

Kirupa Chinnathambi

JavaScript
Second Edition

Editor-in-Chief
Mark L. Taub

Executive Editor
Kim Spenceley

Development Editor
Chris Zahn

Technical Editor
Trevor McCauley

Managing Editor
Sandra Schroeder

Senior Project Editor
Lori Lyons

Production Manager
Gayathri Umashankaran/
codeMantra

Indexer
Cheryl Lenser

Proofreader
Abigail Manheim

Cover Designer
Chuti Prasertsith

Compositor
codeMantra

JavaScript Absolute Beginner’s Guide, 2nd Edition
Copyright © 2020 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval sys-
tem, or transmitted by any means, electronic, mechanical, photocopying, recording, or
otherwise, without written permission from the publisher. No patent liability is assumed
with respect to the use of the information contained herein. Although every precaution
has been taken in the preparation of this book, the publisher and author assume no
 responsibility for errors or omissions. Nor is any liability assumed for damages resulting
from the use of the information contained herein.

ISBN-13: 978-0-13-650289-0
ISBN-10: 0-13-650289-X

Library of Congress Control Number: 2019951999

ScoutAutomatedPrintCode

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Pearson cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any trade-
mark or service mark.

Microsoft and/or its respective suppliers make no representations about the suitability of
the information contained in the documents and related graphics published as part of the
services for any purpose. All such documents and related graphics are provided “as is”
without warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim
all warranties and conditions with regard to this information, including all warranties and
conditions of merchantability, whether express, implied or statutory, fitness for a particular
purpose, title and non-infringement. In no event shall Microsoft and/or its respective sup-
pliers be liable for any special, indirect or consequential damages or any damages whatso-
ever resulting from loss of use, data or profits, whether in an action of contract, negligence
or other tortious action, arising out of or in connection with the use or performance of
information available from the services. The documents and related graphics contained
herein could include technical inaccuracies or typographical errors. Changes are periodi-
cally added to the information herein. Microsoft and/or its respective suppliers may make
improvements and/or changes in the product(s) and/or the program(s) described herein at
any time. Partial screenshots may be viewed in full within the software version specified.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the
U.S.A. and other countries. Screenshots and icons reprinted with permission from the
Microsoft Corporation. This book is not sponsored or endorsed by or affiliated with the
Microsoft Corporation.

Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
author and the publisher shall have neither liability nor responsibility to any person or entity
with respect to any loss or damages arising from the information contained in this book.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearson.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
intlcs@pearsoned.com.

mailto:corpsales@pearson.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearsoned.com

Contents at a Glance

Introduction .. 1

 1 Hello, World! ... 5

Part I The Basic Stuff

 2 Values and Variables ..15

 3 Functions ...21

 4 Conditional Statements: If, Else, and Switch ..37

 5 Looping with For, While, and Do…While! ...55

 6 Commenting Your Code...FTW! ...69

 7 Timers ..77

 8 Variable Scope ..83

 9 Closures ...93

10 Where Should Your Code Live? ..105

Part II It’s an Object-Oriented World

11 Console Logging Basics ..119

12 Of Pizza, Types, Primitives, and Objects ...133

13 Arrays ...143

14 Strings ..159

15 When Primitives Behave Like Objects ...169

16 Numbers..175

17 Getters and Setters ..187

18 A Deeper Look at Objects ..195

19 Extending Built-in Objects ..213

20 Using Classes ..221

21 Booleans and the Stricter === and !== Operators237

22 Null and Undefined ..243

Part III Working with the DOM

23 All About JSON (aka JavaScript Object Notation)247

24 JS, the Browser, and the DOM ...261

25 Finding Elements in the DOM ..273

26 Modifying DOM Elements ..279

27 Styling Our Content ...289

28 Traversing the DOM...297

29 Creating and Removing DOM Elements ...305

30 In-Browser Developer Tools ..323

iv

Part IV Dealing with Events

31 Events ..343

32 Event Bubbling and Capturing ...355

33 Mouse Events ...367

34 Keyboard Events ..381

35 Page Load Events and Other Stuff ...391

36 Handling Events for Multiple Elements ...405

37 Conclusion ..415

Glossary ... 419

Index ... 423

Register Your Book
Register your copy of JavaScript Absolute Beginner’s Guide,
Second Edition, at informit.com for convenient access to downloads,
updates, and corrections as they become available. To start the
registration process, go to www.informit.com/register and log in or
create an account.* Enter the product ISBN, 9780136502890, and
click Submit. Once the process is complete, you will find any available
bonus content under Registered Products.

*Be sure to check the box that you would like to hear from us
in order to receive exclusive discounts on future editions of this
product.

http://informit.com
http://www.informit.com/register

v

Table of Contents
Introduction ...1

Parlez-vous JavaScript? ... 2

Contacting Me/Getting Help ... 3

1 Hello, World! ...5

What Is JavaScript? ... 7

Hello, World! .. 8
The HTML Document .. 8

Looking at the Code: Statements and Functions ..11

 I The Basic Stuff

2 Values and Variables ..15

Using Variables ..16

More Variable Stuff ..17
Naming Variables ...17
More on Declaring and Initializing Variables ...18

3 Functions ...21

What Is a Function? ...23

A Simple Function ...24

Creating a Function that Takes Arguments ..28

Creating a Function that Returns Data ...33
The Return Keyword ..33
Exiting the Function Early ..34

4 Conditional Statements: If, Else, and Switch..37

The If / Else Statement ...39
Meet the Conditional Operators ..41
Creating More Complex Expressions ...44
Variations on the If / Else Statement ..45
Phew ..47

Switch Statements ...47
Using a Switch Statement ..47
Similarity to an If/Else Statement ...51

Deciding Which to Use ...53

vi

5 Looping with For, While, and Do…While! ...55

The for Loop ..57
The Starting Point ...61
The Step ..61
The Condition (aka How Long to Keep Looping) ...62
Putting It All Together ..62

Some for Loop Examples ...63
Breaking a Loop ...63
Skipping an Iteration ..64
Going Backwards ..64
You Don’t Have to Use Numbers ...65
Oh, No He Didn’t! ..65

The Other Loops ...66
The while Loop ..66
The do...while Loop ...66

6 Commenting Your Code...FTW!...69

What Are Comments? ...70
Single Line Comments ...71
Multi-Line Comments ...72

Commenting Best Practices ...73

7 Timers ...77

Delaying with setTimeout ...78
Looping with setInterval ..79
Animating Smoothly with requestAnimationFrame80

8 Variable Scope ..83

Global Scope ...84

Local Scope ..86

Miscellaneous Scoping Shenanigans ..87

Block Scoping ..87
How JavaScript Processes Variables ...90
Closures ...92

9 Closures ...93

Functions within Functions ...94

When the Inner Functions Aren’t Self-Contained ..98

vii

10 Where Should Your Code Live? .. 105

Approach #1: All the Code Lives in Your HTML Document109

Approach #2: The Code Lives in a Separate File ..110
The JavaScript File ...110
Referencing the JavaScript File ..111

So...Which Approach to Use? ..114
Yes, My Code Will Be Used on Multiple Documents!114
No, My Code Is Used Only Once on a Single HTML Document!116

 II It’s an Object-Oriented World

11 Console Logging Basics ... 119

Meet the Console ..120

Displaying the Console ...121

If You Want to Follow Along ..124

Console Logging 101..125
Meet the Log Method ...125
Going Beyond Predefined Text ..127
Displaying Warnings and Errors ..128

12 Of Pizza, Types, Primitives, and Objects .. 133

Let’s First Talk About Pizza ..134

From Pizza to JavaScript! ..136

What Are Objects? ..138

The Predefined Objects Roaming Around in JavaScript140

13 Arrays .. 143

Creating an Array ..144

Accessing Array Values ...145

Adding Items to Your Array ..147

Removing Items from the Array ...149

Finding Items in the Array ..150

Merging Arrays ..150

Mapping, Filtering, and Reducing Arrays ...151

viii

The Old School Way ...151

Modifying Each Array Item with Map ..152
Filtering Items ...154

Getting One Value from an Array of Items ...155

A Short Foray into Functional Programming ..157

14 Strings ... 159

The Basics ...160

String Properties and Methods ..161
Accessing Individual Characters ...161
Combining (aka Concatenating) Strings ..163
Getting Substrings out of Strings ...164
Splitting a String/split ..165
Finding Something Inside a String ...166
Upper and Lower Casing Strings ..168

15 When Primitives Behave Like Objects .. 169

Strings Aren’t the Only Problem ..170

Let’s Pick on Strings Anyway ..170

Why This Matters ...172

16 Numbers ... 175

Using a Number...176

Operators ...176
Doing Simple Math ..177

Incrementing and Decrementing ...177

Hexadecimal and Octal Values ..179

Special Values—Infinity and NaN ..180
Infinity ..180
NaN ..180

The Math Object ...180
The Constants ...181
Rounding Numbers ..182
Trigonometric Functions ..183
Powers and Square Roots..184
Getting the Absolute Value ...185

Random Numbers ...185

ix

17 Getters and Setters .. 187

A Tale of Two Properties ...188

Meet Getters and Setters ...190
Shout Generator ...191
Logging Activity..191
Property Value Validation ..192

18 A Deeper Look at Objects .. 195

Meet the Object ..196
Creating Objects ..197
Adding Properties ..197
Removing Properties ..200
What Is Going on Behind the Scenes? ..201

Creating Custom Objects ...205

The this Keyword ..209

19 Extending Built-in Objects .. 213

Say Hello to prototype...again—Sort of! ...214

Extending Built-in Objects is Controversial ..219
You Don’t Control the Built-in Object’s Future ...219
Some Functionality Should Not Be Extended or Overridden219

20 Using Classes ... 221

The Class Syntax and Object Creation ...222
Creating an Object ...222
Meet the Constructor ...224
What Goes Inside the Class ..226

Extending Objects ...229

21 Booleans and the Stricter === and !== Operators 237

The Boolean Object ..238

The Boolean Function ...238

Strict Equality and Inequality Operators ...240

22 Null and Undefined .. 243

Null ..244

Undefined ...244

x

 III Working with the DOM

23 All About JSON (aka JavaScript Object Notation) 247

What Is JSON? ...248

Looking Inside a JSON Object ..252
Property Names ..252
The Values ...253

Reading JSON Data ..257
Parsing JSON-looking Data into Actual JSON ...259

Writing JSON Data? ..259

24 JS, the Browser, and the Dom.. 261

What HTML, CSS, and JavaScript Do ...262

HTML Defines the Structure ...262

Prettify My World, CSS! ..264

It’s JavaScript Time! ...265

Meet the Document Object Model ...267
The Window Object ...269
The Document Object ...269

25 Finding Elements in the Dom ... 273

Meet the querySelector Family ..274
querySelector ..275
querySelectorAll ...275

It Really Is the CSS Selector Syntax ...276

26 Modifying Dom Elements .. 279

DOM Elements Are Objects—Sort of! ..280

Let’s Actually Modify DOM Elements ..282
Changing an Element’s Text Value ...284
Attribute Values ..286

xi

27 Styling Our Content ... 289

Why Would We Set Styles Using JavaScript?...290

A Tale of Two Styling Approaches ...290
Setting the Style Directly ...290
Adding and Removing Classes Using JavaScript ...292

Checking Whether a Class Value Exists ..294
Going Further ...294

28 Traversing the Dom .. 297

Finding Your Way Around ...298
Dealing with Siblings and Parents ..301
Let’s Have Some Kids!..301

Putting It All Together ...302
Checking If A Child Exists ...303
Accessing All the Child Elements ...303
Walking the DOM...303

29 Creating and Removing Dom Elements ... 305

Creating Elements ...306

Removing Elements ..314

Cloning Elements ..315

30 In-Browser Developer Tools .. 323

Meet the Developer Tools ..324
Inspecting the DOM ..326
Debugging JavaScript ...331
Meet the Console ...337
Inspecting Objects ...338
Logging Messages ...340

 IV Dealing with Events

31 Events .. 343

What Are Events? ..344

Events and JavaScript ...346
1. Listening for Events ...346
2. Reacting to Events ...348

A Simple Example ...348

The Event Arguments and the Event Type ...351

xii

32 Event Bubbling and Capturing ... 355

Event Goes Down. Event Goes Up. ..356

Meet the Phases ..361

Who Cares? ..363

Event, Interrupted ...364

33 Mouse Events .. 367

Meet the Mouse Events ..368
Clicking Once and Clicking Twice ..368
Mousing Over and Mousing Out..370
The Very Click-like Mousing Down and Mousing Up Events372
The Event Heard Again…and Again…and Again!373
The Context Menu ...374

The MouseEvent Properties ...375
The Global Mouse Position ...375
The Mouse Position Inside the Browser ..376
Detecting Which Button Was Clicked ..377

Dealing with the Mouse Wheel ...378

34 Keyboard Events ... 381

Meet the Keyboard Events ...382

Using These Events ...383

The Keyboard Event Properties ...384

Some Examples ...385
Checking That a Particular Key Was Pressed ..385
Doing Something When the Arrow Keys Are Pressed386
Detecting Multiple Key Presses ..386

35 Page Load Events and Other Stuff .. 391

The Things That Happen During Page Load ...392
Stage Numero Uno ..393
Stage Numero Dos...393
Stage Numero Three ...394

The DOMContentLoaded and load Events ...395

Scripts and Their Location in the DOM ..397

xiii

Script Elements—Async and Defer ..400
async ..400
defer ..400

36 Handling Events for Multiple Elements .. 405

How to Do All of This..407
A Terrible Solution ..408
A Good Solution ...409
Putting It All Together ..412

37 Conclusion .. 415

Glossary .. 419

Index ... 423

xiv

Dedication
To Meena!

(Who still laughs at the jokes found in these pages despite having read them
a bazillion times!)

Acknowledgments
As I found out, getting a book like this out the door is no small feat. It involves a
bunch of people in front of (and behind) the camera who work tirelessly to turn my
ramblings into the beautiful pages that you are about see. To everyone at Pearson
who made this possible, thank you!

With that said, there are a few people I’d like to explicitly call out. First, I’d like
to thank Mark Taber for giving me this opportunity, Kim Spenceley for carrying
forward Mark’s work in the second edition, Chris Zahn for meticulously ensuring
everything is human-readable, and Loretta Yates for helping make the connections
that made all of this happen. The technical content of this book has been
reviewed in great detail by my long-time friends and online collaborators, Kyle
Murray (1st edition) and Trevor McCauley (1st and 2nd editions). I can’t thank them
enough for their thorough (and frequently, humorous!) feedback.

Lastly, I’d like to thank my parents for having always encouraged me to pursue
creative hobbies like painting, writing, playing video games, and writing code.
I wouldn’t be half the rugged indoorsman I am today without their support ☺

xv

About the Author
Kirupa Chinnathambi has spent most of his life trying to teach others to love web
development as much as he does.

In 1999, before blogging was even a word, he started posting tutorials on
kirupa.com. In the years since then, he has written hundreds of articles, written
a few books (none as good as this one, of course!), and recorded a bunch of
videos you can find on YouTube. When he isn’t writing or talking about web
 development, he spends his waking hours helping make the Web more awesome
as a Product Manager for the Lightning Design System at Salesforce. In his
non-waking hours, he is probably sleeping, joining Meena in running after their
toddler daughter Akira, protecting himself from Pixel (aka a T-rex in an unassuming
cat’s body)...or writing about himself in the third person.

You can find him on Twitter, Facebook, LinkedIn, and the interwebs at large. Just
search for his name in your favorite search engine.

http://kirupa.com

This page intentionally left blank

xvii

Figure Credits

Figure Attribution

Cover © rozdesign/Shutterstock.com

chick images © rozdesign/Shutterstock.com

FIG01-02a Screenshot of google play ©2019 Google

FIG01-02b Screenshot of twitter © 2019 Twitter, Inc

FIG01-02c Screenshot of instagram © 2019 Instagram, Inc

FIG01-02d Screenshot of Microsoft Edge © Microsoft 2019

FIG01-02e Screenshot of google maps © 2019 Google

FIG01-03 Screenshot of Visual Studio Code © Microsoft 2019

FIG01-04 Screenshot of Google Chrome © 2019 Google

FIG01-05 Screenshot of an HTML pop-up © 2018 WHATWG

FIG01-06 Screenshot of an HTML pop-up © 2018 WHATWG

FIG03-08 Screenshot of an HTML pop-up © 2018 WHATWG

FIG04-03 Screenshot of an HTML pop-up © 2018 WHATWG

FIG04-04 Screenshot of an HTML pop-up © 2018 WHATWG

FIG04-06 Screenshot of an HTML pop-up © 2018 WHATWG

FIG05-01 Screenshot of Google Chrome © 2019 Google

FIG09-04 Screenshot of Dialog Box © Microsoft 2019

FIG09-06 Screenshot of Dialog Box © Microsoft 2019

FIG09-07 Screenshot of Google Chrome © 2019 Google

UNFIG11-01 Cartoon by Randall Munroe. Used with Permission
from xkcd

FIG11-01 Screenshot of Google Chrome © 2019 Google

FIG11-02 Screenshot of Google Chrome © 2019 Google

FIG11-03 Screenshot of Safari © 2019 Apple Inc.

FIG11-04 Screenshot of Firefox © 2019 Mozilla Foundation

FIG11-05 Screenshot of Microsoft Edge © Microsoft 2019

http://rozdesign/Shutterstock.com
http://rozdesign/Shutterstock.com

xviii

FIG11-06 to Screenshots of Google Chrome © 2019 Google

FIG11-10

UNFIG11-02 Rozdesign/Shutterstock

UNPH16-01 DebbiSmirnoff/iStock/Getty images

FIG26-05 Screenshot of Google Chrome © 2019 Google

UNFIG29-01 Screenshot of Google Chrome © 2019 Google

UNFIG29-02 Screenshot of Google Chrome © 2019 Google

UNFIG29-03 Screenshot of Google Chrome © 2019 Google

FIG30-01 Screenshot of Kirupa.com © ‘My Unconfigured Forum Ltd

UNFIG30-02 Screenshot of Internet explorer © ’Microsoft 2019

UNFIG30-03 Screenshot of Internet explorer © ’Microsoft 2019

UNFIG30-04 to Screenshots of Google Chrome © 2019 Google

UNFIG30-15

UNFIG31-01 Screenshot of Excel sheet © ’Microsoft 2019

FIG31-01 Screenshot of Google Chrome © 2019 Google

FIG31-02 Screenshot of Google Chrome © 2019 Google

FIG33-01 Audrius Merfeldas/123RF

FIG34-01 Dmitry Rukhlenko/Shutterstock

http://Kirupa.com

I N T R O D U C T I O N

Have you ever tried learning to read, speak, or write in a language different

from the one you grew up with? If you were anything like me, your early

attempts probably looked something like the following:

2 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Unless you are Jason Bourne (or Roger Federer), you barely survived learning your
first language. This is because learning languages is hard. It doesn’t matter if you
are learning your first language or a second or third. Being good at a language
to a point where you are useful in a non-comical way takes a whole lotta time and
effort.

It requires starting with the basics. It requires a boatload of practice and patience.
It’s one of those few areas where there really aren’t any shortcuts for becoming
proficient.

Parlez-vous JavaScript?
Successfully learning a programming language is very similar to how you would
approach learning a real world language. You start off with the basics. Once
you’ve gotten good at that, you move on to something a bit more advanced. This
whole process just keeps repeating itself, and it never really ends. None of us ever
truly stop learning. It just requires starting somewhere. To help you with the “start-
ing somewhere” part is where this book comes in. This book is filled from begin-
ning to end with all sorts of good (and hilarious—I hope!) stuff to help you learn
JavaScript.

Now, I hate to say anything bad about a programming language behind its back,
but JavaScript is pretty dull and boring:

INTRODUCTION 3

There is no other way to describe it. Despite how boring JavaScript might most
certainly be, it doesn’t mean that learning it has to be boring as well. (FYI: All
grammatical snafus are carefully and deliberately placed—most of the time!) As
you make your way through the book, hopefully you will find the very casual lan-
guage and illustrations both informative as well as entertaining (infotaining!).

All this casualness and fun is balanced out by deep coverage of all the interesting
things you need to know about JavaScript to become better at using it.

By the time you reach the last chapter, you will be prepared to face almost any
JavaScript-related challenge head-on without breaking a sweat.

Contacting Me/Getting Help
If you ever get stuck at any point or just want to contact me, post in the forums at:

forum.kirupa.com.

For non-technical questions, you can also send e-mail to kirupa@kirupa.com, tweet
to @kirupa, or message me on Facebook (facebook.com/kirupa). I love hearing
from readers like you, and I make it a point to personally respond to every mes-
sage I receive.

And with that, flip the page—it’s time to get started!

http://forum.kirupa.com
mailto:kirupa@kirupa.com
http://facebook.com/kirupa

This page intentionally left blank

1
I N T H I S C H A P T E R
• Learn why JavaScript is awesome

• Get your feet wet by creating a simple example

• Preview what to expect in subsequent chapters

HELLO, WORLD!
HTML is all about displaying things. CSS is all about making things look

good. Between the both of them, you can create some pretty nifty-looking

stuff like the weather example you can see in at http://bit.ly/kirupaWeather.

Figure 1.1 shows what this weather example looks like.

http://bit.ly/kirupaWeather

6 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 1.1

A colorful weather example highlighting a layout designed entirely using only CSS.

Despite how nifty sites built using only CSS and HTML look, they will be pretty
static. They don’t adapt or react to what you are doing. With those two, it’s almost
like watching a rerun of a great Seinfeld episode over and over again. It’s fun for
a while, but it gets boring eventually. The web today isn’t static. The sites you use
often (such as those in Figure 1.2) have a certain level of interactivity and personal-
ization that goes well beyond what HTML and CSS by themselves can provide.

FIGURE 1.2

Examples of various web sites that rely heavily on JavaScript for their proper functioning.

7CHAPTER 1 HELLO, WORLD!

To make your content come alive, you will need some outside help. What you
need is JavaScript!

What Is JavaScript?
JavaScript is a modern-day programming language that is a peer of HTML and
CSS. In a nutshell, it allows you to add interactivity to your document. A short list
of things you can do with JavaScript include:

• Listen to events like a mouse click and do something.

• Modify the HTML and CSS of your page after the page has loaded.

• Make things move around the screen in interesting ways.

• Create awesome games that work in the browser like Cut the Rope.

• Communicate data between the server and the browser.

• Allow you to interact with a webcam, microphone, and other devices

....and much more! The way you write JavaScript is pretty simple—sort of. You put
together words that often resemble everyday English to tell your browser what
to do. The following example shows some old-fashioned, fresh outta-the-oven
JavaScript:
let defaultName = "JavaScript";

function sayHello(name) {

 if (name == null) {

 alert("Hello, " + defaultName + "!");

 } else {

 alert("Hello, " + name + "!");

 }

}

Don’t worry if you don’t know what any of that means. Just pay attention to what
the code looks like. Notice that you see a lot of English words such as function,
if, else, alert, name. In addition to the English words, you also have a lot of
bizarre symbols and characters from the parts of your keyboard that you probably
never notice. You’ll be noticing them plenty really soon, and you’ll also fully under-
stand what everything in this code does as well.

8 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Anyway, that’s enough background information for now. While you would expect
me to now provide a history of JavaScript and the people and companies behind
making it work, I’m not going to bore you with stuff like that. Instead, I want you
to get your hands dirty by writing some JavaScript. By the end of this tutorial,
I want you to have created something sweet and simple that displays some text
in your browser.

Hello, World!
Right now, you may feel a bit unprepared to start writing some code. This is espe-
cially true if you aren’t all that familiar with programming in general. As you’ll soon
find out, JavaScript isn’t nearly as annoying and complicated as it often pretends
to be. Let’s get started.

TIP Basic Web Development Familiarity Needed
To start writing JavaScript, you need to have basic familiarity
with building a web page, using a code editor, and adding some
HTML and CSS. If you aren’t too familiar with the basics around
this, I encourage you to first read the Building Your First Web
Page chapter. That will set you up nicely for what you’ll be
seeing next.

The HTML Document
The first thing you need is an HTML document. This document will host the
JavaScript that you will be writing. Launch your favorite code editor. If you
don’t have one, I encourage you to use Visual Studio Code. After you’ve
launched your favorite code editor, go ahead and create a new file. In Visual
Studio Code, you will see a tab that says Untitled similar to the screenshot in
Figure 1.3.

CHAPTER 1 HELLO, WORLD! 9

FIGURE 1.3

Untitled-1 tab in Visual Studio Code.

Save this newly created file by going to File | Save. You will be asked to give this
file a name and specify where you would like to save it. Give this file the name
hello_world.htm and save it to your Desktop. After you have saved this file, add
the following HTML into it:
<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8">

 <title>An Interesting Title Goes Here</title>

 <style>

 </style>

</head>

<body>

 <script>

 </script>

10 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

</body>

</html>

After you’ve added this HTML, save your document to confirm these changes. It’s
time to take a look at what our page looks like in our browser.

In either File Explorer or Finder, navigate to your Desktop folder and double-click
on hello_world.htm. You will see your default browser appearing and displaying
the name of this file. You should see something that looks like what is shown in
Figure 1.4.

FIGURE 1.4

Titled tab in Visual Studio Code.

If everything worked out well, you should see a blank page! No, there isn’t any-
thing wrong here. While our page has content, there is nothing visible going on.
That’s fine, for we’ll fix that shortly. The key to making this fix is to go back to your
code editor and focus on the <script> tag that you see toward the bottom of
your HTML:
<script>

</script>

CHAPTER 1 HELLO, WORLD! 11

The script tag acts as a container where you can place any JavaScript you want
to run inside it. What we want to do is display the words hello, world! in a dialog
that appears when you load your HTML page. To make this happen, inside your
script region, add the following line:
<script>

 alert("hello, world!");

</script>

Save your HTML file and run it in your browser. Notice what you will see once your
page has loaded. You should see a dialog appear that looks like Figure 1.5.

FIGURE 1.5

Your hello world dialog box should look like this.

If this is your first attempt at writing JavaScript, congratulations! Now, let’s look at
what you just did.

Looking at the Code: Statements and Functions
You just wrote a very simple JavaScript statement. A statement is a logical set of
instructions that tell your browser what to do. A typical application will have many
MANY statements. In our case, we just have one:

alert("hello, world!");

You can tell something is a statement by looking at the last character in it. It is
usually a semicolon (;) just like what you see here.

Inside a statement, you will see all sorts of funky JavaScript jargon. Our code,
despite being just one line, is no exception. You have this weird thing called
alert that makes an appearance. This is an example of a common English word
that behaves similarly in the JavaScript world. It is responsible for getting your
attention by displaying some text.

To be more precise, the word alert is something known as a function. You will
use functions all the time; a function is basically a reusable chunk of code that
does something. The “something” it does could be defined by you, defined by

12 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

some third-party library you are using, or it could be defined by the JavaScript
framework itself. In our case, the code that gives your alert function the magi-
cal ability to display a dialog with a message you pass to it lives deep inside the
browser. All you really need to know is that if you want to use the alert function,
simply call it and pass in the text you want it to display. Everything else is taken
care of for you.

Getting back to our example, the text you want to display is hello, world!, and
notice how I am specifying it. I wrap the words inside quote marks:
<script>

 alert("hello, world!");

</script>

Whenever you are dealing with text (more commonly known as strings) you will
always wrap them inside a single quote or a double quote. I know that seems
weird, but every programming language has its own quirks. This is one of the
many quirks you will see as you further explore JavaScript. We’ll look at strings in
greater detail shortly; for now, just enjoy the view.

Let’s go one step further. Instead of displaying hello, world!, change the text you
are displaying to say your first and last name instead. Here is an example of what
my code looks like when I use my name:
<script>

 alert("Kirupa Chinnathambi!");

</script>

If you run your application, you will see your name appear in the dialog
(Figure 1.6).

FIGURE 1.6

The dialog box now displays your name.

Pretty straightforward, right? You can replace the contents of your string with all
sorts of stuff: the name of your pet, your favorite TV show, and so on—JavaScript
will display it.

CHAPTER 1 HELLO, WORLD! 13

THE ABSOLUTE MINIMUM
In this tutorial, you created a simple example that helped get you familiar with
writing some JavaScript code. As part of getting you familiar, I threw a lot of
concepts and terms at you. I certainly don’t expect you to know or remember
all of them now. In future tutorials, we are going to pick each interesting part
of what you’ve seen so far and elaborate on it in more detail. After all, I’m
pretty sure you want to eventually do things in JavaScript that go beyond dis-
playing some text in a ridiculously annoying way using a dialog box.

Going forward, at the end of each chapter, you may even see a set of links
to external resources written by me or others. These resources will give you
more details or a different perspective on what you learned, along with
opportunities to put your learning into practice with more involved examples.
Think of what you see in this book as a jumping-off point for greater and
more awesome things.

If you have any questions on the content here, post on the forums at
https://forum.kirupa.com for really quick help from both me as well as
some of the web’s coolest developers.

https://forum.kirupa.com

This page intentionally left blank

2
I N T H I S C H A P T E R
• Learn how to use values to store data

• Organize your code with variables

• Get a brief look at variable naming conventions

VALUES AND VARIABLES
In JavaScript, every piece of data that we provide or use is considered to con-

tain a value. In the example we saw from our introduction, the words hello,

world! might just be some words that we pass in to the alert function:

alert("hello, world!");

To JavaScript, these words have a specific representation under the cov-

ers. They are considered values. We may not have thought much about

that when we were typing those words in, but when we are in JavaScript-

country, every piece of data you touch is considered a value.

Now, why is knowing this important? It is important because we will be

working with values a whole lot. Working with them in a way that doesn’t

drive you insane is a good thing. There are just two things we need to

simplify our life working with values. We need to:

• Easily identify them

• Reuse them throughout your application without unnecessarily dupli-
cating the value itself

Those two things are provided by what we are going to be spending the

rest of our time on: variables. Let’s learn all about them here.

16 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Using Variables
A variable is an identifier for a value. Instead of typing hello, world!, every time
you want to use that phrase in your application, you can assign that phrase to a
variable and use that variable whenever you need to use hello, world! again. This
will make more sense in a few moments—I promise!

There are several ways to use variables. For most cases, the best way is by relying
on the let keyword followed by the name you want to give your variable:
let myText

In this line of code, we declare a variable called myText. Right now, our variable
has simply been declared. It doesn’t contain anything of value. It is merely an
empty shell.

Let’s fix that by initializing our variable to a value like...let’s say...hello, world!:
let myText = "hello, world!";

At this point, when this code runs, our myText variable will have the value hello,
world! associated with it. Let’s put all of this together as part of a full example.
If you still have hello_world.htm open from earlier, replace the contents of your
script tag with the following...or create a new HTML file and add the following
contents into it:
<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8">

 <title>An Interesting Title Goes Here</title>

 <style>

 </style>

</head>

<body>

 <script>

 let myText = "hello, world!";

 alert(myText);

 </script>

CHAPTER 2 VALUES AND VARIABLES 17

</body>

</html>

Notice that we are no longer passing in the hello, world! text to the alert func-
tion directly. Instead, we are now passing in the variable name myText instead.
The end result is the same. When this script runs, an alert with hello, world! will
be shown. What this change allows us to do is have one place in our code where
hello, world! is being specified. If we wanted to change hello, world! to The
dog ate my homework!, all we would have to do is just make one change to the
phrase specified by the myText variable:
let myText = "The dog ate my homework!";

alert(myText);

Throughout our code, wherever we referenced the myText variable, we will now
see the new text appear. While this is hard to imagine for something as simple
as what we have right now, for larger applications, this convenience with having
just one location where we can make a change that gets reflected everywhere is a
major time saver. You’ll see more, less trivial cases of the value variables provide in
subsequent examples.

More Variable Stuff
What we learned in the previous section will take us far in life. At least, it will in
the parts of our life that involve getting familiar with JavaScript. We won’t dive too
much further into variables here, for we’ll do all of that as part of future chapters
where the code is more complex and the importance of variables is more obvious.
With that said, there are a few odds and ends that we should cover before calling
it a day.

Naming Variables
We have a lot of freedom in naming our variables however we see fit. Ignoring
what names we should give things based on philosophical / cultural / stylistic pref-
erences, from a technical point of view, JavaScript is very lenient on what charac-
ters can go into a variable name.

18 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

This leniency isn’t infinite, so we should keep the following things in mind when
naming our variables:

• Variables can be as short as one character, or they can be as long as you
want—think thousands and thousands of characters.

• Variables can start with a letter, underscore, or the $ character. They can’t start
with a number.

• Outside of the first character, our variables can be made up of any combina-
tion of letters, underscores, numbers, and $ characters. We can also mix and
match lowercase and uppercase to our heart’s content.

• Spaces are not allowed.

Below are some examples of valid variable names:
let myText;

let $;

let r8;

let _counter;

let $field;

let thisIsALongVariableName_butItCouldBeLonger;

let __$abc;

let OldSchoolNamingScheme;

To see if a variable name is valid, check out the really awesome and simple
JavaScript Variable Name Validator.

Outside of valid names, there are other things to focus on as well, such as naming
conventions and how many people commonly name variables and other things
that you identify with a name. We will touch on these things in other chapters.

More on Declaring and Initializing Variables
One of the things you will learn about JavaScript is that it is a very forgiving and
easy-to-work-with language.

Declaring a Variable Is Optional
For example, we don’t have to use the let keyword to declare a variable.
We could just do something as follows:
myText = "hello, world!";

alert(myText);

CHAPTER 2 VALUES AND VARIABLES 19

Notice the myText variable is being used without formally being declared with
the let keyword. While not recommended, this is completely fine. The end result
is that we have a variable called myText. The only thing is that, by declaring a
variable this way, we are declaring it globally. Don’t worry if the last sentence
makes no sense. We’ll look at what globally means when talking about variable
scope later.

Declaring and Initializing on Separate Lines is Cool
There is one more thing to call out, and that is this: The declaration and initializa-
tion of a variable does not have to be part of the same statement. We can break it
up across multiple statements:
let myText;

myText = "hello, world!";

alert(myText);

In practice, we will find ourselves breaking up our declaration and initialization of
variables all the time.

Changing Variable Values and the const Keyword
Lastly, we can change the value of a variable declared via let to whatever we
want whenever we want:
let myText;

myText = "hello, world!";

myText = 99;

myText = 4 * 10;

myText = true;

myText = undefined;

alert(myText);

If you have experience working with languages that are more strict and don’t
allow variables to store a variety of data types, this leniency is one of the features
people both love and hate about JavaScript. With that said, JavaScript does pro-
vide a way for you to restrict the value of a variable from being changed after you
initialize it. That restriction comes in the form of the const keyword that we can
declare and initialize our variables with:
const siteURL = "https://www.google.com";

alert(siteURL);

20 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

By relying on const, we can’t change the value of siteURL to something other
than https://www.google.com. JavaScript will complain if we try to do that. There
are some gotchas with using the const keyword, but it does a great job overall in
preventing accidental modifications of a variable. For those pesky gotchas, we’ll
cover those in bits and pieces when the time is right.

TIP Jump Ahead—Variable Scoping
Now that you know how to declare and initialize variables, a very
important topic is that of visibility. You need to know when and
where a variable you declared can actually be used in your code.
The catch-all phrase for this is known as variable scope. If you
are curious to know more about it, you can jump ahead and read
Chapter 8, “Variable Scope.”

THE ABSOLUTE MINIMUM
Values store data, and variables act as an easy way to refer to that data. There are
a lot of interesting details about values, but those are details that you do not need
to learn right now. Just know that JavaScript enables you to represent a variety of
values such as text and numbers without a lot of fuss.

To make your values more memorable and reusable, you declare variables.
You declare variables using the let keyword and a variable name. If you want
to initialize the variable to a default value, you follow all of that up with an equal
sign (=) and the value you want to initialize your variable with.

https://www.google.com

3
I N T H I S C H A P T E R
• Learn how functions help you better organize and

group your code

• Understand how functions make your code reusable

• Discover the importance of function arguments and
how to use them

FUNCTIONS
So far, all the code we’ve written really contained no structure. It was just…

there:

alert("hello, world!");

There is nothing wrong with having code like this. This is especially true if

our code is made up of a single statement. Most of the time, though, that

will never be the case. Our code will rarely be this simple when we are

using JavaScript in the real world for real-worldy things.

To highlight this, let’s say we want to display the distance something has

traveled (Figure 3.1).

22 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 3.1

Distance traveled.

If you remember from school, the distance is calculated by multiplying the speed
something has traveled by how long it took (Figure 3.2).

FIGURE 3.2

Calculating distance.

The JavaScript version of that will sort of look as follows:
let speed = 10;

let time = 5;

alert(speed * time);

We have two variables named speed and time, and they each store a number.
The alert function displays the result of multiplying the values stored by the
speed and time variables. This is a pretty literal translation of the distance
equation we just saw.

Let’s say we want to calculate the distance for more values. Using only what we’ve
seen so far, our code would look as follows:
let speed = 10;

let time = 5;

alert(speed * time);

let speed1 = 85;

let time1 = 1.5;

alert(speed1 * time1);

CHAPTER 3 FUNCTIONS 23

let speed2 = 12;

let time2 = 9;

alert(speed2 * time2);

let speed3 = 42;

let time3 = 21;

alert(speed3 * time3);

I don’t know about you, but this just looks turrible. Our code is unnecessarily
verbose and repetitive. Like we saw earlier when we were learning about variables,
repetition makes our code harder to maintain, and it also wastes our time.

This entire problem can be solved very easily by using what we’ll be seeing a lot
of here, functions:
function showDistance(speed, time) {

 alert(speed * time);

}

showDistance(10, 5);

showDistance(85, 1.5);

showDistance(12, 9);

showDistance(42, 21);

Don’t worry too much about what this code does just yet. Just know that this
smaller chunk of code does everything all those many lines of code did earlier
without all the negative side effects. We’ll learn all about functions and how they
do all the sweet things that they do starting...right...now!

Onwards!

What Is a Function?
At a very basic level, a function is nothing more than a wrapper for some code.
A function basically:

• Groups statements together

• Makes your code reusable

You will rarely write or use code that doesn’t involve functions, so it’s important
that you get familiar with them and learn all about how well they work.

24 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

A Simple Function
The best way to learn about functions is to just dive right in and start using them,
so let’s start off by creating a very simple function. Creating a function isn’t very
exciting. It just requires understanding some little syntactical quirks like using
weird parenthesis and brackets.

Below is an example of what a very simple function looks like:
function sayHello() {

 alert("hello!");

}

Just having a function defined isn’t enough, though. Our function needs to be
called, and we can do that by adding the following line afterwards:
function sayHello() {

 alert("hello!");

}

sayHello();

To see all this for yourself, create a new HTML document (call it
functions_sayhello.htm) and add the following into it:
<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8">

 <title>Say Hello!</title>

 <style>

 </style>

</head>

<body>

 <script>

 function sayHello() {

 alert("hello!");

 }

CHAPTER 3 FUNCTIONS 25

 sayHello();

 </script>

</body>

</html>

If you typed all this in and previewed your page in your browser, you will see
hello! displayed. The only thing that you need to know right now is that our code
works. Let’s look at why the code works next by breaking the sayHello function
into individual chunks and looking at each in greater detail.

First, we see the function keyword leading things off as in Figure 3.3.

FIGURE 3.3

The function keyword.

This keyword tells the JavaScript engine that lives deep inside your browser to
treat this entire block of code as something having to do with functions.

After the function keyword, we specify the actual name of the function followed
by some opening and closing parentheses, () as in Figure 3.4.

26 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 3.4

The function name and parentheses.

Rounding out our function declaration are the opening and closing brackets that
enclose any statements that we may have inside (Figure 3.5).

FIGURE 3.5

The opening and closing brackets.

CHAPTER 3 FUNCTIONS 27

The final thing is the contents of our function—the statements that make our
function actually functional (Figure 3.6).

FIGURE 3.6

The function content.

In our case, the content is the alert function that displays a dialog with the word
hello! displayed.

The last thing to look at is the function call (Figure 3.7).

The function call is typically the name of the function we want to call (aka invoke)
followed again by the parentheses. Without our function call, the function we
created doesn’t do anything. It is the function call that wakes our function up and
makes it do things.

28 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 3.7

The function call.

Now, what we have just seen is a look at a very simple function. In the next
couple of sections, we are going to build on what we’ve just learned and look at
increasingly more realistic examples of functions.

Creating a Function that Takes Arguments
The previous sayHello example was quite simple:
function sayHello() {

 alert("hello!");

}

sayHello();

We call a function, and the function does something. That simplification by itself
is not out of the ordinary. All functions work just like that. What is different is

CHAPTER 3 FUNCTIONS 29

the details on how functions get invoked, where they get their data from, and
so on. The first such detail we are going to look at involves functions that take
arguments.

Let’s start with a simple and familiar example:
alert("my argument");

What we have here is our alert function. We’ve probably seen it a few (or a
few dozen) times already. What this function does is take what is known as an
argument for figuring out what to actually display when it gets called. Calling the
alert function with an argument of my argument results in the display shown in
Figure 3.8.

FIGURE 3.8

Displaying the argument.

The argument is the stuff between your opening and closing parentheses when
calling the alert function. The alert function is just one of many functions
available to you that take arguments, and many functions you create will take
arguments as well.

To stay local, just from this chapter itself, another function that we briefly looked at
that takes arguments is our showDistance function:
function showDistance(speed, time) {

 alert(speed * time);

}

30 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

See, you can tell when a function takes arguments by looking at the function
declaration itself:
function showDistance(speed, time) {

 alert(speed * time);

}

What used to be empty parenthesis following the function name will now contain
some information about the quantity of arguments your function needs along with
some hints on what values your arguments will take.

For showDistance, we can infer that this function takes two arguments. The first
argument corresponds to the speed and the second argument corresponds to
the time.

We specify your arguments to the function as part of the function call:
function showDistance (speed, time) {

 alert (speed * time);

}

showDistance(10, 5);

In our case, we call showDistance and specify the values we want to pass to
your function inside the parentheses (Figure 3.9).

FIGURE 3.9

Values we want to pass to the function.

CHAPTER 3 FUNCTIONS 31

Because we are providing more than one argument, we can separate the indi-
vidual arguments by a comma. Oh, and before I forget to call this out, the order in
which you specify your arguments matters.

Let’s look at all of this in greater detail starting with the diagram in Figure 3.10.

FIGURE 3.10

A diagram of the function call.

When the showDistance function gets called, it passes in a 10 for the speed
argument, and it passes in a 5 for the distance argument. That mapping, as
shown in the previous diagram, is entirely based on order.

Once the values you pass in as arguments reach our function, the names we speci-
fied for the arguments are treated just like variable names as shown in Figure 3.11.

We can use these variable names to easily reference the values stored by the
arguments inside our function without any worry in the world.

32 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 3.11

The argument names work like variables.

NOTE Mismatched Number of Arguments
If a function happens to take arguments and you don’t provide
any arguments as part of your function call, provide too few argu-
ments, or provide too many arguments, things can still work.
You can code your function defensively against these cases, and
in the future, we will touch upon that a bit.

In general, to make the code you are writing clearer, you should
provide the required number of arguments for the function you
are calling.

CHAPTER 3 FUNCTIONS 33

Creating a Function that Returns Data
The last function variant we will look at is one that returns some data back to
whatever called it. Here is what we want to do. We have our showDistance
function, and we know that it looks as follows:
function showDistance(speed, time) {

 alert(speed * time);

}

Instead of having our showDistance function calculate the distance and display
it as an alert, we want to store that value for some future use. We want to do
something like this:
let myDistance = showDistance(10, 5);

The myDistance variable will store the results of the calculation the
showDistance function does.

The Return Keyword
The way you return data from a function is by using the return keyword.
Let’s create a new function called getDistance that looks identical to
showDistance with the only difference being what happens when the
function runs to completion:
function getDistance(speed, time) {

 let distance = speed * time;

 return distance;

}

Notice that we are still calculating the distance by multiplying the speed and
time. Instead of displaying an alert, we instead return the distance (as stored by
the distance variable).

To call the getDistance function, we can just call it as part of initializing a
variable:
let myDistance = getDistance(10, 5);

When the getDistance function gets called, it gets evaluated and returns a
numerical value that then becomes assigned to the myDistance variable.
That’s all there is to it.

34 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Exiting the Function Early
Once our function hits the return keyword, it stops everything it is doing at that
point, returns whatever value you specified to the caller, and exits:
function getDistance(speed, time) {

 let distance = speed * time;

 return distance;

 if (speed < 0) {

 distance *= -1;

 }

}

Any code that exists after our return statement will not get reached. It will be as
if that code never even existed.

In practice, we will use the return statement to terminate a function after it has
done what we wanted it to do. That function could return a value to the caller like
you saw in the previous examples, or that function could simply just exit:
function doSomething() {

 let foo = "Nothing interesting";

 return;

}

Using the return keyword to return a value is optional. The return keyword can
be used standalone like we see here to just exit the function. If a function does not
specify anything to return, a default value of undefined is returned instead.

CHAPTER 3 FUNCTIONS 35

THE ABSOLUTE MINIMUM
Functions are among a handful of things that you will use in almost every sin-
gle JavaScript application. They provide the much sought-after capability to
help make your code reusable. Whether you are creating your own functions
or using the many functions that are built into the JavaScript language, you
will simply not be able to live without them.

What you have seen so far are examples of how functions are commonly
used. There are some advanced traits that functions possess that I did not
cover here. Those uses will be covered in the future…a distant future. For
now, everything you’ve learned will take you quite far when it comes to
understanding how functions are used in the real world.

If you have any questions on the content here, don’t fret! Post on the forums
at https://forum.kirupa.com for quick help from both me as well as some of
the web’s smartest developers.

https://forum.kirupa.com

This page intentionally left blank

4
I N T H I S C H A P T E R
• Use the popular if/else statement to help make a

decision in code

• Learn about switch statements and when to use
them

CONDITIONAL STATEMENTS:
IF, ELSE, AND SWITCH
From the moment you wake up, whether you realize it or not, you start

making decisions. Turn the alarm off. Turn the lights on. Look outside to

see what the weather is like. Brush your teeth. Put on your robe and wizard

hat. Check your calendar. Basically...you get the point. By the time you

step outside your door, you consciously or subconsciously will have made

hundreds of decisions with each decision having a certain effect on what

you ended up doing.

38 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

For example, if the weather looks cold outside, you might decide to wear a
hoodie or a jacket. You can model this decision as shown in Figure 4.1.

FIGURE 4.1

Modeling decisions.

At each stage of making a decision, you ask yourself a question that can be
answered as true or false. The answer to that question determines your next step
and ultimately whether you wear a t-shirt, hoodie, or jacket. Going broader, every
decision you and I make can be modeled as a series of true and false statements.
This may sound a bit chilly (ha!), but that’s generally how we, others, and pretty
much all living things go about making choices.

This generalization especially applies to everything our computer does. This may
not be evident from the code we’ve written so far, but we are going to fix that.
In this tutorial, we will cover what is known as conditional statements. These are
the digital equivalents of the decisions we make where our code does something
different depending on whether something is true or false.

Onward!

CHAPTER 4 CONDITIONAL STATEMENTS: IF, ELSE, AND SWITCH 39

The If / Else Statement
The most common conditional statement we will use in our code is the if / else
statement or just the if statement. The way this statement works is shown in
Figure 4.2.

FIGURE 4.2

How the if statement works.

To make sense of this, let’s take a look at a simple example of an if / else state-
ment in action. Create a new HTML document and add the following markup and
code into it:
<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8">

 <title>If / Else Statements</title>

</head>

<body>

 <script>

 let safeToProceed = true;

40 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 if (safeToProceed) {

 alert("You shall pass!");

 } else {

 alert("You shall not pass!");

 }

 </script>

</body>

</html>

Save this document with the name if_else.htm and preview it in your browser.
If all worked as expected, you will see an alert with the text You shall pass!
displayed (Figure 4.3).

FIGURE 4.3

You will see this alert.

The code responsible for making this work is the following lines from our example:
let safeTo Proceed = true;

if (safeToProceed) {

 alert("You shall pass!");

} else {

 alert("You shall not pass!");

}

Our expression (the thing following the keyword if that ultimately evaluates to
true or false) is the variable safeToProceed. This variable is initialized to true,
so the true part of our if statement kicked in.

CHAPTER 4 CONDITIONAL STATEMENTS: IF, ELSE, AND SWITCH 41

Now, go ahead and change the value of the safeToProceed variable from a true
to a false:
let safeToProceed = true;

if (safeToProceed) {

 alert("You shall pass!");

} else {

 alert("You shall not pass!");

}

This time when you run this code, you will see an alert with the text You shall not
pass! because our expression now evaluates to false (Figure 4.4).

FIGURE 4.4

The alert you get when the expression evaluates as false.

So far, all of this probably seems really boring. A large part of the reason for this is
because we haven’t turned up the complexity knob to focus on more realistic
scenarios. We’ll tackle that next by taking a deeper look at conditions.

Meet the Conditional Operators
In most cases, our expression will rarely be a simple variable that is set to true or
false like it is in our earlier example. Our expression will involve what are known as
conditional operators that help us to compare between two or more expressions
to establish a true or false outcome.

42 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The general format of such expressions is shown in Figure 4.5.

FIGURE 4.5

General format of conditional operator expressions.

The operator (aka a conditional operator) defines a relationship between an
expression. The end goal is to return a true or a false so that our if statement
knows which block of code to execute. Key to making all this work are the
conditional operators themselves. They are shown in Table 4.1.

TABLE 4.1 Operators

Operator When it is true

== If the first expression evaluates to something that is equal to the second
expression.

>= If the first expression evaluates to something that is greater or equal to the
second expression.

> If the first expression evaluates to something that is greater than the second
expression.

<= If the first expression evaluates to something that is lesser or equal to the second
expression.

< If the first expression evaluates to something that is less than the second
expression.

!= If the first expression evaluates to something that is not equal to the second
expression.

&& If the first expression and the second expression both evaluate to true.

|| If either the first expression or the second expression evaluate to true.

CHAPTER 4 CONDITIONAL STATEMENTS: IF, ELSE, AND SWITCH 43

Let’s take our general understanding of conditional operators and make it more
specific by looking at another example...such as the following with our relevant
if-related code highlighted:
<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8">

 <title>Are you speeding?</title>

</head>

<body>

 <script>

 let speedLimit = 55;

 function amISpeeding(speed) {

 if (speed >= speedLimit) {

 alert("Yes. You are speeding.");

 } else {

 alert("No. You are not speeding. What's wrong with you?");

 }

 }

 amISpeeding(53);

 amISpeeding(72);

 </script>

</body>

</html>

Let’s take a moment to understand what exactly is going on. We have a vari-
able called speedLimit that is initialized to 55. We then have a function called
amISpeeding that takes an argument named speed. Inside this function, we
have an if statement whose expression checks if the passed in speed value is

44 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

greater than or equal (Hello >= conditional operator!) to the value stored by the
speedLimit variable:
function amISpeeding(speed) {

 if (speed >= speedLimit) {

 alert("Yes. You are speeding.");

 } else {

 alert("No. You are not speeding. What's wrong with you?");

 }

}

The last thing our code does is actually call the amISpeeding function by passing
in a few values for speed:
amISpeeding(53);

amISpeeding(72);

When we call this function with a speed of 53, the speed >= speedLimit
expression evaluates to false. The reason is that 53 is not greater than or equal to
the stored value of speedLimit which is 55. This will result in an alert showing
that you aren’t speeding.

The opposite happens when we call amISpeeding with a speed of 72. In this
case, we are speeding and the condition evaluates to a true. An alert telling us
that we are speeding will also appear.

Creating More Complex Expressions
The thing you need to know about these expressions is that they can be as simple
or as complex as you can make them. They can be made up of variables, function
calls, or raw values. They can even be made up of combinations of variables, func-
tion calls, or raw values all separated using any of the operators you saw earlier.
The only thing that you need to ensure is that your expression ultimately evaluates
to a true or a false.

Here is a slightly more involved example:
let xPos = 300;

let yPos = 150;

function sendWarning(x, y) {

 if ((x < xPos) && (y < yPos)) {

 alert("Adjust the position");

CHAPTER 4 CONDITIONAL STATEMENTS: IF, ELSE, AND SWITCH 45

 } else {

 alert("Things are fine!");

 }

}

sendWarning(500, 160);

sendWarning(100, 100);

sendWarning(201, 149);

Notice what our condition inside sendWarning’s if statement looks like:
function sendWarning(x, y) {

 if ((x < xPos) && (y < yPos)) {

 alert("Adjust the position");

 } else {

 alert("Things are fine!");

 }

}

There are three comparisons being made here. The first one is whether x is less
than xPos. The second one is whether y is less than yPos. The third comparison
is seeing if the first statement and the second statement both evaluate to true
to allow the && operator to return a true as well. We can chain together many
series of conditional statements depending on what we are doing. The tricky
thing, besides learning what all the operators do, is to ensure that each
condition and sub-condition is properly insulated using parentheses.

All of what we are describing here and in the previous section falls under the
umbrella of Boolean Logic. If you are not familiar with this topic, I recommend you
glance through the excellent quirksmode article on this exact topic.

Variations on the If / Else Statement
We are almost done with the if statement. The last thing we are going to is look
at are some of its relatives.

The if-only Statement
The first one is the solo if statement that doesn’t have its else companion:
if (weight > 5000) {

 alert("No free shipping for you!");

}

46 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

In this case, if the expression evaluates to true, then great. If the expression evalu-
ates to false, then your code just skips over the alert and just moves on to wher-
ever it needs to go next. The else block is completely optional when working
with if statements. To contrast the if-only statement, we have our next relative...

