*More than 150,000 articles In the
search database

*Learn how almost everything
works

http://www.getpedia.com/
http://www.getpedia.com

A SELF-TEACHING GUIDE

L 0y
- . A. &
No formal training
~

in JavaScript needed!

—f

Lots of examples illustrating [‘
application of concepts [gBZ®

—

Complete with chapter-ending %
quizzes and final exam

4

Concise and thorough with
minimal jargon

Jim Keogh

Me
Grow Oshorne

JAVASCRIPT
DEMYSTIFIED

http://dx.doi.org/10.1036/0071471391

This page intentionally left blank.

7SN

JAVASCRIPT
DEMYSTIFIED

JIM KEOGH

McGraw-Hill/Osborne

New York Chicago San Francisco Lisbon London
Madrid Mexico City Milan New Delhi San Juan
Seoul Singapore Sydney Toronto

http://dx.doi.org/10.1036/0071471391

The MeGrow Hill Comparnies

Copyright © 2005 by The McGraw-Hill Companies. All rights reserved. Manufactured in the
United States of America. Except as permitted under the United States Copyright Act of 1976,
no part of this publication may be reproduced or distributed in any form or by any means, or
stored in a database or retrieval system, without the prior written permission of the publisher.

0071471391
The material in this eBook also appears in the print version of this title: 0-07-226134-X.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol
after every occurrence of a trademarked name, we use names in an editorial fashion only, and
to the benefit of the trademark owner, with no intention of infringement of the trademark.
Where such designations appear in this book, they have been printed with initial caps.
McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales
promotions, or for use in corporate training programs. For more information, please contact
George Hoare, Special Sales, at george hoare@mcgraw-hill.com or (212) 904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its
licensors reserve all rights in and to the work. Use of this work is subject to these terms.
Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one
copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify,
create derivative works based upon, transmit, distribute, disseminate, sell, publish or
sublicense the work or any part of it without McGraw- Hill’s prior consent. You may use the
work for your own noncommercial and personal use; any other use of the work is strictly
prohibited. Your right to use the work may be terminated if you fail to comply with these
terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO
GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR
COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK,
INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE
WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY
WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions
contained in the work will meet your requirements or that its operation will be uninterrupted
or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for
any inaccuracy, error or omission, regardless of cause, in the work or for any damages
resulting therefrom. McGraw-Hill has no responsibility for the content of any information
accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be
liable for any indirect, incidental, special, punitive, consequential or similar damages that
result from the use of or inability to use the work, even if any of them has been advised of the
possibility of such damages. This limitation of liability shall apply to any claim or cause
whatsoever whether such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/007226134X

http://dx.doi.org/10.1036/007226134X

This book is dedicated to Anne, Sandy, Joanne,
Amber-Leigh Christine, and Graff, without whose
help and support this book couldn’t have

been written.

ABOUT THE AUTHOR

Jim Keogh is on the faculty of Columbia University and Saint Peter’s College in
Jersey City, New Jersey. He developed the e-commerce track at Columbia Univer-
sity. Keogh has spent decades developing applications for major Wall Street corpo-
rations and is the author of more than 60 books, including J2EE: The Complete
Reference, Java Demystified, ASP.NET Demystified, Data Structures Demystified,
XML Demystified, and others in the Demystified series.

CHAPTER 1

CHAPTER 2

For more information about this title, click here

CONTENTS

Introduction

An Inside Look at JavaScript

7SN

Answers to Common Questions About JavaScript

JavaScript: A Limited-Featured
Programming Language

Getting Down to JavaScript

Object Name

Property

Methods

The Dot Syntax

The Main Event
Writing Your First JavaScript
“0Old Timers” Don't Like JavaScript
Spicing Up Your JavaScript
Looking Ahead
Quiz

Variables, Operators, and Expressions
Values and Variables

Values

Variables

3
4
4
5
5
6
6
7

http://dx.doi.org/10.1036/0071471391

GOp—

CHAPTER 3

CHAPTER 4

Operators and Expressions
Parts of an Expression
Multiple Operations
Types of Operators

Looking Ahead

Quiz

Condition Statements

if Statement
The if Statement in Action
The if...else Statement
The if...else if Statement
Other Variations of the if Statement
Nested if Statement
Identifying a Browser

switch...case Statement

Loop Statement
The for Loop
The for in Loop
The while Loop
The do...while Loop
continue

Looking Ahead

Quiz

Arrays
What Is an Array?
Declaring an Array
Initializing an Array
Defining Array Elements
How Many Elements Are in the Array?
Looping the Array
Adding an Array Element
Sorting Array Elements

JavaScript Demystified

24
24
24
25
40
40

43
45
45
46
48
52
53
55
58
62
62
66
68
70
71
72
73

75
75
76
77
78
79
80
82
83

CONTENTS

—&»

Making a New Array from an Existing Array 84
Combining Array Elements into a String 87
Changing Elements of the Array 90
Looking Ahead 91
Quiz 92
CHAPTER 5 Functions 95
What Is a Function? 96
Defining a Function 96
Writing a Function Definition 98
Adding Arguments 99

The Scope of Variables and Arguments 100
Calling a Function 101
Calling a Function Without an Argument 102
Calling a Function with an Argument 103
Calling a Function from HTML 104
Functions Calling Another Function 108
Returning Values from a Function 109
Looking Ahead 113
Quiz 114
CHAPTER 6 Strings 117
Why Manipulate a String? 117
Joining Strings 118
Finding Your Way Around a String 120
Dividing Text 123
Copying a Substring 125
Converting Numbers and Strings 129
Numbers to Strings 130
Changing the Case of the String 131
Strings and Unicode 132
Looking Ahead 132

Quiz 133

JavaScript Demystified

Oy—

CHAPTER 7 Forms and Event Handling 135
Building Blocks of a Form 136
Elements and JavaScript 136
Responding to Form Events 137
Form Objects and Elements 141
Time-Saving Shortcut 143
Changing Attribute Values Dynamically 144
Changing Elements Based on a Value
Selected by the User 146
Changing an Option List Dynamically 148
Evaluating Check Box Selections 151
Manipulating Elements Before the Form
Is Submitted 153
Using Intrinsic JavaScript Functions 155
Changing Labels Dynamically 156
Disabling Elements 159
Read-Only Elements 161
Looking Ahead 162
Quiz 163
CHAPTER 8 Cookies 165
Cookie Basics 166
Creating a Cookie 167
Reading a Cookie 169
Setting the Expiration Date 171
Deleting a Cookie 172
Personalizing an Experience Using a Cookie 174
Looking Ahead 176
Quiz 176
CHAPTER 9 Browser Windows 179
Open the Window, Please! 180
Giving the New Window Focus 182

Placing the Window into Position on the Screen 184

CONTENTS

CHAPTER 10

CHAPTER 11

Changing the Contents of a Window
Closing the Window

"Magically” Scrolling a Web Page
Opening Multiple Windows at Once
Creating a Web Page in a New Window
Looking Ahead

Quiz

Regular Expressions

What Is a Regular Expression?

The Language of a Reqular Expression
Finding Nonmatching Characters
Entering a Range of Characters
Matching Digits and Nondigits
Matching Punctuation and Symbols
Matching Words

Replace Text Using a Regular Expression
Replacing Like Values

Return the Matched Characters
The Telephone Number Match
Regular Expression Object Properties

Looking Ahead

Quiz

JavaScript and Frames
You've Been Framed!

Invisible Borders
Calling a Child Window’s JavaScript Function
Changing the Content of a Child Window
Changing the Focus of a Child Window
Writing to a Child Window from a JavaScript
Accessing Elements of Another Child Window
Looking Ahead
Quiz

186
187
190
191
192
195
196

199
200
201
204
205
205
206
206
207
208
209
210
213
214
215

217
218
220
222
223
226
226
228
228
229

JavaScript Demystified

Gy—

CHAPTER 12 Rollovers 231
Setting the Stage 232
Creating a Rollover 234
Text Rollovers 237
Multiple Actions for a Rollover 239
More Efficient Rollovers 243
Looking Ahead 245
Quiz 245

CHAPTER 13 Getting Your Message Across: The Status Bar,
Banners, and Slideshows 249
Making Magic Using the Status Bar 250
Building a Static Message 250
Changing the Message Using Rollovers 253
Moving the Message Along the Status Bar 256
Banner Advertisements 268

Loading and Displaying Banner

Advertisements 268
Linking Banner Advertisements to URLs 271
Creating a Slideshow 273
Looking Ahead 275
Quiz 276
CHAPTER 14 Protecting Your Web Page 279
Hiding Your Code 280
Disabling the Right Mouse Button 280
Hiding Your JavaScript 283
Concealing Your E-mail Address 286
Looking Ahead 288
Quiz 288
CHAPTER 15 Menus 291
Creating a Pull-Down Menu 292
Dynamically Changing a Menu 294

Validating Menu Selections 296

CONTENTS

CHAPTER 16

Creating DHTML Menus
Floating Menu
Chain Select Menu
Tab Menu
Popup Menu
Highlighted Menu
Folding Tree Menu
Microsoft Outlook Bar Style Menu
Context Menu
Scrollable Menu
Side Bar Menu
Slide-In Menu
Looking Ahead
Quiz
DHTML
What Is DHTML?
Learning DHTML
Cascading Style Sheets
Using DHTML Code
Generic Drag
LCD Clock All
Watermark Background Image
Tabbed Document Viewer Using iframe
Daily iframe Content
Cross-Browser Marquee
Popup Calendar
Drop-In Content Box
Ad Box
Quiz

Appendix

Final Exam

Answers to Quizzes and Final Exam
Index

298
299
299
300
300
301
301
302
303
303
304
304
305
306

309
310
310
311
313
313
316
319
319
323
325
325
325
326
327

329
333
349
361

This page intentionally left blank.

7SN

INTRODUCTION

Every web surfer knows a classy web site when he sees one, because it has eye-
catching features that make the site outstanding among other sites on the web.
Developers of these sites leave web surfers in awe not by using fancy animation or
provocative pictures, but by using subtle tricks such as floating menus and move-
able objects, and by giving the web site the smarts to help a web surfer enter ap-
propriate information and perform tasks correctly.

Classy web sites attract developers, too, who are like magicians watching a top-
notch magic act, more puzzled than amazed, since what is seen is trickery, not
magic. The question is, how is it done?

No doubt, you’ve raised this same question when visiting a great web site, and
you’ve probably tried to re-create those fancy features using HTML but fell short of
your goal, leaving you wondering what you missed. Now you’ll learn the secret that
master developers use to give web sites the wow factor.

That secret is JavaScript.

JavaScript is a limited-featured programming language used by web developers
to do things that HTML cannot do, such as build dynamic web pages, respond to
events such as a mouse cursor rollover, create interactive forms, validate informa-
tion that the visitor enters into a form, control the browser, and much more.

JavaScript is not Java, which confuses many developers who are unfamiliar with
JavaScript. Both are object-oriented programming languages and have Java in their
names, but that’s about as close as they come. You’ll learn the difference in the first
chapter of this book.

Yes, JavaScript is different from HTML, but it’s not so different that you won’t
be able to write JavaScript code. All you need is a working knowledge of HTML—
and JavaScript Demystified—to become proficient in JavaScript.

JavaScript is a critical component of DHTML, which the pros use to create
Flash-like dramatic effects without having to use a plug-in. JavaScript Demystified

—

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

@ JavaScript Demystified
introduces you to DHTML and shows you how to enhance your web site with
effects that you wouldn’t think could be done on a web page.

You might be a little apprehensive learning JavaScript, especially if you are a
web developer and not a computer programmer. JavaScript can be mystifying; how-
ever, as you read JavaScript Demystified you’ll quickly untangle the mystery,
because your knowledge of HTML is used as the foundation for learning to write
JavaScripts.

As you’ll see when you write your first JavaScript in Chapter 1, each element of
JavaScript is introduced by combining just the JavaScript element with a working
web page written in HTML. You already know 95 percent of the code that creates
the web page because it is written in HTML. The remaining 5 percent of the code
is written in JavaScript, which is clearly explained in the chapter.

Like many developers, you probably learn by doing. You’ll like reading Java-
Script Demystified because we use a hands-on approach to learning JavaScript. You
can copy examples illustrated in this book from our web site (www.osborne.com)
and experiment with each JavaScript concept presented in this book. Load the web
page and see the affect of the JavaScript. Comment out the JavaScript and reload
the web page and see how the page reacts without the JavaScript. Once you’ve
mastered the JavaScript technique, you can incorporate it into your own web page
and then move on to the next topic.

By the end of this book, you’ll be able to make your own classy web site that will
leave even the sophisticated web surfer in awe, and web developers scratching their
heads, asking, “how does that work?”

A Look Inside

JavaScript can be challenging to learn unless you follow the step-by-step approach
used in JavaScript Demystified. Topics are presented in an order in which many
developers like to learn them—starting with basic components and then gradually
moving on to those features found on advanced web sites.

Each chapter follows a time-tested formula that first explains the topic in an
easy-to-read style and then shows how it is used in a working web page that you can
copy and load yourself. You can then compare your web page with the image of
the web page shown in the chapter to be assured that you’ve coded the web page
correctly. There is little chance you’ll go wrong.

INTRODUCTION
—
Chapter 1: An Inside Look at JavaScript

Chapter 1 sets the stage for the rest of the book by presenting the bare facts of Java-
Script. You’ll explore the basic concepts of JavaScript and learn what JavaScript
can do and what it cannot do.

Most importantly, you’ll create your first working JavaScript. It won’t wow any-
one but yourself, but your first JavaScript breaks through the unknown and lets you
prove to yourself that you can create a working JavaScript.

Chapter 2: Variables, Operators, and Expressions

You’ll roll up your sleeves and delve head first into JavaScript by learning the nitty-
gritty of how to store information in computer memory and then how to manipulate
this information using JavaScript. This may not sound exciting, but techniques that
you learn in this chapter are used in nearly every eye-catching web page that you’ve
seen when surfing the web.

In this chapter, you’ll learn that information such as dates, numbers, and text that
are entered into a form can be stored in computer memory using something called
a variable. Variables and operators are then assembled into an expression that tells
the browser to do something exciting. You’ll have the browser at your beck and call
once you get the skills covered in Chapter 2 under your belt.

Chapter 3: Condition Statements

Chapter 3 shows you how to give your web page the smarts needed to make deci-
sions by using a condition statement. A condition statement is an expression that
tells the browser to compare two things, and to do something if they are the same,
or do something else if they are different.

A condition statement is a key ingredient of nearly every classy web site that
customizes its content for a visitor. Once you’ve mastered topics in this chapter,
you’ll be able to write a JavaScript that validates and processes information that a
visitor enters into a form on your web site.

Chapter 4: Arrays

You’ve seen web pages that display a seemingly endless number of banner ads that
keep rotating while you scan the page. You probably noticed that each banner ad

@ JavaScript Demystified
popped into place without any delay. The secret to how this is done is by grouping
them together in an array.

As you’ll learn in Chapter 4, an array is a group of similar information that the

browser can access efficiently by accessing each member of the group, similar to
how a teacher goes up and down rows of students when collecting homework.

Chapter 5: Functions

You simply say “one pepperoni pie” when you order a pizza. You don’t need to tell
the chef how to make the pizza, because the chef follows the recipe that contains
those step-by-step instructions.

You might be wondering what ordering a pizza has to do with JavaScript. Order-
ing a pizza is similar to calling a function in JavaScript. Think of a function as a
group of instructions that are followed each time the function is called. In this case,
the function is called by saying “one pepperoni pie.” The chef follows instructions
defined in the recipe for making a pepperoni pizza.

In Chapter 5, you’ll learn how to define your own functions that can be called
from a JavaScript or straight from HTML to have the browser perform a group of
instructions. This gives you the power to build your own JavaScript commands.

Chapter 6: Strings

You might have had a web page automatically create an e-mail address for you
based on your name. Somehow, the web page ripped your name into pieces and
then reassembled it into an e-mail address, just like a magician rips a newspaper
into pieces and then magically puts them back together to form a newspaper.

Read Chapter 6 if you want to learn how to slice and dice your name or any series
of characters into pieces and then reassemble those pieces into different words.
Professional web developers do this when they validate information provided by
visitors to their web sites.

Chapter 7: Forms and Event Handling

Forms are nothing new to you, since they are built using HTML. However, not all
forms are the same, especially when a JavaScript developer creates the form. Java-
Script can make a form come alive, letting it interact dynamically with form ele-
ments while information is being entered into the form.

You experience this whenever the browser automatically changes settings on
the form based on your selection from a drop-down list. Behind the scenes, the

INTRODUCTION @
browser calls a JavaScript when the drop-down list selection changes. The Java-

Script reads the selection and determines the settings for the other form elements.
You’ll learn how to perform this and other feats of JavaScript magic in this chapter.

Chapter 8: Cookies

What does a baker, Cookie Monster, and JavaScript have in common? Cookies! A
baker and JavaScript make cookies. Cookie Monster and JavaScript eat cookies.
(That is, JavaScript kind of eats cookies—it actually reads cookies.)

A cookie is a small piece of information copied to the visitor’s computer by a
web page—something you probably already know. In Chapter 8, you’ll learn how
to make your own cookies and how to read your cookies to personalize your web
page for each visitor to your site.

Chapter 9: Browser Windows

Popup and pop-back ads annoy many web surfers. So do web sites that open a
seemingly endless number of windows when the surfer enters a home page. The
secret to this madness is using JavaScript to control the browser window. You’ll see
how this is done in Chapter 9.

When used tastefully, controlling the browser window using a JavaScript can
transform a dull web site into one that sizzles. As you’ll learn in this chapter, you
can control how web pages are displayed in a browser window and the size and
style of the browser window.

Chapter 10: Regular Expressions

It would be nice if you could write one sentence and have the browser update para-
graphs of text. You can do this by writing a regular expression. A regular expression
is a powerful tool that you can use to search and replace text, validate information,
and manipulate information in amazing ways.

In Chapter 10, you’ll learn everything you need to know to make a regular
expression a regular part of your JavaScript toolbox.

Chapter 11: JavaScript and Frames

No doubt you learned how to divide a web page into sections called frames when
you learned HTML. A frame is like a picture frame that can display its own web

@ JavaScript Demystified
page and can be scrolled without affecting the content of other frames on the
screen.

In Chapter 11, you’ll learn how to interact and manipulate frames using Java-

Script. You’ll learn how to use JavaScript to load web pages and to change the con-
tent of a frame dynamically.

Chapter 12: Rollovers

Rollovers transform the mouse cursor into a magic wand, letting the visitor perform
all sorts of magic by passing the mouse cursor over objects on the web page. They
can replace one image with another, make text appear and disappear, and do any
other task the developer can imagine.

Each time a rollover is detected, the browser calls the JavaScript function that
tells the browser what to do next. Chapter 12 shows you how to perform this magic
on your web page using JavaScript.

Chapter 13: Getting Your Message Across:
The Status Bar, Banners, and Slideshows

Professional JavaScript developers use all kinds of tricks to grab the visitor’s atten-
tion while scanning a web page—they use rotating banners, slideshows, and the
browser’s status bar to get their message across to the visitor.

You’ll learn the secrets behind these tricks in Chapter 13 when you learn how to
build your own attention-grabbers using JavaScript.

Chapter 14: Protecting Your Web Page

Your JavaScript secrets are not safe unless you take steps to secure your web page.
It is all too common for a curious visitor to click the right mouse button and select
View Source to pop up the source code of a web page on the screen. Any JavaScripts
used by the web page also become visible.

You cannot entirely conceal your JavaScripts from prying eyes, but you can stop
all but computer wizards from gaining access to your JavaScript. You’ll see how
this is done in Chapter 14.

INTRODUCTION
—&
Chapter 15: Menus

When meeting someone face to face, you get one chance to make a first impression,
and the same is true of your web site. Web surfers tend to judge a web site by how
easy it is for them to navigate the site. You can streamline their navigation by clev-
erly designing eye-catching menus that create a lasting memory of your site.

In Chapter 15, you’ll learn how to create dramatic menus using JavaScript and
DHTML. You’ve seen many of these used in popular commercial web sites.

Chapter 16: DHTML

Commercial web sites use exciting special effects such as balloons flying across the
web page or eyes that follow the mouse cursor to capture and hold visitors. They
create these effects by using Dynamic HTML (DHTML).

As you’ll learn in Chapter 16, DHTML is a combination of HTML, Cascading
Style Sheets, and JavaScript blended together to give web pages the same look and
feel as a desktop multimedia application. The chapter begins with a short review of
Cascading Style Sheets and then follows with handy DHTML examples provided
by dynamicdrive.com that can be used on your next project.

This page intentionally left blank.

CHAPTER J

An Inside Look
at JavaScript

Anyone who has built a web page has quickly realized the limitations of Hypertext
Markup Language (HTML). It doesn’t offer the control that you need to create so-
phisticated web pages, and you can’t use it to create interactive web pages. Using
the JavaScript scripting language, however, you can build interactive web pages and
features that are found on many professional web sites.

You probably already know how to put together a web page using HTML. Java-
Script is still new to you—otherwise you wouldn’t be reading this book. In this book,
you’ll learn JavaScript from the ground up to gain the skills you need to build classy
interactive web pages. If you’re anxious to get started writing your first JavaScript,
hold on; you’ll do this a little later in the chapter. Before jumping in over your head,
let’s take a moment and explore the basic concepts of JavaScript.

—&

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

e JavaScript Demystified
W

Answers to Common Questions

About JavaScript

Many developers who are new to JavaScript are puzzled by the name because of
confusing information they’ve read about scripting languages, programming lan-
guages, JavaScript, Java, VBScript, and JScript. Let’s answer three of the most
frequently asked questions about JavaScript before getting down to the nuts and
bolts of using it.

Is JavaScript a scripting language or a programming language?

This is the first question many web developers ask when learning JavaScript. Fact
is, JavaScript is both a scripting and a programming language, since a scripting
language and a programming language fundamentally do the same things—that is,
they enable developers to instruct a browser to perform some action, such as vali-
dating information a user enters into a form. However, they differ in one important
aspect: a scripting language usually doesn’t care about data types, while a program-
ming language does care about data types. A data type is a definition of the type of
data values that can be used in a program and the type of operations that can be
performed on those values, and it specifies the size and kind of information that can
be placed into a specific location in computer memory.

Is JavaScript the same as Java?

Typically the second question asked by web developers, the simple answer is no.
Originally, Netscape developed a scripting language called LiveScript to enhance
the abilities of Netscape Navigator. The buzz in the industry was that Sun Micro-
systems’ new programming language, Java, was going to revolutionize the
computer industry, because, among other things, Java could be used to create small
programs called applets that could run inside Java-enabled web browsers. Netscape
soon released a version of Navigator called Navigator 2 that was Java-enabled. Live-
Script was renamed JavaScript, with hopes that developers would adopt JavaScript
along with Java.

Java is a full-featured programming language (like C++) that is used to build cli-
ent-side and server-side applications. A client-side application is a program that
you interact with directly on your computer—for example, Microsoft Internet Ex-
plorer. A server-side application is a program that your client-side application
interacts with, typically on a distant computer or server—for example, a Java applet
or Perl script.

For example, your browser is a client-side application that you use to request
web pages from the web server. The web server is a server-side application that
“talks” to your browser.

CHAPTER 1 An Inside Look at JavaScript o

A Java application can run on different kinds of computers without having to be
modified. This is called cross-platform compatibility. Simply said, a Java program
that runs on Windows will also run on a Mac and Sun computers without your hav-
ing to modify the program.

You might be familiar with a Java applet if you’ve built web pages. A Java applet
is a Java program that resides on a web server and is run by using the <applet>
or <object> HTML tag in a web page. The browser downloads the Java applet
from the web server and then runs the applet in its own window. Java applets can do
nearly everything that can be done with a Java application, except for certain secu-
rity restrictions, such as accessing your computer’s hard disk.

In contrast to Java, JavaScript is a limited-featured programming language. (See
the next section, “JavaScript: A Limited-Featured Programming Language.”) Java
Script programs called scripts are included in a web page within the <script>
HTML tag. The browser downloads a JavaScript when the web page is downloaded.
A JavaScript can run quietly without anything being displayed, such as while per-
forming calculations, or it can take over the entire browser window when displaying
a JavaScript form. A JavaScript program cannot access your computer’s hard disk.

Is JavaScript the same as VBScript and JScript?
The simple answer is no. VBScript and JScript were developed by Microsoft to cre-
ate interactive web pages. JavaScript is a Netscape creation.

JavaScript: A Limited-Featured
Programming Language

You can do many things using JavaScript that you can’t do by simply using HTML.
Here are a few of them:

* Build dynamic web pages

* Display alert boxes

e Write messages to the browser status bar

* Control features of the browser

* Open new browser windows

» Customize reactions to mouse actions and keystrokes

* Validate information in forms

¢ Perform calculations

e JavaScript Demystified
* Display messages when the cursor rolls over an object on the screen
* Create interactive forms

¢ Set date and time

 Identify browsers and browser plug-ins such as Flash

Although JavaScript is more powerful than HTML, JavaScript can’t do every-
thing. Here are some common things that JavaScript can’t do:

* Write files to your hard disk
» Read files from your hard disk—except for cookies
* Close windows other than those the JavaScript application opened

* Write server-side applications, called Common Gateway Interface (CGI)
applications, which must be written using languages such as Java, ASP,
Perl, and PHP.

* Read information from a web page that resides on a domain different from
the domain where the JavaScript resides

Getting Down to JavaScript

Now that the preliminaries are out of the way, let’s get started learning the nuts and
bolts of JavaScript, beginning with an introduction to JavaScript objects. You might
have heard the term object-oriented programming language and wondered what
this means in plain English. An object-oriented programming language is a pro-
gramming language that is used to build programs using objects.

An object, of course, is a thing, such as a document, a computer, a pencil, or a car.
Nearly everything around us is an object. JavaScript is an object-oriented program-
ming language that is used to build programs using objects. In programming, the
objects most commonly used by JavaScript are documents, forms, fields, radio but-
tons, and other elements that you find on a form or user interface. A window is also
an object used by a JavaScript program. You’ll become very familiar with objects
as you begin writing JavaScript programs. Let’s explore objects in greater detail.

Object Name

A typical web page contains many objects, some of which are the same kind of
object. For example, a web page might contain two forms. But even though the

CHAPTER 1 An Inside Look at JavaScript o
forms are the same kind of object, they can be uniquely different based on the
fields, buttons, and other interface elements that appear in the forms.

Each object must be uniquely identified by a name or ID that you assign to the
object to reference it from your JavaScript. Forms, for example, could be named
form1 and form?2. Alternatively, you could assign forms names that identify the
purpose of each form, such as OrderEntryForm and OrderDisplayForm, which
more clearly identify each form in your JavaScript.

Sometimes your JavaScript needs to access many objects quickly, such as when
displaying multiple pictures in a slideshow. In this case, you use an array to name
each object. You’ll learn about arrays in the next chapter. For now, think of an array
as a list of objects. The first object on the list is called object 0, the next is object 1,
and so on. You access each object by using its number. You’ll see how this is done

in Chapter 4.
Let’s move on to the next part of an object, which is an object’s property.

Property

A property is a value that is associated with an object. Objects can have many val-
ues, depending on the type of object used. For example, a form object has a title, a
width, and a height—to mention a few properties. A window has a background
color, a width, and height. These are all properties of an object. Each kind of object
has its own set of properties. You'll learn about these properties throughout this
book as you are introduced to each object.

Methods

A method is a process performed by an object when it receives a message. Some
JavaScript developers like to think of a method as a verb, because it is basically an
action. (On the other hand, an object is like a noun.) For example, a Submit button
on a form is an object. Its Submit label and the dimensions of the button are proper-
ties of the button object. If you click the Submit button, the form is submitted to the
server-side application. In other words, clicking the Submit button causes the but-
ton to process a method.

The kinds of methods that are used differ, depending on the type of object to
which they’re attached. You’ll learn more about methods when you learn how to use
JavaScript objects in your JavaScript application.

o JavaScript Demystified
A 4
The Dot Syntax

You can think of an object as being associated with certain kinds of information (prop-
erties) and certain kinds of behaviors (methods). For example, a document is an object
that has a certain background color (property) and that can be written to (method).
You access an object’s properties and methods by using the dot syntax along with
the object name and its property or method. So, for example, here’s how you would
identify the background color of a document and the write method for a document:

document .bgColor
document .write ()

This is pretty straightforward to understand once you understand how the dot syn-
tax works. Each line has two parts: The first part is the name of the object, which is
document. The second part is either a property (bgColor) or method (write)
of the object. A dot separates the name of the object from the property or method.
In this example, the first line says, “I want to access the background color of the
document object.” The second line says, “I want to write something to the docu-
ment object.” Write what, you might be asking?

In this example, nothing is being written to the document. To tell JavaScript what
information to write to the document, you would type in the information between
the parentheses of the write () method. Later in this chapter, you’ll use the
write () method to write “Hello, world!” text in your first JavaScript.

The Main Event

Another basic concept that you need to understand is event handling. An event
causes your JavaScript to start executing the code—such as when you click the
mouse button on a form that your JavaScript displays on the screen. Your JavaScript
is told of every event that occurs while your JavaScript is running. Some events are
particularly important to your JavaScript, such as when someone clicks a Submit or
Cancel button on a form. Other events may not be so important, such as when the
mouse is moved onto an area of the form that contains no information. The nature
of your application determines whether or not an event is important.

Your job is to make sure that your JavaScript reacts to important events. This is
referred to as event handling. You do this by creating an event handler, which is a
part of your JavaScript that reacts to important events. For example, the event han-
dler for a Submit button click event will likely contain JavaScript instructions that
process information the user entered on the form, and the process instructions will
make sure that the user entered all the required information on the form.

CHAPTER 1 An Inside Look at JavaScript o
That’s all you need to know about events and event handling for now. Later on

you’ll learn everything you need to know to have your JavaScript react to important
events.

Writing Your First JavaScript

It is time to write your first JavaScript. In keeping with a long programming tradition,
the objective of your first script is to write “Hello, world!” to a document object. Grant-
ed this JavaScript isn’t the most exciting to write, but the more exciting JavaScripts are
yet to come. For now, it is important that you learn how to write a basic JavaScript.

A JavaScript consists of JavaScript statements that are placed within the
<script> HTML tags in a web page. This means that you don’t need any special
tools to write a JavaScript. You can use the same tools to write a JavaScript that you
use to write your web page.

You place the <script> tag containing your JavaScript in one of two places
within the web page—either within the <head> tags or within the <body > tags.
Developers call scripts within the <heads> tag header scripts and scripts placed
within the <body> tag body scripts. You’ll learn more about the differences be-
tween header and body scripts later in this book.

Now for the moment that you’ve been waiting for. You’ll create the web page
shown in Figure 1-1.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head>
<title>Hello world! JavaScript</title>
</head>
<body>
<script language="Javascript" type="text/javascript"s>
document .write ('Hello, world!"'")
</script>
</body>
</html>

No doubt most of this code looks familiar, since you’ve probably written some-
thing similar to it many times before. The first two lines are standard in every web
page. Next is the <head> tag that contains the title of the web page. This is fol-
lowed by the <body> tag.

JavaScript Demystified

& Helloworld! JavaScript - Netscape

File Edk ‘iew Go Bookmarks Took Window Hep
o ‘& \) [fiesgiic hockspavaseripts20Demy stifiediGoadoraftListingl 2 htm | [Cy search | 3-'.50 i“i‘
B, COMal S A 4% Home (0 Radio V) Metscape ©l Search [JBackmarks
Hello world!
| & &= & ©F [oo =

Figure 1-1 Your first JavaScript displays “Hello, world!” in a web page.

Within the <body> tag is the <script> tag that contains the one-line Java-
Script. The <script> tag is very similar to other HTML tags in that it has an
opening (<scripts>)tag and ending (</script>)tag. The <script> tag also
has two HTML attributes: 1anguage and type.

The <script > tag signals the browser that a script is coming—not HTML. The
browser processes scripts differently than HTML. The 1language attribute is as-
signed the value "Javascript", which informs the browser that the scripting
language is JavaScript. The type attribute tells the browser that the script is in
plain text and that the text is organized in the format of a JavaScript. This simply
gives the browser information on how to read the JavaScript code.

Everything between the opening <script> and ending </script> tags is the
script and must be written using JavaScript. This example is a one-line script. First,
the line is a JavaScript statement. A statement is like a sentence that tells the browser
to do something. Next, you notice the dot syntax. This is a clue telling you that the
JavaScript statement contains an object, which in this case is named document.

You also notice something on the right side of the dot. Knowing that the left side
of the dot is the name of an object, you probably figure that the right side of the dot
must be either a property or method of the object. In this example, it’s a method.
The clue that gives this away are the parentheses—and you read about the write ()
method previously in this chapter.

CHAPTER 1 An Inside Look at JavaScript o

The name of the method is write (), which describes what the method does—it
writes something to the document. The text 'Hello, world!' appears between
the parentheses. This is the information that is written to the document. You must
enclose the information within quotation marks; otherwise, the browser will think
you are referring to a JavaScript instruction. JavaScript can use single or double quo-
tations.

Save this web page to your hard disk, and then open it in your browser. You’ve
now successfully written your first JavaScript program. If you don’t see this mes-
sage displayed on the web page, one or two things are likely to be the problem:
First, make sure that the entire HTML and JavaScript code is written exactly the
way that you see it in the preceding listing. Sometimes a typographical error slips
into the code and confuses the browser. Second, make sure that the JavaScript op-
tion on your browser isn’t turned off. If it is, turn it on and reload the web page.
Usually, JavaScript is enabled as the default for Microsoft Internet Explorer and
Netscape Navigator. You can determine whether JavaScript is enabled and how to
enable it if it is disabled.

For Microsoft Internet Explorer, follow these steps:

1. Choose Tools | Internet Options.
2. Select the Security tab.

3. Click the Custom Level button.
4

. In the Security Settings dialog box, scroll down to the Scripting area and
find Active Scripting.

5. Select Enable.
6. Click the OK button, and then click OK again.

For Netscape, follow these steps:

Choose Edit | Preferences.
Double-click Advanced Category.
Select Scripts & Plug-ins.

Select Enable JavaScript options.
Click OK.

MBS e

Norte If you are using a different version of Netscape Navigator, keep in mind the
steps you take may differ somewhat.

@ JavaScript Demystified
A 4
“0Old Timers” Don’t Like JavaScript

Most browsers today have no problem running a JavaScript, assuming that the Ja-
vaScript option is turned on. However, you never know if someone some place on
the Internet hasn’t upgraded to a new browser or still uses a very old browser.

Microsoft Internet Explorer 3 and earlier versions, Netscape 1.x, and America
Online versions 3 and earlier can’t run JavaScript because they don’t know how to
interpret JavaScript code. Instead, these browsers display the JavaScript instead of
running it. This means that your JavaScript is displayed for all to see.

You can hide your JavaScript from these “old timers” by placing your script in
an HTML comment section of a web page. You’'ll recall from when you learned
HTML that a browser treats anything between <!-- and --> as a comment.
Browsers that are JavaScript-enabled recognize and run a JavaScript that is con-
tained within an HTML comment. Older browsers simply ignore the JavaScript,
thinking that the script is a comment.

The following listing illustrates how to hide your JavaScript from older brows-
ers. Notice that the HTML comment is placed inside the <script> and
</script> tags and around the JavaScript code. Some rookie JavaScript devel-
opers place the HTML comment outside the <script> tags. If you do this, the
browser assumes your JavaScript is an HTML comment and will ignore everything
within the HTML comment. Simply said, your JavaScript won’t run.
<!DOCTYPE html PUBLIC

"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>

<title>Hiding Hello world! JavaScript</title>
</head>

<body>

<script language="Javascript" type="text/javascript's
<!l--
document .write('Hello, world!")
</script>

</body>

</html>

CHAPTER 1 An Inside Look at JavaScript @
W
Spicing Up Your JavaScript

Admittedly, your first JavaScript looks a little drab because the text lacks the pizzazz
that you expect to see when you display text using a JavaScript. You’ll learn tech-
niques the pros use to display text in later chapters. For now, let’s add a little polish to
your simple Hello, world! JavaScript by displaying the text in an alert dialog box.

An alert dialog box pops on the screen to display a message and stays on the
screen until someone clicks the OK button that appears in the dialog box. (You may
have seen an alert dialog box displayed if you tried to print something but you for-
got to turn on the printer. The alert dialog box gave you a polite reminder.)

You display an alert dialog box by calling the alert function and passing it the
text that you want to be displayed. You’ll learn about functions in Chapter 5. You
insert the following statement in your JavaScript whenever you want to display the
alert dialog box.

alert ("message")

Replace the word message with the text that you want displayed. The following
is a revised Hello, world! JavaScript. Notice that the document .write () state-
ment is replaced with the alert function. You’ll see the alert dialog box displayed
(Figure 1-2) when you run this script.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Hiding Hello world! JavaScript</titles
</head>
<body>
<script language="Javascript" type="text/javascript'"s
<!--
alert ('Hello, world!"')
-=>
</scripts>
</body>
</html>

[JavaScript Application] [

Hella, world!

Ce)

Figure 1-2 The alert dialog box remains on the screen until the OK button or the close
box is clicked.

By——

JavaScript Demystified

Looking Ahead

Qu

1Z

Now you have a pretty good understanding of what JavaScript is and what it isn’t.
JavaScript is a limited-featured programming language that is used to enhance
HTML and give web pages the smarts to make decisions and perform sophisticated
features found in professional web sites. JavaScript isn’t Java.

JavaScript is an object-oriented programming language that lets you build ap-
plications by using objects. An object is a document, button, or another item, that
appears on a form. Each object has properties—information about the object, such
as size and color. Each object also has methods, which are actions performed by the
object such as processing a form when the Submit button is clicked.

You access properties and methods of an object by using the name of the object
followed by a dot and the name of the property or method that you want to use in
your JavaScript. This is called dot syntax.

A JavaScript application reacts to events that occur while the application is running.
An event is usually an action taken by the person who is using your application, such
as someone clicking the Submit or Cancel button. You enable your JavaScript to react
to events by defining event handlers. An event handler is a portion of your application
that is called whenever a specific event occurs while your application is running.

A JavaScript is placed within the <script> tags of an HTML page. The
<script> tags can be placed within the <head> or <body> tags of the page. It
is a good practice to place JavaScript code in an HTML comment within the
<script> tags so that older browsers that don’t understand JavaScript won’t dis-
play your JavaScript code on the screen.

Now that you have a good general understanding of JavaScript and know how to
write a simple JavaScript application, it is time to move on to more interesting as-
pects of JavaScript. In the next chapter you’ll learn how to store and use information
within a JavaScript.

1. JavaScript is a version of
a. Java
b. LiveScript
c. C++
d. VBScript

CHAPTER 1 An Inside Look at JavaScript

2. A JavaScript must reside within the
a. <objects> tag
b. <applet>tag
Cc. <scripts> tag
d. <cgis>tag
3. The Submit button is a type of
a. Object
b. Method
c. Property
d. Variable
4. The background color of a document is a type of
a. Object
b. Method
c. Property
d. Variable
5. write () isatype of
a. Object
b. Method
c. Property
d. Variable
6. A dotis used to
a. Identify a JavaScript comment
b. Separate lines of a JavaScript
c. End a JavaScript statement
d. Separate an object name from either a property or a method

7. What is it called when a person clicks a button on a form displayed by your
JavaScript?

a. Event
b. Reaction
c. Rollover

d. Mouse rollover

Oy—

8.

10.

JavaScript Demystified

What part of your JavaScript reacts to someone clicking a button on a form
displayed by your JavaScript?

a. Main

b. Event handler
c. Subscript

d. Superscript

. How do you prevent your JavaScript from being displayed by older

browser?

a. Place the JavaScript within the <script> tag
b. Place the JavaScript within the header

c. Place the JavaScript within a comment

d. Place the JavaScript within the body
JavaScript is

a. A full-featured programming language

b. A limited-featured programming language

c. A version of ASP

d. A version of ASPNET

CHAPTER

Variables,
Operators, and
Expressions

You’ve probably seen many sophisticated web pages while surfing the Net and
have wondered how they were built. The secret to such sophistication lies with
JavaScript’s ability to store and manipulate information and its ability to process
information on the fly. These are things you can’t do with HTML alone.

Before you can build an exciting web page, you’ll need to learn the nitty-gritty
basics of how to use JavaScript to store and manipulate information. Once you get
the basics under your belt, you’ll learn how to build those fancy features that you
see in popular web sites.

In this chapter, we’ll explore the behind-the-scenes part of JavaScript that is the
foundation of nearly every eye-catching web page on the Internet. These are values,

_\9

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

@ JavaScript Demystified
variables, and expressions that tell your browser how to make decisions while your

JavaScript runs. If you know how to add 1 + 1, you will breeze through the informa-
tion in this chapter.

Values and Variables

Web pages contain a lot of information along with a few pictures sprinkled about to
catch your attention. In HTML, you place information you want to display between
varieties of HTML tags. You place “Hello, world!” between the open <h1> and
close </h1> tags, which cause that message to be displayed on the web page. In-
formation that you place in the code of a web page or JavaScript is called a value.
For example, the “Hello, world!” script that you wrote in the JavaScript in Chapter 1
is a value. A variable is basically a placeholder that holds a spot for data that can be
changed during the execution of a program.

Values

In HTML, all values are treated as text. That is, when you enter /0, HTML treats it
not as a number that can be used in a calculation, but as a number that you might
use in a street address, such as 10 Downing Street. JavaScript uses six kinds of val-
ues: number, string, Boolean, null, object, and function.

Number
A number is a numeric value that can be used in a calculation.

String
A string is text that is enclosed within quotation marks. It is called a string because
characters are strung together to form the text. A string can also contain numbers,
but those numbers can’t be used in a calculation unless the developer performs
some JavaScript magic to it, which you’ll learn about later in this book. So the
number in 10 Downing Street is part of a string and cannot be directly used in a
calculation.

Boolean
A Boolean is a value that is either false or true, which is represented as zero and/or
non-zero. As you might surmise, a Boolean value is used to help a JavaScript make
a decision, such as evaluating whether or not the user entered her e-mail address in
an order form.

CHAPTER 2 Variables, Operators, and Expressions

——@

There is nothing to the null value. Really—I mean nothing. That’s what null/ means.
Null is the absence of any value. You might wonder why you’d need to use such a
value, but as you’ll see when you start writing sophisticated JavaScripts, there will
be times when you need to use a variable (a placeholder for a value) to represent no
value (null) until your JavaScript assigns a value to the variable. For example, you
probably want to assign null to the variable used for a customer’s first name until
the customer enters his or her name on the form.

Objects
You learned about objects in Chapter 1. An object is a value. This means that a
document is a value, and so are a window and a form. You’ll become very familiar
with objects when you start using them in your JavaScript a bit later.

Functions

A function performs an action when you call the function in a JavaScript—such as
when you called the alert () function to display a message on the screen in
Chapter 1. Two kinds of functions are used in JavaScript: predefined functions and
custom functions. A predefined function is already created for you in JavaScript,
such as the alert () function. A custom function is a function that you create.
You’ll learn all about functions in Chapter 5, but let’s take a peek at what you’ll be
learning.

Following is a custom function definition that displays ‘“Hello, world!” on the
screen. A function definition is part of a JavaScript that the browser executes when-
ever the function is called somewhere else in the JavaScript. This example of a
function definition contains one statement that you’ll remember from Chapter 1. In
this example, the name of this function is DisplayHelloWorld (). This tells
the browser to execute the statement found in the definition of the DisplayHel-
loWorld () function.

function DisplayHelloWorld()

{
alert ('Hello, world!")

}

Variables

Literal values are fine to use if you already know the value when you write your Ja-
vaScript. However, sometimes the value isn’t known until your JavaScript is running.

@ JavaScript Demystified
Let’s say that your JavaScript calculates the sales tax on the purchase price of an item.
You probably know the percentage value of the sales tax when you write the Java-
Script, so you can write the literal value of the percentage into your JavaScript. You
don’t know the purchase price of the item until the customer selects the item while
your JavaScript runs. This poses a dilemma. How can you write the sales tax calcula-
tion into your JavaScript without knowing the purchase price of the item?

The solution is to use a variable in place of the purchase price. You can think of
a variable as an empty cardboard box. You place a label on the box on which you
write a name. You place a value inside the box. Each time you want to refer to the
value, you simply refer to the name of the box.

Let’s return to our sales tax example to see how this works. First, we’ll need a
box in which to store the purchase price. Let’s write PurchasePrice on the label of
the box (Figure 2-1). We could write any name on the label, but it is less confusing
if the name used represents the value stored inside the box.

Next, we’ll write the math expression to calculate the sales tax (the Purchase-
Price times the sales tax percentage of 6 percent):

PurchasePrice * .06

Notice that the name on the label of the box (PurchasePrice, the variable) is used
to refer to the purchase price in this calculation. We could have used the actual pur-
chase price, but we don’t know the purchase price until the user enters the purchase
price into our application. Until then, all we can do is refer to the variable where the
browser will store the purchase price after it is entered into the application.

When the browser sees PurchasePrice in the JavaScript, the browser knows
that PurchasePrice is a label for a variable that contains the value of the pur-
chase price. The browser then copies the value entered by the user, replaces the
PurchasePrice variable with the value, and performs the calculation.

PurchasePrice

Figure 2-1 A variable is similar to a cardboard box that contains a value. You refer to
the label on the box whenever you want to use the value inside the box.

CHAPTER 2 Variables, Operators, and Expressions @
Declaring a Variable

Before you can use a variable, you must tell the browser to create a variable. You do
this by declaring a variable. Any time you want the browser to do something, you
need to write a statement within your JavaScript. Think of a statement as a sentence
that issues a command to the browser.

A statement that tells the browser to create a variable requires two parts:

* The special word, called a keyword, tells the browser that you want
it to create a variable. Think of a keyword as a word in the JavaScript
language that is understood by the browser. JavaScript uses 25 keywords
(see Table 2-1), which you’ll learn to use in this book. The word you
need to use to declare a variable is var.

* The variable name can consist of any letter, digit, and an underscore, but
it cannot begin with a digit. Some rookie JavaScript programmers use a
letter such as X as a variable name. Although there is nothing wrong with
X since it is an acceptable variable name in JavaScript, the name X doesn’t
tell us anything about the value that is stored in the variable. Professional
JavaScript programmers make sure to use a variable name that gives a hint
as to the type of value stored in the variable. A variable name cannot be a
JavaScript keyword or a JavaScript reserved word. A JavaScript reserved
word (see Table 2-2) has a special meaning to the browser, although it’s not
necessarily an actual command, as is a JavaScript keyword. You’ll confuse
the browser to no end if you either use a JavaScript keyword or a JavaScript
reserved word as a name of a variable.

Now that you know the rules for declaring a variable, let’s declare a variable for
the purchase price of an item. The following is a JavaScript statement that tells the
browser to create a variable called PurchasePrice. Notice that the var part of
the statement is written in lowercase.

var PurchasePrice

break do function null typeof
case else if return var
continue export import switch void
default false in this while
delete for new true with

Table 2-1 JavaScript Keywords

@,—

JavaScript Demystified

abstract debugger goto package synchronized
boolean double implement private throw

byte enum instanceof protected throws

catch extends int public transient
char final interface short try

class finally long static

const float native super

Table 2-2 JavaScript Reserved Words

Initializing a Variable

The PurchasePrice variable that we declared in the previous example doesn’t
yet have a value. This isn’t a problem for the browser, because the browser assumes
another statement will appear later in your JavaScript to tell the browser to place a
value in the variable.

Professional JavaScript programmers normally place a value in a variable when
they declare a variable. This is called initializing the variable because this is the
first (initial) value assigned to the variable. You initialize a variable by adding a
third part to the statement used to declare the variable. The third part consists of an
assignment operator (=) and the initial value. Let’s rewrite the statement that de-
clares a variable to initialize the variable:

var PurchasePrice = 100

This statement tells the browser to do two things: First, create a variable called
PurchasePrice. Second, assign the value /00 to the PurchasePrice vari-
able. From now on, any time the browser sees PurchasePrice in our JavaScript,
the browser will immediately replace the variable name with the value 7/00. (There
are some exceptions to this, but they’ll be covered in Chapter 5.)

Let’s return to our sales tax calculation. Notice that the first line declares the vari-
able PurchasePrice and initializes it with the value /00. The second line
declares the SalesTax variable and initializes it with the calculated sales tax.

var PurchasePrice = 100
var SalesTax = PurchasePrice * .06

CHAPTER 2 Variables, Operators, and Expressions @
The browser replaces the variable name PurchasePrice with the value /100
and then performs the calculation as follows:

var PurchasePrice = 100
var SalesTax = 100 * .06

Assigning a Value to a Variable

Typically, the value of a variable changes while your JavaScript runs, and the initial
value of the variable is replaced with another value. This is the case when using the
PurchasePrice variable in our example.

We used 100 as the initial value of the PurchasePrice variable to simulate
receiving the purchase price from a customer who uses your JavaScript. If this were
a real JavaScript application, we’d use O as the initial value since the customer
hasn’t as yet purchased an item. Then we’d replace the 0 value with the purchase
price of the item selected by the customer (as shown in the JavaScript a few para-
graphs later).

JavaScript has an easy way for you to ask the user of your application to enter in-
formation into your JavaScript—by calling the prompt () function. The prompt ()
function displays text within a prompt dialog box (see Figure 2-2) and then waits for
the user to enter information and click the OK button. The information entered by the
user is then returned to your JavaScript so your script can process it.

You can use the prompt () function to have the user enter the purchase price, and
then we’ll assign the purchase price to the PurchasePrice variable before calculat-
ing and displaying the sales tax. Here is the syntax for calling a prompt () function:

prompt ('message', 'default <Fl02>value')

J Please enter the purchase price,

[100

Figure 2-2 The prompt() function displays a prompt dialog box, where the user enters
the purchase price.

@ JavaScript Demystified

Notice that the prompt () function is called similarly to how you called the
alert () function to display the alert dialog box in Chapter 1. You need to provide
two pieces of information to the prompt () function: The first is the message; this
is the text that tells the user what they should enter into the prompt dialog box. The
second piece is the default value, which is the value given to your JavaScript by the
prompt () function if the user doesn’t enter a value into the prompt dialog box. In

some cases when a default value isn’t used, you can simply add empty quotation
marks, as shown in the following example:

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>
<title>Receiving a value from the user</title>
</head>
<body>
<script language="Javascript" type="text/javascript">
<!--
var PurchasePrice = 0
PurchasePrice=
prompt ('Please enter the purchase price.', ' ")
var SalesTax = PurchasePrice * .06
alert ('Sales tax is $' + SalesTax)
-—>
</script>
</body>
</html>

After the comment characters (<! —--), the first line declares the Purchase-
Price variable and initializes it to 0, because we don’t know the value of the
purchase price when we’re writing the JavaScript.

The next line calls the prompt () function in an assignment statement that asks
the user to enter the purchase price. An assignment statement tells the browser to
replace the current value of a variable with a new value. There are three parts to an
assignment statement: the name of the variable (PurchasePrice), the assign-
ment operator (=), and the new value, which is the value entered by the person and
returned by the prompt () function. Now the value of the PurchasePrice
variable is the value entered by the user.

The next line declares the SalesTax variable and initializes it with the sales
tax calculated by multiplying the value entered by the user by .06, which is the
decimal value of the sales tax.

CHAPTER 2 Variables, Operators, and Expressions @
The next line displays the sales tax on the screen by calling the alert () func-

tion. As you recall from Chapter 1, the alert () function requires you to place the

message that you want displayed between the parentheses. In this example, we use

the plus operator (+) to place the value of the SalesTax variable at the end of the
text statement “Sales tax is $” (see Figure 2-3).

Strings

Although our examples use numbers to show you how to initialize and assign val-
ues to a variable, you can also initialize and assign words and punctuation to a
variable. To do this, you write the declaration statement and assignment statement
the same way shown in previous examples, except you enclose words and punctua-
tion within quotation marks.

Tip JavaScript allows both single and double quotation marks to be used to
designate a string. It is always better to use single quotation marks, though,
because the double quotation marks might interfere with double quotation marks
used in the HTML page. Using single quotation marks avoids any potential
interference.

Here is a new example. The first line declares a variable called ProductName
and initializes it with the text Soda. The second line assigns Water to the Pro-
ductName variable:

var ProductName = 'Soda'
ProductName = 'Water'

[JavaScript Application]

Y Sales taxis $6

Figure 2-3 The alert() function displays the alert dialog box that displays the sales tax
that is calculated by the JavaScript.

@ JavaScript Demystified
L
Operators and Expressions

So far in this chapter you’ve learned that a JavaScript statement is used to tell the
browser to do something. Many JavaScript statements contain a mathematical ex-
pression that tells the browser to perform a mathematical operation.

Let’s pause here, because although math may not be one of your strong points,
that shouldn’t stop you from learning how to write a mathematical expression. Truth
is, you already know how to do it. Consider the following simple mathematical
expression:

2=1+1
Here’s another mathematical expression that you’ve already seen in this chapter:
PurchasePrice * .06

Now let’s take a closer look at how to write an expression.

Parts of an Expression

A mathematical expression consists of two parts: operands and operators. An oper-
and is the value. An operator is the symbol that tells the browser how to evaluate
the mathematical expression. The operands are the numbers in the following math-
ematical expression. The addition symbol (+) is the operator. The browser evaluates
this mathematical expression by adding the value on the right side of the operator
to the value on the left side of the operator:

1 +1

Multiple Operations

You might be wondering what happened to the assignment operator (=) in the previ-
ous example. The assignment operator is another operator requiring the browser to
perform another operation. The left side of the assignment operator must be a single
value. The right side can be a single value or an expression, so it can contain mul-
tiple values. Let’s insert the assignment operator into the mathematical expression
and see how the second operation is evaluated:

=1+1

The browser is now being told to perform two operations. The first operation (math-
ematical) is to add the value on the left side of the plus sign to the value on the right

CHAPTER 2 Variables, Operators, and Expressions @
side of the plus sign. If you could see the mathematical expression after the first
operation is completed, it would look like this:

=2

The browser performs the second operation after the first operation is completed.
The second operation uses the assignment operator, which is the equal sign (=). The
assignment operator symbol tells the browser to assign the result of the expression
on the right side to the value on the left. Here’s how this mathematical expression
looks after the assignment operation is completed:

2 =2

Performing more than one operation in the same mathematical expression can lead
to confusion—not for the browser, but for the developer: in what order are the opera-
tions performed? Two operations were performed in the previous example: addition
(+) and assignment (=) operations. The browser performed addition before perform-
ing the assignment operation. How do you know which operation is performed first?
You’ll need to read the “Order of Operations” sidebar to answer this question.

Types of Operators

JavaScript uses five types of operators: arithmetic operators, logical operators, as-
signment operators, comparison operators, and conditional operators. We’ll take a
close look at each of these types in this section.

Let’s begin with arithmetic operators, which are listed in Table 2-3. Most of
these operators are familiar to you because they are the same operators that you use
to perform everyday arithmetic. However, the last three operators are probably
something you haven’t seen before.

Operator Description

+ Addition

B Subtraction

* Multiplication
/ Division

s Modulus

++ Increment by 1
- Decrement by 1

Table 2-3 Arithmetic Operators

JavaScript Demystified

@,—

Order of Operations

Is the answer to the following expression 56 or 710?
10x5+6
It depends:

 If addition is performed before multiplication, then the answer is /10.

* If multiplication is performed before addition, then the answer is 56.

You can imagine the confusion that might arise when you write a JavaScript statement
that contains several expressions. You assume that these expressions are evaluated in a cer-
tain order, but the browser might evaluate expressions in a different order.

You can avoid confusion by learning the order of operation, a set of rules that specifies
the order in which an expression is evaluated by the browser. These are the same rules that
you use in real calculations and that you learned back in your high school math class. Here
is the order of operation:

1. Calculations must be performed from left to right.

2. Calculations in parentheses are performed first. When more than one set of
parentheses are included, the expression in the inner parentheses is performed first.

3. Multiplication and division operations are performed next. If both operations are
in an expression, then calculations are performed left to right.

4. Addition and subtraction are next. If both operations are in an expression,
calculations are performed left to right.

Don’t be too concerned if you forget the order of operation, because you can tell the
browser to evaluate an expression in a particular order by using parentheses. Portions of an
expression that are enclosed within parentheses are evaluated before those portions that are
outside of the parentheses.

Let’s say that you write the following expression, and you want addition to be performed
before multiplication, but you are unsure about order of operation. By placing parentheses
around the addition expression, you force the browser to add those values before performing
the multiplication. The value of this expression is /70:

10 * (5 + 6)

The first of these is the modulus operator (%), which tells the browser to divide
the value on the left of the modulus operator by the value on the right of the mod-
ulus operator. The modulus operator returns the remainder. This is shown in the
following examples:

CHAPTER 2 Variables, Operators, and Expressions @
23 % 10 is equal to 3
7 % 10 is equal to 7

Below the modulus operator in Table 2-3 is the increment by 1 operator (++),
also called the incremental operator. This operator increases the operand by 1.
Let’s see how this works in the next example:

var a = 5
++a

The first line of this example should be familiar to you, because it is declaring a vari-
able and initializing the variable with the value 5. You’ve seen something similar to this
earlier in the chapter. The second line uses the incremental operator to increase the
value assigned to the variable by 1. The value of the variable is 6 (see Figure 2-4).

You probably noticed that the incremental operator uses one operand—that is,
one value. Other operators that you learned so far in this chapter use two values. An
operator that uses one value is called a unary operator.

The following JavaScript shows how to use the incremental operator:

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>
<title>Incremental operator</title>
</head>
<body>
<script language="Javascript" type="text/javascript">
<!--
var a = 5
++a
alert ('The value of a is ' + a)
-—>
</script>
</body>
</html>

[MavaScript Application]

. Thewalueofaise
\

_Cly

Figure 2-4 The incremental operator increases the value by 1.

@ JavaScript Demystified
The last arithmetic operator that you’ll need to learn is the decremental operator

(=-). The decremental operator subtracts 1 from the operand. Take a look at this
example:

var a = 5
--a

The first line is the same as the previous example. The second line uses the decre-
mental operator to subtract 1 from the value of the variable. After this operation is
completed, the value of the variable is 4.

The incremental and decremental operators can be tricky to use because of where
you position them alongside the variable. If the operator is placed on the left side of
the variable, the value of the variable is incremented by 1 and then assigned to the
variable. If the operator is placed on the right side of the variable, the value is as-
signed first before the value is incremented.

These are subtle differences that can have a dramatic effect on the result of this
operation. In the next example, the value of variable a is incremented by 1. The
result is then assigned to variable b. The value of b is 6.

var a = 5
var b
b = ++a

Take a look at the next example. Notice that the incremental operator is on the
left side of variable a. This tells the browser to assign variable b the value of a and
then increment variable a by 1. The result is that the value of b is 5 and the value
of a is 6 when both operations are completed.

var a = 5
var b
b = a++

Following is a JavaScript that illustrates the effect of placing the incremental
operator on either side of the operand in an expression. The first time the incremen-
tal operator is used, it is placed on the left side of the variable (Figure 2-5); the
second time, it is placed on the right side of the variable (Figure 2-6).

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Incremental operator</title>
</head>

CHAPTER 2 Variables, Operators, and Expressions

<body>
<script language="Javascript" type="text/javascript">
<!--
var a = 5
var b
b = ++a
alert ('The value of b = ++a is ' + a)
a=>5
b = at+
alert ('The value of b = a++ is ' + a)
-——>
</script>
</body>
</html>

Before leaving arithmetical operators, let’s take a look at the addition operator
(+). You already know that the addition operator adds the number to the right of the
operator to the number to the left of the operator. However, the addition operator is
also a shortcut for concatenate words (although other operators are also used for
concatenation, which you’ll learn later in this book). Concatenation means that one
word is joined with another word.

[Javascript Application]

‘: The walue of b= ++ais &

Figure 2-5 The incremental operator is placed on the left side of variable a.

[HavaScript Application]

‘_\ The walue of b= a++is 6

Figure 2-6 The incremental operator is placed on the right side of variable a.

—&»

@ JavaScript Demystified
Let’s see how this is done in the following example.

var customer = 'Bob ' + 'Smith'

This JavaScript statement declares a variable and initializes the variable. In this
case, two words are first joined together (concatenated) by the addition operator
and the combined words become the initial value for the customer variable. After
this operation is completed, the value of customer is Bob Smith. Look carefully at
the first word. Notice that a space appears between the last b and the closing quota-
tion mark. The space is a character that is needed to separate the first name from the
last name when the words are joined together. This is illustrated in the following
JavaScript (Figure 2-7).

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>
<title>Joining Strings</title>
</head>
<body>
<script language="Javascript" type="text/javascript">
<!--
var customer = 'Bob ' + 'Smith'
alert ('The customer is ' + customer)
-—>
</script>
</body>
</html>

Logical Operators

Logical operators (Table 2-4) are used to combine two logical expressions into one
expression. A logical expression is an expression that evaluates to either true or

[JavaScript Application]

. The customer is Bob Smith

Figure 2-7 Bob and Smith are two strings joined together using the addition operator.

CHAPTER 2 Variables, Operators, and Expressions

_\@

Operator Description
&& AND

[OR

! NOT

Table 2-4 Logical Operators

false. The concept of a logical expression might be new to you if you haven’t learned
a programming language.

Logical expressions are used in JavaScript to make decisions. You’ll see how this
is done in the next chapter, but for now, suppose your JavaScript validates a user ID
and password. The first expression that must be evaluated is

userID is equivalent to ScubaBob

ScubaBob is the valid user ID and userID is the user ID entered into the JavaScript.
This is a logical expression because the userID is equivalent to ScubaBob or the
userID isn’t equivalent to ScubaBob. That is, this expression is either true or false
based on the value of userID.

