
 

 

 

 
www.GetPedia.com

*More than 150,000 articles in the 
search database 

*Learn how almost everything 
works 

 

 

http://www.getpedia.com/
http://www.getpedia.com


fm.indd   ifm.indd   i 5/3/2005   3:46:08 PM5/3/2005   3:46:08 PM

TEAM LinG



JAVASCRIPT 
DEMYSTIFIED

fm.indd   ifm.indd   i 5/3/2005   3:46:08 PM5/3/2005   3:46:08 PM

http://dx.doi.org/10.1036/0071471391


fm.indd   iifm.indd   ii 5/3/2005   3:46:13 PM5/3/2005   3:46:13 PM

This page intentionally left blank.



JAVASCRIPT 
DEMYSTIFIED

JIM KEOGH

McGraw-Hill/Osborne

New York   Chicago   San Francisco   Lisbon   London
   Madrid   Mexico City   Milan   New Delhi   San Juan

   Seoul   Singapore   Sydney   Toronto

fm.indd   iiifm.indd   iii 5/3/2005   3:46:13 PM5/3/2005   3:46:13 PM

http://dx.doi.org/10.1036/0071471391


Copyright © 2005 by The McGraw-Hill Companies. All rights reserved. Manufactured in the 
United States of America. Except as permitted under the United States Copyright Act of 1976, 
no part of this publication may be reproduced or distributed in any form or by any means, or 
stored in a database or retrieval system, without the prior written permission of the publisher. 
 
 
 
The material in this eBook also appears in the print version of this title: 0-07-226134-X. 
 
All trademarks are trademarks of their respective owners. Rather than put a trademark symbol 
after every occurrence of a trademarked name, we use names in an editorial fashion only, and 
to the benefit of the trademark owner, with no intention of infringement of the trademark. 
Where such designations appear in this book, they have been printed with initial caps. 
McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales 
promotions, or for use in corporate training programs. For more information, please contact 
George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212) 904-4069. 
 
TERMS OF USE 
 
This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its 
licensors reserve all rights in and to the work. Use of this work is subject to these terms. 
Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one 
copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, 
create derivative works based upon, transmit, distribute, disseminate, sell, publish or 
sublicense the work or any part of it without McGraw- Hill’s prior consent. You may use the 
work for your own noncommercial and personal use; any other use of the work is strictly 
prohibited. Your right to use the work may be terminated if you fail to comply with these 
terms. 
 
THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO 
GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR 
COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, 
INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE 
WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY 
WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED 
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR 
PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions 
contained in the work will meet your requirements or that its operation will be uninterrupted 
or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for 
any inaccuracy, error or omission, regardless of cause, in the work or for any damages 
resulting therefrom. McGraw-Hill has no responsibility for the content of any information 
accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be 
liable for any indirect, incidental, special, punitive, consequential or similar damages that 
result from the use of or inability to use the work, even if any of them has been advised of the 
possibility of such damages. This limitation of liability shall apply to any claim or cause 
whatsoever whether such claim or cause arises in contract, tort or otherwise. 
 
DOI: 10.1036/007226134X
 

0071471391

http://dx.doi.org/10.1036/007226134X


This book is dedicated to Anne, Sandy, Joanne, 
Amber-Leigh Christine, and Graff, without whose 
help and support this book couldn’t have 
been written.

fm.indd   vfm.indd   v 5/3/2005   3:46:14 PM5/3/2005   3:46:14 PM



ABOUT THE AUTHOR

Jim Keogh is on the faculty of Columbia University and Saint Peter’s College in 
Jersey City, New Jersey. He developed the e-commerce track at Columbia Univer-
sity. Keogh has spent decades developing applications for major Wall Street corpo-
rations and is the author of more than 60 books, including J2EE: The Complete 
Reference, Java Demystifi ed, ASP.NET Demystifi ed, Data Structures Demystifi ed, 
XML Demystifi ed, and others in the Demystifi ed series.

fm.indd   vifm.indd   vi 5/3/2005   3:46:14 PM5/3/2005   3:46:14 PM



vii

CONTENTS

Introduction  xv

CHAPTER 1 An Inside Look at JavaScript  1
Answers to Common Questions About JavaScript  2
JavaScript: A Limited-Featured 

Programming Language  3
Getting Down to JavaScript  4

Object Name  4
Property  5
Methods  5
The Dot Syntax  6
The Main Event  6

Writing Your First JavaScript  7
“Old Timers” Don’t Like JavaScript  10
Spicing Up Your JavaScript  11
Looking Ahead  12
Quiz  12

CHAPTER 2 Variables, Operators, and Expressions  15
Values and Variables  16

Values  16
Variables  17

fm.indd   viifm.indd   vii 5/3/2005   3:46:15 PM5/3/2005   3:46:15 PM

For more information about this title, click here

http://dx.doi.org/10.1036/0071471391


 viii JavaScript Demystifi ed

Operators and Expressions  24
Parts of an Expression  24
Multiple Operations  24
Types of Operators  25

Looking Ahead  40
Quiz  40

CHAPTER 3 Condition Statements  43
if Statement  45

The if Statement in Action  45
The if...else Statement  46
The if...else if Statement  48
Other Variations of the if Statement  52
Nested if Statement  53
Identifying a Browser  55

switch...case Statement  58
Loop Statement  62

The for Loop  62
The for in Loop  66
The while Loop  68
The do...while Loop  70
continue  71

Looking Ahead  72
Quiz  73

CHAPTER 4 Arrays  75
What Is an Array?  75
Declaring an Array  76

Initializing an Array  77
Defi ning Array Elements  78

How Many Elements Are in the Array?  79
Looping the Array  80
Adding an Array Element  82
Sorting Array Elements  83

fm.indd   viiifm.indd   viii 5/3/2005   3:46:15 PM5/3/2005   3:46:15 PM



CONTENTS ix

Making a New Array from an Existing Array  84
Combining Array Elements into a String  87
Changing Elements of the Array  90
Looking Ahead  91
Quiz  92

CHAPTER 5 Functions  95
What Is a Function?  96
Defi ning a Function  96

Writing a Function Defi nition  98
Adding Arguments  99

The Scope of Variables and Arguments  100
Calling a Function  101

Calling a Function Without an Argument  102
Calling a Function with an Argument  103
Calling a Function from HTML  104

Functions Calling Another Function  108
Returning Values from a Function  109
Looking Ahead  113
Quiz  114

CHAPTER 6 Strings  117
Why Manipulate a String?  117
Joining Strings  118
Finding Your Way Around a String  120
Dividing Text  123

Copying a Substring  125
Converting Numbers and Strings  129

Numbers to Strings  130
Changing the Case of the String  131
Strings and Unicode  132
Looking Ahead  132
Quiz  133

fm.indd   ixfm.indd   ix 5/3/2005   3:46:15 PM5/3/2005   3:46:15 PM



 x JavaScript Demystifi ed

CHAPTER 7 Forms and Event Handling  135
Building Blocks of a Form  136

Elements and JavaScript  136
Responding to Form Events  137
Form Objects and Elements  141

Time-Saving Shortcut  143
Changing Attribute Values Dynamically  144

Changing Elements Based on a Value 
Selected by the User  146

Changing an Option List Dynamically  148
Evaluating Check Box Selections  151
Manipulating Elements Before the Form 

Is Submitted  153
Using Intrinsic JavaScript Functions  155
Changing Labels Dynamically  156
Disabling Elements  159
Read-Only Elements  161
Looking Ahead  162
Quiz  163

CHAPTER 8 Cookies  165
Cookie Basics  166
Creating a Cookie  167
Reading a Cookie  169
Setting the Expiration Date  171
Deleting a Cookie  172
Personalizing an Experience Using a Cookie  174
Looking Ahead  176
Quiz  176

CHAPTER 9 Browser Windows  179
Open the Window, Please!  180
Giving the New Window Focus  182
Placing the Window into Position on the Screen  184

fm.indd   xfm.indd   x 5/3/2005   3:46:16 PM5/3/2005   3:46:16 PM



CONTENTS xi

Changing the Contents of a Window  186
Closing the Window  187
”Magically” Scrolling a Web Page  190
Opening Multiple Windows at Once  191
Creating a Web Page in a New Window  192
Looking Ahead  195
Quiz  196

CHAPTER 10 Regular Expressions  199
What Is a Regular Expression?  200
The Language of a Regular Expression  201

Finding Nonmatching Characters  204
Entering a Range of Characters  205
Matching Digits and Nondigits  205
Matching Punctuation and Symbols  206
Matching Words  206

Replace Text Using a Regular Expression  207
Replacing Like Values  208

Return the Matched Characters  209
The Telephone Number Match  210
Regular Expression Object Properties  213

Looking Ahead  214
Quiz  215

CHAPTER 11 JavaScript and Frames  217
You’ve Been Framed!  218

Invisible Borders  220
Calling a Child Window’s JavaScript Function  222
Changing the Content of a Child Window  223
Changing the Focus of a Child Window  226
Writing to a Child Window from a JavaScript  226
Accessing Elements of Another Child Window  228
Looking Ahead  228
Quiz  229

fm.indd   xifm.indd   xi 5/3/2005   3:46:16 PM5/3/2005   3:46:16 PM



 xii JavaScript Demystifi ed

CHAPTER 12 Rollovers  231
Setting the Stage  232
Creating a Rollover  234
Text Rollovers  237
Multiple Actions for a Rollover  239
More Effi cient Rollovers  243
Looking Ahead  245
Quiz  245

CHAPTER 13 Getting Your Message Across: The Status Bar, 
Banners, and Slideshows  249

Making Magic Using the Status Bar  250
Building a Static Message  250
Changing the Message Using Rollovers  253
Moving the Message Along the Status Bar  256

Banner Advertisements  268
Loading and Displaying Banner 

Advertisements  268
Linking Banner Advertisements to URLs  271

Creating a Slideshow  273
Looking Ahead  275
Quiz  276

CHAPTER 14 Protecting Your Web Page  279
Hiding Your Code  280

Disabling the Right Mouse Button  280
Hiding Your JavaScript  283

Concealing Your E-mail Address  286
Looking Ahead  288
Quiz  288

CHAPTER 15 Menus  291
Creating a Pull-Down Menu  292
Dynamically Changing a Menu  294
Validating Menu Selections  296

fm.indd   xiifm.indd   xii 5/3/2005   3:46:16 PM5/3/2005   3:46:16 PM



CONTENTS xiii

Creating DHTML Menus  298
Floating Menu  299
Chain Select Menu  299
Tab Menu  300
Popup Menu  300
Highlighted Menu  301
Folding Tree Menu  301
Microsoft Outlook Bar Style Menu  302
Context Menu  303
Scrollable Menu  303
Side Bar Menu  304
Slide-In Menu  304

Looking Ahead  305
Quiz  306

CHAPTER 16 DHTML  309
What Is DHTML?  310

Learning DHTML  310
Cascading Style Sheets  311

Using DHTML Code  313
Generic Drag  313
LCD Clock All  316
Watermark Background Image  319
Tabbed Document Viewer Using iframe  319
Daily iframe Content  323
Cross-Browser Marquee  325
Popup Calendar  325
Drop-In Content Box  325
Ad Box  326

Quiz  327

Appendix  329
Final Exam  333
Answers to Quizzes and Final Exam  349
Index  361

fm.indd   xiiifm.indd   xiii 5/3/2005   3:46:16 PM5/3/2005   3:46:16 PM



fm.indd   xivfm.indd   xiv 5/3/2005   3:46:16 PM5/3/2005   3:46:16 PM

This page intentionally left blank.



xv

INTRODUCTION

Every web surfer knows a classy web site when he sees one, because it has eye-
catching features that make the site outstanding among other sites on the web. 
Developers of these sites leave web surfers in awe not by using fancy animation or 
provocative pictures, but by using subtle tricks such as fl oating menus and move-
able objects, and by giving the web site the smarts to help a web surfer enter ap-
propriate information and perform tasks correctly.

Classy web sites attract developers, too, who are like magicians watching a top-
notch magic act, more puzzled than amazed, since what is seen is trickery, not 
magic. The question is, how is it done?

No doubt, you’ve raised this same question when visiting a great web site, and 
you’ve probably tried to re-create those fancy features using HTML but fell short of 
your goal, leaving you wondering what you missed. Now you’ll learn the secret that 
master developers use to give web sites the wow factor.

That secret is JavaScript.
JavaScript is a limited-featured programming language used by web developers 

to do things that HTML cannot do, such as build dynamic web pages, respond to 
events such as a mouse cursor rollover, create interactive forms, validate informa-
tion that the visitor enters into a form, control the browser, and much more.

JavaScript is not Java, which confuses many developers who are unfamiliar with 
JavaScript. Both are object-oriented programming languages and have Java in their 
names, but that’s about as close as they come. You’ll learn the difference in the fi rst 
chapter of this book.

Yes, JavaScript is different from HTML, but it’s not so different that you won’t 
be able to write JavaScript code. All you need is a working knowledge of HTML—
and JavaScript Demystifi ed—to become profi cient in JavaScript.

JavaScript is a critical component of DHTML, which the pros use to create 
Flash-like dramatic effects without having to use a plug-in. JavaScript Demystifi ed 

fm.indd   xvfm.indd   xv 5/3/2005   3:46:16 PM5/3/2005   3:46:16 PM

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.



 xvi JavaScript Demystifi ed

introduces you to DHTML and shows you how to enhance your web site with 
effects that you wouldn’t think could be done on a web page.

You might be a little apprehensive learning JavaScript, especially if you are a 
web developer and not a computer programmer. JavaScript can be mystifying; how-
ever, as you read JavaScript Demystifi ed you’ll quickly untangle the mystery, 
because your knowledge of HTML is used as the foundation for learning to write 
JavaScripts.

As you’ll see when you write your fi rst JavaScript in Chapter 1, each element of 
JavaScript is introduced by combining just the JavaScript element with a working 
web page written in HTML. You already know 95 percent of the code that creates 
the web page because it is written in HTML. The remaining 5 percent of the code 
is written in JavaScript, which is clearly explained in the chapter.

Like many developers, you probably learn by doing. You’ll like reading Java- 
Script Demystifi ed because we use a hands-on approach to learning JavaScript. You 
can copy examples illustrated in this book from our web site (www.osborne.com) 
and experiment with each JavaScript concept presented in this book. Load the web 
page and see the affect of the JavaScript. Comment out the JavaScript and reload 
the web page and see how the page reacts without the JavaScript. Once you’ve 
mastered the JavaScript technique, you can incorporate it into your own web page 
and then move on to the next topic.

By the end of this book, you’ll be able to make your own classy web site that will 
leave even the sophisticated web surfer in awe, and web developers scratching their 
heads, asking, “how does that work?”

A Look Inside
JavaScript can be challenging to learn unless you follow the step-by-step approach 
used in JavaScript Demystifi ed. Topics are presented in an order in which many 
developers like to learn them—starting with basic components and then gradually 
moving on to those features found on advanced web sites.

Each chapter follows a time-tested formula that fi rst explains the topic in an 
easy-to-read style and then shows how it is used in a working web page that you can 
copy and load yourself. You can then compare your web page with the image of 
the web page shown in the chapter to be assured that you’ve coded the web page 
correctly. There is little chance you’ll go wrong.

fm.indd   xvifm.indd   xvi 5/3/2005   3:46:17 PM5/3/2005   3:46:17 PM



INTRODUCTION xvii

Chapter 1: An Inside Look at JavaScript
Chapter 1 sets the stage for the rest of the book by presenting the bare facts of Java- 
Script. You’ll explore the basic concepts of JavaScript and learn what JavaScript 
can do and what it cannot do.

Most importantly, you’ll create your fi rst working JavaScript. It won’t wow any-
one but yourself, but your fi rst JavaScript breaks through the unknown and lets you 
prove to yourself that you can create a working JavaScript.

Chapter 2: Variables, Operators, and Expressions
You’ll roll up your sleeves and delve head fi rst into JavaScript by learning the nitty-
gritty of how to store information in computer memory and then how to manipulate 
this information using JavaScript. This may not sound exciting, but techniques that 
you learn in this chapter are used in nearly every eye-catching web page that you’ve 
seen when surfi ng the web.

In this chapter, you’ll learn that information such as dates, numbers, and text that 
are entered into a form can be stored in computer memory using something called 
a variable. Variables and operators are then assembled into an expression that tells 
the browser to do something exciting. You’ll have the browser at your beck and call 
once you get the skills covered in Chapter 2 under your belt.

Chapter 3: Condition Statements
Chapter 3 shows you how to give your web page the smarts needed to make deci-
sions by using a condition statement. A condition statement is an expression that 
tells the browser to compare two things, and to do something if they are the same, 
or do something else if they are different.

A condition statement is a key ingredient of nearly every classy web site that 
customizes its content for a visitor. Once you’ve mastered topics in this chapter, 
you’ll be able to write a JavaScript that validates and processes information that a 
visitor enters into a form on your web site.

Chapter 4: Arrays
You’ve seen web pages that display a seemingly endless number of banner ads that 
keep rotating while you scan the page. You probably noticed that each banner ad 

fm.indd   xviifm.indd   xvii 5/3/2005   3:46:17 PM5/3/2005   3:46:17 PM



popped into place without any delay. The secret to how this is done is by grouping 
them together in an array.

As you’ll learn in Chapter 4, an array is a group of similar information that the 
browser can access effi ciently by accessing each member of the group, similar to 
how a teacher goes up and down rows of students when collecting homework.

Chapter 5: Functions
You simply say “one pepperoni pie” when you order a pizza. You don’t need to tell 
the chef how to make the pizza, because the chef follows the recipe that contains 
those step-by-step instructions.

You might be wondering what ordering a pizza has to do with JavaScript. Order-
ing a pizza is similar to calling a function in JavaScript. Think of a function as a 
group of instructions that are followed each time the function is called. In this case, 
the function is called by saying “one pepperoni pie.” The chef follows instructions 
defi ned in the recipe for making a pepperoni pizza.

In Chapter 5, you’ll learn how to defi ne your own functions that can be called 
from a JavaScript or straight from HTML to have the browser perform a group of 
instructions. This gives you the power to build your own JavaScript commands.

Chapter 6: Strings
You might have had a web page automatically create an e-mail address for you 
based on your name. Somehow, the web page ripped your name into pieces and 
then reassembled it into an e-mail address, just like a magician rips a newspaper 
into pieces and then magically puts them back together to form a newspaper.

Read Chapter 6 if you want to learn how to slice and dice your name or any series 
of characters into pieces and then reassemble those pieces into different words. 
Professional web developers do this when they validate information provided by 
visitors to their web sites.

Chapter 7: Forms and Event Handling
Forms are nothing new to you, since they are built using HTML. However, not all 
forms are the same, especially when a JavaScript developer creates the form. Java- 
Script can make a form come alive, letting it interact dynamically with form ele-
ments while information is being entered into the form.

You experience this whenever the browser automatically changes settings on 
the form based on your selection from a drop-down list. Behind the scenes, the 

 xviii JavaScript Demystifi ed

fm.indd   xviiifm.indd   xviii 5/3/2005   3:46:17 PM5/3/2005   3:46:17 PM



INTRODUCTION xix

browser calls a JavaScript when the drop-down list selection changes. The Java- 
Script reads the selection and determines the settings for the other form elements. 
You’ll learn how to perform this and other feats of JavaScript magic in this chapter.

Chapter 8: Cookies
What does a baker, Cookie Monster, and JavaScript have in common? Cookies! A 
baker and JavaScript make cookies. Cookie Monster and JavaScript eat cookies. 
(That is, JavaScript kind of eats cookies—it actually reads cookies.)

A cookie is a small piece of information copied to the visitor’s computer by a 
web page—something you probably already know. In Chapter 8, you’ll learn how 
to make your own cookies and how to read your cookies to personalize your web 
page for each visitor to your site.

Chapter 9: Browser Windows
Popup and pop-back ads annoy many web surfers. So do web sites that open a 
seemingly endless number of windows when the surfer enters a home page. The 
secret to this madness is using JavaScript to control the browser window. You’ll see 
how this is done in Chapter 9.

When used tastefully, controlling the browser window using a JavaScript can 
transform a dull web site into one that sizzles. As you’ll learn in this chapter, you 
can control how web pages are displayed in a browser window and the size and 
style of the browser window.

Chapter 10: Regular Expressions
It would be nice if you could write one sentence and have the browser update para-
graphs of text. You can do this by writing a regular expression. A regular expression 
is a powerful tool that you can use to search and replace text, validate information, 
and manipulate information in amazing ways.

In Chapter 10, you’ll learn everything you need to know to make a regular 
expression a regular part of your JavaScript toolbox.

Chapter 11: JavaScript and Frames
No doubt you learned how to divide a web page into sections called frames when 
you learned HTML. A frame is like a picture frame that can display its own web 

fm.indd   xixfm.indd   xix 5/3/2005   3:46:18 PM5/3/2005   3:46:18 PM



 xx JavaScript Demystifi ed

page and can be scrolled without affecting the content of other frames on the 
screen.

In Chapter 11, you’ll learn how to interact and manipulate frames using Java- 
Script. You’ll learn how to use JavaScript to load web pages and to change the con-
tent of a frame dynamically.

Chapter 12: Rollovers
Rollovers transform the mouse cursor into a magic wand, letting the visitor perform 
all sorts of magic by passing the mouse cursor over objects on the web page. They 
can replace one image with another, make text appear and disappear, and do any 
other task the developer can imagine.

Each time a rollover is detected, the browser calls the JavaScript function that 
tells the browser what to do next. Chapter 12 shows you how to perform this magic 
on your web page using JavaScript.

Chapter 13: Getting Your Message Across: 
The Status Bar, Banners, and Slideshows
Professional JavaScript developers use all kinds of tricks to grab the visitor’s atten-
tion while scanning a web page—they use rotating banners, slideshows, and the 
browser’s status bar to get their message across to the visitor.

You’ll learn the secrets behind these tricks in Chapter 13 when you learn how to 
build your own attention-grabbers using JavaScript.

Chapter 14: Protecting Your Web Page
Your JavaScript secrets are not safe unless you take steps to secure your web page. 
It is all too common for a curious visitor to click the right mouse button and select 
View Source to pop up the source code of a web page on the screen. Any JavaScripts 
used by the web page also become visible.

You cannot entirely conceal your JavaScripts from prying eyes, but you can stop 
all but computer wizards from gaining access to your JavaScript. You’ll see how 
this is done in Chapter 14.

fm.indd   xxfm.indd   xx 5/3/2005   3:46:18 PM5/3/2005   3:46:18 PM



INTRODUCTION xxi

Chapter 15: Menus
When meeting someone face to face, you get one chance to make a fi rst impression, 
and the same is true of your web site. Web surfers tend to judge a web site by how 
easy it is for them to navigate the site. You can streamline their navigation by clev-
erly designing eye-catching menus that create a lasting memory of your site.

In Chapter 15, you’ll learn how to create dramatic menus using JavaScript and 
DHTML. You’ve seen many of these used in popular commercial web sites.

Chapter 16: DHTML
Commercial web sites use exciting special effects such as balloons fl ying across the 
web page or eyes that follow the mouse cursor to capture and hold visitors. They 
create these effects by using Dynamic HTML (DHTML).

As you’ll learn in Chapter 16, DHTML is a combination of HTML, Cascading 
Style Sheets, and JavaScript blended together to give web pages the same look and 
feel as a desktop multimedia application. The chapter begins with a short review of 
Cascading Style Sheets and then follows with handy DHTML examples provided 
by dynamicdrive.com that can be used on your next project.

fm.indd   xxifm.indd   xxi 5/3/2005   3:46:18 PM5/3/2005   3:46:18 PM



fm.indd   xxiifm.indd   xxii 5/3/2005   3:46:18 PM5/3/2005   3:46:18 PM

This page intentionally left blank.



1

CHAPTER
1

An Inside Look 
at JavaScript

Anyone who has built a web page has quickly realized the limitations of Hypertext 
Markup Language (HTML). It doesn’t offer the control that you need to create so-
phisticated web pages, and you can’t use it to create interactive web pages. Using 
the JavaScript scripting language, however, you can build interactive web pages and 
features that are found on many professional web sites.

You probably already know how to put together a web page using HTML. Java- 
Script is still new to you—otherwise you wouldn’t be reading this book. In this book, 
you’ll learn JavaScript from the ground up to gain the skills you need to build classy 
interactive web pages. If you’re anxious to get started writing your fi rst JavaScript, 
hold on; you’ll do this a little later in the chapter. Before jumping in over your head, 
let’s take a moment and explore the basic concepts of JavaScript.

ch01.indd   1ch01.indd   1 4/26/2005   8:49:54 AM4/26/2005   8:49:54 AM

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.



 2 JavaScript Demystifi ed

Answers to Common Questions 
About JavaScript

Many developers who are new to JavaScript are puzzled by the name because of 
confusing information they’ve read about scripting languages, programming lan-
guages, JavaScript, Java, VBScript, and JScript. Let’s answer three of the most 
frequently asked questions about JavaScript before getting down to the nuts and 
bolts of using it.

Is JavaScript a scripting language or a programming language?
This is the fi rst question many web developers ask when learning JavaScript. Fact 
is, JavaScript is both a scripting and a programming language, since a scripting 
language and a programming language fundamentally do the same things—that is, 
they enable developers to instruct a browser to perform some action, such as vali-
dating information a user enters into a form. However, they differ in one important 
aspect: a scripting language usually doesn’t care about data types, while a program-
ming language does care about data types. A data type is a defi nition of the type of 
data values that can be used in a program and the type of operations that can be 
performed on those values, and it specifi es the size and kind of information that can 
be placed into a specifi c location in computer memory.

Is JavaScript the same as Java?
Typically the second question asked by web developers, the simple answer is no. 
Originally, Netscape developed a scripting language called LiveScript to enhance 
the abilities of Netscape Navigator. The buzz in the industry was that Sun Micro-
systems’ new programming language, Java, was going to revolutionize the 
computer industry, because, among other things, Java could be used to create small 
programs called applets that could run inside Java-enabled web browsers. Netscape 
soon released a version of Navigator called Navigator 2 that was Java-enabled. Live- 
Script was renamed JavaScript, with hopes that developers would adopt JavaScript 
along with Java.

Java is a full-featured programming language (like C++) that is used to build cli-
ent-side and server-side applications. A client-side application is a program that 
you interact with directly on your computer—for example, Microsoft Internet Ex-
plorer. A server-side application is a program that your client-side application 
interacts with, typically on a distant computer or server—for example, a Java applet 
or Perl script.

For example, your browser is a client-side application that you use to request 
web pages from the web server. The web server is a server-side application that 
“talks” to your browser.

ch01.indd   2ch01.indd   2 4/26/2005   8:49:59 AM4/26/2005   8:49:59 AM



CHAPTER 1 An Inside Look at JavaScript 3

A Java application can run on different kinds of computers without having to be 
modifi ed. This is called cross-platform compatibility. Simply said, a Java program 
that runs on Windows will also run on a Mac and Sun computers without your hav-
ing to modify the program.

You might be familiar with a Java applet if you’ve built web pages. A Java applet 
is a Java program that resides on a web server and is run by using the <applet> 
or <object> HTML tag in a web page. The browser downloads the Java applet 
from the web server and then runs the applet in its own window. Java applets can do 
nearly everything that can be done with a Java application, except for certain secu-
rity restrictions, such as accessing your computer’s hard disk.

In contrast to Java, JavaScript is a limited-featured programming language. (See 
the next section, “JavaScript: A Limited-Featured Programming Language.”) Java 
Script programs called scripts are included in a web page within the <script> 
HTML tag. The browser downloads a JavaScript when the web page is downloaded. 
A JavaScript can run quietly without anything being displayed, such as while per-
forming calculations, or it can take over the entire browser window when displaying 
a JavaScript form. A JavaScript program cannot access your computer’s hard disk.

Is JavaScript the same as VBScript and JScript?
The simple answer is no. VBScript and JScript were developed by Microsoft to cre-
ate interactive web pages. JavaScript is a Netscape creation.

JavaScript: A Limited-Featured 
Programming Language

You can do many things using JavaScript that you can’t do by simply using HTML. 
Here are a few of them:

• Build dynamic web pages

• Display alert boxes

• Write messages to the browser status bar

• Control features of the browser

• Open new browser windows

• Customize reactions to mouse actions and keystrokes

• Validate information in forms

• Perform calculations

ch01.indd   Sec1:3ch01.indd   Sec1:3 4/26/2005   8:49:59 AM4/26/2005   8:49:59 AM



 4 JavaScript Demystifi ed

• Display messages when the cursor rolls over an object on the screen

• Create interactive forms

• Set date and time

• Identify browsers and browser plug-ins such as Flash

Although JavaScript is more powerful than HTML, JavaScript can’t do every-
thing. Here are some common things that JavaScript can’t do:

• Write fi les to your hard disk

• Read fi les from your hard disk—except for cookies

• Close windows other than those the JavaScript application opened

• Write server-side applications, called Common Gateway Interface (CGI) 
applications, which must be written using languages such as Java, ASP, 
Perl, and PHP.

• Read information from a web page that resides on a domain different from 
the domain where the JavaScript resides

Getting Down to JavaScript
Now that the preliminaries are out of the way, let’s get started learning the nuts and 
bolts of JavaScript, beginning with an introduction to JavaScript objects. You might 
have heard the term object-oriented programming language and wondered what 
this means in plain English. An object-oriented programming language is a pro-
gramming language that is used to build programs using objects.

An object, of course, is a thing, such as a document, a computer, a pencil, or a car. 
Nearly everything around us is an object. JavaScript is an object-oriented program-
ming language that is used to build programs using objects. In programming, the 
objects most commonly used by JavaScript are documents, forms, fi elds, radio but-
tons, and other elements that you fi nd on a form or user interface. A window is also 
an object used by a JavaScript program. You’ll become very familiar with objects 
as you begin writing JavaScript programs. Let’s explore objects in greater detail.

Object Name
A typical web page contains many objects, some of which are the same kind of 
object. For example, a web page might contain two forms. But even though the 

ch01.indd   Sec1:4ch01.indd   Sec1:4 4/26/2005   8:49:59 AM4/26/2005   8:49:59 AM



CHAPTER 1 An Inside Look at JavaScript 5

forms are the same kind of object, they can be uniquely different based on the 
fi elds, buttons, and other interface elements that appear in the forms.

Each object must be uniquely identifi ed by a name or ID that you assign to the 
object to reference it from your JavaScript. Forms, for example, could be named 
form1 and form2. Alternatively, you could assign forms names that identify the 
purpose of each form, such as OrderEntryForm and OrderDisplayForm, which 
more clearly identify each form in your JavaScript.

Sometimes your JavaScript needs to access many objects quickly, such as when 
displaying multiple pictures in a slideshow. In this case, you use an array to name 
each object. You’ll learn about arrays in the next chapter. For now, think of an array 
as a list of objects. The fi rst object on the list is called object 0, the next is object 1, 
and so on. You access each object by using its number. You’ll see how this is done 
in Chapter 4.

Let’s move on to the next part of an object, which is an object’s property.

Property
A property is a value that is associated with an object. Objects can have many val-
ues, depending on the type of object used. For example, a form object has a title, a 
width, and a height—to mention a few properties. A window has a background 
color, a width, and height. These are all properties of an object. Each kind of object 
has its own set of properties. You’ll learn about these properties throughout this 
book as you are introduced to each object.

Methods
A method is a process performed by an object when it receives a message. Some 
JavaScript developers like to think of a method as a verb, because it is basically an 
action. (On the other hand, an object is like a noun.) For example, a Submit button 
on a form is an object. Its Submit label and the dimensions of the button are proper-
ties of the button object. If you click the Submit button, the form is submitted to the 
server-side application. In other words, clicking the Submit button causes the but-
ton to process a method.

The kinds of methods that are used differ, depending on the type of object to 
which they’re attached. You’ll learn more about methods when you learn how to use 
JavaScript objects in your JavaScript application.

ch01.indd   Sec1:5ch01.indd   Sec1:5 4/26/2005   8:49:59 AM4/26/2005   8:49:59 AM



 6 JavaScript Demystifi ed

The Dot Syntax
You can think of an object as being associated with certain kinds of information (prop-
erties) and certain kinds of behaviors (methods). For example, a document is an object 
that has a certain background color (property) and that can be written to (method).

You access an object’s properties and methods by using the dot syntax along with 
the object name and its property or method. So, for example, here’s how you would 
identify the background color of a document and the write method for a document:

document.bgColor
document.write()

This is pretty straightforward to understand once you understand how the dot syn-
tax works. Each line has two parts: The fi rst part is the name of the object, which is 
document. The second part is either a property (bgColor) or method (write) 
of the object. A dot separates the name of the object from the property or method. 
In this example, the fi rst line says, “I want to access the background color of the 
document object.” The second line says, “I want to write something to the docu-
ment object.” Write what, you might be asking?

In this example, nothing is being written to the document. To tell JavaScript what 
information to write to the document, you would type in the information between 
the parentheses of the write() method. Later in this chapter, you’ll use the 
write() method to write “Hello, world!” text in your fi rst JavaScript.

The Main Event
Another basic concept that you need to understand is event handling. An event 
causes your JavaScript to start executing the code—such as when you click the 
mouse button on a form that your JavaScript displays on the screen. Your JavaScript 
is told of every event that occurs while your JavaScript is running. Some events are 
particularly important to your JavaScript, such as when someone clicks a Submit or 
Cancel button on a form. Other events may not be so important, such as when the 
mouse is moved onto an area of the form that contains no information. The nature 
of your application determines whether or not an event is important.

Your job is to make sure that your JavaScript reacts to important events. This is 
referred to as event handling. You do this by creating an event handler, which is a 
part of your JavaScript that reacts to important events. For example, the event han-
dler for a Submit button click event will likely contain JavaScript instructions that 
process information the user entered on the form, and the process instructions will 
make sure that the user entered all the required information on the form.

ch01.indd   Sec1:6ch01.indd   Sec1:6 4/26/2005   8:50:00 AM4/26/2005   8:50:00 AM



CHAPTER 1 An Inside Look at JavaScript 7

That’s all you need to know about events and event handling for now. Later on 
you’ll learn everything you need to know to have your JavaScript react to important 
events.

Writing Your First JavaScript
It is time to write your fi rst JavaScript. In keeping with a long programming tradition, 
the objective of your fi rst script is to write “Hello, world!” to a document object. Grant-
ed this JavaScript isn’t the most exciting to write, but the more exciting JavaScripts are 
yet to come. For now, it is important that you learn how to write a basic JavaScript.

A JavaScript consists of JavaScript statements that are placed within the 
<script> HTML tags in a web page. This means that you don’t need any special 
tools to write a JavaScript. You can use the same tools to write a JavaScript that you 
use to write your web page.

You place the <script> tag containing your JavaScript in one of two places 
within the web page—either within the <head> tags or within the <body> tags. 
Developers call scripts within the <head> tag header scripts and scripts placed 
within the <body> tag body scripts. You’ll learn more about the differences be-
tween header and body scripts later in this book.

Now for the moment that you’ve been waiting for. You’ll create the web page 
shown in Figure 1-1.

<!DOCTYPE html PUBLIC
      "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
   <head>
      <title>Hello world! JavaScript</title>
   </head>
   <body>
      <script language="Javascript" type="text/javascript">
         document.write('Hello, world!')
      </script>
   </body>
</html>

No doubt most of this code looks familiar, since you’ve probably written some-
thing similar to it many times before. The fi rst two lines are standard in every web 
page. Next is the <head> tag that contains the title of the web page. This is fol-
lowed by the <body> tag.

ch01.indd   Sec1:7ch01.indd   Sec1:7 4/26/2005   8:50:00 AM4/26/2005   8:50:00 AM



 8 JavaScript Demystifi ed

Within the <body> tag is the <script> tag that contains the one-line Java- 
Script. The <script> tag is very similar to other HTML tags in that it has an 
opening (<script>) tag and ending (</script>) tag. The <script> tag also 
has two HTML attributes: language and type.

The <script> tag signals the browser that a script is coming—not HTML. The 
browser processes scripts differently than HTML. The language attribute is as-
signed the value "Javascript", which informs the browser that the scripting 
language is JavaScript. The type attribute tells the browser that the script is in 
plain text and that the text is organized in the format of a JavaScript. This simply 
gives the browser information on how to read the JavaScript code.

Everything between the opening <script> and ending </script> tags is the 
script and must be written using JavaScript. This example is a one-line script. First, 
the line is a JavaScript statement. A statement is like a sentence that tells the browser 
to do something. Next, you notice the dot syntax. This is a clue telling you that the 
JavaScript statement contains an object, which in this case is named document.

You also notice something on the right side of the dot. Knowing that the left side 
of the dot is the name of an object, you probably fi gure that the right side of the dot 
must be either a property or method of the object. In this example, it’s a method. 
The clue that gives this away are the parentheses—and you read about the write() 
method previously in this chapter.

NOTE 

Figure 1-1 Your fi rst JavaScript displays “Hello, world!” in a web page.

ch01.indd   Sec1:8ch01.indd   Sec1:8 4/26/2005   8:50:00 AM4/26/2005   8:50:00 AM



CHAPTER 1 An Inside Look at JavaScript 9

The name of the method is write(), which describes what the method does—it 
writes something to the document. The text 'Hello, world!' appears between 
the parentheses. This is the information that is written to the document. You must 
enclose the information within quotation marks; otherwise, the browser will think 
you are referring to a JavaScript instruction. JavaScript can use single or double quo-
tations.

Save this web page to your hard disk, and then open it in your browser. You’ve 
now successfully written your fi rst JavaScript program. If you don’t see this mes-
sage displayed on the web page, one or two things are likely to be the problem: 
First, make sure that the entire HTML and JavaScript code is written exactly the 
way that you see it in the preceding listing. Sometimes a typographical error slips 
into the code and confuses the browser. Second, make sure that the JavaScript op-
tion on your browser isn’t turned off. If it is, turn it on and reload the web page. 
Usually, JavaScript is enabled as the default for Microsoft Internet Explorer and 
Netscape Navigator. You can determine whether JavaScript is enabled and how to 
enable it if it is disabled.

For Microsoft Internet Explorer, follow these steps:

 1. Choose Tools | Internet Options.

 2. Select the Security tab.

 3. Click the Custom Level button.

 4. In the Security Settings dialog box, scroll down to the Scripting area and 
fi nd Active Scripting.

 5. Select Enable.

 6. Click the OK button, and then click OK again.

For Netscape, follow these steps:

 1. Choose Edit | Preferences.

 2. Double-click Advanced Category.

 3. Select Scripts & Plug-ins.

 4. Select Enable JavaScript options.

 5. Click OK.

NOTE NOTE If you are using a different version of Netscape Navigator, keep in mind the 
steps you take may differ somewhat.

ch01.indd   Sec1:9ch01.indd   Sec1:9 4/26/2005   8:50:01 AM4/26/2005   8:50:01 AM



 10 JavaScript Demystifi ed

“Old Timers” Don’t Like JavaScript
Most browsers today have no problem running a JavaScript, assuming that the Ja-
vaScript option is turned on. However, you never know if someone some place on 
the Internet hasn’t upgraded to a new browser or still uses a very old browser.

Microsoft Internet Explorer 3 and earlier versions, Netscape 1.x, and America 
Online versions 3 and earlier can’t run JavaScript because they don’t know how to 
interpret JavaScript code. Instead, these browsers display the JavaScript instead of 
running it. This means that your JavaScript is displayed for all to see.

You can hide your JavaScript from these “old timers” by placing your script in 
an HTML comment section of a web page. You’ll recall from when you learned 
HTML that a browser treats anything between <!-- and --> as a comment. 
Browsers that are JavaScript-enabled recognize and run a JavaScript that is con-
tained within an HTML comment. Older browsers simply ignore the JavaScript, 
thinking that the script is a comment.

The following listing illustrates how to hide your JavaScript from older brows-
ers. Notice that the HTML comment is placed inside the <script> and 
</script> tags and around the JavaScript code. Some rookie JavaScript devel-
opers place the HTML comment outside the <script> tags. If you do this, the 
browser assumes your JavaScript is an HTML comment and will ignore everything 
within the HTML comment. Simply said, your JavaScript won’t run.

<!DOCTYPE html PUBLIC
   "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Hiding Hello world! JavaScript</title>
</head>
   <body>
      <script language="Javascript" type="text/javascript">
         <!--
            document.write('Hello, world!')
         -->
      </script>
   </body>
</html>

ch01.indd   Sec1:10ch01.indd   Sec1:10 4/26/2005   8:50:01 AM4/26/2005   8:50:01 AM



CHAPTER 1 An Inside Look at JavaScript 11

Spicing Up Your JavaScript

Figure 1-2 The alert dialog box remains on the screen until the OK button or the close 
box is clicked.

Admittedly, your fi rst JavaScript looks a little drab because the text lacks the pizzazz 
that you expect to see when you display text using a JavaScript. You’ll learn tech-
niques the pros use to display text in later chapters. For now, let’s add a little polish to 
your simple Hello, world! JavaScript by displaying the text in an alert dialog box.

An alert dialog box pops on the screen to display a message and stays on the 
screen until someone clicks the OK button that appears in the dialog box. (You may 
have seen an alert dialog box displayed if you tried to print something but you for-
got to turn on the printer. The alert dialog box gave you a polite reminder.)

You display an alert dialog box by calling the alert function and passing it the 
text that you want to be displayed. You’ll learn about functions in Chapter 5. You 
insert the following statement in your JavaScript whenever you want to display the 
alert dialog box.

alert("message")

Replace the word message with the text that you want displayed. The following 
is a revised Hello, world! JavaScript. Notice that the document.write() state-
ment is replaced with the alert function. You’ll see the alert dialog box displayed 
(Figure 1-2) when you run this script.

<!DOCTYPE html PUBLIC
    "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Hiding Hello world! JavaScript</title>
</head>
   <body>
      <script language="Javascript" type="text/javascript">
         <!--
            alert('Hello, world!')
         -->
      </script>
   </body>
</html>

ch01.indd   Sec1:11ch01.indd   Sec1:11 4/26/2005   8:50:01 AM4/26/2005   8:50:01 AM



 12 JavaScript Demystifi ed

Looking Ahead
Now you have a pretty good understanding of what JavaScript is and what it isn’t. 
JavaScript is a limited-featured programming language that is used to enhance 
HTML and give web pages the smarts to make decisions and perform sophisticated 
features found in professional web sites. JavaScript isn’t Java.

JavaScript is an object-oriented programming language that lets you build ap-
plications by using objects. An object is a document, button, or another item, that 
appears on a form. Each object has properties—information about the object, such 
as size and color. Each object also has methods, which are actions performed by the 
object such as processing a form when the Submit button is clicked.

You access properties and methods of an object by using the name of the object 
followed by a dot and the name of the property or method that you want to use in 
your JavaScript. This is called dot syntax.

A JavaScript application reacts to events that occur while the application is running. 
An event is usually an action taken by the person who is using your application, such 
as someone clicking the Submit or Cancel button. You enable your JavaScript to react 
to events by defi ning event handlers. An event handler is a portion of your application 
that is called whenever a specifi c event occurs while your application is running.

A JavaScript is placed within the <script> tags of an HTML page. The 
<script> tags can be placed within the <head> or <body> tags of the page. It 
is a good practice to place JavaScript code in an HTML comment within the 
<script> tags so that older browsers that don’t understand JavaScript won’t dis-
play your JavaScript code on the screen.

Now that you have a good general understanding of JavaScript and know how to 
write a simple JavaScript application, it is time to move on to more interesting as-
pects of JavaScript. In the next chapter you’ll learn how to store and use information 
within a JavaScript.

Quiz
 1. JavaScript is a version of

 a. Java

 b. LiveScript

 c. C++

 d. VBScript

ch01.indd   Sec1:12ch01.indd   Sec1:12 4/26/2005   8:50:01 AM4/26/2005   8:50:01 AM



CHAPTER 1 An Inside Look at JavaScript 13

 2. A JavaScript must reside within the

 a. <object> tag

 b. <applet> tag

 c. <script> tag

 d. <cgi> tag

 3. The Submit button is a type of

 a. Object

 b. Method

 c. Property

 d. Variable

 4. The background color of a document is a type of

 a. Object

 b. Method

 c. Property

 d. Variable

 5. write() is a type of

 a. Object

 b. Method

 c. Property

 d. Variable

 6. A dot is used to

 a. Identify a JavaScript comment

 b. Separate lines of a JavaScript

 c. End a JavaScript statement

 d. Separate an object name from either a property or a method

 7. What is it called when a person clicks a button on a form displayed by your 
JavaScript?

 a. Event

 b. Reaction

 c. Rollover

 d. Mouse rollover

ch01.indd   Sec1:13ch01.indd   Sec1:13 4/26/2005   8:50:02 AM4/26/2005   8:50:02 AM



 14 JavaScript Demystifi ed

 8. What part of your JavaScript reacts to someone clicking a button on a form 
displayed by your JavaScript?

 a. Main

 b. Event handler

 c. Subscript

 d. Superscript

 9. How do you prevent your JavaScript from being displayed by older 
browser?

 a. Place the JavaScript within the <script> tag

 b. Place the JavaScript within the header

 c. Place the JavaScript within a comment

 d. Place the JavaScript within the body

 10. JavaScript is

 a. A full-featured programming language

 b. A limited-featured programming language

 c. A version of ASP

 d. A version of ASP.NET

ch01.indd   14ch01.indd   14 4/26/2005   8:50:02 AM4/26/2005   8:50:02 AM



15

CHAPTER
2

Variables, 
Operators, and 

Expressions

You’ve probably seen many sophisticated web pages while surfi ng the Net and 
have wondered how they were built. The secret to such sophistication lies with 
JavaScript’s ability to store and manipulate information and its ability to process 
information on the fl y. These are things you can’t do with HTML alone.

Before you can build an exciting web page, you’ll need to learn the nitty-gritty 
basics of how to use JavaScript to store and manipulate information. Once you get 
the basics under your belt, you’ll learn how to build those fancy features that you 
see in popular web sites.

In this chapter, we’ll explore the behind-the-scenes part of JavaScript that is the 
foundation of nearly every eye-catching web page on the Internet. These are values, 

ch02.indd   15ch02.indd   15 5/12/2005   10:46:13 AM5/12/2005   10:46:13 AM

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.



 16 JavaScript Demystifi ed

variables, and expressions that tell your browser how to make decisions while your 
JavaScript runs. If you know how to add 1 + 1, you will breeze through the informa-
tion in this chapter.

Values and Variables
Web pages contain a lot of information along with a few pictures sprinkled about to 
catch your attention. In HTML, you place information you want to display between 
varieties of HTML tags. You place “Hello, world!” between the open <h1> and 
close </h1> tags, which cause that message to be displayed on the web page. In-
formation that you place in the code of a web page or JavaScript is called a value. 
For example, the “Hello, world!” script that you wrote in the JavaScript in Chapter 1 
is a value. A variable is basically a placeholder that holds a spot for data that can be 
changed during the execution of a program.

Values
In HTML, all values are treated as text. That is, when you enter 10, HTML treats it 
not as a number that can be used in a calculation, but as a number that you might 
use in a street address, such as 10 Downing Street. JavaScript uses six kinds of val-
ues: number, string, Boolean, null, object, and function.

Number
A number is a numeric value that can be used in a calculation.

String
A string is text that is enclosed within quotation marks. It is called a string because 
characters are strung together to form the text. A string can also contain numbers, 
but those numbers can’t be used in a calculation unless the developer performs 
some JavaScript magic to it, which you’ll learn about later in this book. So the 
number in 10 Downing Street is part of a string and cannot be directly used in a 
calculation.

Boolean
A Boolean is a value that is either false or true, which is represented as zero and/or 
non-zero. As you might surmise, a Boolean value is used to help a JavaScript make 
a decision, such as evaluating whether or not the user entered her e-mail address in 
an order form.

ch02.indd   16ch02.indd   16 5/12/2005   10:46:22 AM5/12/2005   10:46:22 AM



CHAPTER 2 Variables, Operators, and Expressions 17

Null
There is nothing to the null value. Really—I mean nothing. That’s what null means. 
Null is the absence of any value. You might wonder why you’d need to use such a 
value, but as you’ll see when you start writing sophisticated JavaScripts, there will 
be times when you need to use a variable (a placeholder for a value) to represent no 
value (null) until your JavaScript assigns a value to the variable. For example, you 
probably want to assign null to the variable used for a customer’s fi rst name until 
the customer enters his or her name on the form.

Objects
You learned about objects in Chapter 1. An object is a value. This means that a 
document is a value, and so are a window and a form. You’ll become very familiar 
with objects when you start using them in your JavaScript a bit later.

Functions
A function performs an action when you call the function in a JavaScript—such as 
when you called the alert() function to display a message on the screen in 
Chapter 1. Two kinds of functions are used in JavaScript: predefi ned functions and 
custom functions. A predefi ned function is already created for you in JavaScript, 
such as the alert() function. A custom function is a function that you create. 
You’ll learn all about functions in Chapter 5, but let’s take a peek at what you’ll be 
learning.

Following is a custom function defi nition that displays “Hello, world!” on the 
screen. A function defi nition is part of a JavaScript that the browser executes when-
ever the function is called somewhere else in the JavaScript. This example of a 
function defi nition contains one statement that you’ll remember from Chapter 1. In 
this example, the name of this function is DisplayHelloWorld(). This tells 
the browser to execute the statement found in the defi nition of the DisplayHel-
loWorld() function.

function DisplayHelloWorld()
{
   alert('Hello, world!')
}

Variables
Literal values are fi ne to use if you already know the value when you write your Ja-
vaScript. However, sometimes the value isn’t known until your JavaScript is running. 

ch02.indd   17ch02.indd   17 5/12/2005   10:46:22 AM5/12/2005   10:46:22 AM



 18 JavaScript Demystifi ed

Let’s say that your JavaScript calculates the sales tax on the purchase price of an item. 
You probably know the percentage value of the sales tax when you write the Java- 
Script, so you can write the literal value of the percentage into your JavaScript. You 
don’t know the purchase price of the item until the customer selects the item while 
your JavaScript runs. This poses a dilemma. How can you write the sales tax calcula-
tion into your JavaScript without knowing the purchase price of the item?

The solution is to use a variable in place of the purchase price. You can think of 
a variable as an empty cardboard box. You place a label on the box on which you 
write a name. You place a value inside the box. Each time you want to refer to the 
value, you simply refer to the name of the box.

Let’s return to our sales tax example to see how this works. First, we’ll need a 
box in which to store the purchase price. Let’s write PurchasePrice on the label of 
the box (Figure 2-1). We could write any name on the label, but it is less confusing 
if the name used represents the value stored inside the box.

Next, we’ll write the math expression to calculate the sales tax (the Purchase-
Price times the sales tax percentage of 6 percent):

PurchasePrice * .06

Notice that the name on the label of the box (PurchasePrice, the variable) is used 
to refer to the purchase price in this calculation. We could have used the actual pur-
chase price, but we don’t know the purchase price until the user enters the purchase 
price into our application. Until then, all we can do is refer to the variable where the 
browser will store the purchase price after it is entered into the application.

When the browser sees PurchasePrice in the JavaScript, the browser knows 
that PurchasePrice is a label for a variable that contains the value of the pur-
chase price. The browser then copies the value entered by the user, replaces the 
PurchasePrice variable with the value, and performs the calculation.

Figure 2-1 A variable is similar to a cardboard box that contains a value. You refer to 
the label on the box whenever you want to use the value inside the box.

ch02.indd   18ch02.indd   18 5/12/2005   10:46:22 AM5/12/2005   10:46:22 AM



CHAPTER 2 Variables, Operators, and Expressions 19

Declaring a Variable
Before you can use a variable, you must tell the browser to create a variable. You do 
this by declaring a variable. Any time you want the browser to do something, you 
need to write a statement within your JavaScript. Think of a statement as a sentence 
that issues a command to the browser.

A statement that tells the browser to create a variable requires two parts:

• The special word, called a keyword, tells the browser that you want 
it to create a variable. Think of a keyword as a word in the JavaScript 
language that is understood by the browser. JavaScript uses 25 keywords 
(see Table 2-1), which you’ll learn to use in this book. The word you 
need to use to declare a variable is var.

• The variable name can consist of any letter, digit, and an underscore, but 
it cannot begin with a digit. Some rookie JavaScript programmers use a 
letter such as X as a variable name. Although there is nothing wrong with 
X since it is an acceptable variable name in JavaScript, the name X doesn’t 
tell us anything about the value that is stored in the variable. Professional 
JavaScript programmers make sure to use a variable name that gives a hint 
as to the type of value stored in the variable. A variable name cannot be a 
JavaScript keyword or a JavaScript reserved word. A JavaScript reserved 
word (see Table 2-2) has a special meaning to the browser, although it’s not 
necessarily an actual command, as is a JavaScript keyword. You’ll confuse 
the browser to no end if you either use a JavaScript keyword or a JavaScript 
reserved word as a name of a variable.

Now that you know the rules for declaring a variable, let’s declare a variable for 
the purchase price of an item. The following is a JavaScript statement that tells the 
browser to create a variable called PurchasePrice. Notice that the var part of 
the statement is written in lowercase.

var PurchasePrice

break do function null typeof

case else if return var

continue export import switch void

default false in this while

delete for new true with

Table 2-1 JavaScript Keywords

ch02.indd   19ch02.indd   19 5/12/2005   10:46:23 AM5/12/2005   10:46:23 AM



 20 JavaScript Demystifi ed

Initializing a Variable
The PurchasePrice variable that we declared in the previous example doesn’t 
yet have a value. This isn’t a problem for the browser, because the browser assumes 
another statement will appear later in your JavaScript to tell the browser to place a 
value in the variable.

Professional JavaScript programmers normally place a value in a variable when 
they declare a variable. This is called initializing the variable because this is the 
fi rst (initial) value assigned to the variable. You initialize a variable by adding a 
third part to the statement used to declare the variable. The third part consists of an 
assignment operator (=) and the initial value. Let’s rewrite the statement that de-
clares a variable to initialize the variable:

var PurchasePrice = 100

This statement tells the browser to do two things: First, create a variable called 
PurchasePrice. Second, assign the value 100 to the PurchasePrice vari-
able. From now on, any time the browser sees PurchasePrice in our JavaScript, 
the browser will immediately replace the variable name with the value 100. (There 
are some exceptions to this, but they’ll be covered in Chapter 5.)

Let’s return to our sales tax calculation. Notice that the fi rst line declares the vari-
able PurchasePrice and initializes it with the value 100. The second line 
declares the SalesTax variable and initializes it with the calculated sales tax.

var PurchasePrice = 100
var SalesTax = PurchasePrice * .06

abstract debugger goto package synchronized

boolean double implement private throw

byte enum instanceof protected throws

catch extends int public transient

char fi nal interface short try

class fi nally long static

const fl oat native super

Table 2-2 JavaScript Reserved Words

ch02.indd   20ch02.indd   20 5/12/2005   10:46:23 AM5/12/2005   10:46:23 AM



CHAPTER 2 Variables, Operators, and Expressions 21

The browser replaces the variable name PurchasePrice with the value 100 
and then performs the calculation as follows:

var PurchasePrice = 100
var SalesTax = 100 * .06

Assigning a Value to a Variable
Typically, the value of a variable changes while your JavaScript runs, and the initial 
value of the variable is replaced with another value. This is the case when using the 
PurchasePrice variable in our example.

We used 100 as the initial value of the PurchasePrice variable to simulate 
receiving the purchase price from a customer who uses your JavaScript. If this were 
a real JavaScript application, we’d use 0 as the initial value since the customer 
hasn’t as yet purchased an item. Then we’d replace the 0 value with the purchase 
price of the item selected by the customer (as shown in the JavaScript a few para-
graphs later).

JavaScript has an easy way for you to ask the user of your application to enter in-
formation into your JavaScript—by calling the prompt() function. The prompt() 
function displays text within a prompt dialog box (see Figure 2-2) and then waits for 
the user to enter information and click the OK button. The information entered by the 
user is then returned to your JavaScript so your script can process it.

You can use the prompt() function to have the user enter the purchase price, and 
then we’ll assign the purchase price to the PurchasePrice variable before calculat-
ing and displaying the sales tax. Here is the syntax for calling a prompt() function:

prompt('message', 'default <F102>value')

Figure 2-2 The prompt() function displays a prompt dialog box, where the user enters 
the purchase price.

ch02.indd   21ch02.indd   21 5/12/2005   10:46:23 AM5/12/2005   10:46:23 AM



 22 JavaScript Demystifi ed

Notice that the prompt() function is called similarly to how you called the 
alert() function to display the alert dialog box in Chapter 1. You need to provide 
two pieces of information to the prompt() function: The fi rst is the message; this 
is the text that tells the user what they should enter into the prompt dialog box. The 
second piece is the default value, which is the value given to your JavaScript by the 
prompt() function if the user doesn’t enter a value into the prompt dialog box. In 
some cases when a default value isn’t used, you can simply add empty quotation 
marks, as shown in the following example:

<!DOCTYPE html PUBLIC
      "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Receiving a value from the user</title>
</head>
   <body>
      <script language="Javascript" type="text/javascript">
         <!--
         var PurchasePrice = 0
         PurchasePrice=
            prompt('Please enter the purchase price.', ' ')
         var SalesTax = PurchasePrice * .06
         alert('Sales tax is $' + SalesTax)
         -->
      </script>
   </body>
</html>

After the comment characters (<!--), the fi rst line declares the Purchase-
Price variable and initializes it to 0, because we don’t know the value of the 
purchase price when we’re writing the JavaScript.

The next line calls the prompt() function in an assignment statement that asks 
the user to enter the purchase price. An assignment statement tells the browser to 
replace the current value of a variable with a new value. There are three parts to an 
assignment statement: the name of the variable (PurchasePrice), the assign-
ment operator (=), and the new value, which is the value entered by the person and 
returned by the prompt() function. Now the value of the PurchasePrice 
variable is the value entered by the user.

The next line declares the SalesTax variable and initializes it with the sales 
tax calculated by multiplying the value entered by the user by .06, which is the 
decimal value of the sales tax.

TIP 

ch02.indd   22ch02.indd   22 5/12/2005   10:46:23 AM5/12/2005   10:46:23 AM



CHAPTER 2 Variables, Operators, and Expressions 23

The next line displays the sales tax on the screen by calling the alert() func-
tion. As you recall from Chapter 1, the alert() function requires you to place the 
message that you want displayed between the parentheses. In this example, we use 
the plus operator (+) to place the value of the SalesTax variable at the end of the 
text statement “Sales tax is $” (see Figure 2-3).

Strings
Although our examples use numbers to show you how to initialize and assign val-
ues to a variable, you can also initialize and assign words and punctuation to a 
variable. To do this, you write the declaration statement and assignment statement 
the same way shown in previous examples, except you enclose words and punctua-
tion within quotation marks.

TIP TIP JavaScript allows both single and double quotation marks to be used to 
designate a string. It is always better to use single quotation marks, though, 
because the double quotation marks might interfere with double quotation marks 
used in the HTML page. Using single quotation marks avoids any potential 
interference.

Here is a new example. The fi rst line declares a variable called ProductName 
and initializes it with the text Soda. The second line assigns Water to the Pro-
ductName variable:

var ProductName = 'Soda'
ProductName = 'Water'

Figure 2-3 The alert() function displays the alert dialog box that displays the sales tax 
that is calculated by the JavaScript.

ch02.indd   23ch02.indd   23 5/12/2005   10:46:24 AM5/12/2005   10:46:24 AM



 24 JavaScript Demystifi ed

Operators and Expressions
So far in this chapter you’ve learned that a JavaScript statement is used to tell the 
browser to do something. Many JavaScript statements contain a mathematical ex-
pression that tells the browser to perform a mathematical operation.

Let’s pause here, because although math may not be one of your strong points, 
that shouldn’t stop you from learning how to write a mathematical expression. Truth 
is, you already know how to do it. Consider the following simple mathematical 
expression:

2 = 1 + 1

Here’s another mathematical expression that you’ve already seen in this chapter:

PurchasePrice * .06

Now let’s take a closer look at how to write an expression.

Parts of an Expression
A mathematical expression consists of two parts: operands and operators. An oper-
and is the value. An operator is the symbol that tells the browser how to evaluate 
the mathematical expression. The operands are the numbers in the following math-
ematical expression. The addition symbol (+) is the operator. The browser evaluates 
this mathematical expression by adding the value on the right side of the operator 
to the value on the left side of the operator:

1 + 1

Multiple Operations
You might be wondering what happened to the assignment operator (=) in the previ-
ous example. The assignment operator is another operator requiring the browser to 
perform another operation. The left side of the assignment operator must be a single 
value. The right side can be a single value or an expression, so it can contain mul-
tiple values. Let’s insert the assignment operator into the mathematical expression 
and see how the second operation is evaluated:

= 1 + 1

The browser is now being told to perform two operations. The fi rst operation (math-
ematical) is to add the value on the left side of the plus sign to the value on the right 

ch02.indd   24ch02.indd   24 5/12/2005   10:46:24 AM5/12/2005   10:46:24 AM



CHAPTER 2 Variables, Operators, and Expressions 25

side of the plus sign. If you could see the mathematical expression after the fi rst 
operation is completed, it would look like this:

= 2

The browser performs the second operation after the fi rst operation is completed. 
The second operation uses the assignment operator, which is the equal sign (=). The 
assignment operator symbol tells the browser to assign the result of the expression 
on the right side to the value on the left. Here’s how this mathematical expression 
looks after the assignment operation is completed:

2 = 2

Performing more than one operation in the same mathematical expression can lead 
to confusion—not for the browser, but for the developer: in what order are the opera-
tions performed? Two operations were performed in the previous example: addition 
(+) and assignment (=) operations. The browser performed addition before perform-
ing the assignment operation. How do you know which operation is performed fi rst? 
You’ll need to read the “Order of Operations” sidebar to answer this question.

Types of Operators
JavaScript uses fi ve types of operators: arithmetic operators, logical operators, as-
signment operators, comparison operators, and conditional operators. We’ll take a 
close look at each of these types in this section.

Let’s begin with arithmetic operators, which are listed in Table 2-3. Most of 
these operators are familiar to you because they are the same operators that you use 
to perform everyday arithmetic. However, the last three operators are probably 
something you haven’t seen before.

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

++ Increment by 1

-- Decrement by 1

Table 2-3 Arithmetic Operators

ch02.indd   25ch02.indd   25 5/12/2005   10:46:24 AM5/12/2005   10:46:24 AM



 26 JavaScript Demystifi ed

The fi rst of these is the modulus operator (%), which tells the browser to divide 
the value on the left of the modulus operator by the value on the right of the mod-
ulus operator. The modulus operator returns the remainder. This is shown in the 
following examples:

Order of Operations
Is the answer to the following expression 56 or 110?

10 × 5 + 6
It depends:

• If addition is performed before multiplication, then the answer is 110.

• If multiplication is performed before addition, then the answer is 56.

You can imagine the confusion that might arise when you write a JavaScript statement 
that contains several expressions. You assume that these expressions are evaluated in a cer-
tain order, but the browser might evaluate expressions in a different order.

You can avoid confusion by learning the order of operation, a set of rules that specifi es 
the order in which an expression is evaluated by the browser. These are the same rules that 
you use in real calculations and that you learned back in your high school math class. Here 
is the order of operation:

 1. Calculations must be performed from left to right.

 2. Calculations in parentheses are performed fi rst. When more than one set of 
parentheses are included, the expression in the inner parentheses is performed fi rst.

 3. Multiplication and division operations are performed next. If both operations are 
in an expression, then calculations are performed left to right.

 4. Addition and subtraction are next. If both operations are in an expression, 
calculations are performed left to right.

Don’t be too concerned if you forget the order of operation, because you can tell the 
browser to evaluate an expression in a particular order by using parentheses. Portions of an 
expression that are enclosed within parentheses are evaluated before those portions that are 
outside of the parentheses.

Let’s say that you write the following expression, and you want addition to be performed 
before multiplication, but you are unsure about order of operation. By placing parentheses 
around the addition expression, you force the browser to add those values before performing 
the multiplication. The value of this expression is 110:

10 * (5 + 6)

ch02.indd   26ch02.indd   26 5/12/2005   10:46:24 AM5/12/2005   10:46:24 AM



CHAPTER 2 Variables, Operators, and Expressions 27

23 % 10 is equal to 3
7 % 10 is equal to 7

Below the modulus operator in Table 2-3 is the increment by 1 operator (++), 
also called the incremental operator. This operator increases the operand by 1. 
Let’s see how this works in the next example:

var a = 5
++a

The fi rst line of this example should be familiar to you, because it is declaring a vari-
able and initializing the variable with the value 5. You’ve seen something similar to this 
earlier in the chapter. The second line uses the incremental operator to increase the 
value assigned to the variable by 1. The value of the variable is 6 (see Figure 2-4).

You probably noticed that the incremental operator uses one operand—that is, 
one value. Other operators that you learned so far in this chapter use two values. An 
operator that uses one value is called a unary operator.

The following JavaScript shows how to use the incremental operator:

<!DOCTYPE html PUBLIC
        "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Incremental operator</title>
</head>
   <body>
      <script language="Javascript" type="text/javascript">
         <!--
         var a = 5
         ++a
         alert('The value of a is ' + a)
         -->
      </script>
   </body>
</html>

Figure 2-4 The incremental operator increases the value by 1.

ch02.indd   27ch02.indd   27 5/12/2005   10:46:25 AM5/12/2005   10:46:25 AM



 28 JavaScript Demystifi ed

The last arithmetic operator that you’ll need to learn is the decremental operator 
(--). The decremental operator subtracts 1 from the operand. Take a look at this 
example:

var a = 5
--a

The fi rst line is the same as the previous example. The second line uses the decre-
mental operator to subtract 1 from the value of the variable. After this operation is 
completed, the value of the variable is 4.

The incremental and decremental operators can be tricky to use because of where 
you position them alongside the variable. If the operator is placed on the left side of 
the variable, the value of the variable is incremented by 1 and then assigned to the 
variable. If the operator is placed on the right side of the variable, the value is as-
signed fi rst before the value is incremented.

These are subtle differences that can have a dramatic effect on the result of this 
operation. In the next example, the value of variable a is incremented by 1. The 
result is then assigned to variable b. The value of b is 6.

var a = 5
var b
b = ++a

Take a look at the next example. Notice that the incremental operator is on the 
left side of variable a. This tells the browser to assign variable b the value of a and 
then increment variable a by 1. The result is that the value of b is 5 and the value 
of a is 6 when both operations are completed.

var a = 5
var b
b = a++

Following is a JavaScript that illustrates the effect of placing the incremental 
operator on either side of the operand in an expression. The fi rst time the incremen-
tal operator is used, it is placed on the left side of the variable (Figure 2-5); the 
second time, it is placed on the right side of the variable (Figure 2-6).

<!DOCTYPE html PUBLIC
         "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Incremental operator</title>
</head>

ch02.indd   28ch02.indd   28 5/12/2005   10:46:25 AM5/12/2005   10:46:25 AM



CHAPTER 2 Variables, Operators, and Expressions 29

   <body>
      <script language="Javascript" type="text/javascript">
         <!--
         var a = 5
         var b
         b = ++a
         alert('The value of b = ++a is ' + a)
         a = 5
         b = a++
         alert('The value of b = a++ is ' + a)
         -->
      </script>
   </body>
</html>

Before leaving arithmetical operators, let’s take a look at the addition operator 
(+). You already know that the addition operator adds the number to the right of the 
operator to the number to the left of the operator. However, the addition operator is 
also a shortcut for concatenate words (although other operators are also used for 
concatenation, which you’ll learn later in this book). Concatenation means that one 
word is joined with another word.

Figure 2-5 The incremental operator is placed on the left side of variable a.

