Making Everything Easier”

[E.S

- A Wiley Brand

Learn to:

- Build dynamic pages using JavaScript
with HTML

- Create websites with greater
interactivity

- Use animation, libraries, the canvas
element, and more

- Harness the power of HTML5

John Paul Mueller

Coauthor of the bestselling
C++ All-in-One For Dummies

Get More and Do More at Dummies.com®

\ Start with FREE Cheat Sheets
()
Cwe

0‘ Cheat Sheets include
(’\,& « Checklists
- Charts

« Common Instructions
- And Other Good Stuff!

To access the Cheat Sheet created specifically for this book, go to
www.dummies.com/cheatsheet/html5programmingwithjavascript

' \

Get Smart at Dummies.com
Dummies.com makes your life easier with 1,000s

of answers on everything from removing wallpaper
to using the latest version of Windows.

Check out our
+Videos
« lllustrated Articles
« Step-by-Step Instructions

Plus, each month you can win valuable prizes by entering
our Dummies.com sweepstakes. *

Want a weekly dose of Dummies? Sign up for Newsletters on
« Digital Photography
« Microsoft Windows & Office
« Personal Finance & Investing
+ Health & Wellness
« Computing, iPods & Cell Phones
- eBay
« Internet
- Food, Home & Garden

Find out“HOW” at Dummies.com

*Sweepstakes not currently available in all countries; visit Dummies.com for official rules.

http://www.Dummies.com
http://www.Dummies.com
http://www.Dummies.com
http://www.dummies.com/cheatsheet/html5programmingwithjavascript

HTML5
Programming
with JavaScript

3038

DUMMIES

by John Paul Mueller

DUMMIES

HTML5 Programming with JavaScript® For Dummies®
Published by

John Wiley & Sons, Inc.

111 River Street

Hoboken, NJ 07030-5774

www.wiley.com

Copyright © 2013 by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley
& Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://
www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley logo, For Dummies, the Dummies Man logo, A Reference for the Rest of Us!,
The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything Easier, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates
in the United States and other countries, and may not be used without written permission. JavaScript is

a registered trademark of Oracle America,Inc. All other trademarks are the property of their respective
owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS
OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL,
ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED,
THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT
THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR
A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE
PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET
WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS
WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-demand.
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you
may download this material at http: //booksupport.wiley.com. For more information about Wiley
products, visit www.wiley.com.

Library of Congress Control Number: 2013936244

ISBN 978-1-118-43166-5 (pbk); ISBN 978-1-118-46209-6 (ebk);
ISBN 978-1-118-61188-3 (ebk); ISBN 978-1-118-49418-9 (ebk)

Manufactured in the United States of America
109 8 765 4321

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport
http://booksupport.wiley.com
http://www.wiley.com

About the Author

John Mueller is a freelance author and technical editor. He has writing in his
blood, having produced 91 books and over 300 articles to date. The topics
range from networking to artificial intelligence and from database man-
agement to heads-down programming. Some of his current books include
Windows command-line references, books on VBA and Visio, several books
on C#, and an IronPython programmer’s guide. His technical editing skills
have helped more than 63 authors refine the content of their manuscripts.
John has provided technical editing services to both Data Based Advisor
and Coast Compute magazines. He’s also contributed articles to magazines
like such as Software Quality Connection, DevSource, InformlIT, SQL Server
Professional, Visual C++ Developer, Hard Core Visual Basic, asp.netPRO,
Software Test and Performance, and Visual Basic Developer. Be sure to read
John’s blog at http://blog. johnmuellerbooks.com.

When John isn’t working at the computer, you can find him outside in the
garden, cutting wood, or generally enjoying nature. John also likes making
wine and knitting. When not occupied with anything else, he makes glycerin
soap and candles, which comes in handy for gift baskets. You can reach John
on the Internet at John@JohnMuellerBooks. com. John is also setting up a
website at http: //www. johnmuellerbooks.com. Feel free to take a look
and make suggestions on how he can improve it.

http://blog.johnmuellerbooks.com/
http://www.johnmuellerbooks.com/

Dedication

Dedicated to people who have given me hope and who have helped me
realize new potential as an author; on the occasion of their 50th anniversary,
Bill and Karen Bridges.

Author’s Acknowledgments

Thanks to my wife, Rebecca, for working with me to get this book completed.
I really don’t know what I would have done without her help in researching
and compiling some of the information that appears in this book. She also did
a fine job of proofreading my rough draft. Rebecca keeps the house running
while I'm buried in work.

Russ Mullen deserves thanks for his technical edit of this book. He greatly
added to the accuracy and depth of the material you see here. Russ is always
providing me with great URLs for new products and ideas. However, it’s the
testing Russ does that helps most. He’s the sanity check for my work. Russ
also has different computer equipment than mine, so he’s able to point out
flaws that I might not otherwise notice.

Matt Wagner, my agent, deserves credit for helping me get the contract in
the first place and taking care of all the details that most authors don’t really
consider. | always appreciate his assistance. It’s good to know that someone
wants to help.

A number of people read all or part of this book to help me refine the
approach, test the coding examples, and generally provide input that all
readers wish they could have. These unpaid volunteers helped in ways too
numerous to mention here. I especially appreciate the efforts of Eva Beattie,
Glenn Russell, Osvaldo Téllez Almirall, and Gerald Wilson, Jr., who provided
general input, read the entire book, and selflessly devoted themselves to this
project.

Finally, [would like to thank Kim Darosett, Katie Feltman, Virginia Sanders,
Katie Crocker, and the rest of the editorial and production staff at Wiley for
their assistance in bringing this book to print. It’s always nice to work with
such a great group of professionals.

Publisher’s Acknowledgments

We’re proud of this book; please send us your comments at http://dummies.custhelp.com.
For other comments, please contact our Customer Care Department within the U.S. at 877-762-2974,
outside the U.S. at 317-572-3993, or fax 317-572-4002.

Some of the people who helped bring this book to market include the following:

Acquisitions and Editorial Composition Services
Senior Project Editor: Kim Darosett Project Coordinator: Katherine Crocker
Acquisitions Editor: Constance Santisteban Layout and Graphics: Amy Hassos,
Copy Editor: Virginia Sanders Joyce Haughey
Technical Editor: Russ Mullen Proofreaders: Jessica Kramer, Lisa Stiers
Editorial Manager: Leah Michael Indexer: Ty Koontz

Editorial Assistant: Annie Sullivan
Senior Editorial Assistant: Cherie Case
Cover Photo: © kertlis/iStockphoto

Publishing and Editorial for Technology Dummies
Richard Swadley, Vice President and Executive Group Publisher
Andy Cummings, Vice President and Publisher
Mary Bednarek, Executive Acquisitions Director
Mary C. Corder, Editorial Director
Publishing for Consumer Dummies
Kathleen Nebenhaus, Vice President and Executive Publisher
Composition Services

Debbie Stailey, Director of Composition Services

http://dummies.custhelp.com

Table of Contents

JOEPOAUCEION a.eeeeeeeeeeeenaaaaaeeeeeeennnnnnseaeeeeeessnnnnsaeeeees]

AbOUt This BOOKcccuiviiiiiiiiiteieeecececeeee et 1
What You Don’t Have to Read..........coccevviiviiniiniiniinieieeccceeeeeeieee 2
Foolish ASSUMPLIONS........ccciiiiiieiiceeceeee e 2
Conventions Used in This BOOK........c.ccccecevminennininnininicnenccncnccenenee 3
How This Book Is Organized...........coccecievienieniininieieeeeecete e 3
Part I: Understanding the Basics of JavaScript........ccccccceevuvevieeuennnnn. 3
Part II: Speaking the JavaScript Languagecccocevveviievieevienciennnn. 4
Part Ill: Meeting JavaScript’s Control Structures...........cccccevvveruenee. 4
Part IV: Interacting with Users and HTML...........cccccooceviinnennienniennnen. 4
Part V: Extending JavaScript Furtherc.ccccoooevveiieiieiieeeiee, 5
Part VI: The Part of TenS........ccccoveciieciieciiciecieceeceeeeeeie et 5
The companion Websitecccoceeviiriiecieciiciececeeeeeee e 5
Icons Used in This BOOKcccuviiiiiiiiiieriieieeieseeseeseeieeteeee et 6
Where to GO from Here.........cooveiiiiiiiiiiiiiiietetcteteeee e 6

Part I: Understanding the Basics of JavaScript............... 9

Chapter 1: HTML, Say Hello to JavaScript........................ 1"
Introducing JAVaSCriPt.......coeciieviieiieeieeiecteeteeee et 12

Java and JavaScript aren’t long-lost relatives.........c.cccoceevvenvennnnnne. 13
Recognizing the benefits of JavaScriptcccccevvevveiviniinieniennnne, 13

Seeing How JavaScript Fits into an HTML Document..............cccceeeenenneen. 16
Starting an HTML5 documentc.ccceevvevieneeneeceeieeieeee e 16
Understanding the alert() function..........ccocevveevieiinenininineiens 17

Using the <SCriPt> tag.....cccovievieiieiiieieeieceeceeseese et 18

Placing the code in the page heading..........cccccevveveeviniinnieniennnne. 19

Relying on external files..........coocevviiriieniiiniiniinieececeeeeeeeeee 20

Chapter 2: Assessing Toolsofthe Trade 23
Researching Browsers and Their Debugging Toolsc.ccccccevvveniennnnnen. 24
Catching up with FirefoX........cccevvveireiecieiiiceeeeeee s 25

Meeting Google ChIome............cccvveeueevrieiieeiieieeie et 29

Checking out native browsers: Internet Explorer or Safari............ 33

Checking browser and VErsionccccceeveereenieecieesieeieeieeseeseenes 34

(/iii HTML5 Programming with JavaScript For Dummies

Discovering Programs to Write JavaScriptc.cccceeveevieecienciiecieceeeneenen, 36
Using a text ditOr.....ccccoieiiiiiiiiirieeeeeteeeeeeee e 37
Using a dedicated editOr.........cccceveuieieeciieieniieeneeecie e 38

HOSHING YOUT SIte...cuiiiiiiieiiiiicieetectestceestee ettt s 41
Quickly looking at Web hostingcccccocvvviinenieniiniinienienienee, 41
Using JavaScript from your computercc.ccoeceeveevierviervienieeneenne. 42
Testing your installation...........cccceeeviiiiieniieeiecceeee e, 46

Chapter 3: Integrating HTML5 and JavaScript 47

Creating Simple OULPULccveeieeiieiieieeeeeee et 48
Writing to an HTML elementcccceceeviieiiinienieeneeseeseesieeieeienns 48
Creating direct document oUtPULcccceevieveeriecciieieeieceeeeeee 50
Avoiding potential problems with outputccccceevviniiniiniennnnn, 51

Working with JavaScript Statementsccccoeceevieniinieniniiieeneeee, 52
Understanding the dot syntax........ccccecevvieniineenennennenienieeeeneee 52
Adding multiple statements to a single scriptc.ccceevveceeennenns 53
Defining basic code BIOCKSc.cccvvveeieeieniiieceeeceeeee e 55
Understanding case sensitivity........cccocceevviiniinniienniiiciecieeeeee, 55
Using white space effectively.........ccccevevenieieiececcceeeeeeeeens 55
Using the line continuation character..........ccccoeveevervinvinnenciennenne. 56

Writing Comments in JavaScriptccoccevvieriieniiniiniieceeeeeeeeeee 57
Creating single-line cCOMMEeNts...........cccevevieneecieeceecie e 58
Creating multi-line commentscccceeevererinieenieneneneneeeeeene 59
Preventing code execution by using comments.............cccceevennen.e. 60

Alerting Visitors That JavaScript Has Something to Say.........ccccecveuneeee. 60
Using the <noscript> tag.....coceevieviirviiniiinieieeececee e 60
USING StYIES ..ottt 61

Part II: Speaking the JavaScript Language................... 63

Chapter 4: Embracing JavaScript Variables...................... 65
Understanding Simple Variablescccocovieviiiinninneninieeieeeeeeeeeeen 66
Seeing variables as storage bins........c.cccecevcienieninnenninsenenieeeee 66
Declaring variablescooivveiiiriiinnienienteteeeeeeeee et 67
Discovering variable typesc.ccccocviiiiiieciiecieceeeee e 68
Understanding undefined and null variablesccccoocevvininnennnnn. 70
Working with Booleans..........ccoceiviiiiiiiiiiiiiiceeeecce e 71
Working with NUMDEIScccociiiiiiiiiiieieeieceeecteeee e 72
Understanding the operators.........c.ccecveeierienieneenensienesieeeeeeene 73
Doing simple math........ccccooiiviiiiiiiniini e 78
Changing number formatsccceeveeeeiieiieieececeee e 80
WOrKing With TeXtcccveeieiiieiieiiceeie ettt 83
Concatenating teXt.......cccceevverieriienieneeneee et 83

Changing word and letter formats..........ccccocevveevervenciniinienieneenne, 83

Table of Contents

WOrKing With AITaYScccvecvieiiieiiieieceeiecteeteee ettt e 85
Creating an ArTaycocccceeieveerierere ettt st 85
Accessing array memberscocceveevieeiieeiienieneeceee e 86

Chapter 5: Working with Objectsccous 89

Defining ODJECES....ciciiiiiiieiiccieeeeteee ettt et e e aeeeees 90
Starting with the Object object........c.coccevviiriiniiniiiceeeeee 90
Understanding Propertiesc.ccceverveerienieneeneenensienieseeseeseennes 92
Understanding methodscoccevvrvieniiiniininniiiccceeeeeeeeee 92
Understanding @VENtscccceevieeiiiiiieenieeeeeeceeeee e eee e 92

Using and Creating ODbJECtS.....cccovveuieiieriririieieeeeee e 93
Using JavaScript ObJeCtS......ccceeviieiiiiieieciececeeecece e 93
Building custom ODJECEScceeviiviiriiriecieieeeecece e 98

Working with Object Literalscccccocevviiriieniiiniinienieeceeeeieeveseennn 100
Creating the name/value pairs..........ccoceveeveinenvenienienienieneeneene 100
Adding new name/value pairs.........cccccceeviereieeeciieereeecieenee e 102

Naming Variables and Objects Properlyccccocceveverinininiienenenenene 102

Chapter 6: Getting to Know the Standard JavaScript Objects. 103

Defining the Basic JavaScript ODJectscccooceviriienienieninineeeiereeeee 104
Understanding ODJECtcceeveevierriiiiieeieeieseeceeseesie e ere e eae e 104
Understanding NUMDETccccoveiiiiiiriienienienieneenieeieeie e 106
Understanding String...........cooceeverviiniieniieniienieneeneeseeie e 107
Understanding Date..........occoveeviriiinieniienienienteeceeeseeeseeseenn 110
Understanding REGEXDc.cooviiiiiieiieeieceeeece e 114

Introducing the String Objectccooceeviiiiieniee e 118
Manipulating and searching stringscccocceevviinieinniiiiiiennienns 118
Working with regular eXpressions..........coccoeceecieneenceeneeneeneeniennne. 119

Working with the Date Object........cccocvvviriiniiiniiiiieeeeee 121
Getting today’s date rightccoceeviiviniiiniinieeee 121
Calculating differences in dates.........cccecvevrievieecieeceeciecieeeeeeen, 123

Part III: Meeting JavaScript’s Control Structures 125

Chapter 7: Using Functions., 127
Using the Built-In FUNCtionsccoociviiniiniiniiicieecceeceeceeee 127
Working with the Math Object........ccoccovviriiiriiiniiiiieeeee 130
Building Custom FUNCHONScceeiiiiiiiecieeceeeeeee e 132

Reducing work using functions..........c.cccecueveerieneeneeceecieecieeeeeens 132
Passing parameters to functionsccccceeveevieneeniencenieeciecieeen, 133
Creating functions with a return valuecccocceeverciirciencienceennnnn. 134
Creating functions with optional and required arguments.......... 135
Understanding variable SCOPEccoevvevieniiniineirenienieeieeeeene 136

Working with Private Properties and Methodscccccoocevviniinennenneen. 137

ix

X

HTML5 Programming with JavaScript For Dummies

Chapter 8: Making Choices in JavaScript....................... 1M
Understanding the Reasons for Applications to Make Decisions 142
Deciding When to Use the if Statementcocceevivveeiieniiniiinieneeeee 143

Creating a simple if statement...........ccccovvevieninienneniinenieeeene 143
Deciding what else t0 dO.......cccecuevviiriiriieniiiitecceeeeeee e 144
Nesting if statements..........ccocccveeviieeciecie e 144
Switching Between ChoOICEScocooeeieiinienierieeeee e 146
Creating a basiC SWitChccccoviiiiiiieieceeeeeee e 147
Using the default option..........ccccecviiviincieniiiniieniecceeeeeeeeeen 148

Chapter 9: Making the Rounds with Loops 151

DiSCOVETING LOOPScvivieeieiieiietieteeeeeteeeeteste ettt sae s saesaeerens 152
Learning why loops are usefulcccceecvevieniinieniennenienienienene 152
Running from the dangers of 100PScccecveveeieniniecencieeeceee 153

Creating for LOOPSccveiiiiiieeieeetteteetete ettt s a et ere e 153
Making your first fOr I0OPcccveeieiieciieieeeeeece e 154
Using the break statement.............cccocoeeveeievieierenieeeceeeeeeeee e 155
Using the continue statementccocccevvienniiiiiiiinieeniieeeeeeee 157

Creating While LOOPScccooiiriiniiieiiiciececcceseseeetes e 160
Using the basic while 100D......cccccocvrviiniiniiniiieiceeee 161
Using the do...while 100Dccooviiieiiiirceeeeeee e 162

Examining Objects Using for/inccccooevevininienieneneneeeeeeseeene 163

INESHING LOOPS ...eiviiiiiiieiieieeteete ettt sae et saeetesae st e s e e saeesseanes 165

Chapter 10: Performing Error Handling 167

Understanding EXTOYScccoociiiiiiiieiecieciecteeeie ettt sae e 168
Defining an €rror SOUICEcecvieciircierieneeneeneeseesieereesreesesnesseens 168
Defining the error tyPes......cooveverciiivierienieneereeeeeeeee e 170

CatChing EXTOrS.....ooiiiiiiiiieteteteeeteeeete ettt 171
Using the try...catch blocK.........ccccoeeiiieiiriiieeeeeeeeee e 172
Understanding the Error object.........coccoeceviiniininnnnennineneenene 173

TRIOWING EXTOYS ...ooviiiiiiieiieieceeteeee ettt te e ae st a e aeesae e 174

Part IU: Interacting with Users and HTML.................. 177

Chapter 11: Understanding the Document Object Model 179
Introducing the Document Object Model (DOM)........cccecevvevereeneeriennnnne 180
Accessing Individual HTML Elements...........cccccueeienieniecieecieecieecieeieeneene 183

Modifying the output stream..........ccccocceevienieneeceecieeieeeeeeeene 183
Affecting HTML contentccoceeviirvieriiencienienieseeseeseeseeesaeesee e 186
Changing attributescccevieriinienieneeeecceeeee e 186
Considering EVENtS.......ccccviiriiniinieiieeeieeiecie sttt 188

Working With Styles........ccovevuiiiiieiieiecieceeeeeeeee et 191

Table of Contents

Working with NOAESoovviiiiiieeeee e 192
Creating new elements.........c.cecevierierenenenieeere e 192

Removing existing elements............cccoeeeevierienienieneeceeceeieeeeeens 194

Chapter 12: Handling Events.t 195
Introducing EVENLScceeeiiiiiiiiieiececicctestee ettt 196
Performing basic event taskscccevveevienienieneenienineeieeeeene 196

Working with attributesccocevvivniiniiniinieeeeeeeee, 200

Clicking to Create an Eventcccooivviiviiniiiniiiniinieeetenecseeseeeeieee 202
Understanding the objects at your disposal...........ccccoceeevenennenne 202

Passing parameters to the event handler function..................... 208

Pressing @ K@ycooiiiiiiieeee et 210
Creating Custom EVENtScoceiiriiiiniininininnccceeeeeceeeee e 212
Working with the CustomEvent objectccccceeceeviiniininnenniennee. 212

Creating the custom event code.......cccccooervirnenvienviniiiniienieneenene 212

Chapter 13: Connecting with Style: JavaScriptandCSS 215
Changing HTML Elementscccccooiiriineniiniiinienieeieeeesteneeseeseesieene 216
Working with HTML tagsccccoveiiieiiieiiecieeceeeee e 216

Working with heading sStylesc.cccoeeevieviiiciinciecieceeeeeeeee, 218

Working With IDS........cccoiiiiiiiieiiciicececcce e 219

Building Dynamic HTML Elements.........c.cccocevieiieninneenienieeieneeneeneenne 219
Animating and Positioning HTML Elements...........ccccooceevivvinviinvienceennnn. 221
Creating JavaScript-Based Menuscccccecervieriieniieniienieeneeneeneeneenieenne 221
Designing the HTMLcccoiioiiiiiieeiecee e 222

Defining the StYIESccveeiieiiieciiciececeeeeee et 223

Creating the JavaScript functions.........cccccooceeveeveevincencienieeieeene 224

Chapter 14: Enhancing HTMLS5 Forms with JavaSecript. 227
Revisiting the HTML5 Form Features...........ccooceevieiieneecieniiecieceeeeeneene 228
Working with the new elements...........cccocevviinviinciiniiniieneeeeeee, 228

Working with the new controls...........cocceeceirviinviiniiniinienieeeee, 230
Understanding the new attributes.........c.ccoceviiniininniniiniennienen. 233

Accessing Form Elements..........cccocoeveiiieiiiecieeiecceeeeeeeeeee e 235
Validating FOImS.....c..cooiiviiiiiiiieeeeeteteeeteee e 237
Chapter 15: Interacting with Windows 24
Working with WindOwS..........ccieiieiiiiiieiieeeeeeeeeeee e 242
Determining window characteristicscccocevvveeveecincieecieciennnnn, 242

Changing window attributesccccoeveeviiiieneeneecinieceeeeeee 243

Accessing the SCreenoooviiiiiiiiiiiniiceeeee e 244
Finding a LOCAtIONc.ccveeeeieieiieecceceeee et 245
Determining the current location.........c.ccccceeviiieciiiniiencieeieeee 245

Changing the 10Cationccccecevviiiieiininieeeeeee e 246

Searching HiStOrYcccuivieciiiiiieiiciectececeestee ettt 247

xi

xii HTML5 Programming with JavaScript For Dummies

Working with Navigator.........cccccveviiiiiiciie e 247
Creating @ POP-UpPcoooiiiiieeeeee et 249
Controlling line breaks..........ccocvveriereenienieereeeeeeeie e ere e 249
Creating a modal dialog boX.........ccceceeririeieciererececeeeeeeee 250
USING COOKIEScoviiiiieiieeieieiericee ettt ettt et re e s eaessesaessens 253
Setting @ COOKIEccvvirieieiireeieeeteeseee e erees 254
Getting @ COOKIEuiviiiiiieiiecieceeeee ettt 254
Checking a COOKIEcceviiriiiiieieieeeeee et 256

Part U: Extending JavaScript Further................cccueeee. 257

Chapter 16: Working with XML in JavaSecript. 259
Introducing XMLcooiiriiiiiiiiiiierieeientest ettt st sae e 260
Gaining an overview of XML........ccccoovvviivirrirnienienereeeeeeeee e 260
Understanding elements............cocceeevieeriieiciennieenieecieesie e 261
Understanding attributes.........cccocvecieevieeiiinienieseeceeeeeevecieene 263

Working through a basic filecccooveveeiiiniiniinieceeeeee, 264
Displaying XML Using XSLTccceeceevierieriererieeeeerienieneeeeseesessessesaessens 265
Validating XML........cccoccevieirieieiereseseeeeteseesesee et esae e sse e ssesensessesnees 267
Understanding the concept of well-formed.........cc.ccceevvrnennnncen. 268
DiSCOVEIING XSD....c.ueioiiiieiieieeieeie e ete et et et esteesaeeveeveeseeaesseens 268

Loading XML with JavaScript........ccceceeviiiiiniiinieniicceeeeiecee e 269
Chapter 17: Cleaning Up the Web with AJAX.................... 2n
INtrOdUCING AJAXoiiiieieieeeeeee ettt sreete e ae e e e e e saeesaeenes 271
Learning the benefits of AJAXc.ccoovviieiiniinieneeneeeeeeeeieenn 272
Understanding how AJAX WOrks........coceeveviinienienieniinienieeeenen, 272
Deciphering the XMLHttpRequest object.........cccccccevvverviiriieneennenn. 273
Performing AJAX Tasks Using JavaScript......ccccccvevieveecieecieniecieeeeeeens 276
Making AJAX Easier with jJQUETYcccooeviririiieeeeeeeeeeeee 278
Chapter 18: Making JavaScript Easier with jQuery............... 219
Getting to Know the jQuery Library........ccccocvvvoiienenininieieeeeeee, 280
Loading jQuery from Google CDNccccevvierienieeniieieecieeie e eeeseeneeenes 282
Doing Things Easier with jQUErYccccoovvvviiniiiiiiiiececeeeeeeeee 284
Gathering elements with selectors..........ccocevvevvervencinieniienciennn, 284

Working with programmatically generated elements................... 286

Revisiting arrays with jQUEerY.......c.cccooevveeienienieeeeececeee e, 288
Interrogating an arrayccccceeeeecueecieecieeeeseeseeseeseereesreeaeeaesenens 289

Handling Events with jQUErYccccccueeiiiiiiieiceceeeeecece e 290
Understanding the event functionalityccccoeceevieiiniinnienciennnn. 290

Working with eVents.........ccoceviiviininninrineccece e 296

Table of Contents

Chapter 19: Using jQuery to Handle AJAX. 299
Understanding the AJAX Object in JQUErYccccceeveevieecieecieeieeieeeeeieene 300
Considering the global AJAX event handlers...........cccccevveeuennnn. 300
Working with the helper functions.........c.cccecovviiniiniiniininneeenen, 301
Understanding the low-level interface.........cccccooceevervienviinienneennnnn. 302
Using shorthand methodsccoeoviieiiicieeeee e, 303
Discovering Server-Side Programmingcocceeeveneneneenienenenenene 304
Adding PHP support to your Apache server...........ccccceevverueenennen. 304
Testing your PHP configuration...........cccecevvievieneeniencinienieeeennen, 306
Creating the PHP SCHiPt.......cocveviiniiniiiiiieeciecececeeeeeeenn 306
Retrieving Results from AJAX Calls.......cccccovviinirniininninienienieneeneeeee 308
Working with standard output.........cccccccvveveieeciieciceeeeeee, 308
Investigating the benefits of JSONcccoceiiiieniniinineeereeene 310
Chapter 20: Animatingthe Web....................... 313
Getting to Know jJQUEry Ul......ccoooiiiiiiieieneeeeeeee et 314
Considering interactions.........c.ccoecveeeeniereenieneeeecie e 314
Understanding the widgets.........ccccovvievvieevieniienieneeceeceeeceeeeenn 322
Defining the effects ... 333
Canvasing Your Web Page..........coccvviiiiiiniiniiiiiiieeeeteneeteseeseeieee 340
Understanding what the canvas does.........cccccoeeevvevieeeciiieceeenene 340
Creating a simple Google API application.........c.cceceeceeceevienieniennne. 341

Part Ul: The Part of Tens........ccceccceecceeeaeeccnecaneaaeeene 345

Chapter 21: Ten Incredible HTML5 and JavaScript Examples... ... 347
Creating an XML-Based MenuU...........ccccceevuervieriieniieniieniienieneeneeseeseesieenne 348
Creating an XML-Based Tabbed Interface..........cccccoeeveeveneinieneeneenneens 352
Displaying a SHAEShOWccooiririiiiieeeeeee e 355
Employing Custom SPINNETSccceccveeierienieneenieesieesieecreeeeeeeseeseesaeenes 358
Working with TimepiCKersccceveeviiiiiiriiieieeeceeeeece e 361
Creating a Standardized Look with CSS.........cccocoivviniiniiniiniiiiieens 362
Displaying a Category and Detail Data Viewcccccoceeviiriiiniiniencenennns 363
Selecting Data Using a Calendarccceeevveeueeviienieeieeieeieeee e 367
Developing a User-Configurable Interface............cccooevininnienencnenene 370
Devising a Simple Survey FOrm.........cccoceviinienieiienieeecieciecee e 371

Chapter 22: Ten Thoughts About the Future of Web Development . . . 375
Automating More TasKS........cccvevievieeiiieiiieieciecteeese et eae e 375
Developing Applications That Run Anywhere..........cccccoeeviivvivnviineenennns 376
Using Standards for Every Application.........ccoccoecevverneniienceniienieneeneenns 376

Creating a Desktop Environment with a Browsercccccoocevvviininninns 377

XI

xi(/ HTML5 Programming with JavaScript For Dummies

Using a Centralized Data StOTeccceeeeeeienieciieieeeere et 377
Creating Mobile-friendly Applications........c.ccoceceeeievieneneninienenereee 378
Developing Accessible Applications.........ccocceeeeveeiieiieecieciiecieceeeeeseene 378
Building New Application TYPESccceceviiriiniiiiiieeeeieeieeeeeeeseesieenee 379
Thinking More About USETSccceecierierienienieeieeieeieeiesee st seeseeneeenes 379
Expecting Unexpected COnnectionsccocceeeeveeniennieniienieenieneeneeneenne 380

JOACK «aaeeaeeeeeeeeeeeeeeeeeeaeaaaaaaaannnnnnnnenneeseeeeeeeeeesesaceees 38T

Introduction

Hive you people-watched lately? If not, you really should. People-
watching is both fun and educational. At one time, you wouldn’t see
people using computers wherever they went because computers were large,
cumbersome devices that no one wanted to take out of the office. Today, you
have a hard time finding people who aren’t using a computing device of some
sort to perform some task. Developers have an incredible opportunity today
to affect people in every walk of life and in any situation imaginable because
people carry their computing devices with them far and wide to hold every
bit of information they find valuable.

The tools that developers use to create applications must change to reflect
this new reality, and HTML5 and JavaScript are the most appropriate tools
to accomplish the goals developers have today. You can use the combina-
tion of HTML5 and JavaScript to create applications that run on any device
using just about any new browser. HTML5 Programming with JavaScript For
Dummies is your gateway to an incredible new future of development where
you aren’t limited to a specific platform or some vendor’s concept of what
tools you should use to create applications. This book helps you gain the
skills required to create the new sorts of applications that developers have
always wanted to write.

About This Book

HTML5 Programming with JavaScript For Dummies is about possibilities. It
focuses on getting started writing code quickly and efficiently. You see lots
of coding examples, all of which demonstrate principles you need for writing
applications that people want to use today. The latter part of the book actu-
ally shows some application programming techniques you can use directly
in production applications. The method used to accomplish this goal is the
same method that all smart developers use today — borrowing code from
someone else. This book emphasizes the use of templates and libraries to
make your coding experience fun and simple rather than cumbersome and
boring, as it might have been in the past.

Don’t worry about becoming immediately lost in detail. Like every For
Dummies book, this one takes things slowly, and all the examples are
explained thoroughly so that you know precisely how they work. You'll find
that you advance quickly because this book takes advantage of the best

2 HTML5 Programming with JavaScript For Dummies

possible techniques that knowledgeable developers use to make their lives
simple. Working with libraries such as jQuery greatly decreases the work you
have to do while simultaneously making the application you create look pro-
fessional, and best of all, work everywhere on every device.

Of course, every developer needs to be aware of at least the basics, and the
introductory chapters of the book do just that — they tell you how things
work under the cover. Sometimes you need this information in order to make
the best use possible of all those third-party offerings. However, as the text
often states, there’s no need to reinvent the wheel. Your JavaScript applica-
tions will look professional because you’re using professionally written code
to develop them. This book shows you how to create some truly impressive
results in an incredibly short timeframe.

What Vou Don’t Have to Read

Most of the chapters contain some advanced material that will interest only
some readers. When you see one of these specialized topics, feel free to
skip it. Most of this advanced material appears in sidebars. The sidebar title
always indicates the nature of the advanced material.

You can also skip any material marked with a Technical Stuff icon. This mate-
rial is helpful, but you don’t have to know it to work with HTML or JavaScript.
[include this material because I find it helpful in my programming efforts and
believe that you will, too.

Foolish Assumptions

You might find it difficult to believe that I've assumed anything about you —
after all, [haven’t even met you yet! Although most assumptions are indeed
foolish, made these assumptions to provide a starting point for the book.

It’s important that you're familiar with the platform and browser you want
to use because the book doesn’t provide any handholding in this regard. To
focus on HTMLS5 and JavaScript as fully as possible, the book covers brows-
ers marginally and platform requirements not at all. You really do need to
know how to install applications, use the browser, and generally work with
your chosen platform before you begin working with this book.

Knowing a little about HTML is helpful but not essential. Any experience you
have with programming will be helpful as well. The book doesn’t assume you
have any knowledge of JavaScript.

Introduction

Conventions Used in This Book

This book uses special typeface to emphasize some information. For exam-
ple, entries that you need to type appear in bold. All code, Website URLs, and
onscreen messages appear in monofont type. When I define a new word,
you see that word in italics.

Because you use multiple applications when you’re working with JavaScript,

[always point out when to move from one application to the next. However,
the testers for this book tried out the code with the Internet Explorer, Firefox,
and Chrome browsers on the Macintosh, Linux, and Windows platforms. One
tester also checked at least some of the code using a Windows 8 phone. In
most cases, you shouldn’t experience any problem working with your appli-
cation unless specifically noted in the application description. Please let me
know at John@JohnMuellerBooks.com if you ever experience a problem
with one of the examples.

How This Book Is Organized

This book contains several parts. Each part demonstrates a particular
JavaScript concept. In each chapter, [discuss a particular topic and include
example programs that you can use to discover more about JavaScript on
your own. It isn’t necessary to read the book cover-to-cover — you can
peruse the topics you find most interesting as you would with any refer-
ence book. However, you’ll get more from the book if you do read it cover-
to-cover. You can find the source code for this book on the Dummies.com
Website at http://www.dummies.com/go/html5programmingwith
javascript.

Part I: Understanding the
Basics of JavaScript

This part of the book helps you gain a perspective of what the language can
do for you as a developer and then shows you some simple examples of
how the language works. Chapter 1 exposes you to JavaScript by presenting
simple examples — you aren’t expected to fully understand how they work,
but you do gain an understanding of what JavaScript is like and how it could
potentially help you create amazing browser-based applications. Chapter 2
spends time exploring some common tools you should consider using when
writing your JavaScript applications. Chapter 3 begins exploring how HTML5
and JavaScript work together to create a useful programming environment.

http://www.dummies.com/go/html5programmingwithjavascriptfd
http://www.dummies.com/go/html5programmingwithjavascriptfd

4 HTML5 Programming with JavaScript For Dummies

Part I1: Speaking the JavaScript Language

Before you can do anything with JavaScript, you need to know how to speak
the language. Chapters 4, 5, and 6 introduce you to the essential elements of
the JavaScript language in the form of variables and objects. Everything in
JavaScript is an object. Before you can do anything else, you need to under-
stand these objects and discover how to use them.

Part I1I: Meeting JavaScript’s
Control Structures

Complex applications rely on control structures to organize tasks, optionally
perform them, and perform them repetitively. Chapter 7 focuses on func-
tions, which are the JavaScript method of organizing tasks in easily under-
stood and reusable pieces. Chapter 8 tells you how to make decisions using
JavaScript code. Finally, Chapter 9 discusses techniques for performing tasks
repetitively. Taken together, these three chapters help you create complete
and useful JavaScript applications.

This part of the book also discusses errors. Errors can happen in every
application, even when that application has no errors in it. A user can
enter incorrect data or an environmental factor can cause various sorts of
data degradation and loss. Many errors are completely out of your hands.
However, recovering from these errors is completely within your grasp,
which is the topic of Chapter 10.

Part IU: Interacting with Users and HTML

This part of the book focuses on user interactions. The basis of interaction

in JavaScript is the Document Object Model (DOM), which is the focus of
Chapter 11. To react to user actions and external activity, your application
must handle events. Chapter 12 describes all sorts of events and how you can
handle them within your application.

Creating a good presentation also helps you motivate users to interact with
your application. Chapters 13, 14, and 15 discuss various kinds of presenta-
tion techniques you use to create successful applications with JavaScript.

Introduction

Part U: Extending JavaScript Further

JavaScript is an astounding language that lets you interact with users in new
ways that reflect the modern reality of computing device usage. This part of
the book exposes you to just a subset of the truly amazing things you can
do to extend JavaScript to help you create robust applications. Chapter 16
focuses on XML, which is a technique you can use to store data of all sorts
without much effort at all.

One of the techniques you can use to make users more receptive to your
applications is to make the application faster and more efficient. That’s the
purpose of Asynchronous JavaScript and XML (AJAX). It helps you create effi-
cient applications as described in Chapter 17.

The most incredible feature of JavaScript is the support it enjoys from third
party developers. This book can only introduce you to one such library (and
even this one library can help you create new applications quickly). Chapters
18, 19, and 20 introduce you to a third-party library named jQuery, which

can help you add interactions and special effects to your applications. This
library also provides access to a number of interesting widgets that you can
use to give your applications a professional appearance.

Part Ul: The Part of Tens

This part of the book contains two top ten lists of things related to JavaScript
that you'll find handy as you work your way through your first applications.
Chapter 21 contains some parting coding examples and ideas on how to make
your coding environment more fun, efficient, and productive. Chapter 22 is
all about the future. It discusses some ideas of where application develop-
ment will go in the future.

The companion Website

This book contains a lot of code, and you might not want to type it. In fact,
it’s probably better if you don’t type this code manually. Fortunately, you can
find the source code for this book on the Dummies.com Website at http://
www.dummies.com/go/html5programmingwithjavascript. The source
code is organized by chapter, and I always tell you about the example files in
the text. The best way to work with a chapter is to download all the source
code for it at one time.

5

http://www.dummies.com/go/html5programmingwithjavascript
http://www.dummies.com/go/html5programmingwithjavascript

6 HTML5 Programming with JavaScript For Dummies

Icons Used in This Book

A\

As you read this book, you’ll see icons in the margins that indicate material
of interest (or not, as the case may be). This section briefly describes each
icon in this book.

Tips are nice because they help you save time or perform some task without a
lot of extra work. The tips in this book are timesaving techniques or pointers
to resources that you should try to get the maximum benefit from JavaScript
or HTMLS5.

[don’t want to sound like an angry parent or some kind of maniac, but you
should avoid doing anything marked with a Warning icon. Otherwise, you
could find that your program melts down and takes your data with it.

Whenever you see this icon, think advanced tip or technique. You might find
these tidbits of useful information just too boring for words, or they could
contain the solution you need to get a program running. Skip these bits of
information whenever you like.

If you don’t get anything else out of a particular chapter or section, remember
the material marked by this icon. This text usually contains an essential pro-
cess or a bit of information that you must know to write JavaScript programs
successfully.

There are times when a topic is so immense that you really need additional
information about it. Often, the topic covered is outside the scope of this
book, and discussing it in the book would become distracting and would
divert attention away from programming HTML5 with JavaScript. Paragraphs
marked with this icon contain links to online sources you can use to discover
more about a topic that will interest you, but you don’t need to know about it
in order to understand the code in the book.

Where to Go from Here

It’s time to start your HTML5 programming with JavaScript adventure! If
you're a complete JavaScript novice, you should start with Chapter 1 and
progress through the book at a pace that allows you to absorb as much of the
material as possible. If you're in an absolute rush to get going with JavaScript
as quickly as possible, you could possibly skip to Chapter 2 with the under-
standing that you may find some topics a bit confusing later.

Introduction 7

Everyone should read Chapter 2 because it contains some setup information
you need to use the examples effectively. The book assumes that you have
some type of Web server set up to run examples that require it. Because
Apache runs on all of the target platforms for this book (Linux, Windows,
and Mac OS X), [recommend you install this particular Web server. In addi-
tion, Apache is the most popular server on the Internet, so you’ll definitely
encounter it at some point.

Advanced readers, those who already have a basic understanding of
JavaScript, can save time by reading Chapter 2 and then moving directly to
Chapter 11. If you're really in a rush to get to the best material in the book,
you can always try to start with Chapter 17 and then go back to earlier chap-
ters as necessary when you have questions. However, it’s important that you
understand how each example works before moving to the next one. Every
example has important lessons for you, and you could miss vital content if
you start skipping too much information.

CMBER
Occasionally, Wiley’s technology books are updated. If this book has technical

updates, they’ll be posted at http: //www.dummies.com/go/html5

programmingwithjavascriptupdates.

http://www.dummies.com/go/html5programmingwithjavascriptupdates
http://www.dummies.com/go/html5programmingwithjavascriptupdates

8 HTML5 Programming with JavaScript For Dummies

Part|

Understanding the Basics
of JavaScript

getting started
with

JavaScript

http://www.dummies.com

X Y\

In this part . . .

Discover why JavaScript is such an important addition to your
programming toolbox.

Create a simple example that demonstrates the basics of using
JavaScript.

Obtain a basic list of tools you can use to make writing
JavaScript applications easier.

Uncover the hidden developer features found in most browsers.
Install Apache on your system to use as a test site.

Understand basic JavaScript programming language
terminology.

Determine when visitors have JavaScript turned off in their
browsers.

Chapter 1

HTML, Say Hello to JavaScript

In This Chapter

Understanding what JavaScript is
Understanding how JavaScript fits in with HTML5

avaScript is a text-based scripting language that’s interpreted by a client

system to perform tasks in various settings. The most common setting is
within browsers. A developer wants to do something special, such as accept
input from a form, and JavaScript makes it possible.

JavaScript appears in many other places. For example, Windows has long
allowed the use of JavaScript to create applications, and now it has an

even bigger role with Windows 8. (See http://msdn.microsoft.com/
library/windows/apps/br211385.aspx for details.) Special versions
of JavaScript also support application development on the Macintosh. (See
www.latenightsw.com/freeware/JavaScriptOSA as an example.) In
fact, you can even run Linux in a browser by using a JavaScript emulator.
(See www .webmonkey.com/2011/05/yes-virginia-that-is-linux-
running-on-javascript for details.) The point is that JavaScript is a lan-
guage that appears in all sorts of places on many different operating systems.
When you discover JavaScript, you open an exciting new world of program-
ming that works on myriad platforms — a dream that developers have had
for a very long time.

This book doesn’t explore all of the possible environments in which you can
use JavaScript. [doubt very much that you could examine the topic in any
detail with an entire shelf of books. What you’ll encounter is how JavaScript
is used with HTMLS5, the newest version of the HyperText Markup Language
(HTML). HTMLS5 and JavaScript are made for each other. By combining
these two languages, you create a robust environment for Web applications.
Modern Web applications can perform an amazing array of tasks —

http://msdn.microsoft.com/library/windows/apps/br211385.aspx
http://msdn.microsoft.com/library/windows/apps/br211385.aspx
http://www.latenightsw.com/freeware/JavaScriptOSA/
http://www.webmonkey.com/2011/05/yes-virginia-that-is-linux-running-on-javascript/
http://www.webmonkey.com/2011/05/yes-virginia-that-is-linux-running-on-javascript/

1 2 Part I: Understanding the Basics of JavaScript

A\

everything from word processing to database entry. The use of HTML5 and
JavaScript together makes it possible for anyone or any organization to

move applications from the desktop to the cloud (a special location on the
Internet used to store applications and data), where any device capable of
running JavaScript can access and use them. In short, combining HTML5 with
JavaScript can free users from using a specific device to interact with any
application you can imagine.

Of course, any book on a programming language must begin with some
basics and present some ground rules, which is precisely what you find in
this chapter. You discover a little more about what JavaScript is and how it
can help you create interesting applications. You'll also begin creating some
basic JavaScript applications in this chapter. They won’t do too much at
first; you'll gain a sense of what JavaScript can do after you've worked with it
some more.

JavaScript can work on any platform that supports it and in any browser that
supports HTML5. To see what level of support your browser provides, go to
http://html5test.com and enable JavaScript support (if asked). This site
tells what your browser can and can’t do with JavaScript so that you know
whether your browser can use specific features in this book. (You may want
to print the results so that you have a reference to them as you progress
through the book.) For the purpose of making things easier for everyone, the
scripts in this book were tested with the latest version of Firefox available at
the time of writing on a Windows 7 system. (See Chapter 2 for more on the
many benefits to using Firefox for developing browser-based applications.)
You may see slight variations in screen output and functionality when you use
a different browser or operating system.

Introducing JavaScript

Originally, the Internet allowed only static pages — pages that presented fixed
content that couldn’t change. Yes, there were links and other features that let
you move to other pages, but the content on them didn’t change. JavaScript
was originally conceived as a means for making Web pages dynamic —
making it possible for users to interact with them and receive something in
return. In fact, that’s the basic idea behind JavaScript today, but the interac-
tions have become complex enough that you can call them applications. The
following sections introduce you to what JavaScript is all about and why you
need to add this language to your programming toolbox.

http://html5test.com/

Chapter 1: HTML, Say Hello to JavaScript 13

Discovering the history of JavaScript

You won't find a complete history of JavaScript a/history.htm. This short history will
in this book because so many people have provide you with a good overview of the
already written about it. There are many his- most important facts about the creation of
tories of JavaScript on the Internet. One of JavaScript. You can find a more detailed his-
the better histories is at http://java tory of JavaScript at http: //www.howto
script.about.com/od/reference/ create.co.uk/jshistory.html.

Java and JavaScript aren’t
long-lost relatives

Some programmers have confused Java and JavaScript over the years, partly
because of the naming similarities. It turns out that JavaScript was originally
named LiveScript. Netscape saw how popular Java had become and decided
to rename LiveScript to JavaScript to play off that popularity. In reality,

Java and JavaScript are completely different languages, and you shouldn’t
confuse the two. There’s nothing similar between Java and JavaScript. For
example, whereas Java is a compiled language (one that’s turned into a native
executable using a special application) that requires a plug-in to run in your
browser, JavaScript is an interpreted language (a text description of what to
do that requires an interpreter, another sort of special application, to exe-
cute) that requires no special plug-in because the browser provides native
support for it.

QQ,N\BEH There’s nothing unusual about the similarity in naming between Java and
& JavaScript. Vendors have used naming similarities for many products in order
to obtain some sort of benefit from the popularity of similarly named prod-
ucts. The most important thing to remember is that you can’t use any Java
functionality, documentation, or tools to create your JavaScript applications.
The two languages are quite different.

Recognizing the benefits of JavaScript

JavaScript is an amazing language that can perform a wide variety of tasks
when you know how to use it. In fact, in many respects, JavaScript is unique
in the programming world because you don’t have to perform any special

http://javascript.about.com/od/reference/a/history.htm
http://javascript.about.com/od/reference/a/history.htm
http://javascript.about.com/od/reference/a/history.htm
http://www.howtocreate.co.uk/jshistory.html
http://www.howtocreate.co.uk/jshistory.html

1 4 Part I: Understanding the Basics of JavaScript

<MBER
é"\&

tricks to get it to work in most environments. Not every environment is com-
pletely compatible with JavaScript, but you can usually get essential features
of an application to work no matter which environment runs the application
you create. With this in mind, you want to know what JavaScript can do for
you as a developer because having this information makes it easier for you to
convince management and other developers to work with you on JavaScript
solutions.

The following sections discuss the most commonly cited benefits of JavaScript
(although you’ll almost certainly find other benefits in online articles such
as the ones described at http://ezinearticles.com/?What-Are-the-
Benefits-of-JavaScript?&id=4743036).

Using JavaScript in any browser

JavaScript is quite flexible because it’s an interpreted language. Interpreted
languages are distributed as plain text. Every computer platform ever created
can understand plain text. Even old mainframes can understand plain text, at
some level, which means that plain text is the most common form of computer
communication ever created. A special browser feature, the interpreter, reads
the text description of what to do and then performs those tasks within the
browser environment. Every browser has this special feature built-in so you
never need to download a special plug-in when working with JavaScript — the
support you need is already available. Because the JavaScript language is
essentially the same in every browser, the same text description of what tasks
to perform works everywhere. This text description is the JavaScript language
that you use throughout the book to create the example applications.

It’s important to realize that the browser’s interpreter must recognize all of
the JavaScript key words and programming constructs. As JavaScript has
improved, it has added new features that older interpreters don’t understand.
Consequently, you can’t expect a really old interpreter to completely under-
stand a JavaScript application that uses all of the latest features. In many
cases, the application may still run, but with reduced functionality. In other
cases, the program may crash simply because the interpreter doesn’t know
what to do. This is why you need to know which platforms support the com-
bination of HTML and JavaScript you want to use in your Web pages and why
you need to test your browser at http://html5test.com to ensure the
examples in this book will work for you.

Using JavaScript with any operating system

Many programming languages rely on special operating system features.
Native code programs — those that speak the operating system’s special lan-
guage — are especially attached to a particular operating system because the
language relies on the special operating system features. JavaScript has no
such reliance. All JavaScript cares about is the browser in which it runs. The
browser interacts with the operating system and takes care of all of those
low-level tasks so JavaScript can be generalized to work with any operating
system.

http://ezinearticles.com/?What-Are-the-Benefits-of-JavaScript?&id=4743036
http://ezinearticles.com/?What-Are-the-Benefits-of-JavaScript?&id=4743036
http://html5test.com/

Chapter 1: HTML, Say Hello to JavaScript

Using JavaScript with any device

Some developers are used to the idea that their applications will work only
on certain devices. In fact, most developers are happy when they can get an
application to work on just one platform (the combination of a specific device
matched with a specific operating system) successfully. JavaScript has no
such limits.

If you have a device that has an HTML5-compatible browser with JavaScript
support, it’s quite likely that the applications in this book will work. (That
said, I've tested the applications only on the systems specified in the book’s
introduction, so your results will vary depending on device and browser
compatibility.) Even mobile devices will use JavaScript without problems.
For example, if you have a Blackberry, it’s quite likely that the examples in
this book will work on it without problem. (See http://www.sencha.com/
blog/html5-scorecard-rim-blackberry-playbook-2 for details on
Blackberry support for HTML5.)

Most developers will find it quite amazing that the application created with
JavaScript could potentially work on platforms that didn’t even exist at the
time the application was written! The idea that JavaScript is everywhere will
surprise many people. Don’t be surprised when the Android user sitting next
to you in the doctor’s office is using the application you wrote in JavaScript
for the PC. JavaScript doesn’t care where it runs.

Accessing common platform features

As previously mentioned in this chapter, JavaScript requires an interpreter,
and that interpreter translates JavaScript key words into something the
underlying platform can understand. Unlike some other languages, JavaScript
doesn’t exist within a sandbox — a special programming environment that
limits access to operating system features to reduce potential security prob-
lems. This means that JavaScript can tell the interpreter that it wants to save
a file somewhere, and then the interpreter will do its best to satisfy that need
using platform-specific functionality. JavaScript doesn’t care how or where
the file is saved — it simply cares that the file is saved. In short, JavaScript
insulates your application from the platform in a way that makes it possible
to create truly amazing applications.

There’s never a free lunch when it comes to applications, however. JavaScript
can perform simple tasks, such as saving a file. The catch is that you can’t
depend on it to use unique operating system features. For example, Windows
supports file encryption, but you can’t access that feature from JavaScript. As
a consequence, the file you save to disk isn’t encrypted unless the encryption
is part of the standard platform method for doing things. Never assume that
you can perform special platform tasks with JavaScript. Even so, you probably
won’t even miss these special features, because JavaScript works fine without
them.

15

http://www.sencha.com/blog/html5-scorecard-rim-blackberry-playbook-2
http://www.sencha.com/blog/html5-scorecard-rim-blackberry-playbook-2

10

Part I: Understanding the Basics of JavaScript

Seeing How JavaScript Fits
into an HTML Document

A\

Now that you know a little more about JavaScript, it’s time to see JavaScript
in action. The following sections guide you through the process of creating
a simple HTML5 document and adding some JavaScript code to it. You don’t
need to understand the underlying theory of why this application works yet.
In addition, you don’t need to fully understand the JavaScript language con-
structs (keywords used to build a Java application) yet — just follow along
with the simple example to see what JavaScript can do.

This section is a lot more fun when you try the example in a number of brows-
ers. Yes, you can get the gist of what’s happening by using a single browser,
but it will amaze you to see the application perform the same way no matter
which browser you use. To get the most out of the following sections, try the
example in two or more of your favorite HTML5-compatible browsers that
include JavaScript support.

Starting an HTML5 document

HTML has gone through a lot of changes over the years. In order to identify
the various kinds of HTML, the World Wide Web Consortium (W3C) has cre-
ated a number of specifications that define precisely what an HTML docu-
ment of a particular type should look like. These standards are publicly
available — although no one but a computer scientist can really understand
them. You can see the HTML5 standard at http: //www.w3 .org/TR/2011/
WD-html5-20110525/.

Make sure you get the full benefit of using this book by downloading the
companion source code from http: //www.dummies.com/go/html5
programmingwithjavascript. The companion source code will greatly
enhance your experience with the book and make working with JavaScript
considerably easier. Make sure you also check the blog entries for this book
at http://blog.johnmuellerbooks.com/categories/263/html5-
programming-with-javascript-for-dummies.aspx. The blog entries
answer commonly asked questions, provide additional examples, and help
you better use the book content to perform tasks.

For the purposes of this book, you can start any HTML5 document like

this (you can access this entire example in the Test . HTML file found in the
\Chapter 01\Simple JavaScript Example folder of the downloadable
source code for this book):

http://www.w3.org/TR/2011/WD-html5-20110525/
http://www.w3.org/TR/2011/WD-html5-20110525/
http://www.dummies.com/go/html5programmingwithjavascriptfd
http://www.dummies.com/go/html5programmingwithjavascriptfd
http://blog.johnmuellerbooks.com/categories/263/html5-programming-with-javascript-for-dummies.aspx
http://blog.johnmuellerbooks.com/categories/263/html5-programming-with-javascript-for-dummies.aspx

|
Figure 1-1:
Atypical
view of

a simple
HTML5
document.
|

Chapter 1: HTML, Say Hello to JavaScript

<!DOCTYPE html>
<html>
<head>
<title>JavaScript Example</title>
</head>
<body>
<hl>My First JavaScript Example</hl>
<p>This is a JavaScript test.</p>
</body>
</html>

Each section of this example performs a specific task. For example, the
<!DOCTYPE html> declaration tells you that this is an HTML5 document.
Other sorts of HTML documents have other declarations. When a browser
that understands HTMLS5 sees this declaration, it treats the rest of the docu-
ment as an HTML5 document and allows use of HTMLS5 features.

The <html> tag begins and ends the document as a whole. Every HTML doc-
ument also includes two other tags: a <head> tag where you place heading
information (such as the page’s title), and a <body> tag where you place the
content you want displayed to the end user. This document includes a <h1>
tag (first-level heading) and a <p> tag (paragraph). Figure 1-1 shows how this
document looks in Firefox on a Windows 7 system. (Your screen may look a
little different.)

@) Javascript Example - Mosilla Firefox o= =]

I,Rgﬁraﬁ aich Engifles FM P\ag(

TR e —

fahoo! Comics

My First JavaScript Example

This is a JavaScript test.

Understanding the alert () function

The first bit of JavaScript code you discover in this book is the alert ()
function. All that this function does is display a message box. You probably
see the alert () function used on sites you visit several times a day because
most developers use it relatively often to display updates and other informa-
tion. Given the utility of the alert () function, it’s a good addition to your
JavaScript toolbox. The alert () function takes a message as input.

17

Part I: Understanding the Basics of JavaScript

Creating the JavaScript examples

This book contains a lot of JavaScript exam-
ples. You can type them if you want using any
text editor or an editor designed specifically
for working with JavaScript such as Komodo
Edit (http://www.activestate.com/
komodo-edit). The important thing is that
the editor creates text without any formatting. If
the editor adds formatting, then the JavaScript

you should use for your example. Simply save
the file to a location you can easily find on your
hard drive and then open it using your browser.
Opening the file in your browser will cause the
JavaScript to run automatically so that you can
see how your code works. Chapter 2 provides
more information on tools you can use to make
your experience working with JavaScript a lot

interpreter won't be able to read the file. Each easier.

example will include a suggested filename that

Using the <script> tag

It’s time to try the alert () function out. Type the following line of code after
the <p>This is a JavaScript test.</p> line of code in your initial
Web page:

<script language="JavaScript">
alert ("Hello World") ;
</script>

The <script> tag tells the browser to treat the text that follows as a script,

rather than as text for display. The 1anguage attribute tells the browser that
the code is in JavaScript and not some other language. When you display the
page in a browser, the user sees a dialog box like the one shown in Figure 1-2.

Figure 1-2:
The alert()
function
displays a
simple mes-
sage box.
|

Hello World

—

To dismiss the message box, the user simply clicks OK. There’s nothing fancy
about the alert () function, but it can convey simple messages, and it’s so
standard that any browser can display it, even if the browser wouldn’t ordi-
narily work well with newer versions of JavaScript. Use the alert () function
when you need to tell the user something and don’t need to obtain any input
in return.

http://www.activestate.com/komodo-edit
http://www.activestate.com/komodo-edit

WMBER
@ﬁ
&

Chapter 1: HTML, Say Hello to JavaScript

Placing the code in the page heading

Creating a script that runs immediately when you display the page probably
works in some cases, but not in others. For example, you may not have any-
thing to say to the user until the user performs some action. In this case, you
place the script between the beginning and ending of the <head> tag. You
also give the script a name so that you can access it at any time. Add this
code under the <title> tag in the page you created earlier:

<script language="JavaScript">
function SayHello ()
{
alert ("This is the SayHello() function!");
}

</script>

As in the preceding section, you place the script within a <script> tag

and tell the browser what language you’re using to create the script. The
function keyword tells the browser that this is a particular section of
named code, which has a name of SayHel1lo in this case. The curly braces
({1) tell the browser where the script code begins and ends. In this case, the
script consists of a single line of code that contains the alert () function.

You could save the page at this point, and it would load just fine, but you
can’t access the SayHello () function. To access the SayHello () function,
you must provide content that tells the browser to perform the tasks that are
contained within the function. To make this happen, add the following lines
of code after the <p> tag in <body> section of the page:

<input type="button"
value="Click Me"
onclick="SayHello ()" />

This form of the <input> tag creates a button (specified by the type attri-
bute). The button has Click Me as a caption as specified by the value attri-
bute. When the user clicks the button, the browser performs the task defined
by the sayHello () function as specified by the onc1ick attribute. Load the
page in your browser and dismiss the initial message box. You see the button
added to the page, as shown in Figure 1-3.

The <input> tag can create a number of controls on a page — buttons are
only one such control. You change the kind of control that <input> creates
through the type attribute. Later chapters show more of the <input> tag
options at your disposal. For now, all you need to know is that <input>is a
handy tag type to know about.

19

20

Part I: Understanding the Basics of JavaScript

|
Figure 1-3:
The <input>
tag lets you
add a button
to the page.
|

|
Figure 1-4:
You can
display this
dialog box
as often

as desired
without
reloading
the page.
|

(@) JavaScript Example - Mozills Firefox

My First JavaScript Example

This 1s a JavaScript test.

The advantage of using named code and a button is that you can access the
message box as often as needed. Whenever the user clicks Click Me, the
browser displays the message box shown in Figure 1-4. Try it now. You must
dismiss the dialog box before the browser returns control to the page, but
you can display the dialog box as many times as desired.

This is the SayHello() function!

Relying on external files
When you use a particular script regularly, you can do one of two things:

v Use cut and paste techniques to place the script everywhere you need it.

v Place the script in an external file.

The problem with cutting and pasting is that you end up with lots of copies
of the same script. If you need to make a change to the script, you have to
change every copy you create, which is error prone and time consuming.
Using an external file means that you create the script only once and then
use it everywhere. The script is easy to change because you change it in only
one location.

SMBER

|
Figure 1-5:
The page
has two
buttons on

it now.
|

Chapter 1: HTML, Say Hello to JavaScript 2 ’

Begin this part of the example by creating a new file using any means you like
(such as a favorite text editor or an application specially designed for work-
ing with JavaScript). Name it External .JS. JavaScript files normally have a
.Js file extension. Place this code inside the External.Js file:

function ExternalSayHello()

{

alert ("This is the ExternalSayHello() function!");

}

This code functions exactly like the code that appears in the <head> tag of
the example page. It displays a message box using the alert () function.
However, the functions you create in External . JS must have unique names.
You can’t have two functions with the same name in the same page. Notice
that this function has a name of ExternalSayHello to differentiate it from
the SsayHello () function you created earlier in the chapter.

You have to tell the page where to access this code. To do this, you create a
different sort of <script> tag entry in the <head> tag area of the page. This
<script> tag looks like this:

<script src="External.JS">
</script>

The src attribute tells the browser to load all of the code found in
External.JS. You access any function that appears in External .JS pre-
cisely the same way you would any code that appears in the <head> tag. To
see how this works, add a new button directly after the first button you cre-
ated in the preceding section using the following code:

<input type="button"
value="Test External"
onclick="ExternalSayHello ()" />

This button works and acts precisely the same as the other button you cre-
ated. The only difference is that it calls ExternalSayHello () instead of
SayHello () when the user clicks the button. Figure 1-5 shows how the page
looks with the additional button on it.

My First JavaScript Example

This is a JavaScript test.

Gkl

22 Part I: Understanding the Basics of JavaScript

Unless you provide additional formatting, the browser simply places the but-
tons side by side on the page as shown. When the user clicks Test External,
the browser displays the message box shown in Figure 1-6. As with the Click
Me button, you can display this message box as often as needed.

Figure 1-6:
Click Test | Thisis the ExternalSayHello() function!
External

to see this
message
box.
|

Chapter 2
Assessing Tools of the Trade

In This Chapter

Choosing which browsers to work with during the development process
Choosing an application for writing your HTML5 and JavaScript code
Creating a hosting site to use for testing your application

M ost development efforts require the use of tools. JavaScript is no
different. You need tools to create, test, and debug (remove errors

from) the applications you create. Fortunately, the tools you need to work
with JavaScript are few, and you can obtain all of them without paying a cent.
JavaScript is unique; there are few other languages that provide anything
close to this level of support. With most languages, you have to invest at
least a little money to obtain a truly usable set of tools. This chapter shows
how to build a useful suite of tools that will work with the three target plat-
forms for this book: Windows, Mac OS X, and Linux. However, many of these
tools work just fine on other platforms, and you should feel free to expand
the list as needed to meet your particular needs.

It pays to categorize the way you use tools. Doing so ensures that you can
focus on the requirements of that specific tool and helps you avoid needless
tool duplication (which can lead to all sorts of problems later, such as figur-
ing out which tool you used to perform a task such as writing the code). This
chapter is broken down into three main tool categories:

” Browsers: You can’t test every browser in existence — doing so would
require years, and your users aren’t willing to wait that long to see your
next application design achievement. (Testing applications in multiple
browsers is needed because not every browser supports every HTML5
tag, amongst other issues.) However, you do need to test the brows-
ers you expect users to work with most often, and you need to have a
browser that includes tools necessary to ensure your JavaScript applica-
tion works as expected. Choosing a good set of browsers is an essential
first step in JavaScript development.

24 Part I: Understanding the Basics of JavaScript

v~ Editors: JavaScript is a pure text language, so you can use any text
editor to create your JavaScript application. The fact that you don’t
need a compiler (a special program used to turn human readable source
code into bits that your computer understands) for JavaScript means
that the requirements for an editor are significantly smaller than for
other languages. However, using an editor specifically designed to write
JavaScript applications can help you in significant ways. For example,
a dedicated JavaScript editor can provide help in using the built-in
JavaScript functions.

1 Testing environments: It’s possible to check your JavaScript application
by opening the page from the hard drive in your browser. The browser
really doesn’t care about the source of the page. Unfortunately, local test-
ing ensures only that the code will work; it doesn’t test the code in the
same environment the user will rely upon. To ensure that your JavaScript
application works as anticipated, you need a hosting environment.
Because the Apache server works on every one of the target platforms
for this book, is available at no cost, and currently enjoys a 64.5 percent
market share (as stated at http://w3techs.com/technologies/
overview/web_server/all), this book uses the Apache server for
testing purposes.

As you visit each of these tool categories, think about how you work with
Web applications today and how you expect to work with them as your skills
improve. It also pays to consider the platforms you plan to support, as well
as those that users will use even if you hadn’t planned to support them. (For
example, many businesses are now finding a need to support applications on
mobile devices, such as smartphones, even though the original application
was never designed to work in this environment.)

Researching Browsers and
Their Debugging Tools

A\

There are probably thousands of browsers available on the market today,
and each browser has a number of versions. For example, Firefox has at least
16 versions and a number of minor builds within each of those versions. In
short, you need to know which browsers your users rely on most often and
then also choose a browser for your own needs.

Getting the user selection is relatively easy in many cases — just take a

poll. If you don’t know which users will rely on your application or you lack
the resources to take a poll, then you can always choose to support the
browsers with the greatest market share. A number of sites provide this

sort of information, but the most flexible of these sites is NetMarketshare
(http://www.netmarketshare.com/browser-market-share.
aspx?gprid=2&gpcustomd=0). You can choose to define the market share

http://w3techs.com/technologies/overview/web_server/all
http://w3techs.com/technologies/overview/web_server/all
http://www.netmarketshare.com/browser-market-share.aspx?qprid=2&qpcustomd=0
http://www.netmarketshare.com/browser-market-share.aspx?qprid=2&qpcustomd=0

Chapter 2: Assessing Tools of the Trade 25

based on the browser group, operating system, platform, device, or any com-
bination of the four. Unfortunately some information on this site requires a
paid subscription. You can also obtain the information from other sites,

such as the W3Schools site at http: //www.w3schools.com/browsers/
browsers_stats.asp. The point is that you should have some basis on
which to make a decision about which browsers to check; otherwise, you
spend considerable time testing as many browsers as possible and may

not create a usable application for any of them because of the conflicts you
encounter.

When choosing browsers, make sure you verify that they actually provide
the required support before you spend time working with them. Not every
browser supports JavaScript fully, and even more don’t support HTML5. The
introduction to Chapter 1 discusses a test site you can use to check HTML5
readiness, but you can also find charts online that provide the information,
such as the ones at HTML5 & CSS3 Readiness (http://html5readiness.
com) and HTML5 Accessibility (http://html5accessibility.com). (CSS
stands for Cascading Style Sheets.)

This book shows all of the example output using the Firefox browser because
it provides the best flexibility and the greatest number of plug-in development
tools. In addition, Firefox looks about the same no matter which platform you
use it on, and [wanted to be sure as many readers as possible would be able
to see the example output the same way it appears on my screen. However,
the examples are also tested using Google Chrome and a native browser on
each of the target platforms (Internet Explorer on Windows and Safari on the
Macintosh — Firefox happens to be the native browser on the version of Linux
used for the book).

The browser you choose to use needs to have some sort of debugging tools
with it. Otherwise, you can’t easily find the errors in your application and

will drive yourself crazy trying to fix them. With this in mind, the following
sections explore some browsers you may want to work with when creating
JavaScript applications. These browsers are extremely popular, and they pro-
vide built-in debugger support, plug-in debugger support, or a combination of
the two.

Catching up with Firefox

Firefox (http://www.mozilla.org/firefox/new) comes with some
basic tools for performing development tasks. These tools will likely serve
most of your needs in the book.

Firefox is available for most of the platforms you need to support (includ-
ing Windows, Mac OS X, and Linux). It works equally well on both desktop
and mobile devices (you can check the list of supported phones at http://
www.mozilla.org/firefox/mobile/platforms), so the application you

http://www.w3schools.com/browsers/browsers_stats.asp
http://www.w3schools.com/browsers/browsers_stats.asp
http://html5readiness.com/
http://html5readiness.com/
http://html5accessibility.com/
http://www.mozilla.org/firefox/new/
http://www.mozilla.org/firefox/mobile/platforms/
http://www.mozilla.org/firefox/mobile/platforms/

26 Part I: Understanding the Basics of JavaScript

test for one will normally work with the other. However, even though Firefox
seems to work everywhere, it isn’t the most popular browser out there, so
you need to weigh the advantages in tools and general availability against the
number of people actually using Firefox. The following sections tell you more
about the technologies you can use to turn Firefox into a great developer tool.

Exploring the developer tools

You see the tools when you choose Tools>Web Developer. The following list
describes the entries on this menu:

v+ Developer Toolbar: This tool displays a toolbar at the bottom of the
browser window that contains a textbox where you can type debugging
commands. In addition, there are buttons you can use to access the Web
Console, Inspector, and built-in Debugger tools.

v Web Console: This tool displays a pane at the bottom of the browser
that contains log entries for the current page. You can obtain informa-
tion that relates to the network connection, JavaScript, Cascading Style
Sheets (CSS), and general logging. Most of the information you see is
focused on error or warning data. The log entries can also provide infor-
mation of various sorts.

v Inspect: You use this tool to select a specific area of the displayed page
so that you can see the code associated with it. It’s also possible to per-
form tasks such as copying the information or deleting it from the page.

+* Responsive Design View: A Responsive Design View helps you see the
pages you create from different perspectives without actually creating a
test environment to produce them. For example, you can configure the
display to different resolutions so you can see how the page will appear
in those environments. The tool also comes with a rotate feature that
mimics the rotation offered by devices such as smartphones.

v Debugger: You use this tool to create an environment where you can
inspect JavaScript code as it executes. The debugger offers features
such as setting breakpoints, stepping through the code, and inspecting
variable values. You won'’t find any advanced features, and it’s not possi-
ble to do things such as setting watches, but the debugger does provide
enough information to perform simple debugging tasks.

v Scratchpad: This tool provides a simple text editor where you can
type JavaScript and then execute it. You can save the resulting code, if
desired. The Scratchpad provides direct access to other Firefox devel-
opment tools, such as the debugger. This is an extremely basic editor,
but it does work.

v Style Editor: When you first start this tool, you see all the styles on the
current page. You can use the tool to create new styles, edit existing
styles, import styles you’'ve saved to disk, or delete styles you no
longer need.

Chapter 2: Assessing Tools of the Trade

1 Page Source: This tool displays a text editor view of the source code
for the current page precisely as the browser sees it. In some cases, this
means that the text is essentially unformatted and difficult to see. You
can use the text editor to modify the page source and save it to disk.

» Error Console: You use this tool to obtain a list of the current errors,
warnings, and messages for the displayed page. Click the links associ-
ated with each entry to see the associated code. In most cases, the code
is formatted so that you can see it in an easily understood format.

v Get More Tools: This special entry takes you to a page that shows addi-
tional development tools. It’s important to note that you can easily find
additional Firefox development tools by searching for them. However,
this page provides a good starting point for obtaining the additional
tools you need. Here are some of the more interesting tools on this page:

e Greasemonkey: A plug-in that provides access to a wealth of
JavaScript scriptlets you can use to modify the behavior of a page.

e Stylish: This tool makes it possible to add skin and theme support
for many sites and to modify the appearance of Firefox itself. The
reason a developer would want to use this tool is to make it easy
for users to customize the appearance of a page without a lot of
work on the developer’s part.

e iMacros for Firefox: Many developers rely on macro recorders to
perform repetitious work (such as filling out forms) automatically.
Otherwise, the developer spends considerable time interacting
with the page as a user rather than fixing problems as a developer.

e ColorZilla: Working with color can be problematic even for design-
ers. This tool makes it possible for you to grab the perfect colors
you see onscreen and use them as needed on your page. You can
also generate gradients and work with color in other ways with-
out driving yourself crazy. (As an alternative, you can always try
Rainbow Color Tools, which is available from the same page.)

¢ Pixlr Grabber: Sometimes you need to grab screens and pull images
from your site to perform tasks such as creating help files. This
tool makes it easy to grab, edit, and share these images as needed.

fontinfo: Deciding which font to use on your site can prove perplex-
ing because there are thousands (possibly millions) of font varia-
tions just for the standard font families. This tool makes it possible
for you to learn the details of a font used on a favorite site so that
you can use the same font (or a variation of it) on your own site.

Examining developer plug-ins

One of the features that people like about Firefox is that it supports a robust
set of plug-ins, or add-ons in Firefox parlance. (This book uses plug-ins for
consistency because each vendor seems to use a different term to refer to
the same sort of software.) If you don’t like how a particular plug-in works,

27

28 Part I: Understanding the Basics of JavaScript

there are usually other plug-ins you can try. In other words, Firefox offers a
highly customizable environment that you can tweak to meet your specific
requirements. As your JavaScript skills grow and the kinds of applications
you create change, you can modify your Firefox environment to match.

The negative side of Firefox is that it can consume a considerable amount

of resources on your system. It isn’t quite the resource hog that Internet
Explorer is, but you'll find that you need to provide enough memory for
Firefox to work properly. As you add more plug-ins, Firefox consumes more
resources. Of course, this makes sense because you're adding software to

an existing setup. The use of third party plug-ins can also cause stability
problems at times and potentially open security holes, so you need to choose
plug-ins with care.

The following list provides you with some ideas of plug-ins you may want to
investigate for your Firefox installation:

v JSView (https://addons.mozilla.org/firefox/addon/jsview):
Most boilerplate (commonly used) JavaScript is stored in external files
because using an external file offers significant advantages to the devel-
oper. Unfortunately, most development tools view only the code stored
with the current page. This tool helps you view the code that appears in
external files so that you can better understand how the page works.

+* Foundstone HTML5 Local Storage Explorer (https://addons.
mozilla.org/firefox/addon/foundstone-html5-1local-
storage): HTML5 includes a new feature that provides access to local
storage. Unfortunately, your browser probably doesn’t know anything
about local storage. This tool makes it possible for you to view, modify,
and delete items in local storage as you work through JavaScript appli-
cations that work with local storage.

v HTML5toggle (https://addons.mozilla.org/firefox/addon/
html5toggle-toggle-html5-su): In some cases, you need to know
whether a page will work when a browser lacks HTML5 support. This
plug-in makes it possible to turn HTML5 support off so you can see how
the page works without it.

v HeadingsMap (https://addons.mozilla.org/firefox/addon/
headingsmap): Discovering how a page is structured is important when
working with complex pages that you didn’t create (or created with the
help of someone else). This tool creates a document map that you can
use to learn the page structure and interact with various page elements.

v Local Load (https://addons.mozilla.org/firefox/addon/
local-1load): Use this plug-in to load common JavaScript libraries from
a local source rather than over an Internet connection. Using this utility
can save considerable development time by making it possible for you
to load and test your pages more quickly.

https://addons.mozilla.org/firefox/addon/jsview/
https://addons.mozilla.org/firefox/addon/foundstone-html5-local-storage/
https://addons.mozilla.org/firefox/addon/foundstone-html5-local-storage/
https://addons.mozilla.org/firefox/addon/foundstone-html5-local-storage/
https://addons.mozilla.org/firefox/addon/html5toggle-toggle-html5-su/
https://addons.mozilla.org/firefox/addon/html5toggle-toggle-html5-su/
https://addons.mozilla.org/firefox/addon/headingsmap/
https://addons.mozilla.org/firefox/addon/headingsmap/
https://addons.mozilla.org/firefox/addon/local-load/
https://addons.mozilla.org/firefox/addon/local-load/

Chapter 2: Assessing Tools of the Trade 29

WMBER
@ﬁ
&

v HTML5 WebSQL for Firefox (https://addons.mozilla.org/
firefox/addon/html5-websgl-for-£firefox): If your JavaScript
application relies on database support, this plug-in may provide the
required database connectivity for you without a lot of extra coding on
your part. This plug-in uses the SQLite (an open source database man-
ager) support provided with Firefox to provide the required database
connectivity.

Firefox provides access to hundreds of plug-ins that a developer could find
useful in a given circumstance. There simply isn’t room in the chapter to dis-
cuss them all. This list presents a few of the plug-ins that I've tried personally
for various development tasks. Your best chance at finding the support you
need is to browse through the list of available plug-ins online and try a few of
them. You can always uninstall plug-ins that don’t work as expected.

Meeting Google Chrome

You may decide that you really don’t want to use Firefox. Google Chrome
(http://www.google.com/chrome) makes a good alternative browser.
Like Firefox, you can find versions of Chrome for Windows, Macintosh, and
Linux operating systems. In addition, Google provides Chrome support for a
number of mobile platforms.

From a pure support perspective, Chrome and Firefox are about equal. In addi-
tion, like Firefox, Chrome provides great HTML5 and JavaScript support. In
fact, you can develop your applications using either browser and be almost
certain that the application will behave precisely the same way in the other
browser. (There are some small differences between the two browsers when
you use some of the more esoteric features.)

To access the developer tools in Chrome, you click the Customize and
Control Google Chrome button, which appears in the upper-right corner
of the display and looks like three dashes stacked one on top of the other.
Choose the Tools submenu and you see these development options:

v View Source: This tool displays a browser view of the source code for
the current page with appropriate white space added so that you can
see it clearly. The output includes line numbers to make it easy to refer
to a specific line in the source code. Unfortunately, you can’t edit the
source code using this view, so you still need a text editor to work with
the code.

v Developer Tools: The Developer Tools window contains a number of
views that you can use to interact with the current page. The next sec-
tion of this chapter discusses these views in greater detail.

https://addons.mozilla.org/firefox/addon/html5-websql-for-firefox/
https://addons.mozilla.org/firefox/addon/html5-websql-for-firefox/
http://www.google.com/chrome

30 Part I: Understanding the Basics of JavaScript

3

1~ JavaScript Console: You can use the JavaScript Console window to
interact with the JavaScript code in the current window, or experiment
with JavaScript code of your own. The actual Console view provides
an interactive environment where you can experiment with JavaScript.
The “Working with the JavaScript Console window” section, later in this
chapter, provides additional information about this window.

If you read about Firefox development tools in the “Catching up with Firefox”
section earlier in this chapter, you might get the idea that working with Firefox
and Google Chrome at the same time means learning two completely different
toolsets. Fortunately, you really don’t have to pull your hair out while spend-
ing a lot of time working through two toolsets. You can find some tools that
work the same with both browsers on whatever platform you use. For
example, Web Developer (http://chrispederick.com/work/web-
developer) provides a consistent interface and precisely the same toolset
for both Chrome and Firefox on the Windows, Mac OS X, and Linux platforms.
So, you can learn how to use this single tool and use it to test your applica-
tions in a number of environments.

Working with the Developer Tools window

The Developer Tools window can provide you with all sorts of information
about the page you're working with. For example, you can discover where
each element comes into play when working with the visual page. Simply
highlight an area in the code, and you see that element selected in the
output. For example, if you highlight <h1>Browser Information</hl>in
the Developer Tools window, you see the Browser Information heading high-
lighted in the output. Figure 2-1 shows a typical example of the kind of infor-
mation you see when working with the Developer Tools window.

Notice the icons that appear across the top of the Developer Tools window.
Each of these icons selects a different function that this tool can perform.
The following list provides an overview of each function:

v Elements: Displays a hierarchical listing of the elements within the page.
You can select each element, see where it appears in the output, and
discover the properties of that element. The information includes details
such as the effect of styles on that particular element.

1 Resources: Provides a listing of the resources that the page requires.
You can obtain information about code, Web SQL (a kind of database
manager created by the World Wide Web Consortium, W3C), IndexedDB
(another sort of database manager created by Mozilla), local storage,
session storage, cookies, and the application cache. All of this informa-
tion helps you understand how the page interacts with its environment
and what it expects the system to provide.

http://chrispederick.com/work/web-developer/
http://chrispederick.com/work/web-developer/

Chapter 2: Assessing Tools of the Trade

[Detect a Browser x

C :,fHe:///C:/D280%2D—‘i’cZOSour(e‘EEZOCUde/Chapter%ZUUZ/Bro\wserDetectJBro\wi; &

(] Reference (] Search Engines [WIBA-FM Player [949WOLX [WTME945 [Star Cinema6 Movi.. 2

Browser Information

Browser Name: chrome

Version Number: 23.0 1271 64

=1 & =
| |52 lements | @i Resources @Nelwnrk g sources @nme\m (" Frofies gmmns [/ consoe

» Computed Style [C] Show inherited|
¥<html> ¥ Styles + iR
¥ <head>
<titlesDetect a Brouser</titles element.style {
¢script sre="nttp://code.jquery.com/iquery-latest.q!
</seript> r
Matched CSS Rules
body { user agent stylesheet
display: block;
margin: b 8px;
"Browser Name: " }
I chromes/span> » Wetrics
</p>
i g » Properties
. . ¥<script language="J
Flgure 2'1. var b = » DOM Breakpoints
g h(navigator.userigent).browser p Eyent Listeners N
Use the (Pl me"]') . html(
"Browser Name: " + browser + "</
Developer
Tools
. 23.8.1271.64
window to <o
3 ¥<script language
determine L
" n Number: " + $.browser.y
"<fspanst);
how the
. <fscript>
page Is put <Ibody>
</html>
together. |« ;
o, > o n [T %
| 2 —

1 Network: Creates a graphic display of how the page interacts with the net-
work. For example, if the page requires access to an external JavaScript
file, the graph shows the time required to perform a Domain Name System
(DNS) lookup, connect to the external server, send the request, wait for
the server to process the request, and then receive the file.

v Sources: Displays the sources used to create a particular page, including
external sources, such as external JavaScript files. You can view each
of these sources, set breakpoints in them, single-step through them,
and perform other debugging tasks. When an application is paused, you

can view variable information, check the call stack, and perform other
debugging tasks.

v Timeline: Defines the way the application behaves by providing output

in graphic form. For example, you can trace the handling of events
within the application.

v Profiles: Tracks the execution speed of individual elements of your
JavaScript application to aid in tuning application performance. For
example, you can see the effect of clicking a button or calling a method.
The profile helps you see where the application spends most of its time
so that you have a better idea of where to tune the application.

v Audits: Performs an audit on application behavior.

31

32 Part I: Understanding the Basics of JavaScript

<MBER
@Q

|
Figure 2-2:
A console
can help
you play
with
JavaScript
and learn
new things
about it.
|

v~ Console: Displays a list of errors, warnings, and log entries associated
with the current page. Each entry provides links that you can click to
obtain further information. For example, you can click a link to see
where the fault appears in the source code. Another link takes you to
the Network function so that you can see the effect of the fault on appli-
cation performance.

Working with the JavaScript Console window

The JavaScript Console window is part of the Developer Tools window.
Normally, you see the warnings, errors, and log entries for the application
in this window. However, you can also use the JavaScript Console window
for other tasks. For example, you can type code into it to see what happens.
For example, type alert(“Hello”); and press Enter, and you see a dialog box
appear with the word Hello in it.

Using the JavaScript Console window can help you understand your code
better, and it’s especially useful when working through the examples in this
book. The “Checking browser and version” section, later in this chapter, dis-
cusses a new JavaScript object that you haven’t seen yet. You can try it now
to see what it contains. Type navigator.userAgent and press Enter. You see
the output shown in Figure 2-2.

[Detect a Browser x

C g,fHe:///C:/D280%2D—%2050urce%20Code/Chapter%2002/Brow;erDetechBro\w{;7 @ =

[Reference (] Search Engines | WIBA-FM Player [9489 WOLX [WTMEB94.5 [Star Cinema 6 Movi..

Browser Information

Browser Name: chrome

Version Number: 23.0 1271 64

<3| = [0 & g | (
53] Elements (@i Resources @wam " Sources (&T\me\me (Y Profiles. Audits | /) Console
» alert("Hello");
undefined
» navigator.userAgent
.@ (Windows NT 6.1; WOWG4) AppleWebKit/S37.11 (KHTML, like Gecko) Chrome/23.0.1271.64

B, Q ® <topframe> v Errors Warnings Logs -

The navigator.userAgent object contains all kinds of useful information
about the browser that requested the page. You can use this information to
discover capabilities about the browser and determine whether it will work
with your application. Later examples in the book will help you understand
how to use the information that the navigator.userAgent object provides.

A\\S

Chapter 2: Assessing Tools of the Trade

Checking out native browsers:
Internet Explorer or Safari

Depending on the requirements for your application, you may find yourself
working with what most developers would term a native browser — the
browser that ships with a particular operating system. For example, when
working with Windows, you think of Internet Explorer as the native browser
because that’s what most users see when they first start the operating
system. Likewise, the Macintosh comes with Safari as the native browser.
Various versions of Linux have different native browsers, depending on what
the vendor for that version of Linux chooses. The versions of Linux that
many developers use rely on Firefox as the native browser, but that selection
isn’t set in stone, and you may have a different experience. The bottom line is
that a native browser is the one that comes with the operating systems that
you target with your application.

Generally speaking, the native browser may not be the one that’s best for
running your application, but you must test the application with it because
many users won’t want to add another browser to their system. For example,
most sites that track browser usage say that Internet Explorer still enjoys a
nearly 50 percent market share compared with 19 percent for Firefox and 17
percent for Chrome. (See http://arstechnica.com/business/
2012/04/internet-explorer-market-share-surges-as-version-
9-wins-hearts-and-minds for details.) However, HTML5 testing shows
that Internet Explorer 9 scores an anemic 142 points out of a possible 500,
whereas Firefox scores 382, and Chrome scores 434. When writing your code
initially, you want a browser with strong development features and good
support for both HTML5 and JavaScript, but the reality is that you’ll need to
write the application in such a way that it does support the native browsers,
even when those browsers don’t provide the level of support you'd like.

