs the view.

visibility

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

document.layerObject.visibility

4855-7 ch15.F 6/26/01 8:36 AM Page 457

458 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example
Use the page in Listing 31-8 to see how the layerObject.visibility property

settings affect a pair of nested layers. When the page first loads, the default

inherit setting is in effect. Changes you make to the outer layer by clicking the

outer layer buttons affect the inner layer, but setting the inner layer’s properties to

hide or show severs the visibility relationship between parent and child. Listing

31-19 in the JavaScript Bible shows this example with IE5+ and NN6+ syntax.

Listing 31-8: Nested Layer Visibility Relationships

<HTML>
<HEAD>
<TITLE>Layer Source</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function setOuterVis(type) {

document.outerDisplay.visibility = type
}
function setInnerVis(type) {

document.outerDisplay.document.innerDisplay.visibility = type
}
</SCRIPT>
</HEAD>
<BODY>
Setting the <TT>layer.visibility</TT> Property of Nested Layers
<HR>
Click the buttons to see what happens when you change the visibility of the
outer layer and inner
layer objects.<P>
<LAYER TOP=100 BGCOLOR=”coral”>
<FORM>
Control outer layer property:

<INPUT TYPE=”button” VALUE=”Hide Outer Layer” onClick=”setOuterVis(‘hide’)”>

<INPUT TYPE=”button” VALUE=”Show Outer Layer” onClick=”setOuterVis(‘show’)”>

</FORM>
</LAYER>
<LAYER TOP=220 BGCOLOR=”aquamarine”>
<FORM>
Control inner layer property:

<INPUT TYPE=”button” VALUE=”Hide Inner Layer” onClick=”setInnerVis(‘hide’)”>

<INPUT TYPE=”button” VALUE=”Show Inner Layer” onClick=”setInnerVis(‘show’)”>

<INPUT TYPE=”button” VALUE=”Inherit Outer Layer”
onClick=”setInnerVis(‘inherit’)”>

</FORM>
</LAYER>
<LAYER NAME=”outerDisplay” BGCOLOR=”coral” TOP=100 LEFT=200 WIDTH=370
HEIGHT=190>

<LAYER NAME=”innerDisplay” BGCOLOR=”aquamarine” TOP=5 LEFT=5 WIDTH=360
HEIGHT=180>

<P>Placeholder text for raw inner layer.</P>
</LAYER>

</LAYER>
</BODY>
</HTML>

document.layerObject.visibility

4855-7 ch15.F 6/26/01 8:36 AM Page 458

459Chapter 15 ✦ The NN4 Layer Object (Chapter 31)

zIndex

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
The relationships among the three stacking property values can be difficult to visu-

alize. Listing 31-9 offers a way to see the results of changing the layerObject.zIndex
properties of three overlapping sibling layers. Figure 15-4 shows the beginning organi-

zation of layers after the page loads.

Figure 15-4: A place to play with zIndex property settings

The sequence of the <LAYER> tags in the document governs the original stacking

order. Because the attribute is not set in the HTML, the initial values appear as zero

for all three layers. But, as the page reveals, the layerObject.above and

layerObject.below properties are automatically established. When a layer has no

other layer object above it, the page shows (none). Also, if the layer below the

bottom of the stack is the main window, a strange inner layer name is assigned

(something like _js_layer_21).

To experiment with this page, first make sure you understand the

layerObject.above and layerObject.below readings for the default order of

the layers. Then, assign different orders to the layers with value sequences such as

document.layerObject.zIndex

4855-7 ch15.F 6/26/01 8:36 AM Page 459

460 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

3-2-1, 1-3-2, 2-2-2, and so on. Each time you enter one new value, check the actual

layers to see if their stacking order changed and how that affected the other prop-

erties of all layers. Listing 31-20 in the JavaScript Bible shows how to achieve the

same action with IE5+ and NN6+ syntax.

Listing 31-9: Relationships Among zIndex, above, and below

<HTML>
<HEAD>
<TITLE>Layer zIndex</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function setZ(field) {

switch (field.name) {
case “top” :

document.top.zIndex = parseInt(field.value)
break

case “mid” :
document.middle.zIndex = parseInt(field.value)
break

case “bot” :
document.bottom.zIndex = parseInt(field.value)

}
showValues()

}
function showValues() {

document.layers[0].document.forms[0].bot.value = document.bottom.zIndex
document.layers[1].document.forms[0].mid.value = document.middle.zIndex
document.layers[2].document.forms[0].top.value = document.top.zIndex

document.layers[0].document.forms[0].above.value = (document.bottom.above) ?
document.bottom.above.name : “(none)”

document.layers[1].document.forms[0].above.value = (document.middle.above) ?
document.middle.above.name : “(none)”

document.layers[2].document.forms[0].above.value = (document.top.above) ?
document.top.above.name : “(none)”

document.layers[0].document.forms[0].below.value = (document.bottom.below) ?
document.bottom.below.name : “(none)”

document.layers[1].document.forms[0].below.value = (document.middle.below) ?
document.middle.below.name : “(none)”

document.layers[2].document.forms[0].below.value = (document.top.below) ?
document.top.below.name : “(none)”

}
</SCRIPT>
</HEAD>
<BODY onLoad=”showValues()”>
Setting the <TT>layer.zIndex</TT> Property of Sibling Layers
<HR>
Enter new zIndex values to see the effect on three layers.<P>
<LAYER TOP=90 WIDTH=240 BGCOLOR=”coral”>

document.layerObject.zIndex

4855-7 ch15.F 6/26/01 8:36 AM Page 460

461Chapter 15 ✦ The NN4 Layer Object (Chapter 31)

<FORM>
Control Original Bottom Layer:

<TABLE>
<TR><TD ALIGN=”right”>Layer zIndex:</TD><TD><INPUT TYPE=”text” NAME=”bot” SIZE=3
onChange=”setZ(this)”></TD></TR>
<TR><TD ALIGN=”right”>Layer above:</TD><TD><INPUT TYPE=”text” NAME=”above”
SIZE=13></TD></TR>
<TR><TD ALIGN=”right”>Layer below:</TD><TD><INPUT TYPE=”text” NAME=”below”
SIZE=13></TD></TR>
</TABLE>
</FORM>
</LAYER>
<LAYER TOP=220 WIDTH=240 BGCOLOR=”aquamarine”>
<FORM>
Control Original Middle Layer:

<TABLE>
<TR><TD ALIGN=”right”>Layer zIndex:</TD><TD><INPUT TYPE=”text” NAME=”mid” SIZE=3
onChange=”setZ(this)”></TD></TR>
<TR><TD ALIGN=”right”>Layer above:</TD><TD><INPUT TYPE=”text” NAME=”above”
SIZE=13></TD></TR>
<TR><TD ALIGN=”right”>Layer below:</TD><TD><INPUT TYPE=”text” NAME=”below”
SIZE=13></TD></TR>
</TABLE></FORM>
</LAYER>
<LAYER TOP=350 WIDTH=240 BGCOLOR=”yellow”>
<FORM>
Control Original Top Layer:

<TABLE><TR><TD ALIGN=”right”>Layer zIndex:</TD><TD><INPUT TYPE=”text” NAME=”top”
SIZE=3 onChange=”setZ(this)”></TD></TR>
<TR><TD ALIGN=”right”>Layer above:</TD><TD><INPUT TYPE=”text” NAME=”above”
SIZE=13></TD></TR>
<TR><TD ALIGN=”right”>Layer below:</TD><TD><INPUT TYPE=”text” NAME=”below”
SIZE=13></TD></TR>
</TABLE>
</FORM>
</LAYER>
<LAYER NAME=”bottom” BGCOLOR=”coral” TOP=90 LEFT=260 WIDTH=300 HEIGHT=190>

<P>Original Bottom Layer</P>
</LAYER>

<LAYER NAME=”middle” BGCOLOR=”aquamarine” TOP=110 LEFT=280 WIDTH=300
HEIGHT=190>
<P>Original Middle Layer</P>

</LAYER>
<LAYER NAME=”top” BGCOLOR=”yellow” TOP=130 LEFT=300 WIDTH=300 HEIGHT=190>

<P>Original Top Layer</P>
</LAYER>
</LAYER>
</BODY>
</HTML>

document.layerObject.zIndex

4855-7 ch15.F 6/26/01 8:36 AM Page 461

462 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Methods
load(“URL”, newLayerWidth)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Buttons in Listing 31-10 enable you to load short and long documents into a

layer. The first two buttons don’t change the width (in fact, the second parameter

to layerObject.load() is the layerObject.clip.left value). For the second

two buttons, a narrower width than the original is specified. Click the Restore but-

ton frequently to return to a known state.

Listing 31-10: Loading Documents into Layers

<HTML>
<HEAD>
<TITLE>Layer Loading</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function loadDoc(URL,width) {

if (!width) {
width = document.myLayer.clip.width

}
document.myLayer.load(URL, width)

}
</SCRIPT>
</HEAD>
<BODY>
Loading New Documents
<HR>
<LAYER TOP=90 WIDTH=240 BGCOLOR=”yellow”>
<FORM>
Loading new documents:

<INPUT TYPE=”button” VALUE=”Small Doc/Existing Width”
onClick=”loadDoc(‘article1.htm’)”>

<INPUT TYPE=”button” VALUE=”Large Doc/Existing Width”
onClick=”loadDoc(‘bofright.htm’)”><P>
<INPUT TYPE=”button” VALUE=”Small Doc/Narrower Width”
onClick=”loadDoc(‘article1.htm’,200)”>

<INPUT TYPE=”button” VALUE=”Large Doc/Narrower Width”
onClick=”loadDoc(‘bofright.htm’,200)”><P>
<INPUT TYPE=”button” VALUE=”Restore” onClick=”location.reload()”></FORM>
</LAYER>
<LAYER NAME=”myLayer” BGCOLOR=”yellow” TOP=90 LEFT=300 WIDTH=300 HEIGHT=190>

<P>Text loaded in original document.</P>

document.layerObject.load()

4855-7 ch15.F 6/26/01 8:36 AM Page 462

463Chapter 15 ✦ The NN4 Layer Object (Chapter 31)

</LAYER>
</BODY>
</HTML>

moveAbove(layerObject)
moveBelow(layerObject)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
You can see the layerObject.moveAbove() method at work in Listing 31-1.

moveBy(deltaX,deltaY)
moveTo(x,y)
moveToAbsolute(x,y)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
Listing 31-11 shows a demonstration of the layerObject.moveTo() method. It

is a simple script that enables you to click and drag a layer around the screen. The

script employs the coordinate values of the mouseMove event; after compensating

for the offset within the layer at which the click occurs, the script moves the layer

to track the mouse action.

I want to present this example for an additional reason: to explain an important

user interface difference between Windows and Macintosh versions of NN4. In

Windows versions, you can click and hold the mouse button down on an object and

let the object receive all the mouseMove events as you drag the cursor around the

screen. On the Macintosh, however, NN4 tries to compensate for the lack of a sec-

ond mouse button by popping up a context-sensitive menu at the cursor position

when the user holds the mouse button down for more than just a click. To prevent

the pop-up menu from appearing, the engage() method invoked by the

onMouseDown event handler ends with return false.

Notice in the following listing how the layer captures a number of mouse events.

Each one plays an important role in creating a mode that is essentially like a

mouseStillDown event (which doesn’t exist in NN4’s event model). The mouseDown
event sets a Boolean flag (engaged) indicating that the user clicked down in the

document.layerObject.moveBy()

4855-7 ch15.F 6/26/01 8:36 AM Page 463

464 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

layer. At the same time, the script records how far away from the layer’s top-left

corner the mouseDown event occurred. This offset information is needed so that any

setting of the layer’s location takes this offset into account (otherwise, the top-left

corner of the layer would jump to the cursor position and be dragged from there).

During the drag (mouseDown events firing with each mouse movement), the

dragIt() function checks whether the drag mode is engaged. If so, the layer is

moved to the page location calculated by subtracting the original downstroke offset

from the mouseMove event location on the page. When the user releases the mouse

button, the mouseUp event turns off the drag mode Boolean value. Listing 31-21 in

the JavaScript Bible shows a version of this example for IE5+ and NN6.

Listing 31-11: Dragging a Layer

<HTML>
<HEAD>
<TITLE>Layer Dragging</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var engaged = false
var offsetX = 0
var offsetY = 0
function dragIt(e) {

if (engaged) {
document.myLayer.moveTo(e.pageX - offsetX, e.pageY - offsetY)

}
}
function engage(e) {

engaged = true
offsetX = e.pageX - document.myLayer.left
offsetY = e.pageY - document.myLayer.top
return false

}
function release() {

engaged = false
}
</SCRIPT>
</HEAD>
<BODY>
Dragging a Layer
<HR>
<LAYER NAME=”myLayer” BGCOLOR=”lightgreen” TOP=90 LEFT=100 WIDTH=300 HEIGHT=190>

<P>Drag me around the window.</P>
</LAYER>
<SCRIPT LANGUAGE=”JavaScript”>
document.myLayer.captureEvents(Event.MOUSEDOWN | Event.MOUSEUP |
Event.MOUSEMOVE)
document.myLayer.onMouseDown = engage
document.myLayer.onMouseUp = release
document.myLayer.onMouseMove = dragIt
</SCRIPT>
</BODY>
</HTML>

document.layerObject.moveBy()

4855-7 ch15.F 6/26/01 8:36 AM Page 464

465Chapter 15 ✦ The NN4 Layer Object (Chapter 31)

resizeBy(deltaX,deltaY)
resizeTo(width,height)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility �

Example
It is important to understand the ramifications of content flow when these two

methods resize a layer. Listing 31-12a (and the companion document Listing 31-12b)

shows you how to set the lower-right corner of a layer to be dragged by a user for

resizing the layer (much like grabbing the resize corner of a document window).

Three radio buttons enable you to choose whether and when the content should be

redrawn to the layer — never, after resizing, or during resizing.

Event capture is very much like that in Listing 31-11 for layer dragging. The pri-

mary difference is that drag mode is engaged only when the mouse event takes

place in the region of the lower-right corner. A different kind of offset value is saved

here because, for resizing, the script needs to know the mouse event offset from the

right and bottom edges of the layer.

Condition statements in the resizeIt() and release() functions verify

whether a specific radio button is checked to determine when (or if) the content

should be redrawn. I designed this page with the knowledge that its content might

be redrawn. Therefore, I built the content of the layer as a separate HTML docu-

ment that loads in the <LAYER> tag.

Redrawing the content requires reloading the document into the layer. I use the

layerObject.load() method because I want to send the current

layerObject.clip.width as a parameter for the width of the clip region to

accommodate the content as it loads.

An important point to know about reloading content into a layer is that all prop-

erty settings for the layer’s event capture are erased when the document loads.

Overcoming this behavior requires setting the layer’s onLoad event handler to set

the layer’s event capture mechanism. If the layer event capturing is specified as part

of the statements at the end of the document, the layer ignores some important

events needed for the dynamic resizing after the document reloads the first time.

As you experiment with the different ways to resize and redraw, you see that

redrawing during resizing is a slow process because of the repetitive loading (from

cache) needed each time. On slower client machines, it is easy for the cursor to

outrun the layer region, causing the layer to not get mouseOver events at all. It may

not be the best-looking solution, but I prefer to redraw after resizing the layer.

Listing 31-22 in the JavaScript Bible shows a version designed for the IE5+ and

NN6 object models. Because content automatically reflows in those browsers,

you do not have to load the content of the positioned element from an external

document.

document.layerObject.resizeBy()

4855-7 ch15.F 6/26/01 8:36 AM Page 465

466 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 31-12a: Resizing a Layer

<HTML>
<HEAD>
<TITLE>Layer Resizing</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var engaged = false
var offsetX = 0
var offsetY = 0
function resizeIt(e) {

if (engaged) {
document.myLayer.resizeTo(e.pageX + offsetX, e.pageY + offsetY)
if (document.forms[0].redraw[2].checked) {

document.myLayer.load(“lst31-12b.htm”, document.myLayer.clip.width)
}

}
}
function engage(e) {

if (e.pageX > (document.myLayer.clip.right - 10) &&
e.pageY > (document.myLayer.clip.bottom - 10)) {
engaged = true
offsetX = document.myLayer.clip.right - e.pageX
offsetY = document.myLayer.clip.bottom - e.pageY

}
}
function release() {

if (engaged && document.forms[0].redraw[1].checked) {
document.myLayer.load(“lst31-12b.htm”, document.myLayer.clip.width)

}
engaged = false

}
function grabEvents() {

document.myLayer.captureEvents(Event.MOUSEDOWN | Event.MOUSEUP |
Event.MOUSEMOVE)
}
</SCRIPT>
</HEAD>
<BODY>
Resizing a Layer
<HR>
<FORM>
Redraw layer content:

<INPUT TYPE=”radio” NAME=”redraw” CHECKED>Never
<INPUT TYPE=”radio” NAME=”redraw”>After resize
<INPUT TYPE=”radio” NAME=”redraw”>During resize
</FORM>
<LAYER NAME=”myLayer” SRC=”lst31-12b.htm” BGCOLOR=”lightblue” TOP=120 LEFT=100
WIDTH=300 HEIGHT=190 onLoad=”grabEvents()”>
</LAYER>
<SCRIPT LANGUAGE=”JavaScript”>

document.layerObject.resizeBy()

4855-7 ch15.F 6/26/01 8:36 AM Page 466

467Chapter 15 ✦ The NN4 Layer Object (Chapter 31)

document.myLayer.onMouseDown = engage
document.myLayer.onMouseUp = release
document.myLayer.onMouseMove = resizeIt
</SCRIPT>
</BODY>
</HTML>

Listing 31-12b: Content for the Resizable Layer

<HTML>
<BODY>

<P>Resize me by dragging the lower-right corner.</P>
<SCRIPT LANGUAGE=”JavaScript”>
if (navigator.userAgent.indexOf(“Mac”) != -1) {

document.write(“(Mac users: Ctrl-Click me first; then Click to stop
dragging.)”)