Figure 2-6 The incremental operator is placed on the right side of variable a.

ch02.indd   29ch02.indd   29 5/12/2005   10:46:25 AM5/12/2005   10:46:25 AM



 30 JavaScript Demystifi ed

Let’s see how this is done in the following example.

var customer = 'Bob ' + 'Smith'

This JavaScript statement declares a variable and initializes the variable. In this 
case, two words are fi rst joined together (concatenated) by the addition operator 
and the combined words become the initial value for the customer variable. After 
this operation is completed, the value of customer is Bob Smith. Look carefully at 
the fi rst word. Notice that a space appears between the last b and the closing quota-
tion mark. The space is a character that is needed to separate the fi rst name from the 
last name when the words are joined together. This is illustrated in the following 
JavaScript (Figure 2-7).

<!DOCTYPE html PUBLIC
            "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Joining Strings</title>
</head>
   <body>
      <script language="Javascript" type="text/javascript">
         <!--
         var customer = 'Bob ' + 'Smith'
         alert('The customer is ' + customer)
         -->
      </script>
   </body>
</html>

Logical Operators
Logical operators (Table 2-4) are used to combine two logical expressions into one 
expression. A logical expression is an expression that evaluates to either true or 

Figure 2-7 Bob and Smith are two strings joined together using the addition operator.

ch02.indd   30ch02.indd   30 5/12/2005   10:46:25 AM5/12/2005   10:46:25 AM



CHAPTER 2 Variables, Operators, and Expressions 31

false. The concept of a logical expression might be new to you if you haven’t learned 
a programming language.

Logical expressions are used in JavaScript to make decisions. You’ll see how this 
is done in the next chapter, but for now, suppose your JavaScript validates a user ID 
and password. The fi rst expression that must be evaluated is

userID is equivalent to ScubaBob

ScubaBob is the valid user ID and userID is the user ID entered into the JavaScript. 
This is a logical expression because the userID is equivalent to ScubaBob or the 
userID isn’t equivalent to ScubaBob. That is, this expression is either true or false 
based on the value of userID.

Here’s how we’d write this logical expression in JavaScript:

userID = = 'ScubaBob'

In this example, userID is a variable whose value is the user ID entered into the 
JavaScript. The double equal sign (==) is called the equivalency operator, which you 
learn about in the “Comparison Operators” section of this chapter. The equivalency 
operator determines whether the operand (that is, the value) on the left side of the 
operator is the same as the operand on the right side of the operator. The right side of 
the operator is the string 'ScubaBob', which in this example is the valid user ID.

Now that you have an understanding of a logical expression, let’s see how a 
logical operator is used to join two logical expressions into one logical expression. 
Typically, a JavaScript that validates a user ID also validates a password that is as-
sociated with the user ID. Here’s the logical expression that you use to do this:

password == 'diving'

You probably understand this example because this expression is very similar to the 
previous logical expression. This expression uses the equivalent operator to com-
pare the value of the variable password to the valid password diving. If they are 
the same, this logical expression is true; otherwise, the logical expression is false.

Typically, a JavaScript evaluates both the user ID and the password at the same 
time and then displays a message on the screen stating whether or not the user’s 

Operator Description

&& AND

|| OR

! NOT

Table 2-4 Logical Operators

ch02.indd   31ch02.indd   31 5/12/2005   10:46:26 AM5/12/2005   10:46:26 AM



 32 JavaScript Demystifi ed

logon is valid. Both the user ID and password must be valid for the user’s logon to 
be valid.

The most effi cient way to validate the user’s logon is to combine the logical expres-
sion that validates the user ID with the logical expression that validates the password. 
You do this by using the AND logical operator (&&), as shown in the next example:

userID = = 'ScubaBob' && password = = 'diving'

There are three logical expressions in this example. One logical expression vali-
dates the user ID and the other logical expression validates the password, both of 
which you’ve seen before in this section. The third logical expression is the combi-
nation of both logical expressions.

Confused? Let’s walk through the process of how the browser evaluates this ex-
ample. Logical expressions are evaluated left to right. First, the browser evaluates 
the user ID logical expression. If the value of the userID variable is ScubaBob, 
then the expression is true and looks like this:

True && password == 'diving'

Next, the browser evaluates the user ID logical expression. If the value of the 
password variable is diving, then this expression is true and looks like this:

TRUE && TRUE

Last, the browser evaluates the remaining logical expression by asking these ques-
tions: Is the value on the right side of the AND operator true? Is the value on the left side 
of the AND operator true? If both answers are true, then the third logical expression is 
true. However, if either of these is false, then the third logical expression is false.

When using the AND logical operator, both logical expressions on either side of 
the AND logical operator must be true for the combined logical expression to be 
true; otherwise, the combined logical expression is false.

Figure 2-8 shows a JavaScript that prompts the user to enter a user ID, and 
Figure 2-9 shows a JavaScript that prompts the user to enter a password. The values 
entered by the user are compared to ScubaBob and diving, the valid user ID and 
password.

You’ll notice something new in this JavaScript. This is an if…else statement. The 
if…else statement tells the browser to do something if the expression is true; other-

Figure 2-8 The user is asked to enter a user ID.

ch02.indd   32ch02.indd   32 5/12/2005   10:46:26 AM5/12/2005   10:46:26 AM



CHAPTER 2 Variables, Operators, and Expressions 33

wise, if the expression is false, the browser is to do something else. You’ll learn 
about the if…else statement in the next chapter. For now, you simply need to know 
that the browser displays the “Logon valid” message on the screen if the expression 
is true (Figure 2-10). That is, the user entered ScubaBob and diving as the user ID 
and password. The browser displays “Logon invalid” if the user didn’t enter valid 
expressions (Figure 2-11).

<!DOCTYPE html PUBLIC
      "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Validate userID and Password</title>
</head>
   <body>
      <script language="Javascript" type="text/javascript">
         <!--
         var userID
         var password
         userID = prompt('Enter user ID',' ')
         password = prompt('Enter password',' ')
         if (userID == 'ScubaBob' && password == 'diving')
         {
            alert('Logon valid')
         }
         else
         {
            alert('Logon invalid')
         }
         -->
      </script>
   </body>
</html>

Figure 2-9 The user is asked to enter a password.

Figure 2-10 The browser tells the user if the user ID and password are valid.

ch02.indd   33ch02.indd   33 5/12/2005   10:46:26 AM5/12/2005   10:46:26 AM



 34 JavaScript Demystifi ed

The OR logical operator (||) also joins together two logical expressions. How-
ever, the combined logical expression is true if either the logical expression on the 
right side of the OR logical operator is true or the logical expression on the left side 
of the OR logical operator is true.

Let’s see how this works. Suppose only two people can use your JavaScript. These 
are Mary and Sue. Your JavaScript prompts the user to enter her fi rst name, which is 
then assigned to the name variable. The following combined logical expression then 
determines if the fi rst name is Mary or Sue by using the OR logical operator:

name == 'Mary' || name == 'Sue'

Here’s how the browser evaluates these logical expressions. Assume for this ex-
ample that the person entered Sue as the name. First, the browser evaluates the 
logical expression on the left side of the OR operator. The result is false:

name == FALSE || 'Mary'

Next, the browser evaluates the logical expression on the right side of the OR 
operator. The result is true:

FALSE || TRUE

Last, the browser evaluates the combined logical expression. If either individual 
logical expression is true, then the combined logical expression is true. The combined 
logical expression is false only if both individual logical expressions are false.

The last logical operator in Table 2-4 is the NOT operator (!). The NOT operator 
is different from the other logical operator in that it does not combine logical ex-
pressions. Instead, the NOT operator reverses the logic of a logical expression.

You might have heard a friend say, “I got a big fat raise—not!” The not at the end 
of this sentence reverses the logic of the fi rst part of the sentence. The fi rst part says, 
“I got a big fat raise,” which is a positive statement. The not reverses the positive 
statement to a negative statement.

Figure 2-11 The browser tells the user if the user ID and password are invalid.

ch02.indd   34ch02.indd   34 5/12/2005   10:46:27 AM5/12/2005   10:46:27 AM



CHAPTER 2 Variables, Operators, and Expressions 35

This is basically how the NOT operator works. Let’s say that you declare a Bool-
ean variable in a JavaScript whose value indicates whether the light in the room is 
turned off or on. Remember that a Boolean variable has either a true or false value. 
If the light is off, then the value assigned to the variable is false; a true value is as-
signed to the variable if the light is on.

The following example shows how to indicate that the room light is on by using 
the NOT operator. The fi rst line declares a variable and initializes it to false, indicat-
ing that the room light is off. The next line uses the NOT operator to reverse the 
logical value of the Boolean variable. This says “the room light is not off.” Granted, 
this is a convoluted way of indicating that the room light is on, but, as you’ll see in 
the next chapter when you learn how to have your JavaScript make decisions, some-
times this is the only way to do it.

Var roomLight = false
!roomLight

Assignment Operator
The assignment operator (Table 2-5) assigns the value from the right side of the 
operator to the variable on the left side of the operator. You’ve seen the assignment 
operator used earlier in this chapter when you assigned a value to a variable, as 
shown here:

var PurchasePrice
PurchasePrice = 100

The assignment operator is frequently combined with an arithmetic operator and 
an assignment operator to perform two operations with the same operator. Let’s 
take a look at the += assignment operator to see how two operations are combined 
into one operator in the next example.

Operator Description

= Assign

+= Add value then assign

-= Subtract value then assign

*= Multiply value then assign

/= Divide value then assign

%= Modulus value then assign

Table 2-5 Assignment Operator and Variations

ch02.indd   35ch02.indd   35 5/12/2005   10:46:27 AM5/12/2005   10:46:27 AM



 36 JavaScript Demystifi ed

The fi rst two lines of this example are familiar to you. Each line is declaring a 
variable and initializing it with a value. The last line is new to you. The += assign-
ment operator tells the browser to add the value of variable b to variable a and then 
replace (assign) the value of variable a with the sum of variables a and b.

var a = 10
var b = 2
a += b

Let’s take apart the last line to see the two actions the browser is taking. First, the 
browser is told to add the values stored in variable a and variable b. The sum is 12. 
Next, the browser is told to replace the value of variable a, which is 10, with the 
sum, which is 12. After this JavaScript runs, the value of variable a is 12.

Here is a JavaScript that shows how to use the += operator, as shown in Figure 2-12.

<!DOCTYPE html PUBLIC
    "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Using the += operator</title>
</head>
   <body>
      <script language="Javascript" type="text/javascript">
         <!--
         var a = 10
         var b = 2
         a += b
         alert('a += b is ' + a)
         -->
      </script>
   </body>
</html>

Figure 2-12 The += operator is used to increase the value of variable a by the value of 
variable b and assign the sum to variable a.

ch02.indd   36ch02.indd   36 5/12/2005   10:46:27 AM5/12/2005   10:46:27 AM



CHAPTER 2 Variables, Operators, and Expressions 37

The remaining combination of operators shown in Table 2-5 cause the browser 
to perform basically the same action as the += operator, except each uses different 
arithmetic as symbolized by the operator. For example, the -= operator subtracts 
variable b from a and then assigns the difference to variable a.

Comparison Operators
Comparison operators, shown in Table 2-6, are used to compare two values. The result 
of the comparison is either true or false. You already learned how to use the fi rst com-
parison operator that is listed on the table—the equivalency operator (==)—when you 
learned how to use logical operators. As shown here, the equivalency operator tells the 
browser to compare the value on the right side of the equivalency operator to the value on 
the left side of the equivalency operator. If these values are the same, then the expression 
is true; otherwise, the expression is false.

userID = = 'ScubaBob'

The not equivalent (!=) is the next comparison operator in the table. The not 
equivalent operator tells the browser to determine whether the value on the right 
side of the operator is not equivalent to the value on the left side of the operator. If 
these values are different, then the expression is true; otherwise, the expression is 
false. This is illustrated in the following example:

userID != 'ScubaBob'

In this example, the browser is told to determine whether the value of the userID 
variable isn’t ScubaBob. If the userID isn’t ScubaBob, then the expression is true.

Next on the list of comparison operators is the greater than operator (>). The 
greater than operator tells the browser to determine whether the value on the left 

Operator Description

== Equivalency

!= Not equivalent

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

Table 2-6 Comparison Operators

ch02.indd   37ch02.indd   37 5/12/2005   10:46:28 AM5/12/2005   10:46:28 AM



 38 JavaScript Demystifi ed

side of the operator is greater than the value on the right side of the operator. Here’s 
how the greater than operator works:

var a = 10
var b = 2
a > b

This example tells the browser to determine whether the value of variable a is 
greater than the value of variable b. If so, then the expression is true; otherwise, the 
expression is false. This expression is true because 10 is greater than 2.

Next is the less than operator (<). The less than operator tells the browser to 
determine whether the value on the left side of the operator is less than the value on 
the right side of the operator. If this is the case, then the expression is true; other-
wise, the expression is false. The last line in the following example uses the less 
than operator to determine whether the value of variable a is less than the value of 
variable b. This expression is false because 10 is not less than 2.

var a = 10
var b = 2
a < b

Two other comparison operators are the greater than or equal to operator (>=) 
and the less than or equal to operator (<=). Both of these tell the browser to make 
two determinations when evaluating an expression.

First, the browser is asked whether the value on the left side of the operator is 
equivalent to the value on the right side of the operator. If yes, then the expression 
is true. If no, then the browser is told to evaluate the expression again for a different 
condition.

The next evaluation performed by the browser depends on whether the greater than 
or equal to operator or the less than or equal to operator is used. If the greater than or 
equal to operator is used, then the browser determines whether the value on the left 
side of the operator is greater than the value on the right side. If so, then the expres-
sion is true; otherwise, the expression is false. If the less than or equal to operator 
is used, then the browser determines whether the value on the left side of the opera-
tor is less than the value on the right side. If so, then the expression is true; otherwise, 
the expression is false.

In the last line of the following example, the browser is told to determine wheth-
er the value of variable a is less than or equivalent to the value of variable b. This 
expression is false because 10 is neither less than nor equivalent to 2.

var a = 10
var b = 2
a <= b

ch02.indd   38ch02.indd   38 5/12/2005   10:46:28 AM5/12/2005   10:46:28 AM



CHAPTER 2 Variables, Operators, and Expressions 39

Conditional Operator
The conditional operator (also known as the ternary operator) (Table 2-7) is differ-
ent from the other operators that you’ve learned about in this chapter. The 
conditional operator tells the browser to take a specifi c action after evaluating an 
expression.

The conditional operator has three parts: The fi rst part is a logical expression, 
which you’ll recall is an expression that evaluates to either true or false. The second 
part is the action the browser must take if the expression is true. The third part is the 
action the browser must take if the expression is false. The fi rst and second parts of 
the conditional operator are separated by a question mark (?). The second part and the 
third parts are separated by a colon (:).

The best way to gain an understanding of the conditional operator is to see it put 
into action. The following example revisits the validation process for user ID and 
password. However, this time the browser is told to take specifi c action if the user 
ID and password are valid or invalid.

userID == 'ScubaBob' && password ==
        'diving' ? message = 'Approved' : message = 'Rejected'

The fi rst thing to do whenever you see the conditional operator is to identify all 
three parts. The fi rst part in this example appears to the left of the question mark. 
This is the same expression that you saw earlier in this chapter. The second part of 
the conditional operator is to the right of the question mark, which assigns the word 
Approved to the variable message. The third part of the conditional operator appears 
to the right of the colon and assigns the word Rejected to the variable message.

If the value of the userID variable is ScubaBob and diving is the value of the 
password variable, then the expression part of the conditional operator is true. 
The browser is told to execute the second part of the conditional operator, which 
assigns the word Approved to the message variable. The third part of the condi-
tional operator is not executed.

If the value of the userID variable is not ScubaBob and/or diving is not the 
value of the password variable, then the expression part of the conditional opera-
tor is false. The browser is told to execute the third part of the conditional operator, 
which assigns the word Rejected to the message variable. The second part of the 
conditional operator is not executed.

Operator Description

Expression ? value1 : value2 If expression is true, then use value1; 
otherwise, use value2

Table 2-7 Conditional Operator

ch02.indd   39ch02.indd   39 5/12/2005   10:46:28 AM5/12/2005   10:46:28 AM



 40 JavaScript Demystifi ed

Looking Ahead
In this chapter you learned how to store literal values such as a number or words 
temporarily in computer memory by declaring and initializing a variable. A vari-
able is like a cardboard box. You create the box (declare a variable), place a label on 
the box (name a variable), and place a value into the box (initialize a variable or 
assign a value to a variable).

Variables and literal values are used with operators to construct an expression. 
An operator is a symbol that tells the browser how to evaluate the expression. An 
operator tells the browser to perform an operation on values or variables on one or 
both sides of the operator. These values or variables are called operands.

Arithmetic operators are used to tell the browser to perform arithmetic. Logical 
operators are used to combine two expressions. The assignment operator is used to 
copy a value on the left side of the operator to the right side of the operator, which 
is usually a variable. Comparison operators compare two values. The conditional 
operator tells the browser to evaluate a condition and to do something if the condi-
tion is true and something else if the condition is false.

Expressions can become complex, especially when several operations are per-
formed in the same expression. The browser follows a set of rules called the order of 
operations when evaluating an expression. These rules tell the browser how to evaluate 
a complex expression. You can simplify a complex expression by placing parentheses 
around portions of the expression that you want executed fi rst by the browser.

Variables, operators, and expressions are the nitty-gritty of JavaScript. Think of 
them as the brick and mortar of building a JavaScript application. In the next chapter, 
you’ll use variables, operators, and expressions to tell the browser how to make a 
decision and how to execute JavaScript statements repeatedly within a JavaScript.

Quiz
 1. You reference computer memory by using

 a. Operator

 b. Variable name

 c. Literal value

 d. Variable type

ch02.indd   40ch02.indd   40 5/12/2005   10:46:28 AM5/12/2005   10:46:28 AM



CHAPTER 2 Variables, Operators, and Expressions 41

 2. What tells the browser to do something?

 a. Mathematical expression

 b. JavaScript expression

 c. JavaScript statement

 d. Logical expression

 3. In the expression 1 + 1, what part of the expression are the numbers?

 a. Operand

 b. Operator

 c. Modulus

 d. Incrementer

 4. In the expression 1 + 1, what part of the expression is the plus sign?

 a. Operand

 b. Operator

 c. Modulus

 d. Incrementer

 5. What is happening in the expression ++a?

 a. The value of a is increased by 2.

 b. The value of a is increased by 1.

 c. The value of a is multiplied by itself.

 d. Nothing; this is not a valid JavaScript expression.

 6. Evaluate this expression: 7 < 10 ? 'You win.' : 'You lose.'

 a. 10

 b. You lose.

 c. You win.

 d. 7

 7. What does the && operator do?

 a. Evaluates true if expression on its left and right are both true

 b. Evaluates true if expression on its left or right is true

 c. Evaluates true if neither expression on its left or right is true

 d. Combines the expression on its right with the expression on its left

ch02.indd   41ch02.indd   41 5/12/2005   10:46:29 AM5/12/2005   10:46:29 AM



 42 JavaScript Demystifi ed

 8. True or False: The ++ can be on either the right (c = a++) or left (c = 
++a) side of an expression without having any effect on the expression.

 a. True

 b. False

 9. True or False. The x += y expression adds values of x and y and stores 
the sum in x.

 a. True

 b. False

 10. True or False. The != operator makes a false true.

 a. True

 b. False

ch02.indd   42ch02.indd   42 5/12/2005   10:46:29 AM5/12/2005   10:46:29 AM



43

CHAPTER
3

Condition 
Statements

You can add smarts to your web pages by using JavaScript to enable the browser to 
make decisions on the fl y as a user is surfi ng your web site. You’ve seen this count-
less times on commercial web sites with pages tailored to a specifi c type of visitor. 
In this chapter, you’ll learn the secrets of how to incorporate such dynamic features 
into your web pages.

The secret lies in using JavaScript, a condition statement, and a conditional ex-
pression, which you learned how to write in Chapter 2. This combination lets you 
defi ne how a browser makes a decision and what happens next. In this chapter, 
you’ll learn how to tell the browser to evaluate a condition and execute certain Ja-
vaScript statements if the condition is true and execute other JavaScript statements 
if the condition is false.

A condition statement is a type of JavaScript statement that tells the browser to 
evaluate a condition such as whether or not a user ID and password are valid, and 
based upon this evaluation, either execute or skip one or more statements in the 

ch03.indd   43ch03.indd   43 5/2/2005   3:49:56 PM5/2/2005   3:49:56 PM

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.



 44 JavaScript Demystifi ed

JavaScript. The three types of condition statements are the if statement, switch...
case statement, and the loop statement.

The if statement tells the browser to execute one or more statements if a condi-
tional expression is true. You’ll see how the if statement works in this chapter. The 
switch...case statement compares one value to one or more known values. Statements 
that are associated with the known value are executed if a match occurs. You’ll see 
how this is done in this chapter. The loop statement tells the browser to execute state-
ments repeatedly as long as a condition is true. If the condition is false, statements are 
not executed. You’ll learn more about using a loop statement in this chapter.

TIP 

Comments
Before we get started analyzing statements, you should know a thing or two about how to 
add comments in JavaScript. In the following example, the code block comprises one line 
below the if statement. Throughout this chapter, when the form (syntax) of the JavaScript is 
being discussed, the comment line is used to show you where the code block statement will 
appear.

if (conditional expression)
   //Place statements here.

JavaScript, like HTML and most other languages, allows you to add information inside a 
comment area. In JavaScript, a comment begins with two forward slashes (//). The brows-
er ignores characters that appear between the forward slashes and the end of the line. 
Another type of JavaScript comment uses the /* at the beginning of the comment and the 
*/ at the end of the comment. The browser ignores any characters appearing between these 
symbols, even if the characters appear on multiple sequential lines.

The next example illustrates how a comment is used in a JavaScript. The browser consid-
ers all three lines as one comment. Notice that the second line doesn’t contain any comment 
symbols; it doesn’t need any because the browser treats everything between the open (/*) 
and close (*/) symbols as a comment.

if (conditional expression)
{
   /*Place statements here
     More statements go here.
     Still more statements go here.*/
}

ch03.indd   Sec1:44ch03.indd   Sec1:44 5/2/2005   3:50:05 PM5/2/2005   3:50:05 PM



CHAPTER 3 Condition Statements 45

The if statement is one of the most powerful statements that you’ll use in Java- 
Script, because it enables you to have the browser execute some statements only if 
certain conditions are met while your JavaScript is running. You can use four ver-
sions of the if statement. We’ll start by looking at the basic version, since the other 
versions do basically the same thing plus offer additional features. The if statement 
has three parts: the if keyword, a conditional expression, and the code block that 
contains statements that are executed if the expression is true:

if (conditional expression)
{
   //This is where the code block appears. Place statements 
here.
}

A conditional expression is an expression that evaluates either to true or false. In 
an if statement, the conditional expression must be enclosed in parentheses. The 
code block contains statements the browser executes if the conditional expression is 
true. The code block is defi ned by open and close French braces ({}), as shown in 
the preceding code.

Note that you don’t have to include the French braces if only one statement is 
executed if the condition is true. You can simply place this statement beneath the if 
(conditional expression), as shown here:

if (conditional expression)
   //Place statements here.

TIP TIP It is a good practice to include French braces even if only one statement 
executes, because this makes it clear what statements are part of the if statement 
when you read your JavaScript.

The if Statement in Action
Let’s take a look at how to use the if statement in a JavaScript by reviewing a script 
that is similar to the script you wrote in Chapter 2. This script prompts the user to 
enter a user ID and password and then validates them.

<!DOCTYPE html PUBLIC
    "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">

if Statement

ch03.indd   Sec1:45ch03.indd   Sec1:45 5/2/2005   3:50:06 PM5/2/2005   3:50:06 PM



 46 JavaScript Demystifi ed

<head>
   <title>Validate userID and Password</title>
</head>
   <body>
      <script language="Javascript" type="text/javascript">
         <!--
         var userID
         var password
         userID = prompt('Enter user ID',' ')
         password = prompt('Enter password',' ')
         if (userID == 'ScubaBob' && password == 'diving')
         {
            alert('Logon valid')
         }
         -->
      </script>
   </body>
</html>

The fi rst few lines declare two variables (userID and password) and use the 
prompt() function to capture the user ID and password, which are assigned to the 
appropriate variables. The if statement is then used to validate them using a condi-
tional expression. Notice that the conditional expression has three parts: One part 
determines whether the user ID is valid; another part determines whether the pass-
word is valid; the third part determines whether the fi rst and second parts are 
true—that is, if the user ID is valid and the password is valid, then the conditional 
expression is true. If either the user ID or password is invalid, then the conditional 
expression is false.

Once the browser evaluates the conditional expression, the browser will know 
whether or not to execute the statement within the code block of the if statement.

If the conditional expression is true, then the alert() function tells the user that 
the logon is valid. The browser then executes the statement that follows the closed 
French brace. In this example, the script ends after the closed French brace. If the 
conditional expression is false, then the browser skips the statement within the code 
block and executes the statement that follows the closed French brace (if one exists).

The if...else Statement
The fi rst enhanced version of the if statement that we’ll look at is the if...else state-
ment. The if...else statement simply tells the browser “if the condition is true, then 
execute these statements, else execute these other statements.”

ch03.indd   Sec1:46ch03.indd   Sec1:46 5/2/2005   3:50:06 PM5/2/2005   3:50:06 PM



CHAPTER 3 Condition Statements 47

The if...else statement has fi ve parts. The fi rst three parts are the same as those of 
the if statement. The fourth part is the else keyword. The fi fth part is a code block 
that contains statements that are executed if the conditional expression is false.

Here’s how to construct an if...else statement:

if (conditional expression)
{
   //Place statements here.
}
else
{
   //Place statements here.
}

Both the if portion of the if…else statement and the else portion contain code 
blocks defi ned by open and closed French branches. Statements that the browser is 
to execute if the conditional expression is true are placed within the if code block. 
Statements that the browser is to execute if the conditional expression is false are 
placed within the else code block.

Following is a revision of the example shown in the preceding section. You’ll 
notice that this is the same JavaScript that you wrote in Chapter 2 to validate a user 
ID and password. This example uses an if…else statement. If the conditional ex-
pression is false, then the statement within the code block of the else portion of the 
if…else statement executes and displays an alert dialog box saying that the user ID 
and password are invalid.

<!DOCTYPE html PUBLIC
     "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Validate userID and Password</title>
</head>
   <body>
      <script language="Javascript" type="text/javascript">
         <!--
         var userID
         var password
         userID = prompt('Enter user ID',' ')
         password = prompt('Enter password',' ')
         if (userID == 'ScubaBob' && password == 'diving')
         {
            alert('Logon valid')
         }

ch03.indd   Sec1:47ch03.indd   Sec1:47 5/2/2005   3:50:06 PM5/2/2005   3:50:06 PM



 48 JavaScript Demystifi ed

         else
         {
            alert('Logon invalid')
          }
         -->
      </script>
   </body>
</html>

The if...else if Statement
The next version of the if statement that we’ll explore is the if...else if statement. 
This is nearly identical to the if...else statement, except instead of the browser ex-
ecuting statements if the conditional expression is false, the browser is told to 
evaluate another conditional expression. The if...else if statement tells the browser, 
“If the condition is true, then execute these statements, else evaluate another condi-
tion. If the other condition is true, then execute these other statements.”

Here’s how to structure the if...else if statement:

if (conditional expression)
{
   //Place statements here.
}
else if (conditional expression)
{
   //Place statements here.
}

Notice that the if...else if statement looks a bit like the if...else statement. How-
ever, the else portion of the statement is followed by the if keyword and another 
conditional expression. Only if the second conditional expression is true will the 
browser execute statements within the else if code block.

Let’s modify the previous example and change the if...else statement to an if...
else if statement. In this example, if the browser determines that either the user ID 
or the password is invalid, the browser moves on to the else if portion of the if...else 
if statement, where it determines whether the value of the userID variable is 
equivalent to ScubaBob. If this conditional expression is true, then the value of the 
password variable is incorrect. The browser is told to display a message that in-
forms the user that the password is incorrect (Figure 3-1).

<!DOCTYPE html PUBLIC
     "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">

ch03.indd   Sec1:48ch03.indd   Sec1:48 5/2/2005   3:50:06 PM5/2/2005   3:50:06 PM



CHAPTER 3 Condition Statements 49

   <head>
      <title>The if...else...if Statement</title>
   </head>
   <body>
      <script language="Javascript" type="text/javascript">
         <!--
         var userID
         var password
         userID = prompt('Enter user ID',' ')
         password = prompt('Enter password',' ')
         if (userID == 'ScubaBob' && password == 'diving')
         {
            alert('Valid Login')
         }
         else if (userID == 'ScubaBob')
         {
            alert('Invalid Password')
         }
         -->
      </script>
      <noscript>
         <h1> JavaScript Required</h2>
      </noscript>
   </body>
</html>(2)If...else if...else Statement

The remaining version of the if statement is the if...else if...else statement. This 
statement is the same as the if...else if statement with one modifi cation: it includes 
another else portion to the statement.

The if…else if...else statement tells the browser, “If the condition is true, then 
execute these statements, else evaluate another condition. If the other condition is 
true, then execute these other statements, else execute these statements if the other 
condition is false.”

Figure 3-1 If the user ID is valid, but the password is invalid, the browser tells the user 
that the wrong password was entered into the JavaScript.

ch03.indd   Sec1:49ch03.indd   Sec1:49 5/2/2005   3:50:07 PM5/2/2005   3:50:07 PM



 50 JavaScript Demystifi ed

Here’s the structure of the if...else if...else statement.

if (conditional expression)
{
   //Place statements here.
}
else if (conditional expression)
{
   //Place statements here.
}
else
{
   //Place statements here.
}

The if...else if....else statement contains three code blocks. Statements in the fi rst 
code block execute if the fi rst conditional expression is true. Statements in the sec-
ond code block execute if the conditional expression in the else if portion is true. 
Statements in the third code block execute if neither the fi rst nor second condi-
tional expression is true.

Let’s see how this works in a revision of our previous example:

<!DOCTYPE html PUBLIC
     "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
   <head>
      <title>The if...else...if...else Statement</title>
   </head>
   <body>
      <script language="Javascript" type="text/javascript">
         <!--
         var userID
         var password
         userID = prompt('Enter user ID',' ')
         password = prompt('Enter password',' ')
         if (userID == 'ScubaBob' && password == 'diving')
         {
            alert('Valid Login')
         }
         else if (userID == 'ScubaBob')
         {
            alert('Invalid Password')
         }

ch03.indd   Sec1:50ch03.indd   Sec1:50 5/2/2005   3:50:07 PM5/2/2005   3:50:07 PM



CHAPTER 3 Condition Statements 51

         else
         {
            alert('Invalid User ID')
         }
         -->
      </script>
      <noscript>
         <h1> JavaScript Required</h2>
      </noscript>
   </body>
</html>

The if portion and the else if portion of the if...else if...else statement in this ex-
ample are the same as in the previous example. However, we’ve inserted an else 
keyword and else code block at the end of the if...else if...else statement, and 
within this code block we inserted the statement that displays the alert message 
“Invalid User ID” on the screen.

Here’s what is happening in this JavaScript:

 1. The browser compares the value assigned to the userID variable and 
password variables with a valid user ID and password.

• If they are equivalent, then the valid login message is displayed.

• If either the user ID or password is incorrect, then the browser skips 
statements in the fi rst code block and proceeds to evaluate the second 
conditional expression.

 2. Then the second conditional expression compares the value of the userID 
variable with the valid user ID.

• If this expression is true, then the browser tells the user that the user ID 
is valid.

• If this expression is false, then the user is told that the user ID is invalid 
(Figure 3-2).

Figure 3-2 If the user ID is invalid, then the statement within the else code block is 
displayed telling the user that the user ID is incorrect.

ch03.indd   Sec1:51ch03.indd   Sec1:51 5/2/2005   3:50:07 PM5/2/2005   3:50:07 PM



 52 JavaScript Demystifi ed

Other Variations of the if Statement
You can insert additional else if portions into the if statement, with each having its 
own conditional expression and code block that contains statements that are execut-
ed if the conditional expression is true. This is illustrated in the next example, where 
another else if portion is used to determine whether the password is valid.

<!DOCTYPE html PUBLIC
     "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
   <head>
      <title>The if...else if...else if...else Statement</title>
   </head>
   <body>
      <script language="Javascript" type="text/javascript">
         <!--
         var userID
         var password
         userID = prompt('Enter user ID',' ')
         password = prompt('Enter password',' ')
         if (userID == 'ScubaBob' && password == 'diving')
         {
            alert('Valid Login')
         }
         else if (userID == 'ScubaBob')
         {
            alert('Valid User ID. Invalid Password.')
         }
         else if (password == 'diving')
         {
            alert('Invalid user ID. Valid Password.')
         }
         else
         {
            alert('Invalid User ID and Password')
         }
         -->
      </script>
      <noscript>
         <h1> JavaScript Required</h2>
      </noscript>
   </body>
</html>

TIP 

ch03.indd   Sec1:52ch03.indd   Sec1:52 5/2/2005   3:50:07 PM5/2/2005   3:50:07 PM



CHAPTER 3 Condition Statements 53

TIP TIP Avoid making a common rookie mistake. Don’t use too many else ifs in an 
if statement, because the if statement will be diffi cult for you to read—although 
the browser won’t have any problem executing it. Alternatively, you should use 
a switch...case statement (discussed later in this chapter), provided it’s a really 
simplistic condition; otherwise, stick with the if...else if statement.

This example uses two if…else if statements. The fi rst else if determines wheth-
er the user ID is correct. If so, a message displays, telling the user that the user ID 
is correct and the password is incorrect (Figure 3-3).

The second else if statement determines whether the password is valid. If so, the 
user is told that the user ID is incorrect but the password is correct (Figure 3-4).

If both the user ID and the password are invalid, the browser displays the state-
ment in the else code block, which displays the dialog box shown in Figure 3-5.

Nested if Statement
Once you begin writing real-world JavaScript applications, you’ll discover that the 
browser will be required to make decisions more complex than those you have seen 
in examples throughout this book. (We purposely keep examples simple so as not 
to confuse you.)

Figure 3-3 This dialog is displayed if the user ID is correct but the password is 
incorrect.

Figure 3-4 If the user ID is incorrect, but the password is correct, then the browser 
displays this dialog box.

ch03.indd   Sec1:53ch03.indd   Sec1:53 5/2/2005   3:50:07 PM5/2/2005   3:50:07 PM



 54 JavaScript Demystifi ed

Suppose you built a JavaScript that displays and processes an order form. The order 
form requires the customer to enter a country and postal code among other information 
regarding the order. The JavaScript then validates the country and postal code.

The following questions must be satisfi ed by the JavaScript before it decides 
what to do next:

• Did the customer enter a country code?

• Did the customer enter a postal code?

• If the customer entered both a country code and postal code, is the country 
code a valid country code?

• If the country code is a valid country code, is the postal code a valid postal 
code for that country?

You probably realize by now that you’ll be using a series of if statements to en-
able a JavaScript to make these decisions. However, positioning each if statement 
in your JavaScript can be tricky, because a second decision is made only if a previ-
ous condition is true; otherwise, the second decision is skipped.

Here’s how to position the if statements to validate the country code and postal 
code. Let’s assume that if the CountryCode variable and PostalCode variable 
have a value of less than 1, the customer didn’t enter them in the order form. Also 
let’s assume that another process in the JavaScript validated the country code and 
postal code and assign a value to the Valid variable indicating whether these 
codes are valid.

if (CountryCode > 1)
{
   if (PostalCode > 1)
   {
       if (CountryCodeValid == Valid)
       {
          if (PostalCodeValid == Valid)

Figure 3-5 If both the user ID and password are invalid, this dialog box is shown.

ch03.indd   Sec1:54ch03.indd   Sec1:54 5/2/2005   3:50:08 PM5/2/2005   3:50:08 PM



CHAPTER 3 Condition Statements 55

          {
             //Valid country code and valid postal code
          }
          else
          {
            //Invalid postal code
          }
       }
       else
       {
         //Invalid country code
       }
   }
   else
   {
     //Postal code is blank
   }
}
else
{
  //Country code is blank
}

This is called nested if statements. The innermost if statement is said to be nested in 
the outer if statement. You avoid confusion by lining up the French braces for each 
code block and then indenting each line, as shown above.

Nested if statements can be confusing to follow, because the code block of one if 
statement contains a second if statement. This means that you must be very careful 
when you write a nested if statement to avoid misplacing the open and close French 
braces. It is common for even a professional JavaScript developer to leave off a 
close French brace, which confuses the browser.

Identifying a Browser
Here’s another practical use of nested if statements. You’ll recall from Chapter 1 
that not all browsers are the same. Some browsers have features that are missing 
from other browsers. You’ll learn about those features in more detail throughout 
this book.

The problem facing a JavaScript developer is to identify the browser that is run-
ning the JavaScript and use features that are available to the browser and turn off 
features the browser can’t handle. The following JavaScript identifi es the name and 
version numbers of two of the most common browsers.

ch03.indd   Sec1:55ch03.indd   Sec1:55 5/2/2005   3:50:08 PM5/2/2005   3:50:08 PM



 56 JavaScript Demystifi ed

<!DOCTYPE html PUBLIC
    "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
   <head>
      <title>Identifying the Browser</title>
   </head>
   <body>
      <script language="Javascript" type="text/javascript">
      <!--
         if (navigator.appName ==
                'Microsoft Internet Explorer')
         {
            alert
               ('Internet Explorer\n' + navigator.userAgent)
         }
         else
         {
            if (navigator.appName == 'Netscape')
            {
               alert('Netscape\n' + navigator.userAgent)
            }
            else
            {
               alert('Other Browser')
            }
        }
      -->
      </script>
   </body>
</html>

Most of this JavaScript is probably familiar to you because it is very much like the 
JavaScripts that you learned to write in the fi rst two chapters. However, you’ll no-
tice two new items: the navigator object and a nested if statement.

NOTE NOTE You learned about objects in Chapter 1, when you were introduced to the 
document object. An object can have one or more properties and one or more 
methods. A property is information. A method is an action taken by the object, 
such as the write() method of the document object, which writes information 
onto a document.

TIP 

ch03.indd   Sec1:56ch03.indd   Sec1:56 5/2/2005   3:50:08 PM5/2/2005   3:50:08 PM



CHAPTER 3 Condition Statements 57

The browser that runs a JavaScript is an object called navigator. You use the 
name navigator in your JavaScript any time you want to refer to the browser. Two prop-
erties identify the browser. These are appName and userAgent. The appName 
property contains the name of the browser such as Netscape or Microsoft Internet Ex-
plorer. The userAgent property contains the version number of browser.

Notice that this example contains a nested if statement. The outer if statement is 
where the browser is told to compare the value of the appName property to Micro-
soft Internet Explorer.

• If they are equivalent, then Internet Explorer is displayed on the fi rst line 
of the alert dialog box and the version is displayed on the second line. 
In a real-world JavaScript application, you won’t display the name of 
the browser or the version. Instead, this information would be used in a 
conditional expression of an if statement to turn on and off features that 
are or are not supported by the browser.

TIP TIP Using the newline character (\n) causes the browser to move to the next line 
before displaying additional text.

• If the browser isn’t Microsoft Internet Explorer, then statements within the 
else code block are executed. This is where the nested (inner) if...else 
statement is located.

• If the browser is Netscape, then the browser displays “Netscape” and the 
version of the browser in an alert dialog box (Figure 3-6).

• If the browser is neither Microsoft Internet Explorer nor Netscape, then 
“Other Browser” is displayed.

Figure 3-6 The name of the browser is contained in the appName property and its 
version is in the userAgent property.

ch03.indd   Sec1:57ch03.indd   Sec1:57 5/2/2005   3:50:08 PM5/2/2005   3:50:08 PM



 58 JavaScript Demystifi ed

TIP TIP JavaScript depends on the browser to identify itself using the appName 
and userAgent properties. As a security precaution, some browsers purposely 
misidentify themselves in order to hide their identity to a JavaScript.

switch...case Statement
The if statement is very powerful and enables browsers to make complex decisions 
while a JavaScript is running. However, an if statement can become unwieldy if a 
series of decisions have to be made based on a single value.

Imagine developing a JavaScript that presented a menu of 15 items from which 
the user selects 1 item. You’ll need to write 15 if statements to process the selection, 
each responding to a menu item. Professional JavaScript developers avoid writing 
a long series of if statements by using a switch...case statement.

A switch...case statement tells the browser to compare a switch value with a se-
ries of case values. If the switch value matches a case value, then the browser 
executes statements that are placed beneath the case value. A switch...case state-
ment has eight parts:

• The switch keyword.

• A switch value is compared to case values; the switch value must be placed 
within parentheses.

• The case keyword.

• A case value is compared to the switch value; the case value must be placed 
between the case keyword and a colon.

• Case statements are beneath a case value and are executed if the case value 
matches the switch value.

• The break keyword (optional) tells the browser to skip all the other 
cases and execute the statement that appears at the end of the switch...case 
statement.

• The default keyword (optional) contains statements that are executed 
if none of the case values match the switch value.

• Open and close French braces defi ne the body of the switch...case 
statement.

ch03.indd   Sec1:58ch03.indd   Sec1:58 5/2/2005   3:50:09 PM5/2/2005   3:50:09 PM



CHAPTER 3 Condition Statements 59

Here’s how a switch...case statement is structured:

switch (value)
{
   case value1:
      //Place statements here.
      break;
   case value2:
      //Place statements here.
      break;
   default:
      //Place statements here.
}

Here’s how the switch...case statement works:

 1. The browser compares the switch value to the fi rst case value:

 • If they match, statements beneath the case value are executed.

 • If break is the last statement beneath the case value, the browser skips 
the rest of the case values and executes the statement that follows the 
close French brace.

 • If break isn’t the last statement, the browser compares the switch 
value to the second case value.

 2. As long as there isn’t a match, the browser continues to compare the switch 
value to case values in the order in which the case values appear in the 
switch...case statement.

 3. If none of the case values match the switch value, then the browser executes 
statements beneath the default keyword and then exits the switch...case 
statement and executes the statement following the close French brace.

 4. If default isn’t present with the switch...case statement, the browser 
exits the switch…case statement and continues with the statement that 
follows the close French brace.

Check out this JavaScript that contains a switch...case statement:

<!DOCTYPE html PUBLIC
                "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
   <head>

ch03.indd   Sec1:59ch03.indd   Sec1:59 5/2/2005   3:50:09 PM5/2/2005   3:50:09 PM



 60 JavaScript Demystifi ed

      <title>switch...case</title>
   </head>
   <body>
      <script language="Javascript" type="text/javascript">
         <!--
         var selection =
               prompt('Enter a number between 1 and 10.',' ')
         switch(selection) {
            case '1':
               alert('You entered one.')
               break;
            case '2':
               alert('You entered two.')
               break;
            default:
               alert('Your entry is invalid.')
         }
       -->
      </script>
   </body>
</html>

The fi rst line of the JavaScript declares a variable called selection, which is ini-
tialized by the response that the user enters into the prompt dialog box (Figure 3-7).

Figure 3-7 The prompt dialog box asks the user to enter a number.

ch03.indd   Sec1:60ch03.indd   Sec1:60 5/2/2005   3:50:09 PM5/2/2005   3:50:09 PM



CHAPTER 3 Condition Statements 61

The second line is the switch...case statement that compares the user’s response 
with two numbers. If the user enters 1, then it matches the fi rst case statement, caus-
ing the browser to display the alert dialog box with the message “You entered one” 
(Figure 3-8).

If the user enters 2, then statements within the fi rst case are skipped because 
there isn’t a match. However, there is a match to the second case. The browser dis-
plays the alert dialog box with the message “You entered two” (Figure 3-9).

If the user enters neither 1 nor 2, then the statement under default is executed, 
causing the message “Your entry is invalid” to be displayed in an alert dialog box 
(Figure 3-10).

Notice that break is used for each case. This causes the browser to jump to the 
end of the switch...case statement once a match occurs. You’ll also notice that 
break isn’t used beneath default, since nothing by the end of the switch...case 
follows the statement beneath default.

Figure 3-8 An alert dialog box tells the user that he or she entered one.

Figure 3-9 An alert dialog box tells the user that he or she entered two.

ch03.indd   Sec1:61ch03.indd   Sec1:61 5/2/2005   3:50:10 PM5/2/2005   3:50:10 PM



 62 JavaScript Demystifi ed

Loop Statement
You can also control how a browser makes a decision by using a loop. A loop is 
used to execute one or more statements repeatedly, without your having to duplicate 
those statements in your JavaScript.

Remember the days in grammar school when the teacher told you to write, “I 
will keep quiet in class” 25 times on a piece of paper? Today, you could compose a 
JavaScript that would write this by executing the document.write("I will 
keep quiet in class.") statement. Instead of writing this statement 25 
times in your JavaScript, you need to write it only once and place the statement in 
a loop. The loop tells the browser to continue to execute this statement 25 times.

You can use four types of loops in a JavaScript: a for loop, for in loop, while 
loop, and do...while loop.

The for Loop
The for loop tells the browser to execute statements within the for loop until a con-
dition statement returns false. The browser then continues by executing the statement 
or statements below the for loop until the test condition is false.

Here’s the structure of the for loop:

for ( initializer; conditional expression ;
            post loop statements)
{
   //Place statements here.
}

The for loop has fi ve parts:

• The for keyword.

• The initializer holds the number of times the browser executed statements 
within the loop.

Figure 3-10 An alert dialog box tells the user an invalid entry was entered.

ch03.indd   Sec1:62ch03.indd   Sec1:62 5/2/2005   3:50:10 PM5/2/2005   3:50:10 PM



CHAPTER 3 Condition Statements 63

• The conditional expression sets the condition when the browser should stop 
executing statements with the loop.

• The post loop statements increase or decrease the value of the initializer 
each time the browser completes the loop.

• The code block contains statements that are executed by the browser when 
the browser enters the loop.

Think of the initializer, conditional expression, and post loop statements as the 
counter of the for loop. Collectively, they track the number of times that the brows-
er executes the statements within the code block of the loop and decide when the 
browser should exit the loop.

The initializer declares and initializes a variable that is used to store the count. 
Traditionally, JavaScript developers name the initializer i and initialize it with 0 
(zero), as shown here:

i = 0

The browser evaluates the conditional expression before executing statements with-
in the code block of the loop. The conditional expression tells the browser when to 
stop executing the loop. Any valid conditional expression can be used in the for 
loop. (You learned about conditional expressions in Chapter 2.)

Typically, JavaScript developers use the less than operator (<) to tell the browser 
to execute the loop only if the initializer variable has a value that is less than the 
value specifi ed in the conditional expression.

Suppose we want the browser to execute statements within the for loop fi ve 
times. First, we assign 0 to the initializer variable. Next, we write the following 
conditional expression, which tells the browser to continue to execute statements 
within the code block of the loop as long as i is less than 5:

i < 5

The post loop statements are any statements that should execute before the next 
iteration of the loop. Typically, this loop may be used to increment a loop counter 
variable using the incremental operator (++), which you learned about in Chapter 2. 
The incremental operator increases the value of the initializer variable by 1 after 
each iteration of the loop.

This means that the value of i increases from 0 to 1 after the fi rst time the 
browser executes statements within the block of the for loop. The value of i contin-
ues to be incremented for each iteration until the value of i is 5, at which time the 
test expression is no longer true, causing the browser to skip the for loop and exe-
cute the statement beneath the for loop.

The following example shows you how to write a for loop in a JavaScript. This is 
purposely a barebones example so you can clearly see how the for loop is written. 

ch03.indd   Sec1:63ch03.indd   Sec1:63 5/2/2005   3:50:10 PM5/2/2005   3:50:10 PM



 64 JavaScript Demystifi ed

Throughout this book you’ll be writing for loops in more interesting and benefi cial 
JavaScripts. The JavaScript writes “I will keep quiet in class.” fi ve times on the docu-
ment (Figure 3-11). Take a close look at the document.write() statement.

<!DOCTYPE html PUBLIC
         "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
   <head>
      <title>for loop</title>
   </head>
   <body>
      <script language="Javascript" type="text/javascript">
         <!--
         for( i = 0; i < 5; i++)
         {
            document.write
                  ( (i + 1) + ' I will keep quiet in class.')
            document.write('<br>')
         }
      -->
      </script>
   </body>
</html>

NOTE 

Figure 3-11 The for loop is used to execute a single statement fi ve times.

ch03.indd   Sec1:64ch03.indd   Sec1:64 5/2/2005   3:50:10 PM5/2/2005   3:50:10 PM



CHAPTER 3 Condition Statements 65

Notice that the initializer variable is included within parentheses. This tells the 
browser to use the value of the initializer variable. Also notice that 1 is added to the 
value of the initializer variable. If you’re wondering why, it’s because we want to 
number each sentence consecutively.

However, the value of the initializer variable is 0 and not 1, so we add 1 and tell 
the browser to display the sum, which is 1 the fi rst time that the browser writes the 
sentence. This doesn’t change the value of the initializer variable. Only the incre-
ment portion of the for loop changes its value.

The second document.write() statement writes HTML that causes the text 
to be displayed on the next line.

NOTE NOTE Some JavaScript developers move the initializer variable and the 
increment outside of the top portion of the for loop for reasons that are particular 
to their application. You probably won’t need to do this; however, these techniques 
are interesting to learn.

The following code segment (a portion of a JavaScript that needs other state-
ments in order to run) uses a JavaScript statement to declare and initialize a variable 
that is used as the initializer variable for the for loop. Notice that you still need to 
include the semicolon in the for loop:

var i = 0
for( ; i < 5; i++)
{
   document.write
          ( (i + 1) + ' I will keep quiet in class.')
}

This next code segment moves the increment to the code block of the for loop. 
Make sure that the semicolon isn’t removed from the for loop.

var i = 0
for( ; i < 5;)
{
   document.write
         ( (i + 1) + ' I will keep quiet in class.')
   i++
}

Another technique is to remove the initializer variable, the conditional expression, 
and the increment from the for loop, as shown in the next code segment. This looks 
strange, but it produces the same results as the for loop shown previously in this chap-
ter. This is called an endless for loop because the test expression is missing, meaning 
that the browser has no test expression to evaluate to determine when to stop looping.

ch03.indd   Sec1:65ch03.indd   Sec1:65 5/2/2005   3:50:11 PM5/2/2005   3:50:11 PM



 66 JavaScript Demystifi ed

Look carefully at the statements in the code block. There is nothing new here; 
you already learned about these statements. After the value of variable i is incre-
mented, the browser executes an if statement. The conditional expression of the if 
statement tells the browser to compare the value of variable i to the number 5. If 
they match, the browser is told to break out of the for loop.

var i = 0
for( ; ;)
{
   document.write
           ( (i + 1) + ' I will keep quiet in class.')
   i++
   if (i == 5)
   {
     break
   }
}

The for in Loop
The for in loop is a special kind of for loop that is used whenever you don’t know 
the number of times that the browser should loop. This happens when you want to 
retrieve all the properties of an object, but you don’t know how many properties are 
associated with the object.

The for in loop tells the browser to execute statements within the code block for 
each item on a list. If the list has fi ve items, then the browser executes those state-
ments fi ve times.

The for in loop has four parts:

• The for keyword

• The list, which is placed between parentheses

• Open and close French braces that defi ne the code block

• Statements that are placed within the code block and executed for each item 
on the list

The for in loop is structured like this:

for(list)
{
   //Place statements here.
}

ch03.indd   Sec1:66ch03.indd   Sec1:66 5/2/2005   3:50:11 PM5/2/2005   3:50:11 PM



CHAPTER 3 Condition Statements 67

The following example shows how to use the for in loop to display the properties 
that are available in the window object of a browser (Figure 3-12). Notice that the 
for in loop uses the property in window as the list. The browser executes the 
statement within the code block for each property that appears on the list. This state-
ment displays the property on the screen. Each property is followed by a rule 
(<br>).

<!DOCTYPE html PUBLIC
         "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
      <title>for in loop</title>
</head>
   <body>
      <script language="Javascript" type="text/javascript">
      <!--
         for (property in window)
           {
              document.write(property)
              document.write('<br>')
           }
      -->
     </script>
   </body>
</html>

Figure 3-12 The for in loop is used to display properties of a window object.

ch03.indd   Sec1:67ch03.indd   Sec1:67 5/2/2005   3:50:11 PM5/2/2005   3:50:11 PM



 68 JavaScript Demystifi ed

The while Loop
The while loop tells the browser to execute one or more statements continually as 
long as a condition defi ned in the while loop is true. The while loop doesn’t specify 
the number of times statements are repeatedly executed.

There are four parts to a while loop:

• The while keyword.

• The conditional expression; if true, the browser executes statements within 
the code block.

• Open and close French braces defi ne the code block.

• Statements placed within the code block are executed if the conditional 
expression is true.

Here is the structure of the while loop:

while (conditional expression) {
   //Place statements here.
}

Let’s take a look at a simple example that illustrates how to use a while loop. The 
following JavaScript displays numbers 1 through 10 on the screen (Figure 3-13). 
You won’t wow anyone with this JavaScript, but it is simple enough for you to see 
how the while loop works. (Throughout this book, we’ll be using the while loop to 
build more sophisticated JavaScripts.)

<!DOCTYPE html PUBLIC
        "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
      <title>while loop</title>
</head>
   <body>
      <script language="Javascript" type="text/javascript">
      <!--
        var i = 1
        while ( i <= 10 )
         {
            document.write(i)
            document.write('<br>')
            i++
         }
      -->
      </script>
   </body>
</html>

NOTE 

ch03.indd   Sec1:68ch03.indd   Sec1:68 5/2/2005   3:50:12 PM5/2/2005   3:50:12 PM



CHAPTER 3 Condition Statements 69

This JavaScript begins by declaring and initializing a variable called i. Next is 
the while loop. The browser evaluates the conditional expression. If the conditional 
expression is true, then the browser executes statements within the code block and 
continues to execute them until the conditional expression is false.

In this example, as long as the value of variable i is less than or equal to 10, the 
browser executes statements within the code block. Otherwise, the browser exe-
cutes the statement following the close French brace of the code block.

Next the browser increments the value of variable i, making the value 2. The 
browser then returns to the top of the loop and reevaluates the expression. If the 
expression is true, the browser enters the code block and executes its statements 
again. If the expression is false, the browser exits the while loop and executes the 
fi rst statement that follows the while loop.

NOTE NOTE It is important to remember that statements within the code block of a 
while loop may never execute if the while loop expression is never true. Rookie 
JavaScript developers frequently overlook this fact and spend hours trying to fi nd 
out why statements within the while loop never execute. If you want the statements 
within the code block to execute at least once, you’ll need to use a do...while loop.

Figure 3-13 This while loop is used to display numbers 1 through 10.

ch03.indd   Sec1:69ch03.indd   Sec1:69 5/2/2005   3:50:12 PM5/2/2005   3:50:12 PM



 70 JavaScript Demystifi ed

The do...while Loop
The do...while loop operates similarly to the while loop, except that statements 
within the code block execute at least once, because the browser doesn’t evaluate 
the conditional expression condition until the end of the code block.

There are four parts to the do...while loop:

• The do keyword

• Open and close French braces defi ne the code block

• The while keyword

• The conditional expression placed within parentheses

Here’s the structure of the do...while loop:

do {
   //Place statements here.
} while (conditional expression)

The following example displays numbers 1 through 10 using a do...while loop.

 1. The variable i is declared and initialized.

 2. The browser enters the code block of the do...while loop and executes the 
document.write() method that displays the number on the document.

 3. The browser then evaluates the conditional expression:

• If the expression is true, the browser moves to the top of the code block 
and begins executing statements again.

• If the expression is false, the browser executes the statement below the 
do...while loop.

<!DOCTYPE html PUBLIC
        "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
      <title>do...while loop</title>
</head>
   <body>
      <script language="Javascript" type="text/javascript">
      <!--
        var i = 1
        do
        {
           document.write(i)
            i++
         } while ( i <= 10 )
      -->
      </script>
   </body>
</html>

ch03.indd   Sec1:70ch03.indd   Sec1:70 5/2/2005   3:50:12 PM5/2/2005   3:50:12 PM



CHAPTER 3 Condition Statements 71

continue
Except for the do...while loop, a loop tells the browser to execute JavaScript state-
ments within the code block of the loop only if the condition is true; otherwise, the 
browser skips to the statement that follows the loop. The do...while loop is a little 
different because it tells the browser to execute statements within the block at least 
once before determining whether the condition is true.

On some occasions, you’ll want the browser to stop executing statements within 
the loop and return to the top of the loop to reevaluate the conditional expression. 
You can tell the browser to return to the top of the loop at any time while the brows-
er executes statements within the loop by using the continue keyword.

The continue keyword instructs the browser to stop executing statements with-
in the loop immediately and to go to the top of the loop, just as if the browser reached 
the end of the loop. If a for loop is being used, the browser executes the post loop 
statements, which typically increments or decrements the initializer variable and 
then evaluates the test condition. If a while loop is used, the browser evaluates the 
test condition. If the conditional expression is true, the browser reenters the code 
block of the loop and executes statements beginning with the fi rst statement.

Let’s say that you want to display numbers 1, 2, 3, and 5 on the screen. You don’t 
want to display the number 4. Here’s how this is done using a while loop and the 
continue keyword:
<!DOCTYPE html PUBLIC
        "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
      <title>continue</title>
</head>
   <body>
      <script language="Javascript" type="text/javascript">
      <!--
        var i = 0
        while ( i < 5 )
         {
            i++
            if ( i == 4 )
            {
               continue
            }
            document.write(i)
         }
      -->
      </script>
   </body>
</html>

As long as the value of variable i is less than 5, the browser executes statements 
within the code block. Since variable i is initialized with 0, the browser enters the 
loop and increments the value of i, making it 1. The browser then evaluates the 

ch03.indd   Sec1:71ch03.indd   Sec1:71 5/2/2005   3:50:13 PM5/2/2005   3:50:13 PM



 72 JavaScript Demystifi ed

conditional expression to determine whether the value of variable i is 4. If so, the 
browser executes the continue statement within the code block of the if state-
ment. The continue statement tells the browser to return to the top of the loop 
immediately and reevaluate the conditional expression.

The browser executes the fi rst statement within the code block of the while loop, 
which increments the value of variable i from 4 to 5. Once again, the browser 
evaluates the conditional expression in the if statement. This time, variable i equals 
5, not 4, so the browser proceeds to the write() statement again to write the 
value of variable i, which is 5, to the screen.

Looking Ahead
You learned two important JavaScript programming techniques in this chapter: how 
to have a browser make a decision by using the if statement and the switch...case 
statement and how to have the browser repeatedly execute JavaScript statements 
without your having to duplicate code.

The if statement contains a conditional expression and a code block. If the con-
ditional expression is true, then the browser executes statements within the code 
block. You provide the browser with alternative statements by using else with the 
if statement. If the conditional statement is false, then the browser executes state-
ments within the else code block.

Sometimes you’ll want the browser to test another condition if the conditional 
expression in the if statement is false. You tell the browser to do this by using the 
if...else if statement. The else if portion of this statement contains another condi-
tional expression and statements within a code block that are executed if the second 
conditional expression is true. Yet still another version of the if statement is the if...
else if...else statement, which is similar to the if...else statement, where statements 
within the else code block are executed if neither the fi rst nor second conditional 
expression is true.

You also learned how to use the switch...case statement to have the browser 
make a decision within your JavaScript. The switch portion of the statement con-
tains a value that is compared to values of the case portion of the statement. If there 
is a match, then statements within the case are executed. If there isn’t a match, those 
statements are skipped.

The last statement within the case portion of the switch...case statement is typically 
the break statement. The break statement tells the browser to break out of the switch...
case statement without evaluating subsequent case values. The break statement can 
also be used to tell the browser to break out of any loop without fi nishing the loop.

ch03.indd   72ch03.indd   72 5/2/2005   3:50:13 PM5/2/2005   3:50:13 PM



CHAPTER 3 Condition Statements 73

If the switch value doesn’t match any case values, the browser executes state-
ments beneath the default portion of the switch...case statement. The default portion 
is optional.

A browser can repeat statements by placing statements within four kinds of loops: 
for loop, for in loop, while loop, and the do...while loop. Each loop has a conditional 
expression that must be met in order for the browser to enter and execute statements 
within the code block of the loop. There is one exception: statements within a do...while 
loop execute at least once regardless of whether the test condition is true or false.

Now that you know how to have a browser make decisions and execute state-
ments repeatedly, it is time to move on and learn how to store and manipulate lists 
of information, such as a list of products. You do this by using an array, which 
you’ll learn about in the next chapter.

Quiz
 1. What loop executes statements regardless of whether a condition is true or 

false?

 a. do...while loop

 b. while loop

 c. for loop

 d. for in loop

 2. True or False. A switch...case statement cannot have a default case.

 a. True

 b. False

 3. What loop requires the browser to execute statements within the loop at 
least once?

 a. do...while loop

 b. while loop

 c. for loop

 d. for in loop

 4. The loop counter in the for loop is used to

 a. Increase the expression by 1

 b. Increase or decrease the loop counter value by 1

ch03.indd   73ch03.indd   73 5/2/2005   3:50:13 PM5/2/2005   3:50:13 PM



 74 JavaScript Demystifi ed

 c. Limit the number of statements within the code block

 d. Limit the output of statements within the code block

 5. True or False. A for loop can become an endless loop.

 a. True

 b. False

 6. What loop is used to step through an unknown number of items on a list?

 a. do...while loop

 b. while loop

 c. for loop

 d. for in loop

 7. True or False. The default clause is used in an if statement to set default 
values.

 a. True

 b. False

 8. What is the purpose of else in an if...else statement?

 a. Contains statements that are executed if the conditional expression is 
true

 b. Defi nes another conditional expression the browser evaluates if the fi rst 
conditional expression is false

 c. Contains statements that are executed if the conditional expression is 
false

 d. Used to nest an if statement

 9. True or False. You must include an initializer as part of a for loop.

 a. True

 b. False

 10. True or False. The browser can be required to evaluate every case in a 
switch...case statement event if the criterion matches a case value.

 a. True

 b. False

ch03.indd   74ch03.indd   74 5/2/2005   3:50:13 PM5/2/2005   3:50:13 PM



75

CHAPTER
4

Arrays

Nearly every JavaScript that you write temporarily stores information into computer 
memory until the JavaScript processes the information. Information is stored into mem-
ory by assigning the information to a variable. You learned about variables in Chapter 2.

Suppose you had to store 100 pieces of information in memory, such as the name 
of 100 products in a sales catalog. You could declare 100 variables to store product 
names; this might seem a good idea until you realized that you’d have to devise 100 
unique variable names and then name all the variables every time your JavaScript 
needed to process the list of product names.

Professional JavaScript developers use an array instead of a long list of vari-
ables. An array has one name and can hold as many values as is required by your 
JavaScript application. In this chapter, you’ll learn about arrays and how to use 
them in your JavaScript to store and manipulate large amounts of data.

What Is an Array?
As you’ll recall from Chapter 2, a JavaScript sometimes needs to store informa-
tion temporarily in memory, just long enough until the information is used. Let’s 
say that you displayed a list of options in your web page, and the person using the 

ch04.indd   75ch04.indd   75 4/26/2005   9:24:44 AM4/26/2005   9:24:44 AM

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.



 76 JavaScript Demystifi ed

JavaScript on your page is expected to select one of those options. Before the op-
tions are displayed, your JavaScript declares a variable such as this:

var selection

This declaration tells the browser to reserve a place in memory and call that place 
selection. You then use the word selection in your JavaScript any time that you want 
to either refer to that place in memory or refer to the value stored in that place.

Nothing is stored in that place until the person who uses your JavaScript enters a 
selection. You’ll see how this is done in the next chapter. For now, let’s simply say 
that the browser takes the person’s choice and stores it in the memory location that 
is associated with the word selection. You then use the word selection within your 
JavaScript whenever you want to use the choice that the person selected. You’ve 
seen something similar done in Chapter 3.

An array is very similar to a variable in that an array tells the browser to reserve 
a place in memory that can be used to store information. An array can comprise one 
or multiple elements. Each element is like a variable in that an array element refers 
to a memory location where information can be temporarily stored.

An array is identifi ed by a unique name, similar to the name of a variable. A 
number called an index identifi es an array element. The combination of the array 
name and an index is nearly the same as a variable name. In your JavaScript, you 
use both the array name and the index to specify a particular memory location.

Declaring an Array
You create an array by writing a declaration statement in your JavaScript, which is 
very similar to the way you declared a variable. This declaration statement has fi ve 
parts: the fi rst part is the var syntax; the second part is the array name, which you 
create; the third part is the assignment operator; the fourth part is the new operator; 
and the fi fth part is the Array() constructor. All these parts are shown here:

var products = new Array()

Here is what happens when the browser executes your declaration statements. 
First, the browser fi nds an empty spot in memory and then reserves it for the array. 
The browser then associates that memory location with the word products.

Next the browser creates an instance of the array object. This might sound a little 
confusing, but remember from Chapter 1 that an object is a thing, such as the docu-
ment object, that you use to display information on the screen. In this case, the 
object is an array.

You’ll probably remember that an object has properties (information) and meth-
ods (actions) associated with it. The document object had a background color 

ch04.indd   76ch04.indd   76 4/26/2005   9:24:48 AM4/26/2005   9:24:48 AM



CHAPTER 4 Arrays 77

property and write() method. An array object also has properties and methods, 
which you’ll learn about later in this chapter.

You need to create a copy of the array object. JavaScript developers call the copy 
an instance of the array object. In order to create the instance, you need to use the 
new operator and the Array() constructor. Think of a constructor as a special 
method of an object that creates the instance.

The assignment operator (=) tells the browser to store the new instance of the 
array object at the location that is associated with products. Once this is done, your 
JavaScript has declared an array called products that doesn’t have any array ele-
ments. You’ll need either to initialize the array when the array is declared or use an 
assignment statement within your JavaScript to create array elements.

Initializing an Array
Initialization is the process of assigning a value when either a variable or an array 
is declared. You learned how to initialize a variable in Chapter 2. The process to 
initialize an array is a little different than initializing a variable.

Remember that you use the assignment operator to assign a value to a variable 
when declaring the variable. An example is shown here:

var selection = 1

When initializing an array, you place the value within the parentheses of the Ar-
ray() constructor. The following example initializes the products array with the 
value 'Soda', which is assigned to the fi rst element of this array:

var products = new Array('Soda')

In the real world, an array usually has more than one array element, with each 
element having its own value. Therefore, you’ll fi nd yourself having to initialize the 
array with more than one value. Here’s how this is done:

var products = new Array('Soda', 'Water', 'Pizza', 'Beer')

Notice the following:

• Each value is placed within the parentheses of the Array() constructor.

• Values must be the same type of information. As you’ll recall from 
Chapter 2, this can be a string, number, Boolean, and object types. The 
preceding code segment uses strings ('Soda', 'Water', 'Pizza', 
'Beer'). JavaScript won’t let us use a mixture of types; all of the values 
must be the same type.

• A comma must separate each value.

The browser automatically creates an array element for each value that appears 
within the parentheses of the Array() constructor and then assigns the value to 

ch04.indd   77ch04.indd   77 4/26/2005   9:24:48 AM4/26/2005   9:24:48 AM



 78 JavaScript Demystifi ed

that array element. You then directly reference the array element whenever you 
want to refer to the value.

Defi ning Array Elements
Think of an array as a list containing the same kinds of things—such as a list of 
product names or a list of customer fi rst names. Each item on the list is identifi ed 
by the number in which the item appears on the list. The fi rst item is number 0, the 
second item is number 1, then 2, and so on.

You are probably wondering why the second item on the list is numbered 1 in-
stead of 2. The reason is because the fi rst digit in the decimal numbering system is 
0 and not 1. The decimal numbering system is used to count things in code. It has 
10 digits, which are 0 to 9. In the real world, we normally start counting with 1, but 
when working with array elements, we start counting with 0. So here’s a list of 
product name strings and a number for each of them:

0   'Soda'
1   'Water'
2   'Pizza'
3   'Beer'

Collectively, this list is called an array. Each item on the list is associated with an 
array element. Our next step is to create an array and then assign each product name 
to the corresponding array element. You learned how to declare an array previously 
in this chapter. To assign a product name to an array element, you must specify the 
name of the array followed by the index of the array element. The index must be 
enclosed within square brackets.