The sites that tell you about market penetration of various browsers (such as
the arstechnica site mentioned in the previous paragraph) also tell you about
browser version penetration in many cases. In looking at the statistics these
sites provide, you discover that many users don’t upgrade browsers as often
as you might think. For example, some users (about 10 percent) are still run-
ning Internet Explorer 6, which has no support whatsoever for HTML5. Even
though the tool you use provides full HTML5 support, the user may not have
any support. Of course, you can’t wait for every user to upgrade before you
create an application, so the next best strategy is to detect the browser ver-
sion and display a message saying the user doesn’t have the support required
to run the application and suggesting strongly that the user upgrade. The next
section of this chapter, “Checking browser and version,” discusses techniques
you can use to verify that the user has a usable version of a browser for your
application.

33

http://arstechnica.com/business/2012/04/internet-explorer-market-share-surges-as-version-9-wins-hearts-and-minds/
http://arstechnica.com/business/2012/04/internet-explorer-market-share-surges-as-version-9-wins-hearts-and-minds/
http://arstechnica.com/business/2012/04/internet-explorer-market-share-surges-as-version-9-wins-hearts-and-minds/

34 Part I: Understanding the Basics of JavaScript

Don’t get the idea that native browsers are completely useless or that you
can’t perform development work with them. For example, Internet Explorer
includes a set of developer tools similar in some respects to the Developer
Toolbar option for Firefox or the Developer Tools option for Chrome. To
access these features, you click Tools (the gear icon) and then choose F12
Developer Tools from the menu. You see a window open at the bottom of the
display with developer options in it. These options make it possible to exam-
ine the HTML, CSS, the browser console, scripts, an application profiler, and
network activity (requests that your application makes outside the browser).
The main problem with native browsers is that you can generally test them
only on a single platform, so you can’t be sure that your application will work
everywhere you need it to work.

Checking browser and version

Developers don’t get to choose which browser a user relies upon in many
cases. To determine whether a particular user can work with your applica-
tion, you need to detect the user’s browser and then determine whether that
browser is acceptable. Creating the code required to perform this task isn’t
impossible, but it can be hard. Articles like the one at http: //www. java
scripter.net/fag/browsern.htm tell you how to perform this task, but
one look at the code should tell you that it’s a complex task. (You can see the
output from this example code at http://www.javascripter.net/faqg/
browserv.htm.)

Fortunately, developers perform some tasks so often that other develop-

ers have created libraries that provide the required functionality so you
don’t have to write the code. One such library is jQuery (http://jquery.
com). You can simply add an external JavaScript statement to your code,

as explained in Chapter 1, and use it. This library doesn’t require that you
download anything, and because it’s easily accessible online, you don’t have
to worry about your user having it either.

The following example shows how to detect the name and version of the
user’s browser. If you want, for now you can simply load the example to see
how the code works. Later examples will help you understand how this code
works — all that’s important for now is that you see that it’s quite possible
to discover the name and version of any browser without writing a lot of
code to do it. (You can find complete code for this example in the \Chapter
02\BrowserDetect folder of the downloadable code as BrowserDetect.
HTML.)

http://www.javascripter.net/faq/browsern.htm
http://www.javascripter.net/faq/browsern.htm
http://www.javascripter.net/faq/browserv.htm
http://www.javascripter.net/faq/browserv.htm
http://jquery.com/
http://jquery.com/

Chapter 2: Assessing Tools of the Trade

<!DOCTYPE html>
<html>
<head>
<title>Detect a Browser</title>
<script
src="http://code.jquery.com/jquery-latest.js">
</script>
</head>
<body>
<hl>Browser Information</hl>
<p id="name"></p>
<script language="JavaScript">
var browser =
S.uaMatch (navigator.userAgent) .browser;

$('plid="name"]"') .html (
"Browser Name: " + browser + "");
</script>

<p id="version"></p>
<script language="JavaScript">

S('plid="version"]"') .html (
"Version Number: " + $.browser.version +
"") ;
</script>
</body>

</html>

Make sure you get the full benefit of using this book by downloading the com-
panion source code from http: //www.dummies.com/go/html5
programmingwithjavascript. The companion source code will greatly
enhance your experience with the book and make working with JavaScript
considerably easier. Make sure you also check the blog entries for this book
at http://blog.johnmuellerbooks.com/categories/263/html5-
programming-with-javascript-for-dummies.aspx. The blog entries
answer commonly asked questions, provide additional examples, and help
you better use the book contact to perform tasks.

This is an HTML5 page, so it starts with the HTML declaration, <! DOCTYPE
html>. As with the examples in Chapter 1, this example begins with a basic
structure that includes the <html>, <head>, <title>, and <body> tags.

The code begins with the first <script> tag that uses the src attribute to
tell the browser where to find the jQuery library. You can copy this infor-
mation as shown to any page where you want to use jQuery. Anyone who
uses the application will automatically have access to jQuery as long as the
browser can access the Internet. (You can also download a copy of jQuery
for local access from the jQuery site.)

35

http://www.dummies.com/go/html5programmingwithjavascriptfd
http://www.dummies.com/go/html5programmingwithjavascriptfd
http://blog.johnmuellerbooks.com/categories/263/html5-programming-with-javascript-for-dummies.aspx
http://blog.johnmuellerbooks.com/categories/263/html5-programming-with-javascript-for-dummies.aspx

36 Part I: Understanding the Basics of JavaScript

|
Figure 2-3:
Detecting
the browser
name and
version is
made easier
when using
jQuery.

The <body> of the page starts out with a <h1> tag that contains the page’s
heading. The next step is to provide a place for jQuery to put the browser’s
name. In this case, the example uses a <p> (paragraph) tag that has an id

of name. The first <script> creates a var (variable) named browser and
places the browser’s name in it. The browser name is always provided to
your application as part of the JavaScript navigator.userAgent object,
but working with this object is time consuming, so this code shows a one-line
method for obtaining the information.

It’s time to display the name onscreen. The $ (dollar sign) is a special symbol
that refers to the jQuery library, which is also called an Application
Programming Interface (API). The bit of code that says, $ ('p[id="name"]") .
html, tells jQuery to use the <p> tag with an id value of name to hold some
HTML. The code then tells jQuery to create some text, a , and then
place the name of the browser within that span. All this information appears
in the <p> tag after the script executes.

Next comes a second <p> tag. This one has an 14 attribute of version.

The accompanying script starts out the same as before. The entry
$('plid="version"]"') .html tells jQuery to place some HTML in the <p>
tag with an id attribute of version. In this case, jQuery provides what you
need as a property. All the code has to do is tell jQuery to place the value

in browser.version within the <p> tag to display the browser’s version
number. When you run this example, you see output similar to what’s shown
in Figure 2-3.

1@ Detect 2 Browser - Mozilla Firefox

Star Cinema 6 M fahoo! Comics *

Browser Information

Browser Name: mozilla

Version Number: 16.0

Discovering Programs
to Write JavaScript

Both HTML5 and JavaScript are pure text (text that includes no formatting
information whatsoever) interpreted languages, so you don’t need anything
special to work with them. Of course, it’s always nice to have access to an
application that will help you write code correctly. Much as a word proces-
sor includes a spelling and grammar checker to ensure your prose is correct,

Chapter 2: Assessing Tools of the Trade 3 7

dedicated editors (those designed to create JavaScript code such as Komodo
Edit) do have advantages over pure text editors. The following sections

give you some idea of applications you can use to write your HTML5 and
JavaScript code.

Using a text editor

Some people actually do write their code using a text editor. It’s not pos-
sible to write the code very quickly in such an environment, and the lack of
any sort of checks means you’ll make mistakes, but you can use any pure
text editor to work through the examples in this book. For example, if you're
working with Windows, you could use Notepad (a pure text editor) to create
the examples. Mac users can use TextEdit for the task, while Linux users
usually have access to either Vi or Vim. When working with TextEdit, you
must set it up to create pure text output as described at http://support.
apple.com/kb/TA20406.

Pure text editors have a number of advantages. Because they’re already on
the system, you don’t have to download anything. In addition, a pure text
editor doesn’t cost anything, and most of them are simple to use because
they contain no special features. You can be up and running with a pure text
editor, especially one that comes with the operating system, in a matter of
seconds.

Even though pure text editors work fine, it’s important to compare them with
dedicated editors. The following list describes the disadvantages of using
pure text editors:

v Lack of code checking: A lack of code checking means that your code
could contain errors that you'll discover only after you start running the
application.

v Lack of language helps: Dedicated editors come with aids of all sorts.
You usually find a help file as a minimum. Pop-up messages tell you
how to complete a particular line of code in some cases and provide
additional information about the function you're using in others. In sum,
dedicated editors make it easier to type code correctly the first time.

1 Slower typing: Some dedicated editors provide an autocomplete fea-
ture. You start typing the name of a function, and the editor automati-
cally provides suggestions on how to complete the function name.
Pressing Enter usually completes the name so you don’t have to finish
typing it. In fact, dedicated editors can provide suggestions on several
levels — making it possible to complete an application in less time.

+* No code highlighting: It may not seem very useful at first, but most
dedicated editors provide code highlighting — the display of code in
different colors. Keywords may appear in one color, function names
in another, and variables in yet another color. The use of highlighting

http://support.apple.com/kb/TA20406
http://support.apple.com/kb/TA20406

38 Part I: Understanding the Basics of JavaScript

makes it possible to spot specific code features quickly and reduce the
time required to make edits later.

v Absence of community support: Developer and user groups tend to
support a dedicated editor, which means that you can obtain assistance
with problems that you encounter. When working with a pure text
editor, you're generally on your own in obtaining support.

Using a dedicated editor

There are myriad dedicated editors on the market. In fact, you could possibly
write a book just to discuss the advantages and disadvantages of various edi-
tors and still not cover the topic completely. Dedicated editors abound, and
you have to choose which editor to use carefully. A good dedicated editor
can greatly reduce your development time, make debugging significantly
easier, and reduce the cost of creating the application. The reason that most
developers rely on dedicated editors is that they make things easier, and
everyone likes a reduction in workload whenever possible.

To make it easier to choose a dedicated editor, consider these criteria:

v Cost: You can obtain a great many dedicated editors today at no cost.
Many of these editors include good support and receive updates rela-
tively often. The editors that you pay for often include some type of
incentive. For example, you might receive phone-based support, rather
than the community support offered by a free editor.

1 Languages: Many dedicated editors support more than one program-
ming language. If at all possible, try to obtain a single editor that
supports all the languages you want to use (or at least, as many as pos-
sible). Every editor has a learning curve, so reducing the number of edi-
tors you need to know has definite advantages.

1 Complexity: Some dedicated editors are needlessly complex or have a
flawed user interface that increases the amount of work you need to do.
As complexity increases, so does the editor’s learning curve. Every level
of increased complexity means that you spend more time learning the
editor rather than writing good code.

v Functionality: Some dedicated editors are incredibly easy to learn but
lack the features needed to write good code. When you find yourself
having to work around the lack of functionality in an editor, it’s time
to look for one that has the functionality you need. There’s a balance
between functionality and complexity. You need enough functionality to
get the job done, but not such a big list of useless features that the inter-
face becomes hard to use.

Chapter 2: Assessing Tools of the Trade

v Flexibility: The best dedicated editors provide some level of commu-
nity support. A vendor may not have the resources required to provide
every possible feature. By providing a method of extending the editor,
the vendor can offload some development tasks to the community and
end up with a better overall offering. In addition, the use of extensions
makes it possible for you to pick and choose which features to include
in the editor so that you can better manage the functionality versus
complexity issue.

v~ Availability: Most developers today need to work with more than one
platform, which means that your development tools also need to work
on those platforms. Even though you use your dedicated editor mainly
on your preferred platform, having it available for use on all of the
platforms you must support is a plus. Having the editor available on
these other platforms makes it possible to perform quick fixes without
having to constantly go back to your desk and then run tests on the host
machine.

A number of good JavaScript editors are available on the market. A personal
favorite is Komodo Edit because it works on all three of the platforms I use
and has support for a number of languages that [work with, but you should
use the browser that meets your particular needs and tastes. The following
list contains some free JavaScript editors that you might try while working
through the examples in this book:

v Free JavaScript Editor (http://www.yaldex.com/Free_
JavaScript_Editor.htm): This is a moderately complex editor that
provides support for JavaScript, HTML, AJAX, CSS, and DHTML. The
free edition appears feature complete when you install it, but many of
the features have a 21-day trial limit. Most of the editing features work
beyond the trial date, so this editor works fine if you want to use the
browser’s debugger. If you want to be able to mix and match plug-ins to
customize an editor for your specific needs, this is the product to get.
The vendor’s page is brimming over with plug-ins you can get to meet
specific coding requirements. This is a Windows-only product.

v HTMLKit (http://www.htmlkit.com/download): This editor
focuses on mobile development. It includes an interesting preview fea-
ture that makes it possible to see how your pages will look on a tablet
(such as the iPad) or smartphone. This editor works on both Windows
and Macintosh systems. The free version will plague you with ads and
nag you to buy the full version. However, the free version does appear
to be feature complete, and you can use it to decide whether you want
to buy the full version. This editor supports plug-ins so you can extend
it as needed.

39

http://www.yaldex.com/Free_JavaScript_Editor.htm
http://www.yaldex.com/Free_JavaScript_Editor.htm
http://www.htmlkit.com/download/

4 0 Part I: Understanding the Basics of JavaScript

A\

v~ jEdit (http: //www.jedit.org/index.php?page=download): This
editor provides good support for more languages and file types than
Komodo Edit (you can get syntax highlighting for over 200 file types).
However, it’s also more complex, and the learning curve is relatively
steep. You can find versions of this product for Windows, Mac OS X,
Linux, OS/2, and VMS systems. There’s no paid version of this product,
so what you see on the site is what you get in the download.

v Komodo Edit (http://www.activestate.com/komodo-edit/
downloads): This editor provides good support for JavaScript and a
host of other languages, including Perl, PHP, Python, Ruby, and Tcl.

The editor works on Windows, Macintosh, and Linux systems. The paid
version of this product supports additional languages and a wealth of
additional features, but the free version is perfectly usable for JavaScript
coding. The biggest lack in the free version is a debugger, but you can
easily use the debugger that comes with your browser to make up the
difference.

v Notepad++ (http://notepad-plus-plus.org/download): This is
an extremely simple editor replacement for the Windows Notepad. It
can perform tasks such as syntax highlighting, but it lacks any form of
advanced feature, including a debugger. You can extend this product
by using plug-ins. This is a Windows-only product, and there’s no paid
version. This is the option to use if you want to get right to coding and
you’re confident that the browser debugger will fulfill all your needs.

v Scriptly (http://scriptly.webocton.de/9/34/start/english
page.html): This editor has a moderate number of features. It includes
syntax highlighting and multi-document support. You also gain access
to a number of advanced features, such as database support. The editor
supports a number of file types including: HTML, PHP, CSS, JavaScript,
Smarty, SQL, XML, and INI. You can also define your own custom file
types and provide syntax highlighting for them. You can extend this
product by using plug-ins. This is a Windows-only product, and there’s
no paid version.

Some JavaScript editor advertisements are misleading. A vendor will provide
a free and paid version of the editor. The download page can make it appear
that the free version is fully functional, when it really isn’t. Make sure you read
all the fine print when working with such an editor. Often you find that the free
editor will work for a certain number of days, offer reduced functionality, or
lack support from the vendor. Make sure you can live with the limitations of
the free editor or you might find yourself buying the paid version to complete
your project.

http://www.jedit.org/index.php?page=download
http://www.activestate.com/komodo-edit/downloads
http://www.activestate.com/komodo-edit/downloads
http://notepad-plus-plus.org/download/
http://scriptly.webocton.de/9/34/start/englishpage.html
http://scriptly.webocton.de/9/34/start/englishpage.html

Chapter 2: Assessing Tools of the Trade

Hosting Vour Site

It’s quite possible to test your application by simply loading the page into a
browser. In fact, that’s how you normally start testing. Unfortunately, load-
ing a local page into a browser isn’t how the Internet works, and if you stop
your testing at this point, you never know whether your page will work as
intended. To completely test your page, you must place it on a server and
then load the page from the server. Of course, you don’t want to perform this
task by using a production server — one that everyone who uses your site
will see. So, what you need is a test server. The following sections explore
two ideas for working with servers in a way that makes it easier to test your
applications.

Ouickly looking at Web hosting

Web hosting is an option to consider if your organization’s resources are
limited, if you don’t want to support additional servers, or if you're working
with a team composed of members from a number of geographical areas. A
hosted site is also a good choice if you plan to make the site public after the
application is finished and you don’t want to host it on your own equipment.
Providing more than a brief overview of this option is outside the scope of
this book, but you do need to be aware that the option exists. If you want to
know more of the details of hosting, Web Design All-in-One For Dummies by
Sue Jenkins (Wiley) provides some extremely helpful information.

The main benefit of Web hosting is that you use the servers set up, config-
ured, and maintained by someone else for a fee. When the development effort
is done, you simply terminate the agreement with the host. The costs of this
approach can be much lower than when you set up your own equipment if
you intend to use the hosted site only for a short time. Long-term developers
are usually served better by other options, including setting up a local server
on the developer’s system.

The least expensive hosted sites often rely on Linux servers, but you can
also find sites that use Windows servers for an additional price. It pays to
shop around because different host sites have different prices, packages,

and terms. Read reviews of sites whenever possible to make the comparison
process easier. For example, you can find a review of the top ten Web hosting
sites at http://webhostingchoice. com.

When shopping for a hosting site, make sure you check on site features. For
example, it pays to check on issues such as potential bandwidth throttling
(the act of limiting the amount of data that the hosted site can accept, even
though it should be possible to accept more) or charges for higher than usual
bandwidth usage. The host also needs to provide any database or other ser-
vice features that your application will require.

41

http://webhostingchoice.com/

4 2 Part I: Understanding the Basics of JavaScript

Using JavaScript from your computer

You can host JavaScript applications from your computer when you have a
server such as Apache or Internet Information Server (IIS) installed. There
are many options available for creating a Web server setup on your system.
This book relies on Apache because there’s a version of Apache for most
environments. In addition, Apache is free and highly extensible. Apache
also has the majority of the market, as shown at http://w3techs.com/
technologies/overview/web_server/all

The main Apache download site is at http://httpd.apache.org/
download.cgi. The following sections provide quick installation instruc-
tions for the three main programming platforms discussed in this book, but
be assured that Apache will install on a considerably larger number of plat-
forms than those covered here.

Installing Apache on Windows
Sometimes finding the files you need on the Apache site can prove daunt-
ing. You can find the list of mirrors for downloading the Windows binaries at
http://www.apache.org/dyn/closer.cgi/httpd/binaries/win32.
The following steps will get you started:
1. Download the latest binary from the mirror site closest to you.
The easiest option is to download the Microsoft Installer (.MST) file.

2. Double click the MSI file (such as httpd-2.2.22-win32-x86-no_ssl.msi)
that you just downloaded.

You see the installation wizard Welcome screen.
3. Click Next.
You see the license screen for the product.

4. Choose the I Accept the Terms in the License Agreement option and
then click Next.

You see a Read this First screen.

5. Read about any special requirements for installing Apache on your
system and then click Next.

You see a Server Information screen that contains the information used
to configure the server, as shown in Figure 2-4.

http://w3techs.com/technologies/overview/web_server/all
http://w3techs.com/technologies/overview/web_server/all
http://httpd.apache.org/download.cgi
http://httpd.apache.org/download.cgi
http://www.apache.org/dyn/closer.cgi/httpd/binaries/win32/

|
Figure 2-4:
Choose the
server con-
figuration
that your
system will
use.
|

|
Figure 2-5:
Define how
you would
like to
perform the
installation.
|

Chapter 2: Assessing Tools of the Trade

‘ﬁ Apache HTTP Server 2.2 - Installation Wizard

Server Information

Please enter your server's informatian.

Network Domain (g.g. somenet.com)

[mshome.net

Server Mame (e.g. www.somenet.com):

|Ma|n .mshome.net

Administrator's Email Address (e.g. webmaster @somenet.com):

|adm|n @mshome. net

Install Apache HTTP Server 2.2 programs and shortcuts for:

@) for All Users, on Port B0, &s & Service — Recommended.
only for the Current User, on Port 8080, when started Manually,

==l

e

< Back

I

Mext =] ‘ Cancel

6. Accept the default configuration by clicking Next.

You see a Setup Type screen where you can choose between a typical
and a custom installation, as shown in Figure 2-5.

‘ﬁ Apache HTTP Server 2.2 - Installation Wizard

Setup Type
Choose the setup type that best suits your needs,

Please select a setup type.

@ Typical

for compiling modules will not be installed.)

@ Typical program features will be installed. {Headers and Libraries

Custom

Choose which program features you want installed and where they
will be installed. Recommended for advanced users.

==l

g

< Back

I

Mext =] ‘ Cancel

7. Perform a typical installation by clicking Next.

You see a Destination Folder screen where you can choose the installa-
tion location of the Apache server.

8. Accept the default installation location by clicking Next.

The installation wizard indicates that it’s ready to perform the installation.

9. Click Install.

43

44 Part I: Understanding the Basics of JavaScript

10.

You see a dialog box showing the installation process. During the instal-
lation process, Windows may display a User Account Control (UAC)
dialog box asking your permission to let the installation program make
changes to your system. Click Yes if you see this dialog box. You may
also see a command prompt open, display some text, and automatically
close. This is perfectly normal. After the installation is complete, you see
a Success dialog box.

Click Finish.

Your Apache installation is ready to use.

Installing Apache on Mac 0S X

The amazing thing is that you don’t have to install Apache on your Mac —
the server is already installed. However, the server may not be enabled, so
you can’t use it immediately. When working with pre-10.8 versions of the
Mac OS X, open up System Preferences. Look under Sharing and check Web
Sharing. Your Apache installation should be enabled.

The 10.8 version also has Apache installed, but Apple has decided to make
things a bit harder. Before you do anything, you need to configure Apache for
your particular setup. The following steps will help you configure and start
Apache on your system.

1.
2.

Open a Terminal window (found at /Applications/Utilities/Terminal).
Type nano /etc/apache2/users/USERNAME.CONF and press Enter.
You see the nano editor open with the USERNAME.CONF file loaded.

. Type the following code into the editor, replacing USERNAME with

your username:

<Directory "/Users/kdarosett/Sites/">
Options Indexes Multiviews
AllowOverride AuthConfig Limit

Order allow,deny

Allow from all

</Directory>

. Press Ctrl+O.

Nano saves the changes you've made.

. Press Ctrl+X.

Nano closes.

. Type one of the following commands to interact with Apache:

e To start Apache: Type sudo apachectl start.
e To stop Apache: Type sudo apachectl stop.

Chapter 2: Assessing Tools of the Trade

A\

e To restart Apache: Type sudo apachectl restart.
e To find the version of Apache installed on your system: Type httpd -v.

Some Macintosh sites are going to say that you really do need the latest ver-
sion of Apache. You do need it if you're creating a public site or you require
the latest features that Apache provides. However, when testing JavaScript
applications, you generally don’t require the latest version of Apache — any
version that can serve up Web pages will do. JavaScript works at the client
and the version of the browser is more important than the version of the server.

Installing Apache on Linux

Some Linux systems have Apache installed. If this is the case on your system,
you should be able to open a browser, type localhost in the address bar,
press Enter, and see a message. In most cases, when using newer Apache
setups, you see a simple message, “It works!” Older versions of Apache dis-
play other messages, but the point is that you'll see a message. Installing
Apache is one of the installation options that you receive when working with
most versions of Linux and this is the easiest way to install Apache.

The actual installation process for Linux varies by system. Each vendor
seems to have a slightly different procedure for installing applications. The
following steps will help you through the installation for Fedora, CentOS, and
Ubuntu Linux. They also act as an aid for other flavors of Linux. Make sure
you're familiar with your particular Linux configuration before you begin the
installation.

1. Open a terminal window and type su - to enter super-user mode.
The server asks for your password.

2. Type your password and press Enter.
You're now in super-user mode.

3. Start the Apache installation for your system:

e When working with Fedora or CentOS, you type yum install httpd
and press Enter. The server begins the package installation.

e When working with Ubuntu, you type sudo apt-get install tasksel
and press Enter, followed by sudo tasksel install lamp-server and
press Enter. The server displays a list of packages. You select the
package you want to install and the server begins the installation.

4. Follow any additional prompts for your particular installation.

In general, the installation proceeds automatically because Apache
expects you to edit the httpd.CONF file to make any required changes.

b5

46 Part I: Understanding the Basics of JavaScript

A\

5. Start the server:

e When working with Fedora or CentOS, type service httpd start and
press Enter. The server starts and is now ready for use.

e When working with Ubuntu, type sudo /etc/init.d/apache2 start and
press Enter. The server starts and is now ready for use.

Testing your installation

No matter where you install Apache, testing the server is easy. Open a
browser window and type localhost as the address bar. When you press
Enter, you see a simple message, “It works!”

You'll also want to test Apache with something other than the default page.
To do this, you need to find the file storage on your system. Files are stored
in the \htdocs subdirectory where applications are installed on your
system. When working with Windows installation, you find the files in the
\Program Files (x86)\Apache Software Foundation\Apache2.2
\htdocs or \Program Files\Apache Software Foundation\Apache2.2\
htdocs folder. Copy the example for this chapter, BrowserDetect . HTML,
to that folder. Type http://localhost/BrowserDetect. HTML in the address bar
and press Enter. You see the name and version number of your browser, but
this time through the Web server instead of as a loaded file.

One of the better reasons to work with Apache is that it relies on text-based
configuration files. The main configuration file is ht tpd. CONF, and it appears
in the \conf subdirectory of the installation. For example, you find it in the
\Program Files (x86)\Apache Software Foundation\Apache2.2\
conf or \Program Files\Apache Software Foundation\Apache2.2\
conf folder on a Windows system. This file always contains the location of the
various folders that Apache uses, so if you find that you can’t locate a particular
folder for your setup, refer to the ht tpd. CONF file for additional information.

Chapter 3
Integrating HTML5 and JavaScript

In This Chapter

Performing simple output tasks
Understanding the format of JavaScript statements
Creating JavaScript comments to document your code

Alerting users to the need to turn on JavaScript support

Tle previous two chapters introduce you to JavaScript and the tools
needed to work with it, but they don’t really discuss JavaScript as a lan-
guage. Now that you have a better idea of what JavaScript can do, how you
can interact with it, and why you want to use it, it’s time to start working with
the language. This chapter provides you with some introductory information
about JavaScript that you need in order to begin working with the language in
earnest. These introductory topics make it possible for you to perform tasks
such as creating output with your JavaScript applications so that you can see
the result of the code you create.

Part of working with JavaScript is understanding how JavaScript statements
work. A statement is simply a request for the JavaScript interpreter to do
something. It’s a command. You tell JavaScript what to do and how to do it,
and JavaScript responds. When you give a command incorrectly, JavaScript
doesn’t produce the results you expect. As part of discovering techniques
for creating and using JavaScript statements, you also need to know how to
document them. That means creating comments for your code.

In Chapter 2, you discover one technique for learning which browser the user
has so that you can ensure your application will run. However, the user can
have the right browser and still not be able to run your application when the
browser is configured not to allow JavaScript to run. To address that issue,
this chapter discusses techniques you can use to alert the user to the need to
turn on JavaScript support so that the application can run properly.

48 Part I: Understanding the Basics of JavaScript

<MBER
ég“

One of the unwritten rules to remember about JavaScript is that it depends on
a trust relationship between the user and you. When the user enables
JavaScript support for your site to run the application you create, it’s a sign of
trust on the user’s part. To maintain that trust, you must know how to create
good JavaScript code that works as anticipated and doesn’t damage the user’s
system. Part of the emphasis of this chapter is gaining and maintaining the
user’s trust in your applications — an essential component in any Web-based
application experience.

Creating Simple OQutput

When writing applications, you must confront some issues before being
really ready for them. It’s a chicken-or-egg scenario — which technique
should you address first? That’s how it is with application output. To see
how some programming techniques work, you need to know how to write
output to the application screen. Of course, you really need to know more
about JavaScript before you can master the technique of writing anything to
the screen.

The following sections provide a sort of half step. You discover just enough
about writing information to the screen to provide useful output for acquiring
other techniques that will eventually help you create better output. The need
to discover something simple in order to have a foundation on which to build
more advanced techniques is a common issue when learning a new language,
so don’t be too worried if you feel a little lost at first.

Writing to an HTML element

HTML documents are made up of individual elements. An element is any tag
that you use to hold content, such as a <div>, <p>, or <input> tag. You can
write information to any of these elements by using JavaScript. The following
example shows how you can write to specific elements. (You can find this
example in the \Chapter 03\Output Text folder of the downloadable
code as HTMLOutput . HTML.)

<!DOCTYPE html>

<html>
<head>
<title>Outputting Data to HTML</title>
<script language="JavaScript">
function WriteText ()
{
document .getElementById ("myText") .innerHTML =
"Clicked!";

Chapter 3: Integrating HTML5 and JavaScript

<MBER
é‘,*

\\3

</script>
</head>

<body>
<hl>Creating HTML Element Output</hl>
<div><p id="myText">Change Me</p></div>
<div><input id="btnClickMe"
type="button"
value="Click Me"
onclick="WriteText ()" />
</div>
</body>
</html>

In this case, the page contains a <p> tag with an id of myText. This para-
graph contains the text Change Me. In addition, there’s an <input> tag that
creates a button the user can click. When the user clicks the Click Me button,
the application calls the WriteText () function that appears in the <head>
of the document within the <script> tag.

JavaScript has several global objects you can access with your code. One of
the most important objects is document, which refers to the entire HTML
document. Of course, you don’t want to change the entire document; you want
to change just one element within the document. The getElementById ()
function retrieves any element that has an 14 attribute by the name of that
attribute, which is myText in this case.

At this point, you have access to the entire <p> element with the name
myText. You want to change the text within that element. The innerHTML
property provides access to the text within the <p> element. You can either
read the content or modify it. Using innerHTML =, as shown in the code,
modifies the content. It makes the content equal to whatever follows, which
is Clicked! in this case.

When you try the example, you initially see a page with some text and a
button. Click the button, and the value of the text changes. This technique
works with any element that displays text. You could just as easily use it with
a or any other tag that can display text.

This technique works only when you interact with elements that contain
text within an opening and closing tag, such as <p>. When working with an
<input> or other element that uses attributes to hold content, you need to
use a different method. In this case, you must access the attribute within the
control and make the change there, as shown here:

document .getElementById ("btnClickMe") .setAttribute (
"value", "Clicked!");

49

50 Part I: Understanding the Basics of JavaScript

In this case, you ask JavaScript to obtain access to the btnClickMe <input>
element in the document and then to set the value attribute to Clicked!.
The result is the same as when working with the <p> tag, but the approach
is slightly different. The innerHTML property is useful only for elements that
have a value assigned to that property.

Creating direct document output

In some cases, you don’t want to interact with an existing element, so you
create a new element that contains the content you want to see. For example,
you can add a new <p> tag that contains the text you want to see. JavaScript
provides a number of ways to accomplish this task. In fact, you see more
examples of this sort of output as the book progresses. The simplest way to
perform the task is to create an inline script like the one shown in the fol-
lowing example that adds the required output. (You can find this example

in the \Chapter 03\Output Text folder of the downloadable code as
DirectOutput .HTML.)

<!DOCTYPE html>

<html>
<head>

<title>Direct Document Output</title>
</head>

<body>
<hl>Creating Direct Output</hl>
<script language="JavaScript">
document .write ("<p>This is direct output</p>");
</script>
</body>
</html>

The focal point of this example is the call to the document .write ()
function. This function lets you write any text you want to the document
object. In this case, the example creates a new <p> tag that contains a simple
message.

You could easily create this text by adding the <p> tag directly. Later chap-
ters show how this particular technique comes in handy. For example, you
could use it to check for a condition and then add the appropriate text based
on the condition. What you need to see in this example is that writing to the
document using a script is indeed possible.

Chapter 3: Integrating HTML5 and JavaScript

NG/
Q\“\ H

The document .write () function can produce unexpected results when
used incorrectly. You normally use this function when the page is drawing
itself onscreen. The next section of this chapter demonstrates a potential side
effect of using this function incorrectly. It’s essential to remember that the
document .write () function writes directly to the document object and will
overwrite everything in the document object when used after the document
has been displayed onscreen.

Avoiding potential problems with output

It’s a good idea to start looking at potential coding errors from the outset
while you discover JavaScript. Bugs (coding errors) can cause all sorts of
problems for users who will, in turn, cause all sorts of problems for you. One
of the more interesting errors that you can encounter is writing information
to a document object incorrectly. The following example shows one situation
where you see the incorrect result from using the document .write () func-
tion. (You can find this example in the \Chapter 03\Output Text folder
of the downloadable code as BadOutput . HTML.)

<!DOCTYPE html>

<html>
<head>
<title>Incorrect Output</title>
<script language="JavaScript">
function WriteText ()
{
document.write("Oops!") ;
}
</script>
</head>

<body>
<hl>Creating HTML Element Output</hl>
<div><p id="myText">Change Me</p></div>
<div><input id="btnClickMe"
type="button"
value="Click Me"
onclick="WriteText ()" />
</div>
</body>
</html>

Notice that the document .write () function is called after the page is com-
pleted. When you use the document .write () function in this way, it over-
writes everything that appears in the document object. When you click the

51

52 Part I: Understanding the Basics of JavaScript

Click Me button on the page, you see the word Oops! onscreen and nothing
else. In fact, the page won't even finish loading because the browser doesn’t
know what to do with it. To stop the loading process, you must manually
click your browser’s Stop Loading button.

At this point, if you use your browser’s ability to view the page source (nor-
mally, this involves right-clicking the page and choosing an option such

as View Source or View Page Source from the context menu), you'll see a
single word, Oops !. The page no longer contains a <! DOCTYPE> declaration,
<html>, <head>, or <body> tags, or any of the other information it used to
contain. The document .write () function has overwritten everything. Now,
this isn’t always an incorrect result — you may actually need to overwrite the
page with new material, but you need to create an entirely new page when
doing so.

Working with JavaScript Statements

It’s essential to understand how JavaScript statements work. You've seen a
number of examples of JavaScript statements in both this chapter and the
previous two chapters without really exploring them in detail. The following
sections provide you with information on how statements work so that you
can better understand the examples you’ve already seen and those that

will follow.

Understanding the dot syntax

JavaScript uses what’s known as a dot syntax — a period between elements of
a complete statement. In general, a complete statement begins with an object
or variable. Objects can have functions, properties, and events associated
with them. Here’s a short explanation of each of these elements:

v Object: An entity that contains everything associated with a particular
aspect of an application. For example, the document object contains
everything needed to display a page onscreen.

v Property: A description of a particular object feature. For example, the
document object provides access to a cookie property that contains
the cookie resources for a page. Cookies are part of a page and describe
the data that the page relies on to function properly.

v+ Function: An action you can perform with an object. For example, the
document object provides access to the write () function that makes
it possible to add new information (or overwrite information when the
page is complete).

Chapter 3: Integrating HTML5 and JavaScript

v~ Event: An action that the object or an external source has performed
with an object. The event is a notification that this action has occurred.
For example, the document object provides a c1ick event. When you
assign a function to the onclick notification and a user clicks the docu-
ment, JavaScript calls the function you provide (called an event handler).
You've already seen events used with the various buttons in the exam-
ple applications.

You use dot syntax to describe to JavaScript how to interact with the objects,
properties, functions, and events in an application. For example, when you
write document .write ("This is some direct output"), you're tell-
ing JavaScript to

1. Access the document object.
2. Find the write () function within that object.
3. Send "This is some direct output" tothewrite () function.

4. Tell the write () function to execute.

The dot syntax can go down as many levels as needed to fully describe what
you want JavaScript to do. For example, when you type document .body .
bgColor, you tell JavaScript that you want to change the background color
of the body element of the current document. You can combine elements

as needed to provide a full description of what you want to accomplish to
JavaScript using dot syntax. The rest of the book shows you all kinds of
examples of dot syntax in action.

Adding multiple statements
to a single script

So far, many of the examples in this book rely on a single statement. A state-
ment is a single command that you want JavaScript to perform. Each state-
ment always ends with a semicolon (;). In real applications, you seldom
complete an application using a single statement — you combine statements
to obtain a specific result. JavaScript executes the statements in the order
that you type them. JavaScript doesn’t require that you place each statement
on its own line, nor does it require you to place a single statement on one
line. Formatting the code by placing each statement on a separate line and
indenting some elements is for your benefit.

Here’s an example of three statements within a single function. (You can find
the full code for this example in the \Chapter 03\Statements folder of
the downloadable code as MultipleStatements .HTML.)

53

54 Part I: Understanding the Basics of JavaScript

<script language="JavaScript">
function WriteText ()

{
document .getElementById ("First") .innerHTML =
"Changed First"; alert("Check First!");
document .getElementById("Second") .innerHTML =
"Changed Second";
}
</script>

The first statement changes a <p> element with an id of First. The second
statement displays an alert () so that you can verify that the first statement
executed without doing anything else. The third statement changes a <p> ele-
ment with an id of Second.

“&N\BER The use of white space is for your benefit. This example is a little hard to read
Y because the alert () function doesn’t appear on its own line. You could
easily miss the alert () tucked in after the <p> element change. The white
space (indentation and new lines) makes your code easier to work with and
understand.

When you run this example, you see a heading and two paragraphs. The
first paragraph says First Statement, and the second paragraph says Second
Statement. Click the Click Me button and you see that the first paragraph
changes and that the browser displays an alert (), as shown in Figure 3-1.
Notice that the second paragraph hasn’t changed because the script hasn’t
gotten to that point yet.

1@ Using Muttiple Statements - Mozilla Firefox

|
Figure 3-1:
JavaScript
executes
one state-
ment at a
time and in
the order
you provide.
|

Check First!

Chapter 3: Integrating HTML5 and JavaScript

NBER
‘x&
&

\NG/
Vg,“

Defining basic code blocks

You’ve probably noticed that the coding examples use curly brackets to
show where a function begins and ends. A left (opening) curly bracket ({)
always shows the beginning of the function, and a right (closing) curly
bracket (}) always shows the ending of the function. The combination of an
opening and closing curly bracket defines a code block. JavaScript relies on
code blocks to help organize code and to define the beginning and ending of
a particular task. You see more uses for code blocks as the book progresses.

There’s an important rule when working with JavaScript: A code block always
consists of a pair of curly brackets. It’s an error to have one without the other.
Developers most often make a mistake of creating an opening curly bracket
without the corresponding closing curly bracket. This is another good reason
to use an editor specially designed for use with JavaScript. Most JavaScript
editors automatically create a closing curly bracket when you type the open-
ing curly bracket. Editors also provide other aids, such as showing the loca-
tion of the other member of a pair when you select either the opening or
closing curly bracket. (Check out Chapter 2 for more on choosing a dedicated
JavaScript editor.)

Understanding case sensitivity

JavaScript is a case sensitive language. This means that you must exercise
care in how you type. For example, there’s an alert () function, but not an
Alert () function, supplied as part of JavaScript. The color property is
completely different from the Color property, which is different still from
the cOlor property. Although you see the same word each time, the word is
capitalized differently, so JavaScript sees it as a different word.

Even though it’s perfectly legal to do so, giving two variables the same name
and differentiating them only by case is an incredibly bad idea. Doing so will
almost certainly result in serious application errors that will be tough (if not
impossible) to find. Always give variables distinct names and don’t rely on
case to differentiate between them.

Using white space effectively

White space is essential for humans, but JavaScript doesn’t require it. For
example, you can write an alert () in any of the following ways, and all of
them will execute without problem:

55

56 Part I: Understanding the Basics of JavaScript

alert ("Hello") ;
alert("Hello");
alert ("Hello") 2

The first and second lines are relatively easy to read. The third could pres-
ent a problem because the human viewer may have trouble seeing where the
message is in all that white space.

The use of white space is important. For example, you could place the func-
tion on a single line like this (even though the code appears on multiple lines
in the book, the actual code would be on a single line):

function WriteText () {document.getElementById("First").
innerHTML ="Changed First";alert ("Check
First!") ;document.getElementById("Second") .
innerHTML ="Changed Second";}

This code is incredibly hard to read. It works, but human developers would
have a hard time maintaining it. It’s far better to add white space so you can
see where lines of code begin and end like this:

function WriteText ()
{
document .getElementById ("First") .innerHTML =
"Changed First";
alert ("Check First!");
document .getElementById("Second") .innerHTML =
"Changed Second";
}

Every statement appears on its own line. Continuations appear indented
so you can tell that they’re a continuation. The entire code block appears
indented, and you can clearly see the opening and closing curly brackets.
This second version is a lot easier to maintain.

Using the line continuation character

JavaScript provides a line continuation character, the backslash (\), that you
can use in your code to break up long lines. In practice, you seldom see the
line continuation character used because JavaScript also allows for natural
breaks.

For example, you can naturally break lines between statement components.
When you want to set a property to a new value, the description of which
property to change can appear on one line and the new value on the second

|
Figure 3-2:
Use the line
continuation
character

as needed
to break up
lines of text.
|

Chapter 3: Integrating HTML5 and JavaScript

line. However, there are times when you need to use the line continuation

character, such as when working with long segments of text like this. (You
can find the full code for this example in the \Chapter 03\Statements

folder of the downloadable code as LineContinuation.HTML.)

function WriteText ()

{
document .getElementById ("LongParagraph") . innerHTML =
"This is a really long line of text that won't \
easily fit on a single line.";
}

This example actually contains two line breaks. The first is a more traditional
natural line break — the second relies on the line continuation character.
You must use the line continuation character in the second case because the
break appears in the middle of a line of text. If you don’t use the line continu-
ation character in this case, JavaScript displays an error message. JavaScript
displays the entire line of text as you expect, as shown in Figure 3-2.

1@ Using the Line Continuation Character - Mozilla Firefox
File, Edit View:ztisle iriafks: Tools .H

Using the Line Continuation Character

This is a really long line of text that won't easily fit on a single line.

Writing Comments in JavaScript

Comments are an important part of your JavaScript application. While you
may easily remember what an application does for a day or two after you
write it, trying to figure out what complex applications are doing one or two
years later can prove difficult. In fact, there are documented cases where
companies have had to rewrite applications from scratch because no one
could figure out how the application worked due to a lack of comments. No
one has an infallible memory, so comments are an important way for you to
keep track of what your application does.

57

58 Part I: Understanding the Basics of JavaScript

NNG/
Vg‘

JavaScript doesn’t care about your comments. It ignores them, so you can
write the comments any way that you want. The content is there to help you.
Good comments explain details such as

v Why you wrote a particular function or other code block

v What task the code block is supposed to perform

v Who requested the code block

v Why you used a particular technique for writing the code block
v Which resources you used to create the code

+* How the code was created and tested

1 Who worked on the code (including contact information)

+»* When the code was created

A growing number of people insist that some forms of code are self-document-
ing. However, JavaScript is never self-documenting, and if you leave out the
comments, you may find yourself working late nights and weekends trying to
figure out your code later.

JavaScript provides two methods for creating comments, as described in the
following sections.

Creating single-line comments

Most developers use what are called single-line comments. A single-line
comment can appear anywhere on a line. To create a single-line comment,
you type two forward slashes (/ /) and then the comment text. Here are
examples of single-line comments. (You can find the full code for this exam-
ple in the \Chapter 03\Comments folder of the downloadable code as
MultipleStatements.HTML.)

function WriteText ()
{
// Change the first statement, then wait so the
// user can see the change.
document .getElementById ("First") .innerHTML =
"Changed First";
alert ("Check First!"); // Wait here.

// After the user clicks Click Me, show the

// change to the second statement.

document .getElementById("Second") .innerHTML =
"Changed Second";

A\\S

Chapter 3: Integrating HTML5 and JavaScript

Each line begins with a double slash (/ /) to indicate that it’s a comment line.
Notice that you can begin a comment after the code in a line, as shown in the
line with the alert () call in it. Everything after the double slash is treated
as a comment.

Use white space to help delineate sections of code that are covered by a single
comment. The addition of white space makes the comments easier to find, and
it also makes it easier to see how much code the comment affects.

Creating multi-line comments

Sometimes you have more than one or two lines worth of comment to write.
In this case, you can create multi-line comments. A multi-line comment begins
with a slash and an asterisk (/*) and ends with an asterisk and slash (* /).
Here’s an example of a multi-line comment. (You can find the full code for
this example in the \Chapter 03\Comments folder of the downloadable
code as MultipleStatements.HTML.)

<script language="JavaScript">
/* This function makes changes to the text on the
* page after the user clicks Click Me as a
demonstration of modifying page elements using
multiple lines of code.

* % ok X

Written by: John Mueller */

function WriteText ()

{
// Change the first statement, then wait so the

// user can see the change.

document .getElementById ("First") .innerHTML =
"Changed First";

alert ("Check First!"); // Wait here.

// After the user clicks Click Me, show the
// change to the second statement.
document .getElementById("Second") .innerHTML =
"Changed Second";
}

</script>

In this case, the comment is used to create a description of the function.
These blocks often appear in team projects to help members interact with
each other. For example, this comment would tell someone on the team who
wrote the block of code shown in the example.

59

60 Part I: Understanding the Basics of JavaScript

Preventing code execution
by using comments

Developers often use single-line comments to prevent a line of code from exe-
cuting. Commenting out code is a common technique where a developer adds
two forward slashes (//) in front of a line of code that the developer sus-
pects is causing problems in the application. Professional code editors often
include features that make it easy to comment out lines of code and then add
them back into the application as needed.

Alerting Ulisitors That JavaScript
Has Something to Say

Many users are wary of enabling JavaScript support for sites because they
don’t want to download a virus or have other bad things happen to their
systems. In addition, people have become less receptive to using scripts
because they sometimes do things the user doesn’t want, such as grab the
user’s identity. When a user enables JavaScript for your application, it repre-
sents a trust relationship between the user and you.

Of course, the user needs to know that your site requires JavaScript in order
to enable it. The following sections present just two of the many ways to tell
a user that your site requires JavaScript to work.

Using the <noscript> tag

The <noscript> tag is a special tag that the browser reacts to when script-
ing support isn’t available on the local system. This is a standard tag that
every browser currently on the market should support, so it represents the
safest and most reliable way to tell a user that your site requires JavaScript
support.

However, some people have complained that the <noscript> tag can

also cause some unwanted effects with some devices, such as flickering

on smartphones. If you receive user complaints about this issue, you may
have to resort to the technique described in the next section of the chapter,
even though it’s less reliable. (You can find this example in the \Chapter
03\JavaScript Notification folder of the downloadable code as
UsingNoScript.HTML.)

Chapter 3: Integrating HTML5 and JavaScript 6 ’

<!DOCTYPE html>

<html>
<head>

<title>Using the NoScript Tag</title>
</head>

<body>

<h1>Using the NoScript Tag</hl>
<noscript>

<p>Please enable JavaScript to use this page!</p>
</noscript>
<script language="JavaScript">

document .write (

"<p>You have JavaScript enabled!</p>");

</script>

</body>
</html>

This approach is quite simple. When you try the example, you see one of
two messages. If you have JavaScript enabled, you see “You have JavaScript
enabled!” Otherwise, you see “Please enable JavaScript to use this page!” Try
disabling JavaScript support in your browser and refreshing this page to see
the alternative message.

Using styles

The styles approach relies on the use of Cascading Style Sheets (CSS) to
create a condition where a message is displayed when scripting is disabled.
The problem with this approach is that not every browser supports it. Yes,
newer browsers do support this technique just fine, but if you encounter
users with older browsers, your application could experience problems.
The following example shows how to use this technique. (You can find this
example in the \Chapter 03\JavaScript Notification folder of the
downloadable code as UsingStyles.HTML.)

<!DOCTYPE html>

<html>
<head>
<title>Using Styles</title>
<script language="JavaScript">
document .write (
'<style>#NoJdS { display: none; }</style>');

62 Part I: Understanding the Basics of JavaScript

</script>
</head>

<body>

<hl1>Using Styles</hl>
<p id="NoJS">

Please enable JavaScript to use this page!
</p>
<script language="JavaScript">

document .write (

"<p>You have JavaScript enabled!</p>");

</script>

</body>
</html>

This technique relies on a simple trick. When scripting is enabled, the first
script creates a style for the first <p> tag that hides the information in that
paragraph by adding the display: none style. The presence of script-
ing support also lets the second script run, which displays the “You have
JavaScript enabled!” message.

When scripting is disabled, the first script can’t run, so there’s no special
style for the <p> tag with an 14 of NoJS. This means that the “Please enable
JavaScript to use this page!” message is displayed. However, because there’s
no scripting support, the second script also fails, which means you won’t
see the JavaScript-enabled message. Try this example by enabling, then dis-
abling, JavaScript support on your browser.

Part i

Speaking the JavaScript
Language

@' Performing Simple Math - Mozilla Firefox [|- B | (|
et Edi 55 at .i';f_[ﬂurs Help,] ' E

3

& PErommo Imble el

Performing Simple Math

Valuel: 4

Valuel: &

See a typical example file creation process using Komodo Edit editor at
WEb http://www.dummies.com/extras/html5programming
UM withjavascript. (Most editors will use a similar process.)

http://www.dummies.com/extras/html5programmingwithjavascript
http://www.dummies.com/extras/html5programmingwithjavascript

\

A W WA

In this part . . .

Understand JavaScript objects and discover how to use
them.

Create and use Boolean, number, text, and array objects.
Develop custom objects to use in your applications.
Pass data using object literals.

Discover the details of using the Object, Number, String,
Date, and RegExp objects.

Chapter 4
Embracing JavaScript Variables

In This Chapter

Creating and using variables

Using Boolean values

Using numeric values

Using strings

Defining data collections with arrays

Fe purpose of most applications is to work with data in some way. Data
are defined as any kind of information you want to interact with in some
fashion — anything from simply displaying it to creating new information or
manipulating existing information to see it in new ways. Variables provide
storage containers for data. You store the data until you need to use it in the
application, take the data out, do something with it, and then put it back into
the variable when you’re done. The term variable is appropriate because you
can store different data items in a variable — the content is, well, variable.
The variable content changes to meet application needs. This chapter helps
you understand how variables work in JavaScript and how you can use them
to perform tasks within your application.

The chapter divides variables into a number of types. Just as you wouldn’t
normally store food in shoe boxes or cleaning equipment in jewelry boxes,
you use different kinds of variables to store certain types of data. Knowing
which kind of container to use for your data is an important part of keeping
it safe.

In addition, this chapter discusses one sort of data collection. Think of a col-
lection in the same way as you think of storage shelves. Each shelf contains
boxes, each of which contains an item. The kind of collection discussed in
this chapter is the array, a type of collection supported by most program-
ming languages. Arrays provide simple, yet effective, means of collecting
like data together so that you can access it with greater ease — just as using
shelves makes it easier to locate and access items in boxes.

66 Part ll: Speaking the JavaScript Language

Understanding Simple Variables

The title for this section should tell you something. Yes, there are multiple
variable types. Simple variables act as storage containers and nothing more.
In some cases, that’s all you really need — nothing fancy, just a place to put
your data for a while. JavaScript also supports a number of complex variable
types, such as objects and arrays, but for now, think about the beauty of
simple storage. The following sections describe how you can use simple vari-
ables to meet a wide range of application needs.

Seeing variables as storage bins

Some developers become confused when working with variables because
they make the variables too complicated. A variable is nothing more than a
storage bin. If you look in your computer’s memory, a variable is simply a
series of electrical impulses, 1s and 0Os, placed in a certain physical location
for later retrieval. In short, a variable really is a storage bin — a place to
put data.

In the “Discovering variable types” section, later in this chapter, you discover
how JavaScript differentiates between kinds of variables. The differentiation
is for your benefit. As far as the computer is concerned, data consists of

1s and Os stored as electrical impulses in a specific physical location in
memory — nothing more. Humans need to categorize the data to see it in a
useful way, but the computer doesn'’t.

It may surprise you to learn that the computer has no concept of char-
acters, Booleans (true/false values), or any other human data construc-

tion. Everything is 1s and 0s — even characters. When you see the letter A
onscreen, the computer sees it as the number 65. Actually, the computer sees
the binary version of 01000001. A lowercase a is actually a value of 01100001
(97 decimal) — the computer doesn’t even have any concept of uppercase or
lowercase letters.

The point is that when you think about variables, you see all sorts of shades
of meaning. However, you also need to remember that variables are simply
physical memory locations to the computer that just happen to have a par-
ticular sequence of electrical impulses in them.

Chapter 4: Embracing JavaScript Variables

<MBER
é‘,*

Declaring variables

To use a variable, you must tell JavaScript to create it. After all, when you
want to store something in a box in real life, you must first acquire the box.
There’s no JavaScript store where you go to buy a box — you simply tell
JavaScript you need one by using the var keyword, followed by the variable
name. To place something in the box immediately, you use the assignment
operator (=), which assigns the value to the box, and you must also provide
what you want to store in the variable.

Here’s an example that creates a variable named Avariable and stores
the value 5 in it. (You can find this example in the \Chapter 04\Simple
Variables folder of the downloadable code as DeclarevVariables.HTML.)

<!DOCTYPE html>

<html>
<head>
<title>Declaring Variables</title>
<script language="JavaScript">
function UseVariable ()
{
// Create a variable.
var AVariable = 5;

// Display it onscreen.
alert (AVariable) ;

}
</script>
</head>

<body>
<hl>Declaring Variables</hl>
<input type="button"
value="Click Me"
onclick="UseVariable()" />
</body>
</html>

When a user clicks the Click Me button, the application calls

UseVariable (). The Usevariable () function creates Avariable and
places the value 5 in it. The function then calls on alert () to display the
content of Avariable onscreen where the user sees a message box with the
value 5 in it.

Unlike many programming languages, JavaScript doesn’t require you to do
anything fancy to create a variable. All you need to do is use the var keyword,
followed by a variable name. To assign a value, you add an equals sign (=) fol-
lowed by a value.

67

68 Part ll: Speaking the JavaScript Language

Understanding the computer view of variables

Here’s an example of how the computer looks 00110011. That's two separate memory loca-
at data: You may have a variable that contains tions — one for each character. The number
the number 23 and another variable that con- and the character form of 23 have no distinction
tains two characters, 2 and 3. The two char- to the computer, even though the values are
acters form a string
The computer sees the number 23 as 00010111. create errors in your application.
However, it sees the string 23 as 00110010

a string of characters. quite different. If you confuse them, you would

Discovering variable types

As previously mentioned, the notion of a variable type is for your convenience —
the computer doesn’t actually understand variable types. To make things
easier for developers though, JavaScript assigns a type to variables. A vari-
able can hold characters, for example, or numbers. Each variable has its

own variable type. You need to know about variable types to aid in debug-
ging. In addition, using variable types makes it less likely you’ll use the data
incorrectly by confusing a number with a letter. The computer sees the data
differently, but you may not (see the “Understanding the computer view of
variables” sidebar for details).

JavaScript uses a simple variable type system. For example, you need to
know only that a variable contains a number — not what type of number is
stored there. Some programming languages make a distinction between inte-
ger values (those that are whole numbers) and floating point values (those
with a decimal part), but JavaScript doesn’t.

You also need to know that JavaScript is a dynamic language, which means
that you can assign values of different types to the same variable. JavaScript
actually changes the type of the variable to match the data it contains. It’s
best though if you place a single type within a given variable to avoid becom-
ing confused.

The following list describes the types that JavaScript supports:

v String: A string holds characters. Each character is a letter, like the
letters you see in this book. You must enclose string values in either
double or single quotes. For example, var Name = "John Doe" and
var Name = 'John Doe' both assign the string, John Doe, to the
variable Name. You can also combine quotes to achieve special effects.
For example, var Statement = 'My name is "John Doe"' assigns
the string My name is "John Doe" to the variable Statement.
Notice that John Doe is enclosed in double quotes.

Chapter 4: Embracing JavaScript Variables

+* Number: Humans see all numbers as being alike. Even though 4 is
slightly less than 4.1, humans see both as numbers. A computer sees 4
as an integer and 4.1 as a floating point (real) number. The two values
are actually handled by different parts of the computer processor.
Because of this difference, most computer languages provide separate
types for integers and floating point numbers. However, like humans,
JavaScript sees all numbers as being the same. Whether you create
an integer or a floating point value, JavaScript sees the variable as a
number. To create a number, you provide the usual variable declara-
tion with a number that isn’t enclosed in any form of quote like this: var
MyNumber = 15.

+* Boolean: Computers need to make decisions based on user input, data,
or application state. Decisions rely on Boolean variables, which are
either true or false. You can use various statements to test the truth of a
Boolean variable or a Boolean expression (an equation that results in a
value of true or false).

Boolean variables are named after George Boole, a 19th century mathe-
matician you can read about at http://www.buzzle.com/articles/
boolean-origination-history-and-origin-of-boolean-
logic.html.

v Array: An array is a kind of collection. You can create a collection of
any sort of variable that JavaScript supports. For example, an array of
strings can contain the client name list. Arrays are extremely useful col-
lections that you use often in JavaScript to conveniently manipulate data
in ways that would otherwise require a lot of code (and head scratching).

v Object: Most real-world data is complex. For example, when you see a
customer, the customer has a name and other features (properties), you
can perform certain tasks for the customer (methods), and the customer
can make requests of you (events). To model real-world data, computers
require objects. Using objects makes it possible to describe the real-
world data in terms that a computer can manipulate.

v+ Null: The word null is a special kind of keyword that means nothing.
You can set a variable to the null type when you don’t want it to con-
tain anything. JavaScript also sets variables to null when there isn’t
any information it can supply for that variable. A null variable may
not seem very useful, but it’s incredibly useful because you can test for
null data and then perform tasks based on that test.

v Undefined: When a variable is undefined, it means that JavaScript knows
that the variable exists, but the variable doesn’t contain any informa-
tion. An undefined variable is one that hasn’t been initialized to
contain any data yet. You can test for undefined variables by using the
undefined keyword.

69

http://www.buzzle.com/articles/boolean-origination-history-and-origin-of-boolean-logic.html
http://www.buzzle.com/articles/boolean-origination-history-and-origin-of-boolean-logic.html
http://www.buzzle.com/articles/boolean-origination-history-and-origin-of-boolean-logic.html

70 Part ll: Speaking the JavaScript Language

You can declare any variable directly by inserting a value into it, as described
in the preceding section. However, you may want to create a variable, declare
it as a certain type, but not fill it with anything immediately. In this case, you
use the new keyword to create the variable. Here are examples of creating
variables by using the new keyword:

var MyString = new String();
var MyNumber = new Number () ;
var MyBoolean = new Boolean() ;
var MyCollection = new Array();
var ComplexData = new Object () ;

At their lowest level — a level that most developers really don’t care about —
all JavaScript variables are objects. Yes, the variable has a type, and that type
determines how JavaScript interacts with it, but JavaScript uses objects to
hold all variable data. JavaScript lacks the concept of a value type (one stored
on the stack) and uses reference types (those stored on the heap as objects)
exclusively.

Understanding undefined and null variables

Many developers have problems understanding undefined and null variables.
An undefined variable is one that hasn’t been initialized yet — a null variable
is one that’s set to a value of null. In both cases, the storage that the vari-
able represents is empty — it contains no data.

JavaScript provides two keywords that you need to know about when work-
ing with undefined and null variables. Interestingly enough, the keywords
are null and undefined — imagine that! You can use these keywords to
test variables to determine whether they match the criteria for being null or
undefined. The following example shows how to perform such a test. (You
can find the full source code for this example in the \Chapter 04\Simple
Variables folder of the downloadable code as TestNullAndUndefined.
HTML.)

function UseVariable ()
{
// Create an undefined variable and test it.
var MyVariable;
alert (MyVariable + " has a type of: " +
typeof (MyVariable)) ;

// Define the variable and test again.
MyVariable = "I Am Defined!";

alert (MyVariable + " has a type of: " +
typeof (MyVariable)) ;

Chapter 4: Embracing JavaScript Variables

// Empty the variable of data and test again.
MyVariable = null;
alert (MyVariable + " has a type of: " +
typeof (MyVariable)) ;
}

In this example, the code begins by creating MyVariable but doesn’t initial-
ize it. As far as JavaScript is concerned, MyVariable exists, but it doesn’t
contain anything. When the code uses the alert () function to display the
content of MyVariable, you see the word, undefined, in the resulting dialog
box. The alert function also uses the typeof () function to determine the
type (kind) of MyVariable, which is also undefined, so the output reads
"undefined has a type of: undefined".

The next step is to define Myvariable by assigning a value to it. When the
code calls alert () again, the output changes. This time, you see "I Am
Defined! has a type of: string" when the browser displays the
dialog box. Notice that JavaScript automatically detects the change in type. If
you were to assign a numeric value to the same variable and display it again,
you’d see that the type changes to number.

Now that MyVariable is initialized and contains a value, the code empties it
by assigning it a value of null. The null keyword is special because it lets
you create an empty variable. This time alert () displays something inter-
esting, it tells you that "null has a type of: object". That’s right,
MyVariable remains initialized, but it’s empty, so it has a value of null but
a type of object.

Working with Booleans

SMBER
é‘,\“

Boolean variables have only two possible values: true or false. Computers
need a way to determine whether something is true or false in order to make
decisions. The decision-making process makes it possible for a computer to
perform a task, to choose between two tasks, or to stop performing a task.
Chapters 8 and 9 help you understand the decision making process better.
For now, all you need to really understand is that Boolean variables are tra-
ditionally used to make a decision or to tell the user the truth value of the
Boolean variable (possibly as the result of performing a calculation or check-
ing the status of data).

In most cases, you create a Boolean variable by assigning the variable a value
of true or false like this: var MyBoolean = true. You can also assign a
variable a Boolean value by using an expression that equates to true or false,
such as var MyBoolean = 3 < 4.In this case, 3is less than 4, so
MyBoolean is true. The < symbol is an operator. (The “Understanding the
operators” section, later in this chapter, describes the various operators that
JavaScript supports.)

/1

/2

Part ll: Speaking the JavaScript Language

You can create Boolean values by using the new operator. The statement
MyBoolean = new Boolean ();creates a new Boolean variable that’s ini-
tialized to false. You can also add a value or an expression between the
parentheses. Some odd things happen in this situation. For example, if you
provide MyBoolean = new Boolean("Hello") ;, JavaScript creates a
Boolean variable with a value of true. The variable is true because the string
you supplied isn’t empty — it contains a value. This is one of several tech-
niques you can use to test other variables for content in JavaScript.

The Boolean new operator accepts all sorts of inputs. The following list of
inputs creates variables that contain a value of false:

¥ 0

¥ -0

v null

‘/ nn

V¥ false

V¥ undefined

¥ NaN
The NaN keyword stands for Not a Number. It occurs when you perform
certain esoteric math functions. In addition, some JavaScript functions
return this value when you use them incorrectly. For example, if you call

parselnt ("Hello"), the parseInt () function returns NaN because
"Hello" isn’t a number and parseInt () can’t turn it into a number.

Working with Numbers

<MBER
S

JavaScript supports both integer and floating point numbers by using a
single type, number. This is probably the most important difference between
JavaScript and many other languages. However, JavaScript does support the
full range of standard operators (special characters used to perform tasks
such as addition), and you can perform the full range of standard math tasks
using it.

Numbers are values and not text. You can use numbers in comparisons and to
aid in making decisions. In addition, you can use equations to create new
numeric values. The most common method of placing a number in a variable
is to use one of the assignment operators; however, you can also use the new
operator to create a number, such as MyNumber = new Number (10) ;,
which places the value 10 in MyNumber.

Chapter 4: Embracing JavaScript Variables 73

Most JavaScript applications perform some sort of math tasks (amongst
other things). You need to perform math for all sorts of reasons — every-
thing from calculating output for the user to positioning an item onscreen.
Consequently, JavaScript, like most computer languages, provides strong
support for numeric operations. The following sections provide an overview
of the numeric functionality that JavaScript provides.

Understanding the operators

JavaScript supports a number of operators. The easiest way to remember the
various operators is to group them into categories. The following sections
break the operators that JavaScript supports into categories to make them
easier for you to work with and understand.

Using the arithmetic operators

Arithmetic operators let you perform calculations by using JavaScript appli-
cations. The JavaScript operators perform basic math — you use functions to
perform more complicated tasks. Table 4-1 shows the arithmetic operators.

Table 4-1 JavaScript Arithmetic Operators
Operator Example Description
+ MyNumber = 11 + 5; The addition operator adds the

values to the right of the assign-
ment operator and places the
result in MyNumber. For example,
MyNumber would contain 16 in
this case.

11 - 5; The subtraction operator subtracts
the rightmost value from the left-
most value in the expression to the
right of the assignment operator and
places the result in MyNumber. For
example, MyNumber would contain
6 in this case.

- MyNumber

* MyNumber = 11 * 5; The multiplication operator multi-
plies the values to the right of the
assignment operator and places the
result in MyNumber. For example,
MyNumber would contain 55 in
this case.

(continued)

74

Part ll: Speaking the JavaScript Language

<MBER

Table 4-1 (continued)

Operator Example Description

11 / 5; The division operator divides the
leftmost value by the rightmost
value in the expression to the right
of the assignment operator and
places the result in MyNumber. For
example, MyNumber would contain
2.2 inthis case.

/ MyNumber

The modulus operator divides

the leftmost value by the right-
most value in the expression

to the right of the assignment
operator and places the remain-
der in MyNumber. For example,
MyNumber would contain 1 in this
case.

% MyNumber = 11

oe
ul

++ MyNumber++; The increment operator adds 1to
the value of MyNumber. For exam-
ple, if MyNumber originally con-
tained 5 in this example, it would
end with a value of 6.

-- MyNumber--; The decrement operator subtracts
1 from the value of MyNumber. For
example, if MyNumber originally
contained 5 in this example, it
would end with a value of 4.

It’s essential to remember precedence when working with arithmetic in
JavaScript. When viewing the information in Table 4-1, the increment and dec-
rement operators have the highest precedence. Multiplication, division, and
modulus come second. Addition and subtraction are third. As a consequence,
consider the case where you have a variable named MyVariable and assign
it a value of 4. The following equation produces a result of 35:

MyVariable = ++MyVariable + 5 * 6;

In this case, MyVariable is incremented first because the increment opera-
tor has the highest precedence, changing the MyvVariable content to 5. The
sub-expression 5 * 6 comes next, which produces a value of 30. Finally,
MyVariable is added to the value of 30 to produce a result of 35. The brief
discussion of precedence at https://developer.mozilla.org/docs/
JavaScript/Reference/Operators/Operator_Precedence provides
additional details.

https://developer.mozilla.org/docs/JavaScript/Reference/Operators/Operator_Precedence
https://developer.mozilla.org/docs/JavaScript/Reference/Operators/Operator_Precedence

Chapter 4: Embracing JavaScript Variables 75

Using the assignment operators

Assignment operators make it possible to place a numeric value into a vari-
able. Table 4-2 shows the assignment operators that JavaScript supports.

Table 4-2

JavaScript Assignment Operators

Operator

Example

Description

MyNumber

= 5; The standard assignment operator simply
places the value into the variable.

MyNumber

+= 5; The add-then-assign operator adds the value
found in MyNumber to the value on the
right side of the assignment and then places
the result in MyNumber. For example, if
MyNumber contains 11 at the outset, the
result of this assignmentis 16.

MyNumber

-= 5; The subtract-then-assign operator
subtracts the value on the right side of
the assignment from the value found in
MyNumber and then places the resultin
MyNumber. For example, if MyNumber
contains 11 at the outset, the result of this
assignmentis 6.

MyNumber

*= 5; The multiply-then-assign operator multi-
plies the value found in MyNumber by the
value on the right side of the assignment
and then places the result in MyNumber.
For example, if MyNumber contains 11
at the outset, the result of this assignment
IS 55.

MyNumber

/= 5; The divide-then-assign operator divides
the value found in MyNumber by the value
on the right side of the assignment and
then places the result in MyNumber. For
example, if MyNumber contains 11 at the
outset, the result of this assignmentis 2. 2.

oe

%= 5; The modulus-then-assign operator divides
the value found in MyNumber by the value
on the right side of the assignment and
then places the remainder (the modulus) in
MyNumber. For example, if MyNumber
contains 11 at the outset, the result of this
assignmentis 1.

76 Part ll: Speaking the JavaScript Language

Using the comparison operators

Comparison operators make it possible to establish a relationship between

the values of two expressions. The expressions can be an equation, a variable,
or a value. The result is a Boolean value that you can then use to make deci-
sions based on the relationship between the two expressions. For example,
you might decide to perform a calculation only when one variable is less than
another. Chapters 8 and 9 provide examples of how to use the comparison
operators. Table 4-3 shows the comparison operators that JavaScript supports.

Table 4-3 JavaScript Comparison Operators
Operator Example Description
< 5 < 10 The less-than operator determines whether the value on

the left is less than the value on the right. In this case,
the comparison would return true.

<= 5 <= 10 The less-than-or-equal-to operator determines whether
the value on the left is less than or equal to the value on
the right. In this case, the comparison would return true.

== 5 == 10 The equal-to operator determines whether the value on
the left is equal to the value on the right. In this case, the
comparison would return false.

>= 5 >= 10 The greater-than-or-equal-to operator determines
whether the value on the left is greater than or equal
to the value on the right. In this case, the comparison
would return false.

> 5 > 10 The greater-than operator determines whether the value
on the left is greater than the value on the right. In this
case, the comparison would return false.

Il
Il
1l
ul
Il
Il
1l
Jan
o

The exactly-equal-to operator determines whether the
value on the left is equal to the value on the right. In
addition, this comparison verifies that the type of the
value on the left is the same as the type of the value

on the right. In this case, the comparison would return
false. Even though the type of the values is the same,
the value of the two numbers is not.

1= 5 1= 10 The not-equal-to operator determines whether the value
on the left is not equal to the value on the right. In this
case, the comparison would return true.

l== 5 t== 10 The exactly-not-equal-to operator determines whether the
value on the left is not equal to the value on the right. In
addition, this comparison verifies that the type of the value
on the left is different from the type of the value on the right.
In this case, the comparison would return false. Even
though 5is not equal to 10, the type of the two values is the
same, which means that this comparison fails.

Chapter 4: Embracing JavaScript Variables

Using the logical operators

Logical operators help you perform Boolean logic. You use them to perform
tasks based on the truth value of one or more expressions. For example,

if you wanted to determine whether Vvaluel is less than 2 and value?2 is
greater than 4, you would express it as ((Valuel < 2) && (Value2 >
4)). Table 4-4 shows the logical operators and explains their use.

Table 4-4 JavaScript Logical Operators

Operator Example Description

&& ((5 < 10) && The AND operator combines two expressions
(10 > 5)) such that both sub-expressions must evaluate

to true for the entire expression to be true. In
this case, the expression evaluates to true
because both sub-expressions are true.

| ((5 < 10) | The OR operator combines two expressions
(10 < 5)) such that one sub-expression or the other can
be true and make the entire expression true. In
this case, the expression evaluates to true
because the first sub-expression is true. It
doesn’t matter that the second sub-expression
evaluatesto false.

! ltrue The NOT operator changes the state of an
expression to its opposite value. In this case,
the expression evaluates to false because
the expression is initially true.

Developers often have problems figuring out the logical operators. In fact,
many colleges teach entire courses on Boolean logic just to make it easier for
mathematicians and developers to work through complex logic situations.
The AND, OR, and NOT operators can make it possible to create complex
comparisons using JavaScript, which means that your application can evalu-
ate and respond to complex real-world events.

Table 4-5 shows the truth logic for the AND operator, and Table 4-6 shows
the truth logic for the OR operator. Use these tables to figure out when an
expression will evaluate to true or false based on the value of the indi-
vidual sub-expressions.

/7

/8

Part ll: Speaking the JavaScript Language

Table 4-5 AND Operator Logic
Expression 1 Expression 2 Result
true true true
false true false
true false false
false false false
Table 4-6 OR Operator Logic
Expression 1 Expression 2 Result
true true true
false true true
true false true
false false false

Using the grouping operators

JavaScript supports the use of parentheses as grouping operators. The left
parenthesis, (, begins a group, and the right parenthesis,), ends it. The use
of parentheses is incredibly important in some situations because the paren-
thesis has higher precedence (is evaluated before) any other operator dis-
cussed in this chapter. Consequently, the expression 4 + 5 * 6 evaluates
to 34, but the expression (4 + 5) * 6 evaluatesto 54.

Doing simple math

You now have the tools to create your first real application. In this case, the
example performs simple four-function math. The resulting page can add,
subtract, multiply, or divide two numbers. The interface part of the code
includes three text inputs (one set for read-only use) and four buttons (one
for each math function), as shown here. (You can find the complete source
code for this example in the \Chapter 04\Numbers folder of the download-
able code as VariableMath.HTML.)

<body>
<hl>Performing Simple Math</hl>
<p>
Valuel:
<input type="text" id="Valuel" value="4">
</p>

<p>

|
Figure 4-1:
The exam-
ple provides
inputs and
buttons for
performing
simple math
tasks.
|

Valuel:

<input type="text"
</p>
<p>

Result:

<input type="text"

</p>
<input

<input

<input

<input

</body>

readonly="true">

type="button"
value="+"
onclick="DoAdd ()" />
type="button"
value="-"
onclick="DoSub()" />
type="button"
value="*"
onclick="DoMul ()" />
type="button"
value="/"
onclick="DoDiv ()" />

id="Value2"

id="Result"

Chapter 4: Embracing JavaScript Variables

value="5">

value=""

When you display the page, you see the entry fields and associated buttons.
Figure 4-1 shows how they appear in Firefox. This figure also shows the result
of performing a division using the two input numbers.

Valuel: 4
Value2: 5§
Result: 0.3

EX[ENIEN|FR

Performing Simple Math

Each button has a different JavaScript function associated with it. The essen-
tial tasks are the same in each case:

1. Obtain the input from valuel and convert it to a number.

2. Obtain the input from value2 and convert it to a number.

79

80 Part ll: Speaking the JavaScript Language

3. Change the value attribute of Result to reflect the math operation on
Valuel and Value?2.

The attribute value you receive from the document is always in text form, so
numeric conversion is essential. Otherwise, what you’d really do is create

a combined string. For example, if Valuel is 4 and Value?2 is 5, the result
would read 45 — the combination of valuel and Value?2 as strings. Here’s
the code used to perform addition:

function DoAdd ()
{
// Obtain the current values of Valuel and Value2.
var Valuel = new Number (
document .getElementById ("Valuel") .value) ;
var Value2 = new Number (
document .getElementById("Value2") .value) ;

// Set the result to reflect the addition

// of the two numbers.

document .getElementById ("Result") .setAttribute (
"value", Valuel + Value2);

}

The code begins by creating a number using the new keyword. It obtains the
current text value of valuel and converts it to a number type. Notice that
you must use the value property. If you were to use the getAttribute ()
function instead, the code would return the initial value of valuel, not the
current value. The code performs the same task with value?2.

At this point, the code has access to two numbers. It calls the setAttrib-
ute () function for Result and sets this attribute to the combination of
Valuel + Value?2.

The DoSub (), DoMul (), and DoDiv () functions look the same. The only dif-
ference is that each of these functions performs a different math task.

Changing number formats

Formatting numbers is important. The presentation of a number affects how
the viewer sees it. For example, dollar amounts have two decimal places,
even if there’s no decimal (cents) portion. Fortunately, JavaScript provides
some simple functions you can use to control the presentation of numeric
information. The following list provides a short description of each of these
functions:

V¥ toExponential (): Displays the number in scientific (exponential)
format, even if JavaScript would normally display the number in stan-
dard format.

Chapter 4: Embracing JavaScript Variables 8 ’

V¥ toFixed (): Displays the number with a fixed number of digits after the
decimal point.

V¥ toLocaleString (): Displays the number by using the browser’s locale
information. For example, some countries use a comma for the decimal
point, but others use a period.

V¥ toPrecision (): Displays the number by using the specified number of
digits for the entire number.

V¥ toString (): Displays the number as a string in the specified radix
(base). For example, you can use this function to convert a number into
hexadecimal format.

The easiest way to understand numeric formats is to write a short program
to display them. This example begins with something new — a global vari-

able. You place the global variable, ThisNumber, in the <head> section of
the page like this:

<script language="JavaScript">
var ThisNumber = 22.5
</script>

A global variable is one that you can access anywhere on the current page.
The following code creates a page that displays ThisNumber in all of the
formats that JavaScript makes available. (You can find the complete source
code for this example in the \Chapter 04\Numbers folder of the download-
able code as DisplayNumber . HTML.)

<body>
<hl>Formatting Numbers</hl>
<p>toExponential () :
<script language="JavaScript">
document .write (ThisNumber . toExponential (5)) ;
</script>
</p>
<p>toFixed() :
<script language="JavaScript">
document .write (ThisNumber. toFixed(5)) ;
</script>
</p>
<p>toLocaleString () :
<script language="JavaScript">
document .write (ThisNumber. toLocaleString()) ;
</script>
</p>
<p>toPrecision () :
<script language="JavaScript">
document .write (ThisNumber.toPrecision(5)) ;
</script>
</p>
<p>toString () :

82 Part ll: Speaking the JavaScript Language

|
Figure 4-2:
Presenting
numbers
correctly
helps
viewers
understand
their
meaning.
|

Binary:
<script language="JavaScript">
document .write (ThisNumber.toString(2)) ;
</script>
</1li>
Octal:
<script language="JavaScript">
document .write (ThisNumber.toString(8)) ;
</script>
</1li>
Decimal:
<script language="JavaScript">
document .write (ThisNumber.toString (10)) ;
</script>
</1li>
Hexadecimal :
<script language="JavaScript">
document .write (ThisNumber.toString (16)) ;
</script>
</1i>

</p>

Each output uses five places of precision as defined by that function, when
the function allows you to specify the amount of precision. The toString ()
function is different in that it requires a radix (base) as input. For example,
toString (10) displays the number in decimal format. Figure 4-2 makes the
various numeric formats a lot easier to understand.

@ Formatting Mumbers - Mozilla Firefox

Formatting Numbers

toExponential(): 2 25000e+1

toLocaleString(): 22.5
toPrecision(): 22.500
toString():

& Binary: 10110.1
® Octal: 26.4

® Decimal: 22.5

Hexadecimal: 16.8

Chapter 4: Embracing JavaScript Variables 83

Working with Text

The string data type (text) is the presentation format that most humans think
about when viewing information on the screen. Even though the underlying
data is some other type, what a human sees is text. As far as JavaScript is
concerned, strings are just one of many data types. Developers need to be
aware of the difference between what the human sees and what JavaScript
manipulates using application code. Even so, you find yourself working with
strings regularly because strings lend themselves to certain tasks, such as
searching for specific information and creating pretty displays.

Throughout this book you work with strings to create text output in various
ways. The following sections get you started with text, but they’re only the
tip of a large iceberg.

Concatenating text

Strings are made up of many different pieces of information in many cases.

You've seen some examples of concatenation — the act of combining string
pieces to create a larger whole — several times in the book already. In fact,
it’s hard to create any application without using concatenation. Essentially,
concatenation involves adding strings together by using the plus sign (+).

Consider two strings: ThisString and ThatString. ThisString contains
"Hello ", and ThatString contains "World". When you see

var FinalString = ThisString + ThatString;

in an application, FinalString equals "Hello World". Using the plus sign
concatenates the two strings into a new string.

Changing word and letter formats

JavaScript provides a wealth of string functions. This section covers only
four formatting functions that you use to control the appearance of strings.
The rest of the book contains other functions that affect your use of strings.
It’s amazing to think about all the ways in which you can use strings with
JavaScript. Keeping this flexible nature in mind, here are four formatting func-
tions to start off your library of JavaScript string functions:

V¥ toLocaleLowerCase (): Changes all the characters in a string to lower-
case versions while respecting lowercase rules for the current locale.

84 Part ll: Speaking the JavaScript Language

V¥ toLocaleUpperCase (): Changes all the characters in a string to
uppercase versions while respecting the uppercase rules for the current
locale.

V¥ toLowerCase (): Changes all the characters in a string to lowercase
equivalents without regard to locale.

V¥ toUpperCase (): Changes all the characters in a string to uppercase
equivalents without regard to locale.

As with formatting numbers, the best way to see string formatting is to create
an application to do it. As with the DisplayNumber . HHTML page, this page
begins with a global variable, ThisString, that contains "This is

a Sample String". The following code shows how to use the various
functions. (You can find the complete source code for this example in the
\Chapter 04\Strings folder of the downloadable code as DisplayText.
HTML.)

<body>
<hl>Formatting Strings</hl>
<p>Original String:
<script language="JavaScript">
document .write (ThisString) ;
</script>
</p>
<p>toLocaleLowerCase () :
<script language="JavaScript">
document .write(ThisString.
toLocalelLowerCase ()) ;
</script>
</p>
<p>toLocaleUpperCase() :
<script language="JavaScript">
document .write (ThisString.
toLocaleUpperCase()) ;
</script>
</p>
<p>toLowerCase () :
<script language="JavaScript">
document .write (ThisString.toLowerCase()) ;
</script>
</p>
<p>toUpperCase () :
<script language="JavaScript">
document .write (ThisString.toUpperCase()) ;
</script>
</p>
</body>

Chapter 4: Embracing JavaScript Variables 85

Unlike the number-formatting functions, you won’t find any way to customize
the string output. What you see depends on your browser and your locale.
Figure 4-3 shows typical output from this application.

Formatting Strings

Original String: This is a Sample String

toLocaleLowerCase(): this 15 a sample string
|

Figure 43 toLocaleUpperCase(): THIS IS A SAMPLE STRING

J aVaSCript toLowerCase(): this 1s a sample string
Provides @ | . ispperCase(): THIS IS A SAMPLE STRING
number of

interest-

ing string
formatting
functions.
|

Working with Arrays

Arrays are a kind of collection. Each array contains zero or more like items
that you can manipulate as a group. The following sections provide an
extremely brief overview of arrays that will lead into other discussions found
in the book.

Creating an array

JavaScript provides three methods for creating arrays: regular, condensed,
and literal. In general, one way is as good as another. Of the three, the regular
method shown in the following listing is the easiest to understand, but the lit-
eral method is the most compact. (You can find the complete source code for
this example in the \Chapter 04\Arrays folder of the downloadable code
as CreateArray .HTML.)

86 Part ll: Speaking the JavaScript Language

<body>
<hl>Creating Arrays</hl>
<h2>Regular:</h2>
<script language="JavaScript">
// Create the array.
var Colors = new Array() ;
// Fill the array with data.

Colors[0] = "Blue";
Colors[1l] = "Green";
Colors[2] = "Purple";

// Display the content onscreen.
document .write (Colors) ;
</script>

<h2>Condensed:</h2>
<script language="JavaScript">
// Create the array and fill it with data.
var Colors = new Array("Blue", "Green", "Purple");

// Display the content onscreen.
document .write (Colors) ;
</script>

<h2>Literal:</h2>

<script language="JavaScript">
// Create the array and fill it with data.
var Colors = ["Blue", "Green", "Purple"];

// Display the content onscreen.
document .write (Colors) ;
</script>
</body>

All three methods produce precisely the same array. The regular method cre-
ates the array first and then assigns strings to each array element by number.
The square brackets behind Colors indicate the element number, which
begins at 0 and increments by 1 for each element you add. Notice that when
using the condensed method you enclose the array elements in parenthe-

ses as part of the constructor. However, when using the literal method, you
enclose the array elements in square brackets. You can see the results of this
example in Figure 4-4.

Accessing array members

Each array member has a unique number — an address of sorts. You access
array members by providing the array name and then the element number
within square brackets. Normally, you use a loop to access array members.
Chapter 9 discusses loops in detail. For now, just consider a loop as a means
of automating array access.

|
Figure 4-4:
Use any of
the meth-
ods that
JavaScript
provides

for creating
arrays.
|

Chapter 4: Embracing JavaScript Variables 8 7

@ Creating Arrays - Mozilla Firefox

Creating Arrays
Regular:
Blue,Green Purple

Condensed:

Blue Green Purple

Literal:

Blue Green Purple

The following code shows an example of how you might access an array, one
element at a time, and display its content. (You can find the complete source
code for this example in the \Chapter 04\Arrays folder of the download-
able code as AccessArray.HTML.)

<body>
<hl>Access Array Elements</hl>
<script language="JavaScript">
// Create the array and fill it with data.
var Colors = ["Blue", "Green", "Purple"];

// Define a loop to access each array element
// and display it onscreen.
for (1 = 0; i < Colors.length; i++)

{
document .write (
"COlOrS n 4u i 4u " = " s
Colors[i] + "
");
}
</script>

</body>

This example uses a for loop. The for loop creates a counter variable (a
number) named i that begins at 0 (the first element of the array) and con-
tinues to increment (i++) until it has accessed all the array elements (1 <
Colors.length). The document .write () function outputs the Colors
element number, the content (as Colors[i] where i is the element number),
and an end-of-line tag. Figure 4-5 shows the output from this example.