}
</SCRIPT>

</BODY>
</HTML>

✦ ✦ ✦

document.layerObject.resizeBy()

4855-7 ch15.F 6/26/01 8:36 AM Page 467

4855-7 ch15.F 6/26/01 8:36 AM Page 468

String and
Number Objects
(Chapters 34
and 35)

Knowing how to manipulate strings of text characters is a

vital programming skill. You may not have to do it all

the time, but you should be fully aware of the possibilities for

this manipulation that are built into whatever programming

language you use. In JavaScript (as in any object-based or

object-oriented language), strings are objects that have

numerous properties and methods to assist in assembling,

tearing apart, extracting, and copying chunks of strings.

Any characters that users enter into text boxes become

parts of string objects. In IE4+ and NN6, text inside HTML

element tags can be treated as strings. In IE4+, you can even

work with the HTML tags as strings. Therefore, of all the core

language objects to implant in your scripting consciousness,

the string object is it (arrays, whose examples come in the

next chapter of this book, rank Number Two on the list).

Numbers are much less frequently thought of as objects

because they tend to be used as-is for calculations. JavaScript

1.5 in recent browsers, however, endows the number object

with practical methods, especially one that (finally) offers

built-in control over the number of digits displayed to the

right of the decimal point for floating-point numbers.

When examples in this chapter encourage you to enter a

sequence of expressions in The Evaluator, be sure to follow

through with every step. But also make sure you understand

the results of each expression in order to visualize the partic-

ular method operates.

1616C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Parsing text at the
character level

Performing search-
and-replace
operations with
regular expressions

Converting between
character codes and
text

Setting number
format and precision

✦ ✦ ✦ ✦

4855-7 ch16.F 6/26/01 8:37 AM Page 469

470 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Examples Highlights
✦ Study the code and operation of Listing 34-2 to see how to use JavaScript to

convert characters to character codes and vice versa. Converting ASCII or

Unicode numeric values to their corresponding characters requires the

String.fromCharCode() method of the static String object.

✦ Compare the sequence of steps for the string.indexOf() and

string.lastIndexOf() methods to grasp fully the behavior of each and the

differences between them.

✦ Listing 34-4 lets you experiment with the string.replace() and

string.search() methods, both of which utilize regular expression powers

available in JavaScript 1.2 of NN4+ and IE4+. Notice how the script functions

assemble the regular expression objects with global modifiers.

✦ Walk through the steps of the string.split() method example to convert a

string to an array.

✦ Compare the behaviors and coding of Listings 34-6 and 34-7 to distinguish the

subtle differences between the string.substr() and string.substring()
methods.

✦ Study the example for string.toLowerCase() and string.toUpperCase()
to see how to remove case sensitivity issues for some operations.

✦ Convert a long floating-point number to a dollars-and-cents string by following

the steps for the number.toFixed() method.

String Object
Properties

constructor

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to test the value of the

constructor property. Enter the following statements into the top text box:

a = new String(“abcd”)
a.constructor == String
a.constructor == Number

stringObject.constructor

4855-7 ch16.F 6/26/01 8:37 AM Page 470

471Chapter 16 ✦ String and Number Objects (Chapters 34 and 35)

Parsing methods
string.charAt(index)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Enter each of the following statements into the top text box of The Evaluator:

a = “banana daiquiri”
a.charAt(0)
a.charAt(5)
a.charAt(6)
a.charAt(20)

Results from each of the charAt() methods should be b, a (the third “a” in

“banana”), a space character, and an empty string, respectively.

string.charCodeAt([index])
String.fromCharCode(num1 [, num2 [, ...
numn]])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Example
Listing 34-2 provides examples of both methods on one page. Moreover, because

one of the demonstrations relies on the automatic capture of selected text on the

page, the scripts include code to accommodate the different handling of selection

events and capture of the selected text in Navigator and Internet Explorer 4.

After you load the page, select part of the body text anywhere on the page. If you

start the selection with the lowercase letter “a,” the character code displays as 97.

If you select no text, the result is NaN.

Try entering numeric values in the three fields at the bottom of the page. Values

below 32 are ASCII control characters that most fonts represent as hollow squares.

But try all other values to see what you get. Notice that the script passes all three

values as a group to the String.fromCharCode() method, and the result is a com-

bined string. Thus, Figure 16-1 shows what happens when you enter the uppercase

ASCII values for a three-letter animal name.

stringObject.charCodeAt()

4855-7 ch16.F 6/26/01 8:37 AM Page 471

472 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 34-2: Character Conversions

<HTML>
<HEAD>
<TITLE>Character Codes</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var isNav = (navigator.appName == “Netscape”)
var isNav4 = (isNav && parseInt(navigator.appVersion == 4))
function showCharCode() {

if (isNav) {
var theText = document.getSelection()

} else {
var theText = document.selection.createRange().text

}
if (theText) {

document.forms[0].charCodeDisplay.value = theText.charCodeAt()
} else {

document.forms[0].charCodeDisplay.value = “ “
}

}
function showString(form) {

form.result.value =
String.fromCharCode(form.entry1.value,form.entry2.value,form.entry3.value)
}
if (isNav4) {

document.captureEvents(Event.MOUSEUP)
}
document.onmouseup = showCharCode
</SCRIPT>
</HEAD>
<BODY>
Capturing Character Codes
<FORM>
Select any of this text, and see the character code of the first character.<P>
Character Code:<INPUT TYPE=”text” NAME=”charCodeDisplay” SIZE=3>

<HR>
Converting Codes to Characters

Enter a value 0-255:<INPUT TYPE=”text” NAME=”entry1” SIZE=4>

Enter a value 0-255:<INPUT TYPE=”text” NAME=”entry2” SIZE=4>

Enter a value 0-255:<INPUT TYPE=”text” NAME=”entry3” SIZE=4>

<INPUT TYPE=”button” VALUE=”Show String” onClick=”showString(this.form)”>
Result:<INPUT TYPE=”text” NAME=”result” SIZE=5>
</FORM>
</BODY>
</HTML>

stringObject.charCodeAt()

4855-7 ch16.F 6/26/01 8:37 AM Page 472

473Chapter 16 ✦ String and Number Objects (Chapters 34 and 35)

Figure 16-1: Conversions from text characters to ASCII values and
vice versa

string.indexOf(searchString [, startIndex])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Enter each of the following statements (up to, but not including the “//” comment

symbols) into the top text box of The Evaluator (you can simply replace the param-

eters of the indexOf() method for each statement after the first one). Compare

your results with the results shown below.

a = “bananas”
a.indexOf(“b”) // result = 0 (index of 1st letter is zero)
a.indexOf(“a”) // result = 1
a.indexOf(“a”,1) // result = 1 (start from 2nd letter)
a.indexOf(“a”,2) // result = 3 (start from 3rd letter)
a.indexOf(“a”,4) // result = 5 (start from 5th letter)
a.indexOf(“nan”) // result = 2
a.indexOf(“nas”) // result = 4
a.indexOf(“s”) // result = 6
a.indexOf(“z”) // result = -1 (no “z” in string)

stringObject.indexOf()

4855-7 ch16.F 6/26/01 8:37 AM Page 473

474 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

string.lastIndexOf(searchString[,
startIndex])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Enter each of the following statements (up to, but not including the “//” comment

symbols) into the top text box of The Evaluator (you can simply replace the param-

eters of the lastIndexOf() method for each statement after the first one).

Compare your results with the results shown below.

a = “bananas”
a.lastIndexOf(“b”) // result = 0 (index of 1st letter is zero)
a.lastIndexOf(“a”) // result = 5
a.lastIndexOf(“a”,1) // result = 1 (from 2nd letter toward the front)
a.lastIndexOf(“a”,2) // result = 1 (start from 3rd letter working toward front)
a.lastIndexOf(“a”,4) // result = 3 (start from 5th letter)
a.lastIndexOf(“nan”) // result = 2 [except for -1 Nav 2.0 bug]
a.lastIndexOf(“nas”) // result = 4
a.lastIndexOf(“s”) // result = 6
a.lastIndexOf(“z”) // result = -1 (no “z” in string)

string.match(regExpression)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Example
To help you understand the string.match() method, Listing 34-3 provides a

workshop area for experimentation. Two fields occur for data entry: the first is for

the long string to be examined by the method; the second is for a regular expres-

sion. Some default values are provided in case you’re not yet familiar with the syn-

tax of regular expressions (see Chapter 38 of the JavaScript Bible). A check box lets

you specify whether the search through the string for matches should be case-

sensitive. After you click the “Execute match()” button, the script creates a regular

expression object out of your input, performs the string.match() method on the

big string, and reports two kinds of results to the page. The primary result is a

string version of the array returned by the method; the other is a count of items

returned.

stringObject.match()

4855-7 ch16.F 6/26/01 8:37 AM Page 474

475Chapter 16 ✦ String and Number Objects (Chapters 34 and 35)

Listing 34-3: Regular Expression Match Workshop

<HTML>
<HEAD>
<TITLE>Regular Expression Match</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function doMatch(form) {

var str = form.entry.value
var delim = (form.caseSens.checked) ? “/g” : “/gi”
var regexp = eval(“/” + form.regexp.value + delim)
var resultArray = str.match(regexp)
if (resultArray) {

form.result.value = resultArray.toString()
form.count.value = resultArray.length

} else {
form.result.value = “<no matches>”
form.count.value = “”

}
}
</SCRIPT>
</HEAD>
<BODY>
String Match with Regular Expressions
<HR>
<FORM>
Enter a main string:<INPUT TYPE=”text” NAME=”entry” SIZE=60
VALUE=”Many a maN and womAN have meant to visit GerMAny.”>

Enter a regular expression to match:<INPUT TYPE=”text” NAME=”regexp” SIZE=25
VALUE=”\wa\w”>

<INPUT TYPE=”checkbox” NAME=”caseSens”>Case-sensitive<P>
<INPUT TYPE=”button” VALUE=”Execute match()” onClick=”doMatch(this.form)”>
<INPUT TYPE=”reset”><P>
Result:<INPUT TYPE=”text” NAME=”result” SIZE=40>

Count:<INPUT TYPE=”text” NAME=”count” SIZE=3>

</FORM>
</BODY>
</HTML>

The default value for the main string has unusual capitalization intentionally. The

capitalization lets you see more clearly where some of the matches come from. For

example, the default regular expression looks for any three-character string that

has the letter “a” in the middle. Six string segments match that expression. With the

help of capitalization, you can see where each of the four strings containing “man”

are extracted from the main string. The following table lists some other regular

expressions to try with the default main string.

stringObject.match()

4855-7 ch16.F 6/26/01 8:37 AM Page 475

476 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

RegExp Description

man Both case-sensitive and not

man\b Where “man” is at the end of a word

\bman Where “man” is at the start of a word

me*an Where zero or more “e” letters occur between “m” and “a”

.a. Where “a” is surrounded by any one character (including
space)

\sa\s Where “a” is surrounded by a space on both sides

z Where a “z” occurs (none in the default string)

In the scripts for Listing 34-3, if the string.match() method returns null, you

are informed politely, and the count field is emptied.

string.replace(regExpression, replaceString)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Example
The page in Listing 34-4 lets you practice with the string.replace() and

string.search() methods and regular expressions in a friendly environment. The

source text is a five-line excerpt from Hamlet. You can enter the regular expression

to search for, and the replacement text as well. Note that the script completes the

job of creating the regular expression object, so that you can focus on the other

special characters used to define the matching string. All replacement activities act

globally, because the g parameter is automatically appended to any expression you

enter.

Default values in the fields replace the contraction ‘tis with “it is” after you click

the “Execute replace()” button (see Figure 16-2). Notice that the backslash charac-

ter in front of the apostrophe of ‘tis (in the string assembled in mainString) makes

the apostophe a non-word boundary, and thus allows the \B’t regular expression

to find a match there. As described in the section on the string.search()
method, the button connected to that method returns the offset character number

of the matching string (or -1 if no match occurs).

stringObject.replace()

4855-7 ch16.F 6/26/01 8:37 AM Page 476

477Chapter 16 ✦ String and Number Objects (Chapters 34 and 35)

Figure 16-2: Using the default replacement regular expression

You could modify the listing so that it actually replaces text in the HTML para-

graph for IE4+ and NN6. The steps include wrapping the paragraph in its own ele-

ment (for example, a SPAN), and invoking the replace() method on the

innerHTML of that element. Assign the results to the innerHTML property of that

element to complete the job.

Listing 34-4: Lab for string.replace() and string.search()

<HTML>
<HEAD>
<TITLE>Regular Expression Replace and Search</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var mainString = “To be, or not to be: that is the question:\n”
mainString += “Whether \’tis nobler in the mind to suffer\n”
mainString += “The slings and arrows of outrageous fortune,\n”
mainString += “Or to take arms against a sea of troubles,\n”
mainString += “And by opposing end them.”

function doReplace(form) {
var replaceStr = form.replaceEntry.value
var delim = (form.caseSens.checked) ? “/g” : “/gi”
var regexp = eval(“/” + form.regexp.value + delim)
form.result.value = mainString.replace(regexp, replaceStr)

}

Continued

stringObject.replace()

4855-7 ch16.F 6/26/01 8:37 AM Page 477

478 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 34-4 (continued)

function doSearch(form) {
var replaceStr = form.replaceEntry.value
var delim = (form.caseSens.checked) ? “/g” : “/gi”
var regexp = eval(“/” + form.regexp.value + delim)
form.result.value = mainString.search(regexp)

}
</SCRIPT>
</HEAD>
<BODY>
String Replace and Search with Regular Expressions
<HR>
Text used for string.replace() and string.search() methods:

To be, or not to be: that is the question:

Whether ‘tis nobler in the mind to suffer

The slings and arrows of outrageous fortune,

Or to take arms against a sea of troubles,

And by opposing end them.

<FORM>
Enter a regular expression to match:<INPUT TYPE=”text” NAME=”regexp” SIZE=25
VALUE=”\B’t”>
<INPUT TYPE=”checkbox” NAME=”caseSens”>Case-sensitive

Enter a string to replace the matching strings:<INPUT TYPE=”text”
NAME=”replaceEntry” SIZE=30 VALUE=”it “><P>
<INPUT TYPE=”button” VALUE=”Execute replace()” onClick=”doReplace(this.form)”>
<INPUT TYPE=”reset”>
<INPUT TYPE=”button” VALUE=”Execute search()” onClick=”doSearch(this.form)”><P>
Result:

<TEXTAREA NAME=”result” COLS=60 ROWS=5 WRAP=”virtual”></TEXTAREA>
</FORM>
</BODY>
</HTML>

string.search(regExpression)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Example
Listing 34-4, for the string.replace() method, also provides a laboratory to

experiment with the string.search() method.

stringObject.search()

4855-7 ch16.F 6/26/01 8:37 AM Page 478

479Chapter 16 ✦ String and Number Objects (Chapters 34 and 35)

string.slice(startIndex [, endIndex])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Example
With Listing 34-5, you can try several combinations of parameters with the

string.slice() method (see Figure 16-3). A base string is provided (along with

character measurements). Select from the different choices available for parame-

ters and study the outcome of the slice.