First, let’s declare an array called products:

var products = new Array()

Next, let’s specify the fi rst element of that array. In this example, products is the 
name of the array, and 0 is the index of the fi rst element of the array. (The second 
element would look just like the fi rst element, except the index is 1, not 0.)

products[0]

You treat an array element like you treat a variable name in your JavaScript:

• You use the assignment operator (=) to assign a value to an array element:

products[0] = 'Soda'

• You use the array element (array name plus the index) to tell the browser 
that you want to use the value that is associated with the array element. 

ch04.indd   78ch04.indd   78 4/26/2005   9:24:48 AM4/26/2005   9:24:48 AM



CHAPTER 4 Arrays 79

This is the same as using the variable name to tell the browser that you 
want to use the value that is associated with the variable:

document.write(products[0])

How Many Elements Are in the Array?
This is a question that professional JavaScript developers frequently ask when writ-
ing a JavaScript application. This may seem to be a strange question to ask, since 
the developer is the person who creates the array. However, you’ll discover that 
many times when you create an array, your JavaScript creates the elements of that 
array when your JavaScript runs.

For example, suppose you create a JavaScript application that enables a customer 
to place an order for a group of products. The customer will order from one product 
to many products. You won’t know the number of products that will be ordered until 
the customer runs your JavaScript. Each product is stored in an array element.

However, your JavaScript needs to process each array element (that is, each 
product). In order to do this, you need to know the number of array elements (that 
is, the number of products ordered). The number of array elements can be deter-
mined in several ways, but the easiest and most effi cient way is to use the length 
property of the array object. Remember earlier in this chapter you learned that an 
array is a JavaScript object. In Chapter 1, you learned that a JavaScript object has 
properties (information) and methods (actions).

The length property of the array object contains the number of elements con-
tained in the array. Here’s how to access the length property of the products array 
that we declared previously:

var len = products.length

You specify the name of the array object (products) and the name of the property 
(length), separated by a dot, to access the length property. In this code seg-
ment, the length of the array is assigned to the variable len.

You don’t have to assign the length property to a variable. It is common to use 
the length property where you need to use the length of the array in an expres-
sion. You’ll see how this is done a little later in this chapter.

It is important to remember that the length of an array is the actual number of 
array elements and not the index of the last array element. Take a look at the fol-
lowing array. The length of this array is 4 elements. Rookies tend to assume that the 
value of the length property is 3, because the last element in the array has an in-
dex of 3. This is a mistake, though, because the length property is equal to the 
number of elements in the array (4).

products[0] = 'Soda '
products[1] = 'Water'

ch04.indd   79ch04.indd   79 4/26/2005   9:24:49 AM4/26/2005   9:24:49 AM



 80 JavaScript Demystifi ed

products[2] = 'Pizza'
products[3] = 'Beer'

TIP TIP You don’t have to initialize every element. An element can be left unassigned 
and is called an undefi ned element. Later in your JavaScript, you can assign a 
value to an undefi ned element.

Looping the Array
So far, you probably haven’t seen any major advantages of using an array over a 
variable, except that you can use the same name for each element of the array. The 
power of using an array is evident when you need to process each element of the 
array. You can use a for loop (see Chapter 3) to access each array element.

Let’s see how this is done. Suppose you need to display all the array elements on 
a document. From Chapter 3, you remember that you place the information you 
want displayed between the parentheses of the document.write() method. If 
you use four variables—one for each product—you’ll have to write the docu-
ment.write() method in four different statements within your JavaScript. But 
if you use an array, you’ll have to write the document.write() method in only 
one statement. Here’s how this is done:

for (var i = 0; i < products.length; i++)
{
   document.write(products[i])
}

As you’ll recall, the for loop tells the browser to continue to execute statements 
within the for loop as long as the condition expression is true. The condition expres-
sion says that the variable i is less than the value of the length property of the 
products array.

The loop begins by initializing variable i to the value 0. Remember that the value 
of the length property is 4 because there are four elements in the products array. Since 
the value of i is less than 4, the browser executes the statement within the loop.

This statement calls the write() method of the document object and displays 
the value of the array element on the document. You might be asking yourself 
“Which array element?” Look carefully, and you’ll notice the index of the array 
element is i. The browser replaces the i with the current value of the variable i. So 
what’s the value of i? It is 0, according to the JavaScript. Therefore, the browser 
writes the value of array element 0.

ch04.indd   80ch04.indd   80 4/26/2005   9:24:49 AM4/26/2005   9:24:49 AM



CHAPTER 4 Arrays 81

The browser returns to the top of the for loop and increments (i++) the value of i, 
making its value 1. The browser evaluates the conditional expression and determines 
whether or not to execute the statement within the for loop again. It decides to execute 
the statement.

The browser continues to loop until the value of i is equal to the length prop-
erty. When they are equal, the browser no longer enters the loop and skips to the 
statement at the end of the loop. (Of course, there is no statement after the for loop 
in our example.)

Here’s a tricky question. Why does the browser stop entering the loop when it 
reaches the length of the array? At fi rst glance, you would think that the browser 
skips the last array element. But look closely and you’ll see why this isn’t true. 
Remember that the value of the length property is the actual number of elements 
in the array, which is 4 in our example. The for loop begins stepping through the 
array using an index of 0. The last (fourth) element of the array has an index of 3. 
Therefore, all the elements are processed within the for loop.

Try the following JavaScript and see how the browser displays (Figure 4-1) ele-
ments of the products array on the screen.

<!DOCTYPE html PUBLIC
   "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
   <head>
      <title>Display Array Elements</title>
   </head>
   <body>
      <script language="Javascript" type="text/javascript">
         <!--
         var products = new Array()
         products[0] = 'Soda '
         products[1] = 'Water'
         products[2] = 'Pizza'
         products[3] = 'Beer'
         for (var i = 0; i < products.length; i++)
         {
            document.write(products[i] + '<br>')
         }
       -->
      </script>
      <noscript>
         <h1> JavaScript Required</h2>
      </noscript>
   </body>
</html>

ch04.indd   81ch04.indd   81 4/26/2005   9:24:49 AM4/26/2005   9:24:49 AM



 82 JavaScript Demystifi ed

Adding an Array Element
On some occasions your JavaScript will need to increase the size of the array while 
your JavaScript is running. Let’s return to our JavaScript example that collected an 
order from a customer. You don’t know how many products the customer is going 
to order when your write the JavaScript. This means that your JavaScript must be 
prepared to increase the array by one element each time the customer enters a new 
product.

Here’s the problem. How do you know what index to assign to the new array ele-
ment? The solution is to use the length property of the array, as illustrated here:

products[products.length] = 'chips'

Remember from the previous section of this chapter that the products array has 
four array elements. Therefore, the value of the length property of the array is 4. 
This means that the value 'chips' is assigned to the products[4] element. 
Now there are fi ve elements in the array.

An important point to remember is that the value of the length property of an array 
can be used as the index for the new array element. You’ll see how to increase an array 
by one element in Chapter 7, where you’ll learn how to create an order entry form.

Figure 4-1 Values of the products array are displayed on the screen.

ch04.indd   82ch04.indd   82 4/26/2005   9:24:49 AM4/26/2005   9:24:49 AM



CHAPTER 4 Arrays 83

The index of the array elements determines the order in which values appear in an 
array when a for loop is used to display the array. Sometimes you want values to 
appear in sorted order, which means that strings will be presented alphabetically 
and numbers will be displayed in ascending order.

You can place an array in sorted order by calling the sort() method of the ar-
ray object. The sort() method reorders values assigned to elements of the array, 
regardless of the index of the element to which the value is assigned.

Here’s what you need to do to sort an array:

 1. Declare the array.

 2. Assign values to elements of the array.

 3. Call the sort() method.

This is illustrated in the following JavaScript, where the list of products is sorted 
alphabetically and displayed on the screen (Figure 4-2).

<!DOCTYPE html PUBLIC
    "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
   <head>
      <title>Display Array Elements Sorted</title>
   </head>
   <body>
      <script language="Javascript" type="text/javascript">
         <!--
         var products = new Array()
         products[0] = 'Soda '
         products[1] = 'Water'
         products[2] = 'Pizza'
         products[3] = 'Beer'
         products.sort()
         for (var i = 0; i < products.length; i++)
         {
            document.write(products[i] + '<br>')
         }
         -->
      </script>
      <noscript>
         <h1> JavaScript Required</h2>
      </noscript>
   </body>
</html>

Sorting Array Elements

ch04.indd   83ch04.indd   83 4/26/2005   9:24:50 AM4/26/2005   9:24:50 AM



 84 JavaScript Demystifi ed

Making a New Array from an Existing Array
Let’s say that you have a long list of customer telephone numbers, but you want 
your JavaScript to work only with those customers whose telephone numbers have 
the same area code. Instead of wasting time searching through lists of telephone 
numbers you don’t want to use, you could create a smaller list that contains only 
customers within the same area code.

Suppose this long list of customer telephone numbers is stored in an array. To 
create a smaller list, you’ll need to copy the telephone numbers of the customers 
you need into another array. You do this by using the slice() method of the array 
object.

The slice() method copies a sequential number of array elements from one 
array into a new array. This means values of these elements exist in both arrays.

NOTE NOTE If you change the value of an element in the original array, the change 
doesn’t affect the value of the corresponding element of the second array. 
However, if the array consists of references to objects, then changing it in one 
array will affect the other.

NOTE 

Figure 4-2 Values of the products array are displayed in sort order.

ch04.indd   84ch04.indd   84 4/26/2005   9:24:50 AM4/26/2005   9:24:50 AM



CHAPTER 4 Arrays 85

The slice() method requires two pieces of information in order to copy val-
ues to a new array; JavaScript developers call these arguments. An argument is 
information required by a method for the method to do its job. An argument is 
placed between the parentheses of the method. If more than one argument is used, 
each argument must be separated by a comma. A method can have no arguments or 
many arguments, depending on the requirements of the method.

The slice() method has two arguments, which tell the slice() method 
which elements should be copied into the new array. The fi rst element tells the 
method where to start copying, and the second element tells the method where to 
end. The second argument is the element immediately after the last element to copy. 
Array elements are identifi ed by the index of the element.

NOTE NOTE The second argument is actually optional—if it’s not specifi ed, then the 
array elements are copied all the way to the end of the array.

Let’s see how to use the slice() method. Here’s an array of telephone numbers:

AllPhoneList[0] = '201 555-1000'
AllPhoneList[1] = '201 555-3000'
AllPhoneList[2] = '202 555-5000'
AllPhoneList[3] = '202 555-4000'
AllPhoneList[4] = '202 555-3000'
AllPhoneList[5] = '203 555-2000'
AllPhoneList[6] = '203 555-9000'
AllPhoneList[7] = '203 555-8000'

We need to create a new array that contains only telephone numbers in the 202 area 
code. To do this we’ll call the slice() method of the AllPhoneList array. 
The fi rst argument is the index of the fi rst element that we want copied into the new 
array, which is 2. The second argument is the index immediately after the last ele-
ment that we want copied into the new array, which is 5.

Here’s how we call the slice() method. This statement probably looks some-
what familiar; it is declaring an array called PartialPhoneList and initializing 
it with selected elements from the AllPhoneList array. These elements are se-
lected by arguments specifi ed in the slice() method:

var PartialPhoneList = AllPhoneList.slice(2,5)

ch04.indd   85ch04.indd   85 4/26/2005   9:24:51 AM4/26/2005   9:24:51 AM



 86 JavaScript Demystifi ed

After the slice() method is fi nished, the PartialPhoneList array looks 
like this:

PartialPhoneList[0] = '202 555-5000'
PartialPhoneList[1] = '202 555-4000'
PartialPhoneList[2] = '202 555-3000'

The following JavaScript illustrates how to use the slice() method to copy a 
selected set of telephone numbers from the full list of telephone numbers. Selected 
telephone numbers are then displayed on the screen (Figure 4-3).

<!DOCTYPE html PUBLIC
    "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
   <head>
      <title>Display Array Elements Using Slice()</title>
   </head>
   <body>
      <script language="Javascript" type="text/javascript">
         <!--
         var AllPhoneList = new Array()
         AllPhoneList[0] = '201 555-1000'
         AllPhoneList[1] = '201 555-3000'
         AllPhoneList[2] = '202 555-5000'
         AllPhoneList[3] = '202 555-4000'
         AllPhoneList[4] = '202 555-3000'
         AllPhoneList[5] = '203 555-2000'
         AllPhoneList[6] = '203 555-9000'
         AllPhoneList[7] = '203 555-8000'
         var PartialPhoneList = AllPhoneList.slice(2,5)
         for (var i = 0; i < PartialPhoneList.length; i++)
         {
            document.write(PartialPhoneList[i] + '<br>')
         }
         -->
      </script>
      <noscript>
         <h1> JavaScript Required</h2>
      </noscript>
   </body>
</html>

ch04.indd   86ch04.indd   86 4/26/2005   9:24:51 AM4/26/2005   9:24:51 AM



CHAPTER 4 Arrays 87

At some point, you’ll want to combine values of the array element into one string. 
(You’ll recall from Chapter 2 that a string is text.) The following array illustrates:

products[0] = 'Soda '
products[1] = 'Water'
products[2] = 'Pizza'
products[3] = 'Beer'

Each array element contains a product name. By combining the array elements, 
we create a string that looks like this:

'Soda,Water,Pizza,Beer'

Once the product names are combined into a string, we can display the string on a 
document (see Chapter 1) or on a JavaScript form (see Chapter 7).

Figure 4-3 A partial list of phone numbers is displayed.

Combining Array Elements into a String

ch04.indd   87ch04.indd   87 4/26/2005   9:24:51 AM4/26/2005   9:24:51 AM



 88 JavaScript Demystifi ed

Array elements can be combined in two ways: by using the concat() method 
or the join() method of the array object. Both of these methods do practically the 
same thing—that is, they concatenate copies of values of array elements. Values of 
these elements remain untouched in the array.

However, there is a subtle difference between the concat() method and the 
join() method. The concat() method separates each value with a comma. The 
join() method also uses a comma to separate values, but you can specify a char-
acter other than a comma to separate values. You do this by placing that character 
in the parentheses of the join() method.

Here’s how to use the concat() method:

var str = products.concat()

The value of str is

'Soda,Water,Pizza,Beer'

Here’s how to use the join() method. In this example, we use a space to sepa-
rate values:

var str = products.join(' ')

The value of str in this case is

'Soda Water Pizza Beer'

The following JavaScript (see Figure 4-4) shows the concat() method and the 
join() method in action. You can change the value in the join() method to any 
character that you want the browser to use to separate these values.

<!DOCTYPE html PUBLIC
    "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
   <head>
      <title>Display Array Elements Using
           concat() and join()</title>
   </head>
   <body>
      <script language="Javascript" type="text/javascript">
         <!--
         var products = new Array()
         products[0] = 'Soda '

ch04.indd   88ch04.indd   88 4/26/2005   9:24:51 AM4/26/2005   9:24:51 AM



CHAPTER 4 Arrays 89

         products[1] = 'Water'
         products[2] = 'Pizza'
         products[3] = 'Beer'

         var str = products.concat()
         document.write(str)
         document.write('<br>')
         var str = products.join(' ')
         document.write(str)
        -->
      </script>
      <noscript>
         <h1> JavaScript Required</h2>
      </noscript>
   </body>
</html>

Figure 4-4 Array elements are combined into strings using the concat() and join() 
methods.

ch04.indd   89ch04.indd   89 4/26/2005   9:24:52 AM4/26/2005   9:24:52 AM



 90 JavaScript Demystifi ed

Changing Elements of the Array
Most of us are familiar with to-do lists. New tasks are placed at the bottom of the 
list and eventually move to the top when all the other tasks ahead of it are com-
pleted and removed from the list. An array can be used as a to-do list. Here’s how:

var ToDoList = new Array()
ToDoList[0] = "Book the Waldorf for your birthday party."
ToDoList[1] = "Give the Donald a call and
              invite him to your party."
ToDoList[2] = "Leave word at the White House
              that you won't be available for dinner."

Suppose that you have booked the Waldorf, so you need to remove the fi rst task 
from the list. You do this by calling the shift() method of the array object. The 
shift() method removes and returns the fi rst element of the array and then moves 
the other tasks up on the list. Here’s how to call the shift() method:

var task = ToDoList.shift()

Here’s the ToDoList array after the shift() method is called:

ToDoList[0] = "Give the Donald a call and
            invite him to your party."
ToDoList[1] = "Leave word at the White House
          that you won't be available for dinner."

You call the push() method of the array object to place a new task at the end 
of the to-do list. You place the task that you want placed on the to-do list between 
the parentheses of the push() method, as shown here:

ToDoList.push("Wake up from your dream.")

The push() method creates a new element at the end of the array and assigns 
the value that you place between the parentheses of the new element. Here’s what 
the array looks like after calling the push() method:

ToDoList[0] = "Give the Donald a call and
           invite him to your party."
ToDoList[1] = "Leave word at the White House
           that you won't be available for dinner."
ToDoList[2] = "Wake up from your dream."

There are times when we feel like working from the bottom of our to-do list, 
starting with the last task and working our way back to the fi rst task. This is easily 

ch04.indd   90ch04.indd   90 4/26/2005   9:24:52 AM4/26/2005   9:24:52 AM



CHAPTER 4 Arrays 91

done using an array by using the reverse() method to reverse the order of val-
ues in the array. Here’s how you call the reverse() method:

ToDoList.reverse()

And here’s how the ToDoList array looks after the reverse() method is 
called:

ToDoList[0] = "Wake up from your dream."
ToDoList[1] = "Leave word at the White House
              that you won't be available for dinner."
ToDoList[2] = "Give the Donald a call and
              invite him to your party."

Some of us prefer to jump to the last task rather than work our way through a 
long list of things to do. This, too, can be accomplished with an array by using the 
pop() method. The pop() method returns and removes the last element of the 
array. Here’s how this is done:

var task = ToDoList.pop()

Here’s the array after the pop() method is called:

ToDoList[0] = "Wake up from your dream."
ToDoList[1] = "Leave word at the White House
               that you won't be available for dinner."

Looking Ahead
In this chapter, you learned how to group together values by using an array. An ar-
ray has a name and one or more elements. Elements are used similarly to how 
variables are used in a JavaScript. Each element is identifi ed by an index. The fi rst 
element is index 0, the second element is index 1, and so on.

A value can be assigned to an element in two ways: by placing values between 
the parentheses of the Array() constructor when the array is declared or by using 
the assignment operator in a JavaScript statement.

You can determine the number of elements in an array by using the length 
property of the array object. The length property is accessed by specifying the 
name of the array followed by a dot and the word length.

You can access the value of an element by specifying the name of the array fol-
lowed by the index of the element within square brackets. If you need to access all 
elements of the array, then use a for loop. The initializer of a for loop (see Chapter 3) 
is used as the index for the array elements.

ch04.indd   91ch04.indd   91 4/26/2005   9:24:52 AM4/26/2005   9:24:52 AM



 92 JavaScript Demystifi ed

The array object has several methods that you can use to manipulate elements of 
the array. For example, the sort() method places elements in sorted order. The 
slice() method takes a sequence of elements and uses them to create a new ar-
ray. The concat() method and join() method transform elements into a string. 
And you can remove, insert, and reorganize elements by using the shift(), 
push(), reverse(), and pop() methods.

You now have a good working knowledge of how to store and use information 
within a JavaScript. In the next chapter, you’ll use this knowledge to create sophis-
ticated forms that are used to retrieve and display information on the user’s screen.

Quiz
 1. True or False. This is the fi rst element of the products array: 

products[1].

 a. True

 b. False

 2. How many elements are there in this array?

Products = new Array('Soda','Beer','Pizza')

 a. 2

 b. 3

 c. 4

 d. None

 3. What method would you use to create a string from array elements and 
separate those elements with a hyphen?

 a. shift()

 b. join()

 c. concat()

 d. strjoin()

 4. What method is used to remove an element from the bottom of an array?

 a. push()

 b. pop()

 c. reverse()

 d. shift()

ch04.indd   92ch04.indd   92 4/26/2005   9:24:52 AM4/26/2005   9:24:52 AM



CHAPTER 4 Arrays 93

 5. What method is used to remove the fi rst element from an array?

 a. push()

 b. pop()

 c. reverse()

 d. shift()

 6. What method is used to place a new element at the end of an array?

 a. push()

 b. pop()

 c. reverse()

 d. shift()

 7. True or False. The sort() method only places text in sorted order?

 a. True

 b. False

 8. True or False. The length of an array is equal to the index of the last 
element of the array.

 a. True

 b. False

 9. True or False. An array element can be used the same way as a variable is 
used in a JavaScript.

 a. True

 b. False

 10. What method is used to create a new array using elements of another array?

 a. slice()

 b. div()

 c. splice()

 d. shift()

ch04.indd   93ch04.indd   93 4/26/2005   9:24:53 AM4/26/2005   9:24:53 AM



ch04.indd   94ch04.indd   94 4/26/2005   9:24:53 AM4/26/2005   9:24:53 AM

This page intentionally left blank.



95

CHAPTER
5

Functions

When you order a pizza, you simply say, “Pizza, please,” and the chef performs all 
the tasks that are necessary to make your pizza. You don’t have to perform those 
tasks; you simply use words the chef equates with steps to make a pizza. The chef 
delivers the completed pizza, and you get to enjoy it.

Throughout this book, you’ll learn to use words that tell the browser to perform 
tasks that interact with a web page; like a chef, the browser performs these tasks so 
you don’t have to. Then the browser delivers the goods. You’ll recall that when the 
browser sees the words document.write() in a JavaScript, the browser performs 
tasks necessary to display something on the screen. You don’t concern yourself with 
those tasks, because the browser knows how to perform them. You simply need to 
know the proper words to include in your JavaScript to cause the browser to display 
something on the screen or perform some task.

It would be great if you could defi ne your own words to have the browser per-
form your own specifi c tasks. Imagine that you could defi ne the words Increase 
Salary as a series of tasks to give you a raise—every time the browser sees these 
words, the browser gives you a pay raise. Though even a well-written JavaScript 
probably can’t get you a raise, you can defi ne your own words to tell the browser 

ch05.indd   95ch05.indd   95 4/26/2005   9:35:41 AM4/26/2005   9:35:41 AM

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.



 96 JavaScript Demystifi ed

what to do. This is called defi ning a function. You’ll learn how to defi ne a function 
and tell the browser to use the function in this chapter.

What Is a Function?
Think of a function as part of your JavaScript that has a name and contains one or 
more statements. You name the function and write the statement(s) that are con-
tained within the function. You then use the name of the function elsewhere in your 
JavaScript whenever you want the browser to execute those statements. A function 
can be called from anywhere in the JavaScript fi le or in the HTML document.

Suppose your JavaScript requires that a user log on before he or she is allowed 
to access other parts of your application. The logon is one part of many parts of 
your JavaScript. You can make the logon a function. We’ll show you how this is 
done later in this chapter. For now, let’s identify everything we need to create the 
function.

First, we need a name. Let’s call it logon, since this name implies what the func-
tion is going to tell the browser to do. Next, we need statements that are executed 
when the browser sees the name logon in other parts of the JavaScript. We’ll need 
a statement to prompt the user to enter a user ID and password. A set of statements 
is needed to validate the user ID and password, and another set of statements is 
needed to tell the user whether or not the logon is valid. You’ll see how to write 
these statements later in this chapter.

That’s all we need to defi ne the logon function using JavaScript. Whenever we 
want the user to log on, we simply call the logon function from a statement in 
another part of the application by using the function name—logon. The browser 
then fi nds the logon part of your JavaScript (the logon function) and executes 
statements contained in that part of the application.

The process of creating a function is called defi ning a function. The process of 
using the function is referred to as calling a function.

Defi ning a Function
A function must be defi ned before it can be called in a JavaScript statement. If you 
think about it, this makes sense, because the browser must learn the defi nition of the 
word (the function name) before the browser sees the word (the function call) in a 
statement.

ch05.indd   96ch05.indd   96 4/26/2005   9:35:46 AM4/26/2005   9:35:46 AM



CHAPTER 5 Functions 97

From Chapter 1, you’ll recall that you insert JavaScript in two places on the web 
page: within the HTML <head> and <body> tags. Sometimes JavaScript devel-
opers insert more than one JavaScript into a web page—one in the <head> tag and 
the other in the <body> tag.

The best place to defi ne a function is at the beginning of a JavaScript that is in-
serted in the <head> tag, because then all subsequent JavaScripts on the web page 
will know the defi nition of that function. The browser always loads everything in 
the <head> tag before it starts executing any JavaScript.

A function defi nition consists of four parts: the name, parentheses, a code block, 
and an optional return keyword.

Function Name
The function name is the name that you’ve assigned the function. It is placed at the 
top of the function defi nition and to the left of the parentheses. Any name will do, 
as long as it follows certain naming rules. The name must be

• Letter(s), digit(s), or underscore character

• Unique to JavaScripts on your web page, as no two functions can have the 
same name

The name cannot

• Begin with a digit

• Be a keyword (see Chapter 2)

• Be a reserved word (see Chapter 2)

The name should be

• Representative of the action taken by statements within the function

Parentheses
Parentheses are placed to the right of the function name at the top of the function 

defi nition. Parentheses are used to pass values to the function; these values are 
called arguments.

Suppose you defi ne a function to validate a user ID and password. Statements 
within the validation function defi nition handle the validation process, but you don’t 
know the user ID and password to validate. The part of your JavaScript application 
that handles the logon calls the validation function and passes it the user ID and 
password as an argument when your JavaScript is running.

ch05.indd   97ch05.indd   97 4/26/2005   9:35:46 AM4/26/2005   9:35:46 AM



 98 JavaScript Demystifi ed

Functions that require one or more values in order to carry out their action contain 
variables within parentheses in their function defi nition. These variables are assigned 
values passed by the statement that calls the function when the JavaScript runs.

Not all functions have arguments. Functions that have all the values necessary to 
carry out their action don’t need arguments, so nothing appears between their paren-
theses. You’ll learn more about arguments later in the “Adding Arguments” section 
of this chapter.

Code Block
The code block is the part of the function defi nition where you insert JavaScript 
statements that are executed when the function is called by another part of your 
JavaScript application. Open and close French braces defi ne the boundaries of the 
code block. Statements that you want executed must appear between the open and 
close French braces. This is nearly identical to the code block used to defi ne a 
JavaScript that you learned about in Chapter 1.

Return (Optional)
The return keyword tells the browser to return a value from the function defi ni-
tion to the statement that called the function. For example, our validation function 
tests to determine whether the user ID and password submitted to the function are 
valid. If so, the function returns a value indicating that this is a valid user. If not, the 
function returns a value indicating that this is not a valid user.

Not all functions return a value. For example, a function that displays a message 
on the screen doesn’t need to return a value to the statement that calls the function. 
Therefore, the return keyword doesn’t need to be included in the function defi ni-
tion. You’ll learn more about returning values from a function in the “Returning 
Values from a Function” section later in this chapter.

Writing a Function Defi nition
Following is a simple function defi nition. It is called IncreaseSalary() and 
tells the browser the steps that are necessary to give you a raise in pay (at least on 
paper). This function contains all the values needed to calculate your new salary; 
therefore, no argument is needed:

function IncreaseSalary()
{
   var salary = 500000 * 1.25
   alert("Your new salary is " + salary)
}

ch05.indd   98ch05.indd   98 4/26/2005   9:35:46 AM4/26/2005   9:35:46 AM



CHAPTER 5 Functions 99

Two statements appear within the code block. The fi rst statement is similar to state-
ments that you’ve already used in this book. It declares a variable called salary 
and initializes the variable with your new salary.

Your current salary is $500,000 (wishful thinking). After calling the Increase 
Salary() function, you tell the browser to increase your salary by 25 percent. We 
multiply your current salary by 1.25, which is the decimal equivalent of 125 per-
cent, to arrive at your new salary. Your new salary is then assigned to the salary 
variable.

The last statement in the code block displays your new salary in an alert dialog 
box on the screen.

Adding Arguments
A function typically needs data to perform its task. Sometimes you provide the data 
when you defi ne the function, such as the salary and percentage increase in salary 
in the preceding example. Other times, the data is known only when you run your 
JavaScript. For example, we could ask the user to enter the salary and percentage 
increase in salary instead of writing this data into the function defi nition.

Data that is needed by a function to perform its task that is not written into the 
function defi nition must be passed to the function as an argument. An argument is 
one or more variables that are declared within the parentheses of a function defi ni-
tion. This is illustrated in the following code sample. OldSalary is an argument 
of the IncreaseSalary() function.

function IncreaseSalary(OldSalary)
{
   var NewSalary = OldSalary * 1.25
   alert("Your new salary is " + NewSalary)
}

Think of an argument as a variable, which you learned about in Chapter 2. You 
assign a name to an argument following the same rules that apply to naming a vari-
able. Anything you can do with a variable you can do with an argument.

You might be wondering how an argument is assigned a value. This happens 
when the function is called either by a statement within the JavaScript or by HTML 
code on your web page. You’ll see how to call a function in the next section of this 
chapter. The JavaScript statement or the HTML code provides the value when it 
calls the function. This is called passing a value to the function.

For now, it is important that you understand that the argument represents the 
value within a function defi nition. That is, you should use the name of the argument 
as if you were using the actual value.

ch05.indd   99ch05.indd   99 4/26/2005   9:35:47 AM4/26/2005   9:35:47 AM



 100 JavaScript Demystifi ed

Adding Multiple Arguments
You can use as many arguments as necessary for the function to carry out its task. 
Each argument must have a unique name, and each argument within the parenthe-
ses must be separated by a comma.

Let’s revise the preceding example and make the percentage of salary increase an 
argument. Here, two arguments are used: OldSalary and PercIncrease.

function IncreaseSalary(OldSalary, PercIncrease)
{
   var NewSalary = OldSalary * (1 + (PercIncrease / 100))
   alert("Your new salary is " + NewSalary)
}

We’ll assume that the value passed to PercIncrease is a percentage that must 
be converted to its decimal equivalent so we can calculate the new salary. Dividing 
the percent by 100 gives us the decimal equivalent of the percent.

If we multiplied the old salary by the decimal equivalent, we’d end up with the 
dollar increase in salary. But that’s not what we want to know. We want to know 
exactly what the new salary will be. Therefore, we must add 1 to the decimal value 
and then use it to calculate the old salary. So if the decimal value of your raise is .25, 
we’d multiply the old salary by 1.25. Think of this as multiplying the old salary by 125 
percent to determine the new salary.

The Scope of Variables and Arguments
A variable can be declared within a function, such as the NewSalary variable in 
the IncreaseSalary() function. This is called a local variable, because the 
variable is local to the function. Other parts of your JavaScript don’t know that the 
local variable exists because it’s not available outside the function.

But a variable can be declared outside a function. Such a variable is called a 
global variable because it is available to all parts of your JavaScript—that is, state-
ments within any function and statements outside the function can use a global 
variable.

Let’s use the cardboard box example from Chapter 2. Think of a variable as a 
cardboard box. If the cardboard box is inside your house, only you and your family 
can put things into and remove things from the box. This is how a local variable 
works. If the cardboard box is placed outside by the curb, you, your family, and 

ch05.indd   100ch05.indd   100 4/26/2005   9:35:47 AM4/26/2005   9:35:47 AM



CHAPTER 5 Functions 101

anyone else passing by can put things into and remove things from the box. This is 
how a global variable works.

JavaScript developers use the term scope to describe whether a statement of a 
JavaScript can use a variable. A variable is considered in scope if the statement 
can access the variable. A variable is out of scope if a statement cannot access the 
variable.

Let’s say that a statement outside of the IncreaseSalary() function tries to 
use the NewSalary variable. It cannot do so, though, because the NewSalary 
variable is local to the IncreaseSalary() function and is out of scope of the 
statement that is outside of the IncreaseSalary() function. However, the 
NewSalary variable is in scope of statements within the function. Scoping also 
applies to loops or any other construct that uses French braces (the scope is the code 
within the French braces).

Calling a Function
You call a function any time that you want the browser to execute statements con-
tained in the code block of the function. A function is called by using the function 
name followed by parentheses. If the function has arguments, values for each argu-
ment are placed within the parentheses. You must place these values in the same 
order that the arguments are listed in the function defi nition. A comma must sepa-
rate each value.

Here’s how the IncreaseSalary() function is called:

IncreaseSalary(500000, 6)

Notice that the fi rst value (500000) is the old salary and the second value (6) is the 
percentage of the salary increase. These correspond to the order arguments in the 
defi nition of the IncreaseSalary() function in the previous example—that is, 
OldSalary and PercIncrease.

What would happen if you reversed the order of these values, as shown here?

IncreaseSalary(6, 500000)

The 6 is assigned to the OldSalary argument and the 500000 is assigned to the 
PercIncrease argument. This is backward, and it shows why you must be care-
ful to place values in the same order that the arguments are listed in the function 
defi nition; otherwise, you’ll receive unexpected results from the function.

ch05.indd   101ch05.indd   101 4/26/2005   9:35:47 AM4/26/2005   9:35:47 AM



 102 JavaScript Demystifi ed

Calling a Function Without an Argument
Here is an example of how to defi ne and call a function that does not have any argu-
ments. The function defi nition is placed within the <head> tag and the function 
call is placed within the <body> tag. When the function is called, the browser goes 
to the function defi nition and executes statements within the code block of the func-
tion. The fi rst statement declares the salary variable and initializes it with the 
increased salary that is produced by the calculation. The value of the salary is then 
displayed in an alert dialog box (Figure 5-1).

<!DOCTYPE html PUBLIC
      "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Functions</title>
      <script language="Javascript" type="text/javascript">
         <!--
         function IncreaseSalary()
         {
            var salary = 500000 * 1.25
            alert('Your new salary is ' + salary)
         }
         -->
      </script>
</head>
   <body>
      <script language="Javascript" type="text/javascript">
         <!--
         IncreaseSalary()
         -->
      </script>
   </body>
</html>

Figure 5-1 The function displays the new salary each time the function is called.

ch05.indd   102ch05.indd   102 4/26/2005   9:35:47 AM4/26/2005   9:35:47 AM



CHAPTER 5 Functions 103

Calling a Function with an Argument
Let’s revise the previous example and modify the IncreaseSalary() function 
to accept the old salary and the percentage increase as arguments. This is the same 
function defi nition that you saw earlier in this chapter.

Before calling this function, we prompt the user to enter the old salary (Figure 5-2) 
and the percentage increase (Figure 5-3). The values entered are used to initialize 
two variables: Salary and Increase. Both of these are global variables, be-
cause they are defi ned outside of a function.

The Salary and Increase variables are then used within the parentheses of 
the function call, which tells the browser to assign these values to the corresponding 
arguments in the function defi nition. The function calculates and displays the new 
salary (Figure 5-4).

<!DOCTYPE html PUBLIC
        "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Functions</title>
      <script language="Javascript" type="text/javascript">
         <!--
         function IncreaseSalary(OldSalary, PercIncrease)
         {
            var NewSalary =
                OldSalary * (1 + (PercIncrease / 100))
            alert("Your new salary is " + NewSalary)
         }
        -->
      </script>

</head>
   <body>
      <script language="Javascript" type="text/javascript">
         <!--
         var Salary = prompt('Enter old salary.', ' ')
         var Increase =
           prompt('Enter salary increase as percent.', ' ')
         IncreaseSalary(Salary, Increase)
         -->
      </script>
   </body>
</html>

ch05.indd   103ch05.indd   103 4/26/2005   9:35:47 AM4/26/2005   9:35:47 AM



 104 JavaScript Demystifi ed

You can also pass literal values when calling a function instead of using a vari-
able or input directly from the user. For example, you could call the 
IncreaseSalary() function in this way:

IncreaseSalary(500000, 6)

Both arguments are numbers. If the argument was a string, such as a user ID or pass-
word, you would need to enclose the argument in quotation marks, as shown here:

ValidateLogon('ScubaBob', 'diving')

Although we haven’t defi ned this function, you probably realize by the name that the 
function validates the user ID and password (you’ll remember these from Chapter 3). 
The fi rst argument is a string containing the user ID and the second argument is a 
string that contains the password.

Calling a Function from HTML
A function can be called from HTML code on your web page. Typically, a function 
will be called in response to an event, such as when the web page is loaded or un-
loaded by the browser.

Figure 5-3 The user is asked to enter the percentage increase in salary.

Figure 5-2 The user is asked to enter the old salary.

ch05.indd   104ch05.indd   104 4/26/2005   9:35:48 AM4/26/2005   9:35:48 AM



CHAPTER 5 Functions 105

You call the function from HTML code nearly the same way as the function is 
called from within a JavaScript, except in HTML code you assign the function call 
as a value of an HTML tag attribute. Let’s say that you want to call a function when 
the browser loads the web page. Here’s what you’d write in the <body> tag of the 
web page:

<body onload = "WelcomeMessage()">

Here’s what you’d write to call the function right before the user moves on to 
another web page:

<body onunload = "GoodbyeMessage()">

The next example shows how to call these functions in a web page.

 1. We defi ne each function in a JavaScript placed in the <head> tag.

 2. We assign a call to the WelcomeMessage() function to the onload 
attribute of the <body> tag. This displays the welcome message (Figure 5-5) 
when the browser loads the web page.

 3. The call to the GoodbyeMessage() function is assigned to the 
onunload attribute of the <body> tag. This displays the goodbye 
message (Figure 5-6) when the browser unloads the web page to make 
room for a new web page.

Figure 5-4 The new salary is calculated and displayed by the IncreaseSalary() function.

Figure 5-5 The WelcomeMessage() function is called when the browser loads the 
web page.

ch05.indd   105ch05.indd   105 4/26/2005   9:35:48 AM4/26/2005   9:35:48 AM



 106 JavaScript Demystifi ed

<!DOCTYPE html PUBLIC
        "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Calling a function from HTML</title>
      <script language="Javascript" type="text/javascript">
         <!--
         function WelcomeMessage()
         {
            alert('Glad to see you.')
         }
         function GoodbyeMessage()
         {
            alert('So long.')
         }
        -->
      </script>

</head>
   <body onload="WelcomeMessage()"
             onunload="GoodbyeMessage()">
   </body>
</html>

Creating a Popup Window
Popup windows are probably the most annoying things on the Internet. You surf to 
a web site only to be shown a popup ad, and then when you leave the site you’re 
shown another popup ad. Nevertheless, popups can be a necessary evil when you’re 
creating web sites. You can create a function that displays a popup window that you 
design on the fl y.

Figure 5-6 The GoodbyeMessage() function is called when the browser unloads the 
web page.

ch05.indd   106ch05.indd   106 4/26/2005   9:35:48 AM4/26/2005   9:35:48 AM



CHAPTER 5 Functions 107

The follow example shows you how this is done. First we defi ne two functions: 
WelcomePopup() and GoodbyePopup(). Each opens and displays a message 
in a window. The new window looks sparse, but you can enhance its appearance 
and functionality by incorporating features into the JavaScript that you’ll learn in 
later chapters. We’ll keep the JavaScript simple for now so you can get the hang of 
creating popup windows.

The WelcomePopup() function is called when the browser loads the web 
page. The GoodbyePopup() function is called just before the browser loads the 
next web page. This uses basically the same techniques that you learned earlier in 
this chapter.

<!DOCTYPE html PUBLIC
         "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Calling a function from HTML</title>
      <script language="Javascript" type="text/javascript">
         <!--
         function WelcomePopup()
         {
            window.open();
            alert('Glad to see you.')
         }
         function GoodbyePopup()
         {
            window.open();
            alert('So long.')
         }
        -->
      </script>

</head>
   <body onload="WelcomePopup()" onunload="GoodbyePopup()">
   </body>
</html>

The new window is opened by calling the window.open() method of the 
window object. The window.open() method has three optional arguments. The 
browser uses the default for any argument that you don’t provide, which are typi-
cally appropriate features of the most current window.

The fi rst argument is the URL of whatever you want loaded into the new win-
dow. Typically this is a web page fi le URL (such as myWebPage.htm) or a graphic 

ch05.indd   107ch05.indd   107 4/26/2005   9:35:48 AM4/26/2005   9:35:48 AM



 108 JavaScript Demystifi ed

fi le name (such as mypicture.gif). A blank window is displayed if you leave out this 
argument.

The second argument is the name that you assign to the new window (such as 
myWindow). You can then use the window name whenever you want to refer to 
the window within your JavaScript—such as if you wanted to load a picture into the 
window after the window is opened.

The third argument lists features that you displayed in the new window Table 5-1 
shows these features. Here’s how to specify features in the argument:

'width=200,height=300'

This example sets two features: width and height of the new window. You can list 
as many features as you want as long as a comma separates each feature and all the 
features are enclosed within quotation marks.

Functions Calling Another Function
JavaScript developers typically divide an application into many functions, each of 
which handles a portion of the application. Functions, as you learned earlier in this 
chapter, can be called from any JavaScript or from HTML code on a web page it-
self. This means that a function can also be called from another function.

Let’s say that you defi ned a logon function that handles all the tasks that are 
necessary for a user to log on to your application. This includes displaying dialog 
boxes prompting the user to enter a user ID and password. Let’s also say that you 

Feature Value Description

directories yes/no Display the browser directory buttons

height number Height of the window in pixels

location yes/no Display the location entry fi eld

menubar yes/no Display the menu at the top of the window

resizable yes/no Enable the window to be resized

scrollbars yes/no Display horizontal and vertical scrollbars

status yes/no Display the status bar at the bottom of the window

toolbar yes/no Display the browser toolbar

width number Width of the window in pixels

Table 5-1 Features You Can Incorporate in a New Window

TIP 

ch05.indd   108ch05.indd   108 4/26/2005   9:35:49 AM4/26/2005   9:35:49 AM



CHAPTER 5 Functions 109

defi ned another function whose only tasks are to validate a user ID and password 
and report back whether or not the logon information is valid. The logon function 
passes the user ID and password to the validation function and then waits for the 
validation function to signal whether or not they are valid. The logon function then 
proceeds by telling the user whether the logon is valid or not valid.

You’ll see how this is done in the next section.

Returning Values from a Function
A function can be designed to do something and then report back to the statement 
that calls after it’s fi nished—such as the validation function in the previous section, 
which validates a user ID and password and then reports back whether they are 
valid or not.

A function reports back to the statement that calls the function by returning a 
value to that statement using the return keyword, followed by a return value in a 
statement. Here’s what this looks like:

function name ()
{
   return  value
}

In this code segment, the return statement returns a Boolean value true. You can 
return any value or variable in a return statement.

The return value is typically assigned to a variable by the statement that called 
the function and then used by other statements in the JavaScript. This is illustrated 
in the following code segment:

valid = ValidateLogon('ScubaBob', 'diving')

This statement calls the ValidateLogon() and passes it a user ID (the fi rst 
argument) and password (the second argument). The return value, which in this 
example is either true or false, is then assigned to the valid variable.

TIP TIP Some JavaScript developers return a value from nearly every function they 
defi ne, even if the return value signifi es only whether the function completed its 
tasks successfully or not.

The statement that calls a function can ignore the return value. It doesn’t make 
sense to ignore a function that validates logon information or provides other impor-
tant information to a JavaScript. However, you might ignore a return value if it 

ch05.indd   109ch05.indd   109 4/26/2005   9:35:49 AM4/26/2005   9:35:49 AM



 110 JavaScript Demystifi ed

indicates only whether the function fi nished successfully or not, especially if there 
is little chance of the function failing or if the browser would display an error mes-
sage if the function failed.

Here’s an example of how to use a return value to a function:

<!DOCTYPE html PUBLIC
          "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Returning a value from a function</title>
      <script language="Javascript" type="text/javascript">
         <!--
         function Logon()
         {
            var userID
            var password
            var valid
            userID = prompt('Enter user ID',' ')
            password = prompt('Enter password',' ')
            valid = ValidateLogon(userID, password)
            if ( valid == true)
            {
              alert('Valid Logon')
            }
            else
            {
              alert('Invalid Logon')
            }
         }
         function ValidateLogon(id,pwd)
         {
            var ReturnValue
            if (id == 'ScubaBob' && pwd == 'diving')
            {
               ReturnValue = true
            }
            else
            {
               ReturnValue = false
            }
            return ReturnValue
         }
         -->

ch05.indd   110ch05.indd   110 4/26/2005   9:35:49 AM4/26/2005   9:35:49 AM



CHAPTER 5 Functions 111

      </script>
   </head>
   <body>
      <script language="Javascript" type="text/javascript">
      <!--
        Logon()
      -->
      </script>
   </body>
</html>

Two functions are defi ned in the <head> tag section of the web page. The fi rst 
function is called Logon(), which is responsible for capturing, validating, and 
processing logon information. The second function is called ValidateLogon(), 
which receives logon information as arguments, validates them, and reports back 
whether the logon information is valid or invalid.

Statements within these functions probably look familiar to you because they are 
similar to what we used in examples in Chapter 3. You’ll recall that those if state-
ment examples received, validated, and processed logon information in one Java 
Script without having to call any functions other than the prompt() and alert() 
functions.

Notice that the ValidateLogon() function uses an if...else statement to test 
whether or not the user ID and password are valid. If they are valid, a true value is 
assigned to the ReturnValue variable; otherwise, a false is assigned to it. The 
return statement then returns the value of the ReturnValue variable to the state-
ment in the Logon() function that called the ValidateLogon() function. The 
Logon() function uses the return value to determine what message to display on 
the screen.

The “Secret” Code
Some JavaScript developers assign special meanings to return values to tell the 
statement that called the function what happened when the function processed the 
request. For example, the return value might indicate a specifi c error that occurred 
while the request was being processed. JavaScript developers call this an error 
code. Other times that return value indicates one of many outcomes of successfully 
processing the request, which is illustrated in the next JavaScript.

The next JavaScript is very similar to the previous JavaScript in that both defi ne 
two functions: one to handle the logon and the other to validate logon information. 
However, the ValidateLogon() function in the following JavaScript uses a 
value of 1 to indicate that the logon information is valid and values of 2, 3, and 4 to 
indicate the portion of the logon information that is invalid.

ch05.indd   111ch05.indd   111 4/26/2005   9:35:49 AM4/26/2005   9:35:49 AM



 112 JavaScript Demystifi ed

You saw this validation technique used in examples of if statements in Chapter 3 
—except in those examples, the JavaScript displayed an appropriate message on the 
screen instead of returning a value.

<!DOCTYPE html PUBLIC
         "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
   <head>
      <title>Return value from a function Statement</title>
      <script language="Javascript" type="text/javascript">
         <!--
         function Logon()
         {
            var userID
            var password
            var valid
            userID = prompt('Enter user ID',' ')
            password = prompt('Enter password',' ')
            valid = ValidateLogon(userID, password)
            switch (valid) {
               case 1:
                  alert('Valid Logon')
                  break
              case 2:
                  alert('Valid User ID. Invalid Password.')
                  break
              case 3:
                  alert('Invalid user ID. Valid Password.')
                  break
              case 4:
                  alert('Invalid User ID and Password')
                  break
            }
         }
         function ValidateLogon(id,pwd)
         {
            var ReturnValue
            if (id == 'ScubaBob' && pwd == 'diving')
            {
               ReturnValue = 1
            }
            else if (id == 'ScubaBob')
            {

ch05.indd   112ch05.indd   112 4/26/2005   9:35:50 AM4/26/2005   9:35:50 AM



CHAPTER 5 Functions 113

               ReturnValue = 2
            }
            else if (pwd == 'diving')
            {
               ReturnValue = 3
            }
            else
            {
               ReturnValue = 4
            }
            return ReturnValue
         }
         -->
      </script>
   </head>
   <body>
      <script language="Javascript" type="text/javascript">
         <!--
         Logon()
         -->
      </script>
      <noscript>
         <h1> JavaScript Required</h2>
      </noscript>
   </body>
</html>

Looking Ahead
In this chapter you learned how to divide your JavaScript applications into groups 
of statements, each of which performs one kind of task. These groups are called 
functions. You call a function whenever you need one of these tasks performed in 
your JavaScript.

You need to defi ne a function before calling it. A function defi nition consists of 
a function name, parentheses, and the function code block, which is where you 
place statements that are executed when the function is called.

A function can have all the information it needs to perform the task. Other func-
tions need additional information passed to them from the statement that calls the 
functions. Information passed to a function is called an argument.

ch05.indd   113ch05.indd   113 4/26/2005   9:35:50 AM4/26/2005   9:35:50 AM



 114 JavaScript Demystifi ed

An argument is placed between parentheses in the function defi nition and used 
as a variable within the function. More than one argument can be used; a comma 
must separate each argument.

A function can return a value to the statement that called the function by using a 
return statement. A return statement consists of the return keyword followed by 
the value that is being returned by the function. The statement that called the func-
tion can assign the return value to a variable, use the return value in an expression, 
or ignore the return value.

You call a function by using the function name followed by parentheses. A func-
tion can be called from anywhere in the JavaScript or by using HTML code in the 
web page.

Now that you have functions under your belt, it is time to move on. The next 
chapter discusses how to manipulate strings. Think of a string as any text and 
manipulating a string as a way for JavaScript to process the text.

Quiz
 1. True or False. A comma must separate arguments in a function defi nition.

 a. True

 b. False

 2. A code block is used in a

 a. Function call

 b. Function defi nition

 c. Return value

 d. Argument

 3. The scope of a variable means

 a. The size of the variable

 b. The data type of the variable

 c. The portion of a JavaScript that can access the variable

 d. The variable is used as a return value for a function

 4. True or False. The statement that calls a function can ignore a value 
returned by a function.

 a. True

 b. False

ch05.indd   114ch05.indd   114 4/26/2005   9:35:50 AM4/26/2005   9:35:50 AM



CHAPTER 5 Functions 115

 5. A global variable can be accessed

 a. Only by functions defi ned within the JavaScript

 b. Only outside of a function

 c. Only by the function that defi ned it

 d. From anywhere in the JavaScript

 6. A local variable can be accessed

 a. Only by functions defi ned within the JavaScript

 b. Only outside of a function

 c. Only by the function that defi ned it

 d. From anywhere in the JavaScript

 7. True or False. A function can be called by HTML code in a web page.

 a. True

 b. False

 8. True or False. All functions must be defi ned in the <head> tag.

 a. True

 b. False

 9. True or False. Values passed to a function must correspond to the data type 
of arguments in the function defi nition.

 a. True

 b. False

 10. A variable is out of scope when

 a. The statement that calls a function ignores the value returned by the 
function

 b. The variable cannot be accessed by a statement

 c. A variable isn’t defi ned in a function

 d. A variable is passed to a function

ch05.indd   115ch05.indd   115 4/26/2005   9:35:50 AM4/26/2005   9:35:50 AM



ch05.indd   116ch05.indd   116 4/26/2005   9:35:50 AM4/26/2005   9:35:50 AM

This page intentionally left blank.



117

CHAPTER
6

Strings

When you order merchandise online, you probably give little thought to how your 
order is processed. Like most of us, you make a selection, enter credit card and 
shipping information, and then click a button on the order form. Several days later, 
a delivery van drops off your package. That’s all there is to it, right?

Actually, there’s a lot going on behind the scenes. Order information has to be 
extracted from the order form and then manipulated before being processed. You’ll 
learn how to extract information from a form in the next chapter. Most information 
you enter into an order form is a string, such as your name, address, phone number, 
and product information. You learned in Chapter 2 that a string is a series of char-
acters that form text. It is often necessary to take apart and rearrange text so that the 
information can be processed properly. This is referred to as manipulating a string, 
and it’s a technique you’ll learn in this chapter.

Why Manipulate a String?
Before getting into the how-to’s of manipulating a string, it is important that you 
understand why it is necessary to rearrange what seems like perfectly good text. To 

ch06.indd   117ch06.indd   117 5/2/2005   3:50:57 PM5/2/2005   3:50:57 PM

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.



 118 JavaScript Demystifi ed

fi nd the answer to this question, you need to take a look at how text is used in a 
typical commercial web application.

Text, to most of us, is a series of words, such as Bob Smith, which is a customer 
name. However, commercial applications don’t use text. Instead, they use data, 
which is defi ned as the smallest available amount of meaningful information. At 
fi rst, the difference between text and data might not be obvious, but the following 
example should clear up any confusion.

You’ll recall that when included in JavaScript, 'Bob Smith' is a text string, 
since the words are enclosed in quotation marks. You can recognize this string as a 
person’s name. The person’s name can be divided into two pieces of data, com-
monly referred to as data elements. These are fi rst name and last name, which are 
the smallest amount of meaningful information in the text string of a person’s 
name.

Text must be transformed into data elements if information gathered by your 
application is to be stored in a database, which is like an electronic fi ling cabinet 
for pieces of data. Commercial applications store a person’s fi rst name ('Bob') 
and last name ('Smith') separately, rather than the full name ('Bob Smith') 
in the database. This means you must write statements that divide 'Bob Smith' 
into 'Bob' and 'Smith'. This is called manipulating a string, which you’ll learn 
how to do in this chapter.

There are other reasons for manipulating strings in addition to creating data ele-
ments from text. Sometimes, for example, you’ll need to combine two strings into 
one string, such as joining 'Bob' and 'Smith' and creating 'Bob Smith'. This 
is called concatenating strings. You’ll also learn these techniques in this chapter.

Joining Strings
Let’s begin exploring string manipulation by concatenating two strings. When you 
concatenate a string, you form a new string from two strings by placing a copy of 
the second string behind a copy of the fi rst string. The new string contains all the 
characters from both the fi rst and second strings.

You use the concatenation operator (+) to concatenate two strings, as shown here 
(note that, in this context, + is the concatenation operator, not the addition operator):

NewString = FirstString + SecondString

Suppose you needed to display a customer’s full name on the screen. However, 
the customer’s name is stored in the database as two data elements called FirstName 
and LastName. You’ll need to concatenate the fi rst name and the last name into a 
new string and then display the new string on the screen. This is illustrated in the 
next example:

ch06.indd   118ch06.indd   118 5/2/2005   3:51:05 PM5/2/2005   3:51:05 PM



CHAPTER 6 Strings 119

<!DOCTYPE html PUBLIC
     "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Concatenating a string</title>
</head>
   <body>
      <script language="Javascript" type="text/javascript">
         <!--
         var newString = 'Bob' + 'Smith'
         alert(newString)
         -->
      </script>
   </body>
</html>

This JavaScript is very similar to other scripts that you’ve seen in this book, so we’ll 
focus on the statements that concatenate two strings. The fi rst statement in the script 
declares the variable newString and initializes it with the concatenation of Bob 
and Smith. The second statement calls the alert() function to display the value 
of the newString variable on the screen.

Look carefully at the text displayed in the alert() function (Figure 6-1), and 
you’ll notice something strange. You expect to see a space between Bob and Smith, 
but no space appears here. This is a common problem whenever you concatenate 
two strings; the browser does exactly what you tell it to do, and not necessarily what 
you hoped it would do.

You told the browser to take Smith and place it behind Bob. The result is Bob-
Smith. You need to tell the browser to add a space character between these two 
strings by adding a space after 'Bob'. Rewrite the previous script and add the 
space character as the last character in the string 'Bob'; then reload the web page 
(Figure 6-2).

The preceding example concatenated literal strings. You can also concatenate 
two variables or a variable and a string using the same technique. Here is how you 
write such a statement:

NewString = FirstString + VariableName

Figure 6-1 The browser displays the concatenated string.

ch06.indd   119ch06.indd   119 5/2/2005   3:51:06 PM5/2/2005   3:51:06 PM



 120 JavaScript Demystifi ed

Let’s rewrite the previous statements and assign the space to a variable; then 
we’ll concatenate the variable to Bob and concatenate Smith to the variable. Here’s 
the new code segment:

var space = ' '
var newString = 'Bob' + space + 'Smith'

Here’s an alternative. In this code segment, strings are assigned to variables, and 
then we concatenate all three variables:

var FirstName = 'Bob'
var LastName = 'Smith'
var space = ' '
var newString = FirstName + space + LastName

Finding Your Way Around a String
You know that a string is an array of characters. You recall from Chapter 4 that an 
array has one or more elements that are identifi ed by an index. Each character in 
a string is an array element that can be identifi ed by its index. Take a look at the 
following example to see how this works:

var FirstName = 'Bob'

You recognize that 'Bob' is a string that is assigned to the variable FirstName. 
This variable is actually an array. The fi rst element of the array has the value B. The 
second element has the value o and the last element has the value b. Remember that 
the index of the fi rst element is 0 and not 1. Therefore, you use the index 0 to refer-
ence B and 1 to reference o and 2 to reference b.

You can copy a character from a string to another string by using the charAt() 
method of the string object. The charAt() method requires one argument, which 

Figure 6-2 You must place a space as the last character in the string 'Bob' to make sure 
the space appears between the fi rst and last names in the concatenated string.

ch06.indd   120ch06.indd   120 5/2/2005   3:51:06 PM5/2/2005   3:51:06 PM



CHAPTER 6 Strings 121

is the index of the character that you want to copy. The following statement illus-
trates how to use the charAt() method:

var SingleCharacter = NameOfStringObject.charAt(index)

The next example shows how to display the fi rst character of the string 'Bob' 
by calling the charAt() method (Figure 6-3).

<!DOCTYPE html PUBLIC
     "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Copy one character of a string</title>
</head>
   <body>
      <script language="Javascript" type="text/javascript">
         <!--
         var FirstName = 'Bob'
         var Character = FirstName.charAt(0)
         alert(Character)
         -->
      </script>
   </body>
</html>

Sometimes you won’t know the index of the character you need because the 
string is supplied to your JavaScript when the script runs. This occurs, for example, 
when the person who runs your JavaScript enters the string. You can determine the 
index of a character by calling the indexOf() method of the string object. The 
indexOf() method returns the index of the character passed to it as an argument. 
If the character is not in the string, the method returns –1. You should usually check 
for this when executing this function. Here’s how to use this method:

var IndexValue = string.indexOf('character')

This next example calls the indexOf() method to return the index of the sec-
ond letter of 'Bob'. The index is then passed to the charAt() method to copy 

Figure 6-3 The fi rst letter of the string is returned by the charAt() method.

ch06.indd   121ch06.indd   121 5/2/2005   3:51:06 PM5/2/2005   3:51:06 PM



 122 JavaScript Demystifi ed

the o to a variable. Both the index (Figure 6-4) and the character are then displayed 
on the screen (Figure 6-5).

<!DOCTYPE html PUBLIC
      "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Identifying the index of a
           character in a string</title>
</head>
   <body>
      <script language="Javascript" type="text/javascript">
         <!--
         var FirstName = 'Bob'
         var IndexValue = FirstName.indexOf('o')
         alert(IndexValue)
         if(IndexValue != -1)
         {
              var Character = FirstName.charAt(IndexValue)
              alert(Character)
         }
         -->
      </script>
   </body>
</html>

NOTE 

Figure 6-4 The index is retrieved by calling the indexOf() method.

Figure 6-5 The character is retrieved by calling the charAt() method.

ch06.indd   122ch06.indd   122 5/2/2005   3:51:07 PM5/2/2005   3:51:07 PM



CHAPTER 6 Strings 123

If you do not know the character you want (for example, if it is determined by 
user input), but you know the position of the character relative to the end of the 
string, you can use the length value of the string object to calculate the position 
of the character. Here’s how:

var LengthOfString = string.length

Here’s a practical application: Suppose you wanted to use the last four digits of 
a person’s Social Security number for the person’s ID. You can copy these digits to 
a new string, but you need to know the index of the fi rst of the four digits. You’ll 
learn how to copy this in the “Copying a Substring” section later in this chapter. For 
now, let’s see how we can use the length value of the string to identify the index 
of the fi rst of the last four digits.

NOTE NOTE The length value contains the number of characters in the string—but don’t 
confuse this with the index of the last character. Remember that the index begins 
with 0 and not 1, so the index of the last character of the string is length – 1. 
If the value of length is 3, you know that the string has three characters. On the 
other hand, the index of the last character is 2.

We can use the length value to calculate the index of the character that we 
want to use. Here how this is done:

var SSNumber = '123-45-6789'
var IndexOfCharacter = SSNumber.length - 4

The length of the SSNumber is 11. Since we want the fi rst of the last four 
numbers, we subtract 4 from the length, and this gives us 7. This means that the 
fi rst of the last four numbers is at index 7 in the string.

A Social Security number is just one of many types of standardized formatted 
text. As long as you know the format of the text, you can use the length value to 
calculate the index of a character within the text.

Dividing Text
Imagine a string of concatenated data elements with only a comma separating each 
of them; your mission is to copy each data element into its own string. Look at the 
following code segment for an example. Here, each person’s name is a data ele-
ment, and your job is to copy each name to its own string:

var DataString = 'Bob Smith, Mary Jones, Tom Roberts, Sue Baker'

ch06.indd   123ch06.indd   123 5/2/2005   3:51:07 PM5/2/2005   3:51:07 PM



 124 JavaScript Demystifi ed

JavaScript developers call this a comma-delimited string because a comma signi-
fi es the beginning and end of each data element. Traditionally, data elements are 
transferred between applications in a comma-delimited format. The application 
receiving the string then uses the commas as a guide for separating the string into 
data elements.

Your task is challenging, but it can easily be accomplished by using the split() 
method of the string object. The split() method creates a new array and then 
copies portions of the string, called a substring, into its array elements. You must 
tell the split() method what string (delimiter) is used to separate substrings 
in the string. You do this by passing the string as an argument to the split() 
method. In this example, the comma is the string that separates substrings. Here’s 
how you use the split() method:

var NewStringArray = StringName.split('delimiter string')

The following JavaScript demonstrates how the split() method separates 
substrings into array elements using a comma as the delimiter. Both the string con-
taining all the names and array elements containing each name are displayed on the 
screen (Figure 6-6).

<!DOCTYPE html PUBLIC
             "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Dividing a delimited string
          into a substring</title>
</head>
   <body>
      <script language="Javascript" type="text/javascript">
         <!--
         var DataString =
              'Bob Smith,Mary Jones,Tom Roberts,Sue Baker'
         var NewArray = DataString.split(',')
         document.write(DataString);
         document.write('<br>')
         for (i=0; i<4; i++)
         {
            document.write(NewArray[i])
            document.write('<br>')
         }
         -->
      </script>
   </body>
</html>

ch06.indd   124ch06.indd   124 5/2/2005   3:51:07 PM5/2/2005   3:51:07 PM



CHAPTER 6 Strings 125

Copying a Substring
Now you’ve learned how to divide a string into many substrings by using the 
split() method and a string called a delimiter. This is useful when you are sepa-
rating a string containing data elements into individual data elements. However, the 
split() method isn’t of much use to you if you need to copy one substring. For 
this, you’ll need to use one of two other methods: substring() and substr().

Let’s say, for example, that you built a client contact application that is used by 
sales representatives to track activities with their corporate clients. This application 
prompts the sales representative to enter the client’s e-mail address and corporate 
web site URL. However, the application guesses the corporate web site URL based 
on the e-mail address and uses it as the default value for the prompt to enter the 
corporate web site.

Here’s the string that the sales representative entered that contains the e-mail 
address:

EmailAddress = 'bsmith@xyz.com '

There is a good chance that the www.xyz.com is the corporate web site for this cli-
ent. Your job is to copy the substring 'xyz.com' from the e-mail address and then 
concatenate the substring with 'www.' to form the new string 'www.xyz.com'.

Figure 6-6 Names are copied into elements of an array using the split() method.

ch06.indd   125ch06.indd   125 5/2/2005   3:51:08 PM5/2/2005   3:51:08 PM



 126 JavaScript Demystifi ed

First, we’ll see how this is done using the substring() method. The 
substring()is a method of a string object that copies a substring from a string 
based on a beginning and an end position that is passed as an argument to the sub-
string() method.

The starting position specifi es the fi rst character that is returned by the sub-
string() method—that is, the fi rst character in the substring. The end position 
specifi es the character that follows the last character that is returned by the sub-
string() method—that is, the position of the character that comes after the last 
character that you want to include in the substring.

This is a little tricky to understand, so take a look at the e-mail address string 
again:

 'bsmith@xyz.com '

The last character in the string is a space. This is the fi fteenth character in the string. 
We want the substring 'xyz.com'. (Notice this is without the space.) The end 
position that we need to pass to the substring() method is 14 (zero-based) 
because the fi fteenth character is the character that comes after the m—the space. 
The m is the last character we want to include in our substring. Here’s how to write 
the substring() method:

var NewSubstring =
       StringName.substring (StartingPosition, EndPosition)

The following example illustrates how to create a substring using the sub-
string() method. The e-mail address is assigned to a variable. The 
substring() method then copies the substring 'xyz.com' to the NewSub-
string variable, which is concatenated to 'www.' and assigned to the 
GuessWebSite variable. The GuessWebSite is then used as the default value 
for the prompt() function, which asks the sales representative to enter the client’s 
web site URL into the application (Figure 6-7).

Figure 6-7 The substring 'xyz.com' is concatenated to 'www.' to form the client’s web site.

ch06.indd   126ch06.indd   126 5/2/2005   3:51:08 PM5/2/2005   3:51:08 PM



CHAPTER 6 Strings 127

<!DOCTYPE html PUBLIC
             "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Using substring()</title>
</head>
   <body>
      <script language="Javascript" type="text/javascript">
        <!--
        var EmailAddress = 'bsmith@xyz.com '
        var NewSubstring = EmailAddress.substring(7,14)
        var GuessWebSite = 'www.' + NewSubstring
        var WebSite =
          prompt('Enter the client web site.', GuessWebSite )
         -->
      </script>
   </body>
</html>

In the real world, you probably won’t know the starting position and end position 
of characters for your substring, because a user can enter any length string into your 
application. You can overcome this problem by using the substr() method along 
with other string object methods that you already learned how to use in this chapter. 
The substr() method returns a substring. You must tell it the starting position of 
the fi rst character that you want to include in the substring and how many characters 
you want copied into the substring from the starting position. Both positions are 
passed as arguments to the substr() method.

Here’s how you write the substr() method:

Var NewSubstring =
     StringName.substr
     StartingPosition, NumberOfCharactersToCopy

Again, we’ll take a look at the e-mail address to understand how the substr() 
method works:

EmailAddress = 'bsmith@xyz.com '

The starting position is 7 since the fi rst character of the substring is x (the eighth 
character in the string, zero-based index). We want the substr() method to copy 
seven characters into the substring beginning with character number 7. This results 
in the substring 'xyz.com'.

ch06.indd   127ch06.indd   127 5/2/2005   3:51:09 PM5/2/2005   3:51:09 PM



 128 JavaScript Demystifi ed

The following examples show how to use substr() to create the client’s web 
site URL using the e-mail address that is entered into the application. This is similar 
to the other example; however, we’ll prompt the user to enter the e-mail address 
rather than hard code the e-mail address into the JavaScript (Figure 6-8). The web 
site URL is then used as the default value for the prompt() function that retrieves 
the client’s web site from the sales representative.

<!DOCTYPE html PUBLIC

      "-//W3C//DTD XHTML 1.0 Transitional//EN">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

   <title>Using substr()</title>

</head>

   <body>

      <script language="Javascript" type="text/javascript">

         <!--

         var EmailAddress =

                 prompt('Enter your clients email address.', ' ')

         var StartPosition = EmailAddress.indexOf('@') + 1

         var NumCharactersToCopy =

               EmailAddress.length - StartPosition

         var NewSubstring =

               EmailAddress.substr(StartPosition, NumCharactersToCopy)

         var GuessWebSite = 'www.' + NewSubstring

         var WebSite =

             prompt('Enter the client web site.', GuessWebSite )

         -->

      </script>

   </body>

</html>

NOTE 

Figure 6-8 Any client e-mail address can be entered and the application will guess the 
client’s web site URL.

ch06.indd   128ch06.indd   128 5/2/2005   3:51:09 PM5/2/2005   3:51:09 PM



CHAPTER 6 Strings 129

Take a close look at how we determine the starting position and the end position. 
Since we don’t know the e-mail address, we have to calculate the starting position 
and the end position without it. First, let’s calculate the starting position.