88 Part ll: Speaking the JavaScript Language

——_| Access Array Elements
Figure 4-5:
Colors 0 =Blue

Access
each arra Colors 1 = Green
Y Colors 2 = Purple

element by

s e e

Chapter 5
Working with Objects

In This Chapter

Specifying the features that define an object in JavaScript
Working with objects

Using object literals

Making objects easier to use by naming them correctly

A t one time, programming was entirely about writing procedures. You
wrote a procedure to perform a task in a way that the computer could
understand. Even if you used a higher level programming language, the pro-
cess was the same — writing a procedure telling the computer to do some-
thing in terms it could understand.

As computer science progressed, it was found that people could relate
better to coding scenarios that model the real world rather than the abstract
world of the computer. Object Oriented Programming (OOP) is a technique
whereby the developer creates a model of a real-world entity and then
manipulates that entity with code. The underlying infrastructure translates
the model into terms that the computer can understand. Objects are simply
models of items you interact with in the real world in some way.

Given that objects are models of real-world entities, you need some method
of telling the computer what those real world entities look like. As a result, all
OOP languages support some method of defining, creating, and using objects.
The language wouldn’t be much use otherwise because a language creator
can’t anticipate what objects will exist in your world.

One of the features that differentiate objects from procedures is the ability to
encapsulate (create a package containing) the elements that define the object.
JavaScript provides a means to encapsulate just data, when that’s all you really
need to work with. The special technique used to encapsulate just the data is
called an object literal. This chapter shows how to create and use object literals
to make it easier to work with your data in a JavaScript application.

90

Part ll: Speaking the JavaScript Language

The final section of this chapter discusses a topic that’s controversial with
many developers — naming variables and objects. JavaScript doesn’t care
what you call the objects and variables you create as long as the name
doesn’t violate any of the naming requirements that JavaScript must use

to recognize the word as an object or variable. For example, your object or
variable name must begin with a letter and not a number. In addition, you
can’t name an object or variable by using any of the keywords that JavaScript
recognizes as code. The main reason to name objects and variables a certain
way is to make your code easier to understand. A name such as FirstName
is certainly much easier to understand than var21. The first tells you that
the variable contains someone’s first name, but the second tells you nothing
at all.

Defining Objects

Think of programming objects in the same way you think of real-world
objects. For example, you could create an object in JavaScript named apple
and then describe what makes an apple unique to JavaScript. From that
point on, you could create apple objects, define each apple’s special charac-
teristics, and interact with that apple by using code in the same way you’d
interact with an apple in the real world. Of course, the apple isn’t real — it’s
a model of a real-world apple, but the idea is that you can envision what this
apple would look like based on the description you provide for it. The follow-
ing sections describe objects in more detail so that you can create and use
objects later in the chapter.

Starting with the Object object

Everything in JavaScript is an object. However, JavaScript needs a defini-
tion of what an object is before it can do anything with objects. The Object
object is the basis for all objects in JavaScript. Whenever you create an
object, it uses Object as the starting point.

Before proceeding too far, you need to understand a little of the terminology
used for objects. A description of an object is called a class. Think of a class
as a blueprint for building the object. It isn’t an object; rather, it’s simply the
instructions used to create an object later.

When you want to use a class to create an actual object, you instantiate the
object, which means that you tell JavaScript to build an object based on
the class you provide — much as an architect would ask a contractor to
construct a building based on a blueprint. When you see code such as var
MyNumber = new Number () ;, that code is telling JavaScript to use the
Number class to instantiate a new object named MyNumber. The new key-
word is the key here because it tells JavaScript to create a new object.

Chapter 5: Working with Objects

A\

Any special instructions required to create an object based on the class
definition appear within the class constructor. The constructor is a special
method (see the “Understanding methods” section, later in this chapter, for
a description of how methods work) that contains instructions for creating
a new object based on the class description. For example, you might decide
that the object should have certain default characteristics when JavaScript
creates it, so these requirements appear in the constructor.

A constructor can also receive special instructions from the caller. For
example, when you create an array by passing a list of items to it, such as
var Colors = ["Blue", "Green", "Purple"];,what you're really
doing is telling the constructor that you want to create the array with three
predefined strings in it: Blue, Green, and Purple.

Every object has a special property called this. The this value of an object
always refers to the particular instance of the object that you’re working with
now, rather than any other instance of the object. The this value of an object
is important when you need to differentiate between elements that are inter-
nal to this specific object. In some cases, JavaScript may try to use elements
that are provided by the parent or base class. For now, simply remember that
this refers to the current object. Future examples will demonstrate how
this works so you gain a better understanding of it.

The Object object also comes with some predefined properties and methods.
As a consequence, every object you create in JavaScript has these predefined
properties and methods, even though you didn’t tell JavaScript to create
them. The act of using Object as the basis for your classes and the resulting
objects having the same properties and methods as Object is called inheri-
tance. Just as you inherit certain characteristics from your parents, an object
in JavaScript inherits features from its parent, which is 0Object. Classes can
inherit from other JavaScript classes, but every JavaScript class inherits from
Object.

The following list describes the most commonly used Object methods
(there aren’t any commonly used properties):

V¥ toString (): Outputs the value of the object, such as the numeric value
of a Number object, as a string.

V¥ toLocaleString (): Outputs the value of the object, such as the
numeric value of a Number object, as a string that includes localized
formatting. For example, numeric values in some countries use a comma
for the decimal point, but other countries use a period.

v valueOf (): Outputs the internal value of the object as a string. In this
case, the value is the this value of this particular object, rather than
the value of any other instance of the class.

91

92

Part ll: Speaking the JavaScript Language

WMBER
‘g'c
&

\\3

Understanding properties

A property defines a characteristic of an object. For example, when looking at
the Apple object, the Color property would define the color of the apple.
You use properties to define the features of an object — its value or anything
concrete about the object that others need to know to interact with the

object. For example, when you write var Colors = ["Blue", "Green",
"Purple"];, the length property tells you how many items appear within
the array.

Understanding methods

A method is a task you can perform using the object. The term task is loosely
defined in this case because the range of tasks you can perform with objects
is quite broad. Think of the Apple object. The bite () method reduces the
size of the apple by a value of one bite. When you write Apple.bite(),
JavaScript removes one bite from the Apple. Using a more concrete example,
when you write var Colors = ["Blue", "Green", "Purple"];, calling
var Item = Colors.pop () ; places the last value, Purple, in ITtem and
removes it from Colors by using the pop () method.

When working with methods, you sometimes need to provide information to
the method in order for it to perform the required task. Each piece of informa-
tion you provide is called an argument. Arguments are either required (which
means you must provide them) or optional (which means you can provide
them when desired). For example, calling Colors.push("Yellow") ; places
anew string, Yellow, into the Colors array. The first argument you provide
is required. However, this method also accepts optional arguments. Calling
Colors.push("Yellow", "Orange"); places two strings in the Colors
array. The second string, Orange, is optional.

Understanding events

An event is something that occurs outside of your application. Your applica-
tion can monitor the event and react to it. For example, you can react to a
user clicking a button on a form. The event needn’t apply to a user though —
often an event is generated by another application or even a different com-
puter. In fact, your application can signal itself that something has happened
(such as the expiration of a timer or the occurrence of an error).

Most JavaScript applications react to form-based events, such as a user

click. The form publishes an event every time the user clicks a control. Some
languages call this firing the event. Thinking about a user click, a button pub-
lishes a c1ick event every time the user clicks the button. However, many
JavaScript developers create special events using their custom classes, so you

Chapter 5: Working with Objects 93

shouldn’t limit yourself to the form-based events unless they actually do meet
all your needs.

Your application won’t react to the event unless it subscribes to the event.
When working with a button, your application can subscribe by provid-

ing the name of an event handler to the onclick attribute of the button.
For example, when you type <input type="button" value="+"
onclick="DoAdd ()" />,the DoAdd () method creates a subscription
through the onclick attribute. When the user clicks the button, the button
publishes a c1ick event that’s handled by DoAdd (). The button would
still publish a c1ick event even if there wasn’t any subscription, but there
wouldn’t be an event handler to do anything with it.

Using and Creating Objects

You've already used many built-in JavaScript objects in the previous chap-
ters, but haven’t really examined how those objects worked. In the sections
that follow, you take another look at the built-in JavaScript object classes and
begin viewing them as classes that you instantiate to create an object.

In addition, it’s time to start looking at techniques you can use to build your
own JavaScript classes. As your code becomes more complex, it helps to
create classes to make the code manageable and to make it better able to
model real-world data. Using your own custom objects will make it easier

to understand what tasks the code is performing and reduce complexity.
Objects also have benefits such as reducing the potential for errors.

Using JavaScript objects

JavaScript comes with a host of built-in objects that help you perform general
programming tasks. For example, each of the variable types discussed in
Chapter 4 is a built-in object. You can create a new variable of any type you
want using the techniques shown in that chapter. JavaScript also supports

a number of other built-in objects that help you interact with the pages you
create. The following sections describe these objects by basic type: browser,
Document Object Model (DOM), and built-in.

Exploring JavaScript browser objects

Here’s a quick overview of some of the more interesting JavaScript browser
objects — those that relate to how the browser performs tasks:

V¥ history: Provides the means for examining and moving between URLs
stored in the browser’s history. You can see a complete list of the
methods and properties associated with this object at http: //www.
w3schools.com/jsref/obj_history.asp.

http://www.w3schools.com/jsref/obj_history.asp
http://www.w3schools.com/jsref/obj_history.asp

94 Part ll: Speaking the JavaScript Language

v location: Contains information about the current URL. This object
also provides the means to perform tasks such as loading a new page
or reloading the current page. You can see a complete list of the
methods and properties associated with this object at http: //www.
w3schools.com/jsref/obj_location.asp.

» navigator: Contains information about the current browser. For exam-
ple, you can determine the browser type and version, and determine
whether the browser has cookies enabled. You can see a complete list
of the methods and properties associated with this object at http://
www.w3schools.com/jsref/obj_navigator.asp.

v screen: Specifies the physical characteristics of the device used to
display the page, including page height, width, and color depth. You can
see a complete list of the methods and properties associated with this
object at http://www.w3schools.com/jsref/obj_screen.asp.

v window: Provides access to the browser’s window so that you can per-
form tasks such as displaying message boxes. When working with pages
that contain frames, the browser creates a window for the entire HTML
document and another window for each frame. You can see a com-
plete list of the methods and properties associated with this object at
http://www.w3schools.com/jsref/obj_window.asp.

Examining built-in DOM objects

JavaScript also supports special objects for the DOM. The DOM is a plat-
form and browser independent method of describing the content, structure,
and style of documents. You can read more about DOM at http: //www.

w3 .org/DOM. Every page you load into the browser is part of the DOM.

The following list provides a brief overview of the built-in DOM objects:

v Attr: Provides access to individual attributes within the document.
You can see a complete list of the methods and properties associated
with this object at http: //www.w3schools.com/jsref/dom_obj_
attr.asp.

v document: Provides access to the entire document. You can use this
object to access any part of the document. In addition, this object
lets you display information directly on the page and perform other
tasks related to the user interface. You can see a complete list of the
methods and properties associated with this object at http: //www.
w3schools.com/jsref/dom_obj_core_document.asp.

v Element: Contains an individual document element of any type sup-
ported as XML. This object provides access to attributes through the
Attr object and properties through the Node object (described later
in this list). You can see a complete list of the methods and properties
associated with this object at http: //www.w3schools.com/jsref/
dom_obj_element.asp.

http://www.w3schools.com/jsref/obj_location.asp
http://www.w3schools.com/jsref/obj_location.asp
http://www.w3schools.com/jsref/obj_navigator.asp
http://www.w3schools.com/jsref/obj_navigator.asp
http://www.w3schools.com/jsref/obj_screen.asp
http://www.w3schools.com/jsref/obj_window.asp
http://www.w3.org/DOM/
http://www.w3.org/DOM/
http://www.w3schools.com/jsref/dom_obj_attr.asp
http://www.w3schools.com/jsref/dom_obj_attr.asp
http://www.w3schools.com/jsref/dom_obj_core_document.asp
http://www.w3schools.com/jsref/dom_obj_core_document.asp
http://www.w3schools.com/jsref/dom_obj_element.asp
http://www.w3schools.com/jsref/dom_obj_element.asp

Chapter 5: Working with Objects 95

V¥ Events: Supports access to existing events and creation of new ones.
You can see a complete list of the methods and properties associated
with this object at http: //www.w3schools.com/jsref/dom_obj_
event.asp.

» HTMLElement: Contains an individual HTML document element, such
as a paragraph or a control. Use the Element and Node objects to gain
access to element attributes and properties. You can see a complete list
of the methods and properties associated with this object at http://
www .w3schools.com/jsref/dom_obj_all.asp.

v Node: Defines the particulars of any given node, which can include the
document as a whole, an element within the document, an attribute
provided as part of an element, text, and comments. You can see a com-
plete list of the methods and properties associated with this object at
http://www.w3schools.com/jsref/dom_obj_node.asp.

V¥ NodeFilter: Specifies which nodes appear as part of a NodeIterator
used to traverse the list of nodes within a document. You can see
a complete list of the methods and properties associated with this
object at https://developer.mozilla.org/en-US/docs/DOM/
NodeFilter.

V¥ NodeIterator: Provides a method of obtaining a list of nodes within
a document. Traversing the list of nodes can help you locate specific
nodes and interact with them. For example, you might find all of the
<input> tag nodes and add a particular attribute to them. You can
see a complete list of the methods and properties associated with this
object at https://developer.mozilla.org/en-US/docs/DOM/
NodeIterator.

»” NodeList: Contains an ordered list of all the nodes within the docu-
ment or in a particular area of the document. You can see a complete list
of the methods and properties associated with this object at http://
www.w3schools.com/jsref/dom_obj_nodelist.asp.

1 NamedNodeMap: Contains an unordered list of all the nodes within the
document or in a particular area of the document. You can see a com-
plete list of the methods and properties associated with this object at
http://www.w3schools.com/jsref/dom_obj_namednodemap.asp.

JavaScript supports a number of additional built-in objects. The lists in this
chapter simply describe the objects you use most often. If you want to see a
complete list of the built-in JavaScript objects, check the latest specification at
http://www.ecma-international.org/publications/standards/
Ecma-262.htm.

http://www.w3schools.com/jsref/dom_obj_event.asp
http://www.w3schools.com/jsref/dom_obj_event.asp
http://www.w3schools.com/jsref/dom_obj_all.asp
http://www.w3schools.com/jsref/dom_obj_all.asp
http://www.w3schools.com/jsref/dom_obj_node.asp
https://developer.mozilla.org/en-US/docs/DOM/NodeFilter
https://developer.mozilla.org/en-US/docs/DOM/NodeFilter
https://developer.mozilla.org/en-US/docs/DOM/NodeIterator
https://developer.mozilla.org/en-US/docs/DOM/NodeIterator
http://www.w3schools.com/jsref/dom_obj_nodelist.asp
http://www.w3schools.com/jsref/dom_obj_nodelist.asp
http://www.w3schools.com/jsref/dom_obj_namednodemap.asp
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm

96 Part ll: Speaking the JavaScript Language

Using built-in objects

The example for this section shows how to use some of the built-in objects
to create some interesting content for a page. The page contains a simple
header and the following button:

<input type="button"
value="Display Screen Stats"
onclick="DisplayScreenStats() ">

When the code calls DisplayScreenStats (), it queries the user about dis-
playing the statistics onscreen. When the user clicks OK, the function obtains
and displays the required information by creating the required nodes on the
page. In other words, the example actually adds new tags to the page to con-
tain the custom content.

Here’s the code for the DisplayScreenStats () function. (You can find
complete code for this example in the \Chapter 05\0Objects folder of the
downloadable code as UseObjects.HTML.)

function DisplayScreenStats ()
{
// Ask the user about displaying the screen
// information.
var Dolt = window.confirm(
"Display the screen dimensions?") ;

// If the user agrees, display the information.
if (DoIt)
{
// Create a new <p> tag to store the data.
var Para = document.createElement ("p") ;

// Create a new
 tag to provide space.
var Spacerl = document.createElement ("br") ;
var Spacer2 = document.createElement ("br") ;

// Create the content for the <p> tag.
var Contentl = document.createTextNode (

"Width: " + window.screen.width) ;

var Content2 = document.createTextNode (
"Height: " + window.screen.height) ;

var Content3 = document.createTextNode (
"Colors: " + window.screen.colorDepth) ;

// Add the content to the <p> tag.
Para.appendChild (Contentl) ;
Para.appendChild (Spacerl) ;
Para.appendChild(Content2) ;
Para.appendChild (Spacer?2) ;
Para.appendChild (Content3) ;

Chapter 5: Working with Objects

// Display the <p> tag on the page.
document .body . appendChild (Para) ;

3

You've seen the alert () function in action in the past. Unfortunately, this
function limits you to displaying messages. The confirm() function creates
a dialog box that contains two buttons: OK and Cancel. When the user clicks
OK, DoIt contains true. Otherwise, DoIt contains false. Chapter 8 dis-
cusses the if statement in detail. All you need to know for now is that it tests
DoIt and when DoIt is true, the function obtains and displays the screen
statistics onscreen.

The document .createElement () method can create new elements for
you. In this example, the code uses them to create a <p> tag and a
 tag.
The <p> tag holds the content you want to see onscreen, and the
 tag
creates space between the individual statistics. You can use this method to
create any legal tag that HTML5 supports.

QUING/ The technique shown here allows use of a particular piece of content only
one time within a container element. Reusing content simply moves it from its
original location to the last location where it’s used. The inability to reuse con-
tent is the reason the example creates two spacers, rather than using a single
spacer, even though both spacers are
 tags.

The content is text, so you need to use the document . createTextNode ()
method to create a text node. Within this node, you place the content you
want to display as part of the <p> tag. The window. screen object provides
access to properties that contain information about the browser’s window.
In this case, the application displays the content of the width, height, and
colorDepth properties.

<MBER At this point, all the function has to do is put the content together. The <p>
tag is the container, so the code calls the Para.appendChild () method to
add each bit of content to the <p> tag. Notice that the content can include
both text nodes and other elements. You can use any mix of items that would
normally appear on a Web page as HTML.

All you have at this point is a new <p> tag that no one can see. To display the
<p> tag, the code calls document .body.appendChild () to add the <p>
tag to the rest of the information on the page. Figure 5-1 shows the resulting
screen information from my browser. The information from your browser will
be different, but the page will essentially look the same.

98

Part ll: Speaking the JavaScript Language

|
Figure 5-1:
You can
discover

all sorts of
informa-
tion about
the host
browser.
|

Using JavaScript Objects

Width: 1280
Height: 1024
Colors: 24

Building custom objects

Most objects you create in JavaScript provide properties, methods, or both.
Few custom objects require events unless you plan to create a new type of
display element or something that works in the background, such as a timer.
With this in mind, this section looks at the technique for creating a basic
custom object that includes both properties and methods.

The example begins by creating the required elements of the class. You may
be surprised to find out that you create classes using functions. After defin-
ing the class elements, the example creates an instance of the class, pro-
vides data for each of its properties, and then uses a method to output the
class data as a formatted string. (You can find the full source code for this
example in the \Chapter 05\0Objects folder of the downloadable code as
CreateObjects.HTML.)

<!DOCTYPE html>

<html>

<head>
<title>Creating New Objects</title>
<script language="JavaScript">

// Create a method to add to the customer

// class.

function formattedOutput ()

{
// Return the formatted output consisting
// of a string that contains the customer

// data.
return "The customer's name is: " +
this.Name + " and age is: " +

this.Age;

SMBER

Chapter 5: Working with Objects

// Create the customer class.
function customer ()

{
// Define two properties for this class.
this.Name = "";
this.Age = 0;

// Add a method for displaying the class data.
this.formattedOutput = formattedOutput;

}
</script>
</head>

<body>
<hl>Creating a New Customer</hl>

<script language="JavaScript">
// Instantiate the customer class.
var ThisCustomer = new customer () ;

// Add data to this instance of the customer
// object.

ThisCustomer.Name = "Sam Smith";
ThisCustomer.Age = 22;

// Output the data found in the ThisCustomer
// object.
document .write ("<p>" +
ThisCustomer. formattedOutput () + "</p>");
</script>
</body>
</html>

The formattedOutput () function defines a method you can use with the
class. All it does is obtain the current instance values and place them in

a string. Notice the use of the this keyword. You want to work with this
instance — not some other instance or the base class. It’s essential to use

the this keyword as needed or the method won’t work as you expect. (For
more on the this value of an object, see the earlier section “Starting with the
Object object.”)

The customer () function is actually the class definition. This class includes
two properties, Name and Age, and one method, formattedOutput.

Notice again how the this keyword is used. When working with properties,
you want to assign values to the properties in this instance of the object.
Likewise, the method works with this instance of the object. However, you
assign the formattedoOutput () function to the formattedOutput method
associated with this instance.

To demonstrate how the class works, the code creates a customer instance
named ThisCustomer. Notice that you use the new keyword just as you

99

’ 00 Part ll: Speaking the JavaScript Language

|
Figure 5-2:
Objects you
create work
just like
those that
are builtinto
JavaScript.
|

would with any other object. The code adds values to the Name and Age
properties just as you would with any other object. Likewise, it calls the
formattedOutput () method to display the data as a formatted string.
Figure 5-2 shows the output from this example.

[G ine el oot

Creating a New Customer

The customer's name is: Sam Smith and age is: 22

Working with Object Literals

An object literal is a special kind of data collection. It contains named values
that you use to make accessing a particular value easier. The idea is to create
a package that you can send to somewhere with all the values required to
perform a task. Because the values are named, you don’t have to provide
them in any specific order. In addition, the recipient doesn’t have to work
with the content in any specific way. This is a kind of object that lacks any
sort of constructor and has no need for methods. The entire purpose of this
technique is to make transferring data simpler and less error prone. You can
see a real world example of how object literals are used at http://blog.
smartbear.com/software-quality/bid/242126/using-the-google-
maps-api-to-add-cool-stuff-to-your-applications. The following
sections describe how to work with JavaScript object literals.

Creating the namelvalue pairs

Object literals rely on name and value pairs to store information. You pro-
vide a name (also called a label) and a data value to go with it. The recipient
can then retrieve the data by name. The following example shows a simple
use of an object literal. (You can find the full source code for this example in
the \Chapter 05\Object Literals folder of the downloadable code as
CreatelLiterals.HTML.)

<!DOCTYPE html>

<html>
<head>

<title>Working with Object Literals</title>
</head>

http://blog.smartbear.com/software-quality/bid/242126/using-the-google-maps-api-to-add-cool-stuff-to-your-applications
http://blog.smartbear.com/software-quality/bid/242126/using-the-google-maps-api-to-add-cool-stuff-to-your-applications
http://blog.smartbear.com/software-quality/bid/242126/using-the-google-maps-api-to-add-cool-stuff-to-your-applications

|
Figure 5-3:
Use object
literals

to create
packages

of data you
can send
anywhere.
|

Chapter 5: Working with Objects 1 0 ’

<body>
<hl>Create and Use Object Literals</hl>

<script language="JavaScript">
// Create the object literal.
var customerData =

{

Name: 'Sally Jones',

Age: 32,

Birthday: new Date("01/15/1981")
}

// Display the object literal data onscreen.
document .write (

"<p>The customer's name is: " +
customerData.Name +
" age is: " + customerData.Age +
" and date of birth is: " +
customerData.Birthday.toDateString() + "</p>");
</script>
</body>
</html>

In this case, customerData contains three values: Name, Age, and
Birthday. Each of these labels has an associated value. Notice that you
needn’t worry about mixing data type — the object literal doesn’t care. The
important elements are to enclose the data within curly brackets, to provide
a name for each value, to separate the value from the name by a colon, and to
separate values with commas.

At this point, customerData is a package that you could send anywhere.
The example uses the information directly after the object literal is created.
Notice that you use standard dot syntax to access each of the values. The
order of access doesn’t matter because you access the values by name.
Figure 5-3 shows typical output from this example.

Create and Use Object Literals

The customer's name is: Sally Jones age is: 32 and date of birth i1s: Thu Jan 15 1981

7 02 Part ll: Speaking the JavaScript Language

Adding new name/value pairs

JavaScript supports a number of methods for adding new name and value pairs
to an object literal. The easiest method of accomplishing this task is to simply
type the name of a new property and assign a value to it. For example, if you
wanted to add a property named HairColor to the customerData example
and give the customer a hair color of brown, you’d simply type customer
Data.HairColor = "Brown";.The new property would appear as part of
customerData as if you had provided it as part of the original object literal.

Naming Variables and Objects Properly

JavaScript doesn’t care what you name variables and objects in your appli-
cation. You could name a variable var22, and JavaScript wouldn’t care.
&QN‘BE/? However, you'd care months later when you forget what var22 means.
&
Variable and object names must follow these simple rules in JavaScript:

v The variable or object name must begin with a letter.

» You can alternatively begin the variable or object name with the dollar
sign ($) or underscore (_), but most professionals recommend against
using special characters because they can prove confusing.

v Variable names are case sensitive, so Var is different from var, which is
also different from VAR.

The variable and object names you choose are for your benefit. You need to
select variable or object names that mean something to you and will jog your
memory months later when you’ve forgotten some of what the code does. A
variable name such as FirstName is descriptive and will most definitely jog
your memory when you need it.

It’s also essential that you decide how to work with variable and object names
when part of a team. JavaScript automatically uses camel case for its variables,
properties, methods, events, and objects in most cases. Camel case is a tech-
nique where each word begins with a capital letter. Some developers insist
that the first word appear in lowercase letters such as firstName, rather than
FirstName, but there’s no strict rule about this. (Starting a variable name with
a capital letter is also called Pascal case.) However, using camel case for your
variable names does make them much easier to read and understand.

Avoiding keywords is also a good idea. Yes, you can create a variable named
New in your application, but now you’ve used a keyword as a variable, which
will prove confusing to anyone viewing your code (including you when you
review the code later). You should also avoid using standard JavaScript
object names and other potentially confusing names for the objects and
variables you create.

Chapter 6

Getting to Know the Standard
JavaScript Objects

In This Chapter

Using the basic JavaScript objects
Creating, using, and searching strings
Creating and using dates

‘ hapters 4 and 5 work together to introduce you to the concepts behind

variables and objects. Those chapters help you understand why vari-
ables and objects are important. In this chapter, you move on to working
with specific objects and using these objects to do something interesting.
You've already been exposed to most of these objects at a very basic level,
but it’s time to look at them in more detail because you use these objects to
perform a wide variety of tasks in most JavaScript applications. The better
you know these objects, the faster and more accurately you can write code to
perform special tasks using HTML5 and JavaScript.

WBER As mentioned in Chapter 5, the basis for all JavaScript objects is the Object
class. If you drill down into any object, you find the Object class mentioned
in some way as the endpoint, the progenitor, of that object. In addition,
JavaScript treats all variables as objects. In general, JavaScript objects provide
properties and methods, but not events. You can create objects that have
events, but doing so is unusual because JavaScript normally provides event
support through the HTML tags used to create the user interface.

Strings are the most important JavaScript object to know how to use well
because strings are the data type that humans understand best. Strings are
used for everything from user interfaces to data searches. Although you
must rely on other data types for calculations, most data types provide some
method of creating string output because that’s the format humans need to
understand the data. This chapter helps you understand strings better, espe-
cially with regard to presentation and searches — the two ways strings are
used most often.

7 04 Part ll: Speaking the JavaScript Language

Given that humans place a strong value on date and time, it’s also important to
know how to work with both in your applications. Computing the passage of
time is an essential tool in the developer’s toolbox. This chapter provides the
essentials you need to know to work with both date and time, and to calculate
time ranges so that you can mark the passage of time in your applications.

Defining the Basic JavaScript Objects

It’s time to look at some of the tasks you can perform with individual objects —
including the creation of more complex custom objects based on the Object
class. All objects inherit from Object, so the first section shows a more
complete custom object example based on Object. The sections that follow
examine individual features of the standard objects that JavaScript supplies.

Understanding Object

The basis of all JavaScript objects is Object, even though you seldom see
the word Object actually used anywhere in JavaScript code. Chapter 5 pres-
ents an extremely basic custom class and shows how to use it. This chapter
explores how you can employ Object at a slightly deeper level. (The custom
objects you see in later chapters build on this one.)

One of the problems with the example in Chapter 5 is that it shows how to
create a method as a property. This is a perfectly acceptable technique, but
the method shows up as a property when you work with most JavaScript edi-
tors. It really isn’t a true method. Fortunately, there are ways to create true
methods in your code. JavaScript supports two kinds of methods, in fact:

1~ Static: A static method is one that you can execute at any time without
instantiating the class. Many objects provide static methods that you
can use to learn about the class or to perform tasks such as data con-
version. A static method doesn’t have access to any instance data — it
must be self-contained.

v Instance: An instance method is one that works with the data found
in a particular instance of the object. To use this method, you must
instantiate the object and perform any tasks required to configure it.
Most developers are used to working with instance methods in other
languages, and instance methods are the ones that are most intuitive.

Chapter 6: Getting to Know the Standard JavaScript Objects 1 05

The following code shows how to create a more advanced custom class
based on Object that includes both a true static method and a true instance
method. The example contains some customer information, and you use the
methods to find out about the object and to display it as a formatted string
onscreen. (You can find complete code for this example in the \Chapter
06\0Objects folder of the downloadable code as CreateObject . HTML.)

function customer ()

{
// Add properties.
this.Name = "";
this.Age = "";

}

// Create a true static method.
customer.help = function()

{

return "Defines a customer.";

}

// Create a true method for the instance.
customer.prototype.toString = function/()
{
return "Name: " + this.Name +
" Age: " + this.Age;
b7

function CreateCustomer ()
{
// Display the help.
document .getElementById ("Help") . innerHTML =
customer.help () ;

// Instantiate the object.
var ThisCustomer = new customer () ;

// Add data to the object.
ThisCustomer.Name = "Adrian Watts";
ThisCustomer.Age = 22;

// Display the data onscreen.
document .getElementById ("Output") .innerHTML =
ThisCustomer.toString () ;
}

The customer () function creates the properties for the class. There are two
public properties for this object: Name and Age.

’ 06 Part ll: Speaking the JavaScript Language

|
Figure 6-1:
This latest
version of
the cus-
tomer class
includes
both

static and
instance
methods.
|

Creating true methods involves writing external declarations like the ones
shown. You type the name of the class, a period, and the name of the method
to create a static method. The customer.help () method displays a simple
string describing the object.

When you want to create an instance method, you must include the
prototype keyword between the class and the method names. The
customer .prototype. toString declaration creates the customer.
toString () instance method. Even though prototype is part of the
declaration, you don’t include it when accessing the instance method. An
instance method does have access to instance data using the this keyword.

The CreateCustomer () function shows how to use this new class. Notice
that you can call customer.help () without creating an instance of the
class. However, to call toString () you must create an instance of the cus-
tomer class as ThisCustomer. The code supplies data to the instance and
then uses ThisCustomer.toString () to display the data onscreen, as
shown in Figure 6-1.

@ Creating an Ohbject - Mozilla Firefox

Create Customer

Defines a customer.

Name: Adrian Watts Age: 22

Understanding Number

The Number object handles numeric data of all sorts for you. The section
on changing number formats in Chapter 4 shows the methods that you have
available for use with this object. Here’s a list of the properties that this
object provides:

v constructor: Displays a string showing the prototype used to define
the object. In this case, you see “function Number() { [native code] }”.

v MAX_VALUE: Displays the maximum value that the Number type can
hold, which is 1.7976931348623157e+308.

»* MIN_VALUE: Displays the minimum value that the Number type can
hold, which is 5e-324.

Chapter 6: Getting to Know the Standard JavaScript Objects 1 0 7

V¥ NEGATIVE_INFINITY: Represents negative infinity, the value that
occurs after an underflow. The text output of this property is -Infinity.

»” NaN: Represents a value that isn’t a number. The text version of this
property is NaN.

» POSITIVE_INFINITY: Represents positive infinity, the value that
occurs after an overflow. The text version of this property is Infinity.

v prototype: Provides the means for adding both properties and meth-
ods to an object.

Understanding String

You use the String object to work with all text in JavaScript. Because the
String object is called upon to perform so many different tasks, it has quite
an array of properties, methods, and HTML wrapper methods (code that is
used to perform complex tasks through a single call). You've already seen
some of the methods used in other areas of the book. The following sections
describe the properties, methods, and wrapper methods supported by the
String object.

Properties that interact with JavaScript data

String properties tell you about the characteristics of the strings. They're
akin to saying that the color of an apple is red, yellow, or green. Here’s the
list of String properties:

v constructor: Displays a string showing the prototype used to define
the object. In this case, you see “function String() { [native code] }”.
v length: Returns the length of the string in characters.

v prototype: Provides the means for adding both properties and meth-
ods to an object.

Methods that interact with JavaScript data

The area where the String object really shines is in the methods it provides
to manipulate data. Here’s a list of standard methods you use within applica-
tions to interact with JavaScript data:

v charAt (): Obtains the character located at the specified index.

v charCodeAt (): Obtains the Unicode value of the character located at
the specified index. The character value is the numeric equivalent of the
character. For example, the letter A is 65, but the letter a is 97.

v concat (): Creates a single string from two or more separate strings.

v fromCharCode (): Converts a Unicode value to a character. For exam-
ple, this method converts the number 65 to the letter A.

7 08 Part ll: Speaking the JavaScript Language

v indexOf (): Returns the first occurrence of a search string within a
source string as a number value. For example, if you search for the letter
e in Rested, this function returns a value of 1. You can also provide an
optional starting position within the source string to begin the search.

V* lastIndexOf (): Returns the last occurrence of a search string within
a source string as a numeric value. For example, if you search for the
letter e in Rested, this function returns a value of 4. You can also pro-
vide an optional starting position within the source string to begin the
search.

v match (): Searches for matches between a regular expression (see
the “Working with regular expressions” section, later in this chapter,
for details) within a source string and returns the matches as numeric
values.

» replace (): Replaces a match between a regular expression or search
string with the specified replacement value in a source string. When
working with a search string, only the first occurrence of the search is
replaced. For example, if you replaced the letter e in Rested with the
letter u, you'd see an output of Rusted.

v search (): Searches for matches between a regular expression within a
search string and returns the first match as a numeric value.

v slice(): Removes the specified portion of a source string and returns
that part as a new string. For example, if you start with the word Rested
and provide a start position of 0 and an end position of 4, you receive
Rest as output.

v split ():Divides a string into substrings based on a separator. For
example, if you begin with “This is a string.” and provide a separator of
“” (a space), the output is an array of four substrings: This, is, a, and
string.

V¥ substr () and substring (): Returns the specified substring within
a source string. You provide a starting point and optionally an ending
point. For example, if you start with the word Rested and supply a start-
ing point of 0 and an ending point of 4, either method returns Rest.

V¥ toLocaleLowerCase (): Changes all of the characters in a string to
lowercase versions while respecting lowercase rules for the current
locale. The locale is the person’s location or language. For example,
some countries and languages use a comma for the decimal point, but
other countries and languages use a period.

V¥ toLocaleUpperCase (): Changes all of the characters in a string to
uppercase versions while respecting the uppercase rules for the current
locale.

v toLowerCase (): Changes all of the characters in a string to lowercase
equivalents without regard to locale.

V¥ toUpperCase (): Changes all of the characters in a string to uppercase
equivalents without regard to locale.

Chapter 6: Getting to Know the Standard JavaScript Objects 1 09

»* valueOf (): Returns the primitive value of a string’s object. The primi-
tive value is the series of characters, rather than the object itself.

From a low level perspective, primitive values are stored on the stack,
and reference values (objects) are stored on the heap. Using primi-

tive values can have certain performance benefits, but using reference
values have specific flexibility benefits. You don’t need to use primitives
in most JavaScript applications, and a discussion of them is outside the
scope of this book. You can discover more about primitives at http: //
javascriptweblog.wordpress.com/2010/09/27/the-secret-
life-of-javascript-primitives/ and http://www.yaldex.
com/javascript_tutorial_2/LiB0022.html.

QQ,N\BER One of the issues that tend to cause problems for JavaScript developers
who’ve moved from another language is that JavaScript relies on zero-based
indexes. If you want to access the first letter in a string, for instance, you need
to use an index value of 0, not 1, as you might initially think. Many of the
String methods require that you provide indexes to tell the method what
data to access in the string, so the use of the correct index value is essential.

&

HTML wrapper methods

The String object is also called upon to create HTML output for display
onscreen. With this in mind, you also have access to a number of HTML
wrapper methods. These methods make it easier to create tags that you
require to display information onscreen. Here’s the list of HTML wrapper
methods:

v anchor (): Creates an anchor tag. You must supply the name of the
anchor tag as input. For example, if you have a string that contains
Rested and provide an anchor name of MyAnchor, you receive Rested as output.

v big (): Displays the string using a larger font.

» blink (): Displays the string as blinking text. The blink () function
doesn’t work with Internet Explorer, Chrome, or Safari.

v bold(): Displays the string using a bold font.

v fixed (): Displays the string using a fixed pitch font (of the type used
for source code on many sites).

v fontcolor (): Uses a specific color to display the text. You must supply
the font color as a specific hexadecimal number, such as FF0000; or a
color name, such as red; or with the rgb () function, such as rgb (255,
0, 0), where the arguments are for red, blue, and green.

v fontsize (): Displays the string using the specified font size. You must
supply a size between 1 and 7 as input. The precise font size will vary
between browsers.

v italics (): Displays the string using an italics font.

http://javascriptweblog.wordpress.com/2010/09/27/the-secret-life-of-javascript-primitives/
http://javascriptweblog.wordpress.com/2010/09/27/the-secret-life-of-javascript-primitives/
http://javascriptweblog.wordpress.com/2010/09/27/the-secret-life-of-javascript-primitives/
http://www.yaldex.com/javascript_tutorial_2/LiB0022.html
http://www.yaldex.com/javascript_tutorial_2/LiB0022.html

7 ’0 Part ll: Speaking the JavaScript Language

SMBER

v 1ink (): Displays the string as a link. You must provide the URL for
the link as input. For example, if you start with a string that contains
John's Blog and provide http://blog.johnmuellerbooks.com
as input, you receive <a href="http://blog.johnmuellerbooks.
com">John's Blog as output.

v small (): Displays the string using a smaller font.

V¥ strike (): Displays the string using a strikethrough font.
v sub (): Displays the string as a subscript.

v sup (): Displays the string as a superscript.

Understanding Date

Dates are an essential part of JavaScript programming because they make
it possible to mark the passage of time. The Date data type includes both
date and time values, so unlike many other programming languages, there’s
no Time data type in JavaScript. Because dates and times come in so many
forms, the Date data type includes a wealth of methods. The properties are
pretty much standard, as shown in the following list:

v constructor: Displays a string showing the prototype used to define
the object. In this case, you see “function Date() { [native code] }”.

V¥ prototype: Provides the means for adding both properties and meth-
ods to an object.

The Date data type methods focus on presentation for the most part. The
way in which your application presents the date or time is important because
different groups expect to see these values a certain way. The following list
provides an overview of the Date methods:

v getDate (): Obtains the day of the month as a numeric value from 1
through 31. See the “Getting today’s date right” section, later in this
chapter, for an example of how this output appears.

V¥ getDay (): Obtains the day of the week as a numeric value from 0
through 6.

JavaScript returns many date and time elements as zero-based values.
Exercise care when creating an application to account for the difference
between the way JavaScript views the value and the way humans view
it. For example, humans view day of the week values as being from 1
through 7, not 0 through 6 as JavaScript views them.

V¥ getFullYear (): Obtains the year as a four-digit value. See the “Getting
today’s date right” section, later in this chapter, for an example of how
this output appears.

Chapter 6: Getting to Know the Standard JavaScript Objects

NNG/

}Q\

JavaScript used to include a getYear () method. This method is depre-
cated, which means that current versions of JavaScript still likely sup-
port getYear (), but that support for this method won’t appear in
future versions of JavaScript. Always use the getFullYear () method
when creating new applications to ensure your application will continue
to work with newer browsers.

V¥ getHours (): Obtains the hours as a numeric value from 0 through 23.
See the “Getting today’s date right” section, later in this chapter, for an
example of how this output appears.

V¥ getMilliseconds (): Obtains a three-digit millisecond value from 0
through 999. See the “Getting today’s date right” section, later in this
chapter, for an example of how this output appears.

V¥ getMinutes (): Obtains the minutes as a numeric value from 0 through
59. See the “Getting today’s date right” section, later in this chapter, for
an example of how this output appears.

»* getMonth (): Obtains the month as a numeric value from 0 through 11.
See the “Getting today’s date right” section, later in this chapter, for an
example of how this output appears.

V¥ getSeconds (): Obtains the seconds as a numeric value from 0 through
59. See the “Getting today’s date right” section, later in this chapter, for
an example of how this output appears.

V¥ getTime (): Specifies the number of milliseconds that have passed
since January 1, 1970 Universal Time Coordinated (UTC). There are
86,400,000 milliseconds in a day (24 hours/day x 60 minutes/hour x 60
seconds/hour x 1000 milliseconds/second).

Some Date methods specify UTC output, but others, such as get-

Time (), rely on UTC without specifying it as part of their name. You
may also know UTC as Greenwich Mean Time (GMT). Both terms specify
a single starting point for time values used throughout the world. Having
a single, coordinated time source is incredibly important to synchronize
business and other activities. You can always obtain the current UTC/
GMT time value at http: //www.worldtimeserver.com/current_
time_in_UTC.aspx. If you want to know all the technical specifics
about UTC (including some minor differences with GMT), read the arti-
cle entitled “Coordinated Universal Time (UTC) Explained” at http://
www . timeanddate.com/time/aboututc.html.

V¥ getTimezoneOffset (): Obtains the time difference between UTC time
and local time in minutes.

V¥ getUTCDate (): Obtains the UTC day of the month as a numeric value
from 1 through 31.

V¥ getUTCDay () : Obtains the UTC day of the week as a numeric value
from 0 through 6.

V¥ getUTCFullYear (): Obtains the UTC year as a four-digit value.

111

http://www.worldtimeserver.com/current_time_in_UTC.aspx
http://www.worldtimeserver.com/current_time_in_UTC.aspx
http://www.timeanddate.com/time/aboututc.html
http://www.timeanddate.com/time/aboututc.html

’ ’2 Part ll: Speaking the JavaScript Language

WING/

V¥ getUTCHours () : Obtains the UTC hours as a numeric value from 0
through 23.

V¥ getUTCMilliseconds (): Obtains a three-digit UTC millisecond value
from 0 through 999.

V¥ getUTCMinutes (): Obtains the UTC minutes as a numeric value from 0
through 59.

V¥ getUTCMonth () : Obtains the UTC month as a numeric value from 0
through 11.

V¥ getUTCSeconds () : Obtains the UTC seconds as a numeric value from 0
through 59.

v parse (): Changes the date string that you pass to the method into a
numeric value that represents the number of milliseconds that have
passed since midnight, January 1, 1970. The act of parsing a string
always converts it to another data type — normally a type that the pars-
ing class can easily understand. The parse () method is normally used
directly with the Date class as a static method. See the “Understanding
Object” section of the chapter for details on static and instance meth-
ods. This is a static method, which means you call it directly from the
Date class, rather than creating an instance of the Date class to use it.

v setDate (): Sets the day of the month as a numeric value from 1
through 31.

V¥ setFullYear (): Sets the year as a four-digit value.

JavaScript used to include a setYear () method. This method is depre-
cated, which means that current versions of JavaScript still likely sup-
port setYear (), but support for this method won’t appear in future
versions of JavaScript. Always use the setFullYear () method when
creating new applications to ensure your application will continue to
work with newer browsers.

V¥ setHours (): Sets the hours as a numeric value from 0 through 23.

V¥ setMilliseconds (): Sets a three-digit millisecond value from 0
through 999.

V¥ setMinutes (): Sets the minutes as a numeric value from 0 through 59.
V¥ setMonth (): Sets the month as a numeric value from 0 through 11.
V” setSeconds (): Sets the seconds as a numeric value from 0 through 59.

V¥ setTime (): Modifies the date and time by adding or subtracting a spe-
cific number of milliseconds from a value that starts at January 1, 1970.

V¥ setUTCDate (): Sets the UTC day of the month as a numeric value from
1 through 31.

V¥ setUTCFullYear (): Sets the UTC year as a four-digit value.

V¥ setUTCHours () : Sets the UTC hours as a numeric value from 0
through 23.

Chapter 6: Getting to Know the Standard JavaScript Objects

NG/
S

V¥ setUTCMilliseconds (): Sets a three-digit UTC millisecond value from
0 through 999.

V¥ setUTCMinutes (): Sets the UTC minutes as a numeric value from 0
through 59.

V¥ setUTCMonth () : Sets the UTC month as a numeric value from 0
through 11.

V¥ setUTCSeconds (): Sets the UTC seconds as a numeric value from 0
through 59.

V¥ toDateString (): Outputs the date portion of a Date object as a for-
matted string. See the “Getting today’s date right” section, later in this
chapter, for an example of how this output appears.

V¥ toISOString (): Outputs the date and time of a Date object in ISO
format. Typical output is 2012-11-26T18:26:32.976Z where the year,
month, and day appear first, followed by the UTC hours, minutes,
second, and milliseconds.

¥ £toJSON (): Outputs the date and time of a Date object in
JavaScript Object Notation (JSON) format. Typical output is
2012-11-26T18:26:32.976Z, where the year, month, and day appear first,
followed by the UTC hours, minutes, second, and milliseconds.

V¥ toLocaleDateString (): Outputs the date portion of a Date object
as a formatted string that takes the user’s locale into account. See the
“Getting today’s date right” section, later in this chapter, for an example
of how this output appears.

V toLocaleTimeString (): Outputs the time portion of a Date object
as a formatted string that takes the user’s locale into account. See the
“Getting today’s date right” section, later in this chapter, for an example
of how this output appears.

V¥ toLocaleString (): Outputs both the date and time portions of a Date
object as a formatted string that takes the user’s locale into account.
See the “Getting today’s date right” section, later in this chapter, for an
example of how this output appears.

V¥ toString (): Outputs both the date and time portions of a Date object
as a formatted string.

V¥ toTimeString (): Outputs the time portion of a Date object as a for-
matted string. See the “Getting today’s date right” section, later in this
chapter, for an example of how this output appears.

V¥ toUTCString (): Outputs both the date and time portions of a Date
object as a formatted string that reflects UTC time, rather than local time.

JavaScript used to include a toGMTString () method. This method
is deprecated, which means that current versions of JavaScript still
likely support toGMTString (), but that support for this method won’t
appear in future versions of JavaScript. Always use the toUTCString ()

113

7 ’4 Part ll: Speaking the JavaScript Language

A\\S

method when creating new applications to ensure your application will
continue to work with newer browsers.

v UTC () : Outputs the number of milliseconds that have passed since
January 1, 1970 Universal Time Coordinated (UTC). This is a static
method, which means you call it directly from the Date class, rather
than creating an instance of the Date class to use it.

v valueOf (): Outputs the number of milliseconds that have passed since
January 1, 1970. The result is a native type rather than an object.

It isn’t always possible to create date or time output that precisely matches
your needs, so Date provides methods such as getDay () and getHours ()
that provide values you can string together to create custom output. Because
these values are Number types, you also have access to all of the Number
properties and methods when creating output. In addition, you can use

these values to perform calculations of various sorts in your application.
Consequently, these methods make it possible to create applications that
can view the passage of time in all sorts of ways.

Understanding RegExp

Regular expressions rely on the RegExp object. The focus of this object is

a combination of patterns, which define the data you want to find, and modi-
fiers, which determine how you want to find the data. You use regular expres-
sions in a number of ways, and this book includes a number of examples of
them. (See the simple example in the “Working with regular expressions”
section, later in this chapter, as a starting point.) A regular expression makes
it possible to perform precise wildcard searches on data, which makes them
a little complex but also provides the user with incredible flexibility. The fol-
lowing sections break the regular expression into two parts: the search term
features and the object elements.

Using the RegExp search term features

A search expression can consist of a number of elements. The most common
element is a simple string. If you want to search for Hello in the text, you
simply type Hello, and the application performs the search. You can include
any string, or part of a string, as part of a search.

Sometimes you need to find a range of values. You don’t know the precise
value, but you do know that the value appears within a specific list of char-
acters or terms. When you encounter this situation, you can use brackets to
define the range of values you're interested in seeing. You can combine these
bracketed values with any other regular expression values. When working
with brackets, you specify the value of a single character by using the brack-
eted range. The following list describes the kinds of values that you can place
within brackets:

<MBER
é"\&

Chapter 6: Getting to Know the Standard JavaScript Objects

[abc]: Locates any character that appears within the brackets.
[~abc]: Locates any character that doesn’t appear within the brackets.
[0-9]: Locates any digit between 0 and 9.

[A-Z]: Locates any uppercase character in the range A through Z.

[a-z]: Locates any lowercase character in the range a through z.

A W W W W WY

[A-z]: Locates any character in the range from uppercase A through
lowercase z.

v (red|blue|green): Finds any of the specific words or terms speci-
fied in the list. Notice that this particular search expression appears in
parenthesis and the terms are separated by the pipe character (|).

When working with search expressions, there are no absolutes. For example,
you can define a search expression that uses only part of a range, such as
[A-C] to find the letters A through C. A character set need not be continu-
ous. For example, you can specify the set [aeiou] to locate vowels. It pays to
experiment with regular expressions to determine what’s possible and what
won’t work with the RegExp object. Developers have come up with interesting
solutions to problems in the past through simple experimentation.

In some cases, you need to specify special characters as part of the search,
but your keyboard lacks the capability to type those characters. For example,
you may want to find a specific term but only when it appears at the end of

a line, so you need to include an end-of-line character as part of the search
expression. Meta characters provide a means of telling RegExp that you
want to search for these special characters. The following list contains the
standard meta characters that RegExp understands. (Notice that you use a
backslash with the vast majority of these characters, rather than the usual
forward slash.)

v .:Represents any single character except an end-of-line character.

v \w: Represents an alphabetic character normally associated with words.
v \W: Represents a character that isn’t associated with words.

1 \d: Represents a digit — the numbers 0 through 9.

» \D: Represents a non-digit character.

v \s: Represents a whitespace character, including the tab, space, form
feed, newline, and carriage return characters.

»” \S: Represents a non-whitespace character.
1 \b: Search at the beginning or end of a word.

v \B: Search for a character that doesn’t appear at the beginning or end of
a word.

115

’ ’6 Part ll: Speaking the JavaScript Language

»” \0: Represents the null (NUL) character often used to terminate strings.
» \n: Represents the newline character.

1 \f: Represents the form feed character.

v \r: Represents the carriage return character.

v \t: Represents the tab character.

v \v: Represents the vertical tab character.

v \xxx: Find the character specified by the octal number xxx. For exam-
ple, the letter Ais \101.

v \xdd: Find the character specified by the hexadecimal number xx. For
example, the letter A is \x41.

v \uxxxx: Find the Unicode character specified by the hexadecimal
number xxxx. For example, the letter A is \u0041.

Defining how many of something you want to find is also important. You
can create search expressions that tell RegExp to find any number of a spe-
cific character in the source string. These expressions are called gquantifiers
because they specify how many of something to find. A quantifier expresses
how it works with the value n, where n is any character. You replace n with
the search expression you want to find. The following list describes the
RegExp quantifiers:

v n+: Looks for any string that contains at least one n.
v n*: Looks for any string that contains zero or more occurrences of n.

v n?: Looks for any string that contains zero or one occurrence of n.

v n{X}: Looks for a string that contains a sequence of X n’s. For example,
if you want to search for five A’s in a string, you type A{5}.

v n{X, Y}: Looks for a string that contains a sequence of n’s in the range
of Xto Y. For example, if you want to search for a range of four through
six A’s in a string, you type A{4,6}.

v n{X, }: Looks for a string that contains at least X number of n’s. For
example, if you want to find a sequence of at least five A’s in a string,
you type A{5, }.

v n$: Searches for n at the end of the string.
v ~n: Searches for n at the beginning of the string.
v ?=n: Finds a string that’s followed by a specific string n.

v 2! n: Finds a string that isn’t followed by a specific string n.

Chapter 6: Getting to Know the Standard JavaScript Objects 1 ’ 7

Using the RegExp search modifiers

Search modifiers define how RegExp performs a search. For example, you
can tell RegExp that you want to search for all instances of a search expres-
sion, rather than just one instance. The following list describes the search
modifiers:

v 1i: Specifies that you want to perform a case-insensitive search where
Abc is treated the same as aBc.

v g: Performs a global search where the search returns all possible
matches, rather than returning just the first match.

v m: Searches on all of the lines in a search string that contains end-of-line
characters rather than searching just the first line.

Using the RegExp properties and methods

As with any other JavaScript object, the RegExp object provides access to
certain properties. The following list describes the properties you get with
RegExp:

v global: Returns true when the object has the g modifier set.
» ignoreCase: Returns true when the object has the 1 modifier set.

»* lastIndex: Specifies the index at which to start the next search.
Remember that the index is zero-based, so if you want to start searching
at the second character, you provide a value of 1.

» multiline: Returns true when the object has the m modifier set.

v source: Contains the search expression used by RegExp.

RegExp also defines a number of useful methods. These methods help you
interact with the regular expression itself, not the data that the regular expres-
sion is used to search. The following list describes the RegExp methods:

v exec (): Performs a test of the search expression against the search
string and returns the result.

v test (): Performs a test of the search expression against the search
string and returns true when the search expression appears within the
search string.

Q\\x\Nt’.;! JavaScript used to include a compile () method. This method is depre-
Sy cated, which means that current versions of JavaScript still likely support
compile (), but support for this method won’t appear in future versions of
JavaScript. There’s no need for the compile () method because compilation
occurs automatically when you create the RegExp object.

7 ’8 Part ll: Speaking the JavaScript Language

Introducing the String Object

Strings are what most humans equate to computer data because people see
output onscreen as strings. Fortunately, JavaScript provides a wealth of ways
in which to interact with strings. The following sections provide two useful
techniques for looking for information in strings.

Manipulating and searching strings

Many string searches are simple. A user looks for a particular word or other
data in a string, and your application finds it. The following example shows
one technique for performing a simple search. (You can find complete code
for this example in the \Chapter 06\Strings folder of the downloadable
code as SearchString.HTML.)

<script language="JavaScript">
// Define a global search string.
var SearchString = "This is the search string!"

function FindString ()
{
// Obtain the value the user wants to find.
var FindvValue =
document .getElementById("SearchString") .value;

// Perform the search.
var Result = SearchString.indexOf (Findvalue) ;

// Display an appropriate result.
// Check for a blank input first.
if (Result == 0)

{

document .getElementById ("Result") .innerHTML =
"You must provide an input value!";

}

// Check for a result that doesn't exist next.
else if (Result == -1)
{
document .getElementById ("Result") .innerHTML
"The search string doesn't exist.";

3

// Display the location information.
else

{

Chapter 6: Getting to Know the Standard JavaScript Objects 1 ’ 9

document .getElementById ("Result") .innerHTML =
'The search string "' + FindValue +
'" appears at character ' + Result;
}
}

</script>

In this example, the code begins by creating a global variable that contains a
search string the user can interact with. You could change this string to any-
thing you want for experimentation purposes.

The FindString () function is connected to the Find It button shown in
Figure 6-2. The first task is to obtain the value that the user wants to find and
place it in Findvalue. The example then uses the index0Of () function on
SearchString to locate Findvalue and place the position in Result

@ Searching a Strin
B View

| . .
) Searching a String
Figure 6-2:
Searching This 1s the origimal string: This is the search string!
strings . .
Type a search string: the
helps users

find infor- The search string "the” appears at character §

mation.
|

The second task is to interpret the results. The example looks for one of
three values in Result. When Result is 0, the user hasn’t provided any
input, and the example asks the user to provide some. When Result is -1,
the user has supplied a search string that doesn’t appear in the original
string, and the example lets the user know that the search string wasn’t
found. When Result is a positive value, the application displays the position
of the search string in the original string onscreen as shown in Figure 6-2.

Working with reqular expressions

Not all searches are simple. Sometimes a user needs to perform a complex
search based in a regular expression — one in which there are wildcard
search terms. The following example shows a simple way to implement such
a search. (You can find complete code for this example in the \Chapter 06\
Strings folder of the downloadable code as RegularExpressions.HTML.)

7 20 Part ll: Speaking the JavaScript Language

<script language="JavaScript">
// Define a global search string.
var SearchString =
"Use a regular expression to search a string!"

function FindString ()
{
// Obtain the value the user wants to find.
var FindValue =
document .getElementById("SearchString") .value;

// Obtain the modifiers the user wants to use.
var Modifiers =
document .getElementById ("Modifiers") .value;

// Create a search pattern.
var Pattern = new RegExp (FindValue, Modifiers);

// Perform the search.
document .getElementById ("Result") .innerHTML =
SearchString.match (Pattern) ;

}
</script>

The example begins by defining a global search string. It then defines the
FindString () function that’s used to perform the actual search. Compare
this version of FindString () with the FindString () function in the
preceding section and you see they have some similarities, but that this ver-
sion’s much shorter (even though it’s far more flexible).

The FindString () function obtains the search string and places it in
Findvalue. It then obtains any search modifiers and places them in
Modifiers. The example creates a new RegExp object, Pattern, that's a
combination of the search string and search modifiers.

At this point, the code uses the match () function on SearchString to pro-
duce a result. The output is actually an array of values that you could use to
locate each incidence of the search term in the search string. The array ele-
ments appear onscreen separated by commas, as shown in Figure 6-3. Notice
that this search uses a bracketed regular expression for input. In addition,
the search modifiers appear in the second field after the search expression.
This example is fully capable of using any combination of regular expression
elements, so try various combinations to see how they work for you.

Chapter 6: Getting to Know the Standard JavaScript Objects 1 2 ’

@ Using Regular Expressions - Mozilla Firefox
"EiliEdR, Vie cokinake; T

| T. .
) Using Regular Expressions
Figure 6-3:
Use reg ular This 1s the original string: Use a regular expression to search a string!
expressions Type a search string: [a-z]s ig
to perform
power | Usss
searches.
|

Working with the Date Object

Dates are used in all sorts of ways, but the most common techniques you
must master in JavaScript applications are formatting and time span calcula-
tion. People want dates and times formatted in a way they understand. In
addition, dates and times are most useful when used to mark the passage of
time, also known as a time span. The following sections show one example of
each technique.

Getting today’s date right

JavaScript provides standardized methods of displaying dates. You can
either use a standard approach for everyone or display time based on a per-
son’s locale. When none of the standard display techniques work, you can
build your own custom display. The following example shows some of the
most common techniques used to display a date, time, or both. (You can find
complete code for this example in the \Chapter 06\Dates folder of the
downloadable code as GetDate . HTML.)

<script language="JavaScript">

var Today = new Date() ;

document .write("<p>Full Date/Time: " +
Today.toLocaleString() + "
");

document .write ("Full Date: " +
Today.toLocaleDateString () + "
");

document .write("Date Only: " +
Today.toDateString () + "
");

document .write ("Full Time: " +

’ 22 Part ll: Speaking the JavaScript Language

Today.toLocaleTimeString () + "
");

document .write("Time Only: " +
Today.toTimeString () + "</p>");
document .write ("<p>Custom Date (m/d/y): " +

(Today.getMonth () + 1) + "/" +
Today.getDate() + "/" +
Today.getFullYear() + "
");

document .write("Custom Time (h:m:s:ms): " +

Today.getHours () + ":" +

Today.getMinutes () + ":" +

Today.getSeconds () + "." +

Today.getMilliseconds () + "</p>");

</script>
éal\BEB The example begins by creating a Date object, Today. Whenever you call the
& Date () constructor without any input value, you get the current date and

time. Some languages have a special method or property you call to obtain the
current date and time. JavaScript makes things simple by using the technique
shown.

In many cases, all you need to do is call a particular method, such as
toLocaleString (), to obtain the desired result. However, sometimes you
need to build a custom presentation. The two custom examples — Custom
Date (m/d/y) and Custom Time (h:m:s:ms) — show how to create a custom
date or custom time output using functions such as getMonth (). Notice
that when working with getMonth (), you must add 1 to the value because
getMonth () outputs its information in the range 0 through 11. This is an
example of a situation where you must adjust the JavaScript output to meet a
user’s needs. Figure 6-4 shows typical output for this example.

L 91oWOLX WTH)

| Today's Date/Time

Figure 6-4:
Full Date/Time: Monday. November 26, 2012 3:10:31 PM
. Date and Full Date: Monday. November 26, 2012
time output | Dare Onty: Mon Nov 26 2012
formatis | Full Time: 3:10:31 PM
importa nt Time Only: 15:10:31 GMT-0600 (Central Standard Time)

for user Custom Date (m/d/y): 11/26/2012
under- Custom Time (h'm:s'ms): 15:10:31.257
standing.
|

<MBER
é‘,*

Chapter 6: Getting to Know the Standard JavaScript Objects 1 23

Calculating differences in dates

Determining the time span between events is an important part of many
applications today. Imagine trying to quantify productivity without knowing
a time span in which work is completed. Fortunately, JavaScript makes deter-
mining a time span relatively easy. All you need to do is subtract one date

or time from another date or time to determine the interval as shown in the
following example. (You can find complete code for this example in the
\Chapter 06\Dates folder of the downloadable code as DateDifference.
HTML.)

<body>
<hl>Difference Between Dates</hl>
<script language="JavaScript">
var ThisDate = new Date("2/1/2013");
var ThatDate = new Date("3/1/2013");
document .write (

"Difference between ThisDate and ThatDate: " +
((ThatDate - ThisDate) / 86400000) + " Days");
</script>

<hl>Difference Between Times</hl>
<script language="JavaScript">
var ThisTime = new Date (2013, 2, 1, 2, 30);
var ThatTime = new Date (2013, 2, 1, 2, 51);
document .write (
"Difference between ThisTime and ThatTime: " +
((ThatTime - ThisTime) / 60000) + " Minutes");
</script>
</body>

The example creates two date values and two time values. Each of the values
actually contains both date and time. The application uses the Date object
one way or the other, but that’s the application’s view of the object, rather
than a determination the object has made. In fact, you can’t create a time
value without also defining a date as part of it.

The example shows two techniques for creating a Date object. You can supply
a string or individual values as shown. You can also create a Date object by
providing the number of milliseconds since midnight, January 1, 1970.

To determine the time span, you simply subtract one value from the other.
The only problem is that the output is in milliseconds and most people don’t
understand milliseconds. The example shows how to convert a time span to
days or minutes so that you see the easily understood output in Figure 6-5.

’ 24 Part ll: Speaking the JavaScript Language

@ Obtaining the Difference Between Dates and Times - Mozilla Firefox
Ei ‘Bookime; To. Wl

= | Difference Between Dates
Figure 6-5:
Performing
timdea:;i,ﬁ;:f Difference Between Times
lations is an
important
part of many
applications.
|

Difference between ThisDate and ThatDate: 28 Days

Difference between ThisTime and ThatTime: 21 Minutes

Partlil

Meeting JavaScript's
Control Structures

ol
(]

L=~ T e R EA)

2
1216
1015202530354045 30
12 18243036 42 48 54 60
1421283542495663 70
1624 32 40 48 56 64 72 80
9 182736453463 728190
1010203040 30 60 70 80 90 100

= LR B L

LT -I - R R - Y A e
2]

Create custom changes to an existing class such as String by using
web the techniques described athttp: //www.dummies .com/extras/
extras pe Sprogrammingwithjavascript.

http://www.dummies.com/extras/html5programmingwithjavascript
http://www.dummies.com/extras/html5programmingwithjavascript

In this part . . .

Discover how to use functions to create neater applications
that have fewer errors and are easier to maintain.

Create applications that can make decisions of various sorts,
which improves overall application flexibility.

See how to repeat a set of steps as needed to complete a task
a specific number of times.

Understand how errors creep into applications, how to
discover them, and what to do to fix them.

Chapter 7
Using Functions

In This Chapter

Working with built-in functions

Using the Math object functions

Creating your own functions
Understanding how to create private data

n previous chapters, you see a multitude of both built-in and custom func-

tions, but you don’t really work through all of the intricacies of functions.
In addition, JavaScript offers far more in the way of functions than the few
you see in earlier chapters. This chapter focuses on the JavaScript function.
It begins by introducing you to more built-in functions, especially those pro-
vided by the Math object. After that, you begin creating your own custom
functions.

This chapter introduces you to some new concepts when it comes to func-
tions. For example, you discover the best time to separate code into a new
function rather than keeping it part of an existing function. You also find
some techniques for passing both required and optional parameters (argu-
ments) to functions and returning data to the caller.

Perhaps the most controversial topic in the chapter is using private data
with JavaScript. Some developers are of the opinion that JavaScript doesn’t
support private data, but it’s possible to create private data so that you can
create objects that have true encapsulation. However, the process isn’t as
straightforward as simply declaring variables private, which is why you really
do need to read at least the last part of this chapter — even if you're already
comfortable using JavaScript functions.

Using the Built-In Functions

In previous chapters, you access a number of built-in functions for
JavaScript, including the alert () and confirm() functions. Along with
these two functions is a third function, prompt (), which lets you ask the
user for written input. As with the confirm() function, you provide a text

7 2 8 Part Ill: Meeting JavaScript's Control Structures

prompt to ask the user to provide a value. On return, you set the output of
the function equal to the prompt () function and use the data in your appli-
cation. The section on using the default option in Chapter 8 describes how
to use the prompt () function.

Chapter 5 introduces you to working with objects of various sorts, includ-
ing the nodes that are used to create a JavaScript document. The section on
using JavaScript objects in Chapter 5 demonstrates techniques you use to
add new elements to a document. In Chapter 11, you discover how the func-
tions associated with the JavaScript document work in more detail.

Chapter 6 introduces you to a wealth of built-in functions in the form of
object methods. All of these methods help you perform specific tasks with
certain types of data. Using these methods makes it easier for you to create
robust applications. Of all the methods provided by objects, these methods
are the most common and likely the most important for many situations:

v length () : Returns the number of something. For example, when work-
ing with a string, 1ength () returns the number of characters in the
string. Likewise, when working with an array, length () returns the
number of elements in the array. This method also appears as a prop-
erty in some cases.

V¥ toLocaleString (): Outputs the value of an object as a locale-specific
string. For example, when the locale uses a comma for the decimal
point, the viewer will see a comma, rather than a period, even if you use
a period in your code. It’s essential that you provide this support for
people from other countries that visit your site.

Simply displaying data with locale in mind doesn’t perform any data con-
version. For example, the strings you create won’t suddenly appear in
French if you natively speak English. There’s nothing magic about locale-
specific methods. All that these methods do is change the presentation
of the data as you provide it.

V¥ toString (): Outputs the value of the object as a string. This method is
often used for display purposes.

v valueOf (): Returns a native version of the object value. You need this
method in situations where an object could cause problems. For exam-
ple, when saving data to disk, you want the value, not the object, stored.

JavaScript also includes the concept of global functions. These functions are
available without regard to any object from any place you use JavaScript on
a page. The following list provides an overview of the most common global
functions:

Chapter 7: Using Functions 1 29

»* decodeURI () : Decodes a Uniform Resource Identifier (URD).

WBER Encoding replaces whitespace characters, such as a space, with
whitespace equivalent values, such as %20. In addition, Unicode charac-
ters that would normally cause parsing problems, such as those with
diacritical marks, are replaced with their Unicode equivalents. You can
see a list of common URL encoded characters at http: //www.
degraeve.com/reference/urlencoding.php.

ALSTy, v decodeURIComponent (): Decodes a URI component, rather than the
“ entire URIL.

URIs normally have between three or five standard components:

e Protocol: The set of transport rules used to access the resource,
such as HTTP, HTTPS, FTP, SMTP, or NNTP.

¢ Host: The name of the server used to provide access to the
resource, such as blog. johnmuellerbooks.com.

e Port number: The port used to access the resource. In general, you
don’t provide this component because most sites use standard
ports, which are assumed by the browser. For example, HTTP
relies on port 80 for communication. When the server uses port 80,
you don’t need to include the port number as part of the URI.

e Path: The fully defined location of the resource on the server. In
some cases, you don’t provide a path, which means that the server
provides the resource found on the default path.

® Query string: Name and value pairs that define additional informa-
tion required to obtain the resource you want on the server.

v encodeURI () : Encodes a URL

V¥ encodeURIComponent (): Encodes a URI component rather than the
entire URI.

V¥ escape (): Encodes a string using the same techniques used for a
URL For example, escape ("This string is encoded!") outputs
This%20string%20is%20encoded%21.

v eval (): Accepts a string that contains a script and then executes the
string content as a script. Many developers use this function to create
V?‘“\NG! self-modifying applications that provide good flexibility.
$ Using the eval () function in your JavaScript application is an incredi-
bly bad idea for the following reasons:

¢ Using evaluated code opens your application to potential security
problems through injection attacks.

¢ Debugging evaluated code is incredibly hard because none of the
normal debugging tools will work.

¢ Evaluated code runs more slowly because the browser can’t com-
pile and then cache it.

http://www.degraeve.com/reference/urlencoding.php
http://www.degraeve.com/reference/urlencoding.php

’30 Part Ill: Meeting JavaScript's Control Structures

v isFinite(): Returns true when a value is a finite, legal number.
V¥ isNaN (): Returns true when a value is an illegal number.

v Number () : Changes an object’s value to a native number.

V¥ parseFloat (): Parses a string and returns a floating point number.
V» parselnt (): Parses a string and returns an integer.

v String (): Converts an object’s value to a string. This function provides
the same output as the toString () method provided by most objects.

v unescape () : Decodes an encoded string by using the same techniques
used for a URIL.

Working with the Math Object

The Math object is a special sort of object in JavaScript — you use it to
access math-related functionality, rather than create new objects. This differ-
ence with objects such as Number or String is the reason that Math is cov-
ered in this chapter rather than Chapter 6, where you see the other objects
discussed.

As with any JavaScript object, you can create an instance of a Math object.
However, you often use Math without creating an instance of it. For example,
you may simply need to add the value of pi to a calculation, in which case
you can simply call on the appropriate property. The following list describes
the Math object properties, all of which are available as static values (with-
out creating an instance):

v E: Provides the value of Euler’s number, which is approximately 2.718.
You can read more about Euler’s number at http://www.mathsisfun.
com/numbers/e-eulers-number.html. (Many people know that this
is the number e, which is the base of natural logarithms.)

v LN2: Provides the value of the natural logarithm of 2, which is approxi-
mately 0.693.

v LN10: Provides the value of the natural logarithm of 10, which is approx-
imately 2.302.

» LOG2E: Provides the value of the base-2 logarithm of the number e,
which is approximately 1.442.

v L,OG10E: Provides the value of the base-10 logarithm of the number 3,
which is approximately 0.434.

v PI: Provides the value of pi (also shown as &), which is approximately
3.14.

http://www.mathsisfun.com/numbers/e-eulers-number.html
http://www.mathsisfun.com/numbers/e-eulers-number.html

Chapter 7: Using Functions 13 ’

» SQRT1_2: Provides the value of the square root of 4, which is approxi-
mately 0.707.

v SQRT2: Provides the value of the square root of 2, which is approxi-
mately 1.414.

The Math object also provides access to a number of methods. As with the
properties, all of these methods are static, which means you can access
them without creating a Math instance. The following list describes the Math
object methods:

V¥ abs (x): Calculates the absolute value of x.

V¥ acos (x): Calculates the arccosine of x in radians. You can read more
about trigonometric values at http: //math2.org/math/algebra/
functions/trig/index.htm.

V¥ asin (x): Calculates the arcsine of x in radians.

V¥ atan (x): Calculates the arctangent of x as a numeric value between
—n/2 and 1t/2 radians.

V¥ atan?2 (y, x): Calculates the arctangent of the quotient of y divided by x.
v ceil (x): Rounds the value of x up to the nearest integer value.

V¥ cos (x): Calculates the cosine of x, where the value of x is in radians.

¥ exp (x): Calculates the value of e (e to the power of x).

V¥ floor (x):Rounds the value of x down to the nearest integer value.

v log (x): Calculates the natural logarithm (base €) of x.

vV max(x,vy,z,...,n): Determines the number with the highest value and
returns that value.

Vv min(x,v, z, ...,n):Determines the number with the lowest value and
returns that value.

V¥ pow (x, y) : Calculates the value of x to the power of y.
v random () : Provides a random number between 0 and 1.

»* round (x): Rounds the value of x to the nearest integer value (either up
or down as needed).

V¥ sin (x): Calculates the sine of x, where the value of x is in radians.
V¥ sqrt (x): Calculates the square root of x.

V* tan (x): Calculates the tangent of an angle.

http://math2.org/math/algebra/functions/trig/index.htm
http://math2.org/math/algebra/functions/trig/index.htm

’32 Part Ill: Meeting JavaScript's Control Structures

Building Custom Functions

A\\S

Just about any time you work with JavaScript, you create functions. In fact,

if you've typed the code from previous chapters in the book, you've already
created a number of functions. However, the following section details why
and how you create functions in greater depth. The essential issue to remem-
ber is that JavaScript relies heavily on well-crafted functions to perform any
significant level of work. (You can find complete code for the examples in the
following sections in the \Chapter 07\Functions folder of the download-
able code as UsingFunctions.HTML.)

When working through these functions, you may find that you encounter
some browser idiosyncrasies. For example, Internet Explorer 10 displays a
notice at the bottom of the window asking whether you want to execute the
code. You see the message for only a few seconds before it disappears, so you
need to quickly tell Internet Explorer 10 that it’s acceptable to run the script.
Otherwise, the example will fail to work. Always check for browser messages
after you load the example to determine whether you need to take additional
action to run the example in that particular browser.

Reducing work using functions

Using functions helps reduce the work you must perform when creating an
application. Functions help you reduce your workload in the following ways:

1 Code reuse: By encapsulating a specific task, you can reuse it as often as
needed.

v Ease of understanding: Using functions creates a number of black boxes
that reduce the complexity of the programming task.

v Error trapping: It’s usually easier to trap erroneous output from an
entire function than it is to check each step within that function for
potential problems.

v Debugging: When you know that a problem in your application lies in
a certain location, it’s helpful to get to that point in the application as
quickly as possible by bypassing the code you know works.

v~ Ease of coding changes: Cutting and pasting the same code in multiple
locations makes it nearly impossible to make changes consistently or
completely.

There are other reasons to use functions, but the preceding are the reasons
that most developers cite for using them. When you consider the issues that
functions resolve, it becomes obvious that they’re incredibly useful.

Chapter 7: Using Functions 133

Unfortunately, some developers go overboard and use too many functions,

making it harder to understand the code or follow what the developer

intends to do. Creating useful functions that actually reduce your workload
e means thinking through the application process carefully.

The following guidelines help you determine when code should go into a sepa-

rate function:

v Create functions that perform a complete task rather than only part of
a task.

v Consider creating a new function when the code you've written takes up
more than a single page — a function is easier to understand when you
can see all of the code on a single screen.

v Define new functions with code reusability in mind. Functions should
provide enough flexibility to serve a number of callers.

v Think of functions as mini-apps — the function should perform one task
really well rather than trying to perform multiple tasks poorly.

QQ,N\BER Never create a new function that replicates the behavior of an existing func-
Y tion or a built-in function. It pays to verify that the function is actually needed
before you spend time writing it. Reinventing the wheel will almost certainly
cost you time, and you may not even get a superior function for your efforts.

Passing parameters to functions

You pass parameters (or arguments) to functions to modify their output in
some way. Behavior modification can take many forms, but the idea is to add
flexibility to the function in a way that doesn’t create a complex environment.
The function still performs a single task, but now it can perform that single
task in a number of ways or with various data. The following example shows
how a function might work with a parameter:

function TestParams (param)
{
// Output the param onscreen.
document .getElementById ("Result") .innerHTML =
"The param is: " + param;

}

In this case, the example simply outputs the value of param. However, the
function could have easily changed param in some specific, but consistent,
manner. For example, it might have reversed the characters in param or
performed some other task that isn’t already served by a built-in function.

734 Part Ill: Meeting JavaScript's Control Structures

You can call functions that require parameters from other functions or from
HTML controls like the one shown here:

<input type="button"
value="Test Param"
onclick="TestParams ('Hello There!')" />

In this case, the function receives Hello There! as input and outputs the
same string to the screen. Notice the use of both double and single quotes in
the example. You must enclose strings that you want to pass to the function
in either double or single quotes.

Creating functions with a return value

Many of the built-in functions provide some sort of return value, and you can
create functions that provide a return value, too. Use a return value when the
function performs a simple task that could be part of a more complex task.
For example, when working with a string, you can use the toUpperCase ()
function to change the case of a string that might be manipulated in other
ways. Changing the case of a string is a simple, well-defined task, but it could
be part of a larger task, and so it provides a return value for that reason.
Here’s an example of a function with a return value:

function TestReturn ()

{

return document.title;

}

In this case, the function returns the document’s title. The caller may want
to do more with the text, so it’s returned rather than output directly in some
way. In this case, the caller adds some additional text to the output and dis-
plays it onscreen, as shown here:

function DisplayReturn ()

{
// Output the param onscreen.
document .getElementById ("Result") .innerHTML =
"The return value is: " + TestReturn();

}

Using return values lets you nest function calls as deeply as needed to per-
form complex tasks. When you create an application, break complex tasks
down into smaller tasks. If you find that the smaller tasks are still too compli-
cated, break these subtasks down into smaller tasks. It’s important to create
functions that perform a single task (rather than a part of a task or multiple
tasks) but also perform that single task well.

Chapter 7: Using Functions

Creating functions with optional
and required arguments

All arguments for a JavaScript function are optional. In fact, the caller

can send as many arguments as desired. Of course, if you're expecting

only one argument, then you’ll process only one argument in most cases.
Unfortunately, you might be expecting at least one argument and may not
receive any at all. In short, you need some method of dealing with arguments
in JavaScript that helps you account for what the caller may or may not send.
The following example demonstrates some techniques for working with
optional arguments:

function OptionalArgument (param)
{
// Determine whether there were any params passed.
if (typeof (param) == "undefined")
param = "Hello There!";

// Determine whether there are extra params.
if (typeof (arguments[1l]) != "undefined")

// If so, output the param and optional
// argument onscreen.
document .getElementById ("Result") .innerHTML =
"The param is: " + param +
" and the optional argument is: " + arguments[1l];

else
// Output the param onscreen.
document .getElementById ("Result") .innerHTML =
"The param is: " + param;

}

This function requires one argument as input. Of course, the caller might not
provide a value for param, which means that param is undefined. You can
check for that issue by using the typeof operator. Notice that when param
is undefined, the code assigns it a default value. This is the correct way to
handle optional named arguments.

JavaScript also provides a special arguments variable. It’s an array that con-
tains one element for each argument passed to the function. When someone
passes more arguments than you anticipated or your function can accept a
variable number of arguments, you can use the arguments variable to work
with them. In this case, when the caller passes an additional argument —
one not accounted for by param — the application can still display its value
onscreen by using a different message from the message it displays when a
caller passes zero or one arguments. Normally you use loops to process a
variable number of arguments — a topic that appears in Chapter 9.

135

736 Part Ill: Meeting JavaScript's Control Structures

Sometimes you really do want one and only one parameter. It’s a waste of
time to complain about too many arguments in most cases, but you can defi-
nitely do something about not getting what you need. The following example
tests for a specific kind of input to ensure it has what it needs:

function RequiredArgument (param)

{
// Determine whether there were any params passed.
if (typeof (param) != "string")

// If not, return to the caller without doing
// anything.
return;

// If so, then display the value onscreen.
else
document .getElementById ("Result") .innerHTML =
"The param is: " + param;

}

In this case, the code checks for a string. When the caller passes something
other than a string, the code simply returns without doing anything. Of
course, you could pass back a value indicating an error or even display an
alert () onscreen. How you react to the error is up to you, but you need to
keep the single task nature of functions in mind when deciding on a reaction.
In this case, doing nothing is the best choice. When the caller does pass a
string, the function displays it onscreen.

Understanding variable scope

Variables have a specific scope in JavaScript. The scope of a variable deter-
mines where it can be seen. In general, public variables have two possible
scopes:

v Global: The variable is visible throughout the entire document.
JavaScript doesn’t delete the variable from memory until the user closes
the document. A global variable is declared outside of any function.

v Local: The variable is visible within a specific function. When that func-
tion completes its work, both the function and the variable are deleted
from memory. Local variables are defined inside a function and always
override a global variable of the same name.

The best way to illustrate local and global variables is to use a short example.
The following code shows how to define both a global and local variable and
also provides a test for them:

Chapter 7: Using Functions 13 7

// This is a global variable.
var MyNumber = 22;

function TestVariablel ()

{
// This is a local variable.
var MyNumber = 34;

// The local variable overrides
// the global variable.
document .getElementById ("Result") .innerHTML =
"The value of TestVariable is: " + MyNumber;
}

function TestVariable2 ()
{
// There is no local variable to
// override the global variable.
document .getElementById("Result") .innerHTML =
"The value of TestVariable is: " + MyNumber;
}

When the application calls TestVariablel (), it outputs the local version
of MyNumber, which has a value of 34. The local variable overrides the global
variable. However, when the application calls Testvariable?2 (), it outputs
the global version of MyNumber, which has a value of 22.

Working with Private Properties
and Methods

Many developers are under the impression that JavaScript doesn’t provide
private properties or methods. However, this isn’t the case. It’s true that
JavaScript does lack any specific keyword that designates a particular prop-
erty or method as private, but the fact remains that it can create and manage
private members.

Private members are always created as part of an object’s constructor. You
can either create properties as a parameter for the constructor or create

it within the constructor itself. Private methods are nested within the con-
structor. The following code shows both private properties and a private
method. (You can find complete code for this example in the \Chapter 07\
PrivateData folder of the downloadable code as UsingPrivateData.
HTML.)

’38 Part Ill: Meeting JavaScript's Control Structures

// param is private.
function TestObject (param)

{
// ThisString is private.
ThisString = "abc";

// ChangeString is private.
function ChangeString (input)

{

return input.toUpperCase() ;
}
}

If you now create a function to test this object, such as CreateObject ()
shown in the following code, you find that the application fails to produce
the desired result. In fact, if you're using an editor specifically designed

for working with JavaScript, you’ll find that param, ThisString, and
ChangeString () don’t even show up as possible choices. The members are
inaccessible.

function CreateObject ()
{
var DoTest = new TestObject("def") ;
document .getElementById ("Result") .innerHTML =
DoTest .ChangeString ("def") ;
}

The private members of TestObject are also inaccessible to any public
methods that you create. Of course, this presents a problem because the
object now has private data that’s seemingly inaccessible to anything but the
constructor. JavaScript has a third level of visibility called privileged. Here’s a
privileged method for TestObject:

// MeldData is privileged.
this.MeldData = function/()

{
return ChangeString (ThisString + param) ;

}

This function is also defined within the constructor. However, in this case,
it’s assigned to a public variable, MeldData, that acts as a true method. Your
editor will display it as a method when you access it. You can pass it data like
any other method. However, this method is privileged and has full access to
the private data in TestObject. If you change CreateObject () so it looks
like the following example, the application now produces the desired output:

Chapter 7: Using Functions 139

function CreateObject ()

{
var DoTest = new TestObject("def") ;

// This code won't work.
//document .getElementById ("Result") .innerHTML =
// DoTest .ChangeString ("def") ;

// This code will.
document .getElementById ("Result") .innerHTML =
DoTest .MeldDatal() ;

’ 4 0 Part lll: Meeting JavaScript's Control Structures

Chapter 8

Making Choices in JavaScript

In This Chapter

Considering when to make a decision

Using the if structure to make decisions

Using the switch structure to make decisions

<MBER
S

Decisions, decisions — life is all about decisions. Because applications
mimic real life in many respects, your application needs to make lots of
decisions too. However, unlike the impromptu decisions you make, applica-
tions require preprogrammed decisions. You decide in advance which deci-
sions the application makes and for what reasons. In addition, you decide
under what conditions the application makes the decisions and what hap-
pens when a certain decision path is taken. The only variable is the data used
to make the decision — you can’t easily control the data, which is why you
need a decision-making technique in the first place.

Application decisions are expressed as statements. A statement consists of

a keyword, which is followed by an expression that defines the decision to
make. Following the statement is a code block that contains one or more
tasks to perform when an expression is true. The combination of the state-
ment and the code block is called a structure. Consequently, when you dis-
cuss the if statement, you're talking about the combination of keywords and
expression that makes the decision. On the other hand, when you discuss the
if structure, you mean the combination of the statement and the code block
that follows.