Here’s how we’d write this logical expression in JavaScript:

userID == 'ScubaBob'

In this example, userID is a variable whose value is the user ID entered into the
JavaScript. The double equal sign (==) is called the equivalency operator, which you
learn about in the “Comparison Operators” section of this chapter. The equivalency
operator determines whether the operand (that is, the value) on the left side of the
operator is the same as the operand on the right side of the operator. The right side of
the operator is the string ' ScubaBob ', which in this example is the valid user ID.
Now that you have an understanding of a logical expression, let’s see how a
logical operator is used to join two logical expressions into one logical expression.
Typically, a JavaScript that validates a user ID also validates a password that is as-
sociated with the user ID. Here’s the logical expression that you use to do this:

password == 'diving'

You probably understand this example because this expression is very similar to the
previous logical expression. This expression uses the equivalent operator to com-
pare the value of the variable passwozrd to the valid password diving. If they are
the same, this logical expression is true; otherwise, the logical expression is false.
Typically, a JavaScript evaluates both the user ID and the password at the same
time and then displays a message on the screen stating whether or not the user’s

@ JavaScript Demystified
logon is valid. Both the user ID and password must be valid for the user’s logon to
be valid.

The most efficient way to validate the user’s logon is to combine the logical expres-

sion that validates the user ID with the logical expression that validates the password.
You do this by using the AND logical operator (& &), as shown in the next example:

userID == 'ScubaBob' && password == 'diving'

There are three logical expressions in this example. One logical expression vali-
dates the user ID and the other logical expression validates the password, both of
which you’ve seen before in this section. The third logical expression is the combi-
nation of both logical expressions.

Confused? Let’s walk through the process of how the browser evaluates this ex-
ample. Logical expressions are evaluated left to right. First, the browser evaluates
the user ID logical expression. If the value of the userID variable is ScubaBob,
then the expression is true and looks like this:

True && password == 'diving'

Next, the browser evaluates the user ID logical expression. If the value of the
password variable is diving, then this expression is true and looks like this:

TRUE && TRUE

Last, the browser evaluates the remaining logical expression by asking these ques-
tions: Is the value on the right side of the AND operator true? Is the value on the left side
of the AND operator true? If both answers are true, then the third logical expression is
true. However, if either of these is false, then the third logical expression is false.

When using the AND logical operator, both logical expressions on either side of
the AND logical operator must be true for the combined logical expression to be
true; otherwise, the combined logical expression is false.

Figure 2-8 shows a JavaScript that prompts the user to enter a user ID, and
Figure 2-9 shows a JavaScript that prompts the user to enter a password. The values
entered by the user are compared to ScubaBob and diving, the valid user ID and
password.

You’ll notice something new in this JavaScript. This is an if...else statement. The
if...else statement tells the browser to do something if the expression is true; other-

i J Enter user ID

[SeubaBat]

Figure 2-8 The user is asked to enter a user ID.

CHAPTER 2 Variables, Operators, and Expressions

[JavaScript Application]

’}'\. l Enter password
-

[diving

Figure 2-9 The user is asked to enter a password.

wise, if the expression is false, the browser is to do something else. You’ll learn
about the if...else statement in the next chapter. For now, you simply need to know
that the browser displays the “Logon valid” message on the screen if the expression
is true (Figure 2-10). That is, the user entered ScubaBob and diving as the user ID
and password. The browser displays “Logon invalid” if the user didn’t enter valid
expressions (Figure 2-11).

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Validate userID and Password</title>
</head>
<body>
<script language="Javascript" type="text/javascript">
<l--
var userlD
var password
userID = prompt ('Enter user ID',' ")
password = prompt ('Enter password',' ')
if (userID == 'ScubaBob' && password == 'diving')
{
alert ('Logon valid')
}
else
{
alert ('Logon invalid')
}
-—>
</script>
</body>
</html>

[HayaScript Application]

t Logon valid

Figure 2-10 The browser tells the user if the user ID and password are valid.

—&»

JavaScript Demystified

Logon invalid

Figure 2-11 The browser tells the user if the user ID and password are invalid.

The OR logical operator (| |) also joins together two logical expressions. How-
ever, the combined logical expression is true if either the logical expression on the
right side of the OR logical operator is true or the logical expression on the left side
of the OR logical operator is true.

Let’s see how this works. Suppose only two people can use your JavaScript. These
are Mary and Sue. Your JavaScript prompts the user to enter her first name, which is
then assigned to the name variable. The following combined logical expression then
determines if the first name is Mary or Sue by using the OR logical operator:

name == 'Mary' || name == 'Sue'

Here’s how the browser evaluates these logical expressions. Assume for this ex-
ample that the person entered Sue as the name. First, the browser evaluates the
logical expression on the left side of the OR operator. The result is false:

name == FALSE || 'Mary'

Next, the browser evaluates the logical expression on the right side of the OR
operator. The result is true:

FALSE || TRUE

Last, the browser evaluates the combined logical expression. If either individual
logical expression is true, then the combined logical expression is true. The combined
logical expression is false only if both individual logical expressions are false.

The last logical operator in Table 2-4 is the NOT operator (!). The NOT operator
is different from the other logical operator in that it does not combine logical ex-
pressions. Instead, the NOT operator reverses the logic of a logical expression.

You might have heard a friend say, “I got a big fat raise—not!” The not at the end
of this sentence reverses the logic of the first part of the sentence. The first part says,
“I got a big fat raise,” which is a positive statement. The not reverses the positive
statement to a negative statement.

CHAPTER 2 Variables, Operators, and Expressions @

This is basically how the NOT operator works. Let’s say that you declare a Bool-
ean variable in a JavaScript whose value indicates whether the light in the room is
turned off or on. Remember that a Boolean variable has either a true or false value.
If the light is off, then the value assigned to the variable is false; a true value is as-
signed to the variable if the light is on.

The following example shows how to indicate that the room light is on by using
the NOT operator. The first line declares a variable and initializes it to false, indicat-
ing that the room light is off. The next line uses the NOT operator to reverse the
logical value of the Boolean variable. This says “the room light is not off.” Granted,
this is a convoluted way of indicating that the room light is on, but, as you’ll see in

the next chapter when you learn how to have your JavaScript make decisions, some-
times this is the only way to do it.

Var roomLight = false
'roomLight

Assignment Operator

The assignment operator (Table 2-5) assigns the value from the right side of the
operator to the variable on the left side of the operator. You’ve seen the assignment
operator used earlier in this chapter when you assigned a value to a variable, as
shown here:

var PurchasePrice
PurchasePrice = 100

The assignment operator is frequently combined with an arithmetic operator and
an assignment operator to perform two operations with the same operator. Let’s
take a look at the += assignment operator to see how two operations are combined
into one operator in the next example.

Operator Description
= Assign
+= Add value then assign

= Subtract value then assign

Multiply value then assign

/= Divide value then assign

oo

Modulus value then assign

Table 2-5 Assignment Operator and Variations

@ JavaScript Demystified
The first two lines of this example are familiar to you. Each line is declaring a
variable and initializing it with a value. The last line is new to you. The += assign-

ment operator tells the browser to add the value of variable b to variable a and then
replace (assign) the value of variable a with the sum of variables a and b.

var a = 10
var b = 2
a +=b

Let’s take apart the last line to see the two actions the browser is taking. First, the
browser is told to add the values stored in variable a and variable b. The sum is 12.
Next, the browser is told to replace the value of variable a, which is 10, with the
sum, which is 12. After this JavaScript runs, the value of variable a is 12.

Here is a JavaScript that shows how to use the += operator, as shown in Figure 2-12.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Using the += operator</title>
</head>
<body>
<script language="Javascript" type="text/javascript">
<!--
var a = 10
var b = 2
a +=b
alert('a += b is ' + a)
-—>
</script>
</body>
</html>

[HayaScript Application]

. a+=his1z
b

O

Figure 2-12 The += operator is used to increase the value of variable a by the value of
variable b and assign the sum to variable a.

CHAPTER 2 Variables, Operators, and Expressions 9
The remaining combination of operators shown in Table 2-5 cause the browser
to perform basically the same action as the += operator, except each uses different

arithmetic as symbolized by the operator. For example, the —= operator subtracts
variable b from a and then assigns the difference to variable a.

Comparison Operators

Comparison operators, shown in Table 2-6, are used to compare two values. The result
of the comparison is either true or false. You already learned how to use the first com-
parison operator that is listed on the table—the equivalency operator (==)—when you
learned how to use logical operators. As shown here, the equivalency operator tells the
browser to compare the value on the right side of the equivalency operator to the value on
the left side of the equivalency operator. If these values are the same, then the expression
is true; otherwise, the expression is false.

userID == 'ScubaBob'

The not equivalent (! =) is the next comparison operator in the table. The not
equivalent operator tells the browser to determine whether the value on the right
side of the operator is not equivalent to the value on the left side of the operator. If
these values are different, then the expression is true; otherwise, the expression is
false. This is illustrated in the following example:

userID != 'ScubaBob'

In this example, the browser is told to determine whether the value of the userID

variable isn’t ScubaBob. If the userID isn’t ScubaBob, then the expression is true.
Next on the list of comparison operators is the greater than operator (>). The

greater than operator tells the browser to determine whether the value on the left

Operator Description

== Equivalency

Not equivalent

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to

Table 2-6 Comparison Operators

@ JavaScript Demystified
side of the operator is greater than the value on the right side of the operator. Here’s
how the greater than operator works:

var a = 10
var b = 2
a>>b

This example tells the browser to determine whether the value of variable a is
greater than the value of variable b. If so, then the expression is true; otherwise, the
expression is false. This expression is true because 10 is greater than 2.

Next is the less than operator (<). The less than operator tells the browser to
determine whether the value on the left side of the operator is less than the value on
the right side of the operator. If this is the case, then the expression is true; other-
wise, the expression is false. The last line in the following example uses the less
than operator to determine whether the value of variable a is less than the value of
variable b. This expression is false because 10 is not less than 2.

var a = 10
var b = 2
a<b

Two other comparison operators are the greater than or equal to operator (>=)
and the less than or equal to operator (<=). Both of these tell the browser to make
two determinations when evaluating an expression.

First, the browser is asked whether the value on the left side of the operator is
equivalent to the value on the right side of the operator. If yes, then the expression
is true. If no, then the browser is told to evaluate the expression again for a different
condition.

The next evaluation performed by the browser depends on whether the greater than
or equal to operator or the less than or equal to operator is used. If the greater than or
equal to operator is used, then the browser determines whether the value on the left
side of the operator is greater than the value on the right side. If so, then the expres-
sion is true; otherwise, the expression is false. If the less than or equal to operator
is used, then the browser determines whether the value on the left side of the opera-
tor is less than the value on the right side. If so, then the expression is true; otherwise,
the expression is false.

In the last line of the following example, the browser is told to determine wheth-
er the value of variable a is less than or equivalent to the value of variable b. This
expression is false because 10 is neither less than nor equivalent to 2.

var a = 10
var b = 2
a <=b

CHAPTER 2 Variables, Operators, and Expressions @
Conditional Operator

The conditional operator (also known as the ternary operator) (Table 2-7) is differ-
ent from the other operators that you’ve learned about in this chapter. The
conditional operator tells the browser to take a specific action after evaluating an
expression.

The conditional operator has three parts: The first part is a logical expression,
which you’ll recall is an expression that evaluates to either true or false. The second
part is the action the browser must take if the expression is true. The third part is the
action the browser must take if the expression is false. The first and second parts of
the conditional operator are separated by a question mark (?). The second part and the
third parts are separated by a colon (:).

The best way to gain an understanding of the conditional operator is to see it put
into action. The following example revisits the validation process for user ID and
password. However, this time the browser is told to take specific action if the user
ID and password are valid or invalid.

userID == 'ScubaBob' && password ==
'diving' ? message = 'Approved' : message = 'Rejected'

The first thing to do whenever you see the conditional operator is to identify all
three parts. The first part in this example appears to the left of the question mark.
This is the same expression that you saw earlier in this chapter. The second part of
the conditional operator is to the right of the question mark, which assigns the word
Approved to the variable message. The third part of the conditional operator appears
to the right of the colon and assigns the word Rejected to the variable message.

If the value of the userID variable is ScubaBob and diving is the value of the
password variable, then the expression part of the conditional operator is true.
The browser is told to execute the second part of the conditional operator, which
assigns the word Approved to the message variable. The third part of the condi-
tional operator is not executed.

If the value of the userID variable is not ScubaBob and/or diving is not the
value of the password variable, then the expression part of the conditional opera-
tor is false. The browser is told to execute the third part of the conditional operator,
which assigns the word Rejected to the message variable. The second part of the
conditional operator is not executed.

Operator Description

Expression ? valuel : valueZ2 If expression is true, then use valuel;
otherwise, use value2

Table 2-7 Conditional Operator

@,—

JavaScript Demystified

Looking Ahead

Qu

1Z

In this chapter you learned how to store literal values such as a number or words
temporarily in computer memory by declaring and initializing a variable. A vari-
able is like a cardboard box. You create the box (declare a variable), place a label on
the box (name a variable), and place a value into the box (initialize a variable or
assign a value to a variable).

Variables and literal values are used with operators to construct an expression.
An operator is a symbol that tells the browser how to evaluate the expression. An
operator tells the browser to perform an operation on values or variables on one or
both sides of the operator. These values or variables are called operands.

Arithmetic operators are used to tell the browser to perform arithmetic. Logical
operators are used to combine two expressions. The assignment operator is used to
copy a value on the left side of the operator to the right side of the operator, which
is usually a variable. Comparison operators compare two values. The conditional
operator tells the browser to evaluate a condition and to do something if the condi-
tion is true and something else if the condition is false.

Expressions can become complex, especially when several operations are per-
formed in the same expression. The browser follows a set of rules called the order of
operations when evaluating an expression. These rules tell the browser how to evaluate
a complex expression. You can simplify a complex expression by placing parentheses
around portions of the expression that you want executed first by the browser.

Variables, operators, and expressions are the nitty-gritty of JavaScript. Think of
them as the brick and mortar of building a JavaScript application. In the next chapter,
you’ll use variables, operators, and expressions to tell the browser how to make a
decision and how to execute JavaScript statements repeatedly within a JavaScript.

1. You reference computer memory by using
a. Operator
b. Variable name

. Literal value

e o

. Variable type

CHAPTER 2 Variables, Operators, and Expressions @
_\
2. What tells the browser to do something?
a. Mathematical expression
b. JavaScript expression
c. JavaScript statement
d. Logical expression
3. Inthe expression 1 + 1, what part of the expression are the numbers?
a. Operand
b. Operator
¢. Modulus
d. Incrementer
4. In the expression 1 + 1, what part of the expression is the plus sign?
a. Operand
b. Operator
¢. Modulus
d. Incrementer
5. What is happening in the expression ++a?
a. The value of a is increased by 2.
b. The value of a is increased by 1.
c. The value of a is multiplied by itself.
d. Nothing; this is not a valid JavaScript expression.
6. Evaluate this expression: 7 < 10 ? 'You win.' : 'You lose.'
a. 10
b. You lose.
c. You win.
d. 7
7. What does the && operator do?
a. Evaluates true if expression on its left and right are both true
b. Evaluates true if expression on its left or right is true
c. Evaluates true if neither expression on its left or right is true

d. Combines the expression on its right with the expression on its left

@ JavaScript Demystified
8. True or False: The ++ can be on either the right (¢ = a++) or left (¢ =
++a) side of an expression without having any effect on the expression.

a. True

b. False
9. True or False. The x += y expression adds values of x and y and stores
the sum in X.

a. True
b. False
10. True or False. The ! = operator makes a false true.
a. True
b. False

o"

CHAPTER

Condition
Statements

You can add smarts to your web pages by using JavaScript to enable the browser to
make decisions on the fly as a user is surfing your web site. You’ve seen this count-
less times on commercial web sites with pages tailored to a specific type of visitor.
In this chapter, you’ll learn the secrets of how to incorporate such dynamic features
into your web pages.

The secret lies in using JavaScript, a condition statement, and a conditional ex-
pression, which you learned how to write in Chapter 2. This combination lets you
define how a browser makes a decision and what happens next. In this chapter,
you’ll learn how to tell the browser to evaluate a condition and execute certain Ja-
vaScript statements if the condition is true and execute other JavaScript statements
if the condition is false.

A condition statement is a type of JavaScript statement that tells the browser to
evaluate a condition such as whether or not a user ID and password are valid, and
based upon this evaluation, either execute or skip one or more statements in the

—E

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

@ JavaScript Demystified
JavaScript. The three types of condition statements are the if statement, switch...
case statement, and the loop statement.

The if statement tells the browser to execute one or more statements if a condi-
tional expression is true. You’ll see how the if statement works in this chapter. The
switch...case statement compares one value to one or more known values. Statements
that are associated with the known value are executed if a match occurs. You'll see
how this is done in this chapter. The loop statement tells the browser to execute state-

ments repeatedly as long as a condition is true. If the condition is false, statements are
not executed. You’ll learn more about using a loop statement in this chapter.

Comments

Before we get started analyzing statements, you should know a thing or two about how to
add comments in JavaScript. In the following example, the code block comprises one line
below the if statement. Throughout this chapter, when the form (syntax) of the JavaScript is
being discussed, the comment line is used to show you where the code block statement will
appear.

if (conditional expression)
//Place statements here.

JavaScript, like HTML and most other languages, allows you to add information inside a
comment area. In JavaScript, a comment begins with two forward slashes (/ /). The brows-
er ignores characters that appear between the forward slashes and the end of the line.
Another type of JavaScript comment uses the /* at the beginning of the comment and the
* / at the end of the comment. The browser ignores any characters appearing between these
symbols, even if the characters appear on multiple sequential lines.

The next example illustrates how a comment is used in a JavaScript. The browser consid-
ers all three lines as one comment. Notice that the second line doesn’t contain any comment
symbols; it doesn’t need any because the browser treats everything between the open (/ *)
and close (* /) symbols as a comment.

if (conditional expression)
{
/*Place statements here
More statements go here.
Still more statements go here.*/

CHAPTER 3 Condition Statements
—&»
if Statement

The if statement is one of the most powerful statements that you’ll use in Java-
Script, because it enables you to have the browser execute some statements only if
certain conditions are met while your JavaScript is running. You can use four ver-
sions of the if statement. We’ll start by looking at the basic version, since the other
versions do basically the same thing plus offer additional features. The if statement
has three parts: the i £ keyword, a conditional expression, and the code block that
contains statements that are executed if the expression is true:

if (conditional expression)

{
//This is where the code block appears. Place statements
here.

}

A conditional expression is an expression that evaluates either to true or false. In
an if statement, the conditional expression must be enclosed in parentheses. The
code block contains statements the browser executes if the conditional expression is
true. The code block is defined by open and close French braces ({ }), as shown in
the preceding code.

Note that you don’t have to include the French braces if only one statement is
executed if the condition is true. You can simply place this statement beneath the if
(conditional expression), as shown here:

if (conditional expression)
//Place statements here.

Tip It is a good practice to include French braces even if only one statement
executes, because this makes it clear what statements are part of the if statement
when you read your JavaScript.

The if Statement in Action

Let’s take a look at how to use the if statement in a JavaScript by reviewing a script
that is similar to the script you wrote in Chapter 2. This script prompts the user to
enter a user ID and password and then validates them.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">

JavaScript Demystified

GOy—

<head>
<title>Validate userID and Password</title>
</head>
<body>
<script language="Javascript" type="text/javascript">
<!--
var userID
var password
userID = prompt ('Enter user ID',' ')
password = prompt ('Enter password',' ')
if (userID == 'ScubaBob' && password == 'diving')
{
alert ('Logon valid')
}
-—>
</script>
</body>
</html>

The first few lines declare two variables (userID and password) and use the
prompt () function to capture the user ID and password, which are assigned to the
appropriate variables. The if statement is then used to validate them using a condi-
tional expression. Notice that the conditional expression has three parts: One part
determines whether the user ID is valid; another part determines whether the pass-
word is valid; the third part determines whether the first and second parts are
true—that is, if the user ID is valid and the password is valid, then the conditional
expression is true. If either the user ID or password is invalid, then the conditional
expression is false.

Once the browser evaluates the conditional expression, the browser will know
whether or not to execute the statement within the code block of the if statement.

If the conditional expression is true, then the alert () function tells the user that
the logon is valid. The browser then executes the statement that follows the closed
French brace. In this example, the script ends after the closed French brace. If the
conditional expression is false, then the browser skips the statement within the code
block and executes the statement that follows the closed French brace (if one exists).

The if...else Statement

The first enhanced version of the if statement that we’ll look at is the if...else state-
ment. The if...else statement simply tells the browser “if the condition is true, then
execute these statements, else execute these other statements.”

CHAPTER 3 Condition Statements @
The if...else statement has five parts. The first three parts are the same as those of
the if statement. The fourth part is the e 1 se keyword. The fifth part is a code block

that contains statements that are executed if the conditional expression is false.
Here’s how to construct an if...else statement:

if (conditional expression)

{

//Place statements here.

}

else

{

//Place statements here.

Both the if portion of the if...else statement and the else portion contain code
blocks defined by open and closed French branches. Statements that the browser is
to execute if the conditional expression is true are placed within the i £ code block.
Statements that the browser is to execute if the conditional expression is false are
placed within the e1se code block.

Following is a revision of the example shown in the preceding section. You’ll
notice that this is the same JavaScript that you wrote in Chapter 2 to validate a user
ID and password. This example uses an if...else statement. If the conditional ex-
pression is false, then the statement within the code block of the else portion of the
if...else statement executes and displays an alert dialog box saying that the user ID
and password are invalid.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>
<title>Validate userID and Password</title>
</head>
<body>
<script language="Javascript" type="text/javascript">

<!l--

var userlID

var password

userID = prompt ('Enter user ID',' ')
password = prompt ('Enter password',' ')
if (userID == 'ScubaBob' && password ==

{

'diving')

alert ('Logon valid')

@ JavaScript Demystified
else

{

alert ('Logon invalid'")

}
-=>
</script>
</body>
</html>

The if...else if Statement

The next version of the if statement that we’ll explore is the if...else if statement.
This is nearly identical to the if...else statement, except instead of the browser ex-
ecuting statements if the conditional expression is false, the browser is told to
evaluate another conditional expression. The if...else if statement tells the browser,
“If the condition is true, then execute these statements, else evaluate another condi-
tion. If the other condition is true, then execute these other statements.”

Here’s how to structure the if...else if statement:

if (conditional expression)

{

//Place statements here.

}

else 1if (conditional expression)

{

//Place statements here.

Notice that the if...else if statement looks a bit like the if...else statement. How-
ever, the else portion of the statement is followed by the i f keyword and another
conditional expression. Only if the second conditional expression is true will the
browser execute statements within the else 1if code block.

Let’s modify the previous example and change the if...else statement to an if...
else if statement. In this example, if the browser determines that either the user ID
or the password is invalid, the browser moves on to the else if portion of the if...else
if statement, where it determines whether the value of the userID variable is
equivalent to ScubaBob. If this conditional expression is true, then the value of the
password variable is incorrect. The browser is told to display a message that in-
forms the user that the password is incorrect (Figure 3-1).

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">

CHAPTER 3 Condition Statements

<head>
<title>The if...else...if Statement</title>
</head>
<body>
<script language="Javascript" type="text/javascript">
<!I--

var userID

var password

userID = prompt ('Enter user ID',' ')
password = prompt ('Enter password',' ')
if (userID == 'ScubaBob' && password ==
{

'diving'")

alert ('valid Login'")
}
else if (userID == 'ScubaBob')
{

alert ('Invalid Password')

}
-—>
</script>
<noscript>
<hl> JavaScript Required</h2>
</noscript>
</body>
</html>(2)If...else if...else Statement

The remaining version of the if statement is the if...else if...else statement. This
statement is the same as the if...else if statement with one modification: it includes
another else portion to the statement.

The if...else if...clse statement tells the browser, “If the condition is true, then
execute these statements, else evaluate another condition. If the other condition is
true, then execute these other statements, else execute these statements if the other
condition is false.”

[JavaScript Application]

o Invalid Password

O

Figure 3-1 If the user ID is valid, but the password is invalid, the browser tells the user
that the wrong password was entered into the JavaScript.

—&»

@ JavaScript Demystified
Here’s the structure of the if...else if...else statement.

if (conditional expression)

//Place statements here.
}
else if (conditional expression)
{

//Place statements here.

}

else

{

//Place statements here.

The if...else if....else statement contains three code blocks. Statements in the first
code block execute if the first conditional expression is true. Statements in the sec-
ond code block execute if the conditional expression in the else if portion is true.
Statements in the third code block execute if neither the first nor second condi-
tional expression is true.

Let’s see how this works in a revision of our previous example:

<!DOCTYPE html PUBLIC

"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>
<title>The if...else...if...else Statement</title>
</head>
<body>
<script language="Javascript" type="text/javascript">
<!--

var userlID

var password

userID = prompt ('Enter user ID',' ')
password = prompt ('Enter password',' ')
if (userID == 'ScubaBob' && password ==

{

'diving')

alert ('Valid Login'")
}

else 1f (userID == 'ScubaBob')

{

alert ('Invalid Password')

CHAPTER 3 Condition Statements

else

{
alert ('Invalid User ID')
}

-=>
</script>
<noscript>
<hl> JavaScript Required</h2>
</noscript>
</body>
</html>

The if portion and the else if portion of the if...else if...else statement in this ex-
ample are the same as in the previous example. However, we’ve inserted an else
keyword and else code block at the end of the if...else if...else statement, and
within this code block we inserted the statement that displays the alert message
“Invalid User ID” on the screen.

Here’s what is happening in this JavaScript:

1. The browser compares the value assigned to the userID variable and
password variables with a valid user ID and password.
 If they are equivalent, then the valid login message is displayed.

 If either the user ID or password is incorrect, then the browser skips
statements in the first code block and proceeds to evaluate the second
conditional expression.

2. Then the second conditional expression compares the value of the userID
variable with the valid user ID.

* If this expression is true, then the browser tells the user that the user ID
is valid.

 If this expression is false, then the user is told that the user ID is invalid
(Figure 3-2).

pt Applicatio _J

Irrvalid User I

Figure 3-2 If the user ID is invalid, then the statement within the else code block is
displayed telling the user that the user ID is incorrect.

—&

@ JavaScript Demystified
W'y
Other Variations of the if Statement

You can insert additional else if portions into the if statement, with each having its
own conditional expression and code block that contains statements that are execut-
ed if the conditional expression is true. This is illustrated in the next example, where
another else if portion is used to determine whether the password is valid.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>
<title>The if...else if...else if...else Statement</title>
</head>
<body>
<script language="Javascript" type="text/javascript">
<l--

var userlD
var password
userID = prompt ('Enter user ID',' ")
password = prompt ('Enter password',' ")
if (userID == 'ScubaBob' && password == 'diving')
{
alert('Valid Login')
}
else if (userID == 'ScubaBob')
{
alert ('Valid User ID. Invalid Password.')
}
else if (password == 'diving')
{
alert ('Invalid user ID. Valid Password.')
}
else
{
alert ('Invalid User ID and Password')
}
-——>
</script>
<noscript>
<hl> JavaScript Required</h2>
</noscript>
</body>
</html>

CHAPTER 3 Condition Statements

[JavaScript Application]

Y Walid User 1D, Inwalid Password.

Figure 3-3 This dialog is displayed if the user ID is correct but the password is
incorrect.

Tip Avoid making a common rookie mistake. Don’t use too many else ifs in an
if statement, because the if statement will be difficult for you to read—although
the browser won’t have any problem executing it. Alternatively, you should use
a switch...case statement (discussed later in this chapter), provided it’s a really
simplistic condition; otherwise, stick with the if...else if statement.

This example uses two if...else if statements. The first else if determines wheth-
er the user ID is correct. If so, a message displays, telling the user that the user ID
is correct and the password is incorrect (Figure 3-3).

The second else if statement determines whether the password is valid. If so, the
user is told that the user ID is incorrect but the password is correct (Figure 3-4).

If both the user ID and the password are invalid, the browser displays the state-
ment in the el se code block, which displays the dialog box shown in Figure 3-5.

Nested if Statement

Once you begin writing real-world JavaScript applications, you’ll discover that the
browser will be required to make decisions more complex than those you have seen
in examples throughout this book. (We purposely keep examples simple so as not
to confuse you.)

[JavaScript Application]

\ Invalid user ID. Yalid Password.

Figure 3-4 If the user ID is incorrect, but the password is correct, then the browser
displays this dialog box.

JavaScript Demystified

@y—

—
&
=
i

Inwalid User ID and Password

Figure 3-5 If both the user ID and password are invalid, this dialog box is shown.

Suppose you built a JavaScript that displays and processes an order form. The order
form requires the customer to enter a country and postal code among other information
regarding the order. The JavaScript then validates the country and postal code.

The following questions must be satisfied by the JavaScript before it decides
what to do next:

* Did the customer enter a country code?
* Did the customer enter a postal code?

 If the customer entered both a country code and postal code, is the country
code a valid country code?

 If the country code is a valid country code, is the postal code a valid postal
code for that country?

You probably realize by now that you’ll be using a series of if statements to en-
able a JavaScript to make these decisions. However, positioning each if statement
in your JavaScript can be tricky, because a second decision is made only if a previ-
ous condition is true; otherwise, the second decision is skipped.

Here’s how to position the if statements to validate the country code and postal
code. Let’s assume that if the CountryCode variable and PostalCode variable
have a value of less than 1, the customer didn’t enter them in the order form. Also
let’s assume that another process in the JavaScript validated the country code and
postal code and assign a value to the Valid variable indicating whether these
codes are valid.

if (CountryCode > 1)
{ if (PostalCode > 1)
{ if (CountryCodeValid == Valid)
{ if (PostalCodeValid == Valid)

CHAPTER 3 Condition Statements

—&»

//Valid country code and valid postal code
}

else

{
//Invalid postal code

}

else

{

//Invalid country code

}

else

{
//Postal code is blank

}

else

{
//Country code is blank

}

This is called nested if statements. The innermost if statement is said to be nested in
the outer if statement. You avoid confusion by lining up the French braces for each
code block and then indenting each line, as shown above.

Nested if statements can be confusing to follow, because the code block of one if
statement contains a second if statement. This means that you must be very careful
when you write a nested if statement to avoid misplacing the open and close French
braces. It is common for even a professional JavaScript developer to leave off a
close French brace, which confuses the browser.

Identifying a Browser

Here’s another practical use of nested if statements. You’ll recall from Chapter 1
that not all browsers are the same. Some browsers have features that are missing
from other browsers. You’ll learn about those features in more detail throughout
this book.

The problem facing a JavaScript developer is to identify the browser that is run-
ning the JavaScript and use features that are available to the browser and turn off
features the browser can’t handle. The following JavaScript identifies the name and
version numbers of two of the most common browsers.

@ JavaScript Demystified
<!DOCTYPE html PUBLIC
"-//W3C//DID XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Identifying the Browser</title>
</head>
<body>
<script language="Javascript" type="text/javascript">
<I--
if (navigator.appName ==
'Microsoft Internet Explorer')

alert
('Internet Explorer\n' + navigator.userAgent)

}

else
{
if (navigator.appName == 'Netscape')
{
alert ('Netscape\n' + navigator.userAgent)
}
else
{
alert ('Other Browser')
}
}
-—>
</script>
</body>

</html>

Most of this JavaScript is probably familiar to you because it is very much like the
JavaScripts that you learned to write in the first two chapters. However, you’ll no-
tice two new items: the navigator object and a nested if statement.

NortEe You learned about objects in Chapter 1, when you were introduced to the
document object. An object can have one or more properties and one or more
methods. A property is information. A method is an action taken by the object,
such as the write () method of the document object, which writes information
onto a document.

CHAPTER 3 Condition Statements

The browser that runs a JavaScript is an object called navigator. You use the
name navigator in your JavaScript any time you want to refer to the browser. Two prop-
erties identify the browser. These are appName and userAgent. The appName
property contains the name of the browser such as Netscape or Microsoft Internet Ex-
plorer. The userAgent property contains the version number of browser.

Notice that this example contains a nested if statement. The outer if statement is
where the browser is told to compare the value of the appName property to Micro-
soft Internet Explorer.

 If they are equivalent, then Internet Explorer is displayed on the first line
of the alert dialog box and the version is displayed on the second line.
In a real-world JavaScript application, you won’t display the name of
the browser or the version. Instead, this information would be used in a
conditional expression of an if statement to turn on and off features that
are or are not supported by the browser.

Tip Using the newline character (\n) causes the browser to move to the next line
before displaying additional text.

 If the browser isn’t Microsoft Internet Explorer, then statements within the
else code block are executed. This is where the nested (inner) if...clse
statement is located.

 If the browser is Netscape, then the browser displays “Netscape” and the
version of the browser in an alert dialog box (Figure 3-6).

 If the browser is neither Microsoft Internet Explorer nor Netscape, then
“Other Browser” is displayed.

JayaScript Application ka3

Metscape
3 Mozilla)S. 0 (Windows; U; Windows NT 5.1; en-US; rv:1.4) Geckof20030624 Metscapef7.1 {ax)

Figure 3-6 The name of the browser is contained in the appName property and its
version is in the userAgent property.

—

@ JavaScript Demystified
Tip JavaScript depends on the browser to identify itself using the appName

and userAgent properties. As a security precaution, some browsers purposely
misidentify themselves in order to hide their identity to a JavaScript.

switch...case Statement

The if statement is very powerful and enables browsers to make complex decisions
while a JavaScript is running. However, an if statement can become unwieldy if a
series of decisions have to be made based on a single value.

Imagine developing a JavaScript that presented a menu of 15 items from which
the user selects 1 item. You’ll need to write 15 if statements to process the selection,
each responding to a menu item. Professional JavaScript developers avoid writing
a long series of if statements by using a switch...case statement.

A switch...case statement tells the browser to compare a switch value with a se-
ries of case values. If the switch value matches a case value, then the browser
executes statements that are placed beneath the case value. A switch...case state-
ment has eight parts:

e The switch keyword.

* A switch value is compared to case values; the switch value must be placed
within parentheses.

* The case keyword.

* A case value is compared to the switch value; the case value must be placed
between the case keyword and a colon.

¢ (Case statements are beneath a case value and are executed if the case value
matches the switch value.

* The break keyword (optional) tells the browser to skip all the other
cases and execute the statement that appears at the end of the switch...case
statement.

* The default keyword (optional) contains statements that are executed
if none of the case values match the switch value.

* Open and close French braces define the body of the switch...case
statement.

CHAPTER 3 Condition Statements @
Here’s how a switch...case statement is structured:

switch (value)
{
case valuel:
//Place statements here.
break;
case valueZ2:
//Place statements here.
break;
default:
//Place statements here.

Here’s how the switch...case statement works:

1. The browser compares the switch value to the first case value:
* If they match, statements beneath the case value are executed.

* If break is the last statement beneath the case value, the browser skips
the rest of the case values and executes the statement that follows the
close French brace.

e If break isn’t the last statement, the browser compares the switch
value to the second case value.

2. As long as there isn’t a match, the browser continues to compare the switch
value to case values in the order in which the case values appear in the
switch...case statement.

3. If none of the case values match the switch value, then the browser executes
statements beneath the default keyword and then exits the switch...case
statement and executes the statement following the close French brace.

4. If default isn’t present with the switch...case statement, the browser
exits the switch...case statement and continues with the statement that
follows the close French brace.

Check out this JavaScript that contains a switch...case statement:

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>

@ JavaScript Demystified
<title>switch...case</title>
</head>
<body>
<script language="Javascript" type="text/javascript">
<l--
var selection =
prompt ('Enter a number between 1 and 10.',' ")
switch (selection) {
case '1l':
alert ('You entered one.')
break;
case '2':
alert ('You entered two.')
break;
default:
alert ('Your entry is invalid."')
}
-—>
</script>
</body>
</html>

The first line of the JavaScript declares a variable called selection, which is ini-
tialized by the response that the user enters into the prompt dialog box (Figure 3-7).

[JavaScript Application]

"f“-] Enter a number between 1 and 10,

[

Figure 3-7 The prompt dialog box asks the user to enter a number.

CHAPTER 3 Condition Statements

[Javascript Application]

Y You entered one.

Figure 3-8 An alert dialog box tells the user that he or she entered one.

The second line is the switch...case statement that compares the user’s response
with two numbers. If the user enters 1, then it matches the first case statement, caus-
ing the browser to display the alert dialog box with the message “You entered one”
(Figure 3-8).

If the user enters 2, then statements within the first case are skipped because
there isn’t a match. However, there is a match to the second case. The browser dis-
plays the alert dialog box with the message “You entered two” (Figure 3-9).

If the user enters neither 1 nor 2, then the statement under default is executed,
causing the message “Your entry is invalid” to be displayed in an alert dialog box
(Figure 3-10).

Notice that break is used for each case. This causes the browser to jump to the
end of the switch...case statement once a match occurs. You’ll also notice that
break isn’t used beneath default, since nothing by the end of the switch...case
follows the statement beneath default.

[HavaScript Application]

. You entered kwao,

Figure 3-9 An alert dialog box tells the user that he or she entered two.

JavaScript Demystified

BSy—

—
&
=
i

our entry is invalid,

Figure 3-10 An alert dialog box tells the user an invalid entry was entered.

Loop Statement

You can also control how a browser makes a decision by using a loop. A loop is
used to execute one or more statements repeatedly, without your having to duplicate
those statements in your JavaScript.

Remember the days in grammar school when the teacher told you to write, “I
will keep quiet in class” 25 times on a piece of paper? Today, you could compose a
JavaScript that would write this by executing the document .write ("I will
keep quiet 1in class.") statement. Instead of writing this statement 25
times in your JavaScript, you need to write it only once and place the statement in
a loop. The loop tells the browser to continue to execute this statement 25 times.

You can use four types of loops in a JavaScript: a for loop, for in loop, while
loop, and do...while loop.

The for Loop

The for loop tells the browser to execute statements within the for loop until a con-
dition statement returns false. The browser then continues by executing the statement
or statements below the for loop until the test condition is false.

Here’s the structure of the for loop:

for (initializer; conditional expression ;
post loop statements)

//Place statements here.

The for loop has five parts:

* The for keyword.

¢ The initializer holds the number of times the browser executed statements
within the loop.

CHAPTER 3 Condition Statements @
* The conditional expression sets the condition when the browser should stop
executing statements with the loop.

* The post loop statements increase or decrease the value of the initializer
each time the browser completes the loop.

* The code block contains statements that are executed by the browser when
the browser enters the loop.

Think of the initializer, conditional expression, and post loop statements as the
counter of the for loop. Collectively, they track the number of times that the brows-
er executes the statements within the code block of the loop and decide when the
browser should exit the loop.

The initializer declares and initializes a variable that is used to store the count.
Traditionally, JavaScript developers name the initializer i and initialize it with O
(zero), as shown here:
i=20
The browser evaluates the conditional expression before executing statements with-
in the code block of the loop. The conditional expression tells the browser when to
stop executing the loop. Any valid conditional expression can be used in the for
loop. (You learned about conditional expressions in Chapter 2.)

Typically, JavaScript developers use the less than operator (<) to tell the browser
to execute the loop only if the initializer variable has a value that is less than the
value specified in the conditional expression.

Suppose we want the browser to execute statements within the for loop five
times. First, we assign O to the initializer variable. Next, we write the following
conditional expression, which tells the browser to continue to execute statements
within the code block of the loop as long as i is less than 5:

i <5

The post loop statements are any statements that should execute before the next
iteration of the loop. Typically, this loop may be used to increment a loop counter
variable using the incremental operator (++), which you learned about in Chapter 2.
The incremental operator increases the value of the initializer variable by 1 after
each iteration of the loop.

This means that the value of i increases from O to 1 after the first time the
browser executes statements within the block of the for loop. The value of i contin-
ues to be incremented for each iteration until the value of i is 5, at which time the
test expression is no longer true, causing the browser to skip the for loop and exe-
cute the statement beneath the for loop.

The following example shows you how to write a for loop in a JavaScript. This is
purposely a barebones example so you can clearly see how the for loop is written.

@ JavaScript Demystified
Throughout this book you’ll be writing for loops in more interesting and beneficial

JavaScripts. The JavaScript writes “I will keep quiet in class.” five times on the docu-
ment (Figure 3-11). Take a close look at the document.write () statement.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>
<title>for loop</title>
</head>
<body>
<script language="Javascript" type="text/javascript">
<l--

for(i = 0; 1 < 5; i++)
{
document.write
((1 +1) + " I will keep quiet in class.')
document.write ('
")

}

-—>
</script>
</body>
</html>

File Edit Yiew Go Bookmarks Took Window Help

\) J O \) [Files11C: fbooks Javaseripte20Demystified]GoodDraft /Listing1-2 htm | [, search | '\‘-lgo @

O, [mal B 4 Home (0 Radio V] Metscape), Search [JBackmarks

1T will keep quiet in class.
2 Twill keep cpuiet i class.
3T will keep quiet in class.
4 Twll keep quiet in class.
51 will keep quiet in class.

@ & & ©Ff) oo |=lH=

Figure 3-11 The for loop is used to execute a single statement five times.

CHAPTER 3 Condition Statements @
Notice that the initializer variable is included within parentheses. This tells the

browser to use the value of the initializer variable. Also notice that 1 is added to the

value of the initializer variable. If you’re wondering why, it’s because we want to

number each sentence consecutively.
However, the value of the initializer variable is 0 and not 1, so we add 1 and tell

the browser to display the sum, which is 1 the first time that the browser writes the

sentence. This doesn’t change the value of the initializer variable. Only the incre-

ment portion of the for loop changes its value.

The second document .write () statement writes HTML that causes the text
to be displayed on the next line.

Note Some JavaScript developers move the initializer variable and the
increment outside of the top portion of the for loop for reasons that are particular
to their application. You probably won’t need to do this;, however, these techniques
are interesting to learn.

The following code segment (a portion of a JavaScript that needs other state-
ments in order to run) uses a JavaScript statement to declare and initialize a variable
that is used as the initializer variable for the for loop. Notice that you still need to
include the semicolon in the for loop:

var 1 = 0
for(; 1 < 5; 1i++)
{
document.write
((1 +1) + " I will keep gquiet in class.')

This next code segment moves the increment to the code block of the for loop.
Make sure that the semicolon isn’t removed from the for loop.

var 1 = 0
for(; 1 < 5;)
{
document.write
((1 +1) + " I will keep gquiet in class.')
i++

Another technique is to remove the initializer variable, the conditional expression,
and the increment from the for loop, as shown in the next code segment. This looks
strange, but it produces the same results as the for loop shown previously in this chap-
ter. This is called an endless for loop because the test expression is missing, meaning
that the browser has no test expression to evaluate to determine when to stop looping.

@ JavaScript Demystified

Look carefully at the statements in the code block. There is nothing new here;
you already learned about these statements. After the value of variable 1 is incre-
mented, the browser executes an if statement. The conditional expression of the if

statement tells the browser to compare the value of variable i to the number 5. If
they match, the browser is told to break out of the for loop.

var 1 = 0
for(; ;)
{
document.write
((1 +1) + " I will keep gquiet in class.')
i++
if (i == 5)
{
break
}

The for in Loop

The for in loop is a special kind of for loop that is used whenever you don’t know
the number of times that the browser should loop. This happens when you want to
retrieve all the properties of an object, but you don’t know how many properties are
associated with the object.

The for in loop tells the browser to execute statements within the code block for
each item on a list. If the list has five items, then the browser executes those state-
ments five times.

The for in loop has four parts:

* The for keyword
e The list, which is placed between parentheses
* Open and close French braces that define the code block
» Statements that are placed within the code block and executed for each item
on the list
The for in loop is structured like this:

for(list)
{

//Place statements here.

}

CHAPTER 3 Condition Statements @
The following example shows how to use the for in loop to display the properties

that are available in the window object of a browser (Figure 3-12). Notice that the

for in loop uses the property in window as the list. The browser executes the

statement within the code block for each property that appears on the list. This state-

ment displays the property on the screen. Each property is followed by a rule
(
).

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<title>for in loop</title>
</head>

<body>
<script language="Javascript" type="text/javascript">
<!--
for (property in window)
{
document.write (property)
document.write ('
")
}
-—>
</script>
</body>
</html>
& for in loop - Netscape !]
File Edit Yiew Go Bookmarks Took Window Help
\) J O J [Files11C: fbooks Javaseripte20Demystified]GoodDraft /Listing1-2 htm | [, search | :'-“SO .g

O, [mal B 4 Home (0 Radio V] Metscape), Search [JBackmarks
navigator =
window
parent —
top
scrollbars
name
scrolli
scrollY
scrollTo
scrollBy
getSelection
scrollByLines
scrollByPages
sizeToContent a
A, S .4
3 & A& OF 1 Do = =

Figure 3-12 The for in loop is used to display properties of a window object.

Sy—

JavaScript Demystified

The while Loop

The while loop tells the browser to execute one or more statements continually as
long as a condition defined in the while loop is true. The while loop doesn’t specify
the number of times statements are repeatedly executed.

There are four parts to a while loop:

* The while keyword.

* The conditional expression; if true, the browser executes statements within
the code block.

* Open and close French braces define the code block.

» Statements placed within the code block are executed if the conditional
expression is true.

Here is the structure of the while loop:

while (conditional expression) {
//Place statements here.

Let’s take a look at a simple example that illustrates how to use a while loop. The
following JavaScript displays numbers 1 through 10 on the screen (Figure 3-13).
You won’t wow anyone with this JavaScript, but it is simple enough for you to see
how the while loop works. (Throughout this book, we’ll be using the while loop to
build more sophisticated JavaScripts.)

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>while loop</title>
</head>
<body>
<script language="Javascript" type="text/javascript">
<!--
var 1 =1
while (1
{
document.write (i)
document.write ('
")
i++
}
-—>
</script>
</body>
</html>

<= 10)

CHAPTER 3 Condition Statements

&) while loop - Netscape

File Edit Yiew Go Bookmarks Took Window Help
_) \) \) \J |'\.— File: 1 1iC: fhooksf JavaScript e 20Demystified/GoodDraftfListing 1-2 .htm | [Q. Search] :-;'SCJ @
L, CAMal AT 4% Home (0 Radio MV Netscape C) Search [Backmarks
1
2
3
4
5
6
7
8
9
10
3 & A& &F B Dom ==

Figure 3-13 This while loop is used to display numbers 1 through 10.

This JavaScript begins by declaring and initializing a variable called i. Next is
the while loop. The browser evaluates the conditional expression. If the conditional
expression is true, then the browser executes statements within the code block and
continues to execute them until the conditional expression is false.

In this example, as long as the value of variable 1 is less than or equal to 10, the
browser executes statements within the code block. Otherwise, the browser exe-
cutes the statement following the close French brace of the code block.

Next the browser increments the value of variable i, making the value 2. The
browser then returns to the top of the loop and reevaluates the expression. If the
expression is true, the browser enters the code block and executes its statements
again. If the expression is false, the browser exits the while loop and executes the
first statement that follows the while loop.

NotE It is important to remember that statements within the code block of a
while loop may never execute if the while loop expression is never true. Rookie
JavaScript developers frequently overlook this fact and spend hours trying to find
out why statements within the while loop never execute. If you want the statements
within the code block to execute at least once, you’ll need to use a do...while loop.

JavaScript Demystified
By
The do...while Loop

The do...while loop operates similarly to the while loop, except that statements
within the code block execute at least once, because the browser doesn’t evaluate
the conditional expression condition until the end of the code block.

There are four parts to the do...while loop:

* The do keyword
* Open and close French braces define the code block
* The while keyword

* The conditional expression placed within parentheses
Here’s the structure of the do...while loop:

do {
//Place statements here.
} while (conditional expression)

The following example displays numbers 1 through 10 using a do...while loop.

1. The variable i is declared and initialized.

2. The browser enters the code block of the do...while loop and executes the
document .write () method that displays the number on the document.

3. The browser then evaluates the conditional expression:

 If the expression is true, the browser moves to the top of the code block
and begins executing statements again.

 If the expression is false, the browser executes the statement below the
do...while loop.

<!DOCTYPE html PUBLIC
"-//W3C//DID XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>do...while loop</title>
</head>
<body>
<script language="Javascript" type="text/javascript">
<l--
var 1 =1
do
{
document.write (i)
i++
} while (i <= 10)
-—>
</script>
</body>
</html>

CHAPTER 3 Condition Statements m
continue

Except for the do...while loop, a loop tells the browser to execute JavaScript state-
ments within the code block of the loop only if the condition is true; otherwise, the
browser skips to the statement that follows the loop. The do...while loop is a little
different because it tells the browser to execute statements within the block at least
once before determining whether the condition is true.

On some occasions, you’ll want the browser to stop executing statements within
the loop and return to the top of the loop to reevaluate the conditional expression.
You can tell the browser to return to the top of the loop at any time while the brows-
er executes statements within the loop by using the continue keyword.

The continue keyword instructs the browser to stop executing statements with-
in the loop immediately and to go to the top of the loop, just as if the browser reached
the end of the loop. If a for loop is being used, the browser executes the post loop
statements, which typically increments or decrements the initializer variable and
then evaluates the test condition. If a while loop is used, the browser evaluates the
test condition. If the conditional expression is true, the browser reenters the code
block of the loop and executes statements beginning with the first statement.

Let’s say that you want to display numbers /, 2, 3, and 5 on the screen. You don’t
want to display the number 4. Here’s how this is done using a while loop and the
continue keyword:

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>continue</title>
</head>
<body>
<script language="Javascript" type="text/javascript">
<!I--
var 1 = 0
while (1 < 5)
{
i++
if (1 == 4)
{
continue
}
document.write (i)
}
-——>
</script>
</body>
</html>

As long as the value of variable i is less than 5, the browser executes statements
within the code block. Since variable i is initialized with 0, the browser enters the
loop and increments the value of i, making it 1. The browser then evaluates the

@ JavaScript Demystified
conditional expression to determine whether the value of variable 1 is 4. If so, the
browser executes the continue statement within the code block of the if state-
ment. The continue statement tells the browser to return to the top of the loop
immediately and reevaluate the conditional expression.

The browser executes the first statement within the code block of the while loop,
which increments the value of variable i from 4 to 5. Once again, the browser
evaluates the conditional expression in the if statement. This time, variable i equals

5, not 4, so the browser proceeds to the write () statement again to write the
value of variable i, which is 5, to the screen.

Looking Ahead

You learned two important JavaScript programming techniques in this chapter: how
to have a browser make a decision by using the if statement and the switch...case
statement and how to have the browser repeatedly execute JavaScript statements
without your having to duplicate code.

The if statement contains a conditional expression and a code block. If the con-
ditional expression is true, then the browser executes statements within the code
block. You provide the browser with alternative statements by using e1se with the
if statement. If the conditional statement is false, then the browser executes state-
ments within the e1 se code block.

Sometimes you’ll want the browser to test another condition if the conditional
expression in the if statement is false. You tell the browser to do this by using the
if...else if statement. The else if portion of this statement contains another condi-
tional expression and statements within a code block that are executed if the second
conditional expression is true. Yet still another version of the if statement is the if...
else if...else statement, which is similar to the if...else statement, where statements
within the e1 se code block are executed if neither the first nor second conditional
expression is true.

You also learned how to use the switch...case statement to have the browser
make a decision within your JavaScript. The switch portion of the statement con-
tains a value that is compared to values of the case portion of the statement. If there
1s a match, then statements within the case are executed. If there isn’t a match, those
statements are skipped.

The last statement within the case portion of the switch...case statement is typically
the break statement. The break statement tells the browser to break out of the switch...
case statement without evaluating subsequent case values. The break statement can
also be used to tell the browser to break out of any loop without finishing the loop.

CHAPTER 3 Condition Statements

If the switch value doesn’t match any case values, the browser executes state-
ments beneath the default portion of the switch...case statement. The default portion
is optional.

A browser can repeat statements by placing statements within four kinds of loops:
for loop, for in loop, while loop, and the do...while loop. Each loop has a conditional
expression that must be met in order for the browser to enter and execute statements
within the code block of the loop. There is one exception: statements within a do...while
loop execute at least once regardless of whether the test condition is true or false.

Now that you know how to have a browser make decisions and execute state-
ments repeatedly, it is time to move on and learn how to store and manipulate lists
of information, such as a list of products. You do this by using an array, which
you’ll learn about in the next chapter.

1. What loop executes statements regardless of whether a condition is true or
false?

a. do...while loop
b. while loop
c. for loop
d. for in loop
2. True or False. A switch...case statement cannot have a default case.
a. True
b. False

3. What loop requires the browser to execute statements within the loop at
least once?

a. do...while loop
b. while loop
c. for loop
d. for in loop
4. The loop counter in the for loop is used to
a. Increase the expression by 1

b. Increase or decrease the loop counter value by 1

—&»

uiz

\m JavaScript Demystified
w
c. Limit the number of statements within the code block
d. Limit the output of statements within the code block
5. True or False. A for loop can become an endless loop.
a. True
b. False
6. What loop is used to step through an unknown number of items on a list?
a. do...while loop
b. while loop
c. for loop
d. for in loop

7. True or False. The default clause is used in an if statement to set default
values.

a. True
b. False
8. What is the purpose of else in an if...else statement?
a. Contains statements that are executed if the conditional expression is
true
b. Defines another conditional expression the browser evaluates if the first
conditional expression is false

c. Contains statements that are executed if the conditional expression is
false

d. Used to nest an if statement

9. True or False. You must include an initializer as part of a for loop.
a. True
b. False

10. True or False. The browser can be required to evaluate every case in a
switch...case statement event if the criterion matches a case value.

a. True
b. False

o"

CHAPTER

Arrays

Nearly every JavaScript that you write temporarily stores information into computer
memory until the JavaScript processes the information. Information is stored into mem-
ory by assigning the information to a variable. You learned about variables in Chapter 2.

Suppose you had to store 100 pieces of information in memory, such as the name
of 100 products in a sales catalog. You could declare 100 variables to store product
names; this might seem a good idea until you realized that you’d have to devise 100
unique variable names and then name all the variables every time your JavaScript
needed to process the list of product names.

Professional JavaScript developers use an array instead of a long list of vari-
ables. An array has one name and can hold as many values as is required by your
JavaScript application. In this chapter, you’ll learn about arrays and how to use
them in your JavaScript to store and manipulate large amounts of data.

What Is an Array?

As you’ll recall from Chapter 2, a JavaScript sometimes needs to store informa-
tion temporarily in memory, just long enough until the information is used. Let’s
say that you displayed a list of options in your web page, and the person using the

—E

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

@ JavaScript Demystified
JavaScript on your page is expected to select one of those options. Before the op-
tions are displayed, your JavaScript declares a variable such as this:

var selection

This declaration tells the browser to reserve a place in memory and call that place
selection. You then use the word selection in your JavaScript any time that you want
to either refer to that place in memory or refer to the value stored in that place.

Nothing is stored in that place until the person who uses your JavaScript enters a
selection. You’ll see how this is done in the next chapter. For now, let’s simply say
that the browser takes the person’s choice and stores it in the memory location that
is associated with the word selection. You then use the word selection within your
JavaScript whenever you want to use the choice that the person selected. You’ve
seen something similar done in Chapter 3.

An array is very similar to a variable in that an array tells the browser to reserve
a place in memory that can be used to store information. An array can comprise one
or multiple elements. Each element is like a variable in that an array element refers
to a memory location where information can be temporarily stored.

An array is identified by a unique name, similar to the name of a variable. A
number called an index identifies an array element. The combination of the array
name and an index is nearly the same as a variable name. In your JavaScript, you
use both the array name and the index to specify a particular memory location.

Declaring an Array

You create an array by writing a declaration statement in your JavaScript, which is
very similar to the way you declared a variable. This declaration statement has five
parts: the first part is the var syntax; the second part is the array name, which you
create; the third part is the assignment operator; the fourth part is the new operator;
and the fifth part is the Array () constructor. All these parts are shown here:

var products = new Array()

Here is what happens when the browser executes your declaration statements.
First, the browser finds an empty spot in memory and then reserves it for the array.
The browser then associates that memory location with the word products.

Next the browser creates an instance of the array object. This might sound a little
confusing, but remember from Chapter 1 that an object is a thing, such as the docu-
ment object, that you use to display information on the screen. In this case, the
object is an array.

You’ll probably remember that an object has properties (information) and meth-
ods (actions) associated with it. The document object had a background color

CHAPTER 4 Arrays m
property and write () method. An array object also has properties and methods,
which you’ll learn about later in this chapter.
You need to create a copy of the array object. JavaScript developers call the copy
an instance of the array object. In order to create the instance, you need to use the
new operator and the Array () constructor. Think of a constructor as a special
method of an object that creates the instance.
The assignment operator (=) tells the browser to store the new instance of the
array object at the location that is associated with products. Once this is done, your
JavaScript has declared an array called products that doesn’t have any array ele-

ments. You’ll need either to initialize the array when the array is declared or use an
assignment statement within your JavaScript to create array elements.

Initializing an Array

Initialization is the process of assigning a value when either a variable or an array
is declared. You learned how to initialize a variable in Chapter 2. The process to
initialize an array is a little different than initializing a variable.

Remember that you use the assignment operator to assign a value to a variable
when declaring the variable. An example is shown here:

var selection = 1

When initializing an array, you place the value within the parentheses of the Ar -
ray () constructor. The following example initializes the products array with the
value 'Soda ', which is assigned to the first element of this array:

var products = new Array('Soda')

In the real world, an array usually has more than one array element, with each
element having its own value. Therefore, you’ll find yourself having to initialize the
array with more than one value. Here’s how this is done:

var products = new Array('Soda', 'Water', 'Pizza', 'Beer')

Notice the following:

* Each value is placed within the parentheses of the Array () constructor.

e Values must be the same type of information. As you’ll recall from
Chapter 2, this can be a string, number, Boolean, and object types. The
preceding code segment uses strings (' Soda', 'Water', 'Pizza',
'Beer'). JavaScript won’t let us use a mixture of types; all of the values
must be the same type.

* A comma must separate each value.

The browser automatically creates an array element for each value that appears
within the parentheses of the Array () constructor and then assigns the value to

@ JavaScript Demystified
that array element. You then directly reference the array element whenever you
want to refer to the value.

Defining Array Elements

Think of an array as a list containing the same kinds of things—such as a list of
product names or a list of customer first names. Each item on the list is identified
by the number in which the item appears on the list. The first item is number 0, the
second item is number 1, then 2, and so on.

You are probably wondering why the second item on the list is numbered 1 in-
stead of 2. The reason is because the first digit in the decimal numbering system is
0 and not 1. The decimal numbering system is used to count things in code. It has
10 digits, which are 0 to 9. In the real world, we normally start counting with 1, but
when working with array elements, we start counting with 0. So here’s a list of
product name strings and a number for each of them:

0 'Soda'
1 'Water'
2 'Pizza'
3 'Beer'

Collectively, this list is called an array. Each item on the list is associated with an
array element. Our next step is to create an array and then assign each product name
to the corresponding array element. You learned how to declare an array previously
in this chapter. To assign a product name to an array element, you must specify the
name of the array followed by the index of the array element. The index must be
enclosed within square brackets.

First, let’s declare an array called products:

var products = new Array()

Next, let’s specify the first element of that array. In this example, products is the
name of the array, and O is the index of the first element of the array. (The second
element would look just like the first element, except the index is 1, not 0.)

products [0]
You treat an array element like you treat a variable name in your JavaScript:
* You use the assignment operator (=) to assign a value to an array element:
products[0] = 'Soda'

* You use the array element (array name plus the index) to tell the browser
that you want to use the value that is associated with the array element.

CHAPTER 4 Arrays @
This is the same as using the variable name to tell the browser that you
want to use the value that is associated with the variable:

document .write (products[0])

How Many Elements Are in the Array?

This is a question that professional JavaScript developers frequently ask when writ-
ing a JavaScript application. This may seem to be a strange question to ask, since
the developer is the person who creates the array. However, you’ll discover that
many times when you create an array, your JavaScript creates the elements of that
array when your JavaScript runs.

For example, suppose you create a JavaScript application that enables a customer
to place an order for a group of products. The customer will order from one product
to many products. You won’t know the number of products that will be ordered until
the customer runs your JavaScript. Each product is stored in an array element.

However, your JavaScript needs to process each array element (that is, each
product). In order to do this, you need to know the number of array elements (that
is, the number of products ordered). The number of array elements can be deter-
mined in several ways, but the easiest and most efficient way is to use the length
property of the array object. Remember earlier in this chapter you learned that an
array is a JavaScript object. In Chapter 1, you learned that a JavaScript object has
properties (information) and methods (actions).

The 1ength property of the array object contains the number of elements con-
tained in the array. Here’s how to access the 1ength property of the products array
that we declared previously:

var len = products.length

You specify the name of the array object (products) and the name of the property
(length), separated by a dot, to access the 1length property. In this code seg-
ment, the length of the array is assigned to the variable 1en.

You don’t have to assign the 1ength property to a variable. It is common to use
the 1ength property where you need to use the length of the array in an expres-
sion. You’ll see how this is done a little later in this chapter.

It is important to remember that the length of an array is the actual number of
array elements and not the index of the last array element. Take a look at the fol-
lowing array. The length of this array is 4 elements. Rookies tend to assume that the
value of the 1ength property is 3, because the last element in the array has an in-
dex of 3. This is a mistake, though, because the length property is equal to the
number of elements in the array (4).

products[0] = 'Soda '
products [1] 'Water'

@ JavaScript Demystified
products [2] 'Pizza'
products[3] = 'Beer'

Tip You don’t have to initialize every element. An element can be left unassigned
and is called an undefined element. Later in your JavaScript, you can assign a
value to an undefined element.