Listing 34-5: Slicing a String

<HTML>
<HEAD>
<TITLE>String Slicing and Dicing, Part I</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var mainString = “Electroencephalograph”
function showResults() {

var form = document.forms[0]
var param1 = parseInt(form.param1.options[form.param1.selectedIndex].value)
var param2 = parseInt(form.param2.options[form.param2.selectedIndex].value)
if (!param2) {

form.result1.value = mainString.slice(param1)
} else {

form.result1.value = mainString.slice(param1, param2)
}

}
</SCRIPT>
</HEAD>
<BODY onLoad=”showResults()”>
String slice() Method
<HR>
Text used for the methods:

<TT>Electroencephalograph

----5----5----5----5-</TT>
<TABLE BORDER=1>
<FORM>
<TR><TH>String Method</TH><TH>Method Parameters</TH><TH>Results</TH></TR>
<TR>
<TD>string.slice()</TD><TD ROWSPAN=3 VALIGN=middle>
(<SELECT NAME=”param1” onChange=”showResults()”>

<OPTION VALUE=0>0
<OPTION VALUE=1>1
<OPTION VALUE=2>2
<OPTION VALUE=3>3
<OPTION VALUE=5>5

Continued

stringObject.slice()

4855-7 ch16.F 6/26/01 8:37 AM Page 479

480 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 34-5 (continued)

</SELECT>,
<SELECT NAME=”param2” onChange=”showResults()”>

<OPTION >(None)
<OPTION VALUE=5>5
<OPTION VALUE=10>10
<OPTION VALUE=-1>-1
<OPTION VALUE=-5>-5
<OPTION VALUE=-10>-10

</SELECT>) </TD>
<TD><INPUT TYPE=”text” NAME=”result1” SIZE=25></TD>
</TR>
</FORM>
</TABLE>
</BODY>
</HTML>

Figure 16-3: Lab for exploring the string.slice() method

string.split(“delimiterCharacter” [,
limitInteger])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to see how the

string.split() method works. Begin by assigning a comma-delimited string to a

variable:

stringObject.split()

4855-7 ch16.F 6/26/01 8:37 AM Page 480

481Chapter 16 ✦ String and Number Objects (Chapters 34 and 35)

a = “Anderson,Smith,Johnson,Washington”

Now split the string at comma positions so that the string pieces become items

in an array, saved as b:

b = a.split(“,”)

To prove that the array contains four items, inspect the array’s length property:

b.length // result: 4

string.substr(start [, length])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Example
Listing 34-6 lets you experiment with a variety of values to see how the

string.substr() method works.

Listing 34-6: Reading a Portion of a String

<HTML>
<HEAD>
<TITLE>String Slicing and Dicing, Part II</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var mainString = “Electroencephalograph”
function showResults() {

var form = document.forms[0]
var param1 = parseInt(form.param1.options[form.param1.selectedIndex].value)
var param2 = parseInt(form.param2.options[form.param2.selectedIndex].value)
if (!param2) {

form.result1.value = mainString.substr(param1)
} else {

form.result1.value = mainString.substr(param1, param2)
}

}
</SCRIPT>
</HEAD>
<BODY onLoad=”showResults()”>
String substr() Method
<HR>
Text used for the methods:

<TT>Electroencephalograph

----5----5----5----5-</TT>
<TABLE BORDER=1>
<FORM>
<TR><TH>String Method</TH><TH>Method Parameters</TH><TH>Results</TH></TR>
<TR>

Continued

stringObject.substr()

4855-7 ch16.F 6/26/01 8:37 AM Page 481

482 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 34-6 (continued)

<TD>string.substr()</TD><TD ROWSPAN=3 VALIGN=middle>
(<SELECT NAME=”param1” onChange=”showResults()”>

<OPTION VALUE=0>0
<OPTION VALUE=1>1
<OPTION VALUE=2>2
<OPTION VALUE=3>3
<OPTION VALUE=5>5

</SELECT>,
<SELECT NAME=”param2” onChange=”showResults()”>

<OPTION >(None)
<OPTION VALUE=5>5
<OPTION VALUE=10>10
<OPTION VALUE=20>20

</SELECT>) </TD>
<TD><INPUT TYPE=”text” NAME=”result1” SIZE=25></TD>
</TR>
</FORM>
</TABLE>
</BODY>
</HTML>

string.substring(indexA, indexB)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

Example
Listing 34-7 lets you experiment with a variety of values to see how the

string.substring() method works. If you are using Navigator 4, try changing the

LANGUAGE attribute of the script to JavaScript1.2 and see the different behavior

when you set the parameters to 5 and 3. The parameters switch themselves, essen-

tially letting the second index value become the beginning of the extracted substring.

Listing 34-7: Reading a Portion of a String

<HTML>
<HEAD>
<TITLE>String Slicing and Dicing, Part III</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var mainString = “Electroencephalograph”
function showResults() {

stringObject.substring()

4855-7 ch16.F 6/26/01 8:37 AM Page 482

483Chapter 16 ✦ String and Number Objects (Chapters 34 and 35)

var form = document.forms[0]
var param1 = parseInt(form.param1.options[form.param1.selectedIndex].value)
var param2 = parseInt(form.param2.options[form.param2.selectedIndex].value)
if (!param2) {

form.result1.value = mainString.substring(param1)
} else {

form.result1.value = mainString.substring(param1, param2)
}

}
</SCRIPT>
</HEAD>
<BODY onLoad=”showResults()”>
String substr() Method
<HR>
Text used for the methods:

<TT>Electroencephalograph

----5----5----5----5-</TT>
<TABLE BORDER=1>
<FORM>
<TR><TH>String Method</TH><TH>Method Parameters</TH><TH>Results</TH></TR>
<TR>
<TD>string.substring()</TD><TD>
(<SELECT NAME=”param1” onChange=”showResults()”>

<OPTION VALUE=0>0
<OPTION VALUE=1>1
<OPTION VALUE=2>2
<OPTION VALUE=3>3
<OPTION VALUE=5>5

</SELECT>,
<SELECT NAME=”param2” onChange=”showResults()”>

<OPTION >(None)
<OPTION VALUE=3>3
<OPTION VALUE=5>5
<OPTION VALUE=10>10

</SELECT>) </TD>
<TD><INPUT TYPE=”text” NAME=”result1” SIZE=25></TD>
</TR>
</FORM>
</TABLE>
</BODY>
</HTML>

string.toLowerCase()
string.toUpperCase()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � � � �

stringObject.toLowerCase()

4855-7 ch16.F 6/26/01 8:37 AM Page 483

484 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Example
You can use the toLowerCase() and toUpperCase() methods on literal strings,

as follows:

var newString = “HTTP://www.Netscape.COM”.toLowerCase()
// result = “http://www.netscape.com”

The methods are also helpful in comparing strings when case is not important, as

follows:

if (guess.toUpperCase() == answer.toUpperCase()) {...}
// comparing strings without case sensitivity

string.toString()
string.valueOf()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Examples
Use The Evaluator to test the valueOf() method. Enter the following statements

into the top text box and examine the values that appear in the Results field:

a = new String(“hello”)
typeof a
b = a.valueOf()
typeof b

Because all other JavaScript core objects also have the valueOf() method, you can

build generic functions that receive a variety of object types as parameters, and the

script can branch its code based on the type of value that is stored in the object.

Number Object
Properties

MAX_VALUE
MIN_VALUE
NEGATIVE_INFINITY
POSITIVE_INFINITY

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � �

Number.MAX_VALUE

4855-7 ch16.F 6/26/01 8:37 AM Page 484

485Chapter 16 ✦ String and Number Objects (Chapters 34 and 35)

Example
Enter each of the four Number object expressions into the top text field of The

Evaluator to see how the browser reports each value.

Number.MAX_VALUE
Number.MIN_VALUE
Number.NEGATIVE_INFINITY
Number.POSITIVE_INFINITY

Methods
number.toExponential(fractionDigits)
number.toFixed(fractionDigits)
number.toPrecision(precisionDigits)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � �

Example
You can use The Evaluator to experiment with all three of these methods with a

variety of parameter values. Before invoking any method, be sure to assign a

numeric value to one of the built-in global variables in The Evaluator (a through z).

a = 10/3
a.toFixed(4)
“$” + a.toFixed(2)

None of these methods works with number literals (for example,

123.toExponential(2) does not work).

number.toString([radix])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � �

Example
Use The Evaluator to experiment with the toString() method. Assign the num-

ber 12 to the variable a and see how the number is converted to strings in a variety

of number bases:

a = 12
a.toString() // base 10
a.toString(2)
a.toString(16)

✦ ✦ ✦

numberObject.toString()

4855-7 ch16.F 6/26/01 8:37 AM Page 485

4855-7 ch16.F 6/26/01 8:37 AM Page 486

The Array Object
(Chapter 37)

Whenever you are faced with having to manage any

kind of list or series of related data chunks, the first

technique to turn to is stuffing those chunks into an array.

Once the data is inside an array, your scripts can then per-

form quick and easy lookups, based on for loops through

numerically indexed arrays, or via instant searching with the

help of string indexes (à la Java hash tables).

As the examples in this chapter demonstrate, the

JavaScript array object features numerous methods to facili-

tate managing the data inside an array. It also helps that

JavaScript is loose enough to allow arrays to grow or shrink

as their data requires.

Perhaps the two most important features of JavaScript

arrays to have in your hip pocket are converting arrays to

delimited string objects and sorting. Conversion to strings is

important when you wish to transport data from an array to

another venue that passes only strings, such as passing data

to another page via the URL search string. At the receiving

end, a script converts the search string to an array through

the inverse operation provided by the string.split()
method.

JavaScript’s array sorting feature is remarkably powerful and

flexible. Even if the array consists of objects, you can sort the

array based on values assigned to properties of those objects.

Examples Highlights
✦ Convert an array into a delimited string via the code

shown in Listing 37-7.

✦ To flip the order of an array without resorting to sorting,

see Example 37-8 for the array.reverse() method.

✦ Listing 37-9 demonstrates a few important aspects of the

array.sort() method. In addition to the traditional

alphabetical sorting, one of the sorting functions oper-

ates on the length property of the string object stored

in each entry of the array. Powerful stuff with very little

code.

1717C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Converting an array
to a delimited string

Sorting arrays

Combining arrays
and replacing items
in an array

✦ ✦ ✦ ✦

4855-7 ch17.F 6/26/01 8:37 AM Page 487

488 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

✦ Walk through the steps for the array.splice() method to observe how

JavaScript in NN4+ and IE5.5+ can replace entries inside an array. One exam-

ple replaces three items with one, indicating that you are not bound to main-

taining the same array length.

Array Object Methods
array.concat(array2)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � �

Example
Listing 37-6 is a bit complex, but it demonstrates both how arrays can be joined

with the array.concat() method and how values and objects in the source arrays

do or do not propagate based on their data type. The page is shown in Figure 17-1.

Figure 17-1: Object references remain “alive” in a concatenated array.

After you load the page, you see readouts of three arrays. The first array consists

of all string values; the second array has two string values and a reference to a form

array.concat()

4855-7 ch17.F 6/26/01 8:37 AM Page 488

489Chapter 17 ✦ The Array Object (Chapter 37)

object on the page (a textbox named “original” in the HTML). In the initialization

routine of this page, not only are the two source arrays created, but they are joined

with the array.concat() method, and the result is shown in the third box. To

show the contents of these arrays in columns, I use the array.join() method,

which brings the elements of an array together as a string delimited in this case by

a return character — giving us an instant column of data.

Two series of fields and buttons let you experiment with the way values and

object references are linked across concatenated arrays. In the first group, if you

enter a new value to be assigned to arrayThree[0], the new value replaces the

string value in the combined array. Because regular values do not maintain a link

back to the original array, only the entry in the combined array is changed. A call to

showArrays() proves that only the third array is affected by the change.

More complex is the object relationship for this demonstration. A reference to the

first text box of the second grouping has been assigned to the third entry of arrayTwo.

After concatenation, the same reference is now in the last entry of the combined array.

If you enter a new value for a property of the object in the last slot of arrayThree, the

change goes all the way back to the original object — the first text box in the lower

grouping. Thus, the text of the original field changes in response to the change of

arrayThree[5]. And because all references to that object yield the same result, the

reference in arrayTwo[2] points to the same text object, yielding the same new

answer. The display of the array contents doesn’t change, because both arrays still

contain a reference to the same object (and the VALUE attribute showing in the

<INPUT> tag of the column listings refers to the default value of the tag, not to its cur-

rent algorithmically retrievable value shown in the last two fields of the page).

Listing 37-6: Array Concatenation

<HTML>
<HEAD>
<TITLE>Array Concatenation</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.1”>
// global variables
var arrayOne, arrayTwo, arrayThree, textObj
// initialize after load to access text object in form
function initialize() {

var form = document.forms[0]
textObj = form.original
arrayOne = new Array(“Jerry”, “Elaine”,”Kramer”)
arrayTwo = new Array(“Ross”, “Rachel”,textObj)
arrayThree = arrayOne.concat(arrayTwo)
update1(form)
update2(form)
showArrays()

}
// display current values of all three arrays
function showArrays() {

var form = document.forms[0]
form.array1.value = arrayOne.join(“\n”)
form.array2.value = arrayTwo.join(“\n”)

Continued

array.concat()

4855-7 ch17.F 6/26/01 8:37 AM Page 489

490 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 37-6 (continued)

form.array3.value = arrayThree.join(“\n”)
}
// change the value of first item in Array Three
function update1(form) {

arrayThree[0] = form.source1.value
form.result1.value = arrayOne[0]
form.result2.value = arrayThree[0]
showArrays()

}
// change value of object property pointed to in Array Three
function update2(form) {

arrayThree[5].value = form.source2.value
form.result3.value = arrayTwo[2].value
form.result4.value = arrayThree[5].value
showArrays()

}
</SCRIPT>
</HEAD>
<BODY onLoad=”initialize()”>
<FORM>
<TABLE>
<TR><TH>arrayOne</TH><TH>arrayTwo</TH><TH>arrayThree</TH></TR>
<TR>
<TD><TEXTAREA NAME=”array1” COLS=25 ROWS=6></TEXTAREA></TD>
<TD><TEXTAREA NAME=”array2” COLS=25 ROWS=6></TEXTAREA></TD>
<TD><TEXTAREA NAME=”array3” COLS=25 ROWS=6></TEXTAREA></TD>
</TR>
</TABLE>
Enter new value for arrayThree[0]:<INPUT TYPE=”text” NAME=”source1”
VALUE=”Jerry”>
<INPUT TYPE=”button” VALUE=”Change arrayThree[0]”
onClick=”update1(this.form)”>

Current arrayOne[0] is:<INPUT TYPE=”text” NAME=”result1”>

Current arrayThree[0] is:<INPUT TYPE=”text” NAME=”result2”>

<HR>

textObj assigned to arrayTwo[2]:<INPUT TYPE=”text” NAME=”original”
onFocus=”this.blur()”></BR>
Enter new value for arrayThree[5]:<INPUT TYPE=”text” NAME=”source2”
VALUE=”Phoebe”>
<INPUT TYPE=”button” VALUE=”Change arrayThree[5].value”
onClick=”update2(this.form)”>

Current arrayTwo[2].value is:<INPUT TYPE=”text” NAME=”result3”>

Current arrayThree[5].value is:<INPUT TYPE=”text” NAME=”result4”><P>

<INPUT TYPE=”button” VALUE=”Reset” onClick=”location.reload()”>
</FORM>
</BODY>
</HTML>

array.concat()

4855-7 ch17.F 6/26/01 8:37 AM Page 490

491Chapter 17 ✦ The Array Object (Chapter 37)

array.join(separatorString)

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � �

Example
The script in Listing 37-7 converts an array of planet names into a text string.

The page provides you with a field to enter the delimiter string of your choice and

shows the results in a textarea.

Listing 37-7: Using the Array.join() Method

<HTML>
<HEAD>
<TITLE>Array.join()</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.1”>
solarSys = new Array(9)
solarSys[0] = “Mercury”
solarSys[1] = “Venus”
solarSys[2] = “Earth”
solarSys[3] = “Mars”
solarSys[4] = “Jupiter”
solarSys[5] = “Saturn”
solarSys[6] = “Uranus”
solarSys[7] = “Neptune”
solarSys[8] = “Pluto”

// join array elements into a string
function convert(form) {

var delimiter = form.delim.value
form.output.value = unescape(solarSys.join(delimiter))

}
</SCRIPT>
<BODY>
<H2>Converting arrays to strings</H2>
This document contains an array of planets in our solar system.<HR>
<FORM>
Enter a string to act as a delimiter between entries:
<INPUT TYPE=”text” NAME=”delim” VALUE=”,” SIZE=5><P>
<INPUT TYPE=”button” VALUE=”Display as String” onClick=”convert(this.form)”>
<INPUT TYPE=”reset”>
<TEXTAREA NAME=”output” ROWS=4 COLS=40 WRAP=”virtual”>
</TEXTAREA>
</FORM>
</BODY>
</HTML>

array.join()

4855-7 ch17.F 6/26/01 8:37 AM Page 491

492 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Notice that this method takes the parameter very literally. If you want to include

nonalphanumeric characters, such as a newline or tab, do so with URL-encoded

characters (%0D for a carriage return; %09 for a tab) instead of inline string literals.

In Listing 37-7, the results of the array.join() method are subjected to the

unescape() function in order to display them in the TEXTAREA.

array.reverse()

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � �

Example
Listing 37-8 is an enhanced version of Listing 37-7, which includes another button

and function that reverse the array and display it as a string in a text area.