This chapter actually helps you discover both the i f statement and the
switch statement. Each statement fulfills a particular need in JavaScript pro-
gramming. Yes, you can use either statement for all of your needs, but doing
so will make the decision-making process less clear and your code harder to
understand. To make the choices you have clearer, the first section of the
chapter explores the decision-making process and why you choose one state-
ment or the other to perform specific tasks.

7 42 Part Ill: Meeting JavaScript's Control Structures

Understanding the Reasons for
Applications to Make Decisions

In a perfect world, the data your application receives would never change, and
you would create a precise procedure for handling it that never varies. In such
a situation, you’d never need to make a decision because everything would be
straightforward and never vary. Unfortunately, real data will change, which
means your application must provide a flexible means for dealing with it.
Applications commonly make decisions for the following reasons:

v Address a go-or-no-go scenario where the data is either inside or outside
the expected range

v Test whether a condition has occurred

v Handle a number of data range selections where each data range
requires a different procedure

v Enable the user to choose a specific action
v Create a menu where the user can choose from a number of actions
»* Determine when an error has occurred

+ Handle environmental conditions that are neither good nor bad, but
which do require the application to react in specific ways

v Provide a randomized environment for training or other purposes

As in life, many application decisions are black and white — either/or situa-
tions where you choose one thing or another. The i f statement is commonly
used to make these sorts of decisions. Something is true or it isn’t — there’s
no middle ground. In some cases, the developer needs only to address a situ-
ation that’s true, such as when an error occurs. In other cases, the developer
needs to provide two separate courses of action depending on whether the
expression is true or not.

Sometimes a decision isn’t black and white. In this case, you can combine
if statements to create a series of small black-and-white decisions that
ultimately end up choosing a shade of gray, or you can use the switch
statement. The switch statement is a kind of menu; based on the data the
application receives, it can choose from a number of potential courses of
action. The switch statement helps your application handle shades of gray
situations.

Chapter 8: Making Choices in JavaScript

Deciding When to Use the if Statement

<MBER
>

The if statement appears a number of times in previous chapters, which
should tell you something about working with the i f statement — you

really can’t escape using it. The if statement is commonly used for testing
whether something has happened or not, whether the data is in range or not,
or whether the user wants to perform a specific task. The following sections
describe the if statement in more detail and help you understand the full
range of tasks it can perform.

Creating a simple if statement

One of the most common uses of the if statement is to make a simple selec-
tion. When the user takes a particular action, something happens. In the
following example, when the user clicks OK in the confirm dialog box, the
application displays the secret message. (You can find complete code for
this example in the \Chapter 08\IfStatement folder of the downloadable
code as SimpleIf.HTML.)

// Create an expression that results in true or false.
var Answer = confirm(
"Do you want to display the secret message?");

// Test the expression using the if statement.
if (Answer)
{
// Display the secret message when the user
// clicks OK.
document .getElementById ("Result") .innerHTML =
"This is the secret message!";
}

In this case, Answer can contain only true or false because confirm()
doesn’t output any other values. As a consequence, you don’t need to per-
form any sort of value checks on Answer — all you need to do is determine
the truth value of Answer to make the decision.

All decision making expressions that you ever create will have a truth value of
some sort — either true or false. Sometimes the truth value is hidden, as when
working with the switch structure, but the truth value is there. Computers
don’t understand anything other than true or false. There are techniques that
make it appear that the computer can do something else, but in reality, it all
comes down to making a true or false decision as shown here.

143

7 44 Part Ill: Meeting JavaScript's Control Structures

gMBER
S

Deciding what else to do

As noted in the previous section, you use the if statement in situations
when an application needs to do something when the user responds cor-
rectly, but ignore the input when the response is incorrect. However, there
are times when you must do something when the input is correct and some-
thing else when it’s incorrect. In this case, you add the else clause to the if
statement as shown in the following example. (You can find complete code
for this example in the \Chapter 08\IfStatement folder of the download-
able code as SimpleIfElse.HTML.)

// Create an expression that results in true or false.
var Answer = confirm(
"Do you want to display the secret message?");

// Test the expression using the if statement.
if (Answer)
{
// Display the secret message when the user
// clicks OK.
document .getElementById ("Result") .innerHTML =
"This is the secret message!";

}

else
{
// Perform an alternative task.
alert ("Click OK next time to see the message!");

}

A clause is an extension of a structure. In this case, the else clause extends
the i f structure to include a second code block that handles the false condi-
tion. The example still outputs the secret message when the user clicks OK in
the confirm() dialog box. However, now the code also displays an alert ()
dialog when the user clicks Cancel. This secondary action helps the user
understand how to react to the confirm() dialog box to obtain a different
output.

Nesting if statements

There are many reasons why you might nest i £ statements — that is, place
one if statement within another. The following example shows one situa-
tion, which leads into the switch statement examples later in the chapter.
In this case, the user selects an option onscreen, CheckChoice () performs
a check of that option, and then CheckChoice () displays the correct result
onscreen. (You can find complete code for this example in the \Chapter
08\IfStatement folder of the downloadable code as NestedIf.HTML.)

function CheckChoice (option)

{

}

// Verify that the input is a number.
if (typeof (option) != "number")
{
// Display an error dialog.
alert ("Please provide numeric input!");

// Return without doing anything more.
return;

}

// Ensure that option is actually an integer.
var Select = Math.round(option) ;

// Verify that the input is in range.
if ((Select < 1) || (Select > 3))
{

// Display an error dialog.
alert ("The value supplied is out of range!");

// Return without doing anything more.
return;

// Make a selection.

if (Select == 1)

document .getElementById ("Result") .innerHTML =
"You chose Item A.";

}
else
{
if (Select == 2)
{
document .getElementById ("Result") .innerHTML =
"You chose Item B.";
}
else
{
document .getElementById ("Result") .innerHTML =
"You chose Item C.";
}
}

This example doesn’t rely on a known source of input, so it begins by per-
forming various checks of the data. The first check verifies that the caller
has supplied a numeric value. After all, the caller could provide a string or
a Boolean value instead. For that matter, the input could be a pointer to
another function or anything else that JavaScript supports — you just

don’t know.

Chapter 8: Making Choices in JavaScript 1 45

’ 46 Part Ill: Meeting JavaScript's Control Structures

A\

|
Figure 8-1:
The exam-
ple provides
a number of
buttons to
test various
conditions.
|

The next step converts the numeric input to an integer. Data conversion is
important in JavaScript because it treats both integers and floating point
values as numbers. If you want an integer value, using Math.round () to get it
is the best way to go. This function rounds the input to the nearest integer
value, which means you don’t end up trying to perform comparisons against
values such as 3.5.

At this point, you know you have a number and that the number is an integer,
but you don’t know whether the number is in the correct range. A failure to
range-check input values is the cause of many woes in JavaScript applica-
tions. CheckChoice () is expecting integer values in the range of 1 to 3, so
the range check looks for these values.

The nested if statement is almost anticlimactic at this point. You know that
Select contains 1, 2, or 3. The first i f statement checks for a value of 1 and
displays a message when it finds that value. When the value is something
other than 1, the else clause takes over. Within the else clause is a nested
if statement. This if statement checks Select for a value of 2 and displays
the appropriate message when it is. When Select is 3, the else clause of
this second, nested, if statement displays the appropriate message. Figure
8-1 shows typical output from this example.

@ Working with Mested If Statements - Moxzilla Firefox
B View To

Working with Nested If Statements

I Choose ltem A I { Choose ltem B I { Choose ltem C J I Send a Float]
I Send a String H Value Out of Range J

You chose Item C

Switching Between Choices

Although the if statement is commonly used for simple choices, the switch
statement is used to handle a range of choices. A switch provides an
elegant way to handle variable data. The following sections describe two
forms of switch statement. The first provides the means for working with

a predefined range of choices, and the second provides the means for work-
ing with data that could contain unexpected information. This second form
makes the switch statement particularly useful because users are unpredict-
able, and this second form can take such users into account.

Chapter 8: Making Choices in JavaScript 14 7

Creating a basic switch

Many developers prefer switch statements over nested if statements
because the switch statements are easier to understand. A switch state-
ment also requires less typing to obtain the same result. The following
example replicates the example shown in the “Nesting if statements” sec-
tion, earlier in this chapter. (You can find complete code for this example in
the \Chapter 08\SwitchStatement folder of the downloadable code as
SimpleSwitch.HTML.)

function CheckChoice (option)
{
// Verify that the input is a number.
if (typeof (option) != "number")
{
// Display an error dialog.
alert ("Please provide numeric input!");

// Return without doing anything more.
return;

}

// Ensure that option is actually an integer.
var Select = Math.round(option) ;

// Verify that the input is in range.
if ((Select < 1) || (Select > 3))
{
// Display an error dialog.
alert ("The value supplied is out of range!");

// Return without doing anything more.
return;

}

// Make a selection.
switch (Select)
{
case 1:
document .getElementById ("Result") .innerHTML
"You chose Item A.";
break;
case 2:
document .getElementById ("Result") .innerHTML =
"You chose Item B.";
break;
case 3:
document .getElementById ("Result") .innerHTML
"You chose Item C.";
break;

7 48 Part Ill: Meeting JavaScript's Control Structures

WMBER
@ﬁ
&

\NG/
Vg,\‘\

All the logic leading up to the switch statement is the same as before.
Whether you use a switch statement or nested if statement, you need to
provide logic to ensure that the input is correct, or else your application most
likely will fail. In this case, failure equates to the application doing nothing at
all, but the concept of failure is the same. Always check your inputs for cor-
rect values.

Some people have a hard time understanding where the truth value lies in
the switch statement. The switch statement requires a variable, which is
Select in this case. Each case clause performs a comparison against the
variable. Consequently, you could see the first case clause as saying, case
Select == 1.

When working with switch statements, you must also include a break state-
ment at the end of each processing segment. The break statement simply
says that the case has been evaluated and handled.

If you leave the break statement out, the code continues with the next execut-
able statement in the next case. This condition is known as fall-through,

and some developers use it as a programming technique to combine tasks

and reduce the amount of code required. Using this technique is dangerous
because other developers may not realize that the fall-through is required and
therefore may add a break statement for you.

Using the default option

The switch statement includes another clause, the default clause. The
default clause is like the else clause for the i f statement. When none of the
case clauses are true, the code executes the code in the default clause.
The following example uses the default clause to modify the way in which
the example in the preceding section works. This version is much easier to
understand and use. (You can find complete code for this example in the
\Chapter 08\SwitchStatement folder of the downloadable code as
DefaultSwitch.HTML.)

function MakeAChoice ()
{
// Ask the user to provide input.
var Selection = prompt ("Type a menu option.");

// Convert the string to a number.
var IntSelect = parselnt (Selection) ;

// Verify the user has provided a number.
if (isNaN(IntSelect))

Chapter 8: Making Choices in JavaScript 1 4 9

// Display an error dialog.
alert ("Please provide numeric input!");

// Return without doing anything more.
return;

3

// Call the selection function.
CheckChoice (IntSelect) ;
}

Instead of providing myriad buttons, this example relies on the prompt ()
dialog box to obtain input from the user. The result is the cleaner interface
shown in Figure 8-2. When the user clicks Choose a Menu Item, the applica-
tion displays a prompt () dialog box, where the user can enter a value.

Using the Default Clause

Menu Options:
1. Item A
I
2. Item B
Figure 8-2: 3 Trem C
This exam-
ple provides
a cleaner You chose Item C.
interface.
I

You might think that this is a recipe for disaster, but the application performs
the same checks for input validity as before, but it uses a different technique.

In this case, the application uses partInt () to verify that the input is a
number and to convert the number to an integer value. When the input is
incorrect, IntSelect is set to Not a Number (NaN). The example detects
this issue by using the isNaN () function. When a user does provide a
numeric input, the application calls CheckChoice (), which is shown in the
following code:

7 5 0 Part Ill: Meeting JavaScript's Control Structures

function CheckChoice (option)
{
// Make a selection.
switch (option)
{
case 1:
document .getElementById ("Result") .innerHTML =
"You chose Item A.";
break;
case 2:
document .getElementById ("Result") .innerHTML
"You chose Item B.";
break;
case 3:
document .getElementById ("Result") .innerHTML =
"You chose Item C.";
break;
default:
// Display an error dialog.
alert ("The value supplied is out of range!");
break;

}

You may be wondering where the rest of the code is, but this is all you need.
The switch statement checks for values of 1, 2, or 3. When the values are
outside that range, the code uses the default clause, which contains the out-
of-range error message. As you can see, these two functions make the tasks
of working with the menu a lot simpler for both developer and user.

Chapter 9
Making the Rounds with Loops

In This Chapter

Considering the need for loops
Working with for loops
Working with while loops
Looping through objects
Creating nested loops

R epetitive actions appear everywhere in the real world, so they also
appear in applications. For example, you don’t do a single pushup and
stop — you do a number of pushups to achieve a specific fitness goal. You'd
be really surprised if an application allowed you to select a single menu item,
performed the required task, and then ended so that it couldn’t perform

any other tasks. Applications repeatedly ask you to select menu or other
options to complete a particular goal that consists of many individual tasks.
Repetition also appears inside the application. An application downloads
individual pieces of a graphic, one piece at a time, until all the pieces appear
on the local computer and the application displays them onscreen.

JavaScript supports several kinds of loops: for, while, do...while, and
for...in. Eachloop type has specific advantages in certain situations.

For example, the for loop offers the advantage of providing a specific start
and stop expression. This chapter starts with a discussion of why loops are
useful and how to avoid problems when using them. The remaining sections
describe each of the loop types in detail and show you how to use them.
Most importantly, these sections help you understand when each loop is
most useful in an application.

7 5 2 Part Ill: Meeting JavaScript's Control Structures

Discovering Loops

The term loop brings up visions of circles. In some respects, when you create
a loop in your application, the application goes in circles. It keeps going in
circles until you tell it to stop. As it continues to loop, the application per-
forms the tasks that you set for it within the code block defined by the loop
structure.

Just as decision structures have a statement that defines an expression used
to determine whether the code block executes, loops also rely on the truth
value of expressions. A for statement defines the terms under which the
loop will execute. The associated code block contains the code that the for
loop executes. The combination of for statement and code block is a for
structure, but most developers call this combination a for loop.

Now that you have some idea of what the terminology means, it’s time to
look at loops in general. The following sections describe why loops are useful
and how you can avoid problems when using them.

Learning why loops are useful

Loops make it possible to perform repetitive tasks easily. There are ways you
could re-create the usefulness of a loop, but it would be a painful process.
For example, if you knew that you would need to call a function five times,
you could place five calls to it in your code. Of course, the result would be a
fragile piece of code that would break every time conditions changed even

a little. In some cases, such as a situation where you simply don’t know how
many times to repeat a task, you must have a loop to control the number of
repetitions that the code makes.

However, loops do more than simply repeat a list of tasks. You use loops to
control the way in which the repetition occurs. For example, you can choose
to end a loop early when an error exists, or you might choose to skip a partic-
ular sequence of tasks when the conditions warrant (such as not processing
strings but instead processing only numbers). In other words, loops are also
about controlling a situation in a unique way — by monitoring the data and
then reacting to it dynamically.

The ability to end a loop early or to skip a particular loop cycle makes loops
uniquely suited to processing arrays and other collections. Because array
data changes relatively often in some applications and you can’t really
depend on an array to maintain a specific length, you must have some sort
of loop processing to manage them successfully. This need matches the real-
world environment that objects model. For example, your bookcase or music
collection grows when you buy new items and shrinks when you give items
away, sell them, or throw them out. The real world constantly changes and
so do your applications, so loops have an incredibly important role to fulfill.

Chapter 9: Making the Rounds with Loops 153

Running from the dangers of loops

Loops can run amok. Yes, like some demented robot on an old science fiction
movie, a loop can cause all sorts of problems when managed incorrectly. The
most common loop-related problems involve the number of cycles that the
loop performs. Processing data is a Goldilocks scenario: You want neither
too much nor too little — it has to be just right.

The most common problem for loops is the infinite loop — one that never
ends. All loops have two significant expressions associated with them. The
first expression defines when the loop should start, and the second expres-
sion defines when the loop should stop. Sometimes a developer thinks that
the loop has the right logic defined for both, but the stop expression can
prove difficult to create for these reasons:

v The loop never reaches the stopping point because the stop expression
is wrong.

v The loop actually exceeds the stop expression because the stop expres-
sion was expecting one result and the loop produced another.

v An error causes the loop to malfunction.

The easiest loop-related problem to find is one in which the loop never
starts. The developer doesn’t see any output, so it’s obvious something is
wrong. In many cases, an alert () that shows the starting state of a variable
compared to the start expression for the loop quickly shows the problem.
When the start condition is never met, the loop will never start.

The hardest and most subtle loop problem is one in which the loop stops too
soon. The loop does some amount of work, and it doesn’t get stuck in an infi-
nite loop, but it also doesn’t perform the number of cycles you anticipated.
The result is often damaged data. The data may look acceptable, but there’s
something wrong with it. Many applications go into the production environ-
ment with subtle loop problems. The worst-case scenario is when the stop
expression works sometimes but not in all situations — leading developers to
yank out their hair. The next time you see a hairless developer, think about
the loop error that the developer was unable to fix.

Creating for Loops

A for loop is best used in situations where you know you want to perform a
specific number of cycles. You don’t necessarily know the number of cycles
when you create the application, but the number of cycles is fixed at runtime,
when the user interacts with the application. A for loop can be interrupted
or told to bypass a specific cycle. However, you can be certain that a prop-
erly constructed for loop always starts at a specific point and ends at a spe-
cific point.

7 5 4 Part Ill: Meeting JavaScript's Control Structures

Making your first for loop

The section on creating functions with optional and required arguments

in Chapter 7 discusses the need to provide some sort of handling for both
optional and required arguments in some functions. There are situations
where a function must take a variable number of arguments. You simply
don’t know how many arguments the caller will send at the outset. The fol-
lowing example demonstrates one technique for creating a function that
handles a variable number of arguments. (You can find complete code for
this example in the \Chapter 09\ForLoop folder of the downloadable code
as SimpleFor .HTML.)

function OptionalArgument (param)
{
// Determine whether there were any params passed.
if (arguments.length == 0)
{
// Display an error message and exit.
document .getElementById ("Result") .innerHTML =
"Nothing Passed!";
return;

}

// Create a string to hold the arguments.
var Result = new String();

// Process each of the arguments in turn.
for (var i = 0; 1 < arguments.length; i++)
{
// Verify that the argument is of the right type.
if (typeof (arguments[i]) == 'string')
{
// Add to the argument string.
Result += arguments[i] + "
";

3

// Display the results onscreen.
document .getElementById("Result") .innerHTML = Result;
}

The code begins by checking the arguments . length property. When this
property is 0, it means that the caller hasn’t passed any arguments to the
function. The code displays an error message and exits.

The for loop in this example will actually create a string that contains a com-
bination of text and HTML tags in it, so the next step is to create Result as
anew sString (). After the for loop completes, the application displays the
content of Result onscreen.

Chapter 9: Making the Rounds with Loops

|
Figure 9-1:
This
example not
only shows
the for loop
but also
includes
some for-
matting.
|

The for statement begins with three expressions. Each of these expres-
sions is separated by a semicolon (;). The first expression, var i = 0, is
the starting point. It creates a variable named i and sets its value to 0. The
second expression, 1 < arguments.length, tells the for loop to continue
processing arguments until i is equal to or greater than the value of arguments
.length. In other words, the for loop will perform one cycle for each ele-
ment in arguments. The third expression, i++, tells the for loop how to
update i after completing each cycle. If you didn’t include this expression,
the value of i would never change, and the loop would never end.

The code block begins by checking the type of variable contained within
the current arguments element, which is expressed as arguments[i].
When this type is a string, the code adds the string, along with an HTML
tag, to Result. Each loop cycle adds more strings to Result, and

when the for loop ends, Result contains every string passed to the
OptionalArgument () function. Figure 9-1 shows typical output from this
example.

(SR, et T e i

Working with a Basic For Loop

{ Send 0 Arguments J { Send 1 Argument] [Send 3 Arguments]

{ Send Various Argument Types]

Red
Green
Blue

Using the break statement

The break statement lets you stop loop execution, even if the stop expres-
sion conditions aren’t met. There are many reasons to use the break
statement. For example, you might want to stop loop execution when the
application experiences an error. The following example shows how to use a
break statement to stop application execution. In this case, processing stops
immediately when the application finds data of the incorrect type. (You can
find complete code for this example in the \Chapter 09\ForLoop folder of
the downloadable code as BreakStatement . HTML.)

155

7 5 6 Part Ill: Meeting JavaScript's Control Structures

function OptionalArgument (param)
{
// Determine whether there were any params passed.
if (arguments.length == 0)
{
// Display an error message and exit.
document .getElementById ("Result") .innerHTML =
"Nothing Passed!";
return;

3

// Create a string to hold the arguments.
var Result = new String() ;

// Process each of the arguments in turn.
for (var i = 0; i < arguments.length; i++)
{
// Verify that the argument is of the right type.
if (typeof (arguments([i]) != 'string')
{
// When the argument is incorrect, stop
// loop execution.
break;
}

// Add to the argument string.
Result += arguments[i] + "
";

3

// Display the results onscreen.
document .getElementById("Result") .innerHTML = Result;
}

In this case, the example stops processing the input arguments immediately
after finding an input argument of a type other than string. Consequently,
when the application calls OptionalArgument ('Red', 'Green',
'Blue'), the application displays all three arguments. However, when

the application calls OptionalArgument ('Red', 'Green', true,
'Orange'), it displays only Red and Green. Even though Orange is

also a correct argument, it appears after true, which is an incorrect
argument. Execution stops with true. If the application were to call
OptionalArgument (true, 'Red', 'Yellow', 'Orange'), the output
would be blank because the first argument is incorrect.

QQ,N\BER The break statement is used as an exceptional condition. You stop execu-
Y tion because the loop can’t continue for some reason. As a consequence,
the break statement normally appears as part of an if structure. The if
statement defines the exceptional condition. Any loop cleanup you want to
perform, such as finalizing a variable’s state, must appear before the break
statement.

Chapter 9: Making the Rounds with Loops 15 7

Using the continue statement

The continue statement stops processing for the current loop cycle.
However, processing continues with the next loop cycle. Although you would
generally use a break statement to stop loop processing in the event of a
non-recoverable error, the continue statement lets you create a loop that
can recover from errors. In this respect, loops can differentiate between hard
errors (those that the application can’t recover from) and soft errors (those
that are recoverable).

The continue statement is also quite useful for a number of programming
techniques, such as filtering. When the loop encounters a situation where an
argument, a data item, or an array element is outside the filtering criteria, it
can exclude that element by not processing it but continuing on with the next
argument, data item, or array element. Filtering is an exceptionally important
task for applications to perform because users rarely provide clean data —
that is, data without erroneous artifacts included.

Because filtering is such an important feature of applications, the following
sections review the use of arrays with a for loop. The first section reviews
the Array object properties and methods. The second section shows an
example of using a for loop to filter an Array object to clean up undesirable
elements.

Working with Array objects in depth

Array objects often require complex handling of data to produce the desired
results. For example, the array could contain different data types, and you
might need to sort through them to find only the data you need. Fortunately,
the Array object provides a number of methods and properties to make
interacting with them in loops easier. The following list describes the Array
object properties:

v constructor: Displays a string showing the prototype used to define
the object. In this case, you see “function Array() { [native code] }”.

v length: Returns the length of the array in elements.

v prototype: Provides the means for adding both properties and meth-

ods to an object.

The Array object also provides a number of useful methods. You can use
these methods to modify the array dynamically during processing and to
enhance the ability of the for loop to produce useful results. The following
list describes each of the Array object methods:

v concat (): Creates a single array by joining two or more arrays.

v indexOf (): Locates a specific element within an array and returns the
position of that element.

7 5 8 Part Ill: Meeting JavaScript's Control Structures

v join (): Creates a single string from all of the elements within an array.

V¥ lastIndexOf (): Locates the last location of a specific element within
an array and returns the position of that element.

v pop () : Removes the last element of an array and returns that element.

v push () : Adds new elements to the end of an array and returns the new
array length.

v reverse (): Reverses the order of the elements in an array.

v shift (): Removes the first element of an array and returns that
element.

V¥ slice():Produces a copy of part of an array and returns that part.
V¥ sort (): Sorts the elements of an array.

v splice():Adds or removes elements to or from an array as specified in
the arguments.

V¥ toString (): Outputs the individual values of each element of an array
as a string.

v unshift (): Adds new elements to the beginning of an array and returns
the new length.

v valueOf (): Outputs the native value of each of the elements of an array.

Interacting with an array

One of the more interesting ways to use the continue statement is as a
means for filtering data. When the incoming data doesn’t meet some require-
ment, you filter it out. The following example demonstrates a technique

for filtering array data to produce a clean array that you can then process
without error. The main reason to perform this task is that you need to use
the array repetitively and filtering it each time would prove time consuming,
needlessly slowing application performance. (You can find complete code for
this example in the \Chapter 09\ForLoop folder of the downloadable code
as ContinueStatement .HTML.)

function FilterArray ()
{
// Define the original array.
var OriginalData = new Array (
"Red", "Orange", "Yellow", 1,
"Green", true, "Blue");

// Define an array to receive the filtered data.
var FilteredData = new Array () ;

// Show the original data.
DisplayArray (OriginalData, "Original") ;

Chapter 9: Making the Rounds with Loops 159

// Filter the data.
for (var i = 0; 1 < OriginalData.length; i++)
{

// Check for the correct data type.

if (typeof (OriginalDatal[i]) != 'string')

{
// Go to the next item.

continue;

}

// Add the matching item to the array.
FilteredData.push (OriginalDatal[i]) ;
}

// Show the filtered data.
DisplayArray (FilteredData, "Filtered");
}

The example begins by creating an array, OriginalData, with some errant
data in it. The array is supposed to contain strings, but you can see that it
includes both numeric and Boolean data items. The example also creates
FilteredData, which currently contains nothing but will eventually contain
all the useful data from OriginalData.

Filtering occurs in the for loop. If the current array element isn’t of type
string, then the code continues to the next loop iteration. However, when the
element is of type string, the code uses the push () method to add the cur-
rent array element to FilteredData.

Notice the calls to DisplayArray (). This is an example of taking code out
of a function and placing it in a supplementary function to make the code
easier to understand. In addition, it ensures that each function performs a
single task. In this case, DisplayArray () outputs the array data to a spe-
cific location onscreen as shown here:

function DisplayArray (TheArray, DisplayID)
{

// Create an output string.
var DisplayString = ""

// Build the display string.
for (var i = 0; 1 < TheArray.length; i++)
{

}

DisplayString += "" + TheArray[i] + "";

// Complete the list.
DisplayString += "";

// Display the data.
document .getElementById (DisplayID) .innerHTML =
DisplayString;

’ 60 Part lll: Meeting JavaScript's Control Structures

|
Figure 9-2:
Filtering is
an important
feature

of many
applications.
|

DisplayArray () accepts two inputs: an array to process and the identifier
of a screen element to receive the data. The usual checks were omitted from
this function for the sake of clarity, but if you were creating this function for a
production environment, you'd definitely include them.

In this case, DisplayArray () used an unordered (bulleted) list to display
the data onscreen. So, DisplayString receives the starting tag to initialize
the string. The array adds list items (<1i> tags) to DisplayString — one
for each array element. The ending tag is added after the for loop
completes, and the item is displayed onscreen in the correct display element.
Figure 9-2 shows typical output from this example.

Using the Continue Statement

Filter the Data

Original Data:

* Red

* Orange
* Yellow
]

* Green
* true

* Blue

Filtered Data:

* Red

* Orange
* Yellow
® Green

* Blue

Creating while Loops

Developers commonly use while loops when there’s no definite ending for a
loop. The environment or data must meet a specific condition before the loop
stops. With this in mind, it’s easier to create an infinite loop with a while
loop than it is with a for loop because you’re not always sure about the con-
dition that will end the loop. It’s important to plan while loops carefully. The
following sections discuss how to use the two forms of while loops and tell
how each while loop type is commonly used in applications.

Chapter 9: Making the Rounds with Loops

Using the basic while loop

A basic while loop tests for the ending condition immediately. If the ending
condition is met, then the loop never executes. This type of loop is useful
when you may or may not need to perform processing on some type of vari-
able data. For example, a while loop of this sort works perfectly with a
function that accepts zero or more optional arguments. The fact that there
may not be any arguments to process means that the while loop will never
execute. The following example shows such a scenario. (You can find com-
plete code for this example in the \Chapter 09\WhileLoop folder of the
downloadable code as SimpleWhile.HTML.)

function OptionalArgument (param)
{
// Display the default output.
document .getElementById ("Result") .innerHTML =
"Nothing Passed!";

// Create a string to hold the arguments.
var Result = new String();

// Process each of the arguments in turn.
while (param.length > 0)
{

// Remove the current argument.
var Argument = param.shift();

// Verify that the argument is of the right type.
if (typeof (Argument) == 'string')
{

// Add to the argument string.

Result += Argument + "
";

}

// Display the results onscreen.
document .getElementById ("Result") .innerHTML = Result;
}

In this example, OptionalArgument () receives an array as input. When
someone sends something other than an array, the function acts as if the
user didn’t send anything at all. The array can contain any number of
elements — the function doesn’t care how many or how few.

The while loop checks the length of param. When param contains even a
single element, the loop begins processing the data. The call to shift ()
removes the first element from the array, making the array shorter by one
element. When this Argument is of type string, it’s added to Result. When
the loop ends, the output is displayed onscreen in the same way that the for
loop example does in the “Making your first for loop” section, earlier in this
chapter.

101

7 62 Part Ill: Meeting JavaScript's Control Structures

<P The interesting features of this example are that it’s shorter than the for loop
example and that this version will execute slightly faster because there are
fewer comparisons performed during each loop. However, whether it’s actu-
ally easier to understand depends on how you write applications. Some devel-
opers would probably find this form easier to understand as well, but you
should use the forms that work best for you as a developer.

Using the do...while loop

A do...while loop works precisely the same as a standard while loop
except that the ending expression is evaluated at the end of the loop. This
means that a do. . .while loop always executes at least once. Developers
commonly use do. . .while loops for menus, reading files, and other pro-
cesses that may require some setup within the loop before the loop can
evaluate the expression. The following example shows how you could use a
do...while loop to create a continuous processing scenario. (You can find
complete code for this example in the \Chapter 09\WhileLoop folder of
the downloadable code as SimpleDoWhile.HTML.)

function AddItems ()
{

// Create an input variable.
var Input = new String() ;

// Keep accepting input until the user
// types quit.

do

{

// Obtain new input.
Input = prompt ("Type a new value (quit to exit):");

// Verify the user hasn't typed quit.
if (Input.toUpperCase() != 'QUIT')
{
// Add the input to the array.
DataStore.push (Input) ;

// Display the result onscreen.
DisplayArray (DataStore, "Result")

}
} while (Input.toUpperCase() != 'QUIT')

}

The example relies on a global Array named DataStore to hold the entries.
Obviously, there’s no input to process when the application begins, so the
user makes a request to add an item. At this point, Input has no data, and
there’s nothing to define whether there’s anything to do. The do. . .while
loop works perfectly because you don’t want Input to contain anything until
the user puts it there. The user keeps adding items. When the application

Chapter 9: Making the Rounds with Loops ’ 63

sees the word quit in any form, the data entry stops. This example reuses the
DisplayArray () function described in the “Interacting with an array” sec-
tion, earlier in this chapter.

<P Notice how the application checks for the ending condition in this case. You
should always convert input to uppercase or lowercase and then check it
against a standardized capitalization. Otherwise, you can’t be sure whether
the user will type quit, QUIT, Quit, or even qUit. This approach ensures you
capture the keyword whatever form the user types it in. (Of course, the user
could also click Cancel to stop inputting new values — the code provides a
method for exiting the loop by typing a value.)

Examining Objects Using for/in

Collections, object literals, and classes can prove difficult to process using
standard loops because you have to figure out a way to monitor the appli-
cation’s progress through them. Fortunately, JavaScript provides an easier
method of dealing with objects of various sorts: the for/in loop. Begin with
the class description shown in the following code. (You can find complete
code for this example in the \Chapter 09\ForIn folder of the download-
able code as SimpleForIn.HTML.)

// Define a customer.
function Customer (FirstName, LastName, Age)
{
// Add the properties.
this.FirstName = FirstName;
this.LastName = LastName;
this.Age = Age;
}

All that this class contains is some properties. You can now iterate through the
properties and their associated values using a for/in loop as shown here:

// Process the customers.
function ProcessCustomer ()
{
// Create a new customer.
MyCustomer = new Customer ("Josh", "Adams", 49);

// Define a table for output.
var Output = "<table>";

// Add a header row.
Output += "<tr>";

// Process the headers.
for (ThisProperty in MyCustomer)
{

7 64 Part Ill: Meeting JavaScript's Control Structures

Output += "<th>" + ThisProperty + "</th>";
}

// End the row.
Output += "</tr>";

// Add a data row.
Output += "<tr>";

// Process the customer.
for (ThisProperty in MyCustomer)
{
// Add each data element.
Output += "<td>" + MyCustomer [ThisProperty] +
||</td>n;
}

// End the row.
Output += "</tr>";

// End the table.
Output += "</table>";

// Display the results onscreen.
document .getElementById ("Result") .innerHTML =
Output;
}

This example creates an instance of Customer, MyCustomer, and fills it with
data. The output in this example is configured as an HTML5 table. The prop-
erty names are processed as the header using the first for/in loop. Notice
that the for/in loop doesn’t appear to have either a starting or an ending
expression. It’s implied that you want to start with the first member of what-
ever object you process and end with the last member.

When working with an object of the kind shown here, ThisProperty con-
tains the name of a property, not the property value. Therefore, you can
obtain the property names directly and display them onscreen as the header
using the <th> tag.

Note the difference in the second for/in loop. In this case, ThisProperty
is used as an index into the object. The output is the property value, which
appears as part of a data row. Figure 9-3 shows typical output from this
example.

Chapter 9: Making the Rounds with Loops 1 65

: [Tt o e Al
Figure 9-3:
Usingthe | Jsing the for/in Loop
for/in loop
makes it
possible to
process col- FirstName LastName Age
lectionsand | ® Adams 49
classes.
|

Nesting Loops

Sometimes you need to nest loops in order to accomplish useful work. For
example, you may need to process a number of items a certain number of
times. A multiplication table is a perfect example of a situation where you’d
need to nest loops. The following example shows one way to perform the
task. (You can find complete code for this example in the \Chapter 09\
ForLoop folder of the downloadable code as NestedLoop . HTML.)

<script language="JavaScript">
// Start the table.

document .write("<table>") ;

// Start a heading row.
document .write("<tr>") ;

// Create a heading.

for (var i = 0; 1 <= 10; i++)
{
if (1 == 0)
{
document.write("<th />");
}
else
{
document .write("<th>" + i + "</th>");
}

}

// End the heading row.
document .write("</tr>");

for (var 1 = 1; 1 <= 10; 1i++)
{
// Start a data row.
document .write ("<tr>")

’ 66 Part lll: Meeting JavaScript's Control Structures

// Create the row header.
document .write("<th>" + 1 + "</th>");

for (var j = 1; j <= 10; Jj++)
{
// Add each data element.
document .write("<td>" + 1 * j + "</td>");

}

// End a data row.
document .write("</tr>")

3

// End the table.
document .write("</table>") ;
</script>

The example begins by creating a header of column values using a simple
for loop. Notice the use of an i f statement to determine when to display a
value and when to keep the cell blank.

The rows are where you need the nested loop. Multiplication is the product
of multiplicand and multiplier. The outer for loop provides the row heading
and the multiplicand. The inner for loop provides the multiplier and each of
the data cells within the table. The productis i * j. Figure 9-4 shows typi-
cal output from this example.

M
R LN

Nesting Loops - Multiplication Table

123456782910
1123456789 10

22468 101214161820

EEE—— | 33 6 9 12151821242730
Figure 9-4; 44 8 1%152?242§323§i0
.. 55 1015202530354045350
Multlpllca- 6 6 121824303642 48 54 60
tiontables | ;7 145158354240566370
are a good 8 8 1624324048 56647280
example 90 182736455463 728190

for nested | 1010203040 50 60 70 80 90 100
loops.
|

Chapter 10

Performing Error Handling

In This Chapter

Defining the nature of errors

Catching errors in your code

Telling others about errors

N o one likes errors. However, errors happen. In many cases, you don’t

even have to do anything wrong to see an error in your code. For

example, a user could supply a value that simply doesn’t work with the appli-
cation, or a network error could cause problems. Someone could choose to
move a site, or a vendor could change the level of support in a browser. In
fact, all sorts of issues can confront the JavaScript developer.

Fortunately, it’s also possible to do something about errors. You can use a
three-step process to make errors less frightening:

1.

3.

You need to know more about the nature of errors. Knowing what
causes errors in the first place can help you avoid them. Previous chap-
ters in this book provide some examples of how you can avoid errors by
doing things like checking the input type of data and validating that the
data range falls within the limits you expected.

. After you come to understand errors better, you need to know how

to catch them, which means intercepting them before they become

a problem. After you catch the error, you can do something about it,
which means handling the error. Catching and handling errors can pre-
vent your application from crashing. You can do something to solve the
error before it becomes a problem. When you’re proactive about han-
dling errors, the user may not even be aware that an error has occurred.
In fact, the best applications are nearly invisible and let the user focus
on the information that they present.

You need to understand that there are rare occasions where you can’t
handle the error. In this case, you need to tell someone that there’s an
error. An administrator may need to change settings, or the user may
need to check a network connection to make your application work.
Throwing errors is the act of telling someone that the error has hap-
pened. You hope that there’s someone there to catch the error you've

7 68 Part lll: Meeting JavaScript's Control Structures

thrown so that the application can recover rather than crash. Of course,
applications do crash, so it’s important that they do so gracefully, with-
out losing data.

Thinking about this process is important because it helps you find errors
faster and more completely. The following sections describe these three
steps and tell how to use them to diagnose problems in your code.

Understanding Errors

It’s essential to understand the nature of JavaScript errors. You can’t over-
come something you don’t understand. The most important thing to under-
stand is that errors will happen. You can’t avoid errors in an application, no
matter how hard you try. All developers face some number of errors in every
application created because errors reside in every aspect of the computer
environment — even within the hardware you use to interact with the appli-
cation. The following sections help you understand the nature of errors as
they apply to JavaScript.

Defining an error source

Errors don’t all happen at the same time and in the same way in JavaScript.
The error caused by a developer misplacing a curly brace is different from
the error caused by a user providing the wrong sort of input. To understand
an error, you must quantify it. One way to define errors and help quantify
them is to understand the general error categories for JavaScript:

v Syntax: Whenever you make a typo of some sort, you create a syntax
error. Some JavaScript syntax errors are quite easy to find because the
application simply won’t run. The editor may even point out the error
for you by highlighting a missing curly brace. However, some syntax
errors are quite hard to find. JavaScript is case sensitive, so you may
use the wrong case for a variable in one place and find that the variable
isn’t quite working as you thought it would. Finding the one place where
you used the wrong capitalization can be quite challenging.

+ Interpreted: You may think that you’'ve typed everything correctly,
but the results you receive from the interpreter aren’t quite what you
expected. For example, if you try to use a for/in loop to process an
array, what you receive is the array’s index value in the variable rather
than an individual element from the array. JavaScript is processing
the array as intended with the for/in loop, but your coding may be

WMBER
@ﬁ
&

assuming that JavaScript has supplied an element as output and the
application won’t work. These errors are usually obvious because the
application won’t work. However, you may need to use a debugger to
find them because you don’t quite understand how JavaScript is working
with the code you've created. Yes, the code will run, but it won’t run as
you thought it would.

+ Runtime: When an error happens as your application runs, it’s called a
runtime error. In most cases, runtime errors come from outside sources —
a user may type the wrong thing in a field, the network could go down,
a site can move, a browser may not implement the JavaScript code
correctly, or some other external problem could occur. In some rare
cases, you can even encounter problems where the hardware glitches a
specific way just one time (also known as a cosmic hiccup) — the error
never occurs again. The whole concept of catching and handling errors
comes from a need to deal with runtime errors. The techniques shown
in previous chapters for checking data types and data ranges also help
keep runtime errors under control. However, be assured that no matter
how well you design your defenses, someone will find new ways to
create runtime errors for you.

+ Semantic: When you create a loop that executes one too many times,
you don’t generally receive any sort of error information from the appli-
cation. The application will happily run because it thinks that it’s doing
everything correctly, but that one additional loop can cause all sorts
of data errors. When you create an error of this sort in your code, it’s
called a semantic error. In many cases, developers also call semantic
errors logic errors. The point is that semantic errors occur because the
meaning behind a series of steps used to perform a task is wrong — the
result is incorrect even though the code apparently runs precisely as
it should. Semantic errors are tough to find, and you always need some
sort of debugger to find them.

Classifying errors in this way helps you understand how the error happened
and possibly when it happened. In some cases, you can even understand why
it happened. In most cases, you fix these sorts of errors by modifying your
code — you either fix the problem in the code syntax or find new ways to
check data sources before you use them.

A developer’s most important tool in finding and fixing application errors is
patience. You need to carefully observe the application behavior, think about
why the error might be happening, and then use the clues you've gathered to
examine the code in detail. The process of finding and fixing errors is called
debugging.

Chapter 10: Performing Error Handling 1 69

7 70 Part Ill: Meeting JavaScript's Control Structures

3

Every serious developer needs a debugger (special software that makes find-
ing errors easier) to debug an application. For example, Firefox users often
rely on Firebug (https://getfirebug.com) to locate errors. Chapter 2
describes the native capabilities of some of the browsers targeted by this
book. Getting an add-on such as Firebug enhances the native capabilities to
make debugging easier.

The best developers don’t let ego get in the way. Other people can often look
at your code and find errors in it a lot faster than you can. Other people find
the errors faster because the code is unfamiliar to them and they look at the
code from a different perspective. These helpers have different skills than you
do and experiences that may help them locate the error faster (often because
these people have already experienced the error at some point in their careers).

Defining the error types

JavaScript provides specific error types to make it easier to diagnose the
errors that you see in your application. Knowing the error types can make
it easier for you to create methods to deal with the error. The following list
describes the most common error types found in JavaScript applications:

v EvalError: This error commonly occurs when an application uses the
eval () function in an incorrect manner.

v RangeError: When an application performs some sort of operation that
causes a number to exceed its anticipated range, a function can throw
this error. You could also see this error as the result of a math operation
gone awry (such as attempted division by zero).

v ReferenceError: Any time you try to use a resource that doesn’t exist,
you create a reference error. This is the sort of error you might see if you
use the wrong capitalization for a variable in part of your application.

v SyntaxError: The interpreter will throw this error to tell you that it
has experienced some sort of error parsing your code. There are all
sorts of ways in which syntax errors can occur, so it’s important to try
to locate precisely where the interpreter is experiencing problems pars-
ing your code.

v TypeError: Many of the examples in the book use the typeof () opera-
tor to check the type of data received by a function. One way to handle
the situation where a caller is sending the wrong data to your applica-
tion is to throw a TypeError.

https://getfirebug.com/

A\

Chapter 10: Performing Error Handling 1 7 ’

v URIError: Uniform Resource Identifier (URI) errors can occur for a
number of reasons, including site downtime. The most common reasons
you see this particular error is that the encodeURI () or decodeURI ()
function is used incorrectly in your application. However, it pays to look
for other sources of this particular error.

Some of these error types can prove tricky to figure out — especially when
you check your code and determine that it’s correct. One of the areas you
should look at is whether you've defined the <script> tag correctly. Some
browsers are quite picky about this tag and won’t provide a desired level of
support unless you create it correctly. For example, when you want to use
JavaScript 1.7 features in your code, you must tell certain browsers that you
want to use this support by creating your <script> tag like this:

<script type="application/javascript;version=1.7">
Your Application
</script>

Notice that the tag must specifically include a version=1.7 attribute.
Otherwise, the browser will assume you want to use an older version of
JavaScript that is defined by the vendor somewhere in the vendor’s docu-
mentation. The source of your syntax error might be the level of support the
browser provides rather than an actual error in your code.

When looking for errors in your code, you may see a place where you want to
specifically stop. The debugger keyword is understood by most debuggers,
even the native support provided as part of your browser. Simply include the
debugger keyword immediately before the line of code you suspect is caus-
ing problems in the application. When the interpreter sees this keyword, it
stops execution and turns control over to the debugger so that you can see
what the application is doing at that point. The debugger will provide some
means of restarting the application so that you can continue execution

as before.

Alot of developers also rely on the use of the alert () dialog box to display
debugging messages during the debugging process. Yes, the advanced fea-
tures of products such as Firebug make use of the alert () less necessary,
but using the dialog box for a quick check of variable values works quite well.

Catching Errors

The basic idea behind error trapping is to try one or more tasks to determine
whether they’ll work as anticipated.

’ 72 Part Ill: Meeting JavaScript's Control Structures

Figure 10-1:
Browsers
always
provide

you with an
error type
and
message.
|

Using the try...catch block

When a line of code generates an error, the code catches the error, examines
it, and attempts to fix the problem (or at least fail gracefully). The combina-
tion of error trapping and catching is called error handling. To handle errors,
you use the try. . .catch block shown in the following code. (You can find
complete code for this example in the \Chapter 10 folder of the download-
able code as HandleErrors.html.)

<script language="JavaScript">
try
{
// Generate an error.
allert("Display a message") ;
}
catch (Err)
{

// Write the error information onscreen.

document .write ("<p>The Error Type is: " +
Err.name + "</p>");
document .write ("<p>The Error Message is: " +
Err.message + "</p>");
}
</script>

In this case, the developer has made a typo that causes the program to access
a nonexistent function, allert (). The try part of the block attempts to exe-
cute the function, but because the function doesn’t exist, the try block fails.

At this point, the catch block takes over. Notice that the catch block accepts
a single parameter, which is always going to be an Error object. The capa-
bilities of the Error object vary by browser because each vendor has imple-
mented it in a slightly different way. However, you always receive an error type
and message. You can use these two features to diagnose the error type and
possibly recover from it. Figure 10-1 shows typical output from this example.

@ Handling Errors - Mozilla Firefox
i View

Using a Try...Catch Block

The Error Type is: ReferenceError

The Error Message 1s: allert 1s not defined

A\\S

\NG/
&“%“

Chapter 10: Performing Error Handling

As you can see from Figure 10-1, the error trapping is extremely accurate in
this case. It tells you precisely what is wrong with the code. You can’t always
depend on the error handling to work this well. A good guideline is to make
the try block as small as possible when working with code to ensure you can
find the error with greater ease and also to obtain better error information.

Understanding the Error object

The Error object, like every other JavaScript object, supports some basic
properties and methods that work across all browsers. Your specific browser
may support special Error object features that aren’t discussed in this book,
but you can find documented by the vendor.

Although it’s safe to use generic properties and methods in your production
application, use vendor-specific properties and methods only as an aid for
debugging the application. The following list describes the generic Error
object properties:

V¥ constructor: Displays a string showing the prototype used to define
the object. In this case, you see “function Error() { [native code] }”.

» message: Provides a message that describes the error. The quality of
the message depends on which browser you use and the kind of error
generated.

v name: Provides the name of an error type that you can use to narrow
down the area in which the error occurred. The “Defining the error
types” section, earlier in this chapter, describes the error type names in
more detail.

v prototype: Provides the means for adding both properties and meth-
ods to an object.

The Error object also provides a number of standard methods. As with
properties, vendors provide a number of non-standard methods you can
employ during the debugging phase of your application. The following list
describes the standard methods provided by the Error object:

V¥ toSource (): Outputs the source of an error as a string that you can use
when re-throwing an error.
V¥ toString (): Outputs a string that describes the Error object.

»* valueOf (): Outputs the native value of the error, normally the error
message.

173

7 74 Part lll: Meeting JavaScript's Control Structures

Throwing Errors

There are times when you can’t handle an error or you can’t handle it in the
location where the error occurs. Throwing an error means creating a new
Error object that a try. . .catch block can handle. JavaScript doesn’t
provide any sort of default error handling. It won’t tell the user something is
wrong either. When working with JavaScript, you must provide the complete
error-handling package. (You can find complete code for this example in the
\Chapter 10 folder of the downloadable code as ThrowingErrors .HTML.)

function OptionalArgument (param)
{
try
{
// Determine whether there were any params passed.
if (arguments.length == 0)
{
// Throw an error.
throw new ReferenceError ("No Data Supplied") ;

}

// Create a string to hold the arguments.
var Result = new String() ;

// Process each of the arguments in turn.
for (var i = 0; 1 < arguments.length; i++)
{
// Verify that the argument is of the right type.
if (typeof (arguments[i]) != 'string')
{
throw TypeError (
"Incorrect Data Supplied, type:" +
typeof (arguments[i]) + " value: " +
arguments[i]) ;

}

// Add to the argument string.
Result += arguments[i] + "
";
}
}
catch(Err)
{
// Display the error onscreen and return.
document .getElementById ("Result") .innerHTML =
Err.name + "
" + Err.messade;
return;

}

// Display the results onscreen.
document .getElementById ("Result") .innerHTML = Result;

Chapter 10: Performing Error Handling 1 75

The OptionalArgument () function example from Chapter 9 is now
reworked to use error-trapping techniques. In this case, the example throws
specific error types to make it possible for a developer using the function to
find problems with input quickly. When the caller doesn’t provide a value or
the value is of the incorrect type, the application throws a specific kind of
error that tells the caller precisely what went wrong. Figure 10-2 shows typi-
cal output from this example.

@ Throwing an Error - Mogzilla Firefox
CEilEEdR, Vie ookiEE; T

I
Figure 10-2: .
Throwing | Throwing an Error
errors can
make it [Send 0 Arguments H Send 1 Argument ” Send 3 Arguments
easier to [Send Various Argument Types]

locate | TypeEmor _
SpECiﬁC Incorrect Data Supplied. type:number value: 0

problems.

Notice that the names of the classes used in the source code precisely match
those found in the “Defining the error types” section of this chapter. Always
use specific errors when you can. However, you may encounter situations
when none of the standard error types meet your needs. In this case, you can
create a custom error type. The article at https://developer.mozilla.
org/docs/JavaScript/Reference/Global_Objects/Error describes
how to create custom error types. You also find some additional information
about the standard error types as part of that article.

https://developer.mozilla.org/docs/JavaScript/Reference/Global_Objects/Error
https://developer.mozilla.org/docs/JavaScript/Reference/Global_Objects/Error

’ 76 Part lll: Meeting JavaScript's Control Structures

Part IV

Interacting with
Users and HTML

Form Event Support in JavaScript

Event Support Description
Occurs when a form loses focus. This event is often used to
onblur <form> provide support for features such as asking the user whether
to save changes the user has made to form content.
<input>, Occurs when the content of a form element, the control con-
onchange <select>, and tent selection, or the control’s checked state have changed.
<textarea> You use this to perform tasks such as detecting invalid data.
<label>,
<input>, Occurs when an element receives focus. Developers use this
onfocus <select>, event to provide special effects, such as displaying a drop-
<textarea>,and down list of valid options that the user can choose.
<button>
Occurs when a user requests a form reset. Resetting the form
onreset <form> returns the content to its default state. Users request a reset
when the form data has become invalid or unmanageable.
Occurs when a user selects text within the element that has
<input>and focus. Developers can use this event to present options such
onselect . .
<textarea> as formatting the selected content or performing tasks such
as looking up the word in a dictionary.
Occurs when the user submits the form. Developers use
onsubmit <form> this event to perform the task of transmitting the data to the

server or to perform validations tasks.

web

Find a step-by-step process you can use for creating CSS in an easier
and faster manner at http: //www.dummies.com/extras/html5
U programmingwithjavascript.

http://www.dummies.com/extras/html5programmingwithjavascript
http://www.dummies.com/extras/html5programmingwithjavascript

In this part . . .

Discover how you use the Document Object Model (DOM) to
interact with users through JavaScript.

Understand how events make it possible to react to user and
environment changes programmatically.

Use Cascading Style Sheets (CSS) to create an interesting and
flexible interface for the user.

See special HTML5 features you can use to create more
exciting applications with special functionality using less
code.

Recognize how windows make it possible to separate
information and make it easier for the user to work with.

Chapter 11

Understanding the Document
Object Model

In This Chapter
Understanding the Document Object Model (DOM)
Interacting with various HTML elements
Using events to your advantage
Changing the page appearance with styles
Creating and using nodes to affect structure

Fe Document Object Model (DOM) is the means of interaction between
JavaScript and HTML5. While HTMLS5 provides the user interface,
JavaScript provides the back-end logic used to make that interface react to
user input. The two can’t work well without each other. In fact, many of the
examples in this book already rely on the DOM in order to provide basic
output. You can’t interact directly with an HTML5 tag, change the structure
of a page, or modify the appearance of the content without interacting with
the DOM in some way.

The DOM has multiple levels that you’ll encounter in this chapter. The deep-
est layer is content in the form of text or objects. There are the tags (HTML)
that define the interpretation of certain kinds of content. Then there are the
core objects that define the actual structure (nodes) of the document. Of
course, the final level is the browser itself, which interprets the tags and the
structure that contains them to present information to the user onscreen.
The section on using JavaScript objects in Chapter 5 presents an overview
of some of this information, especially the browser objects, but this chapter
goes into far greater detail so that you can better use the DOM to create
exciting presentations for your users.

Interacting with the DOM isn’t a single-step process either. There are ways to
view the DOM and the way it affects the presentation of content. For example,
you use styles to define the physical appearance of the page. You may decide
to use a particular font in one location and rely on a specific color in another
area. There are also events to consider. A user may hover the mouse pointer

’ 80 Part IV: Interacting with Users and HTML

over a particular area, which creates a change in the appearance of the page
that’s controlled by JavaScript. This chapter presents a good overview of
many of these special changes. However, you’ll want to review Chapter 12 for
more details about events and Chapter 13 for more details about Cascading
Style Sheets (CSS). Part V of this book is where you’ll see the most spec-
tacular special effects — the purpose of this chapter is to build the basis on
which you create those special effects.

Introducing the Document
Object Model (DOM)

JavaScript provides support for a number of DOM object types. The kind of
DOM objects that you need to consider for this section are the HTML DOM
objects — those that affect the appearance of a page onscreen. The HTML
DOM obijects encase the content you provide and define how the browser
presents that information to the viewer.

The following list provides an overview of the most common HTML DOM
objects that you use when working with JavaScript:

v Document: Provides access to all the elements of an entire page. Every
page loaded into a browser becomes a Document object that you access
using the document keyword.

v~ Event: Allows interaction with the events and event handlers associated
with a page. Each element type has specific events associated with it,
such as the click event associated with the But ton object.

v HTMLElement: Provides a base class from which all HTML elements
are derived. This base class defines the properties and methods that all
HTML elements provide.

v+ Anchor: Represents an HTML hyperlink.

v Area: Defines the area within an HTML image map that’s used to create
clickable regions for a graphic element.

1 Base: Specifies the default address or a default target for all links on
a page.

+* Body: Represents the <body> tag portion of a page, including all of the
elements contained within that tag.

+ Button: Represents a button on a page. This object is specifically
associated with the <button> tag, rather than the <input> tag form
of button.

v Form: Represents a form and includes all of the elements within that form.

Chapter 11: Understanding the Document Object Model 18 ’

v Frame and IFrame: Represents a frame (the <frame> tag) or inline
frame (the <iframe> tag) and all the elements within that tag.

v Frameset: Provides access to a frameset that contains two or more
frames. This object specifies only the number of rows and columns used
to hold the associated frames.

v Image: Represents an embedded image.

v Input Button: Represents an <input> tag of type button used for build-
ing a form.

v+~ Input Checkbox: Represents an <input> tag of type checkbox used for
building a form.

v~ Input File: Represents an <input> tag of type file upload used for build-
ing a form. When the user clicks the button, the browser presents a
browse dialog box used to locate the file.

v+ Input Hidden: Represents an <input> tag of type hidden. A hidden ele-
ment is used to send data to the server but is invisible to the end user.

v Input Password: Represents an <input> tag of type text used for build-
ing a form. This particular form of text control displays asterisks instead
of the characters the user has typed to keep passwords and other secret
information hidden.

+ Input Radio: Represents an <input> tag of type radio button used for
building a form.

+~ Input Reset: Represents an <input> tag of type button used for build-
ing a form. This button type is used to reset the form to its original state.

v+ Input Submit: Represents an <input> tag of type button used for build-
ing a form. This button type is used to send data to the server.

v~ Input Text: Represents an <input> tag of type text used for building
a form.

v Link: Creates an HTML link on the page.

v Meta: Defines meta data used to describe page content, automatically
refresh content, or perform other tasks.

1 Object: Creates a generic object used to hold non-text data such as
pictures, controls, and audio.

v Option: Represents a drop-down list where the user can choose a
single entry.

1~ Select: Represents a drop-down list where the user can choose one or
more entries.

v Style: Specifies the appearance of other elements on the page.

v~ Table: Creates a table on the page and contains both row and cell ele-
ments used to hold content.

’ 82 Part IV: Interacting with Users and HTML

WBER
\x&
&

v td and th: Represents a data cell within a table. The <td> tag is used for
general data items, while the <th> tag defines headings.

v tr: Represents a row of data cells within a table.

1 Textarea: Represents a multi-row text element on the page.

This list contains objects. Most of these objects are accessed using the docu-
ment object. For example, you access the Form objects on a page using the
document . forms property. The object provides the means for manipulating
the characteristics of the items you access using the collection stored in the
property. The document object also provides access to some elements that
aren’t stored as objects, such as the title property. You change the docu-
ment’s title by assigning a new value to the tit1le property.

You should also note that there’s a Body object for the <body> tag within
the document, but apparently not a Head object to access the information in
the <head> tag. Working with the <head> tag can become a bit interesting at
times because it involves interacting with the server — a topic discussed in
Chapter 17. When accessing items in the <head> tag, you access the individ-
ual tags described in the following list as properties of the document object:

V¥ baseURI: Specifies the base URI for a page that’s found in the <base>
tag. This property gets or sets the content of the href attribute.

V¥ bgSound: Provides a means for adding a background sound to the page.

v link: Provides the means for linking external content, such as a .CSS
file, to the current page.

v meta: Allows reading, writing, and creation of meta tags used to
describe a document.

v script: Provides access to existing scripts and allows creation of new
scripts on a page. If you don’t provide a value for the type property, the
browser assumes that the script relies on the JavaScript language, which
is the default for all current browsers.

V¥ styleSheets: Allows reading, writing, and creation of style information
used to format the content of a document.

v title: Provides access to the <title> tag of a document.

It’s important to note that you can access all of these elements as objects
within your code by assigning the tag an id attribute. Using this approach
often provides access to additional information about the tag. For example, if
you start with a tag like this:

<meta id="contentType"
http-equiv="content-type"
content="text/html; charset=UTF-8" />

Chapter 11: Understanding the Document Object Model 1 83

you can access a number of individual properties associated with the tag
using code like this:

var Meta = document.getElementById("contentType") ;

document .write ("<p>http-equiv: " +
Meta.httpEquiv + "<p />");

document .write ("<p>content:
");
var Content = Meta.content.split(";");
for (var i = 0; 1 < Content.length; i++)
{

document .write(Content[i] + "
");
}

document .write("</p>") ;

This chapter can’t discuss absolutely every aspect of the HTML DOM interface
that’s accessible to JavaScript. You can find an outstanding pictorial view of
all the interfaces at http://help.dottoro.com/lagstsiq.php. This site
also tells you which browsers support a particular interface — a tricky sup-
port question that all developers must answer at some point.

Accessing Individual HTML Elements

Whether you want to change content, presentation, or interaction, you must
gain access to an individual HTML element to do it. For example, if you want
to change the caption on a button, you must have access to the button first.
No matter what the change is, it requires that you first obtain access to the
required element. The following sections discuss the techniques you use to
access and interact with individual HTML elements using the HTML DOM
objects, properties, and methods described earlier in the “Introducing the
Document Object Model (DOM)” section.

Modifying the output stream

Think of a physical stream when considering streams in a computer system.
In a physical stream, individual atoms of water flow from one location to
other along a specific path. Likewise, in a computer stream, individual bits of
data flow from one location to another along a specific path. Modifying the
output stream means to change the flow of data in the path. You can dam the
flow by closing the stream, add a new flow by writing to it, or allow the data
flow by opening the stream. The following list describes the functions associ-
ated with the output stream:

http://help.dottoro.com/lagstsiq.php/

’ 84 Part IV: Interacting with Users and HTML

v close (): Closes an output stream that was opened using the open ()
method.

v open () : Opens a new output stream to receive content from either the
write() orwriteln () function

WBER By default, the open stream is the current document. When you use
thewrite() orwriteln () function without specifically opening a
stream, the output goes to the document that’s currently loaded into the
browser.

v write (): Outputs the text you provide to the currently opened stream.

v writeln (): Outputs the text you provide to the currently opened
stream and ends the output with a newline character, which makes the
output easier to see when viewing the page source in a browser.

These four functions make it possible to modify the output stream. In fact,
the write () function is used in quite a few examples in earlier chapters.
Here’s an example that combines stream modification with a few of the other
concepts discussed to this point in the chapter. (You can find complete code
for this example in the \Chapter 11\HTML folder of the downloadable code
as OutputStream.HTML.)

<script language="JavaScript">
// Get the first stylesheet associated with
// this document.
var Sheets = document.styleSheets[0];

// Obtain the rules on that sheet.
var Rules = Sheets.cssRules;

// Display each of the rules onscreen.
for (var i1 = 0; i < Rules.length; i++)
{
// Obtain a single rule and write the name
// of that rule onscreen.
var Rule = Rules[i];
document .write("<p>" + Rule.selectorText +
"
");

// Obtain a list of styles for the rule.
var Styles = Rule.style;

// Display each of the styles onscreen.
for (var j=0; j < Styles.length; Jj++)
{
// Obtain the name of a property.
var PropertyName = Styles[j];

// Use the property name to locate its value
// and display both name and value.

Figure 11-1:
Use the
CSS-related
properties
and objects
to learn
about page
formatting.
|

Chapter 11: Understanding the Document Object Model 1 85

document .write (PropertyName + " : " +
Styles.getPropertyValue (PropertyName) +
n
 n) ;

3

// End the document rule printout.
document .write("</p>") ;

}

</script>

The example document includes a <style> tag that defines the format-

ting for various elements. Of course, it would be nice to know how the page
is formatted. Each <style> tag associated with a page is one item in the
styleSheets property, which you can access using an index. This page has
only one <style> tag so the code accesses it using the styleSheets[0]
index. Each CSS style has one or more rules defined for it, which you can
access using the cssRules property.

At this point, the example relies on a nested for loop to determine the rule
name and each of the styles defined within the rule. A style property consists
of a style name and a style value. You must use the style property name to
access the value using the getPropertyVvalue () method. Figure 11-1 shows
the output from this example.

Modifying the Qutput Stream

h1

color : red
font-style : italic
text-align : center

color : blue
font-family : cursive

You can use the various methods and properties associated with the
styleSheets property and its children to modify styles as well as read
them. You can see an example of adding styles to tags in the “Working with
Styles” section, later in this chapter. Chapter 13 provides additional exam-
ples of interacting with CSS by using JavaScript.

’ 86 Part IV: Interacting with Users and HTML

SMBER
é‘,\“

Affecting HTML content

The whole reason to display a page is to provide content to the viewer. It
may seem as if pages are all about formatting, graphics, design elements,
and so on, but these items are window dressing for the main event — the
content that the page provides. The following example shows some simple
techniques for changing content on a page. (You can find the complete code
for this example in the \Chapter 11\HTML folder of the downloadable code
as ChangeContent . HTML.)

function ChangeContent ()

{
// Modify the <p> tag.
document .getElementById ("Changel") .innerHTML =
"Changed! " ;

// Modify the <input> tag.
document .getElementById ("btnChange")
.setAttribute ("value", "Clicked") ;

}

Even though this example looks simple, it contains everything needed to
change content in almost every situation. When working with an HTML
element, such as the <p> tag, you use the innerHTML property to make
changes. The kind of element is unimportant — this technique works equally
well on <div>, , and <h1> tags.

When working with a control, however, you often need to work with the value
attribute instead of the i nnerHTML property. For example, when working with
a button type <input> tag, you must change the button’s caption using the
value attribute, as shown in the example. This difference between elements
and controls seems to confuse a lot of people. The easy way to remember what
to do is to look at the appearance of the item onscreen. When an item has a
graphic appearance, such as a control, you use the value attribute.

Changing attributes

Every HTML tag can include two forms of information: content that appears
between the beginning and ending of the tag and attributes. The content
normally takes the form of text, but it can also include an object, such as

a picture, a link to a video, or a sound. Most attributes require specific
information. For example, an attribute associated with formatting requires
information that describes how to format content. You can generally divide
attributes into the following categories:

Chapter 11: Understanding the Document Object Model 18 7

1 Content: Defines the information that appears onscreen to the viewer.

v Formatting: Modifies the way that the information appears onscreen.
For example, it could add special colors or change the appearance of the
font used to display text.

v Control: Specifies the way in which a user can interact with the content.
For example, you can decide that a text box will allow the viewer only to
read the content rather than read and write it.

v+~ Identification: Provides a description or other identifier to other con-
trols or to JavaScript, so that these other entities can uniquely identify
the host control.

v Event: Determines the function used to handle the specific event, such
as a user click or the change of content.

JavaScript doesn’t place any limitations on the sorts of changes you can
make to attributes. However, you need to exercise caution because some
changes will have unexpected results. For example, you can’t modify

the way that the controls on a page work and expect the user to make
any sense of your application. The following example shows how to
modify various attributes of a page. (You can find complete code for this
example in the \Chapter 11\HTML folder of the downloadable code as
ChangeAttributes.HTML.)

function EnableButton ()

{
// Reconfigure btnSecond.
var Button2 = document.getElementById ("btnSecond") ;
Button2.removeAttribute ("disabled") ;
Button2.setAttribute ("value", "Change Content") ;

}

function ChangePl ()

{
// Now that the second button is enabled, use
// it to change the <p> tag style.
var Pl = document.getElementById("pl");
Pl.setAttribute("class", "special");

}

This example has two buttons. At the outset, the first button is disabled. The
user can see the button, but the button isn’t functional. To make the button
functional, the user clicks the first button, which calls EnableButton (). To
enable the button, the code removes the disabled attribute. The caption for
the second button is incorrect at this point. It currently says Disabled, so
the code also changes the value attribute to Change Content.

’ 88 Part IV: Interacting with Users and HTML

Figure 11-2:
Modifying
attributes
can make

big changes

to the page.
|

Now that the second button is enabled and has the right caption, the user
can click it. The <p> tag currently uses the default CSS style for that tag.
To change the text style, the code adds a class attribute using set
Attribute () and sets the value to special. Adding the class attribute
automatically changes the text form. Figure 11-2 shows typical output from
this example.

Changing Element Attributes

Seme Content

[Enable Button][Change Content

Considering Events

It’s helpful to associate events with actions. The action need not be on the
user’s part. In some cases, some other entity will perform the action. For
example, a network failure or the completion of a file download could initiate
an event. That said, Table 11-1 describes events that are associated with the
HTML interface.

Table 11-1 Events Associated with the HTML Interface

Event Type Description

onabort Frame and object The user or other entity caused the
page or an individual object, such
as a picture, to stop downloading.

onblur Form A form element has lost focus.
This event normally occurs
with the <label>, <input>,
<select>, <textarea>, and
<button> tags.

Chapter 11: Understanding the Document Object Model

189

Event

Type

Description

onchange

Form

A form element, the selection, or
the checked state have changed.
This event normally occurs with
the <input>, <select>, and
<textarea> tags.

onclick

Mouse

The user has clicked on an ele-
ment.

ondblclick

Mouse

The user has double-clicked on an
element.

onerror

Frame and object

An error of some type has
occurred, such as the failure

of a picture to load correctly.
This event normally occurs with
the <object>, <body>, and
<frameset> tags.

onfocus

Form

A form element has received
focus. This event normally occurs
with the <label>, <input>,
<select>, <textarea>, and
<button> tags.

onkeydown

Keyboard

The user has pressed a key.

onkeypress

Keyboard

The user has pressed and released
a key. (The event is actually fired
during the key press.)

onkeyup

Keyboard

The user has released a key.

onload

Frame and object

The browser has loaded a docu-
ment, a frameset, or an object.

onmousedown

Mouse

The user has pressed a mouse
button down while pointing at a
document element.

onmousemove

Mouse

The mouse pointer is passing over
a particular document element.

onmouseout

Mouse

The mouse pointer has moved
outside a particular document ele-
ment.

onmouseover

Mouse

The mouse pointer has moved into
the space used to hold a document
element.

onmouseup

Mouse

The user has released a mouse
button while pointing at a document
element.

(continued)

’ 90 Part IV: Interacting with Users and HTML

Table 11-1 (continued)

Event Type Description

onreset Form The user has reset the form.

onresize Frame and object The document view has changed
in size.

onscroll Frame and object The document view has scrolled.

onselect Form The user has selected some text.

This event normally occurs with

the <input> and <textarea>
tags. Some browsers may also sup-
port this event for object selection
(such as when a user selects a

picture).
onsubmit Form The user has submitted the form.
onunload Frame and object The browser has unloaded a docu-

ment, a frameset, or an object.

As you can see from Table 11-1, all HTML events have one thing in common,;
their names begin with the word on. An event doesn’t have to use the word
on. This is simply a convention used to make it easier to determine that a par-
ticular control attribute is an event and requires the name of an event handler,
rather than content or formatting.

One of the more interesting effects that you find on sites is the change that
occurs in controls and elements when the mouse pointer hovers over them.
The following example shows one way to create a mouseover effect (there
are many). Developers commonly use the mouseover effect to draw the
viewer’s attention to an active area of the page. (You can find complete code
for this example in the \Chapter 11\Events folder of the downloadable
code as Mouseover . HTML.)

function ChangeDisplay (Id, Class)
{
// Change the class of the specified
// element or control to a new value.
document .getElementById(Id) .setAttribute (
"class", Class);
}

All that you need to do to create a mouseover effect is change the class
attribute of the control to a different style. In addition, you need to define
the styles needed to make the change. However, you need to tell the control
when to change its appearance. That means adding the correct event entries
to the tag. Here’s the <input> tag used for this example.

Chapter 11: Understanding the Document Object Model 19 ’

<input id="btnClick"
class="Normal"
type="button"
value="ClickMe"

onmouseover="ChangeDisplay ('btnClick', 'Selected')™"
onmouseout="ChangeDisplay ('btnClick', 'Normal')";
onclick="SayHello ()" />

The onmouseover event is fired when the user hovers the mouse over

the button. The example changes the button’s style to Selected. The
onmouseout event is fired when the user moves the mouse cursor outside of
the area occupied by the button. In this case, the code changes the style back
to Normal. The effect is to show when the button is selected and the user
can click it. It’s a nice visual effect that can really help people with special
visual requirements.

Working with Styles

Styles are important because they help dress up otherwise drab pages and
help viewers focus on specific content. Using the correct styles makes a
page easier to read and can draw the viewer’s attention to different areas
as needed. The following example shows one technique for programmati-
cally changing the styles on a page. (You can find complete code for this
example in the \Chapter 11\Styles folder of the downloadable code as
AddingStyles.HTML.)

<script language="JavaScript">

function ChangeStyles/()

{
// Modify the <p> tag style.
var PTag = document.getElementById("MyPTag") ;
PTag.style.fontFamily = "cursive";
PTag.style.color = "blue";
PTag.style.textAlign = "center";
PTag.style.border = "medium double green";

}

</script>

It’s possible to change the style of any individual element by accessing that
element’s style property as shown. When you have access to it, you can
change any style feature that you could normally change using CSS.

Figure 11-3 shows typical output from this example.

192

Part IV: Interacting with Users and HTML

Figure 11-3:
Styles add
pizzazz to
your site
and help
direct the
viewer's
attention to
content.

grammatically Changings Styles - Mozilla Firefo:

Programmatically Changings Styles

|| Some Content ”

Change the Styles

CSS is a big topic, and there’s no way that a part of a chapter can even hope
to discuss the topic. Chapter 13 provides some additional information on CSS,
but if you really want some good information on CSS itself, try the tutorial on
the W3Schools.com site at http://www.w3schools.com/css.

Working with Nodes

The core DOM objects deal with the structure of a page. Each page comprises
various types of nodes. The section on using JavaScript objects in Chapter 5
provides you with a description of built-in objects that JavaScript supports
for working directly with HMTL5 nodes. In fact, that same section has a short
example showing how to use a few of these objects. The following sections
provide a more detailed description of working with nodes, along with a
couple additional examples on how to interact with nodes directly.

Creating new elements

Pages comprise nodes. The entire chapter has dealt with nodes of particular
types. For example, you’'ve worked with various elements and controls, their
elements, and content. All of this information is stored in a page as a series of
hierarchical nodes. The hardest part of working with nodes is discovering the
techniques required to access a particular node. When you understand the
structure of the nodes and how to access them, you can dynamically modify
pages to meet any need.

http://www.w3schools.com/css/

Chapter 11: Understanding the Document Object Model 1 93

The following example shows a simple technique for adding a new element
to a page. Later chapters refine these techniques, but for now, focus on just
the idea that nodes appear in a hierarchical order on the page. (You can find
complete code for this example in the \Chapter 11\Nodes folder of the
downloadable code as ModifyNodes . HTML.)

function AddNodes ()

{
// Create a new <p> tag and assign values
// to it.
var P2 = document.createElement ("p") ;
P2.setAttribute("id", "p2");
P2.innerHTML = "New Content";

// Insert this new <p> tag before the existing
// button.
document .body.insertBefore (P2,

document .getElementById ("btnFirst")) ;

// Create a new button and assign values to it.

var Button2 = document.createElement ("input") ;

Button2.setAttribute("id", "btnSecond") ;

Button2.setAttribute("type", "button") ;

Button2.setAttribute ("value", "Remove Nodes") ;
(

Button2.setAttribute ("onclick", "RemoveNodes()");

// Add this new button after the existing
// button.
document .body . appendChild (Button2) ;

}

Using the techniques shown here and a little careful construction of your
page, you can insert an element of any type anywhere you need it on the
page at any time. This code adds two nodes: a <p> tag and a new button. You
create both by calling createElement () with the correct tag type. After
you have the new element, you can assign values to it as needed. The exam-
ple shows both an element and a control. Working with other elements and
controls is much the same as shown here.

The tricky part is getting the new item in the right place. In this case, the
code uses insertBefore () to place the new <p> tag before the existing
button on the page. This means that the button must have the id attribute
defined to make it easier to locate the button on the page. You supply both
the new element and the existing button as input to the call.

Adding a new element to the end is much easier. You call appendChild ()
with the new element. Figure 11-4 shows a typical example of the output from
this application.

’ 94 Part IV: Interacting with Users and HTML

Figure 11-4:
It's possible
to change
the appear-
ance of a
page by
adding new
elements.
|

- Mozilla Firefox
ST

kmaj

Changing Page Nodes

Existing Content

New Content

[Add Nodes l[Remove Nodes

Removing existing elements

This section adds onto the example shown in the preceding section. The
page now has a new <p> tag and a new button. The button actually works
after you add the following function to the example. (You can find complete
code for this example in the \Chapter 11\Nodes folder of the download-
able code as ModifyNodes .HTML.)

function RemoveNodes ()
{
// Remove the new <p> node that we just added.
document .body .removeChild (
document .getElementById ("p2")) ;

// Remove the new button.
document .body .removeChild (
document.getElementById ("btnSecond")) ;
}

In both cases, the code removes the elements by calling removeChild () with
the element you want to remove. To make this code work easily, you really

do need to define the id attribute for each element and control on the page.
Otherwise, finding the specific item you want to remove becomes difficult.

Chapter 12
Handling Events

In This Chapter

Understanding how events work
Interacting with events
Handling keyboard events
Creating a custom event

A lot of developers make a big deal out of events and feel that they’re
just a bit confusing. However, all that an event really says is that some-
thing has happened. Something happens, and then your application reacts
to it. There’s a bit more to it than that, but if you want to avoid becoming
confused about events, always think about them as saying something has
happened.

This chapter examines events in detail because events are the action portion
of an application — the part that a user actually sees when interacting with
the application. Previous chapters show you how to perform some basic
tasks when reacting to events, such as displaying a dialog box or informa-
tion onscreen when a user clicks a button. This chapter goes into more detail
about events and helps you see how they can make your applications easier
and more exciting to use.

Most HTML controls provide sufficient events to support most user needs.

In some cases, you may decide to add a custom event to your code. This
chapter also provides an overview of the process for creating custom events.
Using custom events can help you extend JavaScript’s functionality in new
ways. For example, you can use custom events to react to special features on
your server or to provide the viewer with notification that certain tasks have
completed. Events are useful for a broad range of tasks that the originators
of JavaScript never envisioned and for which you may not find a third-party
library.

’ 96 Part IV: Interacting with Users and HTML

Introducing Events

Events actually occur in three parts — just as events in real life do. First,
someone must proclaim the event. A tree falls in the woods. That’s the event.
Second, someone must be listening for the event. You're standing in the
woods and hear the tree fall. In this case, you're the listener — the one who
has heard the event. Third, someone must react to the event. You decide

to get your axe, cut up the tree, and use it for firewood this winter. In this
case, you've handled the event in a specific way. Someone else may handle
the event in another way. Events, listeners, and handlers appear as part of
JavaScript applications as well. The following sections describe events in
greater detail.

Performing basic event tasks

All the events that come built into JavaScript work with HTML controls in
some way. You can create custom events that work with code, but that’s an
advanced programming technique you won’t use often (except for special
circumstances). In most cases, developers group the events into one of a
number of categories:

1 Mouse: Most people interact with a page by using a mouse. By adding
specific mouse-related events, your application can provide visual cues,
such as a mouseover, or perform tasks, such as reacting to a click.

v Keyboard: Almost any time you have forms on a page, you’'ll need to
provide keyboard support through events. Simple forms may not require
such support, but larger forms do. Many people keep their hands on the
keyboard in the interest of efficiency, so the keyboard support you add
will make your application significantly easier to use.

v Frame or object: Loading a document into the browser creates a frame
that holds the document. In addition, you can split up a page into seg-
ments by using inline-frames (IFrames) that make it possible to load
multiple documents to create a cohesive view. Whenever you load a
document or an object, such as a picture, associated with a document,
you need to load resources and other items the document requires at
the right time. The browser generates events to tell you when it’s safe to
load specific resources.

v Form: Most sites have special pages that contain forms. For example,
you may need help with a product or want to contact the company for
other forms of support. Using a form makes it possible for people to
communicate in a manner that supports a level of automation (so that
the server can handle the information, rather than relying on human
input). Form-based events make it possible to perform tasks such as
submitting a form or reacting to user input when creating form content.

Chapter 12: Handling Events

<MBER

No matter which event you choose to handle, the event itself has an action
name, such as click, and the listener has a name that includes the event
name and the word on, such as onclick. Event handlers don’t have a specific
naming convention. Most developers give the event handler a practical name
that reflects the task the event handler performs, such as DisplayString()
when the event handler displays a string onscreen as the result of a mouse
click. Choose names for events, listeners, and handlers carefully so that you
can remember what tasks these elements perform and others can better
understand your code.

Now that you have a better idea of how events are put together, it’s time to
discover the individual events. The following sections describe each event
category and the listeners associated with that category. The listeners are
important because you assign your event handler function to the listener. In
JavaScript terms, the event handler subscribes to the listener.

Understanding the mouse events

Almost every page you encounter has some sort of mouse event associated
with it. Any time you see a special effect that occurs when the mouse is
moved, such as dropping down a menu, the special effect is the result of han-
dling a mouse event. The following list describes the built-in mouse events
that JavaScript supports:

v onclick: Occurs whenever a user clicks on the element. The onclick
and ondblclick events normally signify that the user wants to perform
a task of some type. The associated event handlers perform a specific
task-related action. An onclick event signifies that the user wants to
perform the default action.

v ondblclick: Occurs whenever a user double-clicks on the element.
Most developers use ondblclick to signify a special task-related
action, such as selecting data.

v onmousedown: Occurs whenever a user presses the mouse button down
and holds it when over the element. The onmousedown, onmousemove,
and onmouseup events are normally used with dragging objects or other
positional tasks. The drag begins with an onmousedown, continues with
onmousemove, and completes with onmouseup.

v onmousemove: Occurs whenever the mouse cursor moves over the
element.

v onmouseover: Occurs whenever the mouse cursor moves into the
space occupied by the element. The onmouseover and onmouseout
events are normally associated with special effects. For example, you
can show a special effect on the face of a button when the user moves
the mouse over it. These two events also make it possible to perform
tasks such as displaying hidden menus.

197

’ 98 Part IV: Interacting with Users and HTML

v onmouseout: Occurs whenever the mouse cursor moves out of the
space occupied by the element.

v onmouseup: Occurs whenever a user releases the mouse button when
the pointer is over the element.

Understanding the keyboard events

Keyboard events are seldom used by developers, which is a pity because
adding keyboard support to your application makes the application signifi-
cantly easier to use. Keyboardists — people who tend not to use the mouse
for anything — gain significant speed advantages when an application sports
keyboard event handling. However, keyboard support helps a broad range of
other people, too. For example, many people with special accessibility needs
rely heavily on keyboard support when they’re unable to work well with a
mouse.

The following list describes each of the built-in keyboard events that
JavaScript supports:

v onkeydown: Occurs when the user presses a key. The onkeydown,
onkeypress, and onkeyup events can work together to make it
possible to use control key combinations, such as Alt+P to print. The
onkeydown event indicates the control key press, the onkeypress
event indicates which standard key is pressed, and the onkeyup indi-
cates the completion of the control key sequence.

v onkeypress: Occurs when the user presses and then releases a key.
The event actually occurs when the user presses the key.

v onkeyup: Occurs when the user releases a key.

Understanding the frame or object events

Proper handling of document and object loading and unloading is essential
when creating a well-behaved site. Many sites behave poorly because the
application doesn’t handle events such as onabort, which means the user
must wait for something to finish loading before regaining control over the
page. Users normally respond by closing the browser and not returning to
the site. Table 12-1 describes each of the built-in frame or object events that
JavaScript supports.

Table 12-1 Frame and Object Event Support in JavaScript
Event Support Description
onabort <object> Occurs when a resource, such as a pic-
ture, has stopped loading before it has
completed. This event normally occurs as
the result of user action. It could signify
that the user is tired of waiting for the page
to load.
onerror <object>, Occurs when a resource, such as a pic-
<body>, and ture, hasn't loaded correctly. This event
<frameset> normally indicates that there’s a problem
with the application code, browser con-
nection, or resource storage. You should
provide code to handle the error.
onload <object> Occurs when a browser completes load-
ing a document, frameset, or other object.
Developers often use this event to load
supplementary resources or perform auto-
matic tasks, such as displaying a picture.
onresize <object>, Occurs when the document is resized. This
<body>, and event normally occurs as the result of a
<frameset> user action, such as changing the browser
window size. You can use this event to
rearrange content for better appearance
within the new display space.
onscroll <object>, Occurs when a document is scrolled. This
<body>, and event normally occurs as a result of user
<frameset> action.
onunload <body> and Occurs when a browser unloads a docu-
<frameset> ment, frameset, or other object. Developers

often use this event to ensure data is saved
and resources are deallocated.

Understanding the form events

Some form events are quite practical. The user must have a means of submit-
ting the form, so handling the onsubmi t event is essential. Other form events
are nice, but not absolutely essential. For example, the onblur event lets you
perform tasks such as asking the user about saving form data as needed.
Table 12-2 describes the built-in form events that JavaScript supports.

Chapter 12: Handling Events 1 99

200 Part IV: Interacting with Users and HTML

Table 12-2 Form Event Support in JavaScript
Event Support Description
onblur <form> Occurs when a form loses focus. This
event is often used to provide support for
features such as asking the user whether
to save changes the user has made to
form content.
onchange <input>, Occurs when the content of a form ele-
<select>, and ment, the control content selection, or the
<textarea> control’s checked state have changed.
You use this to perform tasks such as
detecting invalid data.
onfocus <label>, Occurs when an element receives focus.
<input>, Developers use this event to provide
<select>, special effects, such as displaying a drop-
<textarea>, down list of valid options that the user can
and <button> choose.
onreset <form> Occurs when a user requests a form reset.
Resetting the form returns the content
to its default state. Users request a reset
when the form data has become invalid or
unmanageable.
onselect <input> and Occurs when a user selects text within the
<textarea> element that has focus. Developers can
use this event to present options such as
formatting the selected content or per-
forming tasks such as looking up the word
in a dictionary.
onsubmit <form> Occurs when the user submits the form.
Developers use this event to perform the
task of transmitting the data to the server
or to perform validations tasks.
é&N\BEH
S Focus is the condition where an element of any type receives user input and

attention. For example, when a text box has the focus, anything the user types
will appear in that text box.