The Dreaded If / Else-If / Else Statement
Not everything can be neatly bucketed into a single if or if / else statement.
For those kinds of situations, you can chain if statements together by using the
else if keyword. Instead of explaining this further, let’s just look at an example:
if (position < 100) {

 alert("Do something!");

} else if ((position >= 200) && (position < 300)) {

 alert("Do something else!");

} else {

 alert("Do something even more different!");

}

If the first if statement evaluates to true, then our code branches into the first
alert. If the first if statement is false, then our code evaluates the else if
statement to see if the expressions in it evaluate to a true or false. This repeats
until our code reaches the end. In other words, our code simply navigates down
through each if and else if statement until one of the expressions evaluates
to true:
if (condition) {

 ...

} else if (condition) {

 ...

} else if (condition) {

 ...

} else if (condition) {

 ...

} else if (condition) {

 ...

} else if (condition) {

 ...

} else {

 ...

}

CHAPTER 4 CONDITIONAL STATEMENTS: IF, ELSE, AND SWITCH 47

If none of the statements have expressions that evaluate to true, the code inside
the else block (if it exists) executes. If there is no else block, then the code
will just go on to the next set of code that lives beyond all these if statements.
Between the more complex expressions and if / else if statements, you can
represent pretty much any decision that your code might need to evaluate.

Phew
And with this, you have learned all there is to know about the if statement.
It’s time to move on to a whole different species of conditional statement...

Switch Statements
In a world filled with beautiful if, else, and else if statements, the need
for yet another way of dealing with conditionals may seem unnecessary. People
who wrote code on room-sized machines and probably hiked uphill in snow
(with wolves chasing them) disagreed, so we have what are known as switch
statements. What are they? We are going to find out!

Using a Switch Statement
We are going to cut to the chase and look at the code first. The basic structure of
a switch statement is as follows:
switch (expression) {

 case value1:

 statement;

 break;

 case value2:

 statement;

 break;

 case value3:

 statement;

 break;

 default:

 statement;

 break;

}

48 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The thing to never forget is that a switch statement is nothing more than a con-
ditional statement that tests whether something is true or false. That something is
a variation of whether the result of evaluating the expression equals a case
value. Let’s make this explanation actually make sense by looking at a better
example:
let color = "green";

switch (color) {

 case "yellow":

 alert("yellow color");

 break;

 case "red":

 alert("red color");

 break;

 case "blue":

 alert("blue color");

 break;

 case "green":

 alert("green color");

 break;

 case "black":

 alert("black color");

 break;

 default:

 alert("no known color specified");

 break;

}

In this simple example, we have a variable called color whose value is set to
green:
let color = "green";

The color variable is also what we specify as our expression to the switch
statement:
switch (color) {

 case "yellow":

 alert("yellow color");

 break;

CHAPTER 4 CONDITIONAL STATEMENTS: IF, ELSE, AND SWITCH 49

 case "red":

 alert("red color");

 break;

 case "blue":

 alert("blue color");

 break;

 case "green":

 alert("green color");

 break;

 case "black":

 alert("black color");

 break;

 default:

 alert("no known color specified");

 break;

}

Our switch statement contains a collection of case blocks. Only one of these
blocks will get hit with their code getting executed. The way this chosen one gets
picked is by matching a block’s case value with the result of evaluating the expres-
sion. In our case, because our expressions evaluate to a value of green, the code
inside the case block whose case value is also green gets executed:
switch (color) {

 case "yellow":

 alert("yellow color");

 break;

 case "red":

 alert("red color");

 break;

 case "blue":

 alert("blue color");

 break;

 case "green":

 alert("green color");

 break;

 case "black":

 alert("black color");

 break;

50 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 default:

 alert("no known color specified");

 break;

}

Note that only the code inside the green case block gets executed. That is thanks
to the break keyword that ends that block. When your code hits the break, it
exits the entire switch block and continues executing the code that lies below it.
If you did not specify the break keyword, you will still execute the code inside the
green case block. The difference is that you will then move to the next case block
(the black one in our example) and execute any code that is there. Unless you hit
another break keyword, your code will just move through every single case block
until it reaches the end.

With all of this said, if you were to run this code, you would see an alert window
that looks like Figure 4.6.

FIGURE 4.6

Alert window.

You can alter the value for the color variable to other valid values to see the
other case blocks execute. Sometimes, no case block’s value will match the result
of evaluating an expression. In those cases, your switch statement will just do
nothing. If you wish to specify a default behavior, add a default block:
switch (color) {

 case "yellow":

 alert("yellow color");

 break;

 case "red":

 alert("red color");

 break;

 case "blue":

 alert("blue color");

 break;

CHAPTER 4 CONDITIONAL STATEMENTS: IF, ELSE, AND SWITCH 51

 case "green":

 alert("green color");

 break;

 case "black":

 alert("black color");

 break;

 default:

 alert("no known color specified");

 break;

}

Note that the default block looks a bit different than your other case
statements. It actually doesn’t contain the word case.

Similarity to an If/Else Statement
At the beginning, we saw that a switch statement is used for evaluating
conditions—just like the if / else statement that we spent a bulk of our time on
here. Given that this is a major accusation, let’s explore this in further detail by first
looking at how an if statement would look if it were to be literally translated into
a switch statement.

Let’s say we have an if statement that looks as follows:
let number = 20;

if (number > 10) {

 alert("yes");

} else {

 alert("nope");

}

Because the value of our number variable is 20, our if statement will evaluate
to a true. Seems pretty straightforward. Now, let’s turn this into a switch
statement:
switch (number > 10) {

 case true:

 alert("yes");

 break;

52 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 case false:

 alert("nope");

 break;

}

Notice that our expression is number > 10. The case value for the case blocks
is set to true or false. Because number > 10 evaluates to true, the code
inside the true case block gets executed. While your expression in this case
wasn’t as simple as reading a color value stored in a variable like in the previous
section, our view of how switch statements work still hasn’t changed. Our expres-
sions can be as complex as you would like. If they evaluate to something that can
be matched inside a case value, then everything is golden...like a fleece!

Now, let’s look at a slightly more involved example. This time, we will convert our
earlier switch statement involving colors into equivalent if / else statements.
The switch statement we used earlier looks as follows:
let color = "green";

switch (color) {

 case "yellow":

 alert("yellow color");

 break;

 case "red":

 alert("red color");

 break;

 case "blue":

 alert("blue color");

 break;

 case "green":

 alert("green color");

 break;

 case "black":

 alert("black color");

 break;

 default:

 alert("no color specified");

 break;

}

CHAPTER 4 CONDITIONAL STATEMENTS: IF, ELSE, AND SWITCH 53

This switch statement converted into a series of if / else statements would
look like this:
let color = "green";

if (color == "yellow") {

 alert("yellow color");

} else if (color == "red") {

 alert("red color");

} else if (color == "blue") {

 alert("blue color");

} else if (color == "green") {

 alert("green color");

} else if (color == "black") {

 alert("black color");

} else {

 alert("no color specified";

}

As we can see, if / else statements are very similar to switch statements and
vice versa. The default case block becomes an else block. The relationship
between the expression and the case value in a switch statement is combined
into if / else conditions in an if / else statement.

Deciding Which to Use
In the previous section, we saw how interchangeable switch statements and
if / else statements are. When we have two ways of doing something very
similar, it is only natural to want to know when it is appropriate to use one over
the other. In a nutshell, use whichever one you prefer. There are many arguments
on the web about when to use switch vs an if / else, and the one thing is that
they are all inconclusive.

My personal preference is to go with whatever is more readable. If you look at the
comparisons earlier between switch and if / else statements, you’ll notice that
if you have a lot of conditions, your switch statement tends to look a bit cleaner.
It is certainly less verbose and a bit more readable. What your cutoff mark is
for deciding when to switch (ha!) between using a switch statement and an
if / else statement is entirely up to you. I tend to draw the line at around four
or five conditions.

Second, a switch statement works best when you are evaluating an expression
and matching the result to a value. If you are doing something more complex

54 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

involving weird conditions, value checking, etc., you probably want to use
something different. That could involve something even more different than an
if / else statement, by the way! We will touch upon those different somethings
later.

To wrap this all up, the earlier guidance still stands: use whatever you like. If you
are part of a team with coding guidelines, then follow them instead. Whatever you
do, just be consistent. It makes your life as well as the life of anybody else who
will be working in your code a little bit easier. For what it is worth, I’ve personally
never been in a situation where I had to use a switch statement. Your mileage
may vary.

THE ABSOLUTE MINIMUM
While creating true artificial intelligence goes beyond the scope of this book,
you can write code to help your application make choices. This code will
almost always take the form of an if/else statement where you provide the
browser with a set of choices it needs to make:
let loginStatus = false;

if (name == "Admin") {

 loginStatus = true;

}

These choices are fed by conditions that need to evaluate to true or false.

In this chapter, we learned the mechanics of how to work with if/else state-
ments and their (sort of) related cousins, the switch statements. In future
chapters, you’ll see us using these statements very casually, as if we’ve known
them for years, so you’ll be very familiar with how to write these statements
by the time you reach the end of this book.

If you have any questions on the content here, don’t worry! Be happy. Post on
the forums at https://forum.kirupa.com for really quick help from both me as
well as some of the web’s nicest developers.

https://forum.kirupa.com

5
I N T H I S C H A P T E R
• Learn how to have some code run repeatedly

• Work with for, while, and do…while loops

LOOPING WITH FOR,
WHILE, AND DO…WHILE!
When you are coding something, there will be times when you want to

repeat an action or run some code multiple times. For example, let’s say

we have a function called saySomething that we want to repeatedly call

10 times.

56 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

One way we could do this is by simply calling the function 10 times using copy
and paste:
saySomething();

saySomething();

saySomething();

saySomething();

saySomething();

saySomething();

saySomething();

saySomething();

saySomething();

saySomething();

This works and accomplishes what we set out to do, but...we shouldn’t do some-
thing like this. After all, duplicating code is never a good idea. If we had a nickel
for every time you read that here, we’d have about four or five nickels. #killing_it

Now, even if we do decide to duplicate some code a few times manually, this
approach doesn’t really work in practice. The number of times we will need to
duplicate our code will vary based on some external factors such as the num-
ber of items in a collection of data, some result from some web service, the
number of letters in a word, and various other things that will keep changing. It
won’t always be a fixed number like 10. Often, the number of times we want to
repeat some code could be very VERY large. We don’t want to copy and paste
something a few hundred or thousand times in order to repeat something. That
would be terrible.

What we need is a generic solution for repeating code with control over how
many times the code repeats. In JavaScript, this solution is provided in the form of
something known as a loop. There are three kinds of loops we can use to repeat
some code:

• for loops

• while loops

• do...while loops

CHAPTER 5 LOOPING WITH FOR, WHILE, AND DO…WHILE! 57

Each of these three loop variations allow us to specify the code we want to repeat
(aka loop) and a way to stop the repetition when a condition is met. In the follow-
ing sections, we’ll learn all about them.

Onward!

NOTE Something beyond alert!

We’ve been using the alert function these past few chapters
to get our code to display something on screen. In this chapter,
we’re going to look at one more way of displaying something on
the screen that is a bit less intrusive. We’re going to be using the
document.write function:

document.write("Show this on screen!");

This function will print the text you provide to the page displayed
in your browser without displaying a dialog that requires you to
dismiss every time it appears. You’ll see why we want something
that is more lightweight when you learn more about loops and
how we may want to print many things to the screen.

The for Loop
One of the most common ways to create a loop is by using the for statement
to create a for loop. A for loop allows us to repeatedly run some code until an
expression we specify returns false. To help clarify this definition, let’s look at an
example.

If we had to translate our earlier saySomething example using for, it would look
as follows:
for (let i = 0; i < 10; i++) {

 saySomething();

}

function saySomething() {

 document.writeln("hello!");

}

58 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

If you want to follow along more actively and see this code for yourself, enter this
code inside some script tags in an HTML document:
<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8">

 <title>Loops!</title>

 <style>

 </style>

</head>

<body>

 <script>

 for (let i = 0; i < 10; i++) {

 saySomething();

 }

 function saySomething() {

 document.writeln("hello!");

 }

 </script>

</body>

</html>

Once your document is ready, save your document and preview it in your browser.
After the page has loaded, what you would see is shown in Figure 5.1.

CHAPTER 5 LOOPING WITH FOR, WHILE, AND DO…WHILE! 59

FIGURE 5.1

hello! repeats across the page.

The word hello! will be repeated ten times across your page. This is made possi-
ble thanks to the for loop, so we are going to thank it back by learning all about
how it works. First, here is our star:
for (let i = 0; i < 10; i++) {

 saySomething();

}

This is a for loop. It probably looks very different from other statements
we’ve seen so far, and that’s because...well, it is very different. To understand
the differences, let’s generalize a for loop into the form shown in
Figure 5.2.

60 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 5.2

General, high level for loop.

This high-level view corresponds to the actual values from our example
(Figure 5.3).

FIGURE 5.3

The actual values.

These three differently colored regions each play a very important role in how your
loop functions. In order to use a for loop well, we must know what each region
accomplishes, so we will spend the next few minutes diving deeper into each
section.

CHAPTER 5 LOOPING WITH FOR, WHILE, AND DO…WHILE! 61

The Starting Point
In the first region, we define the starting point for our loop. A common thing to
put here is some code to declare and initialize a variable, similar to what we did in
Figure 5.4.

FIGURE 5.4

Declaring and initializing a variable i.

What we are telling JavaScript is to start our loop with the variable i initialized to 0.

The Step
We are going to skip ahead to the step region next (Figure 5.5).

FIGURE 5.5

The step.

62 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

In this stage, we specify how our starting point will evolve. For our example, what
we are saying is that each time our loop runs, the value of i will be increased
by 1. That is captured by the cryptic looking i++. We’ll cover what the ++ means
later when we look at how numbers and math in JavaScript work, but another way
of representing this would be to say i = i + 1.

The Condition (aka How Long to Keep Looping)
Going back to the stage we skipped, we have the condition part of our loop that
determines when the loop will stop running (Figure 5.6).

FIGURE 5.6

The condition part of the loop.

In our example, the condition is that our i variable is less than the value of 10:

• If our i variable is less than 10, this expression evaluates to true and our loop
continues to run.

• If our i variable becomes equal to or greater than 10, the condition is false,
and our loop terminates.

Putting It All Together
Ok, now that we have looked at each part of our for loop in greater detail, let’s
use our newly gained knowledge to run through it all at once to see what is going
on. Our full example, repeated from earlier, is as follows:
for (let i = 0; i < 10; i++) {

 saySomething();

}

CHAPTER 5 LOOPING WITH FOR, WHILE, AND DO…WHILE! 63

function saySomething() {

 document.writeln("hello!");

}

When our for loop is initially hit at the starting point, the i variable is created
and initialized to 0. Next, we go to the condition part of the loop that determines
whether our loop should keep running or not. The condition checks if the value
of i is less than 10. Is 0 less than 10? Yes it is, so this condition evaluates to true
and the code contained inside the loop runs. Once this is done, the step part of
our loop kicks in. In this stage, the i variable is incremented by 1 to have a value
of 1. At this point, our loop has run through one cycle, commonly referred to as an
iteration. Time to start the next iteration.

For the next iteration, the loop starts all over again except the variable i isn’t re-
initialized. Its value is 1 from the previous iteration, so that carries over. For the
condition, we re-check whether the new value of 1 is less than 10...which it is. The
code inside our loop (basically the saySomething function) and the step part of
the loop where i increments by 1 happen. The value of i is then incremented by
1 to a value of 2, and this iteration is done for the day...leaving the door open for
the next iteration!

This process repeats iteration after iteration until the condition i < 10 evaluates
to false. Since we started the loop with i being 0, the loop is set to terminate
when the value of i is less than 10, and i increments by 1 in each iteration, this
loop (and any code contained in it) will run 10 times before stopping. Phew!

Some for Loop Examples
In the previous section, we dissected a simple for loop and labeled all its inner
workings. The thing about for loops and most everything in JavaScript is that a
simple example doesn’t always cover everything we might need. The best solution
is to look at some more examples of for loops, and that’s what we are going to
be doing in the next few sections.

Breaking a Loop
Sometimes, we may want to end our loop before it reaches completion. The way
we end a loop is by using the break keyword. Below is an example:
for (let i = 0; i < 100; i++) {

 document.writeln(i);

 if (i == 45) {

64 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 break;

 }

}

When the value of i equals 45, the break keyword stops the loop from continu-
ing further. While this example was just a little bit contrived, when we do run into
a real-world case for ending our loop, we now know what to do.

Skipping an Iteration
There will be moments when we want our loop to skip its current iteration and
move on to the next one. That is cleverly handled by the continue keyword:
let floors = 28;

for (let i = 1; i <= floors; i++) {

 if (i == 13) {

 // no floor here

 continue;

 }

 document.writeln("At floor: " + i + "
");

}

Unlike break where our loop just stops and goes home, continue tells our loop
to stop and move on to the next iteration. We will often find ourselves using con-
tinue when handling errors where we just want the loop to move on to the next
item.

Going Backwards
There is no reason why our starting point has to have a variable initialized to 0 and
then increment that variable upward:
for (let i = 25; i > 0; i--) {

 document.writeln("hello");

}

You can just as easily start high and then decrement until your loop condition
returns a false.

CHAPTER 5 LOOPING WITH FOR, WHILE, AND DO…WHILE! 65

You may have heard that doing something like this increases your loop’s per-
formance. The jury is still out on whether decrementing is actually faster than
incrementing, but feel free to experiment and see if you notice any performance
benefits.

You Don’t Have to Use Numbers
When filling out your for loop, you don’t have to only use numbers:
for (let i = "a"; i != "aaaaaaaa"; i += "a") {

 document.writeln("hmm...");

}

You can use anything you want as long as your loop will eventually hit a point
where it can end. Notice that in this example we are using the letter a as our cur-
rency for running this loop. At each iteration, the value of i is incremented with
the letter a, and the loop stops when i equals aaaaaaaa.

Oh, No He Didn’t!
Oh yes! Yes, I did. I went there, took a picture, posted on Facebook, and came
back:
let i = 0;

let yay = true;

for (; yay;) {

 if (i == 10) {

 yay = false;

 } else {

 i++;

 document.writeln("weird");

 }

}

You don’t have to fill out the three sections of your for loop in order to make it
work. As long as, in the end, you manage to satisfy the loop’s terminating condi-
tion, you can do whatever you want...just like the example above shows.

66 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The Other Loops
Living in the shadow of the beloved for loop are the while and do...while
loop variants. In the interest of completeness, let’s quickly look at both of them.

The while Loop
The while loop repeats some code until its condition (another expression) returns
false. Take a look at the following example:
let count = 0;

while (count < 10) {

 document.writeln("looping away!");

 count++;

}

In this example, the condition is represented by the count < 10 expression.
With each iteration, our loop increments the count value by 1:
let count = 0;

while (count < 10) {

 document.writeln("looping away!");

 count++;

}

Once the value of count becomes 10, the loop stops because the count < 10
expression will return false. If you look at everything the while loop does, it does
look a great imitation of the for loop. While the for loop formally required you
to define the starting, condition, and step stages, the while loop expects you to
define those stages yourself in your own way.

The do...while Loop
Now, we get to the Meg Griffin of the loop variants. That would be the
do...while loop whose purpose is even less defined than while. Where
the while loop had its conditional expression first before the loop would
execute, the do...while loop has its conditional expression at the end.

CHAPTER 5 LOOPING WITH FOR, WHILE, AND DO…WHILE! 67

Here is an example:
let count = 0;

do {

 document.writeln("I don't know what I am doing here!
");

 count++;

} while (count < 10);

The main difference between a while loop and a do...while loop is that the
contents of a while loop could never get executed if its conditional expression is
false from the very beginning:
while (false) {

 document.writeln("Can't touch this!");

}

With a do...while loop, because the conditional expression is evaluated only
after one iteration, your loop’s contents are guaranteed to run at least once:
do {

 document.writeln("This code will run once!");

} while (false);

That can come in handy in some situations. Now, before we wrap things up, there
is just one last bit of information I need to tell you before we move on. The break
and continue statements that we saw earlier as part of the awesome for loop
also work similarly when used inside the while and do...while loop variants.

68 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

THE ABSOLUTE MINIMUM
So, there you have it—a look at for loops and how we can use them along with
very basic coverage of the while and do...while loops. Right now, we may not
see ourselves using loops a whole lot. As we start getting into more involved situ-
ations involving collections of data, elements in your DOM, text manipulation, and
other stuff, we’ll be using loops a whole lot more. Basically...keep all the informa-
tion we’ve seen here really close by!

If you have any questions on the content here, don’t be stuck! Post on the forums
at https://forum.kirupa.com for really quick help from both me as well as some of
the web’s smartest and friendliest developers.

https://forum.kirupa.com

6
I N T H I S C H A P T E R
• Learn how to comment your code

• Figure out the best practices around commenting

COMMENTING YOUR
CODE...FTW!
Everything we write in our code editor might seem like it is intended for

our browser’s eyes only:

let xPos = -500;

function boringComputerStuff() {

 xPos += 5;

 if (xPos > 1000) {

 xPos = -500;

 }

}

boringComputerStuff();

As we will soon find out, that isn’t the case. There is another audience for

our code. That audience is made up of human beings.

70 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Our code is often used or scrutinized by other people. This is especially true if
you and I are working in a team with other JavaScript developers. We’ll often be
looking at their code, and they’ll often be looking at our code. To make all this
code look as efficient as possible, we need to ensure our code makes sense when
someone other than us is looking at it. Even if you are working solo, this applies to
you as well. That brilliant function that makes sense to you today might be gibber-
ish when looked at next week.

There are many ways of solving this problem. One of the best ways is by using
something known as comments. In this short article, we will learn what comments
are, how to specify them in JavaScript, and learn some good practices on how to
use them.

Onward!

What Are Comments?
Comments are the things we write as part of our code to communicate something
to humans:
// This is for not inviting me to your birthday party!

let blah = true;

function sweetRevenge() {

 while (blah) {

 // Infinite dialog boxes! HAHAHA!!!!

 alert("Hahahaha!");

 }

}

sweetRevenge();

In this example, the comments are marked by the // character, and they provide
some questionably useful information about the code being described.

The thing to keep in mind about comments is that they don’t run and get exe-
cuted like all the other code you write. JavaScript ignores your comments. It
doesn’t like you. It doesn’t care what you have to say, so you don’t have to worry
about proper syntax, punctuation, spelling, and everything else you need to keep
in mind when writing normal code. Comments exist only for us to help understand
what a piece of code is doing.

There is one other purpose comments serve. We can use comments to mark lines
of code that we don’t want executed:

CHAPTER 6 COMMENTING YOUR CODE...FTW! 71

function insecureLogin(input) {

 if (input == "password") {

 // let key = Math.random() * 100000;

 // processLogin(key);

 }

 return false;

}

In this example, the following two lines can be seen in our code editor, but they
won’t run:
// let key = Math.random() * 100000;

// processLogin(key);

We’ll often find ourselves using the code editor as a scratchpad, and comments
are a great way to keep track of things we’ve tried in making our code work with-
out affecting how your application ultimately runs.

Single Line Comments
There are several ways to specify comments in our code. One way is by specifying
single line comments using the // mark followed by what we want to communi-
cate. This is the comment variation we’ve seen several times already.

We can specify these comments in their own dedicated line:
// Return the larger of the two arguments

function max(a, b) {

 if (a > b) {

 return a;

 } else {

 return b;

 }

}

We can also specify these comments on the same line as a statement:
let zorb = "Alien"; // Annoy the planetary citizens

Where we specify comments is entirely up to you. Choose a location that seems
appropriate for the comment you are writing.

Since I enjoy sounding like a broken record, to call out one more time, our com-
ments don’t run as part of our application. Only you, me, and possibly Dupree can
see them. If that last line made no sense, what you are telling me is that you did

72 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

not see one of the greatest comedies of our generation. I highly encourage you to
put this book or tutorial down and take a few hours to rectify that.

Multi-Line Comments
The problem with single line comments is that you have to specify the //
characters in front of every single line you want to comment. That can get really
tiring—especially if you are writing a long comment or commenting out a large
chunk of code.

For those situations, you have another way of specifying comments. You have the
/* and */ characters to specify the beginning and ending of what are known as
multi-line comments:
/*

let mouseX = 0;

let mouseY = 0;

canvas.addEventListener("mousemove", setMousePosition, false);

function setMousePosition(e) {

 mouseX = e.clientX;

 mouseY = e.clientY;

}

*/

Instead of adding // marks in front of each line like an animal, we can use the /*
and */ characters to save us a lot of time and frustration.

In most applications, we’ll use a combination of single line and multi-line com-
ments depending on what we are trying to document. This means we need to be
familiar with both of these commenting approaches.

TIP JSDoc Style Comments
When we are writing some code that you want used by others, you
probably want an easier way to communicate what your code does
beyond having people rummage through source code. That easier
way exists, and it is made possible by a tool known as JSDoc! With
JSDoc, you slightly modify how you write your comments:

/**

 * Shuffles the contents of your Array.

 *

 * @this {Array}

CHAPTER 6 COMMENTING YOUR CODE...FTW! 73

 * @returns {Array} The current array with the contents
fully shuffled.

 */

Array.prototype.shuffle = function () {

 let input = this;

 for (let i = input.length - 1; i >= 0; i--) {

 let randomIndex = Math.floor(Math.random() *
(i + 1));

 let itemAtIndex = input[randomIndex];

 input[randomIndex] = input[i];

 input[i] = itemAtIndex;

 }

 return input;

}

Once you have commented your files, you can use the JSDoc
tool to export the relevant parts of your comments into an easily
browseable set of HTML pages. This allows you to spend more
time writing JavaScript while giving your users an easy way to
understand what your code does and how to use various parts of it.

If you want to learn more on how to use JSDoc, check out their
awesome Getting Started page for more details.

Commenting Best Practices
Now that we have a good idea of what comments are and the several ways we
have to write them in JavaScript, let’s talk a bit about how to properly use com-
ments to help make our code easy to read:

• Always comment your code as you are writing it. Writing comments is
dreadfully boring, but it is an important part of writing code. It is much more
time efficient for you (and others) to understand what your code does from
reading a comment as opposed to reading line after line of boring JavaScript.

• Don’t defer comment writing for later. Deferring comment writing for a later
time is the grown-up equivalent of procrastinating on a chore. If you don’t
comment your code as you are writing it, you’ll probably just skip commenting
entirely. That’s not a good thing.

74 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

• Use more English and less JavaScript. Comments are one of the few places
when writing JavaScript where you can freely use English (or whatever lan-
guage you prefer communicating in). Don’t complicate your comments unnec-
essarily with code. Be clear. Be concise. Use words.

• Embrace whitespace. When scanning large blocks of code, you want to
ensure your comments stand out and are clear to follow. That involves being
liberal with your Spacebar and Enter/Return key. Take a look at the following
example:
function selectInitialState(state) {

 let selectContent = document.querySelector("#stateList");

 let stateIndex = null;

 /*

 For the returned state, we would like to ensure that

 we select it in our UI. This means we iterate through

 every state in the drop-down until we find a match.

 When a match is found, we ensure it gets selected.

 */

 for (let i = 0; i < selectContent.length; i++) {

 let stateInSelect = selectContent.options[i].innerText;

 if (stateInSelect == state) {

 stateIndex = i;

 }

 }

 selectContent.selectedIndex = stateIndex;

}

Notice that our comment is appropriately spaced to distinguish it from the rest
of the code. If your comments are strewn about in arbitrary locations where
they are difficult to identify, that just unnecessarily slows you and whoever is
reading your code down.

CHAPTER 6 COMMENTING YOUR CODE...FTW! 75

• Don’t comment obvious things. If a line of code is self-explanatory, don’t
waste time explaining what it does unless there is some subtle behavior you
need to call out as a warning. Instead, invest that time in commenting the less
obvious parts of your code.

The best practices you see here will take you far in ensuring you write properly
commented code. If you are working on a larger project with other people, I can
assure you that your team already has some established guidelines on what proper
commenting looks like. Take some time to understand those guidelines and follow
them. You’ll be happy. Your team will be happy.

THE ABSOLUTE MINIMUM
Comments are often viewed as a necessary evil. After all, would you rather
take a few minutes documenting what you clearly already know, or would
you rather implement the next cool piece of functionality? The way I like to
describe comments is as follows: It is a long-term investment. The value and
benefit of comments is often not immediately obvious. It becomes obvious
when you start having other people looking over your code, and it becomes
obvious when you have to revisit your own code after you’ve forgotten all
about it and how it works. Don’t sacrifice long-term time savings for a short-
term kick. Invest in single line (//) and multi-line (/* and */) comments now
before it is too late.

As always, if you have any questions on the content here, I and other friendly
developers are here to help! Post on the forums at https://forum.kirupa.com
to get unblocked quickly.

https://forum.kirupa.com

This page intentionally left blank

7
I N T H I S C H A P T E R
• Learn how to delay when your code runs

• Figure out several ways to run your code repeatedly
without blocking your entire app

TIMERS
By default, our code runs synchronously. That is a fancy of way of saying

that when a statement needs to execute, it executes immediately. There

are no ands, ifs, or buts about it. The concept of delaying execution or

deferring work to later isn’t a part of JavaScript’s default behavior. We

kind of saw this when looking at loops earlier. The loop runs at lightning

speed with no delay between each iteration. That is great for making quick

calculations, but that isn’t great if we want to make an update at a more

measured (aka slower!) pace.

All of this doesn’t mean the ability to stop work from running instanta-

neously doesn’t exist! If we swerve just slightly off the main road, there

are three functions that allow us to mostly do just that (and more)—

setTimeout, setInterval, and requestAnimationFrame. In this

article, we will look at what each of these functions do.

Onward!

78 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Delaying with setTimeout
The setTimeout function allows us to delay executing some code. The way we
use it is quite nice. This function allows us to specify what code to execute and
how many milliseconds to wait before the code we specified executes. Putting
that into JavaScript, it will look something like this:
let timeoutID = setTimeout(someFunction, delayInMilliseconds);

Going a bit more example-ish, if we wanted to call a function called showAlert
after 5 seconds, the setTimeout declaration would look as follows:
function showAlert() {

 alert("moo!");

}

let timeoutID = setTimeout(showAlert, 5000);

Cool, right? Now, let’s talk about something less interesting that we need to cover
for completeness. That something has to do with the timeID variable that is ini-
tialized to our setTimeout function. It isn’t there by accident. If we ever wanted
to access this setTimeout timer again, we need a way to reference it. By associ-
ating a variable with our setTimeout declaration, we can easily accomplish that.

Now, you may be wondering why we would ever want to reference a timer once
we’ve created it. There aren’t too many reasons. The only reason I can think of
would be to cancel the timer. For setTimeout, that is conveniently accomplished
using the clearTimeout function and passing the timeout ID as the argument:
clearTimeout(timeoutID);

If you are never planning on canceling your timer, you can just use setTimeout
directly without having it be part of the variable initialization.

Let’s talk about when we would commonly use it in the real world. UI development.
When we are doing UI development, deferring some action to a later time is unusually
common. Here are some examples that I ran into just in the past month:

A menu slides in, and after a few seconds of the user no longer playing with the
menu, the menu slides away.

You have a long running operation that is unable to complete, and a setTimeout
function interrupts that operation to return control back to the user.

My favorite (and one that I wrote a tutorial about as well) is where you use the
setTimeout function to detect whether users are inactive or idle!

If you do a search for setTimeout on this site or Google, you’ll see many more
real-world cases where setTimeout proves very useful.

CHAPTER 7 TIMERS 79

Looping with setInterval
The next timer function we are going to look at is setInterval. The setInterval
function is similar to setTimeout in that it also allows you to execute code after a
specified amount of time. What makes it different is that it doesn’t just execute the
code once. It keeps on executing the code in a loop forever.

Here is how you would use the setInterval function:
let intervalID = setInterval(someFunction, delayInMilliseconds);

Except for the function name, the way you use setInterval is even identical to
setTimeout. The first argument specifies the inline code or function you would
like to execute. The second argument specifies how long to wait before your code
loops again. You can also optionally initialize the setInterval function to a vari-
able to store an interval ID—an ID that you can later use to do exciting things like
cancel the looping. Yay!!!

OK! Now that we’ve seen all that, here is an example of this code at work for
looping a function called drawText with a delay of 2 seconds between each loop:
<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8">

 <title>Show me some text!</title>

</head>

<body>

 <script>

 let thingToPrint = "";

 function drawText() {

 thingToPrint += "#";

 document.writeln(thingToPrint);

 }

 setInterval(drawText, 2000);

 </script>

</body>

</html>

80 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

If we wish to cancel the looping, we can use the appropriately named
clearInterval function:
clearInterval(intervalID);

Its usage is similar to its clearTimeout equivalent. We pass in the ID of the
setInterval timer instance that we optionally retrieved while setting up our
setInterval in the first place.

In real life, setInterval was the primary function you had for the longest time
for creating animations in JavaScript. To get 30 or 60 frames a second, you would
do something as follows by playing with the delay time value:
// 1000 divided by 60 is the millisecond value for 60fps

setInterval(moveCircles, 1000 / 60);

To see setInterval in action in some other realistic examples on this site itself,
check out the bottom of the Creating a Sweet Content Slider (https://www.
kirupa.com/html5/creating_a_sweet_content_slider.htm) article as well as the
Creating an Analog Clock (https://www.kirupa.com/html5/create_an_analog_
clock_using_the_canvas.htm) article. They both feature setInterval quite
prominently!

Animating Smoothly with requestAnimationFrame
Now, we get to one of my favorite functions ever: requestAnimationFrame.
The requestAnimationFrame function is all about synchronizing your code with
a browser repaint event. What this means is this: your browser is busy juggling a
billion different things at any given time. These things include fiddling with layout,
reacting to page scrolls, listening for mouse clicks, displaying the result of key-
board taps, executing JavaScript, loading resources, and more. At the same time
your browser is doing all of this, it is also redrawing the screen at 60 frames per
second...or at least trying its very best to.

When you have code that is intended to animate something to the screen, you
want to ensure your animation code runs properly without getting lost in the
shuffle of everything else your browser is doing. Using the setInterval tech-
nique mentioned earlier doesn’t guarantee that frames won’t get dropped when
the browser is busy optimizing for other things. To avoid your animation code
from being treated like any other generic JavaScript, you have the requestAni-
mationFrame function. This function gets special treatment by the browser. This
special treatment allows it to time its execution perfectly to avoid dropped frames,
avoid unnecessary work, and generally steer clear of other side effects that plague
other looping solutions.

https://www.kirupa.com/html5/creating_a_sweet_content_slider.htm
https://www.kirupa.com/html5/creating_a_sweet_content_slider.htm
https://www.kirupa.com/html5/create_an_analog_clock_using_the_canvas.htm
https://www.kirupa.com/html5/create_an_analog_clock_using_the_canvas.htm

CHAPTER 7 TIMERS 81

The way we use this function starts off a bit similar to setTimeout and
setInterval:
let requestID = requestAnimationFrame(someFunction);

The only real difference is that we don’t specify a duration value. The duration is
automatically calculated based on the current frame rate, whether the current tab
is active or not, whether your device is running on battery or not, and a whole host
of other factors that go beyond what we can control or understand.

Anyway, this usage of the requestAnimationFrame function is merely the text-
book version. In real life, you’ll rarely make a single call to requestAnimation-
Frame like this. Key to all animations created in JavaScript is an animation loop,
and it is this loop that we want to throw requestAnimationFrame at. The result
of that throw looks something as follows:
function animationLoop() {

 // animation-related code

 requestAnimationFrame(animationLoop)

}

// start off our animation loop!

animationLoop();

Notice that our requestAnimationFrame specifies that the animationLoop
function gets called the next time the browser decides to repaint. It looks like the
requestAnimationFrame function calls animationLoop directly, which isn’t
the case. That isn’t a bug in the code. While this kind of circular referencing would
almost guarantee a frozen/hung browser, requestAnimationFrame’s imple-
mentation avoids that. Instead, it ensures the animationLoop function is called
just the right amount of times needed to ensure things get drawn to the screen
to create smooth and fluid animations. It does so without freezing the rest of your
application functionality up.

To learn more about requestAnimationFrame and its primary use in creating
awesome animations, you should check out all the content in the Animations in
JavaScript section. In that section, I also dive deeper into requestAnimationFrame
beyond the highlights we’ve looked at here.

82 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

THE ABSOLUTE MINIMUM
If you think that timers fall under a more niche category compared to some of
the other more essential things like the if/else statements and loops we looked
at earlier, you would probably be right in thinking that. You can build many
awesome apps without ever having to rely on setTimeout, setInterval,
or requestAnimationFrame. That doesn’t mean it isn’t essential to know
about them, though. There will be a time when you’ll need to delay when your
code executes, loop your code continuously, or create a sweet animation using
JavaScript. When that time arrives, you’ll be prepared…or at least know what to
Google for.

To see these timer functions used in the wild, check out these optional articles and
examples that may help you out:

• Creating Animations Using requestAnimationFrame
http://bit.ly/kirupaAnimationsJS

• Creating a Sweet Content Slider http://bit.ly/sliderTutorial

• Creating an Analog Clock http://bit.ly/kirupaAnalogClock

• The Seizure Generator http://bit.ly/kirupaSeizureGenerator (Seizure
warning: The animation on this site strobes heavily.)

I’ve mentioned this a bunch of times so far, but JavaScript can be frustrating.
Timers doubly so. If you ever run into any issues, I and other developers who have
battled times for a long time are here to help! Post on the forums at
https://forum.kirupa.com to get un-frustrated!

http://bit.ly/kirupaAnimationsJS
http://bit.ly/sliderTutorial
http://bit.ly/kirupaAnalogClock
http://bit.ly/kirupaSeizureGenerator
https://forum.kirupa.com

8
I N T H I S C H A P T E R
• Understand global scope

• Familiarize yourself with the various techniques
available for using local scope

• Learn about some quirks that might cause your
code to behave unpredictably

VARIABLE SCOPE
Let’s revisit something relating to variables we saw a few chapters ago.

Each variable we declare has a certain level of visibility that determines

when we can actually use it. In human-understandable terms, just because

we declare a variable doesn’t mean that it can be accessed from anywhere

in our code. There are some basic things we need to understand, and this

whole area of understanding falls under a topic known as variable scope.

In this tutorial, I’m going to be explaining variable scope by looking at

common cases that we’ve (mostly) already seen. This is a pretty deep topic,

but we are just going to scratch the surface here. We’ll see variable scope

creep up in many subsequent tutorials where we will extend on what we

learn here.

Onward!

84 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Global Scope
We are going to start our exploration of scope at the very top with what is known
as global scope. In real life, when we say that something can be heard globally,
it means that we can be anywhere in the world and still be able to hear that...
something

In JavaScript, much the same applies. If we say, for example, a variable is available
globally, it means that any code on our page has access to read and modify this
variable. The way we make something apply globally is by declaring it in our code
completely outside of a function.

To illustrate this, let’s take a look at the following example:
<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8">

 <title>Variable Scope</title>

</head>

<body>

 <script>

 let counter = 0;

CHAPTER 8 VARIABLE SCOPE 85

 alert(counter);

 </script>

</body>

</html>

Here, we are simply declaring a variable called counter and initializing it to 0. By
virtue of this variable being declared directly inside the script tag without being
placed inside a function, the counter variable is considered to be global. What
this distinction means is that our counter variable can be accessed by any code
that lives in our document.

The below code highlights this:
<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8">

 <title>Variable Scope</title>

</head>

<body>

 <script>

 let counter = 0;

 function returnCount() {

 return counter;

 }

 alert(returnCount());

 </script>

</body>

</html>

In this example, the counter variable is declared outside of the returnCount
function. Despite that, the returnCount function has full access to the counter
variable. When the code runs, the alert function calls the returnCount function
that returns the value of the counter variable.

86 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

At this point, you are probably wondering why I am pointing this out. We’ve been
using global variables all this time without really noticing it. All I am doing here is for-
mally introducing you to a guest that has been hanging around your party for a while.

Local Scope
Now, things get a little interesting when we look at things that aren’t globally
declared. This is where understanding scope really starts paying dividends. As we
saw earlier, a variable declared globally is accessible inside a function:
let counter = 0;

function returnCount() {

 return counter;

}

The opposite doesn’t hold true. A variable declared inside a function will not work
when accessed outside of a function:
function setState() {

 let state = "on";

}

setState();

alert(state) // undefined

In this example, the state variable is declared inside the setState function, and
accessing the state variable outside of that function doesn’t work. The reason is that
the scope for our state variable is local to the setState function itself. A more
generic way of describing this is by saying that your state variable is just local.

NOTE Using Variables Without Declaring Them
If we initialize the state variable without formally declaring it,
the scoping behavior is drastically different:

function setState() {

 state = "on";

}

setState();

alert(state) // "on"

CHAPTER 8 VARIABLE SCOPE 87

In this case, even though our state variable makes its appear-
ance inside the setState function first, not declaring it first with
either let or const (or var, which is an older way of declaring
variables) makes this variable live globally. In general, you don’t
want to declare a variable like this. Always prefix it with a let or
const.

Miscellaneous Scoping Shenanigans
Since we are talking about JavaScript here, things would be too easy if we just left
everything with variable scope as they stand now. In the following sections, I am
going to highlight some quirks that you need to be familiar with.

Block Scoping
Our code is made-up of blocks...lots and lots of blocks. What exactly is a block?
A block is a collection of JavaScript statements almost always wrapped by curly
braces. For example, let us take a look at the following code:
let safeToProceed = false;

function isItSafe() {

 if (safeToProceed) {

 alert("You shall pass!");

 } else {

 alert("You shall not pass!");

 }

}

isItSafe();

Counting the pair of curly brackets, there are three blocks here. One block is the
region contained by the isItSafe function itself:
let safeToProceed = false;

function isItSafe() {

 if (safeToProceed) {

 alert("You shall pass!");

 } else {

88 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 alert("You shall not pass!");

 }

}

isItSafe();

The second block is the if statement region:
let safeToProceed = false;

function isItSafe() {

 if (safeToProceed) {

 alert("You shall pass!");

 } else {

 alert("You shall not pass!");

 }

}

The third block is the region covered by the else statement:
let safeToProceed = false;

function isItSafe() {

 if (safeToProceed) {

 alert("You shall pass!");

 } else {

 alert("You shall not pass!");

 }

}

Any variable declared inside a block using let or const is local to that block and
any child blocks contained inside it. To better understand this, take a look at the
following code that is a variation of the isItSafe function from earlier:
function isThePriceRight(cost) {

 let total = cost + 1;

 if (total > 3) {

 alert(total);

 } else {

CHAPTER 8 VARIABLE SCOPE 89

 alert("Not enough!");

 }

}

isThePriceRight(4);

We declared the total variable as part of the function block. We are access-
ing this variable inside the if block. What do you think will happen? The total
variable is totally (haha!) accessible here, because the if block is a child of the
function block. To put it in the lingo of our times, the total variable is considered
in-scope of the alert function.

What about the following situation?
function isThePriceRight(cost) {

 let total = cost + 1;

 if (total > 3) {

 let warning = true;

 alert(total);

 } else {

 alert("Not enough!");

 }

 alert(warning);

}

isThePriceRight(4);

We have a variable called warning declared inside our if block, and we have an
alert function that tries to print the value of warning. In this case, because we
are trying to access the warning variable in a block that is outside the one the
variable was originally declared in, our alert function won’t actually display the
value of true. Given where our alert function is, the warning variable is consid-
ered to be out-of-scope.

NOTE Declaring Variables with the var Keyword!
A few paragraphs ago, I casually mentioned that variables were
once declared with the var keyword. The let (and const)
keywords were new additions to help you declare variables, and
wherever you may have used var in the past, you should use let

90 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

instead. We never discussed why let is preferable and said that
we’ll discuss it further when looking at variable scope. Well...here
we are!

Variables declared with var scope to functions. They don’t scope to blocks like
our if/else ones. If we modify the example from earlier to have our warning vari-
able be declared using var instead of let, our code will look as follows:
function isThePriceRight(cost) {

 let total = cost + 1;

 if (total > 3) {

 var warning = true;

 alert(total);

 } else {

 alert("Not enough!");

 }

 alert(warning);

}

isThePriceRight(4);

Earlier, the alert function for warning wouldn’t display anything because the
warning variable was out-of-scope when declared with let. With var, that
isn’t the case. You will see true displayed. The reason for this is because of the
major difference between let and var. Variables declared with var are scoped
at the function level, so as long as somewhere inside the function the variable is
declared, that variable is considered to be in-scope. Variables declared with let,
as we saw earlier, are scoped to the block level.

The level of leniency provided by var in the scoping department is a little too much,
and this leniency makes it easy to make variable-related mistakes. For this reason,
my preference is for all of us to use let when it comes to declaring variables.

How JavaScript Processes Variables
If you thought the earlier block scoping logic was weird, wait till you see this one.
Take a look at the following code:
let foo = "Hello!";

alert(foo);

CHAPTER 8 VARIABLE SCOPE 91

When this code runs, we can reasonably state that the value of Hello! will be
displayed. We would reasonably be right. What if we made the following modifica-
tion where we moved the variable declaration and initialization to the end?
alert(foo);

let foo = "Hello!";

In this situation, our code will error out. The foo variable is being accessed with-
out being referenced. If we replaced the let with a var, here is what our code
would look like:
alert(foo);

var foo = "Hello!";

When this code runs, the behavior is different than what we saw earlier. You will
see undefined displayed. What exactly is going on here?

When JavaScript encounters a scope (global, function, etc.) , one of the first
things it does is scan the full body of the code for any declared variables. When
it encounters any variables, it initializes them by default with undefined for var.
For let and const, it leaves the variables completely uninitialized. Lastly, it
moves any variables it encounters to the top of the scope—the nearest block for
let and const, the nearest function for var.

Let’s dive in to see what this means. Our code initially looks like this:
alert(foo);

let foo = "Hello!";

When JavaScript makes a pass at this, what this code gets turned into is the
following:
let foo;

alert(foo);

foo = "Hello!";

The foo variable, despite being declared at the bottom of our code, gets kicked
up to the top. This is more formally known as hoisting. The thing about let
(and const), is that when they get hoisted, they are left uninitialized. If you try to
access an uninitialized variable, our code will throw an error and stop. If we modi-
fied our earlier example to use var, the way JavaScript would see things would
look as follows:
var foo = undefined;

alert(foo);

foo = "Hello!";

92 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The variable still gets hoisted, but it gets initialized to undefined. This ensures our
code still runs.

The main takeaway from all of this is as follows: please declare and initialize your
variables before actually using them. While JavaScript has some affordance
for dealing with cases where we don’t do that, those affordances are just awfully
confusing.

Closures
No conversation about variable scope can be wrapped up without discussing
closures. That is, until right now. I am not going to explain closures here, for it is a
slightly more advanced topic that we will cover separately in Chapter 9.

Before you go to the next chapter, if you have any questions on the content here,
post on the forums at https://forum.kirupa.com where I and other developers will
be happy to help you out.

THE ABSOLUTE MINIMUM
Where your variables live has a major impact on where they can be used. Variables
declared globally are accessible to your entire application. Variables declared
locally will only be accessible to whatever scope they are found in. Within the
range of global and local variables, JavaScript has a lot going on up its sleeve.

This chapter gave you an overview of how variable scope can affect your code,
and you’ll see some of these concepts presented front-and-center in the near
future.

https://forum.kirupa.com

9
I N T H I S C H A P T E R
• Understand what closures are

• Tie together everything you’ve learned about
functions, variables, and scope

CLOSURES
By now, you probably know all about functions and all the fun functiony

things that they do. An important part of working with functions, with

JavaScript, and (possibly) life in general is understanding the topic known

as closures. Closures touch upon a gray area where functions and variable

scope intersect (Figure 9.1).

FIGURE 9.1

Closures.

94 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Now, I am not going to say any more about closures, for this is something best
explained by seeing code. Any words I add right now to define or describe what
closures are will only serve to confuse things. In the following sections, we’ll start
off in familiar territory and then slowly venture into hostile areas where closures
can be found.

Onward!

Functions within Functions
The first thing we are going to do is really drill in on what happens when you have
functions within functions...and the inner function gets returned. As part of that,
let’s do a quick review of functions.

Take a look at the following code:
function calculateRectangleArea(length, width) {

 return length * width;

}

let roomArea = calculateRectangleArea(10, 10);

alert(roomArea);

The calculateRectangleArea function takes two arguments and returns the
multiplied value of those arguments to whatever called it. In this example, the
whatever called it part is played by the roomArea variable.

After this code has run, the roomArea variable contains the result of multiplying
10 and 10...which is simply 100 (Figure 9.2).

FIGURE 9.2

The result of roomArea.

As you know, what a function returns can pretty much be anything. In this case,
we returned a number. You can very easily return some text (aka a String), the
undefined value, a custom object, etc. As long as the code that is calling the
function knows what to do with what the function returns, you can do pretty
much whatever you want. You can even return another function. Let me rathole
on this a bit.

CHAPTER 9 CLOSURES 95

Below is a very simple example of what I am talking about:
function youSayGoodBye() {

 alert("Good Bye!");

 function andISayHello() {

 alert("Hello!");

 }

 return andISayHello;

}

We can have functions that contain functions inside them. In this example, we
have our youSayGoodBye function that contains an alert and another function
called andISayHello (Figure 9.3).

FIGURE 9.3

A function within a function.

96 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The interesting part is what the youSayGoodBye function returns when it gets
called. It returns the andISayHello function:
function youSayGoodBye() {

 alert("Good Bye!");

 function andISayHello() {

 alert("Hello!");

 }

 return andISayHello;

}

Let’s go ahead and play this example out. To call this function, initialize a variable
that points to youSayGoodBye:
let something = youSayGoodBye();

The moment this line of code runs, all of the code inside your youSayGoodBye
function will get run as well. This means, you will see a dialog (thanks to the alert)
that says Good Bye! (Figure 9.4).

FIGURE 9.4

The Good Bye! dialog.

As part of running to completion, the andISayHello function will be created and
then returned as well. At this point, our something variable only has eyes for one
thing, and that thing is the andISayHello function (see Figure 9.5).

CHAPTER 9 CLOSURES 97

FIGURE 9.5

Something and the andISayHello function.

The youSayGoodBye outer function, from the something variable’s point of view,
simply goes away. Because the something variable now points to a function, you
can invoke this function by just calling it using the open and close parentheses like
you normally would:
let something = youSayGoodBye();

something();

When you do this, the returned inner function (aka andISayHello) will execute.
Just like before, you will see a dialog appear, but this dialog will say Hello!
(Figure 9.6) – which is what the alert inside this function specified.

FIGURE 9.6

Hello!

All of this should probably a review. The only thing that you may have found new
is realizing once a function returns a value, it is no longer around. The only thing
that remains is the returned value.

Ok, we are getting close to the promised hostile territory. In the next section, we will
extend what we’ve just seen by taking a look at another example with a slight twist.

98 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

When the Inner Functions Aren’t Self-Contained
In the previous example, our andISayHello inner function was self-contained
and didn’t rely on any variables or state from the outer function:
function youSayGoodBye() {

 alert("Good Bye!");

 function andISayHello() {

 alert("Hello!");

 }

 return andISayHello;

}

In many real scenarios, very rarely will we run into a case like this. We will often
have variables and data that are shared between the outer function and the inner
function. To highlight this, take a look at the following:
function stopWatch() {

 let startTime = Date.now();

 function getDelay() {

 let elapsedTime = Date.now() - startTime;

 alert(elapsedTime);

 }

 return getDelay;

}

This example shows a very simple way of measuring the time it takes to do some-
thing. Inside the stopWatch function, we have a startTime variable that is set
to the value of Date.now():
function stopWatch() {

 let startTime = Date.now();

 function getDelay() {

 let elapsedTime = Date.now() - startTime;

 alert(elapsedTime);

CHAPTER 9 CLOSURES 99

 }

 return getDelay;

}

We also have an inner function called getDelay:
function stopWatch() {

 let startTime = Date.now();

 function getDelay() {

 let elapsedTime = Date.now() - startTime;

 alert(elapsedTime);

 }

 return getDelay;

}

The getDelay function displays a dialog containing the difference in time
between a new call to Date.now() and the startTime variable declared earlier.

Getting back to the outer stopWatch function, the last thing that happens is that
it returns the getDelay function before exiting. As we can see, the code here is
very similar to the earlier example. We have an outer function, we have an inner
function, and we have the outer function returning the inner function.

Now, to see the stopWatch function at work, add the following lines of code:
let timer = stopWatch();

// do something that takes some time

for (let i = 0; i < 1000000; i++) {

 let foo = Math.random() * 10000;

}

// invoke the returned function

timer();

The full markup and code for this example looks as follows:
<!DOCTYPE html>

<html>

100 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

<head>

 <meta charset="utf-8">

 <title>Closures</title>

 <style>

 </style>

</head>

<body>

 <script>

 function stopWatch() {

 var startTime = Date.now();

 function getDelay() {

 var elapsedTime = Date.now() - startTime;

 alert(elapsedTime);

 }

 return getDelay;

 }

 let timer = stopWatch();

 // do something that takes some time

 for (let i = 0; i < 1000000; i++) {

 let foo = Math.random() * 10000;

 }

 // invoke the returned function

 timer();

 </script>

</body>

</html>

CHAPTER 9 CLOSURES 101

If you run this example, we’ll see a dialog displaying the number of milliseconds
it took between your timer variable getting initialized, your for loop running to
completion, and the timer variable getting invoked as a function (Figure 9.7).

FIGURE 9.7

The timer variable invoked as a function.

To explain in a different way, we have a stopwatch that we invoke, run some long-
running operation, and invoke again to see how long the long-running operation
took place.

Now that we can see our little stopwatch example working, let’s go back to the
stopWatch function and see what exactly is going on. Like I mentioned a few
lines ago, a lot of what we see is similar to the youSayGoodBye / andISayHello
example. There is a twist that makes this example different, and the important part
to note is what happens when the getDelay function is returned to the timer
variable.