Listing 37-8: Array.reverse() Method

<HTML>
<HEAD>
<TITLE>Array.reverse()</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.1”>
solarSys = new Array(9)
solarSys[0] = “Mercury”
solarSys[1] = “Venus”
solarSys[2] = “Earth”
solarSys[3] = “Mars”
solarSys[4] = “Jupiter”
solarSys[5] = “Saturn”
solarSys[6] = “Uranus”
solarSys[7] = “Neptune”
solarSys[8] = “Pluto”

// show array as currently in memory
function showAsIs(form) {

var delimiter = form.delim.value
form.output.value = unescape(solarSys.join(delimiter))

}
// reverse array order, then display as string
function reverseIt(form) {

var delimiter = form.delim.value
solarSys.reverse() // reverses original array
form.output.value = unescape(solarSys.join(delimiter))

}
</SCRIPT>
<BODY>
<H2>Reversing array element order</H2>
This document contains an array of planets in our solar system.<HR>
<FORM>

array.reverse()

4855-7 ch17.F 6/26/01 8:37 AM Page 492

493Chapter 17 ✦ The Array Object (Chapter 37)

Enter a string to act as a delimiter between entries:
<INPUT TYPE=”text” NAME=”delim” VALUE=”,” SIZE=5><P>
<INPUT TYPE=”button” VALUE=”Array as-is” onClick=”showAsIs(this.form)”>
<INPUT TYPE=”button” VALUE=”Reverse the array” onClick=”reverseIt(this.form)”>
<INPUT TYPE=”reset”>
<INPUT TYPE=”button” VALUE=”Reload” onClick=”self.location.reload()”>
<TEXTAREA NAME=”output” ROWS=4 COLS=60>
</TEXTAREA>
</FORM>
</BODY>
</HTML>

Notice that the solarSys.reverse() method stands by itself (meaning, nothing

captures the returned value) because the method modifies the solarSys array. You

then run the now inverted solarSys array through the array.join() method for

your text display.

array.sort([compareFunction])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � � � � � �

Example
You can look to Listing 37-9 for a few examples of sorting an array of string val-

ues (see Figure 17-2). Four buttons summon different sorting routines, three of

which invoke comparison functions. This listing sorts the planet array alphabeti-

cally (forward and backward) by the last character of the planet name and also by

the length of the planet name. Each comparison function demonstrates different

ways of comparing data sent during a sort.

Listing 37-9: Array.sort() Possibilities

<HTML>
<HEAD>
<TITLE>Array.sort()</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.1”>
solarSys = new Array(9)
solarSys[0] = “Mercury”
solarSys[1] = “Venus”
solarSys[2] = “Earth”
solarSys[3] = “Mars”
solarSys[4] = “Jupiter”
solarSys[5] = “Saturn”
solarSys[6] = “Uranus”

Continued

array.sort()

4855-7 ch17.F 6/26/01 8:37 AM Page 493

494 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

Listing 37-9 (continued)

solarSys[7] = “Neptune”
solarSys[8] = “Pluto”
// comparison functions
function compare1(a,b) {

// reverse alphabetical order
if (a > b) {return -1}
if (b > a) {return 1}
return 0

}
function compare2(a,b) {

// last character of planet names
var aComp = a.charAt(a.length - 1)
var bComp = b.charAt(b.length - 1)
if (aComp < bComp) {return -1}
if (aComp > bComp) {return 1}
return 0

}
function compare3(a,b) {

// length of planet names
return a.length - b.length

}
// sort and display array
function sortIt(form, compFunc) {

var delimiter = “;”
if (compFunc == null) {

solarSys.sort()
} else {

solarSys.sort(compFunc)
}
// display results in field
form.output.value = unescape(solarSys.join(delimiter))

}
</SCRIPT>
<BODY onLoad=”document.forms[0].output.value = unescape(solarSys.join(‘;’))”>
<H2>Sorting array elements</H2>
This document contains an array of planets in our solar system.<HR>
<FORM>
Click on a button to sort the array:<P>
<INPUT TYPE=”button” VALUE=”Alphabetical A-Z” onClick=”sortIt(this.form)”>
<INPUT TYPE=”button” VALUE=”Alphabetical Z-A”
onClick=”sortIt(this.form,compare1)”>
<INPUT TYPE=”button” VALUE=”Last Character”
onClick=”sortIt(this.form,compare2)”>
<INPUT TYPE=”button” VALUE=”Name Length” onClick=”sortIt(this.form,compare3)”>
<INPUT TYPE=”button” VALUE=”Reload Original” onClick=”self.location.reload()”>
<INPUT TYPE=”text” NAME=”output” SIZE=62>
</TEXTAREA>
</FORM>
</BODY>
</HTML>

array.sort()

4855-7 ch17.F 6/26/01 8:37 AM Page 494

495Chapter 17 ✦ The Array Object (Chapter 37)

Figure 17-2: Sorting an array of planet names alphabetically by last character

array.splice(startIndex , deleteCount[,
item1[, item2[,...itemN]]])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility � � �

Example
Use The Evaluator (Chapter 13 in the JavaScript Bible) to experiment with the

splice() method. Begin by creating an array with a sequence of numbers:

a = new Array(1,2,3,4,5)

Next, remove the center three items, and replace them with one string item:

a.splice(1, 3, “two/three/four”)

The Results box shows a string version of the three-item array returned by the

method. To view the current contents of the array, enter a into the top text box.

To put the original numbers back into the array, swap the string item with three

numeric items:

a.splice(1, 1, 2, 3, 4)

The method returns the single string, and the a array now has five items in it again.

✦ ✦ ✦

array.splice()

4855-7 ch17.F 6/26/01 8:37 AM Page 495

4855-7 ch17.F 6/26/01 8:37 AM Page 496

What’s on the
CD-ROM

The accompanying Windows–Macintosh CD-ROM contains

a complete set of HTML document listings and an elec-

tronic version of this book, plus additional listings and the full

text of the JavaScript Bible, Gold Edition. You also receive

Adobe Acrobat Reader software to view and search the elec-

tronic versions of the books.

System Requirements
To derive the most benefit from the example listings, you

should have both Netscape Navigator 6 (or later) and Internet

Explorer 5 (or later) installed on your computer. While many

scripts run in both browsers, several scripts demonstrate fea-

tures that are available on only one browser or the other. To

write scripts, you can use a simple text editor, word proces-

sor, or dedicated HTML editor.

To use the Adobe Acrobat Reader, you need the following:

✦ For Windows 95, Windows 98, or Windows NT 4.0 (with

SP3 or later), you should be using a 486 or Pentium com-

puter with 16MB of RAM and 10MB of hard disk space.

✦ Macintosh users require a PowerPC, System 7.1,2 or

later, at least 8MB of RAM, and 8MB of disk space.

Disc Contents
Platform-specific software is located in the appropriate

Windows and Macintosh directories on the CD-ROM. The con-

tents include the following items.

JavaScript listings for Windows and
Macintosh text editors

Almost all example listings from this book and the

JavaScript Bible, Gold Edition are on the CD-ROM in the form of

complete HTML files, which you can load into a browser to

see the language item in operation (a few others are plain text

••A P P E N D I X

✦ ✦ ✦ ✦

4855-7 app.F 6/26/01 8:37 AM Page 497

498 JavaScript Examples Bible: The Essential Companion to JavaScript Bible

files, which you can view in your browser or text editor). A directory called Listings

contains the example files, with nested folders named for each chapter of the

JavaScript Bible. Each HTML file’s name is keyed to the Listing number in the book.

For example, the file for Listing 15-1 is named lst15-01.htm. Note that the first

part of each listing number is keyed to a JavaScript Bible chapter number. Thus,

Listing 15-1 demonstrates a term discussed in Chapter 15 of the JavaScript Bible
(both editions), although the printed listing and discussion about the listing

appears in Chapter 1 of this book because Chapter 1 contains examples for

JavaScript Bible Chapter 15.

For your convenience, an index.html file in the Listings folder provides a front-

end table of contents to the HTML files for the book’s program listings. Open that

file from your browser whenever you want to access the program listing files. If you

intend to access that index page frequently, you can bookmark it in your

browser(s). Using the index file to access the listing files can be very important in

some cases, because several individual files must be opened within their associated

framesets to work properly. Accessing the files through the index.html file assures

that you open the frameset. The index.html file also shows browser compatibility

ratings for all the listings. This saves you time from opening listings that are not

intended to run on your browser. To examine and modify the HTML source files,

open them from your favorite text editor program (for Windows editors, be sure to

specify the .htm file extension in the Open File dialog box).

You can open all example files directly from the CD-ROM, but if you copy them to

your hard drive, access is faster and you will be able to experiment with modifying

the files more readily. Copy the folder named Listings from the CD-ROM to any loca-

tion on your hard drive.

Electronic versions of the books
These are complete, searchable versions of both this book and the JavaScript

Bible, Gold Edition, provided in Adobe Acrobat .pdf format. The Acrobat text for

this book is in the folder named JSExamples PDF, while the JavaScript Bible text is in

the JSBGold PDF folder.

Adobe Acrobat Reader
The Adobe Acrobat Reader is a helpful program that enables you to view the entire

contents of both this book and the JavaScript Bible, Gold Edition, which are in .pdf for-

mat on the CD-ROM. To install and run Adobe Acrobat Reader, follow these steps:

For Windows
1. Start Windows Explorer or Windows NT Explorer and then open the Acrobat

folder on the CD-ROM.

2. In the Acrobat folder, double-click the rs405eng.exe icon and follow the

instructions presented on-screen for installing Adobe Acrobat Reader.

For Macintosh
1. Open the Acrobat folder on the CD-ROM.

2. In the Acrobat folder, double-click the Adobe Acrobat Installer icon and follow

the instructions presented on-screen for installing Adobe Acrobat Reader.