We know that the fi rst character of the substring is the character that follows 
the @ in the e-mail address. If we know the position of the @ in the e-mail address, 
we can easily determine the position of the next character. Recall from earlier in 
this chapter that the indexOf() method of the string object returns the index of 
the character that is passed as an argument to the indexOf() method.

NOTE NOTE Remember that a string is an array of characters, and each character 
is an array element that is identifi ed by an index. Also remember that the fi rst 
character in the string has an index of 0—not 1. This is an important factor 
when calculating the starting position of a substring.

We pass the indexOf() method the @ character, as shown here:

EmailAddress.indexOf('@')

This returns the index of the @ character in the e-mail address that the sales 
representative entered into the application. The indexOf() function returns the 
zero-based index, which is the character position. Notice in the application script 
that we added 1 to the index returned by the indexOf() method. This is the posi-
tion of the character that will become the fi rst character in the substring—in other 
words, the character right after the @ character.

Next, we need to tell the substr() method how many characters to copy from 
the starting position. We must calculate this value by subtracting the starting posi-
tion from the length of the string. The length of the string is contained in the 
length value of the string object:

var NumCharactersToCopy = EmailAddress.length - StartPosition

Converting Numbers and Strings
You’ll recall from Chapter 2 that a number and a string are two different types of 
data in JavaScript. A number is a value that can be used in a calculation; a string is 
text and can include numbers, but those numbers cannot be used in calculations.

If you need to convert string values to number values, you can do so by convert-
ing a number within a string into a numeric value that can be used in a calculation. 
You do this by using the parseInt() method and parseFloat() method of 
the string object.

ch06.indd   129ch06.indd   129 5/2/2005   3:51:09 PM5/2/2005   3:51:09 PM



 130 JavaScript Demystifi ed

The parseInt() method converts a number in a string to an integer numeric 
value, which is a whole number. You write the parseInt() method this way:

var num = parseInt(StringName)

Here’s an example. Suppose you have the following string:

var StrCount = '100'

You cannot use this number in a calculation because '100' is a string and not a 
numeric value—that is, the browser treats this as text and not a number. You must 
convert this string to a numeric value before you can use the 100 in a calculation. 
The following statement is used for this conversion:

var StrCount = '100'
var NumCount = parseInt(StrCount)

The parseFloat() method is used similarly to the parseInt() method, 
except the parseFloat() method is used with any number that has a decimal 
value. (Think of a decimal number whenever you see the word fl oat.) Here’s how to 
use the parseFloat() method:

var StrPrice = '10.95'
var NumPrice = parseFloat(StrCount)

TIP TIP Avoid a common rookie mistake. Use the parseFloat() method and not 
the parseInt() method if the string contains a decimal value. If you use the 
parseInt() method instead of the parseFloat() method for a decimal value, 
only the integer portion, not the decimal portion, of the number is converted.

Numbers to Strings
As you can probably guess, you need to convert a numeric value to a string before 
the number can be used in the string. You do this by calling the toString() 
method of the number object. The toString() method can be used to convert 
both integers and decimal values (fl oats). Here’s how to convert a number value to 
a string:

Var NumCount = 100
var StrCount = NumCount.toString()

Alternatively, you can use the concatenation operator (+) to combine a string 
and a number. The concatenation operator automatically calls the toString() 
method on numeric values to convert them to a string. This is illustrated here:

ch06.indd   130ch06.indd   130 5/2/2005   3:51:10 PM5/2/2005   3:51:10 PM



CHAPTER 6 Strings 131

var x = 500
var y = 'abc'
var z = x + y

Variable z now has the value '500abc' and has been converted to a string.

Changing the Case of the String
You learned how to compare two strings in Chapter 3 by using the equivalency 
operator (==) in the conditional expression of an if statement, like so:

if (userID == 'ScubaBob')

Sometimes, the nature of your application requires an exact match of letters and the 
case of the letters. This is typically the situation when you’re validating a user ID 
and password. You want the user to enter an ID and password using the correct 
uppercase and lowercase letters.

Alternatively, you may need to indicate a string in all uppercase or all lowercase 
letters. For example, suppose you were comparing two strings, each containing a 
company name. These names could be the same except for the case. One might 
be written as FedEx and the other Fedex. But the browser sees FedEx and Fedex as 
different entities because of the uppercase E in the fi rst name and lowercase e in the 
second.

JavaScript developers avoid issues related to case by changing the case of both 
strings to ether uppercase or lowercase before comparing them. This is done by us-
ing the toUpperCase() method and toLowerCase() method of the string 
object. The functions return a new string that’s either all uppercase or all lowercase. 
The original string is unchanged.

The following code segment shows how this is done using the toUpperCase() 
method, which converts a string to uppercase characters:

var Comp1 = 'FedEx'
var Comp2 = 'Fedex'
if (Comp1.toUpperCase() == Comp2.toLowerCase())

The following code segment uses the toLowerCase() method to convert a 
string to lowercase characters:

var Comp1 = 'FedEx'
var Comp2 = 'Fedex'
if (Comp1.toLowerCase() == Comp2.toLowerCase())

ch06.indd   131ch06.indd   131 5/2/2005   3:51:10 PM5/2/2005   3:51:10 PM



 132 JavaScript Demystifi ed

Strings and Unicode
You probably already know that a computer understands only numbers and not 
characters. You might not know that when you enter a character, such as the letter w, 
the character is automatically converted to a number called a Unicode number that 
your computer can understand. Unicode is a standard that assigns a number to every 
character, number, and symbol that can be displayed on a computer screen, includ-
ing characters and symbols that are used in all languages.

On a rare occasion, you might need to know the Unicode number of a character 
or the character that is assigned a specifi c Unicode number. You can determine the 
Unicode number or the character that is associated with a Unicode number by using 
the charCodeAt() method and fromCharCode() method. Both are string 
object methods. The charCodeAt() method takes an integer as an argument that 
represents the index of the character in which you’re interested. If you don’t pass an 
argument, it defaults to index 0.

The charCodeAt() method returns the Unicode number of the string:

var UnicodeNum = StringName.charCodeAt()

Here’s how to determine the Unicode number of the letter w:

var Letter = 'w'
var UnicodeNum = Letter.charCodeAt()

The Letter.charCodeAt() method returns the number 119, which is the 
Unicode number that is assigned the letter w. Uppercase and lowercase versions of 
each letter have a unique Unicode number.

If you need to know the character, number, or symbol that is assigned to a Uni-
code number, use the fromCharCode() method. The fromCharCode() 
method requires one argument, which is the Unicode number. Here’s how to use the 
fromCharCode() method to return the letter w.

var Letter = String.fromCharCode(119)

Looking Ahead
In this chapter, you learned how to perform magic with strings. You learned how to 
concatenate two strings to form a new string. You also learned how to take a part of 
a string using the split() method, substring() method, and substr() 
method. The split() method divides a string into parts called substrings using a 
delimiter string to determine the parts. Both substring()and substr() are 
used to copy selected characters from the string to another string.

ch06.indd   132ch06.indd   132 5/2/2005   3:51:10 PM5/2/2005   3:51:10 PM



CHAPTER 6 Strings 133

You saw that a string is actually an array of characters, where each character is 
an element of the array and is identifi ed by an index. You can use the charAt() 
method to copy a specifi c character from the array. The indexOf() method is 
used to determine the index of a specifi c character.

You also learned how to determine the length of the string by using the string 
object’s length value. And you saw how to convert a string to a number using the 
parseInt() method and parseFloat() method or convert a number to a 
string using the toString() method.

The next chapter shows you how to control and enhance HTML forms from a 
JavaScript.

Quiz
 1. True or False. The fi rst character of a string array is string[1].

 a. True

 b. False

 2. A fl oat is

 a. An integer

 b. A whole number

 c. A decimal value

 d. A Unicode number

 3. What method would you use to divide a string of data delimited by a 
comma into an array of data?

 a. parseFloat()

 b. split()

 c. parseInt()

 d. charCodeAt()

 4. The end position argument in the substring() method indicates what?

 a. The position of the last character that is copied into the substring

 b. The position of the fi rst character that is copied into the substring

 c. The position of the character following the last character that is copied 
into the substring

 d. The position of the character preceding the last character in the substring

ch06.indd   133ch06.indd   133 5/2/2005   3:51:11 PM5/2/2005   3:51:11 PM



 134 JavaScript Demystifi ed

 5. The second argument in the substr() method indicates what?

 a. The position of the last character that is copied into the substring

 b. The number of characters that are to be copied from the string to the 
substring

 c. The position of the character preceding the last character that is copied 
into the substring

 d. The position of the character preceding the last character in the substring

 6. What is the length value of a string object?

 a. The total number of characters in the string

 b. The index of the last character in the string

 c. The length of the string minus spaces

 d. The length of the string minus trailing spaces

 7. True or False. The index of the last element in the string array is the same 
value as the string length.

 a. True

 b. False

 8. True or False. The parseInt() method cannot be used with a mixed 
number (whole number and decimal).

 a. True

 b. False

 9. True or False. A delimiter string is used by the split() method to create 
an array of data elements.

 a. True

 b. False

 10. Unicode is

 a. A string that contains a numeric value

 b. A numeric value that represents characters, numbers, and symbols that 
can be displayed on the screen

 c. The end position used by the substr() method

 d. The end position used by the substring() method

ch06.indd   134ch06.indd   134 5/2/2005   3:51:11 PM5/2/2005   3:51:11 PM



135

CHAPTER
7

Forms and Event 
Handling

It seems that no matter what web site you visit these days, you are asked to fi ll out 
a form—be it an order form, subscription form, membership form, fi nancial form, 
survey, and the list goes on. Although forms may seem invasive, prying into our 
private affairs, forms are the only practical way to collect information that is neces-
sary to conduct business on the Internet.

Forms are created using HTML form elements such as buttons and check boxes. 
Forms used by commercial web sites also interact by using JavaScript. A JavaScript 
is used for a variety of purposes, including data validation and for dynamically inter-
acting with elements of a form.

In this chapter, you’ll learn how to add another dimension to your HTML forms 
by writing JavaScripts that make an HTML form come alive.

ch07.indd   135ch07.indd   135 5/2/2005   3:51:35 PM5/2/2005   3:51:35 PM

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.



 136 JavaScript Demystifi ed

Building Blocks of a Form
As you probably remember from when you learned HTML, a form is a section of 
an HTML document that contains elements such as radio buttons, text boxes, check 
boxes, and option lists. HTML form elements are also known as controls. Elements 
are used as an effi cient way for a user to enter information into a form.

Forms are used for all kinds of purposes. In a business, forms are used to gather 
order information from a customer. Forms are also used for online surveys. Teach-
ers use forms for online tests. Information entered into a form is sent to the web 
server for processing when the user clicks a submit button.

The program that processes the form is called a Common Gateway Interface (CGI) 
program. CGI programs are written in one of a number of programming languages, 
including JSP, PHP, Perl, and ASP. CGI programs typically interact with non-web 
applications such as databases and other systems that are necessary to process the 
form. Once processing is completed, the CGI program usually creates another web 
page dynamically and sends the web page to the browser that sent the form.

Elements and JavaScript
Each element has one or more attributes, which is information associated with the 
element. For example, the value attribute is used to defi ne a default value, not 
the user-entered value. A good example would be the name attribute, since this 
attribute is used to reference the element. You’ll learn about the different kinds 
of attributes that are available for each element throughout this chapter as each ele-
ment is discussed.

Many applications require that some information contained on a form be verifi ed 
using a validation process. Two common ways to validate information on a form are 
by using CGI programs and JavaScripts. A CGI program validates information after 
the form is submitted. A JavaScript can validate information whenever one of sev-
eral events occurs while the form is displayed on the screen. You’ll learn about 
these events in the “Responding to Form Events” section of this chapter.

Validation should occur on both the client (via JavaScript) and the server (via a 
CGI program). The client-side validation provides immediate feedback and reduces 
load on the server. It’s good practice to validate again on the server because you 
don’t always know that the JavaScript executed properly on the browser. You could 
make an exception to this if you require that JavaScript be enabled in order to use a 
web site (but that’s more of a business decision).

In addition to validating information, JavaScripts can dynamically change a form 
while the form is displayed on the screen. For example, a JavaScript can activate or 
deactivate elements based on a value the user enters into another element. You can 

ch07.indd   136ch07.indd   136 5/2/2005   3:51:43 PM5/2/2005   3:51:43 PM



CHAPTER 7 Forms and Event Handling 137

also set the default value of elements based on a value entered by a user into an-
other element.

A JavaScript can interact with elements of a form in many ways. You’ll learn 
about them in this chapter. However, you won’t learn about creating a form here; 
instead, you’ll see examples of forms that are used to illustrate JavaScripts. Pick up 
a copy of HTML: The Complete Reference, Third Edition by Thomas A. Powell or 
How to Do Everything with HTML by James H. Pence (both books published by 
McGraw-Hill/Osborne) if you need to brush up on how to create forms.

Responding to Form Events
A JavaScript executes in response to an event that occurs while a form is displayed 
on the screen. An event is something the user does to the form, such as clicking a 
button, selecting a radio button, or moving the cursor away from an element on the 
form. The browser also fi res events when the page fi nishes loading from the server. 
You can execute a script each time one of the form events listed in Table 7-1 occurs.

An event is associated with an element of a form as a attribute defi ned within the 
opening tag of the element. You assign this attribute the name of the JavaScript 
function that you want executed when the event occurs.

Let’s say that your form has an input element in which the user enters his or her 
fi rst and last names and e-mail address (Figure 7-1). You want a JavaScript to vali-
date the e-mail address by checking whether the address includes an @ sign when 
the user moves the cursor away from the input element. You do this by using the 
onblur event attribute in the opening <INPUT> element tag and assigning the 
name of the JavaScript function to the onblur event attribute. The onblur event 
occurs when the cursor moves away from the element, which is called losing focus. 
The following example illustrates how this is done.

<!DOCTYPE html PUBLIC
      "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>onblur event</title>
      <script language="Javascript" type="text/javascript">
         <!--
         function ValidateEmail(EmailAddress)
         {
            var Location = EmailAddress.indexOf('@')
            if ( Location == -1)
            {
              alert

ch07.indd   137ch07.indd   137 5/2/2005   3:51:44 PM5/2/2005   3:51:44 PM



 138 JavaScript Demystifi ed

                ('You entered an inaccurate email address.')
            }
         }
         -->
      </script>

</head>
   <body>
      <FORM action="http://www.jimkeogh.com" method="post">
         <P>
         First Name: <INPUT type="text" name="Fname"/><BR>
         Last Name: <INPUT type="text" name="Lname"/><BR>
         Email: <INPUT type="text" name="Email"
             onblur="ValidateEmail (this.value)"/><BR>
         <INPUT name="Submit" value="Submit" type="submit"/>
         <INPUT name="Reset" value="Reset" type="reset"/>
         </P>
     </FORM>
   </body>
</html>

Event Description

onload Executes when the browser fi nishes loading a window or all frames 
within a frameset

onunload Executes when the browser removes a document from a window or frame

onclick Executes when the mouse button is clicked over an element

ondblclick Executes when the mouse button is double-clicked over an element

onmousedown Executes when the mouse button is clicked while the mouse cursor is over 
an element

onmouseup Executes when the mouse button is released while the mouse cursor is 
over an element

onmouseover Executes when the mouse cursor moves onto an element

onmousemove Executes when the mouse cursor is moved while over an element

onmouseout Executes when the mouse cursor is moved away from an element

onfocus Executes when an element receives focus

onblur Executes when an element loses focus

onkeypress Executes when a key is pressed and released 

onkeydown Executes when a key is held down

Table 7-1 Form Events

ch07.indd   138ch07.indd   138 5/2/2005   3:51:44 PM5/2/2005   3:51:44 PM



CHAPTER 7 Forms and Event Handling 139

You’ll see a form displayed when you call this web page from your browser. The 
form has fi ve elements: The fi rst two elements are input elements for the fi rst and 
last names. The third element is also an input element, where the user enters an 
e-mail address. The last two elements are buttons—the Submit button that submits 
the form to the web server, and the Reset button that clears data from the form. 
Notice that each element has a name attribute, which is assigned a unique name. 
The name attribute can be referred to in a JavaScript, although we don’t refer to the 
name attribute in this example.

Figure 7-1 The form prompts the user to enter his or her fi rst and last names and an 
e-mail address.

Event Description

onkeyup Executes when a key is released

onsubmit Executes when a form is submitted

onreset Executes when a form is reset

onselect Executes when text is selected in a text fi eld

onchange Executes when an element loses input focus and the value of the element 
has changed since gaining focus

Table 7-1 Form Events (continued)

ch07.indd   139ch07.indd   139 5/2/2005   3:51:44 PM5/2/2005   3:51:44 PM



 140 JavaScript Demystifi ed

Take a look at the Email element and you’ll notice that we’ve included the 
onblur event in the INPUT open tag. We also assigned to it the name of the func-
tion that we want called whenever the user moves the cursor from the Email input 
element. This is called ValidateEmail() and is defi ned in the JavaScript located 
in the <head> section of this web page script. The ValidateEmail() function 
is passed one parameter, which is the value of the Email input element. This param-
eter might look a little strange, but you’ve seen something like this used in previous 
chapters. You’ll recall that whenever you want to write something on the screen, 
you execute the following statement:

document.write('Display this text.')

Here, the name of an object is document, and write() is the name of the 
method that is associated with the document object. This is basically the same 
thing as the parameter that is being passed to the ValidateEmail() function.

In the onblur event code, the name of the object is called this—that is, this 
refers to the current object, which is the Email input element. It is like saying, 
“The color of this car is blue.” It is assumed that everyone knows which car you’re 
talking about, because it is the only car that you’re looking at. Therefore, use the 
word this whenever you want to refer to the name of the current object.

Notice that value is the attribute associated with the this object (the Email 
input element). Whenever you use the name of an attribute such as value, you are 
telling the browser to use the value of the attribute. In this case, we’re telling the 
browser to use the value of the value attribute, which is the information the user 
enters into the Email input element.

Suppose the user enters jkeogh@mcgrawhill.com into the Email input element 
on this form. In this case, the this.value is the same as jkeogh@mcgrawhill 
.com, because the e-mail address is the value assigned to the value attribute by the 
browser when the user enters the address into the Email input element on the form.

Let’s take a look at the ValidateEmail() function defi nition in the JavaScript 
within the <head> portion of the web page. The e-mail address passed to the 
ValidateEmail() function is assigned to EmailAddress. The fi rst state-
ment within the function declares a variable called Location and initializes the 
variable with the index of the @ symbol within EmailAddress.

You’ll recall from Chapter 6 that the indexOf() function fi nds the position of 
a character within a string of characters. The indexOf() function returns a –1 if 
the string doesn’t contain the character. The value of the Location variable will 
either be –1, if the @ symbol isn’t in the EmailAddress, or an index value, 
which means there is a good chance that the e-mail address is in the proper format. 
(We won’t know whether it is a valid e-mail address until we try sending an e-mail 
to that address.)

ch07.indd   140ch07.indd   140 5/2/2005   3:51:45 PM5/2/2005   3:51:45 PM



CHAPTER 7 Forms and Event Handling 141

We’re only interested if the value of the Location variable is –1. Therefore, 
we use an if statement (see Chapter 3) to determine whether the @ symbol wasn’t 
entered by the person. If the @ symbol was not entered, an alert dialog box is dis-
played with a message warning that the e-mail address is invalid (Figure 7-2).

Figure 7-2  A warning message is displayed if the @ symbol was not entered in the 
e-mail address.

Form Objects and Elements
When you look at a form within a web page, you probably don’t necessarily think 
about how the form relates to everything else that you’re seeing. However, relation-
ships on a web page are very important when you are a JavaScript programmer, 
because you need to know them to access them.

Everything that you see on a web site is considered an object. The fi rst object you 
see is the window, which is referred to in a JavaScript as window. A window con-
tains an HTML document referred to as document. You’ve referenced the 
document throughout this book whenever you called the document.write() 
function. A document can have one or more forms, and a form can have one or more 
elements.

Form objects are stored in an array (see Chapter 4) called forms and appear in the 
order in which the forms appear in the document. You can reference each form by 
referencing the form’s index. Suppose you wanted to reference the third form. You’d 
write this:

window.document.forms[2]

You’re telling the browser to go to the window object and then within the window 
object go to the document object and then reference the form that is assigned to 
the 2 index value of the forms array. (Remember that the index 2 is referencing the 
third form, because the fi rst form is index 0.)

ch07.indd   141ch07.indd   141 5/2/2005   3:51:45 PM5/2/2005   3:51:45 PM



 142 JavaScript Demystifi ed

TIP TIP Although this is a good syntax to reference the window object, this is not 
required. You can use this instead:

document.forms[2] (might be worth mentioning...)

Forms are assigned to elements of the forms index in the order that each form 
appears in the document. You can reference a form using its index instead of using 
the name of the form. Remember that the name of the form is the value that is as-
signed to the form’s name attribute. Here’s how to reference a form by using the 
name of the form. In this example, we’re referencing the order form:

window.document.forms.order

TIP TIP Referencing by name is better practice than referencing by index because 
the display and ordering of elements changes all the time, and it requires less 
maintenance if you reference by name. Also, referencing by name makes your 
code easier for humans to understand and maintain.

The following example shows how to access an attribute of a form. We defi ned 
the display() function in the JavaScript within the <head> tag. This function 
receives the value of the form’s Reset element and displays it in an alert dialog 
box (Figure 7-3). The function is called in response to an onclick event that oc-
curs when the user clicks the Reset button.

<!DOCTYPE html PUBLIC
     "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Accessing form attributes</title>
      <script language="Javascript" type="text/javascript">
         <!--
         function display()
         {
          alert
             ('Value: ' + document.forms.order.Reset.value)
         }
         -->
      </script>
</head>
   <body>
      <FORM action=
       "http://www.jimkeogh.com" method="post" name="order">
         <P>
         First Name: <INPUT type="text" name="Fname"/><BR>
         Last Name: <INPUT type="text" name="Lname"/><BR>

ch07.indd   142ch07.indd   142 5/2/2005   3:51:45 PM5/2/2005   3:51:45 PM



CHAPTER 7 Forms and Event Handling 143

         Email: <INPUT type="text" name="Email"/><BR>
         <INPUT name="Submit" value="Submit" type="submit"/>
         <INPUT name="Reset" value="Reset"
           type="reset" onclick="display()"/>
         </P>
      </FORM>
   </body>
</html>

Elements on a form are stored in an array called elements in the order in which 
the elements appear on the form. Here’s how you access an element by using the 
element’s index within the elements array:

window.document.forms.order.elements[2]

This tells the browser to go to the window object and within the window object 
go to the document object. Within the document object go to the forms and 
access the form named order. And within the order form access the element 
that has index 2, which is the third element.

Time-Saving Shortcut
Here’s a trick JavaScript pros use to reduce the amount of typing they have to do when 
referencing attributes of elements. Let’s say that you want to access the value 
attribute of the email element. You’d write the following:

window.document.forms.order.email.value

Suppose you want to access several attributes of the email element. Instead of 
writing the full path, you can use a with statement to save keystrokes when writing 
your JavaScript. Here’s the shortcut:

with(window.document.forms.order.email)
{
   alert('Email: ' + value)
}

Figure 7-3 The alert dialog box displays an attribute of an element when the Reset 
button is clicked.

ch07.indd   143ch07.indd   143 5/2/2005   3:51:46 PM5/2/2005   3:51:46 PM



 144 JavaScript Demystifi ed

In this example, the full path is written once at the top of the with statement and is 
then automatically applied to each attribute within the with statement. You can use 
this same technique to create elements of a form, like so:

with(window.document.forms.order)
{
   alert('Email: ' + mail.value)
}

You can write other statements in the with statement to reference other elements 
of the order form without having to write the complete path.

Changing Attribute Values Dynamically
You can spice up any form by changing the attributes of the form element dynami-
cally. Let’s say that your user/customer wants to modify an existing order. Your 
application displays the order form, and then prompts the customer to make 
changes. You could highlight those changes by altering the color, style, or font of 
the element after the customer makes the change. This gives the customer a visible 
way of telling what information has changed.

You can change an attribute of an element by assigning a new value to the attri-
bute from within a JavaScript function. The function is then called when an 
appropriate event occurs. In the next example, we’ll display the form you saw in a 
previous example that enables the user to enter a fi rst and last name and an e-mail 
address. This example displays default values for these elements just as if existing 
contact information were recalled from a fi le. Whenever the user changes the de-
fault value, we’ll display the new value in blue instead of black and change the 
background color from white to silver.

Here’s how this is done. First, we defi ne a function in the <head> tag called 
Highlight(). This function receives one parameter, which is the name of the 
element that calls the function. The name is compared with the names of each ele-
ment on the form. When a match occurs, statements within the if statement change 
the text color and background color style attributes of the element by assigning a 
new value to the style of the element (Figure 7-4).

Notice that the Fname element, Lname element, and Email element trap the 
onchange event. The onchange event occurs when the cursor is moved away 
from the element (that is, it loses input focus) and the value of the element has 
changed since the last time the cursor was placed on the element (that is, it 
gained focused). The onchange event happens when the user changes the element 
and then moves on to another element. When the onchange event occurs, the 

ch07.indd   144ch07.indd   144 5/2/2005   3:51:46 PM5/2/2005   3:51:46 PM



CHAPTER 7 Forms and Event Handling 145

Highlight() function is called and is passed the name of the element. This 
would also be rather maintenance-intensive. Instead, you can pass in the element 
itself so the function is more generic.

<!DOCTYPE html PUBLIC
         "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Dynamically Changing Element Attributes</title>
      <script language="Javascript" type="text/javascript">
         <!--
         function Highlight(Element)
         {
            Element.style.color = 'blue'
            Element.style.backgroundColor = 'silver'
         }
         -->
        </script>
   </head>
   <body>
      <FORM name="Contact"

Figure 7-4 The color and background color of an element is changed after a user 
changes the value of the element.

ch07.indd   145ch07.indd   145 5/2/2005   3:51:46 PM5/2/2005   3:51:46 PM



 146 JavaScript Demystifi ed

          action="http://www.jimkeogh.com" method="post">
      <P>
        First Name: <INPUT value="Bob" type="text"
          name="Fname" onchange="Highlight(this)"/><BR>
        Last Name: <INPUT value="Smith" type="text"
          name="Lname" onchange="Highlight(this)"/><BR>
        Email: <INPUT value="bsmith@mcgrawhill.com" type="text"
           name="Email" onchange="Highlight(this)"/><BR>
        <INPUT name="Submit" value="submit" type="submit"/>
        <INPUT name="Reset" value="Method" type="reset"/>
      </P>
      </FORM>
   </body>
</html>

Changing Elements Based on a Value 
Selected by the User
Another way you can jazz up your form is to fi ll in information automatically based on 
information already entered into the form. You do this by assigning a new value to the 
value attribute of an element after the user changes another element on the form.

Here’s how this works. Suppose you want to fi ll in the e-mail address on the form 
automatically, based on a user’s fi rst and last names as entered in the form. In this 
example, the e-mail address will consist of the fi rst initial of the user’s fi rst name 
and the full last name, as entered by the user. So Mary Jones’s e-mail address would 
look like this: mjones@mycompany.com.

The next example traps the onchange event for both the Fname and Lname 
elements and calls the SetEmail() function, which is defi ned in the <head> tag 
section of the document. The SetEmail() function determines whether a fi rst 
and last name were entered into the form by examining the length attribute of the 
string, which you learned about in Chapter 6. If the length is greater than zero, 
we assume that the user entered a fi rst name or last name. Both names must be en-
tered; otherwise, the function doesn’t set the e-mail address because the e-mail 
address requires both the fi rst and last names.

However, if both names exist, the function copies the fi rst letter of the fi rst name 
using the charAt() function. As you’ll recall from Chapter 6, each character of a 
string is assigned as an element of an array. The fi rst element has an index of 0. The 
charAt() function is told to return the character at index 0, which is the fi rst 
letter of the value of the fi rst name.

The domain name is then concatenated to the value of the last name, and the 
value of the last name is concatenated to the fi rst letter of the fi rst name to form 

ch07.indd   146ch07.indd   146 5/2/2005   3:51:47 PM5/2/2005   3:51:47 PM



CHAPTER 7 Forms and Event Handling 147

the e-mail address. The e-mail address is then assigned to the value of the Email 
element (Figure 7-5).

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Dynamically Change Attribute Value</title>
      <script language="Javascript" type="text/javascript">
         <!--
         function SetEmail()
         {
            with (document.forms.Contact)
            {
               if (Fname.value.length >0
                 && Lname.value.length >0)
               {
                  Email.value =
                    Fname.value.charAt(0) +
                     Lname.value + '@mycompany.com'
               }
            }
         }
         -->
      </script>
</head>
   <body>
      <FORM name=
              "Contact" action="http://www.jimkeogh.com"
                 method="post">
         <P>
         First Name: <INPUT type="text" name="Fname"
                onchange="SetEmail()"/><BR>
         Last Name: <INPUT type="text" name="Lname"
             onchange="SetEmail()"/><BR>
         Email: <INPUT type="text" name="Email"><BR>
         <INPUT name="Submit" value="Submit" type="submit"/>
         <INPUT name="Reset" value="Reset" type="reset">
        </P>
     </FORM>
   </body>
</html>

ch07.indd   147ch07.indd   147 5/2/2005   3:51:47 PM5/2/2005   3:51:47 PM



 148 JavaScript Demystifi ed

Changing an Option List Dynamically
As you’ll recall, an option list presents a user with two or more items from which 
to choose. Items that appear on the option list are typically set when the option list 
is created. However, you can change the content of an option list on the fl y by using 
a JavaScript function.

Let’s say that you want to give the user the option of selecting either a car or a 
motorcycle, but not both. One way to do this is to display two radio buttons called 
Cars and Motorcycles. When one radio button is selected, the other radio button is 
automatically deselected. In other words, when the Cars radio button is selected, 
the Motorcycles radio button will be deselected because the two radio buttons are 
part of the same form and have the same value for the name attribute.

To wow the user, you can change items in an option list to refl ect whatever radio 
button the user selects. That is, the option list shows cars when the Cars radio button 
is selected and the same option list shows motorcycles when the Motorcycles radio 
button is selected. You can dynamically change items in an option list by calling a 
JavaScript function whenever the radio button selection changes. The function then 
resets items on the option list.

The following example shows how this works. Take a look at the form and 
you’ll notice an option list that contains two models of motorcycles. Beneath the 

Figure 7-5 The JavaScript automatically fi lls in the e-mail address when the user enters 
a fi rst and last name.

ch07.indd   148ch07.indd   148 5/2/2005   3:51:47 PM5/2/2005   3:51:47 PM



CHAPTER 7 Forms and Event Handling 149

option list are two radio buttons: Motorcycles and Cars. The Motorcycles radio but-
ton is selected by default. Each radio button responds to the onclick event by calling 
the ResetOptionList() function, passing it the value of the radio button.

You’ll notice that the ResetOptionList() function is defi ned in the <head> 
tag section of the page. The value of the radio button selected is assigned to the 
ElementValue parameter of the ResetOptionList() function. Based on 
this value, the ResetOptionList() function resets the text and the value of items 
on the option list to refl ect the radio button that the user selected (Figure 7-6). No-
tice that each item on the option list has a unique value; this enables the CGI 
application to determine which option was selected.

<!DOCTYPE html PUBLIC
    "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Dynamically Change Option List</title>
      <script language="Javascript" type="text/javascript">
         <!--
         function ResetOptionList(ElementValue)
         {
            with (document.forms.Contact)

Figure 7-6 Items on the option list change based on the radio button selected by the user 
on the form.

ch07.indd   149ch07.indd   149 5/2/2005   3:51:48 PM5/2/2005   3:51:48 PM



 150 JavaScript Demystifi ed

            {
               if (ElementValue == 1)
               {
                 OptionList [0].text = "Classic"
                 OptionList [0].value = 1
                 OptionList [1].text = "Police Cruiser"
                 OptionList [1].value = 2
               }
               if (ElementValue == 2)
               {
                 OptionList [0].text = "Ford"
                 OptionList [0].value = 1
                 OptionList [1].text = "Chevy"
                 OptionList [1].value = 2
               }
            }
         }
         -->
      </script>
</head>
   <body>
      <FORM name="Contact"
            action="http://www.jimkeogh.com" method="post">
         <P>
          <select name="OptionList" size="2">
              <option Value=1>Classic
              <option Value=2>Police Cruiser
              </select>
          <BR>
          <INPUT TYPE="radio"
               name="vehicles" checked="true"
               value=1 onclick ="
                ResetOptionList(this.value)">Motorcycles
          <INPUT TYPE="radio"
               name="vehicles" Value=2 onclick="
                ResetOptionList(this.value)">Cars
          <BR>
          <INPUT name="Submit" value="Submit" type="submit"/>
          <INPUT name="Reset" value="Reset" type="reset">
        </P>
      </FORM>
   </body>
</html>

ch07.indd   150ch07.indd   150 5/2/2005   3:51:48 PM5/2/2005   3:51:48 PM



CHAPTER 7 Forms and Event Handling 151

A check box is a common element found on many forms and is used to enable a 
user to select one or more items from a set of known items. You can write a Java 
Script function that evaluates whether or not a check box was selected and then 
processes the result according to the needs of your application.

You’ll see how this is done in the next example, where the user is prompted to 
select his or her level of education using check boxes. Each check box item displays 
a level of education, and this information is processed when the user clicks the 
Process button at the bottom of the form (Figure 7-7).

The Process button traps the onclick event and calls the JavaScript 
Education() function, which is defi ned in the <head> tag section of this page. 
The Education() function evaluates each check box to determine whether the item 
is checked and then displays the user’s education in an alert dialog box (Figure 7-8).

The Education() function begins by declaring a string and initializing it 
with the fi rst part of the text that will appear in the alert dialog box. It then evaluates 
the checked attribute of each check box. If the checked attribute is true, the level 
of education is concatenated to the string. You’ll notice that the += operator is 
used. As you’ll recall from Chapter 2, this operator concatenates the value to the 

Figure 7-7 A JavaScript function can evaluate choices made using a check box or other 
elements on a form.

Evaluating Check Box Selections

ch07.indd   151ch07.indd   151 5/2/2005   3:51:49 PM5/2/2005   3:51:49 PM



 152 JavaScript Demystifi ed

right (level of education) of the operator to the value to the left of the operator 
(value of the selection variable) and then assigns the concatenated strings to the 
selection variable.

<!DOCTYPE html PUBLIC
        "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Evaluating Checkboxes</title>
      <script language="Javascript" type="text/javascript">
         <!--
         function Education()
         {
            var selection = "You selected: "
            with (document.forms.Contact)
            {
               if (HS.checked == true)
               {
                 selection += "high school"
               }
               if (AD.checked == true)
               {
                 selection += ", associate degree"
               }
               if (BD.checked == true)
               {
                 selection += ", bachelor degree"
               }
               if (MD.checked == true)
               {
                 selection += ", masters degree"
               }
               if (DD.checked == true)
               {

Figure 7-8 The Education() function displays check box selections.

ch07.indd   152ch07.indd   152 5/2/2005   3:51:49 PM5/2/2005   3:51:49 PM



CHAPTER 7 Forms and Event Handling 153

                 selection += ", doctorate degree "
               }
            }
            alert(selection)
         }
         -->
      </script>
</head>
   <body>
      <FORM name="Contact"
          action="http://www.jimkeogh.com" method="post">
         <P>
          <INPUT TYPE="checkbox"
             name="HS" value="HS">High School
          <BR>
          <INPUT TYPE="checkbox"
              name="AD" value="AD">Associate Degree
          <BR>
          <INPUT TYPE="checkbox"
             name="BD" value="BD">Bachelor degree
          <BR>
          <INPUT TYPE="checkbox"
             name="MD" value="MD">Masters Degree
          <BR>
          <INPUT TYPE="checkbox"
             name="DD" value="DD">Doctorate Degree
          <BR>
          <INPUT name="Process" value="Process"
               type=reset onclick ="Education()"  >
        </P>
      </FORM>
   </body>
</html>

Manipulating Elements Before
 the Form Is Submitted

You can manipulate elements on a form after the user clicks the Submit button and 
before the form is actually submitted to the CGI application. This is handy if you 
need to validate information on the form or want to amend information to the form 
that the user didn’t enter.

ch07.indd   153ch07.indd   153 5/2/2005   3:51:49 PM5/2/2005   3:51:49 PM



 154 JavaScript Demystifi ed

You do this by assigning a JavaScript function to the onsubmit event. You’ll 
see how this is done in the next example, where the e-mail address is automatically 
entered into the form after the user submits the form for processing.

This form is similar to other forms you’ve seen in this chapter, except the Email 
element is a hidden element (Figure 7-9). You probably remember from the time 
you learned HTML that a hidden element is like any other element on a form, ex-
cept the element doesn’t appear on the screen. A hidden element has a name and 
value that is sent to the CGI program along with other elements of the form for 
processing.

When the Submit button is clicked, the SetEmail() function is called. The 
SetEmail() function creates an e-mail address using the user’s fi rst and last 
names. The function then assigns the e-mail address to the value of the Email ele-
ment, and the form is submitted to the CGI program.

<!DOCTYPE html PUBLIC
        "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Manipulate Elements Before A Form Is Submitted</title>
      <script language="Javascript" type="text/javascript">

Figure 7-9 The SetEmail() function creates the e-mail address and assigns it to the 
Email element before the form is submitted for process.

ch07.indd   154ch07.indd   154 5/2/2005   3:51:50 PM5/2/2005   3:51:50 PM



CHAPTER 7 Forms and Event Handling 155

         <!--
         function SetEmail()
         {
            with (document.forms.Contact)
            {
               if (Fname.value.length >0 &&
                         Lname.value.length >0)
               {
                  Email.value = Fname.value.charAt(0)
                     + Lname.value + '@mycompany.com'
               }
            }
         }
         -->
      </script>
</head>
   <body>
      <FORM name="Contact"
          action="http://www.jimkeogh.com" method="post">
         <P>
         First Name: <INPUT type="text" name="Fname"/> <BR>
         Last Name: <INPUT type="text" name="Lname"/><BR>
         Email: <INPUT type="hidden" name="Email"/><BR>
         <INPUT name="Submit" value="Submit"
               type="submit" onsubmit="SetEmail()"/>
         <INPUT name="Reset" value="Reset" type="reset">
        </P>
     </FORM>
   </body>
</html>

Using Intrinsic JavaScript Functions
JavaScript has a special set of functions called intrinsic functions that mimic ac-
tions of the Submit button and Reset button of a form. You don’t defi ne an intrinsic 
function, because JavaScript defi nes the function for you. However, you can call an 
intrinsic function in the same way you would if you had defi ned the function.

An intrinsic function is often used to replace the Submit button and the Reset 
button with your own graphical images, which are displayed on a form in place of 
these buttons. This is illustrated in the next example. Two <img> (image) tags are 
used: one to display mysubmit.gif and the other to display myreset.gif. Notice that 

ch07.indd   155ch07.indd   155 5/2/2005   3:51:50 PM5/2/2005   3:51:50 PM



 156 JavaScript Demystifi ed

each of these traps the onclick event and calls the appropriate intrinsic function. 
This has the same effect as inserting the Submit and Reset buttons on the form and 
then clicking them.

You can do this as follows:

<input type="image" src="mysubmit.gif"/>

The intrinsic functions would usually be called from the JavaScript function.

<!DOCTYPE html PUBLIC
            "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Using Intrinsic JavaScript Functions</title>
</head>
   <body>
      <FORM name="Contact"
              action="http://www.jimkeogh.com" method="post">
         <P>
         First Name: <INPUT type="text" name="Fname"/> <BR>
         Last Name: <INPUT type="text" name="Lname"/><BR>
         Email: <INPUT type="text" name="Email"/><BR>
         <img src="mysubmit.gif"
         onclick="javascript:document.forms.Contact.submit()"/>
         <img src="myreset.gif"
         onclick="javascript:document.forms.Contact.reset()"/>
        </P>
     </FORM>
   </body>
</html>

Changing Labels Dynamically
You can avoid cluttering a form with elements by relabeling an element when its 
purpose has already been served. Think of this a reusing an element. You can re-
label an element and change any of its attributes by using a JavaScript function.

Let’s see how this in done. The next example is similar to the example used 
earlier in the chapter for changing an option list dynamically. Here, it displays an 
option list that contains either motorcycles or cars, depending on the category that 
the user selects. In the earlier example, radio buttons were used. The appropriate 
option list was displayed depending on which radio button the user selected. In this 
example, the user clicks a button to change the option list.

ch07.indd   156ch07.indd   156 5/2/2005   3:51:50 PM5/2/2005   3:51:50 PM



CHAPTER 7 Forms and Event Handling 157

The option list consists of motorcycles, and the button is labeled Cars when the 
form is displayed. The user changes the option list to show cars by clicking the Cars 
button. This causes the button to be relabeled as Bikes. When the Bikes button is 
clicked, the option list shows motorcycles again and the button is relabeled Cars.

The button click traps the onclick event and calls the ResetOptionList() 
function, passing the function the value of the button. The ResetOptionList() 
function compares the value with the two possible values, Cars and Bikes, and then 
resets the text and value attributes of each option and resets the value of the button 
(Figure 7-10). The value is the button label.

<!DOCTYPE html PUBLIC
       "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Change Labels on Elements</title>
      <script language="Javascript" type="text/javascript">
         <!--
         function ResetOptionList(ElementValue)
         {
            with (document.forms.Contact)
            {

Figure 7-10 You can use a JavaScript function to change a label on an element such 
as a button while the form is being used.

ch07.indd   157ch07.indd   157 5/2/2005   3:51:51 PM5/2/2005   3:51:51 PM



 158 JavaScript Demystifi ed

               if (ElementValue == 'Cars')
               {
                 SwitchButton.value = 'Bikes'
                 OptionList [0].text = 'Classic'
                 OptionList [0].value = 1
                 OptionList [1].text = 'Police Cruiser'
                 OptionList [1].value = 2
               }
               if (ElementValue == 'Bikes')
               {
                 SwitchButton.value = 'Cars'
                 OptionList [0].text = 'Ford'
                 OptionList [0].value = 1
                 OptionList [1].text = 'Chevy'
                 OptionList [1].value = 2
               }
            }
         }
         -->
      </script>
</head>
   <body>
      <FORM name="Contact"
              action="http://www.jimkeogh.com" method="post">
         <P>
          <select name="OptionList" size="2">
              <option Value=1>Classic
              <option Value=2>Police Cruiser
          </select>
          <BR>
          <INPUT name="Submit"
              value="Submit" type="submit"/>
          <INPUT name="SwitchButton" value="Bikes" type="reset"
              onclick="ResetOptionList(this.value)" >
        </P>
      </FORM>
   </body>
</html>

ch07.indd   158ch07.indd   158 5/2/2005   3:51:51 PM5/2/2005   3:51:51 PM



CHAPTER 7 Forms and Event Handling 159

It is common to display a form with some elements disabled, which prevents the 
user from entering information into the element. A disabled element appears on the 
form, but no information can be entered into the element until it is enabled, usually 
after required information is entered into another element on the form.

You can use a JavaScript function to disable and enable elements on the form. 
This is shown in the next example. Notice that the Email element is disabled 
(Figure 7-11). It doesn’t become enabled until the user enters both a fi rst and last 
name, since the e-mail address is composed of both names in this case.

An element is disabled and enabled by setting the value of the disabled 
attribute. Initially, the disabled attribute of the Email element is set to true, 
which means that the Email element is disabled. Each time there is a change to the 
fi rst and or last name elements, the EnableEmail() function is called, which 
examines the content of the Fname and Lname elements. If a value has been 

Figure 7-11 The Email element is disabled until the fi rst and last names are entered into 
the form.

Disabling Elements

ch07.indd   159ch07.indd   159 5/2/2005   3:51:51 PM5/2/2005   3:51:51 PM



 160 JavaScript Demystifi ed

entered for both, then the Email element is enabled by resetting the disabled 
attribute to false.

<!DOCTYPE html PUBLIC
         "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Disabled</title>
      <script language="Javascript" type="text/javascript">
         <!--
         function EnableEmail()
         {
            with (document.forms.Contact)
            {
               if (Fname.value.length >0
                     && Lname.value.length >0)
               {
                  Email.disabled = false
               }
            }
         }
         -->
      </script>
</head>
   <body>
      <FORM name="Contact"
              action="http://www.jimkeogh.com" method="post">
         <P>
         First Name: <INPUT type="text"
             name="Fname" onchange=" EnableEmail()"/> <BR>
         Last Name: <INPUT type="text"
               name="Lname" onchange=" EnableEmail()"/><BR>
         Email: <INPUT type="text"
                name="Email" disabled=true/><BR>
         <INPUT name="Submit" value="Submit" type="submit"/>
         <INPUT name="Reset" value="Reset" type="reset">
        </P>
     </FORM>
   </body>
</html>

ch07.indd   160ch07.indd   160 5/2/2005   3:51:52 PM5/2/2005   3:51:52 PM



CHAPTER 7 Forms and Event Handling 161

You can use a JavaScript function to change the value of an element that the user can-
not change (a read-only element). This is possible by setting an element’s readonly 
attribute. If the readonly attribute is set to true, then no one, including your 
JavaScript function, can change the value of the element. If the readonly attri-
bute is set to false, then anyone, including the user entering information into the 
form, can change the value of the element.

You can change the value of the readonly attribute from within your JavaScript 
function. This is demonstrated in the next example, which was used earlier in the 
chapter when the JavaScript function created an e-mail address based on the user’s 
fi rst and last names.

Look carefully and you’ll see a new twist in this new JavaScript, however. Notice 
that the Email element is set to readonly. This means that the user cannot enter 
an e-mail address. Each time the value of the Fname and Lname elements change, 
the SetEmail() function is called. This function examines the Fname and 
Lname elements and creates the e-mail address if both names have been entered. 
However, before assigning the e-mail address to the Email element, the function 
resets the readonly attribute to false, thereby enabling the function to write to the 
Email element. After the e-mail address is assigned to the Email element, the 
function sets the readonly attribute back to true, thus preventing the user from 
changing the e-mail address.

<!DOCTYPE html PUBLIC
      "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Read Only</title>
      <script language="Javascript" type="text/javascript">
         <!--
         function SetEmail()
         {
            with (document.forms.Contact)
            {
               if (Fname.value.length >0
                   && Lname.value.length >0)
               {
                  Email.readonly = false
                  Email.value = Fname.value.charAt(0)
                      + Lname.value + '@mcgrawhill.com'
                  Email.readonly = true
               }

Read-Only Elements

ch07.indd   161ch07.indd   161 5/2/2005   3:51:52 PM5/2/2005   3:51:52 PM



 162 JavaScript Demystifi ed

            }
         }
         -->
      </script>
</head>
   <body>
      <FORM name="Contact"
               action="http://www.jimkeogh.com" method="post">
         <P>
         First Name: <INPUT type="text"
             name="Fname" onchange="SetEmail()"/><BR>
         Last Name: <INPUT type="text"
              name="Lname" onchange="SetEmail()"/><BR>
         Email: <INPUT type="text"
              name="Email" readonly=true/><BR>
         <INPUT name="Submit" value="Submit" type="submit"/>
         <INPUT name="Reset" value="Reset" type="reset">
        </P>
     </FORM>
   </body>
</html>

Looking Ahead
You can make a form come alive by using a little JavaScript. A form consists of 
elements, such as radio buttons and check boxes, that are used to gather information 
from a user. An element can contain one or more attributes, such as a name and 
other values that can be changed by statements within a JavaScript.

A JavaScript can be executed when an event occurs while the user is entering 
information into a form. An event is something the user does to the form, such as 
clicking a button, selecting a check box, or moving the cursor away from an ele-
ment. In this chapter, you learned about the various events that occur while the form 
is displayed on the screen.

You identify the event to which you want to respond by using the name of the 
event within the opening tag of the element that is affected by the event. You also 
must assign the name of the JavaScript function that you want called when the event 
occurs.

Two kinds of JavaScript functions can be called: intrinsic functions that are de-
fi ned by JavaScript, such as submit() and reset(), and functions that you 

ch07.indd   162ch07.indd   162 5/2/2005   3:51:53 PM5/2/2005   3:51:53 PM



CHAPTER 7 Forms and Event Handling 163

defi ne usually in the <head> tag of the page. You can access and modify any 
aspect of an element from within a JavaScript function.

In the next chapter, we’ll take a look at cookies—not the kind you eat, but the 
tiny bit of information that you can write to and read from the computer that is used 
to view your web page. As you’ll learn, cookies are used for many purposes, includ-
ing identifying a user who previously visited your web site.

Quiz
 1. True or False. A check box is an element of a form.

 a. True

 b. False

 2. What is the program that processes a form?

 a. Common Gateway Interface

 b. Common Program Interface

 c. Common Web Server Interface

 d. Common Web Server Gateway

 3. What event occurs when an element comes into focus?

 a. onblur

 b. onfocus

 c. onselect

 d. onchange

 4. What event occurs when an element loses focus?

 a. onblur

 b. onfocus

 c. onselect

 d. onchange

 5. What event occurs when a user highlights text in a text fi eld?

 a. onblur

 b. onfocus

 c. onselect

 d. onchange

ch07.indd   163ch07.indd   163 5/2/2005   3:51:53 PM5/2/2005   3:51:53 PM



 164 JavaScript Demystifi ed

 6. What is the purpose of the with statement?

 a. Identifi es variables that are used in a script

 b. Identifi es elements that are used in a script

 c. Identifi es the full document path

 d. Identifi es the current element

 7. True or False. All attributes except the name attribute can be changed 
by a JavaScript.

 a. True

 b. False

 8. True or False. Values of an element cannot be changed once a user clicks 
the Submit button.

 a. True

 b. False

 9. True or False. A JavaScript function can only change attributes of an 
element that calls the JavaScript function.

 a. True

 b. False

 10. An intrinsic function

 a. Must be defi ned in the <head> tag

 b. Must be defi ned in the <body> tag

 c. Must be defi ned by the programmer either to submit or reset the form

 d. Is not defi ned by the programmer

ch07.indd   164ch07.indd   164 5/2/2005   3:51:53 PM5/2/2005   3:51:53 PM



165

CHAPTER
8

Cookies

A cookie is a small piece of information that a web site writes to your hard disk 
when you visit the site. Some site visitors may think that a cookie contains secret 
information used to spy on them or that the information is used to take over their 
computer when they least expect it. In reality, a cookie is plain text that can be used 
for a variety of purposes, but it’s not intended to spy on you (though some web sites 
do track your visits to the site) and it defi nitely will not take over your computer. 
And because of the type of information contained in a cookie, it cannot give your 
computer a virus.

A JavaScript can be used to create cookies whenever someone visits the web 
page that contains the script. A JavaScript can also be used to read cookies stored 
on a user’s computer, and it uses the information stored in a cookie to personalize 
the web page that a user visits.

In this chapter, you’ll learn how to create cookies and read cookies from within 
your web page by using a JavaScript.

ch08.indd   165ch08.indd   165 4/26/2005   10:15:29 AM4/26/2005   10:15:29 AM

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.



 166 JavaScript Demystifi ed

Cookie Basics
Before learning how to use cookies in your JavaScript, let’s take a moment and 
clear up any questions that you may have about cookies. A cookie is written to your 
hard disk by the browser when told to do so by a JavaScript. You, the developer, 
determine the contents of the cookie’s plain text based on the nature of your Java- 
Script application.

Some developers store user ID and password data to a cookie after a user suc-
cessfully logs on to their web site. The cookie is then used for subsequent logons. 
Other developers use a cookie to store the date of the last time the user visited the 
web site. Cookies can be used in countless ways and are limited only by your 
imagination and any restrictions placed by the browser.

The text of a cookie must contain a name-value pair, which is a name and value 
of the information. When you write your JavaScript, you decide on the name and 
the value. Suppose, for example, that a cookie is used to store a user ID; userid 
is the name of the information and ScubaBob is the value. Here’s how this name-
value would be stored in the cookie:

userid='ScubaBob'

You cannot include semicolons, commas, or white space in the name or the value 
unless you precede these characters with the escape character (\). The escape char-
acter tells the browser that the semicolon, comma, or white space is part of the 
name or value and not a special character.

Cookies come in two fl avors: session cookies and persistent cookies. A session 
cookie resides in memory for the length of the browser session. A browser session 
begins when the user starts the browser and ends when the user exits the browser. 
Even if the user surfs to another web site, the cookie remains in memory. However, 
the cookie is automatically deleted when the user exits the browser application. A 
persistent cookie is a cookie that is assigned an expiration date (see “Setting the 
Expiration Date” later in this chapter). A persistent cookie is written to the com-
puter’s hard disk and remains there until the expiration date has been reached; then 
it’s deleted.

Each cookie contains the address of the server that created it. That means that 
only a web page from your server can read your cookie, and the browser prohibits 
a JavaScript from another server from reading the cookie. As a result, you won’t be 
able to read a cookie that was written by another JavaScript application, and an-
other JavaScript application cannot read your cookies.

You can extend the life of a cookie by setting an expiration date, which becomes 
part of the cookie when the cookie is written to the user’s hard disk. It is common 

ch08.indd   166ch08.indd   166 4/26/2005   10:15:32 AM4/26/2005   10:15:32 AM



CHAPTER 8 Cookies 167

for developers to set the expiration date for months or years into the future to track 
succeeding visits by the computer to the web site.

Note that information contained in a cookie identifi es the computer that was used 
to visit your web site, not the person who used the computer to visit your site. 
You’ve probably noticed this if you and another person use the same computer to 
order books from an online bookstore. The cookie created by the online bookstore 
contains information about the last purchase. When you access the site, the online 
bookstore assumes that the person who’s visiting the site is the same person who 
made the last purchase. It then uses the cookie to customize the web page by recom-
mending titles based on the last purchase, unless the specifi c user logs on to the web 
site using an ID and password. In that case, the cookie in the user’s profi le is used, 
and the tracking is done not by computer but by individual user.

You cannot store much information in a cookie, as they’re restricted to 4 kilo-
bytes of information. Furthermore, browser software will usually not retain more 
than 20 cookies per web server. This means that you are limited to 20 cookies stored 
on your hard drive, although some browsers might be able to store more than 20.

Creating a Cookie
Creating a cookie is a pretty easy affair. You simply assign the cookie to the 
window.document.cookie object. The browser automatically writes the 
cookie to memory when it reads this assignment statement in your JavaScript, 
unless you set an expiration date for the cookie, which then causes the cookie to be 
written to the computer’s hard disk.

Every cookie has four parts: a name, an assignment operator, a value, and a semi-
colon. The semicolon is a delimiter and not part of the value. A delimiter is a 
character that indicates where something ends, which in this case is the end of the 
cookie.

This statement creates a cookie, where CustomerName is the name and ABC is 
the value:

window.document.cookie = "CustomerName= ABC;"

Let’s see how this statement is used in a real JavaScript application. The next 
example illustrates how to write a cookie that expires at the end of the browser 
session. The web page in this example displays a form that contains an input for 
the customer’s name, which is the only element that appears on the form. The user 
is prompted to enter a name, which then becomes the value of the cookie. The 

ch08.indd   167ch08.indd   167 4/26/2005   10:15:33 AM4/26/2005   10:15:33 AM



 168 JavaScript Demystifi ed

WriteCookie() JavaScript function is executed when the value of the element 
changes.

The WriteCookie() function contains a statement that tells the browser to 
write the cookie to the hard disk. The function begins with a with statement (see 
Chapter 7) that contains two statements: The fi rst statement causes the cookie to be 
written. The name is CustomerName and the value of the cookie is the value of 
the customer element of the form, which is the name the person entered into the 
form. Notice that the addition operator (+) is used to concatenate portions of the 
string to form the plain text of the cookie. The second statement in the with state-
ment causes an alert dialog box to be displayed, indicating that the cookie was 
written. You can exclude this statement in your JavaScript application because it is 
unnecessary to display anything when writing a cookie. This statement was in-
cluded here simply to tell you when the cookie was written.

<!DOCTYPE html PUBLIC
       "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Write Cookie</title>
      <script language="Javascript" type="text/javascript">
         <!--
               function WriteCookie()
               {
               with (document.CookieWriter)
                  {
                     document.cookie =
                        "CustomerName="+ customer.value+";"
                     alert("Cookie Written")
                  }
               }
         -->
      </script>
   </head>
   <body>
     <form name="CookieWriter" action="" >
       Enter your name:
            <input type="text" name="customer"
               onchange="WriteCookie()"/>
     </FORM>
   </body>
</html>

ch08.indd   168ch08.indd   168 4/26/2005   10:15:33 AM4/26/2005   10:15:33 AM



CHAPTER 8 Cookies 169

Reading a cookie is just as simple as writing one, because the value of the 
window.document.cookie object is the cookie. When the browser sees 
the window.document.cookie statement within a JavaScript, the browser 
copies the cookie to the window.document.cookie object. You can then use 
window.document.cookie whenever you want to access the cookie.

The following example shows how to write JavaScript that reads a cookie. You’ll 
notice that a form named CookieReader is displayed that contains two elements: 
a text box that will contain the value of the cookie and a button that, when clicked, 
executes the ReadCookie() function, which reads the cookie.

<!DOCTYPE html PUBLIC
            "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Read Cookie</title>
      <script language="Javascript" type="text/javascript">
         <!--
            function ReadCookie()
            {
               with (document.CookieReader)
              {
                  if (document.cookie == "")
                  {
                     cookiecontent.value = "No cookies"
                  }
                  else
                  {
                     cookiecontent.value =
                            document.cookie.split('=')[1]
                  }
              }
            }
         -->
      </script>
</head>
   <body>
   <form name="CookieReader" action="" >
       Cookie: <input type="text" name="cookiecontent"  />

Reading a Cookie

ch08.indd   169ch08.indd   169 4/26/2005   10:15:33 AM4/26/2005   10:15:33 AM



 170 JavaScript Demystifi ed

         <BR>
         <INPUT name="Reset"
              value="Get Cookie" type="button"
              onclick="ReadCookie()"/>
     </FORM>
   </body>
</html>

The ReadCookie() function begins with a with statement that contains other 
statements that are necessary to read and display the cookie. The fi rst statement 
in the with statement determines whether any cookies exist by comparing the value 
of the cookie object to "", which is another way of saying NULL—or nothing. If no 
cookie is found, the value of the cookiecontent text box is set to No Cookies; 
otherwise, a cookie exists and the browser assigns the cookie object the name-pair 
value for the cookie.

You probably noticed something strange within the statement that causes the 
cookie to be read: split('=')[1]. This might look odd, but you actually learned 
about split in Chapter 6. Let’s refresh your memory.

The document.cookie is assigned the cookie by the browser. The cookie is 
plain text, which is a string. The split() is a string method that divides the string 
into an array that consists of two elements based on the character passed to the 
split() method.

In this case, the split() method is being told to fi nd the = character in the 
cookie, and then take all the characters to the left of the = and store them into array 
element [0]. Next the split() method takes all the characters from the right of 
the = up to but not including the semicolon, and assign those characters to array 
element [1]. It then takes everything up to the next =, including the semicolon. The 
semicolon separates cookies and the equal sign separates the name of the cookie 
with the cookie’s value. You need to split at the semicolon, and then split on = to get 
all the values.

Here’s the cookie:

"CustomerName=ScubaBob;"

The split() function divides the text of the cookie into the following:

Array[0] = "CustomerName"
Array[1] = "ScubaBob"

This statement assigns the value of Array[1] to the value of the cookiecontent 
text box on the form. The result is that ScubaBob is displayed in the text box, 
assuming that ScubaBob is the value of the cookie.

ch08.indd   170ch08.indd   170 4/26/2005   10:15:34 AM4/26/2005   10:15:34 AM



CHAPTER 8 Cookies 171

You can extend the life of a cookie beyond the current browser session by setting an 
expiration date and saving the expiration date within the cookie. The expiration 
date is typically an increment of the current date. For example, you might say that 
the cookie expires three months from the day the cookie was created.

A date is stored in a variable of a Date data type. You’ll see how this is done in 
the next code example. A Date variable contains a variety of methods that enable 
you to access various components of the date, such as month and year.

For now, we’ll concern ourselves with three of these methods, which we’ll use in 
the next example to set the expiration date three months from the current month. 
These are getMonth(), setMonth(), and toGMTString().

The getMonth() method returns the current month based on the system clock 
of the computer running the JavaScript. The setMonth() method assigns the 
month to the Date variable. The toGMTString() method returns the value of the 
Date variable to a string that is in the format of Greenwich Mean Time, which is 
then assigned to the cookie.

Let’s set an expiration date for a cookie using these three methods. You’ll notice 
that this is basically the same example you used to create your fi rst cookie; how-
ever, a few new statements in the WriteCookie() JavaScript function are used 
to create and write an expiration date.

<!DOCTYPE html PUBLIC
    "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Write Cookie with Expiration Date</title>
      <script language="Javascript" type="text/javascript">
         <!--
            function WriteCookie()
            {
               var expireDate = new Date
               expireDate.setMonth(expireDate.getMonth()+3)
               with (document.CookieWriter)
               {
                 var CustomerName = customer.value
                 document.cookie =
                 "CustomerName1="+ CustomerName+";expires="
                    +expireDate.toGMTString()

Setting the Expiration Date

ch08.indd   171ch08.indd   171 4/26/2005   10:15:34 AM4/26/2005   10:15:34 AM



 172 JavaScript Demystifi ed

                 alert("Cookie Written")
               }
            }
         -->
      </script>
    </head>
    <body>
    <form name="CookieWriter" action="" >
       Enter your name: <input type="text"
              name="customer" onchange="WriteCookie()" />
     </FORM>
   </body>
</html>

The fi rst statement within the WriteCookie() function declares a variable 
called expireDate and assigns it a reference to a new Date data type. Only dates 
can be assigned to this variable.

The second statement calls the getMonth() method to return the current month, 
which is then increased by three months. (So, for example, if the current month is 
May, the new month setting will be August.) The new month setting is passed to the 
setMonth() method, which sets the expiration date three months from the current 
date. The value of the expireDate value is then converted to a string in the GMT 
format by the toGMTString() method.

Notice the statement that creates the cookie (document.cookie). Another 
name-pair value appears after the name-value pair of the cookie. This is the ex-
pires name-value pair, where expires is the name and the value is returned by the 
toGMTString() method.

The browser then writes the entire string assigned to the document.cookie 
to the hard disk. The cookie will remain on the hard disk for three months, as long 
as the system clock on the computer isn’t changed.

Deleting a Cookie
Cookies are automatically deleted when either the browser session ends or its ex-
piration date has been reached. However, you can remove a cookie at any time by 
setting its expiration date to a date previous to the current date. This forces the 
browser to delete the cookie.

The most effi cient way to reset the expiration date is to use the getDate() 
method of the Date variable, then subtract 1 from the date returned by this method, 
and then assign the difference to the Date variable.

ch08.indd   172ch08.indd   172 4/26/2005   10:15:34 AM4/26/2005   10:15:34 AM



CHAPTER 8 Cookies 173

Here’s how this is done. Assume that the expire variable is a Date variable. 
The getDate() method returns the system date on the computer that is running 
the JavaScript. We subtract 1 from the current date and pass it to the setDate() 
method, which assigns the new date to the expireDate variable. The expire-
Date variable is then converted to a string and concatenated to the cookie string, 
which is then written to the hard disk by the browser.

expireDate.setDate(expireDate.getDate()-1)

The following example demonstrates how to delete a cookie. It begins by dis-
playing a form that contains a button. When the button is clicked, the JavaScript 
DeleteCookie() function executes by calculating the new date and passing the 
expireDate variable to the Date variable. The new expiration date is assigned to 
the cookie string. The browser then writes the cookie, notices that the date is ex-
pired, and deletes the cookie.

<!DOCTYPE html PUBLIC
    "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Delete Cookie</title>
      <script language="Javascript" type="text/javascript">
         <!--
            function DeleteCookie()
            {
               expireDate= new Date
               expireDate.setDate(expireDate.getDate()-1)
               with (document.CookieWriter)
               {
                  var CustomerName = customer.value
                  document.cookie =
                     "CustomerName1="+ CustomerName+";
                       expires="+expireDate.toGMTString()
                  alert("Cookie Deleted")
               }
            }
         -->
      </script>
    </head>
    <body>
       <form name="CookieWriter" action="" >
Enter your name: <input type="text" name="customer" />
          <INPUT name="Reset" value=
             "Delete Cookie" type="button"

ch08.indd   173ch08.indd   173 4/26/2005   10:15:35 AM4/26/2005   10:15:35 AM



 174 JavaScript Demystifi ed

                onclick="DeleteCookie()"/>
       </FORM>
    </body>
</html>

Personalizing an Experience Using a Cookie
As you’ve probably experienced for yourself, cookies are used a lot by developers 
to personalize your experience while visiting a web site. For example, a cookie 
might be used to store your name and data about what types of information you’ve 
viewed on the site in the past. The next time you visit the site, a JavaScript reads the 
cookie and displays a web page that contains features that might be of interest to 
you. Developers would know your preferences by monitoring your selections from 
previous visits.

A common use of cookies by e-commerce web sites is to point out merchandise 
that was added to the site since the user’s last visit. This is accomplished by storing 
the date of the last user visit in a cookie. On subsequent visits, the cookie is read 
and the date compared to the current date. The JavaScript then notifi es the user 
whether any new merchandise of interest has been received since his or her last 
visit.

The next example shows how this is done. For the sake of this example, we as-
sume that a cookie is already created and the value of the cookie is a date in the 
yyyy,mm,dd format. We’re also using a button on a form to trigger the JavaScript 
function. In a real application, the JavaScript function would be called from the 
onload event so that the web page could be personalized before being shown to 
the user.

The UpdateNotice() function is called when the button is clicked. This 
function determines whether a cookie exists by comparing the value of the cookie 
object to "", which is nothing (NULL). Notice that in the code we used the not 
operator to say, “the value of the cookie is not equivalent to NULL.” In other words, 
there is a cookie.

If the cookie exists, we then declare a new date variable and declare the 
CookiePrevVisit variable, initializing it with the value of the cookie. You saw 
how this is done previously in this chapter.

The value of the cookie is the date in the yyyy,mm,dd format. Remember that the 
value of a cookie is a string. We must convert the string to a date in order to compare 
dates. You convert a string that is a date format to a date by passing it to the con-
structor of the Date object. This returns a date:

ch08.indd   174ch08.indd   174 4/26/2005   10:15:35 AM4/26/2005   10:15:35 AM



CHAPTER 8 Cookies 175

var PreviousVisit = new Date(CookiePrevVisit)

The getTime() method of the Date variables is then called to return the time 
value of the dates. These are then compared. If Today is greater than the PreviousVisit, 
we know that the user has returned and we display an alert dialog box that contains 
a welcome back message. If this was a real application, we would perform addi-
tional comparisons to determine whether we received any new merchandise that 
might be of interest to the user since his or her last visit; if so, we’d create a web 
page that highlights those items. The split() function assumes there’s only one 
cookie.