Figure 9.8 is an incomplete visualization of what this looks like.

102 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 9.8

The stopWatch outer function is no longer active, and the timer variable is bound to the
getDelay function.

The stopWatch outer function is no longer in play, and the timer variable is bound
to the getDelay function. Now, here is the twist. The getDelay function relies on
the startTime variable that lives in the context of the outer stopWatch function:
function stopWatch() {

 let startTime = Date.now();

 function getDelay() {

 let elapsedTime = Date.now() - startTime;

 alert(elapsedTime);

 }

 return getDelay;

}

When the outer stopWatch function goes away when getDelay is returned to
the timer variable, what happens in the following line?
function getDelay() {

 let elapsedTime = Date.now() - startTime;

 alert(elapsedTime);

}

In this context, it would make sense if the startTime variable is actually undefined,
right? But the example totally worked, so something else is going on here. That
something else is the shy and mysterious closure. Here is a look at what happens to
make our startTime variable actually store a value and not be undefined.

The JavaScript runtime that keeps track of all of your variables, memory usage, refer-
ences, and so on is really clever. In this example, it detects that the inner function

CHAPTER 9 CLOSURES 103

(getDelay) is relying on variables from the outer function (stopWatch). When that
happens, the runtime ensures that any variables in the outer function that are needed
are still available to the inner function even if the outer function goes away.

To visualize this properly, Figure 9.9 shows you what the timer variable looks like.

FIGURE 9.9

The timer variable.

It is still referring to the getDelay function, but the getDelay function also has
access to the startTime variable that existed in the outer stopWatch function.
This inner function, because it enclosed relevant variables from the outer function
into its bubble (aka scope), is known as a closure (Figure 9.10).

FIGURE 9.10

A closure defined diagramatically.

To define the closure more formally, it is a newly created function that also con-
tains its variable context (Figure 9.11).

104 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 9.11

A more formal definition of closure.

To review this one more time using our existing example, the startTime vari-
able gets the value of Date.now the moment the timer variable gets initialized
and the stopWatch function runs. When the stopWatch function returns the
inner getDelay function, the stopWatch function goes away. What doesn’t go
away are any shared variables inside stopWatch that the inner function relies on.
Those shared variables are not destroyed. Instead, they are enclosed by the inner
function aka the closure.

THE ABSOLUTE MINIMUM
By looking at closures through examples first, you really missed out on a lot of boring
definitions, theories, and hand waving. In all seriousness, closures are very common
in JavaScript. You will encounter them in many subtle and not-so-subtle ways:

If there is only thing you take out of all of this, remember the following: The most
important thing closures do is allow functions to keep on working even if their
environment drastically changes or disappears. Any variables that were in scope
when the function was created are enclosed and protected to ensure the function
still works. This behavior is essential for a very dynamic language like JavaScript
where you often create, modify, and destroy things on the fly. Happy days!

We covered a lot of ground here. If you have any questions about what you’ve
seen, please post on the forums at https://forum.kirupa.com to quickly get
answers.

https://forum.kirupa.com

10
I N T H I S C H A P T E R
• Learn about the various places your code can live

• Understand the pros and cons of the various
approaches

WHERE SHOULD YOUR
CODE LIVE?
Let’s take a break from our regularly scheduled...programming (ha!). So far,

all of the code we have been writing has been contained fully inside an

HTML document:

106 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8">

 <title>An Interesting Title Goes Here</title>

 <style>

 body {

 background-color: #EEE;

 }

 h1 {

 font-family: sans-serif;

 font-size: 36px;

 }

 p {

 font-family: sans-serif;

 }

 </style>

</head>

<body>

 <h1>Are you ready for this?</h1>

 <p>Are you ready for seeing (or already having seen!) the most
amazing dialog ever?</p>

 <script>

 alert("hello, world!");

 </script>

</body>

</html>

CHAPTER 10 WHERE SHOULD YOUR CODE LIVE? 107

We are going to take a step back and revisit whether having this arrangement
between HTML, CSS, and JS in the same document makes sense for all situations. To
simplify how we talk about our document structure, let’s replace the code view with a
more...um, artistic view...involving some really nicely designed boxes (Figure 10.1).

FIGURE 10.1

Our representation of a web page.

108 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

In this world, the only thing that protects our HTML document from JavaScript is
just a couple of script tags. Now, your JavaScript does not have to live inside
our HTML document. We have another way, and this way involves a separate file
where all of our JavaScript will instead live (Figure 10.2).

FIGURE 10.2

Our JS now lives in its own separate file!

In this approach, we don’t have any real JavaScript that lives inside our HTML doc-
ument. We still have our script tag, but this tag simply points to the JavaScript
file instead of containing line after line of actual JavaScript code.

The thing to note is that none of these approaches are mutually exclusive. We can
mix both approaches into an HTML document and have a hybrid approach where
we have both an external JavaScript file as well as lines of JavaScript code fully
contained inside the document (Figure 10.3).

CHAPTER 10 WHERE SHOULD YOUR CODE LIVE? 109

FIGURE 10.3

A mixed approach where our JS content lives in several different places.

To make things more interesting, we also have variations on the two approaches
such as having multiple script sections in a HTML document, having multiple JS
files, and so on. In the following sections, we’ll look at both of these approaches in
greater detail and discuss when you would choose to use one approach over the
other.

By the end of all this, you will have a good understanding of the pros and cons of
each approach so that you can do the right thing with the JavaScript in your web
pages and applications.

Onward!

Approach #1: All the Code Lives in Your
HTML Document

The first approach we will look at is one that we’ve been using all along so far. This
is the approach where all of our JavaScript lives inside a script tag alongside the
rest of your HTML document:
<!DOCTYPE html>

<html>

<body>

110 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 <h1>Example</h1>

 <script>

 function showDistance(speed, time) {

 alert(speed * time);

 }

 showDistance(10, 5);

 showDistance(85, 1.5);

 showDistance(12, 9);

 showDistance(42, 21);

 </script>

</body>

</html>

When our browser loads the page, it goes through and parses every line of HTML
from top to bottom. When it hits the script tag, it will go ahead and execute
all the lines of JavaScript as well. Once it has finished executing our code, it will
continue to parse the rest of our document. This means the location the script tag
lives in our page is important. We will discuss that later when looking at the Run-
ning Your Code at the Right Time chapter.

Approach #2: The Code Lives in a Separate File
The second approach is one where our main HTML document doesn’t contain
any JavaScript content. Instead, all of our JavaScript lives in a separate document.
There are two parts to this approach. The first part deals with the JavaScript file.
The second part deals with referencing this JavaScript file in the HTML. Let’s look
at both of these parts in greater detail.

The JavaScript File
Key to making this approach work is the separate file that contains our JavaScript
code. It doesn’t matter what you name this file, but its extension is typically .js.
For example, my JavaScript file is called example.js.

CHAPTER 10 WHERE SHOULD YOUR CODE LIVE? 111

Inside this file, the only thing you will have is JavaScript:
function showDistance(speed, time) {

 alert(speed * time);

}

showDistance(10, 5);

showDistance(85, 1.5);

showDistance(12, 9);

showDistance(42, 21);

Everything we would normally put inside a script tag in the HTML will go here.
Nothing else will go into this file. Putting anything else like arbitrary pieces of
HTML and CSS isn’t allowed, and our browser will complain.

Referencing the JavaScript File
Once we have our JavaScript file created, the second (and final) step is to refer-
ence it in the HTML page. This is handled by our script tag. More specifically,

112 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

it is handled by our script tag’s src attribute that points to the location of our
JavaScript file:
<!DOCTYPE html>

<html>

<body>

 <h1>Example</h1>

 <script src="example.js"></script>

</body>

</html>

In this example, if our JavaScript file is located in the same directory as our
HTML, we can use a relative path and just reference the file name directly. If our
JavaScript file lives in another folder, we would alter our path accordingly:
<!DOCTYPE html>

<html>

<body>

 <h1>Example</h1>

 <script src="some/other/folder/example.js"></script>

</body>

</html>

In this case, our script file is nested inside three folders with the name some,
other, and folder. We can completely avoid relative paths and use an absolute
path as well:
<!DOCTYPE html>

<html>

<body>

 <h1>Example</h1>

 <script src="https://www.kirupa.com/js/example.js"></script>

</body>

</html>

CHAPTER 10 WHERE SHOULD YOUR CODE LIVE? 113

Either a relative path or absolute path will work just fine. For situations where
the path between our HTML page and the script we are referencing will vary
(such as inside a template, a server-side include, a 3rd party library, etc.), we’ll be
safer using an absolute path.

SCRIPTS, PARSING, AND LOCATION IN DOCUMENT
A few sections earlier, I briefly described how scripts get executed. Your browser
parses your HTML page starting at the top and then moves down line by line.
When a script tag gets hit, your browser starts executing the code that is con-
tained inside the script tag. This execution is also done line-by-line starting at
the top. Everything else that your page might be doing takes a backseat while
the execution is going on. If the script tag references an external JavaScript
file, your browser first downloads the external file before starting to execute its
contents.

This behavior where your browser linearly parses your document has some inter-
esting side effects that affect where in your document you want to place your
script tags. Technically, your script tag can live anywhere in your HTML docu-
ment. There is a preferred place you should specify your scripts, though. Because
of how your browser parses the page and blocks everything while your scripts are
executing, you want to place your script tags toward the bottom of your HTML
document after all of your HTML elements.

If your script tag is towards the top of your document, your browser will block
everything else while the script is running. This could result in users seeing a par-
tially loaded and unresponsive HTML page if you are downloading a large script
file or executing a script that is taking a long time to complete. Unless you really
have a good need to force your JavaScript to run before your full document is
parsed, ensure your script tags appear towards the end of your document as
shown in almost all of the earlier examples. There is one other advantage to plac-
ing your scripts at the bottom of your page, but I will explain that much later when
talking about the DOM and what happens during a page load.

114 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

So...Which Approach to Use?
We have two main approaches around where our code should live (Figure 10.4).

FIGURE 10.4

The two main approaches we have for dealing with our JS content.

The approach you end up choosing depends on your answer to the following
question: Is the identical code going to be used across multiple HTML
documents?

Yes, My Code Will Be Used on Multiple Documents!
If the answer is yes, then you probably want to put the code in an external file and
then reference it across all of the HTML pages you want it executing in. The first
reason you want to do this is to avoid having code repeated across multiple pages
(Figure 10.5).

CHAPTER 10 WHERE SHOULD YOUR CODE LIVE? 115

FIGURE 10.5

Having duplicated code is a problem!

Duplicate code makes maintenance a nightmare where a change to your script will
require you updating every single HTML document with the exact change. If you
are employing some sort of templating or SSI logic where there is only one HTML
fragment containing your script, then the maintenance issue is less of a problem.

The second reason has to do with file size. When you have your script duplicated
across many HTML pages, each time a user loads one of those HTML pages, they
are downloading your script all over again. This is less of a problem for smaller
scripts, but once you have more than a few hundred lines of code, the size starts
adding up.

When you factor all our code into a single file, you don’t have the issues I just
outlined (Figure 10.6).

116 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 10.6

A your code in one place.

Your code is easily maintainable because you update your code inside the one file
only. Any HTML document that references this JavaScript file automatically gets
the most recent version when it loads. By having all of your code in one file, your
browser will download the code only once and deliver the cached version of the
file on subsequent accesses.

No, My Code Is Used Only Once on a Single HTML Document!
If you answered no to the earlier question around whether your code is going to
be used on multiple HTML documents, then you can do whatever you want. You
can still choose to put your code into a separate file and reference it in your HTML
document, but the benefits of doing that are less than what you saw earlier with
the example involving many documents.

Placing your code entirely inside your HTML document is also fine for this
situation. Most of the examples you will see in this site have all of the code within
the HTML document itself. Our examples aren’t really going to be used across
multiple pages, and they aren’t going to be so large where readability is improved
by putting all of the code in a separate location.

CHAPTER 10 WHERE SHOULD YOUR CODE LIVE? 117

THE ABSOLUTE MINIMUM
As you can see, even something as seemingly simple as determining where your
code should live ends up taking many pages of explanation and discussion.
Welcome to the world of HTML and JavaScript where nothing is really black and
white. Anyway, getting back to the point of this article, a typical HTML document will
contain many script files loaded from an external location. Some of those files will
be your own; some, however, will be created by a third party and included into your
document.

Also, do you remember the hybrid approach I showed at the very beginning
where your HTML document contains both a reference to a separate JavaScript
file as well as actual code within the document? Well, that approach is pretty
common as well. Ultimately, the approach you end up using is entirely up to
you. Hopefully, this chapter gave you a taste of the information needed to make
the right choice. In Chapter 36, “Page Load Events and Other Stuff,” we take a
deeper look at what you saw here by looking at page loading-related events and
certain special attributes that complicate things. Don’t worry about them for now.

If you have any questions, feel free to post them on the forums at
https://forum.kirupa.com. I and others will be thrilled to help you out!

https://forum.kirupa.com

This page intentionally left blank

11
I N T H I S C H A P T E R
• Learn how to go beyond alerts for displaying results

• Understand how the console works

• Learn the variety of logging solutions you have at
your fingertips

CONSOLE LOGGING BASICS
When you are writing code, you will often find yourself in one of two situa-

tions. One situation is where you wonder if the code you just wrote is going

to run at all. In the other situation, you know your code runs, but it isn’t

running correctly. There is something wrong...somewhere.

In both of these situations, what you need is some extra visibility into what

your code is doing. A timeless approach for bringing this visibility involves

the alert method:

let myButton = document.querySelector("#myButton");

myButton.addEventListener("click", doSomething, false);

function doSomething(e) {

 alert("Is this working?");

}

120 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Using the alert method isn’t bad. It works fine for simple situations, but as your
code starts to do more, relying on them doesn’t work as well. For starters, you’ll
probably go insane from dismissing the large number of dialogs that keep pop-
ping up while your code is running! You’ll also want an easy way to persist the
messages you are seeing. The fleeting nature of our alert dialogs makes any sort
of long-term logging like that difficult.

In this tutorial, we’re going to look at one of the greatest inventions of all time
that makes it easy to help us figure out what our code is doing. We are going to
be learning about something known as the console.

Onward!

Meet the Console
Even if you think you write the most perfect JavaScript, you’ll be spending a fair
amount of time in what is known as the console. If you’ve never used the console
before, it is part of your browser’s developer tools where all sorts of text and stuff
gets printed for you to see and (occasionally) interact with.

It will look a little bit like what is shown in Figure 11.1

FIGURE 11.1

Meet the console.

CHAPTER 11 CONSOLE LOGGING BASICS 121

At a very high level, your console helps with a bunch of things:

• You can read messages you have told your code to log and display

• You can modify your application state by setting (or overwriting) variables and
values

• You can inspect the value of any DOM element, applied style, or code that is
accessible and in scope

• You can use it as a virtual code editor and write/execute some code just for
kicks

In this article, we won’t focus on all the things your console is capable of doing.
Instead, we’re just going to take it easy and gradually get you comfortable with
using the console to just display messages. We will cover all of the crazy console-
related things eventually, so don’t worry.

Displaying the Console
The first thing we are going to do is get your console up. The console is a part
of your browser’s developer tools. The way you bring up your browser developer
tools is by fiddling with your browser’s menus or by using the handy keyboard
shortcuts. From inside your browser, press Ctrl + Shift + I on Windows or Cmd
+ Alt + I on Mac to bring up the developer tools.

Depending on your browser and platform, each of your developer tools will look
a little different. The important thing is to find the Console tab and make sure the
console gets displayed.

When you bring up the console in Chrome, you’ll see something like what you see
in Figure 11.2.

122 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 11.2

The Chrome console.

On Safari, the console will look a bit like Figure 11.3.

FIGURE 11.3

The Safari console.

Firefox’s console looks like what is shown in Figure 11.4.

CHAPTER 11 CONSOLE LOGGING BASICS 123

FIGURE 11.4

The Firefox console.

Bringing up the console in Microsoft Edge will look like Figure 11.5.

FIGURE 11.5

The Edge console.

124 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The thing I want to highlight is that it doesn’t matter which browser you use. The
console looks and functions pretty much the same on all browsers. Just bring up
the console in your favorite browser and get ready to start actually using the con-
sole in the following sections.

If You Want to Follow Along
Now, you can just read the following sections and learn a whole bunch of console-
related things without lifting a finger. If that is what you would like to do, then skip
all of this and jump to the next section.

On the other hand, if you want to get your hands a bit dirty and see some of the
console shenanigans for yourself on your screen, create a new HTML document
and add the following HTML, CSS, and JavaScript into it:
<!DOCTYPE html>

<html>

<head>

 <title>Console Stuff</title>

 <style>

 #container {

 padding: 50px;

 }

 #myButton {

 font-family: sans-serif;

 font-size: 24px;

 font-weight: lighter;

 background-color: #FFF;

 border: 3px #333 solid;

 padding: 15px;

 }

 #myButton:hover {

 background-color: aliceblue;

 }

CHAPTER 11 CONSOLE LOGGING BASICS 125

 </style>

</head>

<body>

 <div id="container">

 <button id="myButton">click me</button>

 </div>

 <script>

 let myButton = document.querySelector("#myButton");

 myButton.addEventListener("click", doSomething, false);

 function doSomething(e) {

 alert("Is this working?");

 }

 </script>

</body>

</html>

What we have here is a really simple HTML page with a button that you can click.
When you click on the button, an alert dialog (the same one we described earlier)
will appear. In the following sections, we’ll modify this example to help bring some
of the console-related things to life!

Console Logging 101
The first thing we are going to do is tell our console to display things on screen.
This is no different than what we did with the alert statement earlier, and it is
almost just as easy. The key to all of this is the Console API. This API contains a
bunch of properties and methods that allow you to display things to your console
in a variety of ways. The first and probably most popular of these properties and
methods is the log method.

Meet the Log Method
At its most basic level, the way you use the log method is as follows:
console.log("Look, ma! I'm logging stuff.")

126 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

You call it via the console object and pass in the text that you want to display. To
see this in action, we can replace the alert from our example with the following:
function doSomething(e) {

 console.log("Is this working?");

}

When you run this code, take a look at your console after clicking on the click me
button. If everything worked out properly, you will see the "Is this working?" text
displayed inside it as shown in Figure 11.6.

FIGURE 11.6

The click me button displayed!

If you keep clicking on the button, you’ll see more instances of "Is this working?"
getting logged as shown in Figure 11.7.

CHAPTER 11 CONSOLE LOGGING BASICS 127

FIGURE 11.7

Each button click will end up getting represented in our Console.

How that looks will depend on the developer tools you are using. You will prob-
ably just see a counter to the left of your initial message getting incremented as
shown in the screenshot. You may see the text "Is this working?" getting dupli-
cated in each line as well. Don’t be alarmed if what you see doesn’t exactly match
what you see in my screenshots. The important detail is that your call to con-
sole.log works and is logging messages for you to see in the console. Also,
these messages aren’t read only. You can select them. You can copy them. You can
even print them and frame them on the wall behind you.

Going Beyond Predefined Text
Now that you’ve just seen the basics, let’s go a bit deeper. When using the con-
sole, you aren’t limited to only printing some predefined text. For example, a
common thing you might do is print the value of something that exists only by
evaluating an expression or accessing a value. To see what we mean by this, make
the following change to your doSomething function:
function doSomething(e) {

 console.log("We clicked on: " + e.target.id);

}

128 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

What we are doing here is telling our console to display the text "We clicked on"
in addition to the id value of the element we clicked on. If you preview these
changes in your browser, click on the click me button again, and check out what is
shown in the console, as in Figure 11.8.

FIGURE 11.8

The id of the button we clicked on is displayed!

The id value of the button you clicked on is displayed in addition to our pre-
defined text. Now, getting the id value of an element is probably not the most
exciting thing you might want to print, but you can print pretty much anything that
would look good when represented as text. That’s powerful!

Displaying Warnings and Errors
It is time to look beyond the log method! Our console object provides us with
the warn and error methods that allow us to display messages formatted as
warnings and errors, respectively, as shown in Figure 11.9.

CHAPTER 11 CONSOLE LOGGING BASICS 129

FIGURE 11.9

We can show errors and warnings...like a boss!

The way you use these two methods is no different from how you used the log
method. Just pass in whatever you want to display. You can see an example of
how to use these methods in the following snippet:
let counter = 0;

function doSomething(e) {

 counter++;

 console.log("Button clicked " + counter + " times!");

 if (counter == 3) {

 showMore();

 }

}

function showMore() {

 console.warn("This is a warning!");

 console.error("This is an error!");

}

130 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

When this code runs and our button is clicked three times, the showMore function
gets called. Inside that function, all we have is our console warning and error:
function showMore() {

 console.warn("This is a warning!");

 console.error("This is an error!");

}

Now, there is something cool about warnings and errors that goes beyond just
their appearance compared to their more boring log counterparts. You can
expand them in the console and see the full stack trace of all the functions your
code took before hitting them as shown in Figure 11.10.

FIGURE 11.10

Seeing more details for our errors!

For large pieces of code with a lot of branching, this is really useful. The warn and
error methods provide an excellent way for us to better understand the twisted
paths our code took into getting into whatever state it ended up in!

CHAPTER 11 CONSOLE LOGGING BASICS 131

THE ABSOLUTE MINIMUM
The console provides you with one of the best tools you have for understanding
what your code is doing. Displaying messages is only one part of what the console
allows you to do. Within our narrow focus on just displaying messages, there is a
whole lot more that we can cover than what we’ve seen so far. We’ll cover more
things the console does later, but the few console techniques you’ve seen here
will take you far in helping you find and squash bugs in your code.

If you have any questions, feel free to post them on the forums at
https://forum.kirupa.com. I and others will be extremely totally happy to help
you out!

https://forum.kirupa.com

This page intentionally left blank

12
T H I S C H A P T E R
• Understand what all this fuss about Objects is about

• Learn about the basic types you’ll run into in
JavaScript

• Find out that pizza has an educational value beyond
just being deliciously awesome

OF PIZZA, TYPES, PRIMITIVES,
AND OBJECTS
It’s time to get serious. Srsly! In the past few chapters, we’ve been working

with all kinds of values. We’ve worked with strings (text), numbers, bool-

eans (aka true and false), functions, and various other built-in things that

are part of the JavaScript language.

Following are some examples to jog our memory:

let someText = "hello, world!";

let count = 50;

let isActive = true;

Unlike other languages, JavaScript makes it really easy to specify and use

these built-in things. We don’t even have to think about or plan ahead to

use any of them. Despite how simple using these different kinds of built-

in things is, there is a lot of detail that is hidden from us. Knowing these

details is important because it will not only help us make sense of our code

more easily, it may even help us to more quickly pinpoint what is going

wrong when things aren’t working the way they should.

134 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Now, as you can probably guess, built-in-things isn’t the proper way to describe
the variety of values that you can use in JavaScript. There is a more formal name
for the variety of values you can use in your code, and that name is types. In this
chapter, you are going to get a gentle introduction to what they are.

Onward!

Let’s First Talk About Pizza
No, I haven’t completely lost it. Since I am always eating something (or thinking
about eating something), I am going to try to explain the mysterious world of
types by first explaining the much simpler world of pizza.

In case you haven’t had pizza in a while, this is what a typical pizza looks like:

CHAPTER 12 OF PIZZA, TYPES, PRIMITIVES, AND OBJECTS 135

A pizza doesn’t just magically appear looking like this. It is made up of other
ingredients – some simple and some not-so-simple:

The simple ingredients are easy to spot. These would be your mushrooms and
jalapenos. The reason these are simple is because you can’t break these ingredi-
ents apart any further:

They aren’t prepared. They aren’t made up of other simple ingredients. Just like
the dude, they abide.

136 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The not-so-simple, complex ingredients would be your cheese, sauce, crust, and
the pepperoni. These are more complex for all the reasons the simples one are...
um...simple. These complex ingredients are made up of other ingredients:

Unfortunately for all of us, there is no one simple ingredient called cheese or pep-
peroni out there. We need to combine and prepare and add some more ingredi-
ents to make up some of the complex ingredients we see here. There is a subtle
wrinkle to call out about complex ingredients. Their composition isn’t limited to
just simple ingredients. Complex ingredients can themselves be made up of other
complex ingredients. How scandalous?!!

From Pizza to JavaScript!
While this may be hard to believe, everything we learned about pizzas in the pre-
vious section was there for a purpose. The description of the simple and complex
ingredients very neatly applies to types in JavaScript. Each individual ingredient
could be considered a counterpart to a type that you can use (Figure 12.1).

CHAPTER 12 OF PIZZA, TYPES, PRIMITIVES, AND OBJECTS 137

FIGURE 12.1

A list of the simple types we have in JavaScript.

Just like the cheese, sauce, pepperoni, mushrooms, and bacon in our version of a
pizza, the types in JavaScript are string, number, boolean, null, undefined,
bigint, symbol, and Object. Some of these types may be very familiar to you
already, and some of them may not be. While we will look at all of these types
in much greater detail in future chapters, the Table 12.1 provides a very brief
summary of what they do.

TABLE 12.1 Types

Type What it does

string The basic structure for working with text

number As you can guess, it allows you to work with numbers

boolean Comes alive when you are using true and false

null Represents the digital equivalent of nothing...or moo :P

undefined While sort of similar to null, this is returned when a value should exist but
doesn’t...like when you declare a variable but don’t assign anything to it

bigint Allows you to work with really large or really small numbers that go beyond what
a typical “number” might support

symbol Something unique and immutable (can’t be changed) that you can optionally use
as an identifier for Object properties

Object Acts a shell for other types including other objects

138 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Now, while each of the types is pretty unique in what it does. There is a simple
grouping they fall under. Just like with our pizza’s simple and complex ingredients,
our types can be simple or complex as well. Except, in JavaScript terminology
involving types, simple and complex are more formally known as primitive and
object respectively. Another way of saying this is that our types in JavaScript
are either known as primitive types (or just primitives) and object types
(or just objects).

Our primitive types are string, number, boolean, null, bigint, symbol, and
undefined types. Any values that fall under their umbrella can’t be divided any
further. They are the jalapenos and mushrooms of the JavaScript world. Primitives
are pretty easy to define and bucket into something understandable. There is no
depth to them, and we pretty much get what we see when we encounter one.

Our object types, represented by Object in our table, are a bit more mysterious,
so the last thing we want to cover before unleashing you with details about all of
these types is what objects in JavaScript actually are.

What Are Objects?
The concept of objects in a programming language like JavaScript maps nicely to
its real-world equivalents. In the real world, you are literally surrounded by objects.
Your computer is an object. A book on a shelf is an object. A potato is (arguably)
an object. Your alarm clock is an object. A poster you got on eBay is also an
object. I could go on forever, but (for everyone’s sake) I’m going to stop here.

Some objects like a paperweight don’t do much:

CHAPTER 12 OF PIZZA, TYPES, PRIMITIVES, AND OBJECTS 139

They just sit there. Other objects, like a television, go above and beyond the call
of mere existence and do a lot of things:

A typical television takes input, allows you to turn it on or off, change the channel,
adjust the volume, and do all sorts of television-y things.

The thing to realize is that objects come in different shapes, sizes, and usefulness.
Despite the variations, objects are all the same at a high-level. They are an
abstraction. They provide an easy way for you to use them without having to
worry about what goes on under the covers. Even the simplest objects hide
a certain level of complexity that you simply don’t have to worry about.

For example, it doesn’t matter what goes on inside your TV, how the wires are
connected, or what type of glue is used to hold everything together. Those are
unnecessary details. All that you care about is that the TV does what it is told.
When you want it to change the channel, the channel should change. When you
adjust the volume, the volume should adjust. Everything else is just noise.

Basically, think of an object as a black box. There are some predefined/
documented things it does. How it does them is something you can’t easily see.
How it does its magic is also something you don’t really care about as long as it
works. We’ll change that notion later when we learn to actually create the insides
of an object, but let’s relish this simple and happy world for now.

140 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The Predefined Objects Roaming Around in
JavaScript

Besides the built-in types you saw earlier, you also have a handful of predefined
objects in JavaScript that you can use out-of-the-box. These objects allow you to
work with everything from collections of data to dates to even text and numbers.
Table 12.2 lists these objects along with, just like before, a short blurb on what
they do:

TABLE 12.2 Objects

Type What it does

Array Helps store, retrieve, and manipulate a collection of data

Boolean Acts as a wrapper around the boolean primitive; still very much in love with
true and false

Date Allows you to more easily represent and work with dates

Function Allows you to invoke some code among other esoteric things

Math The nerdy one in the group that helps you better work with numbers

Number Acts as a wrapper around the number primitive

RegExp Provides a lot of functionality for matching patterns in text

String Acts as a wrapper around the string primitive

The way you use these built-in objects is a little bit different than how you use
primitives. Each object has its own quirk on how you can use them as well.
Explaining each object and how it is meant to be used is something that I will
defer to for later, but here is a very short snippet of commented code to show you
what is possible:
// an array

let names = ["Jerry", "Elaine", "George", "Kramer"];

let alsoNames = new Array("Dennis", "Frank", "Dee", "Mac");

// a round number

let roundNumber = Math.round("3.14");

// today's date

let today = new Date();

CHAPTER 12 OF PIZZA, TYPES, PRIMITIVES, AND OBJECTS 141

// a boolean object

let booleanObject = new Boolean(true);

// infinity

let unquantifiablyBigNumber = Number.POSITIVE_INFINITY;

// a string object

let hello = new String("Hello!");

One thing that you may find puzzling is the existence of the Object-form of the
string, boolean, symbol, bigint, and number primitives. On the surface,
the Object-form and primitive-form of these types look very similar. Here is an
example:
let movie = "Pulp Fiction";

let movieObj = new String("Pulp Fiction");

console.log(movie);

console.log(movieObj);

What you will see printed will be identical. Below the surface, though, both movie
and movieObj are very different. One is literally a primitive of type string,
and the other is of type Object. This leads to some interesting (and possibly
incomprehensible) behavior that I will gradually touch upon as we explore the
handful of built-in types that we’ve seen so far.

142 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

THE ABSOLUTE MINIMUM
If this feels like a movie that abruptly ended just as things were getting interesting,
I don’t blame you for thinking that way. The main takeaway is that your primitives
make up the most basic types that you can use in your code. Your objects are a bit
more complex and are made up of other primitives or objects. We’ll see more of
that in a little bit when we dive deeper. Beyond that, we learned the names for the
common built-in types and some basic background material about all of them.

What you are going to see in subsequent chapters is a deeper look at all of these
types and the nuances of working with them. Think of this chapter as the gentle
on-ramp that suddenly drops you onto the rails of a crazy rollercoaster.

13
I N T H I S C H A P T E R
• Use arrays to handle lists of data

• Learn how to perform common tasks using the
various Array properties

ARRAYS
Let’s imagine you are jotting down a list on a piece of paper. Let’s call

the piece of paper groceries. Now, in the paper, you write a numbered

list starting with zero with all the items that belong there, as shown in

Figure 13.1.

144 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 13.1

A list of items that resembles a grocery list.

By simply creating a list of things, what you have right now is a real-world example
of an array! The piece of paper called groceries would be your array. The items
that you need to purchase are known as the array values.

In this tutorial, you will learn all about what I like to go grocery shopping for. You
may indirectly get an introduction to the very common built-in type, the array.

Onward!

Creating an Array
The popular way all the cool kids create arrays these days is to use an open and
close bracket. Below is our groceries variable that is initialized to an empty
array:
let groceries = [];

CHAPTER 13 ARRAYS 145

You have your variable name on the left, and you have a pair of brackets on the
right that initializes this variable as an empty array. This bracket-y approach for
creating an array is better known as the array literal notation.

Now, you will commonly want to create an array with some items inside it from the
very beginning. To create these non-empty arrays, place the items you want inside
the brackets and separate them by commas:
let groceries = ["Milk", "Eggs", "Frosted Flakes", "Salami",
"Juice"];

Notice that my groceries array now contains Milk, Eggs, Frosted Flakes, Salami,
and Juice. I just have to reiterate how important the commas are. Without the
commas, you’ll just have one giant item instead. All right, now that you’ve learned
how to declare an array, let’s look at how you can actually use it to store and work
with data.

Accessing Array Values
One of the nice things about arrays is that you not only have easy access to the
array, but you also have easy access to the array values...similar to highlighting an
item in your grocery list (Figure 13.2).

FIGURE 13.2

Arrays enable you to access individual items selectively.

146 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The only thing you need to know is what the procedure is for accessing an indi-
vidual item.

Inside an array, each item is assigned a number starting with zero. In Figure 3.2,
Milk is given the value 0, Eggs the value 1, Frosted Flakes the value 2, and so on.
The formal term for these numbers is called the index value.

Let’s say that our groceries array is declared as follows:
let groceries = ["Milk", "Eggs", "Frosted Flakes", "Salami",
"Juice"];

If I wanted to access an item from the array, all I need to do is pass in the index
value of the item I am interested in:
groceries[1]

The index value is passed in to your array using square brackets. In this example,
you are referring to the Eggs value because the index position 1 refers to it. If you
passed in a 2, you would return Frosted Flakes. You can keep passing in an index
value until you have no more values left.

The range of numbers you can use as your index values is one less than your
array’s length. The reason is that, as shown in the diagram earlier, your index
values start with a value of 0. If your array only has 5 items, trying to display
grocery[6] or grocery[5] will result in a message of undefined.

Let’s go one step further. In most real-world scenarios, you will want to program-
matically go through your array as opposed to accessing each item individually.

You can take what I explained in the previous paragraph and use a for loop to
accomplish this:
for (let i = 0; i < groceries.length; i++) {

 let item = groceries[i];

}

Notice the range of your loop starts at 0 and ends just one before your array’s full
length (as returned by the length property). This works because, like I mentioned
earlier, your array index values go from 0 to one short of the value returned for
the array’s length. And yes, the length property returns a count of all the items in
your array!

CHAPTER 13 ARRAYS 147

Adding Items to Your Array
Rarely will you leave your array in the state you initialized it in originally. You will
want to add items to it. To add items to your array, you will use the push method:
groceries.push("Cookies");

The push method is called directly on your array, and you pass in the data you
want to add to it. By using the push method, your newly added data will always
find itself at the end of the array.

For example, after running the code on our initial array, you will see Cookies
added to the end of your groceries array (Figure 13.3).

FIGURE 13.3

Our array is now larger with the addition of Cookies at the end.

If you want to add data to the beginning of your array, you use the unshift
method:
groceries.unshift("Bananas");

148 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

When data is added to the beginning of your array, the index value for all of the
existing items increases to account for the newly inserted data (Figure 13.4).

FIGURE 13.4

Our newly added item is inserted at the beginning.

The reason is that the first item in your array will always have an index value of 0.
This means that the space originally occupied by the 0th item needs to push itself
and everything below it out to make room for the new data.

Both the push and unshift methods, besides adding the elements to the array
when you use them, return the new length of the array as well:
console.log(groceries.push("Cookies")); // returns 6

Not sure why that is useful, but keep it under your hat in case you do need it.

CHAPTER 13 ARRAYS 149

Removing Items from the Array
To remove an item from the array, you can use the pop or shift methods.
The pop method removes the last item from the array and returns it:
let lastItem = groceries.pop();

The shift method does the same thing on the opposite end of the array. Instead
of the last item being removed and returned, the shift method removes and
returns the first item from the array:
let firstItem = groceries.shift();

When an item is removed from the beginning of the array, the index positions of
all remaining elements are decremented by 1 to fill in the gap (Figure 13.5).

FIGURE 13.5

What happens when an item is removed from our array.

150 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Note that when you are adding items to your array using unshift or push, the
returned value from that method call is the new length of your array. That is not
what happens when you call the pop and shift methods, though! When you are
removing items using shift and pop, the value returned by the method call is
the removed item itself!

Finding Items in the Array
To find items inside your array, you have a handful of built-in methods: indexOf,
lastIndexOf, includes, find, findIndex, and filter. For the sake of simplic-
ity, we will focus on indexOf and lastIndexOf for now. These two methods work
by scanning your array and returning the index position of the matching element.

The indexOf method returns the first occurrence of the item you are searching for:
let groceries =["Milk", "Eggs", "Frosted Flakes", "Salami",
"Juice"];

let resultIndex = groceries.indexOf("Eggs",0);

console.log(resultIndex); // 1

Notice that the resultIndex variable stores the result of calling indexOf on our
groceries array. To use indexOf, I pass in the element I am looking for along
with the index position to start from:
groceries.indexOf("Eggs", 0);

The value returned by indexOf in this case will be 1.

The lastIndexOf method is similar to indexOf in how you use it, but it differs
a bit on what it returns when an element is found. Where indexOf finds the first
occurrence of the element you are searching for, lastIndexOf finds the last occur-
rence of the element you are searching for and returns that element’s index position.

When you search for an element that does not exist in your array, both indexOf
and lastIndexOf return a value of -1.

Merging Arrays
The last thing we are going to do is look at how to create a new array that is made
up of two separate arrays. Let’s say you have two arrays called good and bad:
let good = ["Mario", "Luigi", "Kirby", "Yoshi"];

let bad = ["Bowser", "Koopa Troopa", "Goomba"];

CHAPTER 13 ARRAYS 151

To combine both of these arrays into one array, use the concat method on the
array you want to make bigger and pass the array you want to merge into it as the
argument. What will get returned is a new array whose contents are both good
and bad:
let goodAndBad = good.concat(bad);

console.log(goodAndBad);

In this example, because the concat method returns a new array, the
goodAndBad variable ends up becoming an array that stores the results of our
concatenation operation. The order of the elements inside goodAndBad is good
first and bad second.

Mapping, Filtering, and Reducing Arrays
So far, we looked at several ways to add items, remove items, and other basic
bookkeeping tasks. One of the other things arrays bring to the table is really
simple ways for you to manipulate the data that is contained inside them. These
simple ways are brought to you via the map, reduce, and filter methods.

The Old School Way
Before we talk about map, reduce, and filter and how they make accessing
and manipulating data inside an array a breeze, let us look at the non-breezy
approach first. This is an approach that typically involves a for loop, keeping track
of where in the array you are, and shedding a certain amount of tears.

To see this in action, let’s say we have an array of names:
let names = ["marge", "homer", "bart", "lisa", "maggie"];

This aptly named names array contains a list of names that are currently lowercased.
What we want to do is capitalize the first letter in each word to make these names
look proper. Using the for loop approach, this can be accomplished as follows:
let names = ["marge", "homer", "bart", "lisa", "maggie"];

let newNames = [];

for (let i = 0; i < names.length; i++) {

 let name = names[i];

 let firstLetter = name.charAt(0).toUpperCase();

152 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 newNames.push(firstLetter + name.slice(1));

}

console.log(newNames);

Notice that we go through each item, capitalize the first letter, and add the
properly capitalized name to a new array called newNames. There is nothing
magical or complicated going on here, but you’ll often find yourself taking the
items in your array, manipulating (or accessing) the items for some purpose,
and returning a new array with the manipulated data. It’s a common enough
task with a lot of boilerplate code that you will keep replicating unnecessarily. In
large codebases, making sense of what is going on in a loop adds unnecessary
overhead. That’s why map, filter, and reduce were introduced. You get all
the flexibility of using a for loop without the unwanted side effects and extra
code. Who wouldn’t want this?!

Modifying Each Array Item with Map
The first of the array methods we will look at for manipulating our array data is
map. We will use the map method to take all the items in our array and modify
them into something else that is an entirely new array (Figure 13.6).

FIGURE 13.6

Our original array and new array!

The way you use it looks as follows:
let newArray = originalArray.map(someFunction);

This single line looks nice and friendly, but it hides a lot of complexity. Let’s
de-mystify it a bit. The way map works is as follows: You call it on the array that
you wish to affect (originalArray), and it takes a function (someFunction) as
the argument. This function will run on each item in the array—allowing you to

CHAPTER 13 ARRAYS 153

write code to modify each item as you wish. The end result is a new array whose
contents are the result of someFunction having run and potentially modified
each item in the original array. Sounds simple enough, right?

Using map, let’s revisit our earlier problem of taking the lowercased names from
the array and capitalizing them properly. We’ll look at the full code first and then
focus on the interesting details next. The full code is as follows:
let names = ["marge", "homer", "bart", "lisa", "maggie"];

function capitalizeItUp(item) {

 let firstLetter = item.charAt(0).toUpperCase();

 return firstLetter + item.slice(1);

}

let newNames = names.map(capitalizeItUp);

console.log(newNames);

Take a moment to see how this code works. The interesting part is the
capitalizeItUp function that is passed in as the argument to the map method.
This function runs on each item, and notice that the array item you are currently
on is passed in to this function as an argument. You can reference the current item
argument via whatever name you prefer. We are referencing this argument using
the boring name of item:
function capitalizeItUp(item) {

 let firstLetter = item.charAt(0).toUpperCase();

 return firstLetter + item.slice(1);

}

Inside this function, we can write whatever code we want to manipulate the
current array item. The only thing we need to do is return the new array item
value:
function capitalizeItUp(item) {

 let firstLetter = item.charAt(0).toUpperCase();

 return firstLetter + item.slice(1);

}

That’s all there is to it. After all of this code runs, map returns a new array with
all of the capitalized items in their correct locations. The original array is never
modified, so keep that in mind.

154 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

TIP Meet Callback Functions
Our capitalizeItUp function is also known more generically by
another name. That name is callback function. A callback function
is a function that does two things:

• It is passed in as an argument to another function

• It is called from inside the other function

You will see callback functions referenced all the time...such as
when we look at filter and reduce in a few moments. If this is
the first time you are hearing about them, you now have a better
idea of what they are. If you’ve heard of them before, well...good
for you!

Filtering Items
With arrays, you’ll often find yourself filtering (aka removing) items based on a
given criterion (Figure 13.7).

FIGURE 13.7

We start with many items but end up with fewer items.

For example, let’s say we have an array of numbers:
let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12];

Right now, our numbers array has both even numbers as well as odd numbers.
Let’s say we want to ignore all of the odd numbers and only look at the even ones.
The way we can do that is by using our array’s filter method and filtering out all
of the odd numbers so only the even numbers remain.

The way we use the filter method is similar to what we did with map. It takes
one argument, a callback function, and this function will determine whether each

CHAPTER 13 ARRAYS 155

array item will be filtered out or not. This will make more sense when we look at
some code. Take a look at the following:
let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12];

let evenNumbers = numbers.filter(function (item) {

 return (item % 2 == 0);

});

console.log(evenNumbers);

We create a new array called evenNumbers that will store the result of filter
running on our numbers array. The contents of this array will be the even numbers
only thanks to our callback function checking each item to see whether the result
of item % 2 (aka checking if the remainder when you divide by 2) is 0. If the
callback function returns a true, the item is carried over to the filtered array. If the
callback function returns false, the item is ignored.

One thing to note here is that our callback function isn’t an explicitly named func-
tion like our capitalizeItUp function we saw earlier. It is simply an anonymous
one, but it still gets the job done. You’ll see this anonymous form commonly
where a callback function needs to be specified, so become familiar with this style
of defining a function.

Getting One Value from an Array of Items
The last array method we will look at is reduce. This is a bizarre one. With both
map and filter, we went from one array with a starting set of values to another
array with a different set of values. With the reduce method, we will still start with
an array. What we will end up with will be a single value (Figure 13.8).

FIGURE 13.8

From many to...one!

156 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

This is definitely one of those cases where we need an example to explain what is
going on.

Let’s reuse our numbers array from earlier:
let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12];

What we want to do is add up all the values here. This is the kind of thing the
reduce method was built for where we reduce all the values in our array into a
single item. Take a look at the following code:
let total = numbers.reduce(function(total, current) {

 return total + current;

}, 0);

console.log(total);

We call reduce on our numbers array, and we pass in two arguments to it:

• The callback function

• Initial value

We start our summing at an initial value of 0, and our callback function is responsi-
ble for adding up each item in the array. Unlike earlier where our callback function
took only the current array item as its argument, the callback function for reduce is
slightly more involved. You need to deal with two arguments here as well:

• The first argument contains the total value of all the actions you’ve done so far

• The second argument is the familiar current array item

By using these two arguments, you can easily construct all sorts of scenarios
involving keeping track of something. In our example, since all we want is the
sum of all items in the array, we are summing up the total with the value of
current. The end result will be 31.

More on the Callback Function Arguments
For our callback functions, we’ve only specified one argument representing the
current array item for map and filter. We specified two arguments representing
the total value as well as the current item for reduce. Our callback functions have
two optional arguments you can specify:

• The current index position of your current array item

• The array you are calling map, filter, or reduce on

CHAPTER 13 ARRAYS 157

For map and filter, these would be the second and third arguments you specify.
For reduce, it would be the third and fourth arguments. You may go your entire
life without ever having to specify these optional arguments, but if you ever run
into a situation where you need them, you now know where to find them.

We are almost done here. Let’s look at an example that shows the output of
reduce to be something besides a number. Take a look at the following:
let words = ["Where", "do", "you", "want", "to", "go", "today?"];

let phrase = words.reduce(function (total, current, index) {

 if (index == 0) {

 return current;

 } else {

 return total + " " + current;

 }

}, "");

console.log(phrase);

In this example, we are combining the text-based content of our words array to
create a single value that ends up showing Where do you want to go today?
Notice what is going on in our callback function. Besides doing the work to com-
bine each item into a single word, we are specifying the optional third argument
that represents our current item’s index position. We use this index value to special
case the first word to deal with whether we insert or not insert a space character at
the beginning.

A Short Foray into Functional Programming
As the last few sections have highlighted, the map, filter, and reduce methods
greatly simplify how we work with arrays. There is another HUGE thing that these
three methods scratch the surface of. That thing is something known as functional
programming. Functional programming is a way of writing your code where you
use functions that:

• Can work inside other functions

• Avoid sharing or changing state

• Return the same output for the same input

158 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

There are more nitpicky details that we can list here, but this is a good start.
Anyway, you can see how functional programming principles apply to the various
callback functions we’ve used so far. Our callback functions match these three
criteria perfectly, for they are functions that can be dropped into or out of any
situation as long as the arguments still work. They definitely don’t modify any
state, and they work fully inside the map, filter, or reduce methods. Functional
programming is a fun topic that needs a lot more coverage than what we’ve
looked at in the last few sentences, so we’ll leave things be for now and cover it in
greater detail in the future.

THE ABSOLUTE MINIMUM
That is almost all there is to know about arrays…well, at least the things you will
use them for most frequently. At the very least, you will have learned how to use
them to create a grocery list!

Some additional resources and examples:

• Shuffling an Array: http://bit.ly/kirupaArrayShuffle

• Picking a Random Item from an Array: http://bit.ly/kirupaRandomItemArray

• Removing Duplicates from an Array: http://bit.ly/kirupaRemoveDuplicates

• Hashtables versus Arrays: http://bit.ly/kirupaHvA

http://bit.ly/kirupaArrayShuffle
http://bit.ly/kirupaRandomItemArray
http://bit.ly/kirupaRemoveDuplicates
http://bit.ly/kirupaHvA

14
I N T H I S C H A P T E R
• Understand how text is treated in JavaScript

• Learn how to perform common string operations

• Look at the various string properties

STRINGS
I have a hunch that you are a human being. As a human, you probably

relate really well with words. You speak it. You write it. You also tend to use

a lot of it in the things you program. As it turns out, JavaScript likes words a

whole lot as well. The letters and funny looking symbols that make up your

(and my) language has a formal name. They are known as strings. Strings in

JavaScript are nothing more than a series of characters. Despite how bor-

ing that sounds, accessing and manipulating these characters is a skill that

we must be familiar with. That’s where this tutorial comes in.

Onward!

160 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The Basics
The way we can work with strings is by just using them in our code. We just
need to make sure to enclose them in single or double quotes. Below are some
examples:
let text = "this is some text";

let moreText = 'I am in single quotes!';

console.log("this is some more text");

Besides just listing strings, we’ll often combine a couple of strings together. We
easily do that by just using the + operator:
let initial = "hello";

console.log(initial + " world!");

console.log("I can also " + "do this!");

In all of these examples, we are able to see the string. The only reason I point out
something this obvious is that, when we can see the contents of your string as lit-
erally as we do, these strings are more appropriately known as string literals. That
doesn’t change the fact that the resulting structure is still a built-in primitive type
called a string (you know…a simple pizza ingredient from the previous chapter).

If we had to visualize what the text and moreText strings look like, they would
look like Figure 14.1.

FIGURE 14.1

A visualization of strings.

We just have our two variables pointing to some literal chunks of text. There isn’t
anything else that is going on. If you are wondering why I wasted this space in
visualizing something so obvious, the visualizations will get more complex once we
move into Object territory. You’ll see hints of that in this chapter itself.

CHAPTER 14 STRINGS 161

Anyway, all of this isn’t particularly important…yet. The only important thing to keep
in mind is that you need to wrap your string literals in either quotation marks (")
or apostrophes (') to designate them as a region of text. If you don’t do that, bad
things happen, and your code probably won’t run.

That’s all there is to the basics. The fun stuff comes from using all of the functional-
ity JavaScript provides for working with strings. We’ll look at that and more in the
following sections.

String Properties and Methods
When we are working with strings, the underlying String object implementa-
tion contains a lot of properties that make working with text (usually) easier. In
the following sections, instead of going over every property and boring both of
us to death, I’ll just focus on the important ones in the context of tasks you will
be doing.

Accessing Individual Characters
While a string looks like one cohesive unit, it is actually made up of a series of
characters. We can access each character in several ways. The most common way
is by using array/bracket notation and passing in a number that corresponds to the
index position of the character:
let vowels = "aeiou";

console.log(vowels[2]);

In this example, we will see the i character because it is the item at the second
index position. To better visualize what just happened, the diagram in Figure 14.2
will help.

FIGURE 14.2

Our vowels mapped with index positions.

162 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Here is something we should keep in mind when the word index is thrown around.
Index positions in JavaScript start at 0 and move up from there. That is why our
index position is 2, but the count of the element at that position is actually 3. This
gets less weird the more you work with JavaScript and other languages that don’t
contain the words Visual and Basic where indexes start from 1.

To go one step further, we can access all characters in our string by just looping
through the index positions. The start of the loop will be 0, and the end of your
loop will be determined by the length of your string. The length of your string
(aka a count of the number of characters) is returned by the length property.

Here is an example of the preceding paragraph in action:
let vowels = "aeiou";

for (let i = 0; i < vowels.length; i++) {

 console.log(vowels[i]);

}

While we may not be looping through a string all the time, it is very common to
use the length property to get a count of the number of characters in your string.

If we don’t get along with the array/bracket notation, we also have the charAt
method that returns a character at a specified index position:
let vowels = "aeiou";

console.log(vowels.charAt(2));

The end result is identical to what we see using the array notation. I wouldn’t use
this method unless you care about really old browsers like Internet Explorer 7. Yep,
I didn’t think you did either.

WAIT…WHAT?
If you are wondering where in the world string primitives have the ability to access
properties only available to String objects, suspend your curiosity for a few
moments until the next chapter where we’ll look at this in much greater detail.

CHAPTER 14 STRINGS 163

Combining (aka Concatenating) Strings
To combine two strings together, we can just use the + or += operators and just
add them like you would a series of numbers:
let stringA = "I am a simple string.";

let stringB = "I am a simple string, too!";

console.log(stringA + " " + stringB);

Notice that, in the third line, we add both stringA and stringB together.
Between them, we specify an empty space character (" ") to ensure there is a
space between each of the individual strings. You can mix and match string liter-
als with string primitives and string objects and still get your text all combined
together.

For example, this is all valid:
let textA = "Please";

let textB = new String("stop!");

let combined = textA + " make it " + textB;

console.log(combined);

Despite all of the mixing going on, the type of the combined variable is simply a
string primitive.

For combining strings, we also have the concat method. We can call this method
from any string and specify a sequence of string primitives, literals, and objects
that we want to combine into one…megastring:
let foo = "I really";

let blah = "why anybody would";

let blarg = "do this";

let result = foo.concat(" don't know", " ", blah, " ", blarg);

console.log(result);

For the most part, just use the + and += approach for combining strings. It is faster
than the concat approach. With everything else being equal, who wouldn’t want
some extra speed in their code?

164 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Getting Substrings out of Strings
Sometimes, what we are interested in is a sequence of characters somewhere in
the middle of your string. The two properties that help satisfy this interest are
slice and substr. Let’s say we have the following string:
let theBigString = "Pulp Fiction is an awesome movie!";

Let’s mess with this string for a bit.

The slice Method!
The slice method allows us to specify the start and end positions of the part of
the string that you want to extract:
let theBigString = "Pulp Fiction is an awesome movie!";

console.log(theBigString.slice(5, 12));

In this example, we extract the characters between index positions 5 and 12.
The end result is that the word Fiction is what will get returned.

The start and end position values do not have to be positive. If you specify a
negative value for the end position, the end position for your string is what is left
when you count backwards from the end:
let theBigString = "Pulp Fiction is an awesome movie!";

console.log(theBigString.slice(0, -6));

If we specify a negative start position, your start position is the count of whatever
you specify starting from the end of the string:
let theBigString = "Pulp Fiction is an awesome movie!";

console.log(theBigString.slice(-14, -7));

We just saw three variations of how the slice method can be used. I’ve never
used anything but the first version with a positive start and end position, and you’ll
probably fall in a similar boat.