Working with attributes

All the examples so far in the book have assigned a handler directly to a lis-
tener within a tag. For example, when you have a tag that contains the follow-
ing code

Chapter 12: Handling Events 20 ’

<input id="btnChange"
type="button"
value="Change the Styles"
onclick="ChangeStyles ()" />

the ChangeStyles () function subscribes to the c1ick event through the
onclick listener. This is a direct assignment. Your application requests the
subscription as part of creating the initial tag.

However, there’s another way to subscribe to events. Instead of subscribing
as part of the tag, you can subscribe within your application code by interact-
ing directly with HTML attributes. This example begins with two buttons —
one that has an event handler assigned to it and another that doesn’t, as shown
here. (You can find complete code for this example in the \Chapter 12\
EventBasics folder of the downloadable code as UsingAttributes.HTML.)

<input id="btnAssign"
type="button"
value="Assign the Event Handler"
onclick="AssignHandler ()" />
<input id="btnClickMe"
type="button"
value="Click Me" />

In this case, clicking btnAssign calls the AssignHandler () function. On
the other hand, clicking btnC1lickMe does nothing. The button depresses,
but the user doesn’t see anything as a result because there’s nothing
assigned to the onclick event.

To have anything happen when the user clicks btnClickMe, you must assign
a function to the onclick event. The following code performs this task:

function AssignHandler ()
{
// Subscribe to the click event.
document .getElementById (
"btnClickMe") .onclick=SayHello;

// Display a subscription message.
alert ("Button Assigned") ;
}

function SayHello ()

{
// Display a message.
alert ("Hello There");

202 Part IV: Interacting with Users and HTML

WMBER
@ﬁ
&

Notice that the code assigns SayHello to onclick. To make the assignment,
you provide the name of the event handler without any parentheses. In addi-
tion, the name appears without quotes — you assign the function itself, not
the name of the function.

JavaScript has a limitation in this case. You can’t pass any data to the event
handler except an Event object, which is described in the “Working with the
Event object” section, later in this chapter. This makes working with events
different in this situation than when working with tags. A tag allows the use of
arguments, but this approach doesn’t.

Clicking to Create an Event

QUING/
S

The click event is the most commonly employed event. Users click to
execute tasks, to choose options, and to see details. It’s important to under-
stand that the c1ick event is something that users understand well and that
you must address in most cases in order to create a functional application.
The following sections provide some details about event handlers as a whole
and then demonstrate how to employ these details as part of a c1ick event
handler.

Understanding the objects at your disposal

The examples to date haven’t considered the objects that you can access
while handling an event. These objects are important because they provide
additional information about the event. As your applications grow in com-
plexity, you find that you need additional information in order to process the
event correctly. For example, you may subscribe a single event handler to
multiple events. When this happens, the event handler code needs to detect
which event it’s servicing and act appropriately.

It’s always an error to create a one-size-fits-all event handler. As with any func-
tion, your event handler should perform a single task well rather than multiple
tasks in a mediocre manner. Some developers make the mistake of trying to
cram too much functionality into a single function. When in doubt, create func-
tions for each event your application must handle. Use multiple assignments
to a single event handler only when such an assignment makes sense. The fol-
lowing sections describe the event-related objects in further detail.

Chapter 12: Handling Events 203

Working with the Event object

Any event handler can receive an Event object that describes the event.
Even when you programmatically assign an event handler to an event, the
event handler still has access to the Event object. The Event object can
tell you a number of things about the application. It provides access to con-
stants, properties, and methods.

The three constants deal with how your application works with a particular
browser. When two elements, a parent and a child, both target the same event
handler, the browser must choose which element should be serviced by the
event handler first. There are two completely different strategies for accom-
plishing this task: capturing and bubbling. The strategy that your application
sees depends on the browser you’re working with. A discussion of the details
of these strategies is complex, and you should write your code without any
thought of a particular element-processing order in mind. Because of the eso-
teric nature of this topic, it isn’t discussed in this book. You can read more
about these strategies at http: //www.quirksmode.org/js/events_
order.html.

The following list describes the Event object constants:

V¥ CAPTURING_PHASE: The browser is using the capturing method, and the
parent element is serviced first.

v AT_TARGET: The current event is being serviced by the event handler.
This constant applies to every browser no matter which strategy the
browser applies.

V¥ BUBBLING_PHASE: The browser is using the bubbling method, where
the child element is serviced first.

The properties that the Event object provides can tell you some interesting
facts about the event, such as which element is calling and when it called the
event handler. Discovering details about the elements that have called the
event handler can help the event handler provide better processing. The fol-
lowing list describes the properties associated with the Event object:

» bubbles: Returns true when there’s a bubbling event taking place.

v cancelable: Returns true when the application can cancel an event,
so that its default action can’t occur. There are many reasons to cancel
an event, but most of them involve error conditions of some sort. For
example, a user might not enter data correctly, so submitting the data
would result in an error, and the application can cancel the submission.

V¥ currentTarget: Provides access to an object that defines the element
that called the event handler. In this case, the focus is on the event lis-
teners rather than directly on the element.

http://www.quirksmode.org/js/events_order.html
http://www.quirksmode.org/js/events_order.html

204

Part IV: Interacting with Users and HTML

QING/

»” eventPhase: Specifies the current event phase as a numeric value. You
use the Event object constants to perform a comparison in this case.

v target: Provides access to an object that defines the element that
called the event handler. In this case, the focus is directly on the ele-
ment rather than any event listeners associated with it.

v timeStamp: Defines the time at which the event occurred in millisec-
onds. You must use one of the Date object methods to convert the
output of this property into a human-readable form.

Even though the standard says that timeStamp should contain the
number of milliseconds since January 1, 1970, many browsers provide
other values, such as the number of milliseconds since the browser first
started. Consequently, you can’t use this value to obtain a specific time
unless the browser and platform support this feature. However, you can
always use this property to determine the time between events.

v type: Provides the name of the event. For example, if the user clicks a
button and the onclick listener calls the event handler, you see click
as output.

The Event object methods tend to change the way in which the application
processes the event. For example, an application may choose to cancel an
event if the conditions for completing it are unacceptable. The following list
describes each of the Event object methods in more detail:

v initEvent (): Defines specifics about an event:
¢ Event type
¢ The event’s ability to bubble
* Whether the application can cancel the event’s default action

v preventDefault (): Cancels the event’s default action. In other words,
the actions that normally take place by default won’t take place.

V¥ stopPropagation (): Stops further propagation of the event.
Generally, this means that the application won’t call any additional
event handlers. You can use this feature when an event handler has
answered all of the event’s needs and there’s no additional processing
required.

Working with the Document event object

The Document event object is unique in that it lets you create other events.
You use the createEvent () method to create an event that could simulate
something like a mouse click. Even though this object provides just

one method, it’s a powerful method. The only way to really understand

this particular object is to see it in action. The following example performs
three tasks:

Chapter 12: Handling Events 205

v Provides a means of generating a simulated click

v Adds an event handler that prevents the default action of simulating

the click

» Removes the event handler that prevents the default action of simulat-

ing the click

This is a somewhat advanced example, but it’s also incredibly useful code
because you can use it to add automation to your applications that will prove
helpful to less skilled users. (You can find complete code for this example

in the \Chapter 12\EventBasics folder of the downloadable code as
SimulateClick.HTML.)

function SimulateClick()

{

// Create the event.
var ClickEvent = document.createEvent ("MouseEvents") ;

// Configure the event.
ClickEvent.initMouseEvent (
"click", // Event type

true, // Can use the bubble technique?
true, // Is this event cancelable?
window, // View, should always be window.
0, // Number of mouse clicks.

0, // Screen X coordinate

0, // Screen Y coordinate

0, // Client X coordinate

0, // Client Y coordinate

false, // Ctrl Key Pressed?

false, // Alt Key Pressed?

false, // Shift Key Pressed?

false, // Meta Key Pressed?

0, // Number of button clicked.
null) ; // Related target

// Obtain a reference to the object.
var TestCheck = document.getElementById("chkTest") ;

// Perform the click and record whether the click
// was cancelled by another handler.
var Succeeded = TestCheck.dispatchEvent (ClickEvent) ;

// Display the result of the simulation onscreen.
if (Succeeded)
{
alert ("The click succeeded!");
}
else
{
alert ("The click was cancelled!") ;

}

206 Part IV: Interacting with Users and HTML

The code begins by obtaining a reference to the target event object, which is
MouseEvents in this case. The initMouseEvent () function takes a host of
arguments — all of which are required to make the example work. You already
know the purpose of most of those arguments. However, you can read more

about them at https://developer.mozilla.org/docs/DOM/event.

initMouseEvent. The next section of this chapter provides additional docu-

mentation about this particular event object.

After the code creates an event, it’s time to obtain a reference to the control

that will use the event. In this case, the example uses a check box named

chkTest. To issue the event, the application calls dispatchEvent () with
the event, ClickEvent, as the argument. This act fires (issues) the event.

The return value determines whether the event succeeded. When using the
default listener and handler, the check box is either selected or deselected,

depending on its previous state.

The code ends by determining the return status of Succeeded. If noth-

ing prevents the event from succeeding, Succeeded is true, and the first
alert () displays onscreen. Otherwise, you see the second alert () mes-
sage. Of course, the question now is how to prevent the default action from

occurring. The following code performs this task:

function PreventDefault (event)

{

}

// Prevent the default action.
event .preventDefault () ;

function AddHandler ()

{

}

// Obtain an object reference.
var TestCheck = document.getElementById("chkTest") ;

// Add the event handler.
TestCheck.addEventListener (

"click", // Type of event
PreventDefault, // Name of the event listener.
false) ; // Use the capture technique?

function RemoveHandler ()

{

// Obtain an object reference.
var TestCheck = document.getElementById("chkTest") ;

// Add the event handler.
TestCheck.removeEventListener (
"click", // Type of event
PreventDefault, // Name of the event listener.
false) ; // Use the capture technique?

https://developer.mozilla.org/docs/DOM/event.initMouseEvent
https://developer.mozilla.org/docs/DOM/event.initMouseEvent

Chapter 12: Handling Events 20 7

A\

When the PreventDefault () function is active, it accepts an Event object
(see the preceding section) as input. This event handler automatically stops
the default action from happening by calling preventDefault (). The check
box isn’t selected, and Succeeded is set to false when this happens.

However, the PreventDefault () function isn’t active at the outset. To
make it active, the application calls AddHandler (), which adds an event
listener using the addEventListener () function to the check box,
chkTest. Compare this approach with the technique discussed in the
“Working with attributes” section, earlier in the chapter, and you find both
methods work equally well, but this approach lets you determine whether the
browser can use the capture technique for working with multiple event han-
dlers. To remove the event handler, the application calls RemoveHandler (),
which reverses the process by calling removeEventListener () with the
same arguments as before.

Working with the Mouse and Keyboard event objects

The Mouse and Keyboard event objects are essentially the same. They
provide the same properties and methods. The only difference is that you
use one with a mouse and the other with the keyboard. The initialization
technique also differs. The preceding section shows an example of using the
mouse form of this object. The following list describes the properties used by
both objects:

v altKey: Returns true when the user pressed the Alt key at the time the
event was triggered.

v button: Specifies which mouse button was pressed by the user.
JavaScript recognizes up to three standard buttons as follows:

¢ 0: Left mouse button (Internet Explorer 8 and earlier return a value
of 1 for this button; newer versions of Internet Explorer return 0 as
expected)

e 1: Middle mouse button (Internet Explorer 8 and earlier return
a value of 4 for this button; newer versions of Internet Explorer
return 1 as expected)

¢ 2: Right mouse button

When working with a left-handed mouse, the parameter values are
reversed, which means that the left button now returns a value of 2,
and the right button now returns a value of 0. You would need to pro-
vide some sort of configuration screen and store user values as part of
a cookie in order to support a left-handed mouse because the mouse
doesn’t provide any sort of identification that JavaScript can capture.

v clientX: Provides the horizontal pixel value of the mouse pointer, rela-
tive to the current window, when an event was triggered.

v clientY: Provides the vertical pixel value of the mouse pointer, relative
to the current window, when an event was triggered.

208 Part IV: Interacting with Users and HTML

A\\S

»* ctrlKey: Returns true when the user pressed the Ctrl key at the time
the event was triggered.

v keyIdentifier: Provides a numeric identifier of the key the user
pressed.

» keyLocation: Provides a numeric identifier of the physical location of
the key that the user pressed on the keyboard. This information may
seem useless at first. However, you can use this information to perform
tasks such as detecting whether the right or left Alt key is pressed.

»* metaKey: Returns true when the user pressed the meta key when the
event was triggered.

The meta key is browser- and platform-specific. When working with the
Macintosh, the meta key is commonly the Mac (Command) key with
either Firefox or Safari. A few people have reported that pressing the dia-
mond key on MIT keyboards also triggers the meta key. You can find out
more about the meta key for Linux systems at http: //askubuntu.com/
questions/19558/what-are-the-meta-super-and-hyper-keys.
Apparently, pressing the Windows key on a Windows system doesn’t
trigger this property with any browser. The recommendation is to avoid
using this particular property because it works randomly or not at all.

v relatedTarget: Specifies whether there’s an element related to the
element that triggered the event. For example, when working with a
mouseover event (see the “Understanding the mouse events” section,
earlier in the chapter, for details), this property contains the identifier of
the element that the mouse just exited. Normally, this property contains
null to indicate that there’s no related target.

v screenX: Provides the horizontal pixel value of the mouse pointer, rela-
tive to the screen as a whole, when an event was triggered.

v screenY: Provides the vertical pixel value of the mouse pointer, relative
to the screen as a whole, when an event was triggered.

v shiftKey: Returns true when the user pressed the Shift key when the
event was triggered.

Not every browser supports every JavaScript feature. Some browsers don’t
support the mouse and keyboard event objects. It’s essential that you test
your application on the platforms your clients will use with the browsers that
you anticipate the client using.

Passing parameters to the
event handler function

Under certain conditions, JavaScript automatically assigns an Event object
to an event handler. The main conditions are that you must assign the event
handler programmatically and the event handler must provide a parameter

http://askubuntu.com/questions/19558/what-are-the-meta-super-and-hyper-keys
http://askubuntu.com/questions/19558/what-are-the-meta-super-and-hyper-keys

Chapter 12: Handling Events 209

to receive the Event object. Therefore, this example begins with an <input>
tag, coupled with a script to assign the event handler as shown here. (You
can find complete code for this example in the \Chapter 12\EventBasics
folder of the downloadable code as PassingParameters.HTML.)

<input id="btnClickMe"
type="button"
value="Click Me" />
<script language="JavaScript">
// Subscribe to the click event.
document.getElementById (
"btnClickMe") .onclick=CheckEvent;
</script>

In this case, the code simply assigns CheckEvent to the click event for btn-
ClickMe. Notice that you don’t specify any sort of argument as part of the
assignment.

The event handler does define an event parameter. In addition, because this
event handler contains code to track the time differential between clicks, it
also requires a global variable to hold the last event time. Here’s the code
you need to test the use of the Event object in this case:

// Create a global variable to hold the event time.
var LastEvent = 0;

function CheckEvent (event)

{
// Obtain an event time value.
var EventDifference;

if (LastEvent == 0)
{
EventDifference = "First Click";
}
else

{

EventDifference = event.timeStamp - LastEvent;

3

// Save the last event time.
LastEvent = event.timeStamp;

// Display statistics about the event.

document .getElementById ("Output") .innerHTML =
"Bubbles? " + event.bubbles +
"
Cancelable? " + event.cancelable +
"
ID: " + event.currentTarget.id +
"
Time: " + EventDifference +
"
Event Type: " + event.type;

}

The code shows the kind of information available to you when processing an
event. For example, you can determine all the relevant facts about the event

2 ’ 0 Part IV: Interacting with Users and HTML

Figure 12-1:
The Event
object
provides

all sorts of
informa-
tion to your
application.
|

source, including the kind of event that occurred. Depending on the sort of
event that called the event handler, you can also obtain information about
which key the user pressed or the current position of the mouse.

Notice that the example is careful to treat the t imeStamp property as a time
differential, not an absolute time. Testing shows that results vary when using
the timeStamp property, so you need to assume that you can determine
only a time differential from it. Figure 12-1 shows typical output from this
example.

Passing Parameters to Event
Handlers

Bubbles? true
Cancelable? true
ID: binClickMe
Time: 593

Event Type: click

Pressing a Key

One of the big obstacles for keyboardists is performing tasks quickly with
browser-based applications. A keyboardist makes efficient use of a computer
by using the keyboard and eschewing the mouse. To access different fields
on a form, a keyboardist relies on Alt+Key keystrokes. With this in mind, you
could create a form that accommodates the keyboardist. Here’s the partial
form that’s used for this example. (You can find complete code for this exam-
ple in the \Chapter 12\EventObjects folder of the downloadable code as
PressingKey.HTML.)

<form id="TestForm"
onkeypress="CheckStrokes (event) ">
<hl>Processing Keystrokes</hl>
<div>
<label> (N)ame: </label>
<input id="txtName"
type="text" />
</div>
<div>
<label>(A)dress: </label>
<input id="txtAddress"
type="text" />
</div>
<div>

Chapter 12: Handling Events 2 ’ ’

<label>(C)ity: </label>
<input id="txtCity"
type="text" />
</div>
</form>
<script language="JavaScript">
document .getElementById ("txtName") .focus () ;
</script>

Whenever a user presses a key combination in this form, the application calls
CheckStrokes () to determine which keys are pressed. Notice the inclusion
of the special event keyword here to pass the Event object to the event
handler. The short script at the end of the form simply sets the focus on the
first field in the form, which is the Name field. The parentheses around each
of the characters in the <label> element tell the user which Alt+Key combi-
nation to use to access that field.

You don’t want speed key processing (the act of looking for Alt key combina-
tions) to slow the application, so the CheckStrokes () function has to be as
short as possible. The following code performs the required task quickly and
efficiently:

Function CheckStrokes (event)

{
// Check for an Alt key press.
if (event.altKey)
{

// Determine which character the user pressed
// and perform the required focus change.
switch
(String. fromCharCode (event.charCode) . toUpperCase ())

{

case "A":
document .getElementById ("txtAddress") . focus () ;
break;

case "C":
document .getElementById ("txtCity") .focus () ;
break;

case "N":
document .getElementById ("txtName") . focus () ;
break;

}

The first task is to determine whether the user has pressed the Alt key. If so,
event.altKey is true. The second task is to convert event .charCode
from a numeric value that reflects the Unicode number of a character, to

an actual character by calling fromCharCode (). To ensure consistent
handling of the keystrokes, the result is converted to uppercase by calling
toUpperCase (). The code then uses a simple switch statement to choose
which control should receive focus.

2 ’ 2 Part IV: Interacting with Users and HTML

Creating Custom Events

The standard events provided with JavaScript perform well for most common
tasks. For example, you must have a method of performing a click, and
JavaScript provides a standard event to handle this need. However, there are
times when you need to pass information that the makers of JavaScript can’t
foresee. In this case, you must create a custom event. The following sections
discuss how to work with custom events.

Working with the CustomEvent object

The CustomEvent object provides the means for creating a new event —
one that isn’t part of JavaScript by default. The CustomEvent object is
deceptively simple. All it contains are the two properties described in the fol-
lowing list:

v Event name: A string containing the name that you want to use for the
event. The name can be anything you want, but it can’t contain any
whitespace characters, such as the space. Use an underscore (), if
desired, to separate words.

v~ Event data: An object literal that contains the data you want to pass as
part of the event. This part of a custom event can become quite complex
because you can pass any amount of data in any form you want, as long
as the data fulfills the object literal format. The event data comes in
two forms:

¢ Standard data: You can provide information for any of the proper-
ties supported by the standard Event object described in the
“Working with the Event object” section, earlier in this chapter.
Most developers define the bubbles and cancelable properties
as a minimum.

e Custom data: A custom event can contain custom data in any form.
You must avoid using the names of any standard properties. For
example, you can’t give a custom property the name bubbles.
Many developers use the detail property to contain details about
the custom event, but this is only a convention, and you're free to
use any form you see fit.

Creating the custom event code

JavaScript makes it quite easy to create custom events of your own. These
events could be anything. For example, you might want to provide some
means of handling user input on a page that posts the information on the
company’s site, as well as sending it to administrators by using e-mail. There

Chapter 12: Handling Events 2 ’3

are many uses for custom events, but they all follow the same pattern. This
example begins the global custom event object shown here. (You can find
complete code for this example in the \Chapter 12\CustomEvent folder of
the downloadable code as CreateEvent . HTML.)

// Define a new event.
var SpecialEvent = new CustomEvent (
"SpecialMessage",

{
detail:

{
message: "Hello There",
time: new Date()

Yy

bubbles: true,

cancelable: true

)

Notice that this event relies on a form of object literal. (See the section on
working with object literals in Chapter 5 for details.) However, notice how
detail is actually a nested object literal. You can nest information as many
levels deep as needed. If you later want to change some feature of the event,
you can do so. For example, to change the message, you would use code simi-
lar to this:

SpecialEvent.detail.message = "A new message!";

Now that you have a custom event to use, you need to go through three
phases to implement it. First, you must assign the event to a control. The
example uses a label and tells the application to make the assignment as part
of the form loading process using: <body onload="AssignEvent () ">.
Here’s the code you need to assign the event to the label:

function AssignEvent ()

{
// Obtain the object reference.
var Label = document.getElementById("CustomLabel") ;

// Assign an event to the object.
Label .addEventListener (
"SpecialMessage", HandleEvent, false);

}

The “Working with the Document event object” section of this chapter shows
this same technique used for a standard click event. Here you see it used

for the SpecialMessage custom event. Whether you assign a standard or
custom event, the technique is the same.

The second phase of implementing a custom event is firing the event. This
example relies on a button to perform the task, but any action could fire the

2 ’4 Part IV: Interacting with Users and HTML

event. All you need is an action where you can attach code to perform the
task of firing the event. Here’s the event firing code used for this example:

function FireEvent ()

{
// Obtain the object reference.
var Label = document.getElementById("CustomLabel") ;
// Fire the event.
Label .dispatchEvent (SpecialEvent) ;
}

The dispatchEvent () function performs the actual work. Notice that you
fire the event using the event object you created earlier. If you had wanted,
you could assign values to any of the content found in the custom event. For
that matter, you could create new content as needed as long as the recipient
knows how to work with the new content.

The third phase of implementing a custom event is providing the event han-
dler. The event handler receives the custom event from the control that’s
assigned to the event handler. Here’s the event handler used in this case:

function HandleEvent (event)

{
// Display the event information.
document .getElementById ("CustomLabel") .innerHTML =
"Control: " + event.currentTarget.id +
"
Message: " + event.detail.message +
"
Time sent: " +
event.detail.time.toTimeString () ;
}

All that this event handler does is display the custom event information
onscreen. Figure 12-2 shows typical output from this example.

I
Figure 122 | |EEEE ool - NEETT0
Custom
eventscan | Creating a Custom Event
contain any

information Control: CustomL abel
Message: Hello There
needed t0 | Time senr: 14:05:49 GMT-0600 (Central Standard Time)

perform a
task.

Chapter 13

Connecting with Style:
JavaScript and CSS

In This Chapter
Interacting with HTML-based formatting
Creating HTML style elements dynamically
Moving and positioning HTML elements

Developing a JavaScript-based menu

A t one time, HTML pages were plain or used inconsistent tags for format-
ting content, such as the outdated <center> tag. Many of these tags
are deprecated (no longer available) in HTML5. For example, the <center>
tag is no longer available. (See http://www.w3schools.com/tags/
tag_center.asp for details.) Cascading Style Sheets (CSS) provide a means
for formatting HTML content in a consistent manner that works well with all
newer browsers. Using CSS makes the job of the page designer and applica-
tion developer easier while providing significantly more flexibility in format-
ting options. You can provide CSS in these ways:

v As part of HTML tags
v Within the current page

v As an external file

Using CSS also makes it possible to support special user needs. A user can
simply substitute a CSS file to meet any special requirements, such as larger
fonts. In short, CSS is a big win for anyone working with HTML documents.
This chapter doesn’t describe CSS in detail — that would require an entire
book of its own. However, you can find a great CSS tutorial on the W3Schools
siteat http: //www.w3schools.com/css/ if you need a refresher. Using a
CSS generator can also help. You can find these applications in a number of
locations online, such as http://www.css3 .me/ and http://css3
generator.com/. To gain a fuller understanding of how CSS works with
HTML, you can read HTML, XHTML & CSS For Dummies, 7th Edition by Ed
Tittel and Jeff Noble (Wiley).

http://www.w3schools.com/tags/tag_center.asp
http://www.w3schools.com/tags/tag_center.asp
http://www.w3schools.com/css/
http://www.css3.me/
http://css3generator.com/
http://css3generator.com/

2 ’ 6 Part IV: Interacting with Users and HTML

This chapter does describe how you can programmatically interact with
CSS, modify it as needed, or even create new styles dynamically. You also
discover how to produce some special effects by using CSS. Many develop-
ers work with external files when interacting with CSS. You can do that with
JavaScript, but in the interest of making the examples clear, this chapter will
work with CSS as part of HTML tags or within the header of the current page.

Changing HTML Elements

WING/
&

The focus of CSS is on the HTML element. CSS answers the question of how a
<p> tag appears to the viewer. The following sections discuss two methods
of working with HTML elements statically: as part of the individual tag and
within a header that defines a style for all tags of the same type.

It’s a mistake to assume that all browsers render CSS precisely the same.
Two browsers on the same system running the same operating system often
offer slightly different presentations. In addition, it’s an error to think that a
browser will provide a consistent appearance on all platforms it supports.
For example, Firefox presents slightly different displays when using Mac OS
X, Linux, and Windows. A browser can also show the page differently when
device constraints demand. A page shown on a smartphone screen differs
from the same page shown on a PC. Think of CSS as more of a guideline than
an absolute requirement.

Working with HTML tags

One of the options for configuring the HTML tags on a page is to grab all the tags
of a certain type and format them as part of a loop. That’s what the following
example does. (You can find complete code for this example in the \Chapter
13\HTMLElements folder of the downloadable code as Tags . HTML.)

function ChangeStyles()
{
// Modify the <hl> tag style.
var Header = document.getElementsByTagName ("hl")
for (var i = 0; 1 < Header.length; i++)
{

Header[i] .style.fontFamily = "Arial";

Header[i] .style.fontSize = "45px";

Header[i] .style.fontWeight = "bold";

Header[i] .style.color = "green";

Header[i] .style.textAlign = "center";

Header[i] .style.marginLeft = "20px";

Header[i] .style.marginRight = "20px";

Header[i] .style.border = "medium double green';

Chapter 13: Connecting with Style: JavaScript and CSS 2 ’ 7

// Modify the <p> tag style.
var Para = document.getElementsByTagName ("p") ;
for (var i= 0; i1 < Para.length; i++)

{
Paral[i] .style.fontFamily = "serif";
Para[i] .style.fontStyle = "italic";
Para[i] .style.fontSize = "lem";
Paral[i] .style.color = "blue";

}

}

In this case, the example uses getElementsByTagName () to obtain an
array of all of the elements of a particular type on a page. The example for-
mats both the <h1> and <p> tags on the page. When you have a list of these
elements, you can format each element in turn by using a for loop as shown.
(Chapter 9 discusses loops in detail.) The example shows a number of
common formatting tasks, including setting the margins for an element.

When you’re working with graphic additions, such as a border, it helps to
have an understanding of where the various styles fit into the picture. For
example, the margin affects the distance between the edge of the screen and
the border, and padding affects the distance between the border and the con-
tent it encloses. You can find a good discussion of this topic at http: //www.
w3.0rg/TR/CSS2/box.html.

You should notice a few features in this example. A fontFamily property
can contain a family name, such as Arial, or a generic name, such as serif. The
font size can appear in pixels (px) or ems (one em is equal to 16 px), amongst
other value types. You can also use relative measures for the font size, such
as small. Figure 13-1 shows typical output from this example.

@ Formatting
- P

Fgwe13-: | | Formatting HTML by

Formatting
elements Tag Type
as a group

means you
don't need
to know Some more text to format.

specific
element
identifiers.
|

Seme text to format.

http://www.w3.org/TR/CSS2/box.html
http://www.w3.org/TR/CSS2/box.html

2 ’ 8 Part IV: Interacting with Users and HTML

Working with heading styles

Most developers are used to working with a <style> tag that appears in the
<head> element of a page. JavaScript is able to construct a <style> tag for
you programmatically as shown in the following example. (You can find com-
plete code for this example in the \Chapter 13\HTMLElements folder of
the downloadable code as HeadingTag . HTML.)

function ChangeStyles ()

{
// Obtain access to the header.
Head = document.getElementsByTagName ("head") [0] ;

// Create a <style> tag.
StyleTag = document.createElement ("style");

// Set the <style> tag type.
StyleTag.type = "text/css";

// Create a variable to hold the style information.
var Styles =
"hl {font-family:Arial;font-size:45px;" +
"font-weight:bold;color:green; text-align:center;" +
"margin-left:20px;margin-right:20px;" +
"border :medium double green;}" +
"o {font-family:serif; font-style:italic;" +
"font-size:lem;color:blue}";

// Add the style to the <style> tag.
StyleTag.appendChild (document.createTextNode (Styles)) ;

// Add the <style> tag to the heading.
Head.appendChild (StyleTag) ;
}

The results from this example are precisely the same as the example in the
preceding section. The difference is that the formatting information appears
in the <style> tag rather than with each element individually. To make this
example work, you construct the <style> tag content as a string. The appli-
cation then uses the createTextNode () function to turn the string into a
text node and inserts it as content for the <style> tag, StyleTag, using
appendChild(). To add the <style> tag to the <head> element, the code
calls the appendCchild () function a second time.

Chapter 13: Connecting with Style: JavaScript and CSS 2 ’ 9

Working with 1Ds

The techniques shown in the two preceding sections of the chapter work
well when you want to modify the appearance of a group of tags. To change
the appearance of specific tags, you must work with specific IDs as shown
in the following example. (You can find complete code for this example in
the \Chapter 13\HTMLElements folder of the downloadable code as
ElementID.HTML.)

function ChangeStyles ()

{
// Modify the <hl> tag style.
var Header = document.getElementById("Header") ;

Header.style.fontFamily = "Arial";
Header.style.fontSize = "45px";
Header.style.fontWeight = "bold";
Header.style.color = "green";
Header.style.textAlign = "center";
Header.style.marginLeft = "20px";
Header.style.marginRight = "20px";
Header.style.border = "medium double green';

// Modify the <p> tag style.
var Para = document.getElementById("Paragraph") ;

Para.style.fontFamily = "serif";
Para.style.fontStyle = "italic";
Para.style.fontSize = "lem";
Para.style.color = "blue";

}

In this case, only the elements with the specific identifiers provided by the
code to the getElementById () function are modified in appearance. For
example, when the code calls document .getElementById ("Header"),
Header receives a reference to the object with an id of Header, and the
changes that follow only affect that particular object. The output is similar to
the other two examples except the second paragraph remains unchanged.

Building Dynamic HTML Elements

One of the building blocks for creating special effects for any page is the
ability to make dynamic changes to the page. For example, you may want

to create a special effect for the selected element as shown in the following
example. (You can find complete code for this example in the \Chapter 13\
Dynamic folder of the downloadable code as Dynamic .HTML.)

220 Part IV: Interacting with Users and HTML

function ChangeStyles (event)
{
// Obtain a reference to the element.
var ThisElement = document.getElementById (
event.currentTarget.id) ;

// Check the event type.
if (event.type == "mouseover")

{
// Change the target element's CSS class.

ThisElement.setAttribute("class", "Selected");
}
else
{
ThisElement.setAttribute("class", "Normal") ;
}

}

This code accepts an event as input. The code obtains a reference to the
element provided by the Event object. It then checks the event . type prop-
erty to determine what type of event has happened (either a mouseover or
amouseout). The type of event determines what sort of formatting the ele-
ment uses.

Of course, it would be handy to provide some sort of automation for assign-
ing an event handler for the onmouseover and onmouseout events. The fol-
lowing code performs this task for you:

<script language="JavaScript">
// Obtain a list of elements that use the <p> tag.
var ElementList = document.getElementsByTagName ("p") ;

// Process each of these tags in turn.
for(var i = 0; 1 < ElementList.length; i++)

{

// Add handlers for the mouseover and mouseout
// events.
ElementList[i] .onmouseover = ChangeStyles;
ElementList[i] .onmouseout = ChangeStyles;

}

</script>

This is another variant of interacting with a group of elements that use

the same tag — the <p> tag in this case. The code obtains an array of

these elements by calling getElementsByTagName (). It then assigns the
ChangeStyles () function to the onmouseover and onmouseout proper-
ties of each element. The result is that each <p> tag on the page reacts when
you hover the mouse over it.

Chapter 13: Connecting with Style: JavaScript and CSS 22 ’

Animating and Positioning HTML Elements

It’s interesting to see what sorts of things you can do with a combination

of CSS and JavaScript. For example, you could create an application that
makes it possible for the user to drag and drop items around on the display.
The following example is a little simpler than that. In this case, the code
moves a button in response to a click. (You can find complete code for this
example in the \Chapter 13\Dynamic folder of the downloadable code as
Programmatic.HTML.)

function ChangeStyles ()
{
// Obtain a reference to the button.
var ThisButton = document.getElementById ("btnChange") ;

// Change its absolute position onscreen.

ThisButton.style.position = "absolute";
ThisButton.style.left = "150px";
ThisButton.style.top = "250px";

}

The code works by obtaining a reference to the button element, btnChange.
It then sets the positioning for that element to absolute and makes changes
to both the 1eft and top properties. The result is that the control moves
onscreen.

Creating JavaScript-Based Menus

All of the previous examples in this chapter prepare you in some way for this
final example — a simple menu system that relies on a combination of CSS
and JavaScript. The concept is straightforward. When you hover a mouse
pointer over a menu, it opens any submenu and lets you choose one of the
options on the submenu, if desired. Moving the mouse to a different menu
closes the first submenu and opens another (assuming there’s one to open).
The following sections take a three-phase approach to creating the menu:

v Define the HTML used to display the menu elements.

1 Create the CSS required to make stylistic changes to the elements.

1 Design code to make the menus open and close as needed.
The URLs used for this example aren’t meant to be functional. If they actually
end up taking you anywhere, it’s purely coincidental. (You can find complete

code for this example in the \Chapter 13\Menus folder of the download-
able code as JavaScriptMenu.HTML.)

222 Part IV: Interacting with Users and HTML

Designing the HTML

This example is based on heavily formatted lists. There are many other ways
to create menus, but this approach works quite well. Theoretically, you could
easily store the menus on disk or in a database and use JavaScript to con-
struct the required list code for you. However, for now, concentrate on the
fact that this menu system is static and provides specific options as shown in
the following code:

<ul id="menu">
<li id="Iteml">
<a href="http://www.somewhere.com"
onmouseover="CloseMenu () ">Home
</1li>
<li id="Item2">
<a href="http://www.somewhere.com"
onmouseover="0OpenMenu (' ITtem2Submenu') ">Events
<ul id="Item2Submenu"
onmouseover="KeepSubmenu () "
onmouseout="CloseMenu () ">
Event 1l
Event 2
Event 3

</1i>
<li id="Item3">
<a href="http://www.somewhere.com"
onmouseover="0OpenMenu (' ITtem3Submenu') ">
Contact Us

<ul id="Item3Submenu"
onmouseover="KeepSubmenu () "
onmouseout="CloseMenu () ">
Telephone
Mail
E-mail

</1li>

There are three main menu options: Home, Events, and Contact Us. The
Home menu lacks submenus. The Events menu does have a submenu consist-
ing of Event 1, Event 2, and Event 3. The Contact menu provides Telephone,
Mail, and E-mail as submenus. Figure 13-2 shows how the formatted menu will
eventually appear.

Chapter 13: Connecting with Style: JavaScript and CSS 223

@ Creating a JavaScript Menu - Mozilla Firefox
Eile Edit Hist:

|
Figure 13-2:
The exam-
ple provides
a functional
menu you
can use on
any site.
|

Defining the styles

The lists that you created in the preceding section won’t look much like a
menu at the outset. The secret is the formatting provided by the CSS that
follows:

<style type="text/css">

#menu

{
margin: 0;
padding: O0;

}

#menu 11

{
margin: 0;
padding: O0;
list-style: none;
float: left;

}

#menu 1i a

{
display: block;
margin: 0 1lpx 0 O;
padding: 4px 10px;
width: 80px;
background: black;
color: white;
text-align: center;

}

#menu 1i a:hover

{
background: green;

}

#menu ul

224 Part IV: Interacting with Users and HTML

position: absolute;

visibility: hidden;

margin: O0;

padding: O0;

background: grey;

border: 1lpx solid white;
}

#menu ul a

{
position: relative;
display: block;
margin: O0;
padding: b5px 10px;
width: 80px;
text-align: left;
background: lightgrey;
color: black;

}

#menu ul a:hover

{
background: #7f7fff;

}
</style>

This CSS code is presented in the order of detail. The #menu formatting is
for the topmost <ul id="menu"> tag. The main menu items are formatting
in turn by the #menu 1i and #menu 1i a styles. When a user hovers the
mouse over a main menu item, the #menu 1i a:hover style changes the
background color to green. The submenu formatting is accomplished by the
#menu ul and #menu ul a styles. Again, when the user hovers the mouse
over a submenu item, the #menu ul a:hover style defines a color change
for that menu item.

The reason the example uses this approach for producing the special effects
for this menu system is to demonstrate that it’s possible. You always have
options when creating special effects. When you find that one approach isn’t
working well, try another approach and you may find it works better.

Creating the JavaScript functions

The JavaScript functions have to perform four tasks. The first task is to track
the status of the menu system and ensure that the menu remains stable. The
following code performs that task:

Chapter 13: Connecting with Style: JavaScript and CSS 225

// Holds the current open menu item.
var Item;

// Holds the timeout value.
var Timer;

// Hide the menu after clicking outside it.
document.onclick = CloseMenu;

The Item variable contains the current menu item. Timer holds a value that
determines when a submenu will close automatically. If you don’t provide
this value, the menu behaves quite erratically, and users may find it difficult
to select items. Finally, the code must provide a means to automatically close
menu items when a user clicks outside the menu system, which is what the
document .onclick = CloseMenu assignment does.

The second task is to provide a means for opening the submenus, which are
hidden at the outset. Making the submenu visible allows access to the entries
it provides. The following code shows a technique for opening the submenus:

function OpenMenu (Menu)

{
// If there is an item that is open, close it.
if (Item)

{
Item.style.visibility = "hidden";

}

// Obtain an item reference for the new menu.
Item = document.getElementById (Menu) ;

// Make it visible.
Item.style.visibility = "visible";

}

Notice that the code first checks to ensure that the previous submenu is
actually closed. Otherwise, the user could see two open submenus, which
would definitely be confusing. After the code makes the previous submenu
hidden, it makes the current submenu visible. In both cases, the example
relies on the visibility property to perform the task.

The third task is to provide a method for closing a menu. This particular fea-
ture is a little tricky because you don’t necessarily want the menu to close
immediately. Otherwise, the user won’t have time to select a submenu item
before it closes. The following code shows how to perform this task with a
time delay in place:

226 Part IV: Interacting with Users and HTML

function CloseMenu ()
{
// Set a timer for closing the menu.
Timer = window.setTimeout (PerformClose, 500) ;

}

function PerformClose ()
{
// If the item is still open.
if (Item)
{
// Close it.
Item.style.visibility = "hidden";

}

When the application requests that a submenu close, the code cre-

ates a 500 millisecond delay, after which the window automatically calls
PerformClose (). When an item exists, PerformClose () sets its
visibility property to hidden to hide the submenu from view.

There are three ways in which a submenu can close. A submenu can close
when a user selects another main menu item, when the user moves the
mouse cursor off of the submenu, or when the user clicks on a main or sub-
menu item. When a user is hovering the mouse over a submenu item, the
code must keep the submenu open. That’s the fourth task the application
must perform using the following code:

function KeepSubmenu ()

{
// Reset the timer.
window.clearTimeout (Timer) ;

}

As long as the user hovers the mouse over the submenu, it will remain open
because the timer is constantly reset. The moment the user moves the mouse
off the submenu or clicks one of the submenu items, the timer restarts, and
the submenu closes.

Chapter 14

Enhancing HTML5 Forms
with JavaScript

In This Chapter

Reviewing special HTML5 form features
Interacting with form elements
Performing validation checks on forms

So far the book has discussed forms in general. The form examples rely
on the modern features that JavaScript supports, but they could have
been any form from any of the newer versions of HTML. This chapter is differ-
ent. Instead of looking at forms in general, you encounter forms specifically
designed for use in an HTML5 environment.

WBER Many people think newer is better. However, that isn’t always the case. This
chapter presents a tradeoff. Yes, you get to use the new features that HTML5
provides to create robust applications that require less coding on your part.
The new features that HTML5 supports make it easier to create applications
that work consistently across platforms and browsers. The tradeoff is that
these applications won’t run on older browsers that don’t support HTML5
(many of these older browsers don’t even support the version of HTML in
existence at the time they were created). The applications may look like they’ll
work for a while, but eventually they’ll fail. When you have a lot of users that
rely on older browsers and are unlikely to upgrade, you risk alienating them
in order to take advantage of new technology. It’s also important to note that
HTMLS5 is still in the process of becoming a standard, so you may still see
changes in how it works.

The first section of this chapter is a must read because it helps you under-
stand the new features that HTML5 brings for forms. Previous chapters help
you understand forms as they exist for the majority of browsers today. These
new features are specific to HTML5, and you can use them only with HTML5
applications. To use the new features, you must know that they exist and
understand why they’re so important.

The rest of the chapter provides specific examples of how HTML5 can make
your development experience much better and improve the user’s experi-
ence as well. You discover how HTML5 provides greater flexibility, enhances

228 Part IV: Interacting with Users and HTML

security, creates a reliable environment, and defines better consistency.
All these elements are essential given the heavy reliance on browser-based
applications today.

Revisiting the HTML5 Form Features

Before you can begin using the new form features of HTML5, you need to
know what they are. HTML5 strives to make the user experience better by
creating a more flexible environment. The addition of controls that make
input requirements more specific reduce user frustration with inputting
incorrect data. In addition, these changes make the environment more secure
by making it harder to input unexpected data, and they make the environ-
ment more consistent because the controls help developers create robust
applications without resorting to odd coding techniques. The following sec-
tions provide you with an overview of the various HTML5 changes.

Working with the new elements

HTMLS5 provides a number of new elements that make it easier to write appli-
cations. The following list provides an overview of these elements:

V¥ <article>: Defines standalone text that makes sense on its own. Even
though the text appears as part of a larger page, you could move the text
somewhere else and still find it readable. Potential sources of articles
include:

¢ How-to post

e Forum post

* Blog post

e Commentary or opinion piece
® News story

e Comment

¥ <aside>: Provides material that’s related to the rest of the material on a
page, but is in addition to it and not actually part of that material. Many
people refer to such material as a sidebar. The main content of the page
should read well without the aside in place.

V¥ <audio>: Specifies the source and playing conditions for audio pre-
sented on a page.

v <bdi>: Provides the means of placing text that may be formatted in an
alternative direction in isolation from the text surrounding it. For exam-
ple, if you wanted to place a Chinese quote on an English language page,
you could use the Bi-Directional Isolation (BDI), <bdi>, tag to do it.

Chapter 14: Enhancing HTML5 Forms with JavaScript 229

Out with the old tags

HTML5 lacks support for a number of older
tags. This means you can’'t mix these older
controls with the newer controls that HTML5
does support. Here's a list of common tags that
HTML5 doesn’t support: <acronym> (use the
<abbr> tag instead), <applet> (use the
<object> tag instead), <basefont> (use
Cascading Style Sheet, CSS, instead), <big>
(use CSS instead), <center> (use CSS
instead), <dir> (use CSS instead),
(use CSS instead), <frame>, <frameset>,
<noframes>, <strike> (use the
tag instead), and <tt> (use CSS instead).
There isn't a direct replacement for frames in
HTML5. The main problem with frames is that

they cause accessibility, usability, and security
issues. The recommendation is to use a com-
bination of CSS and inline-frames (IFrames)
to mimic frames when you need them. You
can find an excellent article on the topic at
http://www.peachpit.com/blogs/
blog.aspx?uk=Frames-are-Dead-
Long-Live-Iframes.

It's also important to note that some attri-
butes are also gone. For example, the align
attribute used with the <input> tag is no
longer available. In this case, you use CSS as
areplacement.

v <canvas>: Allows dynamic drawing of graphics on the page using a
language such as JavaScript. The canvas acts as a container for the
drawing — the developer must still provide code to perform the

actual drawing.

v <embed>: Allows inclusion of an external application or interactive

content (such as a plug-in).

v <figcaption>: Defines a caption for a figure that’s placed within a

<figure> tag.

v <figure>: Creates a container for holding self-contained material such
as images, diagrams, and code listings.

v <footer>: Contains information about the container element in which
it appears. This tag is normally used to provide descriptive information
about the container’s content.

v <header>: Provides a heading or navigational aids for the container in
which it appears.

v <hgroup>: Defines a group of headings used together to create content.
For example, you could use this feature to create an outline on pages
with complex content.

v <mark>: Specifies that the affected content is highlighted in some way.

v <nav>: Creates a blog of navigational links. This tag is used for major
link blocks rather than individual links that appear in other areas of a
document.

http://www.peachpit.com/blogs/blog.aspx?uk=Frames-are-Dead-Long-Live-Iframes
http://www.peachpit.com/blogs/blog.aspx?uk=Frames-are-Dead-Long-Live-Iframes
http://www.peachpit.com/blogs/blog.aspx?uk=Frames-are-Dead-Long-Live-Iframes

230 Part IV: Interacting with Users and HTML

\NG/
Vg,“

v <rp>: Specifies how a browser should react if it doesn’t support ruby
annotations. This tag is used with the <rt> and <ruby> tags to provide
a complete solution for ruby annotations.

A ruby annotation is a short run of text that appears alongside the base-
line text that’s used to show pronunciation or to provide a short annota-
tion. This feature is normally used with East Asian languages. You can
read more about ruby annotations at http: //www.w3 .org/TR/ruby.
The demonstration at http://www.alanflavell.org.uk/www/
umusalu.html shows ruby annotations in use.

v <rt>: Provides an explanation or annotation of pronunciation of text.
This tag is used with the <rp> and <ruby> tags to provide a complete
solution for ruby annotations.

v <ruby>: Defines a ruby annotation. This tag is used with the <rp> and
<rt> tags to provide a complete solution for ruby annotations.

»* <section>: Creates a document section. A document section can
include chapters, headings, footers, or other sectional content.

V¥ <source>: Links the document to external multimedia resources such
as audio or video files.

v <video>: Specifies the source and playing conditions for video pre-
sented on a page.

This list is incomplete for a good reason (you can find a complete list at
http://www.w3schools.com/tags/default.asp). Some of the tags are
poor choices for creating applications, so the book doesn’t discuss them. You
may be tempted to use tags that aren’t supported well by other browsers, but
you must consider the ramifications of doing so. For example, the <command>
tag doesn’t appear in this list because it’s poorly supported by browsers.
Only Internet Explorer version 9 and above support the tag, so you'd need to
be sure that application users have this browser installed. Likewise, Internet
Explorer doesn’t support the <datalist> or <keygen> tags (although a
majority of other browsers do support them). When you build an application
for use in an organization with specific criteria, tags such as <details> could
prove useful; but again, the <details> tag works on the Mac only, and the
user must use either the Chrome or Safari browsers. At least one tag, <t ime>,
is also read by all browsers, but they don’t render it in any way, making the
tag pretty much useless.

Working with the new controls

Forms are hard to put together at times. Part of the problem is that the real
world has more data types than HTML was originally designed to accommo-
date. It’s no wonder, then, that each new version of HTML has included a few
new <input> tags to make form creation simpler. Table 14-1 describes the
<input> tag additions for HTML5.

http://www.w3.org/TR/ruby/
http://www.alanflavell.org.uk/www/umusalu.html
http://www.alanflavell.org.uk/www/umusalu.html
http://www.w3schools.com/tags/default.asp

Enhancing HTML5 Forms with JavaScript 2 3 ’

Chapter 14

(panunuod)

"Jaqunu
PljeA B 181U8 UBD JAsN 8y} alaym xoq 1xal e se 11 Aejdsip uayo |01}
-u09 siy} poddns 1,uop 1eyl s1asmo.g ‘M uoddns 1eyl S18SMO0Iq U0

eladQ

Jaqunu e Bumndul Joj uoneulqwod Jauulds pue xoq 1xa} e Saleal’) pue ‘liejes ‘awoiy) <. Ixoqunu,=9dA3 3ndut>
‘uonewJogul ayy bumndui Joy pJeogAay o110ads-1xajuod e
apinoad uayo sa9IAap 3[1qoL ‘UoILIPPE U| 'JUBM NOA JUBIUOI JO pury
ay1 pueisiapun Jasn ay1 sdjay |0J3u09 a1419ads e Buisn ‘JanamoH eladQ
"1eaA pue yuow ay) bumndul 104 X0q X3} pJepue)s e Se s1apuay pue ‘Liejes ‘awoiyy <.yjuour, =dA3 3ndut>
‘uonewJoyul ayl Bumndui Joy paeogAay aip0ads-1xa1u09 e
apinoud uayo savIAap 3[1qoL ‘UoIPPE. U| JUBM NOA JUBIUOI JO pury
ay} pueisiapun Jasn ay sdjay [013u09 ay19ads e Buisn ‘JanamoH eiadq
"ssaJppe |lew-a ue Bumndul 04 X0q 1X8) pIEPUE]S B SB SI3pUay pue ‘awouy? ‘xojali4 <.TTews,=5dA3 3ndut>
"31Bp pI[BA B Ja1ua
ued 1asn ay} a1aym xoq 1xal e se 1 Aejdsip uayo |0J3u09 siyy pod
-dns 3,uop 1eY} SI8SMO.IG "8U0Z aWI} |BIO| 8} UO Sal|al Indu| "} Hod
-dns 1ey) s1asmouq uo xoq Bojelp Jayoid awin pue alep e sAejdsiqg elad(pue Lejeg <, Tedol-sut3ajzep,=2dA3 3ndul>
‘alep piea
B JaJua UBJ Jasn ay} alaym xoq 1xa} e se 31 Aejdsip uayo |03u09
siy1 uoddns 3,uop 1yl SI8smolg "8uoz awi e sapnjoul induj 1 pod
-dns ey} s1esmouq uo xoq Bojeip 4aya1d awi pue aiep e sAejdsiqg elad(pue uejeg <.,dwr3isjep,=5dA3 ndur>
"81Bp PI[BA B 181U8 UBJ J3sn 3yl 81ayM X0q
1xa) e se 1l Aejdsip us)o |01u03 siy Loddns 3,uop 18yl SI8sMmolg eiadq
‘1 uoddns 1ey) siasmouq uo xoq Bojelp Jayaid a1ep e sAejdsig pue ‘liejes ‘awoiy) <.@3ep,=2dA3 3ndur>
‘ndui
10|09 pIjeA J8U}0 J0 SWEU JO|0I B J3JU URD JaSN 8y} 18Yym X0q
1x81 e se)l Ae|dsip uayo |0Ju09 Siy) Hoddns 3,uop 1eyl Slasmolg
“J poddns eyl s1asmouq uo xoq Bojeip 4ayo1d J0joa e se sAejdsig elad(pue awouyg <,I0T7002,=9dA3 3ndut>
uondussag siasmoig pauoddng jonuoy
GTALLH Yim 3|qejieAy sjoiuod maN L-vl 3lqel

th Users and HTML

ing wi

Interact

232 Ppanwv

‘uonewJoyul ayl bumndui

1o} pieogAay ads-1xau09 e apinold uayo sadlnap ajiIqow
‘UOIMPPE U] JUBM NOA JUBJUOD JO puIY BY} PURISIBPUN JASN By}
sd|ay |0u09 21j10ads e Buisn ‘1anamoy “eaA pue (anjea ouawnu
e se) yaam ay3 bumndui 1oj xoq 1xa} pIepuels e Se siapuay

eladQ
pue ‘liejes ‘awolyg

<,3¥ooMm,=adA] Indut>

‘uonewJoul ayl Bumndui Joy pieogAay a1p198ds-1x81u09
e apinoJd uayo SadIAap 3|1OW ‘UORIPPE U] JUBM NOA JU8IU0ID
4O pupy 8y} pueisiapun Jasn ayj sdjay |043u03 2119ads e Buisn
‘1anemoH 14N e Bumndul 1o} X0q 1x8} pJBpUE]S B SE SIapuay

eladQ pue
‘awouy?) ‘xogall4

<, TaIn,=sdA3 andutr>

awi
PIjEA B 181UB UBJ J3SN 8y} 8JaYM X0(g 1Xa] e se 3l Ae|dsip uayo
[013u09 SIy1 Loddns 1,uop 1Byl SISMOIg X0(1X81 8y} Ul eale
Anua ajeiedas e aney yoea spuodasi||iw pue ‘Spuodas ‘sanuiwl
‘sinoy ay] ‘1 yoddns eyl s1asmoiq uo awi syl Bumndul Joj uon
-eulqwod Jauuids pue xoq 1xa} payuawhas pazi|eioads e sajealq

eladQ
pue ‘Liejes ‘awolyy

<,?wrt3,=2dA3 andut>

‘uonewJoyul ayl bumndui 10}

pJeoqgAay o1198ds-1x81u09 e apinoid ualo S8IIABP B|IqoW ‘uoi}
-Ippe u| Juem noA 1ualu09 Jo pury 8y} pueisiapun Jasn ayi sdjay
[0J1u09 21y198ds e Buis “Jaqunu auoyda|ay e bumndul 1oy xoq
1X3] pJepuels e Se S1apual [0J3U09 3yl ‘a|qe|ieAe Sawoaaq yod
-dns uaym ‘18naMoH *|043u09 siy1 boddns Ajjuaina s1asmolq oN

VN

<,T23.,=2dA3 3Indutr>

“JUBM NOA 1UBIU0D

40 pupy| 8y puelsiapun Jasn ay3 sd|ay j03u09 aoads e Buispn H
uoddns 1ey) S19SMO0IQ U0 UONNG JBa|d B BpN|aUl SBOP X0(1Xa}
8y "wJ8] yoJeas e bumndul Joj Xoq 1xa) plepuels e se siapuay

1IBjeS pue awoly)

<.,yoxess,=2dA3 3ndur>

"(aawnu Ajjensn) anjea pijeA e Jajua ued

Jasn ay] alaym xoq 1xa1 e se 1 Aejdsip uayo |os3u09 siyr uoddns
1,U0p 1Y} S18SMO0.g °|041u09 SIy} Loddns 1yl S18SMOIQ UO SaNjeA
1ndui jo abuel e woiy 8S00YI URD J3SN B 8JaYM Japl|s e sAe|dsiq

eladQ
pue ‘Liejes ‘awolyg

<,9buex,=adA3 andutr>

uonduasag

siasmoig payoddng

joyjuo)

(panupuoa) |-y| 9|qel

Chapter 14: Enhancing HTML5 Forms with JavaScript 233

It’s important to note that none of the tags in Table 14-1 enjoys support from
all the browsers and platforms on the market today; you need to choose these
additional tags carefully. You can find demonstrations of most of these con-
trols at http://dev.opera.com/articles/view/new-form-features-
in-html5. Because these tags are so useful, expect to see better support for
them in future versions of most browsers.

Understanding the new attributes

HTMLS5 provides access to a number of useful new attributes. There are only
two new form-specific attributes: autocomplete and novalidate. The
autocomplete attribute determines whether the browser turns autocom-
plete on or off for a form as a whole. Every browser on the market supports
the autocomplete attribute. The novalidate attribute is true when the
browser should avoid validating form input. Only Firefox, Chrome, and Opera
support the novalidate attribute, which means you must use it with care.

The <input> tag also has a number of new attributes associated with it. Of
the new attributes, Internet Explorer supports only the height and width
attributes. Table 14-2 provides an overview of the attributes and tells you
which browsers support them. In most cases, most browsers, with the excep-
tion of Internet Explorer, support the new attributes.

Table 14-2 <input> Tag Attribute Additions in HTML5
Attribute Supported Description

Browsers
auto Firefox, Chrome, Determines whether the browser turns
complete Safari, and Opera autocomplete on or off for a specific

control. It's possible to change the form-
level setting independently from the
control-level setting. The control-level
setting always takes precedence.

autofocus Firefox, Chrome, Determines that the element should
Safari, and Opera automatically receive the focus when
the page loads when set to true.
form Firefox, Chrome, Specifies that an element belongs to
Safari, and Opera one or more forms. You can create a

single element to appear on multiple
forms by providing a comma-separated

list of forms.
form Firefox, Chrome, Defines the name of an application file
action Safari, and Opera that will process the input when the

form is submitted to the server.

(continued)

http://dev.opera.com/articles/view/new-form-features-in-html5/
http://dev.opera.com/articles/view/new-form-features-in-html5/

234 Part IV: Interacting with Users and HTML

Table 4-2 (continued)
Attribute Supported Description
Browsers
form Firefox, Chrome, Specifies the kind of encoding that the
enctype Safari, and Opera browser should use when submitting
the input to the server.
formmethod Firefox, Chrome, Controls the method that the browser
Safari, and Opera will use for submitting the input to the
server. For example, you can choose
to submit the data by using the post
method.
formno Firefox, Chrome, Specifies that the affected inputisn't
validate and Opera validated prior to submitting it to the
server when setto true.
formtarget Firefox, Chrome, Defines a target that should receive
Safari, and Opera output (the result) from the server after
submitting the form. Each input can
have a different target for multiple out-
puts.
height and Internet Explorer, Control the height and width of any ele-
width Firefox, Chrome, ment. It's essential to set both height
Safari, and Opera and width when loading graphics
to ensure consistent and error-free
browser operation.
list Firefox, Chrome, Specifies which <datalist>tagto

and Opera use as input for a list of items.
min and max Chrome and Determine the minimum and maximum
Opera values that an input element can accept.
multiple Firefox, Chrome, Allows the user to enter more than one
Safari, and Opera value in an input element when set to
true.
pattern Firefox, Chrome, Provides a regular expression that's
(regexp) and Opera used to validate the input element’s

data when the user submits it. Even if
your JavaScript editor lets you use this
attribute with all (or most) input controls,
browsers only check it with the text,
search,url, tel, email, and
password <input> types.

Chapter 14: Enhancing HTML5 Forms with JavaScript 235

Attribute

Supported
Browsers

Description

place
holder

Firefox, Chrome,
Safari, and Opera

Allows the developer to provide a hint
or short piece of text to describe the
expected input value for an input ele-
ment. The text appears grayed out and
disappears when the user starts input-
ting data.

required

Firefox, Chrome,
and Opera

Ensures that the user provides a value
for the input element, but doesn’t ensure
that the input is correct (or even fea-
sible) when setto true. Even if your
JavaScript editor lets you use this attri-
bute with all (or most) input contraols,
browsers check it with only the text,
search,url, tel,email,
password, date pickers, number,
checkbox, radio,and file
<input> types.

step

Firefox, Chrome,
and Opera

Define an input interval for the number,
range, date, datetime,
datetime-local,month, time,
and week <input> types. This attri-
bute determines the interval between
values, suchas 3,6,9,12,and 15
when using a step="3" attribute
value.

Accessing Form Elements

As with any other HTML elements, you can interact directly with HTML5 ele-
ments. The trick is to ensure that the elements you choose will work with
the browsers and platforms you need to support. In this example, you see
how to use the <figure> and <figcaption> tags as part of a solution that
loads an image from disk and stores it in an tag. The following code
shows the HTML you use to perform the task. (You can find complete code
for this example in the \Chapter 14 folder of the downloadable code as
ImageLoad.HTML.)

236 Part IV: Interacting with Users and HTML

<figure onclick="Clicked() ">
<img id="Image"
SrC: nn
alt: nn
height="200px"
width="200px">
<figcaption id="Caption" />
</figure>

The <figure> tag acts as a container that holds the tags and
<figcaption>. The use of a container like this means that you can perform
tasks such as formatting both image and caption at the same time. Events are
also handled jointly. In this case, it doesn’t matter whether the user clicks the
image or the caption, the application calls Clicked (). In this case, all that
Clicked() does is display a message to the user as shown here:

function Clicked()
{
// Display a message.
alert ("You clicked the image.");

}

JavaScript is fully capable of accessing these elements. In this case, the
 tag is empty when the form loads. Clicking a button displays the
image onscreen by changing the tag content. Here’s the code needed
to load the image:

function LoadImage ()

{
// Specify the image.
var Image = document.getElementById("Image") ;
Image.alt = "This is a test image.";
Image.src = "TestImage.png";
// Set the caption.
var Caption = document.getElementById("Caption") ;
Caption.innerHTML = "A Test Image";
}

When working with the tag, you access the src (image source)

and alt (image alternative text description) attributes directly. Set the
<figcaption> content using the innerHTML property. Figure 14-1 shows
typical output from this example.

Chapter 14: Enhancing HTML5 Forms with JavaScript 23 7

Figure 14-1:
Use the
<figure>

tag to make
it easier to
work with
media.
|

- Mogzilla Firefox
e

elp

Loading and Documenting an Image

Battorn

A Test Image

Load the Image

Validating Forms

Validation is an important part of working with forms. Unfortunately, not
every browser provides support for the validation features of HTML5. The
example in this section won’t work with Internet Explorer because Internet
Explorer fails to support any of the HTML5 validation features. In order

to validate input for Internet Explorer, you need to use the techniques
described in previous chapters. For example, Chapter 9 shows techniques for
validating optional arguments that you could also use to validate form data.

A large part of validating data in HTMLS5 is creating the right type of form.
The following code shows a simple form with a name, telephone number, and
two password fields (an original and a confirmation). (You can find complete
code for this example in the \Chapter 14 folder of the downloadable code
as ValidateData.HTML.)

<form action="#" method="post"
enctype="multipart/form-data">
<fieldset>
<div>
<label>Name:</label>
<input id="Name"
type="text"
placeholder="Type Your Name"
maxlength="100"

238 Part IV: Interacting with Users and HTML

A\

required
x-moz-errormessage="Type Your Name"/>
</div>
<div>
<label>Telephone:</label>
<input id="Telephone"
type="tel"
placeholder="Type Your Number"
pattern="\d\d\d \d\d\d \d\d\d\d"
required
X-MOZ-errormessage=
"Type Your Number as XXX XXX XXXX"/>
</div>
<div>
<label>Password:</label>
<input id="P1"
type="password"
placeholder="Password" />
</div>
<div>
<label>Confirm Password:</label>
<input id="P2"
type="password"
placeholder="Password"
onfocus="ValidatePassword (
document .getElementById('P1'), this);"
oninput="ValidatePassword (
document .getElementById('P1'), this);"/>
</div>
</fieldset>
<fieldset>
<div>
<input id="Submit"
type="submit"
value="Submit Data" />
</div>
</fieldset>
</form>

The first two fields use automatic validation as supplied by HTML5. Notice
the use of the required attribute in both cases, which means the user must
type a value (not necessarily a correct value). In addition, the placeholder
attribute provides a clue as to what the user needs to type, which is always a
good first step in obtaining information. The maxlength attribute prevents
users from trying to type too much or someone inputting a script instead of
content. Likewise, the pattern attribute looks for specific information from
the user.

The generic error messages that HMTL5 provides are acceptable, but hardly
enlightening. This example shows how to use the x-moz-errormessage
attribute in order to create a custom error message. Many browsers don’t sup-
port this attribute, so users may still see the generic error message, but

Chapter 14: Enhancing HTML5 Forms with JavaScript 239

there’s at least a chance that users will see something that’s a little more tar-
geted toward providing helpful information.

The two password fields can’t rely on standard HTML5 validation. In this
case, you must use JavaScript to confirm that the user has entered the same
password in both fields and that the fields do, in fact, contain a password.
Here’s the ValidatePassword () function used to perform the validation:

function ValidatePassword (P1l, P2)

{
if (Pl.value != P2.value ||
Pl.value == "" ||
P2.value == "")
{
P2 .setCustomvValidity (
"The Password Is Incorrect");
}
else
{
P2 .setCustomvalidity ("") ;
}
}

The example verifies that both password fields contain an entry and that the
entry is the same in both fields. Of course, your password check could do
more. Figure 14-2 shows a typical validation error message for this example.
The error message appears as a pop-up. Notice how each field contains a
helpful hint on what to type.

@ Walidating Data - Mozilla Firefox
.Ed History B88pkma

Validating Data

Name: | [Type Your Name

Telephor Type Your Name

ber

Password: | Password

|
Figure 14-2: Confirm Password: | Password
Validation is
an important
part of any
application.

24 0 Part IV: Interacting with Users and HTML

Chapter 15
Interacting with Windows

In This Chapter

Interacting with browser windows
Interacting with the browser screen
Defining the concept of location
Working with the history object

Using the navigator object

Developing and using pop-up windows
Saving settings using cookies

A browser presents a window to the Internet. The view a user sees
depends on the location of that window at any given time. Many people
think of houses when they think of windows. However, the window to the
Internet is more like the window of a car. You travel to a location and see a
particular view based on that location.

Browsers provide the means to interact with the window object so that it’s
possible to change the view in various ways. The glass used to create the
window is known as the screen object. Sometimes you want to view some-
thing you saw recently, in which case you can call on the history object to
provide an instant replay. When moving to a new location, you rely on the
navigator object. The location object tells you about your current loca-
tion. Taken together, all these objects represent the Browser Object Model
(BOM), which is the focus of this chapter.

You are introduced to the BOM in the section on using JavaScript objects in
Chapter 5. This chapter provides a more intense view of the BOM so that you
can use it to perform specific tasks within the browser. As part of working
with these objects, you'’re also introduced to special tasks you can perform,
such as creating customized dialog boxes. In short, this chapter is the next
step in working with browser objects.

242 Part IV: Interacting with Users and HTML

Working with Window's

Figure 15-1:
The window
characteris-
tics help you

adjust your

application
output.
|

The window object is the container for everything else in your browser. You
use the window object to determine how the browser reacts to the Internet
and then perform tasks with the content the Internet provides. The window
object actually contains the other objects you use to perform tasks with

the browser, including the screen, history, navigator, and location
objects. The following sections describe how to work with the window object
in more detail.

Determining window characteristics

The window characteristics determine many of the things you can do with
your application. For example, the window width and height determine how
much information you can display. In most cases, you use this information as
part of a larger application, but sometimes it’s helpful to see what’s available.
The window. innerHeight and window. innerWidth properties are useful
for placing information onscreen. Figure 15-1 shows some of the statistics
you can obtain for the window object. (You can find complete code for this
example in the \Chapter 15\Windows folder of the downloadable code

as WindowCharacteristics.HTML.) It’s important to note that some fea-
tures that used to be available are no longer accessible due to security con-
cerns. For example, it used to be possible to set the status bar information
directly using script. However, some scripts used this feature to spoof site
information — making the user’s system vulnerable to viruses or opening

the door for phishing attacks.

@ Window Characteristics - Mozilla Firefox

H W 151 ks Tools Help

Window Characteristics

Menu Bar Visible: true

Status Bar Visible: true

Height: 279

Width: 443

Screen X Position: 371

Screen Y Position: 170
Scrolled Horizontal Columns: 0
Scrolled Vertical Lines: 0

Chapter 15: Interacting with Windows 243

Consequently, you can obtain some information about the status bar, but
you can’t change the status bar content. A few browsers, such as Internet
Explorer, don’t allow any sort of status bar access or even access to informa-
tion about it.

Changing window attributes

The window object contains a number of interesting methods you can use to
change window characteristics or perform tasks such as displaying a dialog
box. The methods that you can use with a particular window depend on a
number of criteria:

v Security settings of the current platform
v Security features of the browser
v Browser settings modified by the user

1~ State of the browser

In general, you can’t assume the user will allow you to do anything. You

can certainly try to perform tasks, but the platform, browser, or user could
prevent it. In addition, some tasks are simply impossible when the browser

is in a certain state. For example, you'll likely find that you can’t move or
resize the browser when it’s maximized. In fact, you can’t ever resize or move
the browser window when working with the Windows 8 version of Internet
Explorer (the one that you access from the Start screen, also known as
Metro). With this in mind, the following code may or may not work with your
browser. (You can find complete code for this example in the \Chapter 15\
Windows folder of the downloadable code as SetSizePosition.HTML.)

function ChangeSizePosition()
{
// Open a new blank window.
var NewWindow = window.open("", "New Window",
"width=300,height=300") ;

// Wait to resize the window.
NewWindow.window.alert (
"Click OK to Move and Resize the Window") ;

// Move and resize the new window.
NewWindow.resizeTo (600, 600) ;
NewWindow.moveTo (20, 20) ;

}

This function begins by creating a new blank window (the first argument
normally contains the URL of the page you want to open). It then performs
an absolute resize and move of that window. You can also perform a relative
resize and move by using the resizeBy () and resizeTo () methods. This

244 Part IV: Interacting with Users and HTML

A\

particular technique comes in handy when you want to ensure information is
presented in a certain way. For example, you may open a custom window for
displaying product details on your site and want to ensure that the window
matches the original design concept.

Notice the technique used to access content within the new window. You can
use this approach to create interesting effects within the new window while
controlling it from the existing window.

If you find that the script doesn’t work at all, make sure you don’t have the
browser maximized. In addition, many browsers let you turn off the ability
to resize and move the window. For example, when using Firefox, you open
the Options dialog box and select the content tab. Click Advanced in the
JavaScript option and you see a list of options for enabling or disabling the
ability to resize and move the window. Make sure these options are selected.

Accessing the Screen

Figure 15-2:
Use the
screen
charac-

teristics

to create
platform-
friendly
applications.
|

The screen object tells you about the user’s system — the screen used to
create the window to the Internet. By knowing the screen information, you
can better determine what’s possible with the user’s system. For example,
you can determine the number of available colors or the actual size of the
screen. Figure 15-2 shows statistics that developers commonly need to
create platform-friendly applications. (You can find complete code for this
example in the \Chapter 15\Screen folder of the downloadable code as
ScreenFeatures.HTML.)

@ Detect the Screen Characteristics - Mozilla Firefox

Detect the Screen Characteristics

Total Screen Height: 1024

Total Screen Width: 1280
Available Screen Height: 1024
Available Screen Width: 1280
Color Depth (Bits): 24

Color Resolution (Bits/Pixel): 24
Screen Dimensions

e Left: 0

* Top: 0

* Right: 1280
* Bottom: 1024

Chapter 15: Interacting with Windows 245

Finding a Location

\\3

Figure 15-3:
The location
information
is easily
divided into
components.
|

Knowing where you're at is an important part of working with applications in
a browser environment. The location object makes it possible to determine
the current location that the user is viewing. In fact, you can take the location
information apart so that you can work with just the part you need. The fol-
lowing sections describe how to work with location information and provide
one technique for modifying the location.

Although you can run most examples in this book directly from your hard
drive, this is one situation where running the example from your Web server
is really helpful because otherwise you won’t see the full list of elements. The
output from these examples also uses a somewhat contrived URL of http://
localhost/GetLocation.html?Make a Query. The query portion isn’t
actually functioning, but it does provide additional output.

Determining the current location

The location object provides access to a number of properties that let you
interact with the complete URL or dissect it into its components. The href
property displays the entire URL. Properties such as search and port pro-
vide access to URL components. Figure 15-3 shows the example URL when
displayed on the test server. Notice that the Port field is blank because

the server is using the default port of 80. If you were using a special port,
you’d see it listed in the Port field. (You can find complete code for this
example in the \Chapter 15\Location folder of the downloadable code as
GetLocation.HTML.)

g Location Information - Mozilla Firefox

Obtaining Location Information

Complete Unescaped URL: http://localhost/GetLocation html?Make a Query
Protocol: http:

Host: localhost

Port:

Path: /GetLocation html

Query: "Make%20a%20Query

246 Part IV: Interacting with Users and HTML

WMBER
@ﬁ
&

WBER
‘g&
&

The location properties always provide the escaped version of the URL. To
see the human-readable version, you must use the unescape () function. The
first line in the output in Figure 15-3 shows the result of using the unes-

cape () function on the href property. Meanwhile, the last line shows the
escaped version of the search property.

Changing the location

Navigating to a new page is an important part of browser-based application
design. Of course, you can always add links to an application and let the user
make any location changes. However, there are times when you want to pro-
grammatically change location. The following functions show how to use the
three methods the 1ocation object provides for changing location. (You
can find complete code for this example in the \Chapter 15\Location
folder of the downloadable code as SetLocation.HTML.)

function AssignURL()
{
location.assign ("GetLocation.html?Make a Query") ;

}

function ReplaceURL()
{

location.replace("GetLocation.html?Make a Query") ;

}

function ReloadURL ()
{

location.reload() ;

3

The assign () method assigns a new URL to the current page. What you see
is the page provided as input to the method. In this case, you see the same
page as shown in Figure 15-3.

The replace () method seemingly performs the same task as the assign ()
method. However, there’s a subtle, but important, difference between the
two methods. When a browser replaces the current page, rather than assign-
ing it, the back button is no longer functional on most browsers. The new
page actually does replace the current page. This is an important difference
because shopping cart applications often require that the user not click the
back button. Designers make the mistake of assigning the page, rather than
replacing it. When you create an application where the back button should be
disabled, make sure you use the replace () method.

Chapter 15: Interacting with Windows 24 7

The reload () method performs the same task as the reload button on the
browser. However, there’s an important difference in this case. If you call
reload (true), the page doesn’t load from the local cache. Instead, the page
is loaded from the server. You can use this behavior to fix problems with an
application when a network error has caused a fault in the page. Reloading
from the server (something the user can’t do easily) restores the content to
the form that you originally intended.

Searching History

The history object is probably the least well documented feature of the
BOM. In addition, there are many differences between browsers and plat-
forms. Some features that seem like they should work don’t end up working
consistently. There’s an interesting article entitled, “Manipulating History
for Fun & Profit” at http://diveintohtml5.info/history.html that
describes a few of these features, but you honestly shouldn’t consider using
them in a production application.

Fortunately, there are some features that you can use consistently. For
example, you can use the history.length property to determine the cur-
rent number of entries in the history list. Unfortunately, you can’t view the
content of those entries to determine the URLs that the browser has stored
or even obtain a list of page titles. The history object also includes these
methods, which do seem to work on every browser and platform:

v back () : Navigates to the previous URL in the history list. The current
item isn’t removed from the history list, so you can go back to it by call-
ing forward ().

v forward (): Navigates to the next URL in the history list.

v go (): Moves to a specific URL in the history list. You can provide a
numeric input to move forward (using positive numbers) or backward
(using negative numbers) a specific number of places in the list. It’s also
possible to provide a specific URL that appears in the list.

Working with Navigator

The navigator object provides support for a number of interesting properties
and methods. All of these properties and methods tell you something about
the browser used to access the page. Here’s a list of the most commonly sup-
ported properties for this object:

http://diveintohtml5.info/history.html

248 Part IV: Interacting with Users and HTML

v appCodeName: Provides the vendor’s codename for the product.

v appName: Returns that commercial (released) name of the product.
Unfortunately, the value returned is wrong in most cases.

v appVersion: Theoretically returns the version number of the browser,
but this information is incorrect in some situations.

V* cookieEnabled: Specifies whether the browser has cookie support
enabled.

v onLine: Specifies whether the browser is online. This is the setting for
working offline rather than actually connecting to the network. In other
words, the browser might not have a network connection and this prop-
erty will still return true.

v platform: Provides information about the platform for which the
browser is compiled. This property doesn’t reflect the platform the
browser’s currently executing on.

v userAgent: Returns a specially formatted header that the browser
returns to the server when making a request. This information may not
actually reflect the browser functionality, but rather it may reflect how
the browser wants to appear to the server.

This string is complicated to read and use. That’s why the browser
detection example in Chapter 2 uses the jQuery library, rather than
parse the information in the user agent string. The explanation at
http://www.howtogeek.com/114937/htg-explains-whats-
a-browser-user-agent is helpful in discovering precisely how this
string’s formatted.

The methods are equally useful. You can use them to detect browser support
for certain functionality. In most cases, the browser offers the required fea-
ture, but the user may have turned it off. Here are the methods of interest:

V¥ javaEnabled (): Specifies whether the browser has Java support
enabled.

V¥ taintEnabled (): Specifies whether the browser has data tainting
enabled.

Data tainting is a technique originally introduced by Netscape Navigator
3 — it allows one window to see the properties in another window.

The idea is that the two windows can share data and developers can
create more interesting applications. However, data tainting proved to
be a huge security risk, and many people have it turned off even if their
browser supports the feature (which isn’t likely in newer browsers). The
TechRepublic article at http://www. techrepublic.com/article/
javascript-security-is-making-strides/5034711 discusses
data tainting, and other security issues, in greater depth.

http://www.howtogeek.com/114937/htg-explains-whats-a-browser-user-agent/
http://www.howtogeek.com/114937/htg-explains-whats-a-browser-user-agent/
http://www.techrepublic.com/article/javascript-security-is-making-strides/5034711
http://www.techrepublic.com/article/javascript-security-is-making-strides/5034711

Figure 15-4:
Use the nav-
igator object

to detect
browser
information.
|

Chapter 15: Interacting with Windows 24 9

Many browsers support other properties and methods that help you find out
more about the browser and its functionality. These lists represent the com-
monly used properties and methods. Figure 15-4 shows typical output from
each of the properties and methods described in the lists. (You can find com-
plete code for this example in the \Chapter 15\Navigator folder of the
downloadable code as CheckBrowser . HTML.)

Checking Browser Information and Functionality

Browser Code Name: Mozilla

Browser Name: Netscape

Browser Version: 5.0 (Windows)

Cockies Enabled? true

Online? true

Compiled for Platform: Win32

User Agent: Mozilla/3.0 (Windows NT 6.1; WOW8&4; rv:17.0) Gecko/20100101 Firefox/17.0
Java Enabled? true

Data Tainting Enabled? false

Creating a Pop-Up

JavaScript provides access to three kinds of dialog boxes: alert (), con-
firm(), and prompt (). You can see each of these dialog boxes in action in
previous chapters. In fact, you initially meet the alert () function in the sec-
tion in Chapter 1 on understanding the alert () function. The first instance
of the confirm() dialog box appears in the section on using JavaScript
objects in Chapter 5, and the section on the default option in Chapter 8 dem-
onstrates the prompt () function. The following sections add to the informa-
tion you already know. For example, you discover how to make information
appear on multiple lines in these dialog boxes. You also discover how to move
beyond these three basic dialog boxes by creating dialog boxes of your own.

Controlling line breaks

Sometimes you need to divide content on multiple lines. To perform this task,
you add an escape character to the string. An escape character is a special
signal to JavaScript to perform some special processing on a string. It’s actu-
ally two characters, the backslash (\) followed by another character. Here’s
a list of the escape characters that JavaScript understands:

250 Part IV: Interacting with Users and HTML

v \ ':single quote
v \ ": double quote
» \\: backslash

» \n: new line

V¥ \r: carriage return
V¥ \t:tab

v \b: backspace

v \f: form feed

You can add these escape characters into strings to perform special tasks,
such as displaying content on multiple lines. The following example shows
how to perform this task. (You can find complete code for this example

in the \Chapter 15\DialogBox folder of the downloadable code as
MultipleLines.HTML.)

<input id="btnShow"
type="button"
value="Display the Dialog"
onclick="alert('This is a really long message, ' +
'\r\nso you need to split it on multiple ' +
'lines');" />

If you were to display this message, without the escape characters, it would
display as a single long line. Unfortunately, a single long line may not work
on some devices, and it would appear unwieldy on most others. The code
adds a \r (carriage return), which moves the cursor back to the beginning
of the line, and a \n (newline), which places the cursor on the next line. As a
consequence, the output from the alert () appears on two lines, as shown
in Figure 15-5.

Creating a modal dialog box

The three dialog boxes that JavaScript provides by default are helpful, but
they aren’t everything that a typical developer requires to create a robust
application. There are times when you need a custom dialog box in order to
focus the user’s attention on a specific need or requirement.

You can find a number of methods for creating a custom dialog box online,
some of which rely on special libraries and produce some dazzling results.
The example in this section relies on the overlay method — a simple tech-
nique for creating a usable dialog box. The following code shows how you
create an overlay using a <div> as part of your page. (You can find complete
code for this example in the \Chapter 15\DialogBox folder of the down-
loadable code as ModalDialog.HTML.)

Figure 15-5:
Using an
overlay
helps you
create a
usable cus-
tom dialog
box.
|

Chapter 15: Interacting with Windows 2 5 ’

w Displaying Content on Multiple Lines - Mozilla Firefox

Histc ma ol Help

This is a really long message,
soyou need to splitit on multiple lines

<div id="Overlay">
<div>
<p id="DlgContent">Content Goes Here</p>
<input id="btnYes"
type="button"
value="Yes"
onclick="DlgHide('Yes')" />
<input id="btnNo"
type="button"
value="No"
onclick="DlgHide('No')" />
</div>
</div>

These tags produce a dialog box that contains a message and two buttons
labeled Yes and No. You must change the message, but have the option of
changing the buttons as needed. For that matter, you need not stick to just
two buttons — you can modify the overlay to meet any formatting require-
ments needed. The overlay can also have any number of inputs desired. In
short, this is a simplification that you can extend quite easily to meet any
requirement.

Having just the tags would mean that the viewer could see the overlay at all
times. In addition, there would be nothing to distinguish the overlay from the
regular information onscreen. With this in mind, you need to create some
CSS to differentiate the overlay and to keep it hidden until needed. Here’s one
way to approach the task:

252 Part IV: Interacting with Users and HTML

#Overlay

{
visibility: hidden;
position: absolute;
left: 90px;
top: 120px;
width:200px;
height:90px;
text-align:center;
border: solid;
background-color: lightgray;

}

As with the overlay tags, the CSS is fully configurable using JavaScript code.
For example, you could add code to center the overlay by changing the 1eft
and top values. The example keeps things simple, but it’s important to real-
ize that all of these values are fully configurable.

The dialog box appears when a user clicks a button. To make that happen,
you need an onclick event handler (Chapter 12 describes event handlers in
greater detail). The following code performs the basic tasks required to inter-
act with the dialog box:

function DlgShow (Message)

{
// Change the message.
var Msg = document.getElementById("DlgContent") ;
Msg.innerHTML = Message;

// Display the dialog box.
var Dlg = document.getElementById("Overlay") ;
Dlg.style.visibility = "visible";

}

The example provides a configurable message, which is passed to
DlgShow () through Message. All you need to do is change the Msg.
innerHTML value to change the message. The dialog box is displayed when
the code changes the visibility property value to "visible".

Now that the dialog box is visible, you need a way to make it go away again.
When the user clicks either Yes or No, the buttons call D1gHide () with an

appropriate Result. The following code shows the technique used to make
the dialog box disappear:

Figure 15-6:
Using an
overlay
helps you
create a
usable cus-
tom dialog
box.
|

Chapter 15: Interacting with Windows 2 53

function DlgHide (Result)

{
// Display the result onscreen.
var Output = document.getElementById("Result") ;
Output.innerHTML = "You clicked: " + Result;

// Hide the dialog box.
var Dlg = document.getElementById("Overlay") ;
Dlg.style.visibility = "hidden";

}

In this case, the application also displays the result onscreen. You could
return the value for further processing if desired. Figure 15-6 shows a typical
dialog box produced by this example.

Creating a Modal Dialog Box

Do vou like oranges?

Using Cookies

Cookies store application information on the user’s drive. When a user visits
a site, the application can use a cookie to store information for future use.
Some cookies are quite simple and store the user’s name or the date of the
user’s last visit. Other cookies are quite complex and could store information
about application state. A cookie could put a user back to where the user was
the last time the application was active. No matter how simple or complex a
cookie is, the basic techniques for working with cookies are the same. The
following sections describe how to set, get, and check a cookie. (You can find
complete code for this example in the \Chapter 15\Cookies folder of the
downloadable code as UseCookies.HTML.)

254 Part IV: Interacting with Users and HTML

SMBER
é‘,\“

Setting a cookie

It pays to create functions that will set and get cookies so that you don’t
have to write the same code repeatedly. The following example accepts three
inputs: the name of the cookie, the value of the cookie, and the number of
days until it expires:

function SetCookie (Name, Value, Expiration)
{
// Create a date variable that contains
// the expiration date.
var ExpDate = new Date() ;

if (Expiration != null)
ExpDate.setDate (ExpDate.getDate() +
Expiration) ;

// Encode the data for storage.
var CookieValue = escape(Value) +
"; expires=" + ExpDate.toUTCString/() ;

// Store the cookie.
document .cookie = Name + "=" + CookieValue;

}

Normally, you’d add data input checks to a function that you plan to use in a
variety of situations. This example leaves them out for the sake of clarity.

The code begins by calculating the expiration date. It begins by creating a new
Date object, ExpDate, and adding the number of days until the cookie expires
to it. Always think of the expiration date as more of a suggestion than an abso-
lute. A user can configure the browser to remove cookies each time the browser
is shut down, or the user can remove the cookies manually at any time.