✦ ✦ ✦

4855-7 app.F 6/26/01 8:37 AM Page 498

A
above property, 442–443

accessKey property

compatibility, 3

controlling, 3–4

example, 3–4

action property, 336

activeElement property, 224–225

addBehavior() method

compatibility, 50

example, 50–52

invoking, for each paragraph object, 51

using, 52–53

addEventListener() method

compatibility, 53

example, 53–55

addReadRequest() method, 407

addRule() method, 438–439

Adobe Acrobat Reader, 498

alert() method, 153

alert dialog box, displaying, 153

align property

HR element object, 269–272

IFRAME element object, 198

IMG element object, 318–319

TABLE element object, 382

testing, 318–319

aLink property, 257–258

alinkColor property, 225–227

all property, 5

alt property, 319

anchors

document with, 206–207

names, 207

reading number of, 228

anchors property, 227–228

appCodeName property, 398–401

appendChild() method

compatibility, 55

example, 55–57

use of, 1

appendData() method, 294–296

applets property, 229

applyElement() method

compatibility, 57

example, 57–58

using, 57–58

appMinorVersion property, 402

appName property, 398–401

appVersion property, 398–401

AREA element object

coords property, 331

modifying, on the fly, 332–333

shape property, 331

areas property, 331–334

array object

concat() method, 488–490

examples highlights, 487–488

join() method, 491–492

methods, 488–495

reverse() method, 492–493

sort() method, 493–495

splice() method, 495

arrays, concatenation, 489–490

attachEvent() method

compatibility, 58

example, 58–59

attributes property, 5

availLeft/availTop properties, 407

B
back() method, 219–221

background property

BODY element object, 258

NN4 layer object, 444–445

TABLE element object, 382

behavior property, 273–275

behaviors

adding, 50–53

turning off, 53

turning on, 51

behaviorUrns property, 6

below property, 442–443

bgColor property

BODY element object, 257–258

document object, 225–227

MARQUEE element object, 275

NN4 layer object, 445–446

TABLE element object, 383

bgProperties property, 258–259

blur() method

compatibility, 59

example, 59–60

text input object, 363

Index

4855-7 Index.F 6/26/01 8:37 AM Page 499

500 Index ✦ B–C

BODY element object

aLink property, 257–258

background property, 258

bgColor property, 257–258

bgProperties property, 258–259

bottomMargin/topMargin properties, 259

createTextRange() method, 261–262

doScroll() method, 262

event handlers, 262–263

leftMargin/rightMargin properties, 259

link property, 257–258

methods, 261–262

noWrap property, 259

onClick event handler, 81

onMouseDown event handler, 63, 115–117

onScroll event handler, 262–263

onUnload event handler, 377

properties, 257–261

scroll property, 260

scrollLeft/scrollTop properties, 260–261

text property, 257–258

vLink property, 257–258

body property, 229

border property

FRAMESET element object, 194

IMG element object, 319

TABLE element object, 383

borderColor property

FRAME element object, 190

FRAMESET element object, 194

TABLE element object, 383–384

borderColorDark/borderColorLight properties,

383–384

bottomMargin/topMargin properties, 259

bottom/top properties, 315–316

bound data

filtering, 18–20

sorting, 18–20

boundingHeight/boundingWidth properties, 297–299

boundingLeft/boundingRight properties, 297–299

browsers

functions to examine, 399–401

reading and writing preferences, 405–406

BUTTON element object

click() method, 345

event handlers, 346

form property, 344–345

methods, 345

name property, 345

onClick event handler, 346

properties, 344–345

value property, 345

C
canHaveChildren property

compatibility, 6

example, 6–7

reading, 6–7

canHaveHTML property, 8

caption property, 384

captureEvents() method

document object, 243

window object, 154–155

Cascading Style Sheets (CSS), 265

CD-ROM

Adobe Acrobat Reader, 498

contents, 497–498

electronic versions of books, 498

JavaScript listings for text editors, 497–498

system requirements, 497

cellIndex property, 392–393

cellPadding property, 384–385

cells property

TABLE element object, 385

TR element object, 391

cellSpacing property, 384–385

CGI submission action, adjusting, 349

character conversions, 472–473

characterSet property, 230

charCode property, 423–424

charset property, 229–230

checkbox input object

checked property, 347

defaultChecked property, 348

event handlers, 349–352

onClick event handler, 349–352

properties, 347–349

value property, 348–349

checked property

as a conditional, 347

checkbox input object, 347

radio input object, 352–353

child nodes

collecting, 9–10

hierarchy, inspecting, 8

childNodes property

compatibility, 8

example, 8–10

importance of, 1

children property

compatibility, 10

example, 10–11

className property

compatibility, 11

example, 11–12

4855-7 Index.F 6/26/01 8:37 AM Page 500

501Index ✦ C

set to empty, 11

working with, 12

clear() method, 292–293

clearAttributes() method, 61

clearInterval() method, 155

clearTimeout() method

compatibility, 155

example, 155–157

timerID value, 157

click() method

BUTTON element object, 345

compatibility, 61

example, 61

clientHeight property, 13–14

compatibility, 13

defined, 13

example, 13–14

using, 13–14

clientInformation object. See navigator object

clientWidth property, 13–14

compatibility, 13

defined, 13

example, 13–14

using, 13–14

clientX/clientY properties

IE4+, 413–416

NN6+ event object, 425–427

clip property

adjusting, 447–449

compatibility, 447

example, 447–450

clipboardData property, 129

cloneContents() method, 279

cloneNode() method, 62

cloneRange() method, 279

close() method

document object, 243–244

window object, 157–158

closed property, 128, 129–131

COL element object, 391

COLGROUP element object, 391

collapse() method

Range object, 279

TextRange object, 300

collapsed property, 276

color property

FONT element object, 266–268

HR element object, 272

colors

change, triggering, 377–378

sampler, 225–227

cols property

FRAMESET element object, 195–197

TEXTAREA element object, 368

colSpan property, 393

commonAncestorContainer property, 277

compareBoundaryPoints() method

compatibility, 280

example, 280–283

lab for, 281–283

raw value returned, 280

compareEndPoints() method

compatibility, 300

example, 300–303

invocations, 301

lab for, 301–303

raw value returned by, 301

complete property, 320

componentFromPoint() method

compatibility, 62

example, 62–63

using, 63

confirm() method, 158

confirm dialog box, 158

constructor property, 470

contains() method, 64

contentDocument property

FRAME element object, 190

IFRAME element object, 199

contentEditable property

compatibility, 14

example, 14–15

using, 14–15

context-sensitive help, creating, 110–111

cookie property, 230

cookieEnabled property, 402

coords property, 331

countdown timer

listing, 155–156

page illustration, 157

cpuClass property, 402

createAttribute() method, 244

createContexualFragment() method, 283

createElement() method, 244

createEventObject() method

document object, 244–245

fireEvent() method and, 67

createPopup() method, 159

createRange() method, 293

createStyleSheet() method, 245–246

createTextNode() method, 246–247

4855-7 Index.F 6/26/01 8:37 AM Page 501

502 Index ✦ C–D

createTextRange() method

element object, 261–262

TEXTAREA element object, 368

cssRule object, 440

cssText property, 436–437

current time, displaying, 176–177

currentStyle property, 15

currentTarget property, 427–428

cutting/pasting, under script control, 101–102

D
data binding

recordNumber property, 41–42

resource, 20

data property

NN4 event object, 410–411

Text and TextNode objects, 293

data validation, 367–368

dataFld property, 16–20

changing, 16–17

compatibility, 16

example, 16–20

dataFormatAs property, 16–20

dataPageSize property, 385

dataSrc property

changing, 16–17

compatibility, 16

example, 16–20

defaultCharset property, 230–231

defaultChecked property

checkbox input object, 348

radio input object, 354

defaultStatus property

compatibility, 131

example, 131–132

setting, 132

defaultValue property, 358–359

deleteContents() method, 284

deleteData() method, 294–296

deleteRule() method, 439

detachEvent() method

compatibility, 58

example, 58–59

dialogArguments property, 132

dialogHeight/dialogWidth properties, 132–133

dialogLeft/dialogTop properties, 133

dir property, 21

direction property, 275

directories property, 134–135

disabled property

compatibility, 21

example, 21

form control and, 2

styleSheet object, 437

disableExternalCapture() method, 159

dispatchEvent() method

compatibility, 64

example, 64–66

using, 64–66

DIV element

clientHeight property, 13–14

clientWidth property, 13–14

contentEditable property, 14

document object

activeElement property, 224–225

alinkColor property, 225–227

anchors, 227–228

anchors property, 227–228

applets property, 229

bgColor property, 225–227

body property, 229

captureEvents() method, 243

characterSet property, 230

charset property, 229–230

close() method, 243–244

cookie property, 230

createAttribute() method, 244

createElement() method, 244

createEventObject() method, 244–245

createStyleSheet() method, 245–246

createTextNode() method, 246–247

defaultCharset property, 230–231

documentElement property, 231

elementFromPoint() method, 247–249

event handlers, 256–257

examples highlights, 224

execCommand() method, 249

expando property, 231

fgColor property, 225–227

fileCreatedDate property, 232–233

fileModifiedDate property, 232–233

fileSize property, 232–233

forms property, 233–234

frames property, 234

getElementByID() method, 250

getElementsByName() method, 250

getSelection() method, 251–252

height property, 234–235

images property, 235

implementation property, 235

lastModified property, 235–236

layers property, 236–237

linkColor property, 225–227

links property, 238

4855-7 Index.F 6/26/01 8:37 AM Page 502

503Index ✦ D–E

location property, 238–240

methods, 243–256

onMouseOver event handler, 247

onStop event handler, 256–257

open() method, 252

parentWindow property, 240

properties, 224–243

protocol property, 240

queryCommand() methods, 252

recalc() method, 253

referrer property, 224, 240–241

role, 223

scripts property, 242

selection property, 242

URL property, 238–240

vlinkColor property, 225–227

width property, 234–235

write() method, 253–256

writeIn() method, 253–256

document property

compatibility, 21

example, 22

popup object, 201

Document property, 191

documentElement property, 231

documents

color, changing, 227

current, extracting directory of, 212

framesets, 146

loading, into layers, 462–463

doReadRequest() method, 408

doScroll() method, 262

duplicate() method, 303–304

dynamic properties

clock controlled by, 94

listing, 92–93

E
elementFromPoint() method

compatibility, 247

example, 247–249

using, 248–249

elements property

compatibility, 336

example, 336–338

using, 337

empty() method, 293

enableExternalCapture() method, 159

encoding property, 338

enctype property, 338

endContainer/startContainer properties, 277–278

endOffset/startOffset properties, 278

event handlers

assigning, to element objects, 2

BODY element object, 262–263

BUTTON element object, 346

checkbox input object, 349–352

document object, 256–257

dragging/dropping control, 2

form object, 341–342

generic, 95–126

information management, 2

onAbort, 329

onActivate, 95–96

onAfterPrint, 188

onBeforeCopy, 96–97

onBeforeCut, 97

onBeforeDeactivate, 95–96

onBeforeEditFocus, 97–98

onBeforePaste, 98, 121–123

onBeforePrint, 188

onBeforeUnload, 188–189

onBlur, 98–99, 365–366

onChange, 367–368, 377–378

onClick, 66, 81, 99–100, 346, 349–352, 355–356

onContextMenu, 100–101

onCopy, 101–102

onCut, 101–102

onDblClick, 100, 103

onDeactivate, 95–96

onDrag, 103–107

onDragEnd, 106

onDragEnter, 107

onDragLeave, 107

onDragOver, 108

onDragStart, 103, 108

onDrop, 108

onError, 329

onFilterChange, 108–109

onFocus, 99, 110, 365–366

onHelp, 110–111, 189

onKeyDown, 111–114

onKeyPress, 111–114

onKeyUp, 111–114

onLoad, 33, 330–331

onLoseCapture, 115

onMouseDown, 63, 115–117

onMouseEnter, 117

onMouseLeave, 117

onMouseMove, 117–119

onMouseOut, 120–121

onMouseOver, 120–121

onMouseUp, 115–117

Continued

4855-7 Index.F 6/26/01 8:37 AM Page 503

504 Index ✦ E–F

event handlers (continued)

onPaste, 121–123

onPropertyChange, 123–124

onReadyStateChange, 124–125

onReset, 341–342

onResize, 125

onScroll, 262–263

onSelect, 365–366

onSelectStart, 125–126

onStop, 256–257

onSubmit, 341–342

radio input object, 355–356

SELECT element object, 377–378

text input object, 365–368

window object, 188–189

event objects

examples highlights, 410

IE4+, 413–423

NN4, 410–413

NN6+, 423–433

properties, value of, 409

eventPhase property, 427–429

execCommand() method

document object, 249

TextRange object, 304

execScript() method, 159–160

expand() method, 304

expando property, 231

external property, 135–136

extractContents() method, 285

F
face property, 268–269

fgColor property, 225–227

fields, selecting, 364–365

file dates, viewing, 232–233

fileCreatedDate property

document object, 232–233

IMG element object, 322

fileModifiedDate property

document object, 232–233

IMG element object, 322

fileSize property

document object, 232–233

IMG element object, 322

find() method, 160

findText() method

compatibility, 304

example, 305–308

fireEvent() method

compatibility, 66

example, 66–68

using, 67–68

firstChild property

compatibility, 22

example, 22–23

using, 1, 22–23

focus() method

compatibility, 59

example, 59–60

text input object, 363

FONT element object

color property, 266–268

face property, 268–269

properties, 266–269

properties, controlling, 267–268

size property, 269

fontSize property, 85

form controls, disabling, 2

form object

action property, 336

elements property, 336–338

encoding property, 338

enctype property, 338

event handlers, 341–342

examples highlights, 335

length property, 339

method property, 339

methods, 340–341

onReset event handler, 341–342

onSubmit event handler, 341–342

properties, 336–339

reset() method, 340

submit() method, 341

target property, 339

form property

BUTTON element object, 344–345

text input object, 359–360

forms property, 233–234

FRAME element object

borderColor property, 190

contentDocument property, 190

Document property, 191

height property, 191–192

noResize property, 192

properties, 190–194

scrolling property, 192–193

src property, 194

width property, 191–192

frame property

compatibility, 385

cycling through values, 386–387

example, 385–387

frameBorder property

FRAMESET element object, 197–198

IFRAME element object, 199

4855-7 Index.F 6/26/01 8:37 AM Page 504

505Index ✦ F

frames

border, 197–198, 199

control panel, 197

documents loaded into, 136

scrolling, 170–171

showing/hiding, 196

sizes, 128

spacing, 198

table of contents, 197

frames property

compatibility, 136

document object, 234

example, 136–138

FRAMESET element object

border property, 194

borderColor property, 194

cols property, 195–197

frameBorder property, 197–198

frameSpacing property, 198

properties, 194–198

rows property, 195–197

framesets

composition, 128

for document.URL property reader, 238

for document.write() example, 253

documents, 146

for hiding/showing frame, 196

name of, 148

navigation lab, 219

print, 165

for property picker, 207–209

for scroll() demonstration, 169

smart, 214–215

specification modification, 195

frameSpacing property, 198

fromElement/toElement properties

compatibility, 416

example, 416–418

using, 417

functions

addRow(), 49

addStyle(), 245

append(), 56

cancelDefault(), 104

checkFrameset(), 215, 216

checkIt(), 367

checkNumeric(), 364

checkTimer(), 326

closeWindow(), 130

crawlLayers(), 236

customScroll(), 171

doMerge(), 78

doSelection(), 364

dragIt(), 118

engage(), 117

for examining browsers, 399–401

finishNewWindow(), 130

flash(), 154

getColor(), 143

getFormData(), 184

getSearchArray(), 214

handleApply(), 184

handleCut(), 101

handleOK(), 182

hilite(), 71

init(), 92, 179, 183

insertTableRow(), 392

isNumber(), 364

isWindows(), 398

makeAreas(), 332

makeNewWindow(), 60

moveOffScreen(), 163

nextField(), 16

parseInt(), 172

prevField(), 16

pushUndoNew(), 308

release(), 117, 118, 465

replace(), 87

resetSelects(), 326

resetTab(), 47

resizeIt(), 465

restore(), 88, 134

revolve(), 163

selectChunk(), 38

setHRAttr(), 270

setImagePosition(), 33

setInitialColor(), 51

setSelection(), 364

setupDrag(), 103, 104

showChange(), 123

showContextMenu(), 81

showCountDown(), 157

showPreferences(), 405

startTimer(), 157

stopTimer(), 157

swap(), 88, 350

timeIt(), 104

toggle(), 350

toggleBar(), 134

toggleComplete(), 18

toggleEdit(), 14

turnOn(), 51

undoReplace(), 308

Continued

4855-7 Index.F 6/26/01 8:37 AM Page 505

506 Index ✦ F–G

functions (continued)