The substr Method!
The next approach we will look at for splitting up your string is the substr
method. This method takes two arguments as well:
let newString = substr(start, length);

CHAPTER 14 STRINGS 165

The first argument is a number that specifies your starting position, and the sec-
ond argument is a number that specifies the length of your substring. This makes
more sense when we look at some examples:
let theBigString = "Pulp Fiction is an awesome movie!";

console.log(theBigString.substr(0, 4)); // Pulp

We start the substring at the zeroth position and count four characters up. That is
why Pulp is returned. If we want to just extract the word Fiction, this is what our
code would look like:
let theBigString = "Pulp Fiction is an awesome movie!";

console.log(theBigString.substr(5, 7)); // Fiction

If we don’t specify the length, the substring that gets returned is the string that
goes from the start position to the end:
let theBigString = "Pulp Fiction is an awesome movie!";

console.log(theBigString.substr(5)); // Fiction is an awesome
movie!

There are a few more variations of values we can pass in for substr, but these are
the big ones.

Splitting a String/split
That which you can concatenate, you can also split apart. I am pretty sure a wise
person once said that. Another way we can split apart a string is by using the
split method. Calling this method on a string returns an array of substrings.
These substrings are separated by a character or Regular Expression (aka RegEx)
that we use to determine where to split apart our string.

Let’s look at a simple example where this makes more sense:
let inspirationalQuote = "That which you can concatenate, you can
also split apart.";

let splitWords = inspirationalQuote.split(" ");

console.log(splitWords.length); // 10

166 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

In this example, we are splitting the inspirationalQuote text on the space
character. Every time a space character is encountered, what is left of the string
before it is removed and made an item in the array that gets returned by this
method.

Here is another example:
let days = "Monday,Tuesday,Wednesday,Thursday,Friday,
Saturday,Sunday";

let splitWords = days.split(",");

console.log(splitWords[6]); // Sunday

We have the days variable, which stores a string of days separated only by a
comma. If we wanted to separate out each day, we could use the split method
with the separator character being the comma. The end result is an array of seven
items where each item is the day of the week from the original string.

You’ll be surprised at how often you will find yourself using the split method to
break apart a sequence of characters that can be as simple as a sentence or some-
thing more complex like data returned from a web service.

Finding Something Inside a String
If we ever need to find a character or characters inside a string, we can use
the indexOf, lastIndexOf, and match methods. Let’s look at the indexOf
method first.

What the indexOf method does is take the character(s) we are looking for as its
argument. If what we are looking for is found, it returns the index position in the
string where the first occurrence…occurs. If no matches are found, this method
gifts you with a -1. Let’s look at an example:
let question = "I wonder what the pigs did to make these birds so
angry?";

console.log(question.indexOf("pigs")); // 18

We are trying to see if pigs exist in our string. Because what we are looking for
does exist, the indexOf method lets us know that the first occurrence of this word

CHAPTER 14 STRINGS 167

occurs at the 18th index position. If we look for something that doesn’t exist, like
the letter z in this example, a -1 gets returned for:
let question = "I wonder what the pigs did to make these birds so
angry?";

console.log(question.indexOf("z")); // -1

The lastIndexOf method is very similar to indexOf. As you can sorta maybe guess
by the name, lastIndexOf returns the last occurrence of what you are looking for:
let question = "How much wood could a woodchuck chuck if a
woodchuck could chuck wood?";

console.log(question.lastIndexOf("wood")); // 65

There is one more argument you can specify to both indexOf and
lastIndexOf. In addition to providing the characters to search for, you can
also specify an index position on your string to start your search from:
let question = "How much wood could a woodchuck chuck if a
woodchuck could chuck wood?";

console.log(question.indexOf("wood", 30)); // 43

The last thing to mention about the indexOf and lastIndexOf methods is that
you can match any instance of these characters appearing in your string. These
functions do not differentiate between whole words or what you are looking for
being a substring of a larger set of characters. Be sure to take that into account.

Before we wrap this up, let’s look at the match method. With the match method,
you have a little more control. This method takes a Regex as its argument:
let phrase = "There are 3 little pigs.";

let regexp = /[0-9]/;

let numbers = phrase.match(regexp);

console.log(numbers[0]); // 3

What gets returned is also an array of matching substrings, so you can use your
Array ninja skills to make working with the results a breeze. Learning how to work
with regular expressions is something that we’ll look at much later.

168 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

THE ABSOLUTE MINIMUM
Strings are one of the handful of basic data types you have available in JavaScript,
and you just saw a good overview of the many things you can do using them. One
issue that I skirted around is where your string primitives seem to mysteriously
have all of these properties that are common only to Objects. We’ll look at that
one in the next chapter!

Some additional resources and examples:

• The Devowelizer: http://bit.ly/kirupaDeVowelize

• Capitalize the First Letter of a String: http://bit.ly/kirupaCapLetter

• 10 Ways to Reverse a String: http://bit.ly/kirupaWaysToReverseString

If you have any String-related questions...or just questions about life and
JavaScript in general, head on over to https://forum.kirupa.com to get an answer.

Upper and Lower Casing Strings
Finally, let’s end this coverage on Strings with something easy that doesn’t require
anything complicated. To uppercase or lowercase a string, we can use the appro-
priately named toUpperCase and toLowerCase methods. Let’s look at this
example:
let phrase = "My name is Bond. James Bond.";

console.log(phrase.toUpperCase()); // MY NAME IS BOND. JAMES BOND.

console.log(phrase.toLowerCase()); // my name is bond. james bond.

See, told you this was easy!

http://bit.ly/kirupaDeVowelize
http://bit.ly/kirupaCapLetter
http://bit.ly/kirupaWaysToReverseString
https://forum.kirupa.com

15
I N T H I S C H A P T E R
• Get a deeper understanding of how primitives and

objects work

• Understand that even primitives have object-like
traits

• Wonder how JavaScript ever got to be so popular

WHEN PRIMITIVES BEHAVE
LIKE OBJECTS
In the earlier Strings chapter and less so in the Of Pizza, Types, Primitives,

and Objects chapter, we got a sneak peek at something that is probably

pretty confusing. I’ve stated many times that primitives are very plain and

simple. Unlike Objects, they don’t contain properties that allow you

to fiddle with their values in interesting (or boring) ways. Yet, as clearly

demonstrated by all the stuff we can do with strings, our primitives seem

to have a mysterious dark side to them:

let greeting = "Hi, everybody!!!";

let shout = greeting.toUpperCase(); // where did
toUpperCase come from?

170 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

As we can see from this brief snippet, our greeting variable, which stores a
primitive value in the form of text, seems to have access to the toUpperCase
method. How is this even possible? Where did that method come from? Why
are we here? Answers to confusing existential questions like this will make up the
bulk of what you will see in this page. Also, I apologize for writing that previous
sentence in passive voice. Happen again it won’t.

Onward!

Strings Aren’t the Only Problem
Because of how fun and playful they are (kind of like a Golden Retriever!), it’s
easy to pick on strings as the main perpetrator of this primitive/Object confusion.
As it turns out, many of the built-in primitive types are involved in this racket as
well. Table 15.1 displays some popular built-in Object types with most of the
guilty parties (Symbol and BigInt will be sitting this one out) that also exist as
primitives highlighted:

TABLE 15.1 Object types with those that are primitive highlighted

Type What it does

Array helps store, retrieve, and manipulate a collection of data

Boolean acts as a wrapper around the boolean primitive; still very much in love with true
and false

Date allows you to more easily represent and work with dates

Function allows you to invoke some code among other esoteric things

Math the nerdy one in the group that helps you better work with numbers

Number acts as a wrapper around the number primitive

RegExp provides a lot of functionality for matching patterns in text

String acts as a wrapper around the string primitive

Whenever we are working with boolean, number, or string primitives, we have
access to properties their Object equivalent exposes. In the following sections,
you’ll see what exactly is going on.

Let’s Pick on Strings Anyway
Just as you were taught by your parents growing up, we typically use a string in
the literal form:
let primitiveText = "Homer Simpson";

CHAPTER 15 WHEN PRIMITIVES BEHAVE LIKE OBJECTS 171

As we saw in the table earlier, strings also have the ability to be used as objects.
There are several ways to create a new object, but the most common way to
create an object for a built-in type like our string is to use the new keyword
followed by the word String:
let name = new String("Batman");

The String in this case isn’t just any normal word. It represents what is known
as a constructor function whose sole purpose is to be used for creating objects.
Just like there are several ways to create objects, there are several ways to create
String objects as well. The way I see it, knowing about one way that you really
shouldn’t be creating them with is enough.

Anyway, the main difference between the primitive and object forms of a string is
the sheer amount of additional baggage the object form carries with it. If we had
to visualize our String object called name, Figure 15.1 shows what that would
look like.

FIGURE 15.1

A deeper look at what our String object looks like.

We have your name variable containing a pointer to the text, Homer Simpson.
You also have all of the various properties and methods that go with the String
object—things you may have used like indexOf, toUpperCase, and so on.

172 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

You’ll get a massive overview of what exactly this diagram represents when we
look at Objects in greater detail, so don’t worry too much about what you see
here. Just know that the object form of any of the primitives carries with it a lot of
functionality.

Why This Matters
Let’s return to our earlier point of confusion. Our string is a primitive. How can
a primitive type allow you to access properties on it? The answer has to do with
JavaScript being really weird. Let’s say we have the following string:
let game = "Dragon Age: Origins";

The game variable is very clearly a string primitive that is assigned to some literal
text. If I want to access the length of this text, we would do something as
follows:
let game = "Dragon Age: Origins";

console.log(game.length);

As part of evaluating game.length, JavaScript will convert your primitive string
into an object. For a brief moment, your lowly primitive will become a beautiful
object in order to figure out what the length actually is. The thing to keep in
mind is that all of this is temporary. Because this temporary object isn’t grounded
or tied to anything after it serves its purpose, it goes away and you are left with
the result of the length evaluation (a number) and the game variable still being a
string primitive.

This transformation only happens for primitives. If we ever explicitly create a
String object, then what we create is permanently kept as an object. Let’s say we
have the following:
let gameObject = new String("Dragon Age:Origins");

In this case, our gameObject variable very clearly points to something whose
type is Object. This variable will continue to point to an Object type unless you
modify the string or do something else that causes the reference to be changed.
The primitive morphing into an object and then morphing back into a primitive is
something unique to primitives. Your objects don’t partake in such tomfoolery.

You can easily verify everything I’ve said by examining the type of your data.
That is done by using the typeof keyword. Here is an example of me using it to
confirm everything I’ve just told you about:
let game = "Dragon Age: Origins";

console.log("Length is: " + game.length);

CHAPTER 15 WHEN PRIMITIVES BEHAVE LIKE OBJECTS 173

let gameObject = new String("Dragon Age:Origins");

console.log(typeof game); // string

console.log(typeof game.length); // number

console.log(typeof gameObject); // object

Now, aren’t you glad you learned all this?

THE ABSOLUTE MINIMUM
Hopefully this brief explanation helps you to reconcile why our primitives behave
like objects when they need to. At this point, you might have a different question
around why anybody would have designed a language that does something this
bizarre. After all, if a primitive turns into an object when it needs to do something
useful, why not just stay an object always? The answer has to do with memory
consumption.

As we saw from our discussion on how much more baggage the object form of a
primitive carries when compared to just a primitive, all of those pointers to addi-
tional functionality cost resources. The solution in JavaScript is a compromise. All
literal values like text, numbers, and booleans are kept as primitives if they are
declared and/or used as such. Only when they need to, are they converted to their
respective Object forms. To ensure our app continues to keep a low memory
footprint, these converted objects are quickly discarded (aka garbage collected)
once they’ve served their purpose.

Got a question? Head on over to https://forum.kirupa.com to ask and get an
answer from a bunch of cool and friendly developer peers.

https://forum.kirupa.com

This page intentionally left blank

16
I N T H I S C H A P T E R
• Make sense of numbers

• Learn about the variety of numerical values you will
encounter

• Meet the Math object and the various mathematical
things you can do

NUMBERS
A large part of your time in JavaScript will be spent dealing with numbers.

Even if you aren’t working with numbers directly, you’ll indirectly encounter

them when doing even the most basic of tasks such as keeping count of

something, working with arrays, etc.

In this chapter, I will introduce numbers in JavaScript by looking at how

you can use them to accomplish many common tasks. Along the way, we

will dive a little bit beyond the basics to broadly explore some interesting

number-related things you might find useful.

Onward!

176 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Using a Number
In order to use a number, all you have to do is…well, use it. Below is a simple
example of me declaring a variable called stooges that is initialized to the
number 3:
let sto oges = 3;

That is it. There are no hoops to jump through. If you wanted to use more com-
plex numbers, just use them as if nothing is different:
let pi = 3.14159;

let color = 0xFF;

let massOfEarth = 5.9742e+24;

In the above example, I am using a decimal value, a hexadecimal value, and a
really large value using exponents. In the end, your browser will automatically do
the right thing. Note that the “right thing” doesn’t just exist in the positive space.
You can use negative numbers easily as well. To use negative numbers, just place
a minus (-) character before the number you want to turn into a negative value:
let temperature = -42;

What you’ve seen in this section makes up the bulk of how you will actually use
numbers. In the next couple of sections, let’s go a little bit deeper and look at
some of the other interesting things you can do with numbers.

TIP Trivia: Numbers in JavaScript

If you are curious why working with numbers is so easy, the reason
is because JavaScript isn’t big on numerical types. You don’t have
to declare a number as being of type int, double, byte, float,
etc. like you may have had to do in other languages. The only
exception is if you need a really large or really small number, and
that is when BigInt comes in. We will talk about BigInt later...
someday.

Oh, also...in JavaScript, all numbers are converted into 64-bit
floating point numbers.

Operators
No introduction to numbers would be complete (…or started) without showing
you how you can use mathematical operators in code to implement things you
learned in first-grade Math class.

Let’s look at the common operators in this section.

CHAPTER 16 NUMBERS 177

Doing Simple Math
In JavaScript, you can create simple mathematical expressions using the +, -,
*, /, and % operators to add, subtract, multiply, divide, and find the remainder
(modulus) of numbers respectively. If you can use a calculator, you can do simple
math in JavaScript.

Here are some examples that put these operators to use:
let total = 4 + 26;

let average = total / 2;

let doublePi = 2*3.14159;

let subtractItem = 50 - 25;

let remainder = total % 7;

let more = (1 + average * 10) / 5;

In the last line in the above example, notice that I am defining a particular order
of operations by using parenthesis around the expression I want to evaluate as a
group. Again, all of this is just calculator stuff.

JavaScript evaluates expressions in the following order:

 1. Parentheses

 2. Exponents

 3. Multiply

 4. Divide

 5. Add

 6. Subtract

There are various mnemonic devices out there to help you remember this. The
one I grew up with since elementary school is “Please Excuse My Dear Aunt
Sally.”

Incrementing and Decrementing
A common thing you will do with numbers will involve incrementing or decrement-
ing a variable by a certain amount. Below is an example of me incrementing the
variable i by 1:
let i = 4;

i = i + 1;

178 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

You don’t have to increment or decrement by just 1. You can use any arbitrary
number:
let i = 100;

i = i - 2;

All of this doesn’t just have to just be addition or subtraction. You can perform
other operations as well:
let i = 100;

i = i / 2;

You should start to see a pattern here. Regardless of what operator you are using,
you’ll notice that you are cumulatively modifying your i variable. Because of how
frequently you will use this pattern, you have some operators that simplify this a
bit (Table 16.1).

TABLE 16.1 Operators for simplifying incrementing and decrementing

Expression What it does

i++ Increments i by 1 (i = i + 1)

i-- Decrements i by 1 (i = i - 1)

i += n Increments i by n (i = i + n)

i -= n Decrements i by n (i = i - n)

i *= n Multiplies by n (i = i * n)

i /= n Divides i by n (i = i / n)

i %= n Finds the remainder of i when divided by n (i = i % n)

i **= n Exponential operator where i is raised to the power of n

If I use these operators on the three examples you saw earlier, the code will look
as follows:
i++;

i -= 2;

i /= 2;

Before we wrap this up, there is one quirk you should be aware of. It has to do
with the -- and ++ operators for incrementing or decrementing a value by 1.
Whether the ++ and -- operators appear before or after the variable they are
incrementing matters.

CHAPTER 16 NUMBERS 179

Let’s look at this example:
let i = 4;

let j = i++;

After executing these two lines, the value of i will be 5...just like you would
expect. The value of j will be 4. Notice that in this example, the operator appears
after the variable.

If we place the operator in front of the variable, the results are a bit different:
let i = 4;

let j = ++i;

The value of i will still be 5. Here is the kicker...the value of j will be 5 also.

What changed between these two examples is the position of the operator. The
position of the operator determines whether the incremented value will be
returned or the pre-incremented value will be returned. Now, aren’t you glad
you learned that?

Hexadecimal and Octal Values
Beyond using normal decimal values, you can use hexadecimal (base 16) and octal
(base 8) values as well. When working with octal values, make sure to start your
number with a 0:
let leet = 0o2471;

For hexadecimal values, you need start your number with 0x:
let leet = 0x539;

In many situations, you’ll find yourself dealing with octal and hexadecimal values in
the form of strings. If they are strings, you cannot manipulate them as you would
normal numbers. You need to convert the string to a number first.

The way you do that is by using the parseInt function:
let hexValue = parseInt('FFFFFF', 16);

let octalValue = parseInt('011', 8);

The parseInt function takes your hexadecimal or octal value followed by the
base you are converting from.

180 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Special Values—Infinity and NaN
The last thing we will look at are two global properties that you will encounter that
aren’t numerical values. These values are Infinity and NaN.

Infinity
You can use the Infinity and –Infinity values to define infinitely large or
small numbers:
let myLoveForYou = Infinity * 2;

The chances of you having to use Infinity are often very slim. Instead, you will
probably see it returned as part of something else your code does. For example,
you will see Infinity returned if you divide by 0.

NaN
The NaN keyword stands for “Not a Number”, and it gets returned when you do
some numerical operation that is invalid. For example, NaN gets returned in the
following case:
let nope = 1920 / "blah";

The reason is that you cannot divide a number and a string. There are non-contrived
cases where you will see this value returned, and we’ll look at some later.

Going from a String to a Number
Sometimes, you will have numbers that are buried inside strings. To get all the
scoop on that, read the Going from a String to a Number tutorial.

The Math Object
Numbers are used in a variety of mathematical expressions, and they often go
beyond simple additions, subtractions, multiplications, and divisions. Your math
classes back in the day would have been a whole lot easier if that’s all there was to
it. To help you more easily do complicated numerical things, you have the Math
object. This object provides you with a lot of functions and constants that will
come in handy, and we are going to very briefly look at some of the things this
object does.

CHAPTER 16 NUMBERS 181

This is Boring!
I am not going to lie to you. Looking at all the stuff the Math object provides
is pretty boring. Unless you really want to know about all of this now, I would
prefer you just very quickly skim through the following sections and refer back
as needed. The Math object isn’t going anywhere (it has no friends), so it will be
waiting for you at a later time.

The Constants
To avoid you having to explicitly define mathematical constants like pi, Euler’s
constant, natural log, and so on, the Math object defines many common constants
for you (Table 16.2).

TABLE 16.2 Constants

Usage What it stands for

Math.E Euler’s constant

Math.LN2 Natural logarithm of 2

Math.LN10 Natural logarithm of 10

Math.LOG2E Base 2 logarithm of E

Math.LOG10E Base 10 logarithm of E

Math.PI 3.14159 (that’s all I remember, and I’m too lazy to look up the rest!)

Math.SQRT1_2 Square root of 1/2

Math.SQRT2 Square root of 2

182 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Of all of these constants, the one I’ve used the most is Math.PI:

You will use this in everything from drawing circles on your screen to specifying
trigonometric expressions. In fact, I can’t ever remember having used any of these
other constants outside of Math.PI. Here is an example of a function that returns
the circumference given the radius:
function getCircumference(radius) {

 return 2 * Math.PI * radius;

}

console.log(getCircumference(2));

You would use Math.PI or any other constant just as you would any named variable.

Rounding Numbers
Your numbers will often end up containing a ridiculous amount of precision:
let position = getPositionFromCursor(); // 159.3634493939

To help you round these numbers up to a reasonable integer value, you have
the Math.round(), Math.ceil(), and Math.floor() functions that take a
number as an argument (Table 16.3).

CHAPTER 16 NUMBERS 183

TABLE 16.3 Rounding functions

Function What it does

Math.round() Returns a number that is rounded to the nearest integer. You round up
if your argument is greater than or equal to .5. You stay at your current
integer, if your argument is less than .5.

Math.ceil() Returns a number that is greater than or equal to your argument

Math.floor() Returns a number that is less than or equal to your argument

The easiest way to make sense of the above table is to just see these three
functions in action:
Math.floor(.5); // 0

Math.ceil(.5); // 1

Math.round(.5); // 1

Math.floor(3.14); // 3

Math.round(3.14); // 3

Math.ceil(3.14); // 4

Math.floor(5.9); // 5

Math.round(5.9); // 6

Math.ceil(5.9); // 6

These three functions always round you to an integer. If you want to round to a
precise set of digits, check out the last half of my Rounding Numbers in JavaScript
tutorial.

Trigonometric Functions
My favorite of the functions, the Math object gives you handy access to almost all
of the trigonometric functions you will need as shown in Table 16.4.

184 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

TABLE 16.4 Trigonometric functions

Function What it does

Math.cos() Gives you the cosine for a given argument

Math.sin() Gives you the sine for a given argument

Math.tan() Gives you the tan for a given argument

Math.acos() Gives you the arccosine (isn’t that such a cool name?) for a given
argument

Math.asin() Gives you the arcsine for a given argument

Math.atan() Gives you the arctan for a given argument

To use any of these, just pass in a number as the argument:
Math.cos(0); // 1

Math.sin(0); // 0

Math.tan(Math.PI / 4); // 1

Math.cos(Math.PI); // 1

Math.cos(4 * Math.PI); // 1

These trigonometric functions take arguments in the form of radian values. If your
numbers are in the form of degrees, be sure to convert them to radians first.

Powers and Square Roots
Continuing down the path of defining the Math object functions, you have
Math.pow(), Math.exp(), and Math.sqrt()as explained in Table 16.5.

TABLE 16.5 Functions for powers and square roots

Function What it does

Math.pow() Raises a number to a specified power

Math.exp() Raises the Euler’s constant to a specified number

Math.sqrt() Returns the square root of a given argument

CHAPTER 16 NUMBERS 185

Let’s look at some examples:
Math.pow(2, 4); //equivalent of 2^4 (or 2 * 2 * 2 * 2)

Math.exp(3); //equivalent of Math.E^3

Math.sqrt(16); //4

Note that Math.pow() takes two arguments. This might be the first built-in
function we’ve looked at that takes two arguments. This little detail is somehow
mildly exciting.

Getting the Absolute Value
If you want the absolute value of a number, simply use the Math.abs() function:
Math.abs(37); //37

Math.abs(-6); //6

That’s all I got for this.

Random Numbers
To generate a somewhat random number between 0 and a smidgen less than 1,
you have the Math.random() function. This function doesn’t take any arguments,
but you can simply use it as part of a mathematical expression:
let randomNumber = Math.random() * 100;

Each time your Math.random function is called, you will see a different number
returned for Math.random(). To learn all about how to work with this function to
generate random numbers, read the Random Numbers in JS tutorial.

186 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

THE ABSOLUTE MINIMUM
That’s all there is to it for this introductory chapter on numbers and the Math
object in JavaScript. As you can see, it doesn’t get much easier than this.
JavaScript provides a very no-frills approach to working with them, and this
chapter gave you a slight peek at the edges in case you need to go there.

Some additional resources and examples that will help you to better understand
how numbers in JavaScript can be used:

• Going from a String to a Number: http://bit.ly/kirupaStrToNum

• Random Numbers in JS: http://bit.ly/kirupaRandom

• Advanced Random Numbers in JS: http://bit.ly/AdvRandom

• Why Don’t My Numbers Add Up: http://bit.ly/kirupaFPG

• Random Colors in JS: http://bit.ly/kirupaRandomColors

Numbers in JavaScript is a fun topic that can be confusing at times. If you find
yourself stuck or confused, get clarity by posting on https://forum.kirupa.com.

http://bit.ly/kirupaStrToNum
http://bit.ly/kirupaRandom
http://bit.ly/AdvRandom
http://bit.ly/kirupaFPG
http://bit.ly/kirupaRandomColors
https://forum.kirupa.com

17
I N T H I S C H A P T E R
• Learn the difference between data properties and

accessor properties

• Learn about getters and setters

• Identify when to use an accessor property vs. a data
property

GETTERS AND SETTERS
The properties we have been working with so far are known as data

properties. These are the properties where we give them a name and

assign a value to them:

let foo = {

 a: "Hello",

 b: "Monday";

}

To read back the value, all we do is just access it directly:

console.log(foo.a);

Writing a value to this property is sorta what we would expect as well:

foo.a = "Manic";

Outside of setting and reading a value, there really isn’t much more we

can do. That is the sad tale of a data property. Now, as part of reading and

writing properties, what if we had the ability to:

• Maintain our existing syntax for reading and writing property values

• Gain the ability to run some custom code behind the scenes

188 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

That would be pretty cool, right? As it turns out, we have the ability to do all of
this. It is brought to you by another friendly and hardworking property variant
known as an accessor property! In the following sections we’ll learn all about
them and run into the real stars of this show, the mysterious getters and setters.

Onward!

A Tale of Two Properties
On the surface, accessor properties and data properties look very similar. With a
data property, you can read and write to a property:
theObj.storedValue = "Unique snowflake!"; // setting

console.log(theObj.storedValue); // reading

With an accessor property, you can pretty much do the exact same thing:
myObj.storedValue = "Also a unique snowflake!"; // setting

console.log(myObj.storedValue); // reading

We can’t tell by looking at how a property is used to see if it is a data property or
an accessor property. To tell the difference, we have to go where the property is
actually defined. Take a look at the following code where we have a few properties
defined inside our zorb object:
let zorb = {

 message: "Blah",

 get greeting() {

 return this.message;

 },

 set greeting(value) {

 this.message = value;

 }

};

First up is message, a regular old data property:
let zorb = {

 message: "Blah",

 get greeting() {

CHAPTER 17 GETTERS AND SETTERS 189

 return this.message;

 },

 set greeting(value) {

 this.message = value;

 }

};

We know this is a data property because it is just a property name and a value.
There isn’t anything else going on here. Now, here is where things get a little
exciting. The next property we have is greeting, and it doesn’t look like any
property we’ve seen in the past:
let zorb = {

 message: "Blah",

 get greeting() {

 return this.message;

 },

 set greeting(value) {

 this.message = value;

 }

};

Instead of a simple name and value arrangement like we saw with message, the
greeting property is broken up into two functions preceded by either a get or
set keyword:
let zorb = {

 message: "Blah",

 get greeting() {

 return this.message;

 },

 set greeting(value) {

 this.message = value;

 }

};

190 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

These keyword and function pairs are commonly known as getters and setters
respectively. What makes them special is that we don’t access greeting as a
function. We access it just like we would any old property:
zorb.greeting = "Hola!";

console.log(zorb.greeting);

The real interesting stuff happens at the getter and setter level, so we will dive
deeper into them next.

Meet Getters and Setters
Based on what we know so far, getter and setter are just fancy names for functions
that behave like properties. When we try to read an accessor property
(zorb.greeting), the getter function gets called:
let zorb = {

 message: "Blah",

 get greeting() {

 return this.message;

 },

 set greeting(value) {

 this.message = value;

 }

};

Similarly, when we set a new value to our accessor property (zorb.greeting =
"Hola!"), the setter function gets called:
let zorb = {

 message: "Blah",

 get greeting() {

 return this.message;

 },

 set greeting(value) {

 this.message = value;

 }

};

CHAPTER 17 GETTERS AND SETTERS 191

The full power of a getter and setter lies in the code we can execute when reading
or writing a property. Because we are dealing with functions under the covers,
we can run any code we want. In our zorb example, we used our greeting
getter and setter to closely mimic what a data property would do. We can set
a value, and we can read back the value that we just set. Pretty boring right? It
doesn’t have to be that way, and the following examples kick the interestingness
of our getters and setters up a bunch of notches.

Shout Generator
Here is an example where whatever message we specify gets turned into all caps:
var shout = {

 _message: "HELLO!",

 get message() {

 return this._message;

 },

 set message(value) {

 this._message = value.toUpperCase();

 }

};

shout.message = "This is sparta!";

console.log(shout.message);

Notice that, as part of setting the value for the message property, we store the
entered value in all caps thanks to the toUpperCase method all String objects
carry around. All this ensures that, when we try to read back the message we had
stored, we see the fully capitalized version of whatever we entered.

Logging Activity
In our next example, we have our superSecureTerminal object that logs all
usernames:
var superSecureTerminal = {

 allUserNames: [],

 _username: "",

192 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 showHistory() {

 console.log(this.allUserNames);

 },

 get username() {

 return this._username;

 },

 set username(name) {

 this._username = name;

 this.allUserNames.push(name);

 }

}

This logging is handled inside the username setter where each username we
provide gets stored in the allUserNames array and the showHistory function
displays the stored usernames to the screen. Before we move on, let’s actually put
this code to the test. We are going to access superSecureTerminal differently
from what we have done in the past. We are going to take some of our Object
creation knowledge and do the following:
var myTerminal = Object.create(superSecureTerminal);

myTerminal.username = "Michael Gary Scott";

myTerminal.username = "Dwight K. Schrute";

myTerminal.username = "Creed Bratton";

myTerminal.username = "Pam Beasley";

myTerminal.showHistory();

We are creating a new object called myTerminal that is based on the
superSecureTerminal object. From here, we can do everything with the
myTerminal object and call it business as usual.

Property Value Validation
The last example we will look at is one where our setters do some validation on
the values sent to them:
let person = {

 _name: "",

 _age: "",

CHAPTER 17 GETTERS AND SETTERS 193

 get name() {

 return this._name;

 },

 set name(value) {

 if (value.length > 2) {

 this._name = value;

 } else {

 console.log("Name is too short!");

 }

 },

 get age() {

 return this._age;

 },

 set age(value) {

 if (value < 5) {

 console.log("Too young!");

 } else {

 this._age = value;

 }

 },

 get details() {

 return "Name: " + this.name + ", Age: " + this.age;

 }

}

Notice that we check for an acceptable input in both our name and age proper-
ties. If the name we provide is fewer than 2 characters, we show an alert. If the
age is less than 5, we show an alert as well. Being able to check if a value we
assign to a property is good or not is probably one of the best features that get-
ters and setters bring to the table.

194 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

THE ABSOLUTE MINIMUM
Should we all stop creating regular data properties and going with the fancier
accessor properties? Not really. It depends on your current needs and potential
future needs. If a property you know will never really need the extra flexibility that
getters and setters provide, you can just keep them as data properties. If you
ever need to revisit that, going from a data property to an accessor property is
something that happens entirely behind the scenes. You and I have the ability to
change that without altering how the property itself will be used. Cool, right?

If you find yourself stuck or confused with any part of this, get clarity by posting on
https://forum.kirupa.com.

https://forum.kirupa.com

18
I N T H I S C H A P T E R
• Understand at a deeper level how Objects work

• Learn to create custom objects

• Demystify the prototype property

• Do some inheriting

A DEEPER LOOK AT
OBJECTS
In the Introduction to Objects schtuff in Chapter 11, “Of Pizzas, Types,

Primitives, and Objects,” we received a very high-level overview of what

objects in JavaScript are and how to think about them. That was good

enough to cover the basics and some of the built-in types, but we need to

go a little deeper. In this chapter, we will make that earlier chapter seem

like the tip of a ginormous iceberg:

196 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

What we are going to do here is have a re-look at objects in greater detail and
touch on the more advanced topics such as using the Object object, creating our
own custom objects, inheritance, prototypes, and the this keyword. If all that I’ve
listed so far makes no sense, it will after we’ve reached the end of this chapter...I
guarantee it.

Onward!

Meet the Object
At the very bottom of the food chain, we have the Object type that lays the
groundwork for both custom objects as well as built-in types like Function,
Array, and RegExp. Pretty much everything except null and undefined is
directly related to an Object or can become one as needed.

As we saw from the introduction to objects forever ago, the functionality that
Object brings to the table is pretty minimal. It allows us to specify a bunch of
named key and value pairs that we lovingly call properties. This isn’t all that dif-
ferent from what we see in other languages with data structures like hashtables,
associative arrays, and dictionaries.

Anyway, all of this is pretty boring. What we are going to do is learn more about
objects by getting our hands dirty by working with them directly.

CHAPTER 18 A DEEPER LOOK AT OBJECTS 197

Creating Objects
The first thing we will look at is how to create an object. There are several ways
to go about this, but all the cool kids are creating objects these days by using the
funny-looking (yet compact) object literal syntax:
let funnyGuy = {};

That’s right. Instead of typing in new Object() like our great-grandparents did,
we can just initialize our object by saying {}. At the end of this line getting exe-
cuted, we will have created an object called funnyGuy whose type is Object:

There is a little more to creating objects than what we’ve just seen with the object
literal syntax, but we’ll cover all of that in due time. DUE. TIME.

Adding Properties
Once we have an object, there are several paths we can take to add properties
on it. The path we will take is a simple and performant one that uses the array-like
bracket notation with our new property name acting as the index.

Let’s continue with where we left off with our funnyGuy object:
let funnyGuy = {};

Let’s say we want to add a new property called firstName and give it a value of
Conan. The way we would add this property is by using a dot notation syntax as
follows:
funnyGuy.firstName = "Conan";

That’s all there is to it. Once we have added this property, we can access it using
the same syntax:
let funnyFirstName = funnyGuy.firstName;

198 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Now, before we move on, since we are already here (and probably paid for a few
more hours of parking), let’s add another property called lastName and give it
the value of O’Brien:
funnyGuy.lastName = "O'Brien";

THERE IS ALSO A BRACKET NOTATION
For both settings as well as reading properties, we used what is known as the dot
notation approach. There is an alternate approach for setting and reading proper-
ties that uses brackets instead of the dot:
let funnyGuy = {};

funnyGuy["firstName"] = "Conan";

funnyGuy["lastName"] = "O'Brien";

Whether you prefer dots or brackets is up to you (or your team if you are working
with a bunch of people), but there is one area that brackets are uniquely qualified
for. That area is when we are dealing with properties whose names we need to
dynamically generate. In the case of firstName and lastName, we had these
property names hardcoded. Take a look at the following snippet:
let myObject = {};

for (let i = 0; i < 5; i++) {

 let propertyName = "data" + i;

 myObject[propertyName] = Math.random() * 100;

}

We have an object called myObject—notice how we are setting properties on it.
We don’t have a hardcoded list of property names, Instead, we create the prop-
erty name by relying on the index values from our array. Once we have figured
out the property name, we then use that data to create a property on myObject.
The property names we will generate will be data0, data1, data2, data3, and
data4. This ability to dynamically specify a property name as part of setting or
reading from an object is something the bracket syntax makes easily possible.

CHAPTER 18 A DEEPER LOOK AT OBJECTS 199

At this point, we are in good shape. Our complete funnyGuy code will look as
follows:
let funnyGuy = {};

funnyGuy.firstName = "Conan";

funnyGuy.lastName = "O'Brien";

When this code runs, we will have created our funnyGuy object and set two
properties called firstName and lastName on it.

What we have just seen is how to create an object and set properties on it in
separate steps. If we know what properties we want to set from the beginning, we
can combine some steps together:
let funnyGuy = {

 firstName: "Conan",

 lastName: "O'Brien"

};

The end result of this code is identical to what we saw earlier where we created
our funnyGuy object first and set the properties afterwards.

There is yet another detail about adding properties that we should look at. By now,
we have looked at a variety of different objects that have properties whose values
are made of up numbers, strings, and so on. Did you know that a property value
can be another object itself? That’s right! Take a look at the following colors
object whose content property stores an object:
let colors = {

 header: "blue",

 footer: "gray",

 content: {

 title: "black",

 body: "darkgray",

 signature: "light blue"

 }

};

The way you specify an object inside an object is as direct as specifying a property
and using the bracket syntax for setting the property value to an object. If we want
to add a property to a nested object, we can combine everything we’ve seen so
far to do this.

200 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Let’s say we want to add a property called frame to the nested content object
we saw a few seconds earlier. The way we can do that is by doing something that
looks like this:
colors.content.frame = "yellow";

We start with our colors object, move to our content object, and then specify
the property and value that we want. If you prefer to use the bracket notation for
accessing the content property, you can do this instead:
colors["content"]["frame"] = "yellow";

If you want to mix things up between the dot and bracket notations, this also
works:
colors.content["frame"] = "yellow";

Before we wrap this up, I mentioned at the beginning that you have several paths
that you can take to add properties to an object. We looked at one such path. A
more complex path that you can take could involve the Object.definePro-
perty and Object.defineProperties methods. These methods allow you
to set a property and its value, but they allow you to do much more...like specify
whether a property can be enumerated, specify whether a property can be cus-
tomized, and more. It’s definitely overkill for what we will want to do 99% of the
time in the beginning, but know this: if overkill is what you want, then these two
methods deliver. The MDN documentation does a good job providing examples
of how you can use them to add one or many properties to an object.

Removing Properties
If you thought adding properties to an object was fun, removing properties from
an object is a bit boring. It is also simpler. Let’s continue to work with our colors
object:
let colors = {

 header: "blue",

 footer: "gray",

 content: {

 title: "black",

 body: "darkgray",

 signature: "light blue"

 }

};

CHAPTER 18 A DEEPER LOOK AT OBJECTS 201

What we want to do is remove the footer property. We have two ways of doing
this depending on whether we want to access the footer property using the
bracket notation or whether we want to access it using the dot notation:
delete colors.footer;

// or

delete colors["footer"];

The key to making this all work is the delete keyword. Simply use the delete
keyword and follow it up with the property you’d like to remove. That’s all there is
to it.

Now, this wouldn’t be JavaScript if I didn’t mention a caveat. This one has to do
with performance. If you will be deleting a lot of properties on a frequent basis
across a large number of objects, delete is much slower than just setting the
value of the property to something like undefined:
colors.footer = undefined;

// or

colors["footer"] = undefined;

The flipside is that setting a property to undefined means the property still exists
in memory. You’ll need to calculate the tradeoffs (speed vs. memory) in your situa-
tion and optimize for the one that makes the most sense for you.

What Is Going on Behind the Scenes?
We saw how to create objects and make some typical modifications on them.
Because objects really are the core of what makes JavaScript do all of its
JavaScriptey things, it is important for us to have a deeper understanding of what
is happening. This isn’t just for the sake of trivial knowledge, though it will be fun
to impress your friends and family over dinner with what you have learned. A large
part of working with JavaScript is building objects based on other objects and
doing other traditional object-oriented things. All of those things will make more
sense when we have a better idea of what really goes on when we are working
with objects.

Let’s start with our funnyGuy object again:
let funnyGuy = {};

202 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Now, what can we do with an empty object? We have no properties defined on it. Is
our funnyGuy object truly alone and isolated with nothing at all going for it? As it
turns out, the answer is a resounding nope. The reason has to do with how objects
we create in JavaScript are automatically interlinked with the bigger Object and all
the functionality it brings to the table. The best way to make sense of this interlinking,
is to visualize it. Take a really REALLY deep breath and look at Figure 18.1.

FIGURE 18.1

What our seemingly simple funnyGuy object actually has going on!

In this diagram, we have mapped out what really happens behind the scenes when
we create our empty funnyGuy object.

In this view, we still start off with our funnyGuy object. That part is still the same.
What is different is everything else. See, our funnyGuy is simply an empty object.
It has no properties that we defined on it. It does have properties that come
defined out of the box, and these properties link our funnyGuy object to the
underlying Object type without us having to do any work. This link allows us to
call traditional Object properties on funnyGuy like the following:
let funnyGuy = {};

funnyGuy.toString(); // [object Object]

CHAPTER 18 A DEEPER LOOK AT OBJECTS 203

To hammer the point home, this link is what allows toString to work when
called on our seemingly empty funnyGuy object. Now, calling this link a link
isn’t accurate. Our link is actually known as a prototype (and often represented as
[[Prototype]]) that ends up pointing to another object. Another object can have
its own [[Prototype]] that points to yet another object and so on. All of this link-
ing is known as the prototype chain. Traveling across the prototype chain is a big part
of what JavaScript does when trying to find a property you are calling. For us calling
toString on our funnyGuy object, Figure 18.2 shows us what is actually happening.

FIGURE 18.2

Walking the prototype chain to find the property we are looking for.

With the prototype chain, even if our object doesn’t have a particular property
that we are looking for defined, JavaScript will walk through the chain and see if
every stop along the way has that property defined instead. Now, our funnyGuy
object’s prototype chain is just itself and Object.prototype. It isn’t a complex
chain at all. As we work with more complex objects, the prototype chain will get
very long and more complex. We’ll dip our toes into this complexity shortly.

NOTE Object Isn’t a Part of the Prototype Chain
In our previous visualizations, we see our Object having a dedicated
entry with lines going between properties on it and the Object.
prototype. The thing to note is that Object is not a part of the pro-
totype chain. It plays a role in how objects implement the relation-
ship between their constructor and a poorly named prototype
property (not related to our [[Prototype]]), and we’ll touch upon
the Object’s role later on. For completeness, I will continue to show
Object’s role in future visualizations of our objects, but do keep a
note that it doesn’t play a role in our prototype chain traversal.

204 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Next, as we can see, our funnyGuy object right now is very basic. Let’s add the
firstName and lastName properties from earlier to make things a bit more
interesting:
let funnyGuy = {

 firstName: "Conan",

 lastName: "O'Brien"

};

With these two properties thrown into the mix, our earlier visualization will now
look as shown in Figure 18.3.

FIGURE 18.3

Say hello to the firstName and lastName properties.

The firstName and lastName properties are a part of the funnyGuy object and
visualized as such as well. With this initial coverage of the object out of the way,
it’s time for us to go a bit more detailed.

CHAPTER 18 A DEEPER LOOK AT OBJECTS 205

Creating Custom Objects
Working with the generic Object and putting properties on it serves a useful
purpose, but its awesomeness fades away really quickly when we are creating many
objects that are basically the same thing. Take a look at the following snippet:
let funnyGuy = {

 firstName: "Conan",

 lastName: "O'Brien",

 getName: function () {

 return "Name is: " + this.firstName + " " + this.lastName;

 }

};

let theDude = {

 firstName: "Jeffrey",

 lastName: "Lebowski",

 getName: function () {

 return "Name is: " + this.firstName + " " + this.lastName;

 }

};

let detective = {

 firstName: "Adrian",

 lastName: "Monk",

 getName: function () {

 return "Name is: " + this.firstName + " " + this.lastName;

 }

};

This snippet builds on our funnyGuy object and introduces two new objects that
are very similar to it, theDude and detective. Our visualization of all of this will
now look as shown in Figure 18.4.

206 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 18.4

Each new object we created extends from Object.prototype.

At first glance, there seems to be quite a bit of duplication going on. Each of our
new objects carries with it its own copy of the firstName, lastName, and get-
Name properties. Now, not all duplication is bad. Yes, that does go against what I
had stated earlier, but hear me out. In the case of objects, we need to figure out
what properties make sense to be duplicated and which ones don’t. From our
example, the firstName and lastName properties will typically have a unique
value per object. Keeping these duplicated on each object makes sense. The
getName property, though, acts as a helper and doesn’t contain anything one par-
ticular object will want to uniquely customize:
getName: function () {

 return "Name is: " + this.firstName + " " + this.lastName;

}

Duplicating this one doesn’t make sense, so we should look at making getName
more generally available without the duplication. How can we go about doing this?

Well...it turns out there is a clean way to do this by creating an intermediate parent
object that contains the generic properties. Our child objects can inherit from this

CHAPTER 18 A DEEPER LOOK AT OBJECTS 207

parent object instead of inheriting from Object directly. To get more specific, we
are going to create a new person object that contains getName. Our funnyGuy,
theDude, and detective objects will inherit from person. This arrangement will
ensure that the properties we need duplicated get duplicated and the properties
we need shared get shared. To help all of this cryptic text make sense, Figure 18.5
highlights what we are trying to do.

FIGURE 18.5

Adding an intermediate person object with our (now shared) getName property.

Notice that person is now a part of the prototype chain, happily nestled between
Object.prototype and our child objects. How do we go about doing this? One
approach that we’ve seen earlier is by relying on Object.create. When using
Object.create, we can specify an object to create our object from, for example:
let myObject = Object.create(fooObject);

When we do this, what happens behind the scenes is the following: our myObject
object’s prototype will be fooObject. It becomes a part of the prototype chain.
Now that we have taken a detour and expanded our understanding of Object.
create with what we’ve seen in this chapter, let’s go back to our original problem
of how we get funnyGuy, theDude, and detective to inherit from our person
object.

The code for doing all of this would be as follows:
let person = {

 getName: function () {

 return "The name is " + this.firstName + " " + this.lastName;

 }

};

208 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

let funnyGuy = Object.create(person);

funnyGuy.firstName = "Conan";

funnyGuy.lastName = "O'Brien";

let theDude = Object.create(person);

theDude.firstName = "Jeffrey";

theDude.lastName = "Lebowski";

let detective = Object.create(person);

detective.firstName = "Adrian";

detective.lastName = "Monk";

Because of how the prototype chain works, we can call getName on any of our
funnyGuy, theDude, or detective objects, and the right things would happen:
detective.getName(); // The name is Adrian Monk

If we decide to enhance our person object, we can do so just once and have any
objects that inherit from it benefit from our enhancement without any repetition.
Let’s say that we add a getInitials method that returns the first letter of the
first and last name:
let person = {

 getName: function () {

 return "The name is " + this.firstName + " " + this.lastName;

 },

 getInitials: function () {

 if (this.firstName && this.lastName) {

 return this.firstName[0] + this.lastName[0];

 }

 }

};

We add this getInitials method on our person object. To use this method, we
can call it on any object that extends person, like our funnyGuy:
funnyGuy.getInitials(); // CO

This ability to create intermediate objects to help divide up the functionality in our
code is a powerful thing. It allows us to be more efficient in how we create objects
and what functionality we provide on each one. Neat, right?

CHAPTER 18 A DEEPER LOOK AT OBJECTS 209

The this Keyword
One thing you may have noticed in our previous snippets is the use of the this
keyword, especially when we used it in our person object to refer to properties
created on its children instead. Let’s go back to our person object and, more spe-
cifically, the getName property:
let person = {

 getName: function () {

 return "The name is " + this.firstName + " " + this.lastName;

 },

 getInitials: function () {

 if (this.firstName && this.lastName) {

 return this.firstName[0] + this.lastName[0];

 }

 }

};

When we call getName, depending on which object we called it from, we’ll see
the appropriate name returned. For example, let’s say we do the following:
let spaceGuy = Object.create(person);

spaceGuy.firstName = "Buzz";

spaceGuy.lastName = "Lightyear";

console.log(spaceGuy.getName()); // Buzz Lightyear

When we run this, we’ll see Buzz Lightyear printed to our console. If we look at
the getName property again, there is absolutely no existence of the firstName
or lastName properties on the person object. When a property doesn’t exist, we
saw earlier that we walk down the prototype chain from parent to parent as shown
in Figure 18.6.

210 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 18.6

The prototype chain for our person object.

In our case, the only stop on the chain would be Object.prototype. There is
no existence of the firstName or lastName properties on Object.prototype
either. How is it that this getName method happens to work and return the right
values?

The answer has to do with the this keyword that precedes firstName and
lastName as part of the return statement in getName:
let person = {

 getName: function () {

 return "The name is " + this.firstName + " " + this.lastName;

 },

 getInitials: function () {

CHAPTER 18 A DEEPER LOOK AT OBJECTS 211

 if (this.firstName && this.lastName) {

 return this.firstName[0] + this.lastName[0];

 }

 }

};

The this keyword refers to the object that our getName method is bound to.
That object is, in this case, spaceGuy because that is the object that we are using
as the entry point to all of this prototype navigation goodness as highlighted in
Figure 18.7.

FIGURE 18.7

The this keyword refers to spaceGuy!

At the point where the getName method is evaluated and the firstName and
lastName properties have to be resolved, the lookup starts at whatever the
this keyword is pointing to. This means our lookup starts with the spaceGuy
object—an object that turns out actually contains the firstName and lastName
properties! That is why we get the correct result when the code for getName (and
getInitials as well) is called.

Knowing what the this keyword refers to is something barrels of ink have been
spilled on, and covering it fully goes a bit beyond what we want to talk about. The
good thing is that what you’ve seen now will you get you pretty far.

212 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

THE ABSOLUTE MINIMUM
Because so much fuss is made about JavaScript’s object orientedness, it is only
natural that a topic that covers it would be as wide and deep as what you’ve seen
here. A bulk of what you saw here dealt with inheritance directly or indirectly
where objects are derived and based on other objects. Unlike other, more class-
ical languages that use classes as templates for objects, JavaScript has no such
concept of a class in a strict sense. JavaScript uses what is known as a prototypical
inheritance model. You don’t instantiate objects from a template. Instead, you
create objects either from scratch or, more commonly, by copying/cloning another
object. JavaScript fits in this gray area where it doesn’t fit the mold of a class-ical
language, but it does have many class-like constructs (some of which you will see
in a later chapter) which doesn’t make it a wild animal at a table where other class-
ical languages may congregate. I wouldn’t get too caught up in labels here.

In the bazillion pages here, I tried to reinforce JavaScript’s new functionality for
working with objects and extending them for your own needs. There is still more
to cover, so take a break and we’ll touch upon some more interesting topics in
the near future that extend what you’ve seen in more powerful, expressive, and
awesome ways.

Some additional resources and examples:

• Understanding “Prototypes” in JS: http://bit.ly/kirupaJSPrototypes

• A Plain English Guide to JS Prototypes: http://bit.ly/kirupaPrototypesGuide

• How Does JavaScript “.prototype” Work?: http://bit.ly/kirupaPrototypeWork

This is a big and strange topic, so please do post on https://forum.kirupa.com
if you run into any problems.

http://bit.ly/kirupaJSPrototypes
http://bit.ly/kirupaPrototypesGuide
http://bit.ly/kirupaPrototypeWork
https://forum.kirupa.com

19
I N T H I S C H A P T E R
• Extend your objects’ functionality

• Learn more about the prototype chain

EXTENDING BUILT-IN
OBJECTS
As we know very well by now, JavaScript comes from the factory with a

good supply of built-in objects. These objects provide some of the core

functionality for working with text, numbers, collections of data, dates, and

a whole lot more. As you become more familiar with JavaScript and start

doing interesting-er and cleverer things, you’ll often find that you want to

do more and go farther than what the built-in objects allow.

Let’s take a look at an example of when something like this might occur.

Below is an example of how we can shuffle the contents of an array:

function shuffle(input) {

 for (let i = input.length - 1; i >= 0; i--) {

 let randomIndex = Math.floor(Math.random() * (i + 1));

 let itemAtIndex = input[randomIndex];

 input[randomIndex] = input[i];

 input[i] = itemAtIndex;

 }

 return input;

}

214 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The way we use this shuffle function is by simply calling it and passing in the
array whose contents we want shuffled:
let shuffleArray = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

shuffle(shuffleArray);

// and the result is...

console.log(shuffleArray);

After this code has run, the end result is that the contents of our array are now
rearranged. Now, this functionality is pretty useful. I would say this is sooo useful,
the shuffling ability should be a part of the Array object and be as easily acces-
sible as push, pop, slice, and other doo-dads the Array object has.

If the shuffle function were a part of the Array object, we could simply use it
as follows:
let shuffleArray = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

shuffleArray.shuffle();

This is an example of us extending a built-in object (the Array) with some func-
tionality that we defined (the shuffle). In the next few sections, we are going to
look at how exactly to accomplish this, why it all works, and why extending built-in
objects is pretty controversial.

Onward!

Say Hello to prototype...again—Sort of!
Extending a built-in object with new functionality sounds complicated, but it is
really simple once you understand what needs to be done. To help with this, we
are going to look at a combination of sample code and diagrams all involving the
very friendly Array object:
let tempArray = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

If we were to diagram the full hierarchy of the tempArray object, it would look as
shown in Figure 19.1.

CHAPTER 19 EXTENDING BUILT-IN OBJECTS 215

FIGURE 19.1

The tangled web of objects (and possibly lies!) that live just beneath the surface.

On the left, we have our tempArray object that is an instance of Array.proto-
type…which is, in turn, an instance of the basic Object.prototype. Now, what
we want to do is extend what our array is capable of with our shuffle function.
What this means is that we need to figure out a way to get our shuffle function
inserted into our Array.prototype as shown in Figure 19.2.

216 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 19.2

Where we want our shuffle function to live!

Here is the part where the quirkiness of JavaScript shines through. We don’t have
access to the code that makes up all of the array functionality. We can’t find the
function or object that makes up the Array and insert our shuffle function into it
like we might for a custom object that we defined. Our built-in objects, such as
the Array, are defined deep inside our browser’s volcanic underbelly where no
human being can go. We need to take another approach.

CHAPTER 19 EXTENDING BUILT-IN OBJECTS 217

That another approach involves casually sneaking in and attaching our functionality
to the Array object’s prototype property. That would look something like this:
Array.prototype.shuffle = function () {

 let input = this;

 for (let i = input.length - 1; i >= 0; i--) {

 let randomIndex = Math.floor(Math.random() * (i + 1));

 let itemAtIndex = input[randomIndex];

 input[randomIndex] = input[i];

 input[i] = itemAtIndex;

 }

 return input;

}

Notice that our shuffle function is declared on Array.prototype! As part of
this attachment, we made a minor change to how the function works. The function
no longer takes an argument for referencing the array you need shuffled:
function shuffle(input) {

 .

 .

 .

 .

 .

}

Instead, because this function is now a part of the Array, the this keyword
inside the function body points to the array that needs shuffling:
Array.prototype.shuffle = function () {

 let input = this;

 .

 .

 .

 .

}

218 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Taking a step back, once we run this code, our shuffle function will find itself
shoulder-to-shoulder with all of the other built-in methods the Array object
exposes through Array.prototype as highlighted in Figure 19.3.