To store a cookie value, you must escape it — that is, remove any whitespace
characters from it. The example removes the space characters and then adds
the expiration date. Suppose you want to store a cookie, Username, with a
value of John. What you end up with is a string that contains the username
and expiration date: John; expires=Sun, 08 Dec 2013 21:43:52
GMT. The cookie’s actually stored in the document . cookie property as
Username=John; expires=Sun, 08 Dec 2013 21:43:52 GMT.

Getting a cookie

Assuming the user has saved the cookies your application created, you

need to retrieve them before you can make use of the data they contain. The
values are stored on disk as name/value pairs. The data is escaped, which
makes it easy to store but impossible to read. The following code shows how

Chapter 15: Interacting with Windows 255

to retrieve all the cookies, search for a specific cookie, and then make the
data readable:

function GetCookie (Name)

{
// Obtain all of the cookies and split
// them into individual cookies.
var Cookies=document.cookie.split(";");

// Process each cookie in turn.
for (var i=0; i<Cookies.length; i++)
{
// Obtain the name of the cookie.
var CName = Cookies[i].substr (0,
Cookies[i].indexOf ("="));

// Obtain the value of the cookie.
var CValue = Cookies[i].substr (
Cookies[i] .indexOf ("=") + 1);

// Replace any escaped characters.
CName = CName.replace(/A\s+|\s+$/g, Wy o

// If the name of the cookie matches the
// name that was passed by the caller, return
// the associated cookie.
if (Name == CName)
{
return unescape (CValue) ;
}
}

// Return a null value when the cookie isn't found.
return null;

}

The cookies are stored as one long string where each cookie is separated
from the next by a semicolon (;). The example uses the split () function to
turn this string into an array of individual cookies. At this point, the code can
process the cookies one at a time.

Each cookie is stored as a name/value pair. The code begins by retrieving the
name, and then the value, using string manipulation functions. Another way
to perform the same task is to use the split () function again with equals
(=) as the delimiter. You would then find the name in the first array element
and the value in the second array element.

You now have an escaped name and value. The code removes the escape
characters in the cookie name so that it can perform a direct comparison
with the name that was passed to the function. When the names match, the
code returns the value to the caller.

256 Part IV: Interacting with Users and HTML

Checking a cookie

The GetCookie () and SetCookie () functions make it easy to work with
cookies by using JavaScript. This example tracks the user’s name. When the
system doesn’t have the user’s name stored, the application asks for it and
stores it for later use as shown in the following example:

function CheckName ()
{
// Obtain the user's name.
var UserName = GetCookie ("Username") ;

// Check for a user name.
if ((UserName == null) || (UserName == ""))
{
// Obtain a username from the user.
UserName = prompt ("Please type your name: ") ;

// Set a cookie for the username that will
// expire in one year.
SetCookie ("Username", UserName, 365);

}

else

{
// Otherwise, extend the message.
UserName = "Back " + UserName;

}

// Display the user's name onscreen.
var SetName = document.getElementById ("Name") ;
SetName.innerHTML = UserName;

}

The function begins by attempting to get the stored cookie. When there’s no
cookie to get, the function returns null. A user could also choose to simply
press Enter when asked for a name. This would result in a blank value. The
code also checks for a blank and asks the user to enter a name again.

When there’s a name stored on the drive, the code modifies the message
onscreen to reflect this fact. So, if this is a new user, the message says
Welcome Name, but if this is a returning user, it says Welcome Back Name.
The point is that you have a simple method for detecting returns versus new
entries.

PartV

Extending JavaScript
Further

e

1 2 3 4 5 6 7 8 9 10
1 1 2 4 5 6 7 8 9 10
2 2 4 8 0 12 14 16 18 20
303 6 12 15 18 21 24 27 30
4 4 8 12 16 20 24 28 32 36 40
5 5 0 15 20 25 30 35 40 45 50
6 6 12 18 24 30 36 42 48 54 60
7 7 4 21 28[/\\) 35 42 49 56 63 70
$ 8 16 24 32 40 48 56 64 T2 80
9 9 18 27 3 45 54 6 72 81 90

10 10 20 30 40 30 60 70 80 90 100

Make your site easier to use and more accessible by using the techniques
Web described at http: //www.dummies.com/extras/html5
YU programmingwithjavascript.

http://www.dummies.com/extras/html5programmingwithjavascript
http://www.dummies.com/extras/html5programmingwithjavascript

X \

X\

In this part . . .

Discover how to use XML to store all sorts of data.

Devise applications that rely on Asynchronous JavaScript and
XML (AJAX) to make partial page updates that are more
efficient.

Use third-party libraries, such as jQuery, to create applications
faster and easier.

Rely on jQuery to make AJAX even easier to use.

Create applications that use animation and special effects
to enhance the user experience and add a little pizzazz to
your site.

Chapter 16

Working with XML in JavaScript

In This Chapter
Discovering XML
Using XSLT to display XML data
Creating valid XML data
Using JavaScript to work with XML

Tle eXtensible Markup Language (XML) is a means of storing data com-
plete with context in a way that’s transferrable to every platform and
usable by every browser. That’s a tall order. However, XML is now used for

a broad range of storage tasks, even when the storage is on a local system.
You also find XML used for everything from application configuration to Web
service interactions. Even though XML isn’t a perfect solution for every need,
it’s an extremely flexible method for working with data of all sorts.

This chapter begins with a basic overview of XML and provides you with
resources for further study, should you want more information. XML is so
flexible that entire books are written about the topic that hardly scratch the
surface of what you can do. The first section of this chapter focuses on how
you work with XML in this book, along with a few basics you need to know.

One of the more important requirements for working with XML is to find a
way to validate the information you receive. Validating the data is important
because you need to know that the information you're using is correct. The
validation process ensures only that the data is in the right format and of the
right type. Unfortunately, computers still have no way of ascertaining the
truth value of data — determining whether the content is correct. Someone
could enter a name on a form, but the name might not be correct.

The remainder of the chapter provides some examples of how to combine
JavaScript and HTMLS5 to interact with XML data. You won’t do anything too
fancy in this chapter, but future chapters extend the information you obtain
here to perform some interesting tasks. This chapter focuses on accessing,
navigating, and displaying the data in XML files so that you get a feel for how
this process works.

260 Part V: Extending JavaScript Further

Introducing XML

WMBER
@&
&

XML is an important technology because it makes it possible to transfer data
anywhere in a form that every computer can understand. Previous data stor-
age technologies were often proprietary and worked only on the platform on
which they were created. The only way to transfer data in many cases was
to rely on text formats that lost the context of the data. You could transfer a
list of usernames to another computer, but not the fact that they were user-
names. Context is incredibly important because it defines how the data is
used and modifies the data meaning in subtle ways. XML solves this problem
by providing a means to transfer both the data and its context. The following
sections provide a brief overview of XML you can use to work through the
examples that appear in later chapters of the book.

Gaining an overview of XML

XML is a markup language like HTML. You use tags to define the data context.
For example, if you see <name>Joe Smith</name> in an XML file, you know
that the data, Joe Smith, is a name. Unlike HTML, there are no predefined
tags in XML — you define the tags you need based on the contextual require-
ments of the data. What XML provides is a structured method for storing

the data so that a parser, software designed to interpret XML, will be able to
interact with it.

An XML file contains data and contextual information about the data. It
doesn’t provide a method for displaying the information onscreen, nor does

it provide any means of validating the structure of the data. Yes, the XML

file will present the data in a structured manner, but you later discover that
the structure itself may be incorrect unless it’s validated in some way. The
“Validating XML” section, later in this chapter, discusses the issue of ensuring
the data structure is correct so that software can interpret and use the data.

There are some basic rules for XML files. For example, all opening tags must
have a closing tag. Having just an opening tag is invalid, and the parser will
raise an error if it sees an opening tag without a corresponding closing tag.
You can create a shortcut for both opening and closing tags. When a tag
doesn’t contain any data, just context, you can present it as a single entity.
For example, if a user didn’t enter a name, the name tag could appear as
<name />.The ending slash signifies the closing of the tag.

All XML files have a required processing instruction. The processing instruc-
tion tells the parser that the file is an XML file. It also provides some basic
information about the XML file, such as the XML version. Many texts call this
particular processing instruction the XML declaration. Here’s a basic XML
processing instruction:

<?xml version="1.0" encoding="UTF-8"?>

Chapter 16: Working with XML in JavaScript 26 ’

In this case, the XML file is based on version 1.0 of the specification. It’s also
encoded using the Uniform Transformation Format 8-bit (UTF-8) standard
(which you can read about at http: //www.utf-8.com). XML files can use a
number of different encoding standards, but UTF-8 is one of the most common
standards. In this case, encoding reflects the way the characters are stored

on disk.

An XML file can contain more than one processing instruction. For example,
if you want to use a particular file to validate the XML, you use a process-
ing instruction to tell the parser to use that file. Later parts of this chapter
describe the various processing instructions that you encounter most often.

Understanding elements

An XML element is the combination of an opening tag, optionally some data,
and a closing tag. A name element might look like this: <name>Joe Smith
</name>. The basis of an XML file is the elements it contains.

You can create elements with any name you desire. The name should reflect
the kind of data contained within the element, but XML doesn’t actually care
what name you use. It does have some rules for working with elements.

Every XML document is a tree structure that begins with a root node. A node
is a single element and all it contains. There’s only one root node in any XML
tree, and the tree must contain at least one root node. In looking at a tree
structure like this one:

<Customers>
<Customer>
<Name>Joe Smith</Name>
<Age>42</Age>
<FavoriteColor>Blue</FavoriteColor>
</Customer>
</Customers>

the <Customers> element is the root node for the document. It contains

all the other elements. The <Customers> root node consists of multiple
<Customer> nodes, elements that contain information about individual cus-
tomers. The <Customers> node is the parent of the <Customer> nodes, and
the <Customer> nodes are the children of the <Customers> node.

The names you use for elements are case sensitive. A node named
<customers> is different from a node named <Customer>. In addition, ele-
ment names have these requirements:

http://www.utf-8.com/

262 Part V: Extending JavaScript Further

3

v Can contain letters, numbers, and other characters
v Can’t start with a number or punctuation character
v~ Can’t start with the letters xml (or any capitalization of XML)

v Can’t contain spaces, but you can use the underscore (_) to simulate
a space

When creating an XML structure, the tags must be properly nested. For exam-
ple, <i>Emphasized Text</i> might work in an HTML document,
but it won’t work in XML because the tags are nested incorrectly. The correct
ordering of the tags is <i>Emphasized Text</i>, so that the

tag properly encapsulates the <i> tag.

Because of the way in which XML works, you can’t use certain characters
within the data. For example, <Comparison>x < y</Comparison> will
generate an error because you've used the less-than (<) symbol in the

data. This element should instead appear as <Comparison>x < y</
Comparison>, where &1t ; represents the less-than symbol. Table 16-1
shows a list of character replacements you should use within the XML data.

Table 16-1 XML Character Replacements
Character Replacement Description

& & Ampersand

! ' Apostrophe

> > Greater than

< < Less than

" " Quotation mark

As you work through the structure of an XML file, you may want to make
notes to yourself. An XML file can have comments in it. You simply place the
comment within a starting <! -- and ending --> character set and place your
comment between. For example,

<!-- This is a comment. -->

contains an XML comment. The parser ignores anything you place inside the
comment.

NG/
v%

Chapter 16: Working with XML in JavaScript 263

Understanding attributes

Elements contain major data concepts and structure the data to make it easy
to work with. Developers tend to use attributes as a means of further describ-
ing the data. An attribute is a name/value pair that appears within an element.
For example, here’s an attribute for a <Customer> node:

<Customer LastUpdated="01/15/2013">
<Name>Joe Smith</Name>
<Age>42</Age>
<FavoriteColor>Blue</FavoriteColor>
</Customer>

In this case, the time the information was last updated is supplementary — it
doesn’t affect the overall data. The overall data — the customer information —
would still be usable without the attribute. There’s some overlap between
element and attribute data, and some developers have different viewpoints
of precisely when to use one or the other. In fact, some developers never use
attributes. XML doesn’t require that you use them. There are some rules for
using attributes:

v An attribute must always appear as part of an element.

v It must always contain a name and value pair separated by the equals
sign (=).
v The value must always appear in quotes.

v~ Attributes can use either single or double quotes, but the beginning and
ending quote must be the same.

v Use the character replacements shown in Table 16-1 when using certain
characters in your attribute.

Be careful in using attributes too heavily in your data. Attributes present a
number of potential problems that make some developers avoid them.

v An attribute can contain only one piece of data, not multiple pieces like
an element can.

v Attributes can’t contain tree structures, so you can’t vary the informa-
tion easily.

v It isn’t easy to expand attributes because the software that’s used to
read them will expect a certain number of attributes that contain
specific data.

264 Part V: Extending JavaScript Further

A\\S

Attributes do serve well as a means of providing amplifying data. Just be
careful to use them correctly. You should never end up with elements that
look like this:

<Customer LastUpdated="01/15/2013"
Name="Joe Smith"
Age="42"
FavoriteColor="Blue" />

Working through a basic file

This chapter uses some simple customer information for example purposes.
Of course, XML data can become quite complex. For example, when working
with a Web service, you see many layers of data contained in a highly nested
tree structure. However, for the purposes of explanation, this file is just fine.
(You can find complete code for this example in the \Chapter 16 folder of
the downloadable code as Customers . XML.)

<?xml version="1.0" encoding="UTF-8"?>
<Customers>
<Customer LastUpdated="01/15/2013">
<Name>Joe Smith</Name>
<Age>42</Age>
<FavoriteColor>Blue</FavoriteColor>
</Customer>
<Customer LastUpdated="01/21/2013">
<Name>Amy Wang</Name>
<Age>33</Age>
<FavoriteColor>Orange</FavoriteColor>
</Customer>
</Customers>

The file contains the XML declaration, which is a kind of processing instruc-
tion. The root node, <Customers>, contains two <Customer> nodes, each
with the same tree structure. Each <Customer> element contains a single
attribute, LastUpdated, which shows the date that the information con-
tained with the node was last updated.

Trying to visualize the data by looking at just the code can be difficult, espe-
cially when you’re using a simple text editor to create it. Fortunately, you have
another alternative. Simply open the XML file in your browser, and you gener-
ally see a color-coded alternative view like the one shown in Figure 16-1. The
minus signs next to some lines of code let you collapse those lines so you see
just an overview of the data.

Figure 16-1:
Most
browsers
make it easy
to view the
content of
XML files.
|

Chapter 16: Working with XML in JavaScript 265

(&) Moszills Firefox

This XML file does not appear to have any style information associated with it. The document tree is
shown below

—<Customers>
—<Customer LastUpdated="01/15/2013">
<Name>Joe Smith</Name>
<Age=42=/Age>
<FavoriteColor=Blue</FavoriteColor>
</Customer>
—<Customer LastUpdated="01/21/2013"=>
<Name>Amy Wang=</Name>
<Age>33</Age>
<FavoriteColor=0Orange</FavoriteColor>
</Customer>

</Customers>

Displaying XML Using XSLT

XML is a great way to store data. However, it isn’t the easiest way to see the
data. All of the tags tend to hide the data rather than make it easy to under-
stand. A generated XML file tends to lack whitespace, which makes viewing
it even more difficult. Although this book focuses on viewing XML by using
JavaScript on an HTML5 page, you need to know that there are other ways to
view XML.

Some developers use a Cascading Style Sheet (CSS) method (you can read
about this method at http://www.htmlgoodies.com/beyond/css/
displaying-xml-files-using-css.html), but most developers prefer
to use XML Stylesheet Language for Transformations (XSLT). Using XSLT has
some significant advantages in flexibility and the ability to work with complex
data over CSS, but XSLT is also a little harder to learn. You can see an XSLT
tutorial at http: //www.w3schools.com/xs1.

Nothing works quite so well as a quick example to demonstrate how XSLT
works. To use XSLT with an XML file, you need to add a processing instruc-
tion to the XML file. The following processing instruction tells the browser
displaying the Customer?2 . XML file to use the CustomeroOut . XSLT file to
format the information. (You can find complete code for this example in the
\Chapter 16 folder of the downloadable code as Customers?2 .XML and
CustomeroOut .XSLT.) This is the only difference between the Customers?2.
XML file and the Customers . XML file described in the preceding section of
the chapter.

<?xml-stylesheet type="text/xsl" href="CustomerOut.xslt"?>

http://www.htmlgoodies.com/beyond/css/displaying-xml-files-using-css.html
http://www.htmlgoodies.com/beyond/css/displaying-xml-files-using-css.html
http://www.w3schools.com/xsl/

266 Part V: Extending JavaScript Further

To transform an XML document into a document you can see, you build an
HTML document from it. The following code provides a typical example of
XSLT code that you might use for transformation purposes:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="1.0">
<xsl:template match="/">
<html>
<body>
<hl>Customer Listing</hl>
<table border="1">

<tr>
<th>Name</th>
<th>Age</th>
<th>Favorite Color</th>
</tr>
<xsl:for-each select="Customers/Customer">
<tr>
<td>
<xsl:value-of select="Name" />
</td>
<td>
<xsl:value-of select="Age" />
</td>
<td>
<xsl:value-of
select="FavoriteColor" />
</td>
</tr>
</xsl:for-each>
</table>
</body>

</html>
</xsl:template>
</xsl:stylesheet>

That’s right: XSLT is actually another form of XML, so it starts out with the
XML declaration. The <xs1:stylesheet> root node defines the document
as providing XSLT support. It includes a namespace attribute that tells the
browser where to find information on how to interpret XSLT. You can find
out more about namespaces at http: //www.w3schools.com/xml/xml_
namespaces.asp.

The <xs1:template> tag tells the browser what information to retrieve
from the XML file for display purposes. This document retrieves everything
in the XML file.

http://www.w3schools.com/xml/xml_namespaces.asp
http://www.w3schools.com/xml/xml_namespaces.asp

Figure 16-2:
The
formatted
customer
data is

much easier
to see.
|

\\3

Chapter 16: Working with XML in JavaScript 26 7

The next steps begin creating the HTML document, complete with the tags
required to do so. This is an abbreviated page. Normally, you'd include all
the required tags. The page includes a heading and the start of a table.

The <xs1: for-each> tag processes each of the <Customer> entries

in the file. The file then builds the rows and data cells for the table. The
<xsl:value-of> tag retrieves the data values of the <Name>, <Age>, and
<FavoriteColor> elements. Figure 16-2 shows typical output from this
example.

@ Moezilla Firefox

Rgférence

Customer Listing

| Name ’A_ge|F:1\'orite Color,
[foc Smith [42 |[Blue
|Am)' Wang ’33_ |Ola_nge

Some browsers encounter problems using the example from the local drive.
For example, Chrome displays a blank page when you access Customers?.
XML from the local drive. To test this technique in a way that works for most
browsers, copy the files to your Web server and then access the XML file from
the Web server. Using the setup described in Chapter 2, you should be able to
use http://localhost/Customers2.xml as the URL and see the results in
Figure 16-2 using all three of the test browsers.

Validating XML

One of the strengths of XML is that it presents data in a highly structured
manner that makes the context of the data clear and understandable.
However, one of the weaknesses of XML is that it doesn’t tolerate errors well.
When a parser encounters an error in your XML file, it typically stops at that
point and doesn’t perform any additional processing. With this in mind, the
following sections provide a brief overview of what you can do to validate the
XML used in your applications.

268 Part V: Extending JavaScript Further

Understanding the concept of well-formed

Before you can use an XML document in any capacity, it must be well-formed.
A well-formed XML document contains all of the features described so far in
the chapter. It follows the rules specified in the various sections of the chap-
ter. The problem is that most developers don’t speak XML, and you won’t use
production data to gain experience working with XML in most cases. The files
you create for experimentation purposes must be well-formed too.

Fortunately, you don’t have to invest in fancy software to check your work or
rely on someone else’s eyes to find the mistakes you've made. A number of
sites provide XML validators you can use for checking your work. Two such
sites are

¥ <?xml?>: http://www.xmlvalidation.com

v W3Schools: http: //www.w3schools.com/xml/xml_validator.asp

In both cases, you simply copy and paste your XML into the window pro-
vided and click a button, and the application tells you about any errors in
your file. Both sites also provide a means for working with complete files,
rather than using the cutting and pasting approach.

Discovering XSD

The fact that an XML document is well-formed doesn’t say much. It’s easy to
create a well-formed XML document that won’t work because the structure

is incorrect. For example, the data might not include a required node, or the
node might use the wrong capitalization or be misspelled. All sorts of errors
can creep into data files that aren’t validated in some way. The use of XML
Schema Definition (XSD) files makes it possible to check the precise structure
of a file and display a list of errors in it.

A complete discussion of XSD would consume several chapters, and you won’t
actually use this strategy in the examples in this book. However, using XSD

is an important technique in situations where data errors of any sort could

be catastrophic. (Think about banking or medical records.) You can gain

a better understanding of XSD through the excellent W3Schools tutorial at
http://www.w3schools.com/schema/default.asp. The CodeGuru tuto-
rial at http://www.codeguru.com/java/article.php/c13529/XSD-
Tutorial-XML-Schemas-For-Beginners.htm is shorter but provides
helpful information on this technique as well.

http://www.xmlvalidation.com/
http://www.w3schools.com/xml/xml_validator.asp
http://www.w3schools.com/schema/default.asp
http://www.codeguru.com/java/article.php/c13529/XSD-Tutorial-XML-Schemas-For-Beginners.htm
http://www.codeguru.com/java/article.php/c13529/XSD-Tutorial-XML-Schemas-For-Beginners.htm

Chapter 16: Working with XML in JavaScript 269

Loading XML with JavaScript

So far, this chapter has helped you explore XML as a storage technology,
methods to display it, and methods to validate it. All of this preliminary infor-
mation is helpful in using XML with JavaScript. Now that the preliminaries
are out of the way, it’s time to view an example of how you can interact with
XML files using a combination of JavaScript and HTML5.

The example in this section shows how you could parse an XML document
by using JavaScript and display its content onscreen. What you need to con-
sider in reviewing this example is that you gain substantial flexibility using
JavaScript and that the example shows only the tip of the iceberg when it
comes to the things you can do. (You can find complete code for this exam-
ple in the \Chapter 16 folder of the downloadable code as Navigate.HTML.)

<script language="JavaScript">
// Create a connection to the file.
var Connect = new XMLHttpRequest () ;

// Define which file to open and

// send the request.

Connect.open ("GET", "Customers.xml", false);
Connect.setRequestHeader ("Content-Type", "text/xml") ;
Connect.send (null) ;

// Place the response in an XML document.
var TheDocument = Connect.responseXML;

// Place the root node in an element.
var Customers = TheDocument.childNodes[0];

// Retrieve each customer in turn.
for (var i = 0; 1 < Customers.children.length; i++)

{

var Customer = Customers.children[i];

// Access each of the data values.

var Name = Customer.getElementsByTagName ("Name") ;

var Age = Customer.getElementsByTagName ("Age") ;

var Color = Customer.getElementsByTagName (
"FavoriteColor") ;

// Write the data to the page.
document .write ("<tr><td>") ;

document .write (Name[0] . textContent.toString()) ;
document .write ("</td><td>") ;

document .write (Age[0] . textContent.toString()) ;
document .write("</td><td>") ;

document .write(Color[0].textContent.toString()) ;
document .write("</td></tr>") ;

~ e~~~ —~ —~

}

</script>

2 70 Part V: Extending JavaScript Further

Figure 16-3:
JavaScript
provides

a flexible
method for
interacting
with server
resources.
|

All modern browsers support the XMLHt tpRequest object. You can use
this object to create a connection to any server and request resources from
it. In this case, the application is using the XMLHt tpRequest to request the
Customers . XML file, but you can use it for any resource. You can find out
more about this object at http://www.w3.org/TR/XMLHt tpRequest.

To request data, you must first define the information you need. In this case,
the code uses the open () function to specify that it wants to use the GET
method of obtaining the data, that the data is located in Customers . XML,
and that it wants to make a synchronous request. A synchronous request is
one in which the browser waits for the data and processes it immediately.
You can also create asynchronous requests by using a callback function. The
code also sets the request header to the kind of data that the application is
requesting. The send () function sends the information to the server.

On return from the send () function call, the responseXML property con-
tains an XML document. There are other response properties you use for
data of other types. For example, if you requested a text file, you use the
responseText property instead.

The XML document contains the root node, Customers, at element 0. It
places this data in Customers. The Customers.children property con-
tains two Customer child nodes — one for each customer in the file. A for
loop processes each of these Customer nodes. Because each Customer
child node has a unique name, you can use the getElementsByTagName ()
function to retrieve the data they contain.

The resulting variables — Name, Age, and Color — are then used to add
data to the table on the page. Notice that you must use the textContent
property and then convert this property to a string by calling toString ().
Otherwise, the table will display an object name, rather than the actual data.
Figure 16-3 shows typical output from this example.

@ Navigating the XML Modes - Mozilla Firefox
f B Jookiriarks Tools Help |

Navigating the XML Nodes

Name Age Favorite Color
Joe Smith 42 Blue
Amy Wang 33 Orange

http://www.w3.org/TR/XMLHttpRequest/

Chapter 17

Cleaning Up the Web with AJAX

In This Chapter

Understanding how AJAX can benefit your applications

Using JavaScript alone to create an AJAX application
Using jQuery with AJAX

‘ hapter 16 introduces you to XML, which is essentially a means of
storing textual data in a structured way so that it retains its original
context but is easily used by any platform. In that chapter, you see a basic
example of what amounts to a database. This chapter looks at XML from a
new perspective — as a means of exchanging data with a server and of updat-
ing parts of a Web page without reloading an entire page. This technology is
called Asynchronous JavaScript and XML (AJAX). It isn’t a new language but
merely a new way to use existing standards to perform specialized tasks.

This chapter provides a simple overview of AJAX. You've probably seen
AJAX at work in the past. This programming technique is used to create some
of the effects used by Google Maps, Gmail, YouTube, and Facebook (amongst
many others). When you complete this chapter, you’ll know more about
AJAX and how it can help you create applications that are more flexible and
dynamic.

Introducing AJAX

Many developers have heard of AJAX, assumed it was a special sort of lan-
guage, and never went any further. AJAX isn’t a new language; it’s a reuse

of existing technology to create a new way of dealing with updates to docu-
ments. You already know the technologies behind AJAX; all you need to do is
apply them in a new way to gain some major advantages in presenting con-
tent online. The following sections describe AJAX and present some simple
scenarios for using it to create dynamic pages on your site.

2 72 Part V: Extending JavaScript Further

WBER
@&
&

Learning the benefits of AJAX

AJAX makes it possible to create dynamic applications that load and run
faster and also use fewer network and server resources. The goal of AJAX is
to allow changes to a page without having to reload the entire page. Using
AJAX makes it possible to create applications that are quite fast without
loading the server down with large requests. All the server has to do is send
a small piece of data to the caller when requested. This small piece of data
travels faster over the network, which means that request latency is also
smaller.

One of the bigger reasons to use AJAX is that it’s standards-based (created
and administered by a standards group). There isn’t some large company out
there that controls AJAX. Because it’s standards-based, AJAX runs on any
newer browser and platform combination that supports the standards it uses.
AJAX relies on these standards:

v~ JavaScript: You use JavaScript to write the code required to handle
events at the browser, make requests to the server, and update areas on
the page as needed.

+* Document Object Model (DOM): JavaScript makes use of the DOM to
gain access to specific locations on the page.

1 Cascading Style Sheets (CSS): Using CSS makes it possible to create spe-
cial effects during data updates. In addition, CSS makes the new data fit
in with the existing page content.

1 eXtensible Markup Language (XML): Any update is going to require
some sort of data. XML is a perfect choice because it works anywhere.

1 XMLHttpRequest object: Communication with the server requires a
connection, and the XMLHt tpRequest object creates this connection.
Chapter 16 shows how to use a synchronous connection to insert XML
data onto a page during the loading process. AJAX performs its tasks
asynchronously.

Understanding how AJAX works

AJAX doesn’t perform magic. There’s nothing behind the scenes that doesn’t
make sense once you understand it. In fact, AJAX performs its task by using a
process that’s similar to the one you’'ve used for many of the examples in this
book. The only difference is that AJAX performs the task over a network wire
rather than locally in the same page or an external page in the same folder.
Here’s the sequence of events that occur when using AJAX.

1. An event occurs at the browser. (The nature of the event is irrelevant
but generally involves a data request of some sort.)

2. JavaScript creates a new XMLHt tpRequest object. In this case, the
object will be configured to perform its work asynchronously using a
callback function.

3. JavaScript sends the request to the server for processing. At this point,
the page continues performing tasks as it normally does while waiting
for a response.

4. The server receives the XMLHt tpRequest object that JavaScript sent
and processes it.

5. The server creates a response and sends it back to the browser.

6. The browser’s callback function provided with the original request
receives the response from the server.

7. The callback function performs any required post-processing of
the response.

8. An update of the information onscreen occurs, and the user sees
the result.

Deciphering the XMLHttpRequest object

It may at first seem that XMLHt tpRequest object is intensely complicated,
but it really isn’t if you take it apart and view it a bit at a time. In reality, most
developers use only a few well-known methods and properties. However, it’s
entirely possible that developers would use more features of this object if
they knew they existed. The following sections break the XMLHt tpRequest
object into two pieces: request and response. You use methods and proper-
ties to perform these two tasks, so it makes sense to review them from that
perspective.

Working with the request

To obtain resources from the server, you must make a request. After all, the
server doesn’t read minds. You build up a request by using methods and
properties, and then you use the send () method to transmit the request
you’'ve built. The following list describes the properties normally associated
with requests:

v timeout: Determines the time, in milliseconds, that the request will
continue attempting to obtain a required resource from the server.

v withCredentials: Specifies that the request should include the user’s
credentials when set to true. The credentials allow access to secure
resources on the server.

Chapter 17: Cleaning Up the Web with AJAX 27/ 3

2 74 Part V: Extending JavaScript Further

v upload: Provides the server with a XMLHt tpRequestUpload object
that contains data the server requires to fulfill a request.

Now that you have a better idea of which properties are available to make a
request, it’s time to look at the methods. The following methods are usually
associated with making a request of some type:

»* open () : Creates a new request. The request can include a number of
arguments as defined in the following list in the order you provide them:

¢ method: Determines the method used to access the resource. The
two valid choices are GET and POST.

® URL: Specifies the location of the resource on the server.

¢ asynchronous: Determines whether the request is made in a
synchronous or asynchronous manner. The caller must provide a
callback function when this flag is set to true (for an asynchronous
request).

e username: Contains the user’s logon name for secure resource
access.

¢ password: Contains the user’s password for secure resource
access.

V¥ setRequestHeader (): Creates a name/value pair to include with the
request header. You supply the name and value as two separate argu-
ments that the call uses to create the request header entry.

v send (): Transmits the request to the server. It sounds simple, but a
number of features are in place to make the process more reliable than
simply throwing a request out and hoping something happens. You can
read about the entire process if you want at http: //www.w3.org/TR/
XMLHttpRequest/#infrastructure-for-the-send () -method.
However, from a developer’s perspective, how send () works isn’t
nearly as important as what send () returns. The send () method either
returns data or an error. Here are the four most common errors you
receive and why they happen:

e network: Something has happened to stop the request from
reaching the server. In some cases, a Domain Name System (DNS)
error causes the request to get lost before it reaches the server. In
other cases, a Transport Layer Security (TLS) error occurs, which
means that your application may not have the required creden-
tials. In fact, network errors can come from a number of sources,
but these are the two most common reasons.

¢ abort: The end user has cancelled the request. To cause this
error, your application must call the abort () method.

http://www.w3.org/TR/XMLHttpRequest/#infrastructure-for-the-send()-method
http://www.w3.org/TR/XMLHttpRequest/#infrastructure-for-the-send()-method

Chapter 17: Cleaning Up the Web with AJAX

* timeout: A request has wandered about looking for the resource
it needs and finally given up. Requests have a timeout value associ-
ated with them. Otherwise, the request could continue looking for
a resource indefinitely if that resource doesn’t exist.

e request: There’s a problem with the request. You normally have
to dig deeper to find out precisely what the problem is. However,
there are a number of common causes, including: requesting a non-
existent resource, not providing a required argument, and provid-
ing information of the wrong type.

V¥ abort (): Stops execution of the current request.

Working with the response

The XMLHt tpRequest object also provides a number of response properties
and methods that you use to determine the success or failure of a request.
Here are the properties that you commonly use when working with this
object:

V¥ status: Returns the HTTP status code. A status code of 200 means that
the request completed successfully. Any other code normally reflects some
sort of problem with the request process. You can find a list of status codes
athttp://www.w3 .org/Protocols/HTTP/HTRESP.html.

V” statusText: Returns the HTTP status as a textual value. For example,
a status code of 200 returns a text value of OK. You can find a list of
status text values and their associated codes at http://www.w3 .org/
Protocols/HTTP/HTRESP.html.

v readyState: Specifies the current state of asynchronous processing.
The state can be any of these values:

¢ 0: Request not initialized

¢ 1: Server connection established

¢ 2: Request received

¢ 3: Processing request

¢ 4: Request finished and response is ready

v responseType: Returns the value of the Content-Type response
header. An application can use this value to determine how to react to
the type of response the server has sent. The common return types are

e "": An empty string indicates that the return type is unknown or
that an error has occurred and there’s no response to process.

e arraybuffer: The data is in the form of an array.

275

http://www.w3.org/Protocols/HTTP/HTRESP.html
http://www.w3.org/Protocols/HTTP/HTRESP.html
http://www.w3.org/Protocols/HTTP/HTRESP.html

2 76 Part V: Extending JavaScript Further

¢ blob: The sender has used a Binary Large Object (BLOB) to store
the data.

¢ document: The data appears as structured information in an XML
document. Normally, the document is complete, rather than an
XML fragment.

¢ json: The sender has used JavaScript Object Notation (JSON) to
encapsulate the data.

¢ text: The information appears as plain text, which may mean that
it lacks context and structure. However, some text formats are
structured, such as Comma Separated Variable (CSV).

v response: Contains the entire response without any interpretation as
an object.

v responseText: Contains only the text of a response when the response
Type value is " " (the empty string) or text. This property returns noth-
ing for other responseType values.

v responseXML: Contains only the XML document when the response
Type value is " " (the empty string) or document. This property returns
nothing for other responseType values.

The response methods help you interact with the response data in some way.
Here are the response methods:

V¥ getResponseHeader (): Obtains a specific response header value from
the response object. You supply the value of the response header you
want, such as Content-Type, as an argument to the method. There are
no required response headers, and a server can create custom headers,
but you can find a list of common response headers at http: //www.
httpwatch.com/httpgallery/headers.

V” getAllResponseHeaders (): Creates an array of all of the response
headers except those that are listed as Set-Cookie or Set-Cookie2.

V¥ overrideMimeType (): Specifies the value of the Content-Type
response header.

Performing AJAX Tasks Using JavaScript

Using AJAX with pure JavaScript is a two-part process. First, you must send
the request. Second, you must process the response. The following code
shows the two parts of the process used to change just part of a page. You
must execute this code on your server — it won’t respond properly from the

http://www.httpwatch.com/httpgallery/headers/
http://www.httpwatch.com/httpgallery/headers/

Chapter 17: Cleaning Up the Web with AJAX 27 7

local drive. (You can find complete code for this example in the \Chapter 17
folder of the downloadable code as AJAX_JavaScript.HTML.)

// Create a connection to the server.
var Connect = new XMLHttpRequest() ;

function LoadDoc ()

{
// Specify which function to use on return.
Connect.onreadystatechange = ProcessData;

// Make the request.
Connect.open ("GET", "Special.txt", true) ;
Connect.send() ;

}

function ProcessData ()
{
// Verify the return status.
if ((Connect.readyState == 4) &&
(Connect.status == 200))
{
// Modify the <div> content.
document .getElementById ("ChangeText") .innerHTML =
Connect.responseText;

}

The code begins by creating an XMLHt tpRequest object, Connect, which
is used to handle the connection with the server. This object is common to
both requesting the data and processing it later.

When a user clicks Change the Text, the button calls LoadDoc (). The first
step is to tell Connect where to find the function, ProcessbData (), used

to process the data later. The code then creates a request for Special.

txt using the GET method. Notice that the open () function is set to use an
asynchronous call rather than a synchronous call, which you might use when
working with XML data.

The ProcessData () function receives input any time that the readyState
changes for the connection. However, you don’t need to process every
change. The code begins by checking for a readyState of 4 and a status of
200, which means that the response has been successfully processed and is
ready to use. When this combination occurs, the code changes just the text
of the target <div> onscreen.

2 78 Part V: Extending JavaScript Further

Making AJAX Easier with jOuery

The example found in the “Checking browser and version” section of

Chapter 2 introduces you to a valuable online library called jQuery. Using
jQuery greatly reduces the amount of code you need to write to make AJAX
work. In fact, creating an AJAX application becomes relatively simple. Of
course, using jQuery always begins with defining the library source, as shown
here. (You can find complete code for this example in the \Chapter 17
folder of the downloadable code as AJAX_jQuery .HTML.)

<script
src="http://code.jquery.com/jquery-latest.js">
</script>

Using the latest jQuery version is always a good idea, but you can also down-
load a local copy of jQuery to speed queries from http://code. jquery.
com. This example relies on a simple button to execute the event handler
shown here:

function ChangeText ()
{

S ("#ChangeText") .load ("Special.txt") ;
}

The jQuery calls are preceded by a dollar sign ($). This call accesses a <div>
with an id of ChangeText. It calls the 1oad () function for that <div> with a
resource of Special.txt. When you run the query, you see that the text in
the <div> changes without loading the rest of the page.

http://code.jquery.com/
http://code.jquery.com/

Chapter 18

Making JavaScript
Easier with jQuery

In This Chapter
Understanding the jQuery library

Working with the Google CDN
Performing standard programming tasks with jQuery
Creating event handlers using jQuery

M ost of the applications in previous chapters of the book use straight-
forward JavaScript coding techniques. You write all the code required

to perform a particular task. Writing your own code is a good way to figure
out precisely how JavaScript works. Of course, it’s also time consuming and
error prone. The need to produce error-free applications quickly has created
a demand for third-party libraries of common routines — code that a lot of
developers need. jQuery is just one of many such libraries.

The reason that jQuery appears in this chapter is that it’s one of the most
used libraries for Web applications. In addition, you can use it without cost.
That makes jQuery a good first choice for libraries. The first section of this
chapter describes jQuery in further detail.

Previous examples in the book load jQuery directly from the jQuery site,
which is a great idea if you plan to use just one library. However, as your
skills grow and the complexity of the applications you create increases, you'll
want to use other libraries. This chapter also examines one potential solution
to the problem of working with multiple libraries, the Google APIs — essen-
tially a means of accessing a number of these common libraries from a single
site so that the user isn’t constantly wondering whether allowing a particular
library is safe.

280 Part V: Extending JavaScript Further

SMBER
é‘,\“

The remainder of this chapter discusses ways in which you can use jQuery to
make yourself more productive and to write better code in less time. A single
chapter is barely enough to provide an overview of jQuery, so an overview is
just what you get in the sections that follow.

It’s important that you not get the idea that jQuery is the only product worth
consideration out there. It would be impossible to explore all the possible
libraries out there, even if you had an entire book to do it.

Getting to Know the jOuery Library

There are many reasons to use jQuery within your applications. The most
compelling are that

v+ Doing so will save you time.

v Using a library reduces the number of lines of code you must write.

v Relying on a standardized library provides a consistent manner of imple-

menting application details.

In earlier chapters, you can see jQuery in action to an extent. For example,
Chapters 2 and 17 rely on jQuery to perform some smaller tasks. In Chapter 2,
the example in the section on checking browser and version shows a simple
technique for detecting the browser making a request so you can service its
request properly. Getting this information by using pure JavaScript would

be cumbersome at best. In Chapter 17, the example in the section on making
AJAX easier with jQuery is especially noteworthy because using jQuery
reduces the number of lines of code used to create an AJAX application from
six lines to a single line.

The jQuery library’s also quite flexible. It won't fulfill every need, but it fulfills
many of them. You can use jQuery to perform these sorts of tasks:
v Provide complex selectors for accessing elements on a page.

v Interact with Document Object Model (DOM) attributes with
greater ease.

v Locate elements based on their relationship to other elements.

v Manipulate the DOM in some way.

v Perform Cascading Style Sheet (CSS)—related tasks with greater ease.
v Create and interact with events.

v Define special page effects.

Chapter 18: Making JavaScript Easier with jQuery 28 ’

v Perform Asynchronous JavaScript and XML (AJAX)—related tasks with
greater ease.

v Interact with the browser.
v Ease creation and interaction with collections and other structures.

v Add and interact with special user interface widgets (plug-ins that make
the user interface more interesting and useful).

Using jQuery also solves some issues that many developers face. For exam-
ple, jQuery makes it possible to detect when a page is ready to manipulate
using the ready event. This event ensures that your application won’t try to
execute code before the page has completed downloading and the document
is configured for use. A failure to detect the ready state has caused problems
for many developers because the JavaScript code will intermittently fail
depending on whether the document was fully loaded at the time.

There are multiple sources for the jQuery library. However, you can always
be certain of gaining access to the current version of the library using the
following script tag. (You can find complete code for this example in the
\Chapter 18\Basics folder of the downloadable code as jQueryBasics.
HTML.)

<script
src="http://code.jquery.com/jquery-latest.js">
</script>

The example relies on a button to perform a task. However, the page starts
with the button disabled so that the user can’t click it until the page is actu-
ally ready for use. You can set the control to the disabled state by using the
disabled property as shown here:

<input id="btnMsg"
type="button"
value="Click Me"
onclick="SayHello ()"
disabled=true />

To enable the control when the page is loaded and ready for use, the example
relies on the jQuery ready event. The event automatically fires and enables
the control so the user can interact with it. Here’s the short jQuery script
used to perform the task:

S (document) . ready (
function () {$ ("#btnMsg") .attr ("disabled", false);});

282 Part V: Extending JavaScript Further

This code uses several new techniques, so review it carefully. You access
jQuery using the dollar sign ($). The parenthesis after the $ indicates what
part of the document to access.

When you want to access an object, you use the object’s name without
quotes. In this case, the code wants to access the document object. The
code is assigning an anonymous function to the ready event.

An anonymous function is one that you create dynamically using JavaScript at
runtime. The function has no name, and it’s accessed in a specific way. You
can’t access the function from anywhere else because it has no name. The
main advantage of using an anonymous function is that it makes your code
concise. In addition, you can build functions on the fly by writing them to the
page as needed. You can read about using anonymous functions at http: //
helephant.com/2008/08/23/javascript-anonymous-functions

The anonymous function accesses the <input type="button"> tag that
has an id of btnMsg. When you want to access an element by 1d, you place
the element’s id value in quotes and precede the value with the pound sign
(#). This function uses the jQuery attr () function to change the disabled
attribute value to false so that the button is now enabled.

Loading jOQuery from Google CON

Many developers use multiple libraries when creating an application because
each library has something special to offer. Each reference to a source out-
side the current page can trigger a security message. This is a helpful feature
of many browsers today that’s often supported through a plug-in. Knowing
where a page looks for resources can help keep a user’s machine safe.
However, when users begin seeing a lot of messages about sites they may not
know about, many users throw up their hands and don’t allow these external
sites access to the page. Consequently, your application fails because it lacks
access to the libraries it needs to work. The answer is to use a single source
to access the libraries you need — a source that the user is likely to recog-
nize and permit access to the browser page.

The Google Content Distribution Network (CDN) found at https: //
developers.google.com/speed/libraries/devguide is a series of
libraries that you can use to create better applications. Google maintains

all of these libraries on a common domain, http://ajax.googleapis.
com, which means that users don’t have to think so hard about each library
you use in an application. All the user needs to do is approve use of a single
domain. Many developers rely on the Google APIs site to gain access to librar-
ies such as jQuery. You see it all the time when working with pages online.
Figure 18-1 shows a listing of typical libraries found on the Google CDN.

http://helephant.com/2008/08/23/javascript-anonymous-functions/
http://helephant.com/2008/08/23/javascript-anonymous-functions/
https://developers.google.com/speed/libraries/devguide
https://developers.google.com/speed/libraries/devguide
http://ajax.googleapis.com
http://ajax.googleapis.com

Figure 18-1:
The Google
CDN makes
a number

of libraries
available for
use in appli-
cations.
|

A\

Chapter 18: Making JavaScript Easier with jQuery 283

Google
€ bevelopers K

Home Products Events Showcase Live Groups

Make the Web Faster

Oveniew Google Hosted Libraries - Developer's Guide

The Google Hosted Libraries is a content distribution network for the most popular, open-so
» Public DNS library to your site, simply use <sczipt> tags to include the library, as explained below.

v Hosted Libraries
Table of Contents

Overview . ; o
Audience Available Libraries

Developer's Guide AngularJS
Introduction Chrome Frame

Dojo
» Protocols Ext Core

Terms of Senice

» Standards 1Query
Query Ul
MooTools
Protatype
> Articles script_aculo_us
Tools SWFObject
WebFont Loader -

» Performance Best
Practices

- 8 Scripts Partially Allowed | <SCRIPT>: 15 | <OBJECT>:1 (5)

When you want to use a particular library, you click its link on the page, and
Google displays a script for accessing it. For example, when you want to use
jQuery, you click its link to see a snippet similar to the one shown here. (You
can find complete code for this example in the \Chapter 18\Basics folder
of the downloadable code as GoogleCDN.HTML.)

<script
src="http://ajax.googleapis.com/ajax/libs/jquery/1.8.3/jquery.min.js">
</script>

With a simple replacement of the src attribute in the example in the preced-
ing section, you can use the Google CDN version of the library. Give it a try
and you find that the example works just as it did before. For the purposes
of this book, it doesn’t matter which version of the library link you use, but
the book does assume that you're using the 1.8.3 version of jQuery because
that’s the most current version available as of this writing.

Your application may depend on a specific version of the jQuery library. If this
is the case, you can access the version you want from the Google CDN. Simply
replace the 1.8.3 part of the URL with the version you want. The Google CDN
hosts all versions of jQuery except versions 1.2.4 and 1.2.5 because these two
versions weren’t available for very long.

284 Part V: Extending JavaScript Further

Doing Things Easier with jOQuery

Using jQuery to perform specific tasks makes life a lot easier for the devel-
oper. The following sections discuss and demonstrate a number of ways in
which you can use jQuery to create applications faster and with fewer errors.

Gathering elements with selectors

The act of selecting items on which to operate can prove time consuming.
The examples in this book use only a few elements. A typical production page
can contain a hundred elements or more quite easily. When you work with
that many elements, trying to find a specific element becomes time consum-
ing, especially when some of those elements are dynamically generated.

You can use jQuery to create the following types of selectors:

v Basic: Lets you access major document features. You use these selec-
tors to perform a majority of tasks with jQuery. You can read more
about them at http://api.jquery.com/category/selectors/
basic-css-selectors. Here’s a list of basic selectors that you com-
monly use:

e All selector (" *"): Selects all the elements in the document.

e Object selector (object): Selects the specific object types. The
most commonly used object is document.

e Class selector (" .class"): Selects a specific class as specified by
the class attribute for an element. This selector always appears
within quotes and is preceded by a period.

e Flement selector ("element"): Accesses all the elements with a
particular tag name, such as p for the <p> tag. This selector always
appears within quotes.

e ID selector ("#1d"): Chooses a specific element with the 14 attri-
bute value specified. This selector always appears within quotes
and is preceded by a pound sign (#).

® Multiple selector ("selectorl, selector2, selectorN"):
Selects each of the elements specified in the comma delimited list.

v~ Attribute: Provides access to attributes that have specific name/value
pair combinations. For example, you could access every element that
has a value="SomeText " name/value pair across different elements.
Each of these selectors takes the form $ ('a [name="value"]'). You
can use different operators to define the relationship between the
name and its value. For example, the not-equal (! =) operator selects all
attributes that aren’t equal to the value specified by the attribute name
you provide. You can see more of the operators and their descriptions

http://api.jquery.com/category/selectors/basic-css-selectors/
http://api.jquery.com/category/selectors/basic-css-selectors/

Chapter 18: Making JavaScript Easier with jQuery 285

athttp://api.jquery.com/category/selectors/attribute-
selectors.

v Form: Selects all of the elements on a form that reflect a specific ele-
ment name/characteristic pairing. For example, you could choose
to select all of the <input> elements that are checked using
$ ("input:checked"). Many of these selectors are deprecated. You
can read more about this selector type at http://api.jquery.com/
category/selectors/form-selectors.

v+ Hierarchy: Allows selection of an element based on its relation to a
currently selected element. For example, you can choose to select the
parent of a child element. You can read more about this selector type
athttp://api.jquery.com/category/selectors/hierarchy-
selectors. These selectors take several forms as described here:

e Child selector ("parent > child"): Specifies that the code
should select all the children of a particular type given a specific
type of parent. For example, if you want to select all the list item
(<1i>) elements that are children of an unordered list (), you
use $("ul > 1i").

e Descendant selector ("ancestor descendant"): Specifies that
the code should select all the decedents of a particular ances-
tor element. For example, if you want to select all the <input>
elements contained within a <form> element, you use $ (" form
input").

e Next adjacent selector ("prev + next"): Specifies that the
code should select elements that follow a given element at the
same level in the hierarchy. For example, if you want to select
all <input> elements that follow a <label> element, you use
S("label + input").

e Next siblings selector ("prev ~ siblings"): Specifies that the
code should select elements that follow a given element in the
hierarchy. This selector differs from the next adjacent selector
in that it also selects siblings. Consequently, if you want to select
all <div> elements in a form, no matter where they appear in the
hierarchy, youuse $ ("form ~ div").

v~ Basic filter: Provides you with essential aids for selecting one or a group
of elements out of a list of elements based on a specific criterion. For
example, you can use the animated filter to choose all the elements
that are animated from a list of like elements. Most basic filters work on
index values. For example, the first filter selects the first element in a
list of elements. To use a filter, you add a colon (:) to another selector
and then add the filter. For example, $ ("tr:even") selects the even-
numbered <tr> tags from a list. You can read more about this type of
filter at http://api.jquery.com/category/selectors/basic-
filter-selectors.

http://api.jquery.com/category/selectors/attribute-selectors/
http://api.jquery.com/category/selectors/attribute-selectors/
http://api.jquery.com/category/selectors/form-selectors/
http://api.jquery.com/category/selectors/form-selectors/
http://api.jquery.com/category/selectors/hierarchy-selectors/
http://api.jquery.com/category/selectors/hierarchy-selectors/
http://api.jquery.com/category/selectors/basic-filter-selectors/
http://api.jquery.com/category/selectors/basic-filter-selectors/

286 Part V: Extending JavaScript Further

<MBER
ég“

Filtering is the process of reducing the size of a list of elements to reflect
just the selections you need. In many cases, the selection process pro-
vides you with a crude list of element candidates. The filtering process
refines this list so that you see only the elements you actually need.

v~ Child filter: Selects child elements that are the first, last, nth, or only
child of their parent. You can read more about this type of filter at
http://api.jquery.com/category/selectors/child-filter-
selectors.

1~ Content filter: Chooses elements based on content criterion: specific
content, no content at all (empty), partial content, or element parent.
You can read more about this type of filter at http://api.jquery.
com/category/selectors/content-filter-selector

v~ Visibility filter: Filters elements based on their visibility. You can read
more about this type of filter at http://api.jquery.com/category/
selectors/visibility-filter-selectors.

v jQuery extensions: Provides assorted extensions to the CSS standard.
Many of these extensions deal with functionality that jQuery adds to
the JavaScript programming environment. However, some have curious
flexibility. For example, you can use the button selector to select all the
<button> and <input type="button"> elements on a page by using
a single selection. You can read more about this type of selector
at http://api.jquery.com/category/selectors/jquery-
selector-extensions

Working with programmatically
generated elements

The section on nesting loops in Chapter 9 presents the NestedLoop . HTML
example, which outputs a multiplication table as an HTML <table>. The
output is correct but hardly interesting. The example in this section builds
on that earlier example by adding a bit of special formatting to it, along with
amouseover effect — the section about Events in Chapter 12 describes the
pure JavaScript approach to this technique. (You can find complete code for
this example in the \Chapter 18\Standard Tasks folder of the download-
able code as NestedlLoop . HTML.)

// Perform some basic formatting.
S("th:even") .css ("background-color", "lightblue") ;
S("th:o0dd") .css ("background-color", "lightgreen") ;
S("td:even") .css ("background-color", "lightgreen");
S("td:odd") .css ("background-color", "lightblue") ;
S("th, td").css("width", "50px") ;

http://api.jquery.com/category/selectors/child-filter-selectors/
http://api.jquery.com/category/selectors/child-filter-selectors/
http://api.jquery.com/category/selectors/content-filter-selector/
http://api.jquery.com/category/selectors/content-filter-selector/
http://api.jquery.com/category/selectors/visibility-filter-selectors/
http://api.jquery.com/category/selectors/visibility-filter-selectors/
http://api.jquery.com/category/selectors/jquery-selector-extensions/
http://api.jquery.com/category/selectors/jquery-selector-extensions/

Figure 18-2:
The table

is a little
nicer and
includes

a special
effect now.
|

Chapter 18: Making JavaScript Easier with jQuery 28 7

// Add a special effect.
$("td") .mouseover (
function ()
{
S(this) .toggleClass ("Selected") ;
)
$("td") .mouseout (
function ()
{
S(this) .toggleClass ("Selected") ;
1)

The formatting consists of selecting the <th> and <td> elements and then
using a basic filter to choose between odd and even elements. The odd ele-
ments receive one background color, and the even elements receive another.
The code then uses a multiple selector to apply the same width formatting to
each of the cells. By combining selectors and selector filters, you can create
some interesting effects with little programming. It’s important to remember
that this table is programmatically generated, so applying formatting to it
could be difficult.

The special effect starts with the <td> elements. When a user hovers the
mouse over a particular element, the code applies the Selected CSS format-
ting to it. Likewise, when the user places the mouse somewhere else, the
effect is toggled back to the original formatting used by the <td> element.
Toggling the formatting is a quick way to create a mouseover effect.
Figure 18-2 shows typical output from this example.

|..:.—',"‘.‘:‘%@_~. B mr—‘.'. . e - S

Nesting Loops - Multiplication Table

1 2 3 4 5 6 7 3 9 10
11 2 3 4 5 6 7 8 9 10
2 2 4 6 3 0 12 14 16 18 20
3 3 6 9 12 15 18 21 24 27 30
4 4 8 12 16 20 24 28 32 3 40
5 5 10 15 20 25 30 35 40 45 50
6 6 12 18 24 30 36 42 48 54 60
77 14 21 28% 35 42 49 56 63 70
8 8 16 24 32 40 48 56 64 72 80
9 9 18 27 36 45 4 6 72 81 9
10 10 20 30 40 S0 60 70 8% 90 100

288 Part V: Extending JavaScript Further

Revisiting arrays with jOuery

Using jQuery can make it easier to work with arrays. The management tasks
become easier, and you can use jQuery to interact with arrays in ways that
would be hard using standard JavaScript code. The following list describes
some of the most commonly used array-oriented features of jQuery:

V¥ jQuery.each (): Makes it possible to iterate through an array or
object without having to create the conditions used with a for state-
ment. You can use this feature for arrays and collections of all sorts. For
example, it’s possible to use this feature to iterate over a list of <div>
tags on a page. The idea is that this feature makes it possible to use a
common strategy to interact with collections of all sorts. You can read
more about this feature at http://docs.jquery.com/Utilities/
jQuery.each.

V¥ jQuery.extend(): Provides a technique for joining two objects
and then returning the combination of the two as a modified object.
For example, you can add the contents of one array to another array.
However, this feature works with objects of all sorts. You can even
use it to provide new functionality to the jQuery library. You can read
more about this feature at http://docs.jquery.com/Utilities/
jQuery.extend

V¥ jQuery.grep (): Filters an array using the specified expression and
returns a new array containing just the elements that satisfy the condi-
tions. This feature requires that you provide a function to perform the
actual filtering, so it’s incredibly flexible. You can read more about this
feature at http://docs.jquery.com/Utilities/jQuery.grep.

» jQuery.makeArray (): Creates an array out of any object you provide
as input. You can use any sort of list as input. For example, you could
even obtain a list of a particular element type and turn that list into an
array. You can read more about this feature at http://docs. jquery.
com/Utilities/jQuery.makeArray.

V¥ jouery.map (): Translates an array of items into another array of items.
You provide a function to perform the translation. The function receives
the item to translate and its index in the array. A translation function
can return a modified form of the item, the original item, null when
the item is to be removed from the output, or a list of items that will
be flattened into a single element in the resulting array. You can read
more about this feature at http://docs.jquery.com/Utilities/
jQuery .map.

V¥ jQuery.inArray (): Locates the specified item in the array and returns
an index to that item when found. If the function can’t find the item, it
returns a value of -1. You can read more about this feature at http://
docs.jgquery.com/Utilities/jQuery.inArray.

http://docs.jquery.com/Utilities/jQuery.each
http://docs.jquery.com/Utilities/jQuery.each
http://docs.jquery.com/Utilities/jQuery.extend
http://docs.jquery.com/Utilities/jQuery.extend
http://docs.jquery.com/Utilities/jQuery.grep
http://docs.jquery.com/Utilities/jQuery.makeArray
http://docs.jquery.com/Utilities/jQuery.makeArray
http://docs.jquery.com/Utilities/jQuery.map
http://docs.jquery.com/Utilities/jQuery.map
http://docs.jquery.com/Utilities/jQuery.inArray
http://docs.jquery.com/Utilities/jQuery.inArray

Chapter 18: Making JavaScript Easier with jQuery 289

V¥ jQuery.merge (): Creates a single array from two arrays. If the two
items aren’t true arrays but merely lists of items, use makeArray () to
create a true array first. When the two arrays could contain duplication
items, you can use the unique () function to remove the duplicates.
You can read more about this feature at http://docs. jquery.com/
Utilities/jQuery.merge

V¥ jQuery.unique (): Removes duplicate elements from an array of
elements. This feature works only with elements and won’t remove
duplicate items from an array of strings or numbers. You can read
more about this feature at http://docs.jquery.com/Utilities/
jQuery.unique.

Interrogating an array

The section on accessing array members in Chapter 4 shows how to access
array members by using a simple for loop. A for loop works fine when the
array is simple and you really are using an array. However, you might be deal-
ing with a list of elements or a complex object of some type. In these cases,
using a for loop may prove inadequate. The following example shows how
you’d implement that Chapter 4 example using jQuery for comparison pur-
poses. (You can find complete code for this example in the \Chapter 18\
Standard Tasks folder of the downloadable code as AccessArray.HTML.)

// Create the array and fill it with data.
var Colors = ["Blue", "Green", "Purple"];

// Define a loop to access each array element

// and display it on screen.

jQuery.each(Colors, function()

{
S ("#O0utput") .append (

"Colors " +
jQuery.inArray (this.toString (), Colors) +
" =" + this + "
");

1)

In this case, the example relies on jQuery.each () to move between array
members. This method works with any sort of object, not just arrays. You
provide the array or object list you want to work with and a function to pro-
cess the array as input. This example uses an anonymous function, but you
can use a named function just as easily.

The example outputs the individual array members to a <div> with an id

of output. Because the output is collected through several passes, the code
uses the append () method to append the output from each pass. The output
is the word Colors, the number of the array element, an equals sign (=), and
the value passed to the function.

http://docs.jquery.com/Utilities/jQuery.merge
http://docs.jquery.com/Utilities/jQuery.merge
http://docs.jquery.com/Utilities/jQuery.unique
http://docs.jquery.com/Utilities/jQuery.unique

290 Part V: Extending JavaScript Further

Figure 18-3:
The array
and output
are the
same; the
technique is
different.
|

Notice that the code uses jQuery.inArray () to obtain the index of the
item passed through this. Because this is an object, you must convert it to
a string by using the toString () method. Figure 18-3 shows typical output
from this example.

Access Array Elements

Colors 0 = Blue
Colors 1 = Green
Colors 2 = Purple

Handling Events with jQuery

jQuery provides extension event-related functionality. Chapter 12 discusses
events from the pure JavaScript perspective. In fact, the section on creating
custom events in that chapter explains the technique required to create a
custom event in JavaScript. Event-related tasks are quite doable with pure
JavaScript, but using jQuery can make things simpler. The following sections
describe the jQuery view of events and provide a simple example of how to
use jQuery to address event-related needs.

Understanding the event functionality

Events cover a number of areas: the event itself, the listener used to deter-
mine when an event has occurred, and the event handler used to react to
the event. The following list describes how jQuery handles all these areas of
event manipulation and more:

v .bind(): Assigns a particular event handler to an event. You can use
any of the jQuery selectors for this method. For example, you could use a
multiple selector to assign the same event handler to multiple events. You
can read more about this feature at http://api.jquery.com/bind.

v .blur ():Binds an event handler to the blur event or triggers that
event on the specific element. A blur event occurs when the element
loses focus. You can read more about this feature at http://api.
jquery.com/blur.

http://api.jquery.com/bind/
http://api.jquery.com/blur/
http://api.jquery.com/blur/

A\

3

\\3

Chapter 18: Making JavaScript Easier with jQuery 29 ’

All specific event methods, such as .blur (), provide the means to send
data to the event handler. Even if you don’t send data to the event han-
dler, it will still have access to the event and this objects.

v .change (): Binds an event handler to the change event or triggers

that event on the specific element. A change event occurs whenever the
content of an element changes. You can read more about this feature at
http://api.jquery.com/change.

v .click():Binds an event handler to the c1ick event or triggers that

event on the specific element. A c1ick event occurs when the user
clicks the specified element. You can read more about this feature at
http://api.jquery.com/click.

v .dblclick(): Binds an event handler to the dblclick (double-click)

event or triggers that event on the specific element. A dblclick event
occurs when the user double-clicks the specified element. You can read
more about this feature at http: //api.jquery.com/dblclick.

v .delegate(): Assigns an event handler to all events that match the

specified selector, now or in the future, based on the root elements you
specify. For example, you can select all the <td> elements on a page and
assign an event handler to the c1ick event of all those elements. When
a page dynamically adds more <td> elements, each of the added ele-
ments is also assigned to the event handler automatically. You can read
more about this feature at http://api.jgquery.com/delegate.

The jQuery documentation sometimes points out that a method is still
usable, but has been superseded by another method. For example, you
can still use the .delegate () method, but it has been superseded by
the .on () method. By carefully checking for these library changes, you
can often improve your ability to create useful applications with even
less code.

event.currentTarget: Provides access to the DOM element that’s

the target for an event. In most cases, this property is the same as the
this object. You can read more about this property at http://api.
jguery.com/event.currentTarget.

It pays to read the contributions made by other developers at the end
of each documentation section. For example, the contribution for the
event.currentTarget entry demonstrates at least one case in which
this property isn’t equal to the this object. These notes will help you
avoid potential problems with the library.

V¥ event .data: Provides access to additional event data that’s provided

to the handler during the binding process. You can read more about this
property at http://api.jguery.com/event.data.

V¥ event.delegateTarget: Specifies the element at which the event han-

dler was assigned. This property is most useful when working with event
handlers that are assigned using the .delegate () or .on () method,
which allows the code to detect where an assignment is made and unas-
sign the handler if necessary. You can read more about this property at
http://api.jquery.com/event.delegateTarget.

http://api.jquery.com/change/
http://api.jquery.com/click/
http://api.jquery.com/dblclick/
http://api.jquery.com/delegate/
http://api.jquery.com/event.currentTarget/
http://api.jquery.com/event.currentTarget/
http://api.jquery.com/event.data/
http://api.jquery.com/event.delegateTarget/

292 Part V: Extending JavaScript Further

V¥ event.isDefaultPrevented (): Returns true when an event handler
or other code has prevented the default processing associated with this
event. You can read more about this method at http://api.jquery.
com/event.isDefaultPrevented.

V¥ event.isImmediatePropagationStopped (): Returns true when
an event handler or other code has called event . stopImmediate
Propagation () on this event. You can read more about this method
at http://api.jquery.com/event.isImmediatePropagation
Stopped.

Many of the events described in this chapter are part of the DOM speci-
fication. You can find additional details about methods, such as event.
stopImmediatePropagation (), in the DOM specification at http://
www.w3 .0rg/TR/2003 /WD-DOM-Level-3-Events-20030331/
events.html.

V¥ event.isPropagationStopped(): Returns true when an event
handler or other code has called event . stopPropagation () on this
event. You can read more about this method at http://api.jquery.
com/event.isPropagationStopped.

V¥ event .namespace: Specifies the namespace that was in effect at the
time the event was triggered. You can read more about this property at
http://api.jquery.com/event .namespace.

V¥ event .pageX: Returns the mouse position relative to the left edge of
the document. You can read more about this property at http://api.
jguery.com/event .pageX.

V¥ event .pageY: Returns the mouse position relative to the top edge of
the document. You can read more about this property at http://api.
jquery.com/event .pageY.

V¥ event .preventDefault (): Prevents the default processing from
occurring. You can read more about this method at http://api.
jquery.com/event.preventDefault

V¥ event.relatedTarget: Returns the element associated with a par-
ticular event. For example, when working with a mouseover event, this
property returns the element that’s being exited. You can read more
about this property at http://api.jquery.com/event.related
Target.

»” event.result: Returns the last value that was returned by this event
handler, assuming there’s a value to return. You can read more about
this property at http://api.jquery.com/event.result.

V¥ event.stopImmediatePropagation (): Prevents any other event
handlers from being called. Essentially, this method tells the applica-
tion that the event has been handled fully and no more processing is
required. You can read more about this property at http://api.
jguery.com/event.stopImmediatePropagation.

http://api.jquery.com/event.isDefaultPrevented/
http://api.jquery.com/event.isDefaultPrevented/
http://api.jquery.com/event.isImmediatePropagationStopped/
http://api.jquery.com/event.isImmediatePropagationStopped/
http://www.w3.org/TR/2003/WD-DOM-Level-3-Events-20030331/events.html
http://www.w3.org/TR/2003/WD-DOM-Level-3-Events-20030331/events.html
http://www.w3.org/TR/2003/WD-DOM-Level-3-Events-20030331/events.html
http://api.jquery.com/event.isPropagationStopped/
http://api.jquery.com/event.isPropagationStopped/
http://api.jquery.com/event.namespace/
http://api.jquery.com/event.pageX/
http://api.jquery.com/event.pageX/
http://api.jquery.com/event.pageY/
http://api.jquery.com/event.pageY/
http://api.jquery.com/event.preventDefault/
http://api.jquery.com/event.preventDefault/
http://api.jquery.com/event.relatedTarget/
http://api.jquery.com/event.relatedTarget/
http://api.jquery.com/event.result/
http://api.jquery.com/event.stopImmediatePropagation/
http://api.jquery.com/event.stopImmediatePropagation/

Chapter 18: Making JavaScript Easier with jQuery

V¥ event.stopPropagation (): Prevents parent event handlers from being
called and being notified of the event. You can read more about this prop-
erty at http://api.jquery.com/event.stopPropagation

V¥ event.target: Specifies the target of the event, including the decedent
of an element. This property’s useful for detecting event bubbling when
compared with the this object. You can read more about this property
at http://api.jquery.com/event. target.

V¥ event.timeStamp: Specifies the time that the event was called in mil-
liseconds since January 1, 1970. You can read more about this property
at http://api.jquery.com/event.timeStamp.

v event. type: Defines the kind of event that has taken place. You can
read more about this property at http://api.jquery.com/event.
type.

V¥ event .which: Specifies which key or button was pressed when pro-
cessing a keyboard or mouse event. This property also normalizes
event output for left- and right-handed mice so that a left button press is
always 1, the middle always 2, and the right always 3. You can read more
about this property at http://api.jquery.com/event.which.

v . focus (): Binds an event handler to the focus event or triggers that
event on the specific element. A focus event occurs when the element
receives focus for input or other data manipulation purposes. You can
read more about this method at http://api.jquery.com/focus.

V¥ .focusin(): Binds an event handler to the focus event or triggers that
event on the specific element. A focus event occurs when the element
or any element inside it receives focus for input or other data manipula-
tion purposes. Unlike the focus () method, this method supports event
bubbling so that a parent can handle child focus events. You can read
more about this method at http://api.jquery.com/focusin.

v . focusout (): Binds an event handler to the blur event or triggers that
event on the specific element. A focus event occurs when the element
or any element inside it receives or loses focus for input or other data
manipulation purposes. Unlike the focus () method, this method sup-
ports event bubbling so that a parent can handle child focus events.

You can read more about this method at http://api.jgquery.com/
focusout.

v .hover (): Binds an event handler to both the mouseenter and
mouseleave events or triggers those events on the specific element. A
mouseenter event occurs when the mouse enters the control’s bound-
ary. Amouseleave event occurs when the mouse exits the control’s
boundary. You can read more about this method at http://api.
jguery.com/hover.

V* .keydown (): Binds an event handler to the keydown event or triggers
that event on the specific element. A keydown event occurs when the
user presses a particular key on the keyboard. You can read more about
this method at http://api.jquery.com/keydown.

293

http://api.jquery.com/event.stopPropagation/
http://api.jquery.com/event.target/
http://api.jquery.com/event.timeStamp/
http://api.jquery.com/event.type/
http://api.jquery.com/event.type/
http://api.jquery.com/event.which/
http://api.jquery.com/focus/
http://api.jquery.com/focusin/
http://api.jquery.com/focusout/
http://api.jquery.com/focusout/
http://api.jquery.com/hover/
http://api.jquery.com/hover/
http://api.jquery.com/keydown/

294 Part V: Extending JavaScript Further

v .keypress (): Binds an event handler to the keypress event or trig-
gers that event on the specific element. A keypress event occurs when
the user presses a particular key on the keyboard. This event also reg-
isters repeated keystrokes that are generated when the user presses
and then holds down the key. You can read more about this method at
http://api.jquery.com/keypress.

v .keyup (): Binds an event handler to the keyup event or triggers that
event on the specific element. A keyup event occurs when the user
releases a particular key on the keyboard. You can read more about this
method at http://api.jquery.com/keyup.

v .mousedown () : Binds an event handler to the mousedown event or
triggers that event on the specific element. A mousedown event occurs
when the user presses a particular mouse button. You can read more
about this method at http://api.jgquery.com/mousedown.

v .mouseenter (): Binds an event handler to the mouseenter event or
triggers that event on the specific element. A mouseenter event occurs
when the mouse pointer enters a particular element. You can read more
about this method at http://api.jquery.com/mouseenter.

<P It may appear that some events that jQuery supports are precisely the
same as JavaScript events. However, jQuery normalizes access to these
events in many cases. For example, in the case of mouseenter, jQuery
simulates the event so that it works the same with all browsers, regard-
less of the level of browser support provided. The mouseenter event
(and other associated events) is normally supported only by Internet
Explorer.

v .mouseleave (): Binds an event handler to the mouseleave event or
triggers that event on the specific element. A mouseleave event occurs
when the mouse pointer exits a particular element. You can read more
about this method at http://api.jquery.com/mouseleave.

v .mousemove () : Binds an event handler to the mousemove event or trig-
gers that event on the specific element. A mousemove event occurs when
the mouse pointer moves within a particular element. You can read more
about this method at http://api.jquery.com/mousemove.

v .mouseout (): Binds an event handler to the mouseout event or trig-
gers that event on the specific element. A mouseout event occurs when
the mouse pointer exits a particular element. You can read more about
this method at http://api.jquery.com/mouseout.

v .mouseover (): Binds an event handler to the mouseover event or
triggers that event on the specific element. A mouseover event occurs
when the mouse pointer enters a particular element. You can read more
about this method at http://api.jguery.com/mouseover.

http://api.jquery.com/keypress/
http://api.jquery.com/keyup/
http://api.jquery.com/mousedown/
http://api.jquery.com/mouseenter/
http://api.jquery.com/mouseleave/
http://api.jquery.com/mousemove/
http://api.jquery.com/mouseout/
http://api.jquery.com/mouseover/

Chapter 18: Making JavaScript Easier with jQuery 295

v .mouseup (): Binds an event handler to the mouseup event or triggers
that event on the specific element. A mouseup event occurs when the
user releases a particular mouse button. You can read more about this
method at http://api.jquery.com/mouseup.

v .off (): Removes an event handler that was added using the .on ()
method. It’s possible to remove single event handlers or entire groups of
event handlers. You can read more about this feature at http://api.
jguery.com/off.

v .on(): Attaches an event handler for one or more events for the speci-
fied elements. This method is the replacement for the .bind (), .del-
egate (), and .live () methods. You can read more about this feature
athttp://api.jquery.com/on.

v .one (): Attaches an event handler for one or more events for the
specified elements. The event handler executes once at most and then
automatically removes itself. You can read more about this feature at
http://api.jgquery.com/one.

V¥ jQuery.proxy (): Accepts a general function as input and returns a
function that will always have a particular context. You can read about
this feature at http://api.jquery.com/jQuery.proxy.

v .ready (): Fires when the document is ready for use after loading. This
event assures that your code won’t execute before the document is fully
loaded and configured. You can read more about this event at http://
api.jquery.com/ready.

v .resize ():Binds an event handler to the resize event or triggers that
event on the specific element. A resize event occurs when the window
is resized. You can read more about this method at http://api.
jquery.com/resize.

v .scroll ():Binds an event handler to the scroll event or triggers that
event on the specific element. A scroll event occurs when the docu-
ment content’s scrolled within the window. You can read more about
this method at http://api.jquery.com/scroll.

v .select ():Binds an event handler to the select event or triggers
that event on the specific element. A select event occurs when the
user highlights content within an element. You can read more about this
method at http://api.jquery.com/select.

v .submit (): Binds an event handler to the submit event or triggers that
event on the specific element. A submit event occurs when the user
sends the content of a form to the server. You can read more about this
method at http://api.jquery.com/submit.

V¥ .trigger (): Fires all the specified events for the target elements in the
order in which they would normally occur if the user was performing
the same task. You can read more about this method at http://api.
jquery.com/trigger.

http://api.jquery.com/mouseup/
http://api.jquery.com/off/
http://api.jquery.com/off/
http://api.jquery.com/on/
http://api.jquery.com/one/
http://api.jquery.com/jQuery.proxy/
http://api.jquery.com/ready/
http://api.jquery.com/ready/
http://api.jquery.com/resize/
http://api.jquery.com/resize/
http://api.jquery.com/scroll/
http://api.jquery.com/select/
http://api.jquery.com/submit/
http://api.jquery.com/trigger/
http://api.jquery.com/trigger/

296 Part V: Extending JavaScript Further

WING/
&

V¥ .triggerHandler (): Fires all the specified events for the target ele-
ments in the order in which they would normally occur if the user were
performing the same task. You can read more about this method at
http://api.jquery.com/triggerHandler. This method varies
from the . trigger () method in several important ways:

¢ This method doesn’t cause the default behavior of an element to
occur, such as a form submission.

e When using this method, only the first matched element is affected
rather than all the elements that match the selection criteria.

¢ The events don’t bubble up the DOM hierarchy. If the targeted ele-
ment doesn’t handle the event, nothing happens.

® You can’t use this method to perform chaining (handling multiple
events using a single handler). Instead, the method provides the
return value of the last event handler that it executed. If no event
handlers were executed or the event handlers didn’t return a
value, then the return value is undefined.

v .unbind (): Removes event handlers that were previously bound to
an element by using one of the binding methods rather than the .on ()
method. When working with an event handler that was attached by
using the . on () method, you must use the .off () method instead. You
can read about this feature at http://api.jquery.com/unbind.

v .undelegate (): Removes all the event handlers attached to elements
by using the specified selectors. You use this method with event han-
dlers that were attached by using the .delegate () method. When
working with an event handler that was attached using the .on ()
method, you must use the .off () method instead. You can read about
this feature at http://api. jquery.com/undelegate.

The jQuery documentation lists myriad methods that are no longer in use. For
example, you find documentation for the .die () method in the documenta-
tion. This method is deprecated. Likewise, the .10ad () method has been
replaced by the ready () event. Avoid using deprecated methods because
you can’t be sure that jQuery will continue supporting them. You can find a
list of deprecated methods and features at http://api.jquery.com/
category/deprecated.

Working with events

There are many ways to work with events by using jQuery. The following
example shows how you can assign event handlers to two buttons using
anonymous functions. In the first case, the event handler displays a simple
message. In the second case, the event handler fires the c1ick event of the
first button. (You can find complete code for this example in the \Chapter 18\
Events folder of the downloadable code as Events.HTML.)

http://api.jquery.com/triggerHandler/
http://api.jquery.com/unbind/
http://api.jquery.com/undelegate/
http://api.jquery.com/category/deprecated/
http://api.jquery.com/category/deprecated/

Chapter 18: Making JavaScript Easier with jQuery 29 7

S ("#btnShowMessage") .click (
function ()
{
alert ("The event handler for " +
this.id + " was called.");

)

S ("#btnFireEvent") .click(
function ()
{
S ("#btnShowMessage") .click() ;

)

In both cases, the buttons are accessed through their id values. Notice that
the .click () method is used in two ways in the example. The first way is
to assign an event handler to the c1ick event. The second way is to fire the
click event of btnShowMessage. Clicking either button displays the same
message — the difference is how the event is fired.

298 Part V: Extending JavaScript Further

Chapter 19

Using jQuery to Handle AJAX

In This Chapter
Using the jQuery AJAX object to perform tasks with JavaScript

Performing server side programming for AJAX projects

Retrieving data from the server in a PHP/JavaScript scenario

WMBER
s&
&

‘ hapter 17 provides your first view of Asynchronous JavaScript and XML

(AJAX). In that chapter, you obtain access to a simple file using straight
JavaScript in the section on performing AJAX tasks using JavaScript. The
section on making AJAX easier with jQuery in the same chapter shows how
much easier it is to perform the task using jQuery. These simple examples
demonstrate the usefulness of AJAX to the developer. This chapter takes the
next step and introduces you to the full power of AJAX when coupled with
the jQuery library.

Most AJAX scenarios don’t deal with files on the server. In most cases, the
server is asked to perform some type of data search or data manipulation
and then return the results for display on the page. Keeping requests small
and data transfers short helps improve overall efficiency so that everyone
gets better results. AJAX helps make the entire process faster and easier.
However, AJAX represents only part of the process. The server must also
provide support for the requests. This chapter couples AJAX with server-side
PHP Hypertext Processor (PHP) language strategies so that you can see the
entire scenario that typically occurs.

This chapter explores only one typical scenario. There are many other server-
side languages you can use to handle client requests. In addition, even though
this chapter uses jQuery to make working with AJAX simpler, you could easily
use straight JavaScript to perform the tasks or even rely on some other third-
party library. As you read this chapter, think about the flow that’s taking place
between client and server. When you set up a solution of your own, consider
how the technologies used in this chapter will work for your particular situa-
tion. You may find that you need to use some other strategy to accomplish the
task, but the essential flow between client and server will be the same.

300 Part V: Extending JavaScript Further

Understanding the AJAX Object in jQuery

WMBER
@ﬁ
&

You can perform a broad range of tasks with AJAX. The essential goal is to
reduce network traffic by reducing or eliminating the need to reload pages.
Downloading a page requires quite a bit of time, especially when a site uses
a lot of graphics to make a visual impact on the viewer. The more you can
reduce the size of the data downloads, the more efficient your application
becomes.

Using jQuery reduces the code the developer writes and makes the developer
more efficient. The basic AJAX strategy remains the same. Consequently, this
section isn’t about making the application more efficient, it’'s about making the
developer more efficient so there’s more time to troubleshoot and optimize
applications, rather than create new code.

The jQuery library provides access to a lot of AJAX functionality. It divides
this functionality into four areas to make working with the library a little less
cumbersome:

+* Global AJAX event handlers
v Helper functions
v Low-level interface

v+ Shorthand methods

The following sections provide details about each of these areas of AJAX sup-
port in jQuery. Later in the chapter, you see some of these features at work
as you review the process used to make a client-server configuration of an
example application a reality.

Considering the global AJAX event handlers

AJAX is an asynchronous environment, which means that your application
makes a request and then, at some point later, receives a response. Your
application continues to perform tasks while it waits for the response. To
make such a scenario work, AJAX must rely on events to signal when data is
ready for use or other actions have happened.

By default, these events are always fired at the times specified. You can turn
global events off by changing the global property that’s accessed using
the jQuery.ajaxSetup () method described in the “Understanding the
low-level interface” section, later in this chapter. Normally you want to keep
global events turned on. However, if your application provides custom event
handling or you use another third-party library that also provides these
events, you may want to turn off global event handling. The following list

Chapter 19: Using jQuery to Handle AJAX 3()]

describes the global events that the jQuery library supports for use
with AJAX:

V¥ .ajaxComplete (): Binds an event handler to the ajaxComplete
event. An ajaxComplete event occurs when the application receives a
response to a query (success or failure). You can read more about this
feature at http://api.jquery.com/ajaxComplete.

V¥ .ajaxError ():Binds an event handler to the ajaxError event.
An ajaxError event occurs when the application receives an error
response to a query. You can read more about this feature at http://
api.jquery.com/ajaxError.

V¥ .ajaxSend ():Binds an event handler to the ajaxSend event. An
ajaxSend event occurs when the application is about to send a request
to the server. The application could perform validation checks on the
request before sending it to ensure that the request is complete and has
a high probability of succeeding. Performing checks such as this one can
greatly increase application efficiency by reducing errant requests.

You can read more about this feature at http://api.jguery.com/
ajaxSend.

V¥ .ajaxStart ():Binds an event handler to the ajaxStart event. Every
time the application sends a new request to the server, jQuery checks
to determine whether there’s an existing request. An ajaxStart event
occurs when jQuery detects there’s no current request. You can read
more about this feature at http://api.jquery.com/ajaxStart.

V¥ .ajaxStop ():Binds an event handler to the ajaxStop event. Every
time the application receives a response from the server, jQuery checks
to determine whether there’s an existing request. An ajaxStart event
occurs when jQuery detects there’s no current request. This event also
occurs when the last request in the queue is cancelled (meaning there
are no more active requests). You can read more about this feature at
http://api.jquery.com/ajaxStop.

V¥ .ajaxSuccess (): Binds an event handler to the ajaxSuccess event.
An ajaxSuccess event occurs when the application receives a suc-
cessful response to a query. You can read more about this feature at
http://api.jquery.com/ajaxSuccess.

Working with the helper functions

The helper functions assist you in preparing data for submission in a request.
The requests you've seen in previous chapters deal with resources, such as a
text file. A request can also consist of a series of data fields used to describe
an entity that the client requires (as in a database application). These func-
tions help you prepare such data for submission in the request:

http://api.jquery.com/ajaxComplete/
http://api.jquery.com/ajaxError/
http://api.jquery.com/ajaxError/
http://api.jquery.com/ajaxSend/
http://api.jquery.com/ajaxSend/
http://api.jquery.com/ajaxStart/
http://api.jquery.com/ajaxStop/
http://api.jquery.com/ajaxSuccess/

302 Part V: Extending JavaScript Further

V¥ jQuery.param(): Accepts an object or array as input and returns a
string containing the information in serialized form. The resulting string
is suitable for use in either a request URL (as in a REpresentational State
Transfer, or REST, request) or an AJAX request. You can read more
about this method at http://api.jquery.com/jQuery.param.

v .serialize(): Accepts a series of form elements as input and returns
an encoded string in serialized form. The resulting string is suitable for
use in either a request URL or an AJAX request. To be included in the
array, the element must have the name attribute defined. You can read
more about this method at http://api.jquery.com/serialize.

V¥ .serializeArray (): Accepts a series of form elements as input and
returns a JavaScript array. The resulting array is ready for encoding as
a JavaScript Object Notation (JSON) string. To be included in the array,
the element must have the name attribute defined. You can read more
about this method at http://api.jquery.com/serializeArray.

Understanding the low-level interface

The low-level interface makes it possible to create arbitrary AJAX requests or
to configure jQuery to make future requests. The following list describes the
methods provided as part of the low-level interface:

V¥ jQuery.ajax (): Allows the client to make a simple AJAX request by
providing a resource URL. The client can optionally provide settings to
override the default request settings. This method also allows configura-
tion of the settings by calling the method without a resource URL. You
can find out more about this method, along with a complete list of the
settings it supports, at http://api.jquery.com/jQuery.ajax.

V¥ jQuery.ajaxPrefilter (): Provides the means for attaching a func-
tion to the AJAX pre-filter. The pre-filter makes it possible to scan stan-
dard options for potential conflicts and to also add custom options to a
request. This method can also be used to attach methods to create spe-
cial effects, such as redirecting the request to a different URL as needed.
You can read more about this method at http://api.jquery.com/
jQuery.ajaxPrefilter.