<!DOCTYPE html PUBLIC
             "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
   <head>
      <title>New Features</title>
      <script language="Javascript" type="text/javascript">
      <!--
          function UpdateNotice()
          {
            if(document.cookie != "")
            {
               var Today = new Date
               var CookiePrevVisit =
                       document.cookie.split('=')[1]
               var PreviousVisit =
                        new Date(CookiePrevVisit)
               if (Today.getTime() >
                      PreviousVisit.getTime())
               {
                  alert('Welcome back.
                            Checkout these new items.')
               }
             }
             else
             {
                 alert('No cookies')
             }
            }
            -->
      </script>
   </head>
   <body>
      <form name="CookieWriter" action="" >

ch08.indd   175ch08.indd   175 4/26/2005   10:15:36 AM4/26/2005   10:15:36 AM



 176 JavaScript Demystifi ed

          <INPUT name="Reset" value="New Visit"
               type="button" onclick=" UpdateNotice()"/>
       </FORM>
   </body>
</html>

Looking Ahead
Cookies provide a convenient way to keep track of visitors to your web site and to 
personalize their experience by storing and retrieving small amounts of information 
on the visitor’s computer. Cookies don’t do any harm to a user’s computer, because 
a cookie is simply plain text and cannot contain viruses or other kinds of destructive 
programs.

Depending on the needs of your application, your cookies can remain on your 
visitor’s computer until the browser session is completed or until the expiration date 
of the cookie is reached. You set the expiration date. If you don’t set an expiration 
date in JavaScript, the cookie is automatically deleted when your visitor exits the 
browser.

Information is stored as a name-value pair. You provide a name for the informa-
tion and the value is the information. Although you can create multiple cookies, the 
browser is required to accept only 20 from each web server.

Your cookies can be accessed only by applications from your web server. Ap-
plications from other web servers cannot access your cookie. Likewise, you cannot 
access a cookie created by an application from another server.

With cookies under your belt, it is time to move on to another cool feature— 
controlling browser windows from within a JavaScript.

Quiz
 1. True or False. You cannot delete a cookie.

 a. True

 b. False

 2. A cookie takes the format of a

 a. Pair-name value

 b. Pair-value name

ch08.indd   176ch08.indd   176 4/26/2005   10:15:36 AM4/26/2005   10:15:36 AM



CHAPTER 8 Cookies 177

 c. Value-name pair

 d. Name-value pair

 3. The best time to read a cookie is

 a. onblur

 b. onload

 c. onselect

 d. onchange

 4. The expiration date is stored in a cookie as

 a. A GMT string

 b. A Date data type

 c. A digital sequence type

 d. A sequential numeric type

 5. The best time to create a cookie is

 a. onblur

 b. onload

 c. Any time it make sense to do so while a visitor is visiting your web site

 d. onchange

 6. A cookie is

 a. A variable

 b. A Date variable

 c. A text variable

 d. An object

 7. True or False. You can use a cookie to explore a visitor’s hard disk.

 a. True

 b. False

 8. True or False. Your JavaScript actually writes a cookie to a visitor’s hard 
disk if you set an expiration date for the cookie.

 a. True

 b. False

 9. True or False. The address of your web server is included in a cookie.

 a. True

 b. False

ch08.indd   177ch08.indd   177 4/26/2005   10:15:36 AM4/26/2005   10:15:36 AM



 178 JavaScript Demystifi ed

 10. Information in a cookie identifi es

 a. The person who is visiting your web site

 b. The computer used by the person who is visiting your web site

 c. The Internet service provider used by the person who is visiting your 
web site

 d. The visitor’s browser

ch08.indd   178ch08.indd   178 4/26/2005   10:15:36 AM4/26/2005   10:15:36 AM



179

CHAPTER
9

Browser 
Windows

Throughout this book, you’ve learned how to use JavaScript to control how your 
web pages are displayed and handled in a browser window. In this chapter, you’ll 
learn how to manipulate the browser window itself using a JavaScript.

You can use JavaScript to open a new browser window while your JavaScript is 
running, to determine the size of the window, to determine whether or not the win-
dow has a toolbar or scroll bar, and to set up other styles that you’ve seen on many 
browsers windows. Once you’ve displayed all the windows needed for your appli-
cation, you can use JavaScript to change the content of each of them dynamically.

ch09.indd   179ch09.indd   179 5/2/2005   3:49:24 PM5/2/2005   3:49:24 PM

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.



 180 JavaScript Demystifi ed

Open the Window, Please!
You’ve probably visited web site pages in which you click a button and a new win-
dow opens. Some web sites don’t even wait for you to do anything—windows open 
“magically” when the web page loads or unloads. Of course, those windows usually 
display advertisements. You’ll learn how this is done in this section.

The browser window is an object, similar to other objects that you’ve learned 
about in previous chapters. Whenever you want to do something with the browser 
window, you must reference a window and then reference the property or method 
of the window that you want to access. For example, here’s how to open an empty 
browser window that uses the default settings:

MyWindow = window.open()

The open() method returns a reference to the new window, which is assigned to 
the MyWindow variable. You then use this reference any time that you want to do 
something with the window while your JavaScript runs.

A window has many properties, such as its width, height, content, and name—to 
mention a few. You set these attributes when you create the window by passing 
them as parameters to the open() method:

• The fi rst parameter is the full or relative URL of the web page that will 
appear in the new window.

• The second parameter is the name that you assign to the window.

• The third parameter is a string that contains the style of the window. 
Table 9-1 shows a list of styles that you can set.

Let’s say that you want to open a new window that has a height and a width of 
250 pixels and displays an advertisement that is an image. All other styles are turned 
off. Here’s how you’d do this:

MyWindow = window.open('MyWebSite/MyAd.jpg',
          'myAdWin', 'status=0, toolbar=0, location=0,
           menubar=0, directories=0, resizable=0,
           height=250, width=250')

The following example shows how the previous method is used in a web page 
to open a window. In this example, a web page is displayed in a new window 
(Figure 9-1).

ch09.indd   180ch09.indd   180 5/2/2005   3:49:32 PM5/2/2005   3:49:32 PM



CHAPTER 9 Browser Windows 181

<!DOCTYPE html PUBLIC
            "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Open New Window</title>
      <script language="Javascript" type="text/javascript">
         <!--
         function OpenNewWindow() {
            MyWindow = window.open('MyWebSite/MyAd.jpg',
                'myAdWin', 'status=0, toolbar=0, location=0,
                 menubar=0, directories=0, resizable=0,
                 height=250, width=250')
         }
         -->
      </script>
</head>
   <body>
      <FORM action="http://www.jimkeogh.com" method="post">
         <P>
         <INPUT name="OpenWindow" value="Open Window"
                type="button" onclick="OpenNewWindow()"/>
         </P>
     </FORM>
   </body>
</html>

Style Description Values (on=1, off=0)

status The status bar status=1, status=0

toolbar The standard browser 
toolbar

toolbar=1, toolbar=0

location The Location entry fi eld location=1, location=0

menubar The menu bar menubar=1, menubar=0

directories The standard browser 
directory buttons

directories =1, directories =0

resizable Allow/disallow the 
window to be resized

resizable=1, resizable=0

scrollbars Enable the scrollbars scrollbars=1, scrollbars=0

height The height of the 
window in pixels

height=250

width The width of the window 
in pixels

width=250

Table 9-1 Window Styles

ch09.indd   181ch09.indd   181 5/2/2005   3:49:32 PM5/2/2005   3:49:32 PM



 182 JavaScript Demystifi ed

Giving the New Window Focus
Usually, only one window is displayed when you visit a web site, although some 
sites display multiple windows fi lled with ads. The traditional web site displays the 
initial web page in a window and gives that window focus automatically. This 
means that anything you type or click affects the window that has focus—that is, 
the window that appears up front on the screen.

The most recently opened window—that is, the last window opened—usually 
has focus by default. In the previous example (Figure 9-1), two windows are dis-
played. The fi rst window contains a form and your JavaScript. The second is a new 
window that the JavaScript opened. The second window has focus unless and until 
the user selects a different window or JavaScript sets focus to another window.

Figure 9-1 A new window is opened by calling the open() method of the window object.

ch09.indd   182ch09.indd   182 5/2/2005   3:49:33 PM5/2/2005   3:49:33 PM



CHAPTER 9 Browser Windows 183

You give a new window focus by calling the focus() method of the new win-
dow after the new window opens. As shown next, the MyWindow variable receives 
a reference to the new window when window.open() is called:

MyWindow.focus()

The next example opens a new window but gives the fi rst open window focus. 
This is known as a pop-down window or a pop-back window. Any keystrokes the 
user makes will affect the fi rst open window and not the new window. This can be 
an annoying web site feature, because it’s contrary to the way window focus usu-
ally works; plus, the visitor may not even be aware of the fi rst open window because 
it is obscured by the second open window.

<!DOCTYPE html PUBLIC
           "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
  <title>Open New Window</title>
    <script language="Javascript" type="text/javascript">
      <!--
       function OpenNewWindow() {
        MyWindow = window.open('MyWebSite/MyAd.jpg', 'myAdWin',
          'status=0, toolbar=0, location=0, menubar=0,
           directories=0, resizable=0, height=250, width=250')
         this.focus()
       }
      -->
      </script>
</head>
   <body>
      <FORM action="http://www.jimkeogh.com" method="post">
         <P>
         <INPUT name="OpenWindow" value="Open Window"
                type="button" onclick="OpenNewWindow()"/>
         </P>
     </FORM>
   </body>
</html>

ch09.indd   183ch09.indd   183 5/2/2005   3:49:33 PM5/2/2005   3:49:33 PM



 184 JavaScript Demystifi ed

Placing the Window into Position 
on the Screen

The browser determines the location on the screen where a new window will be 
displayed; however, you can specify the location by setting the left and top 
properties of the new window when you create it. The left and top properties 
create the x and y coordinates, in pixels, of the upper-left corner of the new window.

The following example shows how to position a new window in the upper-left 
corner of the screen by setting the left property to 0 and the top property to 0 
(Figure 9-2). This example displays an Open Window button on the screen. A new 
window is created on top of the current window after the button is clicked.

<!DOCTYPE html PUBLIC
           "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
   <head>
      <title>Position New Window</title>
      <script language="Javascript" type="text/javascript">
      <!--
         function OpenNewWindow() {
            MyWindow = window.open('MyWebSite/MyAd.jpg',
                 myAdWin', 'width=250,height=250,left=0,top=0')
         }
      -->
      </script>
   </head>
   <body>
      <FORM action="http://www.jimkeogh.com" method="post">
         <P>
         <INPUT name="OpenWindow" value="Open Window"
              type="button" onclick="OpenNewWindow()"/>
         </P>
      </FORM>
    </body>
</html>

It’s important you realize that because screen resolution (the number of pixels 
that appear on the screen) settings differ from computer to computer, when you 
specify pixel locations while positioning a new window on the screen at your com-
puter, you may set left and top properties that will appear differently on other 
users’ computers. Some computers use a higher (more pixels) or lower (less pixels) 
screen resolution than you use on your computer. The pixel settings that you specify 

ch09.indd   184ch09.indd   184 5/2/2005   3:49:33 PM5/2/2005   3:49:33 PM



CHAPTER 9 Browser Windows 185

for the position of your new window will appear differently if a user’s screen is set 
at a resolution that differs from yours.

Let’s say, for example, that you want the upper-left corner of your new window 
to appear at pixel 160—that is, 160 pixels from the left edge of the screen. If the 
resolution of your screen is 640 pixels wide, then the left corner of the new window 
appears about a quarter of the way across the screen. However, if the resolution of 
another user’s screen is 1024 pixels wide, then the left corner of the new window 
appears about 15 percent of the way across the screen. This difference in where the 
window appears might be meaningful to the presentation of your web page, de-
pending on your application, so it’s important that you try to account for its placement 
on different computer screens.

For this reason, some JavaScript developers specify relative positions when set-
ting the left and top properties of a new window. To defi ne a relative position, 
you add or subtract pixels based on the screen resolution to make the window ap-
pear where you want it to.

You can discern the screen resolution by using the screen object and its 
methods. The screen object is available in Netscape Navigator and Microsoft 

Figure 9-2 Place the new window in the upper-left corner of the screen by setting the 
left and top properties to 0.

ch09.indd   185ch09.indd   185 5/2/2005   3:49:34 PM5/2/2005   3:49:34 PM



 186 JavaScript Demystifi ed

Explorer version 4 or later. Table 9-2 lists the properties that are available to the 
screen object.

The two properties used to set the relative position of the left and top proper-
ties of the window are the screen.width and screen.height properties. 
These properties contain the number of pixels across (the x value) and down (the y 
value) the screen, respectively. By knowing this information, you can add or sub-
tract pixels from these values to set the left and top properties of the window 
respective to the screen resolution. The amount that you add or subtract depends on 
the size of your window and where you want to position the window on the 
screen.

Changing the Contents of a Window
Sometimes you’ll want to change the content of an open window rather than having 
to close and open a new window each time that you want to display something dif-
ferent in the window. Suppose, for example, that you want the window to display a 
product each time a customer selects the item on your web page.

The secret to changing the content of a window is to call the open() method 
using the same window name each time you change the content of the window. 
Suppose that the window is called MyWindow. The fi rst time a customer selects an 
item, you open a new window, calling it MyWindow and displaying the appropriate 
product in the window. The next time a customer selects an item, you again open a 
new window, calling it MyWindow and displaying a different product. Since both 
windows have the same name, the browser replaces the fi rst window with the sec-
ond window. The result is that the window appears to remain open, but the content 
of the window changes.

The following example shows how this is done. Two buttons appear on this 
page; each button displays an advertisement in a new window by calling the 
OpenNewWindow() JavaScript function and passing reference to the advertise-

Properties Description

availHeight Returns the height of the available screen in pixels

availWidth Returns the width of the available screen in pixels

colorDepth Returns the bit depth if a color palette is used

height Returns the height of the display screen

pixelDepth Returns the color resolution as bits per pixel

width Returns the width of the display screen

Table 9-2 Properties of the Screen Object

ch09.indd   186ch09.indd   186 5/2/2005   3:49:34 PM5/2/2005   3:49:34 PM



CHAPTER 9 Browser Windows 187

ment to the function. The OpenNewWindow() function is defi ned in the <head> 
tag. You’ll notice that the same function was used in the “Giving the New Window 
Focus” section earlier in this chapter, with one exception: in this example, the con-
tent of the new window is passed as a parameter to the function, which enables you 
to change the content of the window each time the function is called.

<!DOCTYPE html PUBLIC
            "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Changing Content of Window</title>
      <script language="Javascript" type="text/javascript">
         <!--
         function OpenNewWindow(Ad) {
            MyWindow = window.open(Ad, 'myAdWin', 'status=0,
              toolbar=0, location=0, menubar=0, directories=0,
              resizable=0, height=250, width=250')
         }
         -->
      </script>
</head>
   <body>
      <FORM action="http://www.jimkeogh.com" method="post">
        <P>
          <INPUT name="ProductA" value="Product A"
            type="button"
            onclick="OpenNewWindow('MyWebSite/MyAd1.jpg')"/>
          <INPUT name=" ProductB" value="Product B"
            type="button"
            onclick="OpenNewWindow('MyWebSite/MyAd2.jpg')"/>
        </P>
     </FORM>
   </body>
</html>

Closing the Window
You can close any window that you open by calling the window’s close() 
method from within your JavaScript. As you’ll recall, the open() method returns 
a reference to the newly opened window, which is a window object. You use the 
reference to call the close() method. This tells the browser which window you 
want to close.

The following example shows how to use the close() method. One button is 
used both to open and close the window (Figure 9-3). The button is labeled “Click 

ch09.indd   187ch09.indd   187 5/2/2005   3:49:35 PM5/2/2005   3:49:35 PM



 188 JavaScript Demystifi ed

for Window” at fi rst. The Window() JavaScript function is called when the button 
is clicked; this function is defi ned in the <head> tag.

<!DOCTYPE html PUBLIC
        "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Close Window</title>
      <script language="Javascript" type="text/javascript">
         <!--
           var WindowStatus
           function Window() {
              if (WindowStatus != '1')
              {
                 MyWindow = window.open('MyWebSite/MyAd1.jpg',
                  'myAdWin', 'status=0, toolbar=0,
                    location=0, menubar=0, directories=0,
                    resizable=0, height=250, width=250')

TIP 

Figure 9-3 The same button can be clicked to open and close the window.

ch09.indd   188ch09.indd   188 5/2/2005   3:49:35 PM5/2/2005   3:49:35 PM



CHAPTER 9 Browser Windows 189

                 WindowStatus ='1'
              }
              else
              {
                 MyWindow.close()
                 WindowStatus = '0'
              }
            }
         -->
       </script>
</head>
   <body>
      <FORM action="http://www.jimkeogh.com" method="post">
         <P>
          <INPUT name="OpenWindow" value="Click for Window"
           type="button" onclick="Window()"/>
         </P>
     </FORM>
   </body>
</html>

Prior to the function defi nition, we declare a variable called WindowStatus, 
which is used within the function to determine whether the window is opened or 
closed. When the function is called, the browser is told to determine whether the 
WindowStatus variable is a value other than 1. Since we didn’t initialize this 
variable, its value is not 1, and therefore statements within the if code block are 
executed.

The fi rst statement opens a new window. The second statement gives the new 
window focus. The third statement assigns 1 to the WindowStatus variable, in-
dicating that the window is opened.

Basically, the same process occurs the next time the button is clicked. However, 
the value of the WindowStatus variable is 1. This means that statements within 
the if code block are skipped and statements within the else code block are 
executed. Two statements are included within the else code block. The fi rst state-
ment calls the close() method, which closes the new window. The second 
statement resets the value of the WindowStatus variable to 0. This indicates that 
the window is closed.

TIP TIP You can also use the window name blank, which is a reserved word, to cause 
a window to open in a separate window. This is called an unnamed window.

ch09.indd   189ch09.indd   189 5/2/2005   3:49:35 PM5/2/2005   3:49:35 PM



 190 JavaScript Demystifi ed

”Magically” Scrolling a Web Page
In some web sites, the web page “magically” scrolls to a section that hawks a new 
feature on the site. Actually, no magic is involved; instead, a JavaScript is used to 
scroll the web page automatically by calling the scrollTo() method of the win-
dow object, or a link led directly to a relative link in the page.

The scrollTo() method requires two parameters, which are the x and y co-
ordinates of the top-left corner of the viewable area of the web page that you want 
to display. Each parameter is an integer and represents the coordinate in pixels.

NOTE NOTE The scrollTo() method works only if the window’s scrollbar 
property is set to true and if the area specifi ed in the coordinate is not viewable 
before the scrollTo() method is called by your JavaScript; otherwise, there 
won’t be any need to scroll the web page.

The following example illustrates how to call the scrollTo() method. This 
HTML document is intentionally short so you can easily see how this works. The 
entire web page is viewable; therefore, scrolling has no effect. However, you can 
copy the JavaScript into a longer web page if you want to see how scrolling 
works.

A button is displayed in this example that, when selected, calls the Top() 
JavaScript function to scroll to the top of the web page. This function, which is 
defi ned in the <head> tag, calls the scrollTo() function, passing it coordi-
nate 0,0—the upper-left corner of the web page, which means that the top of the 
web page is displayed.

Notice that self is used to reference the window when calling the scrollTo() 
function. This refers to the window that contains the button. You could replace 
self with a reference to another window that you opened, which would cause the 
other window to scroll when the button is clicked.

<!DOCTYPE html PUBLIC
          "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Scrolling</title>
      <script language="Javascript" type="text/javascript">
         <!--
           function Top() {
           self.scrollTo(0,0)
         }
         -->
      </script>

ch09.indd   190ch09.indd   190 5/2/2005   3:49:36 PM5/2/2005   3:49:36 PM



CHAPTER 9 Browser Windows 191

</head>
   <body>
      <FORM action="http://www.jimkeogh.com" method="post">
         <P>
           <INPUT name="GoToTop" value="Go To Top"
              type="button" onclick="Top()"/>
         </P>
     </FORM>
   </body>
</html>

Figure 9-4 A JavaScript can be used to open multiple windows.

Opening Multiple Windows at Once
Some web sites bombard you with windows as soon as you enter the site. New 
windows pop up all over the screen. This is a nasty and annoying feature, because 
most users probably don’t know how to get out of this maze. Nevertheless, the fol-
lowing example shows you how to open multiple windows onscreen.

This example displays fi ve new windows when the Windows Gone Wild button 
is clicked, which is at least better than those annoying web sites that launch a bat-
tery of windows when the onload event occurs (Figure 9-4).

ch09.indd   191ch09.indd   191 5/2/2005   3:49:36 PM5/2/2005   3:49:36 PM



 192 JavaScript Demystifi ed

The Windows Gone Wild button calls the Launch() JavaScript function, which 
uses a for loop to execute the open() method fi ve times to open fi ve empty win-
dows. Notice that the fi rst parameter of the open() method is empty because we 
want to display blank windows. You can, of course, insert a URL for the content 
you want to display in the window.

<!DOCTYPE html PUBLIC
          "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Open Multiple Windows</title>
   <script language="Javascript" type="text/javascript">
   <!--
      function Launch() {
         for (i=0; i < 5;i++)
         {
            Win =
               window.open('','win'+i,'width=50,height=50')
         }
      }
      -->
   </script>
</head>
   <body>
      <FORM action="http://www.jimkeogh.com" method="post">
         <P>
           <INPUT name="WindowsGoneWild"
            value="Windows Gone Wild" type="button"
            onclick="Launch()"/>
         </P>
     </FORM>
   </body>
</html>

Creating a Web Page in a New Window
You can place dynamic content into a new window by using the document 
.write() method to write HTML tags to the new window. Though these sorts of 
script are a little tricky to write, you’ll develop the knack for doing this after study-
ing the next example.

ch09.indd   192ch09.indd   192 5/2/2005   3:49:36 PM5/2/2005   3:49:36 PM



CHAPTER 9 Browser Windows 193

This example displays a button that, when clicked, calls the Window() 
JavaScript function that creates a new window and writes HTML tags to the new 
window. The HTML tags are passed a string to the MyWindow.document 
.write() method. MyWindow is referenced to the new window object that was 
created by the open() method. The document is the document object contained 
within the new window. The write() method is a method of the document object.

Anything written by the write() method appears in the new window. Remem-
ber that when the browser sees an HTML tag, the browser interprets it according to 
HTML rules.

Look carefully, and you’ll notice that the string passed to all the write() meth-
ods contains HTML tags that display a form in the new window. The form consists 
of an input text box, where the customer is expected to enter a name. Also on the 
form is a Submit Query button that, when clicked, sends the customer name to the 
server CGI application for processing (Figure 9-5).

The most effi cient way to create dynamic content is fi rst to create the content as 
a web page—that is, write the HTML tags as if the content were being written for 
your home page. Once you are satisfi ed with the content, place double quotation 
marks around each line to create a string; then pass each string to the write() 
method after the new window is opened.

Figure 9-5 Dynamic content of a new window can be created by a JavaScript.

ch09.indd   193ch09.indd   193 5/2/2005   3:49:37 PM5/2/2005   3:49:37 PM



 194 JavaScript Demystifi ed

Note that some HTML tags contain a forward slash (/), which has a particular 
meaning to the browser. You’ll need to precede these with a backslash (\), which 
tells the browser to ignore the special meaning.

<!DOCTYPE html PUBLIC
          "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Changing Content of Window</title>
      <script language="Javascript" type="text/javascript">
         <!--
         function Window() {
          MyWindow = window.open
            ('', 'myWin', 'height=250, width=250')
          MyWindow.document.write('<html>')
          MyWindow.document.write('<head>')
          MyWindow.document.write
                 ('<title> Writing Content<\/title>')
          MyWindow.document.write('<\/head>')
          MyWindow.document.write('<body>')
          MyWindow.document.write
            ('<FORM action="http://www.jimkeogh.com"
              method="post">')
          MyWindow.document.write('<P>')
          MyWindow.document.write
            'Customer:<INPUT name="FirstName"
               type="text" \/>')
          MyWindow.document.write('<BR>')
          MyWindow.document.write
            ('<INPUT name="submit" type="submit" \/>')
          MyWindow.document.write('<\/P>')
          MyWindow.document.write('<\/FORM>')
          MyWindow.document.write('<\/body>')
          MyWindow.document.write('<\/html>')
          MyWindow.focus()
        }
       -->
      </script>
</head>
   <body>
      <FORM action="http://www.jimkeogh.com" method="post">
         <P>
          <INPUT name="OpenWindow" value="Open Window"
           type="button" onclick="Window()"/>

ch09.indd   194ch09.indd   194 5/2/2005   3:49:37 PM5/2/2005   3:49:37 PM



CHAPTER 9 Browser Windows 195

         </P>
     </FORM>
   </body>
</html>

Creating dynamic content in this way is possible only if you “own” the new win-
dow and its contents. For example, you can’t load a web URL, such as www.cnn 
.com, and write to or read any content within it, because this is a security violation 
and the browser won’t allow it. You also can’t place content from a window in one 
domain to a window in another domain. If two windows are located in different 
domains, you must use JavaScript to set them to the same domain before they can 
communicate in this manner.

You can open a new window by calling the window.open() method from with-
in your JavaScript. The window.open() method causes the browser to open a 
new window on the screen. You don’t need to pass the window.open() method 
any parameters if you want to use the standard windows settings and position as 
determined by the browser.

However, you can specify the size and the style of the window by passing the 
window.open() method the appropriate parameters. The window.open() 
method accepts three parameters: a reference to the content of the new window, the 
name of the new window, and a string that sets various window styles that include 
the size and position of the window.

The position of the window can be set explicitly by specifying the pixel coor-
dinates for the upper-left corner of the window. Some JavaScript developers set 
the upper-left corner of the new window relative to the resolution of the screen 
by adding or subtracting pixels from the screen.width and screen.height 
parameters.

After opening a new window, you can use the document.write() method to 
write HTML tags and text to the new window, enabling you to use JavaScript to 
create dynamic content for windows—but only if the windows are in the same 
domain.

Now that you have a good understanding of how to create new windows and dy-
namic content for those windows, it’s time to learn a powerful tool that JavaScript 
developers use to validate information that is provided by visitors to their web sites. 
You’ll learn about regular expressions in Chapter 10.

Looking Ahead

ch09.indd   195ch09.indd   195 5/2/2005   3:49:37 PM5/2/2005   3:49:37 PM



 196 JavaScript Demystifi ed

Quiz
 1. True or False. The window.open() method requires arguments to open 

a new window.

 a. True

 b. False

 2. You can position a new window on screen by setting the

 a. width and height properties

 b. left and top properties

 c. resizable property

 d. status property

 3. You can open a new window on top of other windows by calling

 a. upper()

 b. up()

 c. focus()

 d. next()

 4. You determine the resolution of the screen by accessing

 a. left and top properties

 b. resolution property

 c. width and height properties

 d. pixelDepth property

 5. You scroll a window by calling

 a. goto

 b. down or up

 c. down

 d. scrollTo()

 6. You can create a new window that does not contain the standard browser 
buttons by setting

 a. scrollbars=1

 b. directories=1

 c. directories=0

 d. scrollbars=0

ch09.indd   196ch09.indd   196 5/2/2005   3:49:38 PM5/2/2005   3:49:38 PM



CHAPTER 9 Browser Windows 197

 7. True or False. All windows must have a menu bar.

 a. True

 b. False

 8. True or False. All windows must have the standard browser toolbar.

 a. True

 b. False

 9. True or False. Displaying too many new windows in the same session can 
prevent the user from doing any work.

 a. True

 b. False

 10. You can prevent a person from resizing your new window by

 a. Setting resizable to 1

 b. Setting resizable to 0

 c. Setting the menubar to 1

 d. Setting the menubar to 0

ch09.indd   197ch09.indd   197 5/2/2005   3:49:38 PM5/2/2005   3:49:38 PM



ch09.indd   198ch09.indd   198 5/2/2005   3:49:38 PM5/2/2005   3:49:38 PM

This page intentionally left blank.



199

CHAPTER
10

Regular 
Expressions

Don't you hate it when someone enters the wrong information into a form displayed 
on your web page? Although you cannot prevent this from happening, you can 
write a JavaScript that validates information on the form before the form is pro-
cessed by the CGI application running on the web server.

You learned how to use methods of the string object to validate text in Chapter 6. 
While this was useful for performing basic validation of a form, the string object 
lacks the power to perform sophisticated validation and formatting that is found in 
commercial JavaScript applications.

JavaScript professionals supercharge their JavaScript by using regular expres-
sions to validate and format text. In this chapter, you'll learn how to master regular 
expressions and use them to manipulate information in amazing ways.

ch10.indd   199ch10.indd   199 5/2/2005   4:22:46 PM5/2/2005   4:22:46 PM

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.



 200 JavaScript Demystifi ed

What Is a Regular Expression?
The concept of a regular expression is a little tricky to understand, but once you get 
the gist of it, you'll add this powerful tool into your JavaScript arsenal. You'll recall 
from Chapter 2 that an expression uses operators to tell the browser how to manipu-
late values, such as adding two numbers (10 + 5). This is called a mathematical 
expression because the values being manipulated are numbers.

A regular expression is very similar to a mathematical expression, except a regu-
lar expression tells the browser how to manipulate text rather than numbers by 
using special symbols as operators, which you'll learn about in this chapter.

For example, the browser might be told to determine whether a specifi c character 
exists in one or more lines of text. Likewise, the browser might be told to replace 
all occurrences of a word with another word. This and more can be accomplished 
by writing a regular expression.

Let's take a look at a simple example of how to create and use a regular expres-
sion in a JavaScript that tells the browser to determine whether the letter b or the 
letter t is in the name Bob and display an appropriate message in an alert dialog box 
when a button is clicked on the form.

<!DOCTYPE html PUBLIC
         "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Simple Regular Expression</title>
      <script language="Javascript" type="text/javascript">
         <!--
         function RegExpression() {
            var name='Bob'
            re = /[bt]/
            if (re.test(name))
            {
                alert('Found')
             }
             else
             {
                alert('Not Found')
             }
        }
       -->
      </script>
</head>
   <body>

ch10.indd   200ch10.indd   200 5/2/2005   4:22:56 PM5/2/2005   4:22:56 PM



CHAPTER 10 Regular Expressions 201

      <FORM action="http://www.jimkeogh.com" method="post">
         <P>
<INPUT name="Run Reg Expression" value=" Run Reg Expression "
             type="button" onclick=" RegExpression()"/>
         </P>
     </FORM>
   </body>
</html>

The regular expression is located in the RegExpression() function defi ni-
tion in the <head> tag of the web page. No doubt this looks strange to you, so let's 
dissect the regular expression letter by letter.

Unlike a mathematical expression, a regular expression begins and ends with a 
slash (/). You place the special symbols that make up the regular expressions be-
tween slashes. You'll notice that a pair of square brackets ([]) appears following 
the fi rst slash. This tells the browser to search the text for characters that appear 
within the brackets. In this expression, two characters are within the square brack-
ets: a b and a t, which tells the browser to determine whether the text includes a b 
or a t, or both. That's the regular expression.

The regular expression is assigned to the re variable. Notice that we don't use 
quotation marks, which would tell the browser that the special symbols of the regu-
lar expression is part of a string, which it isn't.

The test() method is called and passed the variable name that contains the 
string Bob. The test() method is one of several methods of the regular expres-
sion object. You'll learn about the other methods later in this chapter. The browser 
evaluates Bob using the regular expression. A true is returned if either a b or a t or 
both are found in the name Bob; otherwise a false is returned. Depending on this 
result, the appropriate alert dialog box is displayed on the screen.

The Language of a Regular Expression
Admittedly, a regular expression looks like gobbledygook to the untrained eye, but 
a regular expression is a complex instruction that the browser has no trouble under-
standing. By learning the language of a regular expression, you'll be able to make a 
browser jump through hoops by manipulating any text that is entered into a form on 
your web page.

The words of the regular expression language are called special characters and 
act similarly to an operator in a mathematical expression. An operator, as you'll 

ch10.indd   201ch10.indd   201 5/2/2005   4:22:56 PM5/2/2005   4:22:56 PM



 202 JavaScript Demystifi ed

recall from Chapter 2, tells the browser to perform an operation on operands, which 
are values. Special characters tell the browser to perform an operation on text.

Table 10-1 contains special characters that are used to create a regular expres-
sion. We'll take a closer look at a number of these to show how they are used in a 
regular expression. In the previous example, you saw how to ask the browser wheth-
er the text contains either the character b or the character t or both by using the 
following regular expression:

/[bt]/

You can place any number of characters, numbers, or punctuation or symbols with-
in the brackets, and the browser will determine whether they exist in the text.

However, one symbol may pose a problem: suppose you want to determine 
whether the text contains the bracket ([) symbol? This can be troublesome since the 
[ is a special character in a regular expression and will confuse the browser. The 
browser assumes the [ is enclosing an operation to perform, so it won't search the 
text for the [ character. If you want to search for a symbol that is also a special 
character, you must precede the symbol with a backslash (\), which is known as an 
escape character. The backslash tells the browser to ignore the special meaning of 
the symbol. Here's what you'd need to write to search for the [ symbol in text:

/[\[]/

At fi rst, this might look strange, but it should begin to make sense as you read each 
character the way the browser reads it. Here's how the browser reads this regular 
expression:

 1. The / character tells the browser that this is the beginning of a regular 
expression.

 2. The [ character tells the browser to search the text for the following 
character(s).

 3. The \ tells the browser to ignore the special meaning of the next character.

 4. The [ character is the character that the browser will search for in the text.

 5. The ] character tells the browser that there are no more characters to 
search for.

 6. The / character tells the browser that this is the end of the regular expression.

TIP TIP Whenever a regular expression becomes confusing to understand, you 
can read each character in the expression the way the browser reads it and 
any confusion will be cleared up.

ch10.indd   202ch10.indd   202 5/2/2005   4:22:56 PM5/2/2005   4:22:56 PM



CHAPTER 10 Regular Expressions 203

Special Character Description

\ Tells the browser to ignore the special meaning of the following 
character

^ Beginning of a string or negation operator, depending on where it 
appears in the regular expression

$ End of a string

* Zero or more times

+ One or more times

? Zero or one time; also referred to as the optional qualifi er

. Any character except a newline character (\n)

\b Word boundary

\B Nonword boundary

\d Any digit, 0–9

\D Any nondigit

\f Form feed

g Search the fi rst and subsequent occurrences of the character(s)

i Search without matching the case of the character

\n Newline; also called a line feed

\r Carriage return

\s Any single whitespace character

\S Any single non-whitespace character

\t Tab

\v Vertical tab

\w Any letter, number, or underscore

\W Any character other than a letter, number, or underscore

\xnn The ASCII character defi ned by the hexadecimal number nn

\o>nn The ASCII character defi ned by the octal number nn

\cx The control character x

[abcde] A character set that matches any one of the enclosed characters

[^abcde] A character that does not match any of the enclosed characters

[a-e] A character that matches any character in this range of characters; the 
hyphen indicates a range

[\b] The backspace character

{n} Exactly n occurrences of the previous subpattern or character set

Table 10-1 Special Characters Used to Create a Regular Expression

ch10.indd   203ch10.indd   203 5/2/2005   4:22:56 PM5/2/2005   4:22:56 PM



 204 JavaScript Demystifi ed

Finding Nonmatching Characters
Sometimes a JavaScript application prohibits certain characters from appearing 
within text entered into a form, such as a hyphen (-); otherwise, the character might 
inhibit processing of the form by the CGI program running on the web server. You 
can direct the browser to search for illegal character(s) by specifying the illegal 
character(s) within brackets and by placing the caret (^) as the fi rst character in the 
bracket. Let's see how this works in the following example:

/[^\-]/

In this case, the browser is asked to determine whether the text does not contain the 
hyphen.

The caret asks the browser to determine whether the following character(s) do 
not appear in the text. Table 10-1 shows that the hyphen inside a character set is 
used to defi ne a range of characters (also discussed in the next section). To fi nd the 
hyphen in text, you need to escape the hyphen with the backslash, like so \-.

NOTE NOTE It is important that you know exactly what you're telling the browser 
to do so that you can properly interpret the browser's response to your regular 
expression.

Suppose you wrote the following regular expression and the browser didn't fi nd 
the hyphen in the text. The browser responds with a false—this is because you are 
telling the browser to determine whether the hyphen appears in the text. If the hy-
phen appears, the browser would respond with a true.

/[\-]/

However, by placing a caret in the regular expression, as shown next, the browser 
responds with a true if the hyphen is not found in the text. This is because you are 
telling the browser to determine whether the hyphen does not appear in the text.

/[^\-]/

Special Character Description

{n,} At least n occurrences of the previous subpattern or character set

{n,m} At least n but no more than m occurrences of the previous subpattern 
or character set

(x) A grouping or subpattern, which is also stored for later use

x|y Either x or y

Table 10-1 Special Characters Used to Create a Regular Expression (continued)

ch10.indd   204ch10.indd   204 5/2/2005   4:22:57 PM5/2/2005   4:22:57 PM



CHAPTER 10 Regular Expressions 205

Entering a Range of Characters
You don't need to enter every character that you want the browser to match or not 
match in the text if those characters are in a series of characters, such as f through 
l. Instead of including each and every character within brackets, you can use the 
fi rst and last character in the series, separated by a hyphen.

Let's say that you need to tell the browser to match any or all of the characters f, 
g, h, i, j, k, or l in the text. You could write the following regular expression:

/[fghijkl]/

Alternatively, you could write the following regular expression, which tells the 
browser to match any letter(s) that appears in the series f through and including l:

/[f-l]/

Likewise, you can tell the browser not to match any characters in a range of char-
acters using the same kind of regular expression, except you place the caret in front 
of the fi rst character, as shown here:

/[^f-l]/

In this case, the browser would return true if none of the characters f through l were 
found.

Matching Digits and Nondigits
Limiting an entry either to digits or nondigits is a common task for many JavaScript 
applications. For example, a telephone number entered by a user should be a series 
of digits, and a fi rst name should be nondigits. Nondigits appearing in a phone num-
ber indicate the user entered an invalid phone number. Likewise, a fi rst name that 
contains digits is likely an invalid fi rst name.

You can have the browser check to see whether the text has digits or nondigits by 
writing a regular expression. The regular expression must contain either \d or \D, 
depending on whether you want the browser to search the text for digits (\d) or 
nondigits (\D).

The \d symbol, as shown in the following example, tells the browser to deter-
mine whether the text contains digits. The browser returns a true if at least one 
digit appears in the text. You'd use this regular expression to determine whether a 
fi rst name has any digits, for example. If it does, the browser returns a true and your 
JavaScript notifi es the user that an invalid fi rst name was entered into the form.

/\d/

ch10.indd   205ch10.indd   205 5/2/2005   4:22:57 PM5/2/2005   4:22:57 PM



 206 JavaScript Demystifi ed

The \D symbol is used to tell the browser to search for any nondigit in the text. 
This is illustrated next. The browser returns a true if a nondigit is found. This is the 
regular expression you would use to validate a telephone number, assuming the user 
was asked to enter digits only. If the browser fi nds a nondigit, the telephone number 
is invalid and you can notify the user who entered the information into the form.

/\D/

NOTE NOTE You probably noticed that the letters d and D are preceded by a backslash. 
The backslash tells the browser that these shouldn't be treated as characters and 
instead should be treated as special characters.

Matching Punctuation and Symbols
You can have the browser determine whether text contains or doesn't contain letters, 
punctuation, or symbols, such as the @ sign in an e-mail address, by using the \w 
and \W special symbols in a regular expression.

The \w special symbol tells the browser to determine whether the text contains 
a letter, number, or an underscore, and the \W special symbol reverses this request 
by telling the browser to determine whether the text contains a character other than 
a letter, number, or underscore.

Let's say that you were expecting a person to enter the name of a product that has 
a combination of letters and numbers. You can use the following regular expression 
to determine whether the product name that was entered into the form on your web 
page contains a symbol:

/\W/

Using \W is equivalent to using [a-zA-Z0-9_].

NOTE NOTE Notice that no space (whitespace character) appears between the 9 and 
the underscore in [a-zA-Z0-9_]. A common error is to insert a space such as 
[a-z A-Z 0-9 _]. This matches the whitespace character, too.

Matching Words
You might want the browser to search for a particular word within the text. A word 
is defi ned by a word boundary—that is, the space between two words. You defi ne a 
word boundary within a regular expression by using the \b special symbol.

NOTE 

ch10.indd   206ch10.indd   206 5/2/2005   4:22:57 PM5/2/2005   4:22:57 PM



CHAPTER 10 Regular Expressions 207

Think of the \b special symbol as a space between two words. You need to use 
two \b special symbols in a regular expression if you want the browser to search 
for a word: the fi rst \b represents the space at the beginning of the word and the 
second represents the space at the end of the word.

Let's say you want to determine whether the name Bob appears in the text. Since 
you don't want the browser to match just text that contains the series of letters B-o-b, 
such as Bobby, you'll need to use the word boundary to defi ne Bob as a word and 
not simply a series of letters. Here's how you'd write this regular expression:

/\bBob\b/

NOTE NOTE Be sure to use the lowercase \b, because the uppercase \B signifi es that 
there is no word boundary. Using \B means any series of the letters B-o-b is 
considered a match, including Bobby.

Replace Text Using a Regular Expression
In this chapter, you've learned how to construct a regular expression that the brows-
er uses to determine whether letters, numbers, or symbols appear or do not appear 
in text by passing the regular expression to the test() method. While testing text 
is necessary for some JavaScript applications, you can also use a regular expression 
to replace portions of the text by using the replace() method.

The replace() method requires two parameters: a regular expression and the 
replacement text. Here's how the replace() method works. First, you create a 
regular expression that identifi es the portion of the text that you want replaced. 
Then you determine the replacement text. Pass both of these to the replace() 
method, and the browser follows the direction given in the regular expression to 
locate the text. If the text is found, the browser replaces it with the new text that you 
provided.

The next example tells the browser to replace Bob with Mary in the text. The 
regular expression specifi es the word Bob. The replace() method of the string 
object is then called to use the regular expression to search for Bob within the text 
and then replace Bob with Mary.

However, the original string isn't modifi ed. The modifi ed string is returned by the 
replace() method. You could assign the modifi ed string to the variable contain-
ing the original string if you don't need the original string anymore.

ch10.indd   207ch10.indd   207 5/2/2005   4:22:58 PM5/2/2005   4:22:58 PM



 208 JavaScript Demystifi ed

A common problem is to replace all occurrences of one or more characters 
of a string. You do this by creating a regular expression and calling the 
replace()method; however, you'll need to place the g special character at 
the end of the regular expression, which tells the browser to replace all occurrences 
of the regular expression in the string. This is shown here:

/\bBob\b/g

re = /\bBob\b/
text = 'Hello, Bob and welcome to our web site.'
text = text.replace(re, 'Mary')

Replacing Like Values
You've probably come across this situation: A company name is entered inconsis-
tently in text. The fi rst letter of the name might be capitalized sometimes, while at 
other times it appears in lowercase. A nickname might be used occasionally rather 
than the formal name.

A regular expression can be written to search for variations of a name and re-
place it with a standardized name. To do this, the regular expression must contain 
literal characters and wildcard characters. A literal character is a letter, number, or 
symbol that must match exactly within the text. A wildcard is a special symbol that 
tells the browser to accept one or multiple unspecifi ed characters as a match.

Let's say that the text contains the words Bob and Bobby and you want to replace 
them with the word Robert. Since both Bob and Bobby have the letters B-o-b, it 
makes sense to specify Bob as a literal character for the browser to match. You'll 
then need to use a wildcard to tell the browser to match other characters that follow 
Bob in the text.

Two types of wildcards can be used: a period (.) and an asterisk (*). The period 
tells the browser to match any single character, while the asterisk indicates zero or 
more occurrences of whatever precedes it. For example, the following matches Bob 
but not Bobby, because a single wildcard character is used:

/Bob./

However, this regular expression matches both Bob and Bobby because the multiple 
character wildcard is used:

/Bob.*/

NOTE 

ch10.indd   208ch10.indd   208 5/2/2005   4:22:58 PM5/2/2005   4:22:58 PM



CHAPTER 10 Regular Expressions 209

NOTE NOTE Be careful when using wildcards, because the browser might return matches 
that you didn't expect when you wrote the regular expression. For example, the 
regular expression /Bob.*/ also matches the following, and you don't want any 
of these to change: 

Bobbysoxer
Bobbing
Bobsled

The next example replaces Bob and similar spellings with Robert. You'll notice 
that two new special symbols are used in this regular expression: g and i. The g 
special symbol tells the browser to search for all occurrences of Bob throughout the 
text. Without the g, the browser changes only the fi rst occurrence of Bob. The i 
special symbol tells the browser to ignore the case of the characters. That is, bob 
and Bob are both a match. If you don't use the i special symbol, the browser will 
ignore the case of the characters. That is, bob and Bob are both a match. If you don't 
use the i special symbol, the browser will match only the case that you specify in 
the regular expression. In this example, the browser would have matched only Bob 
if we had excluded the i special character.

re = /\b\iBob(by)?\b/g
text = 'Hello, Bob. Welcome Bobby to our web site.'
text.replace(re, 'Robert')

Return the Matched Characters
Sometimes your JavaScript application requires you to retrieve characters that 
match a regular expression rather than simply testing whether or not those charac-
ters exist in the text. You can have the browser return characters that match the 
pattern in your regular expression by calling the exec() method of the regular 
expression object.

Here's how to use the exec() method. First, create a regular expression that 
specifi es the pattern that you want to match within the text. Characters that match 
this pattern will be returned to your JavaScript. Next, pass the exec() method the 
text for which you want to search. The exec() method returns an array. The fi rst 
array element contains the text that matches your regular expression.

ch10.indd   209ch10.indd   209 5/2/2005   4:22:58 PM5/2/2005   4:22:58 PM



 210 JavaScript Demystifi ed

For example, suppose you want to return a person's fi rst name. You know the 
name is Bob or some variation of it, such as Bobby, but you are unsure of how the 
name appears in the text. As you've seen previously in this chapter, the following 
regular expression matches Bob and any word that begins with B-o-b.

/\bBob.*\b/

We'll need to do the following:

 1. Create the regular expression object and assign it the regular expression:

re = /\bBob.*\b /

 2. Call the exec() method, passing it the text and assigning the return value 
to an array variable. Remember that you can pass a reference to the text 
instead of the entire text, as shown here:

re = /\bBob.*\b /
MyArray = re.exec('Hello, my name is Bobby.')

 3. We then display the value of the fi rst array element:

re = /\bBob.*\b /
MyArray = re.exec('Hello, my name is Bobby.')
alert('Welcome, ' + MyArray[0])

The Telephone Number Match
Validating a telephone number is a common task faced by JavaScript developers. 
The next example shows how you can use a regular expression to do this. Let's be-
gin by creating the string that contains the telephone number. In a real JavaScript 
application, the telephone number is entered into a fi eld on a form. You use the 
value attribute of the fi eld to access the telephone number.

phone = '212-555-1212'

Next, create the regular expression, as shown here:

re = /^[\(]?(\d{3})[\)]?[ -\.]?(\d{3})[ -\.]?(\d{4})$/

No doubt the regular expression looks a little confusing, so let's break it down 
into parts to help you understand what is happening here:

ch10.indd   210ch10.indd   210 5/2/2005   4:22:59 PM5/2/2005   4:22:59 PM



CHAPTER 10 Regular Expressions 211

/ Start a regular expression.

^ Start at the beginning of the string.

[\(] Match the open parenthesis.

?(\d{3}) Match any digit, 0–9, exactly three occurrences. The parentheses tell the browser 
to store this as a subpattern and will be assigned to an element of the array that is 
returned by the exec() method.

[\)] Match the close parenthesis.

?[ -\.] Match a hyphen.

?(\d{4}) Match any digit 0–9 exactly four occurrences. The parentheses tell the browser 
to store this as a subpattern and will be assigned to an element of the array that is 
returned by the exec() method.

$ Match the end of the string.

/ The end of the regular expression.

Now that we've built the regular expression, let's use it in the following Java- 
Script:

if(re.test(phone))
{
   MyArray = re.exec(phone)
   alert('Area code: ' + MyArray[1] + '\nExchange: ' +
           MyArray[2] + '\nNumber: ' + MyArray[3])
}

Before validating the telephone number, we must be sure that the (phone) string 
exists by passing the string (phone) to the test() method. If the string isn't emp-
ty (NULL), then the test() method returns a true and statements within the if 
statement are executed; otherwise, we don't need to validate the telephone num-
ber.

The string containing the telephone number is passed to the exec() method, 
where the regular expression is applied to the string. The exec() method returns 
an array. The fi rst element of the array is the entire string that matches the regular 
expression. Subsequent elements of the array contain substrings of the string that 
match groups defi ned in the regular expression.

Three groups are defi ned in our regular expression, and each are contained with-
in parentheses: the fi rst group is the area code, the second group is the three-digit 
exchange, and the third group is the last four digits of the telephone number. The 
substring that matches each one of these groups is automatically assigned to the 
second and subsequent elements of the array in the order in which the groups are 
defi ned in the regular expression.

ch10.indd   211ch10.indd   211 5/2/2005   4:22:59 PM5/2/2005   4:22:59 PM



 212 JavaScript Demystifi ed

This means that MyArray[1] is assigned the substring containing the area 
code (that is, the fi rst group defi ned in the regular expression). MyArray[2]is as-
signed the substring containing the exchange, and MyArray[3] is assigned the 
substring containing the last four digits of the telephone number.

Once you have isolated each substring of the telephone number string, you can 
continue the validation process to make sure that the telephone number is correct. 
Steps in this process depend on the nature of your JavaScript application.

The next example shows the complete JavaScript. This JavaScript separates the 
telephone number into area code, exchange, and number and displays each sepa-
rately, regardless of the format characters used in the string (Figure 10-1). The same 
results are displayed even if you entered the following forms of the telephone num-
ber in the string:

2125551212
(212) 555-1212
212-555-1212
212.555.1212
(201)555-1212
212555-1212

Figure 10-1 This regular expression extracts components of the telephone number 
regardless of how the telephone number is formatted.

ch10.indd   212ch10.indd   212 5/2/2005   4:22:59 PM5/2/2005   4:22:59 PM



CHAPTER 10 Regular Expressions 213

<!DOCTYPE html PUBLIC
         "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Simple Regular Expression</title>
      <script language="Javascript" type="text/javascript">
         <!--
         function RegExpression() {
            phone = '212-555-1212'
            re = /^[\(]?(\d{3})[\)]?[ -\.]?(\d{3})[ -\.]
                       ?(\d{4})$/
            if(re.test(phone))
            {
               MyArray = re.exec(phone)
               alert('Area code: ' + MyArray[1] + '\nExchange: ' +
                     MyArray[2] + '\nNumber: ' + MyArray[3])
            }
       }
       -->
      </script>
</head>
   <body>
      <FORM action="http://www.jimkeogh.com" method="post">
         <P>
<INPUT name="Run Reg Expression" value=" Run Reg Expression "
            type="button" onclick=" RegExpression()"/>
         </P>
     </FORM>
   </body>
</html>

Regular Expression Object Properties
In addition to methods, the regular expression object has properties that you can 
access from within your JavaScript by referencing the name of the regular expres-
sion object followed by the property name. This is the same technique that you used 
to access properties in previous chapters. Table 10-2 lists these properties.

For example, let's say that you want to access the last characters that were 
matched by the regular expression. As you'll notice in Table 10-2, the lastMatch 
property contains the last characters that were matched by the regular expression 
object. You reference this by using the following expression:

re.lastMatch

ch10.indd   213ch10.indd   213 5/2/2005   4:23:00 PM5/2/2005   4:23:00 PM



 214 JavaScript Demystifi ed

Looking Ahead
A regular expression is similar to a mathematical expression in that both contain 
operators that tell the browser how to manipulate values. A mathematical expres-
sion instructs the browser how to manipulate numbers. A regular expression directs 
the browser to manipulate text by using special characters as operators.

A regular expression can handle practically all your needs for manipulating text. 
You can use a regular expression to search text, extract text, replace text, and to 
format text.

JavaScript has a regular expression object that can be assigned a regular expres-
sion. The regular expression object has methods and properties, as do other 

 

Regular Expression 
Object

Properties

$1 (through $9) Parenthesized substring matches

$_ Same an input

$* Same as multiline

$& Same as lastMatch

$+ Same as lastParen

$` Same as leftContent

$' Same as rightContext

constructor Specifi es the function that creates an object's prototype

global Search globally (g modifi er in use)

ignoreCase Search case-insensitive (i modifi er in use)

input The string to search if no string is passed

lastIndex The index at which to start the next match

lastMatch The last match characters

lastParen The last parenthesized substring match

leftContext The substring to the left of the most recent match

multiline Whether strings are searched across multiple lines

prototype Allows the addition of properties to all objects

rightContext The substring to the right of the most recent match

source The regular expression pattern itself

Table 10-2 Properties of the Regular Expression Object

ch10.indd   214ch10.indd   214 5/2/2005   4:23:00 PM5/2/2005   4:23:00 PM



CHAPTER 10 Regular Expressions 215

JavaScript objects that you learned about in this book. Two of the most useful meth-
ods are test() and exec().

The test() method searches text, trying to match the pattern specifi ed in the 
regular expression and returns a true if a match is found; otherwise a false is re-
turned. The text that is searched is passed as an argument to the test() method. 
The exec() method executes a regular expression and returns an array. The fi rst 
element of the array contains the portion of the text that matches the regular expres-
sion. The other array elements contain the subpatterns defi ned in the regular 
expression.

In addition to an assortment of methods, the regular expression object also has 
valuable properties that you can directly access from your JavaScript whenever you 
need to tap into information about the regular expression.

With regular expressions under your belt, let's move on to writing JavaScripts 
that interact with frames. As you probably remember from when you learned 
HTML, the screen can be divided into sections, each called a frame. Each section 
can have its own web page. In the next chapter, you'll learn how to interact directly 
with each section of a frame from your JavaScript.

Quiz
 1. True or False. A regular expression begins with the special character \b.

 a. True

 b. False

 2. Which special character is used to tell the browser to start at the beginning 
of a string?

 a. $

 b. *

 c. ^

 d. []

 3. What special character would you use to specify any nondigit?

 a. \d

 b. \D

 c. $

 d. $*

ch10.indd   215ch10.indd   215 5/2/2005   4:23:00 PM5/2/2005   4:23:00 PM



 216 JavaScript Demystifi ed

 4. What special character would use you to tell the browser to search all 
occurrences of a character?

 a. *

 b. i

 c. g

 d. a

 5. What special character do you use to search for a whitespace character?

 a. \s

 b. \S

 c. s

 d. S

 6. What special character do you use to search for any letter, number, or the 
underscore?

 a. \w

 b. \W

 c. w

 d. W

 7. True or False. You call the exec() method of the regular expression 
object to determine whether one or more characters exists in the text.

 a. True

 b. False

 8. True or False. A regular expression cannot be used to reformat text.

 a. True

 b. False

 9. True or False. You cannot insert literal characters into a regular expression.

 a. True

 b. False

 10. What regular expression property contains text that precedes characters that 
match the regular expression?

 a. *Context

 b. leftContext

 c. Context*

 d. contextLeft

ch10.indd   216ch10.indd   216 5/2/2005   4:23:00 PM5/2/2005   4:23:00 PM



217

CHAPTER
11

JavaScript and 
Frames

You may have visited web sites in which you were able to scroll the main portion 
of the web page while a smaller section containing navigation remained stationary 
on the screen. Although this looked as though it were all contained on a single web 
page, actually multiple web pages appeared on the screen at the same time, and 
each was displayed in a frame.

Frames are created using HTML, but you can interact and manipulate frames 
using a JavaScript. You'll see how this is done in this chapter. You'll also learn more 
about using frames in your web page in Chapter 16, where you'll learn to use DHTML 
to create iframes.

ch11.indd   217ch11.indd   217 5/3/2005   1:40:28 PM5/3/2005   1:40:28 PM

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.



 218 JavaScript Demystifi ed

You've Been Framed!
All frames contain at least three web pages. The fi rst frame surrounds the other 
frames, and this entire collection is called the frameset. The other frames are within 
the frameset, and each is referred to as a child. You can give each child a unique 
name so you can later refer to it in your application.

JavaScript refers to the frameset as the top or the parent. The parent frame is al-
ways at the top of the display. Child windows appear within the parent window. You 
can nest frames many layers deep—so the top level may actually still be a child 
frame of another frameset.

Let's create a simple frame that contains two child windows. We'll begin by 
defi ning the frameset using the <frameset> HTML tag. The frameset can be 
divided into columns and rows, depending on the needs of your application. Col-
umns divide the frameset vertically using the cols attribute of the <frameset> 
tag. Rows divide the frameset horizontally using the rows attribute of the 
<frameset> tag.

The number of rows or columns that appear in a frameset is determined by the 
value assigned to these attributes. Each column or row is represented by a percent-
age that indicates the percent of the frameset that is taken up by the column or row. 
You can also specify a width and height—it doesn't have to be a percentage of the 
available window.

Let's say that you want to divide the frameset evenly into two child windows. 
One child window is at the top and the other is at the bottom. Since you are dividing 
the frameset horizontally, you'll need to defi ne the rows attribute. The top child 
window takes up 50 percent of the frameset, and the bottom child window takes up 
the other 50 percent. Here is the value that is assigned to the rows attribute to cre-
ate these child windows:

<frameset rows="50%,50%">

NOTE NOTE You can change the percentage to enlarge one child window and reduce 
the size of the other. You can also further divide the frameset by inserting another 
percentage. However, keep in mind that these percentages must add up to 100 
percent.

After you defi ne the frameset, you can insert a web page into each child window. 
You do this by using the <frame> HTML tag. Each child window has its own 
<frame> tag. You specify the web page that will be displayed in the child window 
by defi ning a value for the src attribute of the <frame> tag. You can also specify 

ch11.indd   218ch11.indd   218 5/3/2005   1:40:38 PM5/3/2005   1:40:38 PM



CHAPTER 11 JavaScript and Frames 219

a unique name for the child window by assigning the name to the name attribute of 
the <frame> tag.

For example, suppose that you want WebPage1.html to appear as the top child 
window. Here's what you'd need to write (although it makes sense to name the top 
child window topPage, you can assign any name you want to the child window):

<frame src="WebPage1.html" name="topPage" />

You'll need to defi ne a <frame> tag within the <frameset> tag for each 
child window contained in the <frameset> tag. The fi rst <frame> tag within 
the <frameset> tag refers to the upper left–most child window. Subsequent 
<frame> tags refers to child windows that appear left to right, top to bottom with-
in the <frameset> tag.

The following example shows how to create a frameset that contains two child 
windows, one on the top and the other on the bottom (Figure 11-1).

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
       <title>Create a Frame</title>
</head>
<frameset rows="50%,50%">
      <frame src="WebPage1.html" name="topPage" />
      <frame src="WebPage2.html" name="bottomPage" />
</frameset>
</html>

The following is WebPage1.html, which appears at the top of the frameset:

<!DOCTYPE html PUBLIC
         "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Web Page 1</title>
</head>
   <body>
      <FORM action="http://www.jimkeogh.com" method="post">
         <P>
          <INPUT name="WebPage1" value="Web Page 1"
                 type="button" />
         </P>
     </FORM>
   </body>
</html>

ch11.indd   219ch11.indd   219 5/3/2005   1:40:38 PM5/3/2005   1:40:38 PM



 220 JavaScript Demystifi ed

The following is WebPage2.html, which appears at the bottom of the frameset:

<!DOCTYPE html PUBLIC
           "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Web Page 2</title>
</head>
   <body>
      <FORM action="http://www.jimkeogh.com" method="post">
         <P>
          <INPUT name="WebPage2" value="Web Page 2"
                type="button" />
         </P>
     </FORM>
   </body>
</html>

Invisible Borders
You can make it less obvious that you are using frames by hiding the borders around 
the child windows within your frameset. The result appears as one web page on the 

Figure 11-1 This frameset is divided into two child windows, each of which displays a 
different web page.

ch11.indd   220ch11.indd   220 5/3/2005   1:40:38 PM5/3/2005   1:40:38 PM



CHAPTER 11 JavaScript and Frames 221

screen, even though in reality each of multiple web pages appears in its own child 
window.

The border can be hidden by setting the frameborder and border attributes 
of the <frame> tag to zero (0). This is illustrated in the following example, where 
we hide the borders of the frameset created in the previous example (Figure 11-2). 
Any value other than 0 that is assigned to the frameborder and border attri-
butes causes the browser to display the border.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
      <title>Create a Frame</title>
</head>
<frameset rows="50%,50%">
      <frame src="WebPage1.html" name="topPage"
                  frameborder="0" border="0" />
      <frame src="WebPage2.html" name="bottomPage"
                  frameborder="0" border="0" />
</frameset>
</html>

Figure 11-2 The borders around child windows can be hidden by setting the 
frameborder and border attributes to zero.

ch11.indd   221ch11.indd   221 5/3/2005   1:40:39 PM5/3/2005   1:40:39 PM



 222 JavaScript Demystifi ed

Calling a Child Window's JavaScript Function
Now that you've refreshed your memory on how to create a frameset, let's use Ja-
vaScript to manipulate frames. We'll begin with the simple task of calling a 
JavaScript function that is defi ned in another child window.

You can refer to another child window by referencing the frameset, which is the 
parent window, and then by referencing the name of the child window, followed by 
whatever element within the web page of the child window that you want to access.

Suppose that we modifi ed WebPage1.html to include the following JavaScript 
function:

<head>
   <title>Web Page 1</title>
   <script language="Javascript" type="text/javascript">
      <!--
         function ChangeContent() {
            alert("Function Called")
         }
      -->
      </script>
</head>

We'll also modify WebPage2.html to call the ChangeContent() function 
when the Web Page 2 button is clicked, which is shown next. Notice that we speci-
fi ed the parent (frameset) and the name of the child window (toPage) that 
contains the web page that defi nes the JavaScript ChangeContent() function.

<INPUT name="WebPage2" value="Web Page 2" 
   type="button"onclick="parent.topPage.ChangeContent()" />

When the Web Page 2 button is clicked in the bottom child window, the browser 
calls the ChangeContent() function defi ned in the top child window, which 
displays an alert dialog box in the top child window (Figure 11-3).

To call a JavaScript function in different frames, both pages have to be sourced 
from the same domain—otherwise, the browser throws a security alert and prevents 
it. If the pages are from different subdomains—for example, content1.jimkeogh 
.com and content2.jimkeogh.com—you can make it work as long as both pages are 
included in a JavaScript statement:

document.domain = jimkeogh.com

If you don't do it like this, you'll get a security alert.

ch11.indd   222ch11.indd   222 5/3/2005   1:40:39 PM5/3/2005   1:40:39 PM



CHAPTER 11 JavaScript and Frames 223

Figure 11-3 A JavaScript function defi ned in one child window can be called from 
another child window.

Changing the Content of a Child Window
You can change the content of a child window from a JavaScript function by modi-
fying the source web page for the child window. To do this, you must assign the new 
source to the child window's href attribute. In this example, you were able to get 
a reference to the parent frame's topPage element because they are both from the 
same domain. At that point, you have two options: if they're in the same domain, 
you reference it as illustrated previously, but you can also just change the frame 
src attribute in the frameset to point the frame to a new page.

Let's do this in the following example. Again, we'll use the same frameset that 
we've been using throughout this chapter. However, we'll need to modify both 
the WebPage1.html and WebPage2.html fi les. In addition we'll need to defi ne a new 
web page called WebPage3.html.

Here is the new WebPage1.html fi le. WebPage1.html appears in the bottom child 
window, and when the Web Page 1 button is clicked, the content of the top child 

ch11.indd   223ch11.indd   223 5/3/2005   1:40:39 PM5/3/2005   1:40:39 PM



 224 JavaScript Demystifi ed

window changes from WebPage2.html to WebPage3.html. You'll notice that the 
value of the button refl ects the new content.

<!DOCTYPE html PUBLIC
         "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Web Page 1</title>
  <script language="Javascript" type="text/javascript">
      <!--
         function ChangeContent() {
            parent.topPage.location.href='WebPage3.html'
         }
      -->
      </script>
</head>
   <body>
      <FORM action="http://www.jimkeogh.com" method="post">
         <P>
          <INPUT name="WebPage1" value="Web Page 1"
                type="button" onclick="ChangeContent()"/>
         </P>
     </FORM>
   </body>
</html>

We modifi ed WebPage1.html in two ways: First, we defi ned the ChangeContent() 
function in the <head> tag. This function simply changes the value assigned to the 
href attribute to WebPage3.html. The original href was WebPage2.html, which 
is defi ned when we created the frameset. Notice that in order to change the href 
value, we need to reference the parent, the name of the child window, the location, 
and the href attribute. This tells the browser to go to the parent and then, within 
the parent, go to the topPage child window and change the source for that window.

The following is WebPage2.html, which displays a button on the screen called 
Web Page 2 when the frameset is fi rst shown on the screen. WebPage2.html is re-
moved once the button on WebPage1.html is clicked.

<!DOCTYPE html PUBLIC
           "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Web Page 2</title>
</head>
   <body>
      <FORM action="http://www.jimkeogh.com" method="post">
         <P>
          <INPUT name="WebPage2" value="Web Page 2"

ch11.indd   224ch11.indd   224 5/3/2005   1:40:40 PM5/3/2005   1:40:40 PM



CHAPTER 11 JavaScript and Frames 225

              type="button" />
         </P>
     </FORM>
   </body>
</html>

The following is WebPage3.html, which displays a button on the screen called 
Web Page 3 after the button on WebPage1.html is clicked (Figure 11-4).

<!DOCTYPE html PUBLIC
          "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Web Page 3</title>
</head>
   <body>
      <FORM action="http://www.jimkeogh.com" method="post">
         <P>
          <INPUT name="WebPage3" value="Web Page 3"
              type="button" />
         </P>
     </FORM>
   </body>
</html>

Figure 11-4 WebPage3.html replaces WebPage2.html in the top child window when the 
button in the bottom child window is clicked.

ch11.indd   225ch11.indd   225 5/3/2005   1:40:40 PM5/3/2005   1:40:40 PM



 226 JavaScript Demystifi ed

Changing the Focus of a Child Window
The last child window that is created has the focus by default; however, you can 
give any child window the focus by changing the focus after all the web pages have 
loaded in their corresponding child windows.

You do this by calling the focus() method of the child window, as shown next, 
where the focus is being given to the web page that appears in the bottomPage 
child window. You can call the focus() method from a JavaScript function or 
directly in response to an event such as the onclick event. The reference to par-
ent.bottomPage is needed to get past the security issues.

parent.bottomPage.focus();

Writing to a Child Window from a JavaScript
Typically, the content of a child window is a web page that exists on the web server. 
However, you can dynamically create the content when you defi ne the frameset by 
directly writing to the child window from a JavaScript. The JavaScript must be de-
fi ned in the HTML fi le that defi nes the frameset and called when the frameset is 
loaded. This is illustrated in the next example, where the JavaScript function writes 
the content for the topPage child window, assuming the child is from the same 
domain:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
     <title>Create a Frame</title>
     <script language="Javascript" type="text/javascript">
      <!--
         function ChangeContent() {
            window.topPage.document.open()
            window.topPage.document.writeln(
                '<!DOCTYPE html PUBLIC
                   "-//W3C//DTD XHTML 1.0 Transitional//EN">')
            window.topPage.document.writeln(
                '<html xmlns="http://www.w3.org/1999/xhtml">')
           window.topPage.document.writeln('<head>')
           window.topPage.document.writeln(
                '<title>Web Page 3</title>')
           window.topPage.document.writeln('</head>')

ch11.indd   226ch11.indd   226 5/3/2005   1:40:40 PM5/3/2005   1:40:40 PM



CHAPTER 11 JavaScript and Frames 227

           window.topPage.document.writeln('<body>')
           window.topPage.document.writeln(
               '<FORM action="http://www.jimkeogh.com"
                   method="post">')
           window.topPage.document.writeln('<P>')
           window.topPage.document.writeln(
               '<INPUT name="WebPage3" value="Web Page 3"
                   type="button" />')
           window.topPage.document.writeln('</P>')
           window.topPage.document.writeln('</FORM>')
           window.topPage.document.writeln('</body>')
           window.topPage.document.writeln('</html>')
           window.topPage.document.close()
         }
      -->
      </script>
</head>
<frameset rows="50%,50%" onload="ChangeContent()">
      <frame src="WebPage1.html" name="topPage" />
      <frame src="WebPage2.html" name="bottomPage" />
</frameset>
</html>

To write dynamic content to a child window, you must assign a source fi le to 
each frame of the frameset, even though you are dynamically creating the source 
for at least one of those frames. You'll notice in this example that WebPage1.html is 
assigned to the topPage frame. WebPage1.html must be a real fi le, although it 
won't appear in the topPage frame because the JavaScript function writes the 
content to that frame.