Looping the Array

So far, you probably haven’t seen any major advantages of using an array over a
variable, except that you can use the same name for each element of the array. The
power of using an array is evident when you need to process each element of the
array. You can use a for loop (see Chapter 3) to access each array element.

Let’s see how this is done. Suppose you need to display all the array elements on
a document. From Chapter 3, you remember that you place the information you
want displayed between the parentheses of the document .write () method. If
you use four variables—one for each product—you’ll have to write the docu-
ment .write () method in four different statements within your JavaScript. But
if you use an array, you’ll have to write the document .write () method in only
one statement. Here’s how this is done:

for (var i = 0; 1 < products.length; i++)

{
}

As you’ll recall, the for loop tells the browser to continue to execute statements
within the for loop as long as the condition expression is true. The condition expres-
sion says that the variable 1 is less than the value of the 1length property of the
products array.

The loop begins by initializing variable i to the value 0. Remember that the value
of the length property is 4 because there are four elements in the products array. Since
the value of i is less than 4, the browser executes the statement within the loop.

This statement calls the write () method of the document object and displays
the value of the array element on the document. You might be asking yourself
“Which array element?” Look carefully, and you’ll notice the index of the array
element is i. The browser replaces the i with the current value of the variable i. So
what’s the value of i? It is 0, according to the JavaScript. Therefore, the browser
writes the value of array element 0.

document .write (products[i])

CHAPTER 4 Arrays @

The browser returns to the top of the for loop and increments (i++) the value of i,
making its value 1. The browser evaluates the conditional expression and determines
whether or not to execute the statement within the for loop again. It decides to execute
the statement.

The browser continues to loop until the value of i is equal to the 1ength prop-
erty. When they are equal, the browser no longer enters the loop and skips to the
statement at the end of the loop. (Of course, there is no statement after the for loop
in our example.)

Here’s a tricky question. Why does the browser stop entering the loop when it
reaches the length of the array? At first glance, you would think that the browser
skips the last array element. But look closely and you’ll see why this isn’t true.
Remember that the value of the 1ength property is the actual number of elements
in the array, which is 4 in our example. The for loop begins stepping through the
array using an index of 0. The last (fourth) element of the array has an index of 3.
Therefore, all the elements are processed within the for loop.

Try the following JavaScript and see how the browser displays (Figure 4-1) ele-
ments of the products array on the screen.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Display Array Elements</title>
</head>
<body>
<script language="Javascript" type="text/javascript">
<!--
var products = new Array()

products[0] = 'Soda '
products[1l] = 'Water'
products[2] = 'Pizza'
products [3] = 'Beer'
for (var i = 0; 1 < products.length; i++)
{
document .write (products[i] + '
')
}
-->
</scripts>
<noscripts>
<hl> JavaScript Required</h2>
</noscript>
</body>

</html>

JavaScript Demystified

B3 Display Array Elements - Netscape

File Edit View Go Bookmarks Tools ‘Window Helo
) (J Q | fllesfic: foucks Javastriptes20Demystified{GoodOratListing1-2.htm | [Cosearch] 5 (N

7 . - 4 = O -
B, CAMal SAIM 42 Home (3 Radio 7] Netscape C, Search CBookmarks

Soda

Water

Pirza

Beer

e e o R

Figure 4-1 Values of the products array are displayed on the screen.

Adding an Array Element

On some occasions your JavaScript will need to increase the size of the array while
your JavaScript is running. Let’s return to our JavaScript example that collected an
order from a customer. You don’t know how many products the customer is going
to order when your write the JavaScript. This means that your JavaScript must be
prepared to increase the array by one element each time the customer enters a new
product.

Here’s the problem. How do you know what index to assign to the new array ele-
ment? The solution is to use the 1ength property of the array, as illustrated here:

products [products.length] = 'chips'

Remember from the previous section of this chapter that the products array has
four array elements. Therefore, the value of the 1ength property of the array is 4.
This means that the value 'chips' is assigned to the products [4] element.
Now there are five elements in the array.

An important point to remember is that the value of the 1ength property of an array
can be used as the index for the new array element. You’ll see how to increase an array
by one element in Chapter 7, where you’ll learn how to create an order entry form.

CHAPTER 4 Arrays
Sorting Array Elements

The index of the array elements determines the order in which values appear in an
array when a for loop is used to display the array. Sometimes you want values to
appear in sorted order, which means that strings will be presented alphabetically
and numbers will be displayed in ascending order.

You can place an array in sorted order by calling the sort () method of the ar-
ray object. The sort () method reorders values assigned to elements of the array,
regardless of the index of the element to which the value is assigned.

Here’s what you need to do to sort an array:

1. Declare the array.
2. Assign values to elements of the array.
3. Call the sort () method.

This is illustrated in the following JavaScript, where the list of products is sorted
alphabetically and displayed on the screen (Figure 4-2).

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<titles>Display Array Elements Sorted</title>
</head>
<body>
<script language="Javascript" type="text/javascript"s>
<!--

var products = new Array ()

products[0] = 'Soda '
products[1] = 'Water'
products[2] = 'Pizza'
products [3] 'Beer'

products.sort ()
for (var i = 0; i < products.length; i++)

{
}

-=>
</scripts>
<noscript>
<hl> JavaScript Required</h2>
</noscripts>
</body>
</html>

document .write (products[i] + '
')

JavaScript Demystified

&) pisplay Array Elements Sorted)- Netscape

File Edit View Go Bookmarks Tools ‘Window Helo
) (J Q [fllesfic: foucks Javastriptes20Demystiied/GoodOraftListing1-2.htm | [Cosearch] 5 (N

7 . - 4 = O -
B, CIMal SAIM 42 Home) Radio W] Netscape Cl, Search CJBookmarks

Beer

Pirza

Soda

Water

e e o R

Figure 4-2 Values of the products array are displayed in sort order.

Making a New Array from an Existing Array

Let’s say that you have a long list of customer telephone numbers, but you want
your JavaScript to work only with those customers whose telephone numbers have
the same area code. Instead of wasting time searching through lists of telephone
numbers you don’t want to use, you could create a smaller list that contains only
customers within the same area code.

Suppose this long list of customer telephone numbers is stored in an array. To
create a smaller list, you’ll need to copy the telephone numbers of the customers
you need into another array. You do this by using the s1ice () method of the array
object.

The slice () method copies a sequential number of array elements from one
array into a new array. This means values of these elements exist in both arrays.

Nortk If you change the value of an element in the original array, the change
doesn’t affect the value of the corresponding element of the second array.
However, if the array consists of references to objects, then changing it in one
array will affect the other.

CHAPTER 4 Arrays @
The slice () method requires two pieces of information in order to copy val-

ues to a new array; JavaScript developers call these arguments. An argument is

information required by a method for the method to do its job. An argument is

placed between the parentheses of the method. If more than one argument is used,

each argument must be separated by a comma. A method can have no arguments or

many arguments, depending on the requirements of the method.
The slice () method has two arguments, which tell the slice () method

which elements should be copied into the new array. The first element tells the

method where to start copying, and the second element tells the method where to

end. The second argument is the element immediately after the last element to copy.
Array elements are identified by the index of the element.

NotE The second argument is actually optional—if it’s not specified, then the
array elements are copied all the way to the end of the array.

Let’s see how to use the s1ice () method. Here’s an array of telephone numbers:

AllPhonelList [0] = '201 555-1000"
AllPhonelList[1] = '201 555-3000"'
AllPhonelList[2] = '202 555-5000"'
AllPhonelList[3] = '202 555-4000"'
AllPhonelList[4] = '202 555-3000"'
AllPhonelList[5] = '203 555-2000"'
AllPhonelList[6] = '203 555-9000"'
AllPhonelList[7] = '203 555-8000"

We need to create a new array that contains only telephone numbers in the 202 area
code. To do this we’ll call the s1ice () method of the A11PhoneList array.
The first argument is the index of the first element that we want copied into the new
array, which is 2. The second argument is the index immediately after the last ele-
ment that we want copied into the new array, which is 5.

Here’s how we call the s1ice () method. This statement probably looks some-
what familiar; it is declaring an array called Part ialPhoneList and initializing
it with selected elements from the A11PhoneList array. These elements are se-
lected by arguments specified in the s1ice () method:

var PartialPhonelList = AllPhonelist.slice(2,5)

@ JavaScript Demystified

After the s1lice () method is finished, the PartialPhoneList array looks

like this:

PartialPhoneList [0] = '202 555-5000"
PartialPhoneList [1] = '202 555-4000"
PartialPhoneList [2] = '202 555-3000"

The following JavaScript illustrates how to use the s1ice () method to copy a
selected set of telephone numbers from the full list of telephone numbers. Selected
telephone numbers are then displayed on the screen (Figure 4-3).

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head>
<title>Display Array Elements Using Slice()</titles>
</head>
<body>
<script language="Javascript" type="text/javascript"s>
<!l--
var AllPhonelList = new Array ()
AllPhoneList [0] '201 555-1000"

AllPhonelList[1] = '201 555-3000"'
AllPhonelList[2] = '202 555-5000"
AllPhonelList[3] = '202 555-4000"'
AllPhonelList[4] = '202 555-3000"'
AllPhoneList[5] = '203 555-2000"
AllPhoneList[6] = '203 555-9000'
AllPhoneList[7] = '203 555-8000"
var PartialPhoneList = AllPhonelist.slice(2,5)
for (var i = 0; 1 < PartialPhonelList.length; i++)
{
document .write (PartialPhonelList [1] + '
')
}
-->
</script>
<noscripts>
<hl> JavaScript Required</h2>
</noscript>
</body>

</html>

CHAPTER 4 Arrays

B Display Array Elements Using Slice() - Netscape

File Edit View Go Bookmarks Tools ‘Window Helo

o & O) [fieticmookstavasarptsznvenystiiedjaoodorartUstingl 2 btm | [y seareh | ':-?_";O @

B, CIMal SAIM 42 Home) Radio W] Netscape Cl, Search CJBookmarks

202 553-5000
202 555-4000
202 555-3000

E =2 2 Of () o

Figure 4-3 A partial list of phone numbers is displayed.

Combining Array Elements into a String

At some point, you’ll want to combine values of the array element into one string.
(You’ll recall from Chapter 2 that a string is text.) The following array illustrates:

products [0]
products [1]
products [2]
products [3] =

'Soda !
'Water'
'Pizza'
'Beer'!

Each array element contains a product name. By combining the array elements,
we create a string that looks like this:

'Soda,Water, Pizza,Beer'

Once the product names are combined into a string, we can display the string on a
document (see Chapter 1) or on a JavaScript form (see Chapter 7).

JavaScript Demystified

Array elements can be combined in two ways: by using the concat () method
or the join () method of the array object. Both of these methods do practically the
same thing—that is, they concatenate copies of values of array elements. Values of
these elements remain untouched in the array.

However, there is a subtle difference between the concat () method and the
join () method. The concat () method separates each value with a comma. The
join () method also uses a comma to separate values, but you can specify a char-
acter other than a comma to separate values. You do this by placing that character
in the parentheses of the join () method.

Here’s how to use the concat () method:

var str = products.concat ()
The value of str is
'Soda,Water, Pizza,Beer'

Here’s how to use the join () method. In this example, we use a space to sepa-
rate values:

var str = products.join(' ')
The value of str in this case is
'Soda Water Pizza Beer'

The following JavaScript (see Figure 4-4) shows the concat () method and the
join () method in action. You can change the value in the join () method to any
character that you want the browser to use to separate these values.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml" >

<head>
<title>Display Array Elements Using
concat () and join()</title>
</head>
<body>

<script language="Javascript" type="text/javascript"s>
<!--
var products = new Array ()
products[0] = 'Soda '

CHAPTER 4 Arrays

products[1l] = 'Water'
products[2] = 'Pizza'
products[3] = 'Beer'

var str = products.concat ()
document .write (str)
document .write ('
")
var str = products.join(' ')
document .write (str)
-=>

</scripts>

<noscripts>
<hl> JavaScript Required</h2>

</noscripts>

</body>
</html>

B Display Array Elements Using concat() and join{) - Netscape

File Edit View Go Bookmarks Tools ‘Window Helo
" \) \) O J |"\ftue:mc:mocks.rJavaScrpt%2coemyshﬂed,reuounramusthg1-z.htm | | Sy search | Cl;o @
. B, [DMal BAM 4 Home (7 Radio [1)] Netscape Ol Search [JBookmarks
Soda Water, Pizza Beer
Soda Water Pizza Beer
B2 4 O [o = W

Figure 4-4 Array elements are combined into strings using the concat() and join()
methods.

JavaScript Demystified
Dy
Changing Elements of the Array

Most of us are familiar with to-do lists. New tasks are placed at the bottom of the
list and eventually move to the top when all the other tasks ahead of it are com-
pleted and removed from the list. An array can be used as a to-do list. Here’s how:

var ToDoList = new Array()

ToDoList [0] = "Book the Waldorf for your birthday party."
ToDoList [1] "Give the Donald a call and

invite him to your party."

"Leave word at the White House

that you won't be available for dinner."

ToDoList [2]

Suppose that you have booked the Waldorf, so you need to remove the first task
from the list. You do this by calling the shift () method of the array object. The
shift () method removes and returns the first element of the array and then moves
the other tasks up on the list. Here’s how to call the shift () method:

var task = ToDoList.shift ()
Here’s the ToDoList array after the shift () method is called:

ToDoList [0] = "Give the Donald a call and
invite him to your party."
ToDoList [1] = "Leave word at the White House

that you won't be available for dinner."

You call the push () method of the array object to place a new task at the end
of the to-do list. You place the task that you want placed on the to-do list between
the parentheses of the push () method, as shown here:

ToDoList.push ("Wake up from your dream.")

The push () method creates a new element at the end of the array and assigns
the value that you place between the parentheses of the new element. Here’s what
the array looks like after calling the push () method:

ToDoList [0] = "Give the Donald a call and

invite him to your party."
ToDoList [1] = "Leave word at the White House

that you won't be available for dinner."
ToDoList [2] = "Wake up from your dream."

There are times when we feel like working from the bottom of our to-do list,
starting with the last task and working our way back to the first task. This is easily

CHAPTER 4 Arrays @
done using an array by using the reverse () method to reverse the order of val-
ues in the array. Here’s how you call the reverse () method:

ToDoList.reverse ()

And here’s how the ToDoList array looks after the reverse () method is
called:

ToDoList [0]
ToDoList [1]

"Wake up from your dream."

"Leave word at the White House

that you won't be available for dinner."
"Give the Donald a call and

invite him to your party."

ToDoList [2]

Some of us prefer to jump to the last task rather than work our way through a
long list of things to do. This, too, can be accomplished with an array by using the
pop () method. The pop () method returns and removes the last element of the
array. Here’s how this is done:

var task = ToDoList.pop ()
Here’s the array after the pop () method is called:

ToDoList [0] = "Wake up from your dream."
ToDoList [1] = "Leave word at the White House
that you won't be available for dinner."

Looking Ahead

In this chapter, you learned how to group together values by using an array. An ar-
ray has a name and one or more elements. Elements are used similarly to how
variables are used in a JavaScript. Each element is identified by an index. The first
element is index 0, the second element is index 1, and so on.

A value can be assigned to an element in two ways: by placing values between
the parentheses of the Array () constructor when the array is declared or by using
the assignment operator in a JavaScript statement.

You can determine the number of elements in an array by using the length
property of the array object. The 1ength property is accessed by specifying the
name of the array followed by a dot and the word length.

You can access the value of an element by specifying the name of the array fol-
lowed by the index of the element within square brackets. If you need to access all
elements of the array, then use a for loop. The initializer of a for loop (see Chapter 3)
is used as the index for the array elements.

Sy—

Qu

1Z

JavaScript Demystified

The array object has several methods that you can use to manipulate elements of
the array. For example, the sort () method places elements in sorted order. The
slice () method takes a sequence of elements and uses them to create a new ar-
ray. The concat () method and join () method transform elements into a string.
And you can remove, insert, and reorganize elements by using the shift (),
push (), reverse (), and pop () methods.

You now have a good working knowledge of how to store and use information
within a JavaScript. In the next chapter, you’ll use this knowledge to create sophis-
ticated forms that are used to retrieve and display information on the user’s screen.

1. True or False. This is the first element of the products array:
products[1].

a. True
b. False
2. How many elements are there in this array?

Products = new Array('Soda', 'Beer', 'Pizza')
a. 2

b. 3

c. 4

d. None

3. What method would you use to create a string from array elements and
separate those elements with a hyphen?

a. shift ()
b. join()
c. concat ()
d. strjoin()
4. What method is used to remove an element from the bottom of an array?
a. push ()
b. pop ()
c. reverse ()
d. shift ()

CHAPTER 4 Arrays

10.

—&r

. What method is used to remove the first element from an array?

a. push ()

b. pop ()

c. reverse ()
d. shift ()

. What method is used to place a new element at the end of an array?

a. push ()

b. pop ()

c. reverse ()
d. shift ()

. True or False. The sort () method only places text in sorted order?

a. True
b. False

True or False. The length of an array is equal to the index of the last
element of the array.

a. True
b. False

True or False. An array element can be used the same way as a variable is
used in a JavaScript.

a. True

b. False

What method is used to create a new array using elements of another array?
a. slice()

b. div ()

c. splice()

shift ()

o

This page intentionally left blank.

o"

CHAPTER

Functions

When you order a pizza, you simply say, “Pizza, please,” and the chef performs all
the tasks that are necessary to make your pizza. You don’t have to perform those
tasks; you simply use words the chef equates with steps to make a pizza. The chef
delivers the completed pizza, and you get to enjoy it.

Throughout this book, you’ll learn to use words that tell the browser to perform
tasks that interact with a web page; like a chef, the browser performs these tasks so
you don’t have to. Then the browser delivers the goods. You’ll recall that when the
browser sees the words document.write() in a JavaScript, the browser performs
tasks necessary to display something on the screen. You don’t concern yourself with
those tasks, because the browser knows how to perform them. You simply need to
know the proper words to include in your JavaScript to cause the browser to display
something on the screen or perform some task.

It would be great if you could define your own words to have the browser per-
form your own specific tasks. Imagine that you could define the words Increase
Salary as a series of tasks to give you a raise—every time the browser sees these
words, the browser gives you a pay raise. Though even a well-written JavaScript
probably can’t get you a raise, you can define your own words to tell the browser

—E

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

@ JavaScript Demystified
what to do. This is called defining a function. You’ll learn how to define a function
and tell the browser to use the function in this chapter.

What Is a Function?

Think of a function as part of your JavaScript that has a name and contains one or
more statements. You name the function and write the statement(s) that are con-
tained within the function. You then use the name of the function elsewhere in your
JavaScript whenever you want the browser to execute those statements. A function
can be called from anywhere in the JavaScript file or in the HTML document.

Suppose your JavaScript requires that a user log on before he or she is allowed
to access other parts of your application. The logon is one part of many parts of
your JavaScript. You can make the logon a function. We’ll show you how this is
done later in this chapter. For now, let’s identify everything we need to create the
function.

First, we need a name. Let’s call it logon, since this name implies what the func-
tion is going to tell the browser to do. Next, we need statements that are executed
when the browser sees the name logon in other parts of the JavaScript. We’ll need
a statement to prompt the user to enter a user ID and password. A set of statements
is needed to validate the user ID and password, and another set of statements is
needed to tell the user whether or not the logon is valid. You’ll see how to write
these statements later in this chapter.

That’s all we need to define the logon function using JavaScript. Whenever we
want the user to log on, we simply call the 1ogon function from a statement in
another part of the application by using the function name—Ilogon. The browser
then finds the logon part of your JavaScript (the 1ogon function) and executes
statements contained in that part of the application.

The process of creating a function is called defining a function. The process of
using the function is referred to as calling a function.

Defining a Function

A function must be defined before it can be called in a JavaScript statement. If you
think about it, this makes sense, because the browser must learn the definition of the
word (the function name) before the browser sees the word (the function call) in a
statement.

CHAPTER 5 Functions @
From Chapter 1, you’ll recall that you insert JavaScript in two places on the web

page: within the HTML <head> and <body> tags. Sometimes JavaScript devel-

opers insert more than one JavaScript into a web page—one in the <head> tag and

the other in the <body > tag.
The best place to define a function is at the beginning of a JavaScript that is in-

serted in the <head> tag, because then all subsequent JavaScripts on the web page

will know the definition of that function. The browser always loads everything in

the <head> tag before it starts executing any JavaScript.

A function definition consists of four parts: the name, parentheses, a code block,
and an optional return keyword.

Function Name
The function name is the name that you’ve assigned the function. It is placed at the
top of the function definition and to the left of the parentheses. Any name will do,
as long as it follows certain naming rules. The name must be

» Letter(s), digit(s), or underscore character
* Unique to JavaScripts on your web page, as no two functions can have the
same name

The name cannot

* Begin with a digit
* Be a keyword (see Chapter 2)

* Be areserved word (see Chapter 2)
The name should be

* Representative of the action taken by statements within the function

Parentheses

Parentheses are placed to the right of the function name at the top of the function
definition. Parentheses are used to pass values to the function; these values are
called arguments.

Suppose you define a function to validate a user ID and password. Statements
within the validation function definition handle the validation process, but you don’t
know the user ID and password to validate. The part of your JavaScript application
that handles the logon calls the validation function and passes it the user ID and
password as an argument when your JavaScript is running.

@ JavaScript Demystified
Functions that require one or more values in order to carry out their action contain
variables within parentheses in their function definition. These variables are assigned
values passed by the statement that calls the function when the JavaScript runs.
Not all functions have arguments. Functions that have all the values necessary to
carry out their action don’t need arguments, so nothing appears between their paren-

theses. You’ll learn more about arguments later in the “Adding Arguments” section
of this chapter.

Code Block
The code block is the part of the function definition where you insert JavaScript
statements that are executed when the function is called by another part of your
JavaScript application. Open and close French braces define the boundaries of the
code block. Statements that you want executed must appear between the open and
close French braces. This is nearly identical to the code block used to define a
JavaScript that you learned about in Chapter 1.

Return (Optional)
The return keyword tells the browser to return a value from the function defini-
tion to the statement that called the function. For example, our validation function
tests to determine whether the user ID and password submitted to the function are
valid. If so, the function returns a value indicating that this is a valid user. If not, the
function returns a value indicating that this is not a valid user.

Not all functions return a value. For example, a function that displays a message
on the screen doesn’t need to return a value to the statement that calls the function.
Therefore, the return keyword doesn’t need to be included in the function defini-
tion. You’ll learn more about returning values from a function in the “Returning
Values from a Function” section later in this chapter.

Writing a Function Definition

Following is a simple function definition. It is called IncreaseSalary () and
tells the browser the steps that are necessary to give you a raise in pay (at least on
paper). This function contains all the values needed to calculate your new salary;
therefore, no argument is needed:

function IncreaseSalary ()

{

var salary = 500000 * 1.25
alert ("Your new salary is " + salary)

CHAPTER 5 Functions @
Two statements appear within the code block. The first statement is similar to state-
ments that you’ve already used in this book. It declares a variable called salary
and initializes the variable with your new salary.
Your current salary is $500,000 (wishful thinking). After calling the Increase
Salary () function, you tell the browser to increase your salary by 25 percent. We
multiply your current salary by 1.25, which is the decimal equivalent of 125 per-
cent, to arrive at your new salary. Your new salary is then assigned to the salary
variable.

The last statement in the code block displays your new salary in an alert dialog
box on the screen.

Adding Arguments

A function typically needs data to perform its task. Sometimes you provide the data
when you define the function, such as the salary and percentage increase in salary
in the preceding example. Other times, the data is known only when you run your
JavaScript. For example, we could ask the user to enter the salary and percentage
increase in salary instead of writing this data into the function definition.

Data that is needed by a function to perform its task that is not written into the
function definition must be passed to the function as an argument. An argument is
one or more variables that are declared within the parentheses of a function defini-
tion. This is illustrated in the following code sample. 01dSalary is an argument
of the IncreaseSalary () function.

function IncreaseSalary (0OldSalary)

{

var NewSalary = OldSalary * 1.25
alert ("Your new salary is " + NewSalary)

Think of an argument as a variable, which you learned about in Chapter 2. You
assign a name to an argument following the same rules that apply to naming a vari-
able. Anything you can do with a variable you can do with an argument.

You might be wondering how an argument is assigned a value. This happens
when the function is called either by a statement within the JavaScript or by HTML
code on your web page. You’ll see how to call a function in the next section of this
chapter. The JavaScript statement or the HTML code provides the value when it
calls the function. This is called passing a value to the function.

For now, it is important that you understand that the argument represents the
value within a function definition. That is, you should use the name of the argument
as if you were using the actual value.

@ JavaScript Demystified
Adding Multiple Arguments

You can use as many arguments as necessary for the function to carry out its task.
Each argument must have a unique name, and each argument within the parenthe-
ses must be separated by a comma.

Let’s revise the preceding example and make the percentage of salary increase an
argument. Here, two arguments are used: O1dSalary and PercIncrease.

function IncreaseSalary(OldSalary, PercIncrease)

{

var NewSalary = OldSalary * (1 + (PercIncrease / 100))
alert ("Your new salary is " + NewSalary)

}

We’ll assume that the value passed to PercIncrease is a percentage that must
be converted to its decimal equivalent so we can calculate the new salary. Dividing
the percent by 100 gives us the decimal equivalent of the percent.

If we multiplied the old salary by the decimal equivalent, we’d end up with the
dollar increase in salary. But that’s not what we want to know. We want to know
exactly what the new salary will be. Therefore, we must add 1 to the decimal value
and then use it to calculate the old salary. So if the decimal value of your raise is .25,
we’d multiply the old salary by 1.25. Think of this as multiplying the old salary by 125
percent to determine the new salary.

The Scope of Variables and Arguments

A variable can be declared within a function, such as the NewSalary variable in
the IncreaseSalary () function. This is called a local variable, because the
variable is local to the function. Other parts of your JavaScript don’t know that the
local variable exists because it’s not available outside the function.

But a variable can be declared outside a function. Such a variable is called a
global variable because it is available to all parts of your JavaScript—that is, state-
ments within any function and statements outside the function can use a global
variable.

Let’s use the cardboard box example from Chapter 2. Think of a variable as a
cardboard box. If the cardboard box is inside your house, only you and your family
can put things into and remove things from the box. This is how a local variable
works. If the cardboard box is placed outside by the curb, you, your family, and

CHAPTER 5 Functions @
anyone else passing by can put things into and remove things from the box. This is
how a global variable works.

JavaScript developers use the term scope to describe whether a statement of a
JavaScript can use a variable. A variable is considered in scope if the statement
can access the variable. A variable is out of scope if a statement cannot access the
variable.

Let’s say that a statement outside of the IncreaseSalary () function tries to
use the NewSalary variable. It cannot do so, though, because the NewSalary
variable is local to the IncreaseSalary () function and is out of scope of the
statement that is outside of the IncreaseSalary () function. However, the
NewSalary variable is in scope of statements within the function. Scoping also
applies to loops or any other construct that uses French braces (the scope is the code
within the French braces).

Calling a Function

You call a function any time that you want the browser to execute statements con-
tained in the code block of the function. A function is called by using the function
name followed by parentheses. If the function has arguments, values for each argu-
ment are placed within the parentheses. You must place these values in the same
order that the arguments are listed in the function definition. A comma must sepa-
rate each value.

Here’s how the IncreaseSalary () function is called:

IncreaseSalary (500000, 6)

Notice that the first value (500000) is the old salary and the second value (6) is the
percentage of the salary increase. These correspond to the order arguments in the
definition of the IncreaseSalary () function in the previous example—that is,
OldSalary and PercIncrease.

What would happen if you reversed the order of these values, as shown here?

IncreaseSalary (6, 500000)

The 6 is assigned to the 01dSalary argument and the 500000 is assigned to the
PercIncrease argument. This is backward, and it shows why you must be care-
ful to place values in the same order that the arguments are listed in the function
definition; otherwise, you’ll receive unexpected results from the function.

\@’_ JavaScript Demystified
Calling a Function Without an Argument

Here is an example of how to define and call a function that does not have any argu-
ments. The function definition is placed within the <head> tag and the function
call is placed within the <body > tag. When the function is called, the browser goes
to the function definition and executes statements within the code block of the func-
tion. The first statement declares the salary variable and initializes it with the
increased salary that is produced by the calculation. The value of the salary is then
displayed in an alert dialog box (Figure 5-1).

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Functions</title>
<script language="Javascript" type="text/javascript"s>
<!--
function IncreaseSalary ()

{

var salary = 500000 * 1.25

alert ('Your new salary is ' + salary)
}
-=>
</scripts>
</head>
<body>

<script language="Javascript" type="text/javascript"s>
<!--
IncreaseSalary ()
-=>
</scripts>
</body>
</html>

Yaur new salary is 625000

Figure 5-1 The function displays the new salary each time the function is called.

CHAPTER 5 Functions @
W
Calling a Function with an Argument

Let’s revise the previous example and modify the IncreaseSalary () function
to accept the old salary and the percentage increase as arguments. This is the same
function definition that you saw earlier in this chapter.

Before calling this function, we prompt the user to enter the old salary (Figure 5-2)
and the percentage increase (Figure 5-3). The values entered are used to initialize
two variables: Salary and Increase. Both of these are global variables, be-
cause they are defined outside of a function.

The Salary and Increase variables are then used within the parentheses of
the function call, which tells the browser to assign these values to the corresponding
arguments in the function definition. The function calculates and displays the new
salary (Figure 5-4).

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<titles>Functions</titles>
<script language="Javascript" type="text/javascript"s>

<!--
function IncreaseSalary(0OldSalary, PercIncrease)

{
var NewSalary =
Oldsalary * (1 + (PercIncrease / 100))
alert ("Your new salary is " + NewSalary)
}
-->
</script>
</head>
<body>

<script language="Javascript" type="text/javascript"s>
<!--
var Salary = prompt ('Enter old salary.', ' ')
var Increase =

prompt ('Enter salary increase as percent.', ' ')

IncreaseSalary(Salary, Increase)
-->

</script>

</body>
</html>

JavaScript Demystified

)] Enter old salary.

[100

Figure 5-2 The user is asked to enter the old salary.

You can also pass literal values when calling a function instead of using a vari-
able or input directly from the user. For example, you could call the
IncreaseSalary () function in this way:

IncreaseSalary (500000, 6)

Both arguments are numbers. If the argument was a string, such as a user ID or pass-
word, you would need to enclose the argument in quotation marks, as shown here:

ValidateLogon ('ScubaBob', 'diving')

Although we haven’t defined this function, you probably realize by the name that the
function validates the user ID and password (you’ll remember these from Chapter 3).
The first argument is a string containing the user ID and the second argument is a
string that contains the password.

Calling a Function from HTML

A function can be called from HTML code on your web page. Typically, a function
will be called in response to an event, such as when the web page is loaded or un-
loaded by the browser.

)] Enter salary increase as percent,

B

Figure 5-3 The user is asked to enter the percentage increase in salary.

CHAPTER 5 Functions

[Javascript Application]

N Your new salary is 105
%

O

Figure 5-4 The new salary is calculated and displayed by the IncreaseSalary() function.

You call the function from HTML code nearly the same way as the function is
called from within a JavaScript, except in HTML code you assign the function call
as a value of an HTML tag attribute. Let’s say that you want to call a function when
the browser loads the web page. Here’s what you’d write in the <body > tag of the
web page:

<body onload = "WelcomeMessage()">

Here’s what you’d write to call the function right before the user moves on to
another web page:

<body onunload = "GoodbyeMessage () ">

The next example shows how to call these functions in a web page.

1. We define each function in a JavaScript placed in the <head> tag.

2. We assign a call to the WelcomeMessage () function to the onload
attribute of the <body> tag. This displays the welcome message (Figure 5-5)
when the browser loads the web page.

3. The call to the GoodbyeMessage () function is assigned to the
onunload attribute of the <body> tag. This displays the goodbye
message (Figure 5-6) when the browser unloads the web page to make
room for a new web page.

[Javascript Application]

N Glad ko see vou,
\

_C

Figure 5-5 The WelcomeMessage() function is called when the browser loads the
web page.

JavaScript Demystified

Figure 5-6 The GoodbyeMessage() function is called when the browser unloads the
web page.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>

<title>Calling a function from HTML</title>

<script language="Javascript" type="text/javascript">
<!--

function WelcomeMessage ()

{
}

function GoodbyeMessage ()

{
}

-->

</script>

alert ('Glad to see you.')

alert ('So long."'")

</head>
<body onload="WelcomeMessage ()"
onunload="GoodbyeMessage () ">
</body>
</html>

Creating a Popup Window

Popup windows are probably the most annoying things on the Internet. You surf to
a web site only to be shown a popup ad, and then when you leave the site you're
shown another popup ad. Nevertheless, popups can be a necessary evil when you’re
creating web sites. You can create a function that displays a popup window that you
design on the fly.

CHAPTER 5 Functions @
The follow example shows you how this is done. First we define two functions:

WelcomePopup () and GoodbyePopup () . Each opens and displays a message

in a window. The new window looks sparse, but you can enhance its appearance

and functionality by incorporating features into the JavaScript that you’ll learn in

later chapters. We’ll keep the JavaScript simple for now so you can get the hang of

creating popup windows.
The WelcomePopup () function is called when the browser loads the web

page. The GoodbyePopup () function is called just before the browser loads the

next web page. This uses basically the same techniques that you learned earlier in
this chapter.

<!DOCTYPE html PUBLIC

"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>

<title>Calling a function from HTML</title>

<script language="Javascript" type="text/javascript"s>
<!--

function WelcomePopup ()

{

window.open () ;
alert ('Glad to see you.')
}

function GoodbyePopup ()

{

window.open () ;
alert ('So long.')

}

-->

</script>

</head>

<body onload="WelcomePopup ()" onunload="GoodbyePopup () ">
</body>
</html>

The new window is opened by calling the window.open () method of the
window object. The window.open () method has three optional arguments. The
browser uses the default for any argument that you don’t provide, which are typi-
cally appropriate features of the most current window.

The first argument is the URL of whatever you want loaded into the new win-
dow. Typically this is a web page file URL (such as myWebPage.htm) or a graphic

@ JavaScript Demystified
file name (such as mypicture.gif). A blank window is displayed if you leave out this
argument.

The second argument is the name that you assign to the new window (such as
myWindow). You can then use the window name whenever you want to refer to
the window within your JavaScript—such as if you wanted to load a picture into the
window after the window is opened.

The third argument lists features that you displayed in the new window Table 5-1
shows these features. Here’s how to specify features in the argument:

'width=200,height=300"

This example sets two features: width and height of the new window. You can list
as many features as you want as long as a comma separates each feature and all the
features are enclosed within quotation marks.

Functions Calling Another Function

JavaScript developers typically divide an application into many functions, each of
which handles a portion of the application. Functions, as you learned earlier in this
chapter, can be called from any JavaScript or from HTML code on a web page it-
self. This means that a function can also be called from another function.

Let’s say that you defined a logon function that handles all the tasks that are
necessary for a user to log on to your application. This includes displaying dialog
boxes prompting the user to enter a user ID and password. Let’s also say that you

Feature Value Description

directories yes/no Display the browser directory buttons

height number Height of the window in pixels

location yes/no Display the location entry field

menubar yes/no Display the menu at the top of the window
resizable yes/no Enable the window to be resized

scrollbars yes/no Display horizontal and vertical scrollbars

status yes/no Display the status bar at the bottom of the window
toolbar yes/no Display the browser toolbar

width number Width of the window in pixels

Table 5-1 Features You Can Incorporate in a New Window

CHAPTER 5 Functions @
defined another function whose only tasks are to validate a user ID and password
and report back whether or not the logon information is valid. The logon function
passes the user ID and password to the validation function and then waits for the
validation function to signal whether or not they are valid. The logon function then

proceeds by telling the user whether the logon is valid or not valid.
You’ll see how this is done in the next section.

Returning Values from a Function

A function can be designed to do something and then report back to the statement
that calls after it’s finished—such as the validation function in the previous section,
which validates a user ID and password and then reports back whether they are
valid or not.

A function reports back to the statement that calls the function by returning a
value to that statement using the return keyword, followed by a return value in a
statement. Here’s what this looks like:

function name ()

{
}

In this code segment, the return statement returns a Boolean value true. You can
return any value or variable in a return statement.

The return value is typically assigned to a variable by the statement that called
the function and then used by other statements in the JavaScript. This is illustrated
in the following code segment:

return value

valid = ValidateLogon ('ScubaBob', 'diving')

This statement calls the ValidateLogon () and passes it a user ID (the first
argument) and password (the second argument). The return value, which in this
example is either true or false, is then assigned to the valid variable.

Tip Some JavaScript developers return a value from nearly every function they
define, even if the return value signifies only whether the function completed its
tasks successfully or not.

The statement that calls a function can ignore the return value. It doesn’t make
sense to ignore a function that validates logon information or provides other impor-
tant information to a JavaScript. However, you might ignore a return value if it

EBy—

JavaScript Demystified

indicates only whether the function finished successfully or not, especially if there

is little chance

of the function failing or if the browser would display an error mes-

sage if the function failed.
Here’s an example of how to use a return value to a function:

<!DOCTYPE html PUBLIC

<html xmlns
<head>

-//W3C//DTD XHTML 1.0 Transitional//EN">
="http://www.w3.0rg/1999/xhtml" >

<title>Returning a value from a function</title>

<script language="Javascript" type="text/javascript"s>
<!--

function Logon ()

{

}

var userlID

var password

var valid

userID = prompt ('Enter user ID',' ')
password = prompt ('Enter password',' ')
valid = ValidateLogon (userID, password)
if (valid == true)

{

alert ('Vvalid Logon')

}

else

{

alert ('Invalid Logon')

}

function ValidateLogon (id, pwd)

{

-->

var ReturnValue

if (id == 'ScubaBob' && pwd == 'diving')
{
ReturnValue = true
}
else
{
ReturnValue = false

}

return ReturnValue

CHAPTER 5 Functions @
</script>
</head>
<body>
<script language="Javascript" type="text/javascript"s>
<!--
Logon ()
-->
</scripts>
</body>
</html>
Two functions are defined in the <head> tag section of the web page. The first
function is called Logon (), which is responsible for capturing, validating, and
processing logon information. The second function is called ValidateLogon (),
which receives logon information as arguments, validates them, and reports back
whether the logon information is valid or invalid.

Statements within these functions probably look familiar to you because they are
similar to what we used in examples in Chapter 3. You’ll recall that those if state-
ment examples received, validated, and processed logon information in one Java
Script without having to call any functions other than the prompt () andalert ()
functions.

Notice that the ValidateLogon () function uses an if...else statement to test
whether or not the user ID and password are valid. If they are valid, a true value is
assigned to the ReturnvValue variable; otherwise, a false is assigned to it. The
return statement then returns the value of the Returnvalue variable to the state-
ment in the Logon () function that called the ValidateLogon () function. The
Logon () function uses the return value to determine what message to display on
the screen.

The “Secret” Code

Some JavaScript developers assign special meanings to return values to tell the
statement that called the function what happened when the function processed the
request. For example, the return value might indicate a specific error that occurred
while the request was being processed. JavaScript developers call this an error
code. Other times that return value indicates one of many outcomes of successfully
processing the request, which is illustrated in the next JavaScript.

The next JavaScript is very similar to the previous JavaScript in that both define
two functions: one to handle the logon and the other to validate logon information.
However, the ValidateLogon () function in the following JavaScript uses a
value of 1 to indicate that the logon information is valid and values of 2, 3, and 4 to
indicate the portion of the logon information that is invalid.

JavaScript Demystified

By——

You saw this validation technique used in examples of if statements in Chapter 3

—except in those examples, the JavaScript displayed an appropriate message on the
screen instead of returning a value.

<!DOCTYPE html PUBLIC

"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head>
<title>Return value from a function Statement</titles

<script language="Javascript" type="text/javascript"s>
<!--

function Logon ()
{
var userID
var password
var valid
userID = prompt ('Enter user ID',' ')
password = prompt ('Enter password',' ')
valid = ValidateLogon (userID, password)
switch (valid)
case 1:
alert ('valid Logon')
break
case 2:
alert ('Valid User ID. Invalid Password.')
break
case 3:
alert ('Invalid user ID. Valid Password.')
break
case 4:
alert ('Invalid User ID and Password')
break

}
}

function ValidateLogon (id, pwd)

{

var ReturnValue
if (id == 'ScubaBob' && pwd == 'diving')

{
}

else if (id == 'ScubaBob')

{

ReturnvValue = 1

CHAPTER 5 Functions

ReturnValue = 2
}
else if (pwd == 'diving')
{
ReturnValue = 3
}
else
{
ReturnValue = 4

}

return ReturnValue

}

-=>
</scripts>
</head>
<body>
<script language="Javascript" type="text/javascript"s>

</scripts>
<noscripts>
<hl> JavaScript Required</h2>
</noscripts>
</body>
</html>

Looking Ahead

In this chapter you learned how to divide your JavaScript applications into groups
of statements, each of which performs one kind of task. These groups are called
functions. You call a function whenever you need one of these tasks performed in
your JavaScript.

You need to define a function before calling it. A function definition consists of
a function name, parentheses, and the function code block, which is where you
place statements that are executed when the function is called.

A function can have all the information it needs to perform the task. Other func-
tions need additional information passed to them from the statement that calls the
functions. Information passed to a function is called an argument.

By—

Qu

1Z

JavaScript Demystified

An argument is placed between parentheses in the function definition and used
as a variable within the function. More than one argument can be used; a comma
must separate each argument.

A function can return a value to the statement that called the function by using a
return statement. A return statement consists of the return keyword followed by
the value that is being returned by the function. The statement that called the func-
tion can assign the return value to a variable, use the return value in an expression,
or ignore the return value.

You call a function by using the function name followed by parentheses. A func-
tion can be called from anywhere in the JavaScript or by using HTML code in the
web page.

Now that you have functions under your belt, it is time to move on. The next
chapter discusses how to manipulate strings. Think of a string as any text and
manipulating a string as a way for JavaScript to process the text.

1. True or False. A comma must separate arguments in a function definition.
a. True
b. False
2. A code block is used in a
a. Function call
b. Function definition
c. Return value
d. Argument
3. The scope of a variable means
a. The size of the variable
b. The data type of the variable
c. The portion of a JavaScript that can access the variable
d. The variable is used as a return value for a function

4. True or False. The statement that calls a function can ignore a value
returned by a function.

a. True
b. False

CHAPTER 5 Functions

10

—&

. A global variable can be accessed

a. Only by functions defined within the JavaScript
b. Only outside of a function

c. Only by the function that defined it

d. From anywhere in the JavaScript

A local variable can be accessed

a. Only by functions defined within the JavaScript
b. Only outside of a function

c. Only by the function that defined it

d. From anywhere in the JavaScript

True or False. A function can be called by HTML code in a web page.
a. True

b. False

. True or False. All functions must be defined in the <head> tag.

a. True
b. False

. True or False. Values passed to a function must correspond to the data type

of arguments in the function definition.
a. True
b. False

. A variable is out of scope when

a. The statement that calls a function ignores the value returned by the
function

b. The variable cannot be accessed by a statement
c. A variable isn’t defined in a function

d. A variable is passed to a function

This page intentionally left blank.

o"

CHAPTER
Strings

When you order merchandise online, you probably give little thought to how your
order is processed. Like most of us, you make a selection, enter credit card and
shipping information, and then click a button on the order form. Several days later,
a delivery van drops off your package. That’s all there is to it, right?

Actually, there’s a lot going on behind the scenes. Order information has to be
extracted from the order form and then manipulated before being processed. You’ll
learn how to extract information from a form in the next chapter. Most information
you enter into an order form is a string, such as your name, address, phone number,
and product information. You learned in Chapter 2 that a string is a series of char-
acters that form text. It is often necessary to take apart and rearrange text so that the
information can be processed properly. This is referred to as manipulating a string,
and it’s a technique you’ll learn in this chapter.

Why Manipulate a String?

Before getting into the how-to’s of manipulating a string, it is important that you
understand why it is necessary to rearrange what seems like perfectly good text. To

—

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

@ JavaScript Demystified
find the answer to this question, you need to take a look at how text is used in a
typical commercial web application.

Text, to most of us, is a series of words, such as Bob Smith, which is a customer
name. However, commercial applications don’t use text. Instead, they use data,
which is defined as the smallest available amount of meaningful information. At
first, the difference between text and data might not be obvious, but the following
example should clear up any confusion.

You’ll recall that when included in JavaScript, 'Bob Smith' is a text string,
since the words are enclosed in quotation marks. You can recognize this string as a
person’s name. The person’s name can be divided into two pieces of data, com-
monly referred to as data elements. These are first name and last name, which are
the smallest amount of meaningful information in the text string of a person’s
name.

Text must be transformed into data elements if information gathered by your
application is to be stored in a database, which is like an electronic filing cabinet
for pieces of data. Commercial applications store a person’s first name ('Bob"')
and last name (' Smith"') separately, rather than the full name ('Bob Smith'")
in the database. This means you must write statements that divide 'Bob Smith'
into 'Bob"' and 'Smith'. This is called manipulating a string, which you’ll learn
how to do in this chapter.

There are other reasons for manipulating strings in addition to creating data ele-
ments from text. Sometimes, for example, you’ll need to combine two strings into
one string, such as joining 'Bob ' and ' Smith' and creating 'Bob Smith'.This
is called concatenating strings. You’ll also learn these techniques in this chapter.

Joining Strings

Let’s begin exploring string manipulation by concatenating two strings. When you
concatenate a string, you form a new string from two strings by placing a copy of
the second string behind a copy of the first string. The new string contains all the
characters from both the first and second strings.

You use the concatenation operator (+) to concatenate two strings, as shown here
(note that, in this context, + is the concatenation operator, not the addition operator):

NewString = FirstString + SecondString

Suppose you needed to display a customer’s full name on the screen. However,
the customer’s name is stored in the database as two data elements called FirstName
and LastName. You’ll need to concatenate the first name and the last name into a
new string and then display the new string on the screen. This is illustrated in the
next example:

CHAPTER 6 Strings @
<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Concatenating a string</title>
</head>
<body>
<script language="Javascript" type="text/javascript">
<!I--
var newString = 'Bob' + 'Smith'
alert (newString)
-—>
</script>
</body>
</html>

This JavaScript is very similar to other scripts that you’ve seen in this book, so we’ll
focus on the statements that concatenate two strings. The first statement in the script
declares the variable newString and initializes it with the concatenation of Bob
and Smith. The second statement calls the alert () function to display the value
of the newString variable on the screen.

Look carefully at the text displayed in the alert () function (Figure 6-1), and
you’ll notice something strange. You expect to see a space between Bob and Smith,
but no space appears here. This is a common problem whenever you concatenate
two strings; the browser does exactly what you tell it to do, and not necessarily what
you hoped it would do.

You told the browser to take Smith and place it behind Bob. The result is Bob-
Smith. You need to tell the browser to add a space character between these two
strings by adding a space after 'Bob'. Rewrite the previous script and add the
space character as the last character in the string ' Bob'; then reload the web page
(Figure 6-2).

The preceding example concatenated literal strings. You can also concatenate
two variables or a variable and a string using the same technique. Here is how you
write such a statement:

NewString = FirstString + VariableName

Bobsmith

Figure 6-1 The browser displays the concatenated string.

JavaScript Demystified

Baob Smith

Figure 6-2 You must place a space as the last character in the string 'Bob' to make sure
the space appears between the first and last names in the concatenated string.

Let’s rewrite the previous statements and assign the space to a variable; then
we’ll concatenate the variable to Bob and concatenate Smith to the variable. Here’s
the new code segment:

var space = ' !

var newString = 'Bob' + space + 'Smith'

Here’s an alternative. In this code segment, strings are assigned to variables, and
then we concatenate all three variables:

var FirstName = 'Bob'
var LastName = 'Smith'
var space = ' !

var newString = FirstName + space + LastName

Finding Your Way Around a String

You know that a string is an array of characters. You recall from Chapter 4 that an
array has one or more elements that are identified by an index. Each character in
a string is an array element that can be identified by its index. Take a look at the
following example to see how this works:

var FirstName = 'Bob'

You recognize that 'Bob' is a string that is assigned to the variable FirstName.
This variable is actually an array. The first element of the array has the value B. The
second element has the value o and the last element has the value 5. Remember that
the index of the first element is 0 and not /. Therefore, you use the index 0 to refer-
ence B and / to reference o and 2 to reference b.

You can copy a character from a string to another string by using the charAt ()
method of the string object. The charAt () method requires one argument, which

CHAPTER 6 Strings @
is the index of the character that you want to copy. The following statement illus-
trates how to use the charAt () method:

var SingleCharacter = NameOfStringObject.charAt (index)

The next example shows how to display the first character of the string 'Bob'
by calling the charAt () method (Figure 6-3).

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>
<title>Copy one character of a string</title>
</head>
<body>
<script language="Javascript" type="text/javascript">
<l--
var FirstName = 'Bob'
var Character = FirstName.charAt (0)
alert (Character)
-—>
</script>
</body>
</html>

Sometimes you won’t know the index of the character you need because the
string is supplied to your JavaScript when the script runs. This occurs, for example,
when the person who runs your JavaScript enters the string. You can determine the
index of a character by calling the indexOf () method of the string object. The
indexOf () method returns the index of the character passed to it as an argument.
If the character is not in the string, the method returns —/. You should usually check
for this when executing this function. Here’s how to use this method:

var IndexValue = string.indexOf ('character')

This next example calls the indexOf () method to return the index of the sec-
ond letter of 'Bob'. The index is then passed to the charAt () method to copy

Figure 6-3 The first letter of the string is returned by the charAt() method.

JavaScript Demystified

Figure 6-4 The index is retrieved by calling the indexOf() method.

the o to a variable. Both the index (Figure 6-4) and the character are then displayed
on the screen (Figure 6-5).

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Identifying the index of a
character in a string</title>
</head>
<body>
<script language="Javascript" type="text/javascript">
<!--
var FirstName = 'Bob'
var IndexValue = FirstName.indexOf('o')
alert (IndexValue)
if (IndexValue != -1)
{
var Character = FirstName.charAt (IndexValue)
alert (Character)
}
-——>
</script>
</body>
</html>

[JayaScript Application]

Figure 6-5 The character is retrieved by calling the charAt() method.

CHAPTER 6 Strings @
If you do not know the character you want (for example, if it is determined by
user input), but you know the position of the character relative to the end of the

string, you can use the 1ength value of the string object to calculate the position
of the character. Here’s how:

var LengthOfString = string.length

Here’s a practical application: Suppose you wanted to use the last four digits of
a person’s Social Security number for the person’s ID. You can copy these digits to
a new string, but you need to know the index of the first of the four digits. You’ll
learn how to copy this in the “Copying a Substring” section later in this chapter. For
now, let’s see how we can use the 1ength value of the string to identify the index
of the first of the last four digits.

Nore The 1ength value contains the number of characters in the string—but don’t
confuse this with the index of the last character. Remember that the index begins
with 0 and not 1, so the index of the last character of the string is length - 1.
If the value of 1ength is 3, you know that the string has three characters. On the
other hand, the index of the last character is 2.

We can use the 1ength value to calculate the index of the character that we
want to use. Here how this is done:

var SSNumber = '123-45-6789'
var IndexOfCharacter = SSNumber.length - 4

The length of the SSNumber is //. Since we want the first of the last four
numbers, we subtract 4 from the 1ength, and this gives us 7. This means that the
first of the last four numbers is at index 7 in the string.

A Social Security number is just one of many types of standardized formatted
text. As long as you know the format of the text, you can use the 1ength value to
calculate the index of a character within the text.

Dividing Text

Imagine a string of concatenated data elements with only a comma separating each
of them; your mission is to copy each data element into its own string. Look at the
following code segment for an example. Here, each person’s name is a data ele-
ment, and your job is to copy each name to its own string:

var DataString = 'Bob Smith, Mary Jones, Tom Roberts, Sue Baker'

@ JavaScript Demystified

JavaScript developers call this a comma-delimited string because a comma signi-
fies the beginning and end of each data element. Traditionally, data elements are
transferred between applications in a comma-delimited format. The application
receiving the string then uses the commas as a guide for separating the string into
data elements.

Your task is challenging, but it can easily be accomplished by using the split ()
method of the string object. The split () method creates a new array and then
copies portions of the string, called a substring, into its array elements. You must
tell the split () method what string (delimiter) is used to separate substrings
in the string. You do this by passing the string as an argument to the split ()

method. In this example, the comma is the string that separates substrings. Here’s
how you use the split () method:

var NewStringArray = StringName.split('delimiter string')

The following JavaScript demonstrates how the split () method separates
substrings into array elements using a comma as the delimiter. Both the string con-
taining all the names and array elements containing each name are displayed on the
screen (Figure 6-6).

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Dividing a delimited string
into a substring</title>

</head>
<body>
<script language="Javascript" type="text/javascript">
<!--
var DataString =
'Bob Smith,Mary Jones,Tom Roberts, Sue Baker'
var NewArray = DataString.split(',")
document.write (DataString);
document.write ('
")
for (i=0; i<4; i++)
{
document.write (NewArray[i])
document.write ('
")
}
-——>
</script>
</body>

</html>

CHAPTER 6 Strings

& Dividing a delimited string into a substring - Netscape
File Edit View Go Bookmarks Tools ‘Window Helo

J J O _) |'\,_ ile:7)C: Jbooks; Javascript 20D emystiled) GoodDraftjListing L-2. htm| | [Q Sea‘ch] -T.I_*}Q @
B, CIMal AN 42 Home) Radio [] Netscape C), Search CJBookmarks

Bob Stith, Mary Jones, Tom Eoberts, Sue Baker

Bob Smith

Mary Jones

Tom Roberts

Sue Baker

5) & &f FJ |Come - g

Figure 6-6 Names are copied into elements of an array using the split() method.

Copying a Substring

Now you’ve learned how to divide a string into many substrings by using the
split () method and a string called a delimiter. This is useful when you are sepa-
rating a string containing data elements into individual data elements. However, the
split () method isn’t of much use to you if you need to copy one substring. For
this, you’ll need to use one of two other methods: substring () and substr ().

Let’s say, for example, that you built a client contact application that is used by
sales representatives to track activities with their corporate clients. This application
prompts the sales representative to enter the client’s e-mail address and corporate
web site URL. However, the application guesses the corporate web site URL based
on the e-mail address and uses it as the default value for the prompt to enter the
corporate web site.

Here’s the string that the sales representative entered that contains the e-mail
address:

EmailAddress = 'bsmith@xyz.com '

There is a good chance that the www.xyz.com is the corporate web site for this cli-
ent. Your job is to copy the substring 'xyz.com' from the e-mail address and then
concatenate the substring with 'www. ' to form the new string ' www.xyz.com"'.

@ JavaScript Demystified

First, we’ll see how this is done using the substring () method. The
substring ()is a method of a string object that copies a substring from a string
based on a beginning and an end position that is passed as an argument to the sub-
string () method.

The starting position specifies the first character that is returned by the sub-
string () method—that is, the first character in the substring. The end position
specifies the character that follows the last character that is returned by the sub-
string () method—that is, the position of the character that comes after the last
character that you want to include in the substring.

This is a little tricky to understand, so take a look at the e-mail address string
again:

'bsmith@xyz.com '

The last character in the string is a space. This is the fifteenth character in the string.
We want the substring 'xyz.com'. (Notice this is without the space.) The end
position that we need to pass to the substring () method is /4 (zero-based)
because the fifteenth character is the character that comes after the m—the space.
The m is the last character we want to include in our substring. Here’s how to write
the substring () method:

var NewSubstring =
StringName.substring (StartingPosition, EndPosition)

The following example illustrates how to create a substring using the sub-
string () method. The e-mail address is assigned to a variable. The
substring () method then copies the substring 'xyz.com' to the NewSub-
string variable, which is concatenated to 'www.' and assigned to the
GuessWebSite variable. The GuessWebSite is then used as the default value
for the prompt () function, which asks the sales representative to enter the client’s
web site URL into the application (Figure 6-7).

F J Enter the client web site.

Figure 6-7 The substring 'xyz.com' is concatenated to 'www.' to form the client’s web site.

CHAPTER 6 Strings

<!DOCTYPE html PUBLIC

"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>
<title>Using substring()</title>
</head>
<body>
<script language="Javascript" type="text/javascript">
<!--
var EmailAddress = 'bsmith@xyz.com '
var NewSubstring = EmailAddress.substring(7,14)
var GuessWebSite = 'www.' + NewSubstring
var WebSite =
prompt ('"Enter the client web site.', GuessWebSite)
-—>
</script>
</body>
</html>

In the real world, you probably won’t know the starting position and end position
of characters for your substring, because a user can enter any length string into your
application. You can overcome this problem by using the substr () method along
with other string object methods that you already learned how to use in this chapter.
The substr () method returns a substring. You must tell it the starting position of
the first character that you want to include in the substring and how many characters
you want copied into the substring from the starting position. Both positions are
passed as arguments to the substr () method.

Here’s how you write the substr () method:

Var NewSubstring =
StringName.substr
StartingPosition, NumberOfCharactersToCopy

Again, we’ll take a look at the e-mail address to understand how the substr ()
method works:

EmailAddress = 'bsmith@xyz.com '

The starting position is 7 since the first character of the substring is x (the eighth
character in the string, zero-based index). We want the substr () method to copy
seven characters into the substring beginning with character number 7. This results
in the substring 'xyz.com'.

By—

JavaScript Demystified

The following examples show how to use substr () to create the client’s web
site URL using the e-mail address that is entered into the application. This is similar
to the other example; however, we’ll prompt the user to enter the e-mail address
rather than hard code the e-mail address into the JavaScript (Figure 6-8). The web
site URL is then used as the default value for the prompt () function that retrieves
the client’s web site from the sales representative.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<title>Using substr()</title>

</head>
<body>
<script language="Javascript" type="text/javascript">
<l--
var EmailAddress =
prompt ('Enter your clients email address.', ' ")
var StartPosition = EmailAddress.indexOf('@') + 1
var NumCharactersToCopy =
EmailAddress.length - StartPosition
var NewSubstring =
EmailAddress.substr (StartPosition, NumCharactersToCopy)
var GuessWebSite = 'www.' + NewSubstring
var WebSite =
prompt ('Enter the client web site.', GuessWebSite)
-—>
</script>
</body>

</html>

[JavaScript &pplication]

©)\ Enter the client web site.
/ l

Figure 6-8 Any client e-mail address can be entered and the application will guess the
client’s web site URL.

CHAPTER 6 Strings @
Take a close look at how we determine the starting position and the end position.

Since we don’t know the e-mail address, we have to calculate the starting position

and the end position without it. First, let’s calculate the starting position.
We know that the first character of the substring is the character that follows

the @ in the e-mail address. If we know the position of the @ in the e-mail address,

we can easily determine the position of the next character. Recall from earlier in

this chapter that the indexOf () method of the string object returns the index of
the character that is passed as an argument to the indexOf () method.

NoTE Remember that a string is an array of characters, and each character
is an array element that is identified by an index. Also remember that the first
character in the string has an index of 0—not 1. This is an important factor
when calculating the starting position of a substring.

We pass the indexOf () method the @ character, as shown here:
EmailAddress.indexOf ('Q")

This returns the index of the @ character in the e-mail address that the sales
representative entered into the application. The indexOf () function returns the
zero-based index, which is the character position. Notice in the application script
that we added / to the index returned by the indexOf () method. This is the posi-
tion of the character that will become the first character in the substring—in other
words, the character right after the @ character.

Next, we need to tell the substr () method how many characters to copy from
the starting position. We must calculate this value by subtracting the starting posi-
tion from the length of the string. The length of the string is contained in the
length value of the string object:

var NumCharactersToCopy = EmailAddress.length - StartPosition

Converting Numbers and Strings

You’ll recall from Chapter 2 that a number and a string are two different types of
data in JavaScript. A number is a value that can be used in a calculation; a string is
text and can include numbers, but those numbers cannot be used in calculations.

If you need to convert string values to number values, you can do so by convert-
ing a number within a string into a numeric value that can be used in a calculation.
You do this by using the parseInt () method and parseFloat () method of
the string object.

@ JavaScript Demystified
The parseInt () method converts a number in a string to an integer numeric
value, which is a whole number. You write the parseInt () method this way:

var num = parselnt (StringName)
Here’s an example. Suppose you have the following string:
var StrCount = '100'

You cannot use this number in a calculation because '100" is a string and not a
numeric value—that is, the browser treats this as text and not a number. You must
convert this string to a numeric value before you can use the 100 in a calculation.
The following statement is used for this conversion:

var StrCount = '100'
var NumCount = parselnt (StrCount)

The parseFloat () method is used similarly to the parseInt () method,
except the parseFloat () method is used with any number that has a decimal
value. (Think of a decimal number whenever you see the word float.) Here’s how to
use the parseFloat () method:

var StrPrice = '10.95'
var NumPrice = parseFloat (StrCount)

Tip Avoid a common rookie mistake. Use the parseFloat () method and not
the parseInt () method if the string contains a decimal value. If you use the
parselnt () method instead of the parseFloat () method for a decimal value,
only the integer portion, not the decimal portion, of the number is converted.

Numbers to Strings

As you can probably guess, you need to convert a numeric value to a string before
the number can be used in the string. You do this by calling the toString ()
method of the number object. The toString () method can be used to convert
both integers and decimal values (floats). Here’s how to convert a number value to
a string:

Var NumCount = 100

var StrCount = NumCount.toString/()

Alternatively, you can use the concatenation operator (+) to combine a string
and a number. The concatenation operator automatically calls the toString ()
method on numeric values to convert them to a string. This is illustrated here:

CHAPTER 6 Strings

—E

var x = 500
var y = 'abc'
var z = x + y

Variable z now has the value '500abc' and has been converted to a string.