unescape(), 212

updateClock(), 92

walkChildNodes(), 8

walkChildren(), 10

whereInWorld(), 63

zigzag(), 163

G
generic objects, 1–126

accessKey property, 3–4

addBehavior() method, 50–53

addEventListener() method, 53–55

all property, 5

appendChild method, 55–57

applyElement() method, 57–58

attachEvent() method, 58–59

attributes property, 5

behaviorUrns property, 6

blur() method, 59–60

canHaveChildren property, 6–7

canHaveHTML property, 8

childNodes property, 1, 8–10

children property, 10–11

className property, 11–12

clearAttributes() method, 61

click() method, 61

clientHeight property, 13–14

clientWidth property, 13–14

cloneNode() method, 62

compatibility, 59

componentFromPoint() method, 62–63

contains() method, 64

contentEditable property, 14–15

currentStyle property, 15

dataFld property, 16–20

dataFormatAs property, 16–20

dataSrc property, 16–20

detachEvent() method, 58–59

dir property, 21

disabled property, 2, 21

dispatchEvent() method, 64–66

document property, 21–22

event handlers, 95–126

examples highlights, 1–2

fireEvent() method, 66–68

firstChild property, 1, 22–23

focus() method, 59–60

getAdjacentText() method, 69

getAttribute() method, 2, 69–70

getAttributeNode() method, 70

getBoundingClientRect() method, 70–73

getClientRects() method, 73

getElementsByTagName() method, 73

getExpression() method, 74

hasChildNodes() method, 74–75

height property, 23–24

hideFocus property, 24

id property, 24–25

innerHTML property, 25–26

innerText property, 25–26

insertAdjacentElement() method, 75

insertAdjacentHTML() method, 76

insertAdjacentText() method, 76

insertBefore() method, 1, 76–77

isContentEditable property, 26–27

isDisabled property, 27–28

isMultiLine property, 28

isTextEdit property, 28

item() method, 78

lang property, 28–29

language property, 29

lastChild property, 1, 22–23

length property, 29

mergeAttribute() method, 78–79

methods, 50–95

nextSibling property, 30

nodeName property, 30

nodeType property, 31

nodeValue property, 31–32

normalize() method, 79–80

offsetHeight property, 32

offsetLeft property, 32–33

offsetParent property, 33–35

offsetTop property, 32–33

offsetWidth property, 32

onActivate event handler, 95–96

onBeforeCopy event handler, 96–97

onBeforeCut event handler, 97

onBeforeDeactivate event handler, 95–96

onBeforeEditFocus event handler, 97–98

onBeforePaste event handler, 98, 121–123

onBlur event handler, 98–99

onClick event handler, 66, 81, 99–100

onContextMenu event handler, 100–101

onCopy event handler, 101–102

onCut event handler, 101–102

onDblClick event handler, 100, 103

onDeactivate event handler, 95–96

onDrag event handler, 103–107

onDragEnd event handler, 106

onDragEnter event handler, 107

onDragLeave event handler, 107

onDragOver event handler, 108

4855-7 Index.F 6/26/01 8:37 AM Page 506

507Index ✦ G–H

onDragStart event handler, 103, 108

onDrop event handler, 108

onFilterChange event handler, 108–109

onFocus event handler, 99, 110

onHelp event handler, 110–111

onKeyDown event handler, 111–114

onKeyPress event handler, 111–114

onKeyUp event handler, 111–114

onLoseCapture event handler, 115

onMouseEnter event handler, 117

onMouseLeave event handler, 117

onMouseMove event handler, 117–119

onMouseOut event handler, 120–121

onMouseOver event handler, 120–121

onMouseUp event handler, 115–117

onPaste event handler, 121–123

onPropertyChange event handler, 123–124

onReadyStateChange event handler, 124–125

onResize event handler, 125

onSelectStart event handler, 125–126

outerHTML property, 35–36

outerText property, 35–36

ownerDocument property, 37

parentElement property, 37

parentNode property, 38

parentTextEdit property, 38–39

previousSibling property, 30

properties, 3–50

readyState property, 40, 51

recordNumber property, 40–42

releaseCapture() method, 80–83

removeAttribute() method, 83

removeAttributeNode() method, 84

removeBehavior() method, 52–53, 84

removeChild() method, 57, 85

removeEventListener method, 53–55

removeExpression() method, 85–86

removeNode() method, 86, 88–89

replaceAdjacentText() method, 86–87

replaceChild() method, 1, 56, 87

replaceNode() method, 87–89

runtimeStyle property, 42

scopeName property, 42–43

scrollHeight property, 43

scrollIntoView() method, 89–90

scrollLeft property, 43–44

scrollTop property, 43–44

scrollWidth property, 43

setActive() method, 90

setAttribute() method, 91

setAttributeNode() method, 84

setCapture() method, 80–83

setExpression() method, 91–94

sourceIndex property, 44–45

style property, 45

swapNode() method, 88, 94

tabIndex property, 45–47

tagName property, 47

tags() method, 94–95

tagUrn property, 47

title property, 48

uniqueID property, 49–50

urns() method, 95

width property, 23–24

getAdjacentText() method, 69

GetAttention() method, 160

getAttribute() method

compatibility, 69

example, 69–70

return, 2

userProfile object, 408

getAttributeNode() method, 70

getBookmark() method, 308

getBoundingClientRect() method

compatibility, 70

example, 70–73

using, 71–73

getClientRects() method, 73

getElementByID() method, 250

getElementsByName() method, 250

getElementsByTagName() method

compatibility, 73

example, 73

return, 2

getExpression() method, 74

getSelection() method, 251–252

go() method, 219–221

H
handleError(), 140

hasChildNodes() method

compatibility, 74

example, 74–75

hash property, 206–207

height property

compatibility, 23

document object, 234–235

example, 24

FRAME element object, 191–192

IMG element object, 322–323

TABLE element object, 387

TD and TH element objects, 393–394

TR element object, 391–392

4855-7 Index.F 6/26/01 8:37 AM Page 507

508 Index ✦ H–I

hide() method, 202–204

hideFocus property, 24

history object

back() method, 219–221

examples highlights, 205

go() method, 221–222

length property, 218–219

methods, 219–222

properties, 218–219

host property

compatibility, 207

example, 207–211

hostname property, 211

HR element object

align property, 269–272

color property, 272

noShade property, 272

properties, 269–273

properties, controlling, 270–272

size property, 272

width property, 273

href property, 211–212

hspace property

IFRAME element object, 199

IMG element object, 323

HTML element objects

generic, 1–126

specifications, 1

htmlFor property, 342

htmlText property, 299–300

I
id property

compatibility, 24

example, 25

IE4+ event object

clientX/clientY properties, 413–416

fromElement/toElement properties, 416–418

keyCode property, 418–420

offsetX/offsetY properties, 413–416

properties, 413–423

returnValue property, 420

srcElement property, 420–422

type property, 422–423

x/y, 413–416

IFRAME element object

align property, 198

contentDocument property, 199

frameBorder property, 199

hspace property, 199

properties, 198–200

scrolling property, 200

src property, 200

vspace property, 199

Image object, 318–331

images

changing between still and motion, 321–322

rotating, 326–328

images property, 235

IMG element object

align property, 318–319

alt property, 319

border property, 319

complete property, 320

examples highlights, 317

fileCreatedDate property, 322

fileModifiedDate property, 322

fileSize property, 322

height property, 322–323

hspace property, 323

isMap property, 323–324

loop property, 324

lowsrc/lowSrc properties, 324

name property, 324

nameProp property, 325

onAbort event handler, 329

onError event handler, 329

onLoad event handler, 330–331

properties, 318–329

protocol property, 325

src property, 325–328

start property, 329

vspace property, 323

width property, 322–323

x property, 329

y property, 329

implementation property, 235

innerHeight/innerWidth properties, 138–139

innerHTML property

compatibility, 25

example, 25–26

using, 25–26

innerText property

compatibility, 25

example, 25–26

using, 25–26

inRange() method, 309

insertAdjacentElement() method, 75

insertAdjacentHTML() method, 76

insertAdjacentText() method, 76

4855-7 Index.F 6/26/01 8:37 AM Page 508

509Index ✦ I–L

insertBefore() method

compatibility, 76

example, 77

second parameter, 77

use of, 1

using, 77

insertData() method, 294–296

insertNode() method

compatibility, 285

example, 285–287

listing, 286–287

insertRule() method, 439

isContentEditable property

compatibility, 26

example, 27

isDisabled property

compatibility, 27

example, 27–28

isEqual() method, 309–310

isMap property, 323–324

isMultiLine property, 28

isOpen property, 201–202

isTextEdit property, 28

isValidFragment() method, 287

item() method

compatibility, 78

example, 78

SELECT element object, 376

K
keyCode property

compatibility, 418, 423

displaying values, 419, 423–424

example, 418–420, 423–424

NN6+ event object, 423–424

tasks, 419–420

L
LABEL element object

defined, 335

htmlFor property, 342

label property

OPTGROUP element object, 378–380

OPTION element object, 378

lang property

compatibility, 28

example, 29

language property, 29

lastChild property

compatibility, 22

example, 22–23

using, 1, 22–23

lastModified property, 235–236

layers

background colors, 446

backgrounds, setting, 444–445

dragging, 464

loading documents into, 462–463

nested, coordinate system testing, 453–455

nested, source content, 456–457

nested, visibility relationships, 458

resizing, 466–467

layers property, 236–237

layerX/layerY properties

NN4 event object, 411–413

NN6+ event object, 425–427

left property

NN4 layer object, 450–452

TextRectangle object, 315–316

leftMargin/rightMargin properties, 259

length property, 29

form object, 339

history object, 218–219

radio input object, 354

select() method, 370

LI element object

type property, 395–396

value property, 396

linkColor property, 225–227

links property

BODY element object, 257–258

document object, 238

listStyleType property, 81

load() method, 462–463

location object

examples highlights, 205

hash property, 206–207

host property, 207–211

hostname property, 211

href property, 211–212

methods, 216–218

pathname property, 212

port property, 213

properties, 206–216

protocol property, 213

reload() method, 216–217

replace() method, 217–218

search property, 213–216

using, 205

location property, 238–240

locationbar property, 134–135

loop property, 324

lowsrc/lowSrc properties, 324

4855-7 Index.F 6/26/01 8:37 AM Page 509

510 Index ✦ M

M
makeHot.htc behavior component, 50–51

MAP element object, 331–334

MARQUEE element object

behavior, 273–275

bgColor, 275

direction, 275

methods, 276

properties, 273–275

properties, controlling, 273–275

scrollAmount, 275

scrollDelay, 275

start() method, 276

stop() method, 276

maxLength property, 360

MAX_VALUE property, 484–485

menubar property, 134–135

mergeAttribute() method

compatibility, 78

example, 78–79

using, 79

method property, 339

methods

addBehavior(), 50–53

addEventListener(), 53–55

addReadRequest(), 407

addRule(), 438–439

alert(), 153

appendChild(), 1, 55–57

appendData(), 294–296

applyElement(), 57–58

array.concat(), 488–490

array.join(), 491–492

array object, 488–495

array.reverse(), 492–493

array.sort(), 493–495

array.splice(), 495

attachEvent(), 58–59

back(), 219–221

blur(), 59–60, 363

BODY element object, 261–262

BUTTON element object, 345

captureEvents(), 154–155, 243

clear(), 292–293

clearAttributes(), 61

clearInterval(), 155

clearTimeout(), 128, 155–157

click(), 61, 345

cloneContents(), 279

cloneNode(), 62

cloneRange(), 279

close(), 157–158, 243–244

collapse(), 279, 300

compareBoundaryPoints(), 280–283

compareEndPoints(), 300–303

componentFromPoint(), 62–63

confirm(), 158

contains(), 64

createAttribute(), 244

createContexualFragment(), 283

createElement(), 244

createEventObject(), 67, 244–245

createPopup(), 159

createRange(), 293

createStyleSheet(), 245–246

createTextNode(), 246–247

createTextRange(), 261–262, 368

deleteContents(), 284

deleteData(), 294–296

deleteRule(), 439

detachEvent(), 58–59

disableExternalCapture(), 159

dispatchEvent(), 64–66

document object, 243–256

doReadRequest(), 408

doScroll(), 262

duplicate(), 303–304

elementFromPoint(), 247–249

empty(), 293

enableExternalCapture(), 159

execCommand(), 249, 304

execScript(), 159–160

expand(), 304

extractContents(), 285

find(), 160

findText(), 304–308

fireEvent(), 66–68

focus(), 59–60, 363

form object, 340–341

generic, 50–95

getAdjacentText(), 69

GetAttention(), 160

getAttribute(), 2, 69–70, 408

getAttributeNode(), 70

getBookmark(), 308

getBoundingClientRect(), 70–73

getClientRects(), 73

getElementByID(), 250

getElementsByName(), 250

getElementsByTagName(), 2, 73

getExpression(), 74

getSelection(), 251–252

4855-7 Index.F 6/26/01 8:37 AM Page 510

511Index ✦ M

go(), 221–222

hasChildNodes(), 74–75

hide(), 202–204

history object, 219–222

inRange(), 309

insertAdjacentElement(), 75

insertAdjacentHTML(), 76

insertAdjacentText(), 76

insertBefore(), 1, 76–77

insertData(), 294–296

insertNode(), 285–287

insertRule(), 439

isEqual(), 309–310

isValidFragment(), 287

item(), 78, 376

load(), 462–463

location object, 216–218

MARQUEE element object, 276

mergeAttribute(), 78–79

move(), 310

moveAbove(), 463

moveBelow(), 463

moveBy(), 128, 161–163, 463–464

moveEnd(), 310–311

moveRow(), 390

moveStart(), 310–311

moveTo(), 128, 161–163, 463–464

moveToAbsolute(), 463–464

moveToBookmark(), 311

moveToElementText(), 311–312

moveToPoint(), 312

namedItem(), 376

navigator object, 405–406

NN4 layer object, 462–467

node-related, 88–89

normalize(), 79–80

Number object, 485

number.toExponential(), 485

number.toFixed(), 485

number.toPrecision(), 485

number.toString(), 485

open(), 129, 163–165, 252

parentElement(), 312–313

pasteHTML(), 313

popup object, 202–204

preference(), 405

print(), 165–166

prompt(), 166–167

queryCommand(), 252

Range object, 279–291

recalc(), 253

releaseCapture(), 80–83

reload(), 216–217

removeAttribute(), 83

removeAttributeNode(), 84

removeBehavior(), 52–53, 84

removeChild(), 57, 85

removeEventListener, 53–55

removeExpression(), 85–86

removeNode(), 86, 88–89

removeRule(), 438–439

replace(), 217–218

replaceAdjacentText(), 86–87

replaceChild(), 1, 56, 87

replaceData(), 294–296

replaceNode(), 87–89

reset(), 340

resizeBy(), 167–168, 465–467

resizeTo(), 167–168, 465–467

routeEvent(), 168–169

scroll(), 169–171

scrollBy(), 171–173

scrollIntoView(), 89–90

scrollTo(), 171–173

select(), 314, 364–365

SELECT element object, 376

selection object, 292–293

selectNode()/selectNodeContents(), 287–288

setActive(), 90

setAttribute(), 91

setAttributeNode(), 84

setCapture(), 80–83

setEnd()/setStart(), 288–289

setEndAfter()/setEndBefore(), 289

setExpression(), 91–94

setInterval(), 128, 173–176

setStartAfter()/setStartBefore(), 289

setTimeout(), 128, 152, 176–178

show(), 202–204

showModalDialog(), 178–187

showModelessDialog(), 178–187

sizeToContent(), 187

splitText(), 296–297

start(), 276

stop(), 276

string.charAt(), 471

string.charCodeAt(), 471–473

string.indexOf(), 473

string.lastIndexOf(), 474

string.match(), 474–476

string.replace(), 476–478

Continued

4855-7 Index.F 6/26/01 8:37 AM Page 511

512 Index ✦ M–N

methods (continued)

string.search(), 478

string.slice(), 479–480

string.split(), 480–481

string.substr(), 481–482

string.substring(), 482–483

string.toLowerCase()/string.toUpperCase(),

483–484

string.toString(), 484

string.valueOf(), 484

styleSheet object, 438–439

submit(), 341

substringData(), 294–296

surroundContents(), 289–291

swapNode(), 88, 94

TABLE element object, 390

tags(), 94–95

text input object, 363–365

Text object, 294–297

TEXTAREA element object, 368

TextRange object, 300–314

toString(), 291

toUpperCase(), 363

urns(), 95

userProfile object, 407–408

window object, 153–187

write(), 253–256

writeIn(), 253–256

mimeTypes property, 403

MIN_VALUE property, 484–485

modal dialog box

demonstration, 178–187

document for, 179, 180–182

opening, 178

simulation, 127

modeless dialog box

demonstration, 178–187

document for, 184–187

move() method, 310

moveAbove() method, 463

moveBelow() method, 463

moveBy() method

NN4 layer object, 463–464

window object, 161–163

moveEnd() method, 310–311

moveRow() method, 390

moveStart() method, 310–311

moveTo() method

NN4 layer object, 463–464

window object, 161–163

moveToAbsolute() method, 463–464

moveToBookmark() method, 311

moveToElementText() method, 311–312

moveToPoint() method, 312

multiple property, 370–371

N
name property

BUTTON element object, 345

IMG element object, 324

text input object, 360

namedItem() method, 376

nameProp property, IMG element object, 325

navigation lab

control panel, 220–221

frameset, 219

navigator object

appCodeName property, 398–401

appMinorVersion property, 402

appName property, 398–401

appVersion property, 398–401

cookieEnabled property, 402

cpuClass property, 402

defined, 397

examples highlights, 398

methods, 405–406

mimeTypes property, 403

onLine property, 403

oscpu property, 403

platform property, 404

preference() method, 405–406

product/productSub properties, 404

properties, 398–405

systemLanguage property, 404–405

userAgent property, 398–401

userLanguage property, 404–405

vendor/vendorSub properties, 404

navigator property, 139

NEGATIVE_INFINITY property, 484–485

nested elements, locating position of, 33

nested layers. See also layers

coordinate system testing, 453–455

source content, setting, 456–457

visibility relationships, 458

nextSibling property, 30

NN4 event object

data property, 410–411

layerX/layerY properties, 411–413

pageX/pageY properties, 411–413

properties, 410–413

screenX/screenY properties, 411–413

4855-7 Index.F 6/26/01 8:37 AM Page 512

513Index ✦ N–O

NN4 layer object

above property, 442–443

background property, 444–445

below property, 442–443

bgColor property, 445–446

clip property, 447–450

examples highlights, 441–442

left property, 450–452

load() method, 462–463

methods, 462–467

moveAbove() method, 463

moveBelow() method, 463

moveBy() method, 463–464

moveTo() method, 463–464

moveToAbsolute() method, 463–464

pageX/pageY properties, 452–455

properties, 442–461

resizeBy() method, 465–467

resizeTo() method, 465–467

siblingsAbove/siblingsBelow properties,

442–443

src property, 455–457

visibility property, 457–458

zIndex property, 459–461

NN6+ event object

charCode property, 423–424

clientX/clientY properties, 425–427

currentTarget property, 427–428

eventPhase property, 427–429

keyCode property, 423–424

layerX/layerY properties, 425–427

pageX/pageY properties, 425–427

properties, 423–433

relatedTarget property, 429–430

screenX/screenY properties, 425–427

target property, 430–432

timeStamp property, 432–433

nodeName property, 30

nodes

child, 8, 9–10

inserting, into range, 286–287

nodeType property, 31

nodeValue property

compatibility, 31

example, 31–32

noResize property, 192

normalize() method

compatibility, 79

example, 80

noShade property, 272

noWrap property

BODY element object, 259

TD and TH element objects, 394

Number object

MAX_VALUE property, 484–485

MIN_VALUE property, 484–485

NEGATIVE_INFINITY property, 484–485

number.toExponential() method, 485

number.toFixed() method, 485

number.toPrecision() method, 485

number.toString() method, 485

POSITIVE_INFINITY property, 484–485

O
offscreenBuffering property, 139–140

offsetHeight property, 32

offsetLeft property, 32–33

offsetParent property

compatibility, 33

example, 33–35

using, 34–35

offsetTop property, 32–33

offsetWidth property, 32

offsetX/offsetY properties, 413–416

OL element object

start property, 394

type property, 395

OL object, 81

onAbort event handler, 329

onActivate event handler, 95–96

onBeforeCopy event handler

compatibility, 96

example, 96–97

listing, 96–97

onBeforeCut event handler, 97

onBeforeDeactivate event handler, 95–96

onBeforeEditFocus event handler

compatibility, 97

example, 98

onBeforePaste event handler, 98, 121–123

onBlur event handler

compatibility, 98

example, 98–99

listing, 99

text input object, 365–366

onChange event handler

SELECT element object, 377–378

text input object, 367–368

4855-7 Index.F 6/26/01 8:37 AM Page 513

514 Index ✦ O

onClick event handler

BODY element object, 81

BUTTON element object, 346

checkbox input object, 349–352

compatibility, 99

example, 100

radio input object, 355–356

SPAN element object, 66

using, 100

onContextMenu event handler, 100–101

onCopy event handler, 101–102

onCut event handler, 101–102

onDblClick event handler

compatibility, 103

example, 103

using, 100

onDeactivate event handler, 95–96

onDrag event handler

in BODY element object, 104

compatibility, 103

example, 103–107

using, 105–106, 105–107

onDragEnd event handler, 106

onDragEnter event handler, 107

onDragLeave event handler, 107

onDragOver event handler, 108

onDragStart event handler, 103, 108

onDrop event handler, 108

onError event handler, 329

onerror property, 140–141

onFilterChange event handler

compatibility, 108

example, 108–109

using, 109

onFocus event handler, 99, 110

text input object, 365–366

triggering statusbar display, 366

onHelp event handler

compatibility, 110

example, 110–111

window object, 189

onKeyDown event handler

arrow keys and, 112

compatibility, 111

example, 111–114

keyCode value for, 112

laboratory, 112–114

onKeyPress event handler

arrow keys and, 112

compatibility, 111

example, 111–114

keyCode value for, 112

laboratory, 112–114

in text box, 182

onKeyUp event handler

arrow keys and, 112

compatibility, 111

example, 111–114

keyCode value for, 112

laboratory, 112–114

onLine property, 403

onLoad event handler

in <FRAMESET> tag, 148

IMG element object, 330–331

using, 33

onLoseCapture event handler, 115

onMouseDown event handler

in BODY element object, 63

compatibility, 115

example, 115–117

using, 115–116

onMouseEnter event handler, 117

onMouseLeave event handler, 117

onMouseMove event handler

compatibility, 117

dragging elements with, 118–119

example, 117–119

management of, 117

onMouseOut event handler, 120–121

onMouseOver event handler, 120–121

for document object, 247

setting status property with, 152

onMouseUp event handler

compatibility, 114

example, 115–117

using, 115–116

onPaste event handler

compatibility, 121

example, 121–123

using, 122–123

onPropertyChange event handler

compatibility, 123

example, 123–124

using, 123–124

onReadyStateChange event handler

compatibility, 124

defined, 124

example, 124–125

onReset event handler, 341–342

onResize event handler, 125

onScroll event handler, 262–263

onSelect event handler, 365–366

4855-7 Index.F 6/26/01 8:37 AM Page 514

515Index ✦ O–P

onSelectStart event handler

compatibility, 125

example, 125–126

using, 126

onStop event handler, 256–257

onSubmit event handler, 341–342

onUnload event handler

in <BODY> definition, 355

BODY element object, 377

open() method

compatibility, 163

document() object, 252

example, 163–165

window creation with, 164–165

opener property

compatibility, 142

example, 142–144

references to, 143

OPTGROUP element object

examples highlights, 370

label property, 378–380

labels, modifying, 379–380

OPTION element object, 378

options property

compatibility, 371

example, 371

options.defaultSelected, 371

options.index, 371

options.selected, 371–372

options.text, 373

options.value, 374

oscpu property, 403

outerHeight/outerWidth properties, 138–139

outerHTML property

compatibility, 35

example, 35–36

using, 35–36

outerText property

compatibility, 35

example, 35–36

using, 35–36

ownerDocument property, 37

ownerNode property, 437

owningElement property, 437–438

P
pageX/pageY properties

NN4 event object, 411–413

NN4 layer object, 452–455

NN6+ event object, 425–427

pageXOffset/pageYOffset properties

compatibility, 144

example, 144–146

values, 146

viewing, 145

parent property

compatibility, 146

example, 146–148

parentElement() method, 312–313

parentElement property, 37

parentNode property, 38

parentTextEdit property

compatibility, 38

example, 38–39

using, 39

parentWindow property, 240

pasteHTML() method, 313

pathname property, 212

personalbar property, 134–135

platform property, 404

popup object

document property, 201

hide() method, 202–204

isOpen property, 201–202

methods, 202–204

properties, 201–202

show() method, 202–204

pop-up windows

creating, 201

hiding/showing, 203

port property, 213

preference() method, 405–406

previousSibling property, 30

print() method, 165–166

printing control, 166

product/productSub properties, 404

prompt() method, 166–167

prompt dialog box, 166–167

properties

above, 442–443

AbsolutePosition, 41

accessKey, 3–4

action, 336

activeElement, 224–225

align, 198, 269–272, 318–319, 382

aLink, 257–258

alinkColor, 225–227

all, 5

alt, 319

appCodeName, 398–401

applets, 229

Continued

4855-7 Index.F 6/26/01 8:37 AM Page 515

516 Index ✦ P

properties (continued)