FIGURE 19.3

Great success! The shuffle function is now where it belongs.

If we wanted to access the shuffle capabilities, we can now do so using the
approach we had initially desired:
let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

numbers.shuffle();

CHAPTER 19 EXTENDING BUILT-IN OBJECTS 219

Best of all, any new arrays we create will also have access to the shuffle functional-
ity by default thanks to how prototype inheritance works.

Extending Built-in Objects is Controversial
Given how easy it is to extend a built-in object’s functionality by declaring meth-
ods and properties using the prototype property, it’s easy to think that every-
body loves the ability to do all of this. As it turns out, extending built-in objects is
a bit controversial. The reasons for this controversy revolve around...

You Don’t Control the Built-in Object’s Future
There is nothing preventing a future implementation of JavaScript from including
its own version of shuffle that applies to Array objects. At this point, you have a
collision where your version of shuffle and the browser’s version of shuffle are
in conflict with each other—especially if their behavior or performance characteris-
tics wildly differ. Ruh-roh!

Some Functionality Should Not Be Extended or Overridden
Nothing prevents you from using what you’ve learned here to modify the behav-
ior of existing methods and properties. For example, this is me changing how the
slice behavior works:
Array.prototype.slice = function () {

 let input = this;

 input[0] = "This is an awesome example!";

. return input;

}

let tempArray = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

tempArray.slice();

// and the result is...

console.log(tempArray);

While this is a terrible example, this does show how easy it was for me to break
existing functionality.

220 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FURTHER READING
To see a more comprehensive discussion and further reading around this controversy,
check out this StackOverflow thread: http://stackoverflow.com/questions/8859828/.

THE ABSOLUTE MINIMUM: WHAT SHOULD YOU DO?
My answer to what you need to do is simple: Use your best judgment! The two
cases I outlined are only a few of the numerous issues that people raise when
extending built-in objects is discussed. For the most part, all of the objections
are valid. The question you need to ask is, “Are these objections valid for my
particular scenario?” My guess is that they probably won’t be.

From personal experience, I have never had any issues extending built-in objects
with my own functionality. I wrote this shuffle function years ago, and no browser
as of now has even hinted at implementing their own version of it. I am certainly
not complaining! Second, for any functionality I do add, I test to make sure that
it works well across the browsers I am currently targeting. As long as your testing
is somewhat comprehensive (probably the latest one or two versions of the major
browsers), you should be good to go.

If you are worried about future-proofing your app, name any properties or meth-
ods in such a way that only your app would use them. For example, the chances
of Array.prototype.kirupaShuffle being introduced by any future browser
release is pretty close to zero. :P

Anyway, now that we’ve sufficiently covered some detailed topics around objects in
this and the previous chapters, let’s go back to looking at some of the other types
you will run into before we move on to some really exciting stuff in a little bit.

If you have any questions about extending objects or anything about life in
general, post on the forums at https://forum.kirupa.com.

http://stackoverflow.com/questions/8859828/
https://forum.kirupa.com

20
I N T H I S C H A P T E R
• Learn what classes in the JavaScript world are

• Create objects more easily by using the class syntax

• Understand the role the constructor and related
class constructs play

USING CLASSES
When it comes to working with objects, we have covered a lot of ground

so far. We saw how to create them, we learned about prototypical inheri-

tance, and we even looked at the dark art of extending objects as well. In

doing all of this, we worked at a very low level and were exposed to how

the object-flavored sausage is made. That’s great for really understanding

what is going on. That’s not so great when making sense of complex object

happenings in your app. To simplify all of this, with the ES6 version of

JavaScript, you have support for this thing called classes.

222 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Those of you with a background in other object-oriented programming languages
are probably familiar with that term. Don’t worry if you are not. In the world of
JavaScript, classes are nothing special. They are nothing more than just a handful
of new keywords and conventions that simplify what we have to type when work-
ing with objects. In the following sections, we’ll get a taste of what all that means.

Onward!

The Class Syntax and Object Creation
We are going to learn about the class syntax the same way our grandparents
did—by writing code. Because there is a lot of ground to cover, we won’t try to
bite off everything at once. We’ll start by focusing on how to use the class syntax
when creating objects. As you’ll see, there is a lot going on there that will keep us
plenty busy!

Creating an Object
You can think of a class as a template—a template objects refer to when they are
being created. Let’s say that we want to create a new class called Planet. The
most basic version of that class will look as follows:
class Planet {

}

We use a keyword called class followed by the name we want to give our class.
The body of our class will live inside curly brackets, { and }. As you can see, our
class is currently empty. That’s not very exciting, but it is OK for now. We want to
start off simple.

To create an object based on this class, all you need to do is the following:
let myPlanet = new Planet();

We declare the name of our object and use the new keyword to create (aka instan-
tiate) our object based on the Planet class. If we had to visualize what is happen-
ing under the hood, Figure 20.1 shows what you would see:

CHAPTER 20 USING CLASSES 223

FIGURE 20.1

What myPlanet is made up of behind the scenes.

This looks a bit different from what we saw when creating objects using Object.
create(). The difference has to do with us creating our myPlanet object by
using the new keyword. When we create objects with the new keyword, the follow-
ing things happen:

 1. Our new object is simply of type Planet.

 2. Our new object’s [[Prototype]] is our new function or class’s prototype
property.

224 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 3. A constructor function gets executed that deals with initializing our newly
created object

I won’t bore you too much with additional details, but there is one important
thing that we are going to dive into further. That thing deals with the so-called
constructor that we mentioned in the 3rd item above.

Meet the Constructor
The constructor is a function (or method) that lives inside your class’s body. It is
responsible for initializing the newly created object, and it does that by running any
code contained inside it during object creation. This isn’t an optional detail. All classes
must contain a constructor function. If your class doesn’t contain one (kinda like our
Planet right now), JavaScript will automatically create an empty constructor for you.

Let’s go ahead and define a constructor for our Planet class. Take a look at the
following modification:
class Planet {

 constructor(name, radius) {

 this.name = name;

 this.radius = radius;

 }

}

To define a constructor, we use a special constructor keyword to create what
is basically a function. Just like a function, you can also specify any arguments you
would like to use. In our case, we specify a name and radius value as arguments
and use them to set the name and radius properties on our object:
class Planet {

 constructor(name, radius) {

 this.name = name;

 this.radius = radius;

 }

}

You can definitely do a lot more (or a lot less!) interesting things from inside your
constructor, but the main thing to keep in mind is that this code will run every sin-
gle time we are creating a new object using our Planet class. Speaking of which,
here is how you call our Planet class to create an object:
let myPlanet = new Planet("Earth", 6378);

console.log(myPlanet.name); // Earth

CHAPTER 20 USING CLASSES 225

Notice that the two arguments we need to set on our constructor are actually set
directly on the Planet class itself. When our myPlanet object gets created, the
constructor is run and the name and radius values we passed in get set on our
object. Figure 20.2 shows what this looks like.

FIGURE 20.2

We can see our myPlanet object containing the name and radius properties.

226 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

While we are learning about the class syntax and the details surrounding it,
never forget that all of this is just frosting—delicious syntactic sugar designed to
make your life easy. If we didn’t use the class syntax, we could also have done
something like this:
function Planet(name, radius) {

 this.name = name;

 this.radius = radius;

};

let myPlanet = new Planet("Earth", 6378);

console.log(myPlanet.name); // Earth

The end result is almost identical to what we gained with the class syntax. How
we got there is the only thing that is different. Don’t let this comparison give you
the wrong impression, though. Other useful uses of the class syntax won’t be as
easy to convert using the more traditional approaches as we’ve seen here.

What Goes Inside the Class
Our class objects look a lot like functions, but they have some quirks. We saw that
one of the things that goes into the body of your class is this special constructor
function. The only other things that can go inside your class are other functions/
methods, getters, and setters. That’s it. No variable declarations and initializa-
tions are welcome.

To see all of this at work, let’s add a getSurfaceArea function that prints the sur-
face area of our planet to the console. Go ahead and make the following change:
class Planet {

 constructor(name, radius) {

 this.name = name;

 this.radius = radius;

 }

 getSurfaceArea() {

 let surfaceArea = 4 * Math.PI * Math.pow(this.radius, 2);

 console.log(surfaceArea + " square km!");

 return surfaceArea;

 }

}

CHAPTER 20 USING CLASSES 227

You call getSurfaceArea off our created object to see it in action:
let earth = new Planet("Earth", 6378);

earth.getSurfaceArea();

When this code runs, you’ll see something like 511 million square kilometers
printed out. That’s good. Since we mentioned the other things that can go inside
our class body are getters and setters, let’s throw those in as well. We’ll use them
to help us represent our planet’s gravity:
class Planet {

 constructor(name, radius) {

 this.name = name;

 this.radius = radius;

 }

 getSurfaceArea() {

 let surfaceArea = 4 * Math.PI * Math.pow(this.radius, 2);

 console.log(surfaceArea + " square km!");

 return surfaceArea;

 }

 set gravity(value) {

 console.log("Setting value!");

 this._gravity = value;

 }

 get gravity() {

 console.log("Getting value!");

 return this._gravity;

 }

}

let earth = new Planet("Earth", 6378);

earth.gravity = 9.81;

earth.getSurfaceArea();

console.log(earth.gravity) // 9.81

228 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

That’s all there is to it. One cool thing about adding these things to our class body
is that they all will not live on the created object. They will live on the prototype
(Planet.prototype) instead, as shown by Figure 20.3.

FIGURE 20.3

We don’t have to do anything special to target the prototype object.

That is a good thing, for we don’t want every object to unnecessarily carry around
a copy of the class’s internals when a shared instance would work just fine! Given

CHAPTER 20 USING CLASSES 229

that, you can see that represented in the above diagram. Our gravity getter and
setter along with our getSurfaceArea function live entirely on our prototype!

WHY DO THE FUNCTIONS INSIDE MY CLASS LOOK WEIRD?
One thing you may have noticed is that the appearance of our functions inside the
class body looks a bit odd. They are missing the function keyword, for example.
That weirdness (for once) is actually not related to classes. When defining functions
inside an object, you have a shorthand syntax you can use.

Instead of writing something like this:
let blah = {

 zorb: function() {

 // something interesting

 }

};

You can abbreviate the zorb function definition as follows:
let blah = {

 zorb() {

 // something interesting

 }

};

It is this abbreviated form that you will see and use when specifying functions
inside your class body.

Extending Objects
The last thing we will look at has to do with extending objects in this class-based
world. To help with this, we are going to be working with a whole new type of
planet known as the Potato Planet.

230 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

A potato planet contains everything a regular planet brings to the table, but a
potato planet is made up entirely of potatoes...as opposed to the silly molten
rocks and gas that the other planets are made up of. What we are going to do is
define our potato planet as a class. Its functionality will largely mirror that of the
Planet class, but we will have some additional doodads like a potatoType argu-
ment in the constructor and the getPotatoType method that prints to the con-
sole the value of potatoType.

A not-so-good approach would be to define our potato planet class as follows:
class PotatoPlanet {

 constructor(name, radius, potatoType) {

 this.name = name;

 this.radius = radius;

 this.potatoType = potatoType;

 }

 getSurfaceArea() {

 let surfaceArea = 4 * Math.PI * Math.pow(this.radius, 2);

 console.log(surfaceArea + " square km!");

CHAPTER 20 USING CLASSES 231

 return surfaceArea;

 }

 getPotatoType() {

 var thePotato = this.potatoType.toUpperCase() + "!!1!!!";

 console.log(thePotato);

 return thePotato;

 }

 set gravity(value) {

 console.log("Setting value!");

 this._gravity = value;

 }

 get gravity() {

 return this._gravity;

 }

}

We have our PotatoPlanet class, and it contains not just the new potato-
related things but it also all of the functionality our Planet class had as well. This
approach isn’t great because we are duplicating code. Now, instead of duplicating
our code, what if we had a way of extending the functionality our Planet class
provides with the few additional pieces of functionality that our PotatoPlanet
would need? Wouldn’t that be a better approach? Well...as luck would have it,
we do have such a way via the extends keyword. By having our PotatoPlanet
class extend our Planet class, we can do something like the following:
class Planet {

 constructor(name, radius) {

 this.name = name;

 this.radius = radius;

 }

 getSurfaceArea() {

 let surfaceArea = 4 * Math.PI * Math.pow(this.radius, 2);

 console.log(surfaceArea + " square km!");

 return surfaceArea;

 }

232 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 set gravity(value) {

 console.log("Setting value!");

 this._gravity = value;

 }

 get gravity() {

 return this._gravity;

 }

}

class PotatoPlanet extends Planet {

 constructor(name, width, potatoType) {

 super(name, width);

 this.potatoType = potatoType;

 }

 getPotatoType() {

 let thePotato = this.potatoType.toUpperCase() + "!!1!!!";

 console.log(thePotato);

 return thePotato;

 }

}

Notice how we are declaring our PotatoPlanet class. We are using the
extends keyword and specifying the class we will be extending from, which is
Planet:
class PotatoPlanet extends Planet {

 .

 .

 .

 .

}

CHAPTER 20 USING CLASSES 233

From there, the other thing to keep in mind has to do with the constructor.
If we are going to be extending a class without needing to modify the constructor,
we can totally skip specifying the constructor inside our class:
class PotatoPlanet extends Planet {

 sayHello() {

 console.log("Hello!");

 }

}

In our case, since we are modifying what the constructor does by adding a prop-
erty for the type of potato, we define our constructor again with one important
addition:
class PotatoPlanet extends Planet {

 constructor(name, width) {

 super(name, width);

 this.potatoType = potatoType;

 }

 getPotatoType() {

 var thePotato = this.potatoType.toUpperCase() + "!!1!!!";

 console.log(thePotato);

 return thePotato;

 }

}

We make an explicit call to the parent (Planet) constructor by using the super
keyword and passing in the relevant arguments needed. This super call ensures that
whatever the Planet part of our object needs as part of its functioning is triggered.

To use our PotatoPlanet, we would create our object and populate its proper-
ties or call methods on it just like we would for any plain, non-extended object.
Here is an example of us creating an object of type PotatoPlanet appropriately
called spudnik:
let spudnik = new PotatoPlanet("Spudnik", 12411, "Russet");

spudnik.gravity = 42.1;

spudnik.getPotatoType();

The cool thing is that spudnik has access to not only functionality we defined
as part of our PotatoPlanet class, but all of the functionality provided by the

234 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Planet class we are extending is also available as well. We can see why that is
the case by revisiting a more complex version of our prototype/object relationship
diagram as seen in Figure 20.4.

FIGURE 20.4

What extending an object looks like.

CHAPTER 20 USING CLASSES 235

If we follow the prototype chain, we go from our spudnik object to the
PotatoPlanet.prototype to Planet.prototype to, finally, Object.
prototype. Our spudnik object has access to any property or method defined
at any of these prototype stops, which is why it can call things on Object or on
Planet without skipping a beat even though PotatoPlanet doesn’t define a
whole lot on its own. This is the powerful awesomeness of extending objects.

THE ABSOLUTE MINIMUM
The class syntax makes working with objects really easy. You may have caught
some glimpses of that here, but you’ll start to see more of it later on. The thing
about the class syntax is that it allows us to focus more on what we want to do
as opposed to fiddling with how exactly to do it. While working with Object.
create and the prototype properties gave us a lot of control, that control was
often unnecessary for the majority of our cases. By working with classes, we trade
complexity in favor of simplicity. That’s not a bad thing when the simple solution
also turns out to be the right one...most of the time!

Got a question? Don’t wait. Post on https://forum.kirupa.com.

https://forum.kirupa.com

This page intentionally left blank

21
I N T H I S C H A P T E R
• Learn more about what goes on behind true

and false

• Understand what boolean objects and functions do

• Find out the difference between simple inequality
operators and strict inequality operators

BOOLEANS AND
THE STRICTER === AND
!== OPERATORS
While it’s polite to say that all types are interesting and fun to be around,

you and I both know that is a lie. Some types are just boring. The boolean

type is one such example. Here is the reason why. Whenever we initialize a

variable using either true or false, we create a boolean:

let sunny = false;

let traffic = true;

Congratulations. If you just know this, you are 80% of the way there in fully

understanding how booleans operate. Of course, 80% isn’t really adequate

when you think about it. It’s like eating a hot dog without any condiments.

It’s like watching a live concert and leaving before the encore set. It’s like

leaving a sentence mid.

What we are going to expand upon a bit here is the other 20% made up

of various boolean quirks, the Boolean object, the Boolean function, and

the important === and !== operators.

Onward!

238 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The Boolean Object
Booleans are meant to be used as primitives. I’m going to be extra lazy and just
reuse the example you saw a few moments earlier to show you an example of
what a Boolean primitive would look like:
let sunny = false;

let traffic = true;

Like you’ve seen so many times already, behind every primitive there is an Object
based representation lurking in the shadows. The way you create a new Boolean
object is by using the new keyword, the Boolean constructor name, and an initial
value:
let boolObject = new Boolean(false);

let anotherBool = new Boolean(true);

The initial value you can pass in to the Boolean constructor is commonly true and
false, but you can pretty much pass anything in there that will result in the final
evaluation being true or false. I will detail what kinds of values will predictably
result in a true or false outcome in a little bit, but here is the obligatory warning
from the Surgeon General about this approach: Unless you really REALLY want a
Boolean object, you should stick with primitives.

The Boolean Function
There is one major advantage the Boolean constructor provides, and that
advantage revolves around being able to pass in any arbitrary value or expression
as part of creating your Boolean object:
let boolObject = new Boolean(< arbitrary expression >);

This is really advantageous because you may find yourself wanting to evaluate a
Boolean expression where the data you end up with isn’t a clean true or a false.
This is especially common when you are dealing with external data or code, and
you have no control over which of the various false-y or true-y values you get.
Here is a contrived example:
let isMovieAvailable = getMovieData()[4];

The value for isMovieAvailable is probably a true or false. When it comes
to processing data, you often have no guarantee that something at some point
will break or change what gets returned. Just like in real life, simply hoping that
things will work is never adequate without you taking some actionable steps. The
Boolean function is one such step.

CHAPTER 21 BOOLEANS AND THE STRICTER === AND !== OPERATORS 239

Now, creating your own function to deal with the ambiguity may be overkill, but
the downside with the Boolean constructor is that you are obviously left with a
boolean object—which isn’t desirable. Fortunately, there is a way to get the flex-
ibility of the Boolean constructor with the lightweightness of a Boolean primitive
extremely easily. That way is led by the Boolean function:
let bool = Boolean(true);

The Boolean function allows you to pass in arbitrary values and expressions while
still returning a primitive boolean value of true or false. The main difference in
how you use it compared to the constructor approach is that you don’t have the
new keyword. W00t! Anyway, let’s take a few moments and look at the variety of
things you can pass in to the Boolean function, and note that all of this will also
apply to what you can pass in to the Boolean constructor you saw in the previous
section as well.

The values you can pass in to return false are null, undefined, empty/nothing,
0, an empty string, and (of course) false:
let bool;

bool = Boolean(null);

bool = Boolean(undefined);

bool = Boolean();

bool = Boolean(0);

bool = Boolean("");

bool = Boolean(false);

In all of these examples, the bool variable will return false. To return true, we can
pass in a value of true or ANYTHING that results in something other than the vari-
ous false values we saw earlier:
let bool;

bool = Boolean(true);

bool = Boolean("hello");

bool = Boolean(new Boolean()); // Inception!!!

bool = Boolean("false"); // "false" is a string

bool = Boolean({});

bool = Boolean(3.14);

bool = Boolean(["a", "b", "c"]);

240 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

In these examples, the bool variable will return a true. That may seem bizarre given
some of the statements, so let’s look at a few of the subtle things in play here. If
what we are evaluating is an object, such as new Boolean(new Boolean()) the
evaluation will always be true. The reason is that the mere existence of an object
will trigger the true switch, and calling new Boolean() results in a new object.
Extending this logic a bit, it means the following if statement actually results in a
true as well:
let boolObject = new Boolean(false);

if (boolObject) {

 console.log("Bool, you so crazy!!!");

}

It doesn’t matter that the object we are evaluating is secretly a false in disguise...
or a String object or an Array and so on. The rules for primitives are simpler. If
we are passing in a primitive (or something that evaluates to a primitive), anything
other than null, undefined, 0, an empty string, NaN, or false will result in a
result of true.

Strict Equality and Inequality Operators
The last thing we are going to look at is going to combine what we know about
types and booleans to add a twist to the various conditional operators we saw
earlier. So, we know about == and != and have probably seen them in use a few
times. These are the equality and inequality operators that let us know if two
things are either equal or unequal. Here is the plot twist. There is a subtle and
deviant behavior they exhibit that we may not be aware of.

Here is an example:
function theSolution(answer) {

 if (answer == 42) {

 console.log("You have nothing more to learn!");

 }

}

theSolution("42"); //42 is passed in as a string

In this example, the expression answer == 42 will evaluate to true. This works
despite the 42 we passed in being a string and the 42 we are checking against
being a number. What is going on here? In what kind of a world is a string and a

CHAPTER 21 BOOLEANS AND THE STRICTER === AND !== OPERATORS 241

number equal? With the == and != operators, this is expected behavior. The value
for the two things you are comparing is 42. To make this work, JavaScript forces
the two different yet similar values to be the same under the hood. This is formally
known as type coercion.

The problem is that this behavior can be undesirable—especially when this is hap-
pening without us knowing about it. To avoid situations like this, we have stricter
versions of the equality and inequality operators, and they are === and !==
respectively. What these operators do is that they check for both value and type
and do not perform any type coercion. They basically force us to write code where
the burden on ensuring true equality or inequality falls squarely on us. That is a
good thing.

Let’s fix our earlier example by replacing the == operator with the === operator:
function theSolution(answer) {

 if (answer === 42) {

 console.log("You have nothing more to learn!");

 }

}

theSolution("42"); //42 is passed in as a string

This time around, the conditional expression will evaluate to false. In this stricter
world, a string and number are of different types despite the values being similar.
Because no type coercion takes place, the final result is false.

The general word on the street is to always use the stricter forms of the equality
and inequality operators. If anything, using them will help us to spot errors in our
code—errors that might otherwise turn out very difficult to identify.

CAUTION If we are comparing two different objects, the
strict equality operator (and the not-so-strict equality operator)
won’t work as we might expect. For example, all of these cases
below will be false:

console.log(new String("A") == new String("A"));

console.log([1, 2, 3] == [1, 2, 3]);

console.log({ a: 1 } == { a: 1 });

Keep that in mind when comparing the equality or inequality of
two separate, individual objects.

242 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

THE ABSOLUTE MINIMUM
Booleans make up one of the most frequently used types in our code. They play
a key role in allowing our code to branch out into different directions despite the
simplicity they exhibit on the surface. While I can count on one hand the number of
times I had to use the Boolean function or even the stricter equality and inequality
operators, there aren’t enough hands with fingers for me to count the number of
times I’ve encountered these strange things in the wild.

If you have any questions, head on over to https://forum.kirupa.com and ask away!

https://forum.kirupa.com

22
I N T H I S C H A P T E R
• Learn about when values don’t exist

• Understand what to do with null and undefined

NULL AND UNDEFINED
One of the great mysteries of the world revolves around making sense of

null and undefined. Most code you see is littered with them, and you’ve

probably run into them yourself a few times. As mysteries go, making

sense of null and undefined isn’t particularly bizarre. It is just dreadfully

boring...like the most boring (yet important) thing about JavaScript you’ll

ever have to learn.

Onward!

244 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Null
Let’s start with null. The null keyword is a primitive that fills a special role in the
world of JavaScript. It is an explicit definition that stands for no value. If you’ve
ever browsed through code others have written, you’ll probably see null appear
quite a number of times. It is quite popular, for the advantage of null lies in its
definitiveness. Instead of having variables contain stale values or mystery unde-
fined values, setting it to null is a clear indication that you want the value to not
exist.

This advantage is important when you are writing code and want to initialize or
clear a variable to something that represents nothing.

Here is an example:
let name = null;

if (name === null) {

 name = "Peter Griffin";

} else {

 name = "No name";

}

The null primitive isn’t a naturally occurring resource. It is something you con-
sciously assign, so you will often see it used as part of variable declarations or
passed in as arguments to function calls. Using null is easy. Checking for its exis-
tence is pretty easy as well:
if (name === null) {

 // do something interesting...or not

}

The only thing to note is that you should use the === operator instead of the
lowly == one. While the world won’t end if you use ==, it’s good practice to check
for both type and value when working with null.

Undefined
Here is where things get a little interesting. To represent something that isn’t
defined, you have the undefined primitive. You see undefined in a few cases.
The most common ones are when you try to access a variable that hasn’t been
initialized or when accessing the value of a function that doesn’t actually return
anything.

CHAPTER 22 NULL AND UNDEFINED 245

Here is a code snippet that points out undefined in a few of its natural habitats:
let myVariable;

console.log(myVariable); // undefined

function doNothing() {

 // watch paint dry

 return;

}

let weekendPlans = doNothing();

console.log(weekendPlans); // undefined

let person = {

 firstName: "Isaac",

 lastName: "Newton"

}

console.log(person.title); // undefined

In your code, you probably won’t be assigning undefined to anything. Instead,
you will spend time checking to see if the value of something is undefined. You
have several ways to perform this check. The first is a naive way that usually almost
always works:
if (myVariable === undefined) {

 // do something

}

The downside of this approach has to do with what undefined actually is. Brace
yourself—undefined is a global variable that happens to be automatically
defined for us, and this means we can potentially overwrite it to something like
true or whatever else we want to set it to. If undefined ever gets overwritten, it
would break our code if we just check with a === or == even. To avoid any she-
nanigans around this, the safest way to perform a check for undefined involves
typeof and the === operator:
let myVariable;

if (typeof myVariable === "undefined") {

 console.log("Define me!!!");

}

246 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

This ensures that you will perform a check for undefined and always return the
correct answer.

THE ABSOLUTE MINIMUM
There is a reason why I saved these built-in types for last. Null and undefined
are the least exciting of the bunch, but they are also often the ones that are the
most misunderstood. Knowing how to use null and detecting for it and unde-
fined are very important skills to get right. Not getting them right will lead to
very subtle errors that are going to be hard to pinpoint.

If you have any questions about null and undefined or just want to talk to
some of the friendliest developers on the planet to get unblocked, post on
https://forum.kirupa.com.

NULL == UNDEFINED, BUT NULL !== UNDEFINED
Continuing the == and === weirdness, if you ever check for null ==
undefined, the answer will be a true. If you use === and have null ===
undefined, the answer in this case will be false.

The reason is that == does type coercion where it arm-twists types to conform to
what JavaScript thinks the value should be. Using ===, you check for both type
and value. This is a more comprehensive check that detects that undefined and
null are indeed two different things.

A hat tip to senocular (aka Trevor McCauley) for pointing this out!

https://forum.kirupa.com

23
I N T H I S C H A P T E R
• Understand anonymous functions

• Learn how to invoke a block of code immediately

• Take our knowledge of scope further by creating
data that is private

ALL ABOUT JSON
(AKA JAVASCRIPT OBJECT
NOTATION)
When it comes to storing, retrieving, or transmitting data, there are a bunch

of file formats and data structures that you can use. You’ve probably used

text files, Word documents, Excel spreadsheets, zip files, and so on to deal

with the various kinds of data you handle. On the web front, there is one

format that reigns supreme over all others. It runs faster. It jumps higher. It

has a shinier (and furrier) coat of fur. That format is known as JSON—short

for JavaScript Object Notation.

In this article, we are going to learn all about what makes JSON objects

awesome. We’ll look in detail at what goes inside them and how you can

read values from them as part of your own implementations.

Onward!

248 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

What Is JSON?
In JavaScript, you have a way of defining objects using the object literal syntax:
let funnyGuy = {

 firstName: "Conan",

 lastName: "O'Brien",

 getName: function () {

 return "Name is: " + this.firstName + " " + this.lastName;

 }

};

let theDude = {

 firstName: "Jeffrey",

 lastName: "Lebowski",

 getName: function () {

 return "Name is: " + this.firstName + " " + this.lastName;

 }

};

let detective = {

 firstName: "Adrian",

 lastName: "Monk",

 getName: function () {

 return "Name is: " + this.firstName + " " + this.lastName;

 }

};

If you aren’t familiar with this syntax, I highly recommend you read more about it
in the Deeper Look at Objects article. It will make understanding and working
with JSON objects significantly easier!

On the surface, the object literal syntax looks like a bunch of brackets and colons
and weird curly braces that define your object’s properties and values. Despite
how weird it looks, under the covers, it is fairly descriptive. Many of the common
data types you would want to use are available. You can neatly represent their

CHAPTER 23 ALL ABOUT JSON (AKA JAVASCRIPT OBJECT NOTATION) 249

properties and values as key and value pairs separated by a colon. Equally impor-
tant as all the other stuff I just mentioned, this syntax allows you to have structure
and nested values. Overall, it is a pretty sweet way of representing JavaScript
objects...in a literal representation!

The JSON format borrows heavily from this object literal syntax. Here is an exam-
ple of some honest-to-goodness real JSON data returned by the WeatherUnder-
ground API for displaying the weather in my hometown of Seattle:
{

 "response": {

 "version": "0.1",

 "termsofService":
"http://www.wunderground.com/weather/api/d/terms.html",

 "features": {

 "conditions": 1

 }

 },

 "current_observation": {

 "image": {

 "url": "http://icons.wxug.com/graphics/wu2/logo_130x80.png",

 "title": "Weather Underground",

 "link": "http://www.wunderground.com"

 },

 "display_location": {

 "full": "Seattle, WA",

 "city": "Seattle",

 "state": "WA",

 "state_name": "Washington",

 "country": "US",

 "country_iso3166": "US",

 "zip": "98101",

 "magic": "1",

 "wmo": "99999",

 "latitude": "47.61167908",

 "longitude": "-122.33325958",

 "elevation": "63.00000000"

 },

250 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 "observation_location": {

 "full": "Herrera, Inc., Seattle, Washington",

 "city": "Herrera, Inc., Seattle",

 "state": "Washington",

 "country": "US",

 "country_iso3166": "US",

 "latitude": "47.616558",

 "longitude": "-122.341240",

 "elevation": "121 ft"

 },

 "estimated": {},

 "station_id": "KWASEATT187",

 "observation_time": "Last Updated on August 28, 9:28 PM PDT",

 "observation_time_rfc822": "Fri, 28 Aug 2015 21:28:12 -0700",

 "observation_epoch": "1440822492",

 "local_time_rfc822": "Fri, 28 Aug 2015 21:28:45 -0700",

 "local_epoch": "1440822525",

 "local_tz_short": "PDT",

 "local_tz_long": "America/Los_Angeles",

 "local_tz_offset": "-0700",

 "weather": "Overcast",

 "temperature_string": "68.0 F (20.0 C)",

 "temp_f": 68.0,

 "temp_c": 20.0,

 "relative_humidity": "71%",

 "wind_string": "Calm",

 "wind_dir": "NNW",

 "wind_degrees": 331,

 "wind_mph": 0.0,

 "wind_gust_mph": "10.0",

 "wind_kph": 0,

 "wind_gust_kph": "16.1",

 "pressure_mb": "1008",

 "pressure_in": "29.78",

 "pressure_trend": "-",

CHAPTER 23 ALL ABOUT JSON (AKA JAVASCRIPT OBJECT NOTATION) 251

 "dewpoint_string": "58 F (15 C)",

 "dewpoint_f": 58,

 "dewpoint_c": 15,

 "heat_index_string": "NA",

 "heat_index_f": "NA",

 "heat_index_c": "NA",

 "windchill_string": "NA",

 "windchill_f": "NA",

 "windchill_c": "NA",

 "feelslike_string": "68.0 F (20.0 C)",

 "feelslike_f": "68.0",

 "feelslike_c": "20.0",

 "visibility_mi": "10.0",

 "visibility_km": "16.1",

 "solarradiation": "--",

 "UV": "0",

 "precip_1hr_string": "0.00 in (0 mm)",

 "precip_1hr_in": "0.00",

 "precip_1hr_metric": " 0",

 "precip_today_string": "0.00 in (0 mm)",

 "precip_today_in": "0.00",

 "precip_today_metric": "0",

 "icon": "cloudy",

 "icon_url": "http://icons.wxug.com/i/c/k/nt_cloudy.gif",

 "nowcast": ""

 }

}

Ignoring the size of the data returned, there are a lot of similarities between the
JSON data you see and the object literal syntax you saw earlier. There are some
major differences that you need to be aware of as well, but we’ll look at all that
boring stuff later. First, let’s take a deeper look at what exactly makes up a JSON
object.

252 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Looking Inside a JSON Object
A JSON object is nothing more than a combination of property names and their
values. That seems pretty simple, but there are some important details that we
need to go over in this section.

Property Names
Property names are the identifiers you will use to access a value. Visually, they are
the things to the left of the colon character:
{

 "firstName": "Kirupa",

 "lastName": "Chinnathambi",

 "special": {

 "admin": true,

 "userID": 203

 },

 "devices": [

 {

 "type": "laptop",

 "model": "Macbook Pro 2015"

 },

 {

 "type": "phone",

 "model": "iPhone 6"

 }

]

}

In this JSON snippet, the property names are firstName, lastName, special,
admin, userID, devices, type, and model. Notice how the property names are
defined. They are string values wrapped in quotation marks. The quotation mark
is an important detail that you don’t have to specify in the object literal case for
property names, so don’t forget to include them when working in the JSON world!

CHAPTER 23 ALL ABOUT JSON (AKA JAVASCRIPT OBJECT NOTATION) 253

The Values
Each property name maps to a value, and the types of values you can have are:

• Numbers

• Strings

• Booleans (true or false)

• Objects

• Arrays

• Null

Let’s map these various types to the example we just looked at earlier.

Strings
The string values are the following highlighted lines:
{

 "firstName": "Kirupa",

 "lastName": "Chinnathambi",

 "special": {

 "admin": true,

 "userID": 203

 },

 "devices": [

 {

 "type": "laptop",

 "model": "Macbook Pro"

 },

 {

 "type": "phone",

 "model": "iPhone XS"

 }

]

}

The double quotation marks are a dead giveaway that these values are strings.
Besides your usual letters and numbers and symbols, you can also include escape
characters like \', \", \\, \/, and so on to define characters in your string that would
otherwise get parsed as some JSON operation.

254 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Numbers
Our lone representative of the number family is the value for the userID
property:
{

 "firstName": "Kirupa",

 "lastName": "Chinnathambi",

 "special": {

 "admin": true,

 "userID": 203

 },

 "devices": [

 {

 "type": "laptop",

 "model": "Macbook Pro"

 },

 {

 "type": "phone",

 "model": "iPhone XS"

 }

]

}

You can specify both decimal values (eg: 0.204, 1200.23, 45) as well as exponen-
tial values (2e16, 3e+4, 1.5e-2). There are some quirks you need to be aware of,
though. You can’t prefix your number with a 0 followed by another number. For
example, a value of 03.14 isn’t allowed.

Booleans
Boolean values are easy:
{

 "firstName": "Kirupa",

 "lastName": "Chinnathambi",

 "special": {

 "admin": true,

 "userID": 203

 },

 "devices": [

CHAPTER 23 ALL ABOUT JSON (AKA JAVASCRIPT OBJECT NOTATION) 255

 {

 "type": "laptop",

 "model": "Macbook Pro"

 },

 {

 "type": "phone",

 "model": "iPhone XS"

 }

]

}

The values can either be true or false. One thing to note—the capitalization is
important. Both true and false have to be lowercase. Using sentence casing (True
or False) or going with all caps (TRUE or FALSE) is forbidden.

Objects
This is where things get a little interesting:
{

 "firstName": "Kirupa",

 "lastName": "Chinnathambi",

 "special": {

 "admin": true,

 "userID": 203

 },

 "devices": [

 {

 "type": "laptop",

 "model": "Macbook Pro"

 },

 {

 "type": "phone",

 "model": "iPhone XS"

 }

]

}

256 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Objects contain a collection of property names and values, and they are sepa-
rated from the rest of your content with curly brackets. See? Wasn’t that a little
interesting?

Arrays
Our devices property represents an array:
{

 "firstName": "Kirupa",

 "lastName": "Chinnathambi",

 "special": {

 "admin": true,

 "userID": 203

 },

 "devices": [

 {

 "type": "laptop",

 "model": "Macbook Pro"

 },

 {

 "type": "phone",

 "model": "iPhone XS"

 }

]

}

Arrays store an ordered collection of zero or more values that you can iterate
through, and they are separated by the bracket notation. Inside an array, you can
use any of the JSON types we’ve seen so far...including other arrays!

Null
The last data type is also the most boring one:
{

 "foo": null

}

Your JSON values can be null. This represents an empty value.

CHAPTER 23 ALL ABOUT JSON (AKA JAVASCRIPT OBJECT NOTATION) 257

Reading JSON Data
I admit it. The previous section was extremely dull, but there is some good news!
Given how boring what you just saw was, this section is by comparison going to
seem a whole lot more exciting than it really is. Yay!

Anyway, almost all your interactions with JSON will revolve around reading data.
When it comes to reading JSON data, the main thing to keep in mind is that it is
very similar to reading values stored inside a typical JavaScript Object. You can
either dot into the value you want (property.propertyFoo) or you can use the
array approach (property["propertyFoo"]) and access the value that way.

To help explain all this, let’s use the following example:
let exampleJSON = {

 "firstName": "Kirupa",

 "lastName": "Chinnathambi",

 "special": {

 "admin": true,

 "userID": 203

 },

 "devices": [

 {

 "type": "laptop",

 "model": "Macbook Pro"

 },

 {

 "type": "phone",

 "model": "iPhone XS"

 }

]

};

To read the value stored by firstName, you can do either of the following:
exampleJSON.firstName;

exampleJSON["firstName"];

Both lines will return a value of Kirupa. There is no right or wrong answer to
whether you want to use the dot notation approach or the array approach to
access the value you are interested in. Use whatever you are comfortable with,

258 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

but my personal preference is to use dot notation. Passing in property names as
strings makes me queasy, so I will only highlight the dot notation approach in the
code snippets that you will be seeing.

Similar to what you saw earlier, to access the value stored by lastName, you can
do this:
exampleJSON.lastName;

For simple properties that store simple values, life is pretty simple. The only very
VERY minor complication you’ll run into is when working with more complex val-
ues made up of Objects and Arrays. To read a value stored inside an Object, just
keep dotting into each property until you reach the property that stores the value
you are interested in.

Here is what trying to access the value stored by the userID property will look
like:
exampleJSON.special.userID;

Arrays are no different, but you will eventually have to switch into array notation
once you get to the property that stores your array values. If we wanted to access
the model value of the first device in the devices array, we can type something
that looks as follows:
exampleJSON.devices[0].model;

Because the devices property refers to an array, you can also perform stereotypi-
cal array-like operations such as the following:
let devicesArray = exampleJSON.devices;

for (let i = 0; i < devicesArray.length; i++) {

 let type = devicesArray[i].type;

 let model = devicesArray[i].model;

 // do something interesting with this data!

}

To reiterate what you saw in the previous section, your JSON values can be either
strings, numbers, objects, arrays, booleans, or nulls. Everything that JavaScript
supports for a given data type that you encounter inside your JSON object, you
can easily take advantage of.

CHAPTER 23 ALL ABOUT JSON (AKA JAVASCRIPT OBJECT NOTATION) 259

Parsing JSON-looking Data into Actual JSON
In our example, we had our JSON data defined neatly inside the exampleJSON
variable. There is no doubt in anybody’s mind that what we’re dealing with is a real
JS object that is represented using JSON semantics.

With real-world scenarios, that won’t always be the case. Your JSON data could
be coming from a variety of different sources, and not all of them will return the
JSON data into this workable format that we saw. Many will return JSON data as
raw text. You will have something that looks like a JSON object, but you can’t
interact with the data like you would when you are working with a real JSON
object.

To deal with this, you have the JSON.parse method that takes your "fake" JSON
data as its argument:
function processRequest(e) {

 if (xhr.readyState == 4 && xhr.status == 200) {

 let response = JSON.parse(xhr.responseText);

 selectInitialState(response.region);

 }

}

As you can see from our highlighted line, this method takes whatever JSON-looking
data that you end up with and converts it into a real JSON object that you can work
with more easily. Whenever I am working with JSON data from an external source,
I always use JSON.parse just to be safe.

Writing JSON Data?
We just had a section devoted entirely to reading values from JSON data. It would
seem logical to also have a section that is focused on writing JSON data. As it
turns out, writing JSON data just isn’t all that popular unless you are saving JSON
data to a file or doing something with web services. If you are doing either of
these tasks, statistically you are doing development on Node or writing code in a
programming language other than JavaScript.

For front-end development, I can’t think of too many cases where information on
writing JSON would be useful. If you run into the rare situation where you need
to do something other than reading JSON data, my recommendation is for you to
use Google!

260 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

THE ABSOLUTE MINIMUM
At one point in time, this article would have been focused on XML. Even today, XML
is still widely popular as a file format for storing or communicating information. Only
in a world where the web browser is king (aka the world that we live in) is where
JSON is extremely popular. Outside of web sites, web applications, and REST-based
web services, dealing with data in the JSON format isn’t all that popular. You should
keep that in mind when running into older, less web-centric situations!

If you have any JSON-related questions, or questions on anything else, head over
and post on the forums at https://forum.kirupa.com.

https://forum.kirupa.com

24
I N T H I S C H A P T E R
• Learn how JavaScript and the rest of your page

interact

• Understand what the fuss about the Document
Object Model (DOM) is all about

• Figure out the fuzzy boundaries between HTML,
CSS, and JavaScript

JS, THE BROWSER,
AND THE DOM
So far, we’ve looked at JavaScript in isolation. We learned a lot about its

basic functionality, but we did so with little to no connection with how it

ties to the real world—a world that is represented by your browser and

swimming with little HTML tags and CSS styles. This chapter will serve as

an introduction to this world, and subsequent chapters will dive in much

deeper.

In the following sections, you will learn about the mysterious data structure

and programming interface known as the Document Object Model (DOM).

You’ll learn what it is, why it is useful, and how it ties in to everything that you’ll

be doing in the future.

Onward!

262 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

What HTML, CSS, and JavaScript Do
Before we dive in and start answering the meaning of life…err, the DOM, let’s
quickly look at some things you probably already know. For starters, the stuff you
put into your HTML documents revolves around HTML, CSS, and JavaScript. We
treat these three things as equal partners in building up what you see in your
browser (Figure 24.1).

FIGURE 24.1

A typical web page is made up of HTML, CSS, and JavaScript.

Each partner has an important role to play, and the role each one plays is very
different.

HTML Defines the Structure
Your HTML defines the structure of your page and typically contains the content
that you see:
<!DOCTYPE html>

<html>

<head>

 <meta content="sea otter, kid, stuff" name="keywords">

 <meta content="Sometimes, sea otters are awesome!"
name="description">

 <title>Example</title>

CHAPTER 24 JS, THE BROWSER, AND THE DOM 263

 <link href="foo.css" rel="stylesheet" />

</head>

<body>

 <div id="container">

 <h1>What This Sea Otter Did to This Little Kid Will Make You
LOL!</h1>

 <p class="bodyText">

 Nulla tristique, justo eget semper viverra,

 massa arcu congue tortor, ut vehicula urna mi

 in lorem. Quisque aliquam molestie dui, at tempor

 turpis porttitor nec. Aenean id interdum urna.

 Curabitur mi ligula, hendrerit at semper sed,

 feugiat a nisi.

 </p>

 <div class="submitButton">

 more

 </div>

 </div>

 <script src="stuff.js"></script>

</body>

</html>

HTML by itself, kinda like Meg Griffin in Family Guy, is pretty boring. If you don’t
know who Meg is and are too lazy to Google her, Figure 24.2 is an approximation
of what she looks like.

264 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 24.2

An artistic interpretation of Meg Griffin.

Anyway, you don’t want your HTML documents to be boring. To transform your
content from something plain and drab to something appealing, you have CSS.

Prettify My World, CSS!
CSS is your primary styling language that allows you to give your HTML elements
some much-needed aesthetic and layout appeal:
body {

 font-family: "Arial";

 background-color: #CCCFFF;

}

#container {

 margin-left: 30%;

}

#container img {

 padding: 20px;

}

CHAPTER 24 JS, THE BROWSER, AND THE DOM 265

#container h1 {

 font-size: 56px;

 font-weight: 500;

}

#container p.bodyText {

 font-size: 16px;

 line-height: 24px;

}

.submitButton {

 display: inline-block;

 border: 5px solid #669900;

 background-color: #7BB700;

 padding: 10px;

 width: 150px;

 font-weight: 800;

}

For the longest time, between HTML and CSS, you had everything you needed to
create an awesome-looking and functioning page. You had structure and layout.
You had navigation. You even had simple interactions such as mouseovers. Life
was good.

It’s JavaScript Time!
For all the great things HTML and CSS had going for them, they were both lim-
ited in how much interactivity they provided. People wanted to do more on a
web document than just passively sit back and observe what is going on. They
wanted their web documents to do more. They wanted their documents to help
them play with media; remember where they left off; do things with their mouse
clicks, keyboard taps, and finger presses; use fancy navigation menus; see spiffy
(yes, I used the word spiffy) programmatic animations; interact with their webcams/
microphones; not require a page reload/navigation for any kind of action; and a
whole lot more.

266 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

It certainly helped that web developers and designers (aka you and me) were itch-
ing for a way to help create these kinds of things as well.

To fill in this gap between what HTML and CSS provided and what people wanted,
you had third-party components like Java and Flash that thrived for many years.
It wasn’t until recently that this trend changed. There were many technical and
political reasons for this shift, but one reason was that JavaScript for many years
just wasn’t ready. It didn’t have what it took either in the core language or in what
browsers supported to be effective.

That’s no longer the case today. JavaScript is now a perfectly capable language
that allows you to add the kinds of interactive things that people are looking for.
All of these capabilities are accessed by the real star of all this, the DOM.

CHAPTER 24 JS, THE BROWSER, AND THE DOM 267

Meet the Document Object Model
What your browser displays is a web document. More specifically, to summarize
the entirety of the previous sections, what you see is a collision of HTML, CSS, and
JavaScript working together to create what gets shown. Digging one step deeper,
under the covers, there is a hierarchical structure that your browser uses to make
sense of everything going on.

This structure is known (again) as the Document Object Model. Friends just call it
the DOM. Figure 24.3 shows a very simplified view of what the DOM for our ear-
lier example would look like:

FIGURE 24.3

Our DOM for all the HTML you saw earlier looks sorta like this!

Despite the simplicity, there are several things to drill in on that apply to all DOM
structures in general. Your DOM is actually made up many kinds of things beyond
just HTML elements. All of those things that make up your DOM are more generi-
cally known as nodes.

These nodes can be elements (which shouldn’t surprise you), attributes, text con-
tent, comments, document-related stuff, and various other things you simply never
think about. That detail is important to someone, but that “someone” shouldn’t

268 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

be you and me. Almost always, the only kind of node we will care about is the
element kind because that is what we will be dealing with 99% of the time. At the
boring/technical level, nodes still play a role in our element-centric view.

Every HTML element you want to access has a particular type associated with
it, and all of these types extend from the Node base that makes up all nodes as
shown in Figure 24.4.

FIGURE 24.4

The arrangement of how the elements we typically see are structured.

Your HTML elements are at the end of a chain that starts with Node and
continues with Element and HTMLElement before ending with a type
(HTMLDivElement, HTMLHeadingElement, and so on) that matches the HTML
element itself. The properties and methods you will see for manipulating HTML
elements are introduced at some part of this chain.

CHAPTER 24 JS, THE BROWSER, AND THE DOM 269

Now, before we run toward using the DOM to modify HTML elements, let’s first
talk about two special objects that get in the way before the road clears up for
what we want to do.

The Window Object
In the browser, the root of your hierarchy is the window object that contains many
properties and methods that help you work with your browser; see Figure 24.5.

FIGURE 24.5

The window is a pretty big deal up in these here parts.

Some of the things you can do with the help of the window object include access-
ing the current URL, getting information about any frames in the page, using local
storage, seeing information about your screen, fiddling with the scrollbar, setting
the status bar text, and all sorts of things that are applicable to the container your
web page is displayed in.

The Document Object
Now, we get to the document object highlighted in Figure 24.6. Here is where
things get interesting, and it is also where you and I will be focusing a lot of our time.

270 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 24.6

The document object is also sorta kinda a big deal.

The document object is the gateway to all the HTML elements that make up what
gets shown. The thing to keep in mind (and one that makes more sense as we
look at future chapters) is that the document object does not simply represent
a read-only version of the HTML document. It is a two-way street where you can
read as well as manipulate your document at will.

Any change you make to the DOM via JavaScript is reflected in what gets shown
in the browser. This means you can dynamically add elements, remove them,
move them around, modify attributes on them, set inline CSS styles, and per-
form all sorts of other shenanigans. Outside of the very basic HTML needed via a
script tag to get some JavaScript to run in an HTML document, you can con-
struct a fully functioning page using nothing but JavaScript if you felt like it. Used
properly, this is a pretty powerful feature.

Another import aspect of the document object has to do with events. I will go
into more detail on this shortly, but if you want to react to a mouse click/hover,
checking a check box, detecting when a key was pressed, and so on, you will be
relying on functionality the document object provides for listening to and reacting
to events.

CHAPTER 24 JS, THE BROWSER, AND THE DOM 271

There are a few more big buckets of functionality the DOM provides, but I’ll
highlight them as we get to them.

THE ABSOLUTE MINIMUM
The DOM is the single most important piece of functionality you have for working
with your HTML documents. It provides the missing link that ties your HTML and
CSS with JavaScript. It also provides access one level up to your browser.

Now, knowing about the DOM is just part of the fun. Actually using its functional-
ity to interact with your web document is the much larger and funner other part.
When you are ready, turn (or flip) on over to the next chapter where we will go
further.

If you have any questions about this or any other topic, post on the forums at
https://forum.kirupa.com.

https://forum.kirupa.com

This page intentionally left blank

25
I N T H I S C H A P T E R
• Learn how to find elements in the DOM

• Use the CSS selector syntax for cleverer element
discovery

FINDING ELEMENTS IN
THE DOM
As we saw in the previous chapter, our DOM is nothing more than a tree-

like structure (see Figure 25.1) made up of all the elements that exist in our

HTML document.

FIGURE 25.1

Yep. Looks like a tree-like structure all right!

274 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

That detail is only sort of important. What is important is that you have all of
these HTML elements floating around that you want to access and read data from
or modify. There are many ways to find these HTML elements. After all, these
elements are arranged in a tree-like structure, and if there is one thing computer
scientists like to do, it is figuring out crazy ways to run up and down a tree to find
something.

I won’t subject you to that torture…just yet. In this chapter, you are going to learn
how to use two built-in functions called querySelector and querySelectorAll
to solve a good chunk of all your DOM searching needs.

Onward!

Meet the querySelector Family
To help explain the awesomeness that querySelector and querySelectorAll
bring to the table, take a look at the following HTML:
<div id="main">

 <div class="pictureContainer">

 </div>

 <div class="pictureContainer">

 </div>

 <div class="pictureContainer">

 </div>

 <div class="pictureContainer">

 </div>

</div>

CHAPTER 25 FINDING ELEMENTS IN THE DOM 275

In this example, you have one div with an id of main, and then you have
four div and img elements, each with a class value of pictureContainer and
theImage respectively. In the next few sections, we’ll set the querySelector
and querySelectorAll functions loose on this HTML and see what happens.

querySelector
The querySelector function basically works as follows:
let element = document.querySelector("CSS selector");

The querySelector function takes an argument, and this argument is a string
that represents the CSS selector for the element you wish to find. What gets
returned by querySelector is the first element it finds—even if other elements
exist—that could get targeted by the selector. This function is pretty stubborn like
that.

Taking the HTML from our earlier example, if we wanted to access the div whose
id is main, you would write the following:
let element = document.querySelector("#main");

Because main is the id, the selector syntax for targeting it would be #main. Simi-
larly, let’s specify the selector for the pictureContainer class:
let element = document.querySelector(".pictureContainer");

What gets returned is the first div whose class value is pictureContainer. The
other div elements with the class value of pictureContainer will simply be
ignored.

The selector syntax is not modified or made special because you are in JavaScript.
The exact syntax you would use for selectors in your stylesheet or style region can
be used!

querySelectorAll
The querySelectorAll function returns all elements it finds that match what-
ever selector you provide:
let elements = document.querySelectorAll("CSS selector");

With the exception of the number of elements returned, everything I described
about querySelector above applies to querySelectorAll as well. That
important detail changes how you end up actually using the querySelectorAll
function. What gets returned is not a single element. Instead, what gets returned
is an array-like container of elements!

276 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Continuing to use the HTML from earlier, here is what our JavaScript would look
like if we wanted to use querySelectorAll to help us display the src attribute
of all the img elements that contain the class value theImage:
let images = document.querySelectorAll(".theImage");

for (let i = 0; i < images.length; i++) {

 let image = images[i];

 console.log(image.getAttribute("src"));

}

See? This is pretty straightforward. The main thing you need to do is remember
how to work with Arrays, which you should be a pro at by now. The other (slightly
weirder) thing is the mysterious getAttribute function. If you aren’t familiar with
getAttribute and how to read values from elements, that’s totally okay. We’ll
look at all that really soon. For now, just know that it allows you to read the value
of any HTML attribute the HTML element in question may be sporting.

It Really Is the CSS Selector Syntax
The thing that surprised me when I first used querySelector and
querySelectorAll is that it actually takes the full range of CSS selector syntax
variations as its argument. You don’t have to keep it simple like I’ve shown you so far.