V¥ jQuery.ajaxSetup (): Configures the default settings for AJAX
requests. These are the settings that jQuery uses when making a stan-
dard AJAX request without any overrides. You can read more about
this method at http://api.jquery.com/jQuery.ajaxSetup. The
options that this method can control appear at http://api.jquery.
com/jQuery.ajax.

http://api.jquery.com/jQuery.param/
http://api.jquery.com/serialize/
http://api.jquery.com/serializeArray/
http://api.jquery.com/jQuery.ajax/
http://api.jquery.com/jQuery.ajaxPrefilter/
http://api.jquery.com/jQuery.ajaxPrefilter/
http://api.jquery.com/jQuery.ajaxSetup/
http://api.jquery.com/jQuery.ajax/
http://api.jquery.com/jQuery.ajax/

Using shorthand methods

Most AJAX requests don’t require any special manipulation of settings or
encoding of request data. When you want to make a simple AJAX request,
you can use these shorthand methods to make the call quickly. In many
cases, you can make the request by using a single method call rather
than writing a number of lines of code as you would when using straight
JavaScript. The following list describes the shorthand methods:

V¥ jQuery.get (): Makes a server request using the HTTP GET method.
You provide the URL of the resource to obtain from the server. The
method can optionally accept data to transfer with the request, a func-
tion to call when the request returns, and the type of data to return. You
can find out more about this method at http://api.jquery.com/
jQuery.get.

V¥ jQuery.getJSON (): Makes a server request using the HTTP GET
method. You provide the URL of the resource to obtain from the server.
This method specifically returns the data in JSON format. The method
can optionally accept data to transfer with the request and a function to
call when the request returns. You can find out more about this method
at http://api.jquery.com/jQuery.getJSON.

V¥ jQuery.getScript (): Obtains a JavaScript script from the server and
executes it. You provide the URL of the script to obtain from the server
using the HTTP GET method. You can optionally provide a function to
call when the request returns. You can find out more about this method
at http://api.jquery.com/jQuery.getScript.

v .load (): Loads data found on the server. You provide the URL of the
resource to obtain from the server. Unlike the global methods, such as
jQuery.get (), this method provides a default handler, so it represents
the fastest and easiest way to obtain data from the server. The method
can optionally accept data to transfer with the request and a function to
call when the request returns. You can find out more about this method
at http://api.jquery.com/load.

V¥ jQuery.post (): Makes a server request by using the HTTP pPOST
method. You provide the URL of the resource to obtain from the server.
The method can optionally accept data to transfer with the request, a
function to call when the request returns, and the type of data to return.
You can find out more about this method at http://api.jquery.
com/jQuery.post.

Chapter 19: Using jQuery to Handle AJAX ~ 3() 3

http://api.jquery.com/jQuery.get/
http://api.jquery.com/jQuery.get/
http://api.jquery.com/jQuery.getJSON/
http://api.jquery.com/jQuery.getScript/
http://api.jquery.com/load/
http://api.jquery.com/jQuery.post/
http://api.jquery.com/jQuery.post/

304 Part V: Extending JavaScript Further

Discovering Server-Side Programming

It’s entirely possible that your real world production application won’t
require any sort of server-side processing — that all your application will
ever need is to grab resources in the form of scripts and files from the server.
However, most real-world applications today have some need to perform
server-side processing. You may need to access a database, perform a calcu-
lation, or return status information. The server can perform myriad tasks for
the client, provided it has the required software. Because many organizations
now rely on cloud-based solutions to just about every programming problem,
it’s important to have some idea of the activity that occurs during such pro-
cessing. That’s the sole intent of this section.

The following sections show how to use PHP as one possible means of
providing extended processing functionality to clients that rely on AJAX

to perform tasks. PHP is a good option because many servers support it,

the language is platform independent, and you don’t generally need many
resources to use it. In fact, many hosted sites provide PHP access as part of
their default setup, so your organization may already have the required sup-
port installed if you rely on a hosted site.

Adding PHP support to your Apache server

If you installed the Apache server on your system using one of the tech-
niques described in Chapter 2, you likely don’t have PHP support installed on
your server and will need to install it before you can proceed. The following
procedure works for any of the platforms described in this book:

1. Download the version of PHP you need from http: //php.net.

You may be redirected to a different site from this main page. For example,
the Windows binaries are found at http: //windows .php.net/
download. The examples in this book use the thread safe 5.4.9 version

of PHP.

2. Extract the file you’ve downloaded to the PHP directory (folder) on
your machine.

The precise name will vary, but the examples in this book use C: \php
as the source directory for PHP support. When changing the Apache
configuration, you must supply the directory that you used to store your
copy of PHP.

3. Locate the php.INI development file in the C: \php folder and copy it
to php.INI.

http://php.net/
http://windows.php.net/download/
http://windows.php.net/download/

\NG/
Vg,\\

Chapter 19: Using jQuery to Handle AJAX ~ 3()5

You should now have a file named php . INT in the directory. This file
contains the settings that configure PHP for use. The file you copied cre-
ates a development environment, but you should make a quick change
to ensure that the environment runs with as few problems as possible.

. Open php. INI in a text editor and locate the line that reads short_

open_tag = Off. Change this line to read
short_open_tag = On

The reason for this change is that some commercial scripts don’t pro-
vide the full PHP starting tag of <? PHP. They use <? instead, which is the
short open tag. If you don’t set this setting to On, your PHP configuration
won’t be able to read these commercial files.

5. Save php . INT and close your text editor.

6. Open the Apache httpd.CcoNF file in a text editor.

10.
11.

This file is normally found in the Apache2.2\conf directory on your
system. You must make sure you open the text editor in administrator
mode, especially when working with a Windows system, or you won'’t be
able to save the file when you’re finished making changes. For example,
when working with a Windows system, right-click the Notepad icon

in the Start menu and choose Run As Administrator from the context
menu.

. Locate the section that contains the LoadModule entries. Add a new

line and type
LoadModule php5_module "c:/php/php5apache2_2.d11"

This line adds support for your PHP installation.

. Locate the section that contains the AddType entries. Add a new line

and type
AddType application/x-httpd-php .php

This line tells the server what to do with PHP files you include on the
server.

. Go to the end of the httpd.CONF file and add a new line. Type

PHPIniDir "c:/php"

This line tells the server where to find the php . INT file you created ear-
lier in this procedure.

Save the changes to disk and close your text editor.
Restart the Apache server.

This step forces the server to install PHP support.

306 Part V: Extending JavaScript Further

Figure 19-1:
A working
PHP
configuration
will show its
configuration
data when
queried.
|

Testing your PHP configuration

Even if you think you have PHP support installed, it’s a good idea to test PHP
support on your server. Otherwise, you won’t know whether your PHP con-
figuration is working before you move on to the next section. The following
procedure helps you test your configuration:

1. Create a new file with your text editor.

2. Type <?php phpinfo(); ?> in the file and save it as Test .php to the
Apache2.2\htdocs directory on your system.

3. Open your browser and type http://localhost/Test.php in the address
bar. Press Enter.

You should see the configuration information for your PHP setup as
shown in Figure 19-1.

(@) phpinfo(- Mexzillz Firefox [E=mEsR

File Edit View History Bookmarke™ Tools el !
e e y (&5 (; 1 8
(0] 0 s localhest/test.php
N G L~
WIE‘»A-FMP\ay}t, ~{\.Aﬁim, WIiB
& ot

.
i

B Reference I Search Engines

PHP Version 5.4.9 php

System windows NT MAIN 6.1 build 7601 (Windows 7 Ultimate Edition Service Pack 1) i586
Build Date Nov 212012 19:51:44

Compiler MSVCY (Visual C++2008)

Architecture *86

Configure cscript/nologo configure js ™ ol pshot-build™ "-disable-isapi” "-enable-
Command debug-pack” “—without-mssgl" “—without-pda-mssql” “—without-pi3we " “—with-

pdo-oci=Ciiphp-sdiioracielinstantelient 0\s dk shared” “—with-ocig=C:\php-sdkioracle
linstantclient10\s dk,shared” "—with-oci8-11g=C-\php-sdkioraclelinstantclient11

\sdk shared” “-enable-object-out-dir=.fabj’ "~enabl it
merypt=static” "disable-static-analyze” “—with-pgo”

Server API Apache 2.0 Handler

Virtual Directory |enabled

Support
Configuration | C:WVindows
File (php.ini) Path

Loaded Clehp\php.ini
Configuration
File
Scan this dir for |(none)
additional .ini
files

Creating the PHP script

The goal of this book isn’t to make you a PHP developer — that’s the goal of
another book. However, to provide something to use for the AJAX portion
of this chapter, you do need a simple PHP application. The example in this
section performs simple addition. You send it two numbers, it adds them
together, and then it returns the result. (You can find complete code for this

Chapter 19: Using jQuery to Handle AJAX 3() 7

example in the \Chapter 19\Math folder of the downloadable code as
DoMath.PHP.) Here’s the code needed to perform the task:

<?php
// Get the values from the query.
Svall S_GET["vall"];
Sval2 S_GET["val2"];

// Perform the math operation.
Sresult = S$vall + S$val2;

// Output the result.
echo S$result;
?>

The <?php line is standard in every PHP application. It tells the PHP inter-
preter to expect some code. If you really want to know more about PHP, try
the tutorial at http://www.w3schools.com/php/default.asp. However,
for this book, all you really need to know is that the <?php line starts code.

The first step is to retrieve data from the URL that the client sends to the
server. The data is in the form of a query, and it contains two variables, vall
and val2. The example assumes that vall and val2 are numbers, but if the
client sends something else, the result will be a value of 0 because you need
two numbers to perform addition.

The next step is to perform the math. The code creates $result, which con-
tains the sum of $vall and $val2.

The final step is to output $result. The call to echo works pretty simply.
When a client calls using AJAX, it receives $Sresult as a response. However,
you can also test this script by using your browser:

1. Save the file as DoMath.php in the Apache2.2\htdocs directory on
your system.

2. In your browser, type http://localhost/DoMath.php?vall=1&val2=2 in
the address bar. Press Enter.

You see 3 as the output.

3. Try other values out and you find that the program always returns the
value you expect.

4. Try values that won’t work, such as the strings Hello and There for
the values, and you find that the program outputs a 0 rather than
crashing.

http://www.w3schools.com/php/default.asp

308 Part V: Extending JavaScript Further

Retrieving Results from AJAX Calls

The PHP script described in the preceding section provides the perfect
means for testing a more typical server solution with AJAX. Now it’s time
to build a few applications to see what jQuery can do for you when you're
working with a situation that’s more complicated than simply retrieving a
file. Although your real-world situations will be more complex than the one
described in the following sections, the process is going to be the same.

Working with standard output

This example uses the DoMath . php script described in the “Creating the PHP
script” section, earlier in this chapter, to perform math and change just the
result field of a form on a page. You must use your server setup to make this
example work because the server executes the PHP script and then returns
the result. Using jQuery makes the process of working with AJAX significantly
easier. This example differs considerably from the examples provided with
the jQuery APL. It provides a different view of how you can perform the task.
The following code shows the form used for this task. (You can find complete
code for this example in the \Chapter 19\Math folder of the downloadable
code as StandardTest . HTML.)

<form id="DataEntry">
<hl>Scripting an Addition Routine with AJAX</hl>
<div>
<label>Value 1l:</label>
<input id="vall"
name="vall"
value="1"
type="text" />
</div>
<div>
<label>Value 2:</label>
<input id="val2"
name="val2"
value="2"
type="text" />
</div>
<div>
<label>Result:</label>

</div>
<input id="btnChange"
type="button"
value="Add the Numbers"
onclick="PerformaAdd ()" />
</form>

Figure 19-2:
The exam-
ple adds
two values
together
and shows
the result
without
reloading.
|

Chapter 19: Using jQuery to Handle AJAX 3 ()9

The example uses standard <input type="text"> controls for data input.
Notice that you must define the name attributes for these controls, or the
jQuery .serialize () method won’t work. It’s a good idea to assign the con-
trols default values. The output is a simple .

The application performs its task when the user clicks Add the Numbers,
which is an <input type="button"> control. This approach provides an
alternative to using a submit style button. However, either approach works
equally well. The advantage of this approach is that you can use a named
function, Performadd (), to handle the c1ick event. The following code
shows how Performadd () does its work:

function PerformAdd()
{
S("#result") .load(
"http://localhost/DoMath.php",
S ("#DataEntry") .serialize()) ;
}

As previously mentioned, the example places the output in a with an
id of result. You access this by its identifier and call 1oad () to fill
it with information from the desired source. You provide the location of the
source, which is DoMath . php.

The PHP script requires input data, which you add as a second argument.
To obtain the data, you access the <form> tag, which has an identifier of
DataEntry, and you call serialize (), which serializes every control that
has a name attribute assigned to it. When using the default values, the serial-
ized data is vall=1&val2=2. Taken together, the complete URL is http://
localhost/DoMath.php?vall=1&val2=2, which is precisely the same as
the test URL you use earlier in the “Creating the PHP script” section of the
chapter. Figure 19-2 shows typical output from this example.

(@) Scripting an Addition Routine with AJAX - Mozilla Firefox

(C] a g

erence [l Search Engines

SR
WIBA-F way};. Qvo
& @

utine WIERAJAX.

Scripting an Addition Routine with AJAX

Value 10 1
Value 2: 2
Result: 3

Add the Numbers

3 ’ 0 Part V: Extending JavaScript Further

Investigating the benefits of JSON

Chapter 16 explains how to use XML with JavaScript. Working with XML
provides a cross-platform, cross-browser solution for storing data that also
works with just about every programming language on the planet. It really
isn’t possible to get any more generic than XML. However, XML can be dif-
ficult to parse into a form that the computer can understand. Consequently,
developers looked for an easier way to store complex data. JavaScript Object
Notation (JSON) is one of the new solutions that developers have created.

Like XML, JSON works with any platform and with any browser. Using jQuery
makes working with JSON easy. Interestingly enough, PHP provides the func-
tions required to translate complex PHP data into JSON format. Creating a
complex example that includes databases, PHP scripts, and complex server
data is outside the scope of this book, but you can read about the PHP end of
JSON at http://php.net/manual /book. json.php. The example in the
sections that follow is a little more modest, but you get the flavor of how JSON
and jQuery can work together to make it easier to interact with complex data.

Creating the JSON data

As its name implies, JSON relies on JavaScript objects to store information.
You actually use object literals as described in the section on working with
object literals in Chapter 5 to store data.

This example stores the JSON data on disk in a file. (You can find complete
code for this example in the \Chapter 19\JSON folder of the downloadable
code as Test .JSON.)

{

"Users"
[
{
"Name" : "George Smith",
"Number" : 28,

"Birthday": "\/Date(377244000000)\/"

"Name" : "Amy Jones",
"Number" : 41,
"Birthday": "\/Date(414914400000)\/"

"Name" : "Sammy Wang",
"Number" : 33,
"Birthday": "\/Date(-147380400000)\/"

http://php.net/manual/book.json.php

Chapter 19: Using jQuery to Handle AJAX

<MBER

The data consists of a group of users. There are three users in the file. Each
user entry has the same fields associated with it: Name, Number, and
Birthday. Notice that strings appear in quotes. Numbers appear without
quotes. JSON doesn’t actually provide support for standard object types, so
this example uses one of the types you commonly see. If this file contained a
Boolean value, it would appear as true or false without quotes. In sum,
JSON supports these data types:

v String
v Number
v Boolean
v null

In addition, JSON files support two structure types: object literal and array.
This example demonstrates both structure types for you so that you know
how to handle them in JavaScript using jQuery.

Viewing the JSON data onscreen

The preceding section explains the data file used for this example. The form for
this example includes the heading and an <input type="button"> control.
When the user clicks the button, it calls ViewData, which is shown in the fol-
lowing example code. (You can find complete code for this example in the
\Chapter 19\JSON folder of the downloadable code as ViewJSON.HTML.)

function ViewData ()
{
// Obtain the data from disk.
S.getJSON ("Test.json",
function (data)
{
// Create an array to hold the data.
var items = [];
// Parse the data by looking at
// each entry in the Users object.
S.each (data.Users,
function (key, wvalue)
{
items.push("" +
value.Name + "
" +
value.Number + "
" +
(new Date (
parselnt (value.Birthday.substr(6)))
) .toDateString ()
+ "</1li>");
1)
// Place the result in an unordered list.
S('', {html: items.join("")}).
appendTo ('body ') ;
1)

311

3 ’ 2 Part V: Extending JavaScript Further

Figure 19-3:
JSON
provides

a friendly
way to store
data that
requires
less parsing
than XML.
|

The example begins by calling .getJSON (), which loads Test . json from
the drive and places the content in data. The anonymous function accepts
data as input. To create the output for this example, the code creates an
empty array, items. Using items simplifies the code.

The next step is to process each of the user entries in the Users array found
in Test.json. The code calls .each () and passes it data.Users, so that
the loop will process each of the object literals it contains. The anonymous
function receives a key and value pair for each of the user entries.

To access each of the key/value pairs for the object literal entries, you
interact with the appropriate properties: Name, Number, and Birthday.
Processing Name and Number is straightforward — simply pass them to the
output as is.

To process the odd-looking .NET date, you must separate the text part from
the numeric part of the string and then turn that value into an integer that
contains the number of milliseconds since January 1, 1970. If you want to pro-
vide a date earlier than January 1, 1970, you use a negative number of milli-
seconds. The number of milliseconds is used to create a new Date () object.
The code calls toDateString () to provide nicer-looking output.

At this point, items contains three array elements, each of which is a list
item <11> tag containing facts about the users. The code creates a new unor-
dered list tag and places i tems within it by calling join (). The result-
ing list is added to the current document by using the appendTo () method.
Figure 19-3 shows the output from this example.

@ Viewing JSON Files - Mozilla Firefox

Viewing JSON Files

* George Smith

28

Tue Dec 15 1981
* Amy Jones

41

Thu Feb 24 1983
* Sammy Wang

33

Sat May 01 1965

Chapter 20

Animating the Web

In This Chapter

Understanding the jQuery user interface features
Using a canvas to draw on a document

E/eryone likes special effects. You see special effects everywhere today.
Of course, they appear in movies, but even common billboards often
have special effects. From the glittery lights that festoon children’s shoes to
the blinking of Christmas lights, life has become a festival of special effects.
It isn’t too surprising that special effects also appear on Websites, and those
sites that lack special effects are often called boring or sometimes aren’t
noticed at all. Some developers equate special effects to eye candy — to the
glitz that attracts the attention of the consumer, sometimes at the expense of
useful content.

Special effects do have useful purposes. One of the most important reasons
to use special effects is to focus user attention. A mouseover effect can help
people interact with a page with greater ease, especially when lighting condi-
tions or other environmental factors make it hard to see the cursor. Helping
the user to focus means that you get better input from the user and the user
has a better experience from the application.

In many cases, special effects appear as widgets that you can use to better
convey the sort of input that a user should provide. For example, a text box
works perfectly well for inputting a range of values, but it doesn’t tell the
viewer anything (such as the fact that the input is within a certain range).

If you replace that text box with a slider control, suddenly the user under-
stands that any value within a specified range is acceptable. In addition, it’s
easier for the user to set the specified range.

You can also use special effects to turn abstractions into concrete concepts
for the user. The use of a slide effect (where an element slides into and out of
view) can help the user to understand that the user interface contains hidden
features that are accessible when the user needs them, but which will stay
out of the way when the user doesn’t. Using other special effects can help a
user understand the urgency of a particular input or see the data controlled
by the input in a real-world perspective. In short, special effects need not be
limited to pure glitz. The purpose of this chapter is to introduce you to some

3 ’ 4 Part V: Extending JavaScript Further

of the special effects that you can add to applications by using products such
as the jQuery UL

Getting to Know jOuery Ul

Previous chapters, especially Chapters 18 and 19, demonstrate the useful-
ness of jQuery in working with data and performing other low-level tasks in
your application. The jQuery Ul library (http://jqueryui.com) works
with the user interface. You use it to add new kinds of interactions, expand
the number of controls at your disposal, create special effects, and perform
utilitarian tasks, such as positioning user interface elements precisely.

All these examples require that you provide a link to the jQuery Ul as well

as jQuery. They also use the jQuery Cascading Style Sheet (CSS) that helps
create a pleasant presentation. These external elements make the coding task
easier. Make sure you include the following entries in the heading of the file
for each of the examples:

<script
src="http://code.jquery.com/jquery-latest.js">
</script>
<script
src="http://code.jquery.com/ui/1.9.2/jquery-ui.js">
</script>
<link
rel="stylesheet"
href="http://code.jquery.com/ui/1.9.2/themes/base/jquery-ui.css" />

You can always download the required files if desired. However, this
approach makes it easier for your application to receive required updates.
The following sections introduce you to jQuery Ul and help you understand
how you can use these features to create more interesting applications.

Considering interactions

The way in which a user interacts with an application is important. When
a set of interactions seems contrived or proves inconvenient, users have
to concentrate too hard on what the application should be able to do and
how to obtain that result, which makes them lose focus on their work goal.
Many business users are currently in the process of moving from desktop
applications to browser-based applications for at least part of their work.
Consequently, these users often anticipate having desktop-like features in
their browser-based application solutions. The following sections describe
some jQuery Ul features that help you provide that desktop experience to
your users.

http://jqueryui.com/

Chapter 20: Animating the Web

3

Dragging content from one location to another

Sometimes a user needs to reposition screen elements to make them easier
to see or work with. Creating an environment in which the user can move
items around need not involve writing reams of code. In fact, all you really
need is a single method call, draggable (). The following code shows the
method used to create a draggable paragraph in this example. (You can find
complete code for this example in the \Chapter 20\jQueryUI folder of the
downloadable code as DragContent . HTML.)

S (function ()
{
S ("#MoveMe") .draggable () ;
)

This code is interesting because it actually creates a jQuery anonymous
function that extends the jQuery environment rather than working with any
particular page feature. The focus of this call is a paragraph with an id of
MoveMe. All you need to do is access that member and call draggable () to
make it move around. Try the downloadable example and you find that you
can move the paragraph anywhere you want on the page.

To create a movable box, this example relies on a custom style. The style
creates a border, allows plenty of room for the text, and then centers the text
both horizontally and vertically. Here’s the style used for this example:

#MoveMe

{
border: solid;
width: 200px;
height: 5em;
text-align: center;
line-height: 5em;

}

Many developers experience problems vertically centering text within a <p>
tag. You can find a number of ways to perform this task. However, one of the
easiest ways to get the job done in a platform- and browser-consistent manner
is to use the 1ine-height style as shown in the example. The trick though is
to set the height and 1ine-height styles to the same value — the text will
always appear in the middle.

Dropping items into containers

Sometimes a user needs to drag an item to a container and drop it in the con-
tainer. There are many instances of this process in current applications. For
example, the concept of dragging an item to a trash can and dropping it to
delete it is consistent across all platforms. If you want to send an item to the
printer, you drag its icon to the printer icon and drop it there.

315

3 ’ 6 Part V: Extending JavaScript Further

Of course, to create this effect, you must have one item that’s draggable and
another item that’s droppable. The preceding section describes how drag-
ging works. The following code shows how dragging and dropping can work
together to create this desirable user interaction. (You can find complete
code for this example in the \Chapter 20\jQueryUI folder of the down-
loadable code as DropContent . HTML.)

S (function ()
{
S ("#MoveMe") .draggable () ;
S("#FillMe") .droppable (
{
drop: function (event, ui)
{
S (this)
.addClass("Filled")
.html ("Filled!") ;
}
)
)

This example uses the same code for the MoveMe <p> tag. A second <p> tag,
with the id of Fil1Me, acts as a container. When a user drags MoveMe to
FillMe, the code calls the anonymous function associated with the drop
event. Notice how the example begins with the event name, followed by a
colon (:), followed by the anonymous function to handle that event. The
droppable () method supports these events:

V¥ create: Indicates that the droppable item has been created.

V¥ activate: Indicates that a draggable item is active. You can use this
event to change the droppable item style so that the user can see where
to drop an item.

1V deactivate: Indicates that the user has stopped dragging an item. You
can use this event to change the droppable style back to its original state.

v over: Fires when the draggable item is over the top of the droppable
item. You can use this event to indicate when the user should release
the mouse to drop the item into the container.

v out: Fires when the draggable item has moved out of the droppable
item container. You can use this event to tell the user that it’s no longer
possible to drop an item into the container.

v drop: Tells the droppable item (the container) that it has received a
draggable item.

You can create an event handler for any of the events you want to handle
in your code. In fact, there are several opportunities for special effects that
would focus the user’s attention.

Chapter 20: Animating the Web

Resizing display elements

The wide variety and types of screens used to display information make it
necessary to allow the user to resize elements as needed. In most cases, you
can simply allow the user to make the element any size. However, there may
be situations where you need to monitor the amount of resizing so that you
can tailor content to meet the needs of the container. The following example
shows how to resize an object and monitor its size. (You can find complete
code for this example in the \Chapter 20\jQueryUI folder of the down-
loadable code as ResizeContent . HTML.)

S (function ()
{

S ("#ResizeMe") .resizable (

{
minwWidth: 200,
minHeight: 60,
resize: function(event, ui)
{
S ("#Content")
.html ("width: " +ui.size.width +
"
Height: " + uil.size.height);
}
)

)

This example is interesting because it shows how to set properties as well
as respond to events. In this case, the minWwidth and minHeight properties
keep the element a specific minimum size — the user can’t make the element
smaller.

The code also responds to the resize event. There’s a special requirement
for resizing you need to know about. The resizing container is separate from
the content element. Here’s the HTML for this example:

<div id="ResizeMe">
<p id="Content">
Resizable Paragraph
</p>
</div>

When you want to write content to the screen, you must use the content
element, not the container element. Otherwise, the sizing handles will disap-
pear, and the user won't be able to resize the element after the first time. In
this case, the current size of the container appears as part of the ui object
passed to the resize event handler. You access the information though the
size.width and size.height properties, as shown in the code. Figure 20-1
shows a typical example of how the output appears.

317

3 ’ 8 Part V: Extending JavaScript Further

Figure 20-1:
The
container
must be
separate
from the
content
when
resizing.
|

@ Creating a Resizable Element - Mozilla Firefox

o
£ ®

‘ .R"feren"ca B

' Creating a Resizable Element

Creating a Resizable Element

Width: 239
Height: 139

Selecting items onscreen

Making it possible to select from a list of items reduces the chance that the
user will enter incorrect information. It will also increase application reli-
ability and reduce the potential for security issues, such as injection attacks
(see the article at http://www.zdnet.com/sgl-injection-attack-
what-is-it-and-how-to-prevent-it-7000000881/ for details). The
user becomes more efficient as well. Fortunately, HTML5 already comes with
a number of selection controls, but you may find that these controls don’t
quite fulfill your needs at times. In this case, a custom selection technique
implemented with jQuery might answer the need. A selection sequence can
consist of a <div> and a series of <p> tags, as shown here. (You can find
complete code for this example in the \Chapter 20\jQueryUTI folder of the
downloadable code as SelectContent . HTML.)

<div id="Selections">
<p id="Red">Red</p>
<p id="Green">Green</p>
<p id="Blue">Blue</p>
<p id="Purple">Purple</p>
</div>

Notice that the <div> acts as a container and the <p> tags act as items
within the container. No matter how you implement your custom list (and it
need not be the arrangement shown), it must have a container/item arrange-
ment like the one shown here. When you have the arrangement in place,

you can create a selection and tracking mechanism like the one shown in the
following code:

http://www.zdnet.com/sql-injection-attack-what-is-it-and-how-to-prevent-it-7000000881/
http://www.zdnet.com/sql-injection-attack-what-is-it-and-how-to-prevent-it-7000000881/

Chapter 20: Animating the Web 3 ’ 9

// Create an array to track the selections.
var Selections = new Array();

// Handle the selects and unselects.
S (function ()
{

S("#Selections") .selectable (

{

selected: function(event, ui)

{
// Verify the item hasn't already
// been added.
if (Selections.indexOf (ui.selected.id) ==
-1)

// Add the id of the selected item
// to the array.
Selections.push(ui.selected.id) ;

b

unselected: function(event, ui)
{
// Find the location of the unselected
// item in the array.
var Index =
Selections.indexOf (ui.unselected.id) ;

// Remove that item.
Selections.splice(Index, 1);
}
1)
1)

// Display the results.
function ShowResults()
{

alert ("You have selected: " + Selections);

}

The Array, Selections, keeps track of the current selection list. To make
the <div>, Selections, selectable, you use the selectable () method.
This example uses two events, selected and unselected, to keep track
of the current selections. When the user selects a new item, the selected
event handler verifies that the item doesn’t already appear in Selections,
and then it pushes the new item onto Selections.

The unselected event handler must perform two tasks. First, it must locate
the unselected item using the indexOf () method. Second, it must use
splice () toremove that item from Selections.

This example doesn’t provide any fancy output, but you can see for yourself
how well the selection methodology works. Click Show Selections to display

320 Part V: Extending JavaScript Further

the list of selected items. The ShowResults () event handler displays a list
of the selections for you. In a production application, you could just as easily
process each of the selected items.

A final piece to this particular application is the need to define one special
style. You must provide a means for the display to register the selected state
of a particular item, which means providing values for the .ui-selected
style, as shown here:

#Selections .ui-selected
{
background: black;
color: white;

}

When a user selects an item, the background turns black with white text so
the user can see a visual change. You could also modify the text as a second
means of helping the user see the selection.

Making items sortable

Certain kinds of sorting are easy for computers to do. For example, a com-
puter can put items in alphabetical order much faster than a human can,
especially when the list is long. However, sorts aren’t always logical. You may
want the user to sort a list of items by personal preference or other criteria
that the computer can’t even understand. In these cases, you need a means
of allowing manual sorts, and this example gives you just what you need. The
following example lets a user sort items by unspecified criteria. (You can find
complete code for this example in the \Chapter 20\jQueryUTI folder of the
downloadable code as SortContent . HTML.)

$ (function ()
{
S ("#SortMe") .sortable() ;
1)

function ShowResults ()
{

// Create the output string.

var Output = "The sort order is:\n m o

// Locate each of the required items and
// add them to the string.
S("#SortMe p") .each
function (index, element)
{
Output += element.innerHTML.substr (74) ;
)

// Display the result.
alert (Output) ;

Chapter 20: Animating the Web 32 ’

The sortable () callis all that you need to do to make the list visibly sort-
able. The user can place the elements, whatever those elements might be, in
any order desired. To make this call work, however, you do need to create a
container, a <div> in this case, and a list of items, <p> tags in this case. The
SortMe id goes with the <div>.

Accessing the items in order is also a requirement. Otherwise, there’s no
point in letting the user sort the items. In this case, it’s actually easier to use
other jQuery functionality to obtain the list of elements in the order in which
they appear and process them that way. ShowResults () demonstrates one
technique for performing this task. You begin by creating the appropriate
selector, which begins with the <div>, SortMe, and ends with each <p>

tag it contains. The anonymous function receives both an index and an
element argument. By checking the innerHTML property of the element, you
can obtain the moniker for that <p> tag. The result is displayed in a dialog box.

This example also makes use of a special jQuery UI CSS style. This style cre-
ates a double-ended arrow that helps the user understand that each item can
move up or down in the list. You create it using a like this:

You can find a list of these icons at http://jquery-ui.googlecode.com/
svn/tags/1l.6rc5/tests/static/icons.html. It’s important to create
icons that match the way your list appears onscreen. Figure 20-2 shows a
typical output of this application, including the list in the order that I person-
ally decided to sort them.

@ Sorting Items - Mozilla Firefox

Sorting Items

e | Move the item to where you want to see it on the list.

for users to
place items |‘Hﬁm3
in order of
personal
preference.
|

Figure 20-2: | T Item 4 |
Sortable

lists make | ¢ Mtem? |

it pOSSible | 1 Item 1 |

I

http://jquery-ui.googlecode.com/svn/tags/1.6rc5/tests/static/icons.html
http://jquery-ui.googlecode.com/svn/tags/1.6rc5/tests/static/icons.html

322 Part V: Extending JavaScript Further

WMBER
@"&
&

Understanding the widgets

Widgets are specialty controls you can use to create special effects on a
page. The advantage of these controls is that they can make your application
easier to use and more appealing as well. The disadvantage of widgets as a
whole is that they can be overused or used incorrectly.

A widget is only a good idea when it materially adds to the usefulness and
accessibility of your application. When you find yourself admiring the pizzazz
that a widget adds to the application rather than how it makes the user work
faster or with greater ease, reconsider using the widget — your application
may work a lot better without it.

HTMLS5 already comes with a number of useful generic controls of all sorts.
For example, if you need a standard check box for your application, rely on
HTMLS5 to provide it. The controls described in the following sections are
special in some way. For example, the Accordion widget makes it easy to
focus user attention by hiding unused elements from sight. The jQuery Ul
library does provide access to additional widgets that aren’t discussed in the
sections that follow. Most widgets, such as Button, have HTML5 counterparts
and aren’t quite as useful for that reason.

Using the Accordion widget

You use the accordion to hide any page element from view. When a user
selects a category, the elements in that category become visible, and the
elements from all other categories are hidden. The effect is to focus user
attention and make the user more efficient in performing specific tasks. The
following code is all you need to make this feature usable. (You can find
complete code for this example in the \Chapter 20\Widgets folder of the
downloadable code as Accordion.HTML.)

$ (function ()
{
S("#Configuration") .accordion() ;

1)

However, the secret in this case is the way you create the tags for your

page. Figure 20-3 shows how the form appears to the user. Notice that the
Accordion widget hides settings that the user isn’t focusing on. When the
user clicks Background Color, the Foreground Color options are hidden from
view. Likewise, clicking Options presents those controls.

The controls in each area don’t matter to the Accordion widget, but the
HTMLS5 formatting does. This form also includes a submit button. If you
don’t configure the controls properly, the submit button becomes part of

Chapter 20: Animating the Web 323

the accordion effect, and clicking it no longer submits the form. Here’s a con-

densed view of the HTMLS5 for this example:

<form id="ConfigForm"
method="get"
action="Accordion.html">
<div id="Configuration">
<h2>Foreground Color</h2>
<div>
<input id="FGRed"
type="radio"
name="Foreground"
value="Red"
checked="checked" />
<label for="FGRed">Red</label><br
More inputs and labels
</div>
<h2>Background Color</h2>
<div>
<input id="BGRed"
type="radio"
name="Background"
value="Red"
checked="checked" />
<label for="BGRed">Red</label><br
More inputs and labels
</div>
<h2>Options</h2>
<div>
<input id="Sounds"
type="checkbox"
name="Sounds"
value="SpecialSounds" />
<label

<input id="Effects"
type="checkbox"
name="Effects"
value="SpecialEffects" />
<label for="Effects">Use Special
</div>
</div>
<input id="ChangeConfig"
type="submit"
value="Change Configuration" />
</form>

/>

/>

for="Sounds">Use Special Sounds</label>

Effects</label>

324 Part V: Extending JavaScript Further

Figure 20-3:
The
Accordion
widget
focuses
user
attention.
|

@ Using the Accordion Widget - Mozilla Firefox
File Edit View JHistory Eo:;_kr?ﬁrks Ti

-4
€ ® n o O

<
' Reference ' Search Eng‘?ﬁ& \WI
L i

Using the Accordion Widget

- Foreground Color

@ Red

© Orange
@ Green
O Blue

’ Background Color

¥ Options

Change Configuration

Notice that you must place the headings control groups within a separate
<div> and then label that <div> as the one you want to use for the accordion
effect. A separate <div> houses the individual controls for a specific group.
The submit button is part of the form, but it’s outside the Configuration
<div>. When you click the Change Configuration button, you see that the form
works as it should by examining the address field content. Using the defaults,
you see an address field that contains http://localhost/Accordion.htm
1?Foreground=Red&Background=Red when you click Change Configuration
(assuming you’re using the server setup to test the example).

Using the Autocomplete widget

Whenever possible, provide the user with specific inputs for forms you
create to help the user work more quickly and reduce security risks. For
example, instead of providing a text box and asking the user to type the
name of a state, provide a combo box that the user can use to choose a state.
Even with the best planning, though, you sometimes encounter situations
where you must allow the user to provide a freeform answer in a text box —
an error-prone method of input at best. The Autocomplete widget makes it
possible to reduce the risk of input errors by suggesting the most common
responses to such questions. Using this widget isn’t quite as good as provid-
ing a specific answer, but it’s the next-best thing.

The following code shows how you implement an Autocomplete widget for a
text box. (You can find complete code for this example in the \Chapter 20\
Widgets folder of the downloadable code as Autocomplete . HTML.)

Figure 20-4:
Use the
Auto-
complete
widget to
provide

the user
with a list
of common
choices.
|

Chapter 20: Animating the Web 325

// Create a list of common colors.

var Colors =

[
"Red",
"Orange",
"Yellow",
"Green",
"Blue",
"Purple",
"White",
"Black",
"Gray"

1

S (function ()

{
// Set up the autocomplete function, complete
// with a list of common colors.
S ("#ColorEntry") .autocomplete ({source: Colors}) ;
1)

To make this widget work, you create an array that contains a list of common
entries. This list should be as complete as possible to ensure that the user
can find a desired choice in most cases. The list also serves to help the user
understand what input is desired.

When configuring the autocomplete () method, you include the source
option. This is one of the few instances where you must include an option to
ensure the widget works properly. Notice that the option and its associated
value aren’t quoted. Figure 20-4 shows typical output from this example. In
this case, typing the letter R displays every option that contains that letter.
Typing additional letters refines the list of available choices.

@ Using the Autocomplete Widget - Mozilla Firefox
Eile Edit View H}sforv Eo::krh{ks E@ils

Using the Autocomplete Widget

Type your favorite color: R
Red
Orange
Green
Purple
Gray

326 Part V: Extending JavaScript Further

Figure 20-5:
The
Datepicker
widget
makes
entering
dates much
easier.
|

Using the Datepicker widget

There are situations where HTML5 currently provides a solution for a par-
ticular need, but few vendors have implemented it yet. This is the case with
the date and time support for HTML. Only Opera and Chrome provide sup-
port for the date and time features. For example, if you want to add a date to
a form, you can use the date input type as shown here:

<label for="Date">Enter a Date:
<input id="Date"
type="date"

</label>
/>

The default date is today. When the user clicks on the field, the application
displays a date picker control, but only when you use Opera or Chrome. Until
the other vendors provide date and time support, it’s still necessary to use
the jQuery Ul Datepicker widget to ensure that all of your users can enter a
date with ease. The following code shows how to use the Datepicker widget.
(You can find complete code for this example in the \Chapter 20\Widgets
folder of the downloadable code as Datepicker .HTML.)

S (function ()
{
S ("#DateEntry") .datepicker () ;
})

DateEntry is a standard <input type="text"> control. When the user
clicks the control, jQuery Ul automatically displays a calendar like the one
shown in Figure 20-5.

@ Using the Datepicker Widget - Mozilla Firefox
File Edit View Hisfory Eoc}krfﬁrks Tools
i Y

© " of

. -
Py fﬁg\;ﬂ- > A
' Reference . Search En"gms"% EA-?\?:I Play!
S ¢

=

Using the Datepicker Widget

Date: |

o December 2012)

Su Mo Tu We Th Fr Sa

1

3 4 S B Z| 8

9| 10| 11 12 13| 14| 15

16 17 18 19\ 20 21| 22

23| 24| 25 26| 27| 28| 29
30 31

Chapter 20: Animating the Web 32 7

Using the Progressbar widget

Users are impatient, and sometimes a process takes a while to complete. A
file downloads only so fast, and some transactions become bogged down on
the server. A progress bar makes it possible for the developer to keep the
user informed about the progress of a task. Modern programming strate-
gies try to keep the user from waiting at all by performing longer tasks in the
background, but sometimes a user can’t proceed until the task is done. This
is the time you need to rely on a progress bar to keep the user from attempt-
ing to stop the process before it completes.

The following example shows how to use a progress bar. In this case, the
progress bar is updated through a timing loop. Each time the timer expires,
the progress bar is updated, and the timer is reinstituted. The result is that
the progress part indicator moves from left to right and that the timer even-
tually stops when the indicator moves all the way to right. (You can find
complete code for this example in the \Chapter 20\Widgets folder of the
downloadable code as Progressbar . HTML.)

// Configure the progress bar.
S (function ()
{
S ("#Progress") .progressbar ({value: 0}) ;

})

// Create a variable to hold the timer object.
var Timer;

// Create a variable to hold the total timeout.
var Timeout;

function StartTimer ()

{
// Initialize the timeout.
Timeout = 0;

// Set the progress bar maximum value.
S ("#Progress") .progressbar (
"option", "max", parselInt (S ("#StartvValue").val()));

// Create the timer variable.
Timer = window.setTimeout (UpdateTimer, 100) ;

}

function UpdateTimer ()
{
// Get the maximum value.
var MaxTime =
S ("#Progress") .progressbar ("option", "max") ;

// Check for the end of the timing cycle.
if (Timeout >= MaxTime)
return;

328 Part V: Extending JavaScript Further

// Update the Timeout value.
Timeout += 100;

// Update the percentage completed.
S ("#PercentDone") . text (
Math.round ((Timeout/MaxTime) *100)) ;

// Set the progress bar value.
S ("#Progress") .progressbar ("value", Timeout) ;

// Create the timer variable.
Timer = window.setTimeout (UpdateTimer, 100) ;

3

The first task is to create the progress bar itself by calling progressbar ().
Notice that you must provide an initial value as input. However, the progress
bar configuration isn’t complete — the call to StartTimer () later will per-
form some additional configuration tasks.

The StartTimer () function is called when the user clicks Start Timer on
the form. This function initializes two global variables. Timer is a timer
object used to animate the progress bar. Timeout is the current elapsed
time in milliseconds. This function also configures the max option for the
progress bar. The indicator is a percentage of the current value and the max
value properties. The maximum value is provided by the user through an
<input type="text"> control, Startvalue.

Whenever Timer expires, it calls UpdateTimer (). UpdateTimer () obtains
the maximum time value from the progress bar and places it in MaxTime.

It then verifies that Timeout is less than MaxTime. When Timeout finally
reaches MaxTime, the progress bar has reached 100 percent, and it’s time to
stop the timer.

The next step is to update Timeout to the next value. Every iteration
advances Timeout by 100 milliseconds.

After updating Timeout, the example updates the onscreen percentage,
which is stored in a with an id of PercentDone. It also updates the
progress bar’s value attribute so that the bar moves to the next position.

A timer fires only once. To create the next loop of the iteration, the
example must reset Timer. When the next 100 millisecond wait is over,
UpdateTimer () is called again and the process begins anew.

Using the Slider widget

Sliders give the user the ability to input a value visually — as part of a whole.
A slider ensures that the user inputs a correct value within a range of values,
so you don’t need to worry about security issues or incorrect values. As a

Chapter 20: Animating the Web 329

result, sliders provide a valuable means of allowing variable input. The fol-
lowing example shows how to use a slider in your application. (You can find
complete code for this example in the \Chapter 20\Widgets folder of the
downloadable code as S1ider .HTML.)

S (function ()
{
S("#Slider") .slider (

{
// Set the maximum slider value.
max: 50,

// Perform tasks when the value changes.
change: function(event, ui)

{
// Display the current slider value.
S ("#Value") . text (
S("#Slider") .slider ("value")) ;
}
)
1)

In this case, the code sets the maximum slider value to 50. The minimum
value defaults to 0. However, you can set both the maximum and minimum
values to any starting or stopping position. Even though the example doesn’t
show it, the S1ider can have more than one handle, so it can represent a
range. This flexibility means that you can ask the user to input both a starting
and a stopping point.

One of the most commonly used events is change. The example displays the
new value each time the user finishes moving the handle. However, the way
in which you use the output depends on your application. Generally, you use
the output to provide data input or application control. However, it’s a good
idea to display the actual slider value so the user knows the actual input
value.

Using the Spinner widget

Some, but not all, browsers support the <input type="number"> tag. This
tag provides a spinner input for working with numeric input, so the user can
simply click up or down arrows to change the numeric value of an input.
Because it’s important to provide users with easy methods for entering data
correctly, the Spinner widget is an important addition to your toolkit. Not
only does it work with all major browsers, but you can also add features
such as input validation, as shown in the following example. (You can find
complete code for this example in the \Chapter 20\Widgets folder of the
downloadable code as Spinner .HTML.)

330 Part V: Extending JavaScript Further

S (function ()

{

1)

// Create the spinner and place a reference
// to it in ThisSpinner.
var ThisSpinner = $("#Spinner") .spinner (

{

// Set the minimum and maximum values.

min:
max:

1,
5,

// Add validation.
change: function(event, ui)

{

Check for minimum and maximum value
compliance.

(ThisSpinner.spinner ("value") < 1)
ThisSpinner.spinner ("value", 1);

(ThisSpinner.spinner ("value") > 5)
ThisSpinner.spinner ("value", 5);

// Set the initial wvalue.

//
//
if
if
}
3
ThisSpinner.

// Provide a means for returning the current value.

spinner ("value", 1);

S ("#GetSpinvValue") .click(
function()

{

alert (ThisSpinner.spinner ("value")) ;

}
) 7

// Create buttons for all buttons on the form.
S ("button") .button() ;

In this case, the example begins by creating a variable to hold the Spinner
widget. You can use this technique with any of the widgets to make them

easier to work with. This example needs to access the Spinner widget in sev-

eral ways, so using a variable makes sense.

To ensure the user enters only values in the correct range, you must set the
min and max options. However, these options control input only when the
user works with the spinner. To verify that manual input is also correct, you

must create a handler for the change event. All that this function does is check

whether the value () method returns a number between 1 and 5. If not, the
code uses the value () method to set the numeric value appropriately.

Chapter 20: Animating the Web

Validation events, such as change, occur when the control loses focus. When
you type an incorrect value into the control, the example doesn’t fix it immedi-
ately. The fix occurs when the control loses focus. To see this event-handling
for yourself, type an incorrect value into the control and then click outside the
control so it loses focus. You see the control provide a correct value in place
of the one you typed.

Eventually, you need to access the widget’s value to send it to the server
or use it in other ways. This example also creates an event handler for a
<button> control, GetSpinvValue. When a user clicks this button, it dis-
plays the current value.

Using the Tabs widget

Many developers use tabbed interfaces to reduce application complexity.

If you can focus the user’s attention on one item at a time, you reduce the
potential for errant input. This example provides an alternative to the exam-
ple shown in the “Using the Accordion widget” section earlier in this chapter.
As with that example, you begin with a simple function call. (You can find
complete code for this example in the \Chapter 20\Widgets folder of the
downloadable code as Tabs .HTML.)

S (function ()
{
S ("#Configuration") .tabs () ;
1)

The trick for this example is in the HTML tags, just as it was for the
Accordion widget example. There are some important differences in how you
create the two pages to obtain the desired appearance, as shown in the fol-
lowing code:

<form id="ConfigForm" method="get" action="Tabs.html">
<div id="Configuration">

Foreground Color</1li>
Background Color
Options</1li>

<div id="Tabl">
<input id="FGRed"
type="radio"
name="Foreground"
value="Red"
checked="checked" />
<label for="FGRed">Red</label>

More inputs and labels
</div>
<div id="Tab2">
<input id="BGRed"
type="radio"

331

332 Part V: Extending JavaScript Further

name="Background"
value="Red"
checked="checked" />
<label for="BGRed">Red</label>

More inputs and labels
</div>
<div id="Tab3">
<input id="Sounds"
type="checkbox"
name="Sounds"
value="SpecialSounds" />
<label for="Sounds">Use Special Sounds</label>

<input id="Effects"
type="checkbox"
name="Effects"
value="SpecialEffects" />
<label for="Effects">Use Special Effects</label>
</div>
</div>
<input id="ChangeConfig"
type="submit"
value="Change Configuration" />
</form>

Notice that the <h2> elements are gone in this case. Instead of using head-
ings to define the separation between elements, you provide an unordered
list () instead. The list must contain a href to each of the <div> ele-
ments in the page. There isn’t any difference in the page content. Figure 20-6
shows typical output from this example.

1@ Using the Tabs Widget - Mozilla Firefox

o

B SearchEngines WIBA-FMPI

W | Using the Tabs Widget

Figure 20-6:
Tabs focus Foreground Color | Background Color = Options
the user's | | . ’
: @ Re
_attentlon, © Orange
just as the © Glreen
. o B
accordion ue
interface
does.

Effects run amok

There has been a tendency as of late to
overdo all sorts of special interface features.
A designer will choose an artsy font that looks
cute butis nearly impossible for anyone without
perfect vision to read. Certain color combina-
tions that look fine to someone with full color
vision are impossible for someone who has
colorblindness to see. Some graphics actu-
ally interfere with everyone's ability to use the
application — despite adding an interesting
feel. However, the worst of all of the offenses
in modern applications are effects run amok.
The lack of self-control on the part of designer
and developer alike make users wonder what
is happening. A window that appears out of
nowhere and serves no useful purpose except
to annoy the user truly is a form of insanity that
no one needs.

When creating an application, avoid using
effects if possible. When you do use effects,

make sure they serve a useful purpose and that
the user can easily understand the reason for
the effect. For example, a message dialog box
that appears in the upper-right corner of the
display to tell the user that a process, such as
printing, has completed, and then fades from
view after a couple of seconds, is an example of
a useful effect that the user will understand and
appreciate. On the other hand, option boxes
that slide out for no apparent reason and block
the user’s view of the screen are an example
of an annoying effect. Worse still are unhelpful
help dialog boxes that pop up in the middle of
the display to remind the user about the pres-
ence of an application feature that the user is
already using. Often, these dialog boxes don’t
actually tell the user how to use the feature, so
the dialog box doesn’t provide anything the user
doesn't already know.

Chapter 20: Animating the Web 333

To make a change, you click the tab that contains the information you want
to see. You make changes as normal. Clicking the Change Configuration
button sends the changes to the server. If you test this example by using the
same process you did for the accordion example, you get precisely the same
results — only the interface appearance has changed.

Defining the effects

Special effects can add pizzazz to your site. They can turn mundane informa-
tion into something with that special sparkle that people will remember long
after they’ve read the material you provide. Using special effects correctly
can draw the user’s attention to a particular area of the page or help the user
understand a process when using an animated sequence. The point is that
effects are normally an addition to the page, not the main focus of it. Effects
normally don’t present any sort of information, but they can enhance the
impact of information you do present. The following sections describe some
of the more interesting effects that you can create using jQuery UL

334 Part V: Extending JavaScript Further

Creating an animation by manipulating classes
Using CSS classes can have an interesting effect on the presentation of infor-
mation onscreen. jQuery Ul makes it possible to use CSS classes to perform
animations in four different ways:

v Adding a class

v Removing a class

v Switching between classes

v Toggling a class
In all four cases, the effect doesn’t occur immediately — you provide a time
delay to make the transition between presentations slow enough for the user

to see. (You can find complete code for this example in the \Chapter 20\
Animations folder of the downloadable code as ManageClasses.HTML.)

S (function ()

{
S ("#ChangeClass") .click (function ()
{
S ("#SampleText") .addClass (
"Effect", 1500, RemoveClass) ;
return false;
1)
function RemoveClass ()
{
S ("#SampleText") .removeClass (
"Effect", 1500, "easeOutBounce") ;
b7
S("#SwitchClass") .click (function ()
{
S(".Normal") .switchClass (
"Normal", "Effect", 1500, "easeInElastic");
S(".Effect") .switchClass(
"Effect", "Effect2", 1500,
"easeOutElastic") ;
S(".Effect2") .switchClass (
"Effect2", "Normal", 1500,
"easeInOutElastic") ;
return false;
1)
S ("#ToggleClass") .click (function ()
{
S(".Normal") .toggleClass ("Effect", 1500);
return false;
1)

Chapter 20: Animating the Web 335

There are three buttons on the front of the page: Add/Remove Class, Switch
Between Classes, and Toggle Between Classes. Each of these buttons is
assigned an event handler as shown. The RemoveClass () function is a call-
back for the Add/Remove Class button. After the transition for the event han-
dler has ended, the code automatically calls this function.

All of these animations work in precisely the same way — they add or
remove classes to or from the specified element. In this case, a <div> named
SampleText is the target of the animations. The difference between the
method calls is how they perform their task. The addCclass () method per-
forms a straightforward addition of a class. You supply the name of the class
to add as the first argument. If the class already exists for the element, noth-
ing happens. Likewise, the removeClass () method removes the specified
class from the element. Again, you supply the name of the class to remove as
the first argument.

The switchClass () method switches between one class and another. You
can use it to create multiple transitions. For example, this example shows
how to switch between three transitions. The Normal class is replaced with
Effect, Effect is replaced with Effect2, and Effect?2 is replaced with
Normal. Consequently, you see the animations rotate between three classes.
You supply the name of the class to remove as the first argument and the
name of the class to add as the second argument.

The toggleClass () method adds or removes a class depending on whether
the class is assigned to the element. In this case, the code adds Ef fect when
SampleText lacks it and removes Ef fect when SampleText has it applied.
You supply the name of the class to toggle as the first argument.

“&N\BER jQuery Ul can’t animate all styles. For example, there’s a transition between
& having the text left justified and having it centered in this example. This transi-
tion can’t be animated. What you see is that the effect occurs at the end of the
animation. In addition, some effects are animated, but they aren’t animated in
the way you might expect. For example, if an element changes color, the new
color is used throughout the animation, but you see it gradually fade in.

Each of these method calls includes a time delay of 1500 milliseconds. This
value indicates the amount of time in which the animation occurs. The
default setting is 400 milliseconds, which is a little hard for most people to
see. However, this argument is optional, and you don’t have to supply it to
make the method work.

The addclass () method includes another optional argument, a callback
function. The callback function is called when the animation is over. The
example uses the callback function to toggle the effect. However, a callback
could be used for any number of purposes. For example, you could use it to
create a validation sequence to ensure that users enter the correct data for
form fields that have incorrect information.

336 Part V: Extending JavaScript Further

An animation can also use an easing function. This function determines how
the animation appears onscreen. The default setting is to use the swing
easing function, which provides a gentle transition that most users will
appreciate. However, you might want a little more pizzazz or at least a differ-
ent effect. You can see a list of easing functions at http://api.jqueryui.
com/easings. This example uses a number of different easing functions so
that you get an idea of how they work.

Defining a color animation

If you want to perform an actual color animation in your application, you
need to use the animate () method. This method seems to be a work in
progress because the documentation for it isn’t nearly as nice as the other
documentation for jQuery Ul. The method does seem to work for all the
target platforms and browsers for this book, but you’ll want to experiment to
ensure that it will work for every browser you need to target. The color will
actually transition in this case. It’s also possible to control the text colors to
a large degree. The following example shows the most commonly used transi-
tions. (You can find complete code for this example in the \Chapter 20\
Animations folder of the downloadable code as Animate.HTML.)

S (function ()
{
// Track the normal state.
var State = true;

$ ("#ChangeColors") .click(
function()
{
if (State)
{
// Set to the changed state.
S ("#SampleText") .animate (
{
backgroundColor: "#0000ff",
color: "white",
borderColor: "#££0000",
height: 100,
width: 600
}, 1500);
}
else
{
// Set to the normal state.
S ("#SampleText") .animate (
{
backgroundColor: "#7fffff",
color: "black",
borderColor: "#00f££00",
height: 50,
width: 400
}, 1500);

http://api.jqueryui.com/easings/
http://api.jqueryui.com/easings/

Chapter 20: Animating the Web 33 7

3

// Change the state.
State = !State;

})

If you're thinking that this code looks like it works similar to CSS, it does,

but the animate () method provides a significantly reduced list of features
it can change. You can change many features of the text and the container
that holds it, including both the width and height. However, you can’t change
things like the kind of border used to hold everything — even though you
can change the color of the border. The jQuery Ul documentation states that
animate () supports these properties:

V¥ backgroundColor

V¥ borderBottomColor

V¥ borderLeftColor

¥ borderRightColor

V¥ borderTopColor

V¥ color

V¥ columnRuleColor

V¥ outlineColor

V¥ textDecorationColor

V¥ textEmphasisColor
The library-supplied examples (those provided by the vendor on the ven-
dor’s site) show that a few other properties are supported, including width,
height, and borderColor. Use these non-published properties with care.

Even though they work now, they may not be supported in future releases of
the library.

Managing element visibility using effects

Many applications require that you show or hide elements at different points
of application execution. It may be something as simple as not needing the
element at that particular time (such as a progress bar). In most cases, you
simply want the element to go away. Whether the user notices the disappear-
ance is immaterial to the application’s functionality. However, you may want
the user to notice the change in some situations. For example, a user might
select an option that makes other options inaccessible. Using a special effect
to make this more noticeable could be helpful.

338 Part V: Extending JavaScript Further

The jQuery Ul library provides several means of controlling element visibility
in an animated manner. The fact that the element is shown or hidden doesn’t
change, but the way in which the application shows or hides it does. For
example, you could use a slide effect to show that a new element has been
added due to a choice the user has made. There are four main methods of
animating elements by using this technique:

v Use an effect where the element visually changes.

v Show a hidden element by using an effect.

v Hide an element by using an effect.

v Toggle an element’s visibility by using an effect.
The effect that you choose for working with an element controls how jQuery
Ul visually manages it. For example, an explode effect causes the element to
break into pieces, with each piece moving in a different direction off screen.

The following keywords define the sorts of effects that you can use (you
can find additional details at http://api.jqueryui.com/category/

effects):

blind fade scale
bounce fold shake
clip highlight size
drop puff slide
explode pulsate transfer

In addition to the actual effect, you can use an easing function to make the
effect more pronounced or special in other ways. You can see a list of easing
functions at http://api.jgqueryui.com/easings. The following example
shows how to use all four approaches for working with element visibility.
There are actually four buttons used for the example, but element visibility
limits you to seeing just three at a time because you can’t show an element
that’s already visible or hide an element that’s already hidden. (You can find
complete code for this example in the \Chapter 20\Animations folder of
the downloadable code as Visibility.HTML.)

S (function/()

{
// Keep track of the element hidden state.
var Hidden = false;

S("#Effect") .click(
function ()
{
S ("#SampleText") .effect (
"bounce", "easeOutBounce", 1500) ;

1)

$("#Show") .click (

http://api.jqueryui.com/category/effects/
http://api.jqueryui.com/category/effects/
http://api.jqueryui.com/easings/

Chapter 20: Animating the Web 339

function ()

{
Hidden = false;

S("#SampleText") .show (
"slide", 1500, ChangeButtonState) ;
)

$("#Hide") .click (
function()

{

Hidden = true;

S("#SampleText") .hide (
"explode", 1500, ChangeButtonState) ;

)
S ("#Toggle") .click(
function ()
{
Hidden = !Hidden;

S ("#SampleText") . toggle (
"scale", {percent: 0}, 1500,
ChangeButtonState) ;

1)

// Set the button state as needed.
function ChangeButtonState ()

{
if (Hidden)
{
S("#Show") .attr ("hidden", false);
S("#Hide") .attr ("hidden", true);
}
else
{
S("#Show") .attr ("hidden", true);
S("#Hide") .attr ("hidden", false);
}
}

})

The example begins by creating a variable, Hidden, to track the state of the
element. When the element is hidden, the show button is displayed. Likewise,
when the element is displayed, the Hide button is displayed as well. This
functionality is controlled by a callback function, ChangeButtonState ().

The code for the Ef fect button simply performs an effect on the element,
SampleText. In this case, you see the bounce effect. The performance

of this effect is modified by the easeOutBounce easing function, and the
entire animation lasts 1500 milliseconds. The actual visibility is unchanged,
but the user sees an animation of the element onscreen. You could use this

34 0 Part V: Extending JavaScript Further

technique to point out fields that have incorrect information or require addi-
tional information. Of course, you can also use it to perform any other sort of
simple animation desired — including a looped animation, where the anima-
tion is constantly replayed.

The show and Hide button codes work hand-in-hand to hide or display
SampleText. The Show button uses the s1ide effect, and the Hide button
uses the explode effect. Both perform the task over 1500 milliseconds.
Notice that both event handlers set the state of Hidden directly because the
state is an absolute based on the task that the button performs. The event
handlers also provide ChangeButtonState () as a callback function. The
animation calls this function after the animation has completed to set the
button state correctly.

The Toggle button works like a combination of the Show and Hide buttons —
the event handler simply toggles the SampleText visual state. Because the
state isn’t known, the value of Hidden is also toggled. In this case, the event
handler calls the scale effect, which requires an additional argument in the
form of percent. Make sure you check the effects to determine whether they
require additional arguments — most don’t. When the animation completes,
the application calls ChangeButtonState () to reconfigure the user inter-
face as needed.

Canvasing Vour Web Page

HTMLS5 includes the concept of a canvas. As with the artist’s version of the
physical canvas, you use the HTML5 canvas to draw images onscreen. Using
the canvas makes it easier to manage various sorts of drawings that you need
to convey information to the user. The following sections provide additional
details about the canvas from a JavaScript perspective and then demonstrate
how to use the canvas with the Google Maps API to draw a map onscreen.

Understanding what the canvas does

A canvas is simply a drawing area onscreen. To create a canvas, the browser
you interact with must support HTML5. This means that you need to use
newer browser versions, such as Internet Explorer 9.

You also need to have an understanding of the source of the canvas and how
the canvas works with the client’s browser. The canvas relies on an actual
<canvas> tag. To draw something onscreen, you provide an id, a height,
and a width property for the <canvas> tag like this:

<canvas id="MyCanvas"
height=500
width=600 />

Chapter 20: Animating the Web

<MBER
S

The size of the canvas is always in pixels. When you have a canvas to use,
you can create a context to it by obtaining a reference to the canvas ele-
ment and calling getContext () with the type of context you want, such as
2D. The context lets you use various drawing commands to create graphics
onscreen. A discussion of precisely how the canvas works is outside the
scope of this book. You could quite easily create several books on the topic
and not cover the topic thoroughly. A great tutorial on the topic appears at
http://www.htmlS5canvastutorials.com. You could also read HTML5
Canvas For Dummies by Don Cowan (Wiley) for additional information.

The important issue for this chapter is precisely where the canvas comes
from. Most tutorials assume that the client relies on local JavaScript function-
ality to perform the task. A simple application could use this approach, but
most of the applications you'll create will rely on server-based canvases. In
this case, you supply a <div> as a container to hold the <canvas> that the
server sends to the client. The advantage of this approach is that the server
can create a wealth of graphics for the client and send the cached <canvas>
tags to every client that needs them — creating an efficient method for shar-
ing graphics. Many developers find this approach confusing, which is why this
chapter approaches the canvas from the server-based perspective using the
Google Maps APL

Creating a simple Google AP application

This chapter doesn’t provide a detailed look at the Google Maps API, which
is relatively complex. What it does provide is a simple look at something you
could easily expand into a full-fledged application later. Many organizations
use maps for all sorts of interesting purposes. The article at http://blog.
smartbear.com/software-quality/bid/242126/using-the-google-
maps-api-to-add-cool-stuff-to-your-applications provides some
additional ideas on how you can use the Google Maps API with your browser-
based application.

Obtaining a developer key

To use this example, you must obtain a developer key. Google provides two
kinds of keys: paid and free. You need only the free key for this example. The
paid key does provide considerably more flexibility, and you’ll likely need

it for any full-fledged application you create. However, for experimentation
purposes, the free key works just fine. You can obtain this key at https://
developers.google.com/maps/licensing. Make sure you understand the
terms of service fully before you begin working with the Google Maps API. You
can also find some additional assistance in using the Google Maps API with
JavaScript at https://developers.google.com/maps/documentation/
javascript/tutorial.

341

http://www.html5canvastutorials.com/
http://blog.smartbear.com/software-quality/bid/242126/using-the-google-maps-api-to-add-cool-stuff-to-your-applications
http://blog.smartbear.com/software-quality/bid/242126/using-the-google-maps-api-to-add-cool-stuff-to-your-applications
http://blog.smartbear.com/software-quality/bid/242126/using-the-google-maps-api-to-add-cool-stuff-to-your-applications
https://developers.google.com/maps/licensing
https://developers.google.com/maps/licensing
https://developers.google.com/maps/documentation/javascript/tutorial
https://developers.google.com/maps/documentation/javascript/tutorial

34 2 Part V: Extending JavaScript Further

Creating the application

It’s best to create the code for this example in several steps. The first is to
add the usual jQuery references used in the remainder of the chapter. In
addition, you also need to add a reference to the Google Maps API, as shown
here. (You can find complete code for this example in the \Chapter 20\
GoogleAPI folder of the downloadable code as GoogleAPI .HTML.)

<script type="text/javascript"
src="https://maps.googleapis.com/maps/api/js?key=Your Key Here&sensor=false">
</script>

@‘“\NG! This example won’t work at all unless you replace the words, Your Key
S Here, with the key that you receive from Google. Consequently, this particular
step is important because it’s the one step you must perform even if you're
using the code downloaded from the book’s site.

Now that you have all the required references in place, it’s time to create
a canvas to draw the map. The canvas is simply a <div> with an 1d: <div
id="MapCanvas"></div>. You must provide style information that gives
the <div> size or else the map won’t appear onscreen, even when Google
sends it to you. The example uses the following style information:

#MapCanvas
{
height: 90%;
width:100%;
}

In addition to the canvas, the example provides two text boxes for input and
a button that you can use to request a new map. There isn’t anything too
complex about the interface, but it gets the job done. The code for this exam-
ple uses many of the jQuery and jQuery Ul tricks you've already seen in other
places in the book, as shown here:

S (function ()
{
// Track the current latitude using a
// spinner control.
var Latitude = $("#latitude") .spinner (
{

min: -90,
max: 90,
step: .1,

change: function(event, ui)
{
if (Latitude.spinner ("value") < -90)
Latitude.spinner ("value", -90);
if (Latitude.spinner ("value") > 90)
Latitude.spinner ("value", 90);

Chapter 20: Animating the Web 343

)

// Track the current longitude using a
// spinner control.
var Longitude = $("#longitude") .spinner (
{
min: -180,
max: 180,
step: .1,

change: function(event, ui)
{
if (Longitude.spinner ("value") < -180)
Longitude.spinner ("value", -180);
if (Longitude.spinner ("value") > 180)
Longitude.spinner ("value", 180);
}
1)

// This function actually displays the map on
// screen.
function GetMap ()
{
// Create a list of arguments to send to Google.
var MapOptions =
{
center: new google.maps.LatLng (
Latitude.spinner ("value"),
Longitude.spinner ("value")),
zoom: 8,
mapTypeld: google.maps.MapTypeld.ROADMAP
}

// Provide the location to place the map and the
// map options to Google.
var map = new google.maps.Map (
document .getElementById ("MapCanvas") ,
MapOptions) ;
b

// The example provides two methods of getting a
// map: during page loading or by clicking Get Map.
S (window) . load (
function()
{
GetMap () ;
b)) g

S("#submit") .click(
function ()

{
GetMap () ;

1)

344 Part V: Extending JavaScript Further

Figure 20-7:
The exam-
ple can
show any
location for
which you
have a lon-
gitude and
latitude.
|

To make it easier to browse an area, the example provides spinner controls
for the latitude and longitude inputs. These spinners work much like the
spinner example described in the earlier “Using the Spinner widget” sec-
tion of this chapter. However, moving an entire degree at a time wouldn’t
make the application very useful, so the two spinners change the inputs

by a tenth of a degree at a time. (Even this setting may be too large, so you
might want to change it.) Notice the use of the step option to perform

this task. Latitudes range from 90 degrees north to =90 degrees south, so
the example reflects this requirement. Likewise, longitudes range from 180
degrees west to —180 degrees east of Greenwich, England. You can read
more about latitude and longitude at http: //geography.about.com/cs/
latitudelongitude/a/latlong.htm.

The GetMap () function performs the actual task of obtaining the map. To
do this, your application must create a list of map options. The example
shows a simple, but typical, list. The most important of these options is
where to center the map. In this case, the map automatically centers itself on
Milwaukee, Wisconsin, but you can change the settings to any location you
want. The example uses a zoom factor of 8, and you’ll see a road map. The
Google Maps API actually provides a number of map types that you can try.

There are two times when GetMap () is called. When the application loads,
you see Milwaukee, Wisconsin (unless you change the default settings). After
you change the inputs, you can also click Get Map to display a new location.
Figure 20-7 shows typical output from this application.

& Google API Example - Mozilla Firefox
Google API Example
Longitude: | -87,95 Latiude: 43,04 [GstMap
ke SE .
@ Rienford "4 et ego Waniowos | Map | Satellite
) l;: - S\ Oshkosh Ludingion
\ v D = @ Man
Nl . ® = - Nationg
b] @ e aC Sheboygan f
Alto Plymouth L.
Ly : o
asbury L] Poriage &
aboo
W 1 Lake
West Bend
@ (32) Michigan
o @)
b sk or
L L aMequon s on
ESun Prairi [LEREAEIE Glendale ihorton ..
Wi HW Falls’ ™ Shores,
o Brookfield Allendal
o o Gling~ Charter|
Mt Hor r Madison Waukeshas Milwaukee et Towmshi
Stlignton New Berlif | 2
ol Grandy
Frankin °OaKCreek
: Janesile P | aRacine Holland
Wigta M Pleasant
Monroe 12
aKenosha
EcJQ\t
® @ . Machesney McHenry Gumees o\Waukegan -
bt Freeport |gves Parke Park E -
« = . »

http://geography.about.com/cs/latitudelongitude/a/latlong.htm
http://geography.about.com/cs/latitudelongitude/a/latlong.htm

Part Vi
The Part of Tens

the
art of

Enjoy an additional Part of Tens article about ten cool sites you can emulate at

WEb' http://www.dummies.com/extras/html5programmingwith
DU javascript.

http://www.dummies.com/extras/html5programmingwithjavascript
http://www.dummies.com/extras/html5programmingwithjavascript

In this part . . .

Discover techniques for combining elements to create better
user interfaces.

Create a slideshow application you can extend to work in a
number of environments.

Work with both date and time pickers to make it easier to enter
these values correctly.

Consider how applications could possibly change in the future
and what your role in that future development environment
will be.

Chapter 21

Ten Incredible HTML5 and
JavaScript Examples

In This Chapter
Using XML-based menuing systems
Using XML-based tabbed interfaces
Employing slideshows

Creating and using custom spinners

Using a third-party timepicker

Standardizing the appearance of a site by using CSS

Developing a category and detail interface

Working with selectable calendars

Designing a user-configurable interface

Working with surveys

Tlis chapter brings many of the elements in the rest of the book together
into useful pieces that you could combine to create a site of your

own. The examples are short, practical ways to use HTML5 and JavaScript
together to add interest, functionality, and flexibility to any site. The exam-
ples do rely on jQuery (described in Chapter 18) and jQuery Ul (explored in
Chapter 20) to perform tasks, as will most production sites you visit today.
No one wants to reinvent the wheel, so using third-party libraries such as
jQuery and jQuery Ul just makes sense.

If you find that one of the examples doesn’t work directly from the down-
loaded code folder, try placing it on your test server. Many browsers won’t
display information unless it is received from a server. For example, most of
these examples fail in Chrome unless you place them on your test server (see
Chapter 2 for instructions on installing the Apache server). The platform can
make a difference as well. Linux appears to be the pickiest when it comes to
using a test server rather than simply opening the example from the down-
loaded code folder.

348 Partvi: The Part of Tens

Using online resources

This book provides you with a wealth of inter-
esting and useful ideas for working with HTML5
and JavaScript, but it only scratches the surface
of what's possible. Make sure you use online
resources to your benefit. For example, there
are entire sites devoted to helping you find third-
party add-ons for the jQuery Ul library, such as
20 Awesome jQuery Ul Resources (http: //
www . technoread.net/webdesign/
javascript-a-jgquery/item/358-
20-awesome-jquery-ui-resources).
You should also check out 65 Excellent
jQuery Resources (http: //speckyboy.
com/2008/04/02/65-excellent-
jguery-resources-tutorials
cheat-sheetsebooksdemosplugins)
for some outstanding ideas of how to extend
jQuery to meet specific needs. If you want even
more jQuery tutorial type examples, check
out the W3Schools site at http: //www.
w3schools.com/jgquery.

In addition to using online resources to work
with libraries and other tools, there aren’t
any developers who have everything about
HTMLS, CSS, or JavaScript memorized — it's
simply impossible to do so. The best devel-
opers memorize the features they use most
often, and then rely on online references to
fill in the gaps. You can find an HTML5 refer-
enceathttps://developer.mozilla.
org/docs/HTML/HTMLS5, CSS reference at
https://developer.mozilla.org/
docs/CsSs, and JavaScript reference at
https://developer.mozilla.org/
docs/JavaScript/Reference. The
point is, don't try to reinvent the wheel — rely
on online sources to help you find the informa-
tion and resources you need to create amazing
sites in the shortest time possible.

Creating an XML-Based Menu

Many browser-based applications employ menus to make it easier for users
to make selections. Hard-coding these menus may seem like a good idea,

but doing so makes updates more difficult. Using a database or XML file to
hold the menu options makes it possible to update the menus by using a tool
without actually changing the application code. The following example shows
one technique for creating a menu that stores its data in an external XML file.
(You can find complete code for this example in the \Chapter 21\XMLMenu
folder of the downloadable code as XMILMenu . HTML.)

S (function ()
{
S (window) . load (
function ()
{
// Create a connection to the file.
var Connect = new XMLHttpRequest () ;

// Define which file to open and
// send the request.

http://www.technoread.net/webdesign/javascript-a-jquery/item/358-20-awesome-jquery-ui-resources
http://www.technoread.net/webdesign/javascript-a-jquery/item/358-20-awesome-jquery-ui-resources
http://www.technoread.net/webdesign/javascript-a-jquery/item/358-20-awesome-jquery-ui-resources
http://www.technoread.net/webdesign/javascript-a-jquery/item/358-20-awesome-jquery-ui-resources
http://speckyboy.com/2008/04/02/65-excellent-jquery-resources-tutorialscheat-sheetsebooksdemosplugins/
http://speckyboy.com/2008/04/02/65-excellent-jquery-resources-tutorialscheat-sheetsebooksdemosplugins/
http://speckyboy.com/2008/04/02/65-excellent-jquery-resources-tutorialscheat-sheetsebooksdemosplugins/
http://speckyboy.com/2008/04/02/65-excellent-jquery-resources-tutorialscheat-sheetsebooksdemosplugins/
http://www.w3schools.com/jquery/
http://www.w3schools.com/jquery/
https://developer.mozilla.org/docs/HTML/HTML5
https://developer.mozilla.org/docs/HTML/HTML5
https://developer.mozilla.org/docs/CSS
https://developer.mozilla.org/docs/CSS
https://developer.mozilla.org/docs/JavaScript/Reference
https://developer.mozilla.org/docs/JavaScript/Reference

Chapter 21: Ten Incredible HTML5 and JavaScript Examples 34 9

Connect.open ("GET", "XMLMenuData.xml", false);
Connect.setRequestHeader (
"Content-Type", "text/xml");

Connect.send(null) ;

// Place the response in an XML document.
var Response = Connect.responseXML;

// Place the root node in an element.
var MenuEntries = Response.childNodes[0];

// Start at the upper levels and move down.
if (MenuEntries.children.length > 0)
ProcessEntries (MenuEntries.children) ;

// Make the menu entries public.
S ("#Menu") .append (MenuData) ;

// Create the menu onscreen.
S ("#Menu") .menu () ;
}
) 7

var MenuData = "";
function ProcessEntries (Nodes)
{
for (var i = 0; 1 < Nodes.length; i++)
{
// Store the current node and add it
// to the menu.
var ThisNode = Nodes[i];
MenuData +=

"<1li id='" + S$(ThisNode) .attr("id")
+ noa > n +

"<a href='" + $(ThisNode) .attr ("target")
+ noa > " +

S (ThisNode) .attr ("caption") + "";

// Check for submenus and process them.
if (ThisNode.children.length > 0)

MenuData += "";
ProcessEntries (ThisNode.children) ;
MenuData += "";

}

// End the current node.
MenuData += "";

350 Partvi: The Part of Tens

Figure 21-1:
This
dynamic
menu can
change
without
changing
the underly-
ing code.
|

// Return to the caller.
return;

1)

The (window) .load () event handler looks like it contains a lot of code, but
you've already worked through quite a bit of it in the section on loading XML
with JavaScript in Chapter 16. Instead of loading a customer data file, the exam-
ple loads menu entries. After the code loads the menu entries, it processes
them into the HTML unordered list format required to create a menu. You can
see typical source code for such a menu at http://jqueryui.com/menu.

In fact, the HTML isn’t much different from the menu demonstrated in the
section on creating JavaScript-based menus in Chapter 13. After creating the
unordered list dynamically, the code appends it to a element, Menu, and
turns Menu into a jQuery Ul menu by calling menu () . Typical output from this
example looks like the menu in Figure 21-1.

@ XML-based Menu Example - Mozilla Firefox

XML-based Menu Example

Home

Products * | Widgets ’

About * | Gizmos > | Gizmo 1
Gizmo 2 {b
Gizmo 3

file:///C:/0280 - Source Code/Chapter 21/XMLMenu.html#

The secret to this menuing system is the recursive function, Process
Entries (). This function creates the unordered list content dynamically

by parsing the XML entries that you provide. It doesn’t matter what the

XML contains, as long as the entries are formatted correctly. Each list entry
appears within an <1i> tag that includes an id attribute. You use the id to
enable or disable menu entries as needed later. The tag content consists of
an <a> tag with an href attribute that points to the location where the menu
will take the user when clicked. The only part the user sees is the caption
attribute of the XML entry.

http://jqueryui.com/menu/

Chapter 21: Ten Incredible HTML5 and JavaScript Examples 35 ’

Recursion occurs when the XML entry contains children, or submenus. When
the current node contains children, the ThisNode.children.length prop-
erty is greater than 0, and the code calls ProcessEntries () recursively
with the children of the current node. Because of the way that this feature

is constructed, you can create menus of any depth without special program-
ming as long as the host system has the required resources.

The XML file must be constructed in a specific way to work with the example.
The elements must appear in the order you want them presented onscreen,
and submenus must appear nested appropriately within their parent menus,
as shown here:

<?xml version="1.0" encoding="UTF-8"?>
<Menu>
<Entry id="Home"
caption="Home"
target="#" />
<Entry id="Products"
caption="Products"
target="#">
<Entry id="ProductsWidgets"
caption="Widgets"
target="#">
<Entry id="ProductsWidgetsl"
caption="Widget 1"
target="#" />
<Entry id="ProductsWidgets2"
caption="Widget 2"
target="#" />
</Entry>
<Entry id="ProductsGizmos"
caption="Gizmos"
target="#">
<Entry id="ProductsGizmosl"
caption="Gizmo 1"
target="#" />
<Entry id="ProductsGizmos2"
caption="Gizmo 2"
target="#" />
<Entry id="ProductsGizmos3"
caption="Gizmo 3"
target="#" />
</Entry>
</Entry>
<Entry id="About"
caption="About"
target="#">
<Entry id="AboutLocation"
caption="Location"

352 Partvi: The Part of Tens

target="#" />

<Entry id="AboutContact"
caption="Contact Us"
target="#" />

<Entry id="AboutSupport"
caption="Customer Support"
target="#" />

</Entry>
</Menu>

This XML contains all the menu entries for the example. As you can see, there
is nothing to differentiate the menu entries except their position in the hier-
archy. This generic method of laying out the menu makes it possible to move
menu elements around as needed without having to change anything except
the entry’s position. Every entry must include the id, caption, and target
attributes shown. The target always points to the location where the user
goes when the menu entry is clicked.

Creating an XML-Based Tabbed Interface

It’s possible to use XML files (or databases) to hold just about anything
related to a browser-based application. In this example, you see how to
create a jQuery Ul tabbed interface by using data stored in an XML file.
However, this example incorporates a major difference from the previous
XML example — it relies on jQuery to get the XML file rather than relying

on handwritten code to perform the task (as is shown in the example in the
preceding section). The code is shorter; somewhat easier to understand; and,
most important of all, more likely to work with browsers that you didn’t origi-
nally test as part of the initial application design. The following code shows
the jQuery method of creating a tabbed interface. (You can find complete
code for this example in the \Chapter 21\XMLTab folder of the download-
able code as XML Tab . HTML.)

$ (function()
{
// Create variables to hold temporary data.
var TabHeads = " ",
var TabContent = "";

// Obtain the XML data file and process it.
S.get ("XMLTabData.xml", function (data)
{
// Locate each Heading entry and use it to
// create a tab heading.

Chapter 21: Ten Incredible HTML5 and JavaScript Examples 353

S (data) .find ("Heading") .each (function ()

{
TabHeads +=
"<a href='" +
S (this) .attr("href") +
"'>" + S (this).attr("caption") +
"</1li>";
) g

// Append the data to the heading area.
S ("#Headings") .append (TabHeads) ;

// Locate each Content entry and use it to
// create the tab content.
S (data) .find("Content") .each (function ()

{
TabContent +=
"<div id='" + $(this).attr("id") +
">t 4+ $S(this).text() + "</div>";
) g

// Append the data to the tab content area.
S ("#Tabs") .append (TabContent) ;

// Complete the process by displaying the
// tabs.
S("#Tabs") .tabs () ;
1)
)

This example isn’t doing anything radically new. It’s still retrieving and pars-
ing an XML file — it just makes jQuery perform all the heavy lifting. The

get () method obtains the XML file, XMI.TabData . XML, and places the con-
tent in data. The function is executed when the data retrieval is complete, so
it acts as a callback for an asynchronous data read.

Parsing the file is as easy as asking jQuery to use £ind () to locate something
in the XML file. Here is the XML file used for this example:

<?xml version="1.0" encoding="UTF-8"?>
<Tabs>
<TabData>
<Heading id="Tabl"
href="#Tabsl"
caption="Tab 1" />
<Heading id="Tab2"
href="#Tabs2"
caption="Tab 2" />

354 Partvi: The Part of Tens

<Heading id="Tab3"
href="#Tabs3"
caption="Tab 3" />
</TabData>
<TabContent>
<Content id="Tabsl">
This is some content for Tab 1.
</Content>
<Content id="Tabs2">
This is some content for Tab 2.
</Content>
<Content id="Tabs3">
This is some content for Tab 3.
</Content>
</TabContent>
</Tabs>

All of the heading information appears within the <Heading> elements.

So, the code asks jQuery to £ind () each of the <Heading> elements and
process them one at a time using the each () method. The each () method
creates a loop that automatically provides access to individual <Heading>
elements through the this variable. Tab headings are stored in an unor-
dered list (), Headings, that is already part of the HTML for the exam-

ple page.
“&N\BEI? The content for each tab appears in <div> elements that are appended after
& the element, Headings. The content could be anything — including

controls as used for the previous tabbed interface example demonstrated in
the section on using the Tabs widget in Chapter 20. The most important issue
to consider is how to store information in the XML file. You escape any tags so
that they’re not misinterpreted as XML elements. (See Chapter 16 for a table of
typical replacement characters.)

As with the headings, the code uses £find () to locate each of the <Content>
elements in the XML file and convert them to the HTML required to create
the tab content. The each () method creates the loop used to process each
element one at a time. Figure 21-2 show typical output from this example.

Chapter 21: Ten Incredible HTML5 and JavaScript Examples 355

@ XML-based Tabbed Interface Example - Mozilla Firefox
File Edit Wiew Fﬁét?w'gookmarks (Tools Help
S i :

Figure 212 | XML-based Tabbed Interface Example

Dynamic tab
configura- | '\ 254 | Tab2 Tab3
tion Is just : ;
as easy as This is some content for Tab 1.
creating
dynamic
menus.
|

Displaying a Slideshow

Slideshows have become a method for doing everything from displaying pic-
tures to describing processes to advertising. You find slideshows all over the
place for good reason — graphics can communicate in ways that words can’t.
No one is quite sure who said, “A picture is worth a thousand words” (although
you can get some ideas at http: //www.phrases.org.uk/meanings/
a-picture-is-worth-a-thousand-words.html), but the phrase certainly
holds true. The right graphic says quite a lot to the right person.

It shouldn’t be too surprising to find that jQuery aficionados have created

a host of slideshow add-ins to make working with slideshows significantly
easier. The example in this section relies on an easy-to-use plug-in from
SlidesJS (http://www.slidesjs.com). To use the plug-in with your own
code, you need to download a copy of the current product from the devel-
oper’s site. However, this plug-in is just the tip of the iceberg. You can find
20 interesting slideshow plug-ins on the Vandelay Design site at http://
vandelaydesign.com/blog/web-development/jquery-slideshow.
There are 25 plug-ins described on the Webdesigner Depot site at http://
www . webdesignerdepot.com/2011/08/25-jquery-image-galleries-
and-slideshow-plug-ins. These are just some of the slideshow plug-ins
available for jQuery, which is just one of many JavaScript libraries. In short,
slideshows are important enough to warrant all sorts of attention.

http://www.phrases.org.uk/meanings/a-picture-is-worth-a-thousand-words.html
http://www.phrases.org.uk/meanings/a-picture-is-worth-a-thousand-words.html
http://www.slidesjs.com/
http://vandelaydesign.com/blog/web-development/jquery-slideshow/
http://vandelaydesign.com/blog/web-development/jquery-slideshow/
http://www.webdesignerdepot.com/2011/08/25-jquery-image-galleries-and-slideshow-plugins/
http://www.webdesignerdepot.com/2011/08/25-jquery-image-galleries-and-slideshow-plugins/
http://www.webdesignerdepot.com/2011/08/25-jquery-image-galleries-and-slideshow-plugins/

350 Partvi: The Part of Tens

This example helps you create a slideshow using five images and the SlideJS
plug-in for jQuery. Make sure you download SlideJS by clicking Download

on the host site described in the first paragraph, unarchive the downloaded
.z1p file, and place the slides.jquery.Js file found in the \s1lides\
Slides\source folder in the \Chapter 21\Slideshow folder of the down-
loadable source code. You also need to copy the global.Css file found in
the \slides\Slides\examples\Standard\css to the example directory.
These references incorporate the files into the example:

<link rel="stylesheet" href="global.css">
<script src="slides.min.jquery.js"></script>

The following code shows the HTML for this example. (You can find complete
code for this example in the \Chapter 21\Slideshow folder of the down-
loadable code as S1ideshow.HTML.)