appMinorVersion, 402

appName, 398–401

appVersion, 398–401

AREA element object, 331

areas, 331–334

attributes, 5

availLeft/availTop, 407

background, 258, 382, 444–445

behavior, 273–275

behaviorUrns, 6

below, 442–443

bgColor, 225–227, 257–258, 275, 383, 445–446

bgProperties, 258–259

body, 229

BODY element object, 257–261

border, 194, 319, 383

borderColor, 190, 194, 383–384

borderColorDark/borderColorLight, 383–384

bottom, 315–316

bottomMargin/topMargin, 259

boundingHeight/boundingWidth, 297–299

boundingLeft/boundingRight, 297–299

BUTTON element object, 344–345

canHaveChildren, 6–7

canHaveHTML, 8

caption, 384

cellIndex, 392–393

cellPadding, 384–385

cells, 385, 391

cellSpacing, 384–385

characterSet, 230

charCode, 423–424

charset, 229–230

checkbox input object, 347–349

checked, 347, 352–353

childNodes, 1, 8–10

children, 10–11

className, 11–12

clientHeight, 13–14

clientWidth, 13–14

clientX/clientY, 413–416, 425–427

clip, 447–450

clipboardData, 129

closed, 128, 129–131

collapsed, 276

color, 266–268, 272

cols, 195–197, 368

colSpan, 393

commonAncestorContainer, 277

complete, 320

constructor, 470

contentDocument, 190, 199

contentEditable, 14–15

cookie, 230

cookieEnabled, 402

coords, 331

cpuClass, 402

cssRules, 436

cssText, 436–437

currentStyle, 15

currentTarget, 427–428

data, 293, 410–411

dataFld, 16–20

dataFormatAs, 16–20

dataPageSize, 385

dataSrc, 16–20

defaultCharset, 230–231

defaultChecked, 348, 354

defaultStatus, 131–132

defaultValue, 358–359

dialogArguments, 132

dialogHeight/dialogWidth, 132–133

dialogLeft/dialogTop, 133

dir, 21

direction, 275

directories, 134–135

disabled, 2, 21, 437

document, 21–22, 201

document object, 224–243

Document, 191

documentElement, 231

dynamic, 2, 92–93

elements, 336–338

encoding, 338

enctype, 338

endContainer/startContainer, 277–278

endOffset/startOffset, 278

eventPhase, 427–429

expando, 231

external, 135–136

face, 268–269

fgColor, 225–227

fileCreatedDate, 232–233, 322

fileModifiedDate, 232–233, 322

fileSize, 232–233, 322

firstChild, 1, 22–23

FONT element object, 266–269

fontSize, 85

form, 344–345, 359–360

form object, 336–339

forms, 233–234

4855-7 Index.F 6/26/01 8:37 AM Page 516

517Index ✦ P

frame, 385–387

FRAME element object, 190–194

frameBorder, 197–198, 199

frames, 136–138, 234

FRAMESET element object, 194–198

frameSpacing, 198

fromElement/toElement, 416–418

generic, 3–50

hash, 206–207

height, 23–24, 191–192, 234–235, 322–323, 387,

391–392, 393–394

hideFocus, 24

history object, 218–219

host, 207–211

hostname, 211

HR element object, 269–273

href, 211–212

hspace, 199, 323

htmlFor, 342

htmlText, 299–300

id, 24–25

IE4+ event object, 413–423

IFRAME element object, 198–200

images, 235

IMG element object, 318–329

implementation, 235

innerHeight/innerWidth, 138–139

innerHTML, 25–26

innerText, 25–26

isContentEditable, 26–27

isDisabled, 27–28

isMap, 323–324

isMultiLine, 28

isOpen, 201–202

isTextEdit, 28

keyCode, 418–420, 423–424

label, 378, 378–380

LABEL element object, 342

lang, 28–29

language, 29

lastChild, 1, 22–23

lastModified, 235–236

layers, 236–237

layerX/layerY, 411–413, 425–427

left, 315–316, 450–452

leftMargin/rightMargin, 259

length, 29, 218–219, 339, 354, 370

linkColor, 225–227

links, 238, 257–258

listStyleType, 81

location, 238–240

location object, 206–216

locationbar, 134–135

loop, 324

lowsrc/lowSrc, 324

MARQUEE element object, 273–275

maxLength, 360

MAX_VALUE, 484–485

menubar, 134–135

method, 339

mimeTypes, 403

MIN_VALUE, 484–485

multiple, 370–371

name, 324, 345, 360

nameProp, 325

navigator, 139

navigator object, 398–405

NEGATIVE_INFINITY, 484–485

nextSibling, 30

NN4 event object, 410–413

NN4 layer object, 442–461

NN6+ event object, 423–433

nodeName, 30

nodeType, 31

nodeValue, 31–32

noResize, 192

noShade, 272

noWrap, 259, 394

Number object, 484–485

offscreenBuffering, 139–140

offsetHeight, 32

offsetLeft, 32–33

offsetParent, 33–35

offsetTop, 32–33

offsetWidth, 32

OL element object, 394–395

onerror, 140–141

onLine, 403

opener, 128, 142–144

options, 371–374

oscpu, 403

outerHeight/outerWidth, 138–139

outerHTML, 35–36

outerText, 35–36

ownerDocument, 37

ownerNode, 437

owningElement, 437–438

pageX/pageY, 411–413, 425–427, 452–455

pageXOffset/pageYOffset, 144–146

parent, 146–148

parentElement, 37

Continued

4855-7 Index.F 6/26/01 8:37 AM Page 517

518 Index ✦ P

properties (continued)