The JavaScript function is defi ned in the <head> tag and is called when the 
onload event occurs. The topPage child window must be opened before the Ja-
vaScript function can write to the window. You open the child window by calling 
the open() method for that frame, as shown here:

window.topPage.document.open()

Once opened, call the write() method to write HTML content to the child 
window to create the web page. This example displays the Web Page 3 button on a 
form. The fi nal step is to call the close() method to close the window, as shown 
here:

window.topPage.document.close()

ch11.indd   227ch11.indd   227 5/3/2005   1:40:41 PM5/3/2005   1:40:41 PM



 228 JavaScript Demystifi ed

Accessing Elements of Another 
Child Window

You can access and change the value of elements of another child window by di-
rectly referencing the element from within your JavaScript. You must explicitly 
specify the full path to the element in the JavaScript statement that references the 
element, and it must be from the same domain as the web page; otherwise, a secu-
rity violation occurs.

Let's see how this works. Suppose that a button named WebPage1 is on Form1, 
located on the web page that is displayed in the bottomPage frame of the frame-
set. (This is similar to examples shown previously in this chapter, except in those 
examples we didn't name the form.) The objective is to change the label of the Web 
Page 1 button. You'll need to specify the full path and then assign text to the value 
attribute of WebPage1, as shown here:

parent.topPage.Form1.WebPage1.value='New Label'

Looking Ahead
In this chapter, you learned how to build a JavaScript that can interact with child 
windows that are created when you insert a frameset into your web page. A frame-
set is a parent frame that contains two or more smaller child frames inside. Each 
small frame can be populated by a web page.

Although many frames are loaded with a static web page, you can dynamically 
build a web page within a frame by fi rst opening the child window and then using 
the write() method to write HTML tags directly to the child window. The results 
are the same as loading a static web page; however, you can tailor the content based 
on activities that occur while your JavaScript application runs. The content must be 
from the same domain as the web page; otherwise, a security violation occurs.

Along with dynamically building a web page within a frame, you also learned 
how to access and manipulate elements that appear in a child window, such as a 
button or input box displayed on a form. The key to accessing these elements is to 
reference the completed path that begins with the parent and is followed by the 
child window and the form. The parent is the frameset.

In Chapter 12, you'll learn how to interact with images using JavaScript.

ch11.indd   228ch11.indd   228 5/3/2005   1:40:41 PM5/3/2005   1:40:41 PM



CHAPTER 11 JavaScript and Frames 229

 1. True or False. A frameset can be loaded with a static web page.

 a. True

 b. False

 2. What attribute is used to specify the web page that is loaded into a frame?

 a. source

 b. src

 c. topPage

 d. bottomPage

 3. How can you hide the borders of a frame?

 a. frameborder="0"

 b. toPageborder="0" bottomPageborder="0"

 c. borders=hide

 d. Borders cannot be hidden.

 4. What attributes can be used to change the source of a child window 
from a JavaScript?

 a. source

 b. src

 c. parent.frame.location.source

 d. parent.frame.location.href

 5. What frame receives focus by default?

 a. First frame that is built

 b. Last frame that is built

 c. No frame has focus

 d. None of the above

 6. How do you set the number of frames that appear in a frameset?

 a. Set the rows and cols values.

 b. Set the frame value.

 c. Set the frameset value.

 d. Set the child window value.

Quiz

ch11.indd   229ch11.indd   229 5/3/2005   1:40:41 PM5/3/2005   1:40:41 PM



 230 JavaScript Demystifi ed

 7. True or False. You specify the name of the frame whenever you want 
to reference the contents of the frame.

 a. True

 b. False

 8. True or False. A child window cannot change the content of another child 
window if they are on different domains.

 a. True

 b. False

 9. True or False. A child window cannot call JavaScript functions that are 
defi ned in another child window if they are on different domains.

 a. True

 b. False

 10. If you have two vertical frames, how do you make one frame smaller than 
the other frame?

 a. Make one of the rows values smaller than the other.

 b. Make one of the cols values smaller than the other.

 c. Make one of the bar values smaller than the other.

 d. Make one of the bar values larger than the other.

ch11.indd   230ch11.indd   230 5/3/2005   1:40:42 PM5/3/2005   1:40:42 PM



231

12

Rollovers

Those who are unfamiliar with the web probably think a rollover is a dog trick, but 
those who are web savvy know that a rollover occurs when a web page changes as 
the mouse cursor moves over and away from an object on the page.

Rollovers are used to make a dreary web page come alive, by altering its appear-
ance as the visitor scans the contents of the web page with the mouse. Any object 
on a web page can be changed with a rollover. Some web developers change an im-
age that is related to the object beneath the mouse cursor. Other web developers pop 
up a new window that further describes the object. The only limitation is your 
imagination.

In this chapter, you'll learn all about rollovers and how to implement rollovers in 
your own JavaScript applications.

CHAPTER

ch12.indd   231ch12.indd   231 5/3/2005   1:55:34 PM5/3/2005   1:55:34 PM

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.



Setting the Stage
Before getting into the how to's of creating a rollover, let's build a product page, 
which we'll later enhance with rollovers throughout this chapter. Rollovers are com-
monly used on product pages to display details about merchandise for sale online. 
In this case, we'll use a very simple product page that displays books in McGraw-
Hill/Osborne's Demystifi ed series. Rollover techniques that we use on this product 
page can be easily used for any type of web page.

Figure 12-1 shows the product page we're going to build. We kept this simple 
because the purpose of this example is to illustrate how to beef-up the page with 
rollovers, rather than to show you how to create a product page.

Following is the product page web page that includes an image and product de-
scription. We created a table using the <TABLE> tag so that the image and the 
description can be properly positioned on the page. The table consists of one row 
defi ned by the <TR> tag, and three columns defi ned by the <TD> tag. The fi rst 
column contains the image. The second column is used to visually separate the im-
age from the product description. The third column contains the product 
description.

NOTE 

Figure 12-1 This very simple product page can be enhanced by using rollovers.

 232 JavaScript Demystifi ed

ch12.indd   232ch12.indd   232 5/3/2005   1:55:43 PM5/3/2005   1:55:43 PM



You'll notice that the height and width of the image is set so that the image fi ts 
neatly into the row and that the border attribute in the <TABLE> tag is set to 0. 
This hides the table itself, leaving only the contents of the row visible.

NOTE NOTE Pick up a copy of HTML: The Complete Reference, Third Edition by 
Thomas A. Powell or How to Do Everything with HTML by James H. Pence 
(both books published by McGraw-Hill/Osborne) and refresh your memory 
on any HTML tags that are unfamiliar to you in this example.

<!DOCTYPE html PUBLIC
         "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Product Page</title>
</head>
<body>
   <TABLE width="100%" border="0">
      <TBODY>
         <TR valign="top">
            <TD width="50">
               <a>
                <IMG height="92" src="7441805.gif"
                     width="70" border="0" >
                </a>
            </TD>
            <TD>
               <IMG height="1" src="" width="10">
            </TD>
            <TD>
               <A>
                  <B><U>Java Demystifi ed</U></B>
               </A>
               </FONT><FONT face="arial, helvetica, sans-serif"
                      size="-1">
                  <BR>JimKeogh / Paperback / Osborne McGraw Hill /
                      352pp.
                  <BR>ISBN: 0072254548 May&nbsp;2004
           </TD>
         </TR>
      </TBODY>
   </TABLE>
</body>
</html>

CHAPTER 12 Rollovers 233

ch12.indd   233ch12.indd   233 5/3/2005   1:55:43 PM5/3/2005   1:55:43 PM



Creating a Rollover
A rollover is caused by an event called onmouseover and occurs when a visitor to 
your web site moves the mouse over an object that appears on the page. An object 
can be an image, text, or any element of a form (see Chapter 7).

You react to the onmouseover event by using the onmouseover attribute of 
an HTML tag that defi nes the object on the web page and then assign to the 
onmouseover attribute the action you want performed when the event occurs. 
The action can assign a new value to an attribute of an object, call a method of an 
object, or call a JavaScript function.

Let's say that we want to change the image on the product page whenever the 
visitor moves the mouse cursor over the image. The <IMG> tag defi nes the image 
object. The value assigned to the src attribute of the <IMG> tag identifi es the im-
age itself. Whenever the onmouseover event occurs, we need to change the value of 
the src attribute to identify the new image. Here's how this is done:

<IMG height="92" src="7441805.gif" width="70"
          border="0" onmouseover="src='0072253630.jpeg'">

TIP 

Dealing with Incompatible Browsers
Although most browsers used today can handle rollovers, some older browsers cannot; 
therefore, you'll need to determine the compatibility of the browser before your web page 
uses rollovers.

The easiest way to determine browser compatibility is to test the document.images 
object in an if statement. The document.images object refl ects all the images on a web 
page in an array. Each image is assigned to an array element based on the order in which the 
image appears on the page. That is, the fi rst image displayed is assigned to document 
.images[0], the second is document.images[1], and so on. If the browser supports 
the document.images object, then it also supports rollovers. If the browser doesn't sup-
port the document.images object, rollovers aren't supported.

Here's how to test whether the browser supports the document.images object. Basi-
cally, the document.images object is not null if the browser supports rollovers; otherwise, 
the document.images object is null. Note that you place rollover statements in the if 
statement, not in the else statement.

if (document.images){
   Browser supports rollovers.
}
else {
   Browser does not support rollovers.
}

 234 JavaScript Demystifi ed

ch12.indd   234ch12.indd   234 5/3/2005   1:55:43 PM5/3/2005   1:55:43 PM



Here, the original image is the 7441805.gif fi le. The new image is the 0072253630 
.jpeg fi le. The onmouseover attribute is assigned the complete assignment state-
ment (src='0072253630.jpeg'), which tells the browser to replace the 
7441805.gif image with 0072253630.jpeg.

TIP TIP Be careful how you use single and double quotation marks when 
assigning the action to the onmouseover attribute. The value assigned to 
the onmouseover attribute must be enclosed within either double or single 
quotation marks. You should always use double marks for attribute values; single 
marks are tolerated by browsers because so many people use them. However, if 
the onmouseover value contains double quotation marks, as in this example, 
you must use single quotation marks so it isn't confused with the double marks of 
the onmouseover attribute.

Creating a Rollback
Typically, you'll want to roll back, or reverse changes, of the onmouseover event 
when the visitor moves the cursor away from the object. For example, you may 
want the original image to return to the screen after the mouse is moved away, re-
placing the image that was displayed when the onmouseover event occurred. You 
can do this by reacting to the onmouseout event, which occurs whenever the mouse 

Figure 12-2 The product image changes whenever the visitor moves the mouse over the 
image of the product.

CHAPTER 12 Rollovers 235

ch12.indd   235ch12.indd   235 5/3/2005   1:55:44 PM5/3/2005   1:55:44 PM



cursor is moved off an object. You react to the onmouseout event by assigning an 
action to the onmouseout attribute of an object using the same technique used to 
assign an action to the onmouseover attribute.

In the next example, the onmouseover event changes the image from 7441805.
gif to 7417436.gif (Figure 12-2). Therefore, we need to change the image from 
7417436.gif back to 7441805.gif when the onmouseout event occurs. Here's how 
this is done.

<IMG height="92" src="7441805.gif" width="70" border="0"
onmouseover="src='7417436.gif'" onmouseout="src='7441805.gif'">

Following is the complete web page that illustrates the rollover and rollback 
techniques:

<!DOCTYPE html PUBLIC
           "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Rollover Image</title>
</head>
<body>
   <TABLE width="100%" border="0">
     <TBODY>
        <TR vAlign="top">
           <TD width="50">
             <a>
               <IMG height="92" src="7441805.gif" width="70"
                 border="0" onmouseover="src='7417436.gif'"
                 onmouseout="src='7441805.gif'">
             </a>
           </TD>
         <TD>
              <IMG height="1" src="" width="10">
         </TD>
         <TD>
            <A>
                <B><U>Java Demystifi ed</U></B>
             </A>
               </FONT><FONT face="arial, helvetica, sans-serif"
                 size="-1">
                <BR>Jim Keogh / Paperback / Osborne McGraw Hill / 352pp.
                <BR>ISBN: 0072254548 May&nbsp;2004
          </TD>
        </TR>
      </TBODY>
   </TABLE>
</body>
</html>

 236 JavaScript Demystifi ed

ch12.indd   236ch12.indd   236 5/3/2005   1:55:44 PM5/3/2005   1:55:44 PM



You can create as many rollovers as you want on your web page; however, each one 
should be meaningful to the visitor. There is nothing more distracting to a visitor 
than to encounter rollovers on practically every object on a web page. Carefully 
placed rollovers can enhance a visitor's experience when browsing the web page.

A clever rollover technique used by some developers is to enable a visitor to see 
additional information about an item described in text by placing the mouse cursor 
on the text. This eliminates the time-consuming task of using a hyperlink to display 
another web page that contains this additional information and reduces the informa-
tion clutter found on some web pages.

You create a rollover for text by using the onmouseover attribute of the <A> 
tag, which is the anchor tag. You assign the action to the onmouseover attribute 
the same way as you do with an <IMG> tag.

Let's start a rollover project that displays a list of book titles. Additional informa-
tion about a title can be displayed when the user rolls the mouse cursor over the 
book title. In this example, the cover of the book is displayed. However, you could 
replace the book cover with an advertisement or another message that you want to 
show about the book.

One thing must be done; the onmouseover attribute must change the src at-
tribute of the <IMG> tag. Therefore, the value assigned to the onmouseover 
attribute needs to identify explicitly the <IMG> tag that is being changed. To do 
this, we must give the <IMG> tag a unique name by assigning the name to the 
name attribute of the <IMG> tag. We can then reference the name in the value as-
signed to the onmouseover attribute of the text's <A> tag. The following segment 
shows how this is done.

First, we give a name to the <IMG> tag. We'll call it cover.

<IMG height="92" src="7441805.gif" width="70"
              border="0" name="cover">

Next, we reference the name cover in the src attribute to change the image that 
is assigned to the cover <IMG> tag. Notice that we use the complete document 
path, beginning with the document, then the object within the document (the <IMG> 
tag), and then the attribute of the object (src) that we're changing. We don't need 
to react to the onmouseout event because the cover image is always the last book 
title that was pointed to by the mouse cursor.

<A onmouseover="document.cover.src='7441805.gif'">
   <B><U>Java Demystifi ed</U></B>
</A>

Text Rollovers

CHAPTER 12 Rollovers 237

ch12.indd   237ch12.indd   237 5/3/2005   1:55:44 PM5/3/2005   1:55:44 PM



The following web page displays three book titles and one book cover. The cover 
of the fi rst book is shown when the page opens and is replaced with other covers as 
the mouse cursor is rolled over each corresponding title (Figure 12-3).

<!DOCTYPE html PUBLIC
          "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Rollover Text</title>
</head>
<body>
   <TABLE width="100%" border="0">
      <TBODY>
         <TR vAlign="top">
            <TD width="50">
               <a>
                 <IMG height="92" src="7441805.gif"
                   width="70" border="0" name="cover">
               </a>
           </TD>
           <TD>
              <IMG height="1" src="" width="10">
           </TD>
           <TD>
               <A onmouseover=

Figure 12-3 The cover changes each time the mouse cursor points to a different book title.

 238 JavaScript Demystifi ed

ch12.indd   238ch12.indd   238 5/3/2005   1:55:45 PM5/3/2005   1:55:45 PM



                   "document.cover.src='7441805.gif'">
                  <B><U>Java Demystifi ed</U></B>
               </A>
               <BR>
                  <A onmouseover=
                     "document.cover.src='0072253630.jpeg'">
                     <B><U>OOP Demystifi ed</U></B>
                  </A>
               <BR>
                 <A onmouseover=
                    "document.cover.src='7417436.gif'">
                  <B><U>Data Structures Demystifi ed</U></B>
               </A>
           </TD>
         </TR>
      </TBODY>
   </TABLE>
</body>
</html>

Multiple Actions for a Rollover
As you probably realize, you don't need JavaScript to use rollovers with your ap-
plication, because you can react to an onmouseover event by directly assigning an 
action to the onmouseover attribute of an HTML tag. This direct method enables 
you to perform one action in response to an onmouseover event. However, you may 
fi nd that you want more than one action to occur in response to an onmouseover 
event. To do this, you'll need to create a JavaScript function that is called by the 
onmouseover attribute when an onmouseover event happens. This JavaScript 
function is not much different from other JavaScript functions that you've created 
throughout this book, except this function is likely to have statements that manipu-
late objects on the page rather than perform calculations.

Let's suppose a visitor rolls the cursor over a book title, as in the previous ex-
ample. Instead of simply changing the image to refl ect the cover of the book, you 
could also display an advertisement for the book in a new window, encouraging the 
visitor to purchase the book (Figure 12-4). In this case, both the statement that 
changes the book cover and the statement that pops up the advertisement are con-
tained in the JavaScript function, which is called by the onmouseover attribute 
of the text's anchor tag.

The next example shows how this is done. First, we defi ne the OpenNewWindow() 
JavaScript function in the <head> tag of the page. The OpenNewWindow() 
function has one argument, which is an integer called book that identifi es the book 
title that the visitor selected.

CHAPTER 12 Rollovers 239

ch12.indd   239ch12.indd   239 5/3/2005   1:55:45 PM5/3/2005   1:55:45 PM



The function executes the appropriate statements depending on the book. Basi-
cally, the same three statements are executed for each book:

• The appropriate cover is assigned the src attribute of the <IMG> tag.

• A new window is opened by calling the window.open() method of the 
window object.

• The advertisement is written to the new window using the window
.write() method.

These statements are slightly different for each book, of course, as each has a dif-
ferent cover, the window is positioned in a different place on the screen for each 
book, and the content written to the window is tailored to each book.

TIP TIP In a real application, the new window typically displays an advertisement 
image rather than text. Text is used in this example so you can easily replicate this 
on your computer without having to create an image.

Figure 12-4 The JavaScript function changes the image of the cover and opens an 
advertisement in a new window.

 240 JavaScript Demystifi ed

ch12.indd   240ch12.indd   240 5/3/2005   1:55:45 PM5/3/2005   1:55:45 PM



We then defi ne the rest of the page in the <BODY> tag. This is nearly identical to 
the preceding example, except the text reacts to two events—onmouseover and 
onmouseout—inside of one event.

The onmouseover attribute responds to the onmouseover event by calling the 
OpenNewWindow() JavaScript function and passing it an integer that identifi es 
the book. The onmouseout attribute reacts to the mouse cursor rolling off (on-
mouseout event) the text by calling the close() method of the window object, 
which closes the newly opened window so we don't clutter the screen with windows.

<!DOCTYPE html PUBLIC
                 "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Open Window</title>
   <script language="Javascript" type="text/javascript">
      <!--
           function OpenNewWindow(book) {
            if (book== 1)
           {
              document.cover.src='7441805.gif'
              MyWindow = window.open(
                '', 'myAdWin', 'titlebar=0 status=0,
                     toolbar=0, location=0, menubar=0,
                     directories=0, resizable=0, height=50,
                     width=150,left=500, top=400')
              MyWindow.document.write(
                     '10% Discount for Java Demystifi ed!')
          }
          if (book== 2)
          {
             document.cover.src='0072253630.jpeg'
             MyWindow = window.open('', 'myAdWin',
                 'titlebar="0" status="0", toolbar="0",
                 location="0", menubar="0", directories="0",
                 resizable="0", height="50",
                 width="150",left="500",top="500"')
             MyWindow.document.write(
                   '20% Discount for OOP Demystifi ed!')
          }
          if (book== 3)
          {
             document.cover.src='7417436.gif'
             MyWindow = window.open('', 'myAdWin',
                  'titlebar="0" status="0", toolbar="0",

CHAPTER 12 Rollovers 241

ch12.indd   241ch12.indd   241 5/3/2005   1:55:45 PM5/3/2005   1:55:45 PM



                   location="0", menubar="0",
                   directories="0", resizable="0",
                   height="50", width="150",
                   left="500",top="600"')
             MyWindow.document.write(
                  '15% Discount for Data Structures Demystifi ed!')
         }
        }
      -->
      </script>
</head>
<body>
   <TABLE width="100%" border="0">
      <TBODY>
         <TR vAlign="top">
            <TD width="50">
               <a>
                  <IMG height="92" src="7441805.gif"
                         width="70"
                         border="0" name="cover">
               </a>
            </TD>
            <TD>
               <IMG height="1" src="" width="10">
            </TD>
            <TD>
               <A onmouseover="OpenNewWindow(1)"
                         onmouseout="MyWindow.close()">
                  <B><U>Java Demystifi ed </U></B>
               </A>
               <BR>
               <A onmouseover="OpenNewWindow(2)"
                     onmouseout="MyWindow.close()">
                   <B><U>OOP Demystifi ed</U></B>
               </A>
               <BR>
               <A onmouseover="OpenNewWindow(3)"
                    onmouseout="MyWindow.close()">
                  <B><U>Data Structures Demystifi ed</U></B>
               </A>
           </TD>
        </TR>
       </TBODY>
     </TABLE>
</body>
</html>

 242 JavaScript Demystifi ed

ch12.indd   242ch12.indd   242 5/3/2005   1:55:46 PM5/3/2005   1:55:46 PM



An effi cient way of handling rollovers is to load images into an array when your 
web page loads. The browser loads each image once the fi rst time the image is ref-
erenced in the web page. Typically, the default setting for the browser is to check 
the browser cache for subsequent references for the image rather than download the 
image again from the web server. However, a visitor to your web page might have 
changed the default setting, causing the browser to reload the image each time the 
image is referenced. This might cause a noticeable delay.

Any delay in transmission is likely to be noticed by the visitor. While most visi-
tors accept short delays when they're selecting a different web page, they tend to be 
unforgiving if the rollover takes longer than a second or two to display the new im-
age. You can reduce this delay by creating a JavaScript that loads all the images into 
memory once at the beginning of the JavaScript, where they can be quickly called 
upon as the onmouseover event occurs.

Downloading images when the web page is fi rst loaded is a simple three-step 
process:

 1. Declare an image object.

 2. Assign the image fi le to the image object.

 3. Assign the image object to the src attribute of the HTML tag that is going 
to react to the rollover event.

The following example shows how this is done. Notice that the IMG object is 
declared and assigned an image in the if statement and that the IMG objects are as-
signed to null if the browser doesn't support rollovers.

<!DOCTYPE html PUBLIC
           "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>More Effi cient Rollover</title>
   <script language="Javascript" type="text/javascript">
      <!--
            JavaDemystifi ed = new Image
            OOPDemystifi ed = new Image
            DataStructuresDemystifi ed = new Image
         if (document.images) {
            JavaDemystifi ed.src = '7441805.gif'
            OOPDemystifi ed.src = '0072253630.jpeg'
            DataStructuresDemystifi ed.src = '7417436.gif'

More Effi cient Rollovers

CHAPTER 12 Rollovers 243

ch12.indd   243ch12.indd   243 5/3/2005   1:55:46 PM5/3/2005   1:55:46 PM



        }
        else {
            JavaDemystifi ed.src = ''
            OOPDemystifi ed.src = ''
            DataStructuresDemystifi ed.src = ''
            document.cover = ''
        }
      -->
      </script>

</head>
<body>
   <TABLE width="100%" border=0>
      <TBODY>
         <TR vAlign="top">
            <TD width="50">
               <a>
                 <IMG height="92" src="7441805.gif"
                     width="70" border="0" name="cover">
               </a>
           </TD>
           <TD>
              <IMG height="1" src="" width="10">
           </TD>
           <TD>
               <A onmouseover=
                    "document.cover.src=JavaDemystifi ed.src">
                  <B><U>Java Demystifi ed </U></B>
               </A>
               <BR>
                <A onmouseover=
                   "document.cover.src=OOPDemystifi ed.src">
                   <B><U>OOP Demystifi ed</U></B>
               </A>
               <BR>
               <A onmouseover=
                  "document.cover.src=
                   DataStructuresDemystifi ed.src">
                  <B><U>Data Structures Demystifi ed</U></B>
               </A>
           </TD>
         </TR>
      </TBODY>
   </TABLE>
</body>
</html>

 244 JavaScript Demystifi ed

ch12.indd   244ch12.indd   244 5/3/2005   1:55:46 PM5/3/2005   1:55:46 PM



A rollover provides an easy way to make your web page come alive, as visitors to 
your web site move the mouse cursor around the web page. Each time the mouse 
cursor rolls over an object on the web page, the browser signals an onmouseover 
event. An onmouseout event is then generated when the mouse cursor moves off the 
object. Your can design your web page to perform an action to respond to these 
events.

You specify the action that is to be taken by assigning a value to the onmouseover 
and onmouseout attributes of the <IMG> tag and the anchor tag. The value can 
be as simple as resetting the value of another attribute, such as the src attribute of 
the <IMG> tag, or it can call a JavaScript function. A JavaScript function can be 
defi ned to perform one or multiple actions in response to the onemouseover and 
onmouseout events by including multiple JavaScript statements within the function 
defi nition.

Most browsers support rollovers; however, some browsers don't, so you'll need 
to test whether or not the browser supports the document.images object. If it 
does support this object, then the browser also supports rollovers.

In the next chapter, you'll learn how to dress up your web pages with banners and 
slideshows.

Looking Ahead

Quiz
 1. True or False. The browser automatically replaces a rollover image with the 

original image when the mouse cursor moves away from an object.

 a. True

 b. False

 2. What is assigned an action to perform when the mouse cursor leaves an 
object?

 a. onmouseout event

 b. onmouseover event

 c. onmouseout attribute

 d. onmouseout attribute

CHAPTER 12 Rollovers 245

ch12.indd   245ch12.indd   245 5/3/2005   1:55:46 PM5/3/2005   1:55:46 PM



 3. Where is a good place to trap a rollover event in a text object?

 a. <IMG> tag

 b. Anchor tag

 c. Name tag

 d. src tag

 4. How do you reference a specifi c object on a document?

 a. Use the unique position of the object.

 b. Use the unique source of the object.

 c. Use the unique name or ID of the object.

 d. None of the above.

 5. How do you load rollover images into memory?

 a. RolloverLoad

 b. LoadRollover

 c. Assign an image fi le to an image object in a JavaScript

 d. Call the LoadRollover() method from a JavaScript

 6. What is the value of document.images if the browser does not support 
the Image object?

 a. 1

 b. null

 c. The number of images on the page

 d. The number of images that must be loaded from the server

 7. True or False. You can open a new window directly from the 
onmouseover attribute.

 a. True

 b. False

 8. True or False. All images on a web page are refl ected in the document
.images array.

 a. True

 b. False

 9. True or False. You can use JavaScript to write to a window that is opened as 
a result of an onmouseover event if the window is in the same domain.

 a. True

 b. False

 246 JavaScript Demystifi ed

ch12.indd   246ch12.indd   246 5/3/2005   1:55:46 PM5/3/2005   1:55:46 PM



 10. You can create a rollback of an image by reacting to which event?

 a. onmouse event

 b. onmouserollback event

 c. onmouserestore event

 d. None of the above

CHAPTER 12 Rollovers 247

ch12.indd   247ch12.indd   247 5/3/2005   1:55:47 PM5/3/2005   1:55:47 PM



ch12.indd   248ch12.indd   248 5/3/2005   1:55:47 PM5/3/2005   1:55:47 PM

This page intentionally left blank.



249

CHAPTER
13

Getting Your 
Message Across:

 The Status Bar, Banners, 
and Slideshows

Developers use a variety of tricks to communicate messages to visitors of their web 
sites—clever headlines, specially designed artwork, and fl ashy animation grab the 
visitor's attention as information is displayed about merchandise or a cause. Al-
though many of these tricks require that you be a decent artist who is skillful in 
using animation products such as Macromedia Flash, you can incorporate a few 
tricks into your web page by using JavaScript, even if you're not a great artist.

These tricks use status bar messages, banner advertisements, and slideshows—
all of which are easy to build and can add the pizzazz needed to get your point 
across to anyone who visits your web site. You'll learn the secrets behind these 
tricks in this chapter.

ch13.indd   249ch13.indd   249 4/26/2005   11:41:58 AM4/26/2005   11:41:58 AM

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.



 250 JavaScript Demystifi ed

Making Magic Using the Status Bar
The status bar is located at the bottom of the browser window and is used to display 
a short message to visitors to your web page. Though most web sites make use of 
status bar messages, some developers overlook this feature.

Developers who are clever to utilize the status bar employ various techniques to 
incorporate the status bar in the design of their web page. Some developers display 
a message on the status bar when the web page fi rst opens. Other developers might 
change the message to refl ect whatever the visitor is doing on the web page. Still 
other developers animate the message while the page is displayed, trying to entice 
the visitor to read the message. We'll show you how to build several status bar dis-
play techniques into your web page.

Building a Static Message
Let's begin with the easiest—display a static message on the status bar. A static 
message appears when the web page opens and remains on the status bar until the 
web page is closed.

The content of the status bar is the value of the window object's status prop-
erty. To display a message on the status bar, you'll need to assign the message to the 
status property of the window object. The following statement assigns a string 
to the status property, which appears on the status bar once the browser executes 
this statement:

window.status=
    'Trade secrets are revealed in the Demystifi ed Series.'

The next example shows you how to incorporate this statement into your web 
page. This example should look familiar to you, since it is nearly identical to some 
JavaScript you saw in Chapter 12. In this example, we assign the message to the 
status property in the fi rst line of the JavaScript, which appears within the 
<head> tag of the page (Figure 13-1). Notice that this statement is outside of 
the function defi nition, so the message is displayed immediately when the web 
page opens. However, you can place this assignment statement anywhere in your 

ch13.indd   250ch13.indd   250 4/26/2005   11:42:01 AM4/26/2005   11:42:01 AM



CHAPTER 13 Getting Your Message Across 251

JavaScript. The location depends on when you want the browser to display the mes-
sage on the status bar.

<!DOCTYPE html PUBLIC

            "-//W3C//DTD XHTML 1.0 Transitional//EN">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

  <title>Static Status Bar Message</title>

  <script language="Javascript" type="text/javascript">

    <!--

      window.status=

          'Trade secrets are revealed in the Demystifi ed Series.'

      function OpenNewWindow(book) {

         if (book== 1)

          {

Figure 13-1 The value of the window object's status property is the message that 
appears on the status bar.

ch13.indd   251ch13.indd   251 4/26/2005   11:42:01 AM4/26/2005   11:42:01 AM



 252 JavaScript Demystifi ed

             document.cover.src='7441805.gif'

             MyWindow = window.open('', 'myAdWin', 'titlebar=0

                 status=0, toolbar=0, location=0, menubar=0,

                 directories=0, resizable=0,

                 height=50, width=150,left=500,top=400')

              MyWindow.document.write(

                 '10% Discount for Java Demystifi ed!')

          }

          if (book== 2)

          {

             document.cover.src='0072253630.jpeg'

             MyWindow = window.open('', 'myAdWin', 'titlebar=0

                status=0, toolbar=0, location=0, menubar=0,

                directories=0, resizable=0,

                height=50, width=150,left=500,top=500')

             MyWindow.document.write(

                 '20% Discount for OOP Demystifi ed!')

          }

          if (book== 3)

          {

             document.cover.src='7417436.gif'

             MyWindow = window.open('', 'myAdWin',

               'titlebar=0 status=0, toolbar=0, location=0,

                menubar=0, directories=0, resizable=0,

                height=50, width=150,left=500,top=600')

             MyWindow.document.write(

               '15% Discount for Data Structures Demystifi ed!')

         }

        }

      -->

      </script>

</head>

<body>

   <TABLE width="100%" border=0>

      <TBODY>

         <TR vAlign=top>

            <TD width=50>

               <a>

                  <IMG height=92 src="7441805.gif" width=70

                          border=0 name='cover'>

               </a>

            </TD>

            <TD>

               <IMG height=1 src="" width=10>

ch13.indd   252ch13.indd   252 4/26/2005   11:42:01 AM4/26/2005   11:42:01 AM



CHAPTER 13 Getting Your Message Across 253

            </TD>

            <TD>

               <A onmouseover="OpenNewWindow(1)"

                       onmouseout="MyWindow.close()">

                  <B><U>Java Demystifi ed </U></B>

               </A>

               <BR>

               <A onmouseover="OpenNewWindow(2)"

                    onmouseout="MyWindow.close()">

                   <B><U>OOP Demystifi ed</U></B>

               </A>

               <BR>

               <A onmouseover="OpenNewWindow(3)"

                     onmouseout="MyWindow.close()">

                  <B><U>Data Structures Demystifi ed</U></B>

               </A>

           </TD>

        </TR>

       </TBODY>

     </TABLE>

</body>

</html>

Changing the Message Using Rollovers
You can make the status bar message come alive by telling the visitor something 
about objects the visitor points to on the web page. The message on the status bar 
changes as the visitor moves the mouse cursor over objects on the page.

The secret to this trick is to use rollovers to signal the browser when a different 
message should be displayed. As you'll recall from Chapter 12, an onmouseover 
event is generated whenever the visitor moves the mouse cursor over an object on 
the web page. You can trap the onmouseover event by using the onmouseover 
property. The browser executes the statement that you assign to the onmouseover 
property when an onmouseover event occurs.

The following code segment shows how this is done. When the mouse cursor is moved 
over the text Java Demystifi ed, the browser calls the DisplayStatusBarMesg() 
function.

<A onmouseover="DisplayStatusBarMesg(1)">
   <B><U>Java Demystifi ed </U></B>
</A>

ch13.indd   253ch13.indd   253 4/26/2005   11:42:02 AM4/26/2005   11:42:02 AM



 254 JavaScript Demystifi ed

You don't need to call a JavaScript function to display a message on the status 
bar. Instead, you can simply have the browser change the message directly from the 
onmouseover property. Here's how this is done:

@Code Listing =  <A onmouseover=
      "window.status='10% Discount for Java Demystifi ed!'">
   <B><U>Java Demystifi ed </U></B>
</A>

Typically, you'll want to have the browser take multiple actions in response to an 
onmouseover event. Therefore, you'll probably fi nd yourself defi ning a function that 
changes the message on the status bar and does other things when an onmouseover 
event happens.

The next example illustrates how to do this. This is basically the same web page 
that appeared in the previous example—with one major change: we dispense with 
the popup windows and place the sales message for each book that appeared in 
those windows on the status bar. When the web page opens, the status bar displays 
the general sales message that was shown on the status bar in the previous example. 
The DisplayStatusBarMesg() is called each time the visitor moves the 
mouse cursor over the title of a book. The DisplayStatusBarMesg() is nearly 
identical to the OpenNewWindow() function we saw in the previous example. 
We simply changed the name of the function to refl ect the action that occurs when 
the function is called.

The DisplayStatusBarMesg() function is passed an integer that indicates 
the book that incurred the onmouseover event. The appropriate segment of the 
DisplayStatusBarMesg() function executes based on this value.

Two things then occur on the web page. First, the image changes to refl ect the 
cover of the title selected by the visitor. Second, the sales message for that book is 
displayed on the status bar (Figure 13-2).

<!DOCTYPE html PUBLIC
        "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Dynamic Status Bar Message</title>
   <script language="Javascript" type="text/javascript">
      <!--
          window.status=
                'Trade secrets are revealed in the
                    Demystifi ed Series.'
         function DisplayStatusBarMesg(book) {
            if (book== 1)
           {
              document.cover.src='7441805.gif'
              window.status=

ch13.indd   254ch13.indd   254 4/26/2005   11:42:02 AM4/26/2005   11:42:02 AM



CHAPTER 13 Getting Your Message Across 255

                '10% Discount for Java Demystifi ed!'
           }
          if (book== 2)
          {
             document.cover.src='0072253630.jpeg'
           window.status='20% Discount for OOP Demystifi ed!'
          }
          if (book== 3)
          {
             document.cover.src='7417436.gif'
              window.status=
                 '15% Discount for Data Structures Demystifi ed!'
         }
        }
      -->
      </script>
</head>
<body>
   <TABLE width="100%" border=0>
      <TBODY>
         <TR vAlign=top>
            <TD width=50>
               <a>
                  <IMG height=92 src="7441805.gif"
                      width=70 border=0 name='cover'>
               </a>
            </TD>
            <TD>
               <IMG height=1 src="" width=10>
            </TD>
            <TD>
               <A onmouseover=" DisplayStatusBarMesg(1)">
                  <B><U>Java Demystifi ed </U></B>
               </A>
               <BR>
               <A onmouseover=" DisplayStatusBarMesg(2)">
                   <B><U>OOP Demystifi ed</U></B>
               </A>
               <BR>
               <A onmouseover=" DisplayStatusBarMesg(3)">
                  <B><U>Data Structures Demystifi ed</U></B>
               </A>
           </TD>
        </TR>
       </TBODY>
     </TABLE>
</body>
</html>

ch13.indd   255ch13.indd   255 4/26/2005   11:42:02 AM4/26/2005   11:42:02 AM



 256 JavaScript Demystifi ed

Moving the Message Along the Status Bar
You can spice up any message on the status bar by displaying letters individually, 
giving the message a sense of movement. The message then appears to ripple across 
the status bar continuously while the visitor looks around the web page. Movement 
of the message doesn't stop even during rollovers.

Creating movement on the status bar is a little tricky; however, the next example 
will show you everything you need to do to get your message moving. This example 
is similar to the example shown in Figure 13-1, except the message in Figure 13-1 is 
stationary and the message is this example moves.

Let's begin where the browser begins by calling the Start() JavaScript func-
tion when the web page fi rst loads into the browser. This happens in the <body> 
tag, as shown here:

<body onload="Start()">

The Start() function is defi ned in the JavaScript found in the <head> tag. Two 
statements are included within the Start() function: Pause() and Display(). 
The Pause() function temporarily stops the message from moving along the status 
bar, and the Display() function causes the text to move along the status bar.

Figure 13-2 The message on the status bar refl ects the title pointed to by the visitor.

ch13.indd   256ch13.indd   256 4/26/2005   11:42:03 AM4/26/2005   11:42:03 AM



CHAPTER 13 Getting Your Message Across 257

The Pause() function performs two actions:

 1. It calls the clearTimeout() function to reset the timeout clock if the 
message is displayed on the status bar. The clearTimeout() function 
is a predefi ned function that clears the current setting of the timeout clock, 
which determines the length of time that the browser pauses. The timeout 
clock is set in the Display() function defi nition, which you'll learn 
about later in this section. The clearTimeout() function requires one 
parameter, which is a reference to the clock. This reference is returned by 
the setTimeout() function.

 2. The Pause() function sets the fl ag that indicates the message isn't 
displayed on the status bar.

Most of the real action takes place in the Display() function defi nition. At 
fi rst, this function defi nition might appear complex, but it's not so tricky if you take 
time to understand what is happening with each statement contained in the function 
defi nition.

Begin by identifying the initial value for variables and properties used in these 
statements. These are declared and initialized at the beginning of the JavaScript. 
The Clock variable is set to null, which you'll recall is the same as saying that 
nothing is assigned to the Clock variable. The MesgDisplayed variable is set 
to false, and the other variables are set to 0.

The message that appears in the status bar is assigned to an array (see Chapter 4) 
called Mesg. Each character of the message becomes an element of the array, which 
enables us to display each letter on the status bar.

Let's return to the defi nition of the Display() function and see how these 
variables are used to create movement on the status bar. First, we determine wheth-
er the value of Offset is less than the length of the array, which is really the length 
of the string. This value will be incremented as we begin to display letters on the 
status bar.

If the value of Offset is less than the length of the array, we determine wheth-
er the character at the Offset within the array is a space. If so, we increase the 
value of Offset so that the leading space is not displayed on the status bar. Notice 
that we use the charAt() function to determine the character that is assigned to 
the array element. We then compare this value to the space character (" "):

if (Mesg[Count].charAt(Offset) == " "){
   Offset++
}

Once we're sure that a character (Offset < Mesg[Count].length) ap-
pears and the character isn't a space (" "), we can display a portion of the message. 

ch13.indd   257ch13.indd   257 4/26/2005   11:42:03 AM4/26/2005   11:42:03 AM



 258 JavaScript Demystifi ed

You might be wondering why we display only a portion of the message—we do so 
to create the illusion of movement, as one portion at a time appears on the status bar.

Here's what happens. We display a substring (see Chapter 6) of the message, and 
then have a short timeout before displaying another portion of the message. The sub-
string is a portion of the message that is assigned to the array. The substring() 
method is a method of a string object that copies a substring from a string based on 
a beginning and end position that is passed as an argument to the substring() 
method.

The starting position specifies the first character that is returned by the 
substring() method—that is, the fi rst character in the substring. The end posi-
tion specifi es the character that precedes the last character that is returned by the 
substring() method.

You'll notice that the value of Offset increases while the Display() func-
tion executes, causing a larger substring of the message to be returned by the 
substring() method and subsequently displayed on the status bar when the 
substring (PMesg) is assigned to the status property (window.status).

After the subsbring is displayed, the value of Offset is incremented and set-
Timeout() is called to create a short pause before the next substring of the 
message is displayed. The setTimeout() function has two parameters: The fi rst 
is the name of the function that is called after the timeout period is completed. In 
this example, the Display() function is called after the timeout. The second 
parameter is the length of the timeout indicated in milliseconds; 1000 milliseconds 
equals 1 second. We use 40 milliseconds, but you can increase or decrease this 
value to whatever works for your application. The setTimeout() function re-
turns a reference to the Clock, which is used in the Pause() function to clear the 
timeout clock.

The MesgDisplayed variable is then set to true, indicating that a portion of 
the message is displayed on the status bar.

Everything we've mentioned so far happens only if the value of Offset is less 
than the length of the array (the length of the message). If Offset is equal to or 
greater than the length of the array, the else statement kicks in and the if statement 
is skipped.

The else statement resets Offset to 0 and increments the value of the Count 
variable. If this value equals the number of elements in the array, then the value of 
Count is set to 0.

The setTimeout() function is once again called to pause for 1 second before 
calling the Display() function again. The MesgDisplayed variable is then 
set to true, indicating that a message is displayed on the status bar.

<!DOCTYPE html PUBLIC

         "-//W3C//DTD XHTML 1.0 Transitional//EN">

<html xmlns="http://www.w3.org/1999/xhtml">

ch13.indd   258ch13.indd   258 4/26/2005   11:42:03 AM4/26/2005   11:42:03 AM



CHAPTER 13 Getting Your Message Across 259

<head>

   <title>Moving Status Bar Message</title>

   <script language="Javascript" type="text/javascript">

      <!--

      var Clock = null

      var MesgDisplayed = false

      var Count = 0

      var Offset = 0

      var Mesg = new Array(

           'Trade secrets are revealed in the

                Demystifi ed Series.')

      function Pause() {

        if (MesgDisplayed){

          clearTimeout (Clock)

        }

        MesgDisplayed = false

      }

     function Display() {

        if (Offset < Mesg[Count].length) {

           if (Mesg[Count].charAt(Offset) == " "){

             Offset++

           }

           var PMesg = Mesg[Count].substring(0, Offset + 1)

           window.status = PMesg

           Offset++

           Clock = setTimeout("Display()", 40)

           MesgDisplayed = true

        } else {

           Offset = 0

           Count ++

           if (Count  == Mesg.length) {

             Count = 0

           }

           Clock = setTimeout("Display()", 1000)

           MesgDisplayed = true

        }

     }

     function Start() { 

        Pause()

        Display()

     }

     function OpenNewWindow(book) {

       if (book== 1)

       {

          document.cover.src='7441805.gif'

          MyWindow = window.open('', 'myAdWin', 'titlebar=0

                status=0, toolbar=0, location=0, menubar=0,

                directories=0, resizable=0, height=50,

                width=150,left=500,top=400')

ch13.indd   259ch13.indd   259 4/26/2005   11:42:04 AM4/26/2005   11:42:04 AM



 260 JavaScript Demystifi ed

          MyWindow.document.write(

               '10% Discount for Java Demystifi ed!')

      }

      if (book== 2)

      {

         document.cover.src='0072253630.jpeg'

         MyWindow = window.open('', 'myAdWin', 'titlebar=0

               status=0, toolbar=0, location=0, menubar=0,

               directories=0, resizable=0, height=50,

               width=150,left=500,top=500')

         MyWindow.document.write(

             '20% Discount for OOP Demystifi ed!')

      }

      if (book== 3)

      {

         document.cover.src='7417436.gif'

         MyWindow = window.open('', 'myAdWin', 'titlebar=0

              status=0, toolbar=0, location=0, menubar=0,

              directories=0, resizable=0, height=50,

              width=150,left=500,top=600')

         MyWindow.document.write(

             '15% Discount for Data Structures Demystifi ed!')

      }

    }

    -->

    </script>

</head>

<body onload="Start()">

   <TABLE width="100%" border=0>

      <TBODY>

         <TR vAlign=top>

            <TD width=50>

               <a>

                  <IMG height=92 src="7441805.gif" width=70

                           border=0

                           name='cover'>

               </a>

            </TD>

            <TD>

               <IMG height=1 src="" width=10>

             </TD>

             <TD>

                <A onmouseover="OpenNewWindow(1)"

                       onmouseout="MyWindow.close()">

                   <B><U>Java Demystifi ed </U></B>

                </A>

                <BR>

                <A onmouseover="OpenNewWindow(2)"

ch13.indd   260ch13.indd   260 4/26/2005   11:42:04 AM4/26/2005   11:42:04 AM



CHAPTER 13 Getting Your Message Across 261

                      onmouseout="MyWindow.close()">

                   <B><U>OOP Demystifi ed</U></B>

                </A>

                <BR>

                <A onmouseover="OpenNewWindow(3)"

                        onmouseout="MyWindow.close()">

                   <B><U>Data Structures Demystifi ed</U></B>

                </A>

             </TD>

           </TR>

        </TBODY>

     </TABLE>

</body>

</html>

Crawling the Status Bar Message
Anyone who watches the news on TV can't help but notice headlines crawling along 
the bottom of the television screen. You can incorporate the same effect in your web 
page by crawling a message along the status bar. A crawl creates a steady fl ow of 
text moving from right to left on the status bar. Let's see how this is done by looking 
at the following example:

<!DOCTYPE html PUBLIC

               "-//W3C//DTD XHTML 1.0 Transitional//EN">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

   <title>Crawling The Status Bar Message</title>

   <script language="Javascript" type="text/javascript">

      <!--

         var Mesg =

               '.....Trade secrets are revealed in

                       the Demystifi ed Series......'

         var Count = 0

         function Crawl() {

            window.status = Mesg.substring(Count,

                   Mesg.length) +

                   Mesg.substring(0, Count)

            if (Count < Mesg.length) {

               Count++

            } else {

               Count = 0

            }

            setTimeout("Crawl()",200)

         }

     function OpenNewWindow(book) {

ch13.indd   261ch13.indd   261 4/26/2005   11:42:04 AM4/26/2005   11:42:04 AM



 262 JavaScript Demystifi ed

       if (book== 1)

       {

          document.cover.src='7441805.gif'

          MyWindow = window.open('', 'myAdWin', 'titlebar=0

                 status=0, toolbar=0, location=0, menubar=0,

                 directories=0, resizable=0, height=50,

                 width=150,left=500,top=400')

          MyWindow.document.write(

                '10% Discount for Java Demystifi ed!')

      }

      if (book== 2)

      {

         document.cover.src='0072253630.jpeg'

         MyWindow = window.open('', 'myAdWin', 'titlebar=0

              status=0, toolbar=0, location=0, menubar=0,

              directories=0, resizable=0, height=50,

              width=150,left=500,top=500')

         MyWindow.document.write(

              '20% Discount for OOP Demystifi ed!')

      }

      if (book== 3)

      {

         document.cover.src='7417436.gif'

         MyWindow = window.open('', 'myAdWin', 'titlebar=0

              status=0, toolbar=0, location=0, menubar=0,

              directories=0, resizable=0, height=50,

              width=150,left=500,top=600')

         MyWindow.document.write(

             '15% Discount for Data Structures Demystifi ed!')

      }

    }

    -->

    </script>

</head>

<body onload="Crawl()">

   <TABLE width="100%" border=0>

      <TBODY>

         <TR vAlign=top>

            <TD width=50>

               <a>

                  <IMG height=92 src="7441805.gif" width=70

                      border=0

                      name='cover'>

               </a>

            </TD>

            <TD>

               <IMG height=1 src="" width=10>

             </TD>

ch13.indd   262ch13.indd   262 4/26/2005   11:42:05 AM4/26/2005   11:42:05 AM



CHAPTER 13 Getting Your Message Across 263

             <TD>

                <A onmouseover="OpenNewWindow(1)"

                      onmouseout="MyWindow.close()">

                   <B><U>Java Demystifi ed </U></B>

                </A>

                <BR>

                <A onmouseover="OpenNewWindow(2)"

                      onmouseout="MyWindow.close()">

                   <B><U>OOP Demystifi ed</U></B>

                </A>

                <BR>

                <A onmouseover="OpenNewWindow(3)"

                           onmouseout="MyWindow.close()">

                   <B><U>Data Structures Demystifi ed</U></B>

                </A>

             </TD>

           </TR>

        </TBODY>

     </TABLE>

</body>

</html>

This example is nearly identical to the previous example. The browser begins the 
crawl when it loads the JavaScript Crawl() function when it encounters the 
onload attribute of the <body> tag.

The Crawl() function is defi ned in the <head> tag. Before looking at this 
function, notice that we declare two variables outside of the function defi nition: 
Mesg, which is assigned the message, and Count, which is initialized to 0.

The Crawl() function defi nition begins by concatenating two substrings of the 
message to form the text that is displayed in the status bar. This looks a bit confus-
ing, and the best way to understand this is to take apart this statement.

In the fi rst substring(), Count is 0 and Mesg.length is 63. Remember 
that a string is an array of characters, where the fi rst character of the string is the 0 
array element and the last character is the 62nd array element. Therefore, this sub-
string copies the entire message.

In the second substring(), Count is also 0. Here, the substring consists of 
the character of the zero element (the fi rst period) and the character that comes be-
fore the zero element (nothing). So this substring is the fi rst character of the message.

The second substring is concatenated to (attached to the back of) the fi rst sub-
string, and then the fi rst substring is assigned to the status property, causing the 
fi rst substring to be displayed on the status bar.

Next, we determine whether the value of the Count variable is less than the 
length of the message. It is, so we increment the value of the Count variable. If the 
value of the Count variable is more than the length of the message, the Count 
variable is reset to 0.

ch13.indd   263ch13.indd   263 4/26/2005   11:42:05 AM4/26/2005   11:42:05 AM



 264 JavaScript Demystifi ed

Next, the setTimeout() method is called. As you'll recall from the previous 
example, the setTimeout() method pauses the crawl and then calls the 
Crawl() function again. In this example, we pause for 200 milliseconds—think 
of this as the speed of the crawl; the higher the value, the slower the crawl, and the 
lower the value, the faster the crawl.

Notice that the value of the Count variable is changed after the fi rst time the 
message is displayed on the status bar (Figure 13-3). This causes a different sub-
string to be copied from the message. Return to the beginning of our explanation of 
the Crawl() function and walk through the substring process using the new value 
of the Count variable and you'll see the new substring.

Crawling Date and Time with Your Message
You can enhance your crawl by including the current date and time as part of the 
message that crawls across the status bar. This is easy to do by fi rst capturing the 
current date and time by declaring an instance of the Date() object, as shown here:

Today = new Date()

Figure 13-3 The message continues to crawl along the status bar while the web page is 
displayed.

ch13.indd   264ch13.indd   264 4/26/2005   11:42:05 AM4/26/2005   11:42:05 AM



CHAPTER 13 Getting Your Message Across 265

Next, you'll need to call the toString() method of the Date() object to 
convert the date and time to a string, and then assign the string to a variable, like so:

CurrentTime = Today.toString()

Finally, you'll need to concatenate the string that contains the current date and 
time to the end of the message string before assigning the message to the status 
property of the window object.

The next example shows how to incorporate the current date and time into the 
crawl. This is basically the same as the previous crawl example, with some minor 
modifi cations to accommodate the date and time. In the fi rst change, we defi ne a 
new function called SetMessage(), which does four things: declares a Date() 
object called today, converts the date and time to a string called CurrentTime, 
concatenates the CurrentTime to the message, and assigns the message to the 
Mesg variable.

The second change occurs within the defi nition of the Crawl() function. No-
tice that the fi rst statement in the Crawl() function calls the SetMessage() 
function. This allows the date and time to be updated each time the Crawl() func-
tion is called and assures that the date and time—even to the second—is accurate 
(Figure 13-4).

Figure 13-4 The current date and time can easily be incorporated into the crawl 
message.

ch13.indd   265ch13.indd   265 4/26/2005   11:42:06 AM4/26/2005   11:42:06 AM



 266 JavaScript Demystifi ed

<!DOCTYPE html PUBLIC

         "-//W3C//DTD XHTML 1.0 Transitional//EN">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

   <title>Crawling With Date, Time and Message</title>

   <script language="Javascript" type="text/javascript">

      <!--

         var Mesg

         var CurrentTime

         var Count = 0

         function SetMessage() {

            Today = new Date()

            CurrentTime = Today.toString()

            Mesg =

                 '.....Trade secrets are revealed in

                         the Demystifi ed Series......'+

                CurrentTime

         }

         function Crawl() {

            SetMessage()

            window.status = Mesg.substring(

                Count, Mesg.length)

                + Mesg.substring(0, Count)

            if (Count < Mesg.length) {

               Count++

            } else {

               Count = 0

            }

            setTimeout("Crawl()",200)

         }

     function OpenNewWindow(book) {

       if (book== 1)

       {

          document.cover.src='7441805.gif'

          MyWindow = window.open('', 'myAdWin', 'titlebar=0

               status=0, toolbar=0, location=0, menubar=0,

               directories=0, resizable=0, height=50,

               width=150,left=500,top=400')

          MyWindow.document.write(

                '10% Discount for Java Demystifi ed!')

      }

      if (book== 2)

      {

         document.cover.src='0072253630.jpeg'

         MyWindow = window.open('', 'myAdWin', 'titlebar=0

              status=0, toolbar=0, location=0, menubar=0,

              directories=0, resizable=0, height=50,

              width=150,left=500,top=500')

         MyWindow.document.write(

              '20% Discount for OOP Demystifi ed!')

ch13.indd   266ch13.indd   266 4/26/2005   11:42:06 AM4/26/2005   11:42:06 AM



CHAPTER 13 Getting Your Message Across 267

      }

      if (book== 3)

      {

         document.cover.src='7417436.gif'

         MyWindow = window.open('', 'myAdWin', 'titlebar=0

               status=0, toolbar=0, location=0, menubar=0,

               directories=0, resizable=0, height=50,

               width=150,left=500,top=600')

         MyWindow.document.write(

              '15% Discount for Data Structures Demystifi ed!')

      }

    }

    -->

    </script>

</head>

<body onload="Crawl()">

   <TABLE width="100%" border=0>

      <TBODY>

         <TR vAlign=top>

            <TD width=50>

               <a>

                  <IMG height=92 src="7441805.gif" width=70

                         border=0 name='cover'>

               </a>

            </TD>

            <TD>

               <IMG height=1 src="" width=10>

             </TD>

             <TD>

                <A onmouseover="OpenNewWindow(1)"

                        onmouseout="MyWindow.close()">

                   <B><U>Java Demystifi ed </U></B>

                </A>

                <BR>

                <A onmouseover="OpenNewWindow(2)"

                        onmouseout="MyWindow.close()">

                   <B><U>OOP Demystifi ed</U></B>

                </A>

                <BR>

                <A onmouseover="OpenNewWindow(3)"

                        onmouseout="MyWindow.close()">

                   <B><U>Data Structures Demystifi ed</U></B>

                </A>

             </TD>

           </TR>

        </TBODY>

     </TABLE>

</body>

</html>

ch13.indd   267ch13.indd   267 4/26/2005   11:42:07 AM4/26/2005   11:42:07 AM



 268 JavaScript Demystifi ed

Banner Advertisements
The banner advertisement is the hallmark of every commercial web page. It is typi-
cally positioned near the top of the web page, and its purpose is to get the visitor's 
attention by doing all sorts of clever things.

Nearly all banner advertisements are in a fi le format such as a GIF, JPG, TIFF, or 
other common graphic fi le formats. Some are animated GIFs, which is a series of 
images contained in one fi le that rotate automatically on the screen. Some are Flash 
movies that require the visitor to have a browser that includes a Flash plug-in. Many 
banner advertisements consist of a single graphical image that does not contain any 
animation and does not require any special plug-in.

You need to do three things to incorporate a banner advertisement in your web 
page:

 1. Create several banner advertisements using a graphics tool such as 
PhotoShop. You'll want to make more than one advertisement so you 
can rotate them on your web page using a JavaScript.

 2. Create an <img> element in your web page with the height and width 
necessary to display the banner advertisement.

 3. Build a JavaScript that loads and displays the banner advertisements 
in conjunction with the <img> element.

Loading and Displaying Banner Advertisements
Your fi rst job is to build your banner advertisements. The banners should all be the 
same size so they look professional as they rotate on your web page. The best way 
to do this is to create an empty banner and then copy it for each banner advertise-
ment that you want to build. This assures that all the banners will be the same size. 
You can then use each copy to design each ad.

Next, create an image element on your web page using the <img> tag. You'll 
need to set four attributes of the <img> tag: src, width, height, and name. Set 
the src attribute to the fi le name of the fi rst banner advertisement that you want to 
display. Set the width and height attributes to the width and height of the banner. 
Set the name attribute to a unique name for the image element. You'll be using the 
name attribute in the JavaScript when you change from one banner to the next.

The image element (banner) should be centered in the page using the <center> 
tag within the <body> tag of your web page, as shown here:

ch13.indd   268ch13.indd   268 4/26/2005   11:42:07 AM4/26/2005   11:42:07 AM



CHAPTER 13 Getting Your Message Across 269

<body>
   <center>
      <img src="NewAd1.jpg" width="400" height="75"
              name="RotateBanner" />
   </center>
</body>

The fi nal step is to build the JavaScript that will rotate the banners on your web 
page. You'll defi ne the JavaScript in the <head> tag of the web page. The JavaScript 
must do the following:

 1. Load banner advertisements into an array.

 2. Determine whether the browser supports the image object.

 3. Display a banner advertisement.

 4. Pause before displaying the next banner advertisement.

You load the banner advertisements into an array by declaring an Array() 
object and initializing it with the fi le name of each banner advertisement. For ex-
ample, suppose you have three banner advertisements that are contained in the 
NewAd1.jpg, NewAd2.jpg, and NewAd3.jpg fi les. Here's how you'd load them into 
an Array() object:

Banners = new Array('NewAd1.jpg','NewAd2.jpg','NewAd3.jpg')

Next, defi ne a JavaScript function that contains statements used to display the 
banners. Call it DisplayBanners(). The fi rst thing the DisplayBanners() 
function needs to do is determine whether the browser supports the image object by 
using the document.images as the conditional expression in an if statement. As 
you'll recall from Chapter 12, the document.images is null if the browser 
doesn't support the image object, which will cause the browser to skip statements 
that are contained within the if statement; otherwise, those statements are executed 
by the browser.

Next you need to rotate the banner advertisement and then display the next 
banner on the web page. To do this, you need to track the array index of the cur-
rent banner. Remember that the fi rst banner is referenced by array index 0. The 
second banner is array index 1. And the third banner is array index 2.

The best way to track the array index of the current banner is to assign the index 
to a variable. We'll call this CurrentBanner and declare and initialize it outside 
the DisplayBanners() function defi nition (see the next JavaScript example).

If the browser supports the image object, we then must increment the value of the 
CurrentBanner variable within the if statement. The current banner is the fi rst 
banner, since we assigned the fi le name that contains the fi rst banner to the src 

ch13.indd   269ch13.indd   269 4/26/2005   11:42:07 AM4/26/2005   11:42:07 AM



 270 JavaScript Demystifi ed

attribute in the <img> tag. Therefore, we want to show the second banner by incre-
menting the value of the CurrentBanner.

We compare the value of the CurrentBanner to the number of array elements 
by using the length property of the array elements (Banners.length). If they 
are equal, then the banner displayed is the last banner, so we must display the fi rst 
banner by setting the CurrentBanner to 0.

Next, the banner is assigned as the src as shown here. This causes the new ban-
ner to be displayed on the web page:

document.RotateBanner.src= Banners[CurrentBanner]

The JavaScript must pause before displaying the next banner. You call the 
setTimeout() function to stop the JavaScript temporarily. As you learned pre-
viously in this chapter, the setTimeout() function requires two parameters: The 
fi rst parameter is the name of the function to call after the timeout period is com-
pleted. This is where you enter the DisplayBanners() function. The second 
parameter is the duration of the timeout measured in milliseconds. Set this to 1000, 
which equals 1 second. This means that the current banner is displayed for 1 second 
before the next banner replaces it. This is shown here:

setTimeout('DisplayBanners()',1000)

The fi nal step is to call the DisplayBanners() function when the web 
page loads. You do this by assigning the DisplayBanners() function to the 
onload attribute of the <body> tag, as illustrated here:

<body onload="DisplayBanners()">

The following example shows the complete web page that rotates the display of 
three banner advertisements:

<!DOCTYPE html PUBLIC
              "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Banner Ads</title>
   <script language="Javascript" type="text/javascript">
   <!--
     Banners = new Array(
              'NewAd1.jpg','NewAd2.jpg','NewAd3.jpg')
     CurrentBanner = 0
     function DisplayBanners() {
        if (document.images) {
           CurrentBanner++
           if (CurrentBanner == Banners.length) {

ch13.indd   270ch13.indd   270 4/26/2005   11:42:07 AM4/26/2005   11:42:07 AM



CHAPTER 13 Getting Your Message Across 271

              CurrentBanner = 0
           }
           document.RotateBanner.src= Banners[CurrentBanner]
           setTimeout("DisplayBanners()",1000)
         }
      }
      -->
      </script> 
</head>
<body onload="DisplayBanners()" >
   <center>
      <img src="NewAd1.jpg" width="400"
                   height="75" name="RotateBanner" />
   </center>
</body>
</html>

Linking Banner Advertisements to URLs
A banner advertisement is designed to encourage the visitor to learn more infor-
mation about a product or service that is being advertised. To get additional 
information, the visitor is expected to click the banner so that a new web page 
opens. You can link a banner advertisement to a web page by inserting a hyperlink 
into your web page that calls a JavaScript function rather than the URL of a web 
page. The JavaScript then determines the URL that is associated with the current 
banner and loads the web page that is associated with the URL.

The next example shows you how this is done. This example is a slight modifi ca-
tion of the previous example that displayed banner advertisements at the top of the 
web page. The fi rst modifi cation is at the beginning of the JavaScript, where a new 
array called BannerLink is declared. This array is initialized with strings that 
contain the URL for each banner advertisement. It is critical that the URLs are in the 
same order as the banner images in the Banners array; otherwise, the JavaScript 
will link the URLs to the wrong banner image.

The second modifi cation to the JavaScript is the insertion of the LinkBanner() 
function defi nition. The LinkBanner() function defi nition contains the statement 
that links the current banner to the appropriate URL and then assigns the URL to the 
href attribute of the anchor tag on the web page. This statement uses the index of 
the current banner as the index for the BannerLink array to identify the URL 
associated with the current banner. The URL is then concatenated to the 'http://
www.' string, which is then assigned to the href attribute of the anchor tag.

ch13.indd   271ch13.indd   271 4/26/2005   11:42:08 AM4/26/2005   11:42:08 AM



 272 JavaScript Demystifi ed

The last modifi cation occurs in the <body> tag of the web page, where an an-
chor tag is inserted before the <img> tag that displays the banner. The href 
attribute of the anchor tag calls the LinkBanner() function when the visitor 
selects the banner.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Link Banner Ads</title>
   <script language="Javascript" type="text/javascript">
   <!--
     Banners = new Array('NewAd1.jpg','NewAd2.jpg',
              'NewAd3.jpg')
     BannerLink = new Array(
             'myLink1.com','myLink2.com', 'myLink3.com')
     CurrentBanner = 0
     NumOfBanners = Banners.length
     function LinkBanner(){
        document.location.href =
            "http://www." + BannerLink[CurrentBanner]
     }
     function DisplayBanners() {
        if (document.images) {
           CurrentBanner++
           if (CurrentBanner == NumOfBanners) {
              CurrentBanner = 0
           }
           document.RotateBanner.src= Banners[CurrentBanner]
           setTimeout("DisplayBanners()",1000)
         }
      }
      -->
      </script>
</head>
<body onload="DisplayBanners()" >
   <center>
      <a href="javascript: LinkBanner()"><img src="NewAd1.jpg"
           width="400" height="75" name="RotateBanner" /></a>
   </center>
</body>
</html>

ch13.indd   272ch13.indd   272 4/26/2005   11:42:08 AM4/26/2005   11:42:08 AM



CHAPTER 13 Getting Your Message Across 273

A slideshow is similar in concept to a banner advertisement in that a slideshow ro-
tates multiple images on the web page. However, unlike a banner advertisement, a 
slideshow gives the visitor the ability to change the image that's displayed: the 
visitor can click the Forward button to see the next image and the Back button to see 
the previous image.

As you'll see in the next example, creating a slideshow for your web page is a 
straightforward process. Let's begin by looking at the <body> tag of this web 
page. The <body> tag contains an <img> tag that is used to display the image on 
the web page. We'll use the banner advertisements for the slideshow, which opens 
with the banner stored in NewAd1.jpg.

Beneath the <img> tag is a table that contains two buttons (Figure 13-5): For-
ward and Back. Both buttons call the RunSlideShow() JavaScript function in 
response to the onclick event. The RunSlideShow() function requires one pa-
rameter, which determines whether the next or previous image is going to be 
displayed. A positive parameter value causes the next banner to be shown, and a 
negative parameter value results in the previous banner being displayed.

Figure 13-5 The visitor uses buttons to control the slideshow.

Creating a Slideshow

ch13.indd   273ch13.indd   273 4/26/2005   11:42:08 AM4/26/2005   11:42:08 AM



 274 JavaScript Demystifi ed

Now let's take a look at the JavaScript and see how the current banner is dis-
played. The fi le names that contain banners are used to initialize an array called 
Pictures. This is the same technique used to display banner advertisements. We 
also declare a variable that is used to store the index of the current picture.

The nuts and bolts of displaying the slide are found in the defi nition of the 
RunSlideShow() function. The fi rst thing that happens is we determine wheth-
er the browser supports the image object by determining the value of document 
.images. You've seen this done earlier in this chapter.

Next, we add the value passed to the RunSlideShow() function to the 
value of the CurrentPicture variable. If the value is 1, then the value of the 
CurrentPicture is incremented, causing the next slide to be displayed. If 
the value is –1, then the value of the CurrentPicture is decremented, caus-
ing the previous slide to be displayed.

Before displaying the slide, we must determine whether the value of the 
CurrentPicture variable is within the index range of the array. This is done 
by making sure that the value of the CurrentPicture variable isn't greater 
than the last array element (Pictures.length – 1) and that value is not 
less than the fi rst array element (less than zero). If the value is beyond the range, 
then the value of the CurrentPicture variable is reset to a valid index.

The last step is to assign the proper array element containing the slide to the src 
attribute of the <img> tag, which is called PictureDisplay.