If you wanted to target all of the img elements without having to specify the class
value, here is what our querySelectorAll call could look like:
let images = document.querySelectorAll("img");

If you wanted to target only the image whose src attribute is set to meh.png, you
can do the following:
let images = document.querySelectorAll("img[src='meh.png']");

Note that I just specified an attribute selector1 as my argument to
querySelectorAll. Pretty much any complex expression you can specify for a
selector in your CSS document is fair game for specifying as an argument to either
querySelector or querySelectorAll.

There are some caveats that you should be aware of:

Not all pseudo-class selectors are allowed. A selector made up of :visited, :link ,
::before, and ::after is ignored and no elements are found.

1. http://bit.ly/kirupaAttribute

http://bit.ly/kirupaAttribute

CHAPTER 25 FINDING ELEMENTS IN THE DOM 277

How crazy you can get with the selectors you provide depends on the browser’s CSS
support. Internet Explorer 8 supports querySelector and querySelectorAll.
It doesn’t support CSS3. Given that situation, using anything more recent than
the selectors defined in CSS2 will not work when used with querySelector and
querySelectorAll on IE8. Chances are, this doesn’t apply to you because you
are probably supporting more recent versions of browsers where this IE8 issue isn’t
even on the radar.

The selector you specify only applies to the descendants of the starting element you
are beginning your search from. The starting element itself is not included. Not all
querySelector and querySelectorAll calls need to be made from a document.

THE ABSOLUTE MINIMUM
The querySelector and querySelectorAll functions are extremely useful in
complex documents where targeting a particular element is often not straightforward.
By relying on the well-established CSS selector syntax, we can cast as small or as
wide a net over the elements that we want. If I want all image elements, I can just say
querySelectorAll("img"). If I only want the immediate img element contained
inside its parent div, I can say querySelector("div + img"). Now, that’s pretty
awesome.

Before we wrap up, there is one more thing I’d like to chat with you about.
Missing in all of this element-finding excitement were the getElementById,
getElementsByTagName, and getElementsByClassName functions. Back
in the day, these were the functions you would have used to find elements in
your DOM. The querySelector and querySelectorAll functions are the
present and future solutions for finding elements, so don’t worry about the
getElement* functions anymore. As of right now, the only slight against
the querySelector and querySelectorAll functions is performance. The
getElementById function is still pretty fast, and you can see the comparison for
yourself here: https://jsperf.com/getelementbyid-vs-queryselector/11.

Like a wise person once said, life is too short to spend time learning about old
JavaScript functions…even if they are a bit faster!

https://jsperf.com/getelementbyid-vs-queryselector/11

This page intentionally left blank

26
I N T H I S C H A P T E R
• Understand how JavaScript can be used to modify

the DOM

• Meet the HTML Element

• Learn how to modify attributes

MODIFYING DOM
ELEMENTS
At this point, you kinda sorta know what the DOM is. You also saw how to

find elements using querySelector and querySelectorAll. What’s

next is for us to learn how to modify the DOM elements you found:

280 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

After all, what’s the fun in having a giant lump of clay (or cookie dough) if we can’t
put our hands on it and make a giant mess? Anyway, besides it being fun and all, we
will find ourselves modifying the DOM all the time. Whether we are using JavaScript
to change some element’s text, swap out an image with a different one, move an
element from one part of your document to another, set an inline style, or perform
any of the bazillion other changes we will want to do, we will be modifying the
DOM. This tutorial will teach you the basics of how to go about doing that.

Onward!

DOM Elements Are Objects—Sort of!
Our ability to use JavaScript to modify what gets shown by the browser is made
possible because of one major detail. That detail is that every HTML tag, style
rule, and other things that go into your page has some sort of a representation in
the DOM.

To visualize what I just said, let’s say we have an image element defined in markup:
<img src="images/lol_panda.png" alt="Sneezing Panda!" width="250"
height="100"/>

When our browser parses the document and hits this image element, it creates a
node in the DOM that represents it as shown in Figure 26.1.

FIGURE 26.1

All of our HTML elements will eventually end up having a DOM representation.

This DOM representation provides us with the ability to do everything we could
have done in markup. As it turns out, this DOM representation actually ends up
allowing us to do more with our HTML elements than we could have done using
just plain old markup itself. This is something we’ll see a little bit of here and a

CHAPTER 26 MODIFYING DOM ELEMENTS 281

whole lot of in the future. The reason why our HTML elements are so versatile
when viewed via the DOM is because they share a lot of similarities with plain
JavaScript objects. Our DOM elements contain properties that allow us to get/
set values and call methods. They have a form of inheritance that we saw a little
bit about earlier where the functionality each DOM element provides is spread
out across the Node, Element, and HTMLElement base types, as seen again in
Figure 26.2.

FIGURE 26.2

The hierarchy of the visual elements we'll typically encounter in the HTML.

DOM elements probably even smell like an Object when they run inside the
house after rolling around in the rain for a bit.

Despite all of the similarities, for legal and...possibly health reasons, I need to
provide the following disclaimer: the DOM was never designed to mimic the
way Objects work. Many of the things we can do with objects we can certainly
do with the DOM, but that is because the browser vendors help ensure that. The

282 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

W3C specifications don’t state that our DOM should behave identically to how
we may expect things to behave with plain old Objects. While I wouldn’t lose any
sleep worrying about this, if you ever decide to extend DOM elements or perform
more advanced object-related gymnastics, be sure to test across all browsers just
to make sure everything works the way you intended.

Now that we got this awkward conversation out of the way, let’s start to actually
modify the DOM.

Let’s Actually Modify DOM Elements
While we can certainly lean back and passively learn all there is about how to
modify elements in the DOM, this is one of those cases where you may have more
fun following along with a simple example. If you are interested in following along,
we’ll be using the following HTML as a sandbox for the techniques we will be
covering:
<!DOCTYPE html>

<html>

<head>

 <title>Hello...</title>

 <style>

 .highlight {

 font-family: "Arial";

 padding: 30px;

 }

 .summer {

 font-size: 64px;

 color: #0099FF;

 }

 </style>

</head>

<body>

CHAPTER 26 MODIFYING DOM ELEMENTS 283

 <h1 id="bigMessage" class="highlight summer">What's happening?</h1>

 <script>

 </script>

</body>

</html>

Just put all of that into an HTML document and follow along. If you preview this
HTML in the browser, you will see something that looks like Figure 26.3.

FIGURE 26.3

What’s happening?

There isn’t really a whole lot going on here. The main piece of content is the h1
tag that displays the What’s happening? text:
<h1 id="bigMessage" class="highlight summer">What's happening?</h1>

Now, switching over to the DOM side of things, Figure 26.4 illustrates what this
example looks like with all of the HTML elements and nodes like document and
window mapped.

284 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 26.4

What our DOM structure for our example looks like.

In the following sections, we’ll look at some of the common things you can do in
terms of modifying a DOM element.

Changing an Element’s Text Value
Let’s start off with an easy one. Many HTML elements have the ability to display
some text. Examples of such elements are our headings, paragraphs, sections,
inputs, buttons, and many more. There is one thing they all have in common. The
way you modify the text value is by setting the textContent property.

Let’s say we want to change the text that appears in the h1 element from our
example. The following snippet shows what that would look like:
<body>

 <h1 id="bigMessage" class="highlight summer">What's happening?</h1>

 <script>

 let headingElement = document.querySelector("#bigMessage");

 headingElement.textContent = "Oppa Gangnam Style!";

 </script>

</body>

CHAPTER 26 MODIFYING DOM ELEMENTS 285

If you make this change and preview in the browser, you will see what is shown in
Figure 26.5.

FIGURE 26.5

Changing a heading’s text value.

Let’s look at what exactly we did to cause this change. The first step to modifying
any HTML element in JavaScript is to first get a reference to it:
let headingElement = document.querySelector("#bigMessage");

Here is where our old friends querySelector and querySelectorAll come
in. As we will see later, we also have indirect ways of referencing an element. The
direct approach shown here, though, is what we will use when you have a very
specific idea of what element or elements you wish to target.

Once we have the reference to the element, we can just set the textContent
property on it:
headingElement.textContent = "Oppa Gangnam Style!";

The textContent property can be read like any variable to show the current
value. We can also set the property like we are here to change the value that
is stored currently. After this line has run, our markup’s original value of What’s
happening? will be replaced in the DOM by what we specified in JavaScript.

286 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Attribute Values
One of the primary ways our HTML elements distinguish themselves is through
their attributes and the values these attributes store. For example, the src and
alt attributes are what distinguish the following three image elements:

Every HTML attribute (including custom data-* ones) can be accessed via the
properties the DOM provides. To help us deal with attributes, our elements
expose the somewhat self-explanatory getAttribute and setAttribute
methods.

The getAttribute method allows us to specify the name of an attribute on the
element it is living on. If the attribute is found, this method will then return the
value associated with that attribute. Below is an example:
<body>

 <h1 id="bigMessage" class="highlight summer">What's happening?</h1>

 <script>

 let headingElement = document.querySelector("h1");

 console.log(headingElement.getAttribute("id")); // bigMessage

 </script>

</body>

In this snippet, notice that we are getting the value of the id attribute on our
h1 element. If we specify an attribute name that doesn’t exist, we will get a nice
value of null. The opposite of getting the value of an attribute is to actually set the
value. To set the value, we would use the appropriately named setAttribute
method. We use this method by calling setAttribute on the element that we
want to affect and specifying both the attribute name as well as the value that
attribute will store.

Here is an example of setAttribute at work:
<body>

 <h1 id="bigMessage" class="highlight summer">What's happening?</h1>

 <script>

 let headingElement = document.querySelector("h1");

CHAPTER 26 MODIFYING DOM ELEMENTS 287

 headingElement.setAttribute("class", "bar foo");

 </script>

</body>

We are setting (well...overwriting actually!) the class attribute on our h1 element
to bar foo. The setAttribute function doesn’t do any validation to ensure that
the attribute we are setting is valid for the element we are setting it on. Nothing
prevents us from doing something silly as follows:
<body>

 <h1 id="bigMessage" class="highlight summer">What's happening?</h1>

 <script>

 let headingElement = document.querySelector("h1");

 headingElement.setAttribute("src", "http://www.kirupa.com");

 </script>

</body>

Our h1 element doesn’t contain a src attribute, but we can get away with speci-
fying it. When our code runs, our h1 element will even sport the src attribute...
probably very uncomfortably.

There is something I need to clarify before we move on. In the examples for how
to use setAttribute and getAttribute, I picked on id and class. For these
two attributes, we do have another way of setting them. Because of how com-
mon setting id and class attributes are, our HTML elements expose the id and
className properties directly:
<body>

 <h1 id="bigMessage" class="highlight summer">What's happening?</h1>

 <script>

 let headingElement = document.querySelector("h1");

 console.log(headingElement.id); // bigMessage

 headingElement.className = "bar foo";

 </script>

</body>

288 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Getting back to our example, notice that I switched from using getAttribute
and setAttribute to using the id and className properties instead. The end
result is identical. The only difference is that you had a direct way of setting these
attribute values without having to use getAttribute or setAttribute. Now,
before we go further, I have to call this strange thing out: yes...we can’t use class
in JavaScript for referring to the class attribute because class has a whole dif-
ferent meaning that has to do with dealing with objects. That’s why we are using
className instead.

TIP There is a much better way of setting class values besides
using className. That way is via the much more awesome
classList property that you will learn all about in the next
chapter.

THE ABSOLUTE MINIMUM
It may seem a bit odd to end our discussion around modifying DOM elements at
this point. While changing an element’s text and attribute values is very popular,
they are by no means the only major kinds of modifications you will perform. The
reason for ending at this cliffhanger is because manipulating the DOM and using
an element’s properties and methods to accomplish our task is central to everything
we are going to be seeing. In subsequent chapters, you are going to see a whole
lot more of what you’ve seen here.

Your main takeaway from this chapter is that the DOM changes you perform will
almost always take one of the following two forms:

• Setting a property

• Calling a method

The textContent, setAttribute, and getAttribute methods you saw
here cover both of those approaches, and you’ll see a lot more of them and their
friends shortly.

This is a pretty heavy topic! If you have any questions, don’t delay getting an
answer. Post on the forums at https://forum.kirupa.com ASAP.

https://forum.kirupa.com

27
I N T H I S C H A P T E R
• Learn how to change CSS using JavaScript

• Understand the pros and cons of setting styles
directly as opposed to adjusting class values

• Use classList to make fiddling with element class
values a breeze

STYLING OUR CONTENT
In the previous chapter, we looked at how to modify our DOM’s content

using JavaScript. The other part of what makes our HTML elements stand

out is their appearance, their styling. When it comes to styling some con-

tent, the most common way is by creating a style rule and have its selector

target an element or elements. A style rule would look as follows:

 .batman {

 width: 100px;

 height: 100px;

 background-color: #333;

}

An element that would be affected by this style rule could look like this:

<div class="batman"></div>

On any given web page, we’ll see anywhere from just a few to many MANY

style rules each beautifully stepping over each other to style everything

that we see. This isn’t the only approach we can use to style content using

CSS, though. It wouldn’t be HTML if there weren’t multiple ways to accom-

plish the same task!

290 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Ignoring inline styles, the other approach that we can use to introduce elements
to the goodness that is CSS styling involves JavaScript. We can use JavaScript
to directly set a style on an element, and we can also use JavaScript to add or
remove class values on elements which will alter which style rules get applied.

In this tutorial, we’re going to learn about both of these approaches.

Onward!

Why Would We Set Styles Using JavaScript?
Before we go further it is probably useful to explain why we would ever want to
use JavaScript to affect the style of an element in the first place. In the common
cases where we use style rules or inline styles to affect how an element looks, the
styling kicks in when the page is loaded. That’s awesome, and that’s probably what
we want most of the time.

There are many cases, especially as our content gets more interactive, where we
want styles to dynamically kick in based on user input, some code having run in
the background, and more. In these sorts of scenarios, the CSS model involving
style rules or inline styles won’t help us. While pseudoselectors like hover provide
some support, we are still greatly limited in what we can do.

The solution we will need to employ for all of them is one that involves JavaScript.
JavaScript not only lets us style the element we are interacting with, more impor-
tantly, it allows us to style elements all over the page. This freedom is very power-
ful and goes well beyond CSS’s limited ability to style content inside (or very close
to) itself.

A Tale of Two Styling Approaches
Like we saw in the introduction, we have two ways to alter the style of an element
using JavaScript. One way is by setting a CSS property directly on the element.
The other way is by adding or removing class values from an element which may
result in certain style rules getting applied or ignored. Let’s look at both of these
cases in greater detail.

Setting the Style Directly
Every HTML element that you access via JavaScript has a style object. This
object allows you to specify a CSS property and set its value. For example, this is
what setting the background color of an HTML element whose id value is super-
man looks like:

CHAPTER 27 STYLING OUR CONTENT 291

let myElement = document.querySelector("#superman");

myElement.style.backgroundColor = "#D93600";

To affect many elements, you can do something as follows:
let myElements = document.querySelectorAll(".bar");

for (let i = 0; i < myElements.length; i++) {

 myElements[i].style.opacity = 0;

}

In a nutshell, to style elements directly using JavaScript, the first step is to access
the element. Our handy querySelector method from earlier is quite helpful
here. The second step is just to find the CSS property you care about and give it
a value. Remember, many values in CSS are actually strings. Also remember that
many values require a unit of measurement like px or em or something like that to
actually get recognized. Also remember...actually, I forgot.

Lastly, some CSS properties require a more complex value to be provided with
a bunch of random text followed by the value you care about. One of the more
popular ones in this bucket is the transform property. One approach for setting a
complex value is to use good old-fashioned string concatenation:
myElement.style.transform = "translate3d(" + xPos + ", " + yPos +
"px, 0)";

That can get really irritating, for keeping track of the quotation marks and so on
is something tedious and error-prone. One less irritating solution is to use the
template literal syntax:
myElement.style.transform = `translate3d(${xPos}px, ${yPos}px, 0)`;

Notice how this approach allows you to still provide custom values while avoiding
all of the string concatenation complexity.

TIP Special Casing Some Names of CSS
Properties
JavaScript is very picky about what makes up a valid property
name. Most names in CSS would get JavaScript’s seal of approval,
so you can just use them straight-up from the carton. There are a
few things to keep in mind, though.

To specify a CSS property in JavaScript that contains a dash, sim-
ply remove the dash. For example, background-color becomes
backgroundColor, the border-radius property transforms
into borderRadius, and so on.

292 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Also, certain words in JavaScript are reserved and can’t be used
directly. One example of a CSS property that falls into this special
category is float. In CSS it is a layout property. In JavaScript,
it stands for something else. To use a property whose name
is entirely reserved, prefix the property with css where float
becomes cssFloat.

Adding and Removing Classes Using JavaScript
The second approach involves adding and removing class values that, in turn,
change which style rules get applied. For example, let’s say we have a style rule
that looks as follows:
.disableMenu {

 display: none;

}

In HTML, we have a menu whose id is dropDown:
<ul id="dropDown">

 One

 Two

 Three

 Four

 Five

 Six

Now, if we wanted to apply our .disableMenu style rule to this element, all we
would need to do is add disableMenu as a class value to the dropDown element:
<ul class="disableMenu" id="dropDown">

 One

 Two

 Three

 Four

 Five

 Six

One way to accomplish this involves setting an element’s className property,
an approach we saw earlier. The trouble with className is that we are respon-
sible for maintaining the current list of class values applied. Worse, the list of class

CHAPTER 27 STYLING OUR CONTENT 293

values is returned to us as a string. If we have multiple class values we want to
add, remove, or just toggle on/off, we have to do a bunch of error-prone string-
related trickery that just isn’t fun.

To help alleviate some of the inconvenience, we now have a much nicer API that
makes adding and removing class values from an element ridiculously easy. This
new API is affectionately known as classList, and it provides a handful of
methods that will make working with class values a piece of cake:

• add

• remove

• toggle

• contains

What these four methods do may be pretty self-explanatory from their names, but
let’s look at them in further detail.

Adding Class Values
To add a class value to an element, get a reference to the element and call the
add method on it via classList:
let divElement = document.querySelector("#myDiv");

divElement.classList.add("bar");

divElement.classList.add("foo");

divElement.classList.add("zorb");

divElement.classList.add("baz");

console.log(divElement.classList);

After this code runs, our div element will have the following class values: bar, foo,
zorb, baz. The classList API takes care of ensuring spaces are added between
class values. If we specify an invalid class value, the classList API will complain
and not add it. If we tell the add method to add a class that already exists on the
element, our code will still run, but the duplicate class value will not get added.

Removing Class Values
To remove a class value, we can call the remove method on classList:
let divElement = document.querySelector("#myDiv");

divElement.classList.remove("foo");

console.log(divElement.classList);

294 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

After this code executes, the foo class value will be removed. What we will be left
with is just bar and zorb. Pretty simple, right?

Toggling Class Values
For many styling scenarios, there is one very common workflow. First, we check if a
class value on an element exists. If the value exists, we remove it from the element.
If the value does not exist, we add that class value to the element. To simplify this
very common toggling pattern, the classList API provides you with the toggle
method:
let divElement = document.querySelector("#myDiv");

divElement.classList.toggle("foo"); // remove foo

divElement.classList.toggle("foo"); // add foo

divElement.classList.toggle("foo"); // remove foo

console.log(divElement.classList);

The toggle method, as its name implies, adds or removes the specified class
value on the element each time it is called. In our case, the foo class is removed
the first time the toggle method is called. The second time, the foo class is
added. The third time, the foo class is removed. You get the picture.

Checking Whether a Class Value Exists
The last thing we are going to look at is the contains method:
let divElement = document.querySelector("#myDiv");

if (divElement.classList.contains("bar") == true) {

 // do something

}

This method checks to see if the specified class value exists on the element. If the
value exists, you get true. If the value doesn’t exist, you get false.

Going Further
As you can see, the classList API provides you with almost everything
you need to add, remove, or inspect class values on an element very easily.
The emphasis being on the word almost. For the few things the API doesn’t
provide by default, you can go online and read my full article on many more
things you can do with classList: http://bit.ly/kClassList.

http://bit.ly/kClassList

CHAPTER 27 STYLING OUR CONTENT 295

THE ABSOLUTE MINIMUM
So, there you have it—two perfectly fine JavaScript-based approaches you can use
for styling your elements. Of these two choices, if you have the ability to modify
your CSS, I would prefer you go style elements by adding and removing classes.
The simple reason is that this approach is far more maintainable. It is much easier
to add and remove style properties from a style rule in CSS as opposed to adding
and removing lines of JavaScript.

Got a question? The friendly people on the forums may have an answer. Head on
over to https://forum.kirupa.com to ask!

https://forum.kirupa.com

This page intentionally left blank

28
I N T H I S C H A P T E R
• Learn how to navigate the DOM tree

• Use the various APIs you have for moving and
re-parenting elements

• Find an element’s sibling, parent, children, and more

TRAVERSING THE DOM
As you may have realized by now, our DOM looks like a giant tree—a giant

tree with elements dangerously hanging on to branches and trying to avoid

the pointy things that litter the place. To get a little more technical, ele-

ments in our DOM are arranged in a hierarchy as illustrated in Figure 28.1

that defines what we will eventually see in the browser.

FIGURE 28.1

The DOM and the Browser are like two peas in a pod.

298 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

This hierarchy is used to help organize our HTML elements. It is also used to help
our CSS style rules make sense of what styles to apply on which things. From the
JavaScript angle, this hierarchy does add a bit of complexity. We will spend a fair
amount of time trying to figure out where in the DOM we are right now and where
we need to be. This is something that will become more apparent when we look
into creating new elements or moving elements around. This complexity is some-
thing that we need to be comfortable with.

That’s where this tutorial comes in. To help you understand how to easily navigate
from branch to branch (basically, like a monkey), the DOM provides you with a
handful of properties that you can combine with techniques you already know.
This tutorial will give you an overview of all that and more.

Onward!

Finding Your Way Around
Before we can find elements and do awesome things with them, we need to first
get to where the elements are. The easiest way to tackle this topic is to just start
from the top and slide all the way down. That’s exactly what we are going to do.

The view from the top of our DOM is made up of our window, document, and html
elements as shown in Figure 28.2.

FIGURE 28.2

The view from the top of this tree never changes.

CHAPTER 28 TRAVERSING THE DOM 299

Because of how important these three things are, the DOM provides us with easy
access to them via window, document, and document.documentElement:
let windowObject = window; // um....

let documentObject = document; // this is probably unnecessary

let htmlElement = document.documentElement;

One thing to note is that both window and document are global properties. We
don’t have to explicitly declare them like I did. Just shake and use them straight
out of the container.

Once we go below the HTML element level, our DOM will start to branch out
and get more interesting. At this point, we have several ways of navigating
around. One way that we’ve seen plenty of is by using querySelector and
querySelectorAll to precisely get at the elements we are interested in. For
many practical cases, these two methods are too limiting.

Sometimes, we don’t know where we want to go. The querySelector and
querySelectorAll methods won’t help us here. We just want to get in the car
and drive...and hope we find what we are looking for. When it comes to navigating
the DOM, we’ll find ourselves in this position all the time. That’s where the various
built-in properties the DOM provides will help us out, and we are going to look at
those properties next.

The thing that will help us out is knowing that all of our elements in the DOM have
at least one combination of parents, siblings, and children to rely on. To visualize
this, take a look at the row containing the div and script elements as shown in
Figure 28.3.

300 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 28.3

An example of our tree with some parents, siblings, and children.

Both the div and script elements are siblings. The reason they are siblings is
because they share the body element as their parent. The script element has
no children, but the div element does. The img, h1, p, and div are children of
the div element, and all children of the same parent are siblings as well. Just like
in real life, the parent, child, and sibling relationship is based on where in the tree
we are focusing on. Almost every element, depending on the angle with which we
look at them under, can play multiple familial roles.

To help us through all of this, we have a handful of properties that we will rely
on. These properties are firstChild, lastChild, parentNode, children,
previousSibling, and nextSibling. From just looking at their names, you
should be able to infer what role these properties play. The guy in red with the
pointed pitchfork is in the details, so we’ll look at this in greater detail next.

CHAPTER 28 TRAVERSING THE DOM 301

Dealing with Siblings and Parents
Of these properties, the easiest ones to deal with are the parents and siblings.
The relevant properties for this are parentNode, previousSibling, and
nextSibling. The following diagram represented by Figure 28.4 gives you an
idea of how these three properties work.

FIGURE 28.4

The relationship between siblings and parents from our DOM’s point of view.

This diagram is a little busy, but you can sort of make out what is going on
here. The parentNode property points you to the element’s parent. The
previousSibling and nextSibling properties allow an element to find its
previous or next sibling. You can see this visualized in the diagram by just mov-
ing in the direction of the arrow. In the last line, our img’s nextSibling is the
div. Our div’s previousSibling is the img. Accessing parentNode on either
of these elements will take you to the parent div in the second row. It’s all pretty
straightforward.

Let’s Have Some Kids!
What is a little less straightforward is how the children fit into all of this, so let’s
take a look at the firstChild, lastChild, and children properties shown in
Figure 28.5.

302 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 28.5

A view of children and more children!

The firstChild and lastChild properties refer to a parent’s first and last child
elements. If the parent only has one child, as is the case with the body element in
our example, then both firstChild and lastChild point to the same thing. If
an element has no children, then these properties return a null.

The tricky one compared to the other properties we’ve looked at is the children
property. When you access the children property on a parent, you basically get a
collection of the child elements the parent has. This collection is not an Array, but it
does have some Array-like powers. Just like with an Array, you can iterate through
this collection or access the children individually kind of like what you see in the dia-
gram. This collection also has a length property that tells you the count of how many
children the parent is dealing with. If your head is spinning from this, don’t worry. The
snippets in the next section will help clarify the vagueness in my explanation.

Putting It All Together
Now that we have a good idea of all the important properties we have for
traversing the DOM, let’s look at some code snippets that tie in all the diagrams
and words into some sweet lines of JavaScript.

CHAPTER 28 TRAVERSING THE DOM 303

Checking If A Child Exists
To check if an element has a child, we can do something like the following:
let bodyElement = document.querySelector("body");

if (bodyElement.firstChild) {

 // do something interesting

}

This if statement will return null if there are no children. We could also have used
bodyElement.lastChild or bodyElement.children.count if you enjoy
typing, but I prefer to just keep things simple.

Accessing All the Child Elements
If we want to access all of a parent’s children, we can always rely on good old
uncle for loop:
let bodyElement = document.body;

for (let i = 0; i < bodyElement.children.length; i++) {

 let childElement = bodyElement.children[i];

 document.writeln(childElement.tagName);

}

Notice that we are using the children and length properties property just
like we would an Array. The thing to note is that this collection is actually not
an Array. Almost all of the Array methods that we may want to use will not be
available in this collection returned by the children property.

Walking the DOM
Our last snippet touches upon a little bit of everything we’ve seen so far. This
snippet recursively walks the DOM and touches every HTML element it can find:
function theDOMElementWalker(node) {

 if (node.nodeType == Node.ELEMENT_NODE) {

 console.log(node.tagName);

304 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 node = node.firstChild;

 while (node) {

 theDOMElementWalker(node);

 node = node.nextSibling;

 }

 }

}

To see this function in action, we just call it by passing in a node that we want to
start our walk from:
let texasRanger = document.querySelector("#texas");

theDOMElementWalker(texasRanger);

In this example, we are calling theDOMElementWalker function on an element
referenced by the texasRanger variable. If you want to run some code on the
element that this script found, replace the commented out line with whatever you
want to do.

THE ABSOLUTE MINIMUM
Finding your way around the DOM is one of those skills that every JavaScript
developer should be familiar with. This tutorial provided you an overview of
what is technically possible. Applying this in more practical ways falls entirely
onto you...or a cool friend who helps you out with these things. With that said,
in subsequent tutorials, we will expand upon what we’ve seen here as part of
continuing our deep dive into everything we can do with the DOM. Doesn’t that
sound exciting?

Got a question? Head on over to https://forum.kirupa.com for an answer from
friendly developers just like yourself!

https://forum.kirupa.com

29
I N T H I S C H A P T E R
• Understand how easy it is to use JavaScript to

create DOM elements from nothing

• Learn how to clone existing DOM elements as well
as remove DOM elements you no longer want

CREATING AND REMOVING
DOM ELEMENTS
This part may blow you away. For the following sentences, I suggest you

hold onto something sturdy:

306 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Despite what our earlier discussions about the DOM may have led you to
believe, our DOM does not have to be made up of HTML elements that exist
in markup. We have the ability to create HTML elements out of thin air and add
them to our DOM using just a few lines of JavaScript. We also have the ability to
move elements around, remove them, and do all sorts of god-like things. Let’s
pause for a bit while we let all of that sink in. This is pretty big.

Besides the initial coolness of all this, the ability to dynamically create and
modify elements in our DOM is an important detail that makes a lot of our
favorite websites and applications tick. When you think about this, this makes
sense. Having everything predefined in our HTML is very limiting. We want our
content to change and adapt when new data is pulled in, when we interact with
the page, when we scroll further, or when we do a billion other things.

In this chapter, we are going to cover the basics of what makes all of this work.
We are going to look at how to create elements, remove elements, re-parent
elements, and clone elements. This is also the last of our chapters looking directly
at DOM-related shenanigans, so call your friends and get the balloons ready!

Onward!

Creating Elements
It is very common for interactive sites and apps to dynamically create HTML
elements and have them live in the DOM. If this is the first time you are hearing
about something like this being possible, you are going to love this section!

The way we can create elements is by using the createElement method. The
way createElement works is pretty simple. We call it via our document object
and pass in the HTML tag name of the element we wish to create. In the following
snippet, we are creating a paragraph element represented by the letter p:
let myElement = document.createElement("p");

The myElement variable holds a reference to our newly created element.

If we run this line of code as part of a larger app, it will execute and a p element
will get created. Creating an element is the simple part. Actually raising it to be a
fun and responsible member of the DOM is where we need some extra effort. We
need to actually place this element somewhere in the DOM, for our dynamically
created p element is just floating around aimlessly right now:

CHAPTER 29 CREATING AND REMOVING DOM ELEMENTS 307

The reason for this aimlessness is because our DOM has no real knowledge that
this element exists. In order for an element to be a part of the DOM, there are two
things we need to do:

 1. Find an element that will act as the parent

 2. Use appendChild and add the element we want into that parent element

The best way to make sense of all this is to look at an example that ties this all
together. If you want to follow along, create a new HTML document and add the
following HTML, CSS, and JS into it:
<!DOCTYPE html>

<html>

<head>

 <title>Creating Elements</title>

 <style>

 body {

 background-color: #0E454C;

 padding: 30px;

 }

308 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 h1 {

 color: #14FFF7;

 font-size: 72px;

 font-family: sans-serif;

 text-decoration: underline;

 }

 p {

 color: #14FFF7;

 font-family: sans-serif;

 font-size: 36px;

 font-weight: bold;

 }

 </style>

</head>

<body>

 <h1>Am I real?</h1>

 <script>

 let newElement = document.createElement("p");

 let bodyElement = document.querySelector("body");

 newElement.textContent = "Or do I exist entirely in your
imagination?";

 bodyElement.appendChild(newElement);

 </script>

</body>

</html>

Save this file and preview it in your browser. If everything worked out, you should
see something that resembles the following screenshot:

CHAPTER 29 CREATING AND REMOVING DOM ELEMENTS 309

Now, we are going to take a step back and look at what exactly is going on in our
example. If we look at our JavaScript, everything we need for creating an element
and adding it to our DOM is located in between the script tags:
let newElement = document.createElement("p");

let bodyElement = document.querySelector("body");

newElement.textContent = "Or do I exist entirely in your
imagination?";

bodyElement.appendChild(newElement);

With newElement, we are storing a reference to our newly created p tag. With
bodyElement, we are storing a reference to our body element. On our newly
created element (newElement), we set the textContent property to what we
ultimately end up displaying. The last thing we do is take our aimlessly floating
newElement and parent it as a child of our body element by relying on good old
appendChild.

Figure 29.1 is a visualization of what the DOM for our simple example looks like.

310 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 29.1

What the DOM looks like after our code has run.

Now, a detail about the appendChild function is that it always adds the element
to the end of whatever children a parent may have. In our case, our body element
already has the h1 and script elements as its children. The p element gets
appended after them as the youngest child. With that said, we do have control
over the exact order where under a parent a particular element will live.

If we want to insert newElement directly after our h1 tag, we can do so by calling
the insertBefore function on the parent. The insertBefore function takes
two arguments. The first argument is the element you want to insert. The second
argument is a reference to the sibling (aka child of a parent) you want to precede.
Here is our example modified to have our newElement live after our h1 element
(and before our script element):
let newElement = document.createElement("p");

let bodyElement = document.querySelector("body");

let scriptElement = document.querySelector("script");

newElement.textContent = "I exist entirely in your imagination.";

bodyElement.insertBefore(newElement, scriptElement);

CHAPTER 29 CREATING AND REMOVING DOM ELEMENTS 311

Notice that we call insertBefore on the bodyElement and specify that
newElement should be inserted before our script element. Our DOM in this
case would look as shown in Figure 29.2.

FIGURE 29.2

The newly inserted element is in between the h1 and script elements.

You might think that if there is an insertBefore method, there must be an
insertAfter method as well. As it turns out, that isn’t the case. There isn’t a
widely supported built-in way of inserting an element AFTER an element instead
of before it. What we can do is trick the insertBefore function by telling it to
insert an element an extra element ahead. That probably makes no sense, so let
me show you the code first and explain later:
let newElement = document.createElement("p");

let bodyElement = document.querySelector("body");

let h1Element = document.querySelector("h1");

newElement.textContent = "I exist entirely in your imagination.";

bodyElement.insertBefore(newElement, h1Element.nextSibling);

312 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Pay attention to the highlighted lines, and then take a look at Figure 29.3 that
illustrates what is happening before our code runs and after our code runs.

FIGURE 29.3

Our trick we can use to simulate an insertAfter behavior.

The h1Element.nextSibling call finds the script element. Inserting our
newElement before our script element accomplishes our goal of inserting our
element after the h1 element. What if there is no sibling element to target? Well,
the insertBefore function in that case is pretty clever and just appends the
element you want to the end automatically.

HANDY DANDY FUNCTION
If for some reason you find yourself wanting to insert elements after another
sibling all the time, then you may want to use this function to simplify your life a
bit:
function insertAfter(target, newElement) {

 target.parentNode.insertBefore(newElement, target.nextSibling);

}

CHAPTER 29 CREATING AND REMOVING DOM ELEMENTS 313

Yes, I do realize this is a roundabout way of doing this, but it works...really well.
Below is an example of this function at work:
let newElement = document.createElement("p");

let bodyElement = document.querySelector("body");

let h1Element = document.querySelector("h1");

newElement.textContent = "I exist entirely in your imagination.";

function insertAfter(target, element) {

 target.parentNode.insertBefore(element, target.nextSibling);

}

insertAfter(bodyElement, newElement);

You can even go all out and extend HTMLElement with this function to provide
this functionality more conveniently to all your HTML elements. Chapter 19,
“Extending Built-in Objects,” covers how to do something like that in greater
detail. Note that extending your DOM is frowned upon by some people, so make
sure to have some witty banter on the ready to lighten the mood if you ever are
accosted by these “some people”.

A more generic way of adding children to a parent is by realizing that parent
elements treat children like entries in an array. To access this array of children, we
have the children and childNodes properties. The children property only
returns HTML elements, and the childNodes property returns the more generic
nodes that represent a lot of things that we don’t care about. Yes, I realize I am
repeating myself, and you can check out the previous Chapter 28, “Traversing
the DOM,” for more details on more ways you have for pinpointing an element.

314 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Removing Elements
I think somebody smart once said the following: That which has the ability to
create, also has the ability to remove. In the previous section, we saw how we
can use the createElement method to create an element. In this section, we
are going to look at removeChild which, given its slightly unsavory name, is all
about removing elements.

Take a look at the following snippet of code that can be made to work with the
example we have been looking at for some time:
let newElement = document.createElement("p");

let bodyElement = document.querySelector("body");

let h1Element = document.querySelector("h1");

newElement.textContent = "I exist entirely in your imagination.";

bodyElement.appendChild(newElement);

bodyElement.removeChild(newElement);

The p element stored by newElement is being added to our body element by
the appendChild method. We saw that earlier. To remove this element, we call
removeChild on the body element and pass in a pointer to the element we wish
to remove. That element is, of course, newElement. Once removeChild has run,
it will be as if your DOM never knew that newElement existed.

The main thing to note is that we need to call removeChild from the parent of the
child we wish to remove. This method isn’t going to traverse up and down our DOM
trying to find the element we want to remove. Now, let’s say that we don’t have
direct access to an element’s parent and don’t want to waste time finding it. We can
still remove that element very easily by using the parentNode property as follows:
let newElement = document.createElement("p");

let bodyElement = document.querySelector("body");

let h1Element = document.querySelector("h1");

newElement.textContent = "I exist entirely in your imagination.";

bodyElement.appendChild(newElement);

newElement.parentNode.removeChild(newElement);

CHAPTER 29 CREATING AND REMOVING DOM ELEMENTS 315

In this variation, we remove newElement by calling removeChild on its parent
by specifying newElement.parentNode. This looks roundabout, but it gets the
job done.

Now, there is a newer, shinier, and better way to remove an element. In this way,
we just call the remove method on the element we wish to remove directly. This
example looks as follows:
let newElement = document.createElement("p");

let bodyElement = document.querySelector("body");

let h1Element = document.querySelector("h1");

newElement.textContent = "I exist entirely in your imagination.";

bodyElement.appendChild(newElement);

newElement.remove();

Now, why am I not beginning and ending this conversation around removing ele-
ments with the remove method? It has to do with browser support. This approach
is still fairly new, so older browsers like Internet Explorer don’t have support for
it. If supporting Internet Explorer is important for you, then the other approaches
we’ve looked at will work.

If you are looking for a universally accepted approach for removing elements,
despite some minor quirks, the removeChild function is quite merciless in its
efficiency. If you want something direct, remove is your friend. Both of these
approaches have the ability to remove any DOM element—including ones that
were created in markup originally. We aren’t limited to removing DOM elements
we dynamically added. If the DOM element we are removing has many levels of
children and grandchildren, all of them will be removed as well.

Cloning Elements
This chapter just keeps taking a turn for the weirder-er the further we go into it,
but fortunately we are at the last section. The one remaining DOM manipulation
technique we need to be aware of is one that revolves around cloning elements
where we start with one element and create identical replicas of it:

316 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The way we clone an element is by calling the cloneNode function on the element
we wish to clone along with providing a true or false argument to specify whether
we want to clone just the element or the element and all of its children. Here is what
the snippet of code for cloning an element (and adding it to the DOM) will look like:
let bodyElement = document.querySelector("body");

let item = document.querySelector("h1");

let clonedItem = item.cloneNode(false);

// add cloned element to the DOM

bodyElement.appendChild(clonedItem);

Once our cloned elements have been added to the DOM, we can then use all the
tricks we’ve learned to modify them. Cloning elements is such an important thing
for us to get familiar with, let’s go beyond this snippet and look at a fuller example:
<!DOCTYPE html>

<html>

<head>

 <title>Cloning Elements</title>

 <style>

 body {

 background-color: #60543A;

CHAPTER 29 CREATING AND REMOVING DOM ELEMENTS 317

 padding: 30px;

 }

 h1 {

 color: #F2D492;

 font-size: 72px;

 font-family: sans-serif;

 text-decoration: underline;

 }

 p {

 color: #F2D492;

 font-family: sans-serif;

 font-size: 36px;

 font-weight: bold;

 }

 </style>

</head>

<body>

 <h1>Am I real?</h1>

 <p class="message">I exist entirely in your imagination.</p>

 <script>

 let bodyElement = document.querySelector("body");

 let textElement = document.querySelector(".message");

 setInterval(sayWhat, 1000);

 function sayWhat() {

 let clonedText = textElement.cloneNode(true);

 bodyElement.appendChild(clonedText);

 }

 </script>

</body>

</html>

318 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

If you put all of this code into a HTML document and preview it in your browser,
you’ll see something that resembles our earlier example:

After a few seconds, though, you’ll notice that this example is quite a bit different.
The message keeps duplicating:

CHAPTER 29 CREATING AND REMOVING DOM ELEMENTS 319

The secret to what is going on here lies in our code. Let’s jump back to the code
inside the script tags and take a moment to understand what is going on:
let bodyElement = document.querySelector("body");

let textElement = document.querySelector(".message");

At the top, we have our bodyElement variable that references the body element
in our HTML. Similarly, we have our textElement variable that references our p
element with a class value of message. Nothing too special here.

Now, here is where things get a little interesting. We have our setInterval
timer function that calls the sayWhat function every 1000 milliseconds (1 second):
setInterval(sayWhat, 1000);

It is inside this sayWhat function where the actual cloning takes place:
function sayWhat() {

 let clonedText = textElement.cloneNode(true);

 bodyElement.appendChild(clonedText);

}

We call cloneNode on our textElement. The result of us doing this is that a
copy of our textElement is now created and stored as part of the clonedText
variable. The last step is for us to add our newly cloned element to the DOM so
that it shows up. Thanks to our setInterval, all of the code under sayWhat
repeats to keep adding our cloned element to the page.

One thing you may have noticed is that what we are cloning is the following
paragraph element:
<p class="message">I exist entirely in your imagination.</p>

What we specified in our code is the following:
let clonedText = textElement.cloneNode(true);

We are calling cloneNode with the true flag to indicate we want to clone all
of the children as well. Why? Our paragraph element doesn’t seem to have any
children, right? Well...this is where the distinction between elements and nodes
comes into play. Our paragraph tag doesn’t have any child elements, but the text
wrapped by the p tag is a child node. This detail is important to keep in mind
when you find yourself cloning something and finding that you don’t exactly get
what you want when you specify that children shouldn’t get cloned.

320 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

THE ABSOLUTE MINIMUM
If there is anything you walk away from after reading all this, I hope you walk away with
the knowledge that our DOM is something you can touch and extensively modify. We
sort of talked about how everything in the DOM can be altered earlier, but it is here
where we saw first-hand the depth and breadth of the alterations we can easily make
using methods like createElement, removeElement, remove, and cloneNode.

With everything you’ve learned here, there is nothing preventing you from starting
off with a completely empty page and using just a few lines of JavaScript to populate
everything inside it:
<!DOCTYPE html>

<html>

<head>

 <title>Look what I did, ma!</title>

</head>

<body>

 <script>

 let bodyElement = document.querySelector("body");

 let h1Element = document.createElement("h1");

 h1Element.textContent = "Do they speak English in 'What'?";

 bodyElement.appendChild(h1Element);

 let pElement = document.createElement("p");

 pElement.textContent = "I am adding some text here...like a
boss!";

 bodyElement.appendChild(pElement);

 </script>

</body>

</html>

CHAPTER 29 CREATING AND REMOVING DOM ELEMENTS 321

Just because you can do something like this doesn’t mean you always should. The
main problem with dynamically creating content is that search engines, screen
readers, and other accessibility tools often have difficulty knowing what to do.
They are more familiar with content specified in markup than they are with things
created using JavaScript. Just be aware of that limitation if you ever decide to get
over-enthusiastic with dynamically modifying your DOM.

As always, if you have any questions, ask away at https://forum.kirupa.com.

https://forum.kirupa.com

This page intentionally left blank

30
I N T H I S C H A P T E R
• Learn how browser developer tools can save you a

lot of time

• Familiarize yourself with what Chrome’s Developer
Tools offer

IN-BROWSER DEVELOPER
TOOLS
All of the major browsers—Google Chrome, Apple Safari, Mozilla Firefox,

and Microsoft Edge (formerly Internet Explorer)—do more than just display

web pages. For developers, they provide access to a lot of cool function-

ality for figuring out what is actually going on with the web page that is

displayed. They do all of this via what I’ll generically just call the Developer

Tools. These are tools that are built in to the browser, and they give you

the ability to fiddle with your HTML, CSS, and JavaScript in a lot of neat

and interesting ways.

In this chapter, let’s look at these Developer Tools and learn how we can

use them to make our lives easier.

Onwards!

324 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Meet the Developer Tools
Let’s start at the very beginning. When you navigate to a web page, your browser
will load whatever document it was told to load:

I’LL BE USING GOOGLE CHROME
For all of the examples you are about to see, I’ll be using Google’s Chrome
browser. While each browser provides similar functionality for what I’ll be
 describing, the exact UI and steps to get there will vary. Just be aware of that, and
also note that the version of Chrome you may be using might be more recent than
the one that is used in this chapter.

CHAPTER 30 IN-BROWSER DEVELOPER TOOLS 325

This should all be very familiar for you, as this part of the browser functionality
really hasn’t changed much since the very first browser that was released in the
1800s…or therabouts. While using Chrome, press (Cmd-Opt-I) on the Mac or the
F12 key [or Ctrl+Shift+I] in Windows.

Once you’ve pressed those key or keys, notice what happens. While you may not
hear heavenly music followed by the earth rumbling and laser beams shooting
across the sky, you will see your browser’s layout change to show something
 mysterious (usually) toward the bottom or right of the screen as shown in
Figure 30.1.

FIGURE 30.1

Your browser with its developer tools displayed right below it.

Your browser will split into two parts. One part is where your browser deals with
displaying your web pages. We like this guy and have known him for quite some
time. The other part, the new guy whom we eye suspiciously from a distance,
 provides you with access to information about the currently displayed page that
only a developer such as yourself would appreciate. This guy is better known as
the Developer Tools.

326 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The Developer Tools provide you with the ability to:

• Inspect the DOM

• Debug JavaScript

• Inspect objects and view messages via the console

• Figure out performance and memory issues

• See the network traffic

• …and a whole lot more!

In the interest of time (Game of Thrones is about to start soon, and this is the
 episode where I believe Ned Stark comes back to life as a dire wolf), what I’m
going to do is focus on the first three items that are directly related to what you
are learning about in this book.

Inspecting the DOM
The first Developer Tool feature we will look at is how you can inspect and even
manipulate the contents of your DOM. With Chrome launched, navigate to
http://bit.ly/kirupaDevTool.

NO BROWSER? NO PROBLEM!
Now, if you don’t have a browser handy or simply can’t access that link, don’t
worry. I’ll explain what is going on at each step of the way so that you aren’t left
out of all the fun.

http://bit.ly/kirupaDevTool

CHAPTER 30 IN-BROWSER DEVELOPER TOOLS 327

When you load this page, you will see a colorful background with some text
displayed:

If you reload this page, you’ll see this page showing up with a different
 background color. As you can guess, each page reload will result in a different
background color getting generated:

328 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The first thing we’ll do with this example is examine the DOM to see what is going
on. Make sure your Developer Tools are visible, and ensure the Elements tab
is selected:

What you will see is a view of your live markup from the page that is currently
shown. To be more specific, this is a view of your DOM. The importance of this
distinction is that this view provides you with a live version of what your page
looks like. Any shenanigans JavaScript or your browser may have pulled on the
DOM will be shown in this view.

Using our example as an…um…example, using View Source will result in
 something that looks as follows:
<!DOCTYPE html>

<html>

<head>

 <title>Random Color Generator!</title>

 <style>

 h2 {

 font-family: Arial, Helvetica;

 font-size: 100px;

 color: #FFF;

 text-shadow: 0px 0px 11px #333333;

 margin: 0;

 padding: 30px;

 }

CHAPTER 30 IN-BROWSER DEVELOPER TOOLS 329

 </style>

</head>

<body>

 <h2>Random

Color

Generator</h2>

 <script src="js/randomColor.js"> </script>

 <script>

 let bodyElement = document.querySelector("body");

 bodyElement.style.backgroundColor = getRandomColor();

 </script>

</body>

</html>

The View Source command simply gives you a view of the markup as stored in
the HTML page. Another way of saying this is that View Source gives you a (stale)
 version of the markup as it lives on the server and not a version of the DOM.

If you use the Developer Tool’s DOM view, you will see a DOM-based
 representation of your document based on the live version of the page:
<!DOC TYPE html>

<html>

<head>

 <title>Random Color Generator!</title>

 <style>

 h2 {

 font-family: Arial, Helvetica;

 font-size: 100px;

 color: #FFF;

 text-shadow: 0px 0px 11px #333333;

 margin: 0;

 padding: 30px;

 }

 </style>

330 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

<body style="background-color: rgb(75, 63, 101);">

 <h2>Random

Color

Generator</h2>

 <script src="js/randomColor.js"> </script>

 <script>

 let bodyElement = document.querySelector("body");

 bodyElement.style.backgroundColor = getRandomColor();

 </script>

</body>

</html>

If you pay close attention, you’ll notice some subtle differences in how
some elements look. The biggest difference is the highlighted inline
background-color style on the body element that only exists in the DOM
view but not in the traditional View Source view. The reason is that we have
some JavaScript that dynamically sets an inline style on the body element.
The following note expands on why this happens!

THE DIFFERENCE BETWEEN THE DOM VIEW
AND VIEW SOURCE

The reason for the discrepancy between the two code views goes back to what
the DOM represents. To repeat this one more time, your DOM is the result of your
browser and JavaScript having run to completion. It provides you with a fresh-
from-the-oven look that mimics what your browser sees.

View Source is just a static representation of your document as it was on the
server (or your computer). It doesn’t contain any of the liveliness of your running
page that the DOM view highlights. If you look at our JavaScript, you’ll see that
I specified that our body element get its backgroundColor set dynamically:
let bodyElement = document.querySelector("body");

bodyElement.style.backgroundColor = getRandomColor();

CHAPTER 30 IN-BROWSER DEVELOPER TOOLS 331

As examples highlighting the differences between the source and DOM go, our
example was quite simple. To see the real benefit of the DOM view, you should
experiment with some element reparentings, creations, and deletions to really see
the divergence between viewing the source and examining the DOM. Some of the
examples you saw in the previous chapters around DOM manipulation would be
good things to inspect as well.

Debugging JavaScript
Moving along, the other big thing that the Developer Tools bring to the table is
debuggability. I don’t know if that is a really word or not, but the Developer Tools
allow you to poke and prod at your code to figure out what is going wrong (or not
wrong). The general catch-all phrase for all this is known as debugging.

In your Developer tools, click on the Sources tab:

When this code runs, it modifies the DOM to set the backgroundColor property
on the body element. You would never see this using View Source. Ever. That’s
why the DOM view the Developer Tools provide is your bestest friend in the whole
wide world.

332 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The Sources tab gives you access to all the files that are currently being used by
your document. As the name implies, you are looking at the raw contents of these
files—not the DOM-generated version from earlier that is your bestest friend.

From the tree view on the left, ensure the randomColorGenerator.htm file is
selected. This will ensure that the contents of this file are displayed for you to
examine on the right. In the displayed file, scroll all the way down until you see
the script tag with the two lines of code that you saw earlier. Based on the line
counts shown in the left gutter, our lines of JavaScript should be lines 20 and 21.

What we want to do is examine what happens when the code in Line 21 is
about to execute. To do this, we need to tell the browser to stop when Line 21
is about to get executed. The way you do that is by setting what is known as a
breakpoint. To set a breakpoint, click directly on the 21 label on the left gutter.

Once you’ve done that, you’ll see the 21 getting highlighted:

At this point, a breakpoint has been set. The next step is to actually have your
browser run into this breakpoint. This is more peacefully known as “hitting the
breakpoint.” The way a breakpoint is hit is by ensuring your code runs into it.
In our case, all we need to do is just hit F5 to refresh the page, as Line 21 will
just execute as part your page loading and executing everything inside the
script tags.

If everything worked as expected, you’ll see your page load and suddenly pause
with line 21 getting highlighted:

CHAPTER 30 IN-BROWSER DEVELOPER TOOLS 333

You are currently in debugging mode. The breakpoint you set on Line 21 has
been hit. This means your entire page ground to a screeching halt the moment
the browser hit it. At this point, with your browser being in suspended animation,
you have the ability to fiddle with everything going on in your page. Think of this
as time having stopped with only you having the ability to move around, inspect,
and alter the surroundings. If a movie hasn’t been made about this, somebody
should get on it!

While in this mode, go back to Line 21, and hover over the bodyElement
 variable. When you hover over it, you’ll see a tooltip indicating the various
 properties and values that this particular object contains:

334 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

You can then interact with the tooltip, scroll through all the objects, and even
dig deeper into complex objects that have more objects inside them. Because
 bodyElement is basically the JavaScript/DOM representation of the body
 element, you’ll see a lot of properties that you encountered indirectly from our
look at HTMLElement a few chapters ago.

On the right side of your source view, you have more angles through which you
can inspect your code:

I won’t be explaining what all of those categories do, but I am pointing that area
out just so you know that you have the ability to examine the current state of all
your JavaScript variables and objects in much greater detail if you so wanted to.

The other big advantage a breakpoint provides is the ability for you to step
through your code just like your browser would. Right now, we are stuck on
Line 21. To step through the code, click on the “Step into function call” button
found on the right-hand side:

CHAPTER 30 IN-BROWSER DEVELOPER TOOLS 335

Remember, this is the line of code you are currently broken at:
bodyElement.style.backgroundColor = getRandomColor();

Once you’ve clicked that button, notice what happens. You will find yourself inside
randomColor.js where the getRandomColor function has been defined. Keep
clicking on the “Step into function call” to continue stepping into your code and
going through each line of the getRandomColor function. Notice that you now
get to see how the objects in your browser’s memory update as you go line-by-
line and execute the code sequentially. If you are tired of doing that, you can Step
back by clicking on the Step out of current function button (found to the right of
your Step into button) that exits you out of this function. In our case, that is back
to Line 21 in randomColorGenerator.htm.