<div id="container">
<div id="example">
<div id="slides">
<div class="slides_container">

<img src="CactusBlossom.jpg"
width="600"
height="450" />

<img src="FirstSnow.jpg"
width="600"
height="450" />

<img src="MountainView.jpg"
width="600"
height="450" />

<img src="NankingCherry.jpg"
width="600"
height="450" />

<img src="SquashHarvest.jpg"
width="600"
height="450" />
</div>
</div>
</div>
</div>

The organization of the HTML is important because the plug-in expects to
see certain elements in certain places and with specific names. You can
overcome many of these issues by modifying the global . CSs file, but the

Chapter 21: Ten Incredible HTML5 and JavaScript Examples

best option is to simply use the author’s naming scheme in your own code.
The HTML shown here is extremely simplified from the samples that come
with the product. Consider this a “Hello World” sort of example — it shows
the simplest implementation you can create. The SlidesJS plug-in provides
considerable flexibility in displaying the slideshow, which is one reason you
want to try this plug-in for your application.

The default CSS for the plug-in does create a few problems, and the author
documents several places in global.CSS where you need to make changes.
For example, you need to modify the styles to accommodate the size of your
pictures. Rather than actually change the global . CSs file, this example
places the changes directly in the S1ideshow.HTML file like this:

<style>
.slides_container
{
width: 600px;
}

.slides_container a
{
width: 600px;
height: 450px;
}

#slides .prev

{

font-size: medium;

}

#slides .next

{
left: 615px;
font-size: medium;

}

hil

{
font-size: 20px;
font-family: serif;
text-align: center;

}

</style>

The main purpose for these changes is to make the output a little more read-
able and accommodate the size of the pictures. The actual code used to make
the example work is short. Here is all you need to display the pictures in a
slideshow format:

357

358 Partvi: The Part of Tens

Figure 21-3:
Slideshows
can help
you convey
all sorts of
information
by using
graphics.

S (function ()
{
S("#slides") .slides (
{

generateNextPrev: true,
)
)

The generateNextPrev option tells the plug-in to add Next and Prev but-
tons to the output. You can also use graphic buttons if desired. There are

all sorts of options you can use, but they’re all optional. However, you must
provide some method for moving between pictures, and adding the Next and
Prev buttons is the simplest way to accomplish this task. Figure 21-3 shows
the output from this example.

(@) Creating a Slideshow using Slides)S - Mozilla Firefox

Next

Employing Custom Spinners

All the jQuery Ul widgets lend themselves to customization. Most of the
changes you make deal with using built-in features correctly. You can also
work with the CSS that jQuery Ul employs to format the widgets to produce

Chapter 21: Ten Incredible HTML5 and JavaScript Examples 359

special effects. Of course, if nothing else, you can always use JavaScript

to modify the actual widget behavior as needed. The point is that you can
change widgets, such as Spinner, to meet specific needs without having

to reinvent the wheel. The modifications are usually short and easy to do,
which means you don’t have to start from scratch with an idea you have to
code by hand.

Spinners are popular because you can use them to control user input in

a number of ways. The idea is to provide control for data that is normally
variable, so you can’t use something like a drop-down list. One of the most
interesting uses of spinners is shown on the Ben Knows Code site at http://
benknowscode.wordpress.com/2012/10/18/exploring-the-new-
jquery-ui-spinner-beyond-the-basics. In this case, the author shows
how to perform tasks such as moving the location of the arrows and creating
an alphabetical spinner.

Spinners normally deal with numeric input. However, you might have a need
for alphabetic input instead. To create an alphabetic input, you need to give
the appearance of letters without actually using letters, because the Spinner
widget works only with numbers. (You can find complete code for this
example in the \Chapter 21\Spinner folder of the downloadable code as
Spinner.HTML.)

S (function ()

{

var CurrentValue = 65;

var ThisSpinner = $("#Spinner") .spinner (
{
// Set the minimum to the code for A
// and the maximum to the code for Z.
min: 65,
max: 90,

// When the user starts to spin the spinner,
// convert the value to a number and hide the
// text from view.
start: function(ui, event)
{
ThisSpinner.spinner ("value", CurrentValue);
S ("#Spinner") .css("color", "white");

3,

// When the user stops spinning the spinner,
// save the numeric value, convert it to a
// letter and display the text onscreen.
stop: function(ui, event)

{

http://benknowscode.wordpress.com/2012/10/18/exploring-the-new-jquery-ui-spinner-beyond-the-basics/
http://benknowscode.wordpress.com/2012/10/18/exploring-the-new-jquery-ui-spinner-beyond-the-basics/
http://benknowscode.wordpress.com/2012/10/18/exploring-the-new-jquery-ui-spinner-beyond-the-basics/

360 Partvi:The Part of Tens

CurrentValue =
ThisSpinner.spinner ("value") ;

ThisSpinner.spinner ("value",
String. fromCharCode (CurrentvValue)) ;

S("#Spinner") .css("color", "green");

}
1)
)

The code begins by creating a variable, Currentvalue, that tracks the
numeric value of the spinner. The value, 65, is the numeric equivalent of the
letter A. So, the spinner starts with a value of 2, but it stores this value as the
number 65.

Creating the spinner, ThisSpinner, comes next. You must set minimum and
maximum values that reflect the numeric values of A and Z. This same tech-
nique can work for any series of letters. You could just as easily use lower-
case letters, if desired. For that matter, any series will work, including special
characters. It’s even possible to use this approach for enumerated values.

The simplest approach provides handlers for the start and stop events. When
the user clicks one of the two arrows, it starts a spin event. The change occurs,
and then the spin stops. For the spinner to work correctly, the value attribute
must contain a numeric value. The code sets value to Currentvalue, which is
the code that equates to the currently selected letter. However, at this point, you
can see the numeric value as text in the spinner, which is distracting. To keep
this from happening, the event handler also sets the text color to white, so the
user can’t actually see the text onscreen.

The stop event handler stores the new spinner value in Currentvalue. It
then converts the numeric value from a number, such as 65, to a letter, such
as A. The code then changes the text color to green so the user can see the
letter onscreen.

This example also changes a few of the widget styles. These styles are listed
as part of the jQuery UI CSS file at http://code.jquery.com/ui/1.9.2/
themes/base/jguery-ui.css. In this case, you don’t want the user to be
able to type more than one character, so the width of the widget is changed
to accept just one letter. In addition, the text color is changed to green, as
shown here:

http://code.jquery.com/ui/1.9.2/themes/base/jquery-ui.css
http://code.jquery.com/ui/1.9.2/themes/base/jquery-ui.css

Chapter 21: Ten Incredible HTML5 and JavaScript Examples 36 ’

.ui-spinner
{

width: 45px;
}

.ui-spinner-input
{
color: green;

}

Using a combination of events and CSS lets you create all sorts of custom
effects with any of the jQuery Ul widgets. All you need to do is experiment a
little to create some really interesting output.

Working with Timepickers

Users need to enter time values as well as date values. The jQuery Ul
library comes with a Datepicker widget (see http://jqueryui.com/
datepicker), which is fine but not quite enough for modern applications.
Fortunately, there is a solution in the form of a third-party plug-in on the
Trent Richardson site at http://trentrichardson.com/examples/
timepicker. To use this plug-in, you add the following reference to your
code. (You can find complete code for this example in the \Chapter 21\
Timepicker folder of the downloadable code as Timepicker .HTML.)

<script
src="http://trentrichardson.com/examples/timepicker/jquery-ui-timepicker-
addon.js">
</script>

All you need to do is add a simple <input> tag to your code and provide
an id value for it. This widget has a number of forms. For example, you can
request both a date and time if desired. The simplest form is to request the
time by using the following code:

S (function ()

{
S("#TimeSet") .timepicker () ;

})

http://jqueryui.com/datepicker/
http://jqueryui.com/datepicker/
http://trentrichardson.com/examples/timepicker/
http://trentrichardson.com/examples/timepicker/

362 Partvi: The Part of Tens

Figure 21-4:
Users

now have

an easy
method for
adding time
values to
forms.
|

As with most widgets, you can configure the Timepicker using various
options, which are considerable. There aren’t any events to handle except
those that are provided by jQuery Ul natively. The default settings present a
24-hour clock, but you can override the presentation and use a 12-hour clock
if desired. Figure 21-4 shows typical output from this example.

@ Using the TimePicker Plugin - Mozilla Firefox

Using the TimePicker Plugin

Enter a time value: 08:07
Choose Time
Time
08:07
Hour

Minute

Now

Done

Creating a Standardized Look with CSS

Hand-coding the design for your site is a perfect way to create inconsisten-
cies that will drive your users crazy. Unfortunately, not everyone is an artist
or has the aesthetic sense of a designer. You may find that you require help
with creating a good look for your site. Using any of the publicly available
CSS samples can help you create a standardized look. It’s easy to customize
these samples to meet your specific needs. Add a few graphics of your own
(or mix and match those you find in the public domain online), and the site
looks completely customized.

The following list of sites can provide you with a great start toward creat-
ing a standardized look (you can also perform a search online for “free CSS3

Chapter 21: Ten Incredible HTML5 and JavaScript Examples 363

templates” to find more ideas). (Some of these suggestions are free — others
require a payment of some type.)

v Blueprint: http://www.blueprintcss.org

v+ Dynamic Drive CSS Library: http: //www.dynamicdrive.com/style
v Free CSS: http://www.free-css.com

v Free CSS Templates: http: //www. freecsstemplates.org

v Malo: http://code.google.com/p/malo

v templatemo.com: http: //www. templatemo.com

v templateworld: http: //www. templateworld.com/
free_templates.html

v» YUL: http://yuilibrary.com/yui/docs/cssgrids

In addition to actual CSS style sites, it pays to visit sites that provide access

to tools for generating CSS and associated HTML5 code. For example, you

find a list of such tools on the Smashing Magazine site at http://coding.
smashingmagazine.com/2011/06/10/useful-html-css-and-java
script-tools-and-libraries. It’s also possible to create a custom form
of the jQuery Ul interface for your particular needs using the ThemeRoller tool
at http://jqueryui.com/themeroller. Simply configure the interface as
you want it to appear and download the custom version of jQuery Ul for your
site. Adobe also provides a number of interesting tools and services on the
Edge Tools and Services site at http://html .adobe.com/edge/.

Displaying a Category
and Detail Data View

There are many situations where you need to provide a master/detail view.
Of course, the most common use for such a view is in database applications
where you present data such as the orders associated with a particular
client. The view is used in many other places though. The Windows Explorer
application uses a master/detail view in presenting the folder hierarchy in
one pane and the content of the select folder in the other. The example appli-
cation shows categorized data and the details of that data. Like every other
master/detail view you’'ve ever seen, the categories and their associated
content appear in the left pane and the selected item in the right, as shown in
Figure 21-5.

http://www.blueprintcss.org/
http://www.dynamicdrive.com/style/
http://www.free-css.com/
http://www.freecsstemplates.org/
http://code.google.com/p/malo/
http://www.templatemo.com/
http://www.templateworld.com/free_templates.html
http://www.templateworld.com/free_templates.html
http://yuilibrary.com/yui/docs/cssgrids/
http://coding.smashingmagazine.com/2011/06/10/useful-html-css-and-javascript-tools-and-libraries/
http://coding.smashingmagazine.com/2011/06/10/useful-html-css-and-javascript-tools-and-libraries/
http://coding.smashingmagazine.com/2011/06/10/useful-html-css-and-javascript-tools-and-libraries/
http://jqueryui.com/themeroller/
http://html.adobe.com/edge/

364 Partvi: The Part of Tens

1@ Creating 2 Category/Detail View - Mozilla Firefox
File Edit View History Boo

[C] a 9

B nce [Search Engines WIBA-FM Player

[Crenting = Cotegory/Detan View |

~ Flowers

Cactus

Nanking Cherry

Figure 21-5:
A category/
detail view
provides

a useful
method of
presenting
information
to the user.
|

» Seasons

» Gardening

What you’re actually seeing here is a combination of the jQuery Ul Accordion
widget and the Selectable interaction — both of which are discussed in
Chapter 20. The following code shows how to create the HTML for the left
pane shown in Figure 21-5. (You can find complete code for this example in
the \Chapter 21\CategoryDetail folder of the downloadable code as
CategoryDetail .HTML.)

<div id="Categories">
<h2>Flowers</h2>
<div>
<ol id="FlowerSelect" class="Selections">
<1li id="Cactus">Cactus</1li>
<1li id="Nanking">Nanking Cherry</1li>

</div>
<h2>Seasons</h2>
<div>
<ol id="SeasonSelect" class="Selections">
<1li id="Nanking">Nanking Cherry</1li>
<1li id="Mountain">Mountain View
<1li id="Harvest">Squash Harvest
<li id="Snow">First Snow

</div>
<h2>Gardening</h2>

Chapter 21: Ten Incredible HTML5 and JavaScript Examples 365

<div>
<ol id="SeasonSelect" class="Selections">
<1li id="Nanking">Nanking Cherry</1li>
<li id="Harvest">Squash Harvest

</div>
</div>

The right pane consists of a <div> and combination. The <div> has
an id of DrawingContainer, whereas the has an id of Drawing.
Normally, these components would appear one over the other. You need to
create some CSS in order to obtain the required appearance. Here is the CSS
for this example:

<style>
hl
{

text-align: center;

}
#Categories
{
width: 220px;
}

.Selections .ui-selected
{
background: blue;
color: white;

}
.Selections
{
margin: 0;
padding: 0;
width: 150px;
list-style-type: none;
}

#DrawingContainer

{
width: 533px;
height: 400px;
border: solid;
position: absolute;
left: 250px;
top: 80px;

366 Part VI: The Part of Tens

#Drawing
{
width: 523px;
height: 390px;
margin: 5px;
}
</style>

Notice that the width of Categories is such that the DrawingContainer
can appear to the right of it. The Selections are set up to fit fully in
Categories. When setting the width of Selections, you must account for
the indent that jQuery Ul automatically provides as part of the Accordion
widget. The most important part of the DrawingContainer setup is the left
setting, which must be configured to accommodate the Accordion widget
to the left of it. The size of Drawing is such that the application can maintain
the aspect ratio of the images it will display. With some additional work, you
could allow for images of multiple sizes to fit easily within the space — the
example images are all the same size.

The example requires surprisingly little code to perform its work. That’s
because jQuery Ul does most of the heavy lifting for you. The act of display-
ing the image is surprisingly easy because of the way the tag work.
Here is all the code you need to make this example work:

S (function()
{
// Create an Accordion as a means to
// organize the data.
S ("#Categories") .accordion() ;

// Choose a particular image based on the
// user's selection. Display it using the
// src attribute of the tag.
S(".Selections") .selectable (
{
selected: function(event, ui)
{
switch (ui.selected.id)
{
case "Cactus":
S ("#Drawing") .attr (
"src", "CactusBlossom.jpg");
break;
case "Nanking":
S ("#Drawing") .attr (
"src", "NankingCherry.jpg");
break;

Chapter 21: Ten Incredible HTML5 and JavaScript Examples 36 7

case "Mountain":
S ("#Drawing") .attr (
"src", "MountainView.Jjpg") ;
break;
case "Harvest'":
S ("#Drawing") .attr (
"src", "SquashHarvest.jpg");
break;
case "Snow":
S ("#Drawing") .attr (
"src", "FirstSnow.jpg") ;
break;

}
});
});

A production application might perform some additional work with the input
handling, but testing will show you that the application is fully functional
now, and there is little the user can do to cause the application to crash.

The trick is in the ui . selected. id. Each of the selections has a unique id
value that the switch statement can capture. All that you need to do then is
modify the src attribute of the tag to match the desired drawing.

Selecting Data Using a Calendar

Calendars are an essential part of daily living. Everyone uses them for various
purposes. It’s not just a matter of keeping track of appointments — calendars
are used for all sorts of other date-related uses. For example, most blogs
include a calendar where you can choose from posts made during a specific
timeframe.

It’s entirely possible that someone could write a short book on calendar
usage in applications. When it comes to JavaScript-compatible calendars,
most developers would probably start with an event-based calendar such

as Full Calendar (http://arshaw.com/fullcalendar). However, you
should keep your options open. The list of 35 different calendar plug-ins
found on the Tripwire Magazine site at http: //www.tripwiremagazine.
com/2012/11/jquery-calendar-date-pickers.html is only the tip
of the iceberg. There are literally hundreds of different calendar plug-ins you
could use for your application. The example in this section relies on the Date
Picker jQuery plug-in found at http: //www.eyecon.ro/datepicker. It’s
a simple plug-in that you can use for something like a blog to choose content
based on the date it was produced.

http://arshaw.com/fullcalendar/
http://www.tripwiremagazine.com/2012/11/jquery-calendar-date-pickers.html
http://www.tripwiremagazine.com/2012/11/jquery-calendar-date-pickers.html
http://www.eyecon.ro/datepicker/

368 Partvi: The Part of Tens

To start this example, download the Date Picker plug-in and place the
datepicker.CSS and datepicker.Js files in the downloaded source
code folder. Before you can use the Date Picker jQuery plug-in, you need
to add some references for it to your page. The following code adds the
correct references. (You can find complete code for this example in the
\Chapter 21\CalendarSelect folder of the downloadable code as
CalendarSelect.HTML.)

<link rel="stylesheet"
media="screen"
type="text/css"
href="datepicker.css" />
<script type="text/javascript"
src="datepicker.js"></script>

The Date Picker plug-in is quite flexible. For example, you can set it to

allow single or multiple date selections. The default is to use multiple

dates. You can also choose features such as the starting day of the week.
The full set of options and events appears at http: //www.eyecon.ro/
datepicker/#implement. The calendar appears as part of a container tag,
such as <div>, , or <p>. Here is the code used to create the calendar
for this example:

S (function/()
{
S ("#DateSelect") .DatePicker (
{

// Set the initial configuration.
flat: true,
date: "2013-03-01",
current: "2013-03-01",
calendars: 1,
starts: O,

// Process date changes.
onChange: function (formatted, dates)
{
// Display the selected date.
S("#SelectedDate") . text (
dates.toDateString()) ;

// Display a thought for the day.
switch (dates.toDateString())
{
case "Fri Mar 01 2013":
S ("#Thought") . text ("Thought One") ;
break;
case "Mon Mar 04 2013":
S ("#Thought") . text ("Thought Two") ;

http://www.eyecon.ro/datepicker/%23implement
http://www.eyecon.ro/datepicker/%23implement

Chapter 21: Ten Incredible HTML5 and JavaScript Examples 369

break;

case "Tue Mar 05 2013":
S ("#Thought") . text ("Thought Three") ;
break;

default:
S ("#Thought") . text ("No Thought") ;
break;

}
1)
1)

In this case, the calendar is set up to present the days in the current month,
with Sunday as the starting day of the week. It displays only one calendar at a
time, and the selected date is 1 March 2013.

The important event to handle is onChange (). This event is fired whenever
the user chooses another date. The event handler receives a Boolean value,
formatted, that defines whether the dates are formatted in some way.

The dates argument contains a single date, when the calendar is in single-
selection mode, or a date array, when the calendar is in multiple-selection
mode. The example displays the selected date, along with a string selected
by certain dates. You can change this code to match any selection require-
ment you might have. Figure 21-6 shows typical output from this example.

Using Calendars to Select Data

Choose a Highlighted Date:

Figure 21-6:
Use a
calendar to
help users
visualize
date-oriented Thought One
information
choices.
|

Fri Mar 01 2013

370 Partvi: The Part of Tens

Developing a User-Configurable Interface

WMBER
“&
&

jQuery Ul provides a number of methods for creating a user-configurable
interface. The draggable interaction, demonstrated in the example of drag-
ging content in Chapter 20, is the best place to begin. After a user drags an
interface component from one location to another, you can store the user’s
choices in a cookie (as demonstrated in the section on using cookies in
Chapter 15). Using just these two techniques together would allow you to
create a basic user-configurable interface.

Most developers don’t have time or resources to write a user-configurable
interface completely from scratch. The best approach is to locate a third-
party library, preferably one that’s free, that meets your specific needs. Of
course, you need to perform some configuration to get the look you want, but
the basic library should provide most of what you need. Fortunately, there
are many libraries and templates available to make your job easier. The fol-
lowing list tells you about a few of the more common and usable libraries and
templates available (although, there are many others):

v Alloy ULt http://www.liferay.com/community/liferay-
projects/alloy-ui/overview

v Dijit (based on dojo): http://dojotoolkit.org/reference-
guide/1.8/dijit/index.html

v JxLib: http://jx1ib.org
v LivePipe UL: http://livepipe.net
v script.aculo.us: http: //script.aculo.us

v Sigma AJAX Ul Builder: http://sourceforge.net/projects/
ajaxuibuilder

v UKIL: http://blog.ukijs.org/

v xui: http://xuijs.com
It’s important to remember that hand-writing JavaScript code is necessary
only when you need particular effects. Many developers rough out their
designs by using a Content Management System (CMS). A CMS provides a
word processor-like interface for creating content online. They were initially
used to create blog posts, but many developers have turned to them for site
content as well. The three most popular CMSs are

v Drupal: http://drupal.org

v Joomla!: http://www.joomla.org

v WordPress: http: //wordpress.org

http://www.liferay.com/community/liferay-projects/alloy-ui/overview
http://www.liferay.com/community/liferay-projects/alloy-ui/overview
http://dojotoolkit.org/reference-guide/1.8/dijit/index.html
http://dojotoolkit.org/reference-guide/1.8/dijit/index.html
http://jxlib.org/
http://livepipe.net/
http://script.aculo.us/
http://sourceforge.net/projects/ajaxuibuilder/
http://sourceforge.net/projects/ajaxuibuilder/
http://blog.ukijs.org/
http://xuijs.com/
http://drupal.org/
http://www.joomla.org/
http://wordpress.org/

Chapter 21: Ten Incredible HTML5 and JavaScript Examples

Devising a Simple Survey Form

Most sites include a number of forms. You find forms used for contact infor-
mation, surveys, sales, and a host of other tasks. A form provides a means for
two-way communication between the user and the site owner.

As with many other JavaScript programming requirements, you can find third-
party products to help you create surveys. For example, The Wufoo Form
Gallery (http://www.wufoo.com/gallery/templates/surveys/
market-research-survey) contains a number of templates focused on
market research.

Developers make more work for themselves than necessary when creat-

ing forms by using text boxes instead of other controls. Whenever possible,
reduce the risk of incorrect entries by users by limiting the user’s choices to
specific answers. Using controls with predetermined values (check boxes,
option [radio] buttons, drop-down lists, and many others described in this
book) is always a better choice than using a text box. When you must use a
text box, make sure you use features such as maxlength to reduce the poten-
tial for security issues.

The simple survey for this example asks four questions: name, age, gender,
and reason for visit. The point of this example is the technique rather than
creating something fancy. Except for the name, the other three inputs use
controls that strictly control user input so there isn’t any chance of getting
incorrect information from a type perspective. Of course, the user can still
choose to use options that don’t reflect real-world values. The following code
shows how to submit the form by using jQuery syntax. (You can find com-
plete code for this example in the \Chapter 21\Survey folder of the down-
loadable code as Survey .HTML.)

$ (function ()
{
// Submit the form.
S("#Submit") .click (function/()
{
S("#Test") .submit (
function ()
{
// Verify that the name field
// contains information.
if (S ("#Name") .val () .length == 0)
{
alert ("You must provide a name!");
return false;

371

http://www.wufoo.com/gallery/templates/surveys/market-research-survey/
http://www.wufoo.com/gallery/templates/surveys/market-research-survey/

372 Partvi: The Part of Tens

Figure 21-7:
A simple
form used

to provide
feedback on
a site.
|

// If the name field contains data,
// allow the submission.
return true;
)
)
});

Notice that the example still validates the Name field to ensure that the user
has typed a value. The Name field is also length limited. You could possibly
verify that the user hasn’t typed numbers or special characters. However,
at some point, you simply can’t add any more validation and must deal with
incorrect entries should the user want to make them. Figure 21-7 shows how
this form appears.

@ Simple Survey - Mozilla Firefox
'}@ Edit View History Eomgks Teols Hélp \

P

N\)
& 2 O A3

8 simple Surves

Simple Survey

Name: Type Your Name

Age: <20 -

Gender: ©'Male ©) Female @ Rather Not Say
Reason for Visit: Curiosity -

The example shows a few other interesting techniques. In this case, the form
uses the get method and sends the output to another page. Figure 21-8 shows
typical output from this example when the user clicks Submit on the form.

The code retrieves the data directly from the 1ocation object. A complete
URL consists of the location, followed by a question mark (?), followed by the
data. Each name/value pair is separated by ampersands (&) from the other
data elements. In addition, the name/value pairs consist of a variable name,
the equals sign (=), and a value. The following code shows how the example
separates this information to display it onscreen. (You can find complete
code for this example in the \Chapter 21\Survey folder of the download-
able code as ReadData.HTML.)

Chapter 21: Ten Incredible HTMLS5 and JavaScript Examples 3 73

@ Survey Results - Mozilla Firefox
'j% Edit View History Bool rks Tools Hélp

|
Figure 21-8:

The Name: John
example Age: Less Than 20
shows an Gender: Unknown

Reason for Visit: Curiosity

output page

containing
the survey
data.
|

Survey Results

S (function ()

{
// Obtain access to the data and place
// each item in an array.
var Variables =
S(location) .attr("href").split("?") [1];
var VarArray = Variables.split("&");
// Display the data items onscreen.
S ("#Name") . text (VarArray[0] .split("=")[11]1);
S("#Age") .text (
VarArray[l].split(":")[l].replace(/\+/g, "))
S ("#Gender") . text (VarArray[2] .split("=")[1]);
S ("#Reason").text(VarArray[3].split("=")[1]);
// Go back to the previous form.
S ("#GoBack") .click (function ()
{
window.location = "Survey.html";
1)
)i

The Age data is especially interesting because the spaces are replaced by
plus signs (+) during transmission. To put the spaces back in, you use a
global replace (using the /g switch). However, the + also has to be escaped.
So, to specify a global replacement of the +, you must use /\+/g.

The example also makes it possible to go back to the survey form. It does this
by providing a button. Clicking the button changes the window.location
value to the URL of the survey.

374 Partvi: The Part of Tens

Chapter 22

Ten Thoughts About the Future
of Web Development

In This Chapter

Using even more automation

Creating platform-independent applications
Developing applications around standards
Using browsers in place of the desktop
Relying on centralized data stores

Basing development on mobile platforms
Developing with accessibility in mind
Defining new application types

Presenting a user-centric focus

Extending applications through unexpected connections

there do you go from here? It’'s a common question. People get to a
particular point in a journey and wonder what comes next. By the

time you reach this point in the book, you’'ve experienced a good deal of
what’s possible with a combination of HTML5 and JavaScript, even if you
haven’t quite mastered it yet. It’s natural to wonder what these new skills will
garner — where they might take you in the future. This chapter discusses
some of the things that could happen in the future. A word of warning about
any prognostication — the future has a habit of making everyone look just a
bit foolish — we expect one thing and get something different.

Automating More Tasks

It doesn’t take a crystal ball to see that developers are overwhelmed and that
technology seeks to correct this problem by automating more development.
This book uses more than a little automation in the form of libraries. Expect
to see more libraries, templates, and tools in the future. You shouldn’t expect

370 Partvi:The Part of Tens

that your code will ever write itself or that the role of the developer will
simply go away. Human interaction will always be needed. However, Content
Management Systems (CMSs) such as WordPress (http://wordpress.
org) show the direction that technology is taking. Developers will become
more specialized and take on more complex tasks in the future, which means
you really need to polish your skills.

Developing Applications
That Run Anywhere

At one time, you needed to know the platform your application would run on
extremely well. In fact, there was a time when an application might not run
on a system with a slightly different processor because applications were
written to use every feature that a processor provided. The trend today is

to write applications that run anywhere, regardless of the platform the user
employs. The whole Bring Your Own Device (BYOD) movement makes it
necessary for developers to write applications that don’t care about what
platform they use. To discover more about BYOD, read the Gartner report at
http://www.gartner.com/it/page.jsp?id=2136615.

The emergence of BYOD makes it necessary to create code that checks the
platform and makes adjustments when necessary. This is one of the rea-
sons that using libraries, rather than rolling your own custom solution, will
become even more important. The person writing a library can add all the
required checks and provide code needed to make an application work on a
particular platform. Everyone who uses the library automatically gains the
functionality that the library provides. As of this writing, jQuery (http://
jguery.com) is probably the most popular solution for writing applications
that work everywhere, but you need to keep your options open and con-
stantly research new solutions (see Chapter 18 for a discussion of jQuery).

Using Standards for Every Application

Browser developers are becoming more and more aware of the need

to follow standards when writing their code. However, vendors are still
extremely competitive, so you find that the browsers meet the standards and
then add something extra in the way of features or programming functional-
ity. It’s a problem because you can’t be sure that the vendor will continue

to support the addition. The use of the addition also makes your application

http://wordpress.org/
http://wordpress.org/
http://www.gartner.com/it/page.jsp?id=2136615
http://jquery.com/
http://jquery.com/

Chapter 22: Ten Thoughts About the Future of Web Development 3 77

unusable with other browsers because these other browsers will lack the
addition. In short, you need to adhere to the standards even when browser
vendors don’t quite make the grade. Using just the standardized features and
avoiding the extras will save a lot time and heartache later.

Look for vendors to continue moving toward more standardized browsers,
with extras. Currently, some browsers don’t quite meet the standards or imple-
ment the standards in different ways. In the future, the standards will become
more stable, and everyone will implement them the same way. Using libraries
can help you overcome the glitches in browser implementations today.

Creating a Desktop Environment
with a Browser

As people begin using more and more devices that don’t look like each other
or rely on the same operating system, the desktop environment as you know
it today will eventually disappear. Your future word processor will appear

in a browser, not on the desktop. In fact, people are moving in that direction
already. Desktop applications are large, cumbersome, and hard to learn.
They don’t work well on multiple platforms, and people can’t use the device
they prefer in a particular situation. Browser applications are flexible — they
work anywhere. Even though you might rely heavily on desktop applications
today, in the future you'll likely use a browser equivalent that works pre-
cisely the same on every device you own.

Using a Centralized Data Store

Businesses have more money invested in data today than just about anything
else. The data that a business relies upon to make sales, track inventory, and
perform other tasks has become so critical that a business could become
insolvent without it. The problem with data is that it’s not a physical asset — it
resides as electrical impulses. Creating backups and then storing the informa-
tion where nothing can harm it has become a nightmare, especially for smaller
businesses. You can expect businesses to rely more on central data stores as
people move toward browser-based applications. The security and reliabil-

ity of central data stores continue to improve, and when people start using
browser-based applications for daily tasks, using a central data store will make
strong business sense as well. You may not require much in the way of local
storage in future systems.

378 Partvi: The Part of Tens

Creating Mobile-friendly Applications

More and more industry experts are pointing toward decreased PC sales as
an indicator that the age of the PC is over — that new devices are taking its
place. Of course, there’s an immense installed base of PCs worldwide, so any
thoughts that anyone is entertaining about the imminent demise of the PC
are unfounded.

What is more likely going to happen is a relatively long period of chaos where
no one vendor stands out and no one platform takes the lead in computing,
which means your applications need to run on anything the user might choose
to use, especially in the mobile device category. Although no one is likely to
write a book like War and Peace using a smartphone, expect to find users work-
ing with applications on everything from smartphones to tablets. In fact, many
industry pundits are beginning to ask whether 2013 will be the year of the
tablet. (See http: //www.pcmag.com/article2/0,2817,2414200,00.asp
as an example of such a prediction.)

The use of browser-based applications will make the transition less painful
than it might otherwise be. The browser translates the platform-independent
application into something a specific platform can use, but only if the browser
understands the application. Make sure your applications use common librar-
ies and templates, rely on standards, and make no assumptions about the
device the user is using for interaction.

Developing Accessible Applications

An accessible application is one that accommodates people with special
needs. A special need can encompass a broad range of requirements. For
example, about 8 percent of the male population is colorblind, but only 0.5
percent of the female population experiences this problem. (See http://
www.vischeck.com/faqg/#c0_£5.) If your site uses color combinations
that make it impossible for those with colorblindness to see the content, you
leave out a huge percentage of the potential user base.

In fact, around 20 percent of the population of the United States is recognized
as having some sort of special need requiring some sort of accommodation.
(See http://specialneedsplanning.net/statistics.) The number of
special needs requirements will increase as the population grows older. For
example, many people now require larger text to accommodate failing eye-
sight, and others require closed captioning to address failing hearing. When
your site ignores special needs, you leave out potential buyers for your prod-
ucts or users of the content you present.

http://www.pcmag.com/article2/0,2817,2414200,00.asp
http://www.vischeck.com/faq/#c0_f5
http://www.vischeck.com/faq/#c0_f5
http://specialneedsplanning.net/statistics/

Chapter 22: Ten Thoughts About the Future of Web Development 3 79

The best place to discover the details about creating accessible sites

is the W3C site at http://www.w3.org/standards/webdesign/
accessibility. There are also free tools you can use to check your site
for problems, such as Vischeck (http://www.vischeck.com/vischeck/
vischeckImage.php) and the Web Accessibility Evaluation Tool (http://
wave.webaim.org). I've also written a book on the topic, Accessibility

for Everybody: Understanding the Section 508 Accessibility Requirements
(Apress; http: //www.amazon.com/exec/obidos/ASIN/1590590864/
datacservip0£-20). You can read posts associated with this book on

my blog at http://blog.johnmuellerbooks.com/categories/263/
accessibility-for-everybody.aspx.

Building New Application Types

Online development has spurred a new age of creativity for developers
because the medium makes possible applications that can’t work effectively
on the desktop. For example, the Web service is impossible to create at

the desktop. Sharing data on a scale of such huge proportions requires the
Internet. The same holds true for centralized backup, Massively Multiplayer
Online (MMO) gaming, and social media such as Facebook. None of these
applications can exist at the desktop level. Look for the pace of creativity to
maintain its current pace or even increase as developers see new potential in
the range of tasks an application can perform on the Internet.

Agitation of the platforms used for computing, the use of new applications, and
a decidedly different perspective for how computing devices are used sounds
interesting and exciting. However, there’s a curse that expresses the potential
for disaster appropriately, “May you live in interesting times.” It’s purportedly
of Chinese origins, but the source is considerably newer than that and not from
China at all. (See http://www.phrases.org.uk/meanings/may-you-
live-in-interesting-times.html.) Even so, the truth of the curse rings
true. During these interesting times, you need to exercise caution in assuming
a technology will survive or even become remotely useful.

Thinking More About Users

In the early days of PCs, only a geek could love computers, and even the
geeks became frustrated at times. The introduction of the Graphical User
Interface (GUI) made it possible for power users to become involved with
PCs. As computers gained processing power and developers came to better
understand the needs of users, interfaces became easier and easier to use

http://www.w3.org/standards/webdesign/accessibility
http://www.w3.org/standards/webdesign/accessibility
http://www.vischeck.com/vischeck/vischeckImage.php
http://www.vischeck.com/vischeck/vischeckImage.php
http://wave.webaim.org/
http://wave.webaim.org/
http://www.amazon.com/exec/obidos/ASIN/1590590864/datacservip0f-20/
http://www.amazon.com/exec/obidos/ASIN/1590590864/datacservip0f-20/
http://blog.johnmuellerbooks.com/categories/263/accessibility-for-everybody.aspx
http://blog.johnmuellerbooks.com/categories/263/accessibility-for-everybody.aspx
http://www.phrases.org.uk/meanings/may-you-live-in-interesting-times.html
http://www.phrases.org.uk/meanings/may-you-live-in-interesting-times.html

380 Partvi: The Part of Tens

even while they become capable of performing more work. Given that this
trend has been going on for 31 years, you can expect it to continue.

Today computers rely heavily on intuitive gestures and hardware that works
with humans in a way that human users can anticipate. Your application
reaches the pinnacle of success when it becomes completely invisible to the
user, yet performs every task the user expects. Expect the addition of touch-
based and gesture-based computing to become prevalent in browser-based
applications.

Of course, the question is, what comes after touch and gesture? Look for
flexible displays to become not only practical, but prevalent. (See http://
www . engadget .com/tag/flexible+display for some articles on the
topic — the article at http://www.oled-info.com/flexible-oled tells
how they work.) Some people think that computers will eventually be printed
on clothing or accessories such as purses. Some people may actually have
technology embedded in their bodies in new ways — although this would

be a somewhat radical change for people who have grown up without such
technology. (See the latest version of Total Recall for ideas on how this might
work.) As platforms change, your application will also need to change.

Expecting Unexpected Connections

Many developers today ask the question, “How can I use that?” All sorts of
data sources, technologies, code libraries, templates, and so on are available
for experimentation today. During the writing of this book, | spent several

days just playing with various technologies to see what I could do with them.
Other developers are doing the same thing. With this in mind, you need to con-
sider the fact that you can’t envision how others will use your code. You can
envision only what you originally intended for the code to do. As part of the
development process, you need to expect unexpected uses for your code. Your
application could become something quite different from what you initially
expected. This is the reason that creating well-documented, well-organized
applications is so important. When you have invented a new wheel, you must
expect that others will use it.

http://www.engadget.com/tag/flexible+display/
http://www.engadget.com/tag/flexible+display/
http://www.oled-info.com/flexible-oled

o Symbols ®

& (ampersand)
as AND operator (&&), 77, 78
XML replacement for, 262
* (asterisk)
for multi-line comments
/"), 59
operators, 73, 75
\ (backslash)
as continuation character,
56-57
as escape character, 249-250
{} (curly braces) enclosing
code blocks, 19, 55
$ (dollar sign)
beginning names, 102
for jQuery access,
36, 278, 282
= (equals sign) operators,
! (exclamation point)
operators, 76
/ (forward slash)
for comments, 58-59
operators, 74, 75
> (greater-than sign)
in comparison operators
(table), 76
XML replacement for, 262
< (less-than sign)
in comparison operators
(table), 76
XML replacement for, 262
- (minus sign) operators,
73,74, 75
() (parentheses) indicating
operator precedence, 78
% (percent sign) operators,
74,75
+ (plus sign) operators,
73,74, 75, 83
"or ' (quotes)
enclosing strings used as
arguments, 134
XML replacement for, 262

Index

_ (underscore), beginning
names, 102

I'l (vertical bars) as OR
operator, 77, 78

o/ o
abort () method, 275
abs (x) method, 131
accessibility, 378-379
accessing array members,
86-88
Accordion widget, 322-324
acos (x) method, 131
addClass () method, 335
AddItems () function,
162-163
addition operator (+), 73
add-ons. See plug-ins
add-then-assign operator
(+=), 75
AJAX (Asynchronous
JavaScript and XML)
benefits of, 272, 299
described, 271
jQuery global event
handlers for, 300-301
jQuery helper functions for,
301-302
jQuery library with, 278, 300
jQuery low-level interface
for, 302
jQuery shorthand methods
for, 303
retrieving call results,
308-312
standards used by, 272
steps in using, 272-273
using JavaScript with,
276-277
XMLHt tpRequest object
with, 272, 273-276
alert () function
confirm() function
compared to, 97
described, 17, 18

displaying debugging
messages, 153, 171
in external file, 21
in <script> tag, 18
Alt+Key events, 210-211
ampersand (&)
as AND operator (&&), 77, 78
XML replacement for, 262
anchor () HTML wrapper
method, 109
Anchor object (DOM), 180
AND operator (&&), 77-78
animate () method, 337
animation. See special effects
anonymous functions, 282
Apache server
adding PHP support to,
304-305
benefits of, 24
configuring on Mac OS X,
44-45
download sites, 42
installing on Linux, 45-46
installing on Windows,
42-44
market share of, 24, 42
PHP script creation, 306-307
testing the PHP
configuration, 306
testing your installation, 46
apostrophe (), XML
replacement for, 262
applications. See also jQuery
Ul library; widgets
accessible, 378-379
calendar use in, 367-369
desktop-like features
needed for, 314
dragging items in, 315
dropping items into
containers in, 315-316
Google Maps API, 341-344
JavaScript-based menus for,
221-226
master/detail data view for,
363-367

382 HTML5 Programming with JavaScript For Dummies

applications (continued)
mobile-friendly, 378
new types of, 379
resizing display elements
in, 317-318
selecting items onscreen in,
318-320
slideshow display for,
355-358
sorting items in, 320-321
standardized look with CSS
for, 362-363
standards for, 376-377
survey form for, 371-373
task automation by, 375-376
testing in browsers, 23, 33
that run anywhere, 376
user-configurable interface
for, 370
user-friendly, 379-380
XML-based menus for,
348-352
XML-based tabbed interface
for, 352-355
Area object (DOM), 180
arguments
creating functions having,
135-136
for loops for handling,
154-155
of methods, 92
passing to functions,
133-134, 208-210
required versus optional,
92, 135-136
arguments variable, 135
arithmetic operators
precedence of, 74
simple math using, 78-80
table of, 73-74
Array () function, 85-86
Array object, 157-158
arrays
accessing members, 86-88
as collections, 65
creating, 85-86
described, 69, 85
do..while loop with,
162-163
jQuery functions for,
288-289

jQuery helper functions for,
302
jQuery implementation for,
289-290
for loop with, 158-160
regular, condensed, and
literal, 85-86
<article> tag, 228
<aside> tag, 228
asin (x) method, 131
assign () method, 246
AssignEvent () function,
213
AssignHandler () function,
201-202
assignment operators, 75
AssignURL () function, 246
asterisk (*)
for multi-line comments
/", 59
operators, 73, 75
Asynchronous JavaScript
and XML. See AJAX
AT TARGET constant, 203
atan2 (y, x) method, 131
atan (x) method, 131
Attr object, 94
attributes
categories of, 187
changing in a document,
186-188
for forms, 233-235
<input> tag, 19, 233-235,
238-239
jQuery selectors for,
284-285
setting values
programmatically, 49-50
subscribing to events with,
201-202
XML, 263-264
<audio> tag, 228
Audits tool (Chrome), 31
autocomplete () method,
325
Autocomplete widget,
324-325
automating tasks, 375-376

ol e
back () method, 247
backslash (\)
as continuation character,
56-57
as escape character,
249-250
bandwidth throttling, 41
Base object (DOM), 180
<bdi> tag, 228
big () HTML wrapper
method, 109
Blackberry support for
JavaScript, 15
blink () HTML wrapper
method, 109
blog entries for this book,
16, 35
Body object (DOM), 180, 182
bold () HTML wrapper
method, 109
Boole, George
(mathematician), 69
Boolean variables, 69, 71-72
break statement, 148,
155-156
Bring Your Own Device
(BYOD) movement, 376
Browser Object Model
(BOM), 241
browsers. See also specific
kinds
built-in objects for, 93-94
checking name and version
of, 34-36
choosing for testing, 24-25
CSS differences in, 216
desktop environment in, 377
JavaScript support by, 14
market share of, 24-25, 33
native, 33-34
navigator.userAgent
object info for, 32
polling the use of, 24
testing, 12, 23, 25, 33
BUBBLING_PHASE constant,
203
Button object (DOM), 180

Index 383

buttons

changing attributes using,
187-188

disabling and enabling,
281-282

<input> tag for creating,
19-20, 21-22, 49

positioning
programmatically, 221

oo

calendar plug-ins, 367
calendar use in applications,
367-369
Camel case for names, 102
canvas, HTML5
<canvas> tag for, 229, 340
further information, 341
getting context for, 341
Google Maps API example,
341-344
with server-based
canvases, 341
size of, 341
<canvas> tag, 229, 340
CAPTURING_PHASE
constant, 203
Cascading Style Sheets.
See CSS
case
for names or labels, 102
string functions for
changing, 83-84
case sensitivity
JavaScript, 55
variable names, 102
XML, 261
catching errors, 167, 171-175
category/detail data view,
363-367
CDN (Content Distribution
Network), 282-283
ceil (x) method, 131
<center> tag, 215
centralized data stores, 377
ChangeSizePosition()
function, 243-244
ChangeString () private
function, 138

ChangeStyles () function
for button position, 221
for dynamic HTML
elements, 219-220
for HTML tags, 216-217
for specific IDs, 219
for <style> tag, 218
characters. See also strings;
text not conceived by
computers, 66
XML replacements for
(table), 262
charAt () method, 107
charCodeAt () method, 107
CheckChoice () function
if statement version,
144-146
switch statement versions,
147-148, 149-150
CheckEvent () function,
209-210
checking cookies, 256
CheckName () function, 256
CheckStrokes () function,
211
Chrome browser
Developer Tools window,
29, 30-32
developer tools with, 29-30
home page, 29
JavaScript Console window,
30, 32
Web Developer tools for, 30
working with Firefox and, 30
classes, CSS, 334-336
classes, JavaScript, 98-100
Clicked () function, 236
CloseMenu () function,
225-226
CMSs (Content Management
Systems), 370
code blocks
comments in, 57-60
continuing over multiple
lines, 56-57
curly braces defining, 55
as statements, 141
white space in, 55-56
collections, 65. See also arrays

color animation, 336-337
ColorZilla tool (Firefox), 27
commenting out code 3, 60
comments
JavaScript, 47, 57-60
XML, 262
comparison operators, 76
compile () method, 117
concat () method
Array object, 157
String object, 107
concatenating text, 83
concatenation operator (+), 83
condensed array function,
85-86
confirm() function, 97
Console tool (Chrome), 32
constants, Event object, 203
constructors, 91
Content Distribution Network
(CDN), 282-283
Content Management
Systems (CMSs), 370
continue statement, 157-160
continuing code lines, 56-57
cookies, 253-256
cos (x) method, 131
Cowan, Don (HTML5 Canvas
For Dummies), 341
CreateCustomer ()
function, 105, 106
CreateObject () function,
138
CSS (Cascading Style Sheets)
AJAX use of, 272
alerting users to enable
JavaScript, 60-61
animation by manipulating
classes, 334-336
browser differences in, 216
changing styles
programmatically,
191-192, 216-219
for dynamic HTML
elements, 219-220
JavaScript-based menus
using, 221-226
jQuery extensions to, 286
online resources,
215, 217, 363

384

HTML5 Programming with JavaScript For Dummies

CSS (Cascading Style Sheets)
(continued)
for positioning HTML
elements, 221
standardized look using,
362-363
ways of providing, 215
curly braces ({ }) enclosing
code blocks, 19, 55
customer class, 98-100,
105-106
customer () function, 99, 105
customer.help () method,
105, 106
CustomEvent object,
212-214

o e
data tainting, 248
Date object
calculating differences in
dates, 123-124
calling the constructor, 122
creating custom output
from, 114, 122
getting and formatting the
current date, 121-122
methods, 110-114
Number properties
available for output, 114
properties, 110
DateEntry control, 326
Datepicker widget, 326,
368-369
debuggers, 26, 170
debugging, 153, 169-171
decision-making code
if statement for,
142, 143-146
need for, 142
statements and structures
for, 141
switch statement for,
146-150
declaring variables, 67, 70
decodeURI () function,
129, 171
decodeURIComponent ()
function, 129
decrement operator (--), 74

default clause of switch
statement, 148-150
deprecated tags, 215
developer keys (Google), 341
Developer Toolbar
(Firefox), 26
developer tools
with Chrome browser, 29-30
Developer Tools window
(Chrome), 29, 30-32
with Firefox browser, 26-27
Firefox plug-ins, 27-29
with Internet Explorer
browser, 34
JavaScript Console window
(Chrome), 30, 32
Developer Tools window
(Chrome), 29, 30-32
DisplayArray () function,
159-160, 163
DisplayReturn () function,
134
DisplayScreenStats ()
function, 96-98
divide-then-assign operator
(/=), 75
division operators, 74
DlgHide () function, 253
DlgShow () function, 252
do..while loops, 162-163
DoAdd () method, 80, 93
document object, 94, 182-185
Document object (DOM), 180
Document Object Model.
See DOM
document .body . append
Child () method, 97
document.close ()
method, 184
document.create
Element () method, 97
document .createEvent ()
method, 204-206
document.createText
Node () method, 97
document .getElement
ById () method, 49-50,
186, 187-188
document .getElements
ByTagName () function,
217

document . open () method,
184
document .write ()
method, 50-52, 53, 87,
184-185
document .writeln ()
method, 184
dollar sign ($)
beginning names, 102
for jQuery access,
36, 278, 282
DOM (Document Object
Model)
accessing elements as
objects, 182-183
accessing object
properties, 183
AJAX use of, 272
built-in objects for, 94-95
changing attributes, 186-188
changing HTML content, 186
events, 188-191
further information, 94-95
modifying the output
stream, 183-185
nodes, 182-184
objects, 180-182
overview, 179-183
styles, 191-192
DoMath.php script
creating, 306-307
working with standard
output, 308-309
dot syntax for statements,
52-53
downloading
Apache server, 42
PHP, 304
source code for this book,
3,5,16
draggable () method,
315, 316
dragging items, 315
droppable () method, 316
dropping items in containers,
315-316
dynamic elements, creating,
219-220
dynamic Web pages, 12

385

Index

oF e
easing function, 336
Element object, 94
elements, HTML. See also
specific tags
accessing as objects,
182-183
changing attributes, 187-188
creating programmatically,
192-194
defined, 48
for forms, 228-230
removing existing, 194
writing to, 48-50
Elements tool (Chrome), 30
elements, XML, 261-262
else clause of if statement,
144
<embed> tag, 229
enable JavaScript alert, 60-62
encodeURI () function,
129, 171
encodeURIComponent ()
function, 129
equals sign (=) operators,
equal-to operator (==), 76
Error Console (Firefox), 27
error handling. See also
debugging
catching errors, 167, 171-173
custom error types, 175
defined, 172
Error object for, 173
error types, 170-171
sources of errors, 168-169
three-step process of,
167-168
throwing errors, 167-168,
174-175
try..catch block for,
172-173, 174-175
understanding errors,
167, 168-171
Error object
methods, 173
properties, 173
throwing errors using,
174-175
escape character (\), 249-250
escape () function, 129
eval () function, 129

EvalError type, 170
event handlers

AJAX global, with jQuery,
300-301

AssignHandler ()
function, 201-202

assigning with jQuery,
296-297

creating with events,
204-206

for custom events, 214

for dynamic HTML
elements, 220

for mouse events, 220

online resources, 203

passing parameters to,
208-210

PreventDefault ()
function, 206-207

for resizing feature, 317

for selecting items feature,
320

SimulateClick()
function, 205-206

specific rather than general,

subscribing to events with,

93, 200-201
Event object (DOM), 95, 180,
203-204, 208-210
events. See also event

handlers

associated with the HTML
interface (table), 188-190

attributes for working with,
201-202

avoiding confusion about,
195

categories of, 196

creating, 204-206

custom, 212-214

defined, 53, 92

Document event object for,
204-207

droppable () method
support for, 316

dynamic HTML elements
for, 219-220

Event object for, 95, 180,
203-204

firing, 92, 206, 213-214

form, 92-93, 196, 199-200

frame or object, 188-190,
196, 198-199

jQuery features for, 290-296

keyboard, 189, 196, 198

mouse, 189, 196, 197-198

naming conventions, 190

subscribing to, 93, 200-202
exactly-equal-to operator

(===), 76
exactly-not-equal-to operator
(=), 76

exclamation point (1)
operators, 76

exec () method, 117

execution, comments for
preventing, 59

exponential format, 80

exp (x) method, 131

eXtensible Markup Language.
See XML

external files, 20-21

ExternalSayHello ()
function, 21

ofF e

fall-through switch
statement, 148

<figcaption> tag, 229

<figure> tag, 229, 235-236

files, external, 20-21

filter selectors (jQuery),

285-286
FilterArray () function,
158-159
FindString () function,
119, 120

Firebug debugger, 170

FireEvent () function, 214

Firefox browser, 25-29, 30, 170

firing events, 92, 206, 213-214

fixed () HTML wrapper
method, 109

flexible displays, 380

floor (x) method, 131

fontcolor () HTML
wrapper method, 109

fontinfo tool (Firefox), 27

fontsize () HTML wrapper
method, 109

<footer> tag, 229

386 HTML5 Programming with JavaScript For Dummies

for loops
accessing array members
with, 87
break statement with,
155-156
continue statement with,
157-160
counter variable for, 87
for handling optional and
required arguments,
154-155
for interacting with arrays,
158-160
nesting, 165-166
uses for, 153
for/in loops, 163-165
form events
described, 92-93, 196, 199
tables of, 188-190, 200
Form object (DOM), 180
formattedOutput ()
method, 99, 100
formatting
elements programmatically
with jQuery, 286-287
numbers, 80-82
strings, 83-85
forms
accessing elements of,
235-237
HTMLS5 attributes for,
233-235
HTMLS5 controls for, 230-233
HTML5 elements for,
228-230
jQuery helper functions for,
302
jQuery selectors for, 285
pros and cons of HTML5
for, 227-228
survey, 371-373
validating data, 237-239
forward () method, 247
forward slash (/)
for comments, 58-59
operators, 74, 75
Foundstone HTMLS5 Local
Storage Explorer plug-in
(Firefox), 28
Frame object (DOM), 181
frame or object events,
188-190, 196, 198-199

Frameset object (DOM), 181
Free JavaScript Editor, 39
fromCharCode () method,
107
function keyword, 19
functions. See also methods
benefits of, 132
classes created using, 98
deciding whether or not to
create, 133
defined, 52
dot syntax for, 53
global, 128-130
passing parameters to,
133-134, 208-210
required versus optional
arguments for, 135-136
with return values,
creating, 134
white space in, 56
future of Web development
accessible applications,
378-379
applications that run
anywhere, 376
centralized data stores, 377
desktop environment in
browser, 377
mobile-friendly
applications, 378
new application types, 379
standards for applications,
376-377
task automation, 375-376
unexpected connections,
380
user friendliness, 379-380

oG o
Get More Tools page

(Firefox), 27
getAllResponse

Headers () method, 276
getAttribute ()

function, 80
getContext () method, 341
GetCookie () function, 255
getDate () method, 110
getDay () method, 110, 114

getFullYear () method,
110-111

getHours () method,
111,114

GetMap () function, 344

getMilliseconds ()
method, 111

getMinutes () method, 111

getMonth () method, 111

getResponseHeader ()
method, 276

getSeconds () method, 111

getTime () method, 111

getTimezoneOffset ()
method, 111

getting cookies, 254-255

getUTCDate () method, 111

getUTCDay () method, 111

getUTCFullYear ()
method, 111

getUTCHours () method, 112

getUTCMilliseconds ()
method, 112

getUTCMinutes () method,
112

getUTCMonth () method,
112

getUTCSeconds () method,
112

global functions, 128-130

global variables, 81, 136-137

go () method, 247

Google CDN (Content
Distribution Network),
282-283

Google Chrome. See Chrome
browser

Google developer keys, 341

Google Maps API application,
341-344

Greasemonkey plug-in
(Firefox), 27

greater-than sign (>)

in comparison operators
(table), 76
XML replacement for, 262

greater-than-or-equal-to
operator (>=), 76

grouping operators, 78

Index 387

oH e
HandleEvent () function, 214
<head> tag, 17, 49, 182
<header> tag, 229
HeadingsMap plug-in (Firefox), 28
helper functions (jQuery),
301-302
<hgroup> tag, 229
hiding and showing items
Accordion widget for, 322-324
special effect for, 337-340
hierarchy selectors (jQuery), 285
history object, 93, 241,
242, 247
hosting your site, 41-46
HTML wrapper methods, 107,
109-110
HTML, XHTML, and CSS For
Dummies (Tittel and
Noble), 215
HTMLS5 Canvas For Dummies
(Cowan), 341
HTML5 (HyperText Markup
Language 5)
reference online, 348
standard online, 16
suitability for use with
JavaScript, 11-12
HTML5 WebSQL for Firefox
plug-in, 29
HTML5toggle plug-in
(Firefox), 28
HTMLElement object, 95, 180
HTML-Kit JavaScript editor, 39

o]e

icons in this book, explained, 6
if statements or structures
break statement with, 156
else clause of, 144
in for loops, 154-156, 158-159
nesting, 144-146
for simple selection, 143
statements versus structures,
141
switch statement compared
to, 142, 146
IFrame object (DOM), 181

[Frames info online, 229
iMacros for Firefox, 27
Image object (DOM), 181
increment operator (++), 74
indexOf () method
Array object, 157
for selecting items feature, 319
String object, 108, 119
infinite loops, 153
initEvent () method, 204
initMouseEvent ()
function, 206
injection attack prevention, 318
<input> tag
anonymous function with, 282
attributes, 19, 233-235,
238-239
for buttons, 19-20, 21-22, 49
described, 20
HTMLS5 form attributes
(table), 233-235
HTMLS5 form controls (table),
231-232
setting attribute values, 49-50
writing to elements with, 49
InputButton object
(DOM), 181
InputCheckbox object
(DOM), 181
InputFile object (DOM), 181
InputHidden object
(DOM), 181
InputPassword object
(DOM), 181
InputRadio object (DOM), 181
InputReset object (DOM), 181
InputSubmit object
(DOM), 181
InputText object (DOM), 181
Inspect tool (Firefox), 26
installing Apache server
on Linux, 45-46
on Mac OS X, 44-45
testing your installation, 46
on Windows, 42-44
instance methods, 104-106
instantiating objects, 90, 99-100,
104
Internet Explorer browser,
33,34
interpreted errors, 168-169

interpreted languages, 13

isFinite () function, 130

isNaN () function, 130

italics () HTML wrapper
method, 109

°] °
Java, JavaScript versus, 13
javaEnabled () method, 248
JavaScript
AJAX use of, 272
alerting users to enable, 60-62
benefits of, 13-15
case sensitivity of, 55
history of, online, 13
as interpreted language, 13
Java versus, 13
naming rules, 90, 102
reference online, 348
<script> tag language
attribute for, 18
testing browser support for, 12
trust relationship with, 48
zero-based indexes in, 109
JavaScript Console window
(Chrome), 30, 32
JavaScript Object Notation
(JSON), 310-312
jEdit JavaScript editor, 40
Jenkins, Sue (Web Design All-in-
One For Dummies), 41
join () method, 158
jQuery library. See also jQuery
Ul library
accessing a specific version, 283
AJAX global event handlers,
300-301
AJAX use with, 278, 300
array interrogation using,
289-290
array-oriented functions,
288-289
benefits of, 279, 280-281
dollar sign for accessing,
36, 278, 282
dollar sign referring to, 36
event handler assignment
using, 296-297
event-related features,
290-296

388 HTML5 Programming with JavaScript For Dummies

jQuery library (continued)

formatting elements
programmatically,
286-287

helper functions, 301-302

home page, 34

JSON with, 310, 311-312

loading from Google CDN,
282-283

multiplication table
example, 286-287

online resources, 34,
288-289, 348

ready event, 281-282

retrieving AJAX call results,
308-309

<script> tag for latest
version, 281

selectors, 284-286

slideshow display with,
357-358

survey form using, 371-373

telling browser where to
find, 35

uses for, 280-281

XML-based tabbed interface
using, 352-355

jQuery Ul library. See also
jQuery library; widgets

animation by manipulating
CSS classes, 334-336

color animation using,
336-337

for dragging feature, 315

for dropping feature,
315-316

home page, 314

icons available with, 321

keywords for effects, 338

linking to, 314

online resources, 314, 321,
338, 348

for resizing feature, 317-318

for selecting feature, 318-320

showing and hiding
elements, 337-340

for sorting feature, 320-321

widgets, 322-333

XML-based menus using,
348-352

JSON (JavaScript Object

Notation), 310-312

JSView plug-in (Firefox), 28

o o

KeepSubmenu () function,
226

keyboard events, 189, 196,
198, 207-208, 210-211

Keyboard object, 207-208

Komodo Edit JavaScript
editor, 18, 40

o/ o
lastIndexOf () method
Array object, 158
String object, 108
length () method, 128
less-than sign (<)
in comparison operators
(table), 76
XML replacement for, 262
less-than-or-equal-to
operator (<=), 76
libraries. jQuery library;
jQuery Ul library
loading from Google CDN,
282-283
usefulness of, 279
for user-configurable
interface, 370
link () HTML wrapper
method, 110
Link object (DOM), 181
Linux, 11, 45-46
literal array function, 85-86
LoadDoc () function, 277
LoadImage () function, 236
loading XML with JavaScript,
269-270
Local Load plug-in
(Firefox), 28
local variables, 136-137
location object, 94, 241-242,
245-247
logical operators, 77-78
log (x) method, 131
loops
alert () function for
debugging, 153
described, 151-152
for, 153-160
for/in, 163-165

formatting tags using,
216-217

infinite, 153

nesting, 165-166

never starting, 153

stopping too soon, 153

usefulness of, 152

while, 160-163

low-level interface for AJAX

with jQuery, 302

oM o
Macintosh computers,
11, 33, 44-45
MakeAChoice () function,
148-149
margin, defined, 217
market shares, 24-25, 33, 42
master/detail data view,
363-367
match () method, 108
Math object, 130-131. See
also numbers
max(x,y,z,...,n)
method, 13
menus
JavaScript-based, 222-226
XML-based, 348-352
meta characters (RegExp
object), 115-116
Meta object (DOM), 181
methods. See also functions
AJAX shorthand methods
(jQuery), 303
arguments of, 92
Array object, 157-158
constructors as, 91
creating, 105-106
Date object, 110-114
defined, 92
Error object, 173
Event object, 204
history object, 247
HTML wrapper methods,
109-110
instance, 104, 105-106
jQuery, for AJAX, 301,
302-303
jQuery, for arrays, 288-289
jQuery, for events, 290-296
location object, 246-247
Math object, 131

navigator object, 248-249
Number object, 80-81
Object object, 91
private, creating, 137-139
RegExp object, 117
request-related, 274-275
required versus optional
arguments, 92
static, 104, 105-106
String object, 107-110
XMLHt tpRequest object,
274-275, 276
minus sign (-) operators,
73,74, 75
min(x,y,z, ...
131
mobile-friendly applications,
378
modulus operator (%), 74
modulus-then-assign
operator (%=), 75
mouse events, 189, 196,
197-198, 207-208
Mouse object properties,
207-208
mouseover effect, creating,
190-191
Mueller, John Paul
blog entries for this book,
16, 35
e-mail address for
feedback, 3
multi-line comments, 59
multiplication operator (*), 73
multiplication table, creating,
165-166, 286-287
multiply-then-assign
operator (*=), 75

o\ o

NamedNodeMap object, 95
name/value pairs for object
literals, 100-102
naming
custom events, 212
event naming conventions,
190
JavaScript rules for, 90, 102
recommendations for, 102
usefulness of, 90
XML elements, 261-262

n) method,

NaN keyword, 72
native browsers, 33-34
<nav> tag, 229
navigator object, 94, 241,
242, 247-249
navigator.userAgent
object (Chrome), 32
nesting
if statements, 144-146
loops, 165-166
NetMarketshare site, 24
Network tool (Chrome), 31
new keyword, 70, 72, 99-100
Noble, Jeff (HTML, XHTML, and
CSS For Dummies), 215
Node object, 95
NodeFilter object, 95
NodeIterator object, 95
NodeList object, 95
nodes
creating new elements,
192-194
removing existing elements,
194
<noscript> tag, 60-61
NOT operator (1), 76
Notepad text editor, 37
Notepad++ JavaScript
editor, 40
not-equal-to operator (I=), 76
notifications
CSS for, 61-62
<noscript> tag for, 60-61
to enable JavaScript, 60-62
null keyword, 69, 71
Number () function, 130
Number object, 80-81,
106-107, 114
numbers
arithmetic operators, 73-74
assignment operators, 75
comparison operators, 76
displaying as strings, 81
formatting, 80-82
grouping operators, 78
locale differences in display
of, 81
logical operators, 77-78
Math object, 130-131
performing simple math,
78-80
placing in variables, 72

Index 389

precedence of operators
for, 74, 78

RangeError type, 170

strings (text) versus, 68, 72

variable type, 69

o () o
object literals, 89, 100-102
Object object, 90-91,
103, 181
object or frame events,
188-190, 196, 198-199
objects. See also methods;
specific kinds
accessing DOM elements
as, 182-183
browser-related, 93-94
complete list of built-in,
online, 95
constructors of, 91
creating custom, 98-100
defined, 52
described, 69
DOM objects, 180-182
DOM:-related JavaScript
objects, 94-95
instantiating, 90
naming, 90, 102
Object object, 90-91
procedures versus, 89
properties of, 92
this property of, 91
using built-in objects, 96-98
On the Web icon, 6
onabort event, 188, 199
onblur event, 188, 200
onchange event, 189, 200
onclick event
AssignHandler ()
function for, 201-202
described, 189, 197
direct assignment of,
200-201
ondblclick event, 189, 197
onerror event, 189, 199
onfocus event, 189, 200
onkeydown event, 189, 198
onkeypress event, 189, 198
onkeyup event, 189, 198
onload event, 189, 199
onmousedown event, 189, 197

390

HTML5 Programming with JavaScript For Dummies

onmousemove event, 189, 197
onmouseout event,
189, 198, 220
onmouseover event, 189,
190-191, 197, 220
onmouseup event, 189, 198
onreset event, 190, 200
onresize event, 190, 199
onscroll event, 190, 199
onselect event, 190, 200
onsubmit event, 190, 200
onunload event, 190, 199
open () method, 270, 274
OpenMenu () function, 225
operating system
independence, 14
operators
arithmetic, 73-74
assignment, 75
comparison, 76
grouping, 78
logical, 77-78
precedence of, 74, 78
Option object (DOM), 181
optional arguments
creating functions with,
135-136
defined, 92
for loops for handling,
154-155
OptionalArgument ()
function
for multiple arguments,
154-155
for processing single
argument, 135
stopping on wrong
argument type, 156
throwing an error, 174-175
for zero or more arguments,
161-162
OR operator (I 1), 77-78
output in documents
avoiding problems with,
51-52
changing attributes, 186-188
changing HTML content, 186
changing styles
programmatically,
191-192
creating directly, 50-51
creating new elements,
192-194

document object functions
modifying, 183-185

removing existing elements,
194

writing to HTML elements,
48-50

overrideMimeType ()

method, 276

opPoe
padding, defined, 217
Page Source tool (Firefox), 27
Para.appendChild()
method, 97
parameters. See arguments
parentheses [()] indicating
operator precedence, 78
parse () method, 112
parseFloat () function, 130
parselInt () function, 130
Pascal case for names, 102
passing parameters to
functions, 133-134
percent sign (%) operators,
74,75
PerformClose () function,
226
PHP
Apache server support for,
304-305
retrieving AJAX call results,
308-312
script creation, 306-307
testing the configuration,
306
translating data into
JSON, 310
tutorial online, 307
Pixlr Grabber tool
(Firefox), 27
platforms
Firefox support for, 25
JavaScript interface with, 15
not covered in this book, 2
plug-ins
calendar, 367
for Firefox browser, 27-29
slideshow, 355
Timepicker, 361-362
plus sign (+) operators, 73, 74,

pop () method, 158

pop-up window creation,
249-253

pow (x, y) method, 131

precedence of operators,

74,78

PreventDefault ()

function, 206-207

preventDefault ()

method, 204

primitive values, 109
private data, 127, 137-139
procedures, 89
ProcessData () function, 277
ProcessEntries ()
function, 350-351

Profiles tool (Chrome), 31
Progressbar widget, 327-328
prompt () function, 127-128
properties

accessing for DOM

objects, 183
Array object, 157
CustomEvent object, 212
Date object, 110
defined, 52, 92
of document object, for

accessing <head> tag

items, 182
dot syntax for, 53
Error object, 173
Event object, 203-204
jQuery, for events,

291, 292, 293
location object, 245
for/in loops for

examining, 163-165
Math object, 130-131
Mouse and Keyboard

objects, 207-208
navigator object, 247-248
Number object, 106-107
private, creating, 137-139
RegExp object, 117
request-related, 273-274
String object, 107
window object, 242
XMLHt tpRequest object,

273-274, 275-276

prototype keyword, 106
push () method, 158

o () o

-
quantifiers (RegExp
object), 116
quotes ("or ")
enclosing strings used as
arguments, 134
XML replacement for, 262

o R e
random () method, 131
RangeError type, 170
reference types, 70
reference values, 109
ReferenceError type, 170
RegExp object
described, 114
meta characters, 115-116
methods, 117
properties, 117
quantifiers, 116
search modifiers, 117
using regular expressions,
119-121
using search term features,
114-116
values that can be placed
within brackets, 115
regular array function, 85-86
reload () method, 247
Remember icon, 6
replace () method
location object, 246
String object, 108
required arguments
creating functions with,
135-136
defined, 92
for loops for handling,
154-155
RequiredArgument ()
function, 136
resizable () method, 317
resize event handler, 317
resizing display elements,
317-318
Resources tool (Chrome), 30
Responsive Design View
(Firefox), 26

return values, creating
functions with, 134

reverse () method, 158

Richardson, Trent, 361

round (x) method, 131

<rp> tag, 230

<rt> tag, 230

ruby annotation, 230

<ruby> tag, 230

runtime errors, 169

oS e

Safari browser, 33
SayHello () function,
19-20, 21
scientific format for
numbers, 80
scope of variables, 136-137
Scratchpad tool (Firefox), 26
screen object, 94, 241,
242, 244
<script> tag
alerting users to enable
JavaScript, 60-62
curly braces enclosing
code, 19
defining the level of support
desired, 171
function code in, 19-20
Google CDN link in, 283
for jQuery latest version, 281
for jQuery Ul link, 314
language attribute, 18
multiple statements in,
53-54
src attribute, 21, 35
using, 18
Scriptly JavaScript editor, 40
search () method, 108
searching strings, 118-119,
120. See also RegExp
object
<section> tag, 230
security, selectable items
for, 318
Select object (DOM), 181
selectable () method,
319-320
selected event, 319

selecting items onscreen,
318-320
selectors (jQuery), 284-286
self-documenting code, 58
semantic errors, 169
send () function, 270,
274-275
server-side programming
Apache PHP support for,
304-305
PHP script creation for,
306-307
retrieving AJAX call results,
308-312
testing the PHP
configuration for, 306
setAttribute()
function, 80
SetCookie () function, 254
setDate () method, 112
setFullYear () method, 112
setHours () method, 112
setMilliseconds ()
method, 112
setMinutes () method, 112
setMonth () method, 112
setRequestHeader ()
method, 274
setSeconds () method, 112
setTime () method, 112
setting cookies, 254
setUTCDate () method, 112
setUTCFullYear ()
method, 112
setUTCHours () method, 112
setUTCMilliseconds ()
method, 113
setUTCMinutes () method,
113
setUTCMonth () method,
113
setUTCSeconds () method,
113
shift () method, 158
showing and hiding items
Accordion widget for,
322-324
special effect for, 337-340
ShowResults () event
handler, 319, 320-321

Index 39 7

392

HTML5 Programming with JavaScript For Dummies

SimulateClick () function,
205-206
single-line comments, 58-59
sin (x) method, 131
slice () method
Array object, 158
String object, 108
slide effect, 313
Slider widget, 328-329
slideshow display, 355-358
slideshow plug-ins, 355
small () HTML wrapper
method, 110
sort () method, 158
sortable () method, 321
sorting items, 320-321
source code for this book,
online, 3, 5, 16
<source> tag, 230
Sources tool (Chrome), 31
special effects. See also
applications; jQuery Ul
library; widgets
animation by manipulating
CSS classes, 334-336
color animation, 336-337
dynamic HTML elements
for, 219-220
easing function for
animation, 336
overdoing, 333
showing and hiding
elements, 337-340
uses for, 313, 333
widgets for, 313, 322-333
Spinner widget, 329-331,
358-361
splice () method
Array object, 158
for selecting items feature,
319
split () method, 108
sgrt (x) method, 131
standardized look using CSS,
362-363
standards
AJAX-related, 272
for applications, 376-377
HTMLS5, 16
standardized look with CSS,
362-363

StartTimer () function, 328
statements
continuation character for,
56-57
defined, 47, 141
dot syntax for, 52-53
multiple, in one script,
53-54
structures versus, 141
white space for, 54, 55-56
static methods, 104, 105-106
static Web pages, 12
stopPropagation ()
method, 204
strike () HTML wrapper
method, 110
String () function, 130
String object
described, 107
HTML wrapper methods,
109-110
manipulating and searching
strings with, 118-119
methods that interact with
data, 107-109
properties that interact
with data, 107
strings. See also text
concatenating, 83
displaying numbers as, 81
escape () function for
encoding, 129
evaluating and executing as
scripts, 129
formatting, 83-85
importance of
understanding, 103
manipulating with String
object, 118-119
numbers versus, 68
passing to functions, 134
searching, 118-119, 120
unescape () function for
decoding, 130
uses for, 83
variable type, 68
structures, defined, 141
Style Editor (Firefox), 26
Style object (DOM), 181
<style> tag, 185, 218
styles. See CSS (Cascading
Style Sheets)

Styles.
getPropertyValue ()
method, 185

Stylish tool (Firefox), 27

sub () HTML wrapper
method, 110

subscribing to events, 93

substr () and substring()
methods, 108

subtracting one date from
another, 123-124

subtraction operator(-), 73

subtract-then-assign
operator (-=), 75

sup () HTML wrapper
method, 110

survey form, 371-373

survey templates online, 371

switch statement

basic form, 147-148

break statement with, 148

default clause of, 148-150

fall-through (no break
statement), 148

if statement compared to,
142, 146

switchClass () method, 335

synchronous request, 270

syntax errors, 168, 170

SyntaxError type, 170

oJ e
tabbed interfaces
widget for, 331-333
XML-based, 352-355
Table object (DOM), 181
Tabs widget, 331-333
tags, HTML
deprecated, 215, 229
formatting using a loop,
216-217
for forms, 228-230
tags, XML, 260, 262
taintEnabled () method,
248
tan (x) method, 131
task automation, 375-376
td object (DOM), 182
Technical Stuff icon, 2, 6

technical updates to this
book, 7
test () method, 117
testing
Apache server
installation, 46
applications in browsers,
23, 33
browser support for
JavaScript, 12
browsers tested for this
book, 25
choosing browsers for,
24-25
testing environments, 24
TestObject () function,
138-139
TestParam () function, 133
TestReturn () function, 134
TestVariablel ()
function, 137
TestVariable2 ()
function, 137
text. See also strings
Autocomplete widget for,
324-325
changing word and letter
formats, 83-85
concatenating, 83
selecting rather than
inputting, 318
text editors
advantages of dedicated
editors, 38-39
dedicated, 36-37, 38-40
disadvantages of pure text
editors, 37-38
free JavaScript editors,
39-40
misleading ads for, 40
requirements for, 24
using with this book, 18
Textarea object (DOM), 182
TextEdit text editor, 37
th object (DOM), 182
this keyword, 99, 106
this property of objects, 91
throwing errors, 167-168
Timeline tool (Chrome), 31
Timepicker plug-in, 361-362

Tip icon, 6
<title> tag, placing scripts
in, 19-20
Tittel, Ed (HTML, XHTML, and
CSS For Dummies), 215
toDateString ()
method, 113
toExponential ()
function, 80
toFixed () function, 81
toggleClass () method, 335
toGMTString () method, 113
toISOString () method, 113
toJSON () method, 113
toLocaleDateString ()
method, 113
toLocaleLowerCase ()
function, 83, 108
toLocaleString () method
Date object, 113
general usage of, 128
for numbers, 81
Object object, 91
toLocaleTimeString ()
method, 113
toLocaleUpperCase ()
function, 84, 108
toLowerCase () function,
84, 108
toPrecision () function, 81
toSource () method, 173
toString () method
Array object, 158
customer class, 105, 106
Date object, 113
Error object, 173
general usage of, 128
for numbers, 81, 82
Object object, 91
toTimeString () method,
113
toUpperCase () function,
84, 108
toUTCString () method,
113-114
tr object (DOM), 182
trapping (catching) errors,
167, 171-175
trust relationship with
JavaScript, 48

Index 393

try..catch block, 172-173,
174-175

TypeError type, 170

typeof () function, 70-71

typeof () operator, 170

o lf o

undefined keyword, 69, 71

underscore (_) beginning
names, 102

unescape () function,
130, 246

Uniform Resource Identifiers
(URIs)

global functions for, 129
URIError type, 171

Uniform Transformation
Format 8-bit (UTF-8), 261

unselected event, 319

unshift () method, 158

updates to this book, 7

UpdateTimer () function,
328

URIError type, 171

user interface. See jQuery Ul
library

user-configurable interface,
370

user-friendly applications,
379-380

UseVariable () function, 67

UTC () method, 114

o/ e

ValidatePassword/()
function, 239
validating
form data, 237-239
XML data, 259, 267-268
value types, 70
valueOf () method
Array object, 158
Date object, 114
Error object, 173
general usage of, 128
Object object, 91
String object, 109

394

HTML5 Programming with JavaScript For Dummies

values
assigning to variables, 67
name/value pairs for object
literals, 100-102
placing numbers in
variables, 72
primitive versus reference,
109
var keyword, 36, 67
variables
assigning values to, 67
Boolean, 69, 71-72
for browser name and
version, 36
data storage in, 66, 68
declaring, 67, 70
described, 65
determining the type of,
70-71
global, 81, 136, 137
for JavaScript-based menus,
225
local, 136, 137
naming, 90, 102
private data access using,
138-139
scope of, 136-137
as storage bins, 66
testing for content, 72
types, 68-70
var keyword for, 36, 67
vertical bars (I 1) as OR
operator, 77, 78
Vi or Vim text editors, 37
<video> tag, 230
View Source tool
(Chrome), 29

ViewData () function,
311-312

visibility. See showing and
hiding items

o[/ o
Warning! icon, 6
Web Console (Firefox), 26
Web Design All-in-One For
Dummies (Jenkins), 41
Web hosting, 41
well-formed XML documents,
268
while loops
basic form, 161-162
do..while form, 162-163
uses for, 160
white space, 54, 55-56
widgets
Accordion, 322-324
Autocomplete, 324-325
Datepicker, 326, 368-369
defined, 322

HTMLS5 generic controls, 322

Progressbar, 327-328
Slider, 328-329
Spinner, 329-331, 358-361
Tabs, 331-333
Timepicker, 361-362
uses for, 313, 322
window object, 94, 241, 242,
243-244
Windows 8 applications
using JavaScript, 11
Windows computers, 11,
33-34, 42-44
WriteText () function, 49

o X o

XML (eXtensible Markup

Language)

AJAX use of, 272

attributes, 263-264

basic file, 264-265

character replacements
(table), 262

comments, 262

data errors not tolerated
by, 267

data transfer aided by, 260

displaying using XSLT,
265-267

elements, 261-262

loading with JavaScript,
269-270

menu based on, 348-352

overview, 260-261

rules for files, 260-261

tabbed interface based on,
352-355

validating data, 259, 267-268

validators online, 268

well-formed documents, 268

XSD files for, 268

XMLHt tpReqguest object,

270, 272, 273-276

XSD (XML Schema

Definition), 268

XSLT (XML Stylesheet

Language for
Transformations),
265-267

With more than 200 million books in print and over 1,600 unique
titles, Dummies is a global leader in how-to information. Now
you can get the same great Dummies information in an App. With
topics such as Wine, Spanish, Digital Photography, Certification,
and more, you'll have instant access to the topics you need to
know in a format you can trust.

To get information on all our Dummies apps, visit the following:

www.Dummies.com/go/mobile from your computer.

www.Dummies.com/go/iphone/apps from your phone.

http://www.Dummies.com/go/mobile
http://www.Dummies.com/go/iphone/apps

	HTML5 Programming with JavaScript® For Dummies®
	About the Author
	Table of Contents
	Introduction
	About This Book
	What You Don’t Have to Read
	Foolish Assumptions
	Conventions Used in This Book
	How This Book Is Organized
	Icons Used in This Book
	Where to Go from Here

	Part I: Understanding the Basics of JavaScript
	Chapter 1: HTML, Say Hello to JavaScript
	Introducing JavaScript
	Seeing How JavaScript Fits into an HTML Document

	Chapter 2: Assessing Tools of the Trade
	Researching Browsers and Their Debugging Tools
	Discovering Programs to Write JavaScript
	Hosting Your Site

	Chapter 3: Integrating HTML5 and JavaScript
	Creating Simple Output
	Working with JavaScript Statements
	Writing Comments in JavaScript
	Alerting Visitors That JavaScript Has Something to Say

	Part II: Speaking the JavaScript Language
	Chapter 4: Embracing JavaScript Variables
	Understanding Simple Variables
	Working with Booleans
	Working with Numbers
	Working with Text
	Working with Arrays

	Chapter 5: Working with Objects
	Defining Objects
	Using and Creating Objects
	Working with Object Literals
	Naming Variables and Objects Properly

	Chapter 6: Getting to Know the Standard JavaScript Objects
	Defining the Basic JavaScript Objects
	Introducing the String Object
	Working with the Date Object

	Part III: Meeting JavaScript’s Control Structures
	Chapter 7: Using Functions
	Using the Built-In Functions
	Working with the Math Object
	Building Custom Functions
	Working with Private Properties and Methods

	Chapter 8: Making Choices in JavaScript
	Understanding the Reasons for Applications to Make Decisions
	Deciding When to Use the if Statement
	Switching Between Choices

	Chapter 9: Making the Rounds with Loops
	Discovering Loops
	Creating for Loops
	Creating while Loops
	Examining Objects Using for/in
	Nesting Loops

	Chapter 10: Performing Error Handling
	Understanding Errors
	Catching Errors
	Throwing Errors
	Form Event Support in JavaScript

	Part IV: Interacting with Users and HTML
	Chapter 11: Understanding the Document Object Model
	Introducing the Document Object Model (DOM)
	Accessing Individual HTML Elements
	Considering Events
	Working with Styles
	Working with Nodes

	Chapter 12: Handling Events
	Introducing Events
	Clicking to Create an Event
	Pressing a Key
	Creating Custom Events

	Chapter 13: Connecting with Style: JavaScript and CSS
	Changing HTML Elements
	Building Dynamic HTML Elements
	Animating and Positioning HTML Elements
	Creating JavaScript-Based Menus

	Chapter 14: Enhancing HTML5 Forms with JavaScript
	Revisiting the HTML5 Form Features
	Accessing Form Elements
	Validating Forms

	Chapter 15: Interacting with Windows
	Working with Windows
	Accessing the Screen
	Finding a Location
	Searching History
	Working with Navigator
	Creating a Pop-Up
	Using Cookies

	Part V: Extending JavaScript Further
	Chapter 16: Working with XML in JavaScript
	Introducing XML
	Displaying XML Using XSLT
	Validating XML
	Loading XML with JavaScript

	Chapter 17: Cleaning Up the Web with AJAX
	Introducing AJAX
	Performing AJAX Tasks Using JavaScript
	Making AJAX Easier with jQuery

	Chapter 18: Making JavaScript Easier with jQuery
	Getting to Know the jQuery Library
	Loading jQuery from Google CDN
	Doing Things Easier with jQuery
	Handling Events with jQuery

	Chapter 19: Using jQuery to Handle AJAX
	Understanding the AJAX Object in jQuery
	Discovering Server-Side Programming
	Retrieving Results from AJAX Calls

	Chapter 20: Animating the Web
	Getting to Know jQuery UI
	Canvasing Your Web Page

	Part VI: The Part of Tens
	Chapter 21: Ten Incredible HTML5 and JavaScript Examples
	Creating an XML-Based Menu
	Creating an XML-Based Tabbed Interface
	Displaying a Slideshow
	Employing Custom Spinners
	Working with Timepickers
	Creating a Standardized Look with CSS
	Displaying a Category and Detail Data View
	Selecting Data Using a Calendar
	Developing a User-Configurable Interface
	Devising a Simple Survey Form

	Chapter 22: Ten Thoughts About the Future of Web Development
	Automating More Tasks
	Developing Applications That Run Anywhere
	Using Standards for Every Application
	Creating a Desktop Environment with a Browser
	Using a Centralized Data Store
	Creating Mobile-friendly Applications
	Developing Accessible Applications
	Building New Application Types
	Thinking More About Users
	Expecting Unexpected Connections

	Index

HTMLS Programming.
vith ovaSrpt