<!DOCTYPE html PUBLIC
          "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Slideshow</title>
   <script language="Javascript" type="text/javascript">
   <!--
      Pictures = new Array(
              "NewAd1.jpg","NewAd2.jpg","NewAd3.jpg")
      CurrentPicture = 0
      function RunSlideShow(ForwardBack) {
         if (document.images) {
            CurrentPicture = CurrentPicture + ForwardBack
            if (CurrentPicture > (Pictures.length – 1)) {
               CurrentPicture = 0
            }
            if (CurrentPicture < 0) {
               CurrentPicture = Pictures.length – 1
            }
            document.PictureDisplay.src=
                    Pictures[CurrentPicture]

ch13.indd   274ch13.indd   274 4/26/2005   11:42:09 AM4/26/2005   11:42:09 AM



CHAPTER 13 Getting Your Message Across 275

         }
       }
   -->
   </script>
</head>
<body>
   <p align="center"><img src="NewAd1.jpg"
         name="PictureDisplay" width="400" height="75"/></p>
   <center>
   <table border="0">
      <tr>
         <td align="center">
            <input type="button" value="Forward"
                     onclick="RunSlideShow(1)">
            <input type="button" value="Back"
                     onclick="RunSlideShow(-1)">
         </td>
      </tr>
   </table>
   </center>
</body>
</html>

Looking Ahead
In this chapter, you learned techniques for effectively communicating with visitors 
to your web page by using the status bar, banners, and a slideshow. The status bar 
is located at the bottom of the browser window and is used to display short mes-
sages to visitors. A single message can be displayed when the web page appears on 
the screen, or different messages can be displayed as the visitor points to objects on 
the web page.

You learned how to attract the visitor to the status bar by making the message 
move. The status bar message can be displayed in pieces or by crawling letter by 
letter across the status bar. You also learned how to display the current date and time 
as part of your crawling message.

Banners are images that typically contain an advertisement and are displayed at 
the top of a web page. You saw how you could rotate banners to show a different 
banner every second while the page is displayed. Each banner is usually linked to a 
corresponding web page that describes the product or service that is being offered 
in the banner advertisement. The link is controlled by a JavaScript that determines 
the currently displayed banner and then creates the URL for that banner.

ch13.indd   275ch13.indd   275 4/26/2005   11:42:09 AM4/26/2005   11:42:09 AM



 276 JavaScript Demystifi ed

A slideshow is another way to get your message across to visitors to your web 
page. In a slideshow, you give control of the show to the visitor by providing two 
buttons that enable the visitor to move forward or back to display the slides.

In the next chapter, you'll learn how to use DHTML to create dynamic web pages 
using JavaScript. This gives you the ability to customize the content of a web page 
based on information that you know about the visitor.

Quiz
 1. True or False. Banners are typically displayed on the status bar.

 a. True

 b. False

 2. You change the content of the status bar when

 a. The visitor adjusts the width and height of the web page

 b. A visitor moves the mouse cursor over an object on the web page

 c. A visitor submits a form

 d. All of the above

 3. What is the purpose of the fi rst parameter of the setTimeout() 
function?

 a. Sets the timeout period in milliseconds

 b. Sets the timeout period in seconds

 c. Identifi es the function that is to be called at the conclusion of the 
timeout period

 d. Identifi es the function that called the timeout period

 4. Why is the setTimeout() function called when displaying banners?

 a. To control the interval when banners are displayed

 b. To control the loading of banners

 c. To give the browser time to display the banner

 d. To wait for the visitor to respond to the banner

 5. How do you load all banners before the fi rst banner is displayed?

 a. Use the load() function.

 b. Use the loadMem() function.

ch13.indd   276ch13.indd   276 4/26/2005   11:42:09 AM4/26/2005   11:42:09 AM



CHAPTER 13 Getting Your Message Across 277

 c. Store banners in an array when the web page loads.

 d. Store banners in an array after the web page loads.

 6. What is the difference between a slideshow and a banner display?

 a. Banners display advertisements and slideshows don't contain 
advertisements.

 b. Banners are automatically displayed. The visitor controls the slideshow.

 c. Banners use images and text while the slideshow uses only text.

 d. None of the above.

 7. True or False. The current date and time of the Date object must be 
converted to a string when used on the status bar.

 a. True

 b. False

 8. True or False. Only JPG fi les can be displayed as a banner.

 a. True

 b. False

 9. True or False. Only one rotating banner can be shown on a web page at the 
same time.

 a. True

 b. False

 10. A fi le name containing a banner that is directly assigned to the scr 
attribute

 a. Gets loaded before the web page is displayed

 b. Gets loaded when the browser encounters the src attribute

 c. Gets loaded after the visitor selects the image

 d. None of the above

ch13.indd   277ch13.indd   277 4/26/2005   11:42:09 AM4/26/2005   11:42:09 AM



ch13.indd   278ch13.indd   278 4/26/2005   11:42:10 AM4/26/2005   11:42:10 AM

This page intentionally left blank.



279

CHAPTER
14

Protecting Your 
Web Page

The Internet is like the Wild West, with bad guys (malicious hackers) using every 
trick in the book to do evil deeds (penetrate web sites). Some are motivated by the 
challenge of the quest, while others have more sinister goals in mind, such as 
searching web pages for e-mail addresses to spam.

There is nothing secret about your web page. Anyone with a little computer 
knowledge can use a few mouse clicks to display your HTML code, including your 
JavaScript, on the screen. Although you cannot entirely prevent prying eyes from 
looking inside your web page, you can take a few steps to stop all but the best com-
puter wizards from gaining access to your JavaScript.

In this chapter, you'll learn how to hide your JavaScript and make it diffi cult for 
malicious hackers to extract e-mail addresses from your web page.

ch14.indd   279ch14.indd   279 4/26/2005   11:58:01 AM4/26/2005   11:58:01 AM

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.



 280 JavaScript Demystifi ed

Hiding Your Code
Every developer has to admit that, on occasion, they've peeked at the code of a web 
page or two by right-clicking and choosing View Source from the context menu. 
In fact, this technique is a very common way for developers to learn new techniques 
for writing HTML and JavaScripts. However, some developers don't appreciate 
a colleague snooping around their code and then borrowing their work without 
permission. This is particularly true about JavaScripts, which are typically more 
time-consuming to develop than using HTML to build a web page.

In reality, you cannot hide your HTML code and JavaScript from prying eyes, 
because a clever developer can easily write a program that pretends to be a browser 
and calls your web page from your web server, saving the web page to disk, where 
it can then be opened using an editor. Furthermore, the source code for your web 
page—including your JavaScript—is stored in the cache, the part of computer 
memory where the browser stores web pages that were requested by the visitor. A 
sophisticated visitor can access the cache and thereby gain access to the web page 
source code.

However, you can place obstacles in the way of a potential peeker. First, you can 
disable use of the right mouse button on your site so the visitor can't access the 
View Source menu option on the context menu. This hides both your HTML code 
and your JavaScript from the visitor. Nevertheless, the visitor can still use the View 
menu's Source option to display your source code. In addition, you can store your 
JavaScript on your web server instead of building it into your web page. The brows-
er calls the JavaScript from the web server when it is needed by your web page. 
Using this method, the JavaScript isn't visible to the visitor, even if the visitor views 
the source code for the web page.

Disabling the Right Mouse Button
The following example shows you how to disable the visitor's right mouse button 
while the browser displays your web page. All the action occurs in the JavaScript 
that is defi ned in the <head> tag of the web page.

The JavaScript begins by defi ning the BreakInDetected() function. This 
function is called any time the visitor clicks the right mouse button while the 
web page is displayed. It displays a security violation message in a dialog box 
(Figure 14-1) whenever a visitor clicks the right mouse button.

Two other functions are defi ned in the JavaScript. The next function defi nition 
defi nes the action that should be taken if the Netscape browser is displaying the web 
page. The other function does the same for Internet Explorer.

ch14.indd   280ch14.indd   280 4/26/2005   11:58:05 AM4/26/2005   11:58:05 AM



CHAPTER 14 Protecting Your Web Page 281

In both function defi nitions, the browser is told to determine which mouse button 
the visitor clicked. Many mice have two buttons, some have only one button, while 
others have three buttons. These function defi nitions are interested only in detecting 
whether any button except the fi rst mouse button, presumably the left button, is 
clicked by the visitor. Notice that a number is used to represent each mouse button. 
The BreakInDetected() function is called if the visitor clicks any button oth-
er than the left mouse button.

The browser knows which of these function defi nitions to use by testing the 
value of document.layers. If this value is not null, we know the visitor is us-
ing the Netscape browser; if the value is null, we know that the Internet Explorer 
browser is being used.

The BreakInDetected() function is also called if the visitor right-clicks to 
open the context menu. This prevents the visitor from accessing the View Source 
menu item.

<!DOCTYPE html PUBLIC
           "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Lockout Right Mouse Button</title>

Figure 14-1 A security violation message is displayed whenever the visitors clicks the 
right mouse button.

ch14.indd   281ch14.indd   281 4/26/2005   11:58:06 AM4/26/2005   11:58:06 AM



 282 JavaScript Demystifi ed

   <script language=JavaScript>
   <!--
      function BreakInDetected(){
         alert('Security Violation')
         return false
      }
      function NetscapeBrowser(e){
         if (document.layers||
               document.getElementById&&!document.all){
            if (e.which==2||e.which==3){
               BreakInDetected()
               return false
            }
        }
     }
     function InternetExploreBrowser(){
        if (event.button==2){
           BreakInDetected()
           return false
        }
    }
    if (document.layers){
       document.captureEvents(Event.MOUSEDOWN)
       document.onmousedown=NetscapeBrowser()
    }
    else if (document.all&&!document.getElementById){
       document.onmousedown=InternetExploreBrowser()
    }
   document.oncontextmenu=new Function(
            "BreakInDetected();return false")
   -->
   </script>
</head>
<body>
   <table width="100%" border=0>
      <tbody>
         <tr vAlign=top>
           <td width=50>
              <a>
              <ing height=92 src="7441805.gif"
                  width=70 border=0
                  onmouseover="src='0072253630.jpeg'"
                  onmouseout="src='7441805.gif'">

TIP 

ch14.indd   282ch14.indd   282 4/26/2005   11:58:06 AM4/26/2005   11:58:06 AM



CHAPTER 14 Protecting Your Web Page 283

              </a>
          </td>
          <td>
               <img height=1 src="" width=10>
          </td>
          <td>
             <a>
                <cTypeface:Bold><u>Java Demystifi ed</U></b>
             </a>
             </font><font face="arial, helvetica, sans-serif"
                size=-1><BR>Jim Keogh / Paperback /
                         Osborne McGraw Hill / 352pp.
               <BR>ISBN: 0072254548 May&nbsp;2004
           </td>
         </tr>
      </tbody>
   </table>
</body>
</html>

Hiding Your JavaScript
You can hide your JavaScript from a visitor by storing it in an external fi le on your 
web server. The external fi le should have the .js fi le extension. The browser then 
calls the external fi le whenever the browser encounters a JavaScript element in the 
web page. If you look at the source code for the web page, you'll see reference to 
the external .js fi le, but you won't see the source code for the JavaScript.

TIP TIP Protecting your JavaScript is not the main reason for storing JavaScripts in 
an external fi le. The most important benefi t of doing this is to share your JavaScript 
among your web pages without having to duplicate the source code. Any changes 
you make to the JavaScript in the external fi le are automatically applied to all your 
web pages that use the external fi le as the source for JavaScripts.

The next example shows how to create and use an external JavaScript fi le. First 
you must tell the browser that the content of the JavaScript is located in an external 
fi le on the web server rather than built into the web page. You do this by assigning 
the fi le name that contains the JavaScripts to the src attribute of the <script> 
tag, as shown here:

<script src="MyJavaScripts.js"
           language="Javascript" type="text/javascript">

ch14.indd   283ch14.indd   283 4/26/2005   11:58:06 AM4/26/2005   11:58:06 AM



 284 JavaScript Demystifi ed

Next, you need to defi ne empty functions for each function that you defi ne in the 
external JavaScript fi le. This may sound strange, but some older browsers don't use 
external fi les for JavaScripts and will generate an error when you call a JavaScript 
function that hasn't been defi ned in the web page. The empty function defi nitions 
prevent this error from generating, because the function is defi ned within the web 
page. However, an error may still occur, since the correct function defi nition is not 
executed.

<!DOCTYPE html PUBLIC
               "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Using External JavaScript File</title>
   <script src="myJavaScript.js"
              language="Javascript" type="text/javascript">
      <!--
         function OpenNewWindow(book) {

        }
      -->
      </script>
</head>
<body>
   <tablewidth="100%" border=0>
      <tbody>
         <tr vAlign=top>
            <td width=50>
               <a>
                  <img height=92 src="7441805.gif"
                         width=70 border=0 name='cover'>
               </a>
            </td>
            <td>
               <img height=1 src="" width=10>
            </td>
            <td>
               <a onmouseover="OpenNewWindow(1)"
                      onmouseout="MyWindow.close()">
                  <b><u>Java Demystifi ed </u></b>
               </a>
               <br>
               <a onmouseover="OpenNewWindow(2)"
                           onmouseout="MyWindow.close()">
                   <b><u>OOP Demystifi ed</U></b>
               </a>
               <br>
               <A onmouseover="OpenNewWindow(3)"

ch14.indd   284ch14.indd   284 4/26/2005   11:58:07 AM4/26/2005   11:58:07 AM



CHAPTER 14 Protecting Your Web Page 285

                       onmouseout="MyWindow.close()">
                  <b><u>Data Structures Demystifi ed</u></b>
               </a>
           </td>
        </tr>
       </tbody>
     </table>
</body>
</html>

The fi nal step is to create the external JavaScript fi le. You do this by placing all 
function defi nitions into a new fi le and then saving the fi le using the .js extension. 
Remember that the external JavaScript fi le must be placed on the same web server 
that contains the web page and accessed from the same domain; otherwise, the 
browser won't know where to look for your JavaScripts and the visitor gets a brows-
er security error. Here's the MyJavaScript.js fi le:

function OpenNewWindow(book) {
   if (book== 1)
   {
      document.cover.src='7441805.gif'
      MyWindow = window.open('', 'myAdWin', 'titlebar=0
                status=0, toolbar=0, location=0, menubar=0,
                directories=0, resizable=0, height=50,
                width=150,left=500,top=400')
      MyWindow.document.write(
                 '10% Discount for Java Demystifi ed!')
   }
   if (book== 2)
   {
      document.cover.src='0072253630.jpeg'
      MyWindow = window.open('', 'myAdWin', 'titlebar=0
              status=0, toolbar=0, location=0, menubar=0,
              directories=0, resizable=0, height=50,
              width=150,left=500,top=500')
      MyWindow.document.write(
             '20% Discount for OOP Demystifi ed!')
   }
   if (book== 3)
   {
      document.cover.src='7417436.gif'
      MyWindow = window.open('', 'myAdWin', 'titlebar=0
              status=0, toolbar=0, location=0, menubar=0,
              directories=0, resizable=0, height=50,
              width=150,left=500,top=600')

ch14.indd   285ch14.indd   285 4/26/2005   11:58:07 AM4/26/2005   11:58:07 AM



 286 JavaScript Demystifi ed

      MyWindow.document.write(
            '15% Discount for Data Structures Demystifi ed!')
   }
}

After you create the external JavaScript fi le, defi ne empty functions for each 
function that is contained in the external JavaScript fi le, and reference the external 
JavaScript fi le in the src attribute of the <script> tag, you're all set.

Concealing Your E-mail Address
Many of us have endured spam at some point and have probably blamed every mer-
chant we ever patronized for selling our e-mail address to spammers. While e-mail 
addresses are commodities, it's likely that we ourselves are the culprits who invited 
spammers to steal our e-mail addresses.

Here's what happens: Some spammers create programs called bots that surf the 
Net looking for e-mail addresses that are embedded into web pages, such as those 
placed there by developers to enable visitors to contact them. The bots then strip 
these e-mail addresses from the web page and store them for use in a spam attack.

This technique places developers between a rock and a hard place. If they place 
their e-mail addresses on the web page, they might get slammed by spammers. If 
they don't display their e-mail addresses, visitors will not be able to get in touch 
with the developers.

The solution to this common problem is to conceal your e-mail address in the 
source code of your web page so that bots can't fi nd it but so that it still appears 
on the web page. Typically, bots identify e-mail addresses in two ways: by the 
mailto: attribute that tells the browser the e-mail address to use when the visitor 
wants to respond to the web page, and by the @ sign that is required of all e-mail 
addresses. Your job is to confuse the bots by using a JavaScript to generate the 
e-mail address dynamically. However, you'll still need to conceal the e-mail address 
in your JavaScript, unless the JavaScript is contained in an external JavaScript fi le, 
because a bot can easily recognize the mailto: attribute and the @ sign in a Ja-
vaScript. Bots can also easily recognize when an external fi le is referenced.

To conceal an e-mail address, you need to create strings that contain part of the 
e-mail address and then build a JavaScript that assembles those strings into the e-mail 
address, which is then written to the web page.

The following example illustrates one of many ways to conceal an e-mail ad-
dress. It also shows you how to write the subject line of the e-mail. We begin by 
creating four strings:

ch14.indd   286ch14.indd   286 4/26/2005   11:58:07 AM4/26/2005   11:58:07 AM



CHAPTER 14 Protecting Your Web Page 287

• The fi rst string contains the addressee and the domain along with symbols 
&, *, and _ (underscore) to confuse the bot.

• The second and third strings contain portions of the mailto: attribute 
name. Remember that the bot is likely looking for mailto:.

• The fourth string contains the subject line. As you'll recall from your 
HTML training, you can generate the TO, CC, BCC, subject, and body 
of an e-mail from within a web page.

You then use these four strings to build the e-mail address. This process starts by 
using the replace() method of the string object to replace the & with the @ sign 
and the * with a period (.). The underscores are replaced with nothing, which is the 
same as simply removing the underscores from the string.

All the strings are then concatenated and assigned to the variable b, which is then 
assigned the location attribute of the window object. This calls the e-mail program 
on the visitor's computer and populates the TO and Subject lines with the strings 
generated by the JavaScript.

<!DOCTYPE html PUBLIC
        "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Conceal Email Address</title>
   <script language=JavaScript>
   <!--
      function CreateEmailAddress(){
         var x = 'BobSmith&smith*c_o_m'
         var y = 'mai'
         var z = 'lto'
         var s = '?subject=Customer Inquiry'
         x = x.replace('&','@')
         x = x.replace('*','.')
         x = x.replace('_','')
         x = x.replace('_','')
         var b = y + z +':'+ x + s
         window.location=b
     }
   -->
   </script>
</head>
<body>
   <input  type="button" value="Help"
             onclick="CreateEmailAddress()">
</body>
</html>

ch14.indd   287ch14.indd   287 4/26/2005   11:58:08 AM4/26/2005   11:58:08 AM



 288 JavaScript Demystifi ed

Looking Ahead
Web pages are exposed to prying eyes and bots that sift through code looking for 
e-mail addresses that can be used in a spam attack. You cannot totally eliminate this 
exposure, because a clever developer can easily write a program that bypasses a 
browser to access the source code of your web page directly.

However, you can take precautions that to some degree conceal your HTML 
code, JavaScript, and e-mail addresses that are embedded in your web page. First, 
you can disable the right mouse button so the visitor can't access the context menu's 
View Source option. Next, you can store your JavaScript in an external fi le rather 
than inside your web page. Finally, you can scramble embedded e-mail addresses 
in strings and then use JavaScript to reconstruct the e-mail address and write it to 
the web page.

In the next chapter, you'll learn how to use JavaScript to build sophisticated 
menus that will add a touch of class to your web page.

Quiz
 1. True or False. Bots are programs that scan dynamically built web pages for 

information.

 a. True

 b. False

 2. You reduce the likelihood that a visitor can view your web page source 
through a context menu by

 a. Changing the View Source context menu option

 b. Deleting the View Source context menu option

 c. Redirecting the action taken when the left mouse button is clicked

 d. Redirecting the action taken when the right mouse button is clicked

 3. If the document.layers value is null

 a. The visitor is using the Netscape browser

 b. The visitor is using the Internet Explorer browser

 c. A bot is accessing the web page

 d. None of the above

ch14.indd   288ch14.indd   288 4/26/2005   11:58:08 AM4/26/2005   11:58:08 AM



CHAPTER 14 Protecting Your Web Page 289

 4. You defi ne empty functions when hiding a JavaScript to

 a. Confuse bots

 b. Confuse visitors who read the source code

 c. Prevent older browsers from displaying an error

 d. Prevent new browsers from displaying an error

 5. The main purpose of using an external JavaScript fi le is to

 a. Confuse bots

 b. Confuse visitors who read the source code

 c. Hide JavaScripts

 d. Share JavaScripts with multiple web pages

 6. An external JavaScript fi le is

 a. Stored on a web server in the same domain as the calling page

 b. Stored in a web page

 c. Dynamically built

 d. Built by the web page

 7. True or False. You reference an external JavaScript fi le in the src attribute 
of the <script> tag.

 a. True

 b. False

 8. True or False. You call functions that are defi ned in an external JavaScript 
fi le the same way as if those functions were defi ned in a JavaScript 
contained in the web page.

 a. True

 b. False

 9. True or False. The purpose of concealing an e-mail address in your web 
page is to prevent a visitor from seeing the code that generates the e-mail 
address.

 a. True

 b. False

 10. Which of the following in an e-mail can you generate from a JavaScript?

 a. TO

 b. CC

 c. BCC

 d. All of the above

ch14.indd   289ch14.indd   289 4/26/2005   11:58:08 AM4/26/2005   11:58:08 AM



ch14.indd   290ch14.indd   290 4/26/2005   11:58:08 AM4/26/2005   11:58:08 AM

This page intentionally left blank.



291

CHAPTER
15

Menus

If your web site has become a challenge for visitors to navigate, you're not alone. 
Developers of commercial web sites experience this problem every time a new web 
page is added to a site. However, they are able to simplify navigation by using 
menus to organize web pages so visitors can easily explore their site with a few 
clicks of the mouse.

In addition to streamlining navigation, developers also use menus in a form to 
collect information from visitors by prompting visitors to choose items from a list 
of options. Their selection is then sent along with other information on the form to 
the server for processing.

No doubt you've seen many clever menu designs while surfi ng the web. You've 
probably fi gured out how to build some of them using HTML. Others left you 
puzzled, wondering how developers were able to build them. The secret to many of 
these eye-catching menus lies with using JavaScript and DHTML. In this chapter, 
you'll learn how to create menus that will dazzle everyone who visits your web site.

ch15.indd   291ch15.indd   291 4/26/2005   11:59:27 AM4/26/2005   11:59:27 AM

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.



 292 JavaScript Demystifi ed

Creating a Pull-Down Menu
Let's begin by looking at a problem that is common among web developers—fi gur-
ing out how to make it easy for visitors to navigate a complex web site. With the 
addition of each web page, most developers fi nd it challenging to make a site easily 
accessible.

One solution to this problem is to group web pages into a pull-down menu. The 
menu can refl ect a common theme among web pages, and each menu option can 
identify a web page. You can use JavaScript to load the selected page. The next 
example shows how this is done. The pull-down menu called Products contains two 
options: Computers and Monitors. Each of these options is associated with a related 
web page that contains a list of products (Figure 15-1).

Notice that we don't use a hyperlink to call these web pages; instead, we defi ne 
a JavaScript function called DisplayPage() that intercepts the request and 
loads the selected web page. A key advantage of using a function to load the web 
page, rather than using a hyperlink, is that you can perform other routines, such as 
validating the request, before the request is processed.

This example creates an HTML option list called MenuChoice as part of a 
form in the <body> tag. The zero index is set as the default when the web page is 
loaded by assigning this value to the onload attribute. The DisplayPage() 
function is called whenever the visitor changes the default options.

The DisplayPage() function, defi ned in the <head> tag, requires one argu-
ment, which is a reference to the selected list that contains the option list. Reference 
to the form is assigned to the Choice variable. Each option on the list is identifi ed 
by an index, which you'll recall using in HTML. The index of the option chosen by 

Figure 15-1 Each menu option is associated with a web page. The JavaScript then loads 
the web page selected by the visitor.

ch15.indd   292ch15.indd   292 4/26/2005   11:59:31 AM4/26/2005   11:59:31 AM



CHAPTER 15 Menus 293

the visitor is referenced by using selectedIndex. The value of the selected op-
tion is the URL of the web page that needs to be loaded and is assigned to the Page 
variable.

It is always a good practice to verify that the selected option has a value before 
loading the web page. You do this by using the following conditional expression in 
the if statement. This expression determines whether the Page variable is not equal 
to an empty string. A null means no value was assigned to the option.

if (Page != "")

You can load the URL as long as Page is not null. You load the web page by 
assigning the URL to the location attribute of the window object.

<!DOCTYPE html PUBLIC
     "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Pull Down Menu</title>
   <script language="Javascript" type="text/javascript">
   <!--
      function DisplayPage(Choice) {
         Page = Choice.options[Choice.selectedIndex].value
         if (Page != "") {
            window.location = Page
         }
      }
   -->
   </script>
</head>
<body onload="document.Form1.MenuChoice.selectedIndex=0">
   <form action="" name="Form1">
      <select name="MenuChoice"
             onchange="DisplayPage(this)">
         <option>Products</option>
         <option value="computers.html">Computers</option>
         <option value="monitors.html">Monitors</option>
     </select>
   </form>
</body>
</html>

ch15.indd   293ch15.indd   293 4/26/2005   11:59:31 AM4/26/2005   11:59:31 AM



 294 JavaScript Demystifi  ed

Dynamically Changing a Menu
Smart developers are able to reduce clutter on their web pages by making options 
listed on a menu context-sensitive—that is, the set of options dynamically change 
based on choices the visitor makes on the page. In this way, one menu can be used 
to display different sets of options, reducing the need to show too many menus on 
a web page.

Here's an example. Suppose you create two pull-down menus called Department 
and Employees. The visitor selects a department, and based on this selection, the 
corresponding list of employees within the department appears in the Employees 
menu. Here's how this works:

<!DOCTYPE html PUBLIC
              "-//W3C//DTD XHTML 1.0 Transitional//EN"
            "http://www.w3.org/TR/2000/REC-xhtml1-
            20000126/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Dynamically Changing Menu Options</title>
   <script language="Javascript" type="text/javascript">
   <!--
      SalesStaff = new Array('Bob Smith','Mark Jones',
                 'Sue Rogers')
      MarketingStaff = new Array('Amber Thomas',
             'Joanne Johnson', 'Sandy Russell')
      function GetEmployees(Department) {
         // clear out the current options
         for(i=document.Form1.Employees.options.length-1;
               i>0; i--)
         {
            document.Form1.Employees.options.remove(i)
         }
         Dept = Department.options[
                     Department.selectedIndex].value
         if (Dept != "") {
            if (Dept == '1'){
               for (i=1; i<=SalesStaff.length;i++) {
                  document.Form1.Employees.options[i] =
                       new Option(SalesStaff[i-1])
               }
            }
            if (Dept  == '2'){
               for (i=1; i<=MarketingStaff.length;i++) {

ch15.indd   294ch15.indd   294 4/26/2005   11:59:31 AM4/26/2005   11:59:31 AM



CHAPTER 15 Menus 295

                  document.Form1.Employees.options[i] =
                       new Option(MarketingStaff[i-1])
               }
            }
        }
      }
    -->
    </script>
</head>
<body  onload="document.Form1.DeptList.selectedIndex=0">
   <form action="MyCGI.cgi" name="Form1">
      <select name="DeptList" onchange="GetEmployees(this)">
         <option value="0">Department</option>
         <option value="1">Sales</option>
         <option value="2">Marketing</option>
      </select>
      <select name="Employees">
         <option value="0">Employees</option>
      </select>
      <br>
      <p>
         <input type="submit" value="Submit" />
         <input type="reset" />
      </p>
    </form>
</body>
</html>

The form containing these two pull-down menus is defi ned in the <body> tag 
of the web page. Notice that two options are defi ned in the Department menu, and 
no options are defi ned in the Employees menu. This is because options for the Em-
ployees menu are assigned to the Employees menu in the GetEmployees() 
function.

Whenever the visitor selects a Department menu option, the browser calls the 
GetEmployees() function, passing it a reference to the form. The JavaScript 
that defi nes the GetEmployees() function is defi ned in the <head> tag.

We defi ned two arrays above the GetEmployees() function defi nition: 
SalesStaff and MarketingStaff. Each array is assigned the names of em-
ployees who work in the corresponding department.

Within the GetEmployees() function defi nition, we determine which array 
to assign to the Employees menu by fi rst assigning the value of the selected option 
to the Dept variable. Next, we determine whether a value has been assigned by 
comparing the value in the Dept variable with an empty string. If a value appears, 

ch15.indd   295ch15.indd   295 4/26/2005   11:59:32 AM4/26/2005   11:59:32 AM



 296 JavaScript Demystifi ed

we determine whether the visitor selected the sales or marketing department. If the 
user selected the fi rst option, the employees list is cleared out. The appropriate ar-
ray of employee names is then assigned to the Employees menu by creating a new 
Option and passing it the value of an array element. These options are then dis-
played the next time the visitor pulls down the Employees menu (Figure 15-2).

Validating Menu Selections
A common problem when using a menu to collect information from a visitor is that 
the visitor doesn't select an item from the menu before submitting the form. This 
could cause havoc if the item is required for processing the form. You can solve this 
problem by using a JavaScript to determine whether the required menu option was 
selected after the visitor clicks the Submit button and before the form is submitted 
to the server.

Here's how this is done. First, create a pull-down menu similar to the next ex-
ample, which builds a menu of candidates for president within the <body> tag. 
Next, you need to know whether the form can be submitted to the server when the 
visitor clicks the Submit button. You determine this by defi ning a JavaScript func-
tion that validates the submission. This function is called ValidateForm(). If the 
form is valid, ValidateForm() returns a true; otherwise, a false is returned.

Look carefully at the onsubmit attribute of the <form> tag and you'll notice 
something a little unusual. The onsubmit attribute is assigned the value returned 
by the ValidateForm() rather than simply calling ValidateForm(). A true 
value assigned to the onsubmit attribute tells the browser to submit the form. 

Figure 15-2 Employee names are dynamically loaded into the menu once the visitor 
selects a department.

ch15.indd   296ch15.indd   296 4/26/2005   11:59:32 AM4/26/2005   11:59:32 AM



CHAPTER 15 Menus 297

A false value tells the browser not to submit the form. When the Submit button is 
clicked, the browser calls the ValidateForm() function and then assigns the 
value returned by the ValidateForm() function to the onsubmit attribute.

The ValidateForm() function is defined in the <head> tag. The 
ValidateForm() is passed reference to the form, which is assigned to the 
ValForm variable. The fi rst step within the function is to assign the index of the 
selected option to the Vote variable. The Vote variable is then used to determine 
whether the value of the selected option is an empty string, which is the value of the 
fi rst item in the select menu. If so, the visitor did not select an option from the menu 
and an alert dialog box reminds the visitor to vote (Figure 15-3). The function then 
returns a false, which tells the browser not to submit the form. However, if the value 
of the option isn't an empty string, we know the visitor voted, and the function re-
turns a true value. The browser then submits the form.

<!DOCTYPE html PUBLIC
             "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Validate A Menu Selection</title>
   <script language="Javascript" type="text/javascript">

Figure 15-3 An alert dialog box is displayed and the form is not submitted if the visitor 
fails to vote.

ch15.indd   297ch15.indd   297 4/26/2005   11:59:32 AM4/26/2005   11:59:32 AM



 298 JavaScript Demystifi ed

   <!--
      function ValidateForm(ValForm) {
         Vote = ValForm.Candidate.selectedIndex
         if (ValForm.Candidate.options[Vote].value == "") {
            alert('Please select a candidate.')
            return false
         }
         return true
      }
    -->
    </script>
</head>
<body>
   <form onsubmit="return ValidateForm(this)"
                 action="MyCGI.cgi" name="Form1">
      <select name="Candidate">
         <option value="" Vote for President</option>
         <option value="0">Amber Thomas</option>
         <option value="1">Joanne Adams</option>
         <option value="2">Sandy Rogers</option>
         <option value="3">Sue Smith</option>
         <option value="4">Tom Paine</option>
      </select>
      <br>
      <p>
         <input type="submit" value="Submit" />
         <input type="reset" />
      </p>
   </form>
</body>
</html>

Creating DHTML Menus
Some of the show-stopping menus that you've seen on top commercial web sites are 
built using Dynamic HTML (DHTML). DHTML is a combination of HTML, cas-
cading style sheets (CSS), and JavaScript that together enable you to build classy 
menus such as those that "fl oat" within the web page.

You'll be introduced to DHTML in the next chapter. Here, however, we'll show 
you some cool menus that were built using DHTML by the folks at dynamicdrive 
.com. Instead of listing the DHTML code for these menus, we'll simply describe 

ch15.indd   298ch15.indd   298 4/26/2005   11:59:33 AM4/26/2005   11:59:33 AM



CHAPTER 15 Menus 299

each menu and provide the URL at www.dynamicdrive.com where you can fi nd the 
code and then copy and paste it into your own web page.

The dynamicdrive.com web site contains snippets of DHTML that must be in-
serted into specifi c portions of your JavaScript for it to work properly. The folks at 
dynamicdrive.com provide you with all the instruction necessary to get the snippet 
up and running in no time at all.

Floating Menu
Roy Whittle developed a boxed menu that looks as though it fl oats within the web 
page, because it always appears in relatively the same position as the visitor scrolls 
up or down the page (Figure 15-4).

Whittle positioned the demo boxed menu along the lower-left section of the web 
page, but you can easily reposition the menu to any location by changing a few set-
tings within the DHTML code. You'll fi nd the code at www.dynamicdrive 
.com/dynamicindex1/staticmenu.htm.

Chain Select Menu
Xin Yang developed a chain of pull-down menus in which the option selected from 
the fi rst pull-down menu determines the options that are available in the second 
pull-down menu. Likewise, the second pull-down menu selection determines op-
tions that are shown in the third pull-down menu (Figure 15-5).

You can easily add to the chain by replicating Yang's code to increase the number 
of pull-down menus. You'll fi nd the code located at www.dynamicdrive.com/dy-
namicindex1/chainedmenu/index.htm.

Figure 15-4 The menu in the lower-left corner seems to fl oat, because it remains 
stationary while the visitor scrolls the web page.

ch15.indd   299ch15.indd   299 4/26/2005   11:59:33 AM4/26/2005   11:59:33 AM



 300 JavaScript Demystifi ed

Tab Menu
Tab menus display a one- or two-word description of the menu option within a tab. 
A more complete description is displayed below the tab bar as the visitor moves the 
mouse cursor over the tab (Figure 15-6).

You'll fi nd it easy to change both the brief and complete descriptions of these 
menu items by changing settings in the DHTML code. You’ll also be able to posi-
tion the tab menu anywhere on your web page. You'll fi nd the code located at www 
.dynamicdrive.com/dynamicindex1/ddtabmenu2.htm.

Popup Menu
A popup menu displays several top-level menu items. A popup menu appears as the 
visitor moves the mouse cursor over a top-level menu item. The popup menu con-
tains lower-level menu items that are associated with the top-level menu item 
(Figure 15-7).

Although the demo popup menu at dynamicdrive.com shows three top-level 
menu items, you can increase or decrease this number as well as the number of 
lower-level menu items by changing settings in the DHTML code. You'll fi nd the 
code at www.dynamicdrive.com/dynamicindex1/dropmenuindex.htm.

Figure 15-5 These pull-down menus are chained together, causing menu options to 
change dynamically while the web page is displayed.

Figure 15-6 Moving the mouse cursor over a tab causes the description of the menu to 
appear beneath the menu bar.

ch15.indd   300ch15.indd   300 4/26/2005   11:59:33 AM4/26/2005   11:59:33 AM



CHAPTER 15 Menus 301

Highlighted Menu
Add life to a drab menu by using a highlighted menu, which causes two kinds of 
highlights to appear around an item on the menu. When the visitor moves the cursor 
over a menu item, the browser displays a box around the item with a shadow at the 
bottom of the box (Figure 15-8). If the visitor selects the item, the highlight shadow 
appears at the top of the box rather than at the bottom of the box.

The highlighted menu is ideal to use to identify a menu option before the visi-
tor actually makes a selection. You'll fi nd the code at www.dynamicdrive.com/ 
dynamicindex1/highlightmenu2.htm.

Folding Tree Menu
The folding tree menu should look familiar, because it is a classic menu used in 
desktop applications to help you navigate fi le folders. The tree consists of one or 
more closed folders, each of which appears alongside the folder's name. You can 
include as many folders as your web site requires.

The tree expands when the visitor clicks a closed folder, showing one or more 
menu options that are associated with the folder (Figure 15-9). You can link each of 
these options to another web page or to a bookmark within the web page that con-
tains the tree menu. The tree collapses when the visitor clicks an open folder. You'll 
fi nd the code at www.dynamicdrive.com/dynamicindex1/navigate1.htm.

Figure 15-7 The popup menu appears as you move the mouse cursor over each 
menu item.

Figure 15-8 The highlighted menu gives your visitor a visible clue that he or she is 
about to make a menu selection.

ch15.indd   301ch15.indd   301 4/26/2005   11:59:34 AM4/26/2005   11:59:34 AM



 302 JavaScript Demystifi ed

Microsoft Outlook Bar Style Menu
Anyone who is comfortable using Microsoft Outlook's menus will feel right at 
home with your web site if you use the Microsoft Outlook bar style menu. This 
menu appears along the left side of the web page. Each panel expands into menu 
options when the visitor clicks the panel (Figure 15-10).

Each menu option is identifi ed as a name and an icon that appears on the web 
page. You can show as many menu options as is required by your web page; how-
ever, only four are displayed at a time. The visitor clicks the arrows to scroll through 
all the menu options.

Clicking another panel collapses the opened panel and expands the selected pan-
el, showing menu items that are associated with that menu box. You can include as 
many panels and menu items as you need. All you need to do is change settings in 

Figure 15-9 The tree menu enables the visitor to expand folders to reveal a list of menu 
options.

Figure 15-10 Clicking a panel causes the browser to display menu items that are 
associated with the panel.

ch15.indd   302ch15.indd   302 4/26/2005   11:59:34 AM4/26/2005   11:59:34 AM



CHAPTER 15 Menus 303

the code and replicate code that creates the existing menu panels and items. You'll 
fi nd the code at www.dynamicdrive.com/dynamicindex1/outbar2/index.htm.

Context Menu
The context menu pops up on the web page when the visitor clicks the right mouse 
button (Figure 15-11). The location of the context menu on the screen is determined 
by the position of the mouse cursor. The mouse cursor sets the position of the up-
per-left corner of the context menu.

Each menu item is automatically highlighted as the visitor scrolls through the 
menu by moving the mouse cursor. The visitor clicks the name of the item to select 
that menu option. The context menu is hidden from the screen by clicking the mouse 
cursor away from the menu. You'll fi nd the code at www.dynamicdrive.com/dy-
namicindex1/contextmenu.htm.

Scrollable Menu
If you are tight on space and have many menu items to present to visitors to your 
web site, the scrollable menu is the solution to your problem. The scrollable menu 
displays a limited number of menu item across the web page. Although only a few 
items are shown, you can use as many menu items as your application needs.

Two arrowheads appear at both ends of the visible list of menu items. Visitors 
can simply move the mouse cursor over one of the arrowheads and the browser 
automatically scrolls the menu in the direction of the arrowhead (Figure 15-12). 
The visitor can then click the appropriate menu item once it scrolls into view. You'll 
fi nd the code at www.dynamicdrive.com/dynamicindex1/scrollerlink.htm.

Figure 15-11 The context menu is displayed by clicking the right mouse button.

ch15.indd   303ch15.indd   303 4/26/2005   11:59:34 AM4/26/2005   11:59:34 AM



 304 JavaScript Demystifi ed

Side Bar Menu
Ger Versluis developed a very useful menu called the side bar menu. As the name 
implies, the side bar menu displays a menu on the side of the web page. Options on 
this menu can be linked to other web pages or to other menu options.

For example, in Figure 15-13, the News item on the menu links to another menu 
that shows two options: General and Technology. Each of these links to yet another 
menu that contains items linking the visitor to corresponding web pages.

Visitors can link to other menus by moving the mouse cursor over a menu item. 
The menu that is associated with that item pops onto the screen. Moving the cursor 
away from the menu item closes the popup menu, and the side bar menu remains on 
the screen. You'll fi nd the code at www.dynamicdrive.com/dynamicindex1/hvmenu/ 
index.htm.

Slide-In Menu
If you're looking for a really cool menu to add to your web page, don't overlook the 
slide-in menu by maXimus. The slide-in menu appears as a vertical block that fl oats 
on the left side of the web page. It seems to come alive when the visitor moves the 
mouse cursor over the block.

Figure 15-12 You can scroll the menu to the right or left by placing the mouse cursor 
over the corresponding arrowhead.

Figure 15-13 Each side bar menu item can link to another menu of items.

ch15.indd   304ch15.indd   304 4/26/2005   11:59:35 AM4/26/2005   11:59:35 AM



CHAPTER 15 Menus 305

The block pulls to the right, dragging along with it the hidden menu, when the 
mouse cursor moves onto the block (Figure 15-14). The hidden menu can con-
tain menu names and options. Menu names describe a group of menu options. 
Menu options are selectable by the visitor. The block pulls to the left, closing the 
menu, whenever the mouse cursor leaves the block. You'll fi nd the code at www 
.dynamicdrive.com/dynamicindex1/davidmenu.htm.

Figure 15-14 The slide-in menu drags the menu onto the screen when the mouse cursor 
is placed over the slide-in menu.

Looking Ahead
A menu is an effi cient way to help visitors navigate your web site, because you are 
able to group together links to related web pages under one menu heading. The 
visitor then selects the link to display the corresponding web page.

You've probably built menus using HTML. While these work fi ne, they lack the 
professionalism and dynamic aspects that visitors expect from a commercial web 
site. In this chapter, you learned how to incorporate eye-catching menus that are 
seen in popular sites across the Net.

By combining traditional HTML menus with JavaScript, you can intercept menu 
selections before the browser processes them. This gives you the opportunity to 
perform data validation and to modify other objects on the web page based on the 
visitor's selection from the menu.

In this chapter, you also saw how to use menus created with DHTML to add piz-
zazz to your web page. In the next chapter, you'll be more formally introduced to 
DHTML and learn how to incorporate special effects to make your web page sizzle.

ch15.indd   305ch15.indd   305 4/26/2005   11:59:35 AM4/26/2005   11:59:35 AM



 306 JavaScript Demystifi ed

Quiz
 1. True or False. Options selected from a pull-down menu cannot be validated 

by a JavaScript.

 a. True

 b. False

 2. A JavaScript function can instruct the browser to submit a form by

 a. Returning a false to the onsubmit attribute of the form

 b. Returning a true to the onsubmit attribute of the form

 c. Returning a true to the submit attribute of the form

 d. None of the above

 3. What does it mean when the value of the selected menu option is an empty 
string?

 a. The form cannot be submitted.

 b. A browser error occurred.

 c. No value was assigned to the value attribute of the option.

 d. The ESC key was pressed in error.

 4. The selectedIndex

 a. References the index of the selected menu option

 b. References the name of the form

 c. References the name of the menu option

 d. References the link to the menu option

 5. You can dynamically change a menu by

 a. Creating an array and then using new Option to assign array 
elements to the options menu

 b. Creating an array and then using onload to assign array elements to 
the options menu

 c. Creating an array and then using onchange to assign array elements 
to the options menu

 d. None of the above

ch15.indd   306ch15.indd   306 4/26/2005   11:59:35 AM4/26/2005   11:59:35 AM



CHAPTER 15 Menus 307

 6. You validate a menu selection by using the

 a. onerr attribute

 b. onstorage attribute

 c. onvalidate attribute

 d. onsubmit attribute

 7. True or False. Dynamically changing menu items helps reduce clutter on a 
web page.

 a. True

 b. False

 8. True or False. You set options for a dynamic menu in response to an 
onchange event.

 a. True

 b. False

 9. True or False. Statements within this if statement are executed if the value 
of the Page value is not null:

if (Page != ""

 a. True

 b. False

 10. What attribute is used to load a web page from within a JavaScript?

 a. location

 b. upload

 c. dnload

 d. None of the above

ch15.indd   307ch15.indd   307 4/26/2005   11:59:36 AM4/26/2005   11:59:36 AM



ch15.indd   308ch15.indd   308 4/26/2005   11:59:36 AM4/26/2005   11:59:36 AM

This page intentionally left blank.



309

CHAPTER
16

DHTML

Today nearly every commercial web site uses exciting special effects to capture and 
hold the visitor's attention. Developers use objects such as balloons fl ying across 
the web page or eye images that follow the mouse cursor to keep visitors interested 
in the site. Visitors scroll text the way they see it scrolled on television, and they can 
drag and drop images on the web page—the list of clever tricks could go on forever.

How do developers do all this without using special plug-ins such as Flash? 
That's the question asked by even the best HTML and JavaScript developers who 
are left scratching their heads, trying to fi gure out the how to add the same pizzazz 
to their web pages.

Dynamic HTML (DHTML) is a combination of HTML, cascading style sheets 
(CSS), and JavaScript that, when blended in the proper proportions, can make a 
web page work like a desktop application, containing features found in multimedia 
products.

This chapter shows you how to use DHTML so that you can immediately incor-
porate DHTML into your web pages. The chapter begins with a short review of 
CSS and then follows with handy DHTML examples provided by dynamicdrive 
.com that can be used on your next project. All the code that appears in this chapter 
is available free at www.dynamicdrive.com.

ch16.indd   309ch16.indd   309 5/2/2005   3:56:54 PM5/2/2005   3:56:54 PM

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.



 310 JavaScript Demystifi ed

What Is DHTML?
Probably one of the more frustrating factors in working with HTML and JavaScript 
is that the web page must be reloaded each time you want to reposition an object on 
the page. This seems archaic, considering that more robust programming languages 
such as Java and C++ can redraw a portion of the screen while the program is run-
ning. Reloading a web page can take all the fun and excitement out of animating 
objects on the web.

DHTML is designed to overcome this problem by giving developers the ability 
to change a portion of a web page after the web page is displayed on the screen, 
place objects in absolute positions on the screen, and display objects on different 
layers of the web page, enabling the object on the top layer to change without 
affecting objects on lower layers. Using DHTML, developers can create truly inter-
active web pages and have greater control over the look and feel of their sites.

The World Wide Web Consortium (W3C) is working with industry leaders to 
defi ne the DHTML standard, which for the most part is contained in the HTML 4.0 
standard. A standard is an agreement that defi nes commands that form a language. 
For example, href is an HTML command that references a link. Developers use 
commands to tell the browser what to do when a web page is loaded. Likewise, 
browser manufacturers write browsers to perform corresponding standard actions 
whenever a standard command is encountered in the web page.

Not all browsers understand DHTML, however. Browsers that are not compliant 
with HTML 4.0 probably cannot properly display a web page that contains DHTML, 
because the browser doesn't understand the DHTML commands. Furthermore, 
nothing prevents one browser manufacturer from implementing DHTML com-
mands differently than other browser manufacturers.

Learning DHTML
This chapter is designed to give you a taste of the features that can be built into your 
web page using DHTML. It is not designed to teach you DHTML—there isn't 
enough room in this book to cover both JavaScript and DHTML. To learn more 
about DHTML, we suggest you read HTML: The Complete Reference, Third Edi-
tion by Thomas A. Powell (McGraw-Hill/Osborne).

You don't have to master DHTML to use it in your web pages, however, because 
the folks at dynamicdrive.com have accumulated a library of clever DHTML fea-
tures that you can copy and paste from their web site into your web pages. They 
kindly gave us permission to share some of these gems with you.

ch16.indd   310ch16.indd   310 5/2/2005   3:57:03 PM5/2/2005   3:57:03 PM



CHAPTER 16 DHTML 311

We'll explore the DHTML code for a few of those features in this chapter and 
then describe others that you'll fi nd at dynamicdrive.com. However, before digging 
into the DHTML code, here's a quick review of CSS, which you'll need to know 
before you can understand the DHTML code shown in this chapter.

Cascading Style Sheets
Web pages are unlike printed pages because they don't have a fi xed size. The size of 
a printed page won't enlarge or shrink, but the size of a web page can change at the 
click of a button. This fl exibility is problematic—for example, a small web page 
can look lost when displayed on a larger page.

HTML commands describe how elements of a web page should be displayed. 
However, the browser determines how those elements are actually displayed, based 
on factors such as the window size and resolution.

CSS enables developers to specify how elements must look on the screen, 
including such things as text font, size, and precise position. CSS also enables de-
velopers to create a uniformed look and feel across all web pages on their web site 
by defi ning specifi c styles and then applying those styles to relative portions of a 
web page. The developer can then change the style defi nition in the style sheet, and 
the browser automatically applies the style changes to corresponding portions of 
web pages on the site.

Using CSS
To use CSS, you must defi ne a style by using the <style> tag. The <style> tag 
defi nes a block within your web page that contains one or more class defi nitions. A 
class defi nition associates a rule with a class name. The rule specifi es values for 
style attributes.

Let's see how this works by looking at an example. When defi ning a style, you 
need to specify the type attribute of the <style> tag as text/css, as shown in 
the next example. Class defi nitions begin with a period, followed by the name of the 
class. Open and close French braces defi ne the body of the class defi nition. It is here 
that you create rules by assigning values to style attributes.

In this example, we're defi ning the boldCharacter as having a font weight 
of bold and being positioned at a specifi c location identifi ed by left, bottom, and top 
margin attributes. The attributes differ based on the nature of your class. For ex-
ample, you won't use the font weight attribute if you are defi ning a class for 
images.

ch16.indd   311ch16.indd   311 5/2/2005   3:57:03 PM5/2/2005   3:57:03 PM



 312 JavaScript Demystifi ed

NOTE NOTE You'll recall that em is the relative size of the width of the letter M in the 
chosen font.

<style type="text/css">
   .boldCharacter {
      font-weight: bold;
      margin-left: -3em;
      margin-bottom: 2em;
      margin-top: 2.5 em
   }
</style>

In addition to identifying a set of rules by class name, you can also identify the 
set by using a selector called an id. An id is used to identify an object uniquely on 
the web page. You defi ne an id much the same way as you defi ne a class, except an 
id begins with a # sign instead of a period, as shown here:

<style type="text/css">
   #strongCharacter {
      font-weight: bold;
      margin-left: -3em;
      margin-bottom: 2em;
      margin-top: 2.5 em
   }
</style>

The <style> tag is placed within the <head> tag of a web page. Classes and 
ids contained within the <style> block can then be applied throughout the web 
page. You do this by assigning the class name to the class attribute of a tag.

Let's say that you want to apply the boldCharacter class to a portion of 
your web page. To do this, you'll need to use the <div> tag and assign the bold-
Character class to the class attribute of this tag, as shown here:

<div class="boldCharacter">
</div>

Likewise, you can apply the id strongCharacter to a portion of your web 
page by using the following:

<div id="strongCharacter">
</div>

Sometimes a developer might use both a class and an id within a tag. The danger 
in doing this is that their rules might confl ict. When this happens, rules in the id 

NOTE 

ch16.indd   312ch16.indd   312 5/2/2005   3:57:03 PM5/2/2005   3:57:03 PM



CHAPTER 16 DHTML 313

override confl icting rules in the class defi nition. Here's how the JavaScript looks 
when both a class and an id are used:

<div class="boldCharacter" id="strongCharacter">
</div>

Now that you have a general idea of how CSS works, it's time to dive into some 
DHTML code and learn how to spice up your web page.

Using DHTML Code
We'll show several clever examples of DHTML provided by dynamicdrive.com and 
available from their web site, so don't waste time retyping the code from this book. 
We provide the code for a few examples so you can see how dynamicdrive.com 
applied DHTML to create the special effect. Other examples are shown simply to 
whet your appetite for features that are bound to give visitors to your web site an 
adrenaline rush. The code for these features is too long to appear in this book in its 
entirety; however, we provide the URL on dynamicdrive.com so you can copy and 
paste the code into your own web pages.

Code examples in this section contain a complete HTML document. However, 
examples on the dynamicdrive.com web site contain DHTML snippets that must be 
inserted into the proper location in an HTML document to work as expected.

NOTE NOTE It is important that you follow instructions found on the dynamicdrive.com 
web site that tell you where to place each DHTML snippet in your web page; 
otherwise, the DHTML won't work.

Generic Drag
The generic drag example enables visitors to rearrange objects on a web page by 
dragging the object to a new location. This is made possible by the drag class, 
which is defi ned in the <head> tag of the next example.

Any type of object can be dragged using this class, including images, text, and 
buttons. Here's what you need to do. Copy the <style> block into the <head> 
tag of your web page and then assign the class name drag to the class attribute 
of the tag that defi nes the object that you want the user to rearrange on the screen.

ch16.indd   313ch16.indd   313 5/2/2005   3:57:03 PM5/2/2005   3:57:03 PM



 314 JavaScript Demystifi ed

In this example, we want the visitor to be able to move the image and text 
(Figure 16-1). To do this, we use the following HTML code:

<img src="test.gif" class="drag">
<div class="drag"> <cTypeface:Bold> Text </b></div>

<!DOCTYPE html PUBLIC
       "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Dragging Elements</title>
   <style>
   <!--
      .drag{position:relative;cursor:hand}
   -->
   </style>
   <script language="JavaScript1.2">
   <!--

Figure 16-1 A visitor can drag both the image and the text anywhere on the web page.

ch16.indd   314ch16.indd   314 5/2/2005   3:57:03 PM5/2/2005   3:57:03 PM



CHAPTER 16 DHTML 315

      //Generic Drag Script- © Dynamic Drive
              (www.dynamicdrive.com)
      //For full source code and terms of usage,
      //visit http://www.dynamicdrive.com
      var ie=document.all
      var ns6=document.getElementById&&!document.all
      var dragapproved=false
      var z,x,y
      function move(e){
         if (dragapproved){
            z.style.left=ns6? temp1+e.clientX-x:
                   temp1+event.clientX-x
            z.style.top=ns6?
                   temp2+e.clientY-y : temp2+event.clientY-y
            return false
        }
      }
      function drags(e){
         if (!ie&&!ns6)
            return
         var fi redobj=ns6? e.target : event.srcElement
         var topelement=ns6? "HTML" : "BODY"
         while (fi redobj.tagName!=topelement&&fi redobj.className!=
                 "drag"){
           fi redobj=ns6? fi redobj.parentNode :
                  fi redobj.parentElement
        }
        if (fi redobj.className=="drag"){
           dragapproved=true
           z=fi redobj
           temp1=parseInt(z.style.left+0)
           temp2=parseInt(z.style.top+0)
           x=ns6? e.clientX: event.clientX
           y=ns6? e.clientY: event.clientY
           document.onmousemove=move
           return false
       }
     }
     document.onmousedown=drags
     document.onmouseup=new Function("dragapproved=false")
     //-->
   </script>
</head>

ch16.indd   315ch16.indd   315 5/2/2005   3:57:04 PM5/2/2005   3:57:04 PM



 316 JavaScript Demystifi ed

<body>
   <input  type="button" value="Help" class="drag">
</body>
</html>

LCD Clock All
You can spiff up your web page with a digital clock that has the same look and feel 
as a real digital clock—and even displays the correct time. The following example 
shows you how this is done (Figure 16-2).

You'll notice that this example uses both a class and an id. The class is used to 
give the clock the look and feel of a digital clock. The id is used to identify the clock 
uniquely among any other objects that might appear on the web page. This is im-
portant, because the JavaScript in this example determines the correct time and then 
uses the id to have the clock display the time.

Figure 16-2 You can use DHTML to display a working digital clock anywhere on your 
web page.

ch16.indd   316ch16.indd   316 5/2/2005   3:57:04 PM5/2/2005   3:57:04 PM



CHAPTER 16 DHTML 317

<!DOCTYPE html PUBLIC
               "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Digital Clock</title>
   <style>
   <!--
   .styling{
      background-color:black;
      color:lime;
      font: bold 15px MS Sans Serif;
      padding: 3px;
   }
   -->
   </style>
</head>
<body>
   <span id="digitalclock" class="styling"></span>
   <script>
   <!--
      /*****************************************
      * LCD Clock script- by Javascriptkit.com
      * Featured on/available at http://www.dynamicdrive.com/
      * This notice must stay intact for use
      *****************************************/
      var alternate=0
      var standardbrowser=!document.all
                    &!document.getElementById
      if (standardbrowser)
         document.write(
            '<form name="tick"><input type="text"
                   name="tock" size="6"></form>')
      function show(){
         if (!standardbrowser)
            var clockobj=
                  document.getElementById?
                  document.getElementById("digitalclock")
                  : document.all.digitalclock

ch16.indd   317ch16.indd   317 5/2/2005   3:57:05 PM5/2/2005   3:57:05 PM



 318 JavaScript Demystifi ed

         var Digital=new Date()
         var hours=Digital.getHours()
         var minutes=Digital.getMinutes()
         var dn="AM"
         if (hours==12) dn="PM"
           if (hours>12){
              dn="PM"
              hours=hours-12
           }
           if (hours==0) hours=12
             if (hours.toString().length==1)
           hours="0"+hours
           if (minutes<=9)
              minutes="0"+minutes
           if (standardbrowser){
              if (alternate==0)
               document.tick.tock.value=hours+"
                     : "+minutes+" "+dn
           else
              document.tick.tock.value=hours+
                        "   "+minutes+" "+dn
         }
         else{
           if (alternate==0)
             clockobj.innerHTML=hours+
               "<font color='lime'>&nbsp;:&nbsp;</font>"+
                  minutes+"
                  "+"<sup style='font-size:1px'>"+dn+"</sup>"
          else
             clockobj.innerHTML=hours+"<font
                color='black'>&nbsp;:&nbsp;
               </font>"+minutes+" "+"<sup
                 style='font-size:1px'>"+dn+"</sup>"
         }
         alternate=(alternate==0)? 1 : 0
         setTimeout("show()",1000)
      }
      window.onload=show
   //-->
   </script>
</body>
</html>

ch16.indd   318ch16.indd   318 5/2/2005   3:57:05 PM5/2/2005   3:57:05 PM



CHAPTER 16 DHTML 319

Watermark Background Image
Give your web page a classy appearance by imprinting the page with your own 
personal watermark. A watermark is a faint image that appears behind everything 
else on the web page and stays in position as the page is scrolled.

The following example shows how to use DHTML to create a watermark on a 
web page. Simply replace notebook.jpg with another image that you want used as 
the watermark. The image will then appear as the background for your web page.

<!DOCTYPE html PUBLIC
            "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Watermark</title>
</head>
<body>
   <script language="JavaScript1.2">
   <!--
      /*
         Watermark Background Image Script- © Dynamic Drive
                  (www.dynamicdrive.com)
         For full source code,
              100's more DHTML scripts, and TOS,
         visit dynamicdrive.com
     */
     if (document.all||document.getElementById)
        document.body.style.background="url('notebook.jpg')
               white center no-repeat fi xed"
   //-->
   </script>
</body>
</html>

Tabbed Document Viewer Using iframe
If your web site requires visitors to move quickly among several web pages, the 
next DHTML example is for you, because it enables a visitor to navigate multiple 
web pages by using tabs that are always displayed at the top of the web page.

As shown in Figure 16-3, navigation tabs are placed above the linked web page. 
The content of the web page changes depending on the tab selected by the visitor. 
Each tab is associated with the URL of another web page.

ch16.indd   319ch16.indd   319 5/2/2005   3:57:05 PM5/2/2005   3:57:05 PM



 320 JavaScript Demystifi ed

Take a look at the following example, and you'll discover the secret to how this 
works. Notice that an iframe is used to build the web page. An iframe is similar to 
frames that you learned about in Chapter 11, except an iframe can be used within a 
window instead of to divide a window.

You'll notice that the iframe in this example appears in the center of the window, 
just below the tabs. The web page that is associated with the selected tab is loaded 
into the iframe, overwriting the existing web page. Everything else remains un-
touched.

<!DOCTYPE html PUBLIC
            "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>Tabbed Document Viewer</title>
   <style type="text/css">
      /*Eric Meyer's based CSS tab*/
      #tablist{
         padding: 3px 0;
         margin-left: 0;
         margin-bottom: 0;
         margin-top: 0.1em;

Figure 16-3 Selecting a tab causes a different web page to appear on the screen.

ch16.indd   320ch16.indd   320 5/2/2005   3:57:05 PM5/2/2005   3:57:05 PM



CHAPTER 16 DHTML 321

         font: bold 12px Verdana;
      }
      #tablist li{
         list-style: none;
         display: inline;
         margin: 0;
      }
      #tablist li a{
         text-decoration: none;
         padding: 3px 0.5em;
         margin-left: 3px;
         border: 1px solid #778;
         border-bottom: none;
         background: white;
      }
      #tablist li a:link, #tablist li a:visited{
        color: navy;
      }
      #tablist li a:hover{
         color: #000000;
         background: #C1C1FF;
         border-color: #227;
      }
      #tablist li a.current{
         background: lightyellow;
      }
   </style>
   <script type="text/javascript">
   <!--
      /***********************************************
      * Tabbed Document Viewer script- © Dynamic
                 Drive DHTML code library
                  (www.dynamicdrive.com)
      * This notice MUST stay intact for legal use
      * Visit Dynamic Drive at http://www.dynamicdrive.com/
                 for full source code
      ***********************************************/
      var selectedtablink=""
      var tcischecked=false
      function handlelink(aobject){
         selectedtablink=aobject.href
         tcischecked=(document.tabcontrol &&
            document.tabcontrol.tabcheck.checked)?
                true : false
         if (document.getElementById && !tcischecked){

ch16.indd   321ch16.indd   321 5/2/2005   3:57:06 PM5/2/2005   3:57:06 PM



 322 JavaScript Demystifi ed

            var tabobj=document.getElementById("tablist")
            var tabobjlinks=tabobj.getElementsByTagName("A")
            for (i=0; i<tabobjlinks.length; i++)
               tabobjlinks[i].className=""
            aobject.className="current"
            document.getElementById(
                  "tabiframe").src=selectedtablink
            return false
        }
        else
          return true
      }
      function handleview(){
         tcischecked=document.tabcontrol.tabcheck.checked
         if (document.getElementById && tcischecked){
            if (selectedtablink!="")
               window.location=selectedtablink
         }
      }
   //-->
   </script>
</head>
<body>
   <ul id="tablist">
      <li><a class="current" href="http://www.google.com"
         onClick="return handlelink(this)">Google</a></li>
      <li><a href="http://www.yahoo.com"
         onClick="return handlelink(this)">Yahoo</a></li>
      <li><a href="http://www.msn.com"
         onClick="return handlelink(this)">MSN</a></li>
      <li><a href="http://www.news.com"
         onClick="return handlelink(this)">News.com</a></li>
      <li><a href="http://www.dynamicdrive.com"
         onClick="return handlelink(this)">Dynamic Drive</a></li>
   </ul>
   <iframe id="tabiframe" src="http://www.google.com"
             width="98%" height="350px">
   </iframe>
   <form name="tabcontrol" style="margin-top:0">
      <input name="tabcheck" type="checkbox"
       onClick="handleview()"> Open tab links
              in browser window instead.
   </form>
</body>
</html>

ch16.indd   322ch16.indd   322 5/2/2005   3:57:06 PM5/2/2005   3:57:06 PM



CHAPTER 16 DHTML 323

Daily iframe Content
Some applications require that a message displayed on a web page change each day 
according to the day of the week. This is easily implemented by using the following 
DHTML example (Figure 16-4).

Look closely and you'll notice that an iframe is used to block out an area of the 
web page where the message will be displayed. The message is contained in one of 
several web pages that are assigned to the daycontent array. The message is 
selected according to the current date, which is retrieved from the system's clock by 
the JavaScript.

<!DOCTYPE html PUBLIC
          "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
   <title>New Daily Message</title>
</head>
<body>
   <script type="text/javascript">
   <!--
      /***********************************************
      * Daily iframe content II- © Dynamic Drive DHTML
                code library (www.dynamicdrive.com)
      * This notice MUST stay intact for legal use
      * Visit Dynamic Drive at http://www.dynamicdrive.com/
               for full source code
      ***********************************************/
      var ie=document.all
      var dom=document.getElementById
      //Specify IFRAME display attributes
      var iframeprops='width=150 height=150 marginwidth="0"
             marginheight="0" hspace="0" vspace="0"
             frameborder="1" scrolling="no"'
      //Specify 31 URLs to display inside iframe, one
             for each day of the current month
      //If this month has less than 31 days, the last
            few URLs won't be used.
      var daycontent=new Array()
      daycontent[1]="1.htm"
      daycontent[2]="2.htm"
      daycontent[3]="3.htm"
      daycontent[4]="4.htm"
      daycontent[5]="5.htm"
      daycontent[6]="6.htm"

ch16.indd   323ch16.indd   323 5/2/2005   3:57:07 PM5/2/2005   3:57:07 PM



 324 JavaScript Demystifi ed

      daycontent[7]="7.htm"
      daycontent[8]="8.htm"
      daycontent[9]="9.htm"
      daycontent[10]="10.htm"
      daycontent[11]="11.htm"
      daycontent[12]="12.htm"
      daycontent[13]="13.htm"
      daycontent[14]="14.htm"
      daycontent[15]="15.htm"
      daycontent[16]="16.htm"
      daycontent[17]="17.htm"
      daycontent[18]="18.htm"
      daycontent[19]="19.htm"
      daycontent[20]="20.htm"
      daycontent[21]="21.htm"
      daycontent[22]="22.htm"
      daycontent[23]="23.htm"
      daycontent[24]="24.htm"
      daycontent[25]="25.htm"
      daycontent[26]="26.htm"
      daycontent[27]="27.htm"
      daycontent[28]="28.htm"
      daycontent[29]="29.htm"
      daycontent[30]="30.htm"
      daycontent[31]="31.htm"
      //No need to edit after here
      if (ie||dom)
         document.write('<iframe id="dynstuff"
                  src="" '+iframeprops+'></iframe>')
      var mydate=new Date()
      var mytoday=mydate.getDate()
      function dayofmonth_iframe(){
         if (ie||dom){
            var iframeobj=document.getElementById?
                document.getElementById("dynstuff") :
                document.all.dynstuff
            iframeobj.src=daycontent[mytoday]
        }
      }
      window.onload=dayofmonth_iframe
   //-->
   </script>
</body>
</html>

ch16.indd   324ch16.indd   324 5/2/2005   3:57:07 PM5/2/2005   3:57:07 PM



CHAPTER 16 DHTML 325

Cross-Browser Marquee
Images and information on a web page many times fail to communicate with the 
visitor because of clutter, when too much stuff appears on the web page. One way 
to stand above the clutter is to display some information differently than other in-
formation is displayed on the page, such as by scrolling a ticker message across 
your page (Figure 16-5). The ticker, sometimes called a cross-browser marquee, 
can be placed anywhere on your web page.

You'll fi nd a ticker on the dynamicdrive.com web site at www.dynamicdrive 
.com/dynamicindex2/cmarquee.htm.

Popup Calendar
Anyone who has required a visitor to enter a date into a web page knows how 
diffi cult this can be, since many different date formats can be used. Sev Kotchney 
devised an easy way to overcome any problems by having the visitor select the date 
from a popup calendar. The date is then populated in the date fi eld of a form.

Code for Kotchney's popup calendar (Figure 16-6) is available at www 
.dynamicdrive.com/dynamicindex6/popcalendar.htm.

Drop-In Content Box
Probably the best way to get your web message across to the visitor is by dropping 
the message into view once the web page loads. The message then remains on the 
screen until the visitor acknowledges the message. The dynamicdrive.com web site 

Figure 16-5 Scroll your message across any part of your web page by using the cross-
browser marquee.