parentNode, 38

parentTextEdit, 38–39

parentWindow, 240

pathname, 212

personalbar, 134–135

platform, 404

popup object, 201–202

port, 213

POSITIVE_INFINITY, 484–485

previousSibling, 30

product/productSub, 404

protocol, 213, 240, 325

radio input object, 352–355

Range object, 276–278

readOnly, 360–361

readyState, 40, 51

recordNumber, 40–42

referrer, 224, 240–241

relatedTarget, 429–430

returnValue, 148, 420

right, 315–316

rowIndex, 392

rows, 195–197, 368, 387

rowSpan, 393

rules, 388–389, 438

runtimeStyle, 42

screen object, 407

screenLeft/screenTop, 148

screenX/screenY, 148–149, 411–413, 425–427

scripts, 242

scroll, 260

scrollAmount, 275

scrollbars, 134–135

scrollDelay, 275

scrollHeight, 43

scrolling, 192–193, 200

scrollLeft, 43–44, 260–261

scrollTop, 43–44, 260–261

scrollWidth, 43

scrollX/scrollY, 149

search, 213–216

sectionRowIndex, 392

SELECT element object, 370–376

selectedIndex, 375

selection, 242

selection object, 291–292

selectorText, 440

self, 149–150

shape, 331

siblingsAbove/siblingsBelow, 442–443

size, 269, 272, 361, 376

sourceIndex, 44–45

span, 391

src, 194, 200, 325–328, 455–457

srcElement, 63, 420–422

start, 329, 394

status, 150–152

statusbar, 134–135

string object, 470

style, 45, 440

styleSheet object, 436–438

systemLanguage, 404–405

tabIndex, 45–47

TABLE element object, 382–390

tagName, 47

tagUrn, 47

target, 339, 430–432

tBodies, 390

TD and TH element objects, 392–394

text, 257–258, 300

text input object, 358–363

TEXTAREA element object, 368

TextRange object, 297–300

TextRectangle object, 315–316

timeStamp, 432–433

title, 48

toolbar, 134–135

top, 315–316, 450–452

TR element object, 391–392

type, 291–292, 395–396, 422–423

uniqueID, 49–50

URL, 238–240

userAgent, 398–401

userLanguage, 404–405

vAlign, 390–391

value, 345, 348–349, 355, 361–363, 376, 396

vendor/vendorSub, 404

visibility, 457–458

vLink, 257–258

vlinkColor, 225–227

vspace, 199, 323

width, 23–24, 191–192, 234–235, 273, 322–323, 387,

393–394

window object, 129–152

x, 329

y, 329

zIndex, 459–461

property values. See also specific properties

assigning, 2

retrieving, 2

return, when name is a string, 2

4855-7 Index.F 6/26/01 8:37 AM Page 518

519Index ✦ P–R

protocol property, 213

document object, 240

IMG element object, 325

Q
queryCommand() methods, 252

R
radio input object

checked property, 352–353

defaultChecked property, 354

event handlers, 355–356

length property, 354

onClick event handler, 355–356

properties, 352–355

value property, 355

Range object

cloneContents() method, 279

cloneRange() method, 279

collapse() method, 279

collapsed property, 276

commonAncestorContainer property, 277

compareBoundaryPoints() method, 280–283

createContexualFragment() method, 283

deleteContents() method, 284

endContainer/startContainer properties,

277–278

endOffset/startOffset properties, 278

extractContents() method, 285

insertNode() method, 285–287

isValidFragment() method, 287

methods, 279–291

properties, 276–278

selectNode()/selectNodeContents()
methods, 287–288

setEnd()/setStart() methods, 288–289

setEndAfter()/setEndBefore() methods, 289

setStartAfter()/setStartBefore()
methods, 289

surroundContents() method, 289–291

toString() method, 291

readOnly property, 360–361

readyState property, 40, 51

recalc() method, 253

recordNumber property

compatibility, 40

example, 40–42

using, 41–42

referrer property

browser support of, 224

checking, 241

compatibility, 240

example, 241

regular expression

default replacement, 477

match workshop, 475

relatedTarget property

compatibility, 429

example, 429–430

using, 429–430

releaseCapture() method

compatibility, 80

example, 80–83

using, 82–83

reload() method, 216–217

reloading, soft versus hard, 217

removeAttribute() method, 83

removeAttributeNode() method, 84

removeBehavior() method

compatibility, 84

example, 52–53, 84

using, 52–53

removeChild() method, 57, 85

removeEventListener method

compatibility, 53

example, 53–55

removeExpression() method

compatibility, 85

example, 85–86

removeNode() method, 86, 88–89

removeRule() method, 438–439

replace() method. See also location object

compatibility, 217

example, 217–218

invoking, 218

replaceAdjacentText() method

compatibility, 86

example, 86–87

replaceChild() method, 1, 56

replaceNode() method

compatibility, 87

example, 87–89

reset() method, 340

resizeBy() method

NN4 layer object, 465–467

window object, 167–168

resizeTo() method

NN4 layer object, 465–467

window object, 167–168

returnValue property

IE4+ event object, 420

window object, 148

4855-7 Index.F 6/26/01 8:37 AM Page 519

520 Index ✦ R–S

right property, 315–316

routeEvent() method, 168–169

rowIndex property, 392

rows property

FRAMESET element object, 195–197

TABLE element object, 387

TEXTAREA element object, 368

rowSpan property, 393

rule object, 440

rules property

compatibility, 388

cycling through values, 388–389

example, 388–389

set to “groups,” 389

styleSheet object, 438

runtimeStyle property, 42

S
scopeName property

compatibility, 42

example, 43

screen object, 407

screenLeft/screenTop properties, 148

screenX/screenY properties, 148–149

NN4 event object, 411–413

NN6+ event object, 425–427

scripts

for client-side image map, 334

errors, controlling, 140–141

scripts property, 242

scroll() method

compatibility, 169

frameset demonstration, 169

scroll property, 260

scrollAmount property, 275

scrollbars property, 134–135

scrollBy() method

compatibility, 171

controller, 172–173

controller frameset, 172

example, 172–173

scrollDelay property, 275

scrollHeight property, 43

scrolling

banner, creating, 151–152

forcing, 263

scrolling property

FRAME element object, 192–193

IFRAME element object, 200

scrollIntoView() method

compatibility, 89

example, 90

scrollLeft property

BODY element object, 260–261

compatibility, 43

example, 44

scrollTo() method, 171–173

scrollTop property

BODY element object, 260–261

compatibility, 43

example, 44

scrollWidth property, 43

scrollX/scrollY properties, 149

search property

compatibility, 213

example, 213–216

sectionRowIndex property, 392

select() method

text input object, 364–365

TextRange object, 314

SELECT element object

defined, 369

event handlers, 377–378

examples highlights, 370

item() method, 376

length property, 370

methods, 376

multiple property, 370–371

namedItem() method, 376

onChange event handler, 377–378

options.defaultSelected property, 371

options.index property, 371

options property, 371

options.selected property, 371–372

options.text property, 373

options.value property, 374

properties, 370–376

selectedIndex, 375

size property, 376

value property, 376

selectedIndex. 375

selection object

clear() method, 292–293

createRange() method, 293

empty() method, 293

methods, 292–293

properties, 291–292

type property, 291–292

using, 292

selection property, 242

selectNode()/selectNodeContents() methods,

287–288

selectorText property, 440

4855-7 Index.F 6/26/01 8:37 AM Page 520

521Index ✦ S

self property

compatibility, 149

example, 149–150

using, 150

setActive() method, 90

setAttribute() method, 91

setAttributeNode() method, 84

setCapture() method

compatibility, 80

example, 80–83

using, 82–83

setEnd()/setStart() methods, 288–289

setEndAfter()/setEndBefore() methods, 289

setExpression() method

compatibility, 91

example, 91–93

setInterval() method

compatibility, 173

control panel, 174–175

demonstration frameset, 174

example, 173

invoking, 176

setStartAfter()/setStartBefore() methods, 289

setTimeout() method

application, 128

compatibility, 176

demonstrating passing parameters, 177

example, 176–178

in scrollMsg() function, 152

shape property, 331

show() method, 202–204

showModalDialog() method

compatibility, 178

example, 178–187

main page for, 178–179

showModelessDialog() method

compatibility, 178

example, 178–187

main page, 183–184

parameters, 182, 183

siblingsAbove/siblingsBelow properties, 442–443

size property, 269

HR element object, 272

SELECT element object, 376

text input object, 361

sizeToContent() method, 187

sourceIndex property

compatibility, 44

example, 44–45

values, 45

span property, 391

splitText() method, 296–297

src property

FRAME element object, 194

IFRAME element object, 200

IMG element object, 325–328

NN4 layer object, 455–457

srcElement property

compatibility, 420

example, 420–422

as filter, 63

IE4+ event object, 420

using, 421–422

start() method, 276

start property

IMG element object, 329

OL element object, 394

status messages

changes, handling, 151

custom, links with, 150

status property

compatibility, 150

example, 150–152

setting, 152

statusbar property, 134–135

stop() method, 276

string object

charAt() method, 471

charCodeAt() method, 471–473

constructor property, 470

examples highlights, 470

indexOf() method, 473

lastIndexOf() method, 474

match() method, 474–476

replace() method, 476–478

search() method, 478

slice() method, 479–480

split() method, 480–481

substr() method, 481–482

substring() method, 482–483

toLowerCase()/toUpperCase() methods, 483–484

toString() method, 484

valueOf() method, 484

strings

reading portion of, 481–483

slicing, 479–480

style property

ccsRule and rule objects, 440

compatibility, 45

example, 45

4855-7 Index.F 6/26/01 8:37 AM Page 521

522 Index ✦ S–T

styleSheet object

addRule() method, 438–439

cssRules property, 436

cssText property, 436–437

deleteRule() method, 439

disabled property, 437

examples highlights, 435

insertRule() method, 439

methods, 438–439

ownerNode property, 437

owningElement property, 437–438

properties, 436–438

removeRule() method, 438–439

rules property, 438

using, 435

submit() method, 341

surroundContents() method

compatibility, 289

example, 290–291

using, 290–291

swapNode() method, 88, 94

systemLanguage property, 404–405

T
tabbing, default order, 46

tabIndex property

compatibility, 45

controlling, 46–47

example, 45–47

TABLE element object

align property, 382

background property, 382

bgColor property, 383

border property, 383

borderColor property, 383–384

borderColorDark/borderColorLight properties,

383–384

caption property, 384

cellPadding property, 384–385

cells property, 385

cellSpacing property, 384–385

dataPageSize property, 385

examples highlights, 382

frame property, 385–387

height property, 387

methods, 390

moveRow() method, 390

properties, 382–390

rows property, 387

rules property, 388–389

tBodies property, 390

width property, 387

tagName property, 47

tags() method

compatibility, 94

example, 95

tagUrn property, 47

target property

compatibility, 430

example, 430–432

form object, 339

NN6+ event object, 430–432

using, 431–432

tBodies property, 390

TBODY element object, 390–391

TD and TH element objects

cellIndex property, 392–393

colSpan property, 393

height property, 393–394

noWrap property, 394

properties, 392–394

rowSpan property, 393

width property, 393–394

text input object

blur() method, 363

defaultValue property, 358–359

event handlers, 365–368

examples highlights, 358

focus() method, 363

form property, 359–360

maxLength property, 360

methods, 363–365

name property, 360

onBlur event handler, 365–366

onChange event handler, 367–368

onFocus event handler, 365–366

onSelect event handler, 365–366

passing, 362

properties, 358–363

readOnly property, 360–361

select() method, 364–365

size property, 361

value property, 361–363

Text object

appendData() method, 294–296

data method laboratory, 294–296

data property, 293

deleteData() method, 294–296

insertData() method, 294–296

methods, 294–297

replaceData() method, 294–296

splitText() method, 296–297

substringData() method, 294–296

4855-7 Index.F 6/26/01 8:37 AM Page 522

523Index ✦ T–V

text property

BODY element object, 257–258

TextRange object, 300

text selection, capturing, 251–252

TEXTAREA element object

cols property, 368

createTextRange() method, 368

examples highlights, 358

rows property, 368

scrollHeight property, 43

scrollLeft property, 43–44

scrollTop property, 43–44

scrollWidth property, 43

TextNode object, 293–297

TextRange object, 38

boundingHeight/boundingWidth properties,

297–299

boundingLeft/boundingRight properties,

297–299

collapse() method, 300

compareEndPoints() method, 300–303

duplicate() method, 303–304

execCommand() method, 304

expand() method, 304

findText() method, 304–308

getBookmark() method, 308

htmlText property, 299–300

inRange() method, 309

isEqual() method, 309–310

methods, 300–314

move() method, 310

moveEnd() method, 310–311

moveStart() method, 310–311

moveToBookmark() method, 311

moveToElementText() method, 311–312

moveToPoint() method, 312

parentElement() method, 312–313

pasteHTML() method, 313

properties, 297–300

select() method, 314

text property, 300

TextRectangle object

bottom/top properties, 315–316

left/right properties, 315–316

properties, using, 315–316

TFOOT element object, 390–391

THEAD element object, 390–391

timeStamp property

compatibility, 432

example, 432–433

typing speed calculation, 433

using, 432–433

title property, 48

toolbar property, 134–135

top property

NN4 layer property, 450–452

TextRectangle object, 315–316

toString() method, 291

toUpperCase() method, 363

TR element object

cells property, 391

height property, 391–392

rowIndex property, 392

sectionRowIndex property, 392

type property

IE4+ event object, 422–423

LI element object, 395–396

OL element object, 395

selection object, 291–292

UL element object, 395

U
UL element object, 395

undo buffer, 308

uniqueID property

compatibility, 49

example, 49–50

using, 49–50

URL property, 238–240

urns() method, 95

userAgent property, 398–401

userLanguage property, 404–405

userProfile object

addReadRequest() method, 407

doReadRequest() method, 408

getAttribute() method, 408

methods, 407–408

V
vAlign property, 390–391

value property

BUTTON element object, 345

checkbox input object, 348–349

LI element object, 396

radio input object, 355

SELECT element object, 376

text input object, 361–363

vendor/vendorSub properties, 404

visibility property, 457–458

vLink property, 257–258

vlinkColor property, 225–227

vspace property

IFRAME element object, 199

IMG element object, 323

4855-7 Index.F 6/26/01 8:37 AM Page 523

524 Index ✦ W

W
W3C event lab, 54–55

width property

compatibility, 23

document object, 234–235

example, 24

FRAME element object, 191–192

HR element object, 273

IMG element object, 322–323

TABLE element object, 387

TD and TH element objects, 393–394

window object

alert() method, 153

captureEvents() method, 154–155

clearInterval() method, 155

clearTimeout() method, 128, 155–157

clipboardData property, 129

close() method, 157–158

closed property, 128, 129–131

confirm() method, 158

createPopup() method, 159

defaultStatus property, 131–132

dialogArguments property, 132

dialogHeight/dialogWidth properties, 132–133

dialogLeft/dialogTop properties, 133

directories property, 134–135

disableExternalCapture() method, 159

enableExternalCapture() method, 159

event handlers, 188–189

examples highlights, 128

execScript() method, 159–160

external property, 135–136

find() method, 160

frames property, 136–138

GetAttention() method, 160

innerHeight/innerWidth properties, 138–139

locationbar property, 134–135

menubar property, 134–135

methods, 153–187

moveBy() method, 128, 161–163

moveTo() method, 128, 161–163

navigator property, 139

offscreenBuffering property, 139–140

onAfterPrint event handler, 188

onBeforePrint event handler, 188

onBeforeUnload event handler, 188–189

onerror property, 140–141

onHelp event handler, 189

open() method, 129, 163–165

opener property, 128, 142–144

outerHeight/outerWidth properties, 138–139

overview, 127

pageXOffset/pageYOffset properties, 144–146

parent property, 146–148

personalbar property, 134–135

print() method, 165–166

prompt() method, 166–167

properties, 129–152

resizeBy()/resizeTo() methods, 167–168

returnValue property, 148

routeEvent() method, 168–169

screenLeft/screenTop properties, 148

screenX/screenY properties, 148–149

scroll() method, 169–171

scrollbars property, 134–135

scrollBy() method, 171–173

scrollTo() method, 171–173

scrollX/scrollY properties, 149

self property, 149–150

setInterval() method, 128, 173–176

setTimeout() method, 128, 152, 176–178

showModalDialog() method, 178–187

showModelessDialog() method, 178–187

sizeToContent() method, 187

status property, 150–152

statusbar property, 134–135

toolbar property, 134–135

windows

boogie, 161–162

browser, dual-frame, 210

checking, before closing, 130–131

chrome, controlling, 128, 134–135

click events, capturing, 154–155

height/width, setting, 138–139

managing, with scripts, 127

modal dialog box, 127, 128, 178–187

modeless dialog box, 127, 128, 178–187

new, creating, 164–165

offsets, 144–146

pop-up, 127, 201–204

properties, showing, 137, 146–147

resize methods, 168

second, generating, 142–143

subwindow link, 144

write() method

compatibility, 253

example, 253–256

example frameset, 253

listing, 254

placeholder for listing, 255

writeIn() method, 253–256

4855-7 Index.F 6/26/01 8:37 AM Page 524

525Index ✦ X–Z

X
x property

IE4+ event object, 413–416

IMG element object, 329

Y
y property

IE4+ event object, 413–416

IMG element object, 329

Z
zIndex property

above and below properties relationship, 460–461

compatibility, 459

example, 459–461

4855-7 Index.F 6/26/01 8:37 AM Page 525

4855-7 Index.F 6/26/01 8:37 AM Page 526

4855-7 Index.F 6/26/01 8:37 AM Page 527

Hungry Minds, Inc.
End-User License Agreement

READ THIS. You should carefully read these terms and conditions before opening

the software packet(s) included with this book (“Book”). This is a license agree-

ment (“Agreement”) between you and Hungry Minds, Inc. (“HMI”). By opening the

accompanying software packet(s), you acknowledge that you have read and accept

the following terms and conditions. If you do not agree and do not want to be

bound by such terms and conditions, promptly return the Book and the unopened

software packet(s) to the place you obtained them for a full refund.

1. License Grant. HMI grants to you (either an individual or entity) a nonexclu-

sive license to use one copy of the enclosed software program(s) (collectively,

the “Software”) solely for your own personal or business purposes on a single

computer (whether a standard computer or a workstation component of a

multi-user network). The Software is in use on a computer when it is loaded

into temporary memory (RAM) or installed into permanent memory (hard

disk, CD-ROM, or other storage device). HMI reserves all rights not expressly

granted herein.

2. Ownership. HMI is the owner of all right, title, and interest, including copy-

right, in and to the compilation of the Software recorded on the disk(s) or CD-

ROM (“Software Media”). Copyright to the individual programs recorded on

the Software Media is owned by the author or other authorized copyright

owner of each program. Ownership of the Software and all proprietary rights

relating thereto remain with HMI and its licensers.

3. Restrictions On Use and Transfer.

(a) You may only (i) make one copy of the Software for backup or archival

purposes, or (ii) transfer the Software to a single hard disk, provided

that you keep the original for backup or archival purposes. You may not

(i) rent or lease the Software, (ii) copy or reproduce the Software

through a LAN or other network system or through any computer sub-

scriber system or bulletin-board system, or (iii) modify, adapt, or create

derivative works based on the Software.

(b) You may not reverse engineer, decompile, or disassemble the Software.

You may transfer the Software and user documentation on a permanent

basis, provided that the transferee agrees to accept the terms and condi-

tions of this Agreement and you retain no copies. If the Software is an

update or has been updated, any transfer must include the most recent

update and all prior versions.

4855-7 EULA.F 6/26/01 8:37 AM Page 528

4. Restrictions on Use of Individual Programs. You must follow the individual

requirements and restrictions detailed for each individual program in the

Appendix of this Book. These limitations are also contained in the individual

license agreements recorded on the Software Media. These limitations may

include a requirement that after using the program for a specified period of

time, the user must pay a registration fee or discontinue use. By opening the

Software packet(s), you will be agreeing to abide by the licenses and restric-

tions for these individual programs that are detailed in the Appendix and on

the Software Media. None of the material on this Software Media or listed in

this Book may ever be redistributed, in original or modified form, for commer-

cial purposes.

5. Limited Warranty.

(a) HMI warrants that the Software and Software Media are free from defects

in materials and workmanship under normal use for a period of sixty

(60) days from the date of purchase of this Book. If HMI receives notifica-

tion within the warranty period of defects in materials or workmanship,

HMI will replace the defective Software Media.

(b) HMI AND THE AUTHOR OF THE BOOK DISCLAIM ALL OTHER WAR-

RANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE, WITH RESPECT TO THE SOFTWARE, THE

PROGRAMS, THE SOURCE CODE CONTAINED THEREIN, AND/OR THE

TECHNIQUES DESCRIBED IN THIS BOOK. HMI DOES NOT WARRANT

THAT THE FUNCTIONS CONTAINED IN THE SOFTWARE WILL MEET

YOUR REQUIREMENTS OR THAT THE OPERATION OF THE SOFT-

WARE WILL BE ERROR FREE.

(c) This limited warranty gives you specific legal rights, and you may have

other rights that vary from jurisdiction to jurisdiction.

6. Remedies.

(a) HMI’s entire liability and your exclusive remedy for defects in materials

and workmanship shall be limited to replacement of the Software Media,

which may be returned to HMI with a copy of your receipt at the follow-

ing address: Software Media Fulfillment Department, Attn.: JavaScript
Examples Bible: The Essential Companion to JavaScript Bible, Hungry

Minds, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, or call

1-800-762-2974. Please allow four to six weeks for delivery. This Limited

Warranty is void if failure of the Software Media has resulted from acci-

dent, abuse, or misapplication. Any replacement Software Media will be

warranted for the remainder of the original warranty period or thirty

(30) days, whichever is longer.

4855-7 EULA.F 6/26/01 8:37 AM Page 529

(b) In no event shall HMI or the author be liable for any damages whatso-

ever (including without limitation damages for loss of business profits,

business interruption, loss of business information, or any other pecu-

niary loss) arising from the use of or inability to use the Book or the

Software, even if HMI has been advised of the possibility of such

damages.

(c) Because some jurisdictions do not allow the exclusion or limitation of

liability for consequential or incidental damages, the above limitation or

exclusion may not apply to you.

7. U.S. Government Restricted Rights. Use, duplication, or disclosure of the

Software for or on behalf of the United States of America, its agencies and/or

instrumentalities (the "U.S. Government") is subject to restrictions as stated

in paragraph (c)(1)(ii) of the Rights in Technical Data and Computer Software

clause of DFARS 252.227-7013, or subparagraphs (c) (1) and (2) of the

Commercial Computer Software - Restricted Rights clause at FAR 52.227-19,

and in similar clauses in the NASA FAR supplement, as applicable.

8. General. This Agreement constitutes the entire understanding of the parties

and revokes and supersedes all prior agreements, oral or written, between

them and may not be modified or amended except in a writing signed by both

parties hereto that specifically refers to this Agreement. This Agreement shall

take precedence over any other documents that may be in conflict herewith. If

any one or more provisions contained in this Agreement are held by any court

or tribunal to be invalid, illegal, or otherwise unenforceable, each and every

other provision shall remain in full force and effect.

4855-7 EULA.F 6/26/01 8:37 AM Page 530

4855-7 EULA.F 6/26/01 8:37 AM Page 531

CD-ROM Installation
Instructions

The files on this CD-ROM can be accessed and used from both Windows 95 (or

later) and Macintosh environments. Some Macintosh program files require

MacOS 8.6 or later, but program listing text files can be opened with any MacOS ver-

sion. For Windows, access the software with My Computer or Windows Explorer.

Macintosh users can access files by using the Finder.

You can open all of the example file listings directly from the CD-ROM, but access

will be faster — and you will be able to experiment with modifying the files more

readily — if you copy the listings to your hard drive. Copy the folder named

Listings from the CD-ROM to any location on your hard drive.

To open the listing scripts on this CD-ROM, you should have a copy of Microsoft

Internet Explorer 5 (or later), Netscape Navigator 6 (or later), or both browsers

installed on your computer.

To run the listing scripts from your browser, open the file named index.html in the

Listings folder. This page provides a table of contents consisting of direct links to

the listings, showing which browsers are compatible with each listing.

Access the Adobe Acrobat (PDF) files for the book’s contents from the CD-ROM. Be

sure to install the index files into your copy of Acrobat to take advantage of full-text

search.

For more details on installing and running the CD-ROM contents, see the Appendix.

4855-7 Install.F 6/26/01 8:37 AM Page 532

	JavaScript™ Examples Bible:
	Praise for Danny GoodmanÌs
	About the Author
	Credits
	Preface
	Organization and Features of This Book
	CD-ROM
	Formatting and Naming Conventions

	Acknowledgments
	Contents at a Glance
	Contents

	Generic HTML Element Objects (Chapter 15)
	Examples Highlights
	Generic Objects
	Properties
	Methods
	Event handlers

	Window and Frame Objects (Chapter 16)
	Examples Highlights
	Window Object
	Properties
	Methods
	Event handlers

	FRAME Element Object
	Properties

	FRAMESET Element Object
	Properties

	IFRAME Element Object
	Properties

	popup Object
	Properties
	Methods

	Window and Frame Objects (Chapter 16)
	Examples Highlights
	Window Object
	Properties
	Methods
	Event handlers

	FRAME Element Object
	Properties

	FRAMESET Element Object
	Properties

	IFRAME Element Object
	Properties

	popup Object
	Properties
	Methods

	Location and History Objects (Chapter 17)
	Examples Highlights
	Location Object
	Properties
	Methods

	History Object
	Properties
	Methods

	The Document and Body Objects (Chapter 18)
	Examples Highlights
	Document Object
	Properties
	Methods
	Event Handlers

	BODY Element Object
	Properties
	Methods
	Event Handlers

	Body Text Objects (Chapter 19)
	Examples Highlights
	FONT Element Object
	Properties

	HR Element Object
	Properties

	MARQUEE Element Object
	Properties

	Methods
	Range Object
	Properties
	Methods

	selection Object
	Properties
	Methods

	Text and TextNode Objects
	Properties
	Methods

	TextRange Object
	Properties
	Methods

	TextRectangle Object
	Properties

	Image, Area, and Map Objects (Chapter 22)
	Examples Highlights
	Image and IMG Element Objects
	Properties
	Event handlers

	AREA Element Object
	Properties

	MAP Element Object
	Property

	The Form and Related Objects (Chapter 23)
	Examples Highlights
	FORM Object
	Properties
	Methods
	Event handlers

	LABEL Element Object
	Property

	Button Objects (Chapter 24)
	Examples Highlights
	The BUTTON Element Object and the Button, Submit, and Reset Input Objects
	Properties
	Methods
	Event handlers

	Checkbox Input Object
	Properties
	Event handlers

	Radio Input Object
	Properties
	Event handlers

	Text-Related Form Objects (Chapter 25)
	Examples Highlights
	Text Input Object
	Properties
	Methods
	Event handlers

	TEXTAREA Element Object
	Properties
	Methods

	Select, Option, and Optgroup Objects (Chapter 26)
	Examples Highlights
	SELECT Element Object
	Properties
	Methods
	Event handlers

	OPTION Element Object
	Properties

	OPTGROUP Element Object
	Properties

	Table and List Objects (Chapter 27)
	Examples Highlights
	TABLE Element Object
	Properties
	Methods

	TBODY, TFOOT, and THEAD Element Objects
	Properties

	COL and COLGROUP Element Objects
	Properties

	TR Element Object
	Properties

	TD and TH Element Objects
	Properties

	OL Element Object
	Properties

	UL Element Object
	Properties

	LI Element Object
	Properties

	Navigator and Other Environment Objects (Chapter 28)
	Examples Highlights
	clientInformation Object (IE4+) and navigator Object (All)
	Properties
	Methods

	screen Object
	Properties

	userProfile Object
	Methods

	Event Objects (Chapter 29)
	Examples Highlights
	NN4 event Object
	Properties

	IE4+ event Object
	Properties

	NN6+ event Object

	Style Sheet Objects (Chapter 30)
	Examples Highlights
	styleSheet Object
	Properties
	Methods

	cssRule and rule Objects
	Properties

	The NN4 Layer Object (Chapter 31)
	Examples Highlights
	NN4 Layer Object
	Properties
	Methods

	String and Number Objects (Chapters 34 and 35)
	Examples Highlights
	String Object
	Properties
	Parsing methods

	Number Object
	Properties
	Methods

	The Array Object (Chapter 37)
	Examples Highlights
	Array Object Methods

	What's on the CD- ROM
	System Requirements
	Disc Contents
	JavaScript listings for Windows and Macintosh text editors
	Electronic versions of the books
	Adobe Acrobat Reader

	Hungry Minds, Inc. End- User License Agreement

	CD-ROM Installation Instructions