Changing the Case of the String

You learned how to compare two strings in Chapter 3 by using the equivalency
operator (==) in the conditional expression of an if statement, like so:

if (userID == 'ScubaBob')

Sometimes, the nature of your application requires an exact match of letters and the
case of the letters. This is typically the situation when you’re validating a user ID
and password. You want the user to enter an ID and password using the correct
uppercase and lowercase letters.

Alternatively, you may need to indicate a string in all uppercase or all lowercase
letters. For example, suppose you were comparing two strings, each containing a
company name. These names could be the same except for the case. One might
be written as FedEx and the other Fedex. But the browser sees FedEx and Fedex as
different entities because of the uppercase E in the first name and lowercase e in the
second.

JavaScript developers avoid issues related to case by changing the case of both
strings to ether uppercase or lowercase before comparing them. This is done by us-
ing the toUpperCase () method and toLowerCase () method of the string
object. The functions return a new string that’s either all uppercase or all lowercase.
The original string is unchanged.

The following code segment shows how this is done using the t oUpperCase ()
method, which converts a string to uppercase characters:

var Compl = 'FedEx'
var Comp2 = 'Fedex'
if (Compl.toUpperCase () == Comp2.toLowerCase())

The following code segment uses the toLowerCase () method to convert a
string to lowercase characters:

var Compl = 'FedEx'
var Comp2 = 'Fedex'
if (Compl.toLowerCase () == Comp2.toLowerCase())

@ JavaScript Demystified
e
Strings and Unicode

You probably already know that a computer understands only numbers and not
characters. You might not know that when you enter a character, such as the letter w,
the character is automatically converted to a number called a Unicode number that
your computer can understand. Unicode is a standard that assigns a number to every
character, number, and symbol that can be displayed on a computer screen, includ-
ing characters and symbols that are used in all languages.

On a rare occasion, you might need to know the Unicode number of a character
or the character that is assigned a specific Unicode number. You can determine the
Unicode number or the character that is associated with a Unicode number by using
the charCodeAt () method and fromCharCode () method. Both are string
object methods. The charCodeAt () method takes an integer as an argument that
represents the index of the character in which you’re interested. If you don’t pass an
argument, it defaults to index O.

The charCodeAt () method returns the Unicode number of the string:

var UnicodeNum = StringName.charCodeAt ()
Here’s how to determine the Unicode number of the letter w:

var Letter = 'w'
var UnicodeNum = Letter.charCodeAt ()

The Letter.charCodeAt () method returns the number 119, which is the
Unicode number that is assigned the letter w. Uppercase and lowercase versions of
each letter have a unique Unicode number.

If you need to know the character, number, or symbol that is assigned to a Uni-
code number, use the fromCharCode () method. The fromCharCode ()
method requires one argument, which is the Unicode number. Here’s how to use the
fromCharCode () method to return the letter w.

var Letter = String.fromCharCode (119)

Looking Ahead

In this chapter, you learned how to perform magic with strings. You learned how to
concatenate two strings to form a new string. You also learned how to take a part of
a string using the split () method, substring () method, and substr ()

method. The split () method divides a string into parts called substrings using a
delimiter string to determine the parts. Both substring ()and substr () are
used to copy selected characters from the string to another string.

CHAPTER 6 Strings @

You saw that a string is actually an array of characters, where each character is
an element of the array and is identified by an index. You can use the charAt ()
method to copy a specific character from the array. The indexOf () method is
used to determine the index of a specific character.

You also learned how to determine the length of the string by using the string
object’s 1ength value. And you saw how to convert a string to a number using the
parselnt () method and parseFloat () method or convert a number to a
string using the toString () method.

The next chapter shows you how to control and enhance HTML forms from a
JavaScript.

Quiz

1. True or False. The first character of a string array is string[1].
a. True
b. False
2. A float is
a. An integer
b. A whole number
c. A decimal value
d. A Unicode number

3. What method would you use to divide a string of data delimited by a
comma into an array of data?

a. parseFloat ()
b. split ()
Cc. parselInt ()
d. charCodeAt ()
4. The end position argument in the substring () method indicates what?
a. The position of the last character that is copied into the substring
b. The position of the first character that is copied into the substring

c. The position of the character following the last character that is copied
into the substring

d. The position of the character preceding the last character in the substring

By—

5.

10.

JavaScript Demystified

The second argument in the substr () method indicates what?
a. The position of the last character that is copied into the substring

b. The number of characters that are to be copied from the string to the
substring

c. The position of the character preceding the last character that is copied
into the substring

d. The position of the character preceding the last character in the substring

. What is the 1ength value of a string object?

a. The total number of characters in the string
b. The index of the last character in the string
c. The length of the string minus spaces

d. The length of the string minus trailing spaces

. True or False. The index of the last element in the string array is the same

value as the string length.
a. True
b. False

. True or False. The parseInt () method cannot be used with a mixed

number (whole number and decimal).
a. True
b. False

. True or False. A delimiter string is used by the split () method to create

an array of data elements.

a. True

b. False

Unicode is

a. A string that contains a numeric value

b. A numeric value that represents characters, numbers, and symbols that
can be displayed on the screen

c. The end position used by the substr () method
d. The end position used by the substring () method

CHAPTER J

Forms and Event
Handling

It seems that no matter what web site you visit these days, you are asked to fill out
a form—be it an order form, subscription form, membership form, financial form,
survey, and the list goes on. Although forms may seem invasive, prying into our
private affairs, forms are the only practical way to collect information that is neces-
sary to conduct business on the Internet.

Forms are created using HTML form elements such as buttons and check boxes.
Forms used by commercial web sites also interact by using JavaScript. A JavaScript
is used for a variety of purposes, including data validation and for dynamically inter-
acting with elements of a form.

In this chapter, you’ll learn how to add another dimension to your HTML forms
by writing JavaScripts that make an HTML form come alive.

—

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

@ JavaScript Demystified
«r
Building Blocks of a Form

As you probably remember from when you learned HTML, a form is a section of
an HTML document that contains elements such as radio buttons, text boxes, check
boxes, and option lists. HTML form elements are also known as controls. Elements
are used as an efficient way for a user to enter information into a form.

Forms are used for all kinds of purposes. In a business, forms are used to gather
order information from a customer. Forms are also used for online surveys. Teach-
ers use forms for online tests. Information entered into a form is sent to the web
server for processing when the user clicks a submit button.

The program that processes the form is called a Common Gateway Interface (CGI)
program. CGI programs are written in one of a number of programming languages,
including JSP, PHP, Perl, and ASP. CGI programs typically interact with non-web
applications such as databases and other systems that are necessary to process the
form. Once processing is completed, the CGI program usually creates another web
page dynamically and sends the web page to the browser that sent the form.

Elements and JavaScript

Each element has one or more attributes, which is information associated with the
element. For example, the value attribute is used to define a default value, not
the user-entered value. A good example would be the name attribute, since this
attribute is used to reference the element. You’ll learn about the different kinds
of attributes that are available for each element throughout this chapter as each ele-
ment is discussed.

Many applications require that some information contained on a form be verified
using a validation process. Two common ways to validate information on a form are
by using CGI programs and JavaScripts. A CGI program validates information after
the form is submitted. A JavaScript can validate information whenever one of sev-
eral events occurs while the form is displayed on the screen. You’ll learn about
these events in the “Responding to Form Events” section of this chapter.

Validation should occur on both the client (via JavaScript) and the server (via a
CGI program). The client-side validation provides immediate feedback and reduces
load on the server. It’s good practice to validate again on the server because you
don’t always know that the JavaScript executed properly on the browser. You could
make an exception to this if you require that JavaScript be enabled in order to use a
web site (but that’s more of a business decision).

In addition to validating information, JavaScripts can dynamically change a form
while the form is displayed on the screen. For example, a JavaScript can activate or
deactivate elements based on a value the user enters into another element. You can

CHAPTER 7 Forms and Event Handling @
also set the default value of elements based on a value entered by a user into an-
other element.
A JavaScript can interact with elements of a form in many ways. You’ll learn
about them in this chapter. However, you won’t learn about creating a form here;
instead, you’ll see examples of forms that are used to illustrate JavaScripts. Pick up
a copy of HTML: The Complete Reference, Third Edition by Thomas A. Powell or

How to Do Everything with HTML by James H. Pence (both books published by
McGraw-Hill/Osborne) if you need to brush up on how to create forms.

Responding to Form Events

A JavaScript executes in response to an event that occurs while a form is displayed
on the screen. An event is something the user does to the form, such as clicking a
button, selecting a radio button, or moving the cursor away from an element on the
form. The browser also fires events when the page finishes loading from the server.
You can execute a script each time one of the form events listed in Table 7-1 occurs.

An event is associated with an element of a form as a attribute defined within the
opening tag of the element. You assign this attribute the name of the JavaScript
function that you want executed when the event occurs.

Let’s say that your form has an input element in which the user enters his or her
first and last names and e-mail address (Figure 7-1). You want a JavaScript to vali-
date the e-mail address by checking whether the address includes an @ sign when
the user moves the cursor away from the input element. You do this by using the
onblur event attribute in the opening <INPUT> element tag and assigning the
name of the JavaScript function to the onblur event attribute. The onblur event
occurs when the cursor moves away from the element, which is called losing focus.
The following example illustrates how this is done.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>onblur event</title>
<script language="Javascript" type="text/javascript">
<!--
function ValidateEmail (EmailAddress)
{
var Location = EmailAddress.indexOf ('@Q@")
if (Location == -1)
{

alert

JavaScript Demystified

('You entered an inaccurate email address.')

}

-—>
</script>
</head>
<body>
<FORM action="http://www.Jjimkeogh.com" method="post">
<P>
First Name: <INPUT type="text" name="Fname"/>

Last Name: <INPUT type="text" name="Lname"/>

Email: <INPUT type="text" name="Email"
onblur="ValidateEmail (this.value)"/>

<INPUT name="Submit" value="Submit" type="submit"/>
<INPUT name="Reset" value="Reset" type="reset"/>
</P>
</FORM>
</body>
</html>
Event Description
onload Executes when the browser finishes loading a window or all frames
within a frameset
onunload Executes when the browser removes a document from a window or frame
onclick Executes when the mouse button is clicked over an element
ondblclick Executes when the mouse button is double-clicked over an element
onmousedown Executes when the mouse button is clicked while the mouse cursor is over
an element
onmouseup Executes when the mouse button is released while the mouse cursor is
over an element
onmouseover Executes when the mouse cursor moves onto an element
onmousemove Executes when the mouse cursor is moved while over an element
onmouseout Executes when the mouse cursor is moved away from an element
onfocus Executes when an element receives focus
onblur Executes when an element loses focus
onkeypress Executes when a key is pressed and released
onkeydown Executes when a key is held down

Table 7-1 Form Events

CHAPTER 7 Forms and Event Handling

—&

Event Description

onkeyup Executes when a key is released

onsubmit Executes when a form is submitted

onreset Executes when a form is reset

onselect Executes when text is selected in a text field

onchange Executes when an element loses input focus and the value of the element
has changed since gaining focus

Table 7-1 Form Events (continued)

You’ll see a form displayed when you call this web page from your browser. The
form has five elements: The first two elements are input elements for the first and
last names. The third element is also an input element, where the user enters an
e-mail address. The last two elements are buttons—the Submit button that submits
the form to the web server, and the Reset button that clears data from the form.
Notice that each element has a name attribute, which is assigned a unique name.
The name attribute can be referred to in a JavaScript, although we don’t refer to the
name attribute in this example.

& onbur event - Netscape
File Edit View Go BEookmarks Tools Window Help
. \) \) Q J [HesfliCubocksavascrptvn20nemystifiedjGocdDraft Listingl-2. ke | [Ty search | ':-"‘}o @

. @, OMal B AIM 43 Home (0 Rado [Metscape O, Search [JBackmarks

First Mame: Bob
Last Mame: Smith
Emai: mycompany.com

iSubmiti | | Reset

@ A 2 @F F Do == g

Figure 7-1 The form prompts the user to enter his or her first and last names and an
e-mail address.

@ JavaScript Demystified

Take a look at the Email element and you’ll notice that we’ve included the
onblur event in the INPUT open tag. We also assigned to it the name of the func-
tion that we want called whenever the user moves the cursor from the Emai 1 input
element. This is called ValidateEmail () and is defined in the JavaScript located
in the <head> section of this web page script. The ValidateEmail () function
is passed one parameter, which is the value of the Emai 1 input element. This param-
eter might look a little strange, but you’ve seen something like this used in previous

chapters. You’ll recall that whenever you want to write something on the screen,
you execute the following statement:

document.write('Display this text.')

Here, the name of an object is document, and write () is the name of the
method that is associated with the document object. This is basically the same
thing as the parameter that is being passed to the ValidateEmail () function.

In the onblur event code, the name of the object is called this—thatis, this
refers to the current object, which is the Email input element. It is like saying,
“The color of this car is blue.” It is assumed that everyone knows which car you're
talking about, because it is the only car that you’re looking at. Therefore, use the
word this whenever you want to refer to the name of the current object.

Notice that value is the attribute associated with the this object (the Email
input element). Whenever you use the name of an attribute such as value, you are
telling the browser to use the value of the attribute. In this case, we’re telling the
browser to use the value of the value attribute, which is the information the user
enters into the Email input element.

Suppose the user enters jkeogh@mcgrawhill.com into the Email input element
on this form. In this case, the this.value is the same as jkeogh@mcgrawhill
.com, because the e-mail address is the value assigned to the value attribute by the
browser when the user enters the address into the Email input element on the form.

Let’s take a look at the ValidateEmail () function definition in the JavaScript
within the <head> portion of the web page. The e-mail address passed to the
ValidateEmail () function is assigned to EmailAddress. The first state-
ment within the function declares a variable called Location and initializes the
variable with the index of the @ symbol within EmailAddress.

You’ll recall from Chapter 6 that the indexOf () function finds the position of
a character within a string of characters. The indexOf () function returns a —1 if
the string doesn’t contain the character. The value of the Location variable will
either be —1, if the @ symbol isn’t in the EmailAddress, or an index value,
which means there is a good chance that the e-mail address is in the proper format.
(We won’t know whether it is a valid e-mail address until we try sending an e-mail
to that address.)

CHAPTER 7 Forms and Event Handling

—E&

Wou entered an inaccurake email address,

Figure 7-2 A warning message is displayed if the @ symbol was not entered in the
e-mail address.

We’re only interested if the value of the Location variable is —1. Therefore,
we use an if statement (see Chapter 3) to determine whether the @ symbol wasn’t
entered by the person. If the @ symbol was not entered, an alert dialog box is dis-
played with a message warning that the e-mail address is invalid (Figure 7-2).

Form Objects and Elements

When you look at a form within a web page, you probably don’t necessarily think
about how the form relates to everything else that you’re seeing. However, relation-
ships on a web page are very important when you are a JavaScript programmer,
because you need to know them to access them.

Everything that you see on a web site is considered an object. The first object you
see is the window, which is referred to in a JavaScript as window. A window con-
tains an HTML document referred to as document. You’ve referenced the
document throughout this book whenever you called the document .write ()
function. A document can have one or more forms, and a form can have one or more
elements.

Form objects are stored in an array (see Chapter 4) called forms and appear in the
order in which the forms appear in the document. You can reference each form by
referencing the form’s index. Suppose you wanted to reference the third form. You’d
write this:

window.document.forms[2]

You'’re telling the browser to go to the window object and then within the window
object go to the document object and then reference the form that is assigned to
the 2 index value of the forms array. (Remember that the index 2 is referencing the
third form, because the first form is index 0.)

@ JavaScript Demystified
Tip Although this is a good syntax to reference the window object, this is not
required. You can use this instead:

document.forms[2] (might be worth mentioning...)

Forms are assigned to elements of the forms index in the order that each form
appears in the document. You can reference a form using its index instead of using
the name of the form. Remember that the name of the form is the value that is as-
signed to the form’s name attribute. Here’s how to reference a form by using the
name of the form. In this example, we’re referencing the order form:

window.document.forms.order

Tip Referencing by name is better practice than referencing by index because
the display and ordering of elements changes all the time, and it requires less
maintenance if you reference by name. Also, referencing by name makes your
code easier for humans to understand and maintain.

The following example shows how to access an attribute of a form. We defined
the display () function in the JavaScript within the <head> tag. This function
receives the value of the form’s Reset element and displays it in an alert dialog
box (Figure 7-3). The function is called in response to an onclick event that oc-
curs when the user clicks the Reset button.

<!DOCTYPE html PUBLIC
"-//W3C//DID XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Accessing form attributes</title>
<script language="Javascript" type="text/javascript">
<l--
function display ()
{
alert
('Value: ' + document.forms.order.Reset.value)
}
-—>
</script>
</head>
<body>
<FORM action=
"http://www.jimkeogh.com" method="post" name="order">
<pP>
First Name: <INPUT type="text" name="Fname"/>

Last Name: <INPUT type="text" name="Lname"/>

CHAPTER 7 Forms and Event Handling @
Email: <INPUT type="text" name="Email"/>

<INPUT name="Submit" value="Submit" type="submit"/>
<INPUT name="Reset" value="Reset"
type="reset" onclick="display()"/>
</P>
</FORM>

</body>
</html>

Elements on a form are stored in an array called elements in the order in which

the elements appear on the form. Here’s how you access an element by using the
element’s index within the elements array:

window.document.forms.order.elements[2]

This tells the browser to go to the window object and within the window object
go to the document object. Within the document object go to the forms and
access the form named order. And within the order form access the element
that has index 2, which is the third element.

Time-Saving Shortcut

Here’s a trick JavaScript pros use to reduce the amount of typing they have to do when
referencing attributes of elements. Let’s say that you want to access the value
attribute of the email element. You’d write the following:

window.document.forms.order.email.value

Suppose you want to access several attributes of the email element. Instead of
writing the full path, you can use a with statement to save keystrokes when writing
your JavaScript. Here’s the shortcut:

with (window.document.forms.order.email)

{

alert ('Email: ' + wvalue)

¥ou entered an inaccurate email address,

Figure 7-3 The alert dialog box displays an attribute of an element when the Reset
button is clicked.

@ JavaScript Demystified
In this example, the full path is written once at the top of the with statement and is

then automatically applied to each attribute within the with statement. You can use
this same technique to create elements of a form, like so:

with (window.document.forms.order)

{

alert ('Email: ' + mail.value)

You can write other statements in the with statement to reference other elements
of the order form without having to write the complete path.

Changing Attribute Values Dynamically

You can spice up any form by changing the attributes of the form element dynami-
cally. Let’s say that your user/customer wants to modify an existing order. Your
application displays the order form, and then prompts the customer to make
changes. You could highlight those changes by altering the color, style, or font of
the element after the customer makes the change. This gives the customer a visible
way of telling what information has changed.

You can change an attribute of an element by assigning a new value to the attri-
bute from within a JavaScript function. The function is then called when an
appropriate event occurs. In the next example, we’ll display the form you saw in a
previous example that enables the user to enter a first and last name and an e-mail
address. This example displays default values for these elements just as if existing
contact information were recalled from a file. Whenever the user changes the de-
fault value, we’ll display the new value in blue instead of black and change the
background color from white to silver.

Here’s how this is done. First, we define a function in the <head> tag called
Highlight (). This function receives one parameter, which is the name of the
element that calls the function. The name is compared with the names of each ele-
ment on the form. When a match occurs, statements within the if statement change
the text color and background color style attributes of the element by assigning a
new value to the style of the element (Figure 7-4).

Notice that the Fname element, Lname element, and Email element trap the
onchange event. The onchange event occurs when the cursor is moved away
from the element (that is, it loses input focus) and the value of the element has
changed since the last time the cursor was placed on the element (that is, it
gained focused). The onchange event happens when the user changes the element
and then moves on to another element. When the onchange event occurs, the

CHAPTER 7 Forms and Event Handling @

&= Dynamically Changing Element Attributes - Netscape []

File Edit View Go BEookmarks Tools Window Help

_) _) O \) |"\;- File:/J/C: Jbooks/JavaScripth20DemystifiedjGoodDraft fListing1 -2.htm ||Q.5m-.:h| QJ‘O @

., [OMal B AM 4 Home () Radio My Metscape Ol Search [CJBookmarks

First IMame: Bob
Last Mame: Smith
Email bsmith@rycompans.o

| submit || Method

D A Of) oo S

;

Figure 7-4 The color and background color of an element is changed after a user
changes the value of the element.

Highlight () function is called and is passed the name of the element. This
would also be rather maintenance-intensive. Instead, you can pass in the element
itself so the function is more generic.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<title>Dynamically Changing Element Attributes</title>
<script language="Javascript" type="text/javascript">

<l--
function Highlight (Element)
{

Element.style.color = 'blue'
Element.style.backgroundColor = 'silver'
}
-—>
</script>
</head>
<body>

<FORM name="Contact"

@ JavaScript Demystified
action="http://www.jimkeogh.com" method="post">
<P>
First Name: <INPUT value="Bob" type="text"
name="Fname" onchange="Highlight (this)"/>

Last Name: <INPUT value="Smith" type="text"
name="Lname" onchange="Highlight (this)"/>

Email: <INPUT value="bsmith@mcgrawhill.com" type="text"
name="Email" onchange="Highlight (this)"/>

<INPUT name="Submit" value="submit" type="submit"/>
<INPUT name="Reset" value="Method" type="reset"/>
</P>
</FORM>
</body>
</html>

Changing Elements Based on a Value
Selected by the User

Another way you can jazz up your form is to fill in information automatically based on
information already entered into the form. You do this by assigning a new value to the
value attribute of an element after the user changes another element on the form.

Here’s how this works. Suppose you want to fill in the e-mail address on the form
automatically, based on a user’s first and last names as entered in the form. In this
example, the e-mail address will consist of the first initial of the user’s first name
and the full last name, as entered by the user. So Mary Jones’s e-mail address would
look like this: mjones@mycompany.com.

The next example traps the onchange event for both the Fname and Lname
elements and calls the SetEmail () function, which is defined in the <head> tag
section of the document. The SetEmail () function determines whether a first
and last name were entered into the form by examining the 1ength attribute of the
string, which you learned about in Chapter 6. If the 1ength is greater than zero,
we assume that the user entered a first name or last name. Both names must be en-
tered; otherwise, the function doesn’t set the e-mail address because the e-mail
address requires both the first and last names.

However, if both names exist, the function copies the first letter of the first name
using the charAt () function. As you’ll recall from Chapter 6, each character of a
string is assigned as an element of an array. The first element has an index of 0. The
charAt () function is told to return the character at index 0, which is the first
letter of the value of the first name.

The domain name is then concatenated to the value of the last name, and the
value of the last name is concatenated to the first letter of the first name to form

CHAPTER 7 Forms and Event Handling @
the e-mail address. The e-mail address is then assigned to the value of the Email
element (Figure 7-5).

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Dynamically Change Attribute Value</title>
<script language="Javascript" type="text/javascript">
<!l--
function SetEmail ()
{
with (document.forms.Contact)
{
if (Fname.value.length >0
&& Lname.value.length >0)

Email.value =

Fname.value.charAt (0) +
Lname.value + '@Gmycompany.com'

}

-—>
</script>
</head>
<body>

<FORM name=
"Contact" action="http://www.jimkeogh.com"
method="post">
<p>
First Name: <INPUT type="text" name="Fname"
onchange="SetEmail () "/>

Last Name: <INPUT type="text" name="Lname"
onchange="SetEmail () "/>

Email: <INPUT type="text" name="Email">

<INPUT name="Submit" value="Submit" type="submit"/>
<INPUT name="Reset" wvalue="Reset" type="reset">
</P>
</FORM>
</body>
</html>

@ JavaScript Demystified

File Edit View Go BEookmarks Tools Window Help

o ‘& _) [meircbacksf1avascrntenzopemystifisdiGocdDraft Listing1-2.em | [Cysearch | © =N -;i.

©, EMal S AIM 43 Home G0 Rado W Metscape Ol Search [JBockmarks

First Mame: Mary
Last Mame: Jones
Email, MJones@rrcompany.
Submit | | Reset

| ® =2 2 oF () [ome By

Figure 7-5 The JavaScript automatically fills in the e-mail address when the user enters
a first and last name.

Changing an Option List Dynamically

As you’ll recall, an option list presents a user with two or more items from which
to choose. Items that appear on the option list are typically set when the option list
is created. However, you can change the content of an option list on the fly by using
a JavaScript function.

Let’s say that you want to give the user the option of selecting either a car or a
motorcycle, but not both. One way to do this is to display two radio buttons called
Cars and Motorcycles. When one radio button is selected, the other radio button is
automatically deselected. In other words, when the Cars radio button is selected,
the Motorcycles radio button will be deselected because the two radio buttons are
part of the same form and have the same value for the name attribute.

To wow the user, you can change items in an option list to reflect whatever radio
button the user selects. That is, the option list shows cars when the Cars radio button
is selected and the same option list shows motorcycles when the Motorcycles radio
button is selected. You can dynamically change items in an option list by calling a
JavaScript function whenever the radio button selection changes. The function then
resets items on the option list.

The following example shows how this works. Take a look at the form and
you’ll notice an option list that contains two models of motorcycles. Beneath the

CHAPTER 7 Forms and Event Handling

&3 Dynamical Change Option List - Netscape
File Edit View Go BEookmarks Tools Window Help
" a=f
J J \) \) |\ File:/J/C: Jbooks/JavaScripth20DemystifiedjGoodDraft fListing1 -2.htm | [Cy search | <5 o @
©, EMal S AIM 43 Home G0 Rado W Metscape Ol Search [JBockmarks
Classic
Fuolice Cruiser
{“Motercycles) Cars
| Submit]| Reset |
B) &8 &F B Do T

Figure 7-6 Items on the option list change based on the radio button selected by the user
on the form.

option list are two radio buttons: Motorcycles and Cars. The Motorcycles radio but-
ton is selected by default. Each radio button responds to the onc1ick event by calling
the ResetOptionList () function, passing it the value of the radio button.

You’ll notice thatthe ResetOptionList () functionisdefinedinthe <head>
tag section of the page. The value of the radio button selected is assigned to the
ElementValue parameter of the ResetOptionList () function. Based on
this value, the ResetOptionList () function resets the text and the value of items
on the option list to reflect the radio button that the user selected (Figure 7-6). No-
tice that each item on the option list has a unique value; this enables the CGI
application to determine which option was selected.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Dynamically Change Option List</title>
<script language="Javascript" type="text/javascript">

<I--
function ResetOptionlList (ElementValue)
{

with (document.forms.Contact)

JavaScript Demystified

if (ElementValue == 1)

OptionList [0].text = "Classic"
OptionList [0].value =1
OptionList [1].text = "Police Cruiser"
OptionList [1].value = 2

}

if (ElementValue == 2)

{
OptionList [0].text = "Ford"
OptionList [0].value =1
OptionList [1].text = "Chevy"
OptionList [1].value = 2

}

-—>
</script>
</head>
<body>

<FORM name="Contact"
action="http://www.jimkeogh.com" method="post">
<P>
<select name="OptionList" size="2">
<option Value=1>Classic
<option Value=2>Police Cruiser
</select>

<INPUT TYPE="radio"
name="vehicles" checked="true"
value=1 onclick ="
ResetOptionList (this.value) ">Motorcycles
<INPUT TYPE="radio"
name="vehicles" Value=2 onclick="
ResetOptionList (this.value) ">Cars

<INPUT name="Submit" value="Submit" type="submit"/>
<INPUT name="Reset" value="Reset" type="reset">
</P>
</FORM>
</body>
</html>

CHAPTER 7 Forms and Event Handling @
W
Evaluating Check Box Selections

A check box is a common element found on many forms and is used to enable a
user to select one or more items from a set of known items. You can write a Java
Script function that evaluates whether or not a check box was selected and then
processes the result according to the needs of your application.

You’ll see how this is done in the next example, where the user is prompted to
select his or her level of education using check boxes. Each check box item displays
a level of education, and this information is processed when the user clicks the
Process button at the bottom of the form (Figure 7-7).

The Process button traps the onclick event and calls the JavaScript
Education () function, which is defined in the <head> tag section of this page.
The Education () function evaluates each check box to determine whether the item
is checked and then displays the user’s education in an alert dialog box (Figure 7-8).

The Education () function begins by declaring a string and initializing it
with the first part of the text that will appear in the alert dialog box. It then evaluates
the checked attribute of each check box. If the checked attribute is true, the level
of education is concatenated to the string. You’ll notice that the += operator is
used. As you’ll recall from Chapter 2, this operator concatenates the value to the

File Edit View Go BEookmarks Tools Window Help

J ‘& \) [meircbacksf1avascrntenzopemystifisdiGocdDraft Listing1-2.em | [Cysearch | © 5o Aal

©, EMal S AIM 43 Home G0 Rado W Metscape Ol Search [JBockmarks

¥ High School

[v] Associate Degree

[v|Bachelor degree

VIMasters Degree

CIDoctorate Degree
Process |

3) 2 @ F Do == g

Figure 7-7 A JavaScript function can evaluate choices made using a check box or other
elements on a form.

JavaScript Demystified

[Javascript Application]

j You selected: high school, associate degree, bachelor degree, masters degree

Figure 7-8 The Education() function displays check box selections.

right (level of education) of the operator to the value to the left of the operator
(value of the selection variable) and then assigns the concatenated strings to the
selection variable.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Evaluating Checkboxes</title>
<script language="Javascript" type="text/javascript">
<!--
function Education ()
{
var selection = "You selected: "
with (document.forms.Contact)
{
if (HS.checked =
{

true)

selection += "high school"
if (AD.checked == true)

selection += ", associate degree"
if (BD.checked == true)

selection += ", bachelor degree"
if (MD.checked == true)

selection += ", masters degree"

if (DD.checked == true)

CHAPTER 7 Forms and Event Handling @
selection += ", doctorate degree "

}

alert (selection)

}

-—>
</script>
</head>
<body>

<FORM name="Contact"

action="http://www.Jjimkeogh.com" method="post">
<p>
<INPUT TYPE="checkbox"

name="HS" value="HS">High School

<INPUT TYPE="checkbox"

name="AD" value="AD">Associate Degree

<INPUT TYPE="checkbox"

name="BD" value="BD">Bachelor degree

<INPUT TYPE="checkbox"

name="MD" wvalue="MD">Masters Degree

<INPUT TYPE="checkbox"

name="DD" wvalue="DD">Doctorate Degree

<INPUT name="Process" value="Process"
type=reset onclick ="Education ()" >
</P>
</FORM>
</body>

</html>

Manipulating Elements Before
the Form Is Submitted

You can manipulate elements on a form after the user clicks the Submit button and
before the form is actually submitted to the CGI application. This is handy if you
need to validate information on the form or want to amend information to the form
that the user didn’t enter.

JavaScript Demystified

& Manipulate Elements Befored Form Is Submit - Netscape
File Edit View Go BEookmarks Tools Window Help

. \) \) O J [HesfliCubocksavascrptvn20nemystifiedjGocdDraft Listingl-2. ke | [Ty search | ':-"‘}.o @

. @, OMal B AIM 43 Home (0 Rado [Metscape O, Search [JBackmarks

First Mame: Mary
Last Mame: Jones
Email:

Submit || Resst

3 =) 2 GEf F Dene == g

Figure 7-9 The SetEmail() function creates the e-mail address and assigns it to the
Email element before the form is submitted for process.

You do this by assigning a JavaScript function to the onsubmit event. You’'ll
see how this is done in the next example, where the e-mail address is automatically
entered into the form after the user submits the form for processing.

This form is similar to other forms you’ve seen in this chapter, except the Email
element is a hidden element (Figure 7-9). You probably remember from the time
you learned HTML that a hidden element is like any other element on a form, ex-
cept the element doesn’t appear on the screen. A hidden element has a name and
value that is sent to the CGI program along with other elements of the form for
processing.

When the Submit button is clicked, the SetEmail () function is called. The
SetEmail () function creates an e-mail address using the user’s first and last
names. The function then assigns the e-mail address to the value of the Email ele-
ment, and the form is submitted to the CGI program.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Manipulate Elements Before A Form Is Submitted</title>
<script language="Javascript" type="text/javascript">

CHAPTER 7 Forms and Event Handling @
<l--

function SetEmail ()

{

with (document.forms.Contact)

{
if (Fname.value.length >0 &&
Lname.value.length >0)

Email.value = Fname.value.charAt (0)
+ Lname.value + '@mycompany.com'

}

-—>
</script>
</head>
<body>

<FORM name="Contact"

action="http://www.jimkeogh.com" method="post">
<p>

First Name: <INPUT type="text" name="Fname"/>

Last Name: <INPUT type="text" name="Lname"/>

Email: <INPUT type="hidden" name="Email"/>

<INPUT name="Submit" value="Submit"

type="submit" onsubmit="SetEmail ()" />

<INPUT name="Reset" value="Reset" type="reset">

</P>

</FORM>
</body>
</html>

Using Intrinsic JavaScript Functions

JavaScript has a special set of functions called intrinsic functions that mimic ac-
tions of the Submit button and Reset button of a form. You don’t define an intrinsic
function, because JavaScript defines the function for you. However, you can call an
intrinsic function in the same way you would if you had defined the function.

An intrinsic function is often used to replace the Submit button and the Reset
button with your own graphical images, which are displayed on a form in place of
these buttons. This is illustrated in the next example. Two (image) tags are
used: one to display mysubmit.gif and the other to display myreset.gif. Notice that

@ JavaScript Demystified
each of these traps the onclick event and calls the appropriate intrinsic function.
This has the same effect as inserting the Submit and Reset buttons on the form and

then clicking them.
You can do this as follows:

<input type="image" src="mysubmit.gif"/>
The intrinsic functions would usually be called from the JavaScript function.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Using Intrinsic JavaScript Functions</title>
</head>
<body>
<FORM name="Contact"
action="http://www.jimkeogh.com" method="post">
<P>
First Name: <INPUT type="text" name="Fname"/>

Last Name: <INPUT type="text" name="Lname"/>

Email: <INPUT type="text" name="Email"/>

<img src="mysubmit.gif"

onclick="javascript:document.forms.Contact.submit ()"/>
<img src="myreset.gif"
onclick="javascript:document.forms.Contact.reset ()"/>
</P>
</FORM>
</body>

</html>

Changing Labels Dynamically

You can avoid cluttering a form with elements by relabeling an element when its
purpose has already been served. Think of this a reusing an element. You can re-
label an element and change any of its attributes by using a JavaScript function.

Let’s see how this in done. The next example is similar to the example used
earlier in the chapter for changing an option list dynamically. Here, it displays an
option list that contains either motorcycles or cars, depending on the category that
the user selects. In the earlier example, radio buttons were used. The appropriate
option list was displayed depending on which radio button the user selected. In this
example, the user clicks a button to change the option list.

CHAPTER 7 Forms and Event Handling

& Change Labels on Elements - Netscape
File Edt Wiew Go Bookmarks Tools ‘Window Help

o & O)[4 Aesilicibooksiavascrpt s zbemystified/GoodbratListingl-2.Hem | (Cisearcn] <5, @
, CIMal B aM 41 Home (7 Rado] Netscape O, Search [JBockmarks

Classic

Fualice Cruiser

| Submit || {Bikes:

30D L G F] Do k- &

Figure 7-10 You can use a JavaScript function to change a label on an element such
as a button while the form is being used.

The option list consists of motorcycles, and the button is labeled Cars when the
form is displayed. The user changes the option list to show cars by clicking the Cars
button. This causes the button to be relabeled as Bikes. When the Bikes button is
clicked, the option list shows motorcycles again and the button is relabeled Cars.

The button click traps the onc1ick eventand calls the ResetOptionList ()
function, passing the function the value of the button. The ResetOptionList ()
function compares the value with the two possible values, Cars and Bikes, and then
resets the text and value attributes of each option and resets the value of the button
(Figure 7-10). The value is the button label.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Change Labels on Elements</title>
<script language="Javascript" type="text/javascript">

<!--

function ResetOptionList (ElementValue)

{

with (document.forms.Contact)

{

Ey—

}

</sc
</head>
<body>

JavaScript Demystified

if (ElementValue == 'Cars')
{
SwitchButton.value = 'Bikes'
OptionList [0].text = 'Classic'
OptionList [0].value =1
OptionList [1l].text = 'Police Cruiser'
OptionList [1].value = 2
}
if (ElementValue == 'Bikes')
{
SwitchButton.value = 'Cars'
OptionList [0].text = 'Ford'
OptionList [0].value =1
OptionList [1].text = 'Chevy'
OptionList [1].value = 2
}
}
->
ript>

<FORM name="Contact"

<

</

</FO

</body>
</html>

action="http://www.jimkeogh.com" method="post">
P>
<select name="OptionList" size="2">
<option Value=1>Classic
<option Value=2>Police Cruiser
</select>

<INPUT name="Submit"
value="Submit" type="submit"/>
<INPUT name="SwitchButton" value="Bikes" type="reset"
onclick="ResetOptionList (this.value)" >
P>
RM>

CHAPTER 7 Forms and Event Handling @
A 3 4
Disabling Elements

It is common to display a form with some elements disabled, which prevents the
user from entering information into the element. A disabled element appears on the
form, but no information can be entered into the element until it is enabled, usually
after required information is entered into another element on the form.

You can use a JavaScript function to disable and enable elements on the form.
This is shown in the next example. Notice that the Email element is disabled
(Figure 7-11). It doesn’t become enabled until the user enters both a first and last
name, since the e-mail address is composed of both names in this case.

An element is disabled and enabled by setting the value of the disabled
attribute. Initially, the disabled attribute of the Email element is set to true,
which means that the Ema il element is disabled. Each time there is a change to the
first and or last name elements, the EnableEmail () function is called, which
examines the content of the Fname and Lname elements. If a value has been

& Diabled - Netscape
File Edit View Go BEookmarks Tools Window Help

. \) \) Q J [HesfliCubocksavascrptvn20nemystifiedjGocdDraft Listingl-2. ke | [Ty search | ':-"‘}.o @

©, EMal S AIM 43 Home G0 Rado W Metscape Ol Search [JBockmarks

First Mame: Mary
Last Name: |

Email:

Submit || Resst |

@ A 2 @F F Do == g

Figure 7-11 The Email element is disabled until the first and last names are entered into
the form.

@ JavaScript Demystified
entered for both, then the Email element is enabled by resetting the disabled
attribute to false.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Disabled</title>
<script language="Javascript" type="text/javascript">
<!--
function EnableEmail ()
{
with (document.forms.Contact)
{
if (Fname.value.length >0
&& Lname.value.length >0)

Email.disabled = false

}

-——>
</script>
</head>
<body>

<FORM name="Contact"
action="http://www.jimkeogh.com" method="post">

<P>
First Name: <INPUT type="text"

name="Fname" onchange=" EnableEmail ()"/>

Last Name: <INPUT type="text"

name="Lname" onchange=" EnableEmail ()"/>

Email: <INPUT type="text"
name="Email" disabled=true/>

<INPUT name="Submit" value="Submit" type="submit"/>
<INPUT name="Reset" wvalue="Reset" type="reset">
</P>
</FORM>
</body>
</html>

CHAPTER 7 Forms and Event Handling @
A 4
Read-Only Elements

You can use a JavaScript function to change the value of an element that the user can-
not change (a read-only element). This is possible by setting an element’s readonly
attribute. If the readonly attribute is set to true, then no one, including your
JavaScript function, can change the value of the element. If the readonly attri-
bute is set to false, then anyone, including the user entering information into the
form, can change the value of the element.

You can change the value of the readonly attribute from within your JavaScript
function. This is demonstrated in the next example, which was used earlier in the
chapter when the JavaScript function created an e-mail address based on the user’s
first and last names.

Look carefully and you’ll see a new twist in this new JavaScript, however. Notice
that the Email element is set to readonly. This means that the user cannot enter
an e-mail address. Each time the value of the Fname and Lname elements change,
the SetEmail () function is called. This function examines the Fname and
Lname elements and creates the e-mail address if both names have been entered.
However, before assigning the e-mail address to the Email element, the function
resets the readonly attribute to false, thereby enabling the function to write to the
Email element. After the e-mail address is assigned to the Email element, the
function sets the readonly attribute back to true, thus preventing the user from
changing the e-mail address.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Read Only</title>
<script language="Javascript" type="text/javascript">
<!--
function SetEmail ()
{
with (document.forms.Contact)
{
if (Fname.value.length >0
&& Lname.value.length >0)

Email.readonly = false
Email.value = Fname.value.charAt (0)

+ Lname.value + '@mcgrawhill.com'
Email.readonly = true

JavaScript Demystified

-—>
</script>
</head>
<body>

<FORM name="Contact"
action="http://www.jimkeogh.com" method="post">

<P>
First Name: <INPUT type="text"

name="Fname" onchange="SetEmail ()" />

Last Name: <INPUT type="text"

name="Lname" onchange="SetEmail ()"/>

Email: <INPUT type="text"
name="Email" readonly=true/>

<INPUT name="Submit" wvalue="Submit" type="submit"/>
<INPUT name="Reset" value="Reset" type="reset">
</P>
</FORM>
</body>
</html>

Looking Ahead

You can make a form come alive by using a little JavaScript. A form consists of
elements, such as radio buttons and check boxes, that are used to gather information
from a user. An element can contain one or more attributes, such as a name and
other values that can be changed by statements within a JavaScript.

A JavaScript can be executed when an event occurs while the user is entering
information into a form. An event is something the user does to the form, such as
clicking a button, selecting a check box, or moving the cursor away from an ele-
ment. In this chapter, you learned about the various events that occur while the form
is displayed on the screen.

You identify the event to which you want to respond by using the name of the
event within the opening tag of the element that is affected by the event. You also
must assign the name of the JavaScript function that you want called when the event
occurs.

Two kinds of JavaScript functions can be called: intrinsic functions that are de-
fined by JavaScript, such as submit () and reset (), and functions that you

CHAPTER 7 Forms and Event Handling

define usually in the <head> tag of the page. You can access and modify any
aspect of an element from within a JavaScript function.

In the next chapter, we’ll take a look at cookies—not the kind you eat, but the
tiny bit of information that you can write to and read from the computer that is used
to view your web page. As you’ll learn, cookies are used for many purposes, includ-
ing identifying a user who previously visited your web site.

1. True or False. A check box is an element of a form.
a. True
b. False
2. What is the program that processes a form?
a. Common Gateway Interface
b. Common Program Interface
c. Common Web Server Interface
d. Common Web Server Gateway
3. What event occurs when an element comes into focus?
a. onblur
b. onfocus
c. onselect
d. onchange
4. What event occurs when an element loses focus?
a. onblur
b. onfocus
c. onselect
d. onchange
5. What event occurs when a user highlights text in a text field?
a. onblur
b. onfocus
c. onselect

d. onchange

—&»

Quiz

@ JavaScript Demystified
6. What is the purpose of the with statement?
a. Identifies variables that are used in a script
b. Identifies elements that are used in a script
c. Identifies the full document path

d. Identifies the current element

7. True or False. All attributes except the name attribute can be changed
by a JavaScript.

a. True

b. False

8. True or False. Values of an element cannot be changed once a user clicks
the Submit button.

a. True
b. False

9. True or False. A JavaScript function can only change attributes of an
element that calls the JavaScript function.

a. True
b. False
10. An intrinsic function
a. Must be defined in the <head> tag
b. Must be defined in the <body> tag
c. Must be defined by the programmer either to submit or reset the form

d. Is not defined by the programmer

CHAPTER J

Cookies

A cookie is a small piece of information that a web site writes to your hard disk
when you visit the site. Some site visitors may think that a cookie contains secret
information used to spy on them or that the information is used to take over their
computer when they least expect it. In reality, a cookie is plain text that can be used
for a variety of purposes, but it’s not intended to spy on you (though some web sites
do track your visits to the site) and it definitely will not take over your computer.
And because of the type of information contained in a cookie, it cannot give your
computer a virus.

A JavaScript can be used to create cookies whenever someone visits the web
page that contains the script. A JavaScript can also be used to read cookies stored
on a user’s computer, and it uses the information stored in a cookie to personalize
the web page that a user visits.

In this chapter, you’ll learn how to create cookies and read cookies from within
your web page by using a JavaScript.

—E

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

\@’_ JavaScript Demystified
Cookie Basics

Before learning how to use cookies in your JavaScript, let’s take a moment and
clear up any questions that you may have about cookies. A cookie is written to your
hard disk by the browser when told to do so by a JavaScript. You, the developer,
determine the contents of the cookie’s plain text based on the nature of your Java-
Script application.

Some developers store user ID and password data to a cookie after a user suc-
cessfully logs on to their web site. The cookie is then used for subsequent logons.
Other developers use a cookie to store the date of the last time the user visited the
web site. Cookies can be used in countless ways and are limited only by your
imagination and any restrictions placed by the browser.

The text of a cookie must contain a name-value pair, which is a name and value
of the information. When you write your JavaScript, you decide on the name and
the value. Suppose, for example, that a cookie is used to store a user ID; userid
is the name of the information and ScubaBob is the value. Here’s how this name-
value would be stored in the cookie:

userid="'ScubaBob'

You cannot include semicolons, commas, or white space in the name or the value
unless you precede these characters with the escape character (\). The escape char-
acter tells the browser that the semicolon, comma, or white space is part of the
name or value and not a special character.

Cookies come in two flavors: session cookies and persistent cookies. A session
cookie resides in memory for the length of the browser session. A browser session
begins when the user starts the browser and ends when the user exits the browser.
Even if the user surfs to another web site, the cookie remains in memory. However,
the cookie is automatically deleted when the user exits the browser application. A
persistent cookie is a cookie that is assigned an expiration date (see “Setting the
Expiration Date” later in this chapter). A persistent cookie is written to the com-
puter’s hard disk and remains there until the expiration date has been reached; then
it’s deleted.

Each cookie contains the address of the server that created it. That means that
only a web page from your server can read your cookie, and the browser prohibits
a JavaScript from another server from reading the cookie. As a result, you won’t be
able to read a cookie that was written by another JavaScript application, and an-
other JavaScript application cannot read your cookies.

You can extend the life of a cookie by setting an expiration date, which becomes
part of the cookie when the cookie is written to the user’s hard disk. It is common

CHAPTER 8 Cookies @
for developers to set the expiration date for months or years into the future to track
succeeding visits by the computer to the web site.

Note that information contained in a cookie identifies the computer that was used
to visit your web site, not the person who used the computer to visit your site.
You’ve probably noticed this if you and another person use the same computer to
order books from an online bookstore. The cookie created by the online bookstore
contains information about the last purchase. When you access the site, the online
bookstore assumes that the person who’s visiting the site is the same person who
made the last purchase. It then uses the cookie to customize the web page by recom-
mending titles based on the last purchase, unless the specific user logs on to the web
site using an ID and password. In that case, the cookie in the user’s profile is used,
and the tracking is done not by computer but by individual user.

You cannot store much information in a cookie, as they’re restricted to 4 kilo-
bytes of information. Furthermore, browser software will usually not retain more
than 20 cookies per web server. This means that you are limited to 20 cookies stored
on your hard drive, although some browsers might be able to store more than 20.

Creating a Cookie

Creating a cookie is a pretty easy affair. You simply assign the cookie to the
window.document.cookie object. The browser automatically writes the
cookie to memory when it reads this assignment statement in your JavaScript,
unless you set an expiration date for the cookie, which then causes the cookie to be
written to the computer’s hard disk.

Every cookie has four parts: a name, an assignment operator, a value, and a semi-
colon. The semicolon is a delimiter and not part of the value. A delimiter is a
character that indicates where something ends, which in this case is the end of the
cookie.

This statement creates a cookie, where CustomerName is the name and ABC is
the value:

window.document .cookie = "CustomerName= ABC;"

Let’s see how this statement is used in a real JavaScript application. The next
example illustrates how to write a cookie that expires at the end of the browser
session. The web page in this example displays a form that contains an input for
the customer’s name, which is the only element that appears on the form. The user
is prompted to enter a name, which then becomes the value of the cookie. The

@ JavaScript Demystified
WriteCookie () JavaScript function is executed when the value of the element
changes.

The WriteCookie () function contains a statement that tells the browser to
write the cookie to the hard disk. The function begins with a with statement (see
Chapter 7) that contains two statements: The first statement causes the cookie to be
written. The name is CustomerName and the value of the cookie is the value of
the customer element of the form, which is the name the person entered into the
form. Notice that the addition operator (+) is used to concatenate portions of the
string to form the plain text of the cookie. The second statement in the with state-
ment causes an alert dialog box to be displayed, indicating that the cookie was
written. You can exclude this statement in your JavaScript application because it is

unnecessary to display anything when writing a cookie. This statement was in-
cluded here simply to tell you when the cookie was written.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Write Cookie</title>
<script language="Javascript" type="text/javascript"s>
<!l--
function WriteCookie ()

{

with (document.CookieWriter)
document .cookie =
"CustomerName="+ customer.value+";"
alert ("Cookie Written")

-=>
</scripts>
</head>
<body>
<form name="CookieWriter" action="" >
Enter your name:
<input type="text" name="customer"
onchange="WriteCookie ()"/>
</FORM>
</body>
</html>

CHAPTER 8 Cookies @
\ 5 4
Reading a Cookie

Reading a cookie is just as simple as writing one, because the value of the
window.document .cookie object is the cookie. When the browser sees
the window.document.cookie statement within a JavaScript, the browser
copies the cookie to the window.document . cookie object. You can then use
window.document . cookie whenever you want to access the cookie.

The following example shows how to write JavaScript that reads a cookie. You’ll
notice that a form named CookieReader is displayed that contains two elements:
a text box that will contain the value of the cookie and a button that, when clicked,
executes the ReadCookie () function, which reads the cookie.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<title>Read Cookie</titles>
<script language="Javascript" type="text/javascript">
<l--

function ReadCookie ()

{

with (document.CookieReader)

{

if (document.cookie == "")
cookiecontent.value = "No cookiesg"
else
cookiecontent.value =
document .cookie.split('=") [1]
-->
</scripts>
</head>
<body>
<form name="CookieReader" action="" >

Cookie: <input type="text" name="cookiecontent" />

@ JavaScript Demystified

<INPUT name="Reset"
value="Get Cookie" type="button"
onclick="ReadCookie()"/>
</FORM>
</body>
</html>

The ReadCookie () function begins with a with statement that contains other
statements that are necessary to read and display the cookie. The first statement
in the with statement determines whether any cookies exist by comparing the value
of the cookie object to " ", which is another way of saying NULL—or nothing. If no
cookie is found, the value of the cookiecontent text box is setto No Cookies;
otherwise, a cookie exists and the browser assigns the cookie object the name-pair
value for the cookie.

You probably noticed something strange within the statement that causes the
cookietoberead: split ('="') [1].This mightlook odd, but you actually learned
about split in Chapter 6. Let’s refresh your memory.

The document . cookie is assigned the cookie by the browser. The cookie is
plain text, which is a string. The split () is a string method that divides the string
into an array that consists of two elements based on the character passed to the
split () method.

In this case, the split () method is being told to find the = character in the
cookie, and then take all the characters to the left of the = and store them into array
element [0]. Next the split () method takes all the characters from the right of
the = up to but not including the semicolon, and assign those characters to array
element [1]. It then takes everything up to the next =, including the semicolon. The
semicolon separates cookies and the equal sign separates the name of the cookie
with the cookie’s value. You need to split at the semicolon, and then split on = to get
all the values.

Here’s the cookie:

"CustomerName=ScubaBob;"
The split () function divides the text of the cookie into the following:

Array[0] = "CustomerName"
Array[1l] = "ScubaBob"

This statement assigns the value of Array[1] to the value of the cookiecontent
text box on the form. The result is that ScubaBob is displayed in the text box,
assuming that ScubaBob is the value of the cookie.

CHAPTER 8 Cookies @
- a
Setting the Expiration Date

You can extend the life of a cookie beyond the current browser session by setting an
expiration date and saving the expiration date within the cookie. The expiration
date is typically an increment of the current date. For example, you might say that
the cookie expires three months from the day the cookie was created.

A date is stored in a variable of a Date data type. You’ll see how this is done in
the next code example. A Date variable contains a variety of methods that enable
you to access various components of the date, such as month and year.

For now, we’ll concern ourselves with three of these methods, which we’ll use in
the next example to set the expiration date three months from the current month.
These are getMonth (), setMonth (), and toGMTString ().

The getMonth () method returns the current month based on the system clock
of the computer running the JavaScript. The setMonth () method assigns the
month to the Date variable. The toGMTString () method returns the value of the
Date variable to a string that is in the format of Greenwich Mean Time, which is
then assigned to the cookie.

Let’s set an expiration date for a cookie using these three methods. You’ll notice
that this is basically the same example you used to create your first cookie; how-
ever, a few new statements in the WriteCookie () JavaScript function are used
to create and write an expiration date.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN"s>
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Write Cookie with Expiration Date</title>
<script language="Javascript" type="text/javascript">
<!--
function WriteCookie ()
{
var expireDate = new Date
expireDate.setMonth (expireDate.getMonth () +3)
with (document.CookieWriter)
{
var CustomerName = customer.value
document .cookie =
"CustomerNamel="+ CustomerName+";expires="
+expireDate.toGMTString ()

@ JavaScript Demystified
alert ("Cookie Written")

}
}

-=>
</scripts>
</head>
<body>
<form name="CookieWriter" action="" >
Enter your name: <input type="text"
name="customer" onchange="WriteCookie()" />
</FORM>
</body>
</html>

The first statement within the WriteCookie () function declares a variable
called expireDate and assigns it a reference to a new Date data type. Only dates
can be assigned to this variable.

The second statement calls the getMonth () method to return the current month,
which is then increased by three months. (So, for example, if the current month is
May, the new month setting will be August.) The new month setting is passed to the
setMonth () method, which sets the expiration date three months from the current
date. The value of the expireDate value is then converted to a string in the GMT
format by the toGMTString () method.

Notice the statement that creates the cookie (document . cookie). Another
name-pair value appears after the name-value pair of the cookie. This is the ex-
pires name-value pair, where expires is the name and the value is returned by the
toGMTString () method.

The browser then writes the entire string assigned to the document . cookie
to the hard disk. The cookie will remain on the hard disk for three months, as long
as the system clock on the computer isn’t changed.

Deleting a Cookie

Cookies are automatically deleted when either the browser session ends or its ex-
piration date has been reached. However, you can remove a cookie at any time by
setting its expiration date to a date previous to the current date. This forces the
browser to delete the cookie.

The most efficient way to reset the expiration date is to use the getDate ()
method of the Date variable, then subtract 1 from the date returned by this method,
and then assign the difference to the Date variable.

CHAPTER 8 Cookies @
Here’s how this is done. Assume that the expire variable is a Date variable.

The getDate () method returns the system date on the computer that is running

the JavaScript. We subtract 1 from the current date and pass it to the setDate ()

method, which assigns the new date to the expireDate variable. The expire-

Date variable is then converted to a string and concatenated to the cookie string,
which is then written to the hard disk by the browser.

expireDate.setDate (expireDate.getDate () -1)

The following example demonstrates how to delete a cookie. It begins by dis-
playing a form that contains a button. When the button is clicked, the JavaScript
DeleteCookie () function executes by calculating the new date and passing the
expireDate variable to the Date variable. The new expiration date is assigned to
the cookie string. The browser then writes the cookie, notices that the date is ex-
pired, and deletes the cookie.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<titles>Delete Cookie</title>
<script language="Javascript" type="text/javascript"s>
<!--
function DeleteCookie ()
{
expireDate= new Date
expireDate.setDate (expireDate.getDate()-1)
with (document.CookieWriter)
{
var CustomerName = customer.value
document .cookie =
"CustomerNamel="+ CustomerName+";
expires="+expireDate.toGMTString()
alert ("Cookie Deleted")

}

-=>
</script>
</head>
<body>
<form name="CookieWriter" action="" >
Enter your name: <input type="text" name="customer" />
<INPUT name="Reset" value=
"Delete Cookie" type="button"

JavaScript Demystified

By—

</FORM>
</body>
</html>

onclick="DeleteCookie()"/>

Personalizing an Experience Using a Cookie

As you’ve probably experienced for yourself, cookies are used a lot by developers
to personalize your experience while visiting a web site. For example, a cookie
might be used to store your name and data about what types of information you’ve
viewed on the site in the past. The next time you visit the site, a JavaScript reads the
cookie and displays a web page that contains features that might be of interest to
you. Developers would know your preferences by monitoring your selections from
previous visits.

A common use of cookies by e-commerce web sites is to point out merchandise
that was added to the site since the user’s last visit. This is accomplished by storing
the date of the last user visit in a cookie. On subsequent visits, the cookie is read
and the date compared to the current date. The JavaScript then notifies the user
whether any new merchandise of interest has been received since his or her last
visit.

The next example shows how this is done. For the sake of this example, we as-
sume that a cookie is already created and the value of the cookie is a date in the
yyyy,mm,dd format. We’re also using a button on a form to trigger the JavaScript
function. In a real application, the JavaScript function would be called from the
onload event so that the web page could be personalized before being shown to
the user.

The UpdateNotice () function is called when the button is clicked. This
function determines whether a cookie exists by comparing the value of the cookie
object to " ", which is nothing (NULL). Notice that in the code we used the not
operator to say, “the value of the cookie is not equivalent to NULL.” In other words,
there is a cookie.

If the cookie exists, we then declare a new date variable and declare the
CookiePrevVisit variable, initializing it with the value of the cookie. You saw
how this is done previously in this chapter.

The value of the cookie is the date in the yyyy,mm,dd format. Remember that the
value of a cookie is a string. We must convert the string to a date in order to compare
dates. You convert a string that is a date format to a date by passing it to the con-
structor of the Date object. This returns a date:

CHAPTER 8 Cookies @
var PreviousVisit = new Date (CookiePrevVisit)

The getTime () method of the Date variables is then called to return the time
value of the dates. These are then compared. If Today is greater than the PreviousVisit,
we know that the user has returned and we display an alert dialog box that contains
a welcome back message. If this was a real application, we would perform addi-
tional comparisons to determine whether we received any new merchandise that
might be of interest to the user since his or her last visit; if so, we’d create a web
page that highlights those items. The split () function assumes there’s only one
cookie.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head>
<title>New Features</title>
<script language="Javascript" type="text/javascript"s>
<l--
function UpdateNotice ()

{

if (document.cookie = "")
{
var Today = new Date
var CookiePrevVisit =
document .cookie.split('=") [1]
var PreviousVisit =
new Date (CookiePrevVisit)
if (Today.getTime() >
PreviousVisit.getTime ())

{
alert ('Welcome back.
Checkout these new items.')
}
}
else
{
alert ('No cookies')
}
}
-->
</scripts>
</head>
<body>

<form name="CookieWriter" action="" >

By——

JavaScript Demystified

<INPUT name="Reset" value="New Visit"
type="button" onclick=" UpdateNotice()"/>
</FORM>
</body>
</html>

Looking Ahead

Q

uiz

Cookies provide a convenient way to keep track of visitors to your web site and to
personalize their experience by storing and retrieving small amounts of information
on the visitor’s computer. Cookies don’t do any harm to a user’s computer, because
a cookie is simply plain text and cannot contain viruses or other kinds of destructive
programs.

Depending on the needs of your application, your cookies can remain on your
visitor’s computer until the browser session is completed or until the expiration date
of the cookie is reached. You set the expiration date. If you don’t set an expiration
date in JavaScript, the cookie is automatically deleted when your visitor exits the
browser.

Information is stored as a name-value pair. You provide a name for the informa-
tion and the value is the information. Although you can create multiple cookies, the
browser is required to accept only 20 from each web server.

Your cookies can be accessed only by applications from your web server. Ap-
plications from other web servers cannot access your cookie. Likewise, you cannot
access a cookie created by an application from another server.

With cookies under your belt, it is time to move on to another cool feature—
controlling browser windows from within a JavaScript.

1. True or False. You cannot delete a cookie.
a. True
b. False

2. A cookie takes the format of a
a. Pair-name value

b. Pair-value name

CHAPTER 8 Cookies

c. Value-name pair
d. Name-value pair
3. The best time to read a cookie is
a. onblur
b. onload
c. onselect
d. onchange
4. The expiration date is stored in a cookie as
a. A GMT string
b. A Date data type
c. A digital sequence type
d. A sequential numeric type
5. The best time to create a cookie is
a. onblur
b. onload
c. Any time it make sense to do so while a visitor is visiting your web site
d. onchange
6. A cookie is
a. A variable
b. A Date variable
c. A text variable
d. An object
7. True or False. You can use a cookie to explore a visitor’s hard disk.
a. True
b. False

8. True or False. Your JavaScript actually writes a cookie to a visitor’s hard
disk if you set an expiration date for the cookie.

a. True
b. False
9. True or False. The address of your web server is included in a cookie.
a. True
b. False

@ JavaScript Demystified
10. Information in a cookie identifies
a. The person who is visiting your web site

b. The computer used by the person who is visiting your web site

c. The Internet service provider used by the person who is visiting your
web site

d. The visitor’s browser

CHAPTER J

Browser
Windows

Throughout this book, you’ve learned how to use JavaScript to control how your
web pages are displayed and handled in a browser window. In this chapter, you’ll
learn how to manipulate the browser window itself using a JavaScript.

You can use JavaScript to open a new browser window while your JavaScript is
running, to determine the size of the window, to determine whether or not the win-
dow has a toolbar or scroll bar, and to set up other styles that you’ve seen on many
browsers windows. Once you’ve displayed all the windows needed for your appli-
cation, you can use JavaScript to change the content of each of them dynamically.