336 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

If you just want to execute your app without stepping through any more of the
code, click on the Play button found a few pixels to the left of Step into:

When you hit Play, your code will execute. If you happen to have another
 breakpoint set somewhere in your code’s path, that breakpoint will also get hit.
When stopped at any breakpoint, you can choose to Step into, Step out, or just
resume execution with Play. Because we only set one breakpoint, hitting Play
will just run the code to completion and have your random color appear as the
 background for your body element:

CHAPTER 30 IN-BROWSER DEVELOPER TOOLS 337

To remove a breakpoint, just click on the line number that you set the breakpoint
on. If you click on the Line 21 label again, the breakpoint will toggle itself off
and you can just run your application without getting into debugging mode.

So, there you have it. A whirlwind tour of how to use some of the debugging
functionality you have at your disposal. To reiterate something I mentioned at the
beginning of this chapter, I am only scratching the surface of what is possible.
The resources I provide toward the end should help you out further.

Meet the Console
The other OTHER big Debugging Tool functionality we will look at is using what
is known as the Console. The console provides you with the ability to do several
things. It allows you to see messages logged by your code. It also allows you to
pass commands and inspect any object that is currently in scope.

To show the Console, navigate to the Console tab by clicking (or tapping) on it:

Don’t be afraid of the vast emptiness that you see in front of you. Instead,
embrace the freedom and fresh air.

Anyway, what the Console provides you with is the ability to inspect or call any
object that exists in whatever scope your application is currently running in. With
no breakpoints set, launching the console puts you in the global state.

338 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Inspecting Objects
Where your cursor is right now, type in window and press Enter:

What you will see is an interactive listing of all the things that live in your window
object. You can start to type in any valid object or property, and if it is in scope,
you will be able to access it, inspect its value, or even execute it:

This is by no means a read-only playground. You can cause all sorts of mayhem.
For example, if you type in document.body.remove() and press Enter, your
entire document will just disappear. If you did end up deleting the body, just
refresh the page to get back to your earlier state. Developer Tools primarily work
with the in-memory representation of your page and don’t write back to source.
Your experimentations will safely stay in the transient realm.

CHAPTER 30 IN-BROWSER DEVELOPER TOOLS 339

REFRESHER ON THE SCOPE/STATE
On several occasions, I mentioned that your console allows you to inspect the world
at whatever scope you are currently in. This is basically just applying what you learned
about Variable Scope in Chapter 8, “Variable Scope,” to the Console’s behavior.

Let’s say you have a breakpoint set at the following highlighted line:
let oddNumber = false;

function calculateOdd(num) {

 if (num % 2 == 0) {

 oddNumber = false;

 } else {

 oddNumber = true;

 }

}

calculateOdd(3);

When you run the code and the breakpoint gets hit, the value of oddNumber is
still false. Your breakpointed line hasn’t been executed yet, and you can verify
this by testing the value of oddNumber in the Console. Next, let’s say you run this
code, hit this breakpoint, and step through to the next line.

At this point, your oddNumber value is set to true. Your Console will now reflect
the new value, for that is what the in-memory representation of oddNumber states.
The main takeaway is that your Console’s view of the world is directly tied to
where in the code you are currently focusing on. This is especially made obvious
when you are stepping through code and the scope you are in changes frequently.

340 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Logging Messages
We are almost done with all of this Developer Tools business. The last thing we
will look at is the console’s ability to log messages from your code. Remember all
those times where we did something like this?
function doesThisWork() {

 console.log("It works!!!");

}

The “this” being where we used an alert statement to print some value or prove
that the code is being executed. Well, we can stop doing that now. By using the
console, you have a far less annoying way of printing messages without interrupt-
ing everything with a modal dialog box. You can use the console.log function
to pass in whatever you want to print into the console:
function doesThisWork() {

 console.log("It works!!!")

}

When this code executes, you’ll see whatever you logged get printed in your
 Console when you bring it up:

Using the console is, in almost every way, superior to using alert for debugging
purposes. In future code snippets, you’ll start to see me using console.log over
alert in some cases.

CHAPTER 30 IN-BROWSER DEVELOPER TOOLS 341

THE ABSOLUTE MINIMUM
If you have never used a Developer Tool before, I really REALLY think you should
take some time to get familiar with one. JavaScript is one of those languages
where things can go wrong even when everything looks right. In the very simple
examples you’ll encounter in this book, it’s easy to spot mistakes. When you
start working on larger and more complex applications, having the right tools to
 diagnose issues will save you many hours of effort.

To learn more about the Developer Tools (aka Dev Tools as the cool kids call it) in
far greater detail than what I’ve covered here, check out the following resources:

• Overview of the Chrome Dev Tools: http://bit.ly/kirupaChromeDevTools

• Overview of the IE/Edge F12 Dev Tools: http://bit.ly/kirupaIEDevTools

• Overview of the Firefox Dev Tools: http://bit.ly/kirupaFFDevTools

• Overview of the Safari Web Inspector http://bit.ly/kirupaSafariDevTools

http://bit.ly/kirupaChromeDevTools
http://bit.ly/kirupaIEDevTools
http://bit.ly/kirupaFFDevTools
http://bit.ly/kirupaSafariDevTools

This page intentionally left blank

31
I N T H I S C H A P T E R
• Understand how communication happens between

you and your app

• Learn about events

• Use event arguments to better handle event-related
scenarios

EVENTS
In case you haven’t noticed, most applications and web sites are pretty

boring when left alone. They launch with great fanfare and gusto, but the

excitement they bring to the table goes away very quickly if we don’t start

interacting with them:

344 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The reason for this is simple. Our applications exist to react to things that we do to
them. They have some built in motivation when we launch them to get themselves
out of bed and ready for the day. Everything else that they do afterwards depends
largely on what we tell them to do. This is where things get really interesting.

The way we tell our applications what to do is by having them react to what are
known as events. In this chapter, we will take an introductory look at what events
are and how we can use them.

Onward!

What Are Events?
At a high level, everything we create can be modeled by the following statement:

We can fill in the blanks in this statement in a bajillion different ways. The first
blank calls out something that happens. The second blank describes the reaction
to that. Here are some examples of this statement filled out:

This generic model applies to all the code we’ve written together. This model
also applies to all the code our favorite developer/designer friends wrote for their
applications. There is no way of escaping this model, so...there is no point in
resisting. Instead, we need to learn to embrace the star of this model, the very tal-
ented critter known as the event.

An event is nothing more than a signal. It communicates that something has just
happened. This something could be a mouse click. It could be a key press on our
keyboard. It could be our window getting resized. It could just be our document
simply getting loaded. The thing to take away is that our signal could be any hun-
dreds of somethings that are built-in to the JavaScript language...or custom some-
things that we created just for our app alone.

CHAPTER 31 EVENTS 345

Getting back to our model, events make up the first half:

An event defines the thing that happens. It fires the signal. The second part of
the model is defined by the reaction to the event:

After all, what good is a signal if there isn’t someone somewhere that is waiting
for it and then takes the appropriate action?! Ok—now that we have a high-level
overview of what events are, let’s dive into how events live in the nature reserve
known as JavaScript.

346 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Events and JavaScript
Given the importance of events, it should be no surprise to you that JavaScript
provides us with a lot of great support for working with them. To work with events,
there are two things we need to do:

 1. Listen for events

 2. React to events

These two steps seem pretty simple, but never forget that we are dealing with
JavaScript here. The simplicity is just a smokescreen for the depth of the trauma
JavaScript will inflict upon us if we take a wrong step. Maybe I am being overly
dramatic here, but we’ll find out soon enough.

1. Listening for Events
To more bluntly state what I danced around earlier, almost everything we do inside
an application results in an event getting fired. Sometimes, our application will fire
events automatically...such as when it loads. Sometimes, our application will fire
events as a reaction to us actually interacting with it. The thing to note is that our
application is bombarded by events constantly whether we intended to have them
get fired or not. Our task is to tell our application to listen only to the events we
care about.

The thankless job of listening to the right event is handled entirely by a function
called addEventListener. This function is responsible for being eternally vigilant so
that it can notify another part of our application when an interesting event gets fired.

The way we use this function looks as follows:
source.addEventListener(eventName, eventHandler, false);

That’s probably not very helpful, so let’s dissect what each part of this function means.

The Source
We call addEventListener via an element or object that we want to listen for
events on. Typically, that will be a DOM element, but it can also be our docu-
ment, window, or any object specially designed to fire events.

The Event Name
The first argument we specify to the addEventListener function is the name of
the event we are interested in listening to. The full list of events we have at your
disposal is simply too large to list here (go here instead), but some of the most
common events you will encounter are shown in Table 31.1.

CHAPTER 31 EVENTS 347

TABLE 31.1 Common Events

Event Event is fired...

Click ...when you press down and release the primary mouse but-
ton, trackpad, etc.

Mousemove ...whenever you move the mouse cursor

Mouseover ...when you move the mouse cursor over an element. This
is the event you would use for detecting a hover!

Mouseout ...when your mouse cursor moves outside the boundaries of
an element.

Dblclick ...when you quickly click twice.

DOMContentLoaded ...when your document’s DOM has fully loaded. You can
learn more about this event in the following chapter.

Load ...when your entire document (DOM, external stuff like
images, scripts, etc.) has fully loaded.

Keydown ...when you press down on a key on your keyboard

Keyup ...when you stop pressing down on a key on your keyboard

Scroll ...when an element is scrolled around

wheel and DOMMouseScroll ...every time you use your mousewheel to scroll up or down

In subsequent chapters, we will look at a lot of these events in greater detail. For
now, just take a quick glance at the click event. We will be using that one in a
few moments.

The Event Handler
The second argument requires us to specify a function that will get called when
the event gets overheard. This function is very affectionately known as the event
handler by friends and family. We’ll learn a whole lot more about this function
(and occasionally an object) in a few moments.

To Capture, or Not to Capture, That Is the Question!
The last argument is made up of either a true or a false. To fully help us under-
stand the implications of specifying either value, we are going to have to wait until
the Event Bubbling and Capturing in JavaScript chapter. This chapter happens
to be next in this series, so we won’t be waiting long.

348 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Putting It All Together
Now that we’ve seen the addEventListener function and what it looks like, let’s
tie it all up with an example of this function fully decked out:
document.addEventListener("click", changeColor, false);

Our addEventListener in this example is attached to the document object.
When a click event is overheard, it calls the changeColor function (aka the
event handler) to react to the event. This sets us up nicely for the next section
which is all about reacting to events.

2. Reacting to Events
As we saw in the previous section, listening to events is handled by
addEventListener. What to do after an event is overheard is handled by the
event handler. I wasn’t joking when I mentioned earlier that an event handler is
nothing more than a function or object:
function normalAndBoring() {

 // I like hiking and puppies and other stuff!

}

The only distinction between a typical function and one that is designated as the
event handler is that our event handler function is specifically called out by name
in an addEventListener call (and receives an Event object as its argument):
document.addEventListener("click", changeColor, false);

function changeColor(event) {

 // I am important!!!

}

Any code we place inside our event handler will execute when the event our
addEventListener function cares about gets overheard.

A Simple Example
The best way to make sense of what we’ve learned so far is to see all of this
fully working. To play along, add the following markup and code to an HTML
document:
<!DOCTYPE html>

<html>

CHAPTER 31 EVENTS 349

<head>

 <title>Click Anywhere!</title>

</head>

<body>

 <script>

 document.addEventListener("click", changeColor, false);

 function changeColor() {

 document.body.style.backgroundColor = "#FFC926";

 }

 </script>

</body>

</html>

If we preview our document in the browser, we will initially just see a blank page
as shown in Figure 31.1.

FIGURE 31.1

A blank page is all we see!

350 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Things will change when you click anywhere on the page, though. Once you’ve
completed your click (aka released the mouse press), your page’s background will
change from being white to a yellow-ish color as seen in Figure 31.2.

FIGURE 31.2

Our blank page turns yellow when clicked!

The reason why this example does what it does lies in our code:
document.addEventListener("click", changeColor, false);

function changeColor() {

 document.body.style.backgroundColor = "#FFC926";

}

The addEventListener call is identical to what we saw earlier, so let’s skip that
one. Instead, let’s pay attention to the changeColor event handler.
document.addEventListener("click", changeColor, false);

function changeColor() {

 document.body.style.backgroundColor = "#FFC926";

}

CHAPTER 31 EVENTS 351

This function gets called when the click event on the document is overheard.
When this function gets called, it sets the background color of the body element
to a shade of yellow. Tying this back to the very beginning where we generalized
how applications work, this is what this example looks like:

If all of this makes complete sense to you, then that’s great! You just learned about
one of the most important concepts you’ll encounter. We aren’t done just yet. We
let the event handler off the hook a little too easily, so let’s pay it one more visit.

The Event Arguments and the Event Type
Our event handler does more than just get called when an event gets overheard
by an event listener. It also provides access to the underlying event object as part
of its arguments. To access this event object easily, we need to modify our event
handler signature to support this argument.

Here is an example where we specify the event name to refer to our event
arguments:
function myEventHandler(event) {

 // event handlery stuff

}

At this point, our event handler is still a plain old boring function. It just hap-
pens to be a function that takes one argument...the event argument! We can go
with any valid identifier for the argument, but I tend to go with event or just e
because that is what all the cool kids do. There is nothing technically wrong with
identifying our event as follows:
function myEventHandler(isNyanCatReal) {

 // event handlery stuff

}

352 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The important detail is that the event argument points to an event object, and this
object is passed in as part of the event firing. There is a reason why we are paying
attention to what seems like a typical and boring occurrence. This event object
contains properties that are relevant to the event that was fired. An event trig-
gered by a mouse click will have different properties when compared to an event
triggered by a keyboard key press, a page load, an animation, and a whole lot
more. Most events will have their own specialized behavior that we will rely on,
and the event object is our window into all of that uniqueness.

Despite the variety of events and resulting event objects we can get, there are
certain properties that are common. This commonality is made possible because
all event objects are derived from a base Event type (technically, an Interface).
Some of the popular properties from the Event type that we will use are:

 1. currentTarget

 2. target

 3. preventDefault

 4. stopPropagation

 5. type

To fully understand what these properties do, we need to go a little deeper in our
understanding of events. We aren’t there yet, so just know that these properties
exist. We’ll be seeing them real soon in subsequent chapters.

REMOVING AN EVENT LISTENER
Sometimes, we will need to remove an event listener from an element.
The way we do that is by using addEventListener’s arch-nemesis, the
removeEventListener function:
something.removeEventListener(eventName, eventHandler, false);

As we can see, this function takes the exact type of arguments as an
addEventListener function. The reason for that is simple. When we are
listening for an event on an element or object, JavaScript uses the eventName,
eventHandler, and the true/false value to uniquely identify that event listener.
To remove this event listener, we need to specify the exact same arguments.

CHAPTER 31 EVENTS 353

Here is an example:
document.addEventListener("click", changeColor, false);

document.removeEventListener("click", changeColor, false);

function changeColor() {

 document.body.style.backgroundColor = "#FFC926";

}

The event listener we added in the first line is completely neutralized
by the removeEventListener call in the highlighted 2nd line. If the
removeEventListener call used any argument that was different than what was
specified with the corresponding addEventListener call, then its impact would
be ignored and the event listening will continue.

 THE ABSOLUTE MINIMUM
Well, that’s all there is to getting an introduction to events. Just remember that
you have your addEventListener function that allows you to register an event
handler function. This event handler function will get called when the event your
event listener is listening for gets fired. While we touched base on a few other
topics, they will make more sense when we view them in the context of more
advanced event-related examples that you will see in the following chapters!

This page intentionally left blank

32
I N T H I S C H A P T E R
• Learn how events travel through the DOM

• Understand the differences between event capturing
and event bubbling

• Interrupt events

EVENT BUBBLING AND
CAPTURING
In the previous chapter, you learned how to use the addEventListener

function to listen for events that you want to react to. That chapter covered

the basics, but it glossed over an important detail about how events

actually get fired. An event isn’t an isolated disturbance. Like a butterfly

flapping its wings, an earthquake, a meteor strike, or a Godzilla visit, many

events ripple and affect a bunch of elements that lie in their path.

In this article, I will put on my investigative glasses, a top hat, and a serious

British accent to explain what exactly happens when an event gets fired.

You will learn about the two phases events live in, why all of this is relevant,

and a few other tricks to help you better take control of events.

356 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Event Goes Down. Event Goes Up.
To better help us understand events and their lifestyle, let’s frame all of this in the
context of a simple example. Here is some HTML we’ll refer to.
<!DOCTYPE html>

<html>

<head>

 <title>Events!</title>

</head>

<body id="theBody" class="item">

 <div id="one_a" class="item">

 <div id="two" class="item">

 <div id="three_a" class="item">

 <button id="buttonOne" class="item">one</button>

 </div>

 <div id="three_b" class="item">

 <button id="buttonTwo" class="item">two</button>

 <button id="buttonThree" class="item">three</button>

 </div>

 </div>

 </div>

 <div id="one_b" class="item">

 </div>

 <script>

 </script>

</body>

</html>

As we can see, there is nothing really exciting going on here. The HTML should
look pretty straightforward (as opposed to being shifty and constantly staring at its
phone), and its DOM representation looks as shown in Figure 32.1.

CHAPTER 32 EVENT BUBBLING AND CAPTURING 357

FIGURE 32.1

What the DOM for the markup we saw looks like.

Here is where our investigation is going to begin. Let’s say that we click on the
buttonOne element. From what we saw previously, you know that a click event
is going to be fired. The interesting part that I omitted is where exactly the click

358 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

event is going to get fired from. Your click event (just like almost every other
JavaScript event) does not actually originate at the element that you interacted
with. That would be too easy and make far too much sense.

Instead, an event starts at the root of your document:

CHAPTER 32 EVENT BUBBLING AND CAPTURING 359

From the root, the event makes its way through the narrow pathways of the DOM
and stops at the element that triggered the event, buttonOne (also more formally
known as the event target):

As shown in the diagram, the path your event takes is direct, but it does
obnoxiously notify every element along that path. This means that if you were
to listen for a click event on body, one_a, two, or three_a, the associated event
handler will get fired. This is an important detail that we will revisit in a little bit.

360 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Now, once our event reaches its target, it doesn’t stop. Like some sort of an
energetic bunny for a battery company whose trademarked name I probably can’t
mention here, the event keeps going by retracing its steps and returning back to
the root:

Just like before, every element along the event’s path as it is moving on up gets
notified about its existence.

CHAPTER 32 EVENT BUBBLING AND CAPTURING 361

Meet the Phases
One of the main things to note is that it doesn’t matter where in your DOM you
initiate an event. The event always starts at the root, goes down until it hits the
target, and then goes back up to the root. This entire journey is very formally
defined, so let’s look at all of this formalness.

The part where you initiate the event and the event barrels down the DOM from
the root is known as the Event Capturing Phase:

The less learned in the world may just call it Phase 1, so be aware that you’ll
see the proper name and the phase name used interchangeably in event-related
content you may encounter in real life. Up next is Phase 2 where our event
bubbles back up to the root:

362 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

This phase is also known as the Event Bubbling Phase. The event “bubbles” back
to the top!

Anyway, all of the elements in an event’s path are pretty lucky. They have the good
fortune of getting notified twice when an event is fired. This kinda sorta maybe
affects the code you write, for every time we listen for events, we make a choice
on which phase we want to listen for your event on. Do we listen to your event as
it is fumbling down in the capture phase? Do we listen to your event as it climbs
back up in the bubbling phase?

Choosing the phase is a very subtle detail that you specify with a true or false as
part of your addEventListener call:
item.addEventListener("click", doSomething, true);

If you remember, I glossed over the third argument to addEventListener in
the previous chapter. This third argument specifies whether you want to listen for
this event during the capture phase. An argument of true means that you want to

CHAPTER 32 EVENT BUBBLING AND CAPTURING 363

listen to the event during the capture phase. If you specify false, this means you
want to listen for the event during the bubbling phase.

To listen to an event across both the capturing and bubbling phases, you can
simply do the following:
item.addEventListener("click", doSomething, true);

item.addEventListener("click", doSomething, false);

I don’t know why you would ever want to do this, but if you ever do, you now
know what needs to be done.

NOT SPECIFYING A PHASE
Now, you can be rebellious and choose to not specify this third argument for the
phase altogether:
 item.addEventListener("click", doSomething);

When you don’t specify the third argument, the default behavior is to listen to
your event during the bubbling phase. It’s equivalent to passing in a false value as
the argument.

Who Cares?
At this point, you are probably wondering why all of this matters. This is doubly
true if you have been happily working with events for a really long time and this
is the first time you’ve ever heard about this. Your choice of listening to an event
in the capturing or bubbling phase is mostly irrelevant to what you will be doing.
Very rarely will you find yourself scratching your head because your event listening
and handling code isn’t doing the right thing because you accidentally specified
true instead of false in your addEventListener call.

With all this said…there will come a time in your life when you need to know and
deal with a capturing or bubbling situation. This time will sneak up on your code
and cause you many hours of painful head scratching. Over the years, these are
the situations where I’ve had to consciously be aware of which phase of my event’s
life I am watching for:

364 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 1. Dragging an element around the screen and ensuring the drag still happens
even if the element I am dragging slips out from under the cursor

 2. Nested menus that reveal submenus when you hover over them

 3. You have multiple event handlers on both phases, and you want to focus only
on the capturing or bubbling phase event handlers exclusively

 4. A third party component/control library has its own eventing logic and you
want to circumvent it for your own custom behavior

 5. You want to override some built-in/default browser behavior such as when you
click on the scrollbar or give focus to a text field

In my nearly 105 years of working with JavaScript, these five things were all I was
able to come up with. Even this is a bit skewed to the last few years, since various
browsers didn’t work well with the various phases at all.

Event, Interrupted
The last thing I am going to talk about before re-watching Godzilla is how to pre-
vent your event from propagating. An event isn’t guaranteed to live a fulfilling life
where it starts and ends at the root. Sometimes, it is actually desirable to prevent
your event from growing old and happy.

To end the life of an event, you have the stopPropagation method on your
Event object:
function handleClick(e) {

 e.stopPropagation();

 // do something

}

As its name implies, the stopPropagation method prevents your event from
continuing through the phases. Continuing with our earlier example, let’s say that
you are listening for the click event on the three_a element and wish to stop
the event from propagating. The code for preventing the propagation will look as
follows:
let theElement = document.querySelector("#three_a");

theElement.addEventListener("click", doSomething, true);

function doSomething(e) {

 e.stopPropagation();

}

CHAPTER 32 EVENT BUBBLING AND CAPTURING 365

When you click on buttonOne, here is what our event’s path will look like:

Our click event will steadfastly start moving down the DOM tree notifying every
element on the path to buttonOne. Because the three_a element is listening for
the click event during the capture phase, the event handler associated with it
will get called:
function doSomething(e) {

 e.stopPropagation();

}

In general, events will not continue to propagate until an event handler that gets acti-
vated is fully dealt with. Because three_a has an event listener specified to react on a
click event, the doSomething event handler gets called. Your event is in a holding
pattern at this point until the doSomething event handler executes and returns.

In this case, the event will not propagate further. The doSomething event handler
is its last client, thanks to the stopPropagation function that is hiding in the

366 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

shadows to kill the event right there and then. The click event will never reach
the buttonOne element nor get a chance to bubble back up. So tragically sad.

TIP Another function that lives on your event object that you
may awkwardly run into is preventDefault:

function overrideScrollBehavior(e) {

 e.preventDefault();

 // do something

}

What this function does is a little mysterious. Many HTML
elements exhibit a default behavior when you interact with it.
For example, clicking in a textbox gives that textbox focus with a
little blinking text cursor appearing. Using your mouse wheel in a
scrollable area will scroll in the direction you are scrolling. Clicking
on a check box will toggle the checked state on or off. All of
these are examples of built-in reactions to events your browser
instinctively knows how to handle.

If you want to turn off this default behavior, you can call the
preventDefault function. This function needs to be called
when reacting to an event on the element whose default
reaction you want to ignore. You can see an example of me using
this function in the Smooth Parallax Scrolling tutorial online at:
http://bit.ly/kirupaParallax.

THE ABSOLUTE MINIMUM
So…yeah! How about those events and their bubbling and capturing phases? One
of the best ways to learn more about how event capturing and bubbling works is
to just write some code and see how your event makes its way around the DOM.

We are done with the technical part of all this, but if you have a few more
minutes to spare, then I encourage you watch the somewhat related episode of
Comedians Getting Coffee aptly titled It’s Bubble Time, Jerry! In what is probably
their bestest episode, Michael Richards and Jerry Seinfeld just chat over coffee
about events, the bubbling phase, and other very important topics. I think.

http://bit.ly/kirupaParallax

33
I N T H I S C H A P T E R
• Learn how to listen to the mouse using the various

mouse events

• Understand the MouseEvent object

• Deal with the Mouse Wheel

MOUSE EVENTS
One of the most common ways people (and possibly cats) interact with their

computers is by using a pointing device known as a mouse (Figure 33.1).

FIGURE 33.1

Cats probably like them too.

368 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

This magical device allows you to accomplish great things by moving it around
with your hands and clicking around with your fingers. Using them as a, um…
user is one thing. As a developer, trying to make your code work with a mouse is
something else. That’s where this chapter comes in.

Meet the Mouse Events
In JavaScript, our primary way of dealing with the mouse is through events. There
are a boatload of events that deal with the mouse, but we won’t be looking at all
of them here. Instead, we’ll focus on just the cool and popular ones such as the
following:

• click

• dblclick

• mouseover

• mouseout

• mouseenter

• mouseleave

• mousedown

• mouseup

• mousemove

• contextmenu

• mousewheel and DOMMouseScroll

The names of these events should give you a good idea of what they do, but
we’ll take nothing for granted and look at each of these events in some level of
greater detail in the following sections. I should warn you that some events are
just dreadfully boring to learn about.

Clicking Once and Clicking Twice
Let’s start with probably the most popular of all the mouse events that you
will use—the click event. This event is fired when you click on an element. To
state this differently in a way that doesn’t involve mentioning the thing you are
describing as part of your description, the click event is fired when you use your
mouse to press down on an element and then release the press while still over
that same element.

CHAPTER 33 MOUSE EVENTS 369

Here is a totally unnecessary visualization of what I am talking about:

You’ve seen the code for working with the click event a few times already, but you
can never really get enough of it. Here is another example:
let button = document.querySelector("#myButton");

button.addEventListener("click", doSomething, false);

function doSomething(e) {

 console.log("Mouse clicked on something!");

}

The way you listen to the click event is just like almost any other event that
you’ll encounter, so I won’t unnecessarily bore you with that detail and our
old friend addEventListener. Instead, I will bore you with details about the
somewhat related dblclick event.

The dblclick event is fired when you quickly repeat a click action a double
number of times, and the code for using it looks as follows:
let button = document.querySelector("#myButton");

button.addEventListener("dblclick", doSomething, false);

function doSomething(e) {

 console.log("Mouse clicked on something...twice!");

}

The amount of time between each click that ends up resulting in a dblclick
event is based on the OS you are running the code in. It’s neither browser specific
nor something you can define (or read) using JavaScript.

370 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Mousing Over and Mousing Out
The classic hover over and hover out scenarios are handled by the appropriately
titled mouseover and mouseout events respectively:

Here is a snippet of these two events in action:
let button = document.querySelector("#myButton");

button.addEventListener("mouseover", hovered, false);

button.addEventListener("mouseout", hoveredOut, false);

function hovered(e) {

 console.log("Hovered!");

}

function hoveredOut(e) {

 console.log("Hovered Away!");

}

DON’T OVERDO IT
If you happen to listen to both the click and dblclick event on an element,
your event handlers will get called three times when you double-click. You will get
two click events to correspond to each time you clicked. After your second click,
you will also get a dblclick event.

CHAPTER 33 MOUSE EVENTS 371

That’s all there is to these two events. They are pretty boring overall…which, as
you’ve probably found out by now, is actually a good thing when it comes to
programming concepts.

WHAT ABOUT THE OTHER TWO SIMILAR-LOOKING
EVENTS?

We just looked at two events (mouseover and mouseout), which are all about
hovering over something and hovering away from something. As it turns out, you
have two more events that pretty much do the exact same thing. These are your
mouseenter and mouseleave events. There is one important detail to know
about these events that makes them unique. The mouseenter and mouseleave
events do not bubble.

This detail only matters if the element you are interested in hovering over or out
from has child elements. All four of these events behave identically when there are
no child elements at play. If there are child elements at play:

• mouseover and mouseout will get fired each time you move the mouse
over and around a child element. This means that you could be seeing many
unnecessary event fires even though it seems like you are moving your mouse
within a single region.

• mouseenter and mouseleave will get fired only once. It doesn’t matter how
many child elements your mouse moves through.

For 90% of what you will do, mouseover and mouseout will be good enough.
For the other times, often involving slightly more complex UI scenarios, you’ll be
happy that the non-bubbling mouseenter and mouseleave events are available.

372 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The Very Click-like Mousing Down and Mousing Up Events
Two events that are almost subcomponents of the click event are the mouse-
down and mouseup ones. From the following diagram, you’ll see why:

When you press down with your mouse, the mousedown event is fired. When you
release the press, the mouseup event is fired. If the element you pressed down on
and released from are the same element, the click event will also fire.

You can see all of this from the following snippet:
let button = document.querySelector("#myButton");

button.addEventListener("mousedown", mousePressed, false);

button.addEventListener("mouseup", mouseReleased, false);

button.addEventListener("click", mouseClicked, false);

function mousePressed(e) {

 console.log("Mouse is down!");

}

function mouseReleased(e) {

 console.log("Mouse is up!");

}

function mouseClicked(e) {

 console.log("Mouse is clicked!");

}

You may be wondering, “Why bother with these two events?” The click event
seems perfectly suited for most cases where you may want to use mousedown

CHAPTER 33 MOUSE EVENTS 373

and mouseup. If you are spending sleepless nights wondering about this, the
answer is…Yes! A more helpful (and sensible) answer is that the mousedown
and mouseup events simply give you more control in case you need it. Some
interactions (such as drags…or awesome moves in video games where you press
and hold to charge a lightning bolt of doom!) need you to act only when the
mousedown event has happened but the mouseup event hasn’t.

The Event Heard Again…and Again…and Again!
One of the most chatty events that you’ll ever encounter is the very friendly
mousemove event. This event fires a whole lotta times as your mouse moves over
the element you are listening for the mousemove event on:

What follows is an example of the mousemove event in code:
let button = document.querySelector("#myButton");

button.addEventListener("mousemove", mouseIsMoving, false);

function mouseIsMoving(e) {

 console.log("Mouse is on the run!");

}

Your browser controls the rate at which the mousemove event gets fired, and this
event gets fired if your mouse moves even a single pixel. This event is great for
many interactive scenarios where your mouse’s current position is relevant to keep
track of, for example.

374 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The Context Menu
The last mouse-related event we are going to look at is affectionately called
contextmenu. As you probably know very well, when you commonly right-click in
various applications, you will see a menu:

This menu is known as the context menu. The contextmenu event is fired just
before this menu appears.

Now, you may be wondering why anybody would want an event for this situation.
To be completely honest with you (as opposed to all of the other times when I’ve
been lying), there is only one primary reason to listen for this event. That reason
has to do with preventing this menu from appearing when you right-click or use a
context menu keyboard button or shortcut.

Here is an example of how you can prevent the default behavior where the con-
text menu appears:
document.addEventListener("contextmenu", hideMenu, false);

function hideMenu(e) {

 e.preventDefault();

}

CHAPTER 33 MOUSE EVENTS 375

The preventDefault method on any type of Event stops whatever the default
behavior is from actually happening. Because the contextmenu event is fired
before the menu appears, calling preventDefault on it ensures the context
menu never shows up. The default behavior has been prevented from running.
Yes, this is also the second time I’m mentioning this property. As you know, I am
being paid by the word (ha ha).

With all of this said, I can think of a billion other ways you could prevent the con-
text menu from appearing without using an event for dealing with all of this, but
that’s the way things are…for now <insert evil, maniacal laughter>!

The MouseEvent Properties
Let’s get a little bit more specific. All of the mouse events we’ve seen so far are
based around MouseEvent. Normally, this is the kind of factoid you keep under
your hat for trivia night and ignore. This time around, though, this detail is impor-
tant because MouseEvent brings with it a number of properties that make work-
ing with the mouse easier. Let’s look at some of them.

The Global Mouse Position
The screenX and screenY properties return the distance your mouse cursor is
from the top-left location of your primary monitor:

376 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Here is a very simple example of the screenX and screenY properties at work:
document.addEventListener("mousemove", mouseMoving, false);

function mouseMoving(e) {

 console.log(e.screenX + " " + e.screenY);

}

It doesn’t matter what other margin/padding/offset/layout craziness you may have
going on in your page. The values returned are always going to be the distance
between where your mouse is now and where the top-left corner of your primary
monitor is.

The Mouse Position Inside the Browser
The clientX and clientY properties return the x and y position of the mouse
relative to your browser’s (technically, the browser viewport’s) top-left corner:

The code for this is nothing exciting:
let button = document.querySelector("#myButton");

document.addEventListener("mousemove", mouseMoving, false);

function mouseMoving(e) {

 console.log(e.clientX + " " + e.clientY);

}

CHAPTER 33 MOUSE EVENTS 377

You just call the clientX and clientY properties of the event argument that got
passed in to our event handler to get the values.

Detecting Which Button Was Clicked
Your mice often have multiple buttons or ways to simulate multiple buttons. The
most common button configuration involves a left button, a right button, and a
middle button (often a click on your mouse wheel). To figure out which mouse but-
ton was pressed, you have the button property. This property returns a 0 if the
left mouse button was pressed, a 1 if the middle button was pressed, and a 2 if
the right mouse button was pressed:

The code for using the button property to check for which button was pressed
looks exactly as you would expect:
document.addEventListener("mousedown", buttonPress, false);

function buttonPress(e) {

 if (e.button == 0) {

 console.log("Left mouse button pressed!");

378 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 } else if (e.button == 1) {

 console.log("Middle mouse button pressed!");

 } else if (e.button == 2) {

 console.log("Right mouse button pressed!");

 } else {

 console.log("Things be crazy up in here!!!");

 }

}

In addition to the button property, you also have the buttons and properties
that sort of do similar things to help you figure out which button was pressed. I’m
not going to talk too much about those two properties, but just know that they
exist. You can Google them if you want to know more.

Dealing with the Mouse Wheel
The mouse wheel is special compared to everything else we’ve seen so far. The
obvious difference is that we are dealing with a wheel as opposed to a button.
The less obvious, yet probably more relevant, detail is that you have two events to
deal with. You have the mousewheel event that is used by Internet Explorer and
Chrome and the DOMMouseScroll event used by Firefox.

The way you listen for these mouse wheel-related events is just the usual:
document.addEventListener("mousewheel", mouseWheeling, false);

document.addEventListener("DOMMouseScroll", mouseWheeling, false);

It’s what happens afterwards where things get interesting. The mousewheel and
DOMMouseScroll events will fire the moment you scroll the mouse wheel in any
direction. For all practical purposes, the direction you are scrolling the mouse-
wheel is important. To get that information, we’ll need to go spelunking in the
event handler to find the event argument.

The event arguments for a mousewheel event contain a property known as
wheelDelta. For the DOMMouseScroll event, you have the detail property
on the event argument. Both of these properties are similar in that their values
change from positive or negative depending on what direction you scroll the
mouse wheel. The thing to note is that they are inconsistent in what sign they
go with. The wheelDelta property associated with the mousewheel event is
positive when you scroll up on the mouse wheel. It is negative when you scroll
down. The exact opposite holds true for DOMMouseScroll’s detail property.
This property is negative when you scroll up, and it is positive when you scroll
down.

CHAPTER 33 MOUSE EVENTS 379

Handling this wheelDelta and detail inconsistency is pretty simple…as you
can see in the following snippet:
function mouseWheeling(e) {

 let scrollDirection;

 let wheelData = e.wheelDelta;

 if (wheelData) {

 scrollDirection = wheelData;

 } else {

 scrollDirection = -1 * e.detail;

 }

 if (scrollDirection > 0) {

 console.log("Scrolling up! " + scrollDirection);

 } else {

 console.log("Scrolling down! " + scrollDirection);

 }

}

The scrollDirection variable stores the value contained by the wheelData
property or the detail property. Depending on whether this value is positive or
negative, you can then special case the behavior.

380 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 THE ABSOLUTE MINIMUM
Generally, it is true that if you know how to just work with one event, you pretty
much know how to work with all other events. The only thing you need to know
is which event corresponds to what you are trying to do. The mouse events are a
good introduction to working with events because they are very easy to play with.
They aren’t very fussy, and the things you learn about them you will use in almost
all apps that you build.

Some additional resources and examples that you may want to check out:

• Move Element to Click Position: http://bit.ly/kirupaElementClickPosition

• Are You on a Touch-Enabled Device: http://bit.ly/kirupaTouchEnabled

If you have any further questions, take a moment and ask away on
https://forum.kirupa.com.

http://bit.ly/kirupaElementClickPosition
http://bit.ly/kirupaTouchEnabled
https://forum.kirupa.com

34
I N T H I S C H A P T E R
• Listen and react to the keyboard

• Understand how to work with the various
keyboard-related events

• See some examples that highlight how common
keyboard scenarios work

KEYBOARD EVENTS
We spend a lot of time in various applications tapping away at our

keyboards. In case you are wondering what a keyboard looks like,

Figure 34.1 features a sweet one from I think about a hundred years ago.

FIGURE 34.1

What a keyboard might look like…in a museum probably.

382 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Anyway, our computers (more specifically, the applications that run on them) just
know how to deal with our board of plastic depressible keys. You never really think
about it. Sometimes, depending on what you are doing, you will have to think
about them. In fact, you’ll have to deal with them and make them work properly.
Better cancel any plans you have, for this chapter is going to be pretty intense!

By the end of this chapter, you will learn all about how to listen to the keyboard
events, what each of those events do, and see a handful of examples that
highlight some handy tricks that may come in…um…handy.

Onward!

Meet the Keyboard Events
To work with keyboards in an HTML document, there are three events that you will
need to familiarize yourself with. Those events are

• keydown

• keypress

• keyup

Given what these events are called, you probably already have a vague idea of
what each event does. The keydown event is fired when you press down on a key
on your keyboard. The keyup event is fired when you release a key that you just
pressed. Both of these events work on any key that you interact with.

The keypress event is a special bird. At first glance, it seems like this event
is fired when you press down on any key. Despite what the name claims, the
keypress event is fired only when you press down on a key that displays a char-
acter (letter, number, and the like). What this means is somewhat confusing, but it
makes sense in its own twisted way.

If you press and release a character key such as the letter y, you will see the
keydown, keypress, and keyup events fired in order. The keydown and keyup
events fire because the y key is simply a key to them. The keypress event is fired
because the y key is a character key. If you press and release a key that doesn’t
display anything on the screen (such as the spacebar, arrow key, or function keys),
all you will see are the keydown and keyup events fired.

This difference is subtle but very important when you want to ensure your key
presses are actually overheard by your application.

CHAPTER 34 KEYBOARD EVENTS 383

Using These Events
The way you listen to the keydown, keypress, and keyup events is similar to
any other event you may want to listen and react to. You call addEventListener
on the element that will be dealing with these events, specify the event you
want to listen for, specify the event handling function that gets called when the
event is overheard, and a true/false value indicating whether you want this event
to bubble.

Here is an example of me listening to our three keyboard events on the
window object:
window.addEventListener("keydown", dealWithKeyboard, false);

window.addEventListener("keypress", dealWithKeyboard, false);

window.addEventListener("keyup", dealWithKeyboard, false);

function dealWithKeyboard(e) {

 // gets called when any of the keyboard events are overheard

}

If any of these events are overheard, the dealWithKeyboard event handler gets
called. In fact, this event handler will get called three times if you happen to press
down on a character key. This is all pretty straightforward, so let’s kick everything
up a few notches and go beyond the basics in the next few sections.

SAY WHAT?
It is weird that an event called keypress doesn’t fire when any key is pressed. Maybe
this event should be called something else like characterkeypress, but that is
probably a moo point. (What is a “moo point”? Well… http://bit.ly/kirupaMoo)

http://bit.ly/kirupaMoo

384 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The Keyboard Event Properties
When an event handler that reacts to a keyboard event is called, a Keyboard
event argument is passed in. Let’s revisit our dealWithKeyboard event handler
that you saw earlier. In that event handler, the keyboard event is represented
by the e argument that is passed in:
function dealWithKeyboard(e) {

 // gets called when any of the keyboard events are overheard

}

This argument contains a handful of properties:

• KeyCode

Every key you press on your keyboard has a number associated with it.
This read-only property returns that number.

• CharCode

This property only exists on event arguments returned by the keypress event,
and it contains the ASCII code for whatever character key you pressed.

• ctrlKey, altKey, shiftKey

These three properties return a true if the Ctrl key, Alt key, or Shift key
is pressed.

• MetaKey

• The metaKey property is similar to the ctrlKey, altKey, and shiftKey
properties in that it returns a true if the Meta key is pressed. The Meta
key is the Windows key on Windows keyboards and the Command key on
Apple keyboards.

The Keyboard event contains a few other properties, but the ones you see above
are the most interesting ones. With these properties, you can check for which key
was pressed and react accordingly. In the next couple of sections, you’ll see some
examples of this.

CAUTION The charCode and keyCode properties are
currently marked as deprecated by the web standards people at
the W3C. Its replacement might be the mostly unsupported code
property. Just be aware of this and be ready to update your
code in the future when whichever successor to charCode and
keyCode has taken his/her rightful place on the throne.

CHAPTER 34 KEYBOARD EVENTS 385

Some Examples
Now that you’ve seen the horribly boring basics of how to work with Keyboard
events, let’s look at some examples that clarify (or potentially confuse!) everything
you’ve seen so far.

Checking That a Particular Key Was Pressed
The following example shows how to use the keyCode property to check if a
particular key was pressed:
window.addEventListener("keydown", checkKeyPressed, false);

function checkKeyPressed(e) {

 if (e.keyCode == 65) {

 console.log("The 'a' key is pressed.");

 }

}

The particular key I check is the a key. Internally, this key is mapped to the
keyCode value of 65. In case you never memorized all of them in school,
you can find a handy list of all key and character codes at the following link:
http://bit.ly/kirupaKeyCode Please do not memorize every single code from
that list. There are far more interesting things to memorize instead.

Some things to note. The charCode and keyCode values for a particular key are
not the same. Also, the charCode is only returned if the event that triggered your
event handler was a keypress. In our example, the keydown event would not
contain anything useful for the charCode property.

If you wanted to check the charCode and use the keypress event, here is what
the above example would look like:
window.addEventListener("keypress", checkKeyPressed, false);

function checkKeyPressed(e) {

 if (e.charCode == 97) {

 console.log("The 'a' key is pressed.");

 }

}

The charCode for the a key is 97. Again, refer to the table of key and character
codes I listed earlier for such details.

http://bit.ly/kirupaKeyCode

386 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Doing Something When the Arrow Keys Are Pressed
We see this most often in games where pressing the arrow keys does something
interesting. The following snippet of code shows how that is done:
window.addEventListener("keydown", moveSomething, false);

function moveSomething(e) {

 switch (e.keyCode) {

 case 37:

 // left key pressed

 break;

 case 38:

 // up key pressed

 break;

 case 39:

 // right key pressed

 break;

 case 40:

 // down key pressed

 break;

 }

}

Again, this should be pretty straightforward as well. And, would you believe
it—an actual use for the switch statement that you learned about forever ago
in Chapter 4, “Conditional Statements: if, else, and switch.”

Detecting Multiple Key Presses
Now, this is going to be epic! An interesting case revolves around detecting when
we need to react to multiple key presses. What follows is an example of how to do
that:
window.addEventListener("keydown", keysPressed, false);

window.addEventListener("keyup", keysReleased, false);

let keys = [];

function keysPressed(e) {

 // store an entry for every key pressed

CHAPTER 34 KEYBOARD EVENTS 387

 keys[e.keyCode] = true;

 // Ctrl + Shift + 5

 if (keys[17] && keys[16] && keys[53]) {

 // do something

 }

 // Ctrl + f

 if (keys[17] && keys[70]) {

 // do something

 // prevent default browser behavior

 e.preventDefault();

 }

}

function keysReleased(e) {

 // mark keys that were released

 keys[e.keyCode] = false;

}

Going into great detail about this will require another chapter by itself, but let’s
just look at how this works very briefly.

First, we have a keys array that stores every single key that you press:
let keys = [];

As keys get pressed, the keysPressed event handler gets called:
function keysPressed(e) {

 // store an entry for every key pressed

 keys[e.keyCode] = true;

 // Ctrl + Shift + 5

 if (keys[17] && keys[16] && keys[53]) {

 // do something

 }

388 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 // Ctrl + f

 if (keys[17] && keys[70]) {

 // do something

 // prevent default browser behavior

 e.preventDefault();

 }

}

When a key gets released, the keysReleased event handler gets called:
function keysReleased(e) {

 // mark keys that were released

 keys[e.keyCode] = false;

}

Notice how these two event handlers work with each other. As keys get pressed,
an entry gets created for them in the keys array with a value of true. When keys
get released, those same keys are marked with a value of false. The existence of
the keys you press in the array is superficial. It is the values they store that is actu-
ally important.

As long as nothing interrupts your event handlers from getting called properly
such as an alert window, you will get a one-to-one mapping between keys pressed
and keys released as viewed through the lens of the keys array. With all of this
said, the checks for seeing which combination of keys have been pressed is
handled in the keysPressed event handler. The following highlighted lines show
how this works:
function keysPressed(e) {

 // store an entry for every key pressed

 keys[e.keyCode] = true;

 // Ctrl + Shift + 5

 if (keys[17] && keys[16] && keys[53]) {

 // do something

 }

 // Ctrl + f

 if (keys[17] && keys[70]) {

 // do something

CHAPTER 34 KEYBOARD EVENTS 389

 // prevent default browser behavior

 e.preventDefault();

 }

}

There is one thing you need to keep in mind. Some key combinations result in
your browser doing something. To avoid your browser from doing its own thing,
use the preventDefault method as highlighted when checking to see if
Ctrl + F is being used:
function keysPressed(e) {

 // store an entry for every key pressed

 keys[e.keyCode] = true;

 // Ctrl + Shift + 5

 if (keys[17] && keys[16] && keys[53]) {

 // do something

 }

 // Ctrl + f

 if (keys[17] && keys[70]) {

 // do something

 // prevent default browser behavior

 e.preventDefault();

 }

}

The preventDefault method prevents an event from triggering a default
behavior. In this case, it was preventing the browser from showing the Find dialog
box. Different key combinations will trigger different reactions by the browser, so
keep this method handy to put a stop to those reactions.

Anyway, looking at the code in aggregate, you have a basic blueprint for how to
check for multiple key presses easily.

390 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

THE ABSOLUTE MINIMUM
The keyboard is pretty important when it comes to how people interact with
their computer-like devices. Despite its importance, you often won’t have to deal
with them directly. Your browser, the various text-related controls/elements, and
everything in-between just handle it as you would expect by default. There are
certain kinds of applications where you may want to deal with them, though, which
is why you have this chapter.

This chapter started off in the most boring way possible by explaining how to
work with the Keyboard events and their event arguments. Along the way,
things (hopefully) got more interesting as you saw several examples that address
common things you would do when dealing with the keyboard in code. If you
have any questions about working with the keyboard or anything else, don’t
hesitate to post on the forums at https://forum.kirupa.com.

https://forum.kirupa.com

35
I N T H I S C H A P T E R
• Learn about all the events that fire as your page is

getting loaded

• Understand what happens behind the scenes during
a page load

• Fiddle with the various script element attributes
that control exactly when your code runs

PAGE LOAD EVENTS AND
OTHER STUFF
An important part of working with JavaScript is ensuring that your code

runs at the right time. Things aren’t always as simple as putting your code

at the bottom of your page and expecting everything to work once your

page has loaded. Yes, we are going to revisit some things we looked at in

Chapter 10, “Where Should Your Code Live?” Every now and then, you

may have to add some extra code to ensure your code doesn’t run before

the page is ready. Sometimes, you may even have to put your code at the

top of your page…like an animal!

392 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

There are many factors that affect what the “right time” really is to run your code,
and in this chapter, we’re going to look at those factors and narrow down what
you should do to a handful of guidelines.

Onward!

The Things That Happen During Page Load
Let’s start at the very beginning. You click on a link or press Enter after typing in a
URL and, if the stars are aligned properly, your page loads. All of that seems pretty
simple and takes up a very tiny sliver of time to complete from beginning to end:

In that short period of time between you wanting to load a page and your page
loading, a lot of relevant and interesting stuff happens that you need to know
more about. One example of the relevant and interesting stuff that happens is that
any code specified on the page will run. When exactly the code runs depends on
a combination of the following things that all come alive at some point while your
page is getting loaded:

• The DOMContentLoaded event

• The load Event

CHAPTER 35 PAGE LOAD EVENTS AND OTHER STUFF 393

• The async attribute for script elements

• The defer attribute for script elements

• The location your scripts live in the DOM

Don’t worry if you don’t know what these things are. You’ll learn (or re-learn) what
all of these things do and the effect they have when your code runs really soon.
Before we get there, though, let’s take a quick detour and look at the three stages
of a page load.

Stage Numero Uno
The first stage is when your browser is about to start loading a new page:

At this stage, there isn’t anything interesting going on. A request has been made
to load a page, but nothing has been downloaded yet.

Stage Numero Dos
Things get a bit more exciting with the second stage where the raw markup and
DOM of your page has been loaded and parsed:

394 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The thing to note about this stage is that external resources like images and linked
stylesheets have not been parsed. You only see the raw content specified by your
page/document’s markup.

Stage Numero Three
The final stage is where your page is fully loaded with any images, stylesheets,
scripts, and other external resources making their way into what you see:

CHAPTER 35 PAGE LOAD EVENTS AND OTHER STUFF 395

This is the stage where your browser’s loading indicators stop animating, and this
is also the stage you almost always find yourself in when interacting with your
HTML document. That said, sometimes you’ll find yourself in an in-between state
where 99% of your page has loaded with only some random thing taking forever
to load. If you’ve been to one of those viral/buzz/feedy sites, you’ll totally know
what I am talking about.

Now that you have a basic idea of the three stages your document goes through
when loading content, let’s move forward to the more interesting stuff. Keep these
three stages at the tip of your fingers (or under your hat if you are wearing one
while reading this), as we’ll refer back to these stages a few times in the following
sections.

The DOMContentLoaded and load Events
There are two events that represent the two important milestones while your page
loads: DOMContentLoaded and load. The DOMContentLoaded event fires at
the end of Stage #2 when your page’s DOM is fully parsed. The load event fires
at the end of Stage #3 once your page has fully loaded. You can use these events
to time when exactly you want your code to run.

The following is a snippet of these events in action:
document.addEventListener("DOMContentLoaded", theDomHasLoaded,
false);

window.addEventListener("load", pageFullyLoaded, false);

function theDomHasLoaded(e) {

 // do something

}

function pageFullyLoaded(e) {

 // do something again

}

You use these events just like you would any other event, but the main thing to
note about these events is that you need to listen to DOMContentLoaded from
the document element and load from the window element.

Now that we’ve got the boring technical details out of the way, why are these
events important? Simple. If you have any code that relies on working with the
DOM such as anything that uses the querySelector or querySelectorAll

396 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

functions, you want to ensure your code runs only after your DOM has been fully
loaded. If you try to access your DOM before it has fully loaded, you may get
incomplete results or no results at all.

Here is an awesome extreme example from Kyle Murray that should help explain
this:
<!DOCTYPE html>

<html>

<head>

 <script>

 // try to analyze the book's meaning here

 </script>

</head>

<body>

 [INSERT ENTIRE COPY OF /WAR AND PEACE/ HERE]

</body>

</html>

A sure-fire way to ensure you never get into a situation where your code runs
before your DOM is ready is to listen for the DOMContentLoaded event and let
all of the code that relies on the DOM to run only after that event is overheard:
document.addEventListener("DOMContentLoaded", theDomHasLoaded, false);

function theDomHasLoaded(e) {

 let headings = document.querySelectorAll("h2");

 // do something with the images

}

For cases where you want your code to run only after your page has fully loaded,
use the load event. In my years of doing things in JavaScript, I never had too
much use for the load event at the document level outside of checking the final
dimensions of a loaded image or creating a crude progress bar to indicate prog-
ress. Your mileage may vary, but…I doubt it.

CHAPTER 35 PAGE LOAD EVENTS AND OTHER STUFF 397

Scripts and Their Location in the DOM
In Chapter 8, “Variable Scope,” we looked at the various ways in which you can
have scripts appear in your document. You saw that your script elements’ position
in the DOM affects when they run. In this section, we are going to re-emphasize
that simple truth and go a few steps further.

To review, a simple script element can be some code stuck inline somewhere:
<script>

 let number = Math.random() * 100;

 console.log("A random number is: " + number);

</script>

A simple script element can also be something that references some code from an
external file:
<script src="/foo/something.js"></script>

Now, here is the important detail about these elements. Your browser parses your
DOM sequentially from the top to the bottom. Any script elements that are found
along the way will get parsed in the order they appear in the DOM.

Below is a very simple example where you have many script elements:
<!DOCTYPE html>

<html>

<body>

 <h1>Example</h1>

 <script>

 console.log("inline 1");

 </script>

 <script src="external1.js"></script>

 <script>

 console.log("inline 2");

 </script>

 <script src="external2.js"></script>

 <script>

 console.log("inline 3");

 </script>

</body>

</html>

398 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

It doesn’t matter if the script contains inline code or references something
external. All scripts are treated the same and run in the order in which they appear
in your document. Using the above example, the order in which the scripts will run
is as follows: inline 1, external 1, inline 2, external 2, and inline 3.

Now, here is a really REALLY important detail to be aware of. Because your DOM
gets parsed from top to bottom, your script element has access to all of the
DOM elements that were already parsed. Your script has no access to any DOM
elements that have not yet been parsed. Say, what?!