Figure 16-4 You can display the tip of the day by using an iframe with a few lines of 
JavaScript code.

ch16.indd   325ch16.indd   325 5/2/2005   3:57:07 PM5/2/2005   3:57:07 PM



 326 JavaScript Demystifi ed

has the DHTML code for a clever drop-in message box (Figure 16-7) at www.dy-
namicdrive.com/dynamicindex17/dropinbox.htm.

Ad Box
No one likes an in-your-face advertisement that covers the web page when the page 
is loaded—except for the advertiser. Matt Gabbert developed code for a DHTML 
in-your-face advertisement that you can pick up from dynamicdrive.com.

You'll fi nd this to be a somewhat visitor-friendly, in-your-face advertisement in 
that it displays the advertisement one out of fi ve times that the web page is loaded 
(Figure 16-8). The ad remains on the screen for 10 seconds and then gives way to 
the contents of the web page. You'll fi nd the JavaScript at www.dynamicdrive.com/
dynamicindex11/dhtmlad.htm.

Figure 16-6 Visitors can enter a date by selecting the date from a popup calendar.

Figure 16-7 The drop-in message box slides down to the center of the screen when the 
web page is displayed.

ch16.indd   326ch16.indd   326 5/2/2005   3:57:07 PM5/2/2005   3:57:07 PM



CHAPTER 16 DHTML 327

Figure 16-8 This in-your-face ad is displayed one out of every fi ve times the page loads, 
and it remains on the screen for 10 seconds.

Quiz
 1. True or False. DHTML combines CSS and JavaScript.

 a. True

 b. False

 2. With DHTML you can

 a. Place objects in absolute positions on the screen

 b. Display objects on different layers

 c. Change the content of the web page without reloading it

 d. All of the above

 3. The standard for DHTML is defi ned in

 a. HTML 4.0

 b. HTML 3.0

 c. HTML 4.5

 d. None of the above

ch16.indd   327ch16.indd   327 5/2/2005   3:57:08 PM5/2/2005   3:57:08 PM



 328 JavaScript Demystifi ed

 4. A class defi nition begins with a

 a. Pound sign

 b. Period

 c. Class name

 d. ID name

 5. An id begins with a

 a. Pound sign

 b. Period

 c. Class name

 d. ID name

 6. You apply a class by

 a. Assigning the class name to the class attribute

 b. Assigning the class name to the id attribute

 c. Calling the class name from anywhere in the web page

 d. All of the above

 7. True or False. DHTML replaces JavaScript.

 a. True

 b. False

 8. True or False. DHTML can make a web page work like a desktop 
application that contains features found in multimedia products.

 a. True

 b. False

 9. True or False. Rules are contained in a class defi nition.

 a. True

 b. False

 10. Classes are defi ned within

 a. <div>

 b. <style>

 c. <p>

 d. None of the above

ch16.indd   328ch16.indd   328 5/2/2005   3:57:08 PM5/2/2005   3:57:08 PM



329

APPENDIX

Attributes
 of Forms

 and Elements

Setting attribute values for forms and elements gives you control over how forms 
and elements behave within your JavaScript. The following table gives you a quick 
reference for the most commonly used attributes, along with a description of each.

appx.indd   329appx.indd   329 4/26/2005   12:02:13 PM4/26/2005   12:02:13 PM

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.



 330 JavaScript Demystifi ed

Attribute Description

Form Tag Attributes

action Specifi es the action taken when the Submit button is clicked.

method Specifi es the HTTP method used to submit the form using either GET or 
POST.

enctype Specifi es the content type used to submit the form.

accept-charset Specifi es the character set that is used to input data into the form.

accept Specifi es a list of content types that the server processing the form can handle. 
Each content type is separated by a comma.

name Name of the form.

Input Tag Attribute 

type Specifi es the type of control:
text
password
checkbox
radio
submit
reset
fi le
hidden
image
button

name Specifi es the name of input control.

value Specifi es the value of the input.

size Specifi es the width in pixels to expect when the type attribute is text or 
password, where size refers to the number of characters permitted in the 
element.

maxlength Specifi es the maximum number of characters that can be entered if the type 
attribute is text or password.

checked Specifi es that a Boolean attribute indicating if the radio or check box is on. 
Used only when input is radio or checkbox.

src Specifi es the source of an image if the type attribute is image.

Button Tag Attribute

name Specifi es the name of the element.

value Specifi es the initial value to the button.

type Specifi es the type of button:
submit
button
reset

appx.indd   330appx.indd   330 4/26/2005   12:02:17 PM4/26/2005   12:02:17 PM



APPENDIX Attributes of Forms and Elements 331

Attribute Description

Option Tag Attribute

name Specifi es the name of the element.

size Specifi es the number of rows that are visible if the element is a selected 
element.

multiple Specifi es a Boolean value that allows multiple selections from the list.

selected Specifi es a Boolean value indicating that the option is selected.

value Specifi es the initial value of the option element.

label Specifi es the label for the option.

TEXTAREA Tag Attribute

name Specifi es the name of the element.

rows Specifi es the number of lines that are visible.

cols Specifi es the number of characters that can be visible on the line, based 
on the average character width.

Label Tag Attributes

for Specifi es the name of another control that is associated with the label.

TABINDEX Attribute 

tabindex Specifi es the tab index using a value between 0 and 32,767.

AccessKeys Attribute

accesskey Specifi es an access key for an element.

Other Attributes 

disabled Specifi es a Boolean value that enables or disables the element for input from 
the user.

readonly Specifi es a Boolean value that enables or prohibits changes to an element. 
Elements set to readonly cannot be modifi ed when the element receives focus.

appx.indd   331appx.indd   331 4/26/2005   12:02:17 PM4/26/2005   12:02:17 PM



appx.indd   332appx.indd   332 4/26/2005   12:02:17 PM4/26/2005   12:02:17 PM

This page intentionally left blank.



333

Final Exam

 1. What is assigned an action to perform when the mouse cursor leaves 
an object?

 a. onmouseout event

 b. onmouseover event

 c. onmouseout attribute

 d. onmouseover attribute

 2. If the document.layers value is null

 a. Then the visitor is using the Netscape browser

 b. Then the visitor is using the Internet Explorer browser

 c. Then a bot is accessing the web page

 d. None of the above

exam.indd   333exam.indd   333 4/26/2005   12:03:36 PM4/26/2005   12:03:36 PM

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.



 334 JavaScript Demystifi ed

 3. True or False. All images on a web page are refl ected in the document
.images array.

 a. True

 b. False

 4. What attribute(s) can be used to change the source of a child window from 
a JavaScript?

 a. source

 b. src

 c. parent.frame.location.source

 d. parent.frame.location.href

 5. True or False. All windows must have the standard browser toolbar.

 a. True

 b. False

 6. What event occurs when a person highlights text in a text fi eld?

 a. onblur

 b. onfocus

 c. onselect

 d. onchange

 7. True or False. The index of the last element in the string array is not the 
same value as the string length.

 a. True

 b. False

 8. What attribute is used to load a web page from within a JavaScript?

 a. location

 b. upload

 c. dnload

 d. None of the above

 9. What is the purpose of the fi rst parameter of the setTimeout() 
function?

 a. Sets the timeout period in milliseconds

 b. Sets the timeout period in seconds

exam.indd   334exam.indd   334 4/26/2005   12:03:39 PM4/26/2005   12:03:39 PM



Final Exam 335

 c. Identifi es the function that is to be called at the conclusion of the 
timeout period

 d. Identifi es the function that called the timeout period

 10. True or False. Values passed to a function must correspond to the data type 
of arguments in the function defi nition.

 a. True

 b. False

 11. What is the purpose of else in an if...else statement?

 a. Contains statements that are executed if the conditional expression 
is true

 b. Defi nes another conditional expression the browser evaluates if the fi rst 
conditional expression is false

 c. Contains statements that are executed if the conditional expression 
is false

 d. Used to nest an if statement

 12. What is happening in this expression: a++?

 a. The value of a is increased by 2.

 b. The value of a is increased by 1.

 c. The value of a is multiplied by itself.

 d. Nothing. This is not a valid JavaScript expression.

 13. Which of the following in an e-mail can you generate from a JavaScript?

 a. TO

 b. CC

 c. BCC

 d. All of the above

 14. How do you load all banners before the fi rst banner is displayed?

 a. Use the load() function.

 b. Use the loadMem() function.

 c. Store banners in an array when the web page loads.

 d. Store banners in an array after the web page loads.

exam.indd   335exam.indd   335 4/26/2005   12:03:39 PM4/26/2005   12:03:39 PM



 336 JavaScript Demystifi ed

 15. True or False. You do not specify the name of the frame whenever you want 
to reference the contents of the frame.

 a. True

 b. False

 16. You scroll a window by calling

 a. goto

 b. down or up

 c. down

 d. scrollTo()

 17. The second argument in the substr() method indicates

 a. The position of the last character that is copied into the substring

 b. The number of characters that are to be copied from the string to the 
substring

 c. The position of the character preceding the last character that is copied 
into the substring

 d. The position of the character preceding the last character in the 
substring

 18. How many elements are there in this array?

Products = new Array('Soda','Beer','Pizza')

 a. 2

 b. 3

 c. 4

 d. None

 19. What does the && operator do?

 a. Evaluates true if the expressions on its left and right are both true

 b. Evaluates true if the expression on its left or on its right is true

 c. Evaluates true if neither expression on its left nor right are true

 d. Combines the expression on its right with the expression on its left

 20. The foreground color of a document is a type of

 a. Object

 b. Method

exam.indd   336exam.indd   336 4/26/2005   12:03:39 PM4/26/2005   12:03:39 PM



Final Exam 337

 c. Property

 d. Variable

 21. True or False. A period must separate arguments in a function defi nition.

 a. True

 b. False

 22. An intrinsic function

 a. Must be defi ned in the <head> tag

 b. Must be defi ned in the <body> tag

 c. Must be defi ned by the programmer either to submit the form or reset 
the form

 d. Is not defi ned by the programmer

 23. You can enable a person to resize your new window by

 a. Setting resizable to 1

 b. Setting resizable to 0

 c. Setting the menubar to 1

 d. Setting the menubar to 0

 24. You can create a rollback of an image by reacting to which event?

 a. onmouse event

 b. onmouserollback event

 c. onmouserestore event

 d. None of the above

 25. True or False. Options selected from a pull-down menu can be validated 
by a JavaScript.

 a. True

 b. False

 26. True or False. A regular expression can be used to reformat text.

 a. True

 b. False

exam.indd   337exam.indd   337 4/26/2005   12:03:40 PM4/26/2005   12:03:40 PM



 338 JavaScript Demystifi ed

 27. The Submit button is a type of

 a. Object

 b. Method

 c. Property

 d. Variable

 28. What is an alias for computer memory reserved by your JavaScript?

 a. Operator

 b. Variable name

 c. Literal value

 d. Variable type

 29. True or False. The != operator makes a true false.

 a. True

 b. False

 30. What is the purpose of if in an if...else statement?

 a. Contains statements that are executed if the conditional expression 
is true

 b. Defi nes another conditional expression the browser evaluates if the fi rst 
conditional expression is false

 c. Contains statements that are executed if the conditional expression 
is false

 d. Used to nest an if statement

 31. What method is used to place a new element at the end of an array?

 a. push()

 b. pop()

 c. reverse()

 d. shift()

 32. A fl oat is

 a. An integer

 b. A whole number

 c. A decimal value

 d. A Unicode number

exam.indd   338exam.indd   338 4/26/2005   12:03:40 PM4/26/2005   12:03:40 PM



Final Exam 339

 33. True or False. You can delete a cookie.

 a. True

 b. False

 34. Which special character is used to tell the browser to start at the beginning 
of a string in a regular expression?

 a. $

 b. *

 c. ^

 d. []

 35. What frame receives focus by default?

 a. First frame that is built

 b. Last frame that is built

 c. No frame has focus

 d. None of the above

 36. The value of document.images is null if the browser does not support 
the image object.

 a. True

 b. False

 37. What special character do you use to search for any letter, number, 
or the underscore using a regular expression?

 a. \w

 b. \W

 c. w

 d. W

 38. You can bring a new window to the top of other windows by calling

 a. upper()

 b. up()

 c. focus()

 d. next()

exam.indd   339exam.indd   339 4/26/2005   12:03:40 PM4/26/2005   12:03:40 PM



 340 JavaScript Demystifi ed

 39. What event occurs when a person leaves text in a text fi eld?

 a. onblur

 b. onfocus

 c. onselect

 d. onchange

 40. A variable is out of scope when

 a. The statement that calls a function ignores the value returned 
by the function

 b. The variable cannot be accessed by a statement

 c. A variable isn't defi ned in a function

 d. When a variable is passed to a function

 41. True or False. A function cannot be called by HTML code in a web page.

 a. True

 b. False

 42. True or False. The statement that calls a function cannot ignore a value 
returned by a function.

 a. True

 b. False

 43. What method is used to remove the fi rst element from an array?

 a. push()

 b. pop()

 c. reverse()

 d. shift()

 44. True or False. The ++ can be on either the right (c=a++) or left (c=++a) 
side without any effect on the expression.

 a. True

 b. False

 45. True or False. A JavaScript must be within the <applet> tag.

 a. True

 b. False

exam.indd   340exam.indd   340 4/26/2005   12:03:40 PM4/26/2005   12:03:40 PM



Final Exam 341

 46. True or False. The browser cannot be required to evaluate every case in a 
switch...case statement event if the criterion matches a case value.

 a. True

 b. False

 47. What method is used to remove an element from the bottom of an array?

 a. push()

 b. pop()

 c. reverse()

 d. shift()

 48. A local variable can be accessed

 a. Only by functions defi ned within the JavaScript

 b. Only outside of a function

 c. Only by the function that defi ned it

 d. From anywhere in the JavaScript

 49. What is the program that processes a form?

 a. Common Gateway Interface

 b. Common Program Interface

 c. Common Web Server Interface

 d. Common Web Server Gateway

 50. True or False. All windows do not have to have a menu bar.

 a. True

 b. False

 51. What special character would you use to tell the browser to search all 
occurrences of a character in a regular expression?

 a. *

 b. i

 c. g

 d. a

 52. True or False. The index of the last element in the string array is not the 
same value as the string length.

 a. True

 b. False

exam.indd   341exam.indd   341 4/26/2005   12:03:41 PM4/26/2005   12:03:41 PM



 342 JavaScript Demystifi ed

 53. What method is used to create a new array using elements of another array?

 a. slice()

 b. div()

 c. splice()

 d. shift()

 54. How do you prevent your JavaScript from being displayed by an older 
browser?

 a. Place the JavaScript within the <script> tag.

 b. Place the JavaScript within the header.

 c. Place the JavaScript within a comment.

 d. Place the JavaScript within the body.

 55. True or False. This is the second element of the products array: 
products[1]

 a. True

 b. False

 56. Unicode is

 a. A string that contains a numeric value

 b. A numeric value that represents characters, numbers, and symbols that 
can be displayed on the screen

 c. The end position used by the substr() method

 d. The end position used by the substring() method

 57. What loop executes statements regardless whether a condition is true 
or false?

 a. do...while loop

 b. while loop

 c. for loop

 d. for in loop

 58. True or False. A dot is used to separate an object name from either 
a property or a method.

 a. True

 b. False

exam.indd   342exam.indd   342 4/26/2005   12:03:41 PM4/26/2005   12:03:41 PM



Final Exam 343

 59. The this keyword is used to reference the type of browser that 
is used to view your web page.

 a. True

 b. False

 60. The main purpose of using an external JavaScript fi le is to

 a. Confuse bots

 b. Confuse visitors who read the source code

 c. Hide JavaScripts

 d. Share JavaScripts with multiple web pages

 61. If you're working with two vertical frames, how do you make one frame 
smaller than the other frame?

 a. Make one of the rows values smaller than the other

 b. Make one of the cols values smaller than the other

 c. Make one of the bar values smaller than the other

 d. Make one of the bar values larger than the other

 62. True or False. All windows must be able to be resized by the visitor.

 a. True

 b. False

 63. True or False. Values of an element can be changed once a person clicks 
the Submit button.

 a. True

 b. False

 64. The scope of a variable means

 a. The size of the variable

 b. The data type of the variable

 c. The portion of a JavaScript that can access the variable

 d. The variable is used as a return value for a function

 65. True or False. A switch...case statement must have a default case.

 a. True

 b. False

exam.indd   343exam.indd   343 4/26/2005   12:03:41 PM4/26/2005   12:03:41 PM



 344 JavaScript Demystifi ed

 66. What event occurs when an element loses focus?

 a. onblur

 b. onfocus

 c. onselect

 d. onchange

 67. True or False. You call the exec() method of the regular expression 
object to determine whether one or more characters exists in the text.

 a. True

 b. False

 68. True or False. You reference a specifi c object on a document by using 
the unique name or ID of the object.

 a. True

 b. False

 69. You defi ne empty functions when hiding a JavaScript to

 a. Confuse bots

 b. Confuse visitors who read the source code

 c. Prevent older browsers from displaying an error

 d. Prevent new browsers from displaying an error

 70. True or False. The order of values passed to a function must correspond 
to the order of arguments in the function defi nition.

 a. True

 b. False

 71. True or False. The default clause is used in an if statement to set default 
values.

 a. True

 b. False

 72. The expiration date is stored in a cookie as

 a. GMT string

 b. Date data type

 c. Digital sequence type

 d. Sequential numeric type

exam.indd   344exam.indd   344 4/26/2005   12:03:41 PM4/26/2005   12:03:41 PM



Final Exam 345

 73. True or False. Numbers in the expression 1 + 1 are referred 
to as operands.

 a. True

 b. False

 74. True or False. The length of an array is not equal to the index of the last 
element of the array.

 a. True

 b. False

 75. True or False. You cannot use a cookie to explore a visitor's hard disk.

 a. True

 b. False

 76. In the expression 1 + 1, what part of the expression is the +?

 a. Operand

 b. Operator

 c. Modulus

 d. Incrementer

 77. True or False. A for loop cannot become an endless loop.

 a. True

 b. False

 78. What attribute is used to specify the web page that is loaded into a frame?

 a. source

 b. src

 c. topPage

 d. bottomPage

 79. Evaluate this expression: 20 > 30 ? 'You win.' : 'You lose.'

 a. 20

 b. You lose

 c. You win

 d. 30

exam.indd   345exam.indd   345 4/26/2005   12:03:42 PM4/26/2005   12:03:42 PM



 346 JavaScript Demystifi ed

 80. True or False. You hide the borders of a frame by using 
frameborder="0"

 a. True

 b. False

 81. What is it called when a person changes information on a form?

 a. Event

 b. Reaction

 c. Rollover

 d. Mouse rollover

 82. True or False. The browser automatically replaces a rollover image with 
the original image when the mouse cursor moves away from an object.

 a. True

 b. False

 83. document.write() is an example of a(n)

 a. Object

 b. Method

 c. Property

 d. Variable

 84. True or False. An external JavaScript fi le is stored on a web server 
in the same domain as the calling page.

 a. True

 b. False

 85. A JavaScript function can instruct the browser to submit a form by

 a. Returning a false to the onsubmit attribute of the form

 b. Returning a true to the onsubmit attribute of the form

 c. Returning a true to the submit attribute of the form

 d. None of the above

 86. True or False. Banners are not typically displayed on the status bar.

 a. True

 b. False

exam.indd   346exam.indd   346 4/26/2005   12:03:42 PM4/26/2005   12:03:42 PM



Final Exam 347

 87. True or False. You reference an external JavaScript fi le in the src attribute 
of the <script> tag.

 a. True

 b. False

 88. You can dynamically change a menu by

 a. Creating an array and then using new Option to assign array elements 
to the Options menu

 b. Creating an array and then using onload to assign array elements to 
the Options menu

 c. Creating an array and then using onchange to assign array elements 
to the Options menu.

 d. None of the above

 89. True or False. The current date and time of the Date object must be 
converted to a string when used on the status bar.

 a. True

 b. False

 90. True or False. When the value of the selected menu option is null, no value 
was assigned to the value attribute of the option.

 a. True

 b. False

 91. True or False. A child window can change the content of another child 
window if they are on different domains.

 a. True

 b. False

 92. You validate a menu selection by using the

 a. onerr attribute

 b. onstorage attribute

 c. onvalidate attribute

 d. onsubmit attribute

 93. True or False. Only GIF fi les can be displayed as a banner.

 a. True

 b. False

exam.indd   347exam.indd   347 4/26/2005   12:03:42 PM4/26/2005   12:03:42 PM



 348 JavaScript Demystifi ed

 94. True or False. You do not set options for a dynamic menu in response 
to an onchange event.

 a. True

 b. False

 95. True or False. Multiple rotating banners can be shown on a web page 
at the same time.

 a. True

 b. False

 96. True or False. DHTML has no relationship to CSS and JavaScript.

 a. True

 b. False

 97. The standard for DHTML is defi ned in

 a. HTML 4.0

 b. HTML 3.0

 c. HTML 4.5

 d. None of the above

 98. You apply a class by

 a. Assigning the class name to the class attribute

 b. Assigning the class name to the id attribute

 c. Calling the class name from anywhere in the web page

 d. All of the above

 99. True or False. JavaScript replaces DHTML

 a. True

 b. False

 100. Classes are defi ned within

 a. <div>

 b. <style>

 c. <p>

 d. None of the above

exam.indd   348exam.indd   348 4/26/2005   12:03:42 PM4/26/2005   12:03:42 PM



349

Answers to 
Quizzes and 
Final Exam

answers.indd   349answers.indd   349 4/26/2005   12:04:59 PM4/26/2005   12:04:59 PM

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.



 350 JavaScript Demystifi ed

Chapter 1

 1. b. LiveScript

 2. c. <script> tag

 3. a. Object

 4. c. Property

 5. b. Method

 6. d. Separate an object name from either a property or a method

 7. a. Event

 8. b. Event handler

 9. c. Place the JavaScript within a comment

 10. b. A limited-featured programming language

Chapter 2

 1. b. Variable name

 2. c. JavaScript statement

 3. a. Operand

 4. b. Operator

 5. b. The value of a is increased by 1

 6. c. You win.

 7. a. Evaluates true if expression on its left and right are both true

 8. b. False

 9. a. True

 10. a. True

Chapter 3

 1. a. do...while loop

 2. b. False

 3. a. do...while loop

answers.indd   350answers.indd   350 4/26/2005   12:05:02 PM4/26/2005   12:05:02 PM



Answers to Quizzes and Final Exam 351

 4. b. Increase or decrease the loop counter value by 1

 5. a. True

 6. d. for in loop

 7. b. False

 8. c. Contains statements that are executed if the conditional expression is 
false

 9. b. False

 10. a. True

Chapter 4

 1. b. False

 2. b. 3

 3. b. join()

 4. b. pop()

 5. d. shift()

 6. a. push()

 7. b. False

 8. b. False

 9. a. True

 10. a. slice()

Chapter 5

 1. a. True

 2. b. Function defi nition

 3. c. The portion of a JavaScript that can access the variable

 4. a. True

 5. d. From anywhere in the JavaScript

 6. c. Only by the function that defi ned it

 7. a. True

answers.indd   351answers.indd   351 4/26/2005   12:05:02 PM4/26/2005   12:05:02 PM



 352 JavaScript Demystifi ed

 8. b. False

 9. a. True

 10. b. The variable cannot be accessed by a statement.

Chapter 6

 1. b. False

 2. c. A decimal value

 3. b. split()

 4. d. The position of the character preceding the last character that is copied 
into the substring

 5. b. The number of characters that are to be copied from the string to the 
substring

 6. a. The total number of characters in the string

 7. b. False

 8. b. False

 9. a. True

 10. b. A numeric value that represents characters, numbers, and symbols that 
can be displayed on the screen

Chapter 7

 1. a. True

 2. a. Common Gateway Interface

 3. b. onfocus

 4. a. onblur

 5. c. onselect

 6. c. Identifi es the full document path

 7. b. False

 8. b. False

 9. b. False

 10. d. Is not defi ned by the programmer

answers.indd   352answers.indd   352 4/26/2005   12:05:02 PM4/26/2005   12:05:02 PM



Answers to Quizzes and Final Exam 353

Chapter 8

 1. b. False

 2. d. Name-value pair

 3. b. onload

 4. a. A GMT string

 5. c. Any time it make sense to do so while a visitor is visiting your web site

 6. d. An object

 7. b. False

 8. b. False

 9. a. True

 10. b. The computer used by the person who is visiting your web site

Chapter 9

 1. b. False

 2. b. left and top properties

 3. c. focus()

 4. c. width and height properties

 5. d. scrollTo()

 6. c. directories=0

 7. b. False

 8. b. False

 9. a. True

 10. b. Setting resizable to 0

Chapter 10

 1. b. False

 2. c. ^

 3. b. \D

answers.indd   353answers.indd   353 4/26/2005   12:05:03 PM4/26/2005   12:05:03 PM



 354 JavaScript Demystifi ed

 4. c. g

 5. a. \s

 6. a. \w

 7. a. True

 8. b. False

 9. b. False

 10. b. leftContext

Chapter 11

 1. b. False

 2. b. src

 3. a. frameborder="0"

 4. b. and d. src and parent.frame.location.href

 5. b. Last frame that is built

 6. a. Set the rows and cols values

 7. a. True

 8. a. True

 9. a. True

 10. b. Make one of the cols values smaller than the other

Chapter 12

 1. b. False

 2. c. onmouseout attribute

 3. b. Anchor tag

 4. c. Use the unique name or ID of the object

 5. c. Assign an image fi le to an image object in a JavaScript

 6. b. null

 7. a. True

answers.indd   354answers.indd   354 4/26/2005   12:05:03 PM4/26/2005   12:05:03 PM



Answers to Quizzes and Final Exam 355

 8. a. True

 9. a. True

 10. d. None of the above

Chapter 13

 1. b. False

 2. d. All of the above

 3. c. Identifi es the function that is to be called at the conclusion of the timeout 
period

 4. a. To control the interval when banners are displayed

 5. c. Store banners in an array when the web page loads.

 6. b. Banners are automatically displayed. The visitor controls the slideshow.

 7. a. True

 8. b. False

 9. b. False

 10. b. Gets loaded when the browser encounters the src attribute

Chapter 14

 1. b. False

 2. d. By redirecting the action taken when the right mouse button is clicked

 3. b. Then the visitor is using the Internet Explorer browser

 4. c. Prevent older browsers from displaying an error

 5. d. Share JavaScripts with multiple web pages

 6. a. Stored on a web server

 7. a. True

 8. a. True

 9. b. False

 10. d. All of the above

answers.indd   355answers.indd   355 4/26/2005   12:05:03 PM4/26/2005   12:05:03 PM



 356 JavaScript Demystifi ed

Chapter 15

 1. b. False

 2. b. Returning a true to the onsubmit attribute of the form

 3. c. No value was assigned to the value attribute of the option.

 4. a. References the index of the selected menu option

 5. a. Creating an array and then using new Option to assign array elements 
to the options menu

 6. d. onsubmit attribute

 7. a. True

 8. a. True

 9. a. True

 10. a. location

Chapter 16

 1. a. True

 2. d. All of the above

 3. a. HTML 4.0

 4. b. Period

 5. a. Pound sign

 6. a. Assigning the class name to the class attribute

 7. b. False

 8. a. True

 9. a. True

 10. b. <style>

answers.indd   356answers.indd   356 4/26/2005   12:05:03 PM4/26/2005   12:05:03 PM



Answers to Quizzes and Final Exam 357

Final Exam

 1. c. onmouseout attribute

 2. b. Then the visitor is using the Internet Explorer browser

 3. a. True

 4. b. src and d. parent.frame.location.href

 5. b. False

 6. c. onselect

 7. a. True

 8. a. location

 9. c. Identifi es the function that is to be called at the conclusion of the timeout 
period

 10. a. True

 11. b. Defi nes another conditional expression the browser evaluates if the fi rst 
conditional expression is false

 12. b. The value of a is increased by 1.

 13. d. All of the above

 14. c. Store banners in an array when the web page loads

 15. b. False

 16. d. scrollTo()

 17. c. The position of the character preceding the last character that is copied 
into the substring

 18. b. 3

 19. a. Evaluates true if the expression on its left and right are both true

 20. c. Property

 21. b. False

 22. d. Is not defi ned by the programmer

 23. a. Setting resizable to 1

 24. d. None of the above

 25. a. True

 26. a. True

 27. a. Object

answers.indd   357answers.indd   357 4/26/2005   12:05:04 PM4/26/2005   12:05:04 PM



 358 JavaScript Demystifi ed

 28. b. Variable name

 29. b. False

 30. a. Contains statements that are executed if the conditional expression is true

 31. a. push()

 32. c. A decimal value

 33. a. True

 34. c. ^

 35. b. Last frame that is built

 36. a. True

 37. a. \w

 38. c. focus()

 39. a. onblur

 40. b. The variable cannot be accessed by a statement.

 41. b. False

 42. b. False

 43. d. shift()

 44. b. False

 45. b. False

 46. b. False

 47. b. pop()

 48. c. Only by the function that defi ned it

 49. a. Common Gateway Interface

 50. a. True

 51. c. g

 52. a. True

 53. a. slice()

 54. c. Place the JavaScript within a comment

 55. a. True

 56. b. A numeric value that represents characters, numbers, and symbols that 
can be displayed on the screen

 57. a. do...while loop

answers.indd   358answers.indd   358 4/26/2005   12:05:04 PM4/26/2005   12:05:04 PM



Answers to Quizzes and Final Exam 359

 58. a. True

 59. b. False

 60. d. Share JavaScripts with multiple web pages

 61. b. Make one of the cols values smaller than the other.

 62. b. False

 63. a. True

 64. c. The portion of a JavaScript that can access the variable

 65. b. False

 66. a. onblur

 67. a. True

 68. a. True

 69. c. Prevent older browsers from displaying an error

 70. a. True

 71. b. False

 72. a. GMT string

 73. a. True

 74. a. True

 75. a. True

 76. b. Operator

 77. b. False

 78. b. src

 79. b. You lose.

 80. a. True

 81. a. Event

 82. b. False

 83. b. Method

 84. a. True

 85. b. Returning a true to the onsubmit attribute of the form

 86. a. True

 87. a. True

answers.indd   359answers.indd   359 4/26/2005   12:05:04 PM4/26/2005   12:05:04 PM



 360 JavaScript Demystifi ed

 88. a. Creating an array and then using new Option to assign array elements 
to the Options menu

 89. a. True

 90. a. True

 91. b. False

 92. d. onsubmit attribute

 93. b. False

 94. b. False

 95. a. True

 96. b. False

 97. a. HTML 4.0

 98. a. Assigning the class name to the class attribute

 99. b. False

 100. b. <style>

answers.indd   360answers.indd   360 4/26/2005   12:05:04 PM4/26/2005   12:05:04 PM



361

INDEX

Symbols
-- (decremental) operator, example of, 28–29
! (NOT) logical operator, example of, 34–35
!= (not equivalent) operator, using, 37
$ (dollar sign), using with regular 

expressions, 203
% (modulus) operator, examples of, 26–27
&& (AND) logical operator, example of, 32
( ) (parentheses)

using with functions, 97–98
using with initializer variables, 65

* (asterisk)
using with regular expressions, 203
as wildcard in regular expressions, 209

, (comma), using with function values, 101
. (period)

using with arrays, 79
using with regular expressions, 203
as wildcard in regular expressions, 209

/ (forward slash)
including in regular expressions, 201
using with HTML tags, 194

// (forward slashes), using with comments, 44
/* (slash asterisk), using with comments, 44

: (colon) in conditional operator, 
purpose of, 39

? (question mark)
in conditional operator, 39
using with regular expressions, 203

@ (at) character, passing to indexOf( ) 
method, 129

[] (square brackets), including in regular 
expressions, 201–202

\ (backslash)
using with HTML tags, 194
using with regular expressions, 202–203

\ (escape) character, using with cookies, 166
^ (caret), using with regular expressions, 

203–204
{} (French braces), using with code blocks, 45
|| (OR) logical operator, example of, 34
+ (concatenation) operator, using with 

strings, 118
+ (plus sign), using with regular 

expressions, 203
++ (incremental) operator, example of, 27, 29
<!-- (comment) characters, example of, 22

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.



 362 JavaScript Demystifi ed

< (less than) operator, using, 38, 63
<= (less than or equal to) operator, using, 38
= (assignment) operator

example of, 24–25
using with arithmetic operator (+=), 

35–36
using with arrays, 77
using with variables, 20

== (equivalency) operator
using, 37
using with strings, 131

> (greater than) operator, using, 37–38
>= (greater than or equal to) operator, using, 

38
" (quotation marks), using with prompt( ) 

function, 22
; (semicolon)

using as delimiter with cookies, 167
using with for loops, 65

AA
<A> tags, using with text rollovers, 237
[abcde] and [^abcde] special characters, using 

with regular expressions, 203
accept form tag attribute, description of, 330
accept-charset form tag attribute, description 

of, 330
accesskey attribute, description of, 331
action form tag attribute, description of, 330
ad box example of DHTML, 326–327
addition, order of operations for, 26
[a-e] special character, using with regular 

expressions, 203
alert dialog boxes, adding, 11
alert( ) function, relationship to strings, 119
AND (&&) logical operator, example of, 32
applets, signifi cance of, 3
appName property, using with browsers, 57

arguments
adding to functions, 99–100
calling functions with, 102–104
scope of, 100–101
using with arrays, 85
using with functions, 97–98

arithmetic operators, using, 25–27
array elements

adding, 82–84
combining into strings, 87–89
defi ning, 78–80
sorting, 83–84

arrays
changing elements of, 90–91
creating from existing arrays, 84–87
declaring, 76–77
defi nition of, 75–76
initializing, 77–78
loading banner advertisements into, 269
loading images into, 243–244
looping, 79–82
storing form objects in, 141

assignment operator (=)
example of, 24–25
using with arithmetic operator (+=), 

35–36
using with arrays, 77
using with variables, 20, 35–37

asterisk (*)
using with regular expressions, 203
as wildcard in regular expressions, 209

at (@) character, passing to indexOf( ) 
method, 129

attributes
accessing in forms, 142–143
changing for form elements, 144–148

availHeight property of screen object, 
description of, 186

availWidth property of screen object, 
description of, 186



INDEX 363

BB
\b and \B special characters, using with 

regular expressions, 203, 207
[\b] special character, using with regular 

expressions, 203
backslash (\)

using with HTML tags, 194
using with regular expressions, 202–203

banner advertisements
linking to URLs, 271–272
loading and displaying, 268–271
rotating, 269–271

BannerLink array, creating, 271
<body> tags, using with <script> tags, 7–8
book titles

creating rollover project for, 237–239
identifying when selected by visitors, 239

Booleans, defi nition of, 16
borders, using with frames, 220–221
break, using with switch...case statements, 61
BreakInDetected( ) function, defi ning and 

calling, 280–283
browser windows. See also windows

changing contents of, 186–187
closing, 187–189
creating web pages in, 192–195
giving focus to, 182–183
as objects, 180
opening, 191–192
opening in separate windows, 189
positioning on screens, 184–186

browsers
determining compatibility with 

rollovers, 234
hiding JavaScript from, 9
identifying with nested if statements, 

55–57
using <= operator with, 63
using switch...case statements with, 

58–62
button tag attributes, descriptions of, 330

CC
calculations, order of operations for, 26
caret (^), using with regular expressions, 

203–204
case keywords, using with switch...case 

statements, 58–59
case of strings, changing, 131
<center> tags, using with banner 

advertisements, 268–269
CGI programs, validating form information 

with, 136
chain select DHTML menus, features of, 

299–300
ChangeContent( ) function

calling, 222
defi ning in <head> tag, 224

characters. See also matched characters; 
nonmatching characters; special characters

calculating positions of, 123
copying between strings, 120–122
determining indexes of, 121–122
entering ranges of, 205

charAt( ) method
copying characters with, 120–122
using with form elements, 146
using with status bar messages, 257

charCodeAt( ) method, determining Unicode 
numbers with, 132

check box selections, evaluating, 151–153
checked input tag attribute, description of, 330
child frame, defi nition of, 218
child windows

accessing elements of, 228
calling functions for, 222–223
changing content of, 223–225
changing focus of, 226
hiding borders around, 221
inserting web pages into, 218–219
opening, 227
resizing, 218
writing dynamic content to, 226–227



 364 JavaScript Demystifi ed

classes
using with CSS, 312
using with DHTML, 316–318

clearTimeout( ) function, calling for status bar 
messages, 257

client-side application, defi nition of, 2
close( ) method

calling for window object, 241
using with browser windows, 187

code blocks
contents of, 45
in if...else if statements, 50
relationship to functions, 98

colon (:) in conditional operator, 
purpose of, 39

colorDepth property of screen object, 
description of, 186

cols TEXTAREA tag attribute, 
description of, 331

comma (,), using with function values, 101
comma-delimited strings, defi nition of, 

123–124
comment characters (<!--), example of, 22
comments

adding, 44
including in HTML, 9

comparison operators, using, 37–38
concat( ) method, using with arrays, 88–89
concatenation

defi nition of, 29
example of, 30

concatenation operator (+), using with 
strings, 118

condition statements. See also for loops; 
statements

defi nition of, 43
types of, 44

conditional expression, defi nition of, 45
conditional operators, using, 39

constructor regular expression object, 
properties of, 214

context DHTML menus, features of, 303
context-sensitive menus, benefi ts of, 294
continue keywords, using, 71–72
controls. See form elements
CookiePrevVisit variable, declaring, 174
cookies

creating, 167–168
defi nition of, 165
deleting, 172–174
extending life of, 166–167
overview of, 166–167
personalizing experiences with, 

174–176
reading, 169–170
resetting expiration dates for, 172–174
setting expiration dates for, 171–172
storing user visits with, 174–176

copying
characters between strings, 120–122
substrings, 125–129

Count variable, using with status bar 
messages, 263

Crawl( ) function, defi ning in <head> tag, 263
crawling

date and time with status bar messages, 
264–267

status bar messages, 261–264
cross-browser marquee example of 

DHTML, 325
cross-platform compatibility, defi nition of, 3
CSS (cascading style sheets), relationship 

to DHTML, 311–313
CurrentBanner index, assigning, 269–270
CurrentPicture variable, using with 

slideshows, 274
custom functions, defi nition of, 17
\cx special character, using with regular 

expressions, 203



INDEX 365

DD
\d and \D special characters, using with 

regular expressions, 203, 205–206
data elements, relationship to strings, 118
data types, signifi cance of, 2
date format, converting strings from, 174–175
Date( ) object, using with status bar 

messages, 264
Date variables, using with cookies, 171
decremental operator (--), example of, 28–29
default values, providing for prompt( ) 

function, 22
DeleteCookie( ) function, executing, 173–174
delimiters

using with cookies, 167
using with strings, 125

DHTML (Dynamic HTML), overview 
of, 309–313

DHTML code
for ad box, 326–327
for cross-browser marquee, 325
for daily iframe content, 323–325
for drop-in content box, 325–326
for generic drag, 313–316
for LCD clock, 316–318
for popup calendar, 325
for tabbed document view using iframe, 

319–322
for watermark background image, 319

DHTML menus. See also menus; pull-down 
menus

chain select menus, 299–300
context menus, 303
fl oating menus, 299
folding tree menus, 301–302
highlighted menus, 301
Microsoft Outlook bar style menus, 

302–303
popup menus, 300–301
scrollable menus, 303–304

side bar menus, 304
slide-in menus, 304–305
tab menus, 300

digital clock example of DHTML, 316–318
digits, matching with nondigits, 205–206
directories window style, description of, 181
disabled attribute

description of, 331
setting for form elements, 159–160

Display( ) function, using with status bar 
messages, 256–257

DisplayBanners( ) function, defi ning, 
269–270

DisplayPage( ) function, using with menus, 292
DisplayStatusBarMesg( ) function, calling, 

253–254
division, order of operations for, 26
do...while loops, using, 70
document.images object, testing for 

compatibility with rollovers, 234
document.write( ) statement

using for loop with, 64
writing HTML tags to browser windows 

with, 192–195
dollar sign ($), using with regular 

expressions, 203
dot (.), using with arrays, 78
dot syntax, using with objects, 6, 8
dragging example of DHTML, 313–316
drop-in content box example of DHTML, 

325–326
dynamic content, creating, 194–195

EE
Education( ) function, calling, 151
elements. See form elements
else if portions, adding to if statements, 

52–53
else keywords, using in if...else statements, 47
em, using with CSS, 312



 366 JavaScript Demystifi ed

e-mail addresses, concealing, 286–287
Email element

example of, 140
setting to readonly, 161–162

empty functions, defi ning for functions, 
284–285

EnableEmail( ) function, calling, 159
enctype form tag attribute, description of, 330
endless for loop, defi nition of, 65
equivalency operator (==)

using, 37
using with strings, 131

error code, defi nition of, 111–113
escape character (\), using with cookies, 166
event handling, signifi cance of, 6
events, associating with form elements, 137
exec( ) method, returning matched characters 

with, 209–211
expireDate variable, declaring, 172
expressions, parts of, 24. 

See also mathematical expressions
external JavaScript fi les, creating and using, 

283–286

FF
\f special character, using with regular 

expressions, 203
features, incorporating into windows, 108
fl oating DHTML menus, features of, 299
focus

changing for child windows, 226
giving to browser windows, 182–183

folding tree DHTML menus, features of, 
301–302

for label tag attribute, description of, 331
for loops. See also condition statements; 

statements
executing open( ) method with, 192
using, 62–66

form elements. See also read-only 
form elements

attributes of, 136
changing attributes of, 144–146
changing based on user-selected values, 

146–148
disabling, 159–160
examples of, 139–140
manipulating before submitting forms, 

153–155
and objects, 141–144
referencing, 142–144

form events
descriptions of, 138–139
responding to, 137–141

form tag attributes, descriptions of, 330
forms. See also labels

accessing attributes of, 142–143
validating information on, 136

forward slash (/)
including in regular expressions, 201
using with HTML tags, 194

forward slashes (//), using with comments, 44
frameborder attribute, setting, 221
frames

calling functions in, 222
creating two child windows in, 218
overview of, 218–220
using invisible borders with, 220–221

framesets
dividing into two child windows, 

218–220
rows and columns in, 218

French braces ({}), using with code blocks, 45
fromCharCode( ) method, determining 

Unicode numbers with, 132
function defi nitions, writing, 98–99
function name, defi nition of, 97



INDEX 367

functions. See also intrinsic functions
adding arguments to, 99–100
calling, 101
calling for child windows, 222–223
calling from HTML, 104–108
calling other functions with, 108–109
calling with arguments, 102–104
calling without arguments, 102
defi ning, 96–100
defi ning empty functions for, 284–285
defi nition of, 17, 96
passing values to, 99
returning values from, 109–113

GG
g special character, using with regular 

expressions, 203
generic drag example of DHTML, 313–316
getDate( ) method, resetting expiration dates 

for cookies with, 172–174
GetEmployees( ) function, calling, 295
getMonth( ) method, using with cookies, 

171–172
getTime( ) method, using with cookies, 175
global regular expression object, properties 

of, 214
global variable, defi nition of, 100
GoodbyeMessage( ) function, calling, 106
GoodbyePopup( ) function, defi ning, 107
greater than (>) operator, using, 37–38
greater than or equal to (>=) operator, 

using, 38

HH
<head> tags

creating DisplayPage( ) function in, 292
defi ning ChangeContent( ) function 

in, 224
defi ning Crawl( ) function in, 263
defi ning drag class in, 313
defi ning functions in, 110

defi ning Highlight( ) function in, 
144–145

defi ning ValidateForm( ) function 
in, 297

defi ning Window( ) function in, 
188–189

placing function defi nitions in, 102
placing <script> tags in, 7–8

height property of screen object, description 
of, 186

height window style, description of, 181
“Hello, world!” script. See also scripts

adding alert box to, 11
writing, 7–9

hidden elements, signifi cance of, 154–155
Highlight( ) function, defi ning in <head> tag, 

144–145
highlighted DHTML menus, features of, 

301–302
HTML (HyperText Markup Language)

calling functions from, 104–108
including comments in, 9

HTML form elements. See form elements
HTML tags, writing to new browser 

windows, 193–195

II
i special character, using with regular 

expressions, 203
id selectors

using with CSS, 312
using with DHTML, 316–318

if statements. See also nested if statements
adding else if portions to, 52–53
using, 44–46

if...else if statements, using, 48–51
if...else statements

using, 46–48
using with ValidateLogon( ) 

functions, 111



 368 JavaScript Demystifi ed

iframes, using with DHTML, 320–325
ignoreCase regular expression object, 

properties of, 214
images

changing on product page, 234–236
dragging with DHTML, 314–315
loading into arrays, 243–244

<img> tags
naming for text rollovers, 237
trapping onclick events with, 155–156
using with banner advertisements, 268

IncreaseSalary( ) function defi nition
modifying, 102–104
writing, 98–99

incremental operator (++), example of, 27, 29
indexes, determining for characters, 121–122
indexOf( ) method

passing @ character to, 129
relationship to form events, 140

initializer variables
using with for loops, 63
using parentheses with, 65

input regular expression object, properties 
of, 214

input tag attributes, descriptions of, 330
instances, relationship to arrays, 77
Internet Explorer, enabling JavaScript in, 9
intrinsic functions, using, 155–156. 

See also functions
invisible borders, using with frames, 220–221

JJ
JavaScript

capabilities of, 3–4
enabling in Internet Explorer and 

Netscape Navigator, 9
hiding, 283–286
hiding from older browsers, 9
vs. Java, 2–3

as scripting and programming 
language, 2

stopping temporarily for banner 
advertisements, 270

vs. VBScript and JScript, 3
join( ) method, using with arrays, 88–89
.js fi le extension, using with external fi les, 

283, 285–286

KK
keywords, relationship to variables, 19

LL
label option tag attribute, description of, 331
label tag attribute, description of, 331
labels, changing dynamically, 156–158. 

See also forms
lastIndex regular expression object, properties 

of, 214
lastMatch

property, using with regular expressions, 
213–214

regular expression object, properties 
of, 214

lastParen regular expression object, 
properties of, 214

Launch( ) function, calling with Windows 
Gone Wild button, 192

LCD clock example of DHTML, 316–318
left property, setting for browser windows, 

184–185
leftContext regular expression object, 

properties of, 214
length value of string objects, using with 

characters, 123
less than operator (<), using, 38, 63
less than or equal to (<=) operator, using, 38
LinkBanner( ) function, defi ning and calling, 

271–272



INDEX 369

literal characters, including in regular 
expressions, 209

literal strings, concatenating, 119
literal values, passing when calling 

functions, 104
local variable, defi nition of, 100
location window style, description of, 181
logical expressions

in conditional operators, 39
joining with OR logical operator, 34
writing, 31

logical operators, using, 30–35
logons

evaluating with AND logical 
operator, 32

handling and validating, 111–113
loop statements

do...while loops, 70
for loops, 62–66
for in loops, 66–67
purpose of, 44
while loops, 68–69

looping arrays, 79–82

MM
matched characters, returning with regular 

expressions, 209–214. See also characters; 
special characters

mathematical expressions, example of, 200. 
See also expressions

maxlength input tag attribute, description 
of, 330

menu selections, validating, 296–298
menubar window style, description of, 181
menus, changing dynamically, 294–296. 

See also DHTML menus; pull-down menus
MesgDisplayed variable, setting for status bar 

messages, 258
messages, providing for prompt( ) function, 22. 

See also status bar messages
method form tag attribute, description of, 330

methods
defi nition of, 5
vs. properties and objects, 56

Microsoft Outlook bar style menus, features 
of, 302–303

modulus operator (%), examples of, 26–27
multiline regular expression object, properties 

of, 214
multiple option tag attribute, description 

of, 331
multiplication, order of operations for, 26
MyJavaScript.js fi le, code for, 285–286

NN
{n} special character, using with regular 

expressions, 203–204
name tag attributes, descriptions of

button, 330
form, 330
input, 330
option, 331
TEXTAREA, 331

names, copying to strings, 123–124
name-value pairs, including in cookies, 166
navigator browser, signifi cance of, 57
nested if statements. See also if statements

identifying browsers with, 55–57
using, 53–55

Netscape Navigator, enabling JavaScript in, 9
newline (\n) character

using with browsers, 57
using with regular expressions, 203

nonmatching characters, fi nding, 204. 
See also characters; special characters

NOT (!) logical operator, example of, 34–35
not equivalent (!=) operator, using, 37
nulls, defi nition of, 17
numbers

converting to strings, 129–131
defi nition of, 16



 370 JavaScript Demystifi ed

OO
\o>nn special character, using with regular 

expressions, 203
object properties of regular expressions, 

examples of, 213–214
object-oriented language, JavaScript as, 4
objects. See also window objects

browser windows as, 180
defi nition of, 17
dot syntax of, 6, 8
and form elements, 141–144
main events of, 6–7
methods of, 5
naming, 4–5
vs. properties, 56
properties of, 5

OffSet value, using with status bar 
messages, 257

onblur event, occurrence of, 137–138
onchange event

occurrence of, 144–145
trapping and calling, 146

onclick events
responding to, 149
trapping with <img> tags, 155–156
trapping with button clicks, 157
trapping with Process button, 151

onmouseout event, creating rollbacks with, 
235–236

onmouseover attribute, assigning actions to, 
239–242

onmouseover event, calling rollovers with, 234
onmouseover property, changing status bar 

messages from, 254
open( ) method

executing with for loop, 192
using with browser windows, 180, 183, 

186–187
using with child windows, 227

Open Window button, displaying on screens, 
184–186

OpenNewWindow( ) function
calling, 186–187, 241
defi ning, 239

operands, defi nition of, 24
operations, order of, 26
operators

arithmetic, 25–27
assignment, 35–37
comparison, 37–38
conditional, 39
defi nition of, 24
logical, 30–35

option lists, changing dynamically, 148–150
option tag attributes, descriptions of, 331
OR (||) logical operator, example of, 34
order of operations, explanation of, 26

PP
parent frame, defi nition of, 218
parentheses (())

using with functions, 97–98
using with initializer variables, 65

parseInt( ) method, converting strings to 
numbers with, 129–130

passwords
asking for, 33
using if...else if statements with, 48–49

Pause( ) function, using with status bar 
messages, 256–257

period (.)
using with arrays, 79
using with regular expressions, 203
as wildcard in regular expressions, 209

persistent cookies, defi nition of, 166
PictureDisplay array element, assigning for 

slideshows, 274–275
Pictures array, calling for slideshows, 274



INDEX 371

pixelDepth property of screen object, 
description of, 186

plus sign (+), using with regular 
expressions, 203

pop( ) method, using with arrays, 91
pop-down window, example of, 183
popup calendar example of DHTML, 325
popup DHTML menus, features of, 300–301
popup windows, creating, 106–108
predefi ned functions, defi nition of, 17
product page

building for rollovers, 232–233
changing image on, 234–236

products array, declaring, 78
programming language, JavaScript as, 2
prompt( ) function

calling, 21–22, 128
using with if statements, 46

properties
defi nition of, 5
displaying for window objects, 67
vs. objects, 56

prototype regular expression object, 
properties of, 214

pull-down menus, creating, 292–293, 295. 
See also DHTML menus; menus

punctuation, matching with symbols, 206
push( ) method, using with arrays, 90

QQ
question mark (?)

purpose of, 39
using with regular expressions, 203

quotation marks ("), using with prompt( ) 
function, 22

RR
\r special character, using with regular 

expressions, 203
ReadCookie( ) function, executing, 169–170
readonly attribute, description of, 331

read-only form elements, using, 161–162. 
See also form elements

RegExpression( ) function, example of, 201
regular expressions

analyzing, 211
defi ning word boundaries in, 206–207
defi nition of, 200–201
matching telephone numbers with, 

210–213
object properties of, 213–214
reading, 202
replacing like values with, 208–209
replacing text with, 207–209
returning matched characters with, 

209–214
replace( ) method

concealing e-mail addresses with, 287
using with regular expressions, 207–208

reserved words
examples of, 20
relationship to variables, 19

ResetOptionList( ) function, calling, 149, 157
resizable window style, description of, 181
return keywords, using with functions, 98, 

109–111
return values, assigning special meanings to, 

111–113
reverse( ) method, using with arrays, 90–91
right mouse button, disabling, 280–283
rightContext regular expression object, 

properties of, 214
rollbacks, creating, 235–236
rollovers

changing status bar messages with, 
253–256

creating, 234–236
creating for text, 237–239
improving effi ciency of, 243–244
multiple actions for, 239–242
testing compatibility with browsers, 234
uses for, 231–232



 372 JavaScript Demystifi ed

rows attribute, determining for child 
windows, 218

rows TEXTAREA tag attribute, description 
of, 331

RunSlideShow( ) function, calling, 273

SS
sales tax

calculating, 18, 20–21
displaying, 23

scope of variables and arguments, 
relationship to functions, 100–101

screen object
availability of, 185
properties of, 186

screen resolution, defi nition of, 184
screens, positioning browser windows on, 

184–186
<script> tag, placement of, 7
scripting language, JavaScript as, 2
scripts, signifi cance of, 3. 

See also “Hello, world!” script
scrollable DHTML menus, features of, 

303–304
scrollbars window style, description of, 181
scrolling web pages “magically,” 190–191
scrollTo( ) method, calling, 190–191
Security Violation message, displaying, 281
selected option tag attribute, description 

of, 331
selection variable, assigning concatenated 

strings to, 152–153
semicolon (;)

using as delimiter with cookies, 167
using with for loops, 65

server-side application, defi nition of, 2
session cookies, defi nition of, 166
SetEmail( ) function, calling, 146, 154
setMonth( ) method, using with cookies, 

171–172

setTimeout( ) function
calling for status bar messages, 

257–258, 264
stopping JavaScript with, 270

shift( ) method, using with arrays, 90
side bar DHTML menus, features of, 304
size input tag attribute, description of, 330
size option tag attribute, description of, 331
slash asterisk (/*), using with comments, 44
slice( ) method, using with arrays, 84–86
slide-in DHTML menus, features of, 304–305
slideshows, creating, 273–275
sorted order, displaying values in, 83
source regular expression object, properties 

of, 214
special characters, using with regular 

expressions, 201–203. See also characters; 
matched characters; nonmatching 
characters

split( ) method
using with cookies, 170
using with string objects, 124–125

square brackets ([]), including in regular 
expressions, 201–202

src, assigning banner as, 270
src input tag attribute, description of, 330
Start( ) function, calling for status bar 

messages, 256
statements. See also condition statements; 

for loops
defi nition of, 8
if statements, 52–53
if...else if statements, 48–51
if...else statements, 46–48
for loops, 62–66
nested if statements, 53–55
switch...case statements, 58–62
using with variables, 19

status bar, location of, 250



INDEX 373

status bar messages. See also messages
building, 250–253
changing with rollovers, 253–256
crawling, 261–264
crawling date and time with, 264–267
moving along status bar, 256–261

status window style, description of, 181
strings. See also substrings; text

changing case of, 131
combining array elements into, 87–89
comparing, 131
concealing e-mail addresses with, 

286–287
converting from date format, 174–175
converting to numbers, 129–130
copying names to, 123–124
defi nition of, 16
joining, 118–120
manipulating, 117–118, 120–123
overview of, 23
and Unicode, 132
using split( ) method with, 124–125

strongCharacter ids, using with CSS, 312
<style> tag, using with CSS, 311
substring( ) method, using with status bar 

messages, 258, 263
substrings, copying, 125–129. 

See also strings; text
subtraction, order of operations for, 26
switch...case statements

purpose of, 44
using, 58–62

symbols
matching punctuation with, 206
searching as special characters, 202

TT
\t special character, using with regular 

expressions, 203
tab DHTML menus, features of, 300

tabbed document viewer example of 
DHTML, 319–322

tabindex attribute, description of, 331
<TABLE> tag, using with rollovers, 232–233
telephone numbers, validating with regular 

expressions, 210–213
test( ) method, calling in regular 

expressions, 201
text. See also strings; substrings

dividing, 123–129
dragging with DHTML, 314–315
replacing with regular expressions, 

207–209
text rollovers, creating, 237–239
TEXTAREA tag attributes, descriptions 

of, 331
this object, using in onblur event code, 140
time, incorporating into status bar 

messages, 265
to-do lists, using arrays as, 90–91
toGMTString( ) method, using with 

cookies, 171
toolbar window style, description of, 181
top frame, defi nition of, 218
top property, setting for browser windows, 

184–185
topPage child window, writing content for, 

226–227
toString( ) method

converting numbers to strings with, 
130–131

using with status bar messages, 265
toUpperCase( ) and toLowerCase( ) methods, 

converting case of strings with, 131
<TR> and <TD> tags, using with rollovers, 

232–233
type button tag attribute, description of, 330
type input tag attribute, description of, 330



 374 JavaScript Demystifi ed

UU
unary operator, explanation of, 27
Unicode numbers, determining, 132
UpdateNotice( ) function, using with 

cookies, 174
URLs

creating with substr( ) method, 128–129
linking banner advertisements to, 

271–272
loading, 293

userAgent property, using with browsers, 57

VV
\v special character, using with regular 

expressions, 203
ValidateEmail( ) function, explanation of, 140
ValidateForm( ) function, using with menu 

selections, 296–297
ValidateLogon( ) function, calling, 109, 

111–113
validating form information, 136
value attributes

assigning new value to, 146–148
button tag, description of, 330
input tag, description of, 330
option tag, description of, 331
using with this object, 140

valueOf( ) regular expression object, 
properties of, 214

values
assigning to variables, 21–23
displaying in sorted order, 83
passing to functions, 99
replacing with regular expressions, 

208–209
returning from functions, 109–113
types of, 16–17

variable names, format of, 19
variable values, increasing with += operator, 

35–36

variables
arguments as, 99
assigning values to, 21–23
declaring, 19
initializing, 20–21
overview of, 17–18
scope of, 100–101

View Source menu item, preventing access 
to, 281

Vote variable, validating menu selections 
with, 297–298

WW
\w and \W special characters, using with 

regular expressions, 203, 206
watermark background image example 

of DHTML, 319
web messages. See DHTML code
Web Page 3 button, displaying, 225
web pages

creating in new windows, 192–195
displaying daily iframe content on, 

323–325
inserting into child windows, 218–219
loading, 293
scrolling “magically,” 190–191

web site URLs, creating with substr( ) 
method, 128–129

web sites
ad box example of DHTML, 326
chain select DHTML menus, 299
context DHTML menus, 303
cross-browser marquee example of 

DHTML, 325
drop-in content box example of 

DHTML, 325
fl oating DHTML menus, 299
folding tree DHTML menus, 301
highlighted DHTML menus, 301
Microsoft Outlook bar style menus, 303



INDEX 375

popup calendar example of 
DHTML, 325

popup DHTML menus, 300
scrollable DHTML menus, 303
side bar DHTML menus, 304
slide-in DHTML menus, 304
tab DHTML menus, 300

WebPage1.html and WebPage2.html, 
positioning, 219–220

web-site navigation. See menus
WelcomeMessage( ) function, calling, 105
WelcomePopup( ) function, defi ning, 107
while loops, using, 68–69
width property of screen object, description 

of, 186
width window style, description of, 181
wildcard characters, including in regular 

expressions, 209–210
Window( ) function

calling, 193–195
defi ning in <head> tag, 188–189

window objects. See also objects
displaying properties for, 67
referencing, 141–142

window styles, examples of, 181
windows. See also browser windows

incorporating features into, 108
opening browser windows in, 189

Windows Gone Wild button, effect of, 
191–192

WindowStatus variable, defi ning, 189
word boundaries, defi ning, 206–207
words, matching, 206–207
write( ) method

signifi cance of, 8–9
using with looped arrays, 80
using with web pages in new browser 

windows, 193
WriteCookie( ) function, executing, 167–168, 

171–172

XX
(x) special character, using with regular 

expressions, 204
x|y special character, using with regular 

expressions, 204
\xnn special character, using with regular 

expressions, 203



INTERNATIONAL CONTACT INFORMATION

AUSTRALIA
McGraw-Hill Book Company
Australia Pty. Ltd.
TEL +61-2-9900-1800
FAX +61-2-9878-8881
http://www.mcgraw-hill.com.au
books-it_sydney@mcgraw-hill.com

CANADA
McGraw-Hill Ryerson Ltd.
TEL +905-430-5000
FAX +905-430-5020
http://www.mcgraw-hill.ca

GREECE, MIDDLE EAST, & AFRICA
(Excluding South Africa)
McGraw-Hill Hellas
TEL +30-210-6560-990
TEL +30-210-6560-993
TEL +30-210-6560-994
FAX +30-210-6545-525

MEXICO (Also serving Latin America)
McGraw-Hill Interamericana Editores
S.A. de C.V.
TEL +525-1500-5108
FAX +525-117-1589
http://www.mcgraw-hill.com.mx
carlos_ruiz@mcgraw-hill.com

SINGAPORE (Serving Asia)
McGraw-Hill Book Company
TEL +65-6863-1580
FAX +65-6862-3354
http://www.mcgraw-hill.com.sg
mghasia@mcgraw-hill.com

SOUTH AFRICA
McGraw-Hill South Africa
TEL +27-11-622-7512
FAX +27-11-622-9045
robyn_swanepoel@mcgraw-hill.com

SPAIN
McGraw-Hill/
Interamericana de España, S.A.U.
TEL +34-91-180-3000
FAX +34-91-372-8513
http://www.mcgraw-hill.es
professional@mcgraw-hill.es

UNITED KINGDOM, NORTHERN,
EASTERN, & CENTRAL EUROPE
McGraw-Hill Education Europe
TEL +44-1-628-502500
FAX +44-1-628-770224
http://www.mcgraw-hill.co.uk
emea_queries@mcgraw-hill.com

ALL OTHER INQUIRIES Contact:
McGraw-Hill/Osborne
TEL +1-510-420-7700
FAX +1-510-420-7703
http://www.osborne.com
omg_international@mcgraw-hill.com






	important.pdf
	Local Disk
	articlopedia.gigcities.com



	Introduction: 
	Chapter 1 An Inside Look at JavaScript: 
	Answers to Common Questions About JavaScript: 
	JavaScript: A Limited-Featured Programming Language: 
	Getting Down to JavaScript: 
	Object Name: 
	Property: 
	Methods: 
	The Dot Syntax: 
	The Main Event: 
	Writing Your First JavaScript: 
	ŁOld TimersŽ DonŁt Like JavaScript: 
	Spicing Up Your JavaScript: 
	Chapter 2 Variables, Operators, and Expressions: 
	Values and Variables: 
	Values: 
	Variables: 
	Operators and Expressions: 
	Parts of an Expression: 
	Multiple Operations: 
	Types of Operators: 
	Quiz: 
	Chapter 3 Condition Statements: 
	If Statement: 
	The if Statement in Action: 
	The if: 
	else Statement: 
	else if Statement: 

	Other Variations of the if Statement: 
	Nested if Statement: 
	Identifying a Browser: 
	switch: 
	case Statement: 

	Loop Statement: 
	The for Loop: 
	The for in Loop: 
	The while Loop: 
	The do: 
	while Loop: 

	Continue: 
	Looking Ahead: 
	Chapter 4 Arrays: 
	What Is an Array?: 
	Declaring an Array: 
	Initializing an Array: 
	Defining Array Elements: 
	How Many Elements Are in the Array?: 
	Looping the Array: 
	Adding an Array Element: 
	Sorting Array Elements: 
	Making a New Array from an Existing Array: 
	Combining Array Elements into a String: 
	Changing Elements of the Array: 
	Chapter 5 Functions: 
	What Is a Function?: 
	Defining a Function: 
	Writing a Function Definition: 
	Adding Arguments: 
	The Scope of Variables and Arguments: 
	Calling a Function: 
	Calling a Function Without an Argument: 
	Calling a Function with an Argument: 
	Calling a Function from HTML: 
	Functions Calling Another Function: 
	Returning Values from a Function: 
	Chapter 6 Strings: 
	Why Manipulate a String?: 
	Joining Strings: 
	Finding Your Way Around a String: 
	Dividing Text: 
	Copying a Substring: 
	Converting Numbers and Strings: 
	Numbers to Strings: 
	Changing the Case of the String: 
	Strings and Unicode: 
	Chapter  7 Forms and Event Handling: 
	Building Blocks of a Form: 
	Elements and JavaScript: 
	Responding to Form Events: 
	Form Objects and Elements: 
	Time-Saving Shortcut: 
	Changing Attribute Values Dynamically: 
	Changing Elements Based on a Value Selected by the User: 
	Changing an Option List Dynamically: 
	Evaluating Check Box Selections: 
	Manipulating Elements Before the Form Is Submitted: 
	Using Intrinsic JavaScript Functions: 
	Changing Labels Dynamically: 
	Disabling Elements: 
	Read-Only Elements: 
	Chapter 8 Cookies: 
	Cookie Basics: 
	Creating a Cookie: 
	Setting the Expiration Date: 
	Reading a Cookie: 
	Deleting a Cookie: 
	Personalizing an Experience Using a Cookie: 
	Chapter 9 Browser Window: 
	Open the Window, Please!: 
	Giving the New Window Focus: 
	Placing the Window into Position on the Screen: 
	Changing the Contents of a Window: 
	Closing the Window: 
	"Magically" Scrolling a Web Page: 
	Creating a Web Page in a New Window: 
	Opening Multiple Windows at Once: 
	Chapter 10 Regular Expressions: 
	The Language of a Regular Expression: 
	What Is a Regular Expression?: 
	Finding Nonmatching Characters: 
	Entering a Range of Characters: 
	Matching Digits and Nondigits: 
	Matching Punctuation and Symbols: 
	Matching Words: 
	Replace Text Using a Regular Expression: 
	Replacing Like Values: 
	Return the Matched Characters: 
	The Telephone Number Match: 
	Regular Expression Object Properties: 
	You've Been Framed!: 
	Calling a Child Window's JavaScript Function: 
	Invisible Borders: 
	Changing the Content of a Child Window: 
	Changing the Focus of a Child Window: 
	Writing to a Child Window from a JavaScript: 
	Accessing Elements of Another Child Window: 
	Chapter 11 JavaScript and Frames: 
	Chapter 12  Rollovers: 
	Chapter 13  Getting Your Message Across: The Status Bar, Banners, and Slideshows: 
	Chapter 14 Protecting Your Web Page: 
	Chapter 15 Menus: 
	Setting the Stage: 
	Creating a Rollover: 
	Text Rollovers: 
	Multiple Actions for a Rollover: 
	More Efficient Rollovers: 
	Making Magic Using the Status Bar: 
	Building a Static Message: 
	Changing the Message Using Rollovers: 
	Moving the Message Along the Status Bar: 
	Banner Advertisements: 
	Loading and Displaying Banner Advertisements: 
	Linking Banner Advertisements to URLs: 
	Creating a Slideshow: 
	Hiding Your Code: 
	Disabling the Right Mouse Button: 
	Hiding Your JavaScript: 
	Concealing Your E-mail Address: 
	Creating a Pull-Down Menu: 
	Dynamically Changing a Menu: 
	Validating Menu Selections: 
	Chapter 16  DHTML: 
	Creating DHTML Menus: 
	Floating Menu: 
	Chain Select Menu: 
	Tab Menu: 
	Popup Menu: 
	Highlighted Menu: 
	Folding Tree Menu: 
	Microsoft Outlook Bar Style Menu: 
	Context Menu: 
	Scrollable Menu: 
	Side Bar Menu: 
	Slide-In Menu: 
	What Is DHTML?: 
	Learning DHTML: 
	Cascading Style Sheets: 
	Using DHTML Code: 
	Generic Drag: 
	LCD Clock All: 
	Watermark Background Image: 
	Tabbed Document Viewer Using iframe: 
	Daily iframe Content: 
	Cross-Browser Marquee: 
	Popup Calendar: 
	Drop-In Content Box: 
	Ad Box: 
	Appendix: 
	Final Exam: 
	Answers to Quizzes and Final Exam: 
	Index: 
	Copyright © 2005 by The McGraw-Hill Companies, Inc: 
	 Click here for terms of use: 