—

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

\@)’_ JavaScript Demystified
Open the Window, Please!

You’ve probably visited web site pages in which you click a button and a new win-
dow opens. Some web sites don’t even wait for you to do anything—windows open
“magically” when the web page loads or unloads. Of course, those windows usually
display advertisements. You’ll learn how this is done in this section.

The browser window is an object, similar to other objects that you’ve learned
about in previous chapters. Whenever you want to do something with the browser
window, you must reference a window and then reference the property or method
of the window that you want to access. For example, here’s how to open an empty
browser window that uses the default settings:

MyWindow = window.open ()

The open () method returns a reference to the new window, which is assigned to
the MyWindow variable. You then use this reference any time that you want to do
something with the window while your JavaScript runs.

A window has many properties, such as its width, height, content, and name—to
mention a few. You set these attributes when you create the window by passing
them as parameters to the open () method:

* The first parameter is the full or relative URL of the web page that will
appear in the new window.

* The second parameter is the name that you assign to the window.

e The third parameter is a string that contains the style of the window.
Table 9-1 shows a list of styles that you can set.

Let’s say that you want to open a new window that has a height and a width of
250 pixels and displays an advertisement that is an image. All other styles are turned
off. Here’s how you’d do this:

MyWindow = window.open ('MyWebSite/MyAd.Jjpg',
'myAdWin', 'status=0, toolbar=0, location=0,
menubar=0, directories=0, resizable=0,
height=250, width=250")

The following example shows how the previous method is used in a web page
to open a window. In this example, a web page is displayed in a new window
(Figure 9-1).

CHAPTER 9 Browser Windows

<!DOCTYPE html PUBLIC

"-//W3C//DID XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Open New Window</title>
<script language="Javascript" type="text/javascript">

<l--
function OpenNewWindow () {

MyWindow = window.open ('MyWebSite/MyAd.jpg’,
'myAdWin', 'status=0, toolbar=0, location=0,
menubar=0, directories=0, resizable=0,
height=250, width=250")

}
-—>
</script>
</head>
<body>
<FORM action="http://www.Jjimkeogh.com" method="post">
<P>
<INPUT name="OpenWindow" wvalue="Open Window"
type="button" onclick="OpenNewWindow()"/>
</P>
</FORM>
</body>
</html>
Style Description Values (on=1, off=0)
status The status bar status=1, status=0
toolbar The standard browser toolbar=1, toolbar=0
toolbar
location The Location entry field location=1, location=0
menubar The menu bar menubar=1, menubar=0
directories The standard browser directories =1,directories =0
directory buttons
resizable Allow/disallow the resizable=1, resizable=0
window to be resized
scrollbars Enable the scrollbars scrollbars=1, scrollbars=0
height The height of the height=250
window in pixels
width The width of the window | width=250
in pixels

Table 9-1 Window Styles

JavaScript Demystified

._Jl_gl | Help

. - — ~ I
: [booksJavaScript % 20Demy stified fGoodDraft [Listingl -2.Htm | [O\,Seaﬂ:h "\) 'l

] Metscape <), Search [JBookmarks

N =) & OF B3 | Done —dl-

Figure 9-1 A new window is opened by calling the open() method of the window object.

Giving the New Window Focus

Usually, only one window is displayed when you visit a web site, although some
sites display multiple windows filled with ads. The traditional web site displays the
initial web page in a window and gives that window focus automatically. This
means that anything you type or click affects the window that has focus—that is,
the window that appears up front on the screen.

The most recently opened window—that is, the last window opened—usually
has focus by default. In the previous example (Figure 9-1), two windows are dis-
played. The first window contains a form and your JavaScript. The second is a new
window that the JavaScript opened. The second window has focus unless and until
the user selects a different window or JavaScript sets focus to another window.

CHAPTER 9 Browser Windows @
You give a new window focus by calling the focus () method of the new win-

dow after the new window opens. As shown next, the MyWindow variable receives
a reference to the new window when window. open () is called:

MyWindow. focus ()

The next example opens a new window but gives the first open window focus.
This is known as a pop-down window or a pop-back window. Any keystrokes the
user makes will affect the first open window and not the new window. This can be
an annoying web site feature, because it’s contrary to the way window focus usu-
ally works; plus, the visitor may not even be aware of the first open window because
it is obscured by the second open window.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Open New Window</title>
<script language="Javascript" type="text/javascript">

<l--
function OpenNewWindow () {

MyWindow = window.open ('MyWebSite/MyAd.jpg', 'myAdWin',
'status=0, toolbar=0, location=0, menubar=0,
directories=0, resizable=0, height=250, width=250")

this.focus ()

}

-—>
</script>
</head>
<body>
<FORM action="http://www.jimkeogh.com" method="post">
<p>
<INPUT name="OpenWindow" value="Open Window"
type="button" onclick="OpenNewWindow ()" />
</p>
</FORM>
</body>

</html>

By—
Placing the Window into Position
on the Screen

JavaScript Demystified

The browser determines the location on the screen where a new window will be
displayed; however, you can specify the location by setting the 1eft and top
properties of the new window when you create it. The 1eft and top properties
create the x and y coordinates, in pixels, of the upper-left corner of the new window.
The following example shows how to position a new window in the upper-left
corner of the screen by setting the 1eft property to 0 and the top property to O
(Figure 9-2). This example displays an Open Window button on the screen. A new
window is created on top of the current window after the button is clicked.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Position New Window</title>
<script language="Javascript" type="text/javascript">

<!--
function OpenNewWindow () {
MyWindow = window.open ('MyWebSite/MyAd.jpg’',
myAdWin', 'width=250,height=250,1left=0,top=0")
}
-—>
</script>
</head>
<body>
<FORM action="http://www.Jjimkeogh.com" method="post">
<p>
<INPUT name="OpenWindow" wvalue="Open Window"
type="button" onclick="OpenNewWindow()"/>
</P>
</FORM>
</body>
</html>

It’s important you realize that because screen resolution (the number of pixels
that appear on the screen) settings differ from computer to computer, when you
specify pixel locations while positioning a new window on the screen at your com-
puter, you may set left and top properties that will appear differently on other
users’ computers. Some computers use a higher (more pixels) or lower (less pixels)
screen resolution than you use on your computer. The pixel settings that you specify

CHAPTER 9 Browser Windows

5 Hetscaps

- [B]%]

ook WAndow Help

[il i1 pooabefavesaript Litingd-2.Hiom | [CLsearan | C:.'_‘;o ‘LE;

b 00 Rado [Netscape S, Search “lBookmarks

Opan YWindow

Figure 9-2 Place the new window in the upper-left corner of the screen by setting the
left and top properties to 0.

for the position of your new window will appear differently if a user’s screen is set
at a resolution that differs from yours.

Let’s say, for example, that you want the upper-left corner of your new window
to appear at pixel 160—that is, 160 pixels from the left edge of the screen. If the
resolution of your screen is 640 pixels wide, then the left corner of the new window
appears about a quarter of the way across the screen. However, if the resolution of
another user’s screen is 1024 pixels wide, then the left corner of the new window
appears about 15 percent of the way across the screen. This difference in where the
window appears might be meaningful to the presentation of your web page, de-
pending on your application, so it’s important that you try to account for its placement
on different computer screens.

For this reason, some JavaScript developers specify relative positions when set-
ting the 1eft and top properties of a new window. To define a relative position,
you add or subtract pixels based on the screen resolution to make the window ap-
pear where you want it to.

You can discern the screen resolution by using the screen object and its
methods. The screen object is available in Netscape Navigator and Microsoft

JavaScript Demystified

EBy—

Properties Description

availHeight Returns the height of the available screen in pixels
availWidth Returns the width of the available screen in pixels
colorDepth Returns the bit depth if a color palette is used
height Returns the height of the display screen
pixelDepth Returns the color resolution as bits per pixel
width Returns the width of the display screen

Table 9-2 Properties of the Screen Object

Explorer version 4 or later. Table 9-2 lists the properties that are available to the
screen object.

The two properties used to set the relative position of the Left and top proper-
ties of the window are the screen.width and screen.height properties.
These properties contain the number of pixels across (the x value) and down (the y
value) the screen, respectively. By knowing this information, you can add or sub-
tract pixels from these values to set the 1eft and top properties of the window
respective to the screen resolution. The amount that you add or subtract depends on
the size of your window and where you want to position the window on the
screen.

Changing the Contents of a Window

Sometimes you’ll want to change the content of an open window rather than having
to close and open a new window each time that you want to display something dif-
ferent in the window. Suppose, for example, that you want the window to display a
product each time a customer selects the item on your web page.

The secret to changing the content of a window is to call the open () method
using the same window name each time you change the content of the window.
Suppose that the window is called MyWindow. The first time a customer selects an
item, you open a new window, calling it MyWindow and displaying the appropriate
product in the window. The next time a customer selects an item, you again open a
new window, calling it MyWindow and displaying a different product. Since both
windows have the same name, the browser replaces the first window with the sec-
ond window. The result is that the window appears to remain open, but the content
of the window changes.

The following example shows how this is done. Two buttons appear on this
page; each button displays an advertisement in a new window by calling the
OpenNewWindow () JavaScript function and passing reference to the advertise-

CHAPTER 9 Browser Windows @
ment to the function. The OpenNewWindow () function is defined in the <head>
tag. You'll notice that the same function was used in the “Giving the New Window
Focus” section earlier in this chapter, with one exception: in this example, the con-

tent of the new window is passed as a parameter to the function, which enables you
to change the content of the window each time the function is called.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Changing Content of Window</title>
<script language="Javascript" type="text/javascript">
<!--
function OpenNewWindow (Ad) {

MyWindow = window.open (Ad, 'myAdWin', 'status=0,
toolbar=0, location=0, menubar=0, directories=0,
resizable=0, height=250, width=250")

}

-—>
</script>
</head>
<body>
<FORM action="http://www.jimkeogh.com" method="post">
<p>
<INPUT name="ProductA" value="Product A"
type="button"
onclick="OpenNewWindow ('MyWebSite/MyAdl.jpg"')"/>
<INPUT name=" ProductB" wvalue="Product B"
type="button"
onclick="OpenNewWindow ('MyWebSite/MyAd2.jpg"')"/>
</P>
</FORM>
</body>
</html>

Closing the Window

You can close any window that you open by calling the window’s close ()
method from within your JavaScript. As you’ll recall, the open () method returns
a reference to the newly opened window, which is a window object. You use the
reference to call the close () method. This tells the browser which window you
want to close.

The following example shows how to use the close () method. One button is
used both to open and close the window (Figure 9-3). The button is labeled “Click

8 JavaScript Demystified

File Edt View Go Bookmarks Tools Window Help

" \) \) r\) J | Fie://C: fbooks| JavaScript20Demystified]GoodDraft fListing1 -2.Htm | [Ty, search e, o l"h-
=, -~ [

. @, CdMal KA 4 Home 0D Rado 5 e e

| Click for'window |

i3 = 8 &f F) [Dome T

Figure 9-3 The same button can be clicked to open and close the window.

for Window” at first. The Window () JavaScript function is called when the button
is clicked; this function is defined in the <head> tag.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Close Window</title>
<script language="Javascript" type="text/javascript">
<l--
var WindowStatus
function Window () {
if (WindowStatus != '1")
{
MyWindow = window.open ('MyWebSite/MyAdl.Jjpg"',
'myAdWin', 'status=0, toolbar=0,
location=0, menubar=0, directories=0,
resizable=0, height=250, width=250")

CHAPTER 9 Browser Windows

WindowStatus ='1"
}

else

{
MyWindow.close ()

WindowStatus = '0'
}
}
-—>
</script>
</head>
<body>
<FORM action="http://www.jimkeogh.com" method="post">
<P>
<INPUT name="OpenWindow" value="Click for Window"
type="button" onclick="Window ()" />
</P>
</FORM>
</body>
</html>

Prior to the function definition, we declare a variable called WindowStatus,
which is used within the function to determine whether the window is opened or
closed. When the function is called, the browser is told to determine whether the
WindowStatus variable is a value other than 1. Since we didn’t initialize this
variable, its value is not 1, and therefore statements within the if code block are
executed.

The first statement opens a new window. The second statement gives the new
window focus. The third statement assigns 1 to the WindowStatus variable, in-
dicating that the window is opened.

Basically, the same process occurs the next time the button is clicked. However,
the value of the WindowStatus variable is 1. This means that statements within
the i f code block are skipped and statements within the el se code block are
executed. Two statements are included within the e 1 se code block. The first state-
ment calls the close () method, which closes the new window. The second
statement resets the value of the WindowStatus variable to 0. This indicates that
the window is closed.

Tip You can also use the window name blank, which is a reserved word, to cause
a window to open in a separate window. This is called an unnamed window.

JavaScript Demystified
Dy
"Magically” Scrolling a Web Page

In some web sites, the web page “magically” scrolls to a section that hawks a new
feature on the site. Actually, no magic is involved; instead, a JavaScript is used to
scroll the web page automatically by calling the scrol11To () method of the win-
dow object, or a link led directly to a relative link in the page.

The scrollTo () method requires two parameters, which are the x and y co-
ordinates of the top-left corner of the viewable area of the web page that you want
to display. Each parameter is an integer and represents the coordinate in pixels.

NotE The scrollTo () method works only if the window’s scrollbar
property is set to true and if the area specified in the coordinate is not viewable
before the scrollTo () method is called by your JavaScript; otherwise, there
won’t be any need to scroll the web page.

The following example illustrates how to call the scrol1To () method. This
HTML document is intentionally short so you can easily see how this works. The
entire web page is viewable; therefore, scrolling has no effect. However, you can
copy the JavaScript into a longer web page if you want to see how scrolling
works.

A button is displayed in this example that, when selected, calls the Top ()
JavaScript function to scroll to the top of the web page. This function, which is
defined in the <head> tag, calls the scrol1To () function, passing it coordi-
nate 0,0—the upper-left corner of the web page, which means that the top of the
web page is displayed.

Notice that se1 f is used to reference the window when calling the scrol11To ()
function. This refers to the window that contains the button. You could replace
self with a reference to another window that you opened, which would cause the
other window to scroll when the button is clicked.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Scrolling</title>
<script language="Javascript" type="text/javascript">
<!--
function Top () {
self.scrollTo (0, 0)
}
-—>
</script>

CHAPTER 9 Browser Windows

—&

</head>
<body>
<FORM action="http://www.Jjimkeogh.com" method="post">
<p>
<INPUT name="GoToTop" value="Go To Top"
type="button" onclick="Top()"/>
</P>
</FORM>
</body>
</html>

Opening Multiple Windows at Once

Some web sites bombard you with windows as soon as you enter the site. New
windows pop up all over the screen. This is a nasty and annoying feature, because
most users probably don’t know how to get out of this maze. Nevertheless, the fol-
lowing example shows you how to open multiple windows onscreen.

This example displays five new windows when the Windows Gone Wild button
is clicked, which is at least better than those annoying web sites that launch a bat-
tery of windows when the onload event occurs (Figure 9-4).

|

File Edt WYiew Go BEookmarks Tools Window Help

» J 3_) O[5 Fiesfiicubocks tavascriptn20DemystifiedGocdDraft Listingl -2.hem] [CLsearch | = 55 ‘-‘!

@, Mal S AIM 43 Home G) Rado) Metscape Ol Search CJBookmarks

Windows Gone Wild

o0&

3 & 8 &F) oo =

Figure 9-4 A JavaScript can be used to open multiple windows.

Sy—

JavaScript Demystified

The Windows Gone Wild button calls the Launch () JavaScript function, which
uses a for loop to execute the open () method five times to open five empty win-
dows. Notice that the first parameter of the open () method is empty because we
want to display blank windows. You can, of course, insert a URL for the content
you want to display in the window.

<!DOCTYPE html PUBLIC
"-//W3C//DID XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Open Multiple Windows</title>
<script language="Javascript" type="text/javascript">
<I--
function Launch () {
for (i=0; 1 < 5;1++)
{
Win =
window.open('', 'win'+1i, '"width=50, height=50")

}
-=>
</script>
</head>
<body>
<FORM action="http://www.Jjimkeogh.com" method="post">
<p>
<INPUT name="WindowsGoneWild"
value="Windows Gone Wild" type="button"
onclick="Launch()"/>
</P>
</FORM>
</body>
</html>

Creating a Web Page in a New Window

You can place dynamic content into a new window by using the document
.write () method to write HTML tags to the new window. Though these sorts of
script are a little tricky to write, you’ll develop the knack for doing this after study-
ing the next example.

CHAPTER 9 Browser Windows @

This example displays a button that, when clicked, calls the Window ()
JavaScript function that creates a new window and writes HTML tags to the new
window. The HTML tags are passed a string to the MyWindow.document
.write () method. MyWindow is referenced to the new window object that was
created by the open () method. The document is the document object contained
within the new window. The write () method is a method of the document object.

Anything written by the write () method appears in the new window. Remem-
ber that when the browser sees an HTML tag, the browser interprets it according to
HTML rules.

Look carefully, and you’ll notice that the string passed to all the write () meth-
ods contains HTML tags that display a form in the new window. The form consists
of an input text box, where the customer is expected to enter a name. Also on the
form is a Submit Query button that, when clicked, sends the customer name to the
server CGI application for processing (Figure 9-5).

The most efficient way to create dynamic content is first to create the content as
a web page—that is, write the HTML tags as if the content were being written for
your home page. Once you are satisfied with the content, place double quotation
marks around each line to create a string; then pass each string to the write ()
method after the new window is opened.

|

File Edt View Go Bookmarks Tools Window Help

3 . ~ N
y & _) Fied/GocdDrafe Listingl -2.Hm | [Cy search 9 ‘-!
o, Caval Bam 4 Custorner: Bockmarks
| Subrnit Query
| Open Window
D& A& OF () oo - e

Figure 9-5 Dynamic content of a new window can be created by a JavaScript.

Sy—

JavaScript Demystified

Note that some HTML tags contain a forward slash (/), which has a particular
meaning to the browser. You’ll need to precede these with a backslash (\), which
tells the browser to ignore the special meaning.

<!DOCTYPE html PUBLIC

"-//W3C//DTD XHTML 1.0 Transitional//EN">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<title>Changing Content of Window</title>
<script language="Javascript" type="text/javascript">

}

<!--
function Window () {
MyWindow = window.open

("', 'myWin', 'height=250, width=250")
MyWindow.document.write ('<html>")
MyWindow.document.write ('<head>")
MyWindow.document.write

('<title> Writing Content<\/title>")

MyWindow.document.write ('<\/head>")
MyWindow.document.write ('<body>")
MyWindow.document.write

('"<FORM action="http://www.Jjimkeogh.com"

method="post">")

MyWindow.document.write ('<P>")
MyWindow.document.write

'Customer:<INPUT name="FirstName"

type="text" \/>")

MyWindow.document.write ('
")
MyWindow.document.write

('"<INPUT name="submit" type="submit" \/>")

MyWindow.document.write ('<\/P>")

MyWindow.document.write ('<\/FORM>")
MyWindow.document.write ('<\/body>")
MyWindow.document.write ('<\/html>")

MyWindow. focus ()

-—>
</script>

</head>

<body>

<FORM action="http://www.Jjimkeogh.com" method="post">

<p>
<INPUT name="OpenWindow" wvalue="Open Window"
type="button" onclick="Window ()"/>

CHAPTER 9 Browser Windows @
</P>
</FORM>

</body>
</html>

Creating dynamic content in this way is possible only if you “own” the new win-
dow and its contents. For example, you can’t load a web URL, such as www.cnn
.com, and write to or read any content within it, because this is a security violation
and the browser won’t allow it. You also can’t place content from a window in one
domain to a window in another domain. If two windows are located in different
domains, you must use JavaScript to set them to the same domain before they can
communicate in this manner.

Looking Ahead

You can open a new window by calling the window. open () method from with-
in your JavaScript. The window.open () method causes the browser to open a
new window on the screen. You don’t need to pass the window.open () method
any parameters if you want to use the standard windows settings and position as
determined by the browser.

However, you can specify the size and the style of the window by passing the
window.open () method the appropriate parameters. The window.open ()
method accepts three parameters: a reference to the content of the new window, the
name of the new window, and a string that sets various window styles that include
the size and position of the window.

The position of the window can be set explicitly by specifying the pixel coor-
dinates for the upper-left corner of the window. Some JavaScript developers set
the upper-left corner of the new window relative to the resolution of the screen
by adding or subtracting pixels from the screen.width and screen.height
parameters.

After opening a new window, you can use the document .write () method to
write HTML tags and text to the new window, enabling you to use JavaScript to
create dynamic content for windows—but only if the windows are in the same
domain.

Now that you have a good understanding of how to create new windows and dy-
namic content for those windows, it’s time to learn a powerful tool that JavaScript
developers use to validate information that is provided by visitors to their web sites.
You’ll learn about regular expressions in Chapter 10.

JavaScript Demystified
Byr—
Quiz

1. True or False. The window.open () method requires arguments to open
a new window.

a. True
b. False
2. You can position a new window on screen by setting the
a. width and height properties
b. left and top properties
c. resizable property
d. status property
3. You can open a new window on top of other windows by calling
a. upper ()
b. up ()
c. focus ()
d. next ()
4. You determine the resolution of the screen by accessing
a. left and top properties
b. resolution property
c. width and height properties
d. pixelDepth property
5. You scroll a window by calling
a. goto
b. down or up
c. down
d. scrollTo()

6. You can create a new window that does not contain the standard browser
buttons by setting

a. scrollbars=1
b. directories=1

c. directories=0

i

scrollbars=0

CHAPTER 9 Browser Windows
—
7. True or False. All windows must have a menu bar.
a. True
b. False
8. True or False. All windows must have the standard browser toolbar.
a. True

b. False
9. True or False. Displaying too many new windows in the same session can
prevent the user from doing any work.

a. True
b. False
10. You can prevent a person from resizing your new window by
a. Setting resizabletol
b. Setting resizableto(
c. Setting the menubar to 1
d. Setting the menubar to 0

This page intentionally left blank.

CHAPTER J

Reqular
Expressions

Don't you hate it when someone enters the wrong information into a form displayed
on your web page? Although you cannot prevent this from happening, you can
write a JavaScript that validates information on the form before the form is pro-
cessed by the CGI application running on the web server.

You learned how to use methods of the string object to validate text in Chapter 6.
While this was useful for performing basic validation of a form, the string object
lacks the power to perform sophisticated validation and formatting that is found in
commercial JavaScript applications.

JavaScript professionals supercharge their JavaScript by using regular expres-
sions to validate and format text. In this chapter, you'll learn how to master regular
expressions and use them to manipulate information in amazing ways.

—Er

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

@ JavaScript Demystified
A 4
What Is a Regular Expression?

The concept of a regular expression is a little tricky to understand, but once you get
the gist of it, you'll add this powerful tool into your JavaScript arsenal. You'll recall
from Chapter 2 that an expression uses operators to tell the browser how to manipu-
late values, such as adding two numbers (10 + 5). This is called a mathematical
expression because the values being manipulated are numbers.

A regular expression is very similar to a mathematical expression, except a regu-
lar expression tells the browser how to manipulate text rather than numbers by
using special symbols as operators, which you'll learn about in this chapter.

For example, the browser might be told to determine whether a specific character
exists in one or more lines of text. Likewise, the browser might be told to replace
all occurrences of a word with another word. This and more can be accomplished
by writing a regular expression.

Let's take a look at a simple example of how to create and use a regular expres-
sion in a JavaScript that tells the browser to determine whether the letter b or the
letter ¢ is in the name Bob and display an appropriate message in an alert dialog box
when a button is clicked on the form.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Simple Regular Expression</title>
<script language="Javascript" type="text/javascript">

<l--
function RegExpression () {
var name='Bob'
re = /[bt]/
if (re.test (name))
{
alert ('Found')
}
else
{
alert ('Not Found')
}
}
-——>
</script>

</head>
<body>

CHAPTER 10 Regular Expressions @

<FORM action="http://www.Jjimkeogh.com" method="post">

<p>
<INPUT name="Run Reg Expression" value=" Run Reg Expression "
type="button" onclick=" RegExpression()"/>
</P>
</FORM>
</body>

</html>

The regular expression is located in the RegExpression () function defini-
tion in the <head> tag of the web page. No doubt this looks strange to you, so let's
dissect the regular expression letter by letter.

Unlike a mathematical expression, a regular expression begins and ends with a
slash (/). You place the special symbols that make up the regular expressions be-
tween slashes. You'll notice that a pair of square brackets ([]) appears following
the first slash. This tells the browser to search the text for characters that appear
within the brackets. In this expression, two characters are within the square brack-
ets: a b and a ¢, which tells the browser to determine whether the text includes a b
or a ¢, or both. That's the regular expression.

The regular expression is assigned to the re variable. Notice that we don't use
quotation marks, which would tell the browser that the special symbols of the regu-
lar expression is part of a string, which it isn't.

The test () method is called and passed the variable name that contains the
string Bob. The test () method is one of several methods of the regular expres-
sion object. You'll learn about the other methods later in this chapter. The browser
evaluates Bob using the regular expression. A true is returned if either a b or a ¢ or
both are found in the name Bob; otherwise a false is returned. Depending on this
result, the appropriate alert dialog box is displayed on the screen.

The Language of a Regular Expression

Admittedly, a regular expression looks like gobbledygook to the untrained eye, but
a regular expression is a complex instruction that the browser has no trouble under-
standing. By learning the language of a regular expression, you'll be able to make a
browser jump through hoops by manipulating any text that is entered into a form on
your web page.

The words of the regular expression language are called special characters and
act similarly to an operator in a mathematical expression. An operator, as you'll

@ JavaScript Demystified
recall from Chapter 2, tells the browser to perform an operation on operands, which
are values. Special characters tell the browser to perform an operation on text.
Table 10-1 contains special characters that are used to create a regular expres-
sion. We'll take a closer look at a number of these to show how they are used in a
regular expression. In the previous example, you saw how to ask the browser wheth-

er the text contains either the character b or the character ¢ or both by using the
following regular expression:

/[bt]/

You can place any number of characters, numbers, or punctuation or symbols with-
in the brackets, and the browser will determine whether they exist in the text.

However, one symbol may pose a problem: suppose you want to determine
whether the text contains the bracket ([) symbol? This can be troublesome since the
[is a special character in a regular expression and will confuse the browser. The
browser assumes the [is enclosing an operation to perform, so it won't search the
text for the [character. If you want to search for a symbol that is also a special
character, you must precede the symbol with a backslash (\), which is known as an
escape character. The backslash tells the browser to ignore the special meaning of
the symbol. Here's what you'd need to write to search for the [symbol in text:

/INTT/

At first, this might look strange, but it should begin to make sense as you read each
character the way the browser reads it. Here's how the browser reads this regular
expression:

1. The / character tells the browser that this is the beginning of a regular
expression.

2. The [character tells the browser to search the text for the following
character(s).

3. The \ tells the browser to ignore the special meaning of the next character.
4. The [character is the character that the browser will search for in the text.

5. The] character tells the browser that there are no more characters to
search for.

6. The / character tells the browser that this is the end of the regular expression.

Tip Whenever a regular expression becomes confusing to understand, you
can read each character in the expression the way the browser reads it and
any confusion will be cleared up.

CHAPTER 10 Regular Expressions

—&»

Special Character | Description

\ Tells the browser to ignore the special meaning of the following
character

” Beginning of a string or negation operator, depending on where it
appears in the regular expression

$ End of a string

* Zero or more times

+ One or more times

? Zero or one time; also referred to as the optional qualifier
Any character except a newline character (\n)

\b Word boundary

\B Nonword boundary

\d Any digit, 0-9

\D Any nondigit

\f Form feed

g Search the first and subsequent occurrences of the character(s)

i Search without matching the case of the character

\n Newline; also called a line feed

\r Carriage return

\s Any single whitespace character

\S Any single non-whitespace character

\t Tab

\v Vertical tab

\w Any letter, number, or underscore

\W Any character other than a letter, number, or underscore

\xnn The ASCII character defined by the hexadecimal number nn

\o>nn The ASCII character defined by the octal number nn

\cx The control character x

[abcde] A character set that matches any one of the enclosed characters

["abcde] A character that does not match any of the enclosed characters

[a-e] A character that matches any character in this range of characters; the
hyphen indicates a range

[\b] The backspace character

{n} Exactly n occurrences of the previous subpattern or character set

Table 10-1 Special Characters Used to Create a Regular Expression

@ JavaScript Demystified

Special Character | Description

{n,} At least n occurrences of the previous subpattern or character set

{n,m} At least n but no more than m occurrences of the previous subpattern
or character set

(x) A grouping or subpattern, which is also stored for later use

x|y Either x or y

Table 10-1 Special Characters Used to Create a Regular Expression (continued)

Finding Nonmatching Characters

Sometimes a JavaScript application prohibits certain characters from appearing
within text entered into a form, such as a hyphen (-); otherwise, the character might
inhibit processing of the form by the CGI program running on the web server. You
can direct the browser to search for illegal character(s) by specifying the illegal
character(s) within brackets and by placing the caret (*) as the first character in the
bracket. Let's see how this works in the following example:
/I™N\=1/
In this case, the browser is asked to determine whether the text does not contain the
hyphen.

The caret asks the browser to determine whether the following character(s) do
not appear in the text. Table 10-1 shows that the hyphen inside a character set is

used to define a range of characters (also discussed in the next section). To find the
hyphen in text, you need to escape the hyphen with the backslash, like so \ -.

Nork It is important that you know exactly what you're telling the browser
to do so that you can properly interpret the browser's response to your regular
expression.

Suppose you wrote the following regular expression and the browser didn't find
the hyphen in the text. The browser responds with a false—this is because you are
telling the browser to determine whether the hyphen appears in the text. If the hy-
phen appears, the browser would respond with a true.

/IN=1/

However, by placing a caret in the regular expression, as shown next, the browser
responds with a true if the hyphen is not found in the text. This is because you are
telling the browser to determine whether the hyphen does not appear in the text.

/IN\=1/

CHAPTER 10 Regular Expressions @
Entering a Range of Characters

You don't need to enter every character that you want the browser to match or not
match in the text if those characters are in a series of characters, such as f through
[. Instead of including each and every character within brackets, you can use the
first and last character in the series, separated by a hyphen.

Let's say that you need to tell the browser to match any or all of the characters f,
g, h, i, j, k, or [in the text. You could write the following regular expression:

/[fghijkl]/

Alternatively, you could write the following regular expression, which tells the
browser to match any letter(s) that appears in the series f through and including /:

/1E-11/

Likewise, you can tell the browser not to match any characters in a range of char-
acters using the same kind of regular expression, except you place the caret in front
of the first character, as shown here:

/1~E-11/

In this case, the browser would return true if none of the characters f through / were
found.

Matching Digits and Nondigits

Limiting an entry either to digits or nondigits is a common task for many JavaScript
applications. For example, a telephone number entered by a user should be a series
of digits, and a first name should be nondigits. Nondigits appearing in a phone num-
ber indicate the user entered an invalid phone number. Likewise, a first name that
contains digits is likely an invalid first name.

You can have the browser check to see whether the text has digits or nondigits by
writing a regular expression. The regular expression must contain either \d or \D,
depending on whether you want the browser to search the text for digits (\d) or
nondigits (\D).

The \d symbol, as shown in the following example, tells the browser to deter-
mine whether the text contains digits. The browser returns a true if at least one
digit appears in the text. You'd use this regular expression to determine whether a
first name has any digits, for example. If it does, the browser returns a true and your
JavaScript notifies the user that an invalid first name was entered into the form.

/\d/

@ JavaScript Demystified

The \D symbol is used to tell the browser to search for any nondigit in the text.
This is illustrated next. The browser returns a true if a nondigit is found. This is the
regular expression you would use to validate a telephone number, assuming the user

was asked to enter digits only. If the browser finds a nondigit, the telephone number
is invalid and you can notify the user who entered the information into the form.

/\D/

NortE You probably noticed that the letters d and D are preceded by a backslash.
The backslash tells the browser that these shouldn't be treated as characters and
instead should be treated as special characters.

Matching Punctuation and Symbols

You can have the browser determine whether text contains or doesn't contain letters,
punctuation, or symbols, such as the @ sign in an e-mail address, by using the \w
and \W special symbols in a regular expression.

The \w special symbol tells the browser to determine whether the text contains
a letter, number, or an underscore, and the \W special symbol reverses this request
by telling the browser to determine whether the text contains a character other than
a letter, number, or underscore.

Let's say that you were expecting a person to enter the name of a product that has
a combination of letters and numbers. You can use the following regular expression
to determine whether the product name that was entered into the form on your web
page contains a symbol:

/\W/
Using \W is equivalent to using [a-zA-Z0-9].

NortE Notice that no space (whitespace character) appears between the 9 and
the underscore in [a-zA-Z0-9_]. A common error is to insert a space such as
[a-z A-Z 0-9 _].This matches the whitespace character, too.

Matching Words

You might want the browser to search for a particular word within the text. A word
is defined by a word boundary—that is, the space between two words. You define a
word boundary within a regular expression by using the \b special symbol.

CHAPTER 10 Regular Expressions @
Think of the \b special symbol as a space between two words. You need to use

two \b special symbols in a regular expression if you want the browser to search

for a word: the first \b represents the space at the beginning of the word and the

second represents the space at the end of the word.
Let's say you want to determine whether the name Bob appears in the text. Since

you don't want the browser to match just text that contains the series of letters B-o-b,

such as Bobby, you'll need to use the word boundary to define Bob as a word and
not simply a series of letters. Here's how you'd write this regular expression:

/\bBob\b/

NoTE Be sure to use the lowercase \b, because the uppercase \ B signifies that
there is no word boundary. Using \ B means any series of the letters B-o-b is
considered a match, including Bobby.

Replace Text Using a Regular Expression

In this chapter, you've learned how to construct a regular expression that the brows-
er uses to determine whether letters, numbers, or symbols appear or do not appear
in text by passing the regular expression to the test () method. While testing text
is necessary for some JavaScript applications, you can also use a regular expression
to replace portions of the text by using the replace () method.

The replace () method requires two parameters: a regular expression and the
replacement text. Here's how the replace () method works. First, you create a
regular expression that identifies the portion of the text that you want replaced.
Then you determine the replacement text. Pass both of these to the replace ()
method, and the browser follows the direction given in the regular expression to
locate the text. If the text is found, the browser replaces it with the new text that you
provided.

The next example tells the browser to replace Bob with Mary in the text. The
regular expression specifies the word Bob. The replace () method of the string
object is then called to use the regular expression to search for Bob within the text
and then replace Bob with Mary.

However, the original string isn't modified. The modified string is returned by the
replace () method. You could assign the modified string to the variable contain-
ing the original string if you don't need the original string anymore.

@ JavaScript Demystified

A common problem is to replace all occurrences of one or more characters
of a string. You do this by creating a regular expression and calling the
replace () method; however, you'll need to place the g special character at

the end of the regular expression, which tells the browser to replace all occurrences
of the regular expression in the string. This is shown here:

/\bBob\b/g
re = /\bBob\b/

text = 'Hello, Bob and welcome to our web site.
text = text.replace(re, 'Mary')

Replacing Like Values

You've probably come across this situation: A company name is entered inconsis-
tently in text. The first letter of the name might be capitalized sometimes, while at
other times it appears in lowercase. A nickname might be used occasionally rather
than the formal name.

A regular expression can be written to search for variations of a name and re-
place it with a standardized name. To do this, the regular expression must contain
literal characters and wildcard characters. A literal character is a letter, number, or
symbol that must match exactly within the text. A wildcard is a special symbol that
tells the browser to accept one or multiple unspecified characters as a match.

Let's say that the text contains the words Bob and Bobby and you want to replace
them with the word Robert. Since both Bob and Bobby have the letters B-o-b, it
makes sense to specify Bob as a literal character for the browser to match. You'll
then need to use a wildcard to tell the browser to match other characters that follow
Bob in the text.

Two types of wildcards can be used: a period (.) and an asterisk (*). The period
tells the browser to match any single character, while the asterisk indicates zero or
more occurrences of whatever precedes it. For example, the following matches Bob
but not Bobby, because a single wildcard character is used:

/Bob./

However, this regular expression matches both Bob and Bobby because the multiple
character wildcard is used:

/Bob.*/

CHAPTER 10 Regular Expressions @
NortE Be careful when using wildcards, because the browser might return matches
that you didn't expect when you wrote the regular expression. For example, the

regular expression /Bob . */ also matches the following, and you don't want any
of these to change:

Bobbysoxer
Bobbing
Bobsled

The next example replaces Bob and similar spellings with Robert. You'll notice
that two new special symbols are used in this regular expression: g and i. The g
special symbol tells the browser to search for all occurrences of Bob throughout the
text. Without the g, the browser changes only the first occurrence of Bob. The i
special symbol tells the browser to ignore the case of the characters. That is, bob
and Bob are both a match. If you don't use the i special symbol, the browser will
ignore the case of the characters. That is, bob and Bob are both a match. If you don't
use the i special symbol, the browser will match only the case that you specify in
the regular expression. In this example, the browser would have matched only Bob
if we had excluded the i special character.

re = /\b\iBob (by) ?\b/g
text = 'Hello, Bob. Welcome Bobby to our web site.'
text.replace(re, 'Robert')

Return the Matched Characters

Sometimes your JavaScript application requires you to retrieve characters that
match a regular expression rather than simply testing whether or not those charac-
ters exist in the text. You can have the browser return characters that match the
pattern in your regular expression by calling the exec () method of the regular
expression object.

Here's how to use the exec () method. First, create a regular expression that
specifies the pattern that you want to match within the text. Characters that match
this pattern will be returned to your JavaScript. Next, pass the exec () method the
text for which you want to search. The exec () method returns an array. The first
array element contains the text that matches your regular expression.

@ JavaScript Demystified
For example, suppose you want to return a person's first name. You know the
name is Bob or some variation of it, such as Bobby, but you are unsure of how the
name appears in the text. As you've seen previously in this chapter, the following
regular expression matches Bob and any word that begins with B-0-b.
/\bBob. *\b/
We'll need to do the following:

1. Create the regular expression object and assign it the regular expression:
re = /\bBob.*\b /
2. Call the exec () method, passing it the text and assigning the return value

to an array variable. Remember that you can pass a reference to the text
instead of the entire text, as shown here:

re = /\bBob.*\b /
MyArray = re.exec('Hello, my name is Bobby.')

3. We then display the value of the first array element:

re = /\bBob.*\b /
MyArray = re.exec('Hello, my name is Bobby.'")
alert ('Welcome, ' + MyArray[0])

The Telephone Number Match

Validating a telephone number is a common task faced by JavaScript developers.
The next example shows how you can use a regular expression to do this. Let's be-
gin by creating the string that contains the telephone number. In a real JavaScript
application, the telephone number is entered into a field on a form. You use the
value attribute of the field to access the telephone number.

phone = '212-555-1212"
Next, create the regular expression, as shown here:
re = /N2 A\A{3}) [N 120 =\.12(\d{3}) [-\.12(\d{4})$/

No doubt the regular expression looks a little confusing, so let's break it down
into parts to help you understand what is happening here:

CHAPTER 10 Regular Expressions

—&

/ Start a regular expression.
A Start at the beginning of the string.
I\ Match the open parenthesis.

20\d{3}) Match any digit, 0-9, exactly three occurrences. The parentheses tell the browser
to store this as a subpattern and will be assigned to an element of the array that is
returned by the exec () method.

V] Match the close parenthesis.
21 -\] Match a hyphen.

20\d{4}) Match any digit 0-9 exactly four occurrences. The parentheses tell the browser
to store this as a subpattern and will be assigned to an element of the array that is
returned by the exec () method.

$ Match the end of the string.

/ The end of the regular expression.

Now that we've built the regular expression, let's use it in the following Java-
Script:

if (re.test (phone))
{

MyArray = re.exec (phone)
alert ('Area code: ' + MyArray[l] + '\nExchange: ' +
MyArray[2] + '\nNumber: ' + MyArray[3])

Before validating the telephone number, we must be sure that the (phone) string
exists by passing the string (phone) to the test () method. If the string isn't emp-
ty (NULL), then the test () method returns a true and statements within the if
statement are executed; otherwise, we don't need to validate the telephone num-
ber.

The string containing the telephone number is passed to the exec () method,
where the regular expression is applied to the string. The exec () method returns
an array. The first element of the array is the entire string that matches the regular
expression. Subsequent elements of the array contain substrings of the string that
match groups defined in the regular expression.

Three groups are defined in our regular expression, and each are contained with-
in parentheses: the first group is the area code, the second group is the three-digit
exchange, and the third group is the last four digits of the telephone number. The
substring that matches each one of these groups is automatically assigned to the
second and subsequent elements of the array in the order in which the groups are
defined in the regular expression.

@ JavaScript Demystified

This means that MyArray[1] is assigned the substring containing the area
code (that is, the first group defined in the regular expression). MyArray [2]is as-
signed the substring containing the exchange, and MyArray [3] is assigned the
substring containing the last four digits of the telephone number.

Once you have isolated each substring of the telephone number string, you can
continue the validation process to make sure that the telephone number is correct.
Steps in this process depend on the nature of your JavaScript application.

The next example shows the complete JavaScript. This JavaScript separates the
telephone number into area code, exchange, and number and displays each sepa-
rately, regardless of the format characters used in the string (Figure 10-1). The same

results are displayed even if you entered the following forms of the telephone num-
ber in the string:

2125551212
(212) 555-1212
212-555-1212
212.555.1212
(201)555-1212
212555-1212

&1 Simple Regular Expression - Netscape Q@l@
. File Edit Wew Go Bookmarks Tools Window Help

Q Q @ Q |’§.aFib:,r,r,fc:,rbooks,fJavaScru:mzUDemrstired,rﬁoodnrafr,uiaingl-2.htm |[C‘g5mm| ‘:go @
-~ "

LB, GAMal B AN 45 Home G2 Rado [Metscape O Sesrch | CBookmarks

[JavaScript Application]

l’ fArea code: 212
. Exchange: 555

Iumber; 1212

=0

[EN=NNCE S S [S |

Figure 10-1 This regular expression extracts components of the telephone number
regardless of how the telephone number is formatted.

CHAPTER 10 Regular Expressions @
<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Simple Regular Expression</title>
<script language="Javascript" type="text/javascript">
<!--
function RegExpression () {
phone = '212-555-1212"
re = /*IN(12(\d{3}) [\)120 =\.12(\d{3}) [-\.]
2 (\d{4})s/
if (re.test (phone))
{

MyArray = re.exec (phone)

alert ('Area code: ' + MyArray[l] + '\nExchange: ' +
MyArray[2] + '\nNumber: ' + MyArray[3])
}
}
-—>
</script>
</head>
<body>
<FORM action="http://www.jimkeogh.com" method="post">
<p>

<INPUT name="Run Reg Expression" value=" Run Reg Expression "
type="button" onclick=" RegExpression()"/>
</P>
</FORM>
</body>
</html>

Regular Expression Object Properties

In addition to methods, the regular expression object has properties that you can
access from within your JavaScript by referencing the name of the regular expres-
sion object followed by the property name. This is the same technique that you used
to access properties in previous chapters. Table 10-2 lists these properties.

For example, let's say that you want to access the last characters that were
matched by the regular expression. As you'll notice in Table 10-2, the 1astMatch
property contains the last characters that were matched by the regular expression
object. You reference this by using the following expression:

re.lastMatch

By—

JavaScript Demystified

Regular Expression Properties

Object

$1 (through $9) Parenthesized substring matches

$_ Same an input

S* Same asmultiline

$& Same as lastMatch

S+ Same as lastParen

S Same as leftContent

$' Same as rightContext

constructor Specifies the function that creates an object's prototype
global Search globally (g modifier in use)
ignoreCase Search case-insensitive (i modifier in use)
input The string to search if no string is passed
lastIndex The index at which to start the next match
lastMatch The last match characters

lastParen The last parenthesized substring match
leftContext The substring to the left of the most recent match
multiline Whether strings are searched across multiple lines
prototype Allows the addition of properties to all objects
rightContext The substring to the right of the most recent match
source The regular expression pattern itself

Table 10-2 Properties of the Regular Expression Object

Looking Ahead

A regular expression is similar to a mathematical expression in that both contain
operators that tell the browser how to manipulate values. A mathematical expres-
sion instructs the browser how to manipulate numbers. A regular expression directs
the browser to manipulate text by using special characters as operators.

A regular expression can handle practically all your needs for manipulating text.
You can use a regular expression to search text, extract text, replace text, and to
format text.

JavaScript has a regular expression object that can be assigned a regular expres-
sion. The regular expression object has methods and properties, as do other

CHAPTER 10 Regular Expressions

JavaScript objects that you learned about in this book. Two of the most useful meth-
ods are test () and exec ().

The test () method searches text, trying to match the pattern specified in the
regular expression and returns a true if a match is found; otherwise a false is re-
turned. The text that is searched is passed as an argument to the test () method.
The exec () method executes a regular expression and returns an array. The first
element of the array contains the portion of the text that matches the regular expres-
sion. The other array elements contain the subpatterns defined in the regular
expression.

In addition to an assortment of methods, the regular expression object also has
valuable properties that you can directly access from your JavaScript whenever you
need to tap into information about the regular expression.

With regular expressions under your belt, let's move on to writing JavaScripts
that interact with frames. As you probably remember from when you learned
HTML, the screen can be divided into sections, each called a frame. Each section
can have its own web page. In the next chapter, you'll learn how to interact directly
with each section of a frame from your JavaScript.

1. True or False. A regular expression begins with the special character \b.
a. True
b. False

2. Which special character is used to tell the browser to start at the beginning
of a string?

$

*

ISH

o
>

[]

3. What special character would you use to specify any nondigit?
a. \d
b. \D

$

$ *

g o

Qu

—&

1Z

By—

JavaScript Demystified

4. What special character would use you to tell the browser to search all

10.

occurrences of a character?
a. *
b. i
c. g
d. a

What special character do you use to search for a whitespace character?

a. \s

b. \s

c. s

d. s
What special character do you use to search for any letter, number, or the
underscore?

a. \w

b. \W

c. w

d. w

True or False. You call the exec () method of the regular expression
object to determine whether one or more characters exists in the text.
a. True

b. False

. True or False. A regular expression cannot be used to reformat text.

a. True
b. False

. True or False. You cannot insert literal characters into a regular expression.

a. True
b. False

What regular expression property contains text that precedes characters that
match the regular expression?

a. *Context
b. leftContext
c. Context*
d. contextLeft

CHAPTER J

JavaScript and
Frames

You may have visited web sites in which you were able to scroll the main portion
of the web page while a smaller section containing navigation remained stationary
on the screen. Although this looked as though it were all contained on a single web
page, actually multiple web pages appeared on the screen at the same time, and
each was displayed in a frame.

Frames are created using HTML, but you can interact and manipulate frames
using a JavaScript. You'll see how this is done in this chapter. You'll also learn more
about using frames in your web page in Chapter 16, where you'll learn to use DHTML
to create iframes.

—E

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

\@)’_ JavaScript Demystified
You've Been Framed!

All frames contain at least three web pages. The first frame surrounds the other
frames, and this entire collection is called the frameset. The other frames are within
the frameset, and each is referred to as a child. You can give each child a unique
name so you can later refer to it in your application.

JavaScript refers to the frameset as the top or the parent. The parent frame is al-
ways at the top of the display. Child windows appear within the parent window. You
can nest frames many layers deep—so the top level may actually still be a child
frame of another frameset.

Let's create a simple frame that contains two child windows. We'll begin by
defining the frameset using the <frameset> HTML tag. The frameset can be
divided into columns and rows, depending on the needs of your application. Col-
umns divide the frameset vertically using the cols attribute of the <frameset>
tag. Rows divide the frameset horizontally using the rows attribute of the
<frameset> tag.

The number of rows or columns that appear in a frameset is determined by the
value assigned to these attributes. Each column or row is represented by a percent-
age that indicates the percent of the frameset that is taken up by the column or row.
You can also specify a width and height—it doesn't have to be a percentage of the
available window.

Let's say that you want to divide the frameset evenly into two child windows.
One child window is at the top and the other is at the bottom. Since you are dividing
the frameset horizontally, you'll need to define the rows attribute. The top child
window takes up 50 percent of the frameset, and the bottom child window takes up
the other 50 percent. Here is the value that is assigned to the rows attribute to cre-
ate these child windows:

<frameset rows="50%,50%">

NotE You can change the percentage to enlarge one child window and reduce
the size of the other. You can also further divide the frameset by inserting another
percentage. However, keep in mind that these percentages must add up to 100
percent.

After you define the frameset, you can insert a web page into each child window.
You do this by using the <frame> HTML tag. Each child window has its own
<frame> tag. You specify the web page that will be displayed in the child window
by defining a value for the src attribute of the <frame> tag. You can also specify

CHAPTER 11 JavaScript and Frames @
a unique name for the child window by assigning the name to the name attribute of
the <frame> tag.

For example, suppose that you want WebPagel.html to appear as the top child

window. Here's what you'd need to write (although it makes sense to name the top
child window fopPage, you can assign any name you want to the child window):

<frame src="WebPagel.html" name="topPage" />

You'll need to define a <frame> tag within the <frameset> tag for each
child window contained in the <frameset> tag. The first <f rame> tag within
the <frameset> tag refers to the upper left—-most child window. Subsequent
<frame> tags refers to child windows that appear left to right, top to bottom with-
in the <frameset> tag.

The following example shows how to create a frameset that contains two child
windows, one on the top and the other on the bottom (Figure 11-1).

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Create a Frame</title>

</head>
<frameset rows="50%,50%">

<frame src="WebPagel.html" name="topPage" />

<frame src="WebPage2.html" name="bottomPage" />
</frameset>
</html>

The following is WebPage1.html, which appears at the top of the frameset:

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>
<title>Web Page 1</title>
</head>
<body>
<FORM action="http://www.Jjimkeogh.com" method="post">
<p>
<INPUT name="WebPagel" value="Web Page 1"
type="button" />
</P>
</FORM>
</body>

</html>

JavaScript Demystified

) Create a Frame - Netscape

. File Edit View Go Bockmarks Tooks ‘Window Help

@ @ @ Q [% files J1C bocks JavaSeripte20DemystFied/GocdDr aftListing1-2.htm | [Cy, search | ‘:go @

. B Bval faM 4 Home G Radio W] Netscape O Search EJBackmarks

‘Web Page 1

‘Weh Page 2

EX= PR A I | = |

Figure 11-1 This frameset is divided into two child windows, each of which displays a
different web page.

The following is WebPage2.html, which appears at the bottom of the frameset:

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>
<title>Web Page 2</title>
</head>
<body>
<FORM action="http://www.Jjimkeogh.com" method="post">
<p>
<INPUT name="WebPage2" value="Web Page 2"
type="button" />
</P>
</FORM>
</body>
</html>

Invisible Borders

You can make it less obvious that you are using frames by hiding the borders around
the child windows within your frameset. The result appears as one web page on the

CHAPTER 11 JavaScript and Frames @
screen, even though in reality each of multiple web pages appears in its own child
window.
The border can be hidden by setting the frameborder and border attributes
of the <frame> tag to zero (0). This is illustrated in the following example, where
we hide the borders of the frameset created in the previous example (Figure 11-2).

Any value other than O that is assigned to the frameborder and border attri-
butes causes the browser to display the border.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Create a Frame</title>
</head>
<frameset rows="50%,50%">
<frame src="WebPagel.html" name="topPage"
frameborder="0" border="0" />
<frame src="WebPage2.html" name="bottomPage"
frameborder="0" border="0" />
</frameset>
</html>

) Create a Frame - Netscape
. File Edit iew Go Bookmarks Took Window Help

@ @ @ Q [% files J1C bocks JavaSeripte20DemystFied/GocdDr aftListing1-2.htm | [Cy, search | ‘:go @

. B Bval faM 4 Home G Radio W] Netscape O Search EJBackmarks

‘Web Page 1

‘Weh Page 2

o2 a e Do | =

Figure 11-2 The borders around child windows can be hidden by setting the
frameborder and border attributes to zero.

JavaScript Demystified
y—
Calling a Child Window's JavaScript Function

Now that you've refreshed your memory on how to create a frameset, let's use Ja-
vaScript to manipulate frames. We'll begin with the simple task of calling a
JavaScript function that is defined in another child window.

You can refer to another child window by referencing the frameset, which is the
parent window, and then by referencing the name of the child window, followed by
whatever element within the web page of the child window that you want to access.

Suppose that we modified WebPagel.html to include the following JavaScript
function:

<head>
<title>Web Page 1</title>
<script language="Javascript" type="text/javascript">

<!—-
function ChangeContent () {
alert ("Function Called")
}
>
</script>
</head>

We'll also modify WebPage2.html to call the ChangeContent () function
when the Web Page 2 button is clicked, which is shown next. Notice that we speci-
fied the parent (frameset) and the name of the child window (toPage) that
contains the web page that defines the JavaScript ChangeContent () function.

<INPUT name="WebPage2" wvalue="Web Page 2"
type="button"onclick="parent.topPage.ChangeContent ()" />

When the Web Page 2 button is clicked in the bottom child window, the browser
calls the ChangeContent () function defined in the top child window, which
displays an alert dialog box in the top child window (Figure 11-3).

To call a JavaScript function in different frames, both pages have to be sourced
from the same domain—otherwise, the browser throws a security alert and prevents
it. If the pages are from different subdomains—for example, contentl.jimkeogh
.com and content2.jimkeogh.com—you can make it work as long as both pages are
included in a JavaScript statement:

document.domain = jimkeogh.com

If you don't do it like this, you'll get a security alert.

CHAPTER 11 JavaScript and Frames @

[Sre: S RES

. File Edit Miew Go Bookmarks Toolks Window Help B
O 0 0 Q [S file:f1iC:/bocks]JavaSeripts20Demystied)GoodDraftiListing -2 him | [Cysearcn ng g
. @ el &AM 45 Home G Radio W] Metscape © Search CJBookmarks
‘Wab Fage 1
[JavaScript Aipplication]
rt Function Called
i
Web Page 2
DA &) [oee Si-e A

Figure 11-3 A JavaScript function defined in one child window can be called from
another child window.

Changing the Content of a Child Window

You can change the content of a child window from a JavaScript function by modi-
fying the source web page for the child window. To do this, you must assign the new
source to the child window's href attribute. In this example, you were able to get
a reference to the parent frame's topPage element because they are both from the
same domain. At that point, you have two options: if they're in the same domain,
you reference it as illustrated previously, but you can also just change the frame
src attribute in the frameset to point the frame to a new page.

Let's do this in the following example. Again, we'll use the same frameset that
we've been using throughout this chapter. However, we'll need to modify both
the WebPagel.html and WebPage2.html files. In addition we'll need to define a new
web page called WebPage3.html.

Here is the new WebPagel.html file. WebPage1.html appears in the bottom child
window, and when the Web Page 1 button is clicked, the content of the top child

@ JavaScript Demystified
window changes from WebPage2.html to WebPage3.html. You'll notice that the
value of the button reflects the new content.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Web Page 1</title>
<script language="Javascript" type="text/javascript">

<!--
function ChangeContent () {
parent.topPage.location.href="WebPage3.html'
}
-—>
</script>
</head>
<body>
<FORM action="http://www.Jjimkeogh.com" method="post">
<p>
<INPUT name="WebPagel" value="Web Page 1"
type="button" onclick="ChangeContent ()"/>
</P>
</FORM>
</body>
</html>

We modified WebPagel.html in two ways: First, we defined the ChangeContent ()
function in the <head> tag. This function simply changes the value assigned to the
href attribute to WebPage3.html. The original href was WebPage2.html, which
is defined when we created the frameset. Notice that in order to change the href
value, we need to reference the parent, the name of the child window, the location,
and the href attribute. This tells the browser to go to the parent and then, within
the parent, go to the topPage child window and change the source for that window.

The following is WebPage2.html, which displays a button on the screen called
Web Page 2 when the frameset is first shown on the screen. WebPage2.html is re-
moved once the button on WebPage1.html is clicked.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>
<title>Web Page 2</title>
</head>
<body>
<FORM action="http://www.Jjimkeogh.com" method="post">

<p>
<INPUT name="WebPage2" value="Web Page 2"

CHAPTER 11 JavaScript and Frames @
type="button" />
</P>
</FORM>

</body>
</html>

The following is WebPage3.html, which displays a button on the screen called
Web Page 3 after the button on WebPagel.html is clicked (Figure 11-4).
<!DOCTYPE html PUBLIC

"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>
<title>Web Page 3</title>
</head>
<body>
<FORM action="http://www.Jjimkeogh.com" method="post">
<P>
<INPUT name="WebPage3" wvalue="Web Page 3"
type="button" />
</P>
</FORM>
</body>
</html>
) Create a Frame - Netscape El@l@
. file Edt View Go Bookmarks Tooks ‘Window Help
" @0 Q @ Q .|% Film: {1 fhinoks{ JavaScript % 200emystied]GoodDraftListing1-2.htm | [Cy, search] ﬂo @
. B Bval faM 4 Home G Radio W] Netscape O Search EJBackmarks
|3 3 A &F £ [ooe [==

Figure 11-4 WebPage3.html replaces WebPage2.html in the top child window when the
button in the bottom child window is clicked.

JavaScript Demystified

\686’—
Changing the Focus of a Child Window

The last child window that is created has the focus by default; however, you can
give any child window the focus by changing the focus after all the web pages have
loaded in their corresponding child windows.

You do this by calling the focus () method of the child window, as shown next,
where the focus is being given to the web page that appears in the bottomPage
child window. You can call the focus () method from a JavaScript function or
directly in response to an event such as the onclick event. The reference to par-
ent.bottomPage is needed to get past the security issues.

parent.bottomPage.focus () ;

Writing to a Child Window from a JavaScript

Typically, the content of a child window is a web page that exists on the web server.
However, you can dynamically create the content when you define the frameset by
directly writing to the child window from a JavaScript. The JavaScript must be de-
fined in the HTML file that defines the frameset and called when the frameset is
loaded. This is illustrated in the next example, where the JavaScript function writes

the content for the topPage child window, assuming the child is from the same
domain:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Create a Frame</title>
<script language="Javascript" type="text/javascript">
<!l--
function ChangeContent () {
window.topPage.document.open ()
window.topPage.document.writeln (
'<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">')
window.topPage.document.writeln (
'<html xmlns="http://www.w3.0rg/1999/xhtml">")
window.topPage.document.writeln ('<head>")
window. topPage.document.writeln (
'<title>Web Page 3</title>"')
window.topPage.document.writeln ('</head>")

CHAPTER 11 JavaScript and Frames

window. topPage.document.writeln ('<body>")
window. topPage.document.writeln (
'<FORM action="http://www.jimkeogh.com"
method="post">")
window. topPage.document.writeln ('<P>")
window. topPage.document.writeln (
'<INPUT name="WebPage3" value="Web Page 3"
type="button" />'")

window.topPage.document.writeln ('</P>")
window.topPage.document.writeln ('</FORM>")
window.topPage.document.writeln ('</body>")
window.topPage.document.writeln ('</html>")
window.topPage.document.close ()
}
-—>
</script>
</head>
<frameset rows="50%,50%" onload="ChangeContent ()">

<frame src="WebPagel.html" name="topPage" />
<frame src="WebPage2.html" name="bottomPage" />
</frameset>
</html>

To write dynamic content to a child window, you must assign a source file to
each frame of the frameset, even though you are dynamically creating the source
for at least one of those frames. You'll notice in this example that WebPage1.html is
assigned to the topPage frame. WebPagel.html must be a real file, although it
won't appear in the topPage frame because the JavaScript function writes the
content to that frame.

The JavaScript function is defined in the <head> tag and is called when the
onload event occurs. The topPage child window must be opened before the Ja-
vaScript function can write to the window. You open the child window by calling
the open () method for that frame, as shown here:

window. topPage.document.open ()

Once opened, call the write () method to write HTML content to the child
window to create the web page. This example displays the Web Page 3 button on a
form. The final step is to call the close () method to close the window, as shown
here:

window.topPage.document.close ()

—&

JavaScript Demystified
Br—
Accessing Elements of Another
Child Window

You can access and change the value of elements of another child window by di-
rectly referencing the element from within your JavaScript. You must explicitly
specify the full path to the element in the JavaScript statement that references the
element, and it must be from the same domain as the web page; otherwise, a secu-
rity violation occurs.

Let's see how this works. Suppose that a button named WebPagel is on Forml,
located on the web page that is displayed in the bot tomPage frame of the frame-
set. (This is similar to examples shown previously in this chapter, except in those
examples we didn't name the form.) The objective is to change the label of the Web
Page 1 button. You'll need to specify the full path and then assign text to the value
attribute of WebPagel, as shown here:

parent.topPage.Forml.WebPagel.value="'New Label'

Looking Ahead

In this chapter, you learned how to build a JavaScript that can interact with child
windows that are created when you insert a frameset into your web page. A frame-
set is a parent frame that contains two or more smaller child frames inside. Each
small frame can be populated by a web page.

Although many frames are loaded with a static web page, you can dynamically
build a web page within a frame by first opening the child window and then using
the write () method to write HTML tags directly to the child window. The results
are the same as loading a static web page; however, you can tailor the content based
on activities that occur while your JavaScript application runs. The content must be
from the same domain as the web page; otherwise, a security violation occurs.

Along with dynamically building a web page within a frame, you also learned
how to access and manipulate elements that appear in a child window, such as a
button or input box displayed on a form. The key to accessing these elements is to
reference the completed path that begins with the parent and is followed by the
child window and the form. The parent is the frameset.

In Chapter 12, you'll learn how to interact with images using JavaScript.