Let’s say you have a script element that is at the bottom of your page just above
the closing body element:
<!DOCTYPE html>

<html>

<body>

 <h1>Example</h1>

 <p>

 Quisque faucibus, quam sollicitudin pulvinar dignissim, nunc
velit sodales leo, vel vehicula odio lectus vitae

 mauris. Sed sed magna augue. Vestibulum tristique cursus orci,
accumsan posuere nunc congue sed. Ut pretium sit amet

 eros non consectetur. Quisque tincidunt eleifend justo, quis
molestie tellus venenatis non. Vivamus interdum urna ut

 augue rhoncus, eu scelerisque orci dignissim. In commodo purus
id purus tempus commodo.

 </p>

 <button>Click Me</button>

 <script src="something.js"></script>

</body>

</html>

When something.js runs, it has the ability to access all of the DOM elements
that appear just above it such as the h1, p, and button elements. If your script

CHAPTER 35 PAGE LOAD EVENTS AND OTHER STUFF 399

element was at the very top of your document, it wouldn’t have any knowledge of
the DOM elements that appear below it:
<!DOCTYPE html>

<html>

<body>

 <script src="something.js"></script>

 <h1>Example</h1>

 <p>

 Quisque faucibus, quam sollicitudin pulvinar dignissim, nunc
velit sodales leo, vel vehicula odio lectus vitae

 mauris. Sed sed magna augue. Vestibulum tristique cursus orci,
accumsan posuere nunc congue sed. Ut pretium sit amet

 eros non consectetur. Quisque tincidunt eleifend justo, quis
molestie tellus venenatis non. Vivamus interdum urna ut

 augue rhoncus, eu scelerisque orci dignissim. In commodo purus
id purus tempus commodo.

 </p>

 <button>Click Me</button>

</body>

</html>

By putting your script element at the bottom of your page as shown earlier, the
end behavior is identical to what you would get if you had code that explicitly
listened to the DOMContentLoaded event. If you can guarantee that your scripts
will appear toward the end of your document after your DOM elements, you
can avoid following the whole DOMContentLoaded approach described in the
previous section. Now, if you really want to have your script elements at the top
of your DOM, ensure that all of the code that relies on the DOM runs after the
DOMContentLoaded event gets fired.

Here is the thing. I’m a huge fan of putting your script elements at the bottom of
your DOM. There is another reason besides easy DOM access why I recommend
having your scripts live toward the bottom of the page. When a script element is

400 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

being parsed, your browser stops everything else on the page from running while
the code is executing. If you have a really long-running script or your external
script takes its sweet time in getting downloaded, your HTML page will appear
frozen. If your DOM is only partially parsed at this point, your page will also look
incomplete in addition to being frozen. Unless you are Facebook, you probably
want to avoid having your page look frozen for no reason.

Script Elements—Async and Defer
In the previous section, I explained how a script element’s position in the DOM
determines when it runs. All of that only applies to what I call simple script
elements. To be part of the non-simple world, script elements that point to
external scripts can have the defer and async attributes set on them:
<script async src="myScript.js"></script>

<script defer src="somethingSomethingDarkSide.js"></script>

These attributes alter when your script runs independent of where in the DOM
they actually show up, so let’s look at how they end up altering your script.

async
The async attribute allows a script to run asynchronously:
<script async src="someRandomScript.js"></script>

If you recall from the previous section, if a script element is being parsed, it could
block your browser from being responsive and usable. By setting the async attribute
on your script element, you avoid that problem altogether. Your script will run
whenever it is able to, but it won’t block the rest of your browser from doing its thing.

This casualness in running your code is pretty awesome, but you must realize that
your scripts marked as async will not always run in order. You could have a case
where several scripts marked as async will run in an order different from what was
specified in your markup. The only guarantee you have is that your scripts marked
with async will start running at some mysterious point before the load event
gets fired.

defer
The defer attribute is a bit different from async:
<script defer src="someRandomScript.js"></script>

CHAPTER 35 PAGE LOAD EVENTS AND OTHER STUFF 401

Scripts marked with defer run in the order in which they were defined, but they
only get executed at the end just a few moments before the DOMContentLoaded
event gets fired. Take a look at the following example:
<!DOCTYPE html>

<html>

<body>

 <h1>Example</h1>

 <script defer src="external1.js"></script>

 <script>

 console.log("inline 1");

 </script>

 <script src="external2.js"></script>

 <script>

 console.log("inline 2");

 </script>

 <script defer src="external3.js"></script>

 <script>

 console.log("inline 3");

 </script>

</body>

</html>

Take a second and tell the nearest human/pet the order in which these scripts will
run. It’s okay if you don’t provide them with any context. If they love you, they’ll
understand.

Anyway, your scripts will execute in the following order: inline 1, external 1,
inline 2, inline 3, external 3, and external 2. The external 3 and external 2
scripts are marked as defer, and that’s why they appear at the very end despite
being declared in different locations in your markup.

402 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

THE ABSOLUTE MINIMUM
In the previous sections, we looked at all sorts of factors that influence when your
code will execute. The following diagram summarizes everything you saw into a
series of colorful lines and rectangles:

Now, here is probably what you are looking for. When is the right time to load
your JavaScript? The answer is…

 1. Place your script references below your DOM directly above your closing
body element.

 2. Unless you are creating a library that others will use, don’t complicate your
code by listening to the DOMContentLoaded or load events. Instead, see
the previous point.

 3. Mark your scripts referencing external files with the defer attribute.

 4. If you have code that doesn’t rely on your DOM being loaded and runs as
part of teeing things off for other scripts in your document, you can place this
script at the top of your page with the async attribute set on it.

CHAPTER 35 PAGE LOAD EVENTS AND OTHER STUFF 403

That’s it. I think those four steps will cover almost 90% of all your cases to ensure
your code runs at the right time. For more advanced scenarios, you should
definitely take a look at a third-party library like require.js, which gives you greater
control over when your code will run. If you have any issues with loading things,
post on https://forum.kirupa.com.

Some additional resources and examples:

• Module Loading with RequireJS: http://bit.ly/kirupaRequireJS

• Preloading Images: http://bit.ly/kirupaPreloadImages

https://forum.kirupa.com
http://bit.ly/kirupaRequireJS
http://bit.ly/kirupaPreloadImages

This page intentionally left blank

36
I N T H I S C H A P T E R
• Learn to efficiently react to multiple events

• Revisit how events work for one last time

HANDLING EVENTS FOR
MULTIPLE ELEMENTS
In its most basic case, an event listener deals with events fired from a single

element:

As you build more complicated things, the “one event handler for one

element” mapping starts to show its limitation. The most common reason

revolves around you creating elements dynamically using JavaScript. These

elements you are creating can fire events that you may want to listen and

react to, and you can have anywhere from a handful of elements that need

eventing support to many MANY elements that need to have their events

dealt with.

406 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

What you don’t want to do is this:

You don’t want to create an event listener for each element IF the event listener
is the same for all of them. The reason is because your parents told you so. The
other reason is because it is inefficient. Each of these elements carries around data
about the same event listener and its properties that can really start adding up the
memory usage when you have a lot of content. Instead, what you want is a clean
and fast way of handling events on multiple elements with minimal duplication and
unnecessary things. What you want will look a little bit like this:

CHAPTER 36 HANDLING EVENTS FOR MULTIPLE ELEMENTS 407

All of this may sound a bit crazy, right? Well, in this chapter, you will learn all
about how non-crazy this is and how to implement this using just a few lines of
JavaScript.

Onward!

How to Do All of This
Okay—at this point, you know how simple event handling works where you have
one element, one event listener, and one event handler. Despite how different the
case with multiple elements may seem, by taking advantage of the disruptiveness
of events, solving it is actually quite easy.

408 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Imagine we have a case where you want to listen for the click event on any of the
sibling elements whose id values are one, two, three, four, and five. Let’s complete
our imagination by picturing the DOM as follows:

At the very bottom, we have the elements we want to listen for events on. They all
share a common parent with an element whose id value is theDude. To solve our
event handling problems, let’s look at a terrible solution followed by a good solution.

A Terrible Solution
Here is what we don’t want to do. We don’t want to have five event listeners for
each of these buttons:
let oneElement = document.querySelector("#one");

let twoElement = document.querySelector("#two");

let threeElement = document.querySelector("#three");

CHAPTER 36 HANDLING EVENTS FOR MULTIPLE ELEMENTS 409

let fourElement = document.querySelector("#four");

let fiveElement = document.querySelector("#five");

oneElement.addEventListener("click", doSomething, false);

twoElement.addEventListener("click", doSomething, false);

threeElement.addEventListener("click", doSomething, false);

fourElement.addEventListener("click", doSomething, false);

fiveElement.addEventListener("click", doSomething, false);

function doSomething(e) {

 let clickedItem = e.target.id;

 console.log("Hello " + clickedItem);

}

To echo what I mentioned in the intro, the obvious reason is that you don’t want
to duplicate code. The other reason is that each of these elements now has their
addEventListener property set. This is not a big deal for five elements. It starts
to become a big deal when you have dozens or hundreds of elements each taking
up a small amount of memory. The other OTHER reason is that your number of
elements, depending on how adaptive or dynamic your UI really is, can vary. Your
app may add or remove elements depending on what the user is doing, so it
would be difficult to keep track of all the individual event listeners that each object
may or may not need. Having one overarching event handler makes this situation
much more fun.

A Good Solution
The good solution for this mimics the diagram you saw much earlier where we
have just one event listener. I am going to confuse you first by describing how this
works. Then I’ll hopefully un-confuse you by showing the code and explaining in
detail what exactly is going on. The simple and confusing solution to this is:

 1. Create a single event listener on the parent theDude element.

 2. When any of the one, two, three, four, or five elements are clicked, rely on the
propagation behavior that events possess and intercept them when they hit
the parent theDude element.

 3. (Optional) Stop the event propagation at the parent element just to avoid
having to deal with the event obnoxiously running up and down the DOM tree.

410 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

I don’t know about you, but I’m certainly confused after having read those
three steps! Let’s start to unconfuse ourselves by starting with a diagram that
explains those steps more visually:

The last step in our quest for complete unconfusedness is the code that translates
what the diagram and the three steps represent:
let theParent = document.querySelector("#theDude");

theParent.addEventListener("click", doSomething, false);

function doSomething(e) {

 if (e.target != e.currentTarget) {

 let clickedItem = e.target.id;

CHAPTER 36 HANDLING EVENTS FOR MULTIPLE ELEMENTS 411

 console.log("Hello " + clickedItem);

 }

 e.stopPropagation();

}

Take a moment to read and understand the code you see here. After seeing our initial
goals and the diagram, we will listen for the event on the parent theDude element:
let theParent = document.querySelector("#theDude");

theParent.addEventListener("click", doSomething, false);

There is only one event listener to handle this event, and that lonely creature is
called doSomething:
function doSomething(e) {

 if (e.target != e.currentTarget) {

 let clickedItem = e.target.id;

 console.log("Hello " + clickedItem);

 }

 e.stopPropagation();

}

This event listener will get called each time theDude element is clicked along with
any children that get clicked as well. We only care about click events relating to the
children, and the proper way to ignore clicks on this parent element is to simply
avoid running any code if the element the click is from (aka the event target) is the
same as the event listener target (aka theDude element):
function doSomething(e) {

 if (e.target != e.currentTarget) {

 let clickedItem = e.target.id;

 console.log("Hello " + clickedItem);

 }

 e.stopPropagation();

}

The target of the event is represented by e.target, and the target element the
event listener is attached to is represented by e.currentTarget. By simply
checking that these values not be equal, you can ensure that the event handler
doesn’t react to events fired from the parent element that you don’t care about.

412 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

To stop the event’s propagation, we simply call the stopPropagation method:
function doSomething(e) {

 if (e.target != e.currentTarget) {

 let clickedItem = e.target.id;

 console.log("Hello " + clickedItem);

 }

 e.stopPropagation();

}

Notice that this code is actually outside of my if statement. This is because I want
the event to stop traversing the DOM under all situations once it gets overheard.

Putting It All Together
The end result of all of this code running is that you can click on any of theDude’s
children and listen for the event as it propagates up:

CHAPTER 36 HANDLING EVENTS FOR MULTIPLE ELEMENTS 413

THE ABSOLUTE MINIMUM
For some time, I actually proposed a solution for our Multiple Element Eventing
Conundrum (MEEC as the cool kids call it!) that was inefficient but didn’t require
you to duplicate many lines of code. Before many people pointed out the
inefficiencies of it, I thought it was a valid solution.

The way this solution worked was by using a for loop to attach event listeners to
all the children of a parent (or an array containing HTML elements). Here is what
that code looked like:
let theParent = document.querySelector("#theDude");

for (let i = 0; i < theParent.children.length; i++) {

 let childElement = theParent.children[i];

 childElement.addEventListener('click', doSomething, false);

}

function doSomething(e) {

 let clickedItem = e.target.id;

 console.log("Hello " + clickedItem);

}

Because all of the event arguments are still unique to the element that we
are interacting with (aka the source of the event), we are able to identify and
special case the clicked element from inside the event handler despite the
addEventListener being active only on the parent. The main thing to call out
about this solution is that it satisfies the problems we set out to avoid. You only
created one event listener. It doesn’t matter how many children theDude ends up
having. This approach is generic enough to accommodate all of them without any
extra modification to your code. This also means that you should do some strict
filtering if your theDude element ends up having children besides buttons and
other elements that you care about.

414 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The end result was that this approach allowed us to listen for the click event
directly on the children. The only code I wrote manually was this single event
listener call that was parameterized to the appropriate child element based on
where in the loop the code was in:
childElement.addEventListener('click', doSomething, false);

The reason this approach isn’t great is because each child element has an event
listener associated with it. This goes back to our efficiency argument where this
approach unnecessarily wastes memory.

Now, if you do have a situation where your elements are spread throughout the
DOM with no nearby common parent, using this approach on an array of HTML
elements is not a bad way of solving our MEEC problem.

Anyway, as you start working with larger quantities of UI elements for games,
data-visualization apps, and other HTML Element-rich things, you’ll end up having
to use everything you saw here at least once. I hope. If all else fails, this chapter
still served an important purpose. All of the stuff about event tunneling and
capturing you saw earlier clearly came in handy here. That’s something!

37
I N T H I S C H A P T E R
• Pat ourselves on the back for a job well done

• Pat ourselves on the back one more time just
for kicks

CONCLUSION
Well, now you’ve done it! You just couldn’t stop binge reading and now

you are nearing the end. How does it feel knowing that you won’t have any

more new content to look forward to until the next season?

416 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Anyway, if you’ve been following along from the very beginning, you’ll agree that
we covered a lot of ground. We started with this:
<script>

 console.log("hello, world!");

</script>

We ended up with examples and snippets that had many more lines of more
complex, useful, and far cooler code.

The thing you should remember is that writing code is easy. Writing elegant
code that actually solves a problem is hard. This was best captured by one of
my favorite lines from Scarface where Tony Montana delivered the following line
(exact wording may be off a bit…it’s hard to understand him sometimes, as you
know if you’ve seen the film):

This book is all about the basics. The way you go from the basics to the next step
is by continuing to write code, trying out new things, and learning more along the
way. This book described all the various tools and provided short examples of how
they fit together help you build small things. It’s up to you to take this knowledge
and apply it towards building all the cooler non-small things that you often see
associated with JavaScript. If you are feeling up for it, take a look at some of the
more involved tutorials and examples on https://www.kirupa.com.

https://www.kirupa.com

CHAPTER 37 CONCLUSION 417

So with that…see you all later, and feel free to drop me a line at kirupa@kirupa.
com or find me on Facebook and Twitter (@kirupa). Like I mentioned in the introduc-
tion, I enjoy hearing from readers such as you, so don’t be shy about contacting me.
If you have any questions (big or small), take a moment and post on https://forum.
kirupa.com.

Also, I know you have a lot of choices in books for learning JavaScript. Thank
you for choosing this book and allowing me to live vicariously through your code
editor.

Cheers,

mailto:kirupa@kirupa.com
mailto:kirupa@kirupa.com
https://forum.kirupa.com
https://forum.kirupa.com

This page intentionally left blank

Glossary

A very casual look at the various terms you will
encounter in this book and beyond.

A
Arguments The values you provide (or pass in)
to a function.

Array A data structure that allows you to store
and access a sequence of values.

B
Boolean A data structure that represents true or
false.

C
Cascading Style Sheets (CSS) A styling
 language used primarily for changing how the
content in your HTML page looks.

Closure An inner function that has access to an
outer function’s variables (in addition to its own
and any global variables).

Comments Human readable text (often
 separated by // or /* and */ characters)
in your code that is completely ignored by
JavaScript.

D
Developer Tools In the context of browsers,
they are extensions that help you inspect,
debug, and diagnose what is going on inside
your web page.

Do…While Loop A control statement that
 executes some code until a condition you
 specify returns false. (This is great if you don’t
know how many times you want to loop!)

Document Object Model (DOM) The
JavaScript representation (often in a tree-like
structure) of your HTML page and all the things
inside it.

E
Event Bubbling The phase where an event
starts at the element that initiated the event and
climbs the DOM back to the root.

Event Capturing The phase where an event
starts at the root and traverses down the DOM
until it reaches the element that initiated the
event.

Event Listener A function that listens for an
event and then executes some code when that
event is overheard.

Event Target The element that is responsible
for having initiated (aka fired) an event.

Event A signal that travels through your DOM
to indicate something has happened.

F
For Loop A control statement that executes
some code a finite number of times.

Function A reusable block of code that takes
arguments, groups statements together, and
can be called on to execute the code contained
inside it.

420 GLOBAL SCOPE

O
Object A very flexible and ubiquitous data
structure you can use to store properties and
their values and…even other objects.

Operators A built-in function such as your
friendly +, -, *, /, for, while, if, do, =,
etc. words.

P
Primitives A basic type that isn’t composed of
other types.

R
Return A keyword that exits a function or block.
In the case of functions, it is often used to return
some data back to whatever called the function.

S
Scope A term indicating the visibility of
 something. In the real world, it is also a brand of
mouthwash.

Strict Equality (===) Comparison Checks
whether value and type of two things is equal.

Strict Inequality (!==) Comparison Checks
whether the value and type of two things is not
equal.

String A sequence of characters that make up
what we think of as text. It is also the name of a
formal type for dealing with text in JavaScript.

Switch Statement A conditional statement that
checks a particular condition against a list of
cases. If one of the cases matches the condition,
the code associated with that case executes.

G
Global Scope Something declared outside of a
function that is accessible to the entire app.

I
If Statement A conditional statement that
 executes some code if the condition is true.

If/Else Statement A conditional statement that
executes different pieces of code depending on
whether a condition is true or false.

IIFE (Immediately Invoked Function
Expression) A way of writing JavaScript that
allows you to execute some code in its own
scope without leaving behind any trace of its
existence.

Invoke A fancy way of saying the same thing as
calling a function.

J
JavaScript A fussy and (often) inconsistent
scripting language that, to everyone’s surprise
over the years, has grown to be quite popular
for building apps on the web and the server.

L
Local Scope Something that is accessible only
to the enclosing function or block.

Loop A control statement that allows you to
execute code repeatedly.

N
Node A generic name for an item in the DOM.

WHILE LOOP 421

W
Weak Equality (==) Comparison Checks only
whether the value of two things is equal.

Weak Inequality (!=) Comparison Checks only
whether the value of two things is unequal.

Web Browser A complex application that, at
its bare minimum, helps you browse the Internet
and display web pages.

While Loop A control statement that continually
executes some code until a condition you
 specify returns false.

T
Timer Functions Functions that execute code
at a periodic interval. The most common timer
functions are setTimeOut, setInterval, and
requestAnimationFrame.

Type A classification that helps identify your
data and the values you can use.

V
Values The formal name for the various types of
data you’ll encounter.

Variable Scope The term for describing the
 visibility of a variable in a section of code.

Variables A named bucket for storing
some data.

This page intentionally left blank

Symbols

- - operator, 178–179

““ (quotation marks), 12,
160–161

// comments, 71–72

/* */ comments, 72

/= operator, 178

; (semicolon), 11

|| operator, 42

+ operator, 163

++ operator, 178–179

+= operator, 163, 178

= = operator, 42, 246

= = = operator, 240–241,
245, 246

-= operator, 178

!= = operator, 240–241

!= operator, 42

%= operator, 178

&& operator, 42

() (parentheses), 25–26

**= operator, 178

*= operator, 178

[] (brackets), 144

{} (brackets), 26

< operator, 42

<= operator, 42

> operator, 42

>= operator, 42

Index

A

absolute value, 185

abstraction, objects as, 138–139

accessing
array values, 145–146
child objects, 303
console, 337
developer tools, 324–326
string characters, 161–162

accessor properties, 188
data properties, compared, 188–190

addEventListener function, 346–348, 362–363

adding
array values, 147–148
class values, 293
properties, 197–200

alert function, 11–12, 119–120, 340

altKey property, 384

animation with requestAnimationFrame function,
80–81

appendChild method, 309–310

appending child objects to parent, 309–313

arguments, 28–32
for callback functions, 156–157
for event handlers, 351–352

array literal notation, 145

Array object, 140, 170

arrays, 143–158
creating, 144–145
in JSON, 256

424 ARRAYS

merging, 150–151
shuffling, 213–219
values

accessing, 145–146
adding, 147–148
combining, 155–157
counting, 146
filtering, 154–155
finding, 150
modifying, 151–153
removing, 149–150

arrow key presses, 386

async attribute, 400

attribute selectors, 276

attribute values, changing in DOM, 286–288

B

best practices, 73–75

bigint type, 137

block scope, 87–90

Boolean function, 238–240

Boolean logic, 45, 237–241
Boolean function,

238–240
Boolean object, 238
boolean type, 237
in JSON, 254–255
strict equality/inequality operators, 240–241

Boolean object, 140,
170, 238

boolean type, 137, 170, 237

bracket notation, 199

brackets ([]), 144

brackets ({}), 26

break keyword, 50, 63–64

breakpoints, 332, 337

browser mouse position, 376–377

browsers
console. See console
developer tools. See

developer tools

bubbling events, 355–366
phases, 361–364
stopping propagation, 364–366
usage example, 356–360

button property, 377–378

buttons property, 378

C

callback functions, 154, 155
arguments, 156–157
functional programming, 157–158

calling functions, 24, 27

capturing events, 355–366
phases, 361–364
stopping propagation, 364–366
usage example, 356–360

case (of strings), changing, 168, 191

case blocks, 48–51

changing
attribute values in DOM, 286–288
case of strings, 168, 191
text values in DOM, 284–285
variable values, 19–20

characters in strings
accessing, 161–162
finding, 166–167

charAt method, 162

charCode property, 384, 385

child objects, 206–207, 299–300
accessing, 303
appending to parent, 309–313
checking existence, 303
event handling, 409–412
properties, 301–302

CONVERTING STRINGS TO NUMBERS 425

How can we make this index more useful? Email us at indexes@quepublishing.com

removing from parent, 314–315

childNodes property, 313

children property, 301–302, 313

choosing document structure, 114–116

class keyword, 222

class values
adding, 293
checking existence, 294
removing, 293–294
toggling, 294

classes, 221–235
constructor functions, 224–226
creating, 222
elements of, 226–229
extending objects, 229–235
functions in, 229

classList API, 292–294
add method, 293
contains method, 294
remove method, 293–294
toggle method, 294

className property, 287–288

clearInterval function, 80

clearTimeout function, 78

click event, 347, 368–370

clientX property, 376–377

clientY property, 376–377

cloneNode method, 315–319

cloning HTML elements, 315–319

closures, 93–104
nested functions, 94–97
sharing variables via,

98–104

combining
array values, 155–157
strings, 163

comments, 69–75
best practices, 73–75

JSDoc comments, 72–73
multi-line comments, 72
purpose of, 70–71
single line comments,

71–72

concat method, 150–151, 163

concatenating strings, 163

condition, for loops, 62

conditional statements, 37–54
complex expressions, 44–45
else if keyword, 46–47
if statements, 45–46
if/else statements, 39–41
operators, 41–44
strict equality/inequality operators, 240–241
switch statements, 47–54
which to use, 53–54

console, 119–130, 337–340
accessing, 337
Console API, 125
displaying, 121–124
inspecting objects, 338
log method

predefined text in, 125–127
values in, 127–128

logging messages, 340
purpose of, 120–121
scope in, 339
warnings and errors, 128–130

Console API, 125

console.log function, 340

const keyword, 19–20, 88

constants, 181–182

constructor functions, 171, 224–226

constructor keyword, 224

contains method, 294

contextmenu event, 374–375

continue keyword, 64

converting strings to numbers, 179

mailto:indexes@quepublishing.com

426 COUNTING ARRAY VALUES

counting array values, 146

createElement method, 306

CSS, 5–6
properties

naming, 291–292
setting, 290–291

purpose of, 264–265
selector syntax, 276–277

ctrlKey property, 384

D

data properties, 187–188
accessor properties, compared, 188–190

Date object, 140, 170

dblclick event, 347, 368–370

dealWithKeyboard event handler, 383–384

debugging JavaScript, 331–337

declaring variables, 16, 18–20, 86–87, 90

decrementing
for loops, 64–65
operators for, 177–179

default actions, preventing, 366

default blocks, 50–51

defer attribute, 400–401

defining functions, 24

delays with setTimeout function, 78

delete keyword, 201

detail property, 378–379

developer tools, 323–340
accessing, 324–326
console. See console
debugging JavaScript, 331–337
DOM view, View Source, compared, 326–331

displaying
console, 121–124
warnings and errors,

128–130

document object, 269–271, 298

Document Object Model. See DOM (Document
Object Model)

document property, 299

document structure, 105–116, 262–266
choosing, 114–116
CSS in, 264–265
DOM hierarchy, compared, 297–298
HTML in, 262–264
JavaScript in, 265–266
JavaScript within HTML document, 109–110
JavaScript within JavaScript file, 110–113

document.documentElement property, 299

document.write function, 57

DOM (Document Object Model), 267–271
events within

phases, 361–364
usage example, 356–360

HTML elements
cloning, 315–319
creating, 306–312
finding, 273–277
modifying, 279–288
as objects, 280–282
removing, 314–315

inspecting, 326–331
navigating hierarchy, 297–304

accessing child elements, 303
checking child existence, 303
child properties, 301–302
document structure, compared, 297–298
parent/sibling properties, 301
properties for, 298–300
recursively walking, 303–304

nodes, 267–268
objects

document object, 269–271
window object, 269

script placement in, 397–400

DOM view, View Source, compared, 326–331

EXPRESSIONS 427

How can we make this index more useful? Email us at indexes@quepublishing.com

DOMContentLoaded event, 347, 395–396

DOMMouseScroll event, 347, 378–379

dot notation, 197–199

do.while loops, 66–67

E

elements (HTML)
cloning, 315–319
creating, 306–312
finding in DOM, 273–277

querySelector function, 275–277
querySelectorAll function, 275–277

modifying in DOM, 279–288
attribute values,

286–288
text values, 284–285

nodes, compared, 319
as objects, 280–282
parents/siblings/children, 299–303
removing, 314–315
styles. See styles

else if keyword, 46–47

error method, 128–130

Event Bubbling Phase, 362

Event Capturing Phase, 361

event handlers, 347–348
arguments, 351–352
for multiple elements, 405–413

with parent/child relationship, 409–412
what not to do, 408–409

usage example, 348–351

event targets, 359, 411

Event type, 352

events, 343–353
bubbling, 355–366

phases, 361–364
stopping propagation, 364–366
usage example, 356–360

capturing, 355–366
phases, 361–364
stopping propagation, 364–366
usage example, 356–360

handling. See event handlers
keyboard events, 381–389

arrow key presses, 386
Keyboard event properties, 384
list of, 382
listening for, 383
multiple key presses, 386–389
particular key presses, 385

list of, 347
listening for, 346–348, 363–364
mouse events, 367–379

click event, 368–370
contextmenu event, 374–375
dblclick event, 368–370
DOMMouseScroll event, 378–379
list of, 368
mousedown event, 372–373
mouseenter event, 371
MouseEvent properties, 375–378
mouseleave event, 371
mousemove event, 373
mouseout event, 370–371
mouseover event, 370–371
mouseup event, 372–373
mousewheel event, 378–379

page load events, 391–396
DOMContentLoaded event, 395–396
load event, 395–396
stages of page loads, 392–395

preventing default actions, 366
purpose of, 344–345
removing listeners, 352–353
usage example, 348–351

exiting functions early, 34

exponents, 184–185

expressions, 40
complex, 44–45
operators

mailto:indexes@quepublishing.com

428 EXPRESSIONS

conditional, 41–44
incrementing/decrementing, 177–179
order of operation, 177

extending objects, 213–220
with classes, 229–235
controversy around, 219–220
shuffling arrays example, 213–219

extends keyword, 231–232

extracting substrings, 164–165

F

filter method, 150, 154–155

filtering array values, 154–155

find method, 150

findIndex method, 150

finding
array values, 150
HTML elements in DOM, 273–277

querySelector function, 275–277
querySelectorAll function, 275–277

string characters, 166–167

firstChild property, 301–302

for loops, 57–65
break keyword, 63–64
condition, 62
continue keyword, 64
decrementing, 64–65
iterations, 63
non-numeric values in, 65
starting point, 61
step region, 61–62

function keyword, 25

Function object, 140, 170

functional programming, 157–158

functions, 11–12, 21–34
arguments, 28–32
Boolean function,

238–240

callback functions, 154–155
arguments, 156–157
functional programming, 157–158

calling, 24, 27
in classes, 226–229
constructor functions, 171, 224–226
defining, 24
event handlers. See event handlers
exiting early, 34
getters/setters, 187–193

basic usage, 190–191
logging example,

191–192
uppercase generator example, 191
validation example, 192–193

local scope, 86
nested functions, 94–97
purpose of, 23
returning data, 33
sharing variables in, 98–104
trigonometric functions, 183–184

G

getAttribute function, 276, 286

getters, 187–193
basic usage, 190–191
in classes, 226–229
logging example, 191–192
uppercase generator example, 191
validation example, 192–193

global mouse position,
375–376

global scope, 84–86

H

handling events. See event handlers

Hello, World! 8–12

hexadecimal numbers, 179

hoisting variables, 91

JSON.PARSE METHOD 429

How can we make this index more useful? Email us at indexes@quepublishing.com

HTML, 5–6
elements

cloning, 315–319
creating, 306–312
finding, 273–277
modifying, 279–288
as objects, 280–282
parents/siblings/children, 299–303
removing, 314–315
styles. See styles

JavaScript within, 109–110
purpose of, 262–264
script tag, 10–11

async attribute, 400
defer attribute, 400–401
placement of, 113, 397–400

HTML documents, writing,
8–11

html element, 298

I

id property, 287–288

if statements, 45–46

if/else statements, 39–41
else if keyword, 46–47
operators, 41–44
switch statements, compared, 51–54

includes method, 150

incrementing, operators for, 177–179

index positions, 162

indexOf method, 150,
166–167

Infinity value, 180

inheritance, 212

initializing variables, 16, 18–20, 86–87

in-scope, 89

insertAfter function, 312–313

insertBefore function, 310–312

inspecting
DOM (Document Object Model), 326–331
objects, 338

iterations, for loops, 63
skipping, 64

J

JavaScript
debugging, 331–337
document structure, 105–116

choosing, 114–116
within HTML document, 109–110
within JavaScript file, 110–113

explained, 7–8
Hello, World! 8–12
purpose of, 265–266
requirements, 8
styles and

classList API, 292–294
naming CSS properties, 291–292
purpose of, 290
setting CSS properties, 290–291

JavaScript files, 110–113
referencing, 111–113
structure of, 110–111
when to use, 114–116

JSDoc comments, 72–73

JSON (JavaScript Object Notation),
247–259

data
parsing, 259
reading, 257–258
writing, 259

object literal syntax, 248–251
objects

property names, 252
values, 253–256

JSON.parse method, 259

mailto:indexes@quepublishing.com

430 KEYBOARD EVENT PROPERTIES

K

Keyboard event properties, 384

keyboard events, 381–389
arrow key presses, 386
Keyboard event properties, 384
list of, 382
listening for, 383
multiple key presses, 386–389
particular key presses, 385

keyCode property, 384–385

keydown event, 347, 382–383

keypress event, 382–383, 385

keysPressed event handler, 387–388

keysReleased event handler, 388

keyup event, 347, 382–383

L

lastChild property, 301–302

lastIndexOf method, 150, 167

let keyword, 16, 18–19, 88, 90

listening for events, 346–348, 363–364
click event, 368–370
contextmenu event, 374–375
dblclick event, 368–370
DOMMouseScroll event, 378–379
keyboard events, 383, 385–389
mousedown event, 372–373
mouseenter event, 371
MouseEvent properties, 375–378
mouseleave event, 371
mousemove event, 373
mouseout event, 370–371
mouseover event, 370–371
mouseup event, 372–373
mousewheel event, 378–379
on multiple elements, 405–413
page load events, 395–396

load event, 347, 395–396

local scope, 86

log method
predefined text in, 125–127
values in, 127–128

logging example (getters/setters), 191–192

logging in console, 340

loops, 55–67
do.while loops, 66–67
for loops, 57–65

break keyword, 63–64
condition, 62
continue keyword, 64
decrementing, 64–65
iterations, 63
non-numeric values in, 65
starting point, 61
step region, 61–62

setInterval function, 79–80
while loops, 66

M

map method, 152–153

match method, 167

Math object, 140, 170, 180–185
absolute value, 185
constants, 181–182
powers/square roots,

184–185
random numbers, 185
rounding numbers, 182
trigonometric functions, 183–184

Math.abs() function, 185

Math.acos() function, 184

Math.asin() function, 184

Math.atan() function, 184

Math.ceil() function, 183

Math.cos() function, 184

NAVIGATING DOM HIERARCHY 431

How can we make this index more useful? Email us at indexes@quepublishing.com

Math.E constant, 181

Math.exp() function, 184

Math.floor() function, 183

Math.LN2 constant, 181

Math.LN10 constant, 181

Math.LOG2E constant, 181

Math.LOG10E constant, 181

Math.PI constant, 181, 182

Math.pow() function, 184

Math.random() function, 185

Math.round() function, 183

Math.sin() function, 184

Math.sqrt() function, 184

Math.SQRT1_2 constant, 181

Math.SQRT2 constant, 181

Math.tan() function, 184

merging arrays, 150–151

metaKey property, 384

modifying
array values, 151–153
HTML elements in DOM, 279–288

attribute values, 286–288
text values, 284–285

mouse events, 367–379
click event, 368–370
contextmenu event,

374–375
dblclick event, 368–370
DOMMouseScroll event, 378–379
list of, 368
mousedown event, 372–373
mouseenter event, 371
MouseEvent properties, 375–378

browser mouse position, 376–377
button clicked, 377–378
global mouse position, 375–376

mouseleave event, 371
mousemove event, 373

mouseout event, 370–371
mouseover event, 370–371
mouseup event, 372–373
mousewheel event, 378–379

mousedown event, 372–373

mouseenter event, 371

MouseEvent properties,
375–378

browser mouse position, 376–377
button clicked, 377–378
global mouse position, 375–376

mouseleave event, 371

mousemove event, 347, 373

mouseout event, 347, 370–371

mouseover event, 347,
370–371

mouseup event, 372–373

mousewheel event, 378–379

multi-line comments, 72

multiple elements, event handlers for, 405–413
with parent/child relationship, 409–412
what not to do, 408–409

multiple key presses, 386–389

N

naming
CSS properties, 291–292
variables, 17–18

NaN keyword, 180

navigating DOM hierarchy, 297–304
accessing child elements, 303
checking child existence, 303
child properties, 301–302
document structure,

compared, 297–298
parent/sibling properties, 301
properties for, 298–300
recursively walking, 303–304

mailto:indexes@quepublishing.com

432 NESTED FUNCTIONS

DOM
document object,

269–271
window object, 269

DOM elements as, 280–282
extending, 213–220

with classes, 229–235
controversy around, 219–220
shuffling arrays example, 213–219

inspecting, 338
JSON

property names, 252
values, 253–256

list of, 140
nesting, 199–200
Object type, 196
parent/child objects,

206–207
primitives as, 141, 169–173
properties, 196

adding, 197–200
removing, 200–201

prototype chain, 201–204
prototypical inheritance model, 212
this keyword, 209–211

octal numbers, 179

operators
conditional, 41–44
incrementing/decrementing, 177–179
order of operation, 177
strict equality/inequality, 240–241

order of operation, 177

out-of-scope, 89

P

page load events, 391–396
DOMContentLoaded event, 395–396
load event, 395–396
stages of page loads, 392–395

parent objects, 206–207, 299–300

nested functions
explained, 94–97
sharing variables in, 98–104

nesting objects, 199–200

new keyword, 222–224

nextSibling property, 301

nodes, 267–268
elements (HTML), compared, 319

non-numeric values in for loops, 65

null type, 137, 244, 246, 256

Number object, 140, 170

number type, 137, 170

numbers, 175–185
as 64-bit floating point, 176
absolute value, 185
basic usage, 176
constants, 181–182
converting strings to, 179
Infinity value, 180
in JSON, 254
NaN keyword, 180
octal/hexadecimal, 179
operators

incrementing/decrementing, 177–179
order of operation, 177

powers/square roots,
184–185

random, 185
rounding, 182
trigonometric functions, 183–184

O

object literal syntax, 197, 248–251

Object type, 137, 196, 203

objects, 138, 195–211. See also classes; names
of specific objects

as abstraction, 138–139
constructor functions, 171
creating, 197, 205–208, 222–224

ROUNDING NUMBERS 433

How can we make this index more useful? Email us at indexes@quepublishing.com

prototypical inheritance model, 212

push method, 147–148

Q

querySelector function,
275–277

querySelectorAll function, 275–277

quotation marks (““), 12, 160–161

R

random numbers, 185

raw text, parsing, 259

reading JSON data, 257–258

recursively walking DOM
hierarchy, 303–304

reduce method, 155–157

referencing JavaScript files, 111–113

RegExp object, 140, 170

remove method, 315

removeChild method, 314–315

removeEventListener function, 352–353

removing
array values, 149–150
class values, 293–294
event listeners, 352–353
HTML elements, 314–315
properties, 200–201

requestAnimationFrame
function, 80–81

return keyword, 33–34

returning data
from functions, 33
from nested functions, 94–97

rounding numbers, 182

appending children,
309–313

event handling, 409–412
properties, 301
removing children, 314–315

parentheses (), 25–26

parentNode property, 301

parseInt function, 179

parsing JSON data, 259

phases for events, 361–364

pizza analogy, 134–136

pop method, 149–150

position of mouse, 375–377

powers (for numbers),
184–185

preventDefault function, 366, 374–375, 389

previousSibling property, 301

primitives, 138. See also names of specific types
Object-form of, 141, 169–173

properties, 196
adding, 197–200
in CSS

naming, 291–292
setting, 290–291

in DOM hierarchy, 298–300
child properties, 301–302
parent/sibling properties, 301

for Event type, 352
in JSON

names, 252
reading values, 257–258

for Keyboard event, 384
for MouseEvent, 375–378

browser mouse position, 376–377
button clicked, 377–378
global mouse position, 375–376

removing, 200–201

prototype chain, 201–204, 207–208, 214–219

mailto:indexes@quepublishing.com

434 SCOPE

square roots, 184–185

starting point, for loops, 61

statements, 11

step region, for loops, 61–62

stepping through code,
334–336

stopPropagation method, 364–366, 412

strict equality/inequality
operators, 240–241

string literals, 160–161

String object, 140, 170–173

string type, 137, 170

strings, 12, 159–168
case, changing, 168, 191
characters

accessing, 161–162
finding, 166–167

combining, 163
converting to numbers, 179
in JSON, 253
splitting, 165–166
string literals, 160–161
substrings, extracting, 164–165

style object, 290

styles, 289–294. See also CSS
JavaScript and

classList API, 292–294
naming CSS properties, 291–292
purpose of, 290
setting CSS properties, 290–291

rules, 289

substr method, 164–165

substrings, extracting, 164–165

super keyword, 233

switch statements, 47–54
if/else statements,

compared, 51–54

symbol type, 137

S

scope. See variable scope

screenX property, 375–376

screenY property, 375–376

script tag, 10–11
async attribute, 400
defer attribute, 400–401
document structure,

105–116
choosing, 114–116
JavaScript within HTML document,

109–110
JavaScript within JavaScript file, 110–113

placement of, 113, 397–400

scroll event, 347

semicolon (;), 11

setAttribute method, 286–287

setInterval function, 79–80

setters, 187–193
basic usage, 190–191
in classes, 226–229
logging example, 191–192
uppercase generator

example, 191
validation example, 192–193

setTimeout function, 78

sharing variables in functions, 98–104

shift method, 149–150

shiftKey property, 384

shuffling arrays, 213–219

sibling objects, 299–300
properties, 301

single line comments, 71–72

slice method, 164

split method, 165–166

splitting strings, 165–166

VARIABLE SCOPE 435

How can we make this index more useful? Email us at indexes@quepublishing.com

U

UI development with
setTimeout function, 78

undefined type, 137, 201, 244–246

undefined variables, 90–92

unshift method, 147–148

uppercase generator example (getters/setters),
191

V

validation example (getters/setters), 192–193

values, 15. See also types
in arrays

accessing, 145–146
adding, 147–148
combining, 155–157
counting, 146
filtering, 154–155
finding, 150
modifying, 151–153
removing, 149–150

changing in variables, 19–20
in JSON, 253–256

arrays, 256
booleans, 254–255
null, 256
numbers, 254
objects, 255–256
reading, 257–258
strings, 253

in log method, 127–128
null, 244
undefined, 244–246
validating, 192–193

var keyword, 90

variable scope, 20, 83–92
block scope, 87–90
closures, 98–104

T

text values, changing in DOM, 284–285

textContent property, 284–285

this keyword, 209–211

timers, 77–81
requestAnimationFrame function, 80–81
setInterval function, 79–80
setTimeout function, 78

toggling class values, 294

toLowerCase method, 168

toUpperCase method, 168

trigonometric functions,
183–184

type coercion, 240–241

typeof keyword, 172, 245

types, 133–141. See also names of specific
types

list of, 137
objects, 138, 195–211

as abstraction, 138–139
adding properties, 197–200
constructor functions, 171
creating, 197, 205–208, 222–224
extending, 213–220
list of, 140
nesting, 199–200
Object type, 196
parent/child objects, 206–207
primitives as, 141,

169–173
properties, 196
prototype chain,

201–204
prototypical inheritance model, 212
removing properties, 200–201
this keyword, 209–211

pizza analogy, 134–136
primitives, 138

Object-form of, 141, 169–173

mailto:indexes@quepublishing.com

436 VARIABLE SCOPE

W

walking DOM hierarchy,
303–304

warn method, 128–130

web pages. See document structure

wheel event, 347, 378–379

wheelDelta property, 378–379

which property, 378

while loops, 66

whitespace in comments, 74

window object, 269, 298

window property, 299

writing
HTML documents, 8–11
JSON data, 259

in console, 339
global scope, 84–86
in-scope, 89
local scope, 86
out-of-scope, 89

variables, 16–20
changing values, 19–20
declaring, 16, 18–20, 86–87, 90
hoisting, 91
initializing, 16, 18–20, 86–87
naming, 17–18
processing, 90–92
sharing in functions, 98–104
undefined, 90–92

View Source command, DOM view, compared,
326–331

This page intentionally left blank

V I D E O T R A I N I N G F O R T H E I T P R O F E S S I O N A L

*Discount code VIDBOB confers a 50% discount off the list price of eligible titles purchased on informit.com. Eligible titles include most full-course video titles. Book + eBook bundles,
book/eBook + video bundles, individual video lessons, Rough Cuts, Safari Books Online, non-discountable titles, titles on promotion with our retail partners, and any title featured
as eBook Deal of the Day or Video Deal of the Week is not eligible for discount. Discount may not be combined with any other offer and is not redeemable for cash. Offer subject to change.

Learn more, browse our store, and watch free, sample lessons at
i n f o r m i t . co m / v i d e o

Save 50%* off the list price of video courses with discount code VIDBOB

LEARN QUICKLY
Learn a new technology in just hours. Video training can teach more in
less time, and material is generally easier to absorb and remember.

WATCH AND LEARN
Instructors demonstrate concepts so you see technology in action.

TEST YOURSELF
Our Complete Video Courses offer self-assessment quizzes throughout.

CONVENIENT
Most videos are streaming with an option to download lessons for offline viewing.

Photo by Marvent/Shutterstock

http://informit.com
http://informit.com/video

Addison-Wesley • Adobe Press • Cisco Press • Microsoft Press • Pearson IT Certif ication • Prentice Hall • Que • Sams • Peachpit Press

Register Your Product at informit.com/register
save 35% on your next purchase

• Automatically receive a coupon for 35% off your next purchase, valid
for 30 days. Look for your code in your InformIT cart or the Manage
Codes section of your account page.

• Download available product updates.
• Access bonus material if available.*

• Check the box to hear from us and receive exclusive offers on new
editions and related products.

*Registration benefits vary by product. Benefits will be listed on your account page under
Registered Products.

InformIT.com—The Trusted Technology Learning Source
InformIT is the online home of information technology brands at Pearson, the world’s
foremost education company. At InformIT.com, you can:

• Shop our books, eBooks, software, and video training
• Take advantage of our special offers and promotions (informit.com/promotions)
• Sign up for special offers and content newsletter (informit.com/newsletters)
• Access thousands of free chapters and video lessons

Connect with InformIT—Visit informit.com/community

Photo by izusek/gettyimages

http://informit.com/register
http://InformIT.com
http://InformIT.com
http://informit.com/promotions
http://informit.com/newsletters
http://informit.com/community

	Cover
	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	Introduction
	Parlez-vous JavaScript?
	Contacting Me/Getting Help
	1 Hello, World!
	What Is JavaScript?
	Hello, World!
	The HTML Document

	Looking at the Code: Statements and Functions

	I: The Basic Stuff
	2 Values and Variables
	Using Variables
	More Variable Stuff
	Naming Variables
	More on Declaring and Initializing Variables

	3 Functions
	What Is a Function?
	A Simple Function
	Creating a Function that Takes Arguments
	Creating a Function that Returns Data
	The Return Keyword
	Exiting the Function Early

	4 Conditional Statements: If, Else, and Switch
	The If / Else Statement
	Meet the Conditional Operators
	Creating More Complex Expressions
	Variations on the If / Else Statement
	Phew

	Switch Statements
	Using a Switch Statement
	Similarity to an If/Else Statement

	Deciding Which to Use

	5 Looping with For, While, and Do…While!
	The for Loop
	The Starting Point
	The Step
	The Condition (aka How Long to Keep Looping)
	Putting It All Together

	Some for Loop Examples
	Breaking a Loop
	Skipping an Iteration
	Going Backwards
	You Don’t Have to Use Numbers
	Oh, No He Didn’t!

	The Other Loops
	The while Loop
	The do...while Loop

	6 Commenting Your Code...FTW!
	What Are Comments?
	Single Line Comments
	Multi-Line Comments

	Commenting Best Practices

	7 Timers
	Delaying with setTimeout
	Looping with setInterval
	Animating Smoothly with requestAnimationFrame

	8 Variable Scope
	Global Scope
	Local Scope
	Miscellaneous Scoping Shenanigans
	Block Scoping
	How JavaScript Processes Variables
	Closures

	9 Closures
	Functions within Functions
	When the Inner Functions Aren’t Self-Contained

	10 Where Should Your Code Live?
	Approach #1: All the Code Lives in Your HTML Document
	Approach #2: The Code Lives in a Separate File
	The JavaScript File
	Referencing the JavaScript File

	So...Which Approach to Use?
	Yes, My Code Will Be Used on Multiple Documents!
	No, My Code Is Used Only Once on a Single HTML Document!

	II: It’s an Object-Oriented World
	11 Console Logging Basics
	Meet the Console
	Displaying the Console
	If You Want to Follow Along
	Console Logging 101
	Meet the Log Method
	Going Beyond Predefined Text
	Displaying Warnings and Errors

	12 Of Pizza, Types, Primitives, and Objects
	Let’s First Talk About Pizza
	From Pizza to JavaScript!
	What Are Objects?
	The Predefined Objects Roaming Around in JavaScript

	13 Arrays
	Creating an Array
	Accessing Array Values
	Adding Items to Your Array
	Removing Items from the Array
	Finding Items in the Array
	Merging Arrays
	Mapping, Filtering, and Reducing Arrays
	The Old School Way
	Modifying Each Array Item with Map
	Filtering Items

	Getting One Value from an Array of Items
	A Short Foray into Functional Programming

	14 Strings
	The Basics
	String Properties and Methods
	Accessing Individual Characters
	Combining (aka Concatenating) Strings
	Getting Substrings out of Strings
	Splitting a String/split
	Finding Something Inside a String
	Upper and Lower Casing Strings

	15 When Primitives Behave Like Objects
	Strings Aren’t the Only Problem
	Let’s Pick on Strings Anyway
	Why This Matters

	16 Numbers
	Using a Number
	Operators
	Doing Simple Math

	Incrementing and Decrementing
	Hexadecimal and Octal Values
	Special Values—Infinity and NaN
	Infinity
	NaN

	The Math Object
	The Constants
	Rounding Numbers
	Trigonometric Functions
	Powers and Square Roots
	Getting the Absolute Value

	Random Numbers

	17 Getters and Setters
	A Tale of Two Properties
	Meet Getters and Setters
	Shout Generator
	Logging Activity
	Property Value Validation

	18 A Deeper Look at Objects
	Meet the Object
	Creating Objects
	Adding Properties
	Removing Properties
	What Is Going on Behind the Scenes?

	Creating Custom Objects
	The this Keyword

	19 Extending Built-in Objects
	Say Hello to prototype...again—Sort of!
	Extending Built-in Objects is Controversial
	You Don’t Control the Built-in Object’s Future
	Some Functionality Should Not Be Extended or Overridden

	20 Using Classes
	The Class Syntax and Object Creation
	Creating an Object
	Meet the Constructor
	What Goes Inside the Class

	Extending Objects

	21 Booleans and the Stricter === and !== Operators
	The Boolean Object
	The Boolean Function
	Strict Equality and Inequality Operators

	22 Null and Undefined
	Null
	Undefined

	III: Working with the DOM
	23 All About JSON (aka JavaScript Object Notation)
	What Is JSON?
	Looking Inside a JSON Object
	Property Names
	The Values

	Reading JSON Data
	Parsing JSON-looking Data into Actual JSON

	Writing JSON Data?

	24 JS, the Browser, and the Dom
	What HTML, CSS, and JavaScript Do
	HTML Defines the Structure
	Prettify My World, CSS!
	It’s JavaScript Time!
	Meet the Document Object Model
	The Window Object
	The Document Object

	25 Finding Elements in the Dom
	Meet the querySelector Family
	querySelector
	querySelectorAll

	It Really Is the CSS Selector Syntax

	26 Modifying Dom Elements
	DOM Elements Are Objects—Sort of!
	Let’s Actually Modify DOM Elements
	Changing an Element’s Text Value
	Attribute Values

	27 Styling Our Content
	Why Would We Set Styles Using JavaScript?
	A Tale of Two Styling Approaches
	Setting the Style Directly
	Adding and Removing Classes Using JavaScript

	Checking Whether a Class Value Exists
	Going Further

	28 Traversing the Dom
	Finding Your Way Around
	Dealing with Siblings and Parents
	Let’s Have Some Kids!

	Putting It All Together
	Checking If A Child Exists
	Accessing All the Child Elements
	Walking the DOM

	29 Creating and Removing Dom Elements
	Creating Elements
	Removing Elements
	Cloning Elements

	30 In-Browser Developer Tools
	Meet the Developer Tools
	Inspecting the DOM
	Debugging JavaScript
	Meet the Console
	Inspecting Objects
	Logging Messages

	IV: Dealing with Events
	31 Events
	What Are Events?
	Events and JavaScript
	1. Listening for Events
	2. Reacting to Events

	A Simple Example
	The Event Arguments and the Event Type

	32 Event Bubbling and Capturing
	Event Goes Down. Event Goes Up
	Meet the Phases
	Who Cares?
	Event, Interrupted

	33 Mouse Events
	Meet the Mouse Events
	Clicking Once and Clicking Twice
	Mousing Over and Mousing Out
	The Very Click-like Mousing Down and Mousing Up Events
	The Event Heard Again…and Again…and Again!
	The Context Menu

	The MouseEvent Properties
	The Global Mouse Position
	The Mouse Position Inside the Browser
	Detecting Which Button Was Clicked

	Dealing with the Mouse Wheel

	34 Keyboard Events
	Meet the Keyboard Events
	Using These Events
	The Keyboard Event Properties
	Some Examples
	Checking That a Particular Key Was Pressed
	Doing Something When the Arrow Keys Are Pressed
	Detecting Multiple Key Presses

	35 Page Load Events and Other Stuff
	The Things That Happen During Page Load
	Stage Numero Uno
	Stage Numero Dos
	Stage Numero Three

	The DOMContentLoaded and load Events
	Scripts and Their Location in the DOM
	Script Elements—Async and Defer
	async
	defer

	36 Handling Events for Multiple Elements
	How to Do All of This
	A Terrible Solution
	A Good Solution
	Putting It All Together

	37 Conclusion

	Glossary
	A-F
	G-S
	T-W

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

<<
 /ASCII85EncodePages false
 /AllowTransparency true
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 150
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /PDFXOutputConditionIdentifier (FOGRA27)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Pearson 1.4'] [Based on '[PDF/X-4:2007]'] Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-4:2007, an ISO standard for graphic content exchange. For more information on creating PDF/X-4 compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 24
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