CHAPTER 11 JavaScript and Frames

1. True or False. A frameset can be loaded with a static web page.
a. True
b. False
2. What attribute is used to specify the web page that is loaded into a frame?
a. source
b. src
c. topPage
d. bottomPage
3. How can you hide the borders of a frame?
a. frameborder="0"
b. toPageborder="0" bottomPageborder="0"
c. borders=hide
d. Borders cannot be hidden.

4. What attributes can be used to change the source of a child window
from a JavaScript?

a. source
b. src
Cc. parent.frame.location.source
d. parent.frame.location.href
5. What frame receives focus by default?
a. First frame that is built
b. Last frame that is built
¢. No frame has focus
d. None of the above
6. How do you set the number of frames that appear in a frameset?
a. Setthe rows and cols values.
b. Set the frame value.
c. Setthe frameset value.

d. Set the child window value.

@ JavaScript Demystified
7. True or False. You specify the name of the frame whenever you want
to reference the contents of the frame.

a. True
b. False

8. True or False. A child window cannot change the content of another child
window if they are on different domains.

a. True
b. False
9. True or False. A child window cannot call JavaScript functions that are
defined in another child window if they are on different domains.
a. True
b. False
10. If you have two vertical frames, how do you make one frame smaller than
the other frame?
a. Make one of the rows values smaller than the other.
b. Make one of the cols values smaller than the other.
c. Make one of the bar values smaller than the other.

d. Make one of the bar values larger than the other.

o"

CHAPTER

Rollovers

Those who are unfamiliar with the web probably think a rollover is a dog trick, but
those who are web savvy know that a rollover occurs when a web page changes as
the mouse cursor moves over and away from an object on the page.

Rollovers are used to make a dreary web page come alive, by altering its appear-
ance as the visitor scans the contents of the web page with the mouse. Any object
on a web page can be changed with a rollover. Some web developers change an im-
age that is related to the object beneath the mouse cursor. Other web developers pop
up a new window that further describes the object. The only limitation is your
imagination.

In this chapter, you'll learn all about rollovers and how to implement rollovers in
your own JavaScript applications.

—

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

@ JavaScript Demystified
A 4
Setting the Stage

Before getting into the how to's of creating a rollover, let's build a product page,
which we'll later enhance with rollovers throughout this chapter. Rollovers are com-
monly used on product pages to display details about merchandise for sale online.
In this case, we'll use a very simple product page that displays books in McGraw-
Hill/Osborne's Demystified series. Rollover techniques that we use on this product
page can be easily used for any type of web page.

Figure 12-1 shows the product page we're going to build. We kept this simple
because the purpose of this example is to illustrate how to beef-up the page with
rollovers, rather than to show you how to create a product page.

Following is the product page web page that includes an image and product de-
scription. We created a table using the <TABLE> tag so that the image and the
description can be properly positioned on the page. The table consists of one row
defined by the <TR> tag, and three columns defined by the <TD> tag. The first
column contains the image. The second column is used to visually separate the im-
age from the product description. The third column contains the product
description.

& Product Page - Netscape
. File Edit iew Go Bookmarks Took Window Help

GO Q O Q |"\\, File: §/C: fbooks/JavaSeripto20DemystFied{GoodDr aft/Listing1-2.htm | [€, search | ‘:550 @

. B 2BMal BaM 4 Home G Radio [Metscape O Search EJBackmarks

|| Java Demystified
g Jim Keogh / Paperback / Osborne McGraw Hill £ 352pp.
ISEN: 0072254548 May 2004

Eoaerno | &=

I

Figure 12-1 This very simple product page can be enhanced by using rollovers.

CHAPTER 12 Rollovers @
You'll notice that the height and width of the image is set so that the image fits

neatly into the row and that the border attribute in the <TABLE> tag is set to 0.
This hides the table itself, leaving only the contents of the row visible.

NortE Pick up a copy of HTML: The Complete Reference, Third Edition by
Thomas A. Powell or How to Do Everything with HTML by James H. Pence
(both books published by McGraw-Hill/Osborne) and refresh your memory
on any HTML tags that are unfamiliar to you in this example.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>
<title>Product Page</title>
</head>
<body>
<TABLE width="100%" border="0">
<TBODY>
<TR valign="top">
<TD width="50">
<a>
<IMG height="92" src="7441805.gif"
width="70" border="0" >

</TD>
<TD>

</TD>
<TD>
<A>
<U>Java Demystified</U>

<FONT face="arial, helvetica, sans-serif"
size="-1">

JimKeogh / Paperback / Osborne McGraw Hill /
352pp.

ISBN: 0072254548 Mayé 2004
</TD>
</TR>
</TBODY>
</TABLE>
</body>

</html>

@ JavaScript Demystified
«r
Creating a Rollover

A rollover is caused by an event called onmouseover and occurs when a visitor to
your web site moves the mouse over an object that appears on the page. An object
can be an image, text, or any element of a form (see Chapter 7).

You react to the onmouseover event by using the onmouseover attribute of
an HTML tag that defines the object on the web page and then assign to the
onmouseover attribute the action you want performed when the event occurs.
The action can assign a new value to an attribute of an object, call a method of an
object, or call a JavaScript function.

Let's say that we want to change the image on the product page whenever the
visitor moves the mouse cursor over the image. The tag defines the image
object. The value assigned to the src attribute of the tag identifies the im-
age itself. Whenever the onmouseover event occurs, we need to change the value of
the src attribute to identify the new image. Here's how this is done:

<IMG height="92" src="7441805.gif" width="70"
border="0" onmouseover="src='0072253630.jpeg"'">

Dealing with Incompatible Browsers

Although most browsers used today can handle rollovers, some older browsers cannot;
therefore, you'll need to determine the compatibility of the browser before your web page
uses rollovers.

The easiest way to determine browser compatibility is to test the document . images
object in an if statement. The document . images object reflects all the images on a web
page in an array. Each image is assigned to an array element based on the order in which the
image appears on the page. That is, the first image displayed is assigned to document
.images[0], the second is document . images [1], and so on. If the browser supports
the document . images object, then it also supports rollovers. If the browser doesn't sup-
port the document . images object, rollovers aren't supported.

Here's how to test whether the browser supports the document . images object. Basi-
cally, the document . images objectis not null if the browser supports rollovers; otherwise,
the document. images object is null. Note that you place rollover statements in the if
statement, not in the else statement.

if (document.images) {
Browser supports rollovers.
}
else {
Browser does not support rollovers.

CHAPTER 12 Rollovers @
Here, the original image is the 7441805.gif file. The new image is the 0072253630
Jjpeg file. The onmouseover attribute is assigned the complete assignment state-

ment (src='0072253630.Jpeqg"'), which tells the browser to replace the
7441805.gif image with 0072253630.jpeg.

Tip Be careful how you use single and double quotation marks when

assigning the action to the onmouseover attribute. The value assigned to

the onmouseover attribute must be enclosed within either double or single
quotation marks. You should always use double marks for attribute values, single
marks are tolerated by browsers because so many people use them. However, if
the onmouseover value contains double quotation marks, as in this example,
you must use single quotation marks so it isn't confused with the double marks of
the onmouseover attribute.

Creating a Rollback

Typically, you'll want to roll back, or reverse changes, of the onmouseover event
when the visitor moves the cursor away from the object. For example, you may
want the original image to return to the screen after the mouse is moved away, re-
placing the image that was displayed when the onmouseover event occurred. You
can do this by reacting to the onmouseout event, which occurs whenever the mouse

&l Rollover, Image - Netscape
. File Edit Miew Go Bockmarks Tools ‘Window Help

@O Q 0 O |"\\, File: §/C: fbooks/JavaSeripto20Demystied{GoodDr aft/Listing1-2.htm | [C, search | ‘:go @

. B EBMal BaM @ Home G Radio [Metscape O Search EJBookmarks

Java Demystified
Jim Keogh / Paperback / Osborne McGraw Hill £ 352pp.
] ISBEN: 0072254548 May 2004

EX= PR A I |

Figure 12-2 The product image changes whenever the visitor moves the mouse over the
image of the product.

@ JavaScript Demystified
cursor is moved off an object. You react to the onmouseout event by assigning an
action to the onmouseout attribute of an object using the same technique used to
assign an action to the onmouseover attribute.

In the next example, the onmouseover event changes the image from 7441805.
gif to 7417436.gif (Figure 12-2). Therefore, we need to change the image from

7417436.gif back to 7441805.gif when the onmouseout event occurs. Here's how
this is done.

<IMG height="92" src="7441805.gif" width="70" border="0"
onmouseover="src='7417436.gif'" onmouseout="src='7441805.gif"'">

Following is the complete web page that illustrates the rollover and rollback
techniques:

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>
<title>Rollover Image</title>
</head>
<body>
<TABLE width="100%" border="0">
<TBODY>
<TR vAlign="top">
<TD width="50">
<a>
<IMG height="92" src="7441805.gif" width="70"
border="0" onmouseover="src='7417436.gif"'"
onmouseout="src='7441805.gif"'">

</TD>
<TD>

</TD>
<TD>
<A>
<U>Java Demystified</U>
</BA>
<FONT face="arial, helvetica, sans-serif"
size="-1">

Jim Keogh / Paperback / Osborne McGraw Hill / 352pp.

ISBN: 0072254548 Mayé 2004
</TD>
</TR>
</TBODY>
</TABLE>
</body>

</html>

CHAPTER 12 Rollovers @
\ S 4
Text Rollovers

You can create as many rollovers as you want on your web page; however, each one
should be meaningful to the visitor. There is nothing more distracting to a visitor
than to encounter rollovers on practically every object on a web page. Carefully
placed rollovers can enhance a visitor's experience when browsing the web page.

A clever rollover technique used by some developers is to enable a visitor to see
additional information about an item described in text by placing the mouse cursor
on the text. This eliminates the time-consuming task of using a hyperlink to display
another web page that contains this additional information and reduces the informa-
tion clutter found on some web pages.

You create a rollover for text by using the onmouseover attribute of the <A>
tag, which is the anchor tag. You assign the action to the onmouseover attribute
the same way as you do with an tag.

Let's start a rollover project that displays a list of book titles. Additional informa-
tion about a title can be displayed when the user rolls the mouse cursor over the
book title. In this example, the cover of the book is displayed. However, you could
replace the book cover with an advertisement or another message that you want to
show about the book.

One thing must be done; the onmouseover attribute must change the src at-
tribute of the tag. Therefore, the value assigned to the onmouseover
attribute needs to identify explicitly the tag that is being changed. To do
this, we must give the tag a unique name by assigning the name to the
name attribute of the tag. We can then reference the name in the value as-
signed to the onmouseover attribute of the text's <A> tag. The following segment
shows how this is done.

First, we give a name to the tag. We'll call it cover.

<IMG height="92" src="7441805.gif" width="70"
border="0" name="cover">

Next, we reference the name cover in the src attribute to change the image that
is assigned to the cover tag. Notice that we use the complete document
path, beginning with the document, then the object within the document (the <TMG>
tag), and then the attribute of the object (src) that we're changing. We don't need
to react to the onmouseout event because the cover image is always the last book
title that was pointed to by the mouse cursor.

<U>Java Demystified</U>

JavaScript Demystified

) Rollover Text - Metscape
. File Edit View Go Bockmarks Tooks ‘Window Help

@0 Q @ Q [% files J1C bocks JavaSeripte20DemystFied/GocdDr aftListing1-2.htm | [Cy, search | ﬂo @

. B Bval faM 4 Home G Radio W] Netscape O Search EJBackmarks

Java Demystified
OO0P Demystified
Data Structures Demystified

[© 2 4 &f £ [owe e ey

Figure 12-3 The cover changes each time the mouse cursor points to a different book title.

The following web page displays three book titles and one book cover. The cover
of the first book is shown when the page opens and is replaced with other covers as
the mouse cursor is rolled over each corresponding title (Figure 12-3).

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>
<title>Rollover Text</title>
</head>
<body>
<TABLE width="100%" border="0">
<TBODY>

<TR vAlign="top">
<TD width="50">
<a>
<IMG height="92" src="7441805.gif"
width="70" border="0" name="cover'">

</TD>
<TD>

</TD>
<TD>
<A onmouseover=

CHAPTER 12 Rollovers @
"document.cover.src="'7441805.gif"'">
<U>Java Demystified</U>

<A onmouseover=
"document.cover.src='0072253630.jpeg'">
<U>00P Demystified</U>

<A onmouseover=
"document.cover.src="'7417436.gif"'">
<U>Data Structures Demystified</U>
</BA>
</TD>
</TR>
</TBODY>
</TABLE>
</body>
</html>

Multiple Actions for a Rollover

As you probably realize, you don't need JavaScript to use rollovers with your ap-
plication, because you can react to an onmouseover event by directly assigning an
action to the onmouseover attribute of an HTML tag. This direct method enables
you to perform one action in response to an onmouseover event. However, you may
find that you want more than one action to occur in response to an onmouseover
event. To do this, you'll need to create a JavaScript function that is called by the
onmouseover attribute when an onmouseover event happens. This JavaScript
function is not much different from other JavaScript functions that you've created
throughout this book, except this function is likely to have statements that manipu-
late objects on the page rather than perform calculations.

Let's suppose a visitor rolls the cursor over a book title, as in the previous ex-
ample. Instead of simply changing the image to reflect the cover of the book, you
could also display an advertisement for the book in a new window, encouraging the
visitor to purchase the book (Figure 12-4). In this case, both the statement that
changes the book cover and the statement that pops up the advertisement are con-
tained in the JavaScript function, which is called by the onmouseover attribute
of the text's anchor tag.

The next example shows how this is done. First, we define the OpenNewWindow ()
JavaScript function in the <head> tag of the page. The OpenNewWindow ()
function has one argument, which is an integer called book that identifies the book
title that the visitor selected.

LYy—

JavaScript Demystified

X Open Window - Netscape m

. File Edk Wiew Go Bookmarks Tools ‘Window Help

d @o e @ Q [% Filestfic:bocks]JavascripttanoemystifiedjGoodDraftiListingl-2 htm | [C4search | ‘fgo @

L B Eval BAM 45 Home G2 Radio (W] Hetscape QSearr.h| EBaokmarks

Y| Java Demystified
OOP Demystified
Data Structures Demystified

B Netscape El@|g|

10%% Discount for

Jawva Demystified!

M A B O BN Done | e

Figure 12-4 The JavaScript function changes the image of the cover and opens an
advertisement in a new window.

The function executes the appropriate statements depending on the book. Basi-
cally, the same three statements are executed for each book:

* The appropriate cover is assigned the src attribute of the tag.

* A new window is opened by calling the window. open () method of the
window object.

* The advertisement is written to the new window using the window
.write () method.

These statements are slightly different for each book, of course, as each has a dif-
ferent cover, the window is positioned in a different place on the screen for each
book, and the content written to the window is tailored to each book.

Tip In a real application, the new window typically displays an advertisement
image rather than text. Text is used in this example so you can easily replicate this
on your computer without having to create an image.

CHAPTER 12 Rollovers @
We then define the rest of the page in the <BODY> tag. This is nearly identical to
the preceding example, except the text reacts to two events—onmouseover and
onmouseout—inside of one event.
The onmouseover attribute responds to the onmouseover event by calling the
OpenNewWindow () JavaScript function and passing it an integer that identifies
the book. The onmouseout attribute reacts to the mouse cursor rolling off (on-

mouseout event) the text by calling the close () method of the window object,
which closes the newly opened window so we don't clutter the screen with windows.

<!DOCTYPE html PUBLIC
"-//W3C//DID XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Open Window</title>
<script language="Javascript" type="text/javascript">
<l--
function OpenNewWindow (book) {
if (book== 1)
{
document.cover.src="'7441805.gif"
MyWindow = window.open (

'', 'myAdWin', 'titlebar=0 status=0,
toolbar=0, location=0, menubar=0,
directories=0, resizable=0, height=50,
width=150,1eft=500, top=400")

MyWindow.document.write (
'10% Discount for Java Demystified!'")
}
if (book== 2)
{
document.cover.src="'0072253630.jpeqg"
MyWindow = window.open('', 'myAdWwin',
'titlebar="0" status="0", toolbar="0",
location="0", menubar="0", directories="0",
resizable="0", height="50",
width="150",1left="500", top="500"")
MyWindow.document.write (
'20% Discount for OOP Demystified!')
}
if (book== 3)
{
document.cover.src='7417436.gif’
MyWindow = window.open('', 'myAdWin',
'titlebar="0" status="0", toolbar="0",

@ JavaScript Demystified
location="0", menubar="0",
directories="0", resizable="0",
height="50", width="150",
left="500", top="600"")
MyWindow.document.write (
'15% Discount for Data Structures Demystified!")
}
}
-—>
</script>
</head>
<body>
<TABLE width="100%" border="0">
<TBODY>
<TR vAlign="top">
<TD width="50">
<a>
<IMG height="92" src="7441805.gif"
width="70"
border="0" name="cover">

</TD>
<TD>

</TD>
<TD>
<A onmouseover="OpenNewWindow (1) "
onmouseout="MyWindow.close () ">
<U>Java Demystified </U>

<A onmouseover="OpenNewWindow (2)"
onmouseout="MyWindow.close () ">
<U>00P Demystified</U>

<A onmouseover="OpenNewWindow (3)"
onmouseout="MyWindow.close () ">
<U>Data Structures Demystified</U>

</TD>
</TR>
</TBODY>
</TABLE>
</body>
</html>

CHAPTER 12 Rollovers

—&r

More Efficient Rollovers

An efficient way of handling rollovers is to load images into an array when your
web page loads. The browser loads each image once the first time the image is ref-
erenced in the web page. Typically, the default setting for the browser is to check
the browser cache for subsequent references for the image rather than download the
image again from the web server. However, a visitor to your web page might have
changed the default setting, causing the browser to reload the image each time the
image is referenced. This might cause a noticeable delay.

Any delay in transmission is likely to be noticed by the visitor. While most visi-
tors accept short delays when they're selecting a different web page, they tend to be
unforgiving if the rollover takes longer than a second or two to display the new im-
age. You can reduce this delay by creating a JavaScript that loads all the images into
memory once at the beginning of the JavaScript, where they can be quickly called
upon as the onmouseover event occurs.

Downloading images when the web page is first loaded is a simple three-step
process:

1. Declare an image object.
2. Assign the image file to the image object.

3. Assign the image object to the src attribute of the HTML tag that is going
to react to the rollover event.

The following example shows how this is done. Notice that the IMG object is
declared and assigned an image in the if statement and that the TMG objects are as-
signed to null if the browser doesn't support rollovers.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>More Efficient Rollover</title>
<script language="Javascript" type="text/javascript">
<l-=
JavaDemystified = new Image
OOPDemystified = new Image
DataStructuresDemystified = new Image
if (document.images) {
JavaDemystified.src = '7441805.gif"
OOPDemystified.src = '0072253630.Jjpeg’
DataStructuresDemystified.src = '7417436.gif"

@ JavaScript Demystified

}

else {
JavaDemystified.src = "'
OOPDemystified.src = "'
DataStructuresDemystified.src = "'

document.cover = "'

}

-—>
</script>
</head>
<body>
<TABLE width="100%" border=0>
<TBODY>
<TR vAlign="top">
<TD width="50">
<a>
<IMG height="92" src="7441805.gif"
width="70" border="0" name="cover">

</TD>
<TD>

</TD>
<TD>
<A onmouseover=
"document.cover.src=JavaDemystified.src">
<U>Java Demystified </U>

<A onmouseover=
"document.cover.src=00PDemystified.src">
<U>00P Demystified</U>

<A onmouseover=
"document.cover.src=
DataStructuresDemystified.src">
<U>Data Structures Demystified</U>

</TD>
</TR>
</TBODY>
</TABLE>
</body>

</html>

CHAPTER 12 Rollovers
Looking Ahead

A rollover provides an easy way to make your web page come alive, as visitors to
your web site move the mouse cursor around the web page. Each time the mouse
cursor rolls over an object on the web page, the browser signals an onmouseover
event. An onmouseout event is then generated when the mouse cursor moves off the
object. Your can design your web page to perform an action to respond to these
events.

You specify the action that is to be taken by assigning a value to the onmouseover
and onmouseout attributes of the tag and the anchor tag. The value can
be as simple as resetting the value of another attribute, such as the src attribute of
the tag, or it can call a JavaScript function. A JavaScript function can be
defined to perform one or multiple actions in response to the onemouseover and
onmouseout events by including multiple JavaScript statements within the function
definition.

Most browsers support rollovers; however, some browsers don't, so you'll need
to test whether or not the browser supports the document . images object. If it
does support this object, then the browser also supports rollovers.

In the next chapter, you'll learn how to dress up your web pages with banners and
slideshows.

Quiz

1. True or False. The browser automatically replaces a rollover image with the
original image when the mouse cursor moves away from an object.

a. True
b. False

2. What is assigned an action to perform when the mouse cursor leaves an
object?

a. onmouseout event
b. onmouseover event
c. onmouseout attribute

d. onmouseout attribute

\@ JavaScript Demystified
— A
3. Where is a good place to trap a rollover event in a text object?
a. tag
b. Anchor tag
c. Name tag
d. srctag
4. How do you reference a specific object on a document?
a. Use the unique position of the object.
b. Use the unique source of the object.
c. Use the unique name or ID of the object.
d. None of the above.
5. How do you load rollover images into memory?
a. RolloverLoad
b. LoadRollover
c. Assign an image file to an image object in a JavaScript
d. Call the LoadRollover () method from a JavaScript

6. What is the value of document . images if the browser does not support
the Image object?

a. 1

b. null

¢. The number of images on the page

d. The number of images that must be loaded from the server

7. True or False. You can open a new window directly from the
onmouseover attribute.

a. True
b. False

8. True or False. All images on a web page are reflected in the document
.1lmages array.

a. True
b. False

9. True or False. You can use JavaScript to write to a window that is opened as
a result of an onmouseover event if the window is in the same domain.

a. True
b. False

CHAPTER 12 Rollovers @
10. You can create a rollback of an image by reacting to which event?
onmouse event

onmouserollback event

onmouserestore event

g0 o P

None of the above

This page intentionally left blank.

o"

CHAPTER

Getting Your
Message Across:
The Status Bar, Banners,
and Slideshows

Developers use a variety of tricks to communicate messages to visitors of their web
sites—clever headlines, specially designed artwork, and flashy animation grab the
visitor's attention as information is displayed about merchandise or a cause. Al-
though many of these tricks require that you be a decent artist who is skillful in
using animation products such as Macromedia Flash, you can incorporate a few
tricks into your web page by using JavaScript, even if you're not a great artist.

These tricks use status bar messages, banner advertisements, and slideshows—
all of which are easy to build and can add the pizzazz needed to get your point
across to anyone who visits your web site. You'll learn the secrets behind these
tricks in this chapter.

—&r

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

@ JavaScript Demystified
«r
Making Magic Using the Status Bar

The status bar is located at the bottom of the browser window and is used to display
a short message to visitors to your web page. Though most web sites make use of
status bar messages, some developers overlook this feature.

Developers who are clever to utilize the status bar employ various techniques to
incorporate the status bar in the design of their web page. Some developers display
a message on the status bar when the web page first opens. Other developers might
change the message to reflect whatever the visitor is doing on the web page. Still
other developers animate the message while the page is displayed, trying to entice
the visitor to read the message. We'll show you how to build several status bar dis-
play techniques into your web page.

Building a Static Message

Let's begin with the easiest—display a static message on the status bar. A static
message appears when the web page opens and remains on the status bar until the
web page is closed.

The content of the status bar is the value of the window object's status prop-
erty. To display a message on the status bar, you'll need to assign the message to the
status property of the window object. The following statement assigns a string
to the status property, which appears on the status bar once the browser executes
this statement:

window.status=
'Trade secrets are revealed in the Demystified Series.'

The next example shows you how to incorporate this statement into your web
page. This example should look familiar to you, since it is nearly identical to some
JavaScript you saw in Chapter 12. In this example, we assign the message to the
status property in the first line of the JavaScript, which appears within the
<head> tag of the page (Figure 13-1). Notice that this statement is outside of
the function definition, so the message is displayed immediately when the web
page opens. However, you can place this assignment statement anywhere in your

CHAPTER 13 Getting Your Message Across

&) Static Status Bar Message - Netscape
. Fle EdEt Wiew Go Bookmarks Tools Window Help

=7 A
@0 Q 0 @ [% Fissfj1c: fooats Davaseriptes20Demystified GoodDraftiListing1-2, i | [Eysearch | Q;O i

L B @&l A 4 Home G2 Radio [H] Netscape QSearch| FBockmarks

Java Demystified
Q0P Demystified
Data Structures Demystified

M G £ | Trade secrats are revealed in the Dernystified Seres, — E=r5P

Figure 13-1 The value of the window object's status property is the message that
appears on the status bar.

JavaScript. The location depends on when you want the browser to display the mes-
sage on the status bar.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Static Status Bar Message</titles>
<script language="Javascript" type="text/javascript"s>
<!--
window.status=
'Trade secrets are revealed in the Demystified Series.'
function OpenNewWindow (book) {
if (book== 1)

{

@ JavaScript Demystified

document .cover.src="'7441805.gif"

MyWindow = window.open('', 'myAdWin', 'titlebar=0
status=0, toolbar=0, location=0, menubar=0,
directories=0, resizable=0,
height=50, width=150,1left=500,top=400")

MyWindow.document .write (
'10% Discount for Java Demystified!')

}

if (book== 2)

{

document .cover.src='0072253630.jpeg’

MyWindow = window.open('', 'myAdWin', 'titlebar=0
status=0, toolbar=0, location=0, menubar=0,
directories=0, resizable=0,
height=50, width=150,1left=500,top=500")

MyWindow.document .write (

'20% Discount for OOP Demystified!')

if (book== 3)

document .cover.src="'7417436.gif"
MyWindow = window.open('', 'myAdwWin',
'titlebar=0 status=0, toolbar=0, location=0,
menubar=0, directories=0, resizable=0,
height=50, width=150,1left=500,top=600")
MyWindow.document .write (
'15% Discount for Data Structures Demystified!')

}
}

-=>
</scripts>
</head>
<body>
<TABLE width="100%" border=0>
<TBODY >
<TR vAlign=top>
<TD width=50>
<a>
<IMG height=92 src="7441805.gif" width=70
border=0 name='cover's>

</TD>
<TD>

CHAPTER 13 Getting Your Message Across

—&

</TD>
<TD>
<A onmouseover="OpenNewWindow (1) "
onmouseout="MyWindow.close () ">
<U>Java Demystified </U>

<A onmouseover="OpenNewWindow (2)"
onmouseout="MyWindow.close () ">
<U>00P Demystified</U>

<A onmouseover="OpenNewWindow (3)"
onmouseout="MyWindow.close () ">
<U>Data Structures Demystified</U>

</TD>
</TR>
</TBODY >
</TABLE>
</body>
</html>

Changing the Message Using Rollovers

You can make the status bar message come alive by telling the visitor something
about objects the visitor points to on the web page. The message on the status bar
changes as the visitor moves the mouse cursor over objects on the page.

The secret to this trick is to use rollovers to signal the browser when a different
message should be displayed. As you'll recall from Chapter 12, an onmouseover
event is generated whenever the visitor moves the mouse cursor over an object on
the web page. You can trap the onmouseover event by using the onmouseover
property. The browser executes the statement that you assign to the onmouseover
property when an onmouseover event occurs.

The following code segment shows how this is done. When the mouse cursor is moved
over the text Java Demystified, the browsercallstheDisplayStatusBarMesg ()
function.

<U>Java Demystified </U>

@ JavaScript Demystified
You don't need to call a JavaScript function to display a message on the status

bar. Instead, you can simply have the browser change the message directly from the
onmouseover property. Here's how this is done:

@Code Listing = <A onmouseover=
"window.status='10% Discount for Java Demystified!'">
<U>Java Demystified </U>

Typically, you'll want to have the browser take multiple actions in response to an
onmouseover event. Therefore, you'll probably find yourself defining a function that
changes the message on the status bar and does other things when an onmouseover
event happens.

The next example illustrates how to do this. This is basically the same web page
that appeared in the previous example—with one major change: we dispense with
the popup windows and place the sales message for each book that appeared in
those windows on the status bar. When the web page opens, the status bar displays
the general sales message that was shown on the status bar in the previous example.
The DisplayStatusBarMesg () is called each time the visitor moves the
mouse cursor over the title of a book. The DisplayStatusBarMesg () is nearly
identical to the OpenNewWindow () function we saw in the previous example.
We simply changed the name of the function to reflect the action that occurs when
the function is called.

The DisplayStatusBarMesg () function is passed an integer that indicates
the book that incurred the onmouseover event. The appropriate segment of the
DisplayStatusBarMesg () function executes based on this value.

Two things then occur on the web page. First, the image changes to reflect the
cover of the title selected by the visitor. Second, the sales message for that book is
displayed on the status bar (Figure 13-2).

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Dynamic Status Bar Message</title>
<script language="Javascript" type="text/javascript"s>
<!--
window.status=
'Trade secrets are revealed in the
Demystified Series.'
function DisplayStatusBarMesg (book) {
if (book== 1)
{
document .cover.src="'7441805.gif"
window.status=

CHAPTER 13 Getting Your Message Across @
'10% Discount for Java Demystified!'

}
if (book== 2)
document .cover.src='0072253630.jpeg’
window.status='20% Discount for OOP Demystified!'"

if (book== 3)
document .cover.src="'7417436.gif"
window.status=
'15% Discount for Data Structures Demystified!'

}
}
-=>
</script>
</head>
<body>
<TABLE width="100%" border=0>
<TBODY >
<TR vAlign=top>
<TD width=50>
<a>
<IMG height=92 src="7441805.gif"
width=70 border=0 name='cover's

</TD>
<TD>

</TD>
<TD>

<U>Java Demystified </U>

<U>00P Demystified</U>

<U>Data Structures Demystified</U>

</TD>
</TR>
</TBODY >
</TABLE>
</body>

</html>

JavaScript Demystified

. Fle EdEt Wiew Go Bookmarks Tools Window Help

@0 Q 0 O |% File: {{C: foooks[JavaScript s 20Demystified/GoodDr aftfListing1-2, htm | |QS=aﬂ:l|] Q_go @

./ B vl BAM 4 Home G Radio [M] Netscape C4 Search | FiBockmarks

Java Demystified
Q0P Demystified
Data Structures Demystified

S G A ©f [| 15% Obcount or Data Stuctures Demysified — - e A

Figure 13-2 The message on the status bar reflects the title pointed to by the visitor.

Moving the Message Along the Status Bar

You can spice up any message on the status bar by displaying letters individually,
giving the message a sense of movement. The message then appears to ripple across
the status bar continuously while the visitor looks around the web page. Movement
of the message doesn't stop even during rollovers.

Creating movement on the status bar is a little tricky; however, the next example
will show you everything you need to do to get your message moving. This example
is similar to the example shown in Figure 13-1, except the message in Figure 13-1 is
stationary and the message is this example moves.

Let's begin where the browser begins by calling the Start () JavaScript func-
tion when the web page first loads into the browser. This happens in the <body>
tag, as shown here:

<body onload="Start()">

The Start () function is defined in the JavaScript found in the <head> tag. Two
statements are included within the Start () function: Pause () and Display ().
The Pause () function temporarily stops the message from moving along the status
bar, and the Display () function causes the text to move along the status bar.

CHAPTER 13 Getting Your Message Across @
The Pause () function performs two actions:

1. It calls the clearTimeout () function to reset the timeout clock if the
message is displayed on the status bar. The clearTimeout () function
is a predefined function that clears the current setting of the timeout clock,
which determines the length of time that the browser pauses. The timeout
clock is set in the Display () function definition, which you'll learn
about later in this section. The clearTimeout () function requires one
parameter, which is a reference to the clock. This reference is returned by
the setTimeout () function.

2. The Pause () function sets the flag that indicates the message isn't
displayed on the status bar.

Most of the real action takes place in the Display () function definition. At
first, this function definition might appear complex, but it's not so tricky if you take
time to understand what is happening with each statement contained in the function
definition.

Begin by identifying the initial value for variables and properties used in these
statements. These are declared and initialized at the beginning of the JavaScript.
The Clock variable is set to null, which you'll recall is the same as saying that
nothing is assigned to the Clock variable. The MesgDisplayed variable is set
to false, and the other variables are set to 0.

The message that appears in the status bar is assigned to an array (see Chapter 4)
called Mesg. Each character of the message becomes an element of the array, which
enables us to display each letter on the status bar.

Let's return to the definition of the Display () function and see how these
variables are used to create movement on the status bar. First, we determine wheth-
er the value of Of £ set is less than the length of the array, which is really the length
of the string. This value will be incremented as we begin to display letters on the
status bar.

If the value of Of £set is less than the length of the array, we determine wheth-
er the character at the Of fset within the array is a space. If so, we increase the
value of Of £ set so that the leading space is not displayed on the status bar. Notice
that we use the charAt () function to determine the character that is assigned to
the array element. We then compare this value to the space character (" "):

if (Mesg[Count].charAt (Offset) == " ") {
Offset++
}

Once we're sure that a character (Offset < Mesg[Count] .length) ap-
pears and the character isn't a space (" "), we can display a portion of the message.

@ JavaScript Demystified
You might be wondering why we display only a portion of the message—we do so
to create the illusion of movement, as one portion at a time appears on the status bar.

Here's what happens. We display a substring (see Chapter 6) of the message, and
then have a short timeout before displaying another portion of the message. The sub-
string is a portion of the message that is assigned to the array. The substring ()
method is a method of a string object that copies a substring from a string based on
a beginning and end position that is passed as an argument to the substring ()
method.

The starting position specifies the first character that is returned by the
substring () method—that is, the first character in the substring. The end posi-
tion specifies the character that precedes the last character that is returned by the
substring () method.

You'll notice that the value of Offset increases while the Display () func-
tion executes, causing a larger substring of the message to be returned by the
substring () method and subsequently displayed on the status bar when the
substring (PMesg) is assigned to the status property (window.status).

After the subsbring is displayed, the value of Of f set is incremented and set -
Timeout () is called to create a short pause before the next substring of the
message is displayed. The setTimeout () function has two parameters: The first
is the name of the function that is called after the timeout period is completed. In
this example, the Display () function is called after the timeout. The second
parameter is the length of the timeout indicated in milliseconds; 1000 milliseconds
equals 1 second. We use 40 milliseconds, but you can increase or decrease this
value to whatever works for your application. The setTimeout () function re-
turns a reference to the Clock, which is used in the Pause () function to clear the
timeout clock.

The MesgDisplayed variable is then set to true, indicating that a portion of
the message is displayed on the status bar.

Everything we've mentioned so far happens only if the value of Of fset is less
than the length of the array (the length of the message). If Of£set is equal to or
greater than the length of the array, the else statement kicks in and the if statement
is skipped.

The else statement resets Of £ set to 0 and increments the value of the Count
variable. If this value equals the number of elements in the array, then the value of
Count is set to 0.

The setTimeout () function is once again called to pause for 1 second before
calling the Display () function again. The MesgDisplayed variable is then
set to true, indicating that a message is displayed on the status bar.
<!DOCTYPE html PUBLIC

"-//W3C//DTD XHTML 1.0 Transitional//EN"s>
<html xmlns="http://www.w3.0rg/1999/xhtml">

CHAPTER 13 Getting Your Message Across @
<head>
<title>Moving Status Bar Message</title>
<script language="Javascript" type="text/javascript"s>
<!--
var Clock = null
var MesgDisplayed = false
var Count = 0
var Offset = 0
var Mesg = new Array (
'Trade secrets are revealed in the
Demystified Series.')
function Pause ()
if (MesgDisplayed) {
clearTimeout (Clock)
}
MesgDisplayed = false
}
function Display () {
if (Offset < Mesg[Count].length) ({
if (Mesg[Count].charAt (Offset) == " "){
Offset++

}

var PMesg = Mesg[Count] .substring (0, Offset + 1)

window.status = PMesg
Offset++
Clock = setTimeout ("Display ()", 40)
MesgDisplayed = true
} else {
Offset = 0
Count ++
if (Count == Mesg.length) ({
Count = 0
}
Clock = setTimeout ("Display ()", 1000)

MesgDisplayed = true

}

function Start () {
Pause ()
Display ()
}
function OpenNewWindow (book) {
if (book== 1)
{

document .cover.src="'7441805.gif"

MyWindow = window.open('', 'myAdWin', 'titlebar=0
status=0, toolbar=0, location=0, menubar=0,
directories=0, resizable=0, height=50,
width=150,1left=500, top=400")

@ JavaScript Demystified
MyWindow.document .write (
'10% Discount for Java Demystified!')

if (book== 2)
{

document .cover.src="'0072253630.jpeg’

MyWindow = window.open('', 'myAdwin',6 'titlebar=0
status=0, toolbar=0, location=0, menubar=0,
directories=0, resizable=0, height=50,
width=150,1eft=500, top=500")

MyWindow.document .write (

'20% Discount for OOP Demystified!')

if (book== 3)

document .cover.src="'7417436.gif"’

MyWindow = window.open('', 'myAdWin', 'titlebar=0
status=0, toolbar=0, location=0, menubar=0,
directories=0, resizable=0, height=50,
width=150,1left=500, top=600")

MyWindow.document .write (

'15% Discount for Data Structures Demystified!')

}
-=>
</script>
</head>
<body onload="Start () ">
<TABLE width="100%" border=0>
<TBODY >
<TR vAlign=top>
<TD width=50>

<a>
<IMG height=92 src="7441805.gif" width=70
border=0
name='cover'>

</TD>
<TD>

</TD>
<TD>

<A onmouseover="OpenNewWindow (1) "
onmouseout="MyWindow.close () ">
<U>Java Demystified </U>

<A onmouseover="OpenNewWindow (2)"

CHAPTER 13 Getting Your Message Across @
onmouseout="MyWindow.close () ">
<U>00P Demystified</U>

<A onmouseover="OpenNewWindow (3)"
onmouseout="MyWindow.close () ">
<U>Data Structures Demystified</U>

</TD>
</TR>
</TBODY>
</TABLE>
</body>
</html>

Crawling the Status Bar Message

Anyone who watches the news on TV can't help but notice headlines crawling along
the bottom of the television screen. You can incorporate the same effect in your web
page by crawling a message along the status bar. A crawl creates a steady flow of
text moving from right to left on the status bar. Let's see how this is done by looking
at the following example:

<!DOCTYPE html PUBLIC
"-//W3C//DID XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Crawling The Status Bar Message</title>
<script language="Javascript" type="text/javascript's>

<!l--

var Mesg =
L Trade secrets are revealed in
the Demystified Series......
var Count = 0
function Crawl()

window.status = Mesg.substring (Count,
Mesg.length) +
Mesg.substring (0, Count)
if (Count < Mesg.length) ({
Count++
} else {
Count = 0
}
setTimeout ("Crawl ()",200)

}

function OpenNewWindow (book) {

@ JavaScript Demystified
if (book== 1)

document .cover.src="'7441805.gif"’

MyWindow = window.open('', 'myAdWin', 'titlebar=0
status=0, toolbar=0, location=0, menubar=0,
directories=0, resizable=0, height=50,
width=150,1left=500, top=400")

MyWindow.document .write (

'10% Discount for Java Demystified!'")

if (book== 2)
{

document .cover.src='0072253630.jpeg’

MyWindow = window.open('', 'myAdwWin',6 'titlebar=0
status=0, toolbar=0, location=0, menubar=0,
directories=0, resizable=0, height=50,
width=150,1eft=500, top=500")

MyWindow.document .write (

'20% Discount for OOP Demystified!')

if (book== 3)

document .cover.src="'7417436.gif"'

MyWindow = window.open('', 'myAdWin', 'titlebar=0
status=0, toolbar=0, location=0, menubar=0,
directories=0, resizable=0, height=50,
width=150,1eft=500,top=600")

MyWindow.document .write (

'15% Discount for Data Structures Demystified!')

}
-=>
</scripts>
</head>
<body onload="Crawl () ">
<TABLE width="100%" border=0>
<TBODY>
<TR vAlign=top>
<TD width=50>

<a>
<IMG height=92 src="7441805.gif" width=70
border=0
name="'cover'>

</TD>
<TD>

</TD>

CHAPTER 13 Getting Your Message Across

<TD>
<A onmouseover="OpenNewWindow (1) "
onmouseout="MyWindow.close () ">

<U>Java Demystified </U>

<A onmouseover="OpenNewWindow (2)"

onmouseout="MyWindow.close () ">

<U>00P Demystified</U>

<A onmouseover="OpenNewWindow (3) "

onmouseout="MyWindow.close () ">

<U>Data Structures Demystified</U>

</TD>
</TR>
</TBODY>
</TABLE>
</body>
</html>

This example is nearly identical to the previous example. The browser begins the
crawl when it loads the JavaScript Crawl () function when it encounters the
onload attribute of the <body> tag.

The Crawl () function is defined in the <head> tag. Before looking at this
function, notice that we declare two variables outside of the function definition:
Mesg, which is assigned the message, and Count, which is initialized to 0.

The Crawl () function definition begins by concatenating two substrings of the
message to form the text that is displayed in the status bar. This looks a bit confus-
ing, and the best way to understand this is to take apart this statement.

In the first substring (), Count is 0 and Mesg. length is 63. Remember
that a string is an array of characters, where the first character of the string is the 0
array element and the last character is the 62nd array element. Therefore, this sub-
string copies the entire message.

In the second substring (), Count is also 0. Here, the substring consists of
the character of the zero element (the first period) and the character that comes be-
fore the zero element (nothing). So this substring is the first character of the message.

The second substring is concatenated to (attached to the back of) the first sub-
string, and then the first substring is assigned to the status property, causing the
first substring to be displayed on the status bar.

Next, we determine whether the value of the Count variable is less than the
length of the message. It is, so we increment the value of the Count variable. If the
value of the Count variable is more than the length of the message, the Count
variable is reset to 0.

@ JavaScript Demystified

Next, the setTimeout () method is called. As you'll recall from the previous
example, the setTimeout () method pauses the crawl and then calls the
Crawl () function again. In this example, we pause for 200 milliseconds—think
of this as the speed of the crawl; the higher the value, the slower the crawl, and the
lower the value, the faster the crawl.

Notice that the value of the Count variable is changed after the first time the
message is displayed on the status bar (Figure 13-3). This causes a different sub-
string to be copied from the message. Return to the beginning of our explanation of

the Crawl () function and walk through the substring process using the new value
of the Count variable and you'll see the new substring.

Crawling Date and Time with Your Message

You can enhance your crawl by including the current date and time as part of the
message that crawls across the status bar. This is easy to do by first capturing the
current date and time by declaring an instance of the Date () object, as shown here:

Today = new Date()

& Crawling The Status Bar Message - Netscape
. FEle Edt Wiew Go Bookmarks Tools ‘Window Help

@0 Q 0 O |% File: {1 fhiooks| JavaScript %200emystified /GoodDr aftListing 1-2, htm | |QS=aﬂ:l|] Q_go @

./ B vl AWM 4 Home G Radio [M] Netscape C Search | FBockmarks

| Java Demystified
Q0P Demystified
Data Structures Demystified

(i !E S B E | Series..........Trade secets are revesked in the Demystified F]E—- fl Al

Figure 13-3 The message continues to crawl along the status bar while the web page is
displayed.

CHAPTER 13 Getting Your Message Across @
Next, you'll need to call the toString () method of the Date () object to
convert the date and time to a string, and then assign the string to a variable, like so:

CurrentTime = Today.toString()

Finally, you'll need to concatenate the string that contains the current date and
time to the end of the message string before assigning the message to the status
property of the window object.

The next example shows how to incorporate the current date and time into the
crawl. This is basically the same as the previous crawl example, with some minor
modifications to accommodate the date and time. In the first change, we define a
new function called SetMessage (), which does four things: declares a Date ()
object called today, converts the date and time to a string called CurrentTime,
concatenates the CurrentTime to the message, and assigns the message to the
Mesg variable.

The second change occurs within the definition of the Crawl () function. No-
tice that the first statement in the Crawl () function calls the SetMessage ()
function. This allows the date and time to be updated each time the Crawl () func-
tion is called and assures that the date and time—even to the second—is accurate
(Figure 13-4).

) Crawling With Date, Time and Message - Netscape
. Fle EdEt Wiew Go Bookmarks Tools Window Help

@0 Q 0 O [fiesffic: foooks aavaseript s a0Demystified/GoodDr tjLsting1-2.htm | [Cysearch | Q_go @

./ B vl BAM 4 Home G Radio [M] Netscape C4 Search | FiBockmarks

| Java Demystified
d OOP Demystified
8 Data Structures Demystified

i !E B B E | aled in the Demystified Sesies......Mon Dec 20 2004 19:31:06 GMT-0500 (Eastem Standard Time).....Trade sacets ar.., F]E—! = AI

Figure 13-4 The current date and time can easily be incorporated into the crawl
message.

@ JavaScript Demystified
<!DOCTYPE html PUBLIC

"-//W3C//DID XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Crawling With Date, Time and Message</title>

<script language="Javascript" type="text/javascript"s>
<!--

var Mesg
var CurrentTime
var Count = 0
function SetMessage () {
Today = new Date ()
CurrentTime = Today.toString()

Mesg =
L Trade secrets are revealed in
the Demystified Series...... '+
CurrentTime
}
function Crawl()
SetMessage ()
window.status = Mesg.substring/(
Count, Mesg.length)
+ Mesg.substring (0, Count)
if (Count < Mesg.length) ({
Count++
} else {
Count = 0
}
setTimeout ("Crawl ()",200)
}

function OpenNewWindow (book) {
if (book== 1)
{

document .cover.src="'7441805.gif"

MyWindow = window.open('', 'myAdwin', 'titlebar=0
status=0, toolbar=0, location=0, menubar=0,
directories=0, resizable=0, height=50,
width=150,1eft=500, top=400")

MyWindow.document .write (

'10% Discount for Java Demystified!'")

if (book== 2)
{

document .cover.src='0072253630.jpeg’

MyWindow = window.open('', 'myAdwin',6 'titlebar=0
status=0, toolbar=0, location=0, menubar=0,
directories=0, resizable=0, height=50,
width=150,1left=500, top=500")

MyWindow.document .write (

'20% Discount for OOP Demystified!')

CHAPTER 13 Getting Your Message Across

—&

if (book== 3)
{

document .cover.src="'7417436.gif"’

MyWindow = window.open('', 'myAdWin', 'titlebar=0
status=0, toolbar=0, location=0, menubar=0,
directories=0, resizable=0, height=50,
width=150,1eft=500,top=600")

MyWindow.document .write (

'15% Discount for Data Structures Demystified!')

}
-=>
</script>
</head>
<body onload="Crawl () ">
<TABLE width="100%" border=0>
<TBODY>
<TR vAlign=top>
<TD width=50>
<a>
<IMG height=92 src="7441805.gif" width=70
border=0 name='cover'>

</TD>
<TD>

</TD>
<TD>
<A onmouseover="OpenNewWindow (1) "
onmouseout="MyWindow.close () ">
<U>Java Demystified </U>

<A onmouseover="OpenNewWindow (2)"
onmouseout="MyWindow.close () ">
<U>00P Demystified</U>

<A onmouseover="OpenNewWindow (3)"
onmouseout="MyWindow.close () ">
<U>Data Structures Demystified</U>

</TD>
</TR>
</TBODY>
</TABLE>
</body>

</html>

\@)’_ JavaScript Demystified
Banner Advertisements

The banner advertisement is the hallmark of every commercial web page. It is typi-
cally positioned near the top of the web page, and its purpose is to get the visitor's
attention by doing all sorts of clever things.

Nearly all banner advertisements are in a file format such as a GIF, JPG, TIFF, or
other common graphic file formats. Some are animated GIFs, which is a series of
images contained in one file that rotate automatically on the screen. Some are Flash
movies that require the visitor to have a browser that includes a Flash plug-in. Many
banner advertisements consist of a single graphical image that does not contain any
animation and does not require any special plug-in.

You need to do three things to incorporate a banner advertisement in your web

page:

1. Create several banner advertisements using a graphics tool such as
PhotoShop. You'll want to make more than one advertisement so you
can rotate them on your web page using a JavaScript.

2. Create an element in your web page with the height and width
necessary to display the banner advertisement.

3. Build a JavaScript that loads and displays the banner advertisements
in conjunction with the element.

Loading and Displaying Banner Advertisements

Your first job is to build your banner advertisements. The banners should all be the
same size so they look professional as they rotate on your web page. The best way
to do this is to create an empty banner and then copy it for each banner advertise-
ment that you want to build. This assures that all the banners will be the same size.
You can then use each copy to design each ad.

Next, create an image element on your web page using the tag. You'll
need to set four attributes of the tag: src, width, height, and name. Set
the src attribute to the file name of the first banner advertisement that you want to
display. Set the width and height attributes to the width and height of the banner.
Set the name attribute to a unique name for the image element. You'll be using the
name attribute in the JavaScript when you change from one banner to the next.

The image element (banner) should be centered in the page using the <center>
tag within the <body> tag of your web page, as shown here:

CHAPTER 13 Getting Your Message Across @
<body>

<center>

<img src="NewAdl.jpg" width="400" height="75"
name="RotateBanner" />

</centers

</body>
The final step is to build the JavaScript that will rotate the banners on your web

page. You'll define the JavaScript in the <head > tag of the web page. The JavaScript
must do the following:

1. Load banner advertisements into an array.

2. Determine whether the browser supports the image object.
3. Display a banner advertisement.
4

. Pause before displaying the next banner advertisement.

You load the banner advertisements into an array by declaring an Array ()
object and initializing it with the file name of each banner advertisement. For ex-
ample, suppose you have three banner advertisements that are contained in the
NewAdl.jpg, NewAd?2.jpg, and NewAd3.jpg files. Here's how you'd load them into
an Array () object:

Banners = new Array('NewAdl.jpg', 'NewAd2.jpg', 'NewAd3.jpg')

Next, define a JavaScript function that contains statements used to display the
banners. Call it DisplayBanners (). The first thing the DisplayBanners ()
function needs to do is determine whether the browser supports the image object by
using the document . images as the conditional expression in an if statement. As
you'll recall from Chapter 12, the document . images is null if the browser
doesn't support the image object, which will cause the browser to skip statements
that are contained within the if statement; otherwise, those statements are executed
by the browser.

Next you need to rotate the banner advertisement and then display the next
banner on the web page. To do this, you need to track the array index of the cur-
rent banner. Remember that the first banner is referenced by array index 0. The
second banner is array index 1. And the third banner is array index 2.

The best way to track the array index of the current banner is to assign the index
to a variable. We'll call this CurrentBanner and declare and initialize it outside
the DisplayBanners () function definition (see the next JavaScript example).

If the browser supports the image object, we then must increment the value of the
CurrentBanner variable within the if statement. The current banner is the first
banner, since we assigned the file name that contains the first banner to the src

@ JavaScript Demystified
attribute in the tag. Therefore, we want to show the second banner by incre-
menting the value of the CurrentBanner.

We compare the value of the CurrentBanner to the number of array elements
by using the 1ength property of the array elements (Banners . length). If they
are equal, then the banner displayed is the last banner, so we must display the first
banner by setting the CurrentBanner to 0.

Next, the banner is assigned as the src as shown here. This causes the new ban-
ner to be displayed on the web page:

document .RotateBanner.src= Banners [CurrentBanner]

The JavaScript must pause before displaying the next banner. You call the
setTimeout () function to stop the JavaScript temporarily. As you learned pre-
viously in this chapter, the set Timeout () function requires two parameters: The
first parameter is the name of the function to call after the timeout period is com-
pleted. This is where you enter the DisplayBanners () function. The second
parameter is the duration of the timeout measured in milliseconds. Set this to 1000,
which equals 1 second. This means that the current banner is displayed for 1 second
before the next banner replaces it. This is shown here:

setTimeout ('DisplayBanners()',1000)

The final step is to call the DisplayBanners () function when the web
page loads. You do this by assigning the DisplayBanners () function to the
onload attribute of the <body > tag, as illustrated here:

<body onload="DisplayBanners () ">

The following example shows the complete web page that rotates the display of
three banner advertisements:

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head>
<title>Banner Ads</titles
<script language="Javascript" type="text/javascript"s>
<!--
Banners = new Array (
'NewAdl.jpg', 'NewAd2.jpg', 'NewAd3.jpg")
CurrentBanner = 0
function DisplayBanners () {
if (document.images)
CurrentBanner++
if (CurrentBanner == Banners.length) {

CHAPTER 13 Getting Your Message Across @
CurrentBanner = 0

}

document .RotateBanner.src= Banners [CurrentBanner]

setTimeout ("DisplayBanners () ",1000)
}
}
-->
</scripts>
</head>
<body onload="DisplayBanners ()" >
<center>

<img src="NewAdl.jpg" width="400"
height="75" name="RotateBanner" />
</centers
</body>
</html>

Linking Banner Advertisements to URLs

A banner advertisement is designed to encourage the visitor to learn more infor-
mation about a product or service that is being advertised. To get additional
information, the visitor is expected to click the banner so that a new web page
opens. You can link a banner advertisement to a web page by inserting a hyperlink
into your web page that calls a JavaScript function rather than the URL of a web
page. The JavaScript then determines the URL that is associated with the current
banner and loads the web page that is associated with the URL.

The next example shows you how this is done. This example is a slight modifica-
tion of the previous example that displayed banner advertisements at the top of the
web page. The first modification is at the beginning of the JavaScript, where a new
array called BannerLink is declared. This array is initialized with strings that
contain the URL for each banner advertisement. It is critical that the URLSs are in the
same order as the banner images in the Banners array; otherwise, the JavaScript
will link the URLSs to the wrong banner image.

The second modification to the JavaScript is the insertion of the LinkBanner ()
function definition. The LinkBanner () function definition contains the statement
that links the current banner to the appropriate URL and then assigns the URL to the
href attribute of the anchor tag on the web page. This statement uses the index of
the current banner as the index for the BannerLink array to identify the URL
associated with the current banner. The URL is then concatenated to the 'http://
www . ' string, which is then assigned to the href attribute of the anchor tag.

@ JavaScript Demystified

The last modification occurs in the <body> tag of the web page, where an an-
chor tag is inserted before the <imgs> tag that displays the banner. The href
attribute of the anchor tag calls the LinkBanner () function when the visitor
selects the banner.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<titles>Link Banner Ads</title>
<script language="Javascript" type="text/javascript"s>
<l--
Banners = new Array('NewAdl.jpg', 'NewAd2.jpg',
'NewAd3.jpg"')
BannerLink = new Array(
'myLinkl.com', 'myLink2.com', 'myLink3.com')
CurrentBanner = 0
NumOfBanners = Banners.length
function LinkBanner () {
document.location.href =
"http://www." + BannerLink [CurrentBanner]
}
function DisplayBanners() {
if (document.images) {
CurrentBanner++
if (CurrentBanner == NumOfBanners) {
CurrentBanner = 0
}

document .RotateBanner.src= Banners [CurrentBanner]

setTimeout ("DisplayBanners()",1000)
}
}
-=>
</scripts>
</head>
<body onload="DisplayBanners()" >
<center>

<img src="NewAdl.jpg"
width="400" height="75" name="RotateBanner" />
</center>
</body>
</html>

CHAPTER 13 Getting Your Message Across @
A 4
Creating a Slideshow

A slideshow is similar in concept to a banner advertisement in that a slideshow ro-
tates multiple images on the web page. However, unlike a banner advertisement, a
slideshow gives the visitor the ability to change the image that's displayed: the
visitor can click the Forward button to see the next image and the Back button to see
the previous image.

As you'll see in the next example, creating a slideshow for your web page is a
straightforward process. Let's begin by looking at the <body> tag of this web
page. The <body > tag contains an tag that is used to display the image on
the web page. We'll use the banner advertisements for the slideshow, which opens
with the banner stored in NewAd1.jpg.

Beneath the tag is a table that contains two buttons (Figure 13-5): For-
ward and Back. Both buttons call the RunS1ideShow () JavaScript function in
response to the onclick event. The RunS1ideShow () function requires one pa-
rameter, which determines whether the next or previous image is going to be
displayed. A positive parameter value causes the next banner to be shown, and a
negative parameter value results in the previous banner being displayed.

& Slideshow - Netscape
. Fle EdEt Wiew Go Bookmarks Tools Window Help

@0 Q 0 O |% File: {{C: foooks[JavaScript s 20Demystified/GoodDr aftfListing1-2, htm | |QS=aﬂ:l|] Q_go @

./ B vl BAM 4 Home G Radio [M] Netscape C4 Search | FiBockmarks

Are you mystified by Java?
Not if you read Java Demystified!

[Backi]

|2 & & & 7 Jooe — - e

Figure 13-5 The visitor uses buttons to control the slideshow.

@ JavaScript Demystified

Now let's take a look at the JavaScript and see how the current banner is dis-
played. The file names that contain banners are used to initialize an array called
Pictures. This is the same technique used to display banner advertisements. We
also declare a variable that is used to store the index of the current picture.

The nuts and bolts of displaying the slide are found in the definition of the
RunSlideShow () function. The first thing that happens is we determine wheth-
er the browser supports the image object by determining the value of document
. images. You've seen this done earlier in this chapter.

Next, we add the value passed to the RunSlideShow () function to the
value of the CurrentPicture variable. If the value is 1, then the value of the
CurrentPicture is incremented, causing the next slide to be displayed. If
the value is —1, then the value of the CurrentPicture is decremented, caus-
ing the previous slide to be displayed.

Before displaying the slide, we must determine whether the value of the
CurrentPicture variable is within the index range of the array. This is done
by making sure that the value of the CurrentPicture variable isn't greater
than the last array element (Pictures.length - 1) and that value is not
less than the first array element (less than zero). If the value is beyond the range,
then the value of the CurrentPicture variable is reset to a valid index.

The last step is to assign the proper array element containing the slide to the src
attribute of the tag, which is called PictureDisplay.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head>
<title>Slideshow</title>
<script language="Javascript" type="text/javascript"s>
<!--

Pictures = new Array(
"NewAdl.jpg", "NewAd2.jpg", "NewAd3.jpg")
CurrentPicture = 0

function RunSlideShow (ForwardBack) {
if (document.images)

CurrentPicture = CurrentPicture + ForwardBack
if (CurrentPicture > (Pictures.length - 1)) {
CurrentPicture = 0

}

if (CurrentPicture < 0)
CurrentPicture = Pictures.length - 1

document .PictureDisplay.src=
Pictures [CurrentPicture]

CHAPTER 13 Getting Your Message Across @

}
}

-=>
</scripts>
</head>
<body>
<p align="center"><img src="NewAdl.jpg"
name="PictureDisplay" width="400" height="75"/></p>
<center>
<table border="0">
<tr>
<td align="center">
<input type="button" value="Forward"
onclick="RunSlideShow (1) ">
<input type="button" wvalue="Back"
onclick="RunSlideShow(-1)">
</td>
</tr>
</table>
</centers
</body>
</html>

Looking Ahead

In this chapter, you learned techniques for effectively communicating with visitors
to your web page by using the status bar, banners, and a slideshow. The status bar
is located at the bottom of the browser window and is used to display short mes-
sages to visitors. A single message can be displayed when the web page appears on
the screen, or different messages can be displayed as the visitor points to objects on
the web page.

You learned how to attract the visitor to the status bar by making the message
move. The status bar message can be displayed in pieces or by crawling letter by
letter across the status bar. You also learned how to display the current date and time
as part of your crawling message.

Banners are images that typically contain an advertisement and are displayed at
the top of a web page. You saw how you could rotate banners to show a different
banner every second while the page is displayed. Each banner is usually linked to a
corresponding web page that describes the product or service that is being offered
in the banner advertisement. The link is controlled by a JavaScript that determines
the currently displayed banner and then creates the URL for that banner.

Dy——

Qu

1Z

JavaScript Demystified

A slideshow is another way to get your message across to visitors to your web
page. In a slideshow, you give control of the show to the visitor by providing two
buttons that enable the visitor to move forward or back to display the slides.

In the next chapter, you'll learn how to use DHTML to create dynamic web pages
using JavaScript. This gives you the ability to customize the content of a web page
based on information that you know about the visitor.

1. True or False. Banners are typically displayed on the status bar.
a. True
b. False
2. You change the content of the status bar when
a. The visitor adjusts the width and height of the web page
b. A visitor moves the mouse cursor over an object on the web page
c. A visitor submits a form
d. All of the above

3. What is the purpose of the first parameter of the setTimeout ()
function?

a. Sets the timeout period in milliseconds
b. Sets the timeout period in seconds

c. Identifies the function that is to be called at the conclusion of the
timeout period

d. Identifies the function that called the timeout period
4. Why is the setTimeout () function called when displaying banners?
a. To control the interval when banners are displayed
b. To control the loading of banners
c. To give the browser time to display the banner
d. To wait for the visitor to respond to the banner
5. How do you load all banners before the first banner is displayed?
a. Use the 1oad () function.
b. Use the loadMem () function.

CHAPTER 13 Getting Your Message Across

10.

c. Store banners in an array when the web page loads.

d. Store banners in an array after the web page loads.

. What is the difference between a slideshow and a banner display?

a. Banners display advertisements and slideshows don't contain
advertisements.

b. Banners are automatically displayed. The visitor controls the slideshow.
c. Banners use images and text while the slideshow uses only text.
d. None of the above.

True or False. The current date and time of the Date object must be
converted to a string when used on the status bar.

a. True
b. False

. True or False. Only JPG files can be displayed as a banner.

a. True
b. False

. True or False. Only one rotating banner can be shown on a web page at the

same time.
a. True
b. False

A file name containing a banner that is directly assigned to the scr
attribute

a. Gets loaded before the web page is displayed

b. Gets loaded when the browser encounters the src attribute
c. Gets loaded after the visitor selects the image

d. None of the above

This page intentionally left blank.

o™

CHAPTER

Protecting Your
Web Page

The Internet is like the Wild West, with bad guys (malicious hackers) using every
trick in the book to do evil deeds (penetrate web sites). Some are motivated by the
challenge of the quest, while others have more sinister goals in mind, such as
searching web pages for e-mail addresses to spam.

There is nothing secret about your web page. Anyone with a little computer
knowledge can use a few mouse clicks to display your HTML code, including your
JavaScript, on the screen. Although you cannot entirely prevent prying eyes from
looking inside your web page, you can take a few steps to stop all but the best com-
puter wizards from gaining access to your JavaScript.

In this chapter, you'll learn how to hide your JavaScript and make it difficult for
malicious hackers to extract e-mail addresses from your web page.

—&r

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

@ JavaScript Demystified
A 4
Hiding Your Code

Every developer has to admit that, on occasion, they've peeked at the code of a web
page or two by right-clicking and choosing View Source from the context menu.
In fact, this technique is a very common way for developers to learn new techniques
for writing HTML and JavaScripts. However, some developers don't appreciate
a colleague snooping around their code and then borrowing their work without
permission. This is particularly true about JavaScripts, which are typically more
time-consuming to develop than using HTML to build a web page.

In reality, you cannot hide your HTML code and JavaScript from prying eyes,
because a clever developer can easily write a program that pretends to be a browser
and calls your web page from your web server, saving the web page to disk, where
it can then be opened using an editor. Furthermore, the source code for your web
page—including your JavaScript—is stored in the cache, the part of computer
memory where the browser stores web pages that were requested by the visitor. A
sophisticated visitor can access the cache and thereby gain access to the web page
source code.

However, you can place obstacles in the way of a potential peeker. First, you can
disable use of the right mouse button on your site so the visitor can't access the
View Source menu option on the context menu. This hides both your HTML code
and your JavaScript from the visitor. Nevertheless, the visitor can still use the View
menu's Source option to display your source code. In addition, you can store your
JavaScript on your web server instead of building it into your web page. The brows-
er calls the JavaScript from the web server when it is needed by your web page.
Using this method, the JavaScript isn't visible to the visitor, even if the visitor views
the source code for the web page.

Disabling the Right Mouse Button

The following example shows you how to disable the visitor's right mouse button
while the browser displays your web page. All the action occurs in the JavaScript
that is defined in the <head> tag of the web page.

The JavaScript begins by defining the BreakInDetected () function. This
function is called any time the visitor clicks the right mouse button while the
web page is displayed. It displays a security violation message in a dialog box
(Figure 14-1) whenever a visitor clicks the right mouse button.

Two other functions are defined in the JavaScript. The next function definition
defines the action that should be taken if the Netscape browser is displaying the web
page. The other function does the same for Internet Explorer.

CHAPTER 14 Protecting Your Web Page

out Rig ise B Netscape ETE
. File Edit View Go Bookmarks Tools Window Help
@ O O Q |% files {1 fhiooks] JavaSeript ¥ 20DemystiiedjGoodDraft Listing1-2.hem | [search | c‘::~§° @

. B, Emal BAm 4 Home Q Radic W] Hetscape ‘©) Search CBackmarks

| Java Demystified
Jim Keogh / Paperback / Osborne MoGraw Hill / 352pp.
ISEN: 0072254548 May 2004

[JavaScript &pplication]

Security Violation
A

:ié%’aDme m:ié

Figure 14-1 A security violation message is displayed whenever the visitors clicks the
right mouse button.

In both function definitions, the browser is told to determine which mouse button
the visitor clicked. Many mice have two buttons, some have only one button, while
others have three buttons. These function definitions are interested only in detecting
whether any button except the first mouse button, presumably the left button, is
clicked by the visitor. Notice that a number is used to represent each mouse button.
The BreakInDetected () function is called if the visitor clicks any button oth-
er than the left mouse button.

The browser knows which of these function definitions to use by testing the
value of document . layers. If this value is not null, we know the visitor is us-
ing the Netscape browser; if the value is null, we know that the Internet Explorer
browser is being used.

The BreakInDetected () function is also called if the visitor right-clicks to
open the context menu. This prevents the visitor from accessing the View Source
menu item.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Lockout Right Mouse Button</title>

@ JavaScript Demystified
<script language=JavaScripts>
<!--
function BreakInDetected () {
alert ('Security Violation')
return false
}

function NetscapeBrowser (e) {

if (document.layers]| |
document .getElementById&& ! document.all) {

if (e.which==2||e.which==3) {
BreakInDetected ()
return false

}
}
function InternetExploreBrowser () {
if (event.button==2)
BreakInDetected ()
return false
}
}
if (document.layers) {

document . captureEvents (Event . MOUSEDOWN)
document . onmousedown=Net scapeBrowser ()
else if (document.allé&&!document.getElementById) {
document .onmousedown=InternetExploreBrowser ()
document .oncontextmenu=new Function (
"BreakInDetected () ;return false")

-->

</scripts>
</head>
<body>
<table width="100%" border=0>
<tbody>

<tr vAlign=top>
<td width=50>
<a>
<ing height=92 src="7441805.gif"
width=70 border=0
onmouseover="src='0072253630.jpeg'"
onmouseout="src='7441805.gif'">

CHAPTER 14 Protecting Your Web Page (283)

</td>
<td>

</td>
<td>
<a>
<cTypeface:Bold><u>Java Demystified</Us>

<font face="arial, helvetica, sans-serif"
size=-1>
Jim Keogh / Paperback /
Osborne McGraw Hill / 352pp.

ISBN: 0072254548 May 2004
</td>
</tr>
</tbody>
</table>
</body>
</html>

Hiding Your JavaScript

You can hide your JavaScript from a visitor by storing it in an external file on your
web server. The external file should have the .js file extension. The browser then
calls the external file whenever the browser encounters a JavaScript element in the
web page. If you look at the source code for the web page, you'll see reference to
the external js file, but you won't see the source code for the JavaScript.

Tip Protecting your JavaScript is not the main reason for storing JavaScripts in
an external file. The most important benefit of doing this is to share your JavaScript
among your web pages without having to duplicate the source code. Any changes
you make to the JavaScript in the external file are automatically applied to all your
web pages that use the external file as the source for JavaScripts.

The next example shows how to create and use an external JavaScript file. First
you must tell the browser that the content of the JavaScript is located in an external
file on the web server rather than built into the web page. You do this by assigning
the file name that contains the JavaScripts to the src attribute of the <script>
tag, as shown here:

<script src="MyJavaScripts.js"
language="Javascript" type="text/javascript">

@ JavaScript Demystified

Next, you need to define empty functions for each function that you define in the
external JavaScript file. This may sound strange, but some older browsers don't use
external files for JavaScripts and will generate an error when you call a JavaScript
function that hasn't been defined in the web page. The empty function definitions
prevent this error from generating, because the function is defined within the web

page. However, an error may still occur, since the correct function definition is not
executed.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">

<html xmlns="http://www.w3.0org/1999/xhtml">
<head>

<title>Using External JavaScript File</title>

<script src="myJavaScript.js"

language="Javascript" type="text/javascript"s>
<!--

function OpenNewWindow (book) {

}

-->

</scripts>
</head>
<body>
<tablewidth="100%" border=0>
<tbody>

<tr vAlign=top>
<td width=50>
<a>
<img height=92 src="7441805.gif"
width=70 border=0 name='cover's>

</td>
<td>

</td>
<td>
<a onmouseover="OpenNewWindow (1) "
onmouseout="MyWindow.close () ">
<u>Java Demystified </u>

<a onmouseover="OpenNewWindow (2) "
onmouseout="MyWindow.close () ">
<u>00P Demystified</Us>

<A onmouseover="OpenNewWindow (3)"

CHAPTER 14 Protecting Your Web Page

onmouseout="MyWindow.close () ">
<us>Data Structures Demystified</u>

</td>
</tr>
</tbody>
</table>
</body>
</html>

The final step is to create the external JavaScript file. You do this by placing all
function definitions into a new file and then saving the file using the .js extension.
Remember that the external JavaScript file must be placed on the same web server
that contains the web page and accessed from the same domain; otherwise, the
browser won't know where to look for your JavaScripts and the visitor gets a brows-
er security error. Here's the MyJavaScript.js file:

function OpenNewWindow (book) {
if (book== 1)
{

document .cover.src="'7441805.gif"

MyWindow = window.open('', 'myAdWin', 'titlebar=0
status=0, toolbar=0, location=0, menubar=0,
directories=0, resizable=0, height=50,
width=150,1left=500, top=400")

MyWindow.document .write (

'10% Discount for Java Demystified!')

if (book== 2)

document .cover.src='0072253630.jpeg’

MyWindow = window.open('', 'myAdWin', 'titlebar=0
status=0, toolbar=0, location=0, menubar=0,
directories=0, resizable=0, height=50,
width=150,1eft=500, top=500")

MyWindow.document .write (

'20% Discount for OOP Demystified!')

if (book== 3)

document .cover.src="'7417436.gif"

MyWindow = window.open('', 'myAdWin', 'titlebar=0
status=0, toolbar=0, location=0, menubar=0,
directories=0, resizable=0, height=50,
width=150,1eft=500, top=600")

—&

@ JavaScript Demystified
MyWindow.document .write (
'15% Discount for Data Structures Demystified!'")

After you create the external JavaScript file, define empty functions for each
function that is contained in the external JavaScript file, and reference the external
JavaScript file in the src attribute of the <script> tag, you're all set.

Concealing Your E-mail Address

Many of us have endured spam at some point and have probably blamed every mer-
chant we ever patronized for selling our e-mail address to spammers. While e-mail
addresses are commodities, it's likely that we ourselves are the culprits who invited
spammers to steal our e-mail addresses.

Here's what happens: Some spammers create programs called bots that surf the
Net looking for e-mail addresses that are embedded into web pages, such as those
placed there by developers to enable visitors to contact them. The bots then strip
these e-mail addresses from the web page and store them for use in a spam attack.

This technique places developers between a rock and a hard place. If they place
their e-mail addresses on the web page, they might get slammed by spammers. If
they don't display their e-mail addresses, visitors will not be able to get in touch
with the developers.

The solution to this common problem is to conceal your e-mail address in the
source code of your web page so that bots can't find it but so that it still appears
on the web page. Typically, bots identify e-mail addresses in two ways: by the
mailto: attribute that tells the browser the e-mail address to use when the visitor
wants to respond to the web page, and by the @ sign that is required of all e-mail
addresses. Your job is to confuse the bots by using a JavaScript to generate the
e-mail address dynamically. However, you'll still need to conceal the e-mail address
in your JavaScript, unless the JavaScript is contained in an external JavaScript file,
because a bot can easily recognize the mailto: attribute and the @ sign in a Ja-
vaScript. Bots can also easily recognize when an external file is referenced.

To conceal an e-mail address, you need to create strings that contain part of the
e-mail address and then build a JavaScript that assembles those strings into the e-mail
address, which is then written to the web page.

The following example illustrates one of many ways to conceal an e-mail ad-
dress. It also shows you how to write the subject line of the e-mail. We begin by
creating four strings:

CHAPTER 14 Protecting Your Web Page @
* The first string contains the addressee and the domain along with symbols
&, *, and _ (underscore) to confuse the bot.

* The second and third strings contain portions of the mailto: attribute
name. Remember that the bot is likely looking for mailto:.

* The fourth string contains the subject line. As you'll recall from your
HTML training, you can generate the TO, CC, BCC, subject, and body
of an e-mail from within a web page.

You then use these four strings to build the e-mail address. This process starts by
using the replace () method of the string object to replace the & with the @ sign
and the * with a period (.). The underscores are replaced with nothing, which is the
same as simply removing the underscores from the string.

All the strings are then concatenated and assigned to the variable b, which is then
assigned the location attribute of the window object. This calls the e-mail program
on the visitor's computer and populates the TO and Subject lines with the strings
generated by the JavaScript.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>

<title>Conceal Email Address</title>

<script language=JavaScripts>

<!--

function CreateEmailAddress () {

var x = 'BobSmith&smith*c_o m'

var y = 'mai’

var z = 'lto!

var s '?subject=Customer Inquiry'
X = xX.replace('&','@")

x = x.replace('*','.")

X = xX.replace(' ','")

X = xX.replace(' ','")

var b =y + z +':'+ X + s

window.location=b

}

-->

</scripts>
</head>
<body>
<input type="button" value="Help"
onclick="CreateEmailAddress() ">
</body>

</html>

B

JavaScript Demystified

Looking Ahead

Qu

1Z

Web pages are exposed to prying eyes and bots that sift through code looking for
e-mail addresses that can be used in a spam attack. You cannot totally eliminate this
exposure, because a clever developer can easily write a program that bypasses a
browser to access the source code of your web page directly.

However, you can take precautions that to some degree conceal your HTML
code, JavaScript, and e-mail addresses that are embedded in your web page. First,
you can disable the right mouse button so the visitor can't access the context menu's
View Source option. Next, you can store your JavaScript in an external file rather
than inside your web page. Finally, you can scramble embedded e-mail addresses
in strings and then use JavaScript to reconstruct the e-mail address and write it to
the web page.

In the next chapter, you'll learn how to use JavaScript to build sophisticated
menus that will add a touch of class to your web page.

1. True or False. Bots are programs that scan dynamically built web pages for
information.

a. True
b. False

2. You reduce the likelihood that a visitor can view your web page source
through a context menu by

a. Changing the View Source context menu option

b. Deleting the View Source context menu option

c. Redirecting the action taken when the left mouse button is clicked
d. Redirecting the action taken when the right mouse button is clicked

3. If the document . layers value is null

o

. The visitor is using the Netscape browser

b. The visitor is using the Internet Explorer browser
c. A bot is accessing the web page
d

. None of the above

CHAPTER 14 Protecting Your Web Page

10.

—®
You define empty functions when hiding a JavaScript to
a. Confuse bots

b. Confuse visitors who read the source code

c. Prevent older browsers from displaying an error

d. Prevent new browsers from displaying an error

The main purpose of using an external JavaScript file is to
a. Confuse bots

b. Confuse visitors who read the source code

c. Hide JavaScripts

d. Share JavaScripts with multiple web pages

. An external JavaScript file is

a. Stored on a web server in the same domain as the calling page
b. Stored in a web page

¢. Dynamically built

d. Built by the web page

True or False. You reference an external JavaScript file in the src attribute
of the <script> tag.

a. True
b. False

True or False. You call functions that are defined in an external JavaScript
file the same way as if those functions were defined in a JavaScript
contained in the web page.

a. True
b. False

True or False. The purpose of concealing an e-mail address in your web
page is to prevent a visitor from seeing the code that generates the e-mail
address.

a. True

b. False

Which of the following in an e-mail can you generate from a JavaScript?
a. TO

b. CC

c. BCC

d. All of the above

This page intentionally left blank.

o"

CHAPTER

Menus

If your web site has become a challenge for visitors to navigate, you're not alone.
Developers of commercial web sites experience this problem every time a new web
page is added to a site. However, they are able to simplify navigation by using
menus to organize web pages so visitors can easily explore their site with a few
clicks of the mouse.

In addition to streamlining navigation, developers also use menus in a form to
collect information from visitors by prompting visitors to choose items from a list
of options. Their selection is then sent along with other information on the form to
the server for processing.

No doubt you've seen many clever menu designs while surfing the web. You've
probably figured out how to build some of them using HTML. Others left you
puzzled, wondering how developers were able to build them. The secret to many of
these eye-catching menus lies with using JavaScript and DHTML. In this chapter,
you'll learn how to create menus that will dazzle everyone who visits your web site.

—E

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

@ JavaScript Demystified
e
Creating a Pull-Down Menu

Let's begin by looking at a problem that is common among web developers—figur-
ing out how to make it easy for visitors to navigate a complex web site. With the
addition of each web page, most developers find it challenging to make a site easily
accessible.

One solution to this problem is to group web pages into a pull-down menu. The
menu can reflect a common theme among web pages, and each menu option can
identify a web page. You can use JavaScript to load the selected page. The next
example shows how this is done. The pull-down menu called Products contains two
options: Computers and Monitors. Each of these options is associated with a related
web page that contains a list of products (Figure 15-1).

Notice that we don't use a hyperlink to call these web pages; instead, we define
a JavaScript function called DisplayPage () that intercepts the request and
loads the selected web page. A key advantage of using a function to load the web
page, rather than using a hyperlink, is that you can perform other routines, such as
validating the request, before the request is processed.

This example creates an HTML option list called MenuChoice as part of a
form in the <body> tag. The zero index is set as the default when the web page is
loaded by assigning this value to the onload attribute. The DisplayPage ()
function is called whenever the visitor changes the default options.

The DisplayPage () function, defined in the <head> tag, requires one argu-
ment, which is a reference to the selected list that contains the option list. Reference
to the form is assigned to the Choice variable. Each option on the list is identified
by an index, which you'll recall using in HTML. The index of the option chosen by

& pull Down Menu - Netscape

. Fil= Edit Wiew Go Bookmarks Too

Q00 Q|

. B EMal &AM 4 Home |

Computers
Maonitors

Figure 15-1 Each menu option is associated with a web page. The JavaScript then loads
the web page selected by the visitor.

CHAPTER 15 Menus @
the visitor is referenced by using selectedIndex. The value of the selected op-
tion is the URL of the web page that needs to be loaded and is assigned to the Page
variable.
It is always a good practice to verify that the selected option has a value before
loading the web page. You do this by using the following conditional expression in

the if statement. This expression determines whether th@age variable is not equal
to an empty string. A null means no value was assigned to the option.

if (Page != "")

You can load the URL as long as Page is not null. You load the web page by
assigning the URL to the 1ocation attribute of the window object.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Pull Down Menu</title>
<script language="Javascript" type="text/javascript"s>
<!--
function DisplayPage (Choice) {
Page = Choice.options[Choice.selectedIndex] .value
if (Page != "") {
window.location = Page

}

-=>

</scripts>

</head>

<body onload="document.Forml.MenuChoice.selectedIndex=0">
<form action="" name="Forml">

<select name="MenuChoice"
onchange="DisplayPage (thisg) ">
<option>Products</option>
<option value="computers.html">Computers</options>
<option value="monitors.html">Monitors</options>
</select>
</form>
</body>
</html>

\@’—
Dynamically Changing a Menu

JavaScript Demystified

Smart developers are able to reduce clutter on their web pages by making options
listed on a menu context-sensitive—that is, the set of options dynamically change
based on choices the visitor makes on the page. In this way, one menu can be used
to display different sets of options, reducing the need to show too many menus on
a web page.

Here's an example. Suppose you create two pull-down menus called Department
and Employees. The visitor selects a department, and based on this selection, the
corresponding list of employees within the department appears in the Employees
menu. Here's how this works:

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/2000/REC-xhtmll-
20000126/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Dynamically Changing Menu Options</titles
<script language="Javascript" type="text/javascript"s>
<!--
SalesStaff = new Array('Bob Smith', 'Mark Jones',
'Sue Rogers')
MarketingStaff = new Array('Amber Thomas',
'"Joanne Johnson', 'Sandy Russell')
function GetEmployees (Department) {
// clear out the current options
for (i=document .Forml.Employees.options.length-1;
i>0; i--)
{

}

Dept = Department.options|[
Department.selectedIndex] .value
if (Dept != "") {
if (Dept == '1"){
for (i=1; i<=SalesStaff.length;i++) {
document . Forml.Employees.options[i] =
new Option(SalesStaff[i-1])

document . Forml.Employees.options.remove (1)

if (Dept == '2"){
for (i=1; i<=MarketingStaff.length;i++)

CHAPTER 15 Menus @
document .Forml.Employees.options[i] =
new Option (MarketingStaff[i-1])

}
}

-->
</scripts>
</head>
<body onload="document.Forml.DeptList.selectedIndex=0">
<form action="MyCGI.cgi" name="Forml">
<select name="DeptList" onchange="GetEmployees (this) ">
<option value="0">Department</options>
<option value="1">Sales</options>
<option value="2">Marketing</options>
</select>
<select name="Employees">
<option value="0">Employees</options>
</select>

<p>
<input type="submit" value="Submit" />
<input type="reset" />
</p>
</form>
</body>
</html>

The form containing these two pull-down menus is defined in the <body> tag
of the web page. Notice that two options are defined in the Department menu, and
no options are defined in the Employees menu. This is because options for the Em-
ployees menu are assigned to the Employees menu in the GetEmployees ()
function.

Whenever the visitor selects a Department menu option, the browser calls the
GetEmployees () function, passing it a reference to the form. The JavaScript
that defines the GetEmployees () function is defined in the <head> tag.

We defined two arrays above the GetEmployees () function definition:
SalesStaff and MarketingStaff. Each array is assigned the names of em-
ployees who work in the corresponding department.

Within the GetEmployees () function definition, we determine which array
to assign to the Employees menu by first assigning the value of the selected option
to the Dept variable. Next, we determine whether a value has been assigned by
comparing the value in the Dept variable with an empty string. If a value appears,

JavaScript Demystified

&) Dynamically Changing Menu Options -

.. File Edit Wiew Go Bookmarks Tools winc

.00 0 @

L B, EMal &AM 45 Home G Radic

Sales

Fie=i Bob Smith
hark Jones
Sue Rogers

Figure 15-2 Employee names are dynamically loaded into the menu once the visitor
selects a department.

we determine whether the visitor selected the sales or marketing department. If the
user selected the first option, the employees list is cleared out. The appropriate ar-
ray of employee names is then assigned to the Employees menu by creating a new
Option and passing it the value of an array element. These options are then dis-
played the next time the visitor pulls down the Employees menu (Figure 15-2).

Validating Menu Selections

A common problem when using a menu to collect information from a visitor is that
the visitor doesn't select an item from the menu before submitting the form. This
could cause havoc if the item is required for processing the form. You can solve this
problem by using a JavaScript to determine whether the required menu option was
selected after the visitor clicks the Submit button and before the form is submitted
to the server.

Here's how this is done. First, create a pull-down menu similar to the next ex-
ample, which builds a menu of candidates for president within the <body> tag.
Next, you need to know whether the form can be submitted to the server when the
visitor clicks the Submit button. You determine this by defining a JavaScript func-
tion that validates the submission. This function is called ValidateForm (). If the
form is valid, ValidateForm () returns a true; otherwise, a false is returned.

Look carefully at the onsubmit attribute of the <form> tag and you'll notice
something a little unusual. The onsubmit attribute is assigned the value returned
by the ValidateForm () rather than simply calling ValidateForm (). A true
value assigned to the onsubmit attribute tells the browser to submit the form.

CHAPTER 15 Menus

. File Edit View Go Bookmarks Toaols Window Help
e o 0 Q [%% file: 11 foocks Davaseriter200emystFied/GoodDraftListing1-2.Hm | Gy search | df‘;o i:@
L B EAMal B A 4 Home G Radio M| Metscape © Search CBackmarks
|V0t9forPresident b
[JavaScript Application]

r Flaase sslact a candidate.

t
Eu"u! =] g Cf F] | Done | %

Figure 15-3 An alert dialog box is displayed and the form is not submitted if the visitor
fails to vote.

A false value tells the browser not to submit the form. When the Submit button is
clicked, the browser calls the ValidateForm () function and then assigns the
value returned by the ValidateForm() function to the onsubmit attribute.

The vValidateForm () function is defined in the <heads> tag. The
ValidateForm() is passed reference to the form, which is assigned to the
ValForm variable. The first step within the function is to assign the index of the
selected option to the Vote variable. The Vote variable is then used to determine
whether the value of the selected option is an empty string, which is the value of the
first item in the select menu. If so, the visitor did not select an option from the menu
and an alert dialog box reminds the visitor to vote (Figure 15-3). The function then
returns a false, which tells the browser not to submit the form. However, if the value
of the option isn't an empty string, we know the visitor voted, and the function re-
turns a true value. The browser then submits the form.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head>
<titles>Validate A Menu Selection</titles>
<script language="Javascript" type="text/javascript"s>

@ JavaScript Demystified
<!--
function ValidateForm(ValForm) {
Vote = ValForm.Candidate.selectedIndex
if (ValForm.Candidate.options[Vote] .value == "")
alert ('Please select a candidate.')
return false

}

return true
}
-=>
</scripts>
</head>
<body>
<form onsubmit="return ValidateForm(this)"
action="MyCGI.cgi" name="Forml">
<select name="Candidate">
<option value="" Vote for President</options>
<option value="0">Amber Thomas</options>
<option value="1">Joanne Adams</options>
<option value="2">Sandy Rogers</options>
<option value="3">Sue Smith</options>
<option value="4">Tom Paine</options>
</select>

<p>
<input type="submit" value="Submit" />
<input type="reset" />
</p>
</form>
</body>
</html>

Creating DHTML Menus

Some of the show-stopping menus that you've seen on top commercial web sites are
built using Dynamic HTML (DHTML). DHTML is a combination of HTML, cas-
cading style sheets (CSS), and JavaScript that together enable you to build classy
menus such as those that "float" within the web page.

You'll be introduced to DHTML in the next chapter. Here, however, we'll show
you some cool menus that were built using DHTML by the folks at dynamicdrive
.com. Instead of listing the DHTML code for these menus, we'll simply describe

CHAPTER 15 Menus @
each menu and provide the URL at www.dynamicdrive.com where you can find the
code and then copy and paste it into your own web page.
The dynamicdrive.com web site contains snippets of DHTML that must be in-
serted into specific portions of your JavaScript for it to work properly. The folks at

dynamicdrive.com provide you with all the instruction necessary to get the snippet
up and running in no time at all.

Floating Menu

Roy Whittle developed a boxed menu that looks as though it floats within the web
page, because it always appears in relatively the same position as the visitor scrolls
up or down the page (Figure 15-4).

Whittle positioned the demo boxed menu along the lower-left section of the web
page, but you can easily reposition the menu to any location by changing a few set-
tings within the DHTML code. You'll find the code at www.dynamicdrive
.com/dynamicindex1/staticmenu.htm.

Chain Select Menu

Xin Yang developed a chain of pull-down menus in which the option selected from
the first pull-down menu determines the options that are available in the second
pull-down menu. Likewise, the second pull-down menu selection determines op-
tions that are shown in the third pull-down menu (Figure 15-5).

You can easily add to the chain by replicating Yang's code to increase the number
of pull-down menus. You'll find the code located at www.dynamicdrive.com/dy-
namicindex 1/chainedmenu/index.htm.

Madify the HTML coc

Recommend Us!
Af you like Dynamic D

Mmu Legend
Dynarmic Drive All- Script works wit
What's New NS~ Indicates script
TWhat's Hot IE- Indicates script
FiOs NS&?I- Temporary ind
More Zone

Copyright @ 1998-2

15 (=) g & Cione

Figure 15-4 The menu in the lower-left corner seems to float, because it remains
stationary while the visitor scrolls the web page.

@ JavaScript Demystified

“Webmaster Resources v || JavaScript Links Rl E:

See Also: Chained Selects script, JawvaScript Kit
Dynamic Drive
JawaScript Reference I

Figure 15-5 These pull-down menus are chained together, causing menu options to
change dynamically while the web page is displayed.

Tab Menu

Tab menus display a one- or two-word description of the menu option within a tab.
A more complete description is displayed below the tab bar as the visitor moves the
mouse cursor over the tab (Figure 15-6).

You'll find it easy to change both the brief and complete descriptions of these
menu items by changing settings in the DHTML code. You’ll also be able to posi-
tion the tab menu anywhere on your web page. You'll find the code located at www
.dynamicdrive.com/dynamicindex 1/ddtabmenu2.htm.

Popup Menu

A popup menu displays several top-level menu items. A popup menu appears as the
visitor moves the mouse cursor over a top-level menu item. The popup menu con-
tains lower-level menu items that are associated with the top-level menu item
(Figure 15-7).

Although the demo popup menu at dynamicdrive.com shows three top-level
menu items, you can increase or decrease this number as well as the number of
lower-level menu items by changing settings in the DHTML code. You'll find the
code at www.dynamicdrive.com/dynamicindex 1/dropmenuindex.htm.

Home New Revised Submit
See the new scripts recently added to Dynarmic Drive, Click here,

Figure 15-6 Moving the mouse cursor over a tab causes the description of the menu to
appear beneath the menu bar.

CHAPTER 15 Menus
—

Web Design | Technology | Mews Sites (onclick)
avasScript Kit
Freewareiava.com
ICoding Forums
Builder.com s View

Figure 15-7 The popup menu appears as you move the mouse cursor over each
menu item.

Highlighted Menu

Add life to a drab menu by using a highlighted menu, which causes two kinds of
highlights to appear around an item on the menu. When the visitor moves the cursor
over a menu item, the browser displays a box around the item with a shadow at the
bottom of the box (Figure 15-8). If the visitor selects the item, the highlight shadow
appears at the top of the box rather than at the bottom of the box.

The highlighted menu is ideal to use to identify a menu option before the visi-
tor actually makes a selection. You'll find the code at www.dynamicdrive.com/
dynamicindex1/highlightmenu2.htm.

Folding Tree Menu

The folding tree menu should look familiar, because it is a classic menu used in
desktop applications to help you navigate file folders. The tree consists of one or
more closed folders, each of which appears alongside the folder's name. You can
include as many folders as your web site requires.

The tree expands when the visitor clicks a closed folder, showing one or more
menu options that are associated with the folder (Figure 15-9). You can link each of
these options to another web page or to a bookmark within the web page that con-
tains the tree menu. The tree collapses when the visitor clicks an open folder. You'll
find the code at www.dynamicdrive.com/dynamicindex1/navigatel.htm.

Main Menu

YWebsite Abstraction
Freewarejava.com

YWebmaster Help Forum I
SlashDat

MSMNBC.com

Figure 15-8 The highlighted menu gives your visitor a visible clue that he or she is
about to make a menu selection.

@ JavaScript Demystified
SNews

Ol

[FIABC News

FIBBEC News
Swebmaster

EIDynamic Drive

[#JavaScript Kit

FFreewarejava.com
ONested Example

Figure 15-9 The tree menu enables the visitor to expand folders to reveal a list of menu
options.

Microsoft Outlook Bar Style Menu

Anyone who is comfortable using Microsoft Outlook's menus will feel right at
home with your web site if you use the Microsoft Outlook bar style menu. This
menu appears along the left side of the web page. Each panel expands into menu
options when the visitor clicks the panel (Figure 15-10).

Each menu option is identified as a name and an icon that appears on the web
page. You can show as many menu options as is required by your web page; how-
ever, only four are displayed at a time. The visitor clicks the arrows to scroll through
all the menu options.

Clicking another panel collapses the opened panel and expands the selected pan-
el, showing menu items that are associated with that menu box. You can include as
many panels and menu items as you need. All you need to do is change settings in

. @, vl S am 4 Home @ Radio [Netscape O Search SBookmerks

17
\ z New | Revised | [Hot | [FAQ | [Submit | [M Zone
'letmanage
Home | Menus and navigation systems ’ Here

Microsoft Outlook bar I1 an

Credits
Name: Michzael \Wallner
Homepage: Homspaoe

Description: With an interface resembling Microsoft Outlook, this unique
contents until user intervention. It supports an unlimited number of categ
works across all DHTML browsers (IE4, NS4+, Mozilla 0.9, OperaS). The o
demand to be put inside a frames environment. Hay, even Microsoft ain't

Demo: Look to the left,

4]]

Figure 15-10 Clicking a panel causes the browser to display menu items that are
associated with the panel.

CHAPTER 15 Menus @
the code and replicate code that creates the existing menu panels and items. You'll
find the code at www.dynamicdrive.com/dynamicindex 1/outbar2/index.htm.

Context Menu

The context menu pops up on the web page when the visitor clicks the right mouse
button (Figure 15-11). The location of the context menu on the screen is determined
by the position of the mouse cursor. The mouse cursor sets the position of the up-
per-left corner of the context menu.

Each menu item is automatically highlighted as the visitor scrolls through the
menu by moving the mouse cursor. The visitor clicks the name of the item to select
that menu option. The context menu is hidden from the screen by clicking the mouse
cursor away from the menu. You'll find the code at www.dynamicdrive.com/dy-
namicindex 1/contextmenu.htm.

Scrollable Menu

If you are tight on space and have many menu items to present to visitors to your
web site, the scrollable menu is the solution to your problem. The scrollable menu
displays a limited number of menu item across the web page. Although only a few
items are shown, you can use as many menu items as your application needs.

Two arrowheads appear at both ends of the visible list of menu items. Visitors
can simply move the mouse cursor over one of the arrowheads and the browser
automatically scrolls the menu in the direction of the arrowhead (Figure 15-12).
The visitor can then click the appropriate menu item once it scrolls into view. You'll
find the code at www.dynamicdrive.com/dynamicindex 1/scrollerlink.htm.

Context menu Script IE5

Credits: Dynamic Drive
Last updated: 08/22/01

Description: With 1IE 5 and now NS6. 1+, you can add & context menu to your webpage
& context menu? Well, it's 2 custom menu= S the default context

Figure 15-11

when you right click your mouse. This cu
do, although in this script, it's designed ©
is possible with each link, so the links can
another. See footnote for more info on th

Demo: Right click anywhere inside this dg
"Wwhat's Mew", and notice how the link log

Dynamicdrive.com
What's New?
What's Hot?
Message Forum
FaQs

Submit

Iy anything you wan
b note that window t
er in current window

£ or NS6.14, Try clic

Email Us

Directions rDEvaloper's View

The context menu is displayed by clicking the right mouse button.

@ JavaScript Demystified

‘):'i'u‘c | JTavaScript Fit | CodingF orums. com | Build '

Figure 15-12 You can scroll the menu to the right or left by placing the mouse cursor
over the corresponding arrowhead.

Side Bar Menu

Ger Versluis developed a very useful menu called the side bar menu. As the name
implies, the side bar menu displays a menu on the side of the web page. Options on
this menu can be linked to other web pages or to other menu options.

For example, in Figure 15-13, the News item on the menu links to another menu
that shows two options: General and Technology. Each of these links to yet another
menu that contains items linking the visitor to corresponding web pages.

Visitors can link to other menus by moving the mouse cursor over a menu item.
The menu that is associated with that item pops onto the screen. Moving the cursor
away from the menu item closes the popup menu, and the side bar menu remains on
the screen. You'll find the code at www.dynamicdrive.com/dynamicindex 1/hvmenu/
index.htm.

Slide-In Menu

If you're looking for a really cool menu to add to your web page, don't overlook the
slide-in menu by maXimus. The slide-in menu appears as a vertical block that floats
on the left side of the web page. It seems to come alive when the visitor moves the
mouse cursor over the block.

. @ =@val Bam 4 Home G Radio] Metscape Tl Search [JBoakmarks

Menu Home P> Menus and navigation systems P Here
HY Menu v5.5 all

Credits:

Mame: Ger Versluis

Home Homepage: Homapage
glesllsotodl Jly 31t

News General CHH

Search Engines | technology ABCHews "HY menu® for its ahbility to be laid out bot

Webmaster R RUE menu), but it might as well be for its highl

2003 for doctype=strict mode compliznce.

Other y The menu's [MSNBC res makes it one of the bast scripts of its |
CBSNews
+ ahility canadian News plzontal or vertical menu {through toggle of

| + Multi=level submenus supported (ie: 2 levels down)
+ Menu interface completely customizable {color, alignment etc)

| Partners | Dran dnwn in Anather frame sunnarted (frames sonnet)

Figure 15-13 Each side bar menu item can link to another menu of items.

CHAPTER 15 Menus

. B, Ml &AM 4 Home £ Radio

Menu

Dynamic Drive namic-FX
Wwhat's New

What's Hot

Massage Farum me: maximus:
Submit Script mepage: Ho
B Last updat

scription: Ha

External Links anding wabr

wWebsite Abstraction [JI
Freewarejava

Dunamic Fx + phility to:

+ Support fi
+ Support fo

Figure 15-14 The slide-in menu drags the menu onto the screen when the mouse cursor
is placed over the slide-in menu.

The block pulls to the right, dragging along with it the hidden menu, when the
mouse cursor moves onto the block (Figure 15-14). The hidden menu can con-
tain menu names and options. Menu names describe a group of menu options.
Menu options are selectable by the visitor. The block pulls to the left, closing the
menu, whenever the mouse cursor leaves the block. You'll find the code at www
.dynamicdrive.com/dynamicindex1/davidmenu.htm.

Looking Ahead

A menu is an efficient way to help visitors navigate your web site, because you are
able to group together links to related web pages under one menu heading. The
visitor then selects the link to display the corresponding web page.

You've probably built menus using HTML. While these work fine, they lack the
professionalism and dynamic aspects that visitors expect from a commercial web
site. In this chapter, you learned how to incorporate eye-catching menus that are
seen in popular sites across the Net.

By combining traditional HTML menus with JavaScript, you can intercept menu
selections before the browser processes them. This gives you the opportunity to
perform data validation and to modify other objects on the web page based on the
visitor's selection from the menu.

In this chapter, you also saw how to use menus created with DHTML to add piz-
zazz to your web page. In the next chapter, you'll be more formally introduced to
DHTML and learn how to incorporate special effects to make your web page sizzle.

By——

Qu

1Z

JavaScript Demystified

. True or False. Options selected from a pull-down menu cannot be validated

by a JavaScript.

a. True
b. False

. A JavaScript function can instruct the browser to submit a form by

a. Returning a false to the onsubmit attribute of the form

b. Returning a true to the onsubmit attribute of the form

c. Returning a true to the submi t attribute of the form

d. None of the above

. What does it mean when the value of the selected menu option is an empty

string?

a. The form cannot be submitted.

b. A browser error occurred.

c. No value was assigned to the value attribute of the option.

d. The Esc key was pressed in error.

a.
b.
c.
d.
. You can dynamically change a menu by

a.

. The selectedIndex

References the index of the selected menu option
References the name of the form
References the name of the menu option

References the link to the menu option

Creating an array and then using new Option to assign array
elements to the options menu

Creating an array and then using onload to assign array elements to
the options menu

Creating an array and then using onchange to assign array elements
to the options menu

None of the above

CHAPTER 15 Menus

10.

—®
You validate a menu selection by using the

a. onerr attribute

b. onstorage attribute

c. onvalidate attribute

d. onsubmit attribute

True or False. Dynamically changing menu items helps reduce clutter on a

web page.

a. True

b. False

. True or False. You set options for a dynamic menu in response to an

onchange event.
a. True
b. False

. True or False. Statements within this if statement are executed if the value

of the Page value is not null:

if (Page != """

a. True

b. False

What attribute is used to load a web page from within a JavaScript?
a. location

b. upload

c. dnload

d. None of the above

This page intentionally left blank.

"

CHAPTER

DHTML

Today nearly every commercial web site uses exciting special effects to capture and
hold the visitor's attention. Developers use objects such as balloons flying across
the web page or eye images that follow the mouse cursor to keep visitors interested
in the site. Visitors scroll text the way they see it scrolled on television, and they can
drag and drop images on the web page—the list of clever tricks could go on forever.

How do developers do all this without using special plug-ins such as Flash?
That's the question asked by even the best HTML and JavaScript developers who
are left scratching their heads, trying to figure out the how to add the same pizzazz
to their web pages.

Dynamic HTML (DHTML) is a combination of HTML, cascading style sheets
(CSS), and JavaScript that, when blended in the proper proportions, can make a
web page work like a desktop application, containing features found in multimedia
products.

This chapter shows you how to use DHTML so that you can immediately incor-
porate DHTML into your web pages. The chapter begins with a short review of
CSS and then follows with handy DHTML examples provided by dynamicdrive
.com that can be used on your next project. All the code that appears in this chapter
is available free at www.dynamicdrive.com.

—&r

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

JavaScript Demystified
By—
What Is DHTML?

Probably one of the more frustrating factors in working with HTML and JavaScript
is that the web page must be reloaded each time you want to reposition an object on
the page. This seems archaic, considering that more robust programming languages
such as Java and C++ can redraw a portion of the screen while the program is run-
ning. Reloading a web page can take all the fun and excitement out of animating
objects on the web.

DHTML is designed to overcome this problem by giving developers the ability
to change a portion of a web page after the web page is displayed on the screen,
place objects in absolute positions on the screen, and display objects on different
layers of the web page, enabling the object on the top layer to change without
affecting objects on lower layers. Using DHTML, developers can create truly inter-
active web pages and have greater control over the look and feel of their sites.

The World Wide Web Consortium (W3C) is working with industry leaders to
define the DHTML standard, which for the most part is contained in the HTML 4.0
standard. A standard is an agreement that defines commands that form a language.
For example, href is an HTML command that references a link. Developers use
commands to tell the browser what to do when a web page is loaded. Likewise,
browser manufacturers write browsers to perform corresponding standard actions
whenever a standard command is encountered in the web page.

Not all browsers understand DHTML, however. Browsers that are not compliant
with HTML 4.0 probably cannot properly display a web page that contains DHTML,
because the browser doesn't understand the DHTML commands. Furthermore,
nothing prevents one browser manufacturer from implementing DHTML com-
mands differently than other browser manufacturers.

Learning DHTML

This chapter is designed to give you a taste of the features that can be built into your
web page using DHTML. It is not designed to teach you DHTML—there isn't
enough room in this book to cover both JavaScript and DHTML. To learn more
about DHTML, we suggest you read HTML: The Complete Reference, Third Edi-
tion by Thomas A. Powell (McGraw-Hill/Osborne).

You don't have to master DHTML to use it in your web pages, however, because
the folks at dynamicdrive.com have accumulated a library of clever DHTML fea-
tures that you can copy and paste from their web site into your web pages. They
kindly gave us permission to share some of these gems with you.

CHAPTER 16 DHTML @
We'll explore the DHTML code for a few of those features in this chapter and
then describe others that you'll find at dynamicdrive.com. However, before digging

into the DHTML code, here's a quick review of CSS, which you'll need to know
before you can understand the DHTML code shown in this chapter.

Cascading Style Sheets

Web pages are unlike printed pages because they don't have a fixed size. The size of
a printed page won't enlarge or shrink, but the size of a web page can change at the
click of a button. This flexibility is problematic—for example, a small web page
can look lost when displayed on a larger page.

HTML commands describe how elements of a web page should be displayed.
However, the browser determines how those elements are actually displayed, based
on factors such as the window size and resolution.

CSS enables developers to specify how elements must look on the screen,
including such things as text font, size, and precise position. CSS also enables de-
velopers to create a uniformed look and feel across all web pages on their web site
by defining specific styles and then applying those styles to relative portions of a
web page. The developer can then change the style definition in the style sheet, and
the browser automatically applies the style changes to corresponding portions of
web pages on the site.

Using CSS

To use CSS, you must define a style by using the <style>tag. The <style> tag
defines a block within your web page that contains one or more class definitions. A
class definition associates a rule with a class name. The rule specifies values for
style attributes.

Let's see how this works by looking at an example. When defining a style, you
need to specify the type attribute of the <style> tag as text/css, as shown in
the next example. Class definitions begin with a period, followed by the name of the
class. Open and close French braces define the body of the class definition. It is here
that you create rules by assigning values to style attributes.

In this example, we're defining the boldCharacter as having a font weight
of bold and being positioned at a specific location identified by left, bottom, and top
margin attributes. The attributes differ based on the nature of your class. For ex-
ample, you won't use the font weight attribute if you are defining a class for
images.

@ JavaScript Demystified
NortEe You'll recall that em is the relative size of the width of the letter M in the
chosen font.

<style type="text/css">
.boldCharacter {
font-weight: bold;
margin-left: -3em;
margin-bottom: 2em;
margin-top: 2.5 em
}
</style>

In addition to identifying a set of rules by class name, you can also identify the
set by using a selector called an id. An id is used to identify an object uniquely on
the web page. You define an id much the same way as you define a class, except an
id begins with a # sign instead of a period, as shown here:

<style type="text/css">
#strongCharacter {
font-weight: bold;
margin-left: -3em;
margin-bottom: 2em;
margin-top: 2.5 em
}
</style>
The <style> tag is placed within the <head> tag of a web page. Classes and
ids contained within the <style> block can then be applied throughout the web
page. You do this by assigning the class name to the class attribute of a tag.
Let's say that you want to apply the boldCharacter class to a portion of
your web page. To do this, you'll need to use the <div> tag and assign the bold-
Character class to the class attribute of this tag, as shown here:

<div class="boldCharacter">
</div>
Likewise, you can apply the id strongCharacter to a portion of your web
page by using the following:
<div id="strongCharacter">

</div>

Sometimes a developer might use both a class and an id within a tag. The danger
in doing this is that their rules might conflict. When this happens, rules in the id

CHAPTER 16 DHTML @
override conflicting rules in the class definition. Here's how the JavaScript looks
when both a class and an id are used:

<div class="boldCharacter" id="strongCharacter">
</div>

Now that you have a general idea of how CSS works, it's time to dive into some
DHTML code and learn how to spice up your web page.

Using DHTML Code

We'll show several clever examples of DHTML provided by dynamicdrive.com and
available from their web site, so don't waste time retyping the code from this book.
We provide the code for a few examples so you can see how dynamicdrive.com
applied DHTML to create the special effect. Other examples are shown simply to
whet your appetite for features that are bound to give visitors to your web site an
adrenaline rush. The code for these features is too long to appear in this book in its
entirety; however, we provide the URL on dynamicdrive.com so you can copy and
paste the code into your own web pages.

Code examples in this section contain a complete HTML document. However,
examples on the dynamicdrive.com web site contain DHTML snippets that must be
inserted into the proper location in an HTML document to work as expected.

Nork It is important that you follow instructions found on the dynamicdrive.com
web site that tell you where to place each DHTML snippet in your web page;
otherwise, the DHTML won't work.

Generic Drag

The generic drag example enables visitors to rearrange objects on a web page by
dragging the object to a new location. This is made possible by the drag class,
which is defined in the <head> tag of the next example.

Any type of object can be dragged using this class, including images, text, and
buttons. Here's what you need to do. Copy the <style> block into the <head>
tag of your web page and then assign the class name drag to the class attribute
of the tag that defines the object that you want the user to rearrange on the screen.

JavaScript Demystified

2l Dragging Elements - Microsoft Internet Explorer, - [Working Offline]

Fle Edk ‘iew Favorbes Tools Help l'}'
Qe - © ﬂ ﬂ D O search I Eserites @rede &) (- ¢ w-| J#
»
address | @ CA\books| JavaZeriok DemystfiediGoodDraftiListing1 -2 bk ~ GD Links
Help'
-ﬂDonc '_J My Compuber

Figure 16-1 A visitor can drag both the image and the text anywhere on the web page.

In this example, we want the visitor to be able to move the image and text
(Figure 16-1). To do this, we use the following HTML code:

<div class="drag"> <cTypeface:Bold> Text </div>

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Dragging Elements</title>
<style>
<I==
.drag{position:relative;cursor:hand}
-—>
</style>
<script language="JavaScriptl.2">
<I=-

CHAPTER 16 DHTML @
//Generic Drag Script- © Dynamic Drive
(www.dynamicdrive.com)
//For full source code and terms of usage,
//visit http://www.dynamicdrive.com
var ie=document.all
var nsé6=document.getElementById&&!document.all
var dragapproved=false
var z,%x,y
function move (e) {
if (dragapproved) {
z.style.left=ns6? templ+te.clientX-x:
templ+event.clientX-x
z.style.top=ns6?
temp2+e.clientY-y : temp2+event.clientY-y
return false

}

function drags(e) {

if (!ie&&!nso6)
return
var firedobj=ns6? e.target : event.srcElement
var topelement=ns6? "HTML" : "BODY"
while (firedobj.tagName!=topelementé&s&firedobj.className!=
"drag") {

firedobj=ns6? firedobj.parentNode
firedobj.parentElement

}

if (firedobj.className=="drag") {
dragapproved=true
z=firedob]
templ=parselnt (z.style.left+0)
temp2=parselnt (z.style.top+0)
x=ns6? e.clientX: event.clientX
y=ns6? e.clientY: event.clientY
document .onmousemove=move
return false

}
document .onmousedown=drags
document.onmouseup=new Function ("dragapproved=false")
//==>
</script>
</head>

@ JavaScript Demystified
<body>
<input type="button" value="Help" class="drag">

</body>
</html>

LCD Clock All

You can spiff up your web page with a digital clock that has the same look and feel
as a real digital clock—and even displays the correct time. The following example
shows you how this is done (Figure 16-2).

You'll notice that this example uses both a class and an id. The class is used to
give the clock the look and feel of a digital clock. The id is used to identify the clock
uniquely among any other objects that might appear on the web page. This is im-
portant, because the JavaScript in this example determines the correct time and then
uses the id to have the clock display the time.

& Digjtal Clock - Netscape

. File Edit Yew Go Bookmarks Took ‘Window Help

@ Q @ Q |"\\, File: §/C: fbooks] JavaScript20Demystied{GoodDr aft/Listing1-2.htm | [€, search | ‘::50 @
. | @ E2BMal ZaM 43 Home G Radio] Netscape O Search EJBaokmarks
S92 e | =a

Figure 16-2 You can use DHTML to display a working digital clock anywhere on your
web page.

CHAPTER 16 DHTML

<!DOCTYPE html PUBLIC

"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Digital Clock</title>
<style>
<l--
.styling{
background-color:black;
color:lime;
font: bold 15px MS Sans Serif;
padding: 3px;
}
-—>
</style>
</head>
<body>

<script>
<l--
/****k*************************************
* LCD Clock script- by Javascriptkit.com
* Featured on/available at http://www.dynamicdrive.com/
* This notice must stay intact for use
*****************************‘k***‘k***‘k***/
var alternate=0
var standardbrowser=!document.all
&!document.getElementById
if (standardbrowser)
document.write (
'<form name="tick"><input type="text"
name="tock" size="6"></form>")
function show () {
if (!standardbrowser)
var clockobij=
document.getElementById?
document.getElementById ("digitalclock")
document.all.digitalclock

@ JavaScript Demystified
var Digital=new Date ()
var hours=Digital.getHours ()
var minutes=Digital.getMinutes ()
var dn="AM"
if (hours==12) dn="PM"
if (hours>12) {
dn="PpPM"
hours=hours-12
}
if (hours==0) hours=12
if (hours.toString() .length==1)
hours="0"+hours
if (minutes<=9)
minutes="0"+minutes
if (standardbrowser) {
if (alternate==0)
document.tick.tock.value=hours+"

"+minutes+" "+dn
else
document.tick.tock.value=hours+
" "+minutes+" "+dn
}
else{

if (alternate==0)
clockobj.innerHTML=hours+
" : "+
minutes+"
"+"^{"+dn+"}"
else
clockobj.innerHTML=hours+" :
"+minutes+" "+"<sup
style='font-size:1lpx'>"+dn+"</sup>"
}
alternate=(alternate==0)? 1 : O
setTimeout ("show()",1000)
}
window.onload=show
//==>
</script>
</body>
</html>

CHAPTER 16 DHTML
—
Watermark Background Image

Give your web page a classy appearance by imprinting the page with your own
personal watermark. A watermark is a faint image that appears behind everything
else on the web page and stays in position as the page is scrolled.

The following example shows how to use DHTML to create a watermark on a
web page. Simply replace notebook.jpg with another image that you want used as
the watermark. The image will then appear as the background for your web page.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Watermark</title>
</head>
<body>
<script language="JavaScriptl.2">
<!l--
/*
Watermark Background Image Script- © Dynamic Drive
(www.dynamicdrive.com)
For full source code,
100's more DHTML scripts, and TOS,
visit dynamicdrive.com
*/
if (document.all]| |document.getElementById)
document.body.style.background="url ('notebook.jpg"')
white center no-repeat fixed"
//==>
</script>
</body>
</html>

Tabbed Document Viewer Using iframe

If your web site requires visitors to move quickly among several web pages, the
next DHTML example is for you, because it enables a visitor to navigate multiple
web pages by using tabs that are always displayed at the top of the web page.

As shown in Figure 16-3, navigation tabs are placed above the linked web page.
The content of the web page changes depending on the tab selected by the visitor.
Each tab is associated with the URL of another web page.

JavaScript Demystified

& Tabbed Document Yiewer - Netscape

. File Edit Yew Go Bookmarks Took ‘indow Help

@O @ @ @ |% file: {}{C: fbocks JavaScript%20DemystFied/GocdDraftiListing1-2. htm [| [€, search | 655;0 @

. B, (vl BaM 4 Home G Radio W] Netscape O Search EJBackmarks

=

! B
® OsSBORNE | home [view cart | halp |
RequReadngfmewmaﬂnnAgeﬁ

D i
about us | free code | erata | press room and ERP Internet & Hardware

Protect your systems or track down
a cyber criminal.

|E-LIST REGISTRATION

Special Offers

Click here to learn more about
— Hardening Linux Osborne Expert suthor
——— 430,00 US Stephen Johnson’s Digital
ﬁi‘f‘lg Photography Waorkshops

o — v j

Responding to a specific
promotion?

Flease enter your Special
Reference Code hers:

e =

g o |]
1A Daican Al | WIN 500
| E =S

|
CEAoD o

Figure 16-3 Selecting a tab causes a different web page to appear on the screen.

Take a look at the following example, and you'll discover the secret to how this
works. Notice that an iframe is used to build the web page. An iframe is similar to
frames that you learned about in Chapter 11, except an iframe can be used within a
window instead of to divide a window.

You'll notice that the iframe in this example appears in the center of the window,
just below the tabs. The web page that is associated with the selected tab is loaded
into the iframe, overwriting the existing web page. Everything else remains un-
touched.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Tabbed Document Viewer</title>
<style type="text/css">
/*Eric Meyer's based CSS tab*/
#tablist({
padding: 3px 0;
margin-left: 0;
margin-bottom: 0;
margin-top: 0.lem;

CHAPTER 16 DHTML

font: bold 12px Verdana;
}
#tablist 1if{
list-style: none;
display: inline;
margin: O;
}
#tablist 1i af
text-decoration: none;
padding: 3px 0.5em;
margin-left: 3px;
border: 1lpx solid #778;
border-bottom: none;
background: white;
}
#tablist 1i a:1link, #tablist 1i a:visited{
color: navy;
}
#tablist 1i a:hover{
color: #000000;
background: #C1lClFF;
border-color: #227;
}
#tablist 1i a.current{
background: lightyellow;
}
</style>
<script type="text/javascript">
<!--
/***
* Tabbed Document Viewer script- © Dynamic
Drive DHTML code library
(www.dynamicdrive.com)
* This notice MUST stay intact for legal use
* Visit Dynamic Drive at http://www.dynamicdrive.com/
for full source code
************‘k***‘k******************************/
var selectedtablink=""
var tcischecked=false
function handlelink (aobject) {
selectedtablink=aobject.href
tcischecked= (document.tabcontrol &&
document. tabcontrol.tabcheck.checked) ?
true : false
if (document.getElementById && !tcischecked) {

@ JavaScript Demystified
var tabobj=document.getElementById("tablist")
var tabobjlinks=tabobj.getElementsByTagName ("A")
for (i=0; i<tabobjlinks.length; i++)

tabobjlinks[i] .className=""
aobject.className="current"
document.getElementById (
"tabiframe") .src=selectedtablink
return false
}
else
return true
}
function handleview () {
tcischecked=document.tabcontrol.tabcheck.checked
if (document.getElementById && tcischecked) {
if (selectedtablink!="")
window.location=selectedtablink

}
[/ ==>
</script>
</head>
<body>
<ul id="tablist">
<a class="current" href="http://www.google.com"
onClick="return handlelink(this)">Google</1li>
<a href="http://www.yahoo.com"
onClick="return handlelink (this)">Yahoo</1li>
<a href="http://www.msn.com"
onClick="return handlelink (this)">MSN</1li>
<a href="http://www.news.com"
onClick="return handlelink (this)">News.com</1li>
<a href="http://www.dynamicdrive.com"
onClick="return handlelink (this)">Dynamic Drive</1li>

<iframe id="tabiframe" src="http://www.google.com"
width="98%" height="350px">
</iframe>
<form name="tabcontrol" style="margin-top:0">
<input name="tabcheck" type="checkbox"
onClick="handleview () "> Open tab links
in browser window instead.
</form>
</body>
</html>

CHAPTER 16 DHTML

Daily iframe Content

Some applications require that a message displayed on a web page change each day
according to the day of the week. This is easily implemented by using the following
DHTML example (Figure 16-4).

Look closely and you'll notice that an iframe is used to block out an area of the
web page where the message will be displayed. The message is contained in one of
several web pages that are assigned to the daycontent array. The message is
selected according to the current date, which is retrieved from the system's clock by
the JavaScript.

<!DOCTYPE html PUBLIC
-//W3C//DTD XHTML 1.0 Transitional//EN">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>New Daily Message</title>
</head>
<body>
<script type="text/javascript">
<l--
/***
* Daily iframe content II- © Dynamic Drive DHTML
code library (www.dynamicdrive.com)
* This notice MUST stay intact for legal use
* Visit Dynamic Drive at http://www.dynamicdrive.com/
for full source code
***/
var ie=document.all
var dom=document.getElementById
//Specify IFRAME display attributes
var iframeprops='width=150 height=150 marginwidth="0"
marginheight="0" hspace="0" vspace="0"
frameborder="1" scrolling="no"'
//Specify 31 URLs to display inside iframe, one
for each day of the current month
//If this month has less than 31 days, the last
few URLs won't be used.
var daycontent=new Array ()
daycontent[1]="1.htm"

daycontent[2]="2.htm"
daycontent [3]="3.htm"
daycontent[4]="4.htm"
daycontent[5]—"5 htm"
daycontent[6]="6.htm"

—&r

JavaScript Demystified

Zy—

daycontent [7]="7.htm"

daycontent [8]="8.htm"

daycontent [9]="9.htm"

daycontent [10]="10.htm"
daycontent [11]="11.htm"
daycontent [12]="12.htm"
daycontent [13]="13.htm"
daycontent[14]="14.htm"
daycontent [15]="15.htm"
daycontent[16]="16.htm"
daycontent [17]="17.htm"
daycontent [18]="18.htm"
daycontent [19]="19.htm"
daycontent [20]="20.htm"
daycontent [21]="21.htm"
daycontent [22]="22.htm"
daycontent [23]="23.htm"
daycontent [24]="24.htm"
daycontent [25]="25.htm"
daycontent [26]="26.htm"
daycontent [27]="27.htm"
daycontent [28]="28.htm"
daycontent [29]="29.htm"
daycontent [30]="30.htm"

daycontent [31]="31.htm"
//No need to edit after here
if (ie]| |dom)
document.write ('<iframe id="dynstuff"
src="" '+iframeprops+'></iframe>")
var mydate=new Date ()
var mytoday=mydate.getDate ()
function dayofmonth iframe () {
if (ie| |dom) {
var iframeobj=document.getElementById?
document.getElementById ("dynstuff")
document.all.dynstuff
iframeobj.src=daycontent [mytoday]

}
window.onload=dayofmonth iframe
[/==>
</script>
</body>
</html>

CHAPTER 16 DHTML

Thursday content
here

Figure 16-4 You can display the tip of the day by using an iframe with a few lines of
JavaScript code.

Cross-Browser Marquee

Images and information on a web page many times fail to communicate with the
visitor because of clutter, when too much stuff appears on the web page. One way
to stand above the clutter is to display some information differently than other in-
formation is displayed on the page, such as by scrolling a ticker message across
your page (Figure 16-5). The ticker, sometimes called a cross-browser marquee,
can be placed anywhere on your web page.

You'll find a ticker on the dynamicdrive.com web site at www.dynamicdrive
.com/dynamicindex2/cmarquee.htm.

Popup Calendar

Anyone who has required a visitor to enter a date into a web page knows how
difficult this can be, since many different date formats can be used. Sev Kotchney
devised an easy way to overcome any problems by having the visitor select the date
from a popup calendar. The date is then populated in the date field of a form.
Code for Kotchney's popup calendar (Figure 16-6) is available at www
.dynamicdrive.com/dynamicindex6/popcalendar.htm.

Drop-In Content Box

Probably the best way to get your web message across to the visitor is by dropping
the message into view once the web page loads. The message then remains on the
screen until the visitor acknowledges the message. The dynamicdrive.com web site

ic Drive. Ifyou find this script useful, please

Figure 16-5 Scroll your message across any part of your web page by using the cross-
browser marquee.

JavaScript Demystified

By——

[Choose qnel

< | 2004= December v | =

Su (Mo | Tu |We|[Th| Fr || 5a

Jirections: 1 2] 2] 4
5 E 7 g 10 1

step 1: Download the follay 12 | 13 | 14 | 15 |[16 || 17 || 18 |pntaini

firectory: 19 [20] 21 [2z |23 24 | =5
. 26 (| 27 28 | 29 30 A
wopcalendar.zip (containd—mreme—are—eererre)

Figure 16-6 Visitors can enter a date by selecting the date from a popup calendar.

has the DHTML code for a clever drop-in message box (Figure 16-7) at www.dy-
namicdrive.com/dynamicindex17/dropinbox.htm.

Ad Box

No one likes an in-your-face advertisement that covers the web page when the page
is loaded—except for the advertiser. Matt Gabbert developed code for a DHTML
in-your-face advertisement that you can pick up from dynamicdrive.com.

You'll find this to be a somewhat visitor-friendly, in-your-face advertisement in
that it displays the advertisement one out of five times that the web page is loaded
(Figure 16-8). The ad remains on the screen for 10 seconds and then gives way to
the contents of the web page. You'll find the JavaScript at www.dynamicdrive.com/
dynamicindex11/dhtmlad.htm.

Home P> Dynamic Content » Here

Drop-in content box al

Credits: Dynamic Drive

Note: | . TR RSN L
This is a drop in boX

Descri \i f!{ serves, b
droppir] Ak 'h? Display any content here, from tesxt, images, to rich HTML. Use |an
adverti b the close link to dismiss the box. Click the close box to dismiss | YOU's!
Anythi . it. Scnpt compatible in TE4+, NS4, and NS6+ this scrip
sUppor

Display any content here, from text, images, to rich HTML. Use the close link to
Demo]disruss the box. Click the close box to dismizs it. Script compatible in TE4+,

NZ4, and N36+.
Direct Close Box]

Figure 16-7 The drop-in message box slides down to the center of the screen when the
web page is displayed.

CHAPTER 16

DHTML

) Dynamic Drive DHTML Scripts- DHTML Ad Box - Netscape

buttons into
rollover menus with
this script!

. File Edit View Go Bockmarks Tooks ‘Window Help

| [Csemar) & (N

|middle of the page,
after x seconds, with
he page is loaded),

tains qualities of a

Flease take time to show your support

Hom for this site by visiting one
Search DD DHT of our sponsors during this
Recommend DD brief intermission.
Help Forums MNew i

Credi] T -.\
DHTML books Name ‘ ™ YOUR ¢ *‘ \‘4
Advertising Home WEBSITE “§&
Contact

E:;s;;' {This announcement will close shortly)
Featured Script its dis
Rollover buttons o
e This ig
Turn regular form

TW/radio commercial,

Demo: (in demo, ad is set to display for 10 seconds)

== e

B
=

S & s oo

Figure 16-8 This in-your-face ad is displayed one out of every five times the page loads,

and it remains on the screen for 10 seconds.

1. True or False. DHTML combines CSS and JavaScript.

a. True
b. False
2. With DHTML you can

. Place objects in absolute positions on the screen

a
b. Display objects on different layers
c. Change the content of the web page without reloading it

. All of the above

o

3. The standard for DHTML is defined in

a. HTML 4.0
b. HTML 3.0
c. HTML 4.5
d

. None of the above

Quiz

By——

JavaScript Demystified

4. A class definition begins with a

10.

a. Pound sign
b. Period
c. Class name

d. ID name

. An id begins with a

a. Pound sign
b. Period
c. Class name

d. ID name

. You apply a class by

a. Assigning the class name to the class attribute

b. Assigning the class name to the id attribute

c. Calling the class name from anywhere in the web page
d. All of the above

True or False. DHTML replaces JavaScript.

a. True

b. False

. True or False. DHTML can make a web page work like a desktop

application that contains features found in multimedia products.
a. True

b. False

True or False. Rules are contained in a class definition.

a. True

b. False

Classes are defined within

a. <div>

b. <style>

c. <p>

d. None of the above

eo"

APPENDIX

Attributes
of Forms
and Elements

Setting attribute values for forms and elements gives you control over how forms
and elements behave within your JavaScript. The following table gives you a quick
reference for the most commonly used attributes, along with a description of each.

—&r

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

B—

JavaScript Demystified

Attribute Description

Form Tag Attributes

action Specifies the action taken when the Submit button is clicked.

method Specifies the HTTP method used to submit the form using either GET or
POST.

enctype Specifies the content type used to submit the form.

accept-charset

Specifies the character set that is used to input data into the form.

accept Specifies a list of content types that the server processing the form can handle.
Each content type is separated by a comma.

name Name of the form.

Input Tag Attribute

type Specifies the type of control:
text
password
checkbox
radio
submit
reset
file
hidden
image
button

name Specifies the name of input control.

value Specifies the value of the input.

size Specifies the width in pixels to expect when the type attribute is text or
password, where size refers to the number of characters permitted in the
element.

maxlength Specifies the maximum number of characters that can be entered if the type
attribute is text or password.

checked Specifies that a Boolean attribute indicating if the radio or check box is on.
Used only when input is radio or checkbox.

src Specifies the source of an image if the type attribute is image.

Button Tag Attribute

name Specifies the name of the element.

value Specifies the initial value to the button.

type Specifies the type of button:

submit
button
reset

APPENDIX Attributes of Forms and Elements

—E

Attribute Description

Option Tag Attribute

name Specifies the name of the element.

size Specifies the number of rows that are visible if the element is a selected
element.

multiple Specifies a Boolean value that allows multiple selections from the list.

selected Specifies a Boolean value indicating that the option is selected.

value Specifies the initial value of the option element.

label Specifies the label for the option.

TEXTAREA Tag Attribute

name Specifies the name of the element.

rows Specifies the number of lines that are visible.

cols Specifies the number of characters that can be visible on the line, based

on the average character width.

Label Tag Attributes

for Specifies the name of another control that is associated with the label.

TABINDEX Attribute

tabindex Specifies the tab index using a value between 0 and 32,767.

AccessKeys Attribute

accesskey Specifies an access key for an element.

Other Attributes

disabled Specifies a Boolean value that enables or disables the element for input from
the user.

readonly Specifies a Boolean value that enables or prohibits changes to an element.

Elements set to readonly cannot be modified when the element receives focus.

This page intentionally left blank.

eo"

Final Exam

1. What is assigned an action to perform when the mouse cursor leaves
an object?

a. onmouseout event
b. onmouseover event
c. onmouseout attribute
d. onmouseover attribute
2. If the document . layers value is null
. Then the visitor is using the Netscape browser

a
b. Then the visitor is using the Internet Explorer browser
c. Then a bot is accessing the web page

d

. None of the above

—&

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

@ JavaScript Demystified
3. True or False. All images on a web page are reflected in the document

. images array.

a. True

b. False

4. What attribute(s) can be used to change the source of a child window from
a JavaScript?

a. source
b. src
c. parent.frame.location.source
d. parent.frame.location.href
5. True or False. All windows must have the standard browser toolbar.
a. True
b. False
6. What event occurs when a person highlights text in a text field?
a. onblur
b. onfocus
c. onselect
d. onchange

7. True or False. The index of the last element in the string array is not the
same value as the string length.

a. True
b. False
8. What attribute is used to load a web page from within a JavaScript?
a. location
b. upload
¢c. dnload
d. None of the above

9. What is the purpose of the first parameter of the setTimeout ()
function?

a. Sets the timeout period in milliseconds

b. Sets the timeout period in seconds

Final Exam

10.

11.

12.

13.

14.

c. Identifies the function that is to be called at the conclusion of the
timeout period

d. Identifies the function that called the timeout period

True or False. Values passed to a function must correspond to the data type
of arguments in the function definition.

a. True
b. False
What is the purpose of else in an if...else statement?

a. Contains statements that are executed if the conditional expression
is true

b. Defines another conditional expression the browser evaluates if the first
conditional expression is false

c. Contains statements that are executed if the conditional expression
is false

d. Used to nest an if statement
What is happening in this expression: a++?

a. The value of a is increased by 2.

b. The value of a is increased by 1.

c. The value of a is multiplied by itself.

d. Nothing. This is not a valid JavaScript expression.

Which of the following in an e-mail can you generate from a JavaScript?
a. TO

b. CC

c. BCC

d. All of the above

How do you load all banners before the first banner is displayed?
a. Use the 1oad () function.

b. Use the loadMem () function.

c. Store banners in an array when the web page loads.

d. Store banners in an array after the web page loads.

By—

16.

17.

18.

19.

20.

JavaScript Demystified

True or False. You do not specify the name of the frame whenever you want
to reference the contents of the frame.

a. True

b. False

You scroll a window by calling

a. goto

b. down or up

c. down

d. scrollTo()

The second argument in the substr () method indicates

a. The position of the last character that is copied into the substring

b. The number of characters that are to be copied from the string to the
substring

c. The position of the character preceding the last character that is copied
into the substring

d. The position of the character preceding the last character in the
substring

How many elements are there in this array?

Products = new Array('Soda', 'Beer', 'Pizza')

a. 2

b. 3

c. 4

d. None

What does the && operator do?

a. Evaluates true if the expressions on its left and right are both true
b. Evaluates true if the expression on its left or on its right is true

c. Evaluates true if neither expression on its left nor right are true

d. Combines the expression on its right with the expression on its left
The foreground color of a document is a type of

a. Object

b. Method

Final Exam

21.

22.

23.

24.

25.

26.

—
c. Property

d. Variable

True or False. A period must separate arguments in a function definition.

a. True

b. False

An intrinsic function

a. Must be defined in the <head> tag

b. Must be defined in the <body> tag

c. Must be defined by the programmer either to submit the form or reset
the form

d. Is not defined by the programmer

You can enable a person to resize your new window by
a. Setting resizableto 1

b. Setting resizableto

c. Setting the menubar to 1

d. Setting the menubar to 0

You can create a rollback of an image by reacting to which event?
a. onmouse event

b. onmouserollback event

c. onmouserestore event

d. None of the above

True or False. Options selected from a pull-down menu can be validated
by a JavaScript.

a. True
b. False
True or False. A regular expression can be used to reformat text.
a. True
b. False

\@, JavaScript Demystified
- A
27. The Submit button is a type of
a. Object
b. Method
c. Property
d. Variable
28. What is an alias for computer memory reserved by your JavaScript?
a. Operator
b. Variable name
c. Literal value
d. Variable type
29. True or False. The ! = operator makes a true false.
a. True
b. False
30. What is the purpose of if in an if...else statement?

a. Contains statements that are executed if the conditional expression
is true

b. Defines another conditional expression the browser evaluates if the first
conditional expression is false

c. Contains statements that are executed if the conditional expression
is false

d. Used to nest an if statement
31. What method is used to place a new element at the end of an array?
a. push ()
b. pop ()
c. reverse ()
d. shift ()
32. Afloatis
a. An integer
b. A whole number
c. A decimal value

d. A Unicode number

Final Exam

33.

34.

35.

36.

37.

38.

True or False. You can delete a cookie.
a. True

b. False

Which special character is used to tell the browser to start at the beginning
of a string in a regular expression?

a. S

b. *

c. ©

d. []

What frame receives focus by default?
a. First frame that is built

b. Last frame that is built

¢. No frame has focus

d. None of the above

The value of document . images is null if the browser does not support
the image object.

a. True
b. False

What special character do you use to search for any letter, number,
or the underscore using a regular expression?

a. \w

b. \W

c. w

d w

You can bring a new window to the top of other windows by calling
a. upper ()
b. up ()

focus ()

& o

next ()

\@ JavaScript Demystified
~ A
39. What event occurs when a person leaves text in a text field?
a. onblur
b. onfocus
c. onselect
d. onchange

40. A variable is out of scope when

a. The statement that calls a function ignores the value returned
by the function

b. The variable cannot be accessed by a statement
c. A variable isn't defined in a function
d. When a variable is passed to a function
41. True or False. A function cannot be called by HTML code in a web page.
a. True
b. False

42. True or False. The statement that calls a function cannot ignore a value
returned by a function.

a. True

b. False
43. What method is used to remove the first element from an array?
a. push ()
b. pop ()
c. reverse ()
d. shift ()

44. True or False. The ++ can be on either the right (c=a++) or left (c=++a)
side without any effect on the expression.

a. True
b. False
45. True or False. A JavaScript must be within the <applet > tag.
a. True
b. False

Final Exam

46.

47.

48.

49.

50.

51.

52.

—
True or False. The browser cannot be required to evaluate every case in a
switch...case statement event if the criterion matches a case value.

a. True

b. False

What method is used to remove an element from the bottom of an array?
a. push ()

b. pop ()

c. reverse ()

d. shift ()

A local variable can be accessed

a. Only by functions defined within the JavaScript

b. Only outside of a function

c. Only by the function that defined it

d. From anywhere in the JavaScript

What is the program that processes a form?

a. Common Gateway Interface

b. Common Program Interface

c. Common Web Server Interface

d. Common Web Server Gateway

True or False. All windows do not have to have a menu bar.

a. True

b. False

What special character would you use to tell the browser to search all
occurrences of a character in a regular expression?

a. *
b. i
c. g
d. a

True or False. The index of the last element in the string array is not the
same value as the string length.

a. True
b. False

By—

53.

54.

55.

56.

57.

58.

JavaScript Demystified

What method is used to create a new array using elements of another array?
a. slice ()
b. div ()

c. splice()
d. shift ()

How do you prevent your JavaScript from being displayed by an older
browser?

a. Place the JavaScript within the <script> tag.
b. Place the JavaScript within the header.

c. Place the JavaScript within a comment.

d. Place the JavaScript within the body.

True or False. This is the second element of the products array:
products [1]

a. True

b. False

Unicode is

a. A string that contains a numeric value

b. A numeric value that represents characters, numbers, and symbols that
can be displayed on the screen

c. The end position used by the substr () method
d. The end position used by the substring () method

What loop executes statements regardless whether a condition is true
or false?

a. do...while loop
b. while loop

c. for loop

d. for in loop

True or False. A dot is used to separate an object name from either
a property or a method.

a. True
b. False

Final Exam

59.

60.

61.

62.

63.

64.

65.

—®
The this keyword is used to reference the type of browser that

is used to view your web page.

a. True

b. False

The main purpose of using an external JavaScript file is to

a. Confuse bots

b. Confuse visitors who read the source code

c. Hide JavaScripts

d. Share JavaScripts with multiple web pages

If you're working with two vertical frames, how do you make one frame
smaller than the other frame?

a. Make one of the rows values smaller than the other

b. Make one of the cols values smaller than the other

c. Make one of the bar values smaller than the other

d. Make one of the bar values larger than the other

True or False. All windows must be able to be resized by the visitor.
a. True

b. False

True or False. Values of an element can be changed once a person clicks
the Submit button.

a. True

b. False

The scope of a variable means

a. The size of the variable

b. The data type of the variable

c. The portion of a JavaScript that can access the variable

d. The variable is used as a return value for a function

True or False. A switch...case statement must have a default case.
a. True

b. False

\@ JavaScript Demystified
- A

66. What event occurs when an element loses focus?

a. onblur

b. onfocus

c. onselect
d. onchange

67. True or False. You call the exec () method of the regular expression
object to determine whether one or more characters exists in the text.

a. True
b. False

68. True or False. You reference a specific object on a document by using
the unique name or ID of the object.

a. True
b. False
69. You define empty functions when hiding a JavaScript to
a. Confuse bots
b. Confuse visitors who read the source code
c. Prevent older browsers from displaying an error
d. Prevent new browsers from displaying an error

70. True or False. The order of values passed to a function must correspond
to the order of arguments in the function definition.

a. True
b. False

71. True or False. The default clause is used in an if statement to set default
values.

a. True
b. False
72. The expiration date is stored in a cookie as
a. GMT string
b. Date data type
c. Digital sequence type

d. Sequential numeric type

Final Exam

73.

74.

75.

76.

7.

78.

79.

True or False. Numbers in the expression 1 + 1 are referred
to as operands.

a. True

b. False

True or False. The length of an array is not equal to the index of the last
element of the array.

a. True

b. False

True or False. You cannot use a cookie to explore a visitor's hard disk.
a. True

b. False

In the expression 1 + 1, what part of the expression is the +?

a. Operand

b. Operator

c. Modulus

d. Incrementer

True or False. A for loop cannot become an endless loop.

a. True

b. False

What attribute is used to specify the web page that is loaded into a frame?
a. source

b. src

c. topPage

d. bottomPage

Evaluate this expression: 20 > 30 ? 'Youwin.' : 'You lose. "
a. 20

b. You lose

c. You win

d. 30

Ly—

80.

81.

82.

83.

84.

85.

86.

JavaScript Demystified

True or False. You hide the borders of a frame by using
frameborder="0"

a. True

b. False

What is it called when a person changes information on a form?
a. Event

b. Reaction

c. Rollover

d. Mouse rollover

True or False. The browser automatically replaces a rollover image with
the original image when the mouse cursor moves away from an object.

a. True

b. False

document .write () is an example of a(n)
a. Object

b. Method

c. Property

d. Variable

True or False. An external JavaScript file is stored on a web server
in the same domain as the calling page.

a. True

b. False

A JavaScript function can instruct the browser to submit a form by
a. Returning a false to the onsubmit attribute of the form

b. Returning a true to the onsubmit attribute of the form

c. Returning a true to the submit attribute of the form

d. None of the above

True or False. Banners are not typically displayed on the status bar.
a. True

b. False

Final Exam

87.

88.

89.

90.

91.

92.

93.

True or False. You reference an external JavaScript file in the src attribute
of the <script> tag.

a. True

b. False

You can dynamically change a menu by

a. Creating an array and then using new Option to assign array elements
to the Options menu

b. Creating an array and then using onload to assign array elements to
the Options menu

c. Creating an array and then using onchange to assign array elements
to the Options menu.

d. None of the above

True or False. The current date and time of the Date object must be
converted to a string when used on the status bar.

a. True
b. False

True or False. When the value of the selected menu option is null, no value
was assigned to the value attribute of the option.

a. True
b. False

True or False. A child window can change the content of another child
window if they are on different domains.

a. True

b. False

You validate a menu selection by using the

a. onerr attribute

b. onstorage attribute

c. onvalidate attribute

d. onsubmit attribute

True or False. Only GIF files can be displayed as a banner.
a. True

b. False

@ JavaScript Demystified
94. True or False. You do not set options for a dynamic menu in response

to an onchange event.

a. True

b. False

95. True or False. Multiple rotating banners can be shown on a web page
at the same time.

a. True
b. False
96. True or False. DHTML has no relationship to CSS and JavaScript.
a. True
b. False
97. The standard for DHTML is defined in
a. HTML 4.0
b. HTML 3.0
c. HTML 4.5
d. None of the above
98. You apply a class by
a. Assigning the class name to the class attribute
b. Assigning the class name to the id attribute
c. Calling the class name from anywhere in the web page
d. All of the above
99. True or False. JavaScript replaces DHTML
a. True
b. False
100. Classes are defined within
a. <div>
b. <style>
C. <p>

d. None of the above

<

Answers to
Quizzes and
Final Exam

JavaScript Demystified
\@ P y
Chapter 1

1. b. LiveScript

c. <scripts>tag

a. Object

c. Property

b. Method

d. Separate an object name from either a property or a method
a. Event

b. Event handler

D I

c. Place the JavaScript within a comment

_
e

b. A limited-featured programming language

Chapter 2

. b. Variable name

. ¢. JavaScript statement
. a. Operand

. b. Operator

. ¢. You win.
. a. Evaluates true if expression on its left and right are both true
. b. False

1
2
3
4
5. b. The value of a is increased by 1
6
7
8
9. a.True

10. a. True

Chapter 3

1. a. do...while loop
2. b. False
3. a. do...while loop

Answers to Quizzes and Final Exam @
. b. Increase or decrease the loop counter value by 1

a. True

. d. for in loop

. b. False

c. Contains statements that are executed if the conditional expression is
false

. b. False
10. a. True

© N O L kA

Ne)

Chapter 4

1. b. False

2. b.3

3. b.join ()
4. b.pop ()
5. d.shift ()
6. a.push ()
7. b. False

8. b. False

9. a.True

10. a.slice ()

Chapter 5

a. True

b. Function definition

c. The portion of a JavaScript that can access the variable
a. True

d. From anywhere in the JavaScript

c. Only by the function that defined it

Nk

a. True

@ JavaScript Demystified
8. b. False

9. a. True

10. b. The variable cannot be accessed by a statement.

Chapter 6

1. b. False

2. c. A decimal value
3. b.split ()
4

. d. The position of the character preceding the last character that is copied
into the substring

W

. b. The number of characters that are to be copied from the string to the
substring

6. a. The total number of characters in the string
7. b. False
8. b. False
9. a. True

10. b. A numeric value that represents characters, numbers, and symbols that
can be displayed on the screen

Chapter 7

. a. True
. a. Common Gateway Interface
. b.onfocus

. a.onblur

. c. Identifies the full document path
. b. False
. b. False
. b. False
10. d. Is not defined by the programmer

1
2
3
4
5. c.onselect
6
7
8
9

Answers to Quizzes and Final Exam

Chapter 8

10

1
2
3
4
5.
6
7
8
9

. b. False

. d. Name-value pair

. b.onload

. a. A GMT string

c. Any time it make sense to do so while a visitor is visiting your web site
. d. An object

. b. False

. b. False

. a. True

. b. The computer used by the person who is visiting your web site

Chapter 9

0.

e S o R

b. False

b. left and top properties

c. focus ()

c. width and height properties
d. scrollTo ()
c.directories=0

b. False

b. False

a. True

10. b. Setting resizableto 0

Chapter 10

1. b. False
2. ¢.”

3. b.\D

JavaScript Demystified

c.g
a. \s

a. \w

a. True

. b. False

. b. False

. b. leftContext

Chapter 11

10

1
2
3
4
5.
6
7
8
9

. b. False

. b.src

. a. frameborder="0"

. b.and d. src and parent.frame.location.href
b. Last frame that is built

. a. Set the rows and cols values

. a. True

. a. True

. a. True

. b. Make one of the cols values smaller than the other

Chapter 12

1

2.

3

4.
5.

6

7.

. b. False

c. onmouseout attribute

. b. Anchor tag

c. Use the unique name or ID of the object

c. Assign an image file to an image object in a JavaScript
. b.null

a. True

Answers to Quizzes and Final Exam

8. a. True
9. a. True
10. d. None of the above

Chapter 13

—_

. b. False
. d. All of the above

. c. Identifies the function that is to be called at the conclusion of the timeout
period

W N

a. To control the interval when banners are displayed

c. Store banners in an array when the web page loads.

. b. Banners are automatically displayed. The visitor controls the slideshow.
a. True

. b. False

. b. False

N I

10. b. Gets loaded when the browser encounters the src attribute

Chapter 14

1. b. False
2. d. By redirecting the action taken when the right mouse button is clicked
3. b. Then the visitor is using the Internet Explorer browser
4. c. Prevent older browsers from displaying an error
5. d. Share JavaScripts with multiple web pages
6. a. Stored on a web server
7. a.True
8. a. True
9. b. False
10. d. All of the above

\@’_ JavaScript Demystified
Chapter 15

. b. False
. b. Returning a true to the onsubmit attribute of the form

1
2
3. c. No value was assigned to the value attribute of the option.
4. a. References the index of the selected menu option

5

. a. Creating an array and then using new Option to assign array elements
to the options menu

. d. onsubmit attribute
a. True

a. True

© 0 N o

a. True

10. a. location

Chapter 16

1. a. True

2. d. All of the above
3. a. HTML 4.0
4. b. Period

5. a. Pound sign
6. a. Assigning the class name to the class attribute
7. b. False

8. a.True

9. a.True

10. b. <style>

Answers to Quizzes and Final Exam

—E

Final Exam

1.

10.
11.

12.
13.
14.
15.
16.
17.

18.
19.
20.
21.
22.
23.
24,
25.
26.
27.

e e A

c. onmouseout attribute

b. Then the visitor is using the Internet Explorer browser
a. True

b. src and d. parent . frame.location.href

b. False

c. onselect

a. True

a. location

c. Identifies the function that is to be called at the conclusion of the timeout
period

a. True

b. Defines another conditional expression the browser evaluates if the first
conditional expression is false

b. The value of a is increased by 1.

d. All of the above

c. Store banners in an array when the web page loads
b. False

d. scrollTo()

c. The position of the character preceding the last character that is copied
into the substring

b. 3

a. Evaluates true if the expression on its left and right are both true
c. Property

b. False

d. Is not defined by the programmer

a. Setting resizable to 1

d. None of the above

a. True

a. True

a. Object

\@) JavaScript Demystified
w

28. b. Variable name

29. b. False

30. a. Contains statements that are executed if the conditional expression is true
31.
32.

a. push ()
c
33. a. True
c
b

. A decimal value

34. ¢c.”

35. b. Last frame that is built

36. a. True

37. a. \w

38. c. focus ()

39. a. onblur

40. b. The variable cannot be accessed by a statement.
41. b. False

42. b. False

43. d. shift ()

44. b. False

45. b. False

46. b. False

47. b. pop ()

48. c. Only by the function that defined it

49.
50. a
51. ¢c. g
52. a
53. a.slice()

54. c. Place the JavaScript within a comment
55. a. True

56. b. A numeric value that represents characters, numbers, and symbols that
can be displayed on the screen

(@)

o

. Common Gateway Interface

. True

. True

57. a. do...while loop

Answers to Quizzes and Final Exam

58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.

a.

o O

o

ISR

a.
b.
b.
b.

® o o a o

PP o

—&

True

. False
. Share JavaScripts with multiple web pages

. Make one of the cols values smaller than the other.

False

True

. The portion of a JavaScript that can access the variable
. False

. onblur

True

. True

. Prevent older browsers from displaying an error

True

. False
. GMT string

a
a.
a

True

. True

True
Operator
False

src

b. You lose.

80. a.True

81. a. Event

82. b. False

83. b. Method

84. a. True

85. b. Returning a true to the onsubmit attribute of the form
86. a.True

87. a.True

\@) JavaScript Demystified

~ A

88. a. Creating an array and then using new Option to assign array elements
to the Options menu

89. a. True

90. a. True

91. b. False

92. d. onsubmit attribute

93. b. False

94. b. False

95. a.True

96. b. False

97. a. HTML 4.0

98. a. Assigning the class name to the class attribute

99. b. False

100. b. <style>

INDEX

Symbols

-- (decremental) operator, example of, 28-29
! (NOT) logical operator, example of, 34-35
!= (not equivalent) operator, using, 37
$ (dollar sign), using with regular
expressions, 203

% (modulus) operator, examples of, 26-27
&& (AND) logical operator, example of, 32
() (parentheses)

using with functions, 97-98

using with initializer variables, 65
* (asterisk)

using with regular expressions, 203

as wildcard in regular expressions, 209
, (comma), using with function values, 101
. (period)

using with arrays, 79

using with regular expressions, 203

as wildcard in regular expressions, 209
/ (forward slash)

including in regular expressions, 201

using with HTML tags, 194
/I (forward slashes), using with comments, 44
/* (slash asterisk), using with comments, 44

7SN

: (colon) in conditional operator,
purpose of, 39
? (question mark)
in conditional operator, 39
using with regular expressions, 203
@ (at) character, passing to indexOf()
method, 129
[1 (square brackets), including in regular
expressions, 201-202
\ (backslash)
using with HTML tags, 194
using with regular expressions, 202-203
\ (escape) character, using with cookies, 166
A (caret), using with regular expressions,
203-204
{} (French braces), using with code blocks, 45
Il (OR) logical operator, example of, 34
+ (concatenation) operator, using with
strings, 118
+ (plus sign), using with regular
expressions, 203
++ (incremental) operator, example of, 27, 29
<!-- (comment) characters, example of, 22

—E

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

< (less than) operator, using, 38, 63
<= (less than or equal to) operator, using, 38
= (assignment) operator
example of, 24-25
using with arithmetic operator (+=),
35-36
using with arrays, 77
using with variables, 20
== (equivalency) operator
using, 37
using with strings, 131
> (greater than) operator, using, 37-38
>= (greater than or equal to) operator, using,
38
" (quotation marks), using with prompt()
function, 22
; (semicolon)
using as delimiter with cookies, 167
using with for loops, 65

A

<A> tags, using with text rollovers, 237

[abcde] and [“abcde] special characters, using
with regular expressions, 203

accept form tag attribute, description of, 330

accept-charset form tag attribute, description
of, 330

accesskey attribute, description of, 331

action form tag attribute, description of, 330

ad box example of DHTML, 326-327

addition, order of operations for, 26

[a-e] special character, using with regular
expressions, 203

alert dialog boxes, adding, 11

alert() function, relationship to strings, 119

AND (& &) logical operator, example of, 32

applets, significance of, 3

appName property, using with browsers, 57

JavaScript Demystified

arguments
adding to functions, 99-100
calling functions with, 102-104
scope of, 100-101
using with arrays, 85
using with functions, 97-98
arithmetic operators, using, 25-27
array elements
adding, 82-84
combining into strings, 87-89
defining, 78-80
sorting, 83-84
arrays
changing elements of, 90-91
creating from existing arrays, 84—87
declaring, 7677
definition of, 75-76
initializing, 77-78
loading banner advertisements into, 269
loading images into, 243-244
looping, 79-82
storing form objects in, 141
assignment operator (=)
example of, 24-25
using with arithmetic operator (+=),
35-36
using with arrays, 77
using with variables, 20, 35-37
asterisk (¥)
using with regular expressions, 203
as wildcard in regular expressions, 209
at (@) character, passing to indexOf()
method, 129
attributes
accessing in forms, 142-143
changing for form elements, 144—148
availHeight property of screen object,
description of, 186
availWidth property of screen object,
description of, 186

INDEX

B
\b and \B special characters, using with
regular expressions, 203, 207
[\b] special character, using with regular
expressions, 203
backslash (\)
using with HTML tags, 194
using with regular expressions, 202-203
banner advertisements
linking to URLs, 271-272
loading and displaying, 268-271
rotating, 269-271
BannerLink array, creating, 271
<body> tags, using with <script> tags, 7-8
book titles
creating rollover project for, 237-239
identifying when selected by visitors, 239
Booleans, definition of, 16
borders, using with frames, 220-221
break, using with switch...case statements, 61
BreakInDetected() function, defining and
calling, 280-283
browser windows. See also windows
changing contents of, 186—187
closing, 187-189
creating web pages in, 192-195
giving focus to, 182-183
as objects, 180
opening, 191-192
opening in separate windows, 189
positioning on screens, 184—186
browsers
determining compatibility with
rollovers, 234
hiding JavaScript from, 9
identifying with nested if statements,
55-57
using <= operator with, 63
using switch...case statements with,
58-62
button tag attributes, descriptions of, 330

C
calculations, order of operations for, 26
caret ("), using with regular expressions,
203-204
case keywords, using with switch...case
statements, 58—59
case of strings, changing, 131
<center> tags, using with banner
advertisements, 268-269
CGI programs, validating form information
with, 136
chain select DHTML menus, features of,
299-300
ChangeContent() function
calling, 222
defining in <head> tag, 224
characters. See also matched characters;
nonmatching characters; special characters
calculating positions of, 123
copying between strings, 120-122
determining indexes of, 121-122
entering ranges of, 205
charAt() method
copying characters with, 120-122
using with form elements, 146
using with status bar messages, 257
charCodeAt() method, determining Unicode
numbers with, 132
check box selections, evaluating, 151-153
checked input tag attribute, description of, 330
child frame, definition of, 218
child windows
accessing elements of, 228
calling functions for, 222-223
changing content of, 223-225
changing focus of, 226
hiding borders around, 221
inserting web pages into, 218-219
opening, 227
resizing, 218
writing dynamic content to, 226227

classes
using with CSS, 312
using with DHTML, 316-318
clearTimeout() function, calling for status bar
messages, 257
client-side application, definition of, 2
close() method
calling for window object, 241
using with browser windows, 187
code blocks
contents of, 45
in if...else if statements, 50
relationship to functions, 98
colon (:) in conditional operator,
purpose of, 39
colorDepth property of screen object,
description of, 186
cols TEXTAREA tag attribute,
description of, 331
comma (,), using with function values, 101
comma-delimited strings, definition of,
123-124
comment characters (<!--), example of, 22
comments
adding, 44
including in HTML, 9
comparison operators, using, 37-38
concat() method, using with arrays, 88—89
concatenation
definition of, 29
example of, 30
concatenation operator (+), using with
strings, 118
condition statements. See also for loops;
statements
definition of, 43
types of, 44
conditional expression, definition of, 45
conditional operators, using, 39

JavaScript Demystified

constructor regular expression object,
properties of, 214
context DHTML menus, features of, 303
context-sensitive menus, benefits of, 294
continue keywords, using, 71-72
controls. See form elements
CookiePrevVisit variable, declaring, 174
cookies
creating, 167-168
definition of, 165
deleting, 172-174
extending life of, 166167
overview of, 166—167
personalizing experiences with,
174-176
reading, 169—-170
resetting expiration dates for, 172—-174
setting expiration dates for, 171-172
storing user visits with, 174-176
copying
characters between strings, 120-122
substrings, 125-129
Count variable, using with status bar
messages, 263
Crawl() function, defining in <head> tag, 263
crawling
date and time with status bar messages,
264-267
status bar messages, 261-264
cross-browser marquee example of
DHTML, 325
cross-platform compatibility, definition of, 3
CSS (cascading style sheets), relationship
to DHTML, 311-313
CurrentBanner index, assigning, 269-270
CurrentPicture variable, using with
slideshows, 274
custom functions, definition of, 17
\cx special character, using with regular
expressions, 203

INDEX

D
\d and \D special characters, using with
regular expressions, 203, 205-206
data elements, relationship to strings, 118
data types, significance of, 2
date format, converting strings from, 174-175
Date() object, using with status bar
messages, 264
Date variables, using with cookies, 171
decremental operator (--), example of, 28-29
default values, providing for prompt()
function, 22
DeleteCookie() function, executing, 173-174
delimiters
using with cookies, 167
using with strings, 125
DHTML (Dynamic HTML), overview
of, 309-313
DHTML code
for ad box, 326-327
for cross-browser marquee, 325
for daily iframe content, 323-325
for drop-in content box, 325-326
for generic drag, 313-316
for LCD clock, 316-318
for popup calendar, 325
for tabbed document view using iframe,
319-322
for watermark background image, 319
DHTML menus. See also menus; pull-down
menus
chain select menus, 299-300
context menus, 303
floating menus, 299
folding tree menus, 301-302
highlighted menus, 301
Microsoft Outlook bar style menus,
302-303
popup menus, 300-301
scrollable menus, 303-304

side bar menus, 304
slide-in menus, 304-305
tab menus, 300
digital clock example of DHTML, 316-318
digits, matching with nondigits, 205-206
directories window style, description of, 181
disabled attribute
description of, 331
setting for form elements, 159-160
Display() function, using with status bar
messages, 256257
DisplayBanners() function, defining,
269-270
DisplayPage() function, using with menus, 292
DisplayStatusBarMesg() function, calling,
253-254
division, order of operations for, 26
do...while loops, using, 70
document.images object, testing for
compatibility with rollovers, 234
document.write() statement
using for loop with, 64
writing HTML tags to browser windows
with, 192-195
dollar sign ($), using with regular
expressions, 203
dot (.), using with arrays, 78
dot syntax, using with objects, 6, 8
dragging example of DHTML, 313-316
drop-in content box example of DHTML,
325-326
dynamic content, creating, 194-195

E

Education() function, calling, 151

elements. See form elements

else if portions, adding to if statements,
52-53

else keywords, using in if...else statements, 47

em, using with CSS, 312

e-mail addresses, concealing, 286287
Email element
example of, 140
setting to readonly, 161-162
empty functions, defining for functions,
284-285
EnableEmail() function, calling, 159
enctype form tag attribute, description of, 330
endless for loop, definition of, 65
equivalency operator (==
using, 37
using with strings, 131
error code, definition of, 111-113
escape character (\), using with cookies, 166
event handling, significance of, 6
events, associating with form elements, 137
exec() method, returning matched characters
with, 209-211
expireDate variable, declaring, 172
expressions, parts of, 24.
See also mathematical expressions

external JavaScript files, creating and using,
283-286

F
\f special character, using with regular
expressions, 203
features, incorporating into windows, 108
floating DHTML menus, features of, 299
focus
changing for child windows, 226
giving to browser windows, 182-183
folding tree DHTML menus, features of,
301-302
for label tag attribute, description of, 331
for loops. See also condition statements;
statements
executing open() method with, 192
using, 62-66

JavaScript Demystified

form elements. See also read-only
form elements
attributes of, 136
changing attributes of, 144-146
changing based on user-selected values,
146-148
disabling, 159-160
examples of, 139-140
manipulating before submitting forms,
153-155
and objects, 141-144
referencing, 142—-144
form events
descriptions of, 138—139
responding to, 137-141
form tag attributes, descriptions of, 330
forms. See also labels
accessing attributes of, 142-143
validating information on, 136
forward slash (/)
including in regular expressions, 201
using with HTML tags, 194
forward slashes (//), using with comments, 44
frameborder attribute, setting, 221
frames
calling functions in, 222
creating two child windows in, 218
overview of, 218-220
using invisible borders with, 220-221
framesets
dividing into two child windows,
218-220
rows and columns in, 218
French braces ({ }), using with code blocks, 45
fromCharCode() method, determining
Unicode numbers with, 132
function definitions, writing, 98-99
function name, definition of, 97

INDEX

functions. See also intrinsic functions
adding arguments to, 99—-100
calling, 101
calling for child windows, 222-223
calling from HTML, 104-108
calling other functions with, 108—109
calling with arguments, 102—-104
calling without arguments, 102
defining, 96-100
defining empty functions for, 284-285
definition of, 17, 96
passing values to, 99
returning values from, 109-113

G

g special character, using with regular
expressions, 203

generic drag example of DHTML, 313-316

getDate() method, resetting expiration dates
for cookies with, 172—-174

GetEmployees() function, calling, 295

getMonth()) method, using with cookies,
171-172

getTime() method, using with cookies, 175

global regular expression object, properties
of, 214

global variable, definition of, 100

GoodbyeMessage() function, calling, 106

GoodbyePopup() function, defining, 107

greater than (>) operator, using, 37-38

greater than or equal to (>=) operator,
using, 38

H
<head> tags
creating DisplayPage() function in, 292
defining ChangeContent() function
in, 224
defining Crawl() function in, 263
defining drag class in, 313
defining functions in, 110

defining Highlight() function in,
144-145
defining ValidateForm() function
in, 297
defining Window() function in,
188-189
placing function definitions in, 102
placing <script> tags in, 7-8
height property of screen object, description
of, 186
height window style, description of, 181
“Hello, world!” script. See also scripts
adding alert box to, 11
writing, 7-9
hidden elements, significance of, 154155
Highlight() function, defining in <head> tag,
144-145
highlighted DHTML menus, features of,
301-302
HTML (HyperText Markup Language)
calling functions from, 104-108
including comments in, 9
HTML form elements. See form elements

HTML tags, writing to new browser
windows, 193-195

I
i special character, using with regular
expressions, 203
id selectors
using with CSS, 312
using with DHTML, 316-318
if statements. See also nested if statements
adding else if portions to, 52-53
using, 44-46
if...else if statements, using, 48-51
if...else statements
using, 4648
using with ValidateL.ogon()
functions, 111

iframes, using with DHTML, 320-325
ignoreCase regular expression object,
properties of, 214
images
changing on product page, 234-236
dragging with DHTML, 314-315
loading into arrays, 243-244
 tags
naming for text rollovers, 237
trapping onclick events with, 155-156
using with banner advertisements, 268
IncreaseSalary() function definition
modifying, 102-104
writing, 98-99
incremental operator (++), example of, 27, 29
indexes, determining for characters, 121-122
indexOf() method
passing @ character to, 129
relationship to form events, 140
initializer variables
using with for loops, 63
using parentheses with, 65
input regular expression object, properties
of, 214
input tag attributes, descriptions of, 330
instances, relationship to arrays, 77
Internet Explorer, enabling JavaScript in, 9
intrinsic functions, using, 155-156.
See also functions
invisible borders, using with frames, 220-221

J
JavaScript
capabilities of, 3—4
enabling in Internet Explorer and
Netscape Navigator, 9
hiding, 283-286
hiding from older browsers, 9
vs. Java, 2-3

JavaScript Demystified

as scripting and programming
language, 2
stopping temporarily for banner
advertisements, 270
vs. VBScript and JScript, 3
join() method, using with arrays, 88—89
.js file extension, using with external files,
283, 285-286

K

keywords, relationship to variables, 19

L

label option tag attribute, description of, 331

label tag attribute, description of, 331

labels, changing dynamically, 156—158.
See also forms

lastIndex regular expression object, properties
of, 214

lastMatch

property, using with regular expressions,
213-214
regular expression object, properties
of, 214

lastParen regular expression object,
properties of, 214

Launch() function, calling with Windows
Gone Wild button, 192

LCD clock example of DHTML, 316-318

left property, setting for browser windows,
184-185

leftContext regular expression object,
properties of, 214

length value of string objects, using with
characters, 123

less than operator (<), using, 38, 63

less than or equal to (<=) operator, using, 38

LinkBanner() function, defining and calling,
271-272

INDEX

literal characters, including in regular
expressions, 209
literal strings, concatenating, 119
literal values, passing when calling
functions, 104
local variable, definition of, 100
location window style, description of, 181
logical expressions
in conditional operators, 39
joining with OR logical operator, 34
writing, 31
logical operators, using, 30-35
logons
evaluating with AND logical
operator, 32
handling and validating, 111-113
loop statements
do...while loops, 70
for loops, 62—66
for in loops, 66-67
purpose of, 44
while loops, 68—-69
looping arrays, 79—82

M

matched characters, returning with regular
expressions, 209-214. See also characters;
special characters

mathematical expressions, example of, 200.
See also expressions

maxlength input tag attribute, description
of, 330

menu selections, validating, 296298

menubar window style, description of, 181

menus, changing dynamically, 294-296.
See also DHTML menus; pull-down menus

MesgDisplayed variable, setting for status bar
messages, 258

messages, providing for prompt() function, 22.
See also status bar messages

method form tag attribute, description of, 330

—&

definition of, 5
vs. properties and objects, 56
Microsoft Outlook bar style menus, features
of, 302-303
modulus operator (%), examples of, 26-27
multiline regular expression object, properties
of, 214
multiple option tag attribute, description
of, 331
multiplication, order of operations for, 26
MylavaScript.js file, code for, 285-286

N
{n} special character, using with regular

expressions, 203-204

name tag attributes, descriptions of

button, 330

form, 330

input, 330

option, 331

TEXTAREA, 331
names, copying to strings, 123-124
name-value pairs, including in cookies, 166
navigator browser, significance of, 57
nested if statements. See also if statements

identifying browsers with, 55-57

using, 53-55
Netscape Navigator, enabling JavaScript in, 9
newline (\n) character

using with browsers, 57

using with regular expressions, 203
nonmatching characters, finding, 204.

See also characters; special characters
NOT (!) logical operator, example of, 34-35
not equivalent (!=) operator, using, 37
nulls, definition of, 17
numbers

converting to strings, 129-131
definition of, 16

0
\o>nn special character, using with regular
expressions, 203
object properties of regular expressions,
examples of, 213-214
object-oriented language, JavaScript as, 4
objects. See also window objects
browser windows as, 180
definition of, 17
dot syntax of, 6, 8
and form elements, 141-144
main events of, 67
methods of, 5
naming, 4-5
vs. properties, 56
properties of, 5
OffSet value, using with status bar
messages, 257
onblur event, occurrence of, 137—138
onchange event
occurrence of, 144—-145
trapping and calling, 146
onclick events
responding to, 149
trapping with tags, 155-156
trapping with button clicks, 157
trapping with Process button, 151
onmouseout event, creating rollbacks with,
235-236
onmouseover attribute, assigning actions to,
239-242
onmouseover event, calling rollovers with, 234
onmouseover property, changing status bar
messages from, 254
open() method
executing with for loop, 192
using with browser windows, 180, 183,
186187
using with child windows, 227

JavaScript Demystified

Open Window button, displaying on screens,
184-186

OpenNewWindow() function

calling, 186-187, 241

defining, 239
operands, definition of, 24
operations, order of, 26
operators

arithmetic, 25-27

assignment, 35-37

comparison, 37-38

conditional, 39

definition of, 24

logical, 30-35
option lists, changing dynamically, 148—-150
option tag attributes, descriptions of, 331
OR (Il) logical operator, example of, 34
order of operations, explanation of, 26

P
parent frame, definition of, 218
parentheses (())
using with functions, 97-98
using with initializer variables, 65
parselnt() method, converting strings to
numbers with, 129-130
passwords
asking for, 33
using if...else if statements with, 48-49
Pause() function, using with status bar
messages, 256257
period (.)
using with arrays, 79
using with regular expressions, 203
as wildcard in regular expressions, 209
persistent cookies, definition of, 166
PictureDisplay array element, assigning for
slideshows, 274-275
Pictures array, calling for slideshows, 274

INDEX

pixelDepth property of screen object,
description of, 186
plus sign (+), using with regular
expressions, 203
pop() method, using with arrays, 91
pop-down window, example of, 183
popup calendar example of DHTML, 325
popup DHTML menus, features of, 300-301
popup windows, creating, 106—108
predefined functions, definition of, 17
product page
building for rollovers, 232-233
changing image on, 234-236
products array, declaring, 78
programming language, JavaScript as, 2
prompt() function
calling, 21-22, 128
using with if statements, 46
properties
definition of, 5
displaying for window objects, 67
vs. objects, 56
prototype regular expression object,
properties of, 214
pull-down menus, creating, 292-293, 295.
See also DHTML menus; menus
punctuation, matching with symbols, 206
push() method, using with arrays, 90

Q
question mark (?)
purpose of, 39
using with regular expressions, 203
quotation marks ("), using with prompt()
function, 22

R

\r special character, using with regular
expressions, 203

ReadCookie() function, executing, 169-170

readonly attribute, description of, 331

read-only form elements, using, 161-162.
See also form elements
RegExpression() function, example of, 201
regular expressions
analyzing, 211
defining word boundaries in, 206-207
definition of, 200-201
matching telephone numbers with,
210-213
object properties of, 213-214
reading, 202
replacing like values with, 208-209
replacing text with, 207-209
returning matched characters with,
209-214
replace() method
concealing e-mail addresses with, 287
using with regular expressions, 207-208
reserved words
examples of, 20
relationship to variables, 19
ResetOptionList() function, calling, 149, 157
resizable window style, description of, 181
return keywords, using with functions, 98,
109-111
return values, assigning special meanings to,
111-113
reverse() method, using with arrays, 90-91
right mouse button, disabling, 280-283
rightContext regular expression object,
properties of, 214
rollbacks, creating, 235-236
rollovers
changing status bar messages with,
253-256
creating, 234-236
creating for text, 237-239
improving efficiency of, 243-244
multiple actions for, 239-242
testing compatibility with browsers, 234
uses for, 231-232

rows attribute, determining for child
windows, 218
rows TEXTAREA tag attribute, description

of, 331
RunSlideShow() function, calling, 273

S
sales tax
calculating, 18, 20-21
displaying, 23
scope of variables and arguments,
relationship to functions, 100-101
screen object
availability of, 185
properties of, 186
screen resolution, definition of, 184
screens, positioning browser windows on,
184-186
<script> tag, placement of, 7
scripting language, JavaScript as, 2
scripts, significance of, 3.
See also “Hello, world!” script
scrollable DHTML menus, features of,
303-304
scrollbars window style, description of, 181
scrolling web pages “magically,” 190-191
scrollTo() method, calling, 190-191
Security Violation message, displaying, 281
selected option tag attribute, description
of, 331
selection variable, assigning concatenated
strings to, 152—153
semicolon (;)
using as delimiter with cookies, 167
using with for loops, 65
server-side application, definition of, 2
session cookies, definition of, 166
SetEmail() function, calling, 146, 154
setMonth() method, using with cookies,
171-172

JavaScript Demystified

setTimeout() function
calling for status bar messages,
257-258, 264
stopping JavaScript with, 270
shift() method, using with arrays, 90
side bar DHTML menus, features of, 304
size input tag attribute, description of, 330
size option tag attribute, description of, 331
slash asterisk (/*), using with comments, 44
slice() method, using with arrays, 84-86
slide-in DHTML menus, features of, 304-305
slideshows, creating, 273-275
sorted order, displaying values in, 83
source regular expression object, properties
of, 214
special characters, using with regular
expressions, 201-203. See also characters;
matched characters; nonmatching
characters
split() method
using with cookies, 170
using with string objects, 124—125
square brackets ([]), including in regular
expressions, 201-202
src, assigning banner as, 270
src input tag attribute, description of, 330
Start() function, calling for status bar
messages, 256
statements. See also condition statements;
for loops
definition of, 8
if statements, 52—53
if...else if statements, 48-51
if...else statements, 4648
for loops, 6266
nested if statements, 53-55
switch...case statements, 58—62
using with variables, 19
status bar, location of, 250

INDEX

status bar messages. See also messages
building, 250-253
changing with rollovers, 253-256
crawling, 261-264
crawling date and time with, 264-267
moving along status bar, 256261
status window style, description of, 181
strings. See also substrings; text
changing case of, 131
combining array elements into, 87-89
comparing, 131
concealing e-mail addresses with,
286287
converting from date format, 174-175
converting to numbers, 129-130
copying names to, 123-124
definition of, 16
joining, 118-120
manipulating, 117-118, 120-123
overview of, 23
and Unicode, 132
using split() method with, 124-125
strongCharacter ids, using with CSS, 312
<style> tag, using with CSS, 311
substring() method, using with status bar
messages, 258, 263
substrings, copying, 125-129.
See also strings; text
subtraction, order of operations for, 26
switch...case statements
purpose of, 44
using, 5862
symbols
matching punctuation with, 206
searching as special characters, 202

T

\t special character, using with regular
expressions, 203

tab DHTML menus, features of, 300

tabbed document viewer example of
DHTML, 319-322
tabindex attribute, description of, 331
<TABLE> tag, using with rollovers, 232-233
telephone numbers, validating with regular
expressions, 210-213
test() method, calling in regular
expressions, 201
text. See also strings; substrings
dividing, 123-129
dragging with DHTML, 314-315
replacing with regular expressions,
207-209
text rollovers, creating, 237-239
TEXTAREA tag attributes, descriptions
of, 331
this object, using in onblur event code, 140
time, incorporating into status bar
messages, 265
to-do lists, using arrays as, 90-91
toGMTString() method, using with
cookies, 171
toolbar window style, description of, 181
top frame, definition of, 218
top property, setting for browser windows,
184-185
topPage child window, writing content for,
226-227
toString() method
converting numbers to strings with,
130-131
using with status bar messages, 265
toUpperCase() and toLowerCase() methods,
converting case of strings with, 131
<TR> and <TD> tags, using with rollovers,
232-233
type button tag attribute, description of, 330
type input tag attribute, description of, 330

u
unary operator, explanation of, 27
Unicode numbers, determining, 132
UpdateNotice() function, using with
cookies, 174
URLs
creating with substr() method, 128-129
linking banner advertisements to,
271-272
loading, 293
userAgent property, using with browsers, 57

v
\v special character, using with regular
expressions, 203
ValidateEmail() function, explanation of, 140
ValidateForm() function, using with menu
selections, 296-297
ValidateLogon() function, calling, 109,
111-113
validating form information, 136
value attributes
assigning new value to, 146-148
button tag, description of, 330
input tag, description of, 330
option tag, description of, 331
using with this object, 140
valueOf() regular expression object,
properties of, 214
values
assigning to variables, 21-23
displaying in sorted order, 83
passing to functions, 99
replacing with regular expressions,
208-209
returning from functions, 109-113
types of, 16-17
variable names, format of, 19
variable values, increasing with += operator,
35-36

JavaScript Demystified

variables
arguments as, 99
assigning values to, 21-23
declaring, 19
initializing, 20-21
overview of, 17-18
scope of, 100-101
View Source menu item, preventing access
to, 281
Vote variable, validating menu selections
with, 297-298

w
\w and \W special characters, using with
regular expressions, 203, 206
watermark background image example
of DHTML, 319
web messages. See DHTML code
Web Page 3 button, displaying, 225
web pages
creating in new windows, 192—195
displaying daily iframe content on,
323-325
inserting into child windows, 218-219
loading, 293
scrolling “magically,” 190-191
web site URLSs, creating with substr()
method, 128-129
web sites
ad box example of DHTML, 326
chain select DHTML menus, 299
context DHTML menus, 303
cross-browser marquee example of
DHTML, 325
drop-in content box example of
DHTML, 325
floating DHTML menus, 299
folding tree DHTML menus, 301
highlighted DHTML menus, 301
Microsoft Outlook bar style menus, 303

INDEX

popup calendar example of
DHTML, 325
popup DHTML menus, 300
scrollable DHTML menus, 303
side bar DHTML menus, 304
slide-in DHTML menus, 304
tab DHTML menus, 300
WebPage1.html and WebPage2.html,
positioning, 219-220
web-site navigation. See menus
WelcomeMessage() function, calling, 105
WelcomePopup() function, defining, 107
while loops, using, 68—69
width property of screen object, description
of, 186
width window style, description of, 181
wildcard characters, including in regular
expressions, 209-210
Window() function
calling, 193-195
defining in <head> tag, 188—-189
window objects. See also objects
displaying properties for, 67
referencing, 141-142

window styles, examples of, 181
windows. See also browser windows
incorporating features into, 108
opening browser windows in, 189
Windows Gone Wild button, effect of,
191-192
WindowStatus variable, defining, 189
word boundaries, defining, 206-207
words, matching, 206-207
write() method
significance of, 8-9
using with looped arrays, 80
using with web pages in new browser
windows, 193
WriteCookie() function, executing, 167168,
171-172

X

(x) special character, using with regular
expressions, 204

xly special character, using with regular
expressions, 204

\xnn special character, using with regular
expressions, 203

INTERNATIONAL CONTACT INFORMATION

AUSTRALIA

McGraw-Hill Book Company
Australia Pty. Ltd.

TEL +61-2-9900-1800

FAX +61-2-9878-8881

http:/ /www.mcgraw-hill.com.au
books-it_sydney@mcgraw-hill.com

CANADA

McGraw-Hill Ryerson Ltd.
TEL +905-430-5000

FAX +905-430-5020

http:/ /www.mcgraw-hill.ca

GREECE, MIDDLE EAST, & AFRICA
(Excluding South Africa)
McGraw-Hill Hellas

TEL +30-210-6560-990

TEL +30-210-6560-993

TEL +30-210-6560-994

FAX +30-210-6545-525

MEXICO (Also serving Latin America)
McGraw-Hill Interamericana Editores
S.A.deC.V.

TEL +525-1500-5108

FAX +525-117-1589

http:/ /www.mcgraw-hill.com.mx
carlos_ruiz@mcgraw-hill.com

SINGAPORE (Serving Asia)
McGraw-Hill Book Company
TEL +65-6863-1580

FAX +65-6862-3354

http:/ /www.mcgraw-hill.com.sg
mghasia@mcgraw-hill.com

SOUTH AFRICA

McGraw-Hill South Africa

TEL +27-11-622-7512

FAX +27-11-622-9045
robyn_swanepoel@mcgraw-hill.com

SPAIN

McGraw-Hill/

Interamericana de Espafa, S.A.U.
TEL +34-91-180-3000

FAX +34-91-372-8513

http:/ /www.mcgraw-hill.es
professional@mcgraw-hill.es

UNITED KINGDOM, NORTHERN,
EASTERN, & CENTRAL EUROPE
McGraw-Hill Education Europe

TEL +44-1-628-502500

FAX +44-1-628-770224

http:/ /www.mcgraw-hill.co.uk
emea_queries@mcgraw-hill.com

ALL OTHER INQUIRIES Contact:
McGraw-Hill/Osborne

TEL +1-510-420-7700

FAX +1-510-420-7703

http:/ /www.osborne.com
omg_international@mcgraw-hill.com

Visit us at www.osborne.com/bookregistration and let us know what
you thought of this book. While you're online you’ll have the opportunity to
register for newsletters and special offers from McGraw-Hill/Osborne.

We want to hear from you!

Sneak Peek

Visit us today at www.betabooks.com and see what’s coming from
McGraw-Hill/Osborne tomorrow!

Based on the successful software paradigm, Bet@Books™ allows computing
professionals to view partial and sometimes complete text versions of
selected titles online. Bet@Books™ viewing is free, invites comments and
feedback, and allows you to “test drive” books in progress on the subjects
that interest you the most.

A

OSBORNE DELIVERS RESULTS!] OsBORNE

www.osborne.com

The fast and easy way to
understanding computing
fundamentals

e No formal training needed
e Self-paced, easy-to-follow, and user-friendly
e Amazing low price

personal

computing
DeMYSTiFieD

Larry Long, Ph.D.

0-07-225454-8

data
structs

0-07-225514-5

tlatabases

A SELF-TEACHING GUIDE
ing

— ... - —
o . - _ |
-) "N - b T
2 osborns and Ken Dividson A i, [re— Andy Oppel
4 JA N
0-07-225359-2 0-07-225370-3 0-07-225364-9

For more information on these and other McGraw-Hill/Osborne titles,
visit www.osborne.com.

OSBORNE DELIVERS RESULTS!] %OSborne

	important.pdf
	Local Disk
	articlopedia.gigcities.com

	Introduction:
	Chapter 1 An Inside Look at JavaScript:
	Answers to Common Questions About JavaScript:
	JavaScript: A Limited-Featured Programming Language:
	Getting Down to JavaScript:
	Object Name:
	Property:
	Methods:
	The Dot Syntax:
	The Main Event:
	Writing Your First JavaScript:
	ŁOld TimersŽ DonŁt Like JavaScript:
	Spicing Up Your JavaScript:
	Chapter 2 Variables, Operators, and Expressions:
	Values and Variables:
	Values:
	Variables:
	Operators and Expressions:
	Parts of an Expression:
	Multiple Operations:
	Types of Operators:
	Quiz:
	Chapter 3 Condition Statements:
	If Statement:
	The if Statement in Action:
	The if:
	else Statement:
	else if Statement:

	Other Variations of the if Statement:
	Nested if Statement:
	Identifying a Browser:
	switch:
	case Statement:

	Loop Statement:
	The for Loop:
	The for in Loop:
	The while Loop:
	The do:
	while Loop:

	Continue:
	Looking Ahead:
	Chapter 4 Arrays:
	What Is an Array?:
	Declaring an Array:
	Initializing an Array:
	Defining Array Elements:
	How Many Elements Are in the Array?:
	Looping the Array:
	Adding an Array Element:
	Sorting Array Elements:
	Making a New Array from an Existing Array:
	Combining Array Elements into a String:
	Changing Elements of the Array:
	Chapter 5 Functions:
	What Is a Function?:
	Defining a Function:
	Writing a Function Definition:
	Adding Arguments:
	The Scope of Variables and Arguments:
	Calling a Function:
	Calling a Function Without an Argument:
	Calling a Function with an Argument:
	Calling a Function from HTML:
	Functions Calling Another Function:
	Returning Values from a Function:
	Chapter 6 Strings:
	Why Manipulate a String?:
	Joining Strings:
	Finding Your Way Around a String:
	Dividing Text:
	Copying a Substring:
	Converting Numbers and Strings:
	Numbers to Strings:
	Changing the Case of the String:
	Strings and Unicode:
	Chapter 7 Forms and Event Handling:
	Building Blocks of a Form:
	Elements and JavaScript:
	Responding to Form Events:
	Form Objects and Elements:
	Time-Saving Shortcut:
	Changing Attribute Values Dynamically:
	Changing Elements Based on a Value Selected by the User:
	Changing an Option List Dynamically:
	Evaluating Check Box Selections:
	Manipulating Elements Before the Form Is Submitted:
	Using Intrinsic JavaScript Functions:
	Changing Labels Dynamically:
	Disabling Elements:
	Read-Only Elements:
	Chapter 8 Cookies:
	Cookie Basics:
	Creating a Cookie:
	Setting the Expiration Date:
	Reading a Cookie:
	Deleting a Cookie:
	Personalizing an Experience Using a Cookie:
	Chapter 9 Browser Window:
	Open the Window, Please!:
	Giving the New Window Focus:
	Placing the Window into Position on the Screen:
	Changing the Contents of a Window:
	Closing the Window:
	"Magically" Scrolling a Web Page:
	Creating a Web Page in a New Window:
	Opening Multiple Windows at Once:
	Chapter 10 Regular Expressions:
	The Language of a Regular Expression:
	What Is a Regular Expression?:
	Finding Nonmatching Characters:
	Entering a Range of Characters:
	Matching Digits and Nondigits:
	Matching Punctuation and Symbols:
	Matching Words:
	Replace Text Using a Regular Expression:
	Replacing Like Values:
	Return the Matched Characters:
	The Telephone Number Match:
	Regular Expression Object Properties:
	You've Been Framed!:
	Calling a Child Window's JavaScript Function:
	Invisible Borders:
	Changing the Content of a Child Window:
	Changing the Focus of a Child Window:
	Writing to a Child Window from a JavaScript:
	Accessing Elements of Another Child Window:
	Chapter 11 JavaScript and Frames:
	Chapter 12 Rollovers:
	Chapter 13 Getting Your Message Across: The Status Bar, Banners, and Slideshows:
	Chapter 14 Protecting Your Web Page:
	Chapter 15 Menus:
	Setting the Stage:
	Creating a Rollover:
	Text Rollovers:
	Multiple Actions for a Rollover:
	More Efficient Rollovers:
	Making Magic Using the Status Bar:
	Building a Static Message:
	Changing the Message Using Rollovers:
	Moving the Message Along the Status Bar:
	Banner Advertisements:
	Loading and Displaying Banner Advertisements:
	Linking Banner Advertisements to URLs:
	Creating a Slideshow:
	Hiding Your Code:
	Disabling the Right Mouse Button:
	Hiding Your JavaScript:
	Concealing Your E-mail Address:
	Creating a Pull-Down Menu:
	Dynamically Changing a Menu:
	Validating Menu Selections:
	Chapter 16 DHTML:
	Creating DHTML Menus:
	Floating Menu:
	Chain Select Menu:
	Tab Menu:
	Popup Menu:
	Highlighted Menu:
	Folding Tree Menu:
	Microsoft Outlook Bar Style Menu:
	Context Menu:
	Scrollable Menu:
	Side Bar Menu:
	Slide-In Menu:
	What Is DHTML?:
	Learning DHTML:
	Cascading Style Sheets:
	Using DHTML Code:
	Generic Drag:
	LCD Clock All:
	Watermark Background Image:
	Tabbed Document Viewer Using iframe:
	Daily iframe Content:
	Cross-Browser Marquee:
	Popup Calendar:
	Drop-In Content Box:
	Ad Box:
	Appendix:
	Final Exam:
	Answers to Quizzes and Final Exam:
	Index:
	Copyright © 2005 by The McGraw-Hill Companies, Inc:
	 Click here for terms of use:

