CLICK HERE TO VISIT

http://articlescafe.4000webs.com

- JavaScript

with

Add interactivity
to your Web sites

Learn JavaScript
version 1.X
and the new 20

Debug
JavaScript
and make your
programs
error-proof

Scott Duffy "M OsSBORNE

JavaScript

This page intentionally left blank

JavaScript

Scott Duffy

McGraw-Hill/Osborne

New York Chicago San Francisco Lisbon
London Madrid Mexico City Milan New Delhi
San Juan Seoul Singapore Sydney Toronto

McGraw-Hill/Osborne

2600 Tenth Street

Berkeley, California 94710

U.S.A.

To arrange bulk purchase discounts for sales promotions, premiums, or fund-raisers, please
contact McGraw-Hill/Osborne at the above address. For information on translations or book
distributors outside the U.S.A., please see the International Contact Information page immediately
following the index of this book.

How to Do Everything with JavaScript

Copyright © 2003 by The McGraw-Hill Companies. All rights reserved. Printed in the United
States of America. Except as permitted under the Copyright Act of 1976, no part of this publication
may be reproduced or distributed in any form or by any means, or stored in a database or retrieval
system, without the prior written permission of publisher, with the exception that the program
listings may be entered, stored, and executed in a computer system, but they may not be reproduced

for publication.

1234567890 FGR FGR 019876543

ISBN 0-07-222887-3

Publisher:

Vice President

& Associate Publisher:
Acquisitions Editor:
Project Editors:

Acquisitions Coordinator:

Technical Editor:
Copy Editor:
Proofreader:
Indexer:

Computer Designers:
Illustrators:

Series Design:

Cover Series Design:
Cover Illustration:

Brandon A. Nordin

Scott Rogers

Megg Morin

Leslie Tilley, Madhu Prasher
Tana Allen

Warren Raquel

Leslie Tilley

Paul Tyler

Valerie Robbins

Carie Abrew, Lucie Ericksen
Melinda Lytle, Michael Mueller, Lyssa Wald
Mickey Galicia

Dodie Shoemaker

Eliot Bergman

This book was composed with Corel VENTURA™ Publisher.

Information has been obtained by McGraw-Hill/Osborne from sources believed to be reliable. However, because of the possibility of
human or mechanical error by our sources, MeGraw-Hill/Osborne, or others, McGraw-Hill/Osborne does not guarantee the accuracy,
adequacy, or completeness of any information and is not responsible for any errors or omissions or the results obtained from the use of

such information.

This book is dedicated to:

My wife, Liez’l. Words cannot adequately express
how important you are to my life.

My mother, who taught me the true meaning of strength
and perseverance. God bless.

My father, who at this very moment is surely telling the angel
next to him, “That’s my son.” I miss you, Dad.

About the Author

Scott Duffy has been providing IT consulting services to medium- and large-sized businesses
and government organizations for more than six years. Before embarking on a career as a
consultant, Scott worked at two of the largest corporations in Canada as a software developer.

His 12 years of professional experience cover a wide range of platforms and technologies,
including programming in mainframe, client-server, and web-based application environments.
He is actively involved in every stage of the software development process, including team
management.

When he’s not designing software applications for clients, Scott keeps himself busy with his
writing projects. He is currently working on his next book for McGraw-Hill/Osborne, a study
guide for the Microsoft MCSD 70-300 exam.

To contact Scott to discuss your organization’s business needs, or about any other matter,
please e-mail him at scott.duffy@mydemos.com or visit his web site at http://www.mydemos.com.

Contents at a Glance

Part | Learn JavaScript Basics
1 Prepare to Program in JavaScript 3
2 Learn JavaScript Fundamentals 25
3 Use Built-in JavaScript Classesc.ooeieiueeeinno.n. 63
4 Organize Data into ATTaysceeieieeaiiainn. 95
5 Create Your Own JavaScript Classescooeeeenee.on.. 117
Part Il Build JavaScript-Enabled Web Sites
6 Embed JavaScriptina WebPage, 141
7 Create Scripts That Work in Every Browser 161
8 Manipulate Web Formsttt 179
9 Handle Browser EVENtSouriinriiaieaineaeann.. 207
10 Communicate Between Browser Frames 223
11 Interact with the Web Browsercoeeiueenin. .. 243
12 Perform Simple Animationc.oiiiiiiiaii.... 259
Part Ill Take JavaScript to the Next Level
13 Debug JavaScript Programsc.oouiiineanneenn.... 281
14 Make Your Program Errorproofccoovueoii.... 295
15 Use JavaScript to Manage Browser Plug-Ins 313
A HTML 401 Tags . ..ottt e e 327
B JavaScript Quick Reference 331
Index ... 335

Vil

This page intentionally left blank

Contents

Acknowledgments XV
Introduction Xvii
PART | Learn JavaScript Basics
CHAPTER 1 Prepare to Program in JavaScriptt 3
Learn the History of JavaSeript 4
The Origin of JavaScript i, 5
JavaScript Makes Its Way into Internet Explorer 5
JavaScript Becomes an Official Standard 5
Where JavaScript [s Today 6
Choose a Development Environment 7
Develop JavaScript-Enabled Web Pages 7
Create Server-Based Web Applications 8
Use JavaScript in a DOS or Windows Environment 9
JavaScript Development Tools 9
Learn What JavaScript Can and Cannot Do 13
Use JavaScript as a Client-Side Language 14
Use JavaScript as a Server-Side Language 14
Decide Which Version of JavaScripttoUse 15
Test JavaScript Programs Using HTML 16
Create a JavaScript Template 16
Understand the JavaScript Template 18
Communicate withthe User 19
Display an Alert Messageoviirereinenenann. 20
Write Text to the Browser Window 21
Learn More about Topics Discussed in this Chapter 22
CHAPTER 2 Learn JavaScript Fundamentals 25
Understand Basic Terminology 26

X

How to Do Everything with JavaScript

CHAPTER 3

Store Data in Variables
Define Variables
Define Constants

Understand Program Flow

Control Program Flow with Statements
Execute Code Conditionally
Repeat Statements Using Loops
Comment Your Code
Set a Default Object
Handle Errors

Understand the Basics of Expressions

Use Operators to Create Complex Expressions

Organize Your Code into Functions
Define Functions
Accept Parameters
Understand Variable Scope
Return Values

Use the Improvements in JavaScript 2.0 to Cre

Powerful Functions
Use Named Optional Parameters
Accept Any Number of Parameters . .

Use Built-in JavaScript Classes
Learn about Objects in JavaScript
Write Unstructured Programs
Organize Code into Procedures
Separate a Program into Modules
Use the Object-Oriented Approach ..

ate More

Turn Properties and Functions intoa Class

JavaScript’s Built-in Classes and Data Types
Instantiate an Object with the new Oper:
Access an Object with the . Operator .
Access an Object with the [] Operator

Create a String Object in JavaScript

ator

Create a String Object Using a String Literal

Create a String Object Using the String

Data Type

Use the String Object’s Built-in Functionality

Perform Mathematical Functions
Apply JavaScript’s Date-Handling Functions
Convert Strings into Numbers

Use the parselnt and parseFloat Functions

Prepare Text Before Sending to Web Server .
Use the escape and unescape Functions

26
27
28
29
30
30
34
43
44
46
49
50
51
52
54
56
58

59
60
61

63
64
65
65
66
66
68
69
72
73
73
73
74
76
76
78
79
82
82
84
85

Contents
Decide When to Use Regular Expressions 86
Understand the Basics of Regular Expressions 87
Create Patterns with a RegExp Object 89
Understand JavaScript 2.0’s Powerful New Data Types 91
Use the Boolean, Integer, and Number Data Types 91
UsethecharDataType 91
Use the Object Data Typecoviiinii i 92
Understand Special Data Types 92
CHAPTER 4 Organize Data into Arrays, 95
Create an Array Objectottt e 97
Create an Empty Array 97
Specify an Initial Array Length 99
Create and Initialize an Array in One Line of Code 100
Use Array Literals 100
Call the Properties and Methods of the Array Object 101
Set and Retrieve Values inan Arrayc.c.ouiinennan.n. 104
Use Multidimensional Arraysoo i, 107
Use JavaScript 2.0’s Enhanced Arrays 111
The StaticArray Classcouiiiiiinennnnnnn. 112
The DynamicArray Classcciiiininen.... 114
The ConstArray Classt 114
CHAPTER 5 Create Your Own JavaScript Classes 117
Learn about Classes in JavaScriptccoiiiiinina... 118
Create Objects in JavaScript 1.X 0. 118
Call a Constructor Function 119
Use an Object Literal, 122
Extend an Existing Classccciiiininn.. 123
Extend an Existing Object, 125
Create Objects in JavaScript 2.0 126
Define Your Own Classesc.ciiiininenan.... 127
Organize Classes Using Inheritance 130
Choose Between Static and Instance Members 135
Make Class Members Public or Private 136
PART Il Build JavaScript-Enabled Web Sites
CHAPTER 6 Embed JavaScriptinaWebPage 141
Understand Basic HTML Structureo oo.... 142
Build an HTML Document 145

Indicate the Document Type with <IDOCTYPE> 146

Xi

Xl

How to Do Everything with JavaScript

CHAPTER 7

CHAPTER 8

CHAPTER 9

Add a Title and Define Document Keywords 147
Format Text with HTML Elements 148
Format Text with Style Sheets 150
Use <script>to Add JavaScripttoa WebPage 153
Use <noscript> for Browsers That Don’t Support Scripting 154
Load an External JavaScript File 157
Call JavaScript Using Hyperlinks 158
Learn More about the Topics in this Chapter 159
Create Scripts That Work in Every Browser 161
Understand Browser Differences 162
What Kind of Errors Can Occur? 163
Detect What Type of Browser the User Is Running 164
Query the Document Model 169
Stick to Web Standards 170
Write Cross-Browser Code oo, 171
Manipulate WebFormso, 179
Understand HTML Forms 180
Request User Input Using an HTML Form 181
Process Form Input with Client-Side JavaScript 182
Process Form Inputona Web Server 183
Insert an HTML Form intoa Web Page 184
Retrieve and Set Form Control Values in JavaScript 200
Access Form Values Using the forms Array 200
Access Form Values Using the elements Array 202
Access Form Values Using getElementById() 204
Access Form Values Using getElementsByName() 204
Access Form Values Using getElementsByTagName() 205
Handle Browser Eventsc.coiiiiiniinenn.. 207
Write JavaScript Event Handlers 208
Handle User Interface Events 209
Handle Mouse Events 211
Handle Key Eventso, 212
Handle HTML Events i, 215
Handle Events Using the Event Property 218
Trigger Events in JavaScript i 219
Call the Method Associated withan Event 219
Use the fireEvent Method 220

Overcome Browser Incompatibility 220

Contents
CHAPTER 10 Communicate Between Browser Frames 223
Learn the Basics of HTML Frames 224
Create a Framesetin HTML 225
Define and Name Frames in a Frameset 233
Call JavaScript Functions from Other Frames 235
Access Another Frame Using JavaScript 236
Call a JavaScript Function Located in Another Frame 237
Handle Synchronization Between Frames 239
CHAPTER 11 Interact with the Web Browserc..u.... 243
Learn the Basics of the Document Object Model 245
Manipulate the Contents of a WebPage 248
Dynamically Modify the Contents of a Web Page 249
Change the Items in a Drop-Down List Box 251
Examine the Entire Browser Window 252
Retrieve Properties of the Web Browser Software 254
Examine the Operating System’s Display Settings 256
Access the Web Browser History List 257
Send the Browser to a New Location 258
CHAPTER 12 Perform Simple Animation il 259
Learn the Basics of Cascading Style Sheets 260
Assign Style to Web Pages Using HTML Elements 261
Assign Style to Web Pages Using Style Sheets 264
Use Basic Style Attributes, 268
Position Elementsona WebPage 268
Modify Styles Using JavaScript 270
Understand Cross-Platform Issues 272
Perform Basic Animation Using JavaScript 274
Dynamically Load Images 274
Make Content Move Around the Screen 276
PART Il Take JavaScript to the Next Level
CHAPTER13 Debug JavaScript Programscciviuiiann.. 281
Understand the Possible Causes of Errors 282
Find the Source of an Error Message 284
Interpret Error Messagesciiiiiiiian.. 285
Use a JavaScript Validator 287
Add Debugging Code to Your Programs 287
Use the JavaScript Console i, 290

Use a JavaScript Debugger, 291

Xiil

XV

How to Do Everything with JavaScript

CHAPTER 14

CHAPTER 15

APPENDIX A
APPENDIX B

Make Your Program Errorproof 295
Learn the Basics of Exceptions io... 296
Catch Exceptions Using the try and catch Statements 297
Understand Exception Bubbling 299
Use the IE Error Object 301
Use Netscape-Only catch Clauses 302
Use Nonstandard finally Clauses 302
Create Exceptions Using the throw Statement 304
Design Programs That Are Easy to Debug from the Start 306
Avoid Unstructured Programming 307
Break Code into Manageable Chunks 307
Reuse Code Using Classes and Objects 308
Test Your JavaScript Code Thoroughly 309
Create a Testing Harness 309
Force Errors to Test Error-Handling Code 311
Try Your Program in Many Different Environments 312
Use JavaScript to Manage Browser Plug-Ins 313
Insert Scriptable Objects into HTML Web Pages 315
Include Sun Java Applets 315
Connect to Java Applets Using JavaScript 319
Embed Movies and Music in Web Pages 321
Connect to Music and Media Objects Using JavaScript 322
Use the Microsoft Calendar Control in Your Web Pages 324
HIML 4.01TAZSvtiitiitint e tinreneennnennennnnn 327
JavaScript Quick Reference ool 331

Acknowledgments

Programming today is a race between software engineers striving to build bigger and better
idiot-proof programs, and the Universe trying to produce bigger and better idiots. So far, the
Universe is winning.

—Rich Cook

I very much appreciate the efforts of everyone who was involved in getting this book published. I
certainly don’t want to imagine what would have been created had I been left to my own devices.
I am extremely happy with how this book turned out, and I owe a great debt of gratitude to many
people for that:

Megg Morin, my acquisitions editor at Osborne. Thank you for all your help in developing
the concept and for giving the book the strong push in the right direction that it needed at
the beginning.

Leslie Tilley, my copy editor and project editor. Thank you, thank you, thank you. I really
appreciate your hard work and attention to detail. You’re the primary reason this book turned
out so well.

Tana Allen, my acquisitions coordinator. Thanks for keeping the project on track.

Madhu Prasher. Thanks for doing what you do so well. It’s always good to meet someone
who loves her job.

Warren Raquel, my technical editor. Thanks for your diligent efforts.

Jawahara Saidullah, my agent at Waterside Productions. Thanks for getting me this gig and
hopefully many more to come.

And last but not least, my wife Liez’l. With you beside me, I can climb mountains and
slay dragons.

XV

This page intentionally left blank

Introduction

Netscape introduced JavaScript with great fanfare in December 1995 as an “open, cross-platform
object scripting language.” It was billed as the perfect complement to the much-anticipated
Java programming language, since the two languages can communicate with each other inside

a browser window.

Today, almost 10 years later, JavaScript is ubiquitous across the Internet landscape. It is
estimated that 25 percent of web pages on the Internet today contain JavaScript code. Some
of them use that code to perform some very basic scripting effects, such as controlling mouse
rollovers and setting the browser status bar. Many of them contain complex dynamic menus
and automated forms. No other scripting language comes close to JavaScript’s domination of
the web browser environment.

The key to JavaScript’s success has been its ease of use. For instance, a single JavaScript
statement can create an interesting browser effect, and a small handful of statements is all that’s
required for a completely interactive browser environment.

You don’t even need any special tools to create these effects. A simple text editor, such as
Windows Notepad, is all that is required. If you can create HTML web pages, you have all the
tools you’ll need to get started.

With the impending release of version 2.0, JavaScript will finally be usable side by side with
programming languages such as C++ and Visual Basic. For instance, Microsoft has included a
version of JavaScript 2.0, called JScript .NET, in its popular .NET programming environment.
JScript NET can access almost all the NET Framework classes and can be used to create Windows
Forms applications that run on your desktop. In fact, the next new word processor you use may
be coded entirely in JavaScript.

Who Should Read This Book

This book is designed to help anyone interested in adding elements of interactivity to their personal
web pages. Some experience with a PC is required, as we will not cover how to access the Internet
or how to use a web browser. You don’t have to be an HTML expert, although it will help if you
have some experience with that language. When encountering new HTML for the first time,

I will briefly explain what’s going on, but always in the context of JavaScript.

XVii

Xviii How to Do Everything with JavaScript

How This Book Is Organized

How to Do Everything with JavaScript is organized into three main sections. Each section
focuses on a different set of JavaScript skills:

PartI Chapters 1-5 take you through the basics of JavaScript. This part covers the
fundamental aspects of the programming languages, including statements, objects, and
data types.

Part II Chapters 6—12 show you how to integrate JavaScript into a web site. This part
looks at using JavaScript with the Document Object Model, browser events, frames, and
web forms.

Part III Chapters 13—15 cover advanced JavaScript topics. This part deals with debugging
a JavaScript program, errorproofing code, and communicating with other objects embedded
in a web page.

Often, the best way to learn a programming language like JavaScript is to play around with it.
Don’t be afraid to try some of the JavaScript examples in the book yourself. Type them in and
change them to something of your own design—you will gain a better understanding of how
things work. Ask yourself, “What will happen if I do this instead?”” Then go ahead and try it—
nothing can go seriously wrong. The worst that can happen is that something you try doesn’t
work. And that’s OK. Simply shrug your shoulders and try again.

Learn
JavaScript
Basics

This page intentionally left blank

Prepar
C h d pte I 1 Pr(c;lg):alent;)n

JavaScript

4 How to Do Everything with JavaScript

How to...

B Choose a development environment

Learn what JavaScript can and cannot do

Decide which version of JavaScript to use

Test JavaScript programs using HTML

Use the HTML <script> tag

Create a JavaScript template with Microsoft Notepad

Communicate with the user

Behind every successful movie, there is a person behind the scenes who governs the interaction
of actors, camera operators, writers, and other crew members. This is the director, and although
you don’t usually see this person on screen, the quality of the movie rests on the success of his or
her efforts.

Well, JavaScript is the behind-the-scenes “director” of many Internet web sites. Its job is to
govern the interaction of objects and events so that the two interact seamlessly with one another.
Generally, the more complex the web site, the more it relies on JavaScript to direct. Lights!
Camera! Browser! Action!

Perhaps the first question that needs to be asked about JavaScript is, what is it? The simplest
answer is that JavaScript is a simple programming language, used mainly to bring interactivity to
web sites. It is often called a scripting language, hence the name, but it also has a nonscripting form.

A script, in programming terminology, is a program that does not need to be compiled in
order to run. Scripts tend to perform a specific task and then exit, and do not generally have a
graphical user interface (GUI) to speak of. JavaScript, Perl, and VBScript are the most common
scripting languages used by Internet web sites.

Learn the History of JavaScript

JavaScript was born out of the need to coordinate HTML (Hypertext Markup Language) web
pages with embedded content such as Java applets. But JavaScript is used for much more than
that. It is often used to help users fill out online forms, provide web site navigation through
dynamic menus, and power e-commerce shopping carts. In fact, it is said that 25 percent of all
web sites today use JavaScript in one way or another.

Although most (99.5 percent or more) of the web browser software in use today has
built-in support for JavaScript, users can choose to turn off that support. When designing
web sites for everybody to see on the Internet, it’s important to remember that some
people won't “see” JavaScript.

e—

Considering how rapidly other web-related technologies have been changing to incorporate
new features, JavaScript has been fairly stable. It has taken JavaScript eight years to progress

CHAPTER 1: Prepare to Program in JavaScript

from its initial 1.0 release to the next major version, 2.0. Some feel that this slow pace has been
both a blessing and a curse to the language.

The blessing is that JavaScript support is fairly consistent across multiple browser makers
and version numbers. Web developers can implement one JavaScript program and not have to
worry too much about compatibility issues (other than avoiding certain incompatible coding
techniques). JavaScript has gained such widespread adoption mainly because developers can
trust that it will work.

The curse is that while JavaScript has been standing still, other languages have emerged to
fill the technical void. It is far more common to see web sites that use Visual Basic Script (VBScript)
or Java Server Pages (JSP) as a server-side web scripting language instead of JavaScript. In fact,
a recent release of a popular web server software (iPlanet Web Server) has dropped JavaScript
support altogether. This could change, however, as JavaScript 2.0 catches developers’ attention.

The Origin of JavaScript

JavaScript made its first appearance in Netscape 2.0 in 1995. JavaScript was originally designed
to help integrate HTML pages with Java applets—Java applications embedded in web pages.
Developers quickly realized its true potential, though, and soon JavaScript was being used to add
interactivity to web sites—most of the time without the help of Java.

Figure 1-1 shows Navigator 2.0, the first JavaScript-enabled web browser.

JavaScript Makes Its Way into Internet Explorer

Soon after Netscape Communications first introduced JavaScript in its Navigator 2.0 browser,
Microsoft realized the importance of incorporating this language into its Internet Explorer browser.
Since Netscape was not exactly going to mail Microsoft the source code, and even the language
specification was a well-guarded secret, Microsoft was forced to reverse engineer JavaScript to
create its own version. Microsoft named its version JScript, since Netscape owned the trademark
on the word JavaScript.

Early versions of JScript did not perform certain functions in exactly the same way JavaScript
did, and so JavaScript incompatibility between the browsers was something developers often had to
take into account when scripting their web pages.

JavaScript Becomes an Official Standard

In the early days of the Web, cross-browser compatibility was a big issue—a lot bigger than it
is today. The two main browser companies were making changes to the HTML and JavaScript
languages to try to gain a competitive advantage over each other, causing massive headaches for
web developers trying to create web sites that supported both browsers. Luckily for us, both
companies relented.

Netscape wisely turned JavaScript standardization over to the European Computer Manufacturers
Association (ECMA) in 1996. The ECMA concentrated on standardizing the core language, but
left other things (such as the JavaScript Document Object Model, or DOM) to the browser makers.
The result was that incompatibilities continued to exist between the browsers.

6

——

How to Do Everything with JavaScript

ki« Netscape - [Yahoo!]

File Edit Yiew Go Bookmarks Options Directory Window Help

o | o |y & | = | 2]]
Back Farward Home Feload [mages Jpen Print Find Stop
4 & y £ 3
9 YxHOO! ©-9
Cach e
P—erYsa"l’l';']]fed Clicke Weeldy Picks
| Search options

® Arts and Humanities
Architecture, Photography, Literature. .

* Business and Economy [Xira!
Companies, [nvesting, Classifieds, Taxes...

* Computers and Internet [Xira!]
Internet, WA, 3 oftware, Multimedia...

& Education
Universities, 12, College Entrance. .

* Entertainment [Xira!

Yellow Pages - People Bearch - City Wlaps - Today's News - Btock Quotes - Sports Scores

News and Media [Xira!]
Current Events, Magazines, TV, Mewspapers .

Recreation and Sports [Xira!
Sports, Games, Travel Autos, Outdoors...

Reference
Libraries, Dictionaries, Phone Numbers...

Regional
Countries, Regions, U3 States .

Science

=8| [Document Done

=7

Sz

SO 2Bl What the Web looked like in 1995, through the eyes of Navigator 2.0

The ECMA released their standardized scripting language known as ECMAScript in 1997.
They updated the standard twice in the two years that followed, calling the updates Edition 2 and
Edition 3. JavaScript 1.5 conforms to Edition 3 of the standard.

Where JavaScript Is Today

The ECMAScript Edition 4 standard will be the first update to be released in over four years.
JavaScript 2.0 conforms to Edition 4 of the ECMAScript standard, and the difference between
the two is extremely minor.

The specification for JavaScript 2.0 can be found on the Mozilla.org web site:
http://'www.mozilla.org/js/language/js20/index.html.

Today, Netscape’s JavaScript and Microsoft’s JScript conform to the ECMAScript standard,
although each language still supports features that are not part of the standard.

CHAPTER 1:

Prepare to Program in JavaScript

JavaScript

Version Date Released Browsers Standards Compliance

1.0 December 1995 Navigator 2, Internet Explorer 3~ No

1.1 April 1996 Navigator 3 Partially, with ECMAScript 1

1.2 December 1996 Navigator 4, Internet Explorer 4 Partially, with ECMAScript 1

1.3 August 1998 Navigator 4.06, Internet ECMASecript 1, ISO-16262
Explorer 5

1.4 October 1998 Version 1.4 did not appear in ECMASecript 1, ISO-16262
any web browser

1.5 April 2000 Navigator 6 and 7, Internet ECMAScript 3
Explorer 5.5 and 6, Mozilla 1

2.0 2003 ECMAScript 4

BVAG{HSNBYE Chronology of JavaScript Releases

browsers that supported each one.

Table 1-1 contains a chronological list of JavaScript versions, including a short list of popular

The exact release date of JavaScript 2.0 and version numbers of the browsers that will

Choose a Development Environment

One of JavaScript’s biggest strengths is its support on many different platforms, often for different
purposes. The most common type of JavaScript application today is one that runs inside a web
browser, as a client-side script. JavaScript has long been supported as a web server-side language
as well, in popular environments such as IIS and LiveWire. Recently, developers have had even
more choices for using JavaScript in different environments.

In this section, we will take a look at how JavaScript is used in each of these environments.
None of them supports JavaScript 2.0 yet, but it is still important to look at the potential environments
that will, since support will probably be introduced in the near future.

Also in this section, we will discuss development environments for JavaScript developers. In
the first few years of JavaScript’s existence, developers had to create their JavaScript programs
using only a text editor, without the aid of integrated development environments (IDEs)—and
many still do. But as HTML development tools evolved, many added development support for
the world’s most popular scripting language. And today this support exists in all the big tools, as
we will see later on in this section.

Develop JavaScript-Enabled Web Pages

Applications that are designed to run inside a browser are by far the most popular use for JavaScript.
JavaScript was given very strong integration into the web browser environment through the DOM.
Netscape introduced the original DOM in JavaScript 1.0.

support it were not yet determined at the time this was written.

8 How to Do Everything with JavaScript

The Client-Server Analogy

In web-development terminology, the web browser and the computer it runs on are often
called the client. Similarly, the web server software and the computer it runs on are called tze
server. Thus, the term client-side JavaScript refers to JavaScript programs that are embedded
inside a web page and run on the client machine. JavaScript that runs on the server machine
is referred to as server-side JavaScript.

Fairly soon thereafter, control of the DOM was handed over to the World Wide Web
Consortium (W3C), a standards organization. The DOM standard has evolved from dealing with
how JavaScript interacts with a browser to dealing with standard ways to create, read, and
modify HTML and XML documents.

The W3C (http://www.w3.0rg) specializes in web standards, including HTML, XML,
DOM, and Cascading Style Sheets (CSS). The various documents related to the DOM
standards can be viewed at http://www.w3.0rg/DOM/DOMTR. It’s important to note
that the original DOM (sometimes called Level 0) is not an official standard.

JavaScript applications that are designed to run inside a browser are subject to a number of
security restrictions. These applications generally do not have access to the user’s hard drive or
any installed applications on the user’s computer. For users, this means a JavaScript application
generally poses no security risk, as it cannot contain a virus or other malicious code.

Netscape Navigator 4.0 (also known as Communicator) introduced the concept of signed
scripts. A script that has been signed using a secure digital key can request additional privileges
within the browser environment, such as the ability to send e-mail or read a file from the hard
disk. Often the browser would prompt the user to ask if they will allow the script such privilege.

The Mozilla web browser, and its cousin Navigator 6, changed the way signed scripts are
handled in a way that is no longer compatible with Navigator 4. Microsoft Internet Explorer (IE)
handles security completely differently (using trusted zones, for instance). As a result of these
heterogeneous security solutions, there still is no standard way to write JavaScript applications
that have expanded privileges. In practice, signed JavaScript is rarely used.

Client-side application development is still very much one of JavaScript’s core strengths.
Developers actually risk incompatibility with many operating systems and web browsers by
choosing any language other than JavaScript for their client-side development!

Create Server-Based Web Applications

Although JavaScript dominates all other languages when it comes to web-client programming,
that is not the case with server-side programming. JavaScript was one of the first server-side

CHAPTER 1: Prepare to Program in JavaScript 9

languages supported (back in 1996, when Netscape released its web server platform), but it was
unable to use that head start to its advantage. Perl quickly became a popular server-side scripting
tool, and several other languages have emerged (including VBScript in the ASP environment,
PHP, and JSP) as popular alternatives.

One of the reasons server-side languages vary so much is that the server environment can be
controlled to a certain extent by web developers. In most cases, developers have very little control
over the browsers people use. So while the choice of client-side programming language is really
a “lowest common denominator” decision (which language is supported by the most browsers),
the choice on the server is whatever the developer wants to use.

For some developers, getting to choose the programming language is like being a kid in a
candy store. There are many server-side programming languages to choose from, and no real
reason to choose one over another except personal preference.

Use JavaScript in a DOS or Windows Environment

For a long time now, Microsoft has been providing the Windows Script Host (WSH) tools as a
free add-on to Windows as a download from its web site. WSH includes the latest versions of
Microsoft’s two scripting languages—VBScript and JScript.

With WSH, you can create a small program in JScript that could be run from the DOS
prompt. In fact, many virus writers took advantage of this ability (particularly with VBScript), so
these macros and small scripts are less frequently used these days. In fact, many mail systems
ban them altogether when sent as an attachment to e-mail, due to the potential for viruses.

Windows Script, including the JScript and VBScript engines, can be downloaded free

from http.//msdn.microsoft.com/scripting.

Developers can still create small programs using JScript for use in a Windows environment,
although it is rarely done. These JScript programs rely on the presence and enablement of the
Windows scripting environment, and in these security-conscious times, that is something which
you cannot rely on too heavily.

JavaScript Development Tools

One of JavaScript’s strengths is that expensive development tools are not usually required. With a
simple text editor such as Notepad, which is built into Windows, you can create relatively complex
JavaScript code with little trouble. Since it is an interpreted language inside the context of a web
browser, you don’t even need to buy a compiler.

A compiler is a program that turns programming code into machine-ready form, often

P called a binary or an executable.

10

How to Do Everything with JavaScript

But just because JavaScript can be edited in a simple text editor doesn’t mean that it should be.
Development environments offer several key resources that often make development faster and
easier, such as:

B Predefined scripts that can be easily added to a web page
B Integrated help, to quickly look up the syntax of a function
M Automatic FTP uploads to a web server

M Integrated debugging tools

In this section, we will examine the top four HTML editors. Each of these editors has
significant support for JavaScript development, including ready-to-use scripts, JavaScript
editing tools, and embedded help.

Microsoft FrontPage

Microsoft has developed a popular HTML editor called FrontPage. FrontPage provides web
developers with a number of JavaScript tools to assist in the creation of an interactive web site.
FrontPage was once the undisputed leader in HTML and JavaScript development tools. Now a
couple of other competitors in the field have taken a significant slice of the Microsoft market
share—Macromedia and NetObjects.

FrontPage still contains many useful features, including capabilities such as designing a web
site’s hierarchy before creating any of the pages, configuring web site security, setting sitewide
styles, and creating custom banner images. Figure 1-2 shows how FrontPage Explorer can be
used to organize a web site by graphically linking pages together. Microsoft FrontPage also has
a server-side component called FrontPage Server Extensions, which enables it to integrate well
into Microsoft’s IIS web server.

FrontPage can be purchased for $90 to $170, which makes it a very affordable tool for
nonprofessional web site developers.

Microsoft offers a free 30-day trial version of FrontPage 2002 for those who are
interested in trying out the software. The trial CD can be ordered from
http://www.microsoft.com/frontpage.

Macromedia Dreamweaver MX

Macromedia Dreamweaver MX is a very popular HTML and JavaScript editor in the professional
web development crowd. It is packed with features, including the ability to edit most of the
popular web server programming languages (like ASP, JSP, and PHP), provides several handy
prebuilt JavaScript components, integrates well with databases, and conforms to new standards
such as XHTML and XML. In short, it includes lots of goodies that professionals will find useful
but that many home users might not require.

CHAPTER 1: Prepare to Program in JavaScript

2% FrontPage Explorer - My New Web [http: //localhost/myproject] [_ (O]

Eile Edit “iew Tocls Help

[New Page | Eub’lish| = %@Jﬁ'| & B X

ca9B|eH |0

Navigation - My New Web

Folders

it

[I I I I]
Members Schedule Statuz Archive Search Discussions

Navigation

D

Hyperlinks

I
el
Hyperli

Contents of 'http:/ Alocalhost/myproject

Name | Title. | size| Type | Modified Date. | Madified By | Cammerts jl
[_private folder
@ images falder
archive. htrn Praject \wWeb - Archive 4KB htm 2102125614 P Scott Duffy
Default htrn Homne 1KB htm 2102125618 P Scott Duffy
dizcuzs. htm Praject Web - Discussions 1KB htm 2102125614 P Scott Duffy
knabaftr bt Included Article Foater for ... 353 htm 2102125614 P Scott Duffy , _ld
1 v
s

HIC{UR{3MEVE Using FrontPage Explorer to organize a web site

The power of the Dreamweaver MX environment is shown in Figure 1-3.
Macromedia Dreamweaver MX retails for between $200 and $400, which makes it an ideal
tool for professional developers.

You can download a free trial of Macromedia Dreamweaver MX for either Windows or
Mac at http://www.macromedia.com/software/dreamweaver.

Macromedia HomeSite 5

Macromedia purchased Allaire Corporation and took over ownership of Allaire’s flagship product,
HomeSite. The most recent version is HomeSite 5, and Macromedia includes a free copy of it
with each copy of Dreamweaver it sells. HomeSite appeals to the home user because of its price,
although it lacks most of the sophisticated features of its sibling.

12 How to Do Everything with JavaScript

#) Mactomedia Dieamweaver MX - [Untitled Document (Untitled-27) (SHTML]]

] Bl Edi View lnsed Modiy Tew! Commends Ske Window Hep =8| x|
|~ lnsett | Layoun] Toe] Tablx] Framas | Forma] Tamplatoz Charaotes] Mcta o Sanpt AR Apsieation] |
i E 5 l:‘) | % AphyStyes © Edit Styles
§. @, | o oery), 3, | ¥ WaCsssue

«tml warsions"1.0% enoodings “iso-2559. 4
<IDOCTYFE heml PUBLIC A 3CHDTDY

S@LANGLAGE: " AVASCRFT OO

SeE—
3

! Pl tag elected eleas
Eirst Secand Third |
41 A2 A3
Bl B2 B3 Filew Edte Wiew Site-
BN AR
ISa‘ldeDleamj |L|ra|\'19w =
I} Site - SampleDieamweaverSite [T
Unitled:2* [C fﬂ Desktop
chodys <pr 04248 5 2611500

Foimat [Fangiph] 244 [OefaukFom =] siee [reone =] [B I % HEE @\
Link. | 2l Tees BEEEEE
iz) Ready
= [T

SO {SBN Drecamweaver MX is an extraordinary working environment for the professional
web developer.

For $29 to $99 users receive a well-liked HTML and JavaScript editor, which will manage
their personal web site just fine. Users with large sites to manage or more than one developer
might want to consider investing the extra money to get Dreamweaver instead.

Macromedia offers a free trial version of HomeSite 5 for Windows at

http://'www.macromedia.com/software/homesite.

Adobe GoLive

Adobe is best known to most surfers on the Internet for its Acrobat software, which writes and
reads documents in their popular Portable Document Format (PDF). However, Adobe is also a
leader in graphics, digital video, and desktop publishing software with its Photoshop, Premiere,
and PageMaker products.

In fact, it is likely that all the other industry-leading tools and software packages the company
produces overshadow their web publishing tool business. However, even though Adobe GoLive

CHAPTER 1: Prepare to Program in JavaScript

might be trailing the pack in many respects, for developers who regularly work with Adobe’s
graphics- and video-editing tools, GoLive may be an easy choice.

As with other web authoring tools, you can download a trial copy of GoLive 6.0.
GolLive is available for both Windows and Mac, and can be downloaded from Adobe’s
web site at http://www.adobe.com/products/golive.

—

NetObjects Fusion

FrontPage, Dreamweaver, GoLive, and NetObjects Fusion make up the top four most popular
web site development tools in use today. NetObjects, unfortunately, did not have sufficient cash
or resources to stay in the race against such tough competitors. The company has been sold and
the new owner, Website Pros, has been continuing development of the Fusion tool under the
existing brand name.

Fusion is priced competitively in the $70 to $150 range. It includes many interesting new
features, such as integration with popular online payment services, JavaScript pop-up menus, and
improved support for embedded multimedia. It was once a popular tool with developers, and may
become so again under new guidance.

A free trial of NetObjects Fusion 7 for Windows can be downloaded from the company’s
web site at http://www.netobjects.com. The full version of the software can also be
purchased and downloaded online.

Learn What JavaScript Can and Cannot Do

Historically, JavaScript has differentiated itself from other languages in the following ways:

M It is easy to develop for.

M It interfaces well with other languages and environments.
B No special tools or compilers are required.

M 1t’s flexible.

These properties made it particularly well suited for web development. Web pages can be
made dynamic with as little as one line of JavaScript code, and often only a handful of lines are
required to accomplish common tasks. DOM provides JavaScript access to the browser, the web
page, and all the objects (Java, multimedia, etc.) embedded within it.

Despite the significant improvements, JavaScript 2.0 was not designed as an all-purpose
language. Specifically, it does not intend to challenge C, C++, or Java in areas where those
languages currently dominate. Rather, JavaScript 2.0 tries to improve upon the strengths of the
existing language, while also adding features that developers often like to use when developing
large or complex code, namely:

M The ability to write modular and object-oriented applications

B Improved ability to interface with other programming languages

14

How to Do Everything with JavaScript

B The ability to write scripts that can be compiled for faster performance

B The ability to restrict the way functions and code are used

The ECMA has actually designed JavaScript 2.0 with these goals in mind.

Use JavaScript as a Client-Side Language

One of the unique qualities of the core JavaScript specification is that it does not attempt to define
how JavaScript interacts with its environment. There are no JavaScript methods or functions in
this specification that define how to draw the user interface or how to write text to the screen.
Likewise, there are no file input/output routines that allow the language access to the hard drive.

That feature can be considered both a strength and a weakness. The flexibility given by this
lack of a standard I/O interface has resulted in JavaScript’s use in many different environments
(browsers, servers, stand-alone applications, mobile devices, etc.). This has allowed devices with
different ways of storing data and different ways of displaying output to run JavaScript applications.

The downside to this flexibility is that the same JavaScript application cannot be run in each
environment without some alteration. While most web browsers have standardized on a document
object model, some differences remain between the DOMs of various browser makers. For example, a
JavaScript application designed to run in a web browser cannot be run on a web server without
taking the server’s own object model into consideration.

Today, JavaScript is practically the only scripting language used inside web pages. Even
though a couple of alternatives exist (most notably VBScript), JavaScript was (and still is) the
only scripting language supported by all the major browser manufacturers. It is the only scripting
language worth learning for client-side development.

Use JavaScript as a Server-Side Language

JavaScript also gained some popularity as a web server programming language. Both Netscape
Enterprise Server and Microsoft IIS (popular web servers of the mid-1990s) supported server-
side JavaScript development. Netscape supported this through the LiveWire server-side language.
Microsoft allowed JScript as one of the potential languages for ASP development.

Unfortunately, Netscape Enterprise Server (now called iPlanet Web Server) no longer supports
JavaScript on the server, starting with version 6. This might have something to do with the fact that
iPlanet is part of Sun Microsystems, and Sun Microsystems prefers programmers to use Java.

And although Microsoft’s ASP environment has been hugely successful, developers prefer to
use VBScript when developing for that platform. With the introduction of Microsoft’s ASP .NET
platform, VB .NET and C# have become the two languages developers use most.

Microsoft did the JavaScript community a small favor when it included JScript .NET support
in the Visual Studio .NET development environment. JScript .NET has access to all the classes
of the NET Framework, and was the first (albeit, extremely early) implementation supporting
features of the ECMAScript Edition 4 proposal.

CHAPTER 1: Prepare to Program in JavaScript

Although the ECMA has given JavaScript the ability to function as a full programming
language, JavaScript is not necessarily suitable for every environment. You would probably not
want to use JavaScript as a programming language for the following types of tasks:

B Very large applications
B Performance-critical applications

B Device drivers and other low-level programs

After all, we wouldn’t want to see all those C++ programmers out of a job, would we?

Decide Which Version of JavaScript to Use

One decision that JavaScript developers must make early on in the development process is which
version of the language they wish to support. Several factors go into this decision, such as:

B The size and scope of the programming task at hand
B The possibility of future enhancements to the program

B The need for the program to easily interoperate with other programs written in different
programming languages

B The need to take advantage of new features only offered in JavaScript 2.0 (new built-in
objects, for instance)

B The version of JavaScript supported by your favorite development tool

B The version of JavaScript supported by the vast majority of your intended audience

By far the most important consideration would be the last one. There is no point placing
JavaScript 2.0 inside web pages if a significant amount of your intended audience still uses
browsers that don’t support it. Of course, if your program will reside only on the server (a
server-side program), all that matters is the version supported by the server.

It is also important to remember one of the fundamental rules of computer programming:
never write more code than is absolutely necessary for a task. So if your JavaScript program is a
three-line script that converts degrees Celsius to degrees Fahrenheit, there is no need to create
packages and classes in JavaScript 2.0 syntax (as discussed in Chapter 5). You may want to do it
for other reasons, including future extensibility of your program. But this is also a case of if it
ain’t broke. ..

So as a general rule, be very cautious about developing in client-side JavaScript 2.0 code if
your intended audience is likely to be running a wide variety of web browsers. Otherwise, if you
know for certain what the minimum browser version will be or are developing in a server or
embedded environment, feel free to use the new features and improvements in JavaScript 2.0 to
your heart’s content!

16 How to Do Everything with JavaScript

Test JavaScript Programs Using HTML

Before jumping into the fundamentals of JavaScript, we need to set up a way to test our code.
The easiest way to test a JavaScript program is by putting it inside an HTML page and loading
it in a JavaScript-enabled browser.

To run any of the code samples in this book using this HTML method, you will need a web
browser. I recommend using IE 5 or Navigator 4 or later, as some examples won’t work with
earlier versions.

If you would like to upgrade the browser on your computer to a more recent version, you can
visit Microsoft’s IE web site at http://www.microsoft.com/windows/ie, or Netscape Browser
Central at http://channels.netscape.com/ns/browsers.

Create a JavaScript Template
The <script> tag is the HTML element used to signify JavaScript code. It’s a good idea to create
this file as a template using Notepad (or your favorite web development tool) and save it on your
hard drive. That way it will be much easier to start creating JavaScript-powered web pages using
this HTML code as a base.

Here’s how to create the template in Notepad:

1. In Windows, click the Start menu button.

2. Select Run from the pop-up menu.

3. Type in notepad as shown here, and press ENTER.

Run '

2 Type the name of a program, falder, document, or |nternet
rezource, and ‘Windows will open it for pou,

2l

Cancel i Browsze. . I

4. In Notepad, enter the following HTML code:

<html>
<head>
<title>JavaScript sample code</title>
</head>
<body>
<hl>My Sample Code</hl>
<script language="JavaScript" type="text/javascript">

10.

11.
12.

CHAPTER 1: Prepare to Program in JavaScript

<!-- // Begin
// NOTE:: Replace this line with JavaScript code
// End -->
</script>
</body>
</html>

Select the File menu, and choose Save As.

Navigate to the desired location on your hard drive. The My Documents folder is
commonly used, but you can also choose to save it to any directory of your choice.

We will use this HTML file to run the JavaScript code samples throughout the book, so
put it someplace handy.

Give the HTML file a name ending in .htm such as JSTemplate.htm.

Save As EHE
Savejn:! —y JavaScript Code :j @! ;[:FJ

File name: |JSTempIate.htm Save i
Save as bype: |Text Dlocuments j Cancel |

&

Close Notepad.

From your Windows desktop, choose My Computer. This will bring up Windows Explorer,
which allows you to navigate to the directory where you saved your HTML file.

Double-click the HTML file. A web browser (usually Microsoft Internet Explorer) will
open your HTML document.

You should see the words “My Sample Code” in large letters.

Close the browser window when you are finished with it.

Figure 1-4 shows how the HTML template looks in the browser. This is the most basic
example of a <script> tag in an HTML page.

17

18

How to Do Everything with JavaScript

My Sample Code

|§'| Done |_ |__ |__ E__,%Tf:“ly_&mputer 5

HICU{=NE” N A simple HTML document containing a <script> tag that does nothing

Understand the JavaScript Template

Remember that HTML documents are divided into two distinct pieces: the header section and the

body. HTML documents always start with the <htmI> tag and end with the </htmI> closing tag.

Similarly, the HTML header section is delimited with the <head> and </head> tags, as so:
<head>

<title>JavaScript sample code</title>
</head>

Generally, the HTML markup inside the header section is used to describe the main content
that appears in the body section. Most commonly, the header section contains:

B A mandatory title for the document (<title>)
B Style sheet definitions (<style> and <link>)

CHAPTER 1: Prepare to Program in JavaScript 19

B Meta data, such as search keywords (<meta>)

M JavaScript functions (<script>)

The bulk of the HTML document is inside the body section, delimited by <body> and
</body> tags. In this section you would find text, images, forms, and embedded content.
JavaScript can also be used in this section to output dynamic text to the screen. Our template’s
body section looked like this:

<body>
<hl>My Sample Code</hl>
<script language="JavaScript" type="text/javascript">
<!-- // Begin
// NOTE:: Replace this line with JavaScript code
// End -->
</script>
</body>

Our body section starts and ends with the mandatory <body> and </body> tags. The <h1>
and </h1> tags indicate header text. <h1> is the predefined header with the largest font. The
<h2>, <h3>, <h4>, <h5>, and <h6> tags indicate headers with decreasing font sizes.

I have included a <script> element inside the body section for later use. I’ve included two
attributes with this tag, language and type. The language attribute was the original way to
indicate what scripting language was used inside the tags. Although recent versions of HTML
(and XHTML, its successor) have phased out the use of this attribute, it is still quite common to
use it. The type attribute is what is now recommended to indicate the scripting language in use.

The template contains three lines inside the <script> section:

<!-- // Begin
// NOTE:: Replace this line with JavaScript code
// End -->

All three of these lines are comments. In web programming, a comment is one or more
lines of text that is ignored by the browser when interpreting the code. Programmers often use
comments to make a program easier for humans to read, but in the preceding code, the first and
last lines are used to stop browsers that don’t support JavaScript from displaying the code. As
time goes on, this technique becomes less and less important. But it is still quite prevalent, and
there is really no reason not to include it. The <!-- and --> are markers for the start and end of
HTML comments. JavaScript comments are marked with double slashes (//), which is why the
browser will ignore the second line as well.

Communicate with the User

Many JavaScript programs perform their tasks quietly. A web page may use JavaScript to verify
that all the fields on a form have been completed in the proper manner. When they are complete,

20

How to Do Everything with JavaScript

the JavaScript program allows the form to be submitted to the web server for further processing.
But if one of the form fields has not been filled out properly, JavaScript should, ideally, inform
the user so that they can correct the problem and submit the form again.

There are generally two ways to bring an error like this to the user’s attention. The first is to
take advantage of a JavaScript alert box, which requires the user to click an OK button in order
for processing to continue. This is considered a slightly intrusive technique that ensures the user
reads and acknowledges the error message.

The other way is to write an informative message inside the web page directly. This is obviously a
less intrusive technique, although you must be sure that the user does not accidentally overlook
the message.

In this section, we will examine how to communicate with the user using both methods, as
each will be important before we move on to the next chapter.

Display an Alert Message

JavaScript provides three types of pop-up dialog boxes for use in your applications:

M An alert box
B A confirm box
M A user-input prompt box

Basic alert messages are displayed using the built-in alert function:
alert ("This message will be displayed to the browser") ;

You can place any text string or expression inside the parentheses. The dialog box displayed
looks like this in Internet Explorer.

Microsoft Internet Explorer

! E Thiz mezzage will be dizplayed to the browser

Netscape Navigator displays a similar message box.

[JavaScript Application]

i‘ Thiz meszage will be displayed to the browser
(]

CHAPTER 1: Prepare to Program in JavaScript

A confirm box acts in much the same way as an alert box, except it displays both OK and
Cancel buttons to the user. The confirm box tells the program which button the user chose,
allowing two different outcomes.

result = confirm ("Would you like a piece of chocolate cake?");

The result variable will contain true if the user selects the OK button, or false otherwise. This
is how the confirm box appears in Internet Explorer.

Microzoft Internet Explorer

\?:} “Would vou like a piece of chocolate cake?

Cancel]

Finally, the user-input prompt box allows the program to ask for a typed response to a
message. This is rarely used on Internet web pages, as HTML web forms are a more commonly
accepted way to retrieve user input.

firstname = prompt ("What is your first name?",
"Enter name here");

The result of this JavaScript code is shown here.

Explorer User Prompt
Seript Prampt:
What iz your first name?

Cancel

Enter name here

Write Text to the Browser Window

Many of the examples in this book will use the document.write() function to print text into the
web browser window. This can be used for more than just error reporting. In fact, it is quite
common to see web sites using document.write() to support dynamic functions such as
navigation, user help, banner ad rotation, and more.

document.write ("This text goes right into the browser")

21

22 How to Do Everything with JavaScript

Notice how you can include HTML tags inside the document.write() function and the
browser will process those tags. By adding a few document.write() statements into our HTML
template, we can create a web page with a bit more content.

<html>
<head>
<title>JavaScript sample code</title>
</head>
<body>
<hl>Hamlet, by Bill Shakespeare</hl>
<script language="JavaScript" type="text/javascript">
<!-- // Begin
// NOTE:: Replace this line with JavaScript code
document .write
("To be, or not to be: that is the question:
");
document .write
("Whether 'tis nobler in the mind to suffer
");
document .write
("The slings and arrows of outrageous fortune,
");
document .write
("Or to take arms against a sea of troubles,
");
document .write
("And by opposing end them.
");
// End -->
</script>
</body>
</html>

As you can see in Figure 1-5, our document.write() statements were output to the screen just
as if we had entered them directly in HTML. This technique becomes more useful when we get

into the next chapter, when we learn about variables, functions, and statements.

Now that we have covered the boring stuff—the history of the language, and what it is used
for—we are ready to jump into a bit of real programming. The next chapter starts off by covering

the basics of JavaScript, to get you ready to start coding on your own.

Learn More about Topics Discussed in this Chapter

There are several good books available to learn more about HTML and Java, namely:

B How to Do Everything with HTML, by James Pence (McGraw-Hill/Osborne, 2001)
HTML: A Beginner’s Guide, 2nd edition, by Wendy Willard (Osborne, 2002)

Java 2: A Beginner’s Guide, by Herbert Schildt (Osborne, 2000)

Learn to Program with Java, by John Smiley (Osborne, 2001)

CHAPTER 1: Prepare to Program in JavaScript

3 JavaScript sample code - Microsoft Internet Explorer

File Edit View Favontes Toolz Help

@ B &9 m @ 3

Stop Refresh Home Search Favortes Media History

My Sample Code

To be, or not to be: that is the question:
‘Whether 'tis nobler in the mind to suffer

The slings and arrows of ouirageous fortune,
Or to take armgs against a sea of troubles,
And by oppozing end them.

c_;_l Done i it G igé;.LocélliH'trané.t

-

HICIUIA{=BEl Hamlet’s famous soliloquy, as delivered by JavaScript

In addition, you may want to check out some of the following web sites:

DevGuru: http://www.devguru.com
W3 Schools: http://www.w3schools.com/html
Sun Microsystems’ Java home page: http://java.sun.com

JavaRanch: http://www.javaranch.com

23

This page intentionally left blank

Learn JavaScript

C h d pte I 2 Fundamentals

26 How to Do Everything with JavaScript

How to...

Define variables

Define constants

Understand program flow
Execute code conditionally
Repeat statements using loops
Comment your code

Set a default object

Handle errors

Understand the basics of expressions

Organize your code into functions

Use the improvements in JavaScript 2.0 to create more powerful functions

JavaScript is extremely dependent on other technologies for help. In fact, if you tried to write a
program in JavaScript that didn’t rely on anything outside of the official JavaScript specification,
your program would not be able to do very much. JavaScript relies on external components for
communication with the outside world, such as writing to a screen, retrieving data from a web
form, and receiving notification of browser events.

In this chapter, we will examine JavaScript’s fundamentals. We will learn the basics of writing
a program by learning about statements, variables, and functions—the three basic building blocks
of any program.

Understand Basic Terminology

Like practitioners of other specialties, computer programmers have developed their own lingo
over the years. Ordinary English words such as variable, function, and string have been given
computer-related meanings. Table 2-1 lists some of the programming terms you will encounter
in this chapter and throughout the book.

Store Data in Variables

When it gets right down to it, there are only three places to store information in modern computing:
the hard disk, a database, or memory. Sure, there are other data-storage media, such as floppy
disks, CDs, Zip disks, and backup tapes upon which information can be saved, but the devices
these media require are much slower than a hard drive—sometimes taking 100 times as long
(or more) to record the same data. So application programmers cannot—and should not—generally
rely on any of these media when storing information.

CHAPTER 2: Learn JavaScript Fundamentals

The programming term... Refers to...

statement One line of programming code; statements are often separated by
semicolons (;) in JavaScript.

variable A named location for storing values that can be changed during program
execution.

constant A named location for storing values that cannot be changed during program
execution.

function A named set of statements that perform some operation and can optionally
return a single value.

keyword A word that has a predefined meaning in JavaScript, and cannot be used for
any other purpose.

operator Typically a symbol (such as +, -, *, or /) that takes one or more values
(called operands) and returns a result.

expression A combination of keywords, operators, variables, and/or functions from
which a result can be calculated.

string A sequence of 0 or more letters, numbers, or other text characters; strings
are typically enclosed in quotation marks, as in “this is a string”.

Boolean A value or expression that evaluates to either true or false.

literal A Boolean, number, or string that is written directly in the code; for instance,

the expression ((3+2)/total) contains two numeric literals, 3 and 2.

value A number, Boolean, string, or object.

AR Common JavaScript Programming Terminology

On the hard disk, information is stored in the form of files. In a database, information is
stored as records. But in memory, program data is stored and retrieved using variables. Variables
are named sections of memory.

Define Variables

In JavaScript 1.5, variables are declared using the var keyword:

var counter;

This code tells JavaScript that we intend to store information in a variable we’ll refer to as
“counter.” Variables defined in such a way can contain any type of information: numbers, strings,
Booleans (true and false), or objects. For convenience, you could assign the variable an initial
value like so:

var counter = 5;

We have assigned the variable named counter an initial value of 5.

2]

28 How to Do Everything with JavaScript

JavaScript 2.0 has introduced the concept of data types into JavaScript programming. Before
this release of the language, programmers could not predefine the types of data that a variable
could contain—all JavaScript variables could be assigned any type of data.

But with this important new release of the language, we can now restrict variables to certain
types of data: integers, for example, or strings. Attempting to assign data that does not belong to
the variable’s predefined data type would result in an error. Data types are defined as follows:

in

JavaScript

var counter : Integer;

The counter variable defined here belongs to the Integer data type. Thus, that variable can
never contain anything other than whole numbers. (We examine all the data types available in
JavaScript 2.0 in Chapter 3.)

Define Constants

Variables are called variables for a reason: a program is free to change the value stored inside
the variable at any time. Constants are similar to variables, but once a value has been assigned,
constants cannot be changed.

Constants are only currently supported by Netscape 6 and later, or the Mozilla web
browser. Microsoft IE has not yet incorporated support, so the use of constants should
be limited to uses when you are absolutely sure they are safe.

——

Constants were introduced into JavaScript starting with version 1.5, so early versions of the
language do not support them. But other programming languages (most notably C) use constants
very effectively, and they can be useful in your JavaScript programming as well.

Constants are defined using the const keyword:

const ERR_INVALID_USERID;

In the preceding code, I created a constant named ERR_INVALID USERID. Notice how I
capitalized the name. It is not mandatory, but it is a programming convention often used in C, so
you will sometimes see constants capitalized in JavaScript as well.

JavaScript Can Store Some
Mighty Big Numbers

Integers in JavaScript 2.0 are double-precision floating-point numbers, which allows them to
contain values in the range of approximately +/—100 unodecillion—1 with 38 zeros after it.

CHAPTER 2: Learn JavaScript Fundamentals

Once a value has been set, a constant cannot be altered.

const ERR_INVALID_USERID = 300;
ERR_INVALID_USERID = 50; // This will cause an error!

Constants are often used to give human-readable names to error codes and other numbers
that “mean something.” It is much easier for humans to read the following code than if it just
used the error numbers directly:

switch (returncode) {
case ERR_INVALID_USERID:
// do something
case ERR_INVALID_PASSWORD:
// do something else
case ERR_INVALID_DOMAIN_NAME:
// etc.
}

Like variables, constants can be assigned a data type in JavaScript 2.0.

Understand Program Flow

The bulk of this chapter is devoted to learning the fundamentals of the JavaScript programming
language, statements, and functions. But before we get into that, it is important to spend a few
moments examining program flow.

When I talk about program flow, I am talking about the order in which JavaScript executes a
program’s code. Assuming you have a program that is five lines long, JavaScript will always start
by executing the first line of code. In theory, the second line is executed next, then the third, and
so on until it reaches the last line (line 5 in our example). Figure 2-1 illustrates this.

In reality, that is an extreme oversimplification of what goes on. The next line to be executed
depends on the task that the current line asked JavaScript to perform. If the current line calls a
function, all the code inside the function will be executed first, before JavaScript continues with
the next line. If the current line contains a loop, the same group of lines will be executed repeatedly.
And if the current line declares a new function to be defined, JavaScript will read the function
into memory without executing any of it (until it is called elsewhere in the program).

var a; a=>5; var b; b=a+3; alert (b);

Linel [—» Line2 [—® Line3 [Line4 [—» Line5

FIC{U {2 W JavaScript executes a program from start to finish in order.

29

30

How to Do Everything with JavaScript

var a; a = myfunc (5); var b; b=a+3; alert (b);

Linel |—» Line2 [—» Line3 |—» Lined [P» Line5
2

\ 2
function

myfunc ()

FlelUl{=2¥l JavaScript will stop executing a program in order to execute the contents of
a function.

But, for the most part, it is still fair to characterize a program as being executed in order from
start to finish. Figure 2-2 shows how the program flow jumps around depending on the code itself.
We can see that all the code inside a function is executed before the program continues where it
left off.

Control Program Flow with Statements

The HTML template we defined in Chapter 1 (see “Create a JavaScript Template”) didn’t really
do anything useful, other than displaying some header text. The only way we can get our JavaScript
program to do anything is to add some statements.

A statement is the basic action item in any program code. In effect, each statement is telling
the computer to do something. Statements can be divided up into five categories:

M Conditional
Loops
Object manipulation

Comments

Expressions

The typical JavaScript program uses statements that fall into each of those categories. Often,
statements inside a program are organized into functions and classes as well, to make the program
easier to manage and more efficient to develop. We will examine functions in more detail later in
this chapter, and classes in Chapter 5.

Execute Code Conditionally

Computer programs almost always contain conditional statements. There are two conditional
statements in JavaScript: if and switch. The if statement allows the program to choose one of
two alternatives, based on some predefined factor. In real life, you might decide that, if it were
not raining, you would like to go to the baseball game. Of course, if it were raining, you would
then decide to stay home. You can make that same decision in a JavaScript program with the
following code:

CHAPTER 2: Learn JavaScript Fundamentals

function stay_or_go (raining) {
if (raining == false) {
return "Go to baseball game!";
} else {
return "Got to stay home today.";

So you see, conditional statements give programs a choice between two or more alternatives
in much the same way we make those choices in real life.

The if Statement

Depending on how you use it, the if statement can be very simple or very complex. The if
statement can be used in the following ways.

Syntax Use

if (expression) {statements;} If expression evaluates to true, execute statements.

if (expression) {statements1;} If expression evaluates to true, execute statements1.
else {statements2;} Otherwise, execute statements?2.

if (expressionl) {statementsl;} If expressionl evaluates to true, execute statements|.
else if (expression?2) {statements2;} Otherwise, if expression2 evaluates to true, execute
else {statements3;} statements2. Otherwise, execute statements3.

The if statement evaluates an expression to determine which set of statements to execute,
if any. Since the if statement expects a Boolean expression (one that evaluates to either true
or false), it will try to convert expressions of other data types to either true or false.

JavaScript makes certain assumptions when converting from other data types to Boolean.
The strings “true’” and “‘false” evaluate to the Booleans true and false. The integers 1
and 0 are also converted to the Booleans true and false, respectively.

—

In computer programming terminology, an expression is a piece of code that, when
evaluated, returns a value. In JavaScript, the following can be used as expressions.

Expression Example

A variable if (x) {statements;}

A function that returns a value if (myfunc(x)) {statements;}
A literal if (true) {statements;}

Variables, functions, and literals combined if (a>5) {statements;}
using operators

31

32 How to Do Everything with JavaScript

Even the same if statement can be written in at least four different ways, all of which are valid:

B if (expression) statement;

B if (expression)
statement;

B if (expression) {statements;}

B if (expression) {
statements;

}

The various preceding forms of the if statement are technically equivalent. The first two can
include only one statement. Notice that the third and fourth forms use curly brackets, { and }, to
enclose the statements. Statements enclosed in curly brackets are generally treated as a group,
called a statement block.

The if statement can include an optional else clause, to decide between one of two alternatives.
This form of the statement is sometimes called the if-else statement:

if (expression) {statementsl;}
else {statements2;}

The else clause allows you to specify a statement or group of statements that will be executed
if the expression does not evaluate to true. Only one else clause is allowed in any if statement.
Again, the statement can be used with or without the curly brackets.

Finally, the if statement can be used to choose between one of three or more alternatives.
With the introduction of the else-if clause, the if statement can include multiple expressions that
will each be evaluated until either one of them evaluates to true or the else clause is encountered.
Multiple else-if clauses can be included, but keep in mind that the else-if clause must always
precede any else clause.

if (expression) {
statements;

} else if (expression) {
statements;

} else {
statements;

If you find yourself using more than two or three else-if clauses in a single if statement,
. youmaywant to consider using a switch statement instead, as described in the
following section.

CHAPTER 2: Learn JavaScript Fundamentals

The switch Statement

The switch statement has a very similar role to the if statement in JavaScript. The switch
statement evaluates an expression and compares the value to one or more case clauses. If you
need to compare a variable against more than two or three values, the switch statement is the
most efficient way.

The following code shows how the switch statement is typically used in JavaScript programming.

In this example, our program will try to determine the name of a country based on its official
three-letter ISO (International Organization for Standardization) country code.

// ISO official country codes
switch (countrycode) {
case "ALB":
countrystring="Albania";
break;
case "DZA":
countrystring="Algeria";
break;
case "ASM":
countrystring="American Samoa";
break;
case "AND":
countrystring="Andorra";
break;
case "AGO":
countrystring="Angola";
break;

// etc.

case "", wow:
default:
countrystring="Unknown code";

The same code could be written using if-else-if statements, but that would be both inefficient
and harder to read. Let’s take a look at the preceding code, to see what is going on.

The first line of the statement uses the switch keyword, followed by the expression that needs
to be evaluated.

switch (countrycode) {

33

34 How to Do Everything with JavaScript

In this example, countrycode is a variable that happens to contain a string.
The next three lines in the switch statement contain the first case clause.

case "ALB":
countrystring="Albania";
break;

The case clause indicates that we would like to compare the value of countrycode
(the expression the switch statement is acting on) with the string "ALB". If there is an exact
match, JavaScript will execute the next two lines:

B Set the countrystring variable to "Albania".

B Exit the switch statement at the break statement.

Of course, if the value of countrycode does not match the string "ALB", the countrystring
variable is not set and the switch statement continues.
The next case clause compares the expression against a new value:

case "DZA":
countrystring="Algeria";
break;

The switch statement evaluates each of the case statements in order, until it finds one that
matches. It then executes the code that immediately follows the case clause until the first break
statement is encountered.

Once a match is found, JavaScript will execute all the code that follows, even inside

other case clauses, until the break statement is encountered.

In JavaScript, the switch statement has a special kind of case clause known as the default
clause. The default clause executes only if JavaScript was unable to match the expression with
any of the previous clauses. The default clause must always be the last clause in a switch statement.

case "v, wow.
default:
countrystring="Unknown code";

Our example includes an empty case clause, trying to match against the empty string ("") or
a question mark (?). You can provide multiple values to match against the expression in a single
case clause, as long as they are separated with commas. If the expression matches our empty case,
the code inside the default clause will be executed, since there is no break statement to stop it.

Repeat Statements Using Loops

Loops are convenient statements for two purposes:

B When you want to repeat a set of statements a specific number of times

B When you want to repeat a set of statements an unknown number of times

CHAPTER 2: Learn JavaScript Fundamentals

There are four loop statements in JavaScript: while, do-while, for, and for-in. JavaScript also
provides the break and continue statements to give programmers more control over how loops
execute. In this section, we will examine each of the statements related to looping and see how
they can be applied in our programs.

The while Loop

The while loop evaluates an expression before executing a group of statements. It will execute
the statements repeatedly, until the expression no longer evaluates to true.

while (expression) {
statements;

JavaScript processes the while loop in the following manner. The expression is first evaluated,
and its value is interpreted as a Boolean (true or false) value. If the expression evaluates to true,
the statements contained inside the curly brackets are executed once. The expression is then
evaluated again, and if it still evaluates to true, the statements are executed a second time. This
continues indefinitely until the expression evaluates to false.

A common programming trap is the infinite loop. An infinite loop is a loop statement that
never ends, and this is most like to happen with the while statement. Most browsers will inform
the user when a script takes too long to execute, which allows them to force an infinite loop to end.

Microsoft Internet Explorer B

&, zoript on this page is causing Internet Explorer to run glowly, 1F it continues to mun, your computer may become
! ! UNIEspOnsive.

Do pou want to abart the zcript?

To avoid infinite loops, it is common programming practice to make sure the expression
always has a chance to evaluate to false. The following while statement is guaranteed not to
cause an infinite loop:

var counter = 1;

while (counter < 101) {
document .write ("This is line number " + counter + "
\n");
counter++;

This code will execute exactly 100 times. We know this because the counter variable starts
off at 1, and after every successive while loop iteration, it is incremented by one. (We will learn
about operators, such as the ++ operator, later in this chapter. In this code, the ++ operator takes

35

36 How to Do Everything with JavaScript

the counter variable and increments it by 1.) When it reaches 101, the loop will exit, since
“counter < 101” would evaluate to false.

If we paste this while loop into our HTML template from Chapter 1, we get the following
HTML code:

<html>

<head>
<title>JavaScript sample code</title>

</head>

<body>
<hl>My Sample Code</hl>
<script language="JavaScript" type="text/javascript">
<!-- // Begin
var counter = 1;

while (counter < 101) {
document .write ("This is line number " + counter + "
\n");
counter++;

}

// End -->

</script>

</body>
</html>

Loading this HTML code into a web browser gives you something similar to Figure 2-3. The
browser window has been scrolled all the way to the bottom to demonstrate exactly how many
lines were printed.

ample code - Microsoft Internetl Explorer

fle Edt View Favoes Iook Help E

< > QRN ONSIE
This is line mumber 82 4
This 15 ine mmber 83

This 1= line mumber 84

This 2 line number 85

This 15 line number 86

Thus 15 ine mamber 87

This 1z line umber 88

This 12 line number 89

This 15 line mmber 90

Thus 15 hine mamber 91

This 1= line mumber 32

This 13 line number 93

This 15 line mumber 94

This 1= hine mamber %3

This iz line mumber 36

This 15 line number 97

This 15 ine mmber 98

This iz line mamber 39

This is line number 100

] Done R T 7

F[C{U {2 W The while loop prints exactly 100 lines.

CHAPTER 2: Learn JavaScript Fundamentals

The do-while Loop

The do-while loop acts exactly like the while loop, with one exception. The expression is
evaluated after the end of each iteration in a do-while loop. That means the loop is guaranteed
to execute at least one time. A while loop evaluates its expression prior to each iteration, which
means that it’s possible that the contents of the loop will never be executed.

do {
Statements;
} while (expression);

Even though the expression is evaluated after each iteration of the loop, the following loop
still executes exactly 100 times. So the only iteration that is affected by choosing do-while instead
of a while loop is the first run through the loop.

var counter = 1;

do {
document .write ("This is line number " + counter + "
\n");
counter++;

} while (counter < 101);

You can look at the while and do-while loops as two versions of the same statement.
Everything you can do with do-while, you can do with while. As a result, do-while loops
are less commonly seen “in the wild” than while loops.

The for Loop

In discussing while loops just now, we used the following example:
var counter = 1;
while (counter < 101) {

document.write ("This is line number " + counter + "
\n");
counter++;

That while loop can be rewritten using a for loop. In fact, this type of loop (one that employs
a counter variable) is better suited to a for loop.

for (var counter = 1; counter < 101; counter++) {
document .write ("This is line number " + counter + "
\n");

37

38

How to Do Everything with JavaScript

As you can see, the for loop version is a more efficient way of looping a predefined number
of times. The for loop syntax has four components:

for (initializer; expression; incrementor) {
statements;

The initializer section is traditionally used to define variables and give them an initial value.
In our example, we defined a new variable named counter and set it to the value 1. The JavaScript
code contained in the initializer section gets executed only once—before the loop begins.

The expression is evaluated before every loop. Whether or not the statements are executed
depends on the Boolean results of this expression.

The incrementor section contains code that gets executed following each run through the
loop. Traditionally, this is where any counters are incremented or decremented. In our example,
we add 1 to the counter variable using this section.

Each of these sections is optional. If the variables being used are already defined and have a
value set, the initializer can be empty. But don’t forget that the semicolon in between is mandatory.
In fact, the following code is an infinite loop using a for statement:

for (;;) {
// do nothing
}i

Although this is another example of an infinite loop (which is generally a bad idea
in programming) this loop is a valid technique if you have code inside the loop that
executes a break statement when a certain condition is met.

The for-in Loop

I only want to talk about the for-in loop here for the sake of context. You will see a proper
discussion of it in Chapter 5, when we talk about classes and objects.

For now, think of an object as a tool chest that contains a bunch of tools. The for-in loop will
extract each tool individually from that tool chest, and allow you to examine and manipulate it on
its own.

In the following code, we create a simple object (compatible with JavaScript 1.5) and retrieve
each of its properties using the for-in loop.

<html>
<head>
<title>JavaScript Test</title>

CHAPTER 2: Learn JavaScript Fundamentals

</head>
<body>
<hl>for-in Loop</hl>
<script language="JavaScript" type="text/javascript">

<!-- // Begin
// We define the tool chest object
var toolchest = {tooll:"Wrench",

tool2: "Hammer",
tool3:"Cordless drill™",
toold:"Needlenose pliers"};

// for-in iterates over its properties
for (var tool in toolchest) {
document .write (toolchest[tool] + "
");

// End -->
</script>
</body>
</html>

This program creates an object named toolchest. The object is created using an object literal,
as discussed in Chapter 5.

// We define the tool chest object

var toolchest = {tooll:"Wrench",
tool2: "Hammer",
tool3:"Cordless drill",
toold:"Needlenose pliers"};

The code that we’re interested in is the for-in loop:

// for-in iterates over its properties
for (var tool in toolchest) {
document .write(toolchest[tool] + "
");

39

40 How to Do Everything with JavaScript

This code picks loops through the contents of the toolchest object—tool1, tool2, tool3, and
tool4. When executed, the program outputs the value of each property, like so.

-'a-lavaSc;linl Test - Microsoft Intemet Explorer

|_ File Edt View Favortes Took Help |n

le-2 - @AAQESIB- I -E82 |

for-in Loop

Wrench

Harumer
Cordless dnll
Needlenose pliers

=i
Y

|£] Done | | =} My Computer

The break and continue Statements

We already saw the break statement in action when we looked at the switch statement. When
JavaScript encounters a break statement inside a switch, it stops executing code inside the
switch and continues execution at the first statement that follows it.

The break statement works in a similar fashion with loops. When JavaScript encounters a
break statement, it stops executing the code inside the loop and starts again at the first statement
outside the loop. The break statement is not valid outside a loop or a switch statement.

The continue statement causes JavaScript to stop executing code inside the loop as well, but
execution continues at the next iteration of the loop instead. In effect, the break statement says,
“Exit the loop,” while the continue statement says, “Skip this iteration and move on to the next.”
The continue statement is also not valid outside of a loop.

var Fahrenheit, Celsius;

for (Celsius = -70; Celsius <= 70; Celsius += 10) {
Fahrenheit = (Celsius * 9/5) + 32;
document .write ("Celsius = " + Celsius);
document.write (", Fahrenheit = " + Fahrenheit + "
");

if (Fahrenheit > 100) {
// It's getting hot in here
break;

CHAPTER 2: Learn JavaScript Fundamentals

The for loop in this code is designed to run through all of the degrees Celsius starting at —70,

incrementing by 10 degrees per iteration, until Celsius reaches +70 degrees (=70, —60, —50, —40, etc.).
But if you examine the code inside the loop, it tells JavaScript to break out of the loop when
the temperature exceeds 100° Fahrenheit. Since 100° Fahrenheit is approximately 37° Celsius, the

loop will actually exit when Celsius hits 40, and not 70. The break statement causes the loop to
exit prematurely.

'3 JavaScript Test - Microsoft Internet Explorer
| Fle Edt View Favortes Toos Help [e |
[« 5 004 Qu83 B35 =8 |
[~
L] - -
Celsius and Fahrenheit Equivalents
Celsius = -70, Fahrenhett = -94
Celsms = -60, Fahrenheit = -76
Celsms = -50, Fahrenheit = -58
Celstus = -40, Fahrenheit = -40
Celsius = -30, Fahrenheit = -22
Celsms = -20, Fahrenheit = -4
Celsmus = -10, Fahrenhet = 14
Celstus = 0, Fahrenheit = 32
Celsins = 10, Fahrenheit = 50
Celsius = 20, Fahrenheit = 68
Celsius = 30, Fahrenheit = 86
Celsms = 40, Fahrenheit = 104
|¢‘3 Done || |.2] My Computer 4

The continue statement is very useful when you want to loop through a range of values,
ignoring some that don’t meet certain criteria. But when you find some that do, you have a lot
of code to execute inside the loop. Instead of surrounding dozens of lines of code with a giant
if statement, the continue statement can be used to skip on to the next iteration.

// Which numbers are evenly divisible by 232
var iNumber;
for (iNumber = 1; iNumber <= 1000; iNumber++) {
if (iNumber % 23 > 0) {
// Not divisible by 23
continue;
}
document .write("" + iNumber + "");
document.write(" is evenly divisible by 23!
");

1

42 How to Do Everything with JavaScript

In this code, the loop is designed to execute 1,000 times, running through the numbers from
1 to 1,000. The if statement inside the loop checks to see whether the number is evenly divisible
by 23, using the modulus (%) operator. If it is not evenly divisible by 23, the continue statement
is executed—the rest of the current loop is skipped and the next iteration of the loop starts.

Every 23 numbers (it’s odd how it works out like that), we will run into a number that is
evenly divisible by 23. The continue statement is not executed, and the rest of the loop has a
chance to run. In our example, we output the happy news that we finally found a number that
matches, using the document.write() function.

3 avaScript Test - Microsoft Internet Explorer

|| Ele Edit Yiew Favoites Took Help n

le-» QRd QIS5 -4
Magic Number 23

23 15 evenly diwisible by 231

46 1z evenly divisible by 231

69 1z evenly diwisible by 231

92 1z evenly divisible by 231

115 1z evenly divisible by 231 2
138 1z evenly divistble by 231

161 12 evenly divistble by 231

134 1z evenly divistble by 231

207 is evenly diwsible by 23

230 15 evenly dinsible by 23!

253 15 evenly diwsible by 23!

276 15 evenly divsible by 23!

299 iz evenly divzsible by 231

322 15 evenly dimsible by 231

345 1z evenly divisible by 231

368 is evenly diwsible by 23| &
[ors S o 1 e

[+

Using Labels

A label is a named line of code. Since their only purpose is related to loops—nested loops in
particular—Iabels are rarely used in real life, although it is important to know they exist.

In programming terminology, you have created a nested loop when you place one loop
completely inside another—for instance, if you have a for loop inside a while loop. In

this situation, the for loop is known as the inner loop, and the while loop is called the

outer loop. Loops can be nested many levels deep.

CHAPTER 2: Learn JavaScript Fundamentals

Labels are fairly easy to create.

1. Open your JavaScript program using a text editor, such as Notepad.

2. Pick the line of code that you would like to name. Labels must appear at the beginning of
a valid statement.

3. Type a label name, using only letters or numbers. No spaces or other special characters
are allowed in the name.

4. End the label with a colon (:).

For instance, in the following code, we have a set of nested loops, which are also labeled.

var x, Yy, Z;
outer: for (x = 1; x < 20; x++) {
middle: for (v = 1; v <= x; v++) {
inner: for (z = 1; z <= vy; z++) {
document .write
("x =" +x+"; y="4+y+ "z="+4+2z+ "
");

In this code, we have three loops. The innermost loop, acting on the variable z, is labeled
“inner.” The middle loop, which encloses the loop named “inner,” is called “middle.” And the
outermost loop is named “outer” and encloses both the middle and inner loops.

The only reason to label a loop is because the break and continue statements are designed
to work with labels. By adding the following code immediately after the document.write function
call inside the innermost loop, you could cause all three loops to exit prematurely:

break outer;

This is convenient when you have a condition inside an inner loop (it doesn’t have to be the
innermost one, however) that would make you want to stop processing all the loops—or even just
stop processing the two innermost and continue with the outer loop. For instance, the following
code placed inside the innermost loop in the preceding code would cause the variables y and z
to never get past the value of 1, while x is allowed to increment to 20:

break middle;

Comment Your Code

We discussed comments briefly in Chapter 1. Comments are not really a type of statement,
although they are often lumped in with the other JavaScript statements for the sake of
convenience. There are two ways to add comments inside a JavaScript program.

43

44

How to Do Everything with JavaScript

You can add a single line of comments by starting your comments with two slashes.
// Everything after the slashes will be ignored by JavaScript

It is also possible to include comments on the same line with valid code.
var Students = 3; // There will be three students in the class

Another way to comment code is with block comments. Block comments start with a slash
and an asterisk (/*).

/* This is the start of block comments

Block comments continue until an asterisk and slash (*/) are encountered, even if the
comments extend over several lines.

/* This is the start of block comments
Even this will be ignored
document .write ("This will not be executed either!");
Because it is still considered a comment */

When you are developing small JavaScript programs for yourself, you may not wish to spend
much time commenting your code. That is fine—it’s called programmer’s prerogative. You may
find, however, that comments are useful for the following reasons:

M You can include a copyright notice with your program.
B You can describe what a program or function does in “plain English.”

M In the development stage, or when debugging, sometimes you would like code
not to execute, but you don’t want to delete it.

B Comments can also be placeholders for code you want to add some time in the future.

If you create programs professionally, you may be required to include a copious amount
of comments to make it easier for others to understand your code.

Set a Default Object

We have not yet spent any time looking at the concept of programmable objects in this book and
I’m going to defer most of that discussion to Chapters 3 and 5, when we get to built-in objects
and user-defined classes. But in order to understand the with statement and its ability to specify
a default object for a set of statements, let’s spend a moment looking at what objects, methods,
and properties are.

To understand the concept of objects in programming, it is helpful to draw an analogy to the
real world. Almost anything in real life can be thought of as programmable object—a car, a television,
a coffee cup, or even a person. In programming, objects can have both methods and properties.
An object’s methods are actions it can take, while an object’s properties describe the object.

For instance, let’s assume we have created a Person object in JavaScript. In real life, a person
typically has certain unique features, such as a name, hair color, eye color, and height. These
features would be defined as properties of the Person object. In real life, a person can take actions

CHAPTER 2: Learn JavaScript Fundamentals

such as eating, sleeping, talking, and listening. These actions would translate into methods of the
Person object.

The with Statement

The with statement allows you to access the methods and properties of an object without having
to specify the name of the object on every line. Without the with statement, you will always need to
specify the name of the object you are working on next to every property or method you wish
to access:

person. fullname = "Bob Jones";
person.haircolor = "Black";
person.eat () ;

person.sleep() ;

But when statements are surrounded by the with statement, the object name is implied,
as in:

with (person) {

fullname = "Bob Jones";
haircolor = "Black";
eat () ;

sleep();

When JavaScript first encounters the reference to fullname inside the with statement, it will
first check to see if a variable called fullname exists. If not, it will check to see if the person
object has a property called fullname. As you can see, when you need to access the same object
repeatedly over many lines, it may make sense to surround your code in a with statement.

The with statement can be a convenient statement for the programmer to use—anything that
saves typing is convenient. But some developers feel using the with statement also makes your
program a bit harder to read. With the technique of copy-and-paste in most text editors, there
may not be many reasons you would need to use this statement in your programs.

with (document) ({
write("99 bottles of beer on the wall
");
write("99 bottles of beer
");
write("If one of the bottles happens to fall
");
write("98 bottles of beer on the wall

");

write("98 bottles of beer on the wall
");
write("98 bottles of beer
");

write("If one of the bottles happens to fall
");
write("97 bottles of beer on the wall

");

43

46 How to Do Everything with JavaScript

In the preceding code, we start off by declaring that we would like document to be the
default object. Notice how we can then start using the write() method without referring to
document at all.

The default object set using the with statement applies only to code within the
curly brackets. Outside the curly brackets, the object will need to be explicitly
used once again.

Handle Errors

Perhaps the most difficult programming challenge most developers face on a regular basis is
intelligently handling errors. In JavaScript programming, an error is a problem that the browser
encounters when it is trying to run a program. Errors can be triggered by something the browser saw
and didn’t like, called a system error. Or it can be triggered by something your program saw and
didn’t like, called an application error.

A JavaScript program could easily be doubled in size with the addition of a reasonable amount
of error-handling code. Error-handling code is typically additional code a programmer has to write
to check for the existence of errors and do something with them. In JavaScript, if the program
contains no error-handling code, the default action is often for the browser to present the problem
to the user.

The problem with error-handling is that it often takes as much work (or more) to create good
error-handling code as it took to create the rest of the program. So frequently, for a variety of
reasons, programmers skip that step.

It is all too easy to write a program (in any language) without any error-handling code. You
can tell the computer to go to the database, read in some values, ask the user for some input, add
the user’s input into the existing data, and put it back into the database. That can be done in a
programming language such as Visual Basic in about 30 lines of code. But that assumes nothing
could ever go wrong. If you think about it, lots of things can go wrong:

B The database is not available.

The database is available but you are unable to log in.

You can log in to the database, but the data is not available.
The data you retrieve from the database contains invalid values.
The user enters invalid values.

Adding the user’s data into the database data causes an error.

You are unable to save the data back to the database.

So by the time you add code to your program to handle all those errors, you are suddenly
looking at a 120-line program, instead of a 30-line program. So you see, it is certainly easier
to avoid worrying about this type of stuff.

But when you are writing programs professionally, you must worry about how errors are
handled. Should the program crash when the user types in a wrong value? Or should you simply

CHAPTER 2: Learn JavaScript Fundamentals

continue on, writing the bad data to the database, causing errors the next time the program is
run? Or is the best solution to inform the user of their mistake and ask them to try again? This
is why errors such as these need to be caught and properly handled.

The try-catch Statement

Web browsers are designed to handle errors differently depending on the browser type and
version, and to some degree on the user’s browser settings. In some cases, if you include some
bad JavaScript code inside a web page the browser would simply not run it, with no error message
or other indication that something went wrong. In other cases, the browser pops up a message box
with details of the error it encountered, asking the user what to do next. The JavaScript error message
usually looks something like this.

(3 Internet Explorer
/ Froblems with thiz “eb page might prevent it from being dizplayed propery
f.n‘ [| of funictioning properly. In the future, you can display this message by
-

double-clicking the warning icon dizplaped in the status bar,

¥ Always display this message when a page contains emars.

Show Detals =

For JavaScript developers, neither of the default error-handling methods is ideal. Ignoring an
error completely stops the program from executing. And displaying an ugly error message to the
user can be embarrassing for the programmer—not to mention frustrating to the user.

There are some minor differences between the ways Netscape and Microsoft use this
statement and what the official ECMA specification defines. In this section, I am using
the statement as supported by most web browsers.

—

The try-catch statement is used to allow programs to handle the error themselves, instead
of allowing the browser to do it. It is often used to wrap a statement or set of statements that are
likely to fail. The statement has the following syntax:

try {
Statements;

}

catch (variable) {
// error handling code
Sstatements;

The try-catch statement was only added in JavaScript 1.4, so only recent browsers
(such as IE 5.5 and Netscape 6) support it.

——

48

How to Do Everything with JavaScript

For example, you can surround a function call using the try-catch statement, and report
a more friendly error message to the user if it fails.

try {
open_database() ;
}
catch (err) {
// error handling code
alert ("An error occurred connecting to the database." +
" Please try again in a few minutes.");

So instead of receiving the ugly-looking JavaScript error message (or none at all, depending
on the browser settings), your user will receive a friendlier message asking them to try again in
a few minutes:

Microzoft Internet Explorer

s
! ': An enor ocoured connecting to the databaze. Pleaze ty again in a few minutes.

The official system error message that occurred is still passed to the statement as a parameter
of the catch clause. In our example, the err variable contains the description of the error that occurred.
So if you needed to determine what happened inside the catch clause, you can. You can even
display the original error message text to the user.

The try-catch statement is not only used for catching system errors; you can also use this
construct to catch errors generated by your own program.

It is a good idea to use a try-catch statement when your program is attempting to do something
that could cause an error, for instance, if your program is attempting to connect to an embedded
Java applet. It is possible for an applet to encounter a problem and be unable to load, or for
a browser’s security settings not to permit certain Java applets to run. If you surrounded such
code in a try-catch statement, you could detect this problem and redirect the user to a non-Java
version of the application.

There are also plenty of errors that your application could detect programmatically, including:

M TInvalid user input in a form

B Unsupported browser maker or version

B Missing or invalid browser cookies

The throw Statement

The throw statement allows a JavaScript program to declare an error in the exact same manner as
it would use for system errors. That means these errors can be caught using a try-catch statement.

CHAPTER 2: Learn JavaScript Fundamentals

It also means that user-declared errors that are not caught are displayed to the user in a JavaScript
pop-up dialog box.

Like the try-catch statement, the throw statement was only added in JavaScript 1.4, so
only recent browsers (such as IE 5.5 and Netscape 6) support it.

The following is an example of a program that throws its own errors.

try {
var errors = 0;
// Do something
errors++;

if (errors > 0) {
throw "Could not find the file.";

}
catch (errorstring) {
alert ("The following error occurred:\n\n" +
errorstring) ;

Understand the Basics of Expressions

Many of the programming statements that we have been examining in this chapter use an expression
to make some sort of decision. An expression is anything that returns a value. Table 2-2 lists the
common types of expressions, along with an example of their use.

Expression Example
Numeric literal 47
String literal "Hello"
Boolean literal true

Object literal
Program-defined variable
Program-defined function
Null

Assignment expression
Mathematical operations
Boolean operations
Conditional operator

Combination

{make : "Toyota"}
X

get toast()

null

x=35

Xty

X==y
x==57"yes" : "no"

x ="You have " + messagecounter + " new messages"

QA{HS2l Common Types of Expressions

50

How to Do Everything with JavaScript

Some statements, such as the if statement or while statement, specifically require expressions
that return a Boolean value (true or false). JavaScript does its best to automatically convert strings
and integers to the appropriate Boolean value. Expressions are also often used as parameters to
functions, and can also be used as statements themselves.

x = 5;

This code is an expression, but it is also a statement. It assigns the value 5 to the variable x.

Use Operators to Create Complex Expressions

JavaScript provides a number of operators to perform mathematical and other functions within
your code. Some operators modify the variables they operate on, although most do not. All operators
return a value, and thus can be used to create complex expressions.

There are 12 types of operators in JavaScript, and several dozen individual operators. Most
operators are represented by symbols (like +), while some operators are represented by words
(like new). Most operators require two operands, while some operators only require one (particularly
the unary operators).

Table 2-3 lists the operators available in JavaScript 1.5.

Operator Type Operators

Member dot (1)
square bracket ([])

Unary new
delete
typeof
instanceof
void
++
negation (-)
logical not (!)
bitwise not (~)

Multiplicative multiply (¥)
divide (/)
modulus (%)
Additive add (+)
subtract (-)
Bitwise Shift shift left (<<), unsigned shift right (>>>), signed shift right (>>)

QIR 2el Operators Available in JavaScript

CHAPTER 2: Learn JavaScript Fundamentals 1

Operator Type Operators

Relational less-than (<)
greater-than (>)
less-than-or-equal (<=)
greater-than-or-equal (>=)
in

Equality equal (==)
not equal (!=)
strictly equal (===
strictly not equal (!==
Bitwise Logical bitwise and (&)

bitwise or (|)
bitwise exclusive or (%)

Logical logical and (&&)

logical or (||)
logical exclusive or (™)

Conditional conditional (?:)
Assignment equals assignment (=)
shorteut assignment (*=, /=, +=, -=, %=, <<=, >>=, >>>= &&=, |-, V=, &=,
=, and =)
Special comma (,)
function
this

RGNS B Operators Available in JavaScript (continued)

JavaScript 2.0 adds two new operators to the language, and they are both considered relational:
m i
H as

We have already seen a few of these operators in action so far in this chapter, such as equals
(==), greater-than (>), increment (++), in, and equals assignment (=). Most of these operators have
their origin in mathematics. Additional operators exist to deal with logical Booleans (such as
logical and and logical or), plus binary operators to deal with the ones and zeros of binary math.

Organize Your Code into Functions

There may be the occasional instance when you can sit down and write an entire JavaScript
program without functions, but believe it or not, that type of JavaScript program is rare. Most
JavaScript programs contain at least one function.

H2 How to Do Everything with JavaScript

Functions allow you to predefine a group of JavaScript statements before you actually need
to call that code. Since functions can be called repeatedly, with varying parameters, they are also
convenient time-savers.

Define Functions

Functions are defined using the function keyword. Functions must be assigned a name and can
optionally take one or more parameters. Parameters are contained in brackets, and separated by
commas.

function name(parameterl, parameter2, .., parameterN) {
statements;

This is the JavaScript 1.5 format for defining functions. JavaScript 2.0 introduces some powerful
extensions to this basic format, by allowing parameters to have a data type, the function itself to
have a data type, parameters to be optional, named parameters, and more. We will examine the
JavaScript 2.0 functions later in this chapter.

The parameters specified inside the function definition are treated as variables inside the
function. Parameter names must be unique, in that two parameters of the same function cannot
have the same name.

From the basic function syntax, we can define a basic function:

function add_two(x, vy) {
if (x > 7) {

X =x - 7;
} else {
X =x + 7;

}
if (y > 18) {

y =y - 18;
} else {
y =y + 18;

}

return x + y;

The preceding code creates a function called add_two(). This function accepts two parameters,
named x and y. The function’s name and the parameters it accepts are defined in the first line
of code:

function add_two(x, vy) {

The function’s code defines a somewhat complicated way to add two numbers together. First,
the contents of both x and y are examined, and depending on their values something is added or
subtracted from each.

CHAPTER 2: Learn JavaScript Fundamentals

if (y > 18) {

y =y - 18;
} else {
y =y + 18;

}

Then the two numbers are added together and the result is returned. With the addition of a
return statement that returns a result, this function can act as an expression, by returning a value.

return x + y;

Now the code just defines a function. If you were to add this into our HTML template and try
to execute it in a web browser, it would actually do nothing. Functions need to be called in order
to run. And if a function defines one or more parameters, values must be given for those as well.

In order to call a function, you must do the following:

1. Type its function name followed by an open parenthesis:

add_two (

2. Provide a list of parameters, if required, separated by commas:

add_two (12, 2

3. Followed by a close parenthesis and a semicolon:

add_two (12, 2);

4. Of course, in the case of our function, we need to assign its return value to a variable, or
use it in a context that expects a value:

var result = add_two (12, 2);

We can combine the function definition, our HTML template, and a bit of code that calls our
function with various parameters as follows:

<html>
<head>
<title>JavaScript sample code</title>
</head>
<body>
<hl>Defining JavaScript Functions</hl>
<script language="JavaScript" type="text/javascript">

53

54

How to Do Everything with JavaScript

<!-- // Begin
function add_two(x, y) {
if (x > 7) {
X =X - 7;
} else {
x =x + 7;
}
if (y > 18) {

y =y - 18;
} else {
y =y + 18;

}

return x + y;

document .write("add_two (2, 17) = " +
add_two (2, 17) + "
");
document .write ("add_two (14, 9)
add_two (14, 9) + "
");

1l
+

document .write("add_two (100, 200) = " +
add_two (100, 200) + "
");
// End -->
</script>
</body>

</html>

In this code, we have inserted our add two() function definition into the <script> section of
our HTML template. For the code inside that function to be executed, we need to call that function.
In our code, we call the function three times, with three different sets of parameters.

When we load this code into a browser, we see something similar to Figure 2-4. Since we
are calling the functions inside the document.write() function call, the output of the function is
written to the screen. This is also a good example of how functions can themselves be passed
as parameters to other functions—the value of add_two has to be executed to come up with the
value that gets passed to document.write.

Accept Parameters

Of course, a function can be defined without any parameters.
function print_header () {
The parentheses are still required when defining and calling such a function.

print_header () ;

CHAPTER 2: Learn JavaScript Fundamentals b5

| File Edit “iew Favorites Toolz Help |“

[« % - 0RnAQEeIE

Defining JavaScript Functions

add_two(2, 17) =44
add_two(14, 9) = 34
add_two(100, 200) = 275

I‘ﬂ Done [|_ |_ E__Ej_fqy_liomputer

B

FIC{U{=2 W Defining a function and calling it repeatedly

Another important consideration when using functions is how variables and even parameters
are treated. Consider the following bit of JavaScript code:

var counter;
counter = 5;
function add2 (input) {

input = input + 2;
document.write("input = " + input + "
");
return;

}
add2 (counter) ;

document .write("counter = " + counter + "
");

What value will be written to the screen at the end of that program? We start off by defining
a variable named counter, and assigning it a value of 5. We then define a function named add2()

56 How to Do Everything with JavaScript

which appears to add the value 2 to the parameter that is passed to it. We then call this function
with our counter variable and print its value to the screen.
The answer is that counter will still have a value of 5 at the end of the program.

a JavaScript Test - Microzoft Internet Explorer
I File Edt “iew Favaorites Tools Help |n
J¢ -2 -0NRQEIBE-SH-ER |
=
Parameters Passed By Value
mput =7
counter = 5
S
|§'| Daone | il i | ',_%j My Computer 4

Why? Well, that has to do with how parameters are handled inside functions. JavaScript does
not pass the actual counter variable into the add2() function. It actually makes a copy of counter,
and passes the copy into add2(). Therefore, any changes add2() makes to the parameter are lost
when the function exits.

JavaScript passes parameters by value, which means the value of any parameters
cannot be permanently altered inside a function.

Understand Variable Scope

Another important rule concerning functions is one of variable scope. In programming, when and
where a variable can be used is determined by where you define it. If you declare a variable inside

CHAPTER 2: Learn JavaScript Fundamentals

a function, it can only be used inside that function. When you exit the function, the variable is
no longer defined and its value is lost.

// get_factors() returns all the numbers that divide into
// the parameter evenly
function get_factors (inputvValue) {

var counter;

var factorString = "";

for (counter = 1; counter <= inputValue; counter++) {

if ((inputValue % counter) == 0) {
factorString = factorString + counter + " ";

7

}
get_factors (6777214) ;

document.write (factorString) ;

For instance, in this code, a function named get factors() is defined. We then call it using
the value 6,777,214 as its parameter. We would like to print out the string that results using
document.write(), but by that time it is too late. The factorString variable is only valid inside
the function, because that is its scope. When we attempt to run this program, an error message

attributed to the final line of our program is displayed. The variable factorString cannot be used
outside the function in which it is defined.

f’a Internet Explorer
/ Problems with thiz Web page might prevent it from being dizplaved properly
f.-f % orfunctiohing propery. [n the fubure, you can display this message by
L)

dauble-clicking the warning icon dizplayed in the status bar.

v Alwayz dizplay thiz meszage when a page containg emors.

_ Ok | HideDetais <<

Line: 22

Char: 1

Error: factorSting' iz undefined

Code: 0

URL: file://C: My Documentz\0zbomesHTDE avaScriptJ 5 T ests him

57/

h8 How to Do Everything with JavaScript

If we were to move the document.write() statement inside the function call, we would see
a better result.

I Fil= Edit “iew Fawortes Toolz Help |ﬂ
|« > 0RAQEIB-S -EA2 |
=l
Variable Scope
12163326 2078% 41578 3388607 777214
=
lg‘l Dore |_ |_ |_ E_gj_fv]_l,.l_tomputer ,;.:

Return Values

Inside a function, the return statement serves two purposes:

B Tt causes the function to exit.

B 1t optionally passes a value back to the line of code that called it.

Much as the break statement causes a loop to exit, the return statement causes a function to
exit as well. Since functions can act as expressions by returning a value to the code that called it,
the return statement can accept the value returned as an optional parameter.

B return;
return "Hello";

return 32;

return true;

CHAPTER 2: Learn JavaScript Fundamentals

All four of these are valid uses of the return statement inside a function.

Use the Improvements in JavaScript 2.0
to Create More Powerful Functions

in

JavaScript

JavaScript 2.0 brings a number of improvements to the language. The European Computer
Manufacturers Association (ECMA) has added a number of features that increase the power
and flexibility:

Classes

Packages

Namespaces

Data types

More powerful and flexible data arrays

Access controls, such as public and private

With this added functionality, JavaScript can now be used for tasks that used to require
a more complex language like C++ or Java, while still retaining the simplicity that has made
JavaScript so popular with web developers for all these years.

If you’ve worked with JavaScript before, one of the first changes you will notice is the addition
of data types to the language. Data types allow you to restrict the range of values a variable can
contain or a function can return. We can modify the add two() function we defined earlier in
this chapter with JavaScript 2.0 syntax to use data types for all its variables, parameters, and the
function itself:

function add_two(x : Number, y : Number) : Number {
if (x > 7) {
X =X - 7;
} else {

}

X =X + 7;

if (y > 18) {
vy =y - 18;
} else {
v =y + 18;

}

return x + y;

59

60 How to Do Everything with JavaScript

Now that we have added the Number data type to our x and y parameters, JavaScript will
report an error if something other than a number is passed. It is also clearer to other developers
what data types we expect for each of the parameters.

Use Named Optional Parameters

Another change to the way parameters are used in JavaScript 2.0 is the ability to define named
optional parameters. The named keyword allows us to identify some parameters as optional
when defining the parameter list of a function.

For instance, let’s say we have a function that expects a person’s name to be passed to it in
three parts:

function sayHello
(first : String,
initial : String,
last : String) : String {

var fullname;
if (initial <> "") {

initial = initial + ". ";
}

fullname = first + " " + initial + last;
return fullname;

If we define it using the preceding syntax, we have no choice but to call it in the following way:
sayHello ("Scott", "", "Duffy");

But by using the named modifier on the middle initial parameter, we can allow the function
to be called without the middle initial.

function sayHello
(first : String,
last : String,

named initial : String = "") : String {
var fullname : String;
if (initial <> "") {
initial = initial + ". ";
}
fullname = first + " " + initial + last;

return fullname;
}
document.write (sayHello ("Scott", "Duffy") + "
");
document.write (sayHello ("Bobby", "Jones", initial:"H") + "
");

CHAPTER 2: Learn JavaScript Fundamentals

By defining the middle initial parameter as named, we can then call the sayHello() function
with only the first and last name specified. Named parameters must always specify an initializer
in case a value is not specified for that parameter, so one can be assigned. If you want to provide
a value for a named parameter, you have to refer to that parameter by name.

Accept Any Number of Parameters

Functions in JavaScript 2.0 can be defined so that they can accept an unlimited number of
parameters. You would want to do this when your function needs to accept a large number
of identical parameters but you do not want to create lots of named optional parameters.

The rest parameter must always appear at the end of any unnamed parameters that are defined,
using three periods (...). Named parameters, those defined using the named keyword, can still be
listed after the rest parameter. Of course, there can only ever be one rest parameter for a single
function.

The following code defines a function that can accept an unlimited number of parameters.
The first four arguments passed will be assigned to the first four parameters defined: name, address,
phoneNum, and spouseName. Any arguments passed beyond those four will be assigned to an
array called childName. We can use a for-in loop to get the list of names out of that variable.
(We will look at arrays in depth in Chapter 4.)

function printform (name : String,
address : String,
phoneNum : String,
spouseName : String,
childName : Array) {

// An unlimited number of children can be provided
with (document) {

write ("Name: " + name + "
");

write ("Spouse: " + spouseName + "
");
write ("Address: " + address + "
");
write ("Phone: " + phoneNum + "
");

for (child in childName) {
write ("Child " + childName[child] + "
");

return;

In the next chapter, we will focus on some of JavaScript’s most powerful features—its
built-in objects and functions.

61

This page intentionally left blank

Use Built-in

C h d pte I 3 JavaScript Classes

64

How to Do Everything with JavaScript

How to...

Master objects in JavaScript

Understand JavaScript’s built-in classes and data types
Create a String object in JavaScript

Perform mathematical functions

Apply JavaScript’s date-handling functions

Convert strings into numbers

Prepare text before sending to web server

Decide when to use regular expressions

Use JavaScript 2.0’s powerful new data types

Decide when to use JavaScript 2.0’s special data types

JavaScript has always contained a number of built-in classes that programmers could employ
when developing programs. These classes—self-contained data and code—provide useful
functionality for handling dates, mathematical functions, and arrays. For instance, if you wanted to
retrieve the current date and time in JavaScript, you would create an instance of the Date class, as so:

var today = new Date();

The today variable in this code is actually an object. Not only does the today object contain a
value (today’s date in fact), but it also contains a number of built-in functions for retrieving and
setting individual parts of the date and converting it into a number of different formats (a string,
for instance). The Date class, and all of its functionality, is explored in the section “Apply
JavaScript’s Date-Handling Functions,” later in the chapter.

JavaScript 1.5 contains nine such classes, but only three are used in common practice (Array,
Date, and Math). JavaScript 2.0 has expanded the list to more than 18 classes, and almost all of
them are useful. In this chapter, we will examine most of these classes and learn to apply them in
our JavaScript programs.

Learn about Objects in JavaScript

We are approaching the 50th anniversary of the development of Fortran, the first high-level
programming language, which was developed in 1956. Since that time, computer scientists have
developed several programming methodologies. Table 3-1 lists the most common methods of
designing programs.

It’s important to remember that no methodology is perfect for every situation. In JavaScript
programming, you are likely to use any of the four methodologies listed in Table 3-1, depending
on the task at hand.

CHAPTER 3: Use Built-in JavaScript Classes

Methodology Description

Unstructured Sequence of statements acting on global data

Procedural Main program that calls functions to perform certain tasks

Modular Main program that uses modules to group related functionality
Object-oriented Main program that uses objects to group related data and functionality

LAGIESCRE Common Programming Methodologies

Write Unstructured Programs

Unstructured programming is usually best used for short, simple scripts, since they would not
benefit from many functions and objects. An unstructured program is simply a set of JavaScript
statements that does not use user-defined functions or objects.

The following is an example of an unstructured program, in the context of an HTML web
page. Notice that there are only three lines of JavaScript code in the program.

<html>
<head>
<title>JavaScript sample code</title>
</head>
<body>
<hl>Unstructured Program</hl>
<script language="JavaScript" type="text/javascript">
<!-- // Begin
for (var counter = 1; counter < 101; counter++) {
document.write ("This is line number " + counter + "
\n");
}
// End -->
</script>
</body>
</html>

Organize Code into Procedures

Procedural code is also quite common in JavaScript programming. We could easily rewrite the
unstructured code in the preceding program using the procedural approach.

function printline(value) {
document .write ("This i1s line number " + value + "
\n");

for (var counter = 1; counter < 101; counter++) {
printline (counter) ;

65

66

How to Do Everything with JavaScript

This program creates a function named printline(), whose sole job is to write text to the
screen that includes the value passed to it as a parameter. Later on in the program, we can
repeatedly call that function.

The benefits of this type of programming practice are twofold:

B The same function can be called from multiple locations in a program, thereby removing
the code duplication of an unstructured approach.

M Dividing a program into functions makes it easier to test, which generally results in
fewer bugs.

Separate a Program into Modules

If a program gets sufficiently big (in size and scope), it gets increasingly difficult to manage and
maintain. Programmers require an additional technique (besides using procedures and functions)
to separate their programs into smaller, more manageable pieces. The next logical step up from
the procedural approach is the modular approach.

Modular programming generally involves separating one large program into two or more
separate files. These files, or modules, as they are called, are not necessarily self-contained, but
they do group related code and functions together. Typically, a modular program consists of
a main program plus one or more modules, such as:

B Main program
B Database module
B User interface module

B Error-handling module

We can infer from the preceding modular configuration that the main program does most of
the work, but it calls functions that exist in the database module whenever it needs to talk to the
database. Similarly, it uses the user interface and error-handling modules to do their own tasks,
as needed. This type of program is much easier for a programmer to manage when broken up
into modules, as opposed to one large single module.

To create a modular program using JavaScript, you need to create one or more JavaScript
files. When you import those external code files into an HTML page using a property of the <script>
tag, your main program has access to all the functions defined in those external modules. We will
learn more about creating and importing JavaScript files in Chapter 6.

Use the Object-Oriented Approach

The next progression from modular programming is to object-oriented programming. The concept
of objects can be a little bit intimidating at first, but that should not stop anyone from attempting to
at least understand how using objects can make the job of a programmer much easier.

CHAPTER 3: Use Built-in JavaScript Classes

In programming, an object is simply a “thing” that has its own attributes (known as properties)
and related functions (known as methods). You can think of objects in programming just as you
would think of objects in real life. Let me give you an example.

My car is an object that has certain attributes and can perform certain actions. The unique
attributes of my car distinguish it from most others on the road. Even if I encounter another
vehicle that is the same make and model as my own, they are still separate vehicles. The
following is a list of some common properties of my car:

Property Value

Year 2001

Make Toyota

Model 4Runner SRS

Tires 4

Doors 4

Color Thundercloud
Speedometer (mph) Ranges from 0 to 70
Gas gauge (volume, in gallons) Ranges from 0.0 to 16.0
Etc.

What I have just listed are, in fact, the programming variables that will go into my Car
object. In fact, the first five properties (Year, Make, Model, Tires, and Doors) are permanent—
in programming parlance they’re constants. The rest of the properties can be changed, thus they
are variable. Remember, we examined constants and variables in Chapter 2. If [were to turn the
list of properties related to my car into JavaScript 2.0 code, it would look something like this.

const Year : Integer;
const Make : String;

const Model: String;

const Tires : Integer;
const Doors : Integer;

var Color : String;

var CurrentSpeed : Number;
var CurrentGas : Number;

Besides having several properties, my car also has several actions it can perform:

If | do this... The car does this...

Step on the gas pedal Increases its speed; increases fuel consumption

Step on the brake pedal Decreases its speed; decreases fuel consumption

67

68 How to Do Everything with JavaScript

If | do this... The car does this...

Turn the steering wheel right or left Turns its front wheels right or left
Press the center of the steering wheel =~ Honks its horn

Add gasoline into the gas tank Increases its gas volume

Again, from a programmer’s perspective these are functions of the car. Many of the functions
are related to the car’s properties. For instance, both the gas pedal and the brake pedal affect the
car’s speed and gasoline usage.

If my car were a programmable object, it would have the following JavaScript 2.0 function
definitions.

function depressGasPedal (howMuch : Integer) {}
function depressBrakePedal (howMuch : Integer) {}
function turnSteeringWheel (degrees : Integer) {}
function beepHorn () {}

function addGas (volume : Number) {}

Turn Properties and Functions into a Class

Simply defining the collected constants, variables, and functions of a car does not make it an
object. Before a collection of code can become an object, it must first become a class.

A class is a self-contained grouping of variables and functions. The variables and functions
of a class, also called its members, cannot be used to store data or perform actions. Classes are
merely the blueprints from which objects are created. There will only ever be one Car class in
our computer program, but there could potentially be several Car objects. There could also be
no Car objects, if we do not choose to create any.

There is one exception to the rule that classes cannot store data or perform actions.
If a class member is defined as static, it can be used without the existence of an object.
Static class members are discussed in more detail in Chapter 5.

—

We will examine user-defined classes in Chapter 5. There is a different syntax for creating
this class definition in JavaScript 1 and JavaScript 2, and it is important to understand the
difference. Without getting into more detail, this is how our Car class would look in JavaScript
2.0 syntax.

class Car {
const Year : Integer;
const Make : String;
const Model: String;
const Tires : Integer;
const Doors : Integer;

CHAPTER 3: Use Built-in JavaScript Classes

var Color : String;
var CurrentSpeed : Number;
var CurrentGas : Number;

function depressGasPedal (howMuch : Integer) {
// Gas pedal JavaScript code

}

function depressBrakePedal (howMuch : Integer) {
// Brake pedal JavaScript code

}

function turnSteeringWheel (degrees : Integer) {
// Steering wheel JavaScript code

}

function beepHorn () {
// Horn JavaScript code

}

function addGas (volume : Number) {
// Gas tank JavaScript code

We can create a Car object by calling the new operator with the name of the Car class. We
will examine the new operator in more detail in the section “Instantiate an Object with the new
Operator,” later in this chapter.

var myAuto = new Car();
myAuto.Year = 2001;
myAuto.Make = "Toyota";
// etc.

Finally, classes in JavaScript 2.0 are also automatically defined as data types, so variables
can be defined that can only contain the specified object.

var Ferrari : Car = new Car();

JavaScript’s Built-in Classes and Data Types

Despite the lack of true data types in previous versions of the language, JavaScript has always
had the concept of classes. Developers could use a number of built-in classes, which provided
useful methods and functions for manipulating certain types of data.

Table 3-2 lists the classes that exist in JavaScript 1.5, along with a brief description of the
functionality each class provides.

The most significant improvement in JavaScript 2.0 is that the language has evolved to
become more object-oriented than it ever was before. JavaScript 1.5 was object-based, but did

69

10

How to Do Everything with JavaScript

Class Name Description

Array Allows lists of data to be stored in a single variable
Boolean A wrapper for Boolean values

Date Lets you work with dates and times

Function Allows you to define a function programmatically

Math Contains convenient mathematical constants and functions
Number A wrapper for primitive numeric values

Object All objects derive from this data type

RegExp Provides support for regular expressions in JavaScript
String A wrapper for string values

LA NIV Predefined Core JavaScript 1.5 Classes

not meet several of the key attributes of object-oriented programming languages. JavaScript 2.0

meets most of the key attributes.

Table 3-3 lists the classes supported by JavaScript 2.0. The list is obviously much longer than

that in Table 3-2.

Class Name Description

Array Allows lists of data of type Object to be stored in a single variable; is
equivalent to the Array[Object] data type

Array[type] Allows lists of data of type fype to be stored in a single variable

Boolean Supports variables that can only store true and false

char Supports variables that can only store a single character

ConstArray Allows lists of data of type Object to be stored in a single constant; is
equivalent to the ConstArray[Object] data type

ConstArray[type] Allows lists of data of type fype to be stored in a single constant

DynamicArray[type] Allows resizable lists of data of type #ype to be stored in a single variable

Function The “data type” of functions

Integer Supports variables that can only store integers

Never Supports variables that cannot contain any value

Null Supports variables that can only store “null”

Number Supports variables that can only store numbers

Object Supports variables that can contain any value

Prototype Supports variables that contain prototype-based objects (JavaScript 1.5’s way

of handling objects)

QARSI E Predefined Data Types in JavaScript 2.0

CHAPTER 3: Use Built-in JavaScript Classes

Class Name Description

StaticArray[type] Allows writable lists of data of type fype to be stored in a single variable
String Supports variables that can only store strings

Type The “data type” of data types

Void Supports variables that can only store “undefined”

Predefined Data Types in JavaScript 2.0 (continued)

All classes in JavaScript 2.0, even ones you create yourself, can be used as data types.

Consequently, the list of classes in Table 3-3 is also a partial list of data types.

In addition to the list of predefined classes that can be used as data types in Table 3-3, there
are a number of machine types in JavaScript 2.0. These machine types (listed in Table 3-4) are
low-level data types that can be used in JavaScript, although not all JavaScript environments will
support them. They are provided for compatibility with other languages—for instance, when your
JavaScript program needs to exchange data with an external C-language application.

NaN (Not a Number) is a defined constant in JavaScript that is, effectively, a number

representing that an error occurred when processing that variable.

Machine types can be used just like data types derived from classes, although they are not
classes themselves. For instance, in the following JavaScript 2.0 code listing, we create a handful
of variables defined as machine types.

var counter : short = 14;

var account_balance : int = 1701330222;
var bigNumber : long = 74440000000000;
var anotherBigNumber 312L;

The machine type suffixes listed in Table 3-4 are convenient shorthand notation for

. assigning a machine type to a value. The three suffixes—L, UL, and F—indicate to
JavaScript that you wish to treat a number as either a long, unsigned long (ulong),
or float number respectively. So the expression “0OL” tells JavaScript to treat the
value 0 as a long, due to the L machine-type suffix.

In the preceding code, the variable anotherBigNumber will be treated as a long integer, since
we are assigning the value 312L to it. The L suffix forces the value 312 to be treated as a long
integer. This works only when assigning numeric literals to a variable, and will not work with
other types of expressions such as variables.

12

How to Do Everything with JavaScript

Type Suffix Range of Values

sbyte Integers between —128 and +127

byte Integers between 0 and +255

short Integers between —32768 and +32767

ushort Integers between 0 and +65535

int Integers between approximately —2.1 billion and +2.1 billion

uint Integers between approximately 0 and +4.3 billion

long L Integers between approximately —9 quintillion and +9 quintillion (9 followed by
18 zeros)

ulong UL Integers between approximately 0 and +18 quintillion (18 followed by 18 zeros)

float F Single-precision floating point numbers, including positive and negative zeros,

infinities, and NaN
QA C{H=EZ N Machine Types Defined in JavaScript 2.0

Instantiate an Object with the new Operator

The procedure to create an object from either a user-defined or system-defined class is basically
the same. JavaScript provides a special operator called new for this purpose, also called object
instantiation.

var myAuto = new Car();

When the new operator is called with the name of an existing class (in this example, Car), it
calls the class’s constructor and returns an instance of the object. By assigning that object instance
to the variable myAuto, we are keeping a reference to that object so we can use it in our program.

A constructor is a special function defined in some classes that makes the object ready for use.
The initialization code is placed in the constructor. Classes can have more than one constructor or
none at all. We examine creating your own classes, and constructors for those classes, in Chapter 5.

Any parameters included in our new operator are passed to the constructor as parameters as
well. If we had defined a constructor to our Car class, we would probably want to allow the user
to pass in most of the relevant properties (Make, Model, Year, etc.) as parameters, so that the
constructor can make the object completely ready for use. Otherwise, we would have a Car object
with no predefined properties and our program would have to manually set each relevant one.

var myAuto = new Car (2001, "Toyota", "4Runner SR5", "Thundercloud") ;

This technique of object initialization using the constructor is a recommended programming
technique.

CHAPTER 3: Use Built-in JavaScript Classes

Access an Object with the . Operator

Once an object has been created using the new operator, we can access all its public properties
and methods using the dot operator (.). The dot operator is placed between the object name (not
the class name) and the name of the property or method you wish to access.

document.write ("Your car was created in " + myAuto.Year);

In this code example, we actually use the dot operator twice. We use it to access the write()
method of the built-in document object and also to access the Year property of our user-defined
myAuto object, which is an instance of the Car class.

You can define properties and methods as private, which restricts the ability
to access them using the dot operator. We will examine private properties and
methods in Chapter 5.

Access an Object with the [] Operator

JavaScript also allows access to an object’s properties using the square brackets operator ([]).
The one advantage this operator has over the dot operator is that you do not need to know the
name of the property you wish to look up. For instance, let’s look at the following for-in loop.

for (var tool in toolchest) {
document .write(toolchest[tool] + "
");

In this code example, we are passing a variable named tool to the square brackets operator,
which is then able to extract the value of the property from the toolchest object. The public
properties of any class defined in JavaScript 2.0 can be accessed using the square brackets
operator. This even works for JavaScript’s built-in DOM objects for version 1.5.

for (var prop in document) {
document .write

("document." + prop + " = " + document[prop] + "
");

This code results in the entire contents of the DOM document object being written to the
web browser window, as you can see in Figure 3-1. Since the DOM is slightly different between
different browser makers and even versions of the same browser, your own test will probably
reveal different properties and values.

Create a String Object in JavaScript

A string is simply a sequence of zero or more Unicode characters. The following are all valid strings:

B """ (an empty string)

M "How was work today, Sofia?"

13

14 How to Do Everything with JavaScript

B "32" (numeric characters)

B "Etes-vous prét pour I’examen?" (non-English characters)
There are two ways to create strings in JavaScript:

B A string literal
B Using the String object

The vast majority of strings are created using the string literal, since it is by far the quickest
and easiest technique.

Create a String Object Using a String Literal

A string literal in JavaScript is simply a sequence of zero or more characters surrounded by
either single or double quotation marks, like so:

var myString = "This is a string literal";
var myOtherString = 'So is this, using single quotation marks.';

3 JavaScript sample code - Microzoft Intermnet Explorer
Eil= Edit “iew Favortes Tools Help n

2@ B A QA = o @

Stop Refresh Home Search Fawvartes Media Histam

document bgColor = #HTH 2l
document. oncontextmenu = null

document. onrowesat = mull

document. embeds = [object]

document. sciipts = [object]

document. cnactivate = null

document mimne Type = HIMWL Document

document. alink Color = #0000

document. cnmousemove = mill

document. onselectstart = null

document. oncontrolselect = mll

document body = [object]

document protocol = File Protocol

document. enkeypress = null

document. onrowenter = null

document. onmounsedown = mll

document vlink Color = #300080

document TRL = fle 2 HTDE avaZ criptJ S Test2 httn

document. enreadystatechange = null =]

:é_;'l.lf)one A i igllg-Locél-thrané.t

HIClU/=cA W The contents of the document object in Internet Explorer 6.0

CHAPTER 3: Use Built-in JavaScript Classes

The string literal can be used with any version of JavaScript.

—

In JavaScript 2.0, you can even go so far as to assign the variable a String data type, while
using a string literal to create the object.

var title : String = "How To Do Everything with Paper Clips";

It’s important to remember that creating a String object using a string literal still allows you
to use all the properties and methods provided by the object.

var myString = "This is a string literal";
var myOtherString = 'So is this, using single quotation marks.';
document .write ("\"" + myString + "\" = " +

myString.length + " characters
");
document .write ("'" + myOtherString + "' = " +
myOtherString.length + " characters
");

Length is a property of the String object. Accessing the length property results in the actual
length of the string, as we can see in the following browser output.

3 avaScript zample code - Microsoft Internet Explorer
|| Ele Edt Wiew Favoites Iools Help n
5 . @ B A|l@a M B 3 |
Farward Stop Fiefresh Home Search Favorites Media Hiztom)
S|
-
The length property of String
"This 15 a stning hteral" = 24 characters
'S0 i this, using single quotation matks,' = 41 characters
| 2] Done ||| |28 Local intranet ,

13

16

—

How to Do Everything with JavaScript

Create a String Object Using the String Data Type

JavaScript 1.1 introduced the ability to create strings using the String class constructor.

var hometown = new String("Chicago");

By passing the text of the string to be created into the constructor, we end up with the
hometown variable being a String. There are almost no advantages to creating strings like this,
and you will very rarely see it done.

Use the String Object’s Built-in Functionality

String objects are given a number of predefined functions, which allow you to perform all sorts
of manipulations on them. Table 3-5 lists the most common String methods.

Four of the methods listed in Table 3-5 work with regular expression patterns. We

examine regular expressions in the section “Understand the Basics of Regular

Expressions,” later in this chapter.

Method

charAt (index)
charCodeAt (index)
concat (string)

indexOf (string, index)
lastindexOf (string, index)
match (regexp)

replace (regexp, newString)
search (regexp)
split (separator, limit)

substring (start, end)
toLowerCase ()
toString ()
toUpperCase ()
valueOf ()

Purpose

Returns one character from the string

Returns the ASCII code of one character from the string
Joins two strings together

Finds the first occurrence of one string inside another
Finds the last occurrence of one string inside another

Searches the string for the regular expression pattern, and returns
any matches

Searches the string for the regular expression pattern, and replaces
any matches with the string provided

Searches the string for the regular expression pattern, and returns the
index of the first match

Splits a single string into an array of substrings, based on a separator
character or regular expression

Returns a part of a string

Returns the string as lowercase characters
Same as valueOf (); returns the string
Returns the string as uppercase characters

Returns the string

QGRS Common String Object Methods

CHAPTER 3: Use Built-in JavaScript Classes

Each of the methods listed in Table 3-5 can be accessed from any String object using the
dot operator.

var msg = "ERROR: Invalid User ID or Password
";

document.write ("Original message: " +
msg.valueOf ());

document.write ("Upper case: " +
msg . toUpperCase ());

document.write ("Lower case: " +
msg.toLowerCase ());

document.write ("Partial string: " +
msg.substring (20, 22) + "
");

document.write ("Single character: " +
msg.charAt (17) + "
");

document.write ("Search from beginning: " +
msg.toLowerCase () .indexOf ("sword") + "
");

document.write ("Search from end: " +

msg.lastIndexOf ("User ID") + "
");

As you can see from the following screenshot, all the String properties can be applied to the
msg object, since msg is of type String.

QR e Rt]
|| File Edt “iew Favoites Toolz Help n
« . > © B A|@a @ B 3 °
oriard Stop Fiefresh Home Search Favorites Media Histary I
=
Common String object methods
Original message: EREOF: Invalid TTser ID or Password
Upper case: ERRCE: INVALID TTSEE ID OR PASEWOERD
Lower case: error: inwalid user id or password
Partial string: ID
Single character: e
Search from heginning: 29
Search from end: 15
|£] Done ’é.“i-’:l Lacal intratet P

11

18 How to Do Everything with JavaScript

More than one dot operator can appear in a single expression. Take the expression

e “msg.toLowerCase() "—this expression will return the msg string as all lowercase

characters. You can apply another String method to that expression, such as
“msg.toLowerCase().indexOf{ “sword”) . Since the indexOf() method returns
an integer, you could add a third dot operator to perform one of the Integer
object methods.

Perform Mathematical Functions

JavaScript provides one built-in class that cannot actually be used to create an object—Math. The
purpose of the Math class is to provide all sorts of mathematical functions and constants. Since all
the members of the Math class are defined as static, you can call them directly using the Math object.
Attempting to create an object based on the Math class results in an error in JavaScript. You
call Math’s static members using the dot operator, just as you would with the instance members of
any other class. Table 3-6 lists the names of all the predefined constants provided by the Math class.
The Math class also provides a number of methods that are useful for performing complex
mathematical calculations, as shown in Table 3-7.
For example, if we wanted to create some JavaScript code that took advantage of the
mathematical constants and functions provided by the Math object, we could do the following:

// area of a 12-inch circle, (PI * r"2)
var area = Math.PI * Math.pow (12/2, 2);

// length of the long side of a right angle triangle
// assume, 5 inch base and 7 inches high, (a”2 + b"2 = c¢”2)
var longside = Math.sqgrt(Math.pow(5,2) + Math.pow(7,2));

Instance Members Versus
— —_ Static Members

By default, properties and methods of a class will be defined as instance members. This
means that they can only be accessed within the instance of an object based on that class.
These objects are created using the new keyword, and a new copy of the class’s instance
members will be created for each new object created. If you create 100 objects based on a
class, you have 100 separate copies of each method and variable. Changing the value of one
of the copies does not affect the others.

Properties and methods of a class can optionally be defined as static members. Static
members can only be accessed directly from the class and are not part of instances created
based on that class. In essence, static class members are global, since only one version of
that member ever exists, regardless of how many objects have been created from it.

CHAPTER 3: Use Built-in JavaScript Classes

Constant Purpose

E Euler’s constant, 2.7183

LOG2E The base 2 logarithm of E
LOGI0E The base 10 logarithm of E

LN2 The natural logarithm of 2
LN10 The natural logarithm of 10

PI Pi, 3.1416

SQRT2 The square root of 2

SQRT1 2 The square root of one-half (0.5)

RVACINSCEGE A List of the Static Constants Provided by the Math Class

Apply JavaScript’s Date-Handling Functions

We already took a quick look at the Date class at the beginning of this chapter, but it is worth

looking

at it again in more detail. The Date class allows you to create Date objects containing

any date you specify, or today’s date if you specify none. With a Date object, you can:

B Retrieve specific parts of the date (the month, for instance)
B Change or modify parts of the date
B Convert the date between different string formats
B Convert the date between different time zones
Method Purpose
abs (x) The absolute value of x
acos (x), asin (x), atan Trigonometry functions
(x), atan2 (y, x), cos (x),
sin (x), tan (x)
ceil (x) Returns the next largest integer larger than x (or x, if it is an integer)
exp (x) Returns the constant E to the power of x
floor (x) Returns the next lower integer less than x (or X, if it is an integer)
log (x) Returns the natural logarithm of x
max (X, y) Returns x or y, whichever is highest
min (X, y) Returns x or y, whichever is lowest
pow (X, y) Returns x to the power of y

QIR Static Methods of the Math Object

19

80 How to Do Everything with JavaScript

Method Purpose

random () Returns a pseudorandom number between 0 and 1
round (x) Rounds x to the nearest integer

sqrt (x) Returns the square root of x

RVA{HSEBYA Static Methods of the Math Object (continued)

Early versions of JavaScript restricted the Date object so that it could not handle dates
before January 1, 1970. This was corrected in version 1.3 of the language. Dates can
now range between —100 million and +100 million days of January 1, 1970, which is
approximately 270,000 years into the past and future.

e—

There are no such things as date literals in JavaScript, so a Date object can only be created out
of the Date class. The constructor for the Date class accepts a number of different input parameters.

var holiday = new Date ("July 4, 2010");

var newyears = new Date (2010, 12, 31);

var today = new Date ();

var midnight = new Date (2010, 12, 31, 23, 59, 59, 999);

As we can see in the code, the Date constructor can attempt to interpret a date written as a
string literal. You can also pass in the year, month, and day as integers. You can even specify the
date and time down to the millisecond. If no parameters are provided, the object is set to today’s
date by default.

Table 3-8 lists all the methods supported by the Date object. Using these methods, you can
extract specific parts of a date, change the date, or convert it to different formats.

Method Purpose
getDate () Returns the day of the month (1-31) according to local time
getDay () Returns the day of the week (1-7) according to local time
getFullYear () Returns the four-digit year according to local time
getHours () Returns the hour component of the time according to local time
getMilliseconds () Returns the milliseconds component of the time according to

local time
getMinutes () Returns the minutes component of the time according to local time
getMonth () Returns the month (0—11) according to local time; 0 is January, 1 is

February, and so on

getSeconds () Returns the seconds component of the time according to local time

QA NSRS Methods of the Date Object

CHAPTER 3: Use Built-in JavaScript Classes

Method Purpose
getTime () Returns the numeric value corresponding to the time
getTimezoneOffset () Returns the number of hours the current time is offset from

Universal time (Greenwich mean time)
getUTCDate () Returns the day of the month (1-31) according to Universal time
getUTCDay () Returns the day of the week (1-7) according to Universal time
getUTCFullYear () Returns the four-digit year according to Universal time
getUTCHours () Returns the hour component of the time according to Universal time
getUTCMilliseconds () Returns the milliseconds component of the time according to Universal time
getUTCMinutes () Returns the minutes component of the time according to Universal time
getUTCMonth () Returns the month (0—11) according to Universal time; 0 is January,

1 is February, and so on
getUTCSeconds () Returns the seconds component of the time according to Universal time
getYear () Returns the year according to local time
parse (string) Parses a date string and returns the number of seconds since January 1, 1970
setDate () Sets the day of the month (1-31) according to local time
setFull Year () Sets the four-digit year according to local time

setHours ()
setMilliseconds ()
setMinutes ()
setMonth ()

setSeconds ()

setTime ()
setUTCDate ()
setUTCFullYear ()
setUTCHours ()
setUTCMilliseconds ()

setUTCMinutes ()
setUTCMonth ()

setUTCSeconds ()
setYear ()
toDateString()
toGMTString ()

Sets the hour component of the time according to local time
Sets the milliseconds component of the time according to local time
Sets the minutes component of the time according to local time

Sets the month (0—11) according to local time; 0 is January, 1 is February,
and so on

Sets the seconds component of the time according to local time
Sets the numeric value corresponding to the time

Sets the day of the month (1-31) according to Universal time
Sets the four-digit year according to Universal time

Sets the hour component of the time according to Universal time

Sets the milliseconds component of the time according to
Universal time

Sets the minutes component of the time according to Universal time

Sets the month (0—11) according to Universal time; 0 is January, 1 is
February, and so on

Sets the seconds component of the time according to Universal time
Sets the year according to local time
Returns a string representing the date portion of the specified Date object

Converts a date to a string, using the Internet GMT conventions

AGIHSEEN Methods of the Date Object (continued)

81

82

How to Do Everything with JavaScript

Method Purpose

toLocaleDateString() Converts the date portion of a date to a string, using the current locale’s
conventions

toLocaleString () Converts a date to a string, using the current locale’s conventions

toLocaleTimeString() Converts the time portion of a date to a string, using the current locale’s
conventions

toString () Returns a string representing the specified Date object

toTimeString() Returns a string representing the time portion of the specified Date object

toUTCString () Converts a date to a string, using the Universal time convention

UTC () Returns the number of milliseconds in a Date object since January 1, 1970,
00:00:00, Universal time

valueOf () Returns the primitive value of a Date object

GRS Methods of the Date Object (continued)

The constructor for the Date class accepts four formats. The actual date the object represents
depends on the number and type of parameters passed.

To create a date based on...

Use this...

A date string
Date components
Date and time components

Milliseconds since
January 1, 1970

Current date and time

new Date (“January 1, 2008”)
new Date (2008, 0, 31)

new Date (2008, 0, 31, 12, 0, 0, 0)
new Date (1034214221530)

new Date ()

JavaScript expects numbers in the range of 0 to 11 to represent months of the year.

January is month 0, February is month 1, and so forth.

Convert Strings into Numbers

JavaScript contains two built-in ways to convert numbers embedded in strings (like "32") into

actual numbers that can be used in mathematical equations (like 32)— parselnt () and parseFloat ().
As their names imply, the parselnt function will return an integer (a number without a decimal

portion), and parseFloat will return a floating-point number (including any decimal portion).

Use the parselnt and parseFloat Functions

JavaScript provides parselnt and parseFloat to help you convert numbers inside strings into
actual number data types. This is an important technique when it comes to Internet web pages,
since data read in from URLs and forms usually arrives as strings. Here is how they work:

CHAPTER 3: Use Built-in JavaScript Classes

Start by defining a variable to contain your string.

var myString;

Assign a string that contains a valid number to that variable. This number does not have
to be an integer.

var myString;
myString = "3.14159265358979323846"; // The value of Pi...

Define a variable to contain your integer.

var myString, myInteger;
myString = "3.14159265358979323846"; // The value of Pi...

Call the parselnt () function on the string, and assign the value to the integer.

var myString, myInteger;
myString = "3.14159265358979323846"; // The value of Pi...
myInteger = parselnt (myString);

The parselnt () function should return the value 3 from the string defined in this
example. We can verify this with a call to the alert message box.

var myString, myInteger;

myString = "3.14159265358979323846"; // The value of Pi...
myInteger = parselnt (myString);

alert (myInteger);

Microsoft Internet Explorer

! 3

What would happen if myString were not a valid number? Let’s modify it and find out.

var myString, mylInteger;

myString = "Madrid, Spain"; // The value of Pi...
myInteger = parselnt (myString);

alert (myInteger);

Microsoft Internet Explorer

!": Mahl

83

84 How to Do Everything with JavaScript

The parseFloat () function works in a similar fashion to parselnt (), except the digits after the
decimal place are included. We can verify this by changing the function name.

var myString, myInteger;

myString = "3.14159265358979323846"; // The value of Pi...
myInteger = parseFloat (myString);

alert (myInteger) ;

Microsoft Internet Explorer

s
4 ! E 3.141592653589733

Prepare Text Before Sending to Web Server

Every web page on the Internet has a unique URL (uniform resource locator). Even web pages
stored on your hard drive have their own unique URL. The following are a few examples of URLs:

URL URL Description
http://www.amazon.com/ Default web page of Amazon.com
news:comp.infosystems.www.servers.unix Usenet newsgroup
file:///C:/temp/test.html File residing on user’s hard drive

Uniform Resource Locator (URL)
— — Limitations

The URL format only accepts the following characters in the URL string:

M Letters—atoz

B Numbers—0 to 9

B Marks—$- +!*<(),

B Special characters reserved for special purposes—; /? : @ = &

No other characters can appear in a URL. And the special characters can only be used in

their designated roles. Characters that fall outside these rules must be properly escaped, as
described in “Use the escape and unescape Functions.”

CHAPTER 3: Use Built-in JavaScript Classes

Imagine a file with a long and uniquely creative name, such as We're #1 & proud of it; no ifs
ands or buts!.htm. Windows does allow such a name for a file. But when it comes to accessing
this file through a browser, we’re going to have problems. The space, #, &, !, and ; characters are
not allowed in the URL naming scheme. In order to access the file, it will first have to be escaped,
as described in the following section.

Use the escape and unescape Functions

Escaping a file is the process of converting all the invalid characters into specially encoded
symbols before sending the URL to the server to process. To escape a filename, we must use
the escape function built into JavaScript.

1.

Start with a string that has some invalid characters inside it.

var filename;
filename =
"We're #1 & proud of it; no ifs ands or buts!.htm";

Define a variable to contain the escaped character sequence.

var filename, newFilename;
filename =
"We're #1 & proud of it; no ifs ands or buts!.htm";

Assign the result of the escape function on the string to the new variable.

var filename, newFilename;
filename =

"We're #1 & proud of it; no ifs ands or buts!.htm";
newFilename = escape(filename) ;

To examine the results of the escape() function, we should display it to the user
using an alert box.

var filename, newFilename;
filename =
"We're #1 & proud of it; no ifs ands or buts!.htm";
newFilename = escape(filename) ;
alert (newFilename) ;

Microzoft Internet Explorer

! ‘-; ek e 2054231 220426 % 20proud 2 200f 2 20 38 #20n0% 201 20ands % 2002 20buts %21 him

85

86

How to Do Everything with JavaScript

Decide When to Use Regular Expressions

Regular expressions are a powerful search-and-replace technique that is widely used in other
environments (such as Unix and Perl), but rarely used in JavaScript. Perhaps if more programmers
knew about the existence of regular expressions in JavaScript, their use would catch on.

JavaScript only started supporting regular expressions in version 1.4 of the language,
which means they will only work in Netscape 4 or Internet Explorer 4 web browsers,
or subsequent releases.

e—

A regular expression is a sequence of characters written using a special regular expression
language, which can be used to match patterns in other strings. To give you an idea of how
powerful the regular expression pattern matching capability is, I wrote a little JavaScript program
(primarily using the String object’s substring() method) that checks to see if a string matches the
standard telephone number format—(XXX) XXX-XXXX, where X represents any number from
0 to 9. That program contained 69 lines of JavaScript code, just to check a phone number.

Fortunately, the program can be rewritten using regular expressions, as follows:

var phonenum

" (415)

555-1212";

var pattern = /~\(\d{3}\)
document .write

pattern.toString() + "..

if

\d{3}-\d{4}s/;

.

") ;

(pattern.test

(phonenum)) {

document .write
} else {

document .write

("This is a valid phone number.") ;

("This is NOT a valid phone number.");

Running this JavaScript results in this output to the browser window.

4} JavaSciipt sample code - Microsoft Intemnet Explorer

("Trying to match \"" + phonenum + "\" with pattern " +

Fle Edi View Faveites Incls Help |n
« . - .9 a m ©® 3| -
Back F Stop Refresh Home Search Favortes Media Histany

=

Powerful Regular Expression Pattern

Matching

Trying to match *(415) 555-1212" with pattern /A(d(3)) \d(3} \d{4) §7...

Thiz 15 & vald phone aumber.

-]
Q-j Diane 3 O ”%an&hﬁer\d ,

CHAPTER 3: Use Built-in JavaScript Classes

As you can see, substantial time and effort can be saved by using regular expressions to
check a string against a pattern. We’ll look at the workings of this code in the next section.

Understand the Basics of Regular Expressions
Regular expressions in JavaScript deal with pattern matching. Other programming languages
allow regular expressions to search and replace text, but JavaScript programmers do not have that
luxury. Despite this, regular expressions are still a powerful way to search for complex patterns.
For instance, you can use them to

M Validate telephone numbers in more than one format

B Extract all the numbers from a string

B Ensure a date is entered in the valid format

B Verify an e-mail address has the proper format

As we saw in the preceding code example, the regular expression pattern is quite complex
and can be a little bit intimidating.

var pattern = /~\(\d{3}\) \d{3}-\d{4}$/;

As I mentioned, regular expressions have their own language. There are many, many symbols
and special characters to represent different things. The following are some general rules:
1. We start with defining a variable for our regular expression pattern.

var pattern;

2. The forward slash (/) signifies the start and end of a regular expression literal in
JavaScript. Regular expression literals allow us to create a regular expression object
without having to use the RegExp class.

var pattern = //;

3. The caret (") and dollar sign ($) represent the start and end of a line. They also represent
the start and end of a string. If we only wanted to match the pattern to part of the string,
we would omit them. Similarly, if we wanted to test specifically for a pattern at the
beginning of a long string, we could just use the caret () by itself. The following pattern
only matches an empty string (“”’) so far.

var pattern = /"$/;

4. The \d represents a single digit. If we add the \d to our pattern, it would only match
a one-character string containing a number from 0 to 9.

var pattern = /"\d$/;

87

88 How to Do Everything with JavaScript

5. If we want to match more than one number (as we do with a phone number), we can put
multiple \d tokens together; \d\d\d would represent three numbers. We can also specify
the number in curly braces: \d{3}.

var pattern = /*\d{3}$/;

6. Other characters in the pattern, such as spaces and hyphens, represent only themselves.
So the following pattern would match 999-999-9999, which is one way to represent
a telephone number.

var pattern = /"\d{3}-\d{3}-\d{4}$/;

7. Since the parentheses characters have special meaning in regular expression syntax,
to include them we will need to escape them with a backslash: \(and \). That gives
us a pattern that matches (999) 999-9999, which is what we want.

var pattern = /~\(\d{3}\) \d{3}-\d{4}s/;

There are many special tokens in the regular expression syntax to match different sets of
characters. The tokens listed in Table 3-9 are the basic set.

Character Meaning

\ Either denotes the start of a special token (for example, \d matches a digit) or indicates
a special character is to be treated literally (* matches an asterisk)

Matches the beginning of a line; also matches the beginning of every string
Matches the end of a line; also matches the end of every string

A special quantifier, meaning the preceding token or group of tokens must match zero
or more times

+ A special quantifier, meaning the preceding token or group of tokens must match one
or more times

? A special quantifier, meaning the preceding token or group of tokens must match zero
or one time only

Matches any single character except the newline character (\n)

(abced) Matches “abcd” and remembers the match

car|bus Matches either “car” or “bus”

{3} Matches exactly three occurrences of the preceding token or group of tokens
{3,} Matches three or more occurrences of the preceding token or group of tokens
{4,8} Matches four to eight occurrences of the preceding token or group of tokens

[abedef] Matches any one of the characters a through f

[a-f] Matches any one of the characters a through f

[a-zA-Z0-9] Matches any single alphanumeric character

A NSREN Regular Expression Syntax in JavaScript

CHAPTER 3: Use Built-in JavaScript Classes 89

Character Meaning

[*aeiou] Matches everything except a, ¢, i, o, and u

\d Matches a digit; identical to the pattern [0-9]

\D Matches a nondigit; identical to the pattern ["0-9]

\s Matches a space character (there are eight defined space characters)

\S Matches a nonspace character

\t Matches a tab

\n Matches a new line

\r Matches a carriage return

\w Matches any alphanumeric (word) character (a—z and 0-9), including underscore (_);
identical to the pattern [a-zA-Z0-9]

\W Matches any nonword character; identical to the pattern [*a-zA-Z0-9]

\0 Matches null

QAGINSERCN Regular Expression Syntax in JavaScript (continued)

Create Patterns with a RegExp Object

We’ve already seen how to create patterns with a regular expression literal. A regular expression
literal starts and ends with a forward slash (/), as follows:

var zipCodePattern = /"\d{5} (-\d{4})?s$/;

JavaScript also provides a class named RegExp to create these patterns as well. We can
rewrite the pattern using this class’s constructor, as follows:

var zipCodePattern = new RegExp (""\\d{5} (-\\d{4})?s");

The backslash (\) character needs to be escaped anytime it is included in a string,
and the RegExp constructor is no exception. The double backslash (\\) represents
the escaped backslash character.

—

The RegExp object provides two main methods for performing its search and match
functions: test() and exec(). Table 3-10 lists the most common methods of the RegExp object.

Method Purpose

compile () Compiles a regular expression

exec () Searches a string for a pattern and returns all the matches

test () Compares a string to a pattern and returns true or false based on the result

BAGINSR N Methods of the RegExp Object

90 How to Do Everything with JavaScript

Once a RegExp object has been created, JavaScript makes it very easy for you to test that
pattern against any string.

var myPattern = new RegExp ("hat.*hat");

document.write ("Pattern 1: \"hat.*hat\"
");

document .write (myPattern.test ("That is a nice hat.") + "
");
document.write (myPattern.test ("I love your hat!") + "

");

var myPattern2 = new RegExp ("\\w+\\s\\w+") ;

document.write ("Pattern 2: \"\\w+\\s\\w+\"
");
document.write (myPattern2.test ("Jackie Gleason") + "
");
document .write (myPattern2.test ("Cher!") + "
");

The results of this pattern checking can be seen in Figure 3-2.

3 JavaScript sample code - Microsoft Internet Explorer
| File Edt Wiew Favoites Toolz Help |“
T T 4 I 5 £ o e - 3|
(¢ .2 . @ » Al@ @ @ 3
I Back Forward Stop Refresh Harne: Search Favarites Media Histary
=
- -
Using the RegExp object
Pattern 1: "hat *hat"
true
false
Pattern 2: "wrtishwet"
true
false
-
|£] Done L L Eg Local intranet y

FIC{U{=EVE Creating and testing patterns using the RegExp object

CHAPTER 3: Use Built-in JavaScript Classes 91

Understand JavaScript 2.0’s Powerful New Data Types
W in

JavaScript
20

Up until this point, we have been examining the classes supported by the vast majority of web
browsers used today. JavaScript 2.0 introduced a number of new classes, which were listed
earlier, in Table 3-3. The way objects are created and accessed remains virtually the same from
previous versions of JavaScript, with the new and dot (.) operators doing most of the work.

In this section, we will examine some of these new data types and learn how their powerful
functionality can be applied in JavaScript programs.

The rest of the code in this chapter is designed to work in environments that support
JavaScript 2.0 and will not work elsewhere.

Use the Boolean, Integer, and Number Data Types

There are three basic data types in JavaScript known as primitives: numbers, strings, and Boolean
values. All other data types are built on these three basic building blocks.

We already examined the String data type earlier in this chapter. The String object provides
many methods to assist in manipulating strings, including searching (indexOf), extracting a portion
of a string (substring), and determining the length of a string (length).

The Boolean data type is very simple compared to String. You can use it to store a Boolean
value (true or false), and you can retrieve that Boolean value. That’s pretty much it. There is
really no reason to use the Boolean class in your programming, as the Boolean literals are easier
to create and just as useful.

var isFinished : Boolean = false;
var paidToll : Boolean = true;

The number primitive is actually represented by two JavaScript data types: Number and
Integer. The only difference between the two is that an Integer data type cannot contain a decimal
portion. Other than that, the two classes are identical. Again, for the most part I will continue to
use numeric literals to create simple numbers, for the sake of convenience.

var counter : Integer = 0;
var invoice_amount : Number = 12363.22;

Use the char Data Type

Perhaps the one thing that distinguishes the char data type more than anything else is the odd
way it was named. This data type does not capitalize its initial letter and its name is not a complete
word. (In fact, the ECMA technical committee wanted to call it the “Character data type” at one
point during the language’s development, which would have been more in line with how other
classes were named.)

The char data type represents only single 16-bit Unicode characters. Some languages call this
a byte, and it is normally used when allocated memory space is a prime consideration. It exists

92

How to Do Everything with JavaScript

for compatibility with other languages, and does not have much practical purpose in modern-day
web programming.

Use the Object Data Type

Every class in JavaScript—both user-defined and system-defined—is a member of this data type.
If you wanted to create a variable that could hold any object in the system, this would be the data
type to use.

var myObject : Object new Date ();

myObject = new String ("This is a string");

(
myObject = new Car (2002, "Ferrari", "Testarosa", "Cherry red");

The myObject variable, once defined as a member of the Object data type, can act as an
object for any other class in the system. This ability, where one class can act as an object for
another related class, is known in object-oriented programming as polymorphism. Inheritance
and polymorphism are discussed in Chapter 5, when we create our own classes.

Understand Special Data Types

JavaScript 2.0 also contains some data types that you may not use in everyday programming—
or may not ever use. As you learned in the previous chapter, functions can return a value. And in
JavaScript 2.0, you can assign a data type to that value.

function addTwo (numl : Number, num2 : Number) : Number {
return numl + num2;

Use the Void Data Type

Well, you may sometimes need to define a function that does not return any result. The following
program does its task and exits without returning a value.

function errorMessage (msg : String) {
alert ("A serious error occurred\n" + msg +
"\nPress OK to continue.");
return;

Defining a function without any return value, as in this code, is certainly valid. But by doing
so you have left the return value type ambiguous. Your function can either return a value or not,
neither of which is an error. Leaving off the data type from the function only tells the system that
the type of the return value is unknown.

If you want to explicitly state that your function does not return a value, you can use the Void
data type. A function defined as type Void is not allowed to return a value—it is an error condition
if it does.

CHAPTER 3: Use Built-in JavaScript Classes

function errorMessage (msg : String) : Void {
alert ("A serious error occurred\n" + msg +
"\nPress OK to continue.");

return;

Use the Never Data Type

Or perhaps your function reports the error and then stops running completely. You can’t do

this in a web browser environment, but you can in other environments, such as on the server.
Functions that cause the program to exit should have the data type of Never, as in “This function
will never return.” The following code example is written using JavaScript in an IIS web server
environment.

function errorMessage (msg : String) : Never {
response.write ("A serious error occurred\n" + msg +
"\nPress OK to continue.");
response.end;

Use the Null Data Type

Finally, the Null data type can only contain one valid value—null. I honestly cannot think of
a reason why you would wish to do this.

var useless : Null = null;

Well, we have looked at every object and data type that JavaScript allows us to use—almost,
that is. We haven’t talked about arrays yet. JavaScript 2.0 has introduced five new array classes.
In the next chapter, we will examine arrays and see how they can be used to store tons of easily
accessible data.

93

This page intentionally left blank

Organize Data

C h d pte I 4 into Arrays

96

How to Do Everything with JavaScript

How to...

B Create an Array object
M Set and retrieve values in an array
M Use multidimensional arrays

B Use JavaScript 2.0’s enhanced arrays

In Chapter 2, we examined how our programs could use variables to store data for later retrieval.
There is almost no limit to the number of variables a program can define. The number is limited only
by the programmer’s ability to remember what each variable does.

But you may sometimes be faced with the task of having to store dozens, or even hundreds, of
related values into variable names for later use. For instance, how would you store the following?

B The names of the 50 U.S. states
B The names of the months of the year
B The album titles of the CDs in your collection

B The list of products in your store inventory

You may be able to come up with ways to store the first two lists (state and month names) in
JavaScript code, perhaps by assigning each name its own variable (for example, var Nebraska =
"Nebraska"). But while this is possible, it’s not that practical. What’s the point of having variables
(or even constants) whose value won’t ever change and whose value matches the variable name?

So then, how could you store those types of lists (album titles and products in inventory)? After
all, these lists could get quite large (your store could carry hundreds of products), the values can
(and do) change, and even the length of the list will be different over time.

JavaScript provides Array objects to handle lists of data. Arrays can handle long lists of data
whose values can be easily retrieved or modified. Arrays can also grow or shrink as required.

for (counter = 0; counter < 50; counter ++) {
document .write ("State #" + counter + ": " +
statesArray[counter]) ;

In the code, the variable statesArray contains an array of the 50 U.S. state names. We can
access this array using its index (which ranges in value from 0 to 49) using the square brackets
([1) operator.

statesArray[counter];

Of course, the code neglects to show how the Array object was created. There are two ways
to create Array objects:

M The Array class
B The Array literal

CHAPTER 4: Organize Data into Arrays

Unfortunately, there is a little inconsistency between the official specifications and the way
each of the major browser manufacturers has implemented arrays in JavaScript. In this chapter, we
will examine how arrays are created and how to create code that works across all browsers. We will
also take a look at some of the exciting improvements in arrays in JavaScript 2.0.

Create an Array Object

There are three ways to create an Array using the JavaScript Array class:

B new Array ()
B new Array (size)

B new Array (elementl, element2, ..., elementN)

Create an Empty Array

Passing no arguments to the constructor of the Array class creates an empty array, also called an
array of zero length. (In JavaScript, the number of items inside an array is known as its length.)
We can then populate the array manually, as follows.

1. We start by defining a variable to contain our array.
var months;
2. We then create a new Array object using the new operator.
var months = new Array();
3. We manually assign a value to the first index of the array. Indexes start at value 0.

var months = new Array();
months[0] = "January";

4. Now our array has a length of 1. We can then populate the rest of the values for our array.

var months = new Array();

months[0] = "January";
months[1l] = "February";
months[2] = "March";
months([3] = "April";
months[4] = "May";
months[5] = "June";
months[6] = "July";
months[7] = "August";
months[8] = "September";
months[9] = "October";
months[10] = "November";

months[11] = "December";

97

98 How to Do Everything with JavaScript

5. We now have an array that can be accessed by the rest of our program using only its
numerical index.

var months = new Array();
months[0] = "January";
months[1l] = "February";
months[2] = "March";
months([3] = "April";
months[4] = "May";
months[5] = "June";
months[6] = "July";
months([7] = "August";
months[8] = "September";
months[9] = "October";
months[10] = "November";
months[11] = "December";
for (var 1 = 0; 1 < 12; 1i++) {

document .write (months[i] + "
");

}

6. As you can see here, JavaScript is able to store a list of related values (months of the
year) into a single variable, and then easily access each of those values for later use.

8 JavaScript zample code - Microzoft Internet E xplorer

Stop Fefrezh Home Search Favoritez Media Hiztory

Arrays in JavaScript

Jatmary
Febrary
Mlarch
April
May

June

July
August
Septetnber
October
Movember
December

]

] Dore T e

el

CHAPTER 4: Organize Data into Arrays

7. A list such as this (months of the year) is convenient if you want your program to convert a
numerical month into its string equivalent. Luckily, the Date object’s getMonth() function
returns the month in a range of 0 to 11, so we do not even have to adjust the value before
using it.

var today = new Date();

var monthnum = today.getMonth() ;

document.write ("Today is a lovely " +
months [monthnum] + " day.");

a JavaScript zample code - Microzoft Internet Explorer

I File Edit Miew Favoites Tool: Help |“
e .2 @ @ A | @ @ @ @ °*
! Eack Farsard Stop Eefresh Home Search Favoritez M edia Higtary |
=
- -
Arrays in JavaScript
Today is a lovely Cctober day.
! I
|£] Done T gg Local intranet 4

Specify an Initial Array Length

JavaScript allows you to specify an initial length for your array by passing a single integer as
a parameter.

var months = new Array(12);

Setting the length of an array in advance like this provides few advantages in JavaScript 1.5, since
arrays grow automatically. Perhaps the one benefit it does provide is to remind you how large an array
you intended to define.

The length of an array can also be set within the program by altering the length property of
the Array object.

var months = new Array();
months.length = 12;

99

100

How to Do Everything with JavaScript

Create and Initialize an Array in One Line of Code

Looking at the months array defined earlier, we ended up writing 13 lines of code just to create and
initialize the array. It would be nice if we could create this same array using only one line of code.
Of course, I wouldn’t have mentioned it if JavaScript couldn’t do it...

var months = new Array ("January", "February", "March", "April",
"May", "June", " July ", "August",
"September", "October", "November", "December");

The constructor of the Array class also accepts a comma-separated list of the initial values of
the array. The first item listed is assigned the index 0, the next item becomes index 1, and so on.

This is especially helpful for long lists of items. For instance, if we needed an array containing
the 50 U.S. states, it would be much easier to create it in one line of code, as opposed to 51 or more.

var USStates = new Array ("Alabama", "Alaska", "Arizona",
"Arkansas", "California", "Colorado", "Connecticut",
"Delaware", "Florida", "Georgia", "Hawaii", "Idaho",
"Illinois", "Indiana", "Iowa", "Kansas", "Kentucky",
"Louisiana", "Maine", "Maryland", "Massachusetts",
"Michigan", "Minnesota", "Mississippi", "Missouri",
"Montana", "Nebraska", "Nevada", "New Hampshire",
"New Jersey", "New Mexico", "New York", "North Carolina",
"North Dakota", "Ohio", "Oklahoma", "Oregon", "Pennsylvania",
"Rhode Island", "South Carolina", "South Dakota", "Tennessee",
"Texas", "Utah", "Vermont", "Virginia", "Washington",
"West Virginia", "Wisconsin", "Wyoming") ;

Use Array Literals

Just as JavaScript provides ways to create numbers, strings, and regular expressions without having
to manually create an object, you can do the same thing with arrays.

var months = ["January", "February", "March", "April",
n May n , " Jul’le n , n July n , "August n ,
"September", "October", "November", "December"];

Break Long Lines of Code

— —

into Several Lines

To make long lines of code more readable (to yourself and other programmers looking at
your code), it is a wise idea to include a carriage return before the text scrolls off the right
side of the screen. JavaScript supports code written over several lines, as long they are placed
in the proper places. JavaScript will ignore extra spaces and new line characters, as it considers
the semicolon (;) the actual end of the statement.

CHAPTER 4: Organize Data into Arrays 101

The square brackets in the preceding code cause JavaScript to interpret their contents as the
contents of a new array. It is equivalent to creating an array using the proper constructor syntax.

var months = new Array("January", "February", "March", "April",
"May ", "June", " July " "A'ng'LlSt "
"September", "October", "November", "December");

All the properties and methods of the Array object are available to objects created using the
Array literal. 4

Call the Properties and Methods of the Array Object

The Array object in JavaScript exposes only three properties. Two of those properties are only set
when the array being called is the result of a regular expression pattern match, as discussed in
Chapter 3. The length property (which is available to all arrays) is the only one of the three that can
be modified, as it indicates the current length of the array.

Property Description

index Related to regular expression pattern matching; contains the index of the matching
substring (read-only)

input Related to regular expression pattern matching; contains the original string against which
the match was made (read-only)

length Retrieves or sets the length of the array

Not every element in an array has to contain a value. You could just as easily create
an array that skips every second index number, or skips an arbitrary number of index
numbers.

——

The length property takes into account the number of empty (unused) indexes in an array as
well as the number of elements an array contains. So if you skip a large amount of index numbers,
the length property will be much larger than the number of elements.

var employee = new Arravy();
employee[127756] = "Tom Jones";
alert (employee.length) ;

This code returns 127,757 as the length of the array, since that is the number of elements
(including empty ones) from 0 through 127,756.

Microsoft Internet Explorer

-

,r| 127757

102

How to Do Everything with JavaScript

The Array object also contains a number of helpful methods to make managing the contents
of the array easier for the programmer, as we can see in Table 4-1.

Using the methods of the Array object listing in Table 4-1 provides several advanced modification
functions on the contents of arrays. Four of the methods allow us to treat arrays like either a call stack
or a quete.

In programming, a call stack is similar to a stack of pancakes. The last pancake added to the
top of stack has to be the first pancake taken off (or eaten). This arrangement is sometimes called
the last in, first out (LIFO) method.

A queue is much like a line at a bank, where the first person to enter the line is the first person
served. Not surprisingly, this arrangement is sometimes called the first in, first out (FIFO) method.

Method Description
pop() and push() Last in, first out (LIFO); similar to a call stack
shift() and unshift() First in, first out (FIFO); similar to a queue

There are several other interesting methods that allow you to convert an array into a single
string, split arrays into subarrays, or even concatenate two or more arrays together.
In the following code, we create a number of arrays using the Array class.

var MainMenu = new Array ("File", "Edit", "View",
"Window", "Help");
var FileMenu = new Array("New", "Open", "Close", "Save", "Exit");
var EditMenu = new Array ("Undo", "Repeat", "Cut", "Copy", "Paste");
var ViewMenu = new Array ("Normal", "Web Layout", "Outline");
var WindowMenu = new Array ("New Window", "Arrange All", "Split");
var HelpMenu = new Array("Contents", "About", "Contact Us");
Method Description
concat (arrayl, array?...arrayN) Joins two or more arrays into a single array
join (separator) Joins all the elements of an array into a single string, separated
by the separator indicated or a comma if none is specified
pop () Returns the last element of an array and removes it
push (elementl, element?...elementN) Adds one or more elements to the end of an array and
returns its new length
reverse () Reverses the order of the elements in an array
shift () Similar to pop (); returns the first element of an array and
removes it

RVAC{RS B Methods of the Array Object

CHAPTER 4: Organize Data into Arrays

Method Description

slice (begin, end) Creates a new array from a subsection of the existing array,
as defined by the start and end indexes

splice (index, howMany, element1, Used to add or remove elements from an array

element?...elementN)

sort (functionName) Used to sort the elements of an array

unshift (elementl, element?...elementN) Similar to push (); adds one or more elements to the

beginning of an array and returns its new length

Methods of the Array Object (continued)

These arrays represent a menu of a hypothetical web site. We can use some of the methods
of the Array object on each of these arrays to modify it or extract bits of information.

//Creates a string of all elements of an array
// The array itself is unaffected

var MenultemsStr = MainMenu.join(" | ");
document .write (MenultemsStr + "

");

// Creates a new array that contains all elements of all arrays

// The existing arrays are all unaffected

var AllMenultems = MainMenu.concat (FileMenu, EditMenu, ViewMenu,
WindowMenu, HelpMenu) ;

document.write (AllMenultems.join(", ") + "

");

// Reverses the order of elements in an array

// Modifies the existing array

MainMenu.reverse() ;

document.write (MainMenu.join(" | ") + "

");

// Creates a new array that contains a subset of an existing array
// The existing arrays are all unaffected
var ChildMenultems = AllMenultems.slice(MainMenu.length) ;
document .write (ChildMenulItems.join(" || ")
+ "

");

103

104

How to Do Everything with JavaScript

The results from these array manipulations can be seen in the following screenshot.

3 JavaScpt sample code - Microsoft Internet Explorer
|| File Edit Wiew Favoites Tools Help B
- .5 . @ @ &)@ m @ @ =
IfiaErd Stop Refrezh Home Search Favortes Media Histom |
=
Methods of the Array Object
File | Edit | View | Window | Help
File, Edit, View, Window, Help, New, Open, Close, Save, Exit, Undo, Repeat, Cut, Copy, Paste,
Wormal, Web Layout, Outline, MNew Window, Arrange Al Spht, Contents, About, Contact Ts
Help | Window | View | Edit | File
HNew H Open || Close || Save || Bt H Tndo || Repeat ‘ Cut H Copy H Paste || Mormal H TWeb
Layout H Cruthne H Mew Window || Arrange All H Split H Contents H About H Contact Us
|&] Done g_‘g Local intranet 4

Set and Retrieve Values in an Array

Elements inside the JavaScript Array object are accessed using the square brackets operator.

var myArray = new Array();
myArray[16] = "Some value";
document .write (myArray[16]);

The number inside the square brackets is called the index. You can think of an array as a
series of parking spaces, numbered from 0 up to infinity. When the valet parks your car in one of
those spaces, he has to keep note of the spot number in order to be able to find your car again.

JavaScript arrays support using strings as indexes. When a string is used as an index, this is
called a hash table.

var FruitColors = new Array () ;
FruitColors["Apple"] = "red";
FruitColors["Banana"] = "yellow";
FruitColors|["Grape"] = "purple";

CHAPTER 4: Organize Data into Arrays

Here, the string "Apple" is being used as the index to store the value "red". The string "Apple"
can be referred to as the key. Values stored in hash tables can be retrieved using the key, just as they
can with numerically indexed arrays.

document .write ("Apples are " + FruitColors["Apple"] + ".
");
document .write ("Bananas are " + FruitColors["Banana"] + ".
");
document .write ("Grapes are " + FruitColors["Grape"] + ".
");

As we saw in Chapter 2, arrays can also be accessed using the for-in statement. The for-in
statement will loop through each of the elements in an array, returning the indexes or keys.

var FruitColors = new Array();

FruitColors["Apple"] = "red";
FruitColors["Banana"] = "yellow";
FruitColors["Grape"] = "purple";

for (var fruit in FruitColors) {
document.write (fruit + "s are " + FruitColors[fruit]

+ ".
");

Here, the for-in loop iterates over the document.write() function three times, once for each
of the items in the array. The resulting output can be seen in Figure 4-1.

A} JavaScript sample code - Microsoft Intemet Explores
Fle Edt View Favoites Took Help El
] A - r 8 = = oy 1
+ IR A ‘ Q = @ 3¢ =
fac Stop Fiefresh Home Search Favontes Media Histary |
=
- -
Using for-in on a Hash Table
Apples are red.
Bananas are yellow.
Grapes are purple.
o e " _'1
|2 Dane | |25 Local ntranet %

SO {=W W The for-in loop iterates over a hash table.

105

106 How to Do Everything with JavaScript

The same technique can be used for arrays with numerical indexes:

var Players = new Array();

Players[0] = "Jaime";
Players([1l] = "Mom";
Players([2] = "Bart";
Players[3] = "Liez'l";

// Who do we have playing bridge?
for (var name in Players) {
document .write (name + ": ");
document .write (Players[name] + " is playing bridge.
");

As you can see from the output in Figure 4-2, the for-in loop was able to iterate over each
of our bridge players as well.

A} JavaScript sample code - Microsoft Intemet Explores
| Ele Edt View Favortes Tooks Help B2
-#‘;’&.@ﬂﬁ"ﬁij@-ﬁ ”‘
Bac Fonward Stop Fiefresh Home Search Favontes Media History |
=
Using for-in on an Array
0: Jaime is playing bridge.
1: Mom 13 playing bridge.
2: Bart 15 playing bridge.
3: Liez'l is playing bridge.
o ’ " d
|£] Done | |25 Local ntranet 5

HIC{U {2V The for-in loop iterates over an array.

CHAPTER 4: Organize Data into Arrays 107

Use Multidimensional Arrays

The arrays that we have seen thus far in this chapter are sometimes called one-dimensional arrays.
If you think of an array as a graphical table containing rows and columns, these one-dimensional
arrays would only have one column, as shown in Figure 4-3.

A two-dimensional array is an array that would contain more than one column when displayed
as a graphical table. Two-dimensional arrays are used when you need to store more than one value
for each item in your list. Figure 4-4 shows a graphical representation of a two-dimensional array. 4

A three-dimensional array would look more like a cube, as an element of depth is added to
the graph. Believe it or not, there are such things as four-dimensional arrays and higher. We live
in a three-dimensional world, though, and it gets increasingly difficult to graphically display
these complex sets of data.

Some programming languages allow the definition of multidimensional arrays as a core
feature of the language. Unfortunately, JavaScript is not one of them. If you want to define a
multidimensional array in your JavaScript application, you will have to work within the
limitations of the one-dimensional array.

There are two techniques you can use to simulate a multidimensional array in JavaScript:

B You can create parallel one-dimensional arrays.

B You can create arrays of arrays.

Column 0:

Row 0: | "January"

Row 1:|"February"

Row 2:| "March"
Row 3:| "April"
Row 4:| "May"

Row 5:| "June"

Row 6:| "July"
etc. L~

FIC{U{=W:BH A graphical representation of a simple (one-dimensional) array

108

How to Do Everything with JavaScript

Column 0: Column 1: Column 2: Column 3:

Row 0:| "January" | "Garnet" "Red" "Constancy"
Row 1:|"February"| "Amethyst" "Purple" "Sincerity"
Row 2:| "March" |"Bloodstone" "Blue" "Courage"
Row 3:| "April" | "Diamond" | "White/Clear"| "Innocence"
Row 4:| "May" | "Emerald" "Green" "Love"
Row 5:| "June" "Pearl" "Cream" "Health"
Row 6:| "July" "Ruby" "Red" "Contentment"

etec. L~ ——

HIClU/ = A two-dimensional array contains multiple columns.

One of the first arrays we looked at in this chapter was a listing of the months of the year.
Let’s continue with that example. We started with the following one-dimensional array:

var months = new Array ("January", "February", "March", "April",
"May" , "June", " July") "A'ng'LlSt "
"September", "October", "November", "December") ;

Let’s say we wanted to make a list of the following four items:

The months of the year

The birthstone related to each month

The color of each birthstone

The meaning associated with each birthstone

Right now our array only contains months; if we were to arbitrarily add the three other things
we wish to list, it would only add confusion to the array and make it harder to use.

var months = new Array ("January", "February", "March", "April",
"May", "June", "July", "August",
"September", "October", "November", "December",
"Garnet", "Amethyst", "Bloodstone or Aquamarine",
"Diamond", "Emerald", "Pearl, Moonstone, or Alexandrite",
"Ruby", "Sardonyx or Peridot", "Sapphire",
"Opal or Tourmaline", "Topaz", "Turquoise or Lapis lazuli",
"Red", "Purple", "Green/Red or Blue", "White/Clear",
"Green", "Cream", "Red", "Light Green",

CHAPTER 4: Organize Data into Arrays 109

"Blue", "Many Colors", "Orange/Brown", "Blue",
"Constancy", "Sincerity", "Courage", "Innocence",

"Love and success", "Health and longevity", "Contentment",
"Married happiness", "Clear thinking", "Hope",

"Fidelity", "Prosperity");

As you can see from this code, simply adding the extra lists to the existing array is not the

best solution. Not only is it difficult for humans to read and understand, the programmer will also

have to be careful when creating the program so that things don’t get mixed up.

We can rewrite that messy array using four parallel arrays, as follows.

var months = new Array ("January", "February", "March", "April",
"May", "June", "July", "August",
"September", "October", "November", "December");

var stones = new Array ("Garnet", "Amethyst",
"Bloodstone or Aguamarine", "Diamond", "Emerald",
"Pearl, Moonstone, or Alexandrite", "Ruby",
"Sardonyx or Peridot", "Sapphire", "Opal or Tourmaline",
"Topaz", "Turquoise or Lapis lazuli");

var colors = new Array ("Red", "Purple", "Green/Red or Blue",
"White/Clear", "Green", "Cream", "Red", "Light Green",
"Blue", "Many Colors", "Orange/Brown", "Blue");

var meaning = new Array ("Constancy", "Sincerity", "Courage",
"Innocence", "Love and success", "Health and longevity",
"Contentment", "Married happiness", "Clear thinking",
"Hope", "Fidelity", "Prosperity");

The elements in each of the arrays match exactly to the same indexes in the other arrays, so

let’s say I want to find out something about the seventh month of the year. (Remember that the
arrays start at index 0, so the seventh month of the year is described at element number 6.)

doc
doc
doc
doc
doc
doc

ument.write ("The seventh month is " + months[6]);
ument.write (". Its birthstone is ");

ument .write (stones([6] + ". The " + stones[6]);

ument.write (" is a " + colors[6] + " colored stone, ");
ument.write ("and it means " + meaningl[6] + "");
ument.write (" traditionally.
");

In this manner, we are able to store several columns of information about each month, by

defining them in their own arrays. We can see the results of this code in our web browser

SCre

enshot in Figure 4-5.

110 How to Do Everything with JavaScript

; JavaScpt sample code - Microzoft Intemnet Explorer
I Fil= Edit ‘iew Favorites Tools Help |“
Sl ey P i e o e = - = »i
(¢ . > .0 @ 4|0 = @ 3| 5B
| Bach Farward Stop Refresh ~ Home Search Favontes Media Hiztary (GET]
=
Parallel Arrays
The seventh month 15 July. Its birthstone 1 Ruby. The Euby 1z a Red colored stone, and it means
Contentment tradibionally.
_ FE— e
|&] Dane I Intemet %

FIC{U{=W: BN The use of parallel arrays can simulate two-dimensional arrays.

The other method of creating a multidimensional array is to create an array that contains
other arrays—an array of arrays, as this is called.
To create an array of arrays, you would go through the following steps.

1. First, define the four arrays, just as you would if you were defining parallel arrays.

var months = new Array ("January", "February", ...);

var stones = new Array ("Garnet", " Amethyst", ...);

var colors = new Array ("Red", "Purple", ...);

var meanings = new Array ("Constancy", "Sincerity", ...);

2. Next, define a master array that will hold all four arrays.

var marray = new Array();

3. Then, assign each of the four arrays that contain the data to this master array.

var marray = new Array();

marray[0] = months;

CHAPTER 4: Organize Data into Arrays

marray[l] = stones;
marray[2] = colors;
marray|[3] = meanings;

4. You should then modify your program to access the subarrays using the name of the
master array with the appropriate index to the array.

var marray = new Array();

marray[0] = months;
marray[l] = stones;
marray[2] = colors;
marray[3] = meanings;

document .write
document .write
document .write
document .write

+ "colored
document .write
document .write

("The fourth month is " + marray[0]I[3]);
(". Its birthstone is ");
(marray[1][3] + ". The " + marray[1l]I[3]);
(" 1is a " + marray([2][3] + " "

stone, ");

("and it means " + marray[3]1[3] + "");
(" traditionally.
") ;

As you see, instead of referring to the array as months[3], we must now refer to it using the
name and index of the master array, as in marray[0][3]. As you can see in Figure 4-6, this technique
is also a valid way to create two-dimensional arrays.

Use JavaScript 2.0’s Enhanced Arrays

JavaScript 2.0 has added three distinct subclasses to the traditional Array class. Each subclass is very
similar to the way arrays have always worked in JavaScript, with some unique differences. Table 4-2
lists the traditional Array class and the three new classes, and describes the different classes.

Array Object Name

Description

Array [datatype]

StaticArray [datatype]

DynamicArray [datatype]

ConstArray [datatype)

This (the original Array class) is an abstract class. When called, it returns a
DynamicArray object. If no data type is specified, it defaults to type
Object.

This new subclass does not automatically grow when new elements are
added. It cannot contain empty elements and cannot be called without a
data type.

This new subclass is the traditional JavaScript Array object. It cannot be
called without a data type.

This new subclass creates an array of constants whose value cannot be
changed once set. It cannot contain empty elements. If no data type is
specified, it defaults to type Object.

ARVl Array Classes in JavaScript 2.0

111

112

How to Do Everything with JavaScript

5 JavaScript sample code - Microzoft Internet Explorer
| File Edit Miew Favortes Tools Help i“
£ e s - w ! R = o= a = »i
[« . % . @ @ A|@ @ @ @ |5
| Bacl Farward Stop Refresh Home Search Favortez: hedia Hiztary GET]
=
Parallel Arrays
The fourth month 15 April Tts buthstone 15 Diamond. The Diamond 15 a White/Clear colored
stone, and it means Innocence traditionally.
| - |
|&] Dane L 4 Intemet %

FIC{U{=W BN The array of arrays technique closely simulates true two-dimensional arrays.

Each of the Array types is usually instantiated with a data type. Both Array and ConstArray
provide defaults for the data type, while the others do not. The data type provided when defining
an array restricts the contents of the array to objects of that data type only.

In this section, we will examine each of the three new array types and see how they can be
used in JavaScript programs.

The StaticArray Class

The StaticArray class creates arrays of predetermined length whose values can be modified at
any time. There are two ways to create a new StaticArray:

B new StaticArray [datatype] ()
M new StaticArray [datatype] (size)

The JavaScript 2.0 specification says that StaticArrays must be defined with a data type.
To create an array that can accept any data type, we can define the array to accept values of type

CHAPTER 4: Organize Data into Arrays 113

Object. Since Object is the parent data type of all classes in JavaScript, including those that you
create yourself, Object arrays can accept any value.

Creating a StaticArray without passing in a data type results in an array that can contain any
object. Recall from the last chapter that Object is the data type of every class in the system, including
those that you define yourself.

var myArray : StaticArray = new StaticArray|[Object] ();

myArray.length = 4;

myArray[0] = "This is the first element"; Zl
3.141;

new Car (2001, "Toyota", "4Runner", "Thundercloud");

myArray[1]
myArray[2]

myArray[3] = new Date() ;

This code creates a new StaticArray variable of type Object. We take advantage of this by
storing a string, a number, a user-defined Car object, and a Date object into this array.

Since the StaticArray has to have a predefined length, we started by initializing the length
property of the array to the value 4, the number of items we intended to store. Attempting to add an
additional item would cause a JavaScript error, unless we manually increased the value of the length.

var myArray : StaticArray = new StaticArray|[Object] ();
myArray.length = 5;

myArray[0] = "This is the first element";

3.141;

new Car (2001, "Toyota", "4Runner", "Thundercloud");

myArray[1]

myArray|[2]

myArray[3] new Date() ;

myArray[4] "This is a new element.";

Providing a more specific data type, such as Number, would restrict the elements of the array
to only that type.

var mySecondArray : StaticArray = new StaticArray[Number] (6);
mySecondArray[0] = 14.2;

mySecondArray[1l] = 13;

mySecondArray[2] 21.9999;

mySecondArray[3] = 2141330119;

0.0000003;

1.0121E26;

mySecondArray[4]

mySecondArray[5]

Arrays of type StaticArray cannot have missing elements, that is, you cannot skip index

numbers as you can with DynamicArrays.
=

Attempting to add a string to a StaticArray that accepts only numbers will cause a
JavaScript error.

mySecondArray[5] = "This is not allowed.";

114

How to Do Everything with JavaScript

The DynamicArray Class

A DynamicArray is similar to a StaticArray, except that the size of the array will adjust itself
automatically based on the elements you try to add to it. There are two ways to create a
DynamicArray:

B new DynamicArray [datatype] ()
M new DynamicArray [datatype] (size)

This means that you can create an empty array and add elements to it without regard for the
existing array length.

var Nieces : DynamicArray = new DynamicArray|[String] () ;

Nieces[0] = "Sofia";
Nieces[1l] = "Monica";
Nieces[2] = "Tiffany";
Nieces[3] = "Liz";
Nieces[4] = "Elke";
Nieces[5] = "Christine";
Nieces[6] = "Leah";

This DynamicArray, Nieces, can continue to grow to almost an unlimited size, limited only
by the amount of computer memory. Another difference between DynamicArrays and the other
types of arrays is that you are not obligated to fill every element. The following is valid code
using DynamicArrays:

var emps : DynamicArray = new DynamicArray[Stringl] () ;
emps[9931] = "John H. Smith";

Even though we have not provided values for indexes 0 through 9930, we can skip ahead to
9931 and provide a value for that element of the array.

The ConstArray Class

The third new array type supported by JavaScript 2.0 is ConstArray. ConstArrays are very similar
to DynamicArrays, with three notable differences:

B They can be defined without specifying a data type.
M Their value cannot be changed once set.

B They do not support skipped elements.
There are four ways to create a new ConstArray:

B new ConstArray ()

M new ConstArray (size)

CHAPTER 4: Organize Data into Arrays 115

M new ConstArray [datatype] ()
M new ConstArray [datatype] (size)

The ConstArray class takes its cue from the JavaScript constant variable type. (We looked at
constants in Chapter 2.) Once set, the value of a constant cannot be changed.

var months : ConstArray = new ConstArray|[String] (12);
months[0] = "January";

months([1] = "February"; Zl
months[2] = "March";
months[3] = "April";
months[4] = "May";
months[5] = "June";
months([6] = "July";
months[7] = "August";
months[8] = "September";
months[9] = "October";
months[10] = "November";
months[11] = "December";

Since the names of the months of the year are not likely to change during the execution of
our program, we can define them as constants. We are then free to access those strings later
in our program using the same square brackets syntax described earlier in the chapter.

The last two chapters have focused on the built-in classes provided by JavaScript, and in
particular the new classes and data types provided by JavaScript 2.0. The next chapter is all about
creating your own classes, in both JavaScript 1.5 and 2.0.

This page intentionally left blank

Create Your Own

C h d pte I 5 JavaScript Classes

118

How to Do Everything with JavaScript

How to...

B Create objects in JavaScript 1.x
Use an object literal

Create objects in JavaScript 2.0

Organize classes using inheritance

The last couple of chapters discussed how JavaScript’s built-in classes could be used to store
many types of data (Dates, Numbers, Booleans, etc.). JavaScript also provides a way for you
to create your own classes, so that you can design your own data types.

In this chapter, we will examine the methods a JavaScript program can use to define objects
for its own use. We will also examine the difference between objects created in JavaScript 1.x
and those created in JavaScript 2.0.

Learn about Classes in JavaScript

In some ways JavaScript is an object-oriented programming language, and in some ways it is
not. JavaScript has always had the ability to create and use objects. And in fact it is practically
impossible to design a JavaScript program that does not, in some way, use the Document Object
Model or any of the object-based data types JavaScript provides.

But JavaScript programs are not normally designed around the object-oriented programming
model, as Java and C++ programs are. JavaScript does not mandate the use of classes, which
would force programmers to use the object-oriented programming model discussed in Chapter 3.
JavaScript programmers are free to write unstructured or procedural programs to fit the task
at hand.

Nonetheless, support for user-defined classes and objects is one aspect of the language that
will gain in acceptance over the coming months and years. Support for classes in JavaScript 1.x
is limited, but it does exist. Class support in JavaScript 2.0 has been vastly improved. We will
see the use of classes grow as programmers begin to discover the benefits of organizing their
code into stand-alone, reusable objects.

Create Objects in JavaScript 1.x

There are four ways to create your own objects in JavaScript 1.x:

B Call a constructor function
M Use an object literal
B Extend an existing class

B Extend an existing object

In the following sections, we will examine each of these methods.

CHAPTER 5: Create Your Own JavaScript Classes 119

Call a Constructor Function

One way to create an object in JavaScript is to create a special function called an object

constructor. 1t is the job of this constructor to initialize the object for use—essentially to

perform all the necessary setup tasks. The constructor function starts off looking just like

a regular function, but uses a special object—the this object—to add properties to itself.
To create a constructor, follow these steps:

1. Define an empty function, with the name of the class you wish to create.

function Car () {

} 5

2. The special this object is what a class uses to refer to itself. We can use the this object
to add a new property inside the constructor function.

function Car () {
this.Make = "Toyota";
}

3. Since we want the constructor to be flexible and support many different types of Car
objects, it would be better to define any properties using parameters of the function.

function Car (make) {
this.Make = make;
}

4. We can then add many more properties to make our Car object complete.

function Car (make, model, year, color) {
this.Make = make;
this.Model = model;
this.Year = year;
this.Color = color;
}

5. Of course, we can add a property that does not rely on any parameters.

function Car (make, model, year, color) {

this.Make = make;

this.Model = model;

this.Year = year;

this.Color = color;

this.FullName = this.Year + " " +
"" + this.Make + " " +
this.Model;

120 How to Do Everything with JavaScript

6. Now that we have defined a constructor for the Car class, our program can call it to
create a Car object.

function Car (make, model, year, color) {

this.Make = make;

this.Model = model;

this.Year = year;

this.Color = color;

this.FullName = this.Year + " " +
"" + this.Make + " " +
this.Model;

var mySUV = new Car ("Toyota", "4Runner SR5",
2001, "Thundercloud");

7. With the mySUV object created, we can access any of the properties of the Car class.

var mySUV = new Car ("Toyota", "4Runner SR5",
2001, "Thundercloud");
document.write ("I drive a " + mySUV.FullName) ;

3 JavaScript zample code - Microzoft Internet Explorer
|| Fle Edt Yiew Favorites Took Help n
> .9 B nla m @ @[7
Stop Refresh Home Search Fawvorites Media Histary I
=
JavaScript Constructor Functions
I drive a 2001 Toyota 4Runner 3E5
|£] Done) | §g Local intranet 4

CHAPTER 5: Create Your Own JavaScript Classes 121

8. In fact, we can create several objects from this one constructor, all with their own
independent properties. Changing the value of one object’s property does not affect
the value of the same property inside other objects.

var mySUV = new Car ("Toyota", "4Runner SR5",
2001, "Thundercloud") ;

var mySportsCar = new Car ("Acura", "NSX-T",
1999, "Red");

var myDreamCar = new Car ("Ferrari", "F355 F1",

2000, "Ferrari Red");

mySportsCar.Color = "Black";

document.write (mySUV.FullName + " = " +
mySUV.Color + "
");

document.write (mySportsCar.FullName + " = " +
mySportsCar.Color + "
");

document.write (myDreamCar.FullName + " = " +

myDreamCar .Color + "
");

& vaScript sample cods - Microsoft Intemet Explorer x]
:_ File Edit “iew Favoites Tools Help 'u
> .9 B A @ @ @ 3| *
Forward Stop Refresh Home Search Favarites Media History I
=
Creating 3 Objects From One Constructor
2001 Toyota 4Eunner 5E5 = Thundercloud
1999 Acura N33-T = Black
2000 Ferrari F355 F1 = Ferrari Red
| 2] Dane L L | }:g Local intranet 2

This method of creating objects will work in JavaScript using all browsers dating back to
Internet Explorer 3.0 and Netscape Navigator 3.0.

122 How to Do Everything with JavaScript

Property names are case-sensitive in JavaScript. The property myCar.color is not the
same as myCar.Color.

Use an Object Literal

The JavaScript object literal is a convenient way to create an object without having to predefine
a constructor function. It is, in effect, an unnamed constructor. One of JavaScript’s greatest
strengths is that it allows programmers to create programs quickly, and the object literal is a
prime example of how it does this. The tradeoff to creating objects quickly using the object
literal is that you lose out on the ability to reuse code for other objects or other programs.

The object literal consists of a number of property-value pairs enclosed in a pair of curly brackets.
Colons separate the properties and values, and commas separate the property-value pairs.

{ propertyl : value , property2 : value , ... , propertyN : value }

We can create the same mySUV object we created in the last section using an object literal
as follows:

var mySUV = {Make:"Toyota",
Model : "4Runner SR5",
Year:2001,
Color: "Thundercloud"};

We will have to use a bit of a trick in order to define the FullName property using an object
literal. Within the object literal itself, you cannot refer to any of the other properties. The following
code shows how we are forced to define the FullName manually:

var mySUV = {Make:"Toyota",
Model: "4Runner SR5",
Year:2001,
Color: "Thundercloud",
FullName:"2001 Toyota 4Runner SR5"};

When it comes to defining the other two objects from the last section (mySportsCar and
myDreamCar), the only way to reuse the code from the mySUYV object is to copy and paste,
which most people would agree is not the best way to reuse code.

var mySportsCar = {Make:"Acura",
Model: "NSX-T",
Year:1999,
Color:"Red",
FullName:"1999 Acura NSX-T"};

CHAPTER 5: Create Your Own JavaScript Classes

var myDreamCar = {Make:"Ferrari",
Model:"F355 F1",
Year:2000,

Color:"Ferrari Red",
FullName:"2000 Ferrari F355 F1"};

As you can see, object literals are best used when you do not anticipate needing to create
other objects of the same type.

Extend an Existing Class

JavaScript allows you to extend the capabilities of a class by assigning your own methods and
properties to it. This includes adding new methods and properties to any of the predefined system
classes. It does this through a system called prototyping.

JavaScript automatically gives each class a property called prototype that can be used to extend
the functionality at the class level.

ClassName.prototype.memberl = valuel;

A new member (memberl) can be assigned a default value (valuel) and added to the class
specified (ClassName). This new member is static, in that its value is shared by all objects derived
in that class. Changing the value inside one object changes it for all.

Let’s start with an example. In the following code, we have defined a function that accepts
a Date object as its parameter and will return a string that represents the name of the season
("Spring", "Summer", "Fall", or "Winter") that the date belongs to.

function getSeason (obj) {
var mon = obj.getMonth() ;
var day = obj.getDay();

if (mon < 2 || (mon == 2 && day < 20)) {
return "Winter";

} else if (mon < 5 || (mon == 5 && day < 21)) {
return "Spring";

} else if (mon < 8 || (mon == 8 && day < 23)) {
return "Summer";

} else if (mon < 11 || (mon == 11 && day < 22)) {
return "Fall";

} else {

return "Winter";

123

124

How to Do Everything with JavaScript

Thus, we can call the preceding function using a Date object and get the correct season that
the date falls into.

var today = new Date();
document .write (getSeason (today)) ;

You might think that it would be more convenient if the getSeason() function was a method
of the Date object, instead of an external piece of code. To attach the getSeason() function to the
Date class, we first need to modify it to work on the special this object, as all methods inside
classes should.

function getSeason () {

var mon = this.getMonth() ;

var day = this.getDay/() ;

if (mon < 2 || (mon == 2 && day < 20)) {
// Covers Jan 1 through Mar 19
return "Winter";

} else if (mon < 5 || (mon == 5 && day < 21)) {
// Covers Mar 20 through June 20
return "Spring";

} else if (mon < 8 || (mon == 8 && day < 23)) {
// Covers June 21 through Sept 22
return "Summer";

} else if (mon < 11 || (mon == 11 && day < 22)) {
// Covers Sept 23 through Dec 21
return "Fall";

} else {
// Covers Dec 22 through Dec 31
return "Winter";

We must then attach the getSeason() function to the Date object as follows:
Date.prototype.getSeason = getSeason;
We can then call the getSeason() method right from any and all Date objects we create.

var today = new Date();
document .write("The season is currently " + today.getSeason());

CHAPTER 5: Create Your Own JavaScript Classes 125

; aaipl spleod - Mirsoﬂlrnet Explorer Bl |
|| Fie Edit ‘iew Favoites Tooks Help n
=ariard Stop Refresh Home Search Favorites Media History]
[=|
Add a New Method to the Date Class
The season is currently Fall
2] Dane | §g Local intranet %

Even though the getSeason() method is still not technically a member of the Date class,
JavaScript is smart enough to check to see if it exists inside the list of prototype members, which
is where we created it.

Extend an Existing Object

Just as a class can be extended using the prototype property, objects themselves can have new
properties and methods attached to them.

function Car (make, model, year, color) {

this.Make = make;

this.Model = model;

this.Year = year;

this.Color = color;

this.FullName = this.Year + " " +
"" + this.Make + " " +
this.Model;

126 How to Do Everything with JavaScript

var mySUV = new Car ("Toyota", "4Runner SR5",
2001, "Thundercloud") ;

mySUV.mileage = 12323;
document .write (mySUV.FullName + " has traveled " +
mySUV.mileage + " miles.

");

3 JavaScript sample code - Microzoft Internet Explorer
File Edit “iew Favortes Tool: Help '“
e . > . @ B & @ @ @ @]
Farward Stop Refresh Home Search Favortes Media Histary)
=
Extend an Existing Object
2001 Toyota 4Eunner SRS has traveled 12323 miles.
| &] Done | "’g‘ Local intranet %

Even though the Car class does not define a property named mileage, we were able to create
one for the mySUV object simply by assigning a value to it. Since we applied this property to
the mySUYV object and not the Car class, other objects derived from the Car class will not have

a mileage property.

Create Objects in JavaScript 2.0

%@W I JavaScript 2.0 has totally redesigned the way classes are defined. Although most JavaScript
W cnvironments will still support the old way for the sake of backward compatibility, it is hard

to compare the two techniques. Prototypes and manually added properties are no longer the
preferred method for generating user-defined classes and objects in JavaScript.

CHAPTER 5: Create Your Own JavaScript Classes

Define Your Own Classes

In JavaScript 2.0, classes are defined using the following syntax:

class className { statements; }

As you can see, this syntax is quite simple. In practice, classes are quite easy and straightforward
to define. We can take the Car class defined earlier in the chapter and define it using the
JavaScript 2.0 syntax.

1. Define a class named Car using the class definition syntax.

class Car {

}

2. Then define all the properties our Car class will possess.

class Car {
var Make;
var Model;
var Year;
var Color;
var FullName;

}

3. Remember that JavaScript 2.0 supports data types for variables, so let’s make our
definition more specific.

class Car {
var Make : String;
var Model : String;
var Year : Integer;
var Color : String;
var FullName : String;

}

4. We will need to add a constructor function to the Car class to initialize these variables.
The constructor usually has the same name as the class, although it is possible to define
constructors with different names using a special syntax. The this object is still used to
refer to the current object.

class Car {
var Make : String;
var Model : String;
var Year : Integer;
var Color : String;
var FullName : String;

127

128 How to Do Everything with JavaScript

function Car (make, model, year, color) {
this.Make = make;
this.Model = model;
this.Year = year;
this.Color = color;

this.FullName = this.Year + " " +
"" + this.Make + " " +
this.Model;

}

5. The Car class can be instantiated in the exact same manner as classes defined under
JavaScript 1.x were, using the new keyword.

var mySUV = new Car ("Toyota", "4Runner SR5",
2001, "Thundercloud");

6. With the mySUYV object created, we can access any of the properties of the Car class.

var mySUV = new Car ("Toyota", "4Runner SR5",
2001, "Thundercloud");
document.write ("I drive a " + mySUV.FullName) ;

It is easier to create methods using JavaScript 2.0 classes, as functions can be defined
inside of the body of the class.

class Book {
var title : String;
var author : String;
var chapters : Array[String];
function print_title () {
document .write ("Title: " + this.title + "
");
}
function print_author () {
document .write ("Author: " + this.author + "
");
}
function print_all () {
var counter = 0;
print_title();
print_author () ;
for (chapter in this.chapters) {
counter++;
document .write ("Chapter " + counter + ": " +
this.chapters[chapter] + "
");

CHAPTER 5: Create Your Own JavaScript Classes

}

Once the Book class is defined, we can create a Book object using the new keyword.
Since our class does not have a constructor, we can then manually set each of the
properties. Calling a method of that new object results in the behavior we expect.

var thisBook = new Book() ;

thisBook.title = "How To Do Everything with JavaScript";
thisBook.author = "Scott Duffy";

thisBook.chapters = new Array(15);

thisBook.chapters = "Prepare to Program in JavaScript";
thisBook.chapters = "Learn JavaScript Fundamentals";

thisBook.chapters

(0]
[11]
thisBook.chapters[2] = "Use Built-In JavaScript Classes";
[3] = "Organize Data into Arrays";
(4]

thisBook.chapters
// etc.

= "Create Your Own JavaScript Classes";

thisBook.print_all();

This results in the following browser output.

[B% JavaScript sample code - Mozilla _ O]
. File Edt “iew Go Bookmaks Tools Window Help

Define Your Own Classes

Title: How To Do Everything with JavaScript
Author: Scott Duffy

Chapter 1: Prepare to Program in JavaScnpt
Chapter 2: Learn JavaScript Fundamentals
Chapter 3 Tze Built-In JavaScript Claszes
Chapter 4: Orgamize Data into Arrays

Chapter 5: Create Your Cwn JavaScnpt Classes

[& | Document: Done [0.32 secs) il

129

130 How to Do Everything with JavaScript

Organize Classes Using Inheritance

One of the benefits of organizing your program into classes is that you can establish relationships
between classes using inheritance. Inheritance allows you to do two things:

B Save programming time, because related classes can share code

B Enforce a standard set of common properties and methods for related classes

JavaScript 2.0 enables one class to inherit from another using the extends keyword.
class ClassName extends ParentClass { statements; }

This establishes a parent-child relationship between the ParentClass and the ClassName
classes. The best way to understand inheritance is to think of the class structure like a
hierarchical tree.

At the top of the tree is the Object class, the parent of all classes in the system. All the
classes in the system that do not have an explicit parent object derive from the Object class
by default. Those that do have an explicit parent class defined, inherit from that class instead.

Note: All classes in JavaScript 2.0 (both system and user-defined) have the Object class
as either a direct or indirect ancestor, even those that extend from another class.

We can define the parent class in the normal way.

class Vehicle {
var Maker;
var Price;
var Color;

function Vehicle (maker, price, color) {
this.Maker = maker;
this.Price = price;
this.Color = color;

}

function Vehicle () {

this.Maker = "Default";
this.Price = 0.0;
this.Color = "Transparent";

This code defines a Vehicle class, although there are only three properties. This class represents
any generic vehicle, whether it is a boat, or a plane, or a car. That class should be able to handle
any object that can be considered a vehicle.

CHAPTER 5: Create Your Own JavaScript Classes 131

A class can contain multiple constructors, as long as the number and type of parameters

(known as the function signature) are unique for each constructor.

We can then be a bit more specific by defining classes that break down the type of vehicle.
By extending the Vehicle class, our child classes automatically inherit the properties and methods
of the Vehicle class.

class LandVehicle extends Vehicle {
// Land specific code
var Speed;
var xPosition;
var yPosition;
}
class WaterVehicle extends Vehicle {
// Water specific code
var Speed;
var WaterDisplacement;
var xPosition;
var yPosition;
var zPosition;
}
class AirVehicle extends Vehicle {
// Alr specific code
var AirSpeed;
var LandSpeed;
var xPosition;
var yPosition;
var zPosition;
}
class SpaceVehicle extends Vehicle {
// Space specific code
var Thrust;
var DistanceFromEarth;

We can continue to define classes that inherit from these child classes (Land Vehicle, AirVehicle,
WaterVehicle, and SpaceVehicle). The idea is that each child class is a more specific version of
the parent class. So LandVehicle would have the following child classes:

B Car
Train

Bus
Truck

132

How to Do Everything with JavaScript

The Story of Interfaces

—

The ECMA, the designers of the JavaScript 2.0 specification, originally planned to include
an object-oriented programming concept called interfaces in the specification, but it was
dropped at the last minute. Interfaces allow you to define a set of standard method names
and parameter lists without having to provide code for them. A class could then declare,

“I support the following interfaces...”’; this would provide a reliable way to know what
methods are supported by the class.

Let’s say you define an interface named DoorLock, which contains two methods, Lock()
and Unlock(). We know that the Car class implements the DoorLock interface, so we can be
sure that a Car object has Lock() and Unlock() methods as well. Notice that a Car is not a
type of DoorLock, so a parent-child relationship (one created by inheritance) should not be
established.

By defining a DoorLock interface, we have created a standard set of methods for classes
that need to define door lock activity, such as the Car class and the House class.

A Car is a more specific type of LandVehicle, which is a more specific type of Vehicle. If
we wanted to further define Car, for instance, we could create SUV and SportsCar classes that
inherit from it, and so on.

There are obviously two major benefits to having classes inherit in such a manner. The first
is the ability to reuse code. We defined a constructor all the way back in the Vehicle class.

function Vehicle (maker, price, color) {
this.Maker = maker;
this.Price = price;
this.Color = color;

}

Assuming none of the child classes defined a constructor for itself, all the descendants of the
Vehicle class can use the original Vehicle constructor.

class Vehicle {
var Maker;
var Price;
var Color;

function Vehicle (maker, price, color) {
this.Maker = maker;

CHAPTER 5: Create Your Own JavaScript Classes 133

this.Price = price;
this.Color = color;

class LandVehicle extends Vehicle {
// Land specific code
var Speed;
var xPosition;
var yPosition;
5

class Car extends LandVehicle {
// Car specific code
var Model;
var Year;

// Car inherits the Vehicle constructor

var myCar : Car = new Car ("Ford", 19500, "Blue");
myCar .Model = "Focus";

myCar.Year = 2002;

myCar.Speed = 32;

// Car inherits the properties of Vehicle
document.write ("Vehicle class properties: " + myCar.Maker + "
");

// Car inherits the properties of LandVehicle
document .write ("LandVehicle class properties: " + myCar.Speed + "
");

// Car has its own properties as well
document.write ("Car class properties: " + myCar.Model + "
");

As you can see from Figure 5-1, even though the Car class itself has only two properties, it
does inherit all of the properties from its parents.

Another benefit of using inheritance is what computer geeks like to call polymorphism.
Essentially, a variable defined as the Vehicle data type can contain any of the objects derived
from Vehicle (like LandVehicle or Car). This allows a program to act on an object without having
to know or care what the exact type of the object is. If it can act on the parent object, the same
actions can be performed on any of the child objects.

134

How to Do Everything with JavaScript

; JavaScript sample code - Microsoft Internet Explorer

'_l File Edit “iew Favoites Toole Help |n
| & - Q@ o a & @& I -
Baik Fanward

Stop Refresh Héme ‘ Search Favorites Media History
Child Classes Inherit From Their Parents

Wehicle class properties: Ford
LandWVehicle class properties: 32
Car class properties: Focus

I (=

[&1Done T Bt

e

SO {AW Classes inherit the properties and methods of their parents.

Perhaps the best demonstration of this would be with our own type of number, which we will
call SuperNumber.

class SuperNumber extends Number {
override function toString() {
return super.toString() + " !tt!titi";

The only difference between a regular Number class and a SuperNumber class is that the
SuperNumber will return four exclamation marks appended to the end of the number when a
user calls the toString() function.

Once we have defined a SuperNumber, we can use it just like we would use a number. Any
function that works on Numbers will be able to handle SuperNumbers, due to the inheritance
relationship. Even the existing arithmetic operators will be able to handle these variables without
modification.

var X : SuperNumber = new SuperNumber (13);
var y : SuperNumber = new SuperNumber (22) ;

CHAPTER 5: Create Your Own JavaScript Classes 135

var z : Number = x + vy;
alert (z);

We can see the result of the program here.

[JavaScript Application]

{l' 35

This illustration depicts the result we would expect to see when JavaScript 2—compatible

browsers are eventually released.
L ——

Choose Between Static and Instance Members

We examined the concept of static class members when we discussed the built-in Math method
in Chapter 3. Basically a static member is any property or method that is defined only in the class
itself, and not in any of the objects derived from that class. You do not even have to have an object
of a particular class defined in order to access its static members.

Static members are defined using the static keyword.

class Books {
static const MAX_WIDTH = 8.5;
static const MAX_HEIGHT = 11;
static const MAX_WEIGHT = 10;
var title;
var author;
var page_count;

In the Books class defined here, we have defined three static members. They happen to be
defined as constants, but variables and even functions can be defined as static. In order to access
them, we call them through the Books class, and not through any object created based on Books.

alert (Books.MAX HEIGHT) ;

[JavaScript Application]

i 1
|

136 How to Do Everything with JavaScript

This illustration depicts the result we would expect to see when JavaScript 2—compatible

browsers are eventually released.
B

Instance members are any members that are not static. Instance members are accessed
through objects that have been created, and they cannot be accessed using the class directly.

var myBooks = new Books () ;
myBooks.title = "How To Do Everything With a Pencil";
myBooks.author = "Mary Major";

In this code, both title and author are instance members, and they can be accessed only by
using an object (myBooks) based on the class Books, and not the class itself.

Make Class Members Public or Private

Another common task in object-oriented programming is to define members that cannot be
accessed from outside the class. This is primarily used for security and data integrity.

Members are made private using the private keyword, and made public using the public
keyword. By default, members that are not explicitly defined as either are public.

class Car {
private var Make : String;
private var Model : String;
private var Year : Integer;
private var Color : String;

public function setMake (value) : Void {
this.Make = value;

}

public function setModel (value) : Void {
this.Model = value;

}

public function setYear (value) : Void {
this.Year = value;

}

public function setColor (value) : Void {
this.Color = value;

In this code, all the properties of the Car class are defined as private. This means that they
cannot be accessed from outside the class. Attempting to do the following will cause an error.

var myCar = new Car();
myCar.Make = "Mercedes";

CHAPTER 5: Create Your Own JavaScript Classes

To set the properties, we have to call the public methods we created for ourselves. The
following code will work.

var myCar = new Car();
myCar.setMake ("Mercedes") ;

Notice how we created a Car class that has made it impossible to read the values of the
properties. In the real world, the class would also contain a number of functions to retrieve the
values as well.

Obviously, there is more to learn about classes in JavaScript, including getters and setters,
packages, and namespaces. But these topics go beyond the scope of this chapter, and of this
book. For more information on classes, consult the official JavaScript 2.0 specification on the
Mozilla web site, located at http://www.mozilla.org/js/language/js20/core/classes.html.

In the next chapter, we will start to learn how to apply the concepts learned in the previous
four chapters, as we use JavaScript inside web pages. We will learn about some of the key HTML
tags and where JavaScript should be placed in the web page.

137

This page intentionally left blank

Build

Pal‘t ” JavaScript-

Enabled
Web Sites

This page intentionally left blank

Embed JavaScript
in a Web Page

Chapter 6

142

How to Do Everything with JavaScript

How to...

B Understand basic HTML structure
Use <script> to add JavaScript to a web page
Use <noscript> for browsers that don’t support scripting

Load an external JavaScript file

Call JavaScript using hyperlinks

Up until this point in the book, we have been concentrating on JavaScript’s programming

syntax—the statements and definitions that are the nuts and bolts of the language. As you’ve

seen, JavaScript has many features that make it an ideal language for many tasks, and one of

its strongest features is its ability to integrate into a wide variety of other environments.
Versions of JavaScript exist in many different environments:

B An Application Server Pages (ASP) language for Microsoft IIS web servers (one of
several supported languages)

Server-Side JavaScript (SSJS) for Netscape/iPlanet web servers

A server-side programming language for other web servers

An embedded language for Adobe Acrobat PDF documents

An embedded language for Macromedia Flash files (ActiveScript)

But even today, almost 10 years after it was first introduced, JavaScript’s biggest success
remains as an embedded programming language for web pages. It is supported by virtually
every web browser in use today—it is installed on hundreds of millions of PCs worldwide. In
this chapter, we will examine how to embed JavaScript in HTML pages and some basic text
formatting techniques.

Understand Basic HTML Structure

Hypertext Markup Language, or HTML for short, is the language that web pages are written in.
HTML is known as a markup language, because it uses a set of predefined tags, or markup, to
provide formatting and other instructions to the web browser.

For instance, the following example contains a number of HTML markup tags:

Now is the time for all
good men <u>to come to the aid</u> of <i>their party</i>.

As you can see, the HTML markup tags are always enclosed in angle brackets (< and >).
Most HTML tags have both a starting tag (the bold text tag, , for instance) and a closing tag
(like), although there are some exceptions to this rule.

CHAPTER 6: Embed JavaScript in a Web Page 143

The following shows how an HTML document with the preceding markup would appear in a
standard web browser.

. Sample code example - Microsoft Internet Explorer
I| File Edit “iew Faworites Toolz Help J
le- 2.8 8 d/a @ & O
il Hiaol Fanward Stop Refresh Home Search Favortes Media Hiztony |
=]
-

Hypertext Markup In Action

Now is the time for all good men to come to the ad of their pariy. 6
e - T -:j
| €] Done | |l I,_,Ej My Computer 4

Closing tags always start with a forward-slash character (/) followed by the name of
the related start tag. For instance, if the start tag is , the end tag must be called

.

Entire books have been written on the subject of HTML. Actually, to be truly accurate, you
could say enough books to fill more than a few bookshelves (or even bookcases) have been
written on the topic. My goal, in this chapter and the ones that follow, is not really to teach the
ins and outs of HTML. But since JavaScript programs rely so much on what’s happening inside
the browser (frames, forms, browser events, etc.), it is impossible to understand what is going on
with JavaScript without first understanding the HTML it relates to. For reference, Appendix A
lists each of the HTML 4.01 tags and gives a brief description of their use.

The major browser makers (Microsoft and Netscape) have in some cases added their

own tags, so their lists might not match the official list in Appendix A.

144 How to Do Everything with JavaScript

Why XML and XHTML
Are the Coming Thing

Although humans can easily read HTML documents using a web browser, computers
themselves have a difficult time finding specific data to extract from a web page. For instance,
it would be very difficult to create an application that can reliably download daily flight
schedules from all the airline web sites.

XML (Extensible Markup Language) is an ideal language for transmitting computer data
over the Internet. Whereas HTML is an extremely flexible markup language, with very few
mandatory elements or attributes, XML has a strict set of formatting rules. Programmers can
impose additional rules on individual types of documents by creating an XML schema or
DTD. XML is the new standard language for data formatting over the Internet, and it is the
foundation of many of the Web Services initiatives, including Sun ONE and Microsoft .NET.

A new version of HTML has been created that allows web documents to be valid XML
as well, called XHTML. In fact, the World Wide Web Consortium (W3C) has stopped
developing the HTML standard (version 4.01) and has been hard at work at XHTML standards—
versions 1.0 and 1.1 have already been released.

For more information on the XHTML standard, visit the W3C web site at
http://www.w3c.org/markup.

In addition, as mentioned in Chapter 1, a special set of tags denotes comments in HTML:
<!--indicates the start of commented text, and --> indicates the end. Comments serve as useful
documentation or author notes, such as the following:

<!-- Survey.html
Purpose: To gather visitor opinions on this site
Author: John Q. Doe

<!-- Copyright 2003, Scott J. Duffy Incorporated
All rights reserved. -->

As you can see, comments can extend over several lines. All text that appears inside HTML
comment markup is ignored by the browser and not displayed to the user in the main display.

Don'’t forget that the user can see the underlying HTML code in most browsers by

selecting View | Source from the menu bar, so your comments won't be entirely private.

CHAPTER 6: Embed JavaScript in a Web Page

What “Officially Deprecated” Means

—

The World Wide Web Consortium (W3C), the group that creates and maintains several
important specifications dealing with the Internet including HTML, has indicated a number
of HTML tags are deprecated.

Indicating that a tag is deprecated is a polite way of saying support for it in the

specification will likely be dropped in a future release. The W3C would like to encourage
web developers to employ another method instead, such as using Cascading Style Sheets
(CSS) for defining fonts.

However, given the widespread use of such tags as , <center>, and <u>, it is highly

unlikely that the major browser makers are going to drop support for them anytime soon.

Build an HTML Document

One of the strengths of HTML is simplicity: it is very easy to build a web page using just a few
basic tags. There are three essential elements to building a web page:

1.

Every HTML document must begin with the HTML start tag (<htmI>) and end
with the HTML end tag (</html>). The only exception is for <DOCTYPE> or
<?xml?> declaration statements, which are then placed before the HTML tags.
(The <?xml?> declaration is used to define documents that conform to XHTML,
which is beyond the scope of this book. However, we will look at <IDOCTYPE>
in the following section.)

<html>
</html>

The HTML document is then divided into two sections, a head and a body. The head
section is where a document title, descriptive keywords, style sheets, and JavaScript
functions are defined.

<html>
<head>
<title>How to Do Everything with JavaScript</title>
</head>
</html>

The body section is where the contents of the document are placed. Often this will be
plain text (sentences and paragraphs), marked up with some formatting HTML tags like
, <i>, and <p>.

<html>
<head>

145

146 How to Do Everything with JavaScript

<title>How to Do Everything with JavaScript</title>
</head>
<body bgcolor="white">
<hl>A typical document header</hl>
<p>The start of a paragraph.</p>
<p>0Our second paragraph.</p>
</body>
</html>

Granted, the web page in our example is fairly simple, but even web pages with hundreds of
lines of code start with three simple tags: <html>, <head>, and <body>.

Get in the habit of creating all your HTML documents using lowercase tag names, properly
nested tags, and properly quoted attribute values. It will pay off when you want to start
creating XHTML 1.0 documents, because XHTML has very strict rules.

——

You are probably already familiar with the basics of HTML. If not, since it’s not feasible to
compress a tutorial on HTML into one chapter, I have included a list of useful web sites at the
end of this chapter.

Indicate the Document Type with <!DOCTYPE>

There is only one way to indicate to a browser (or any other application reading your HTML file)
which version of HTML your web page is written for: <IDOCTYPE>. Up until a few years ago,
this tag was ignored entirely by web browsers. But recent versions of browsers look for this code
to determine which set of rules to use in interpreting the web page.

An HTML document that conforms to the HTML 4.01 specification would have the
following <!DOCTYPE> as the very first line of the page, even before the <htmI> tag:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">

If a browser encounters a web page that uses this <IDOCTYPE> tag, the browser will expect
valid HTML 4.01 Transitional code in the rest of the document. Transitional HTML includes all
the deprecated tags (such as). There is also a version of HTML called Strict that does not
include deprecated tags, and another called Frameset that allows browser frames to be created.
(We will look at browser frames in Chapter 10.)

If we wanted to use a different version of HTML, like XHTML (the XML compliant version
of HTML), we would use a different <!DOCTYPE>, like so:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">

CHAPTER 6: Embed JavaScript in a Web Page 147

When a browser encounters this <IDOCTYPE>, it knows to treat the contents as XHTML 1.0
Transitional. Depending on the browser, this may be slightly different from the way it treats
HTML 4.01 code.

Add a Title and Define Document Keywords

The HTML head element contains information about the current document, such as its title,
keywords, and other data that is not considered content. The HTML <title> tag is used to
specify a title for the document, and it is mandatory in HTML 4.01.

<html>
<head>
<title>This is the document title</title>
</head> 6
<body></body>
</html>

The contents of the <title> tag are usually displayed in the title bar of the window, as you can
see here:

43 This is the document title - Microsoft Intemet Explorer

A A a @

Stop Refrezh Harme Search Favorites Media Hiztarny ‘

Optionally, you can specify a number of keywords, which will make it easier for Internet
search engines to find your web site. Keywords and a brief description of the web page can be
specified using the <meta> tag. For instance, if you had a page focused on exotic pets, you might
have the following <meta> tags:

<meta name="description" content="Articles, pictures, and stories
about exotic pets">

<meta name="keywords" content="exotic pets, reptiles, amphibians,
frog, toad, salamander, newt, siren, lizard, iguana, gecko,
monitor, chameleon, dragons, turtles, tortoises, leopard,
butterfly, butterflies, moth, bees, flies, stick insects,
beetles, wasps, hornet, roaches, ants, cricket, grasshopper,
tarantula, scorpion, centipede, millipede">

When used to specify web page descriptions and keywords, the <meta> tag takes two
attributes: name and content. In the preceding code, the first <meta> tag sets the description

148

How to Do Everything with JavaScript

for the web page—usually a sentence or two that is often displayed by Internet search engines
to give potential visitors an accurate description of what to expect from this page.

The second <meta> tag in the example defines a number of keywords—words or phrases
separated by commas that give search engines help in indexing the page. Some Internet search
engines rank web pages with these <meta> tags higher than they would the same page without
the <meta> tags.

Format Text with HTML Elements

HTML provides a number of elements to help web page developers format and style text. These
tags fall into two broad categories: phrase elements and font style elements. Phrase elements are
tags that structure text. The way these elements are presented to the user depends on the browser.
Font style elements are tags that specify specific font properties for text. Since font style properties
are fairly specific, developers can be more confident about the way browsers will present text to
the user.

The following are the phrase elements in HTML 4.01:
<abbr> indicates an abbreviated form
<acronym> indicates an acronym
<cite> indicates a citation or reference to other sources
<code> designates a fragment of computer code
<dfn> indicates the defining instance of a term
 indicates emphasis; usually displayed as italic text
<kbd> indicates text to be entered by the user

<samp> indicates sample output from programs, scripts, and so forth

 indicates stronger emphasis; usually displayed as bold text

<var> indicates an instance of a variable or program argument

Again, each of these elements indicates the type of text it contains, but gives only a hint as to
how the browser should handle them.

The following tags are the font style elements of HTML 4.01:

B bold text

B <big> larger than normal text

B <i> italic text

CHAPTER 6: Embed JavaScript in 2 Web Page

<s> strikethrough text (officially deprecated)
<small> smaller than normal text

<strike> strikethrough text; same a <s> (officially deprecated)

<tt> teletype or monospace text

B <u> underlined text (officially deprecated)

In the vast majority of HTML pages, phrase elements are not used. Many web page designers

prefer to set fonts and styles for their pages explicitly. On top of the uncertainty of how different
browsers will render these tags, using such predefined document structure elements limits
designers’ design choices.

Hundreds of millions of web pages exist that use only HTML elements like the ones listed

here to style the text on their pages. For example, the following HTML code creates a web page
that uses many of the style tags discussed so far in this chapter.

<html>

<head><title>Sample document</title></head>
<body>
<hl>Traveling to the Caribbean</hl>

<p>Barbados - Barbados is a lovely island, with
<i>wonderful weather</i> and a <i>constant cool breeze</i>. The
locals are friendly, and one can clearly see that a British
influence still exists, even today.</p>

<p>St. Lucia - St. Lucia is a lush, tropical paradise.
Fewer tourists tend to visit St. Lucia than some of the other
islands, which means it is easier to explore the local way

of life.</p>

<p>Bahamas - Bahamas is <strike>frequently visited

by</strike> <u>a popular spot for</u> Americans. The islands have a
number of casinos, the most spectacular of which is the <i>Atlantis
Hotel on Paradise Island</i>. The rumor is that one of their hotel rooms
goes for <big>$40,000 a night</big>, which is about $39,800 more than
most people can afford to spend on a place to sleep.</p>

</body>

</html>

149

150 How to Do Everything with JavaScript

As you can see from the following screen capture, HTML elements style text to make the
output easier to read. Text that should be boldface, italic, or crossed out is presented exactly as
one would expect.

a Sample document - Microsoft Internet Explorer

File Edit %iew Favortes Tools Help “

2 B A4 a = @8

Stop Refresh Home Search Favorites Media Histarny

|+

Traveling to the Caribbean

Barbados - Barbados is a lovely island, with wonderfid weather and a constant
cool breeze. The locals are friendly, and one can clearly see that a British
influence still exists, even today.

St. Lucia - St. Lucia is a lush, tropical paradise. Fewer tourists tend to visit St.
Lucia than some of the other islands, which means it iz easier to explore the
local way of life.

Bahamas - Bahamas is fequenty-sdisited-b¥ a popular spot for Americans. The
islands have a number of casinos, the most spectacular of which is the Atlantis

Hotel on Paradise Iiand. The rumor iz that one of their hotel rooms goes for
340,000 a night, which is about $39,800 more than most people can afford to
gpend on a place to sleep.

*‘il Done [[I g H_l,l tomputer

Format Text with Style Sheets

For years, web designers have wanted a more precise way to style and lay out web pages, similar
to the tools desktop publishing software has provided for a long time. Finally, along came style
sheets, which have alleviated most of the designer’s concerns about styling web pages.

The W3C homepage for Cascading Style Sheets is http://www.w3.org/Style/CSS. Not
surprisingly, that page is itself a great example of how style sheets can be used to format
a web page.

—

Style sheets, also sometimes called Cascading Style Sheets (CSS for short), have a number
of benefits for web developers. They provide

B The ability to separate style from content

B The ability to apply a single style to an entire web site

B A more fine-grained ability to control style

CHAPTER 6: Embed JavaScript in 2 Web Page

B The ability to specify exact layout positioning

B The ability to script and dynamically change styles using JavaScript (also called
Dynamic HTML)

B The ability to specify different styles depending on browser environment (e.g., PC versus
mobile phone)

In fact, the HTML specification is slowly phasing out the use of the HTML tags listed in the
last section to define style in favor of style sheets. Using style sheets to define a document’s style
is the present and future of the language.

A style sheet is defined inside the HTML <style> element, which is usually defined inside
the document head section.

<html>
<head>
<title>HTML Style Sheets</title>
<style type="text/css">

// Style sheet goes in here

</style>
</head>
<body>
<hl>Traveling to the Caribbean</hl>

<p>Barbados - Barbados is a lovely island, with
<i>wonderful weather</i> and a <i>constant cool breeze</i>. The

<!-- Etc. -->
</body>
</html>

In the case of our HTML document, we can define a custom style sheet that replaces some of
the formatting we were using.

<style type="text/css">
.island {font-weight: bold}
.highlight {font-style: italic}
.underlinethis {text-decoration: underline}
.bigmoney {font-size: larger}

</style>

In fact, you could add some really interesting text effects to our boring document, as shown
in the following example. And once the style sheet has been defined, you simply alter the HTML
to use those styles.

151

152

How to Do Everything with JavaScript

<html>
<head>

<title>Sample document</title>

<style type="text/css">

.island {
color: white;
background-color: black;
font-weight: bold

}

.highlight {
font-style: italic;
background-color: yellow

}

.underlinethis {

text-decoration: underline overline

}
.bigmoney {
color: green;
font-size: xx-large
}
</style>
</head>
<body>
<hl>Traveling to the Caribbean</hl>

<p>Barbados - Barbados is a lovely

island, with wonderful weather

and a constant

cool breeze. The

locals are friendly, and one can clearly see that a British

influence still exists, even today.</p>

<p><sgpan class="island">St. Lucia - St. Lucia is a lush,

tropical paradise. Fewer tourists tend
some of the other islands, which means
local way of life.</p>

<p>Bahamas
<strike>frequently visited by</strike>
popular spot for Americans. The
casinos, the most spectacular of which

to visit St. Lucia than
it is easier to explore the

- Bahamas is

<gpan class="underlinethis">a
islands have a number of

is the <span

class="highlight">Atlantis Hotel on Paradise Island.

The rumor is that one of their hotel rooms goes for <span

class="bigmoney">$40,000 a night, which is about $39,800 more

CHAPTER 6: Embed JavaScript in a Web Page 153

than most people can afford to spend on a place to sleep.</p>
</body>
</html>

The resulting web page would not win any design awards, but you can see that style sheets
allow you to do things regular HTML does not.

'; Sample document - Microzoft Internet Explorer
File Edit iew Favortes Toolz Help n

A oA 9 @@ B

Stop Refresh Home Search Fawvaorites Media Histary

Traveling to the Caribbean 6

LAY - Barbados is a lovely island, with wonderfiul weather and a constant
cool breeze. The locals are friendly, and one can clearly see that a British
influence still exists, even today.

- St. Lucia is a lush, tropical paradise. Fewer tourists tend to visit St.
Lucia than some of the other islands, which means it is eazier to explore the
local way of life.

BrY - Bahamas is frequenthy-visited-b% a popular spot for Americans. The
islands have a number of cazinos, the most spectacular of which iz the Afiantis

Hotel on Paradise Fland. The rumor is that one of their hotel rooms goes for

$4 O 5 O O O a, ﬂight, whjch _is .a.bc_)ut $39,800 more -

:gzzlﬂljone [T gMy Eomputer

Clearly, style sheets involve much more than the small glimpse I have been able to give you
in this short section. I have listed a few web sites you can visit to learn more about style sheets at
the end of this chapter. We will also revisit this subject in Chapter 12.

Use <script> to Add JavaScript to a Web Page

Now that you have been introduced to some basic HTML formatting elements, it’s time to tie
that in to the use of JavaScript. The HTML <script> tag allows web developers to embed
JavaScript commands in their web pages. There is no restriction as to the number of <script>
sections a web document can contain, although for the sake of programming efficiency it is
best to keep the number of scripts on a single page to a minimum.

The HTML <script> element generally accepts only two attributes when you are working
with embedded script content: language and type. The language attribute exists for backward
compatibility. JavaScript is the only scripting language supported by all major web browsers,
so if this attribute is omitted, "JavaScript" is the default.

154

How to Do Everything with JavaScript

The type attribute specifies the MIME type for the embedded script, which is "text/javascript"
for our purposes. MIME is a standard way to describe the contents of a file over the Internet,
such as "text/plain: and "image/gif". This gets around the problem of three-letter filename
extensions (.htm or .txt) left over from MS-DOS, 20 years ago.

The MIME standard, which originated with e-mail systems, allows a web server to tell a browser
how to interpret the stream of bits being sent. For instance, the only way for a web browser to
know that the file http://www.example.com/ is an HTML document is through its MIME type.

<script language="JavaScript" type="text/javascript">
var a = 1;
var b = 2;
var ¢ = a + b;
document.write (c);
</script>

Later in this chapter, we will look at another use for the <script> tag that deals with external
JavaScript content.

Use <noscript> for Browsers That Don’t
Support Scripting

Even today, with all the technical advances made in web browsers and web programming
languages, not every browser supports JavaScript. For instance, many mobile phones provide
Internet access, but they are severely limited in screen size, color, audio, and scripting capabilities.
There are also web browsers for PCs (like the one embedded in Microsoft Word) that do not
support advanced capabilities such as JavaScript. And some pre-JavaScript browsers are still in
use, such as Netscape Navigator 1.0.

It is true, however, that supporting non-JavaScript-compatible devices is less important now
than in 1995, when JavaScript first came out. But as the variety of computer operating systems
and hardware devices increases over time, it may again become important to provide alternate
content for some users.

The HTML <noscript> tag is used to provide content to users whose browsers do not support
JavaScript. It works because JavaScript-enabled browsers ignore any content between the <noscript>
tag, for instance:

<html>

<head>
<title>JavaScript Test</title>

</head>

<body>
<hl>for Loop</hl>
<script language="JavaScript" type="text/javascript">
<!-- // Begin

var
for

CHAPTER 6: Embed JavaScript in a Web Page

Fahrenheit;

(var Celsius = 10; Celsius <= 60; Celsius = Celsius + 5) {
document .write (Celsius + "°C = ");

Fahrenheit = (Celsius * 9/5) + 32;

document .write (Fahrenheit + "°F
");
if (Fahrenheit > 100) {

// It's getting hot in here

break;

// End -->
</script>
<noscript>
You must have a JavaScript-enabled browser
to visit this web page.
</noscript>
</body>

</html>

This code will show users with JavaScript-enabled browsers the following output.

'; JavaScript Test - Microzoft Internet Explorer

_| File Edit Yiew Favortes Tools ﬂ.elp : : - - |“I
| -2, -2 0 dla @ & 3]
Back f Stop Refresh Home Search Favorites tedia Histomy
|

for Loop

10°C = 50°F

15°C = 59°F

20°C = 68°F

25°C = 77°F

30°C = 86°F

35°C = 95°F

40°C = 104°F
s e e Py T e —r -‘J
|£] Done [| 2 My Computer 4

155

156 How to Do Everything with JavaScript

However, users whose browsers do not support JavaScript will see this message instead.

; JawaScript Test - Microzoft Internet Explorer
| Eile Edit “iew Favorites Toolz Help
A R [~ For (T o g »
.2 @ [& ‘ a4 H & B
Hack Fanward Stop Refrezh Home Search Favortes Media Hiztony
=
You must have a JavaScript-enabled browser to visit this web page.
’ — — —— ——— —j
|2] Done |1 =4 My Computer Vi

The only reason the JavaScript is not output to the screen as well is the HTML comment tags,
<!-- and -->, that surround the script.

Inside the <noscript> tag, you can choose to simply inform the user that a JavaScript-enabled
browser is required. But you could also provide replacement content for the JavaScript, as in this
example:

<noscript>
10°C = 50°F

15°C = 59°F

20°C = 68°F

25°C = 77°F

30°C = 86°F

35°C = 95°F

40°C = 104°F

</noscript>

This would allow users with a wide variety of browsers and hardware devices to view your
web site properly. Of course, it is not always possible to replace JavaScript content with plain
HTML text.

CHAPTER 6: Embed JavaScript in 2 Web Page 157

Load an External JavaScript File

JavaScript does not always have to be embedded inside the HTML file. Often it is convenient to
have one file that contains the JavaScript and have multiple HTML files import it for their use.
Using this technique, it would be easier to make changes to the JavaScript, since you do not have
to change each of the HTML files.

First, you must have a text file that contains nothing but JavaScript. Let us assume the following
file exists on the web server, and is named sample.js.

// SAMPLE.JS
//
// isFloat () function:

// Checks a string to see if it contains a 6
// floating-point number; returns true or false
//

function isFloat (s)

{
// Format accepts "9", "9.", "9.9", and ".9"
var reFloat = /7~ ((\d+(\.\d*)?)| ((\d*\.)?\d+))$/;

return reFloat.test(s)

The js file extension is commonly used in Windows systems to indicate that the

file contains JavaScript, although any extension (such as .txt) can be used.

We use the src attribute of the HTML <script> tag to import the external JavaScript file.

<html>
<head>
<title>JavaScript Test</title>
<script language="javascript" src="sample.js"></script>
</head>
<body>
<hl>Check for a Floating Point Number</hl>
<script language="JavaScript" type="text/javascript">
document .write("Is \"12.345\" a float? " +
isFloat ("12.345") + "

");
document.write("Is \"Twelve\" a float? " +
isFloat ("Twelve") + "

");
</script>
</body>

</html>

158 How to Do Everything with JavaScript

We can then call the isFloat() function defined in our external JavaScript file in another <script>

section elsewhere in the web page. In this manner, the isFloat() function can easily be shared

among multiple web pages.

HTML <script> tags that import an external JavaScript file cannot also contain

JavaScript. They must be empty.

The result of importing an external JavaScript file is shown in Figure 6.1.

Call JavaScript Using Hyperlinks

Not all JavaScript executes immediately after a web page is loaded. We will examine web browser
events, which allow JavaScript to run in response to user actions, in Chapter 9. Another way to

invoke JavaScript in response to a user event is as the destination of a hyperlink.

Click me

'3 JavaScrpt Test - Microzoft Internet Explorer

'_I File Edit “iew Favorntes Tools Help

[l Hack Stop Refrezh Home Search Favortes Media Histary
=
Check for a Floating Point Number
Iz "12.345" a float? true
Is "Twelve'" a float? false
=

!;_:'l Done | i-_ i._ g My Computer

5
L

HICIU/=AM Functions defined in external JavaScript files can be called elsewhere in the

HTML page.

CHAPTER 6: Embed JavaScript in a Web Page 159

Loading this HTML into a web browser causes a clickable hyperlink to be displayed along
with the caption “Click me.” When the user clicks the link, a JavaScript alert() message box pops
up, saying “Hello.” The secret is the special "javascript:" prefix inside the HREF URL. This
informs the browser that what we really intend to do is invoke a JavaScript command instead.

Several JavaScript commands can be appended in one string, if separated with a semicolon.

Click me

More commonly, JavaScript hyperlinks are used to call predefined functions, instead of
embedding one or more JavaScript statements inside the HREF attribute value itself.

Click here to submit the form

In this example, when the user clicks the hyperlink labeled “Click here to submit the form,” 6
JavaScript will call a function named submitform(), which we assume is defined elsewhere on
the web page.

In the next chapter, we will examine the issues web developers face when creating cross-
platform-compatible JavaScript. JavaScript programs that work in one web browser will not
necessarily work in another, as there are dozens of combinations of browsers, hardware
platforms, and operating systems. Knowing how to work around these differences is important
in real-world web development.

Learn More about the Topics in this Chapter
The following are a few web sites where you can learn more about HTML and Cascading
Style Sheets:
B Webmonkey HTML Basics: http://hotwired.lycos.com/webmonkey/teachingtool
SitePoint: http://www.webmasterbase.com
Web Design Group CSS Reference: http://www.htmlhelp.com/reference/css
Dave Raggett’s Introduction to CSS: http://www.w3.org/MarkUp/Guide/Style

This page intentionally left blank

Chapter 7 Fvesheis

Every Browser

162

How to Do Everything with JavaScript

How to...

B Understand browser differences
Detect what type of browser the user is running
Query the document model

Stick to web standards

Write cross-browser code

In the early days of JavaScript development, handling irregularities between the different browser
makers and versions was a difficult task. After all, some browsers did not support JavaScript at
all (like Netscape 1.0). Even if you had a browser that supported JavaScript, the underlying
document model (DOM) was different between different browsers, which meant JavaScript
errors were a common sight.

This difficulty of developing JavaScript code that worked correctly in every browser was
caused primarily by several factors:

B New browser releases every few months

B An ongoing contest between browser companies to add new features

M Lack of an HTML or JavaScript standard

It took some time, but eventually the problems started to go away as JavaScript stabilized.
And as users began to gradually upgrade to version 4.0 browsers and beyond, JavaScript
developers had an easier time developing cross-platform-compatible code.

Unfortunately, some of the impending changes to JavaScript will force web developers to
have to start coding for browser differences again. The reasons for this new period of instability
are likely to include:

B Inconsistent support for JavaScript 2.0

B New browser releases every few months (particularly from Mozilla)

B Inconsistent JavaScript support for new technologies, such as XML and CSS

Only time will tell how much heartache these factors will cause web developers.

Understand Browser Differences

According to a recent survey, Microsoft Internet Explorer (IE) is used by approximately 94 percent
of web surfers. Netscape and Mozilla have a combined usage of approximately 2 percent. The
remaining 4 percent is divided among other companies such as Opera or is lost due to rounding.

CHAPTER 7: Create Scripts That Work in Every Browser

These numbers are likely to change over the coming months and years. The largest Internet
service provider (ISP) in the United States recently announced it would start using Netscape as
its default browser, and that could potentially have a large impact on these numbers.

Looking at recent browser popularity statistics a little closer, as in Table 7-1, we can see that
half of surfers have not yet upgraded to the most recent versions of their preferred web browsers.

Fully 54 percent of all web surfers are using browsers that are not the latest release from either
Microsoft or Netscape. So be careful when creating JavaScript programs that rely too much on
proprietary or recently added features. Using those features without taking proper precautions
can cause errors for a significant portion of your audience, even if the application works fine in
the browser installed on your PC.

What Kind of Errors Can Occur?

When designing any computer program, it is important to keep in mind that errors are likely to
occur despite the programmer’s best efforts to avoid them. This is especially true of JavaScript
programs that are used across a wide variety of browsers and operating systems. When developing
JavaScript code, you are likely to find the following sources of errors:

B Differences in the Document Object Model of each browser version

B Client computers running old browsers (such as Netscape 3.0) that do not support
certain JavaScript functionality

B Client computers with certain technologies turned off, such as cookies or Java
B New web-enabled technologies, such as hand-held devices, mobile phones, and even

appliances, such as refrigerators

In this chapter, we will take a look at some of the common techniques for avoiding these
types of errors.

Browser Usage

IE 6 46%

IE 5 44%

IE 4 2%
Netscape 4 2%
Netscape 6, Netscape 7, Mozilla (collectively) 1%

Older IE less than 1%
Older Netscape less than 1%

Source: TheCounter.com (http://www.thecounter.com)

IC{HSWAN Recent Web Browser Usage Statistics

163

164 How to Do Everything with JavaScript

Detect What Type of Browser the User Is Running

Running a modern or complex JavaScript program in an older browser is likely to cause numerous
problems. Perhaps the easiest way to avoid these types of errors is to detect what type of browser
the user is running and then either disable some of the program features or provide alternative
code that performs the same task in a slightly different manner.

Detecting the browser name and version information is often called browser sniffing.
Much as a bloodhound can detect the unique scent of an individual, a browser sniffer
attempts to detect and return the unique details of the browser sofiware.

—

To detect the browser manufacturer and version number, we will rely on the navigator DOM
object. The navigator object has several methods and properties, but the three that we are
interested in at the present time are appName, app Version, and userAgent.

var browserString = navigator.appName;
var browserVersion = navigator.appVersion;
var browserAgent = navigator.userAgent;

alert (browserString) ;
alert (browserVersion);
alert (browserAgent) ;

Specifying JavaScript
- — Version Numbers

The browser makers started off with the best of intentions. Both Netscape and IE allow
developers to specify a JavaScript version number within the language attribute of the <script>
tag. This prevents scripts from running in browsers that do not support the specified JavaScript
version number. To create a script that will only run in browsers that support JavaScript 1.2,
you would use the following code:

<script language="JavaScriptl.2">

The same can be done for all versions of JavaScript up to version 1.5. (A listing of
JavaScript version numbers and how they relate to browsers can be found in Chapter 1.)

Unfortunately, very few web developers knew that this could be done, and fewer still
actually used this technique when creating cross-browser scripts. On top of that, this method
does not help developers solve the DOM-related differences between the various browsers.

So, although this technique is still available, it cannot be relied on to solve cross-browser
scripting problems.

CHAPTER 7: Create Scripts That Work in Every Browser

For Netscape web browsers (including the open-source Mozilla web browser), the

navigator.appName property always returns the same value regardless of the version or
operating system.

[JavaScript Application]

]' t Metzape

For Microsoft Internet Explorer, the navigator.appName property also returns a predictable
value, regardless of the version.

Microsoft Internet Explorer

-
__;' ! E Microsoft Internet E xplorer

Therefore, if your web page needed to display different text depending on the browser a visitor
was running, you could simply query the navigator.appName property, like so:

var browserString = navigator.appName;

if (browserString == "Netscape") {
// Do something for Netscape/Mozilla here
document .write ("Long live the lizard.");

} else if (browserString == "Microsoft Internet Explorer") {
// Do something for Microsoft here
document ..write ("You will be assimilated.");

} else {
// The browser is not one of the major two
document .write ("Why must you always be so different?");

However, navigator.appName is extremely limited in the amount of information it
provides. Other navigator properties provide more useful information. For instance, the

165

166 How to Do Everything with JavaScript

navigator.app Version property provides more specific browser version information. For Netscape
browsers, the string returned from that property is quite straightforward.

[JavaScript Application]

(I' 5.0 Mwindows; en-LS)

This screenshot was taken from Netscape 7.0 running on Windows 98. Just to make life
more confusing for web developers, both Netscape 6 and 7 return their version number
as “5.0.” However, Netscape did not produce a version 5 (the version number jumped
from 4.8 to 6.0), so this version number is inaccurate.

—

Similarly, Microsoft Internet Explorer returns its version information in the
navigator.app Version string, as we can see from the following snapshot taken from
Microsoft Internet Explorer 6.0.

Microsoft Internet Explorer

! Z 4.0 [compatible; MSIE B.0; Windows 98]

Recent releases of the Microsoft web browser always report the version number as 4.0
compatible. However, the actual version number is embedded later in the same string (in this
case, MSIE 6.0).

The Mozilla 1.x, Netscape 6.0, and Netscape 7.0 browsers are all based on the same source
code, so their behavior is very similar. If you ever need to get the exact browser name and version
number from these browsers, you can query the userAgent property of the navigator object. As
you can see from the following illustration, it contains some very specific version number
information, right down to the exact date the browser was compiled.

[JavaScript Application]

(I' Mozilla/5.0 [windows; U; Win38: en-US; rv:1.0.1] Gecko/ 20020823 Metzcape/7.0
.

CHAPTER 7: Create Scripts That Work in Every Browser 167

Using these three properties, we can create a JavaScript function that will detect the exact
browser type the user is running:

function getBrowserInfo() {
// Define variables to contain the results
var browserName = navigator.appName;
var browserVersionNum = parseFloat (navigator.appVersion) ;
var browserAgent = navigator.userAgent;

// Boolean (true or false) variables to detect browser type
var is_IE = (browserAgent.indexOf ("MSIE") != -1);
var is_NN = (browserName.indexOf ("Netscape") != -1);

// Based on browser type, retrieve version number
if (is_NN) { 7
if (browserVersionNum >= 5.0) ({
var tempStart = browserAgent.indexOf ("Netscape/") ;
if (tempStart == -1) {
// "Netscape/" not found; must be Mozilla
tempStart = browserAgent.indexOf ("rv:");
tempStart += 3;

browserName = "Mozilla"
var tempEnd = browserAgent.indexOf (")", tempStart);
} else {

// "Netscape/" found; must be Netscape Gecko
tempStart += 9;
var tempEnd = browserAgent.length;
}
var browserVersion =
browserAgent.substring (tempStart, tempEnd) ;

} else {
// version < 5.0; must be old Netscape
var browserVersion = browserVersionNum;

} else if (is_IE) {
var tempStart = browserAgent.indexOf ("MSIE") ;
tempStart += 5;
var tempEnd = browserAgent.indexOf (";", tempStart);
var browserVersion =
browserAgent.substring (tempStart, tempEnd) ;

// Create new property of navigator object based on real

168

How to Do Everything with JavaScript

// version number
navigator.appRealVersion = browserVersion;

return;

getBrowserInfo () ;

document .write ("<hl>You appear to be running:

");
document.write ("" + navigator.appName + " <i>version</i> ");
document.write ("" + navigator.appRealVersion + "</hl>");

As you can see, we have to do a fair amount of coding gymnastics to figure out the actual
version number of the various flavors of Netscape browser. For Netscape 4 and earlier, the
navigator.app Version property returns the correct value. Since Netscape 6 and 7 and Mozilla
all return 5.0 as the navigator.app Version, we have to start searching the navigator.userAgent
property for the appropriate value.

The preceding code has been simplified for the purposes of this example and thus does
not cover all the possible browser types or versions. For an excellent example of a
browser-detecting script, I recommend checking out Bob Clary’s Practical Browser
Snifting Script at http://bclary.com/xbProjects-docs/ua, which uses the properties of the
navigator object to determine the browser type and version. That web site also contains
a script (at http://bclary.com/xbProjects-docs/xbDOM) that allows you to use one
standard set of DOM objects across all browsers.

The following illustrations show how our little function runs in Netscape 2.0 and Netscape 7.0.

¢1< Metzcape - [JavaScript zample code]
File Edit Wiew Go Bookmarks Options Directory window Help

o

Eric]
Dpen

Print

)

Home

&

Reload

=t] =)

@l @
Find Stop

Formard

You appear to be running:

Netscape version 2

=8| [Dogument; Done o b

CHAPTER 7: Create Scripts That Work in Every Browser 169

) JavaScript sample code - Metscape =l eS|
. File Edit Yiew Go EBookmarks Tools ‘Window Help
Lj % JavaScript sample code] G

You appear to be running:

Netscape version 7.0

(5 & | Document: Done [0.39 secs) =q= &

Microsoft Internet Explorer has always provided its version number in the exact same way.
It reports itself as Netscape 4.0 compatible in the navigator.app Version property and leaves the
actual software version number embedded elsewhere in the same string. It is relatively easy to
search for it using the indexOf() method of the JavaScript String object.

Query the Document Model

The problem with relying on code that checks for browsers by name and version is that it’s

not foolproof. Currently, about 96 percent of web surfers use one of the two major browsers—
Netscape or [E. But what about the other 4 percent—surfers who choose another brand, such

as Opera or Konqueror? New browsers are being developed, and web sites will not work reliably
if they are only coded to work with the top two brands.

The other problem is that as new versions of IE and Netscape are released, support for
different features changes. For instance, Netscape 4 supported a layout method called layers,
but support was later dropped when Netscape 6 came out. (We will discuss layers more in the
section entitled “Write Cross-Browser Code.”)

The easiest way to get around the problem of the wide variety of available browsers (both in
the present and in the future) is to write code that checks to see if a DOM method exists before
attempting to use it.

The first official version of the Document Object Model (known as DOM 1) defines a
method of the document object called getElementByld(). Recent browsers (such as IE 5 and
Netscape 6) support it, but older browsers do not.

Simply calling the getElementByld() method in a browser that does not support it will cause
an error:

var objptr = document.getElementById("carname") ;

170 How to Do Everything with JavaScript

So if you wanted to check to see if the current browser supports the getElementByld()
method before using it, you would simply query the document object to see if it has a member
by that name before calling it:

if (document.getElementById) {
var objptr = document.getElementById("carname") ;

The preceding code will work in any browser, since browsers that do not support that method
will not execute the code inside the if statement. Of course, in those browsers, the variable objptr
would not be set, so it is best to have alternate code to handle those situations:

if (document.getElementById) {
var objptr = document.getElementById("carname") ;
} else {
alert ("Sorry, this web page will not work in your browser.");

Of course, if you have to surround each and every call to a DOM method with its own if
statement, your program will be long and inefficient. So the best approach may be to combine
the browser sniffing method with the DOM detection method to get the best of both worlds.

Stick to Web Standards

In the early days of web development, the two largest browser makers were competing
aggressively for market share—perhaps too aggressively. One of their favorite tactics was to

try to outdo each other in terms of features. Consumers would download and install the newest
release of their favorite browser, and within days the next release would be available for download.
Large companies, who sometimes require months to test and approve new software for use,
found themselves up to two full versions behind the current release.

Of course, this led to two HTML standards instead of one, which made the web developer’s
job a lot more complicated than it had to be. Luckily for us, both Microsoft and Netscape
eventually decided that they would hold off implementing new HTML and JavaScript features
until they were approved by a standards committee.

However, as a result of the early “wild West” mentality, there are a number of nonstandard
coding practices that should be avoided in order to achieve cross-platform compatibility. Table 7-2
contains a list of elements that are not part of the HTML 4 standard.

These proprietary markup tags should be avoided if you wish to create web pages that work
consistently in any browser.

If you want to check your web page to see if it conforms to the official standards, the
W3C web site provides an HTML validation service at http.//validatorw3.org. This

tool is the easiest way to see how far your web page deviates from the official standards.
1t even identifies any HTML code that contains problems.

CHAPTER 7: Create Scripts That Work in Every Browser 171

Proprietary Markup Supporting Browser(s)
<layer> Netscape 4 (only)
<marquee> IE

<bgsound> IE

<embed> IE, Netscape
<noembed> IE, Netscape
<multicol> Netscape

<spacer> Netscape

<nobr> IE, Netscape

<wbr> IE, Netscape

<blink> Netscape

<xmp> IE, Netscape 7
<listing> IE, Netscape
<plaintext> IE, Netscape
<keygen> Netscape

<layer>, <ilayer> Netscape

<nolayer> Netscape

<server> Netscape

QVAC{M=WEAVYE Proprietary Markup Tags, Not Part of Official HTML Standard

Write Cross-Browser Code

Earlier in this chapter, we played with some JavaScript code that could be used to detect the
exact name and version number of the client browser. In this section, we will put similar code
to use with dynamic HTML.

Dynamic HTML (or DHTML for short) is an extension of the HTML standard that allows
JavaScript programs to change and modify a web page after it has been loaded in the browser,
without having to go back to the web server for a new page. For the most part, JavaScript
accomplishes this through the manipulation of methods and properties in the browser’s DOM.

Dynamic HTML is used regularly by Internet sites to provide fancy drop-down menus,
images, and text that change when you move the mouse cursor over them and e-commerce
shopping carts that recalculate the total cost of an order every time a check box is selected or
cleared. In recent months, advertisers have caught the DHTML bug and are creating dynamic
advertising that travels across the web page (and can’t be turned off or avoided).

Cross-browser DHTML is difficult to code, however, since the JavaScript code required for
Netscape and Microsoft browsers is quite different. While standardization has made programming
HTML and basic JavaScript much easier, compared with only a few years ago, the implementation
of vastly different DOMs among the browsers is one of the last remaining wilderness areas.

172

How to Do Everything with JavaScript

Figure 7-1 shows an example of a web page that uses DHTML. The hierarchical tree on the
left side of the screen can be expanded and contracted with a simple mouse click. Menu items
are displayed and hidden dynamically, without having to request new HTML from the web
server. This type of DHTML menu gives a nice effect for visitors to your web page.

One of the first difficulties you are likely to encounter is that Netscape 4 uses a method
called layers to define areas of a web document that can have a style applied to them.

<html>
<head><title>Layers sample</title></head>
<body>

<hl>Netscape Layers Example</hl>

<layer id="mylayer">

A black square
</layer>

<layer id="mylayer2">

A gray square

</layer>

<script language="JavaScript" type="text/javascript">

document.layers["mylayer"] .bgColor = "black";
document. layers["mylayer2"] .bgColor = "#CCCCCC";
document.layers["mylayer2"] .moveBy (60, 10);
</script>
</body>

</html>

This HTML code is designed to work in Netscape 4.x web browsers only. Our code defines a
Netscape layer named mylayer using the HTML <layer> tag. We define a second layer named
mylayer2. Using JavaScript, we are able to change the background colors of the two layers, and
move one of them so that they don’t completely overlap. The effect can be seen in Figure 7-2.

Unfortunately, the preceding code does not work in any version of IE or in the newer
Netscape 6 browsers. We will have to modify our code a little to detect the type of browser
running, and perform different tasks based on that.

First, we need to change the layers to work in all browsers. The following code does not
properly conform to HTML standards (since the <layer> tag is not part of the standard), but it
will work in both IE and Netscape.

CHAPTER 7: Create Scripts That Work in Every Browser

3 Treeview example - Microsoft Internet Explorer

J File Edit “iew Favorites Tool: Help

PR RO -
Back Foapward Stop Refrezh Home Search Fawvorites Media Higtary
| ddress |4£| hittp: A funa. treeview. netreemenu 3fr_beenthere. html j @ Go

Cross-browser DHTML tree

‘A Tresview Demo
E‘D Application example
EH:! 3 Types of folders

MNew window
Whole window
_ 8] This frame
Eﬁgg Other Icons

|&L| l_ @ l_ |@ Irkermet

HICU{ZWAN An expandable tree menu using DHTML

| £

<layer id='mylayer'>
<div id='mydiv' style='position:absolute'>
A black square
</div>
</layer>

<layer id='mylayer2'>
<div id='mydiv2' style='position:absolute'>
A gray square
</div>
</layer>

173

174

How to Do Everything with JavaScript

543— ayers sample - Hetscape

Edit “iew Go Communicator Help
2 = A B 2 B S = B
Back Fomward Reload Home Search Metzcape Prit Security Shop
Netscape Layers Example
A black uemeBBNEER
| == |Documnent: Dane 4

FIC{O{=wEVE Creating layers in Netscape 4

Notice how we use the HTML standard <div> tag nested inside the nonstandard <layer> tag.
Browsers that do not support <layer> will ignore it, as browsers that do not support <div> will
ignore that tag.

Next we need to modify the script to detect the type of browser running. We could use the
getBrowserInfo() script from earlier in the chapter, but our needs are much simpler than that.

All we need to do is detect the difference between Netscape 4, Netscape 6, and IE. To do that,
we can use the following JavaScript code.

<script language="JavaScript" type="text/javascript">
var ua = navigator.userAgent.toLowerCase () ;
var ie4 = ua.indexOf ("msie") != -1;

if (document.layers) {
// Netscape 4 code goes here

} else if (document.getElementById && ied) {
// IE code goes here

} else if (document.getElementById) ({
// Netscape 6 code goes here

CHAPTER 7: Create Scripts That Work in Every Browser 175

}

</script>

This code works in a fairly simple fashion. Netscape 4 is the only browser whose document
object has a layers property, so checking for that property’s existence confirms that the browser
type is Netscape 4. We can do the same trick using the getElementByld method of the document
object, except we still need to differentiate between IE 4 and Netscape 6. The navigator.userAgent
property allows us to do that.

Finally, we add in the browser-specific DHTML code to manipulate the two <layer> or
<div> tags on the screen to create a visual effect.

<html>
<head><title>Layers sample</title></head>
<body>

<hl>Cross-Browser Style Sheets Example</hl> 7

<layer id='mylayer'>
<div id='mydiv' style='position:absolute'>
A black square
</div>
</layer>

<layer id='mylayer2'>
<div id='mydiv2' style='position:absolute'>
A gray square
</div>
</layer>

<script language="JavaScript" type="text/javascript">
var ua = navigator.userAgent.toLowerCase() ;
var ie4d = ua.indexOf ("msie") != -1;

if (document.layers) {
// Netscape 4 code goes here
document.layers["mylayer"] .bgColor = "black";
document.layers["mylayer2"] .bgColor = "#CCCCCC";
document.layers["mylayer2"] .moveBy (60, 10);

} else if (document.getElementById && ied) {
// IE code goes here
var divl = document.getElementById("mydiv") ;
var div2 = document.getElementById("mydiv2") ;
divl.style.backgroundColor = "black";
div2.style.backgroundColor = "#CCCCCC";

176 How to Do Everything with JavaScript

div2.style.pixellLeft = divl.offsetLeft + 60;
div2.style.pixelTop = divl.offsetTop + 10;

} else if (document.getElementById) ({
// Netscape 6 code goes here
var divl = document.getElementById("mydiv") ;
var div2 = document.getElementById("mydiv2") ;
divl.style.backgroundColor = "black";
div2.style.backgroundColor = "#CCCCCC";
div2.style.left = (divl.offsetLeft + 60) + "px";
div2.style.top = (divl.offsetTop + 10) + "px";

}
</script>
</body>
</html>

The resulting cross-browser compatible code can be seen in IE 6 in Figure 7-3 and
Netscape 7.0 in Figure 7-4. The results are completely identical to those in Netscape 4.

’a Layers sample - Microsoft Internet Explorer

_| File Edit “iew Favortes Tools Help |n
e -7 -8 8 a8 & 2 2| 7
Back Fr Stop Refresh Home Search Favorites Media Histary

=
Cross-Browser Style Sheets Example
s iniate
¥ e T -'!
|&] Done |1 2] My Computer 4

FIC{U{2WERE Microsoft IE 6 interprets the <div> tag and the DHTML JavaScript code

correctly.

CHAPTER 7: Create Scripts That Work in Every Browser 177

@& Layers sample - Netscape |_ O] x|
. File Edit Yew Go Bookmarks Tools ‘window Help
=) | %% Layers sample] G

Cross-Browser Style Sheets Example
5 black sy

'A g-;ra-y sguare

5] &5 | Document: Done (017 secs] == g

HIClVI3{=WA W Even though Netscape 7.0 requires slightly different JavaScript, the same effect
is created.

This is a good example of the difficulties JavaScript programmers sometimes face when developing
code that works in any browser.

In the next chapter, we will take a look at one of JavaScript’s primary duties on the Internet—
helping users fill out forms. You will learn how to build a form in HTML, learn about all the
controls that can go into a form, and see how JavaScript can be used to validate the data entered
before it is sent to the server for processing.

This page intentionally left blank

Manipulate

Chapter 8 Web Forms

180

How to Do Everything with JavaScript

How to...

B Request user input using an HTML form
Retrieve and set form control values

Prepare form data for server submission

Handle multiple forms

In previous chapters, we have seen how JavaScript can be used to provide dynamic web pages
that contain animated menus or are slightly different depending on the web browser being used
or the time of day. As time goes on, developers will find it easier than ever to include these special
JavaScript tricks on their own personal home pages.

What has made JavaScript indispensable as a development tool for most professional web
developers is its ability to handle user input. JavaScript makes the gathering and processing
of user information easier—for both the user and the web developer. JavaScript can assist in
many ways:

B Store and retrieve bits of information on the user’s computer (called cookies)

B Verify that all mandatory form fields were provided

M Validate the proper formatting of user-entered data

B Provide instant feedback to the user without having to go to the web server

And best of all, it is often very easy to do all these things—only a few lines of code are needed.

By solving many more problems than it created, JavaScript quickly became an indispensable tool
for serious web developers.

Understand HTML Forms

The best and most flexible way to ask for user input is with HTML forms. A form, in web
programming, is a series of one or more user controls that are designed to capture user input.
A user control is typically a text box, a list box, or a button of some sort that allows the user to
provide information to the web browser. In fact, web forms are modeled after paper forms, like
those you fill out for a job application or a survey.

There are 13 user controls in HTML:
Text box Allows a single line of text input
Password box Allows a single line of text input, protected by asterisks
Text area Allows one or more lines of text input
Hidden Can contain a single line of text, hidden from the user
List box User can choose from one or more predefined choices

Radio button User can choose one of many predefined choices

Check box User can choose any number of many predefined choices

CHAPTER 8: Manipulate Web Forms

File User can upload a file from the local machine to the web server
Push button Causes a program-defined action to occur

Submit button Causes the form to be submitted

Image button Creates a graphical submit button

Reset button Causes the form to be cleared

Object Creates a special (user-defined) input control

Each of these controls performs a special function in requesting user input. Which control
you use depends a lot on the individual circumstances. For instance, when you need the user to
select one of 50 choices (like selecting which state they live in), you would normally go with a
list box control, which allows you to provide dozens of options in very little space. Choosing to
display 50 radio buttons instead takes up a lot more space and may cause the rest of the form
to scroll off the bottom of the screen.

Request User Input Using an HTML Form

To see what a typical HTML form looks like, let’s examine the web page in Figure 8-1. The
United States Postal Service (www.usps.gov) provides this online form to register address changes
of families or businesses that move and would like their mail forwarded to their new location.

3 MoversGuide - Your Complete Moving Solution - Microsoft Internet Explorer
J File Edit “iew Favortes Tools Help |“
- e [i — . g = >
¢ .92 0 B AQ @ B @B
Back. Farward Stop Refresh Home Search Favortes Media Histary M ail
UNITED STATES T
POSTAL SERVICE«
Home
MoversGuide CHANGE YOUR ADDRESS ONLINE
Change your address L
Moving services Fill out the change of address form
Helpful tips
Community info Name
Other services Prefix Title: (Help) IN."A "l
First Mame (or initisl): (Help I
Widdle Mame (or intial): (Help) I
Last Mame: (Help) I
Suffix Title: Help) INIA 'I
4 | i
|&L| Done [[& 4 Intemet 7

HICIUI3{=NA W The change of address form on the U.S. Postal Service web site

181

182

How to Do Everything with JavaScript

The first form field on the screen, labeled “Prefix Title,” allows the user to select from a
number of name prefixes (such as “Dr.,” “Mr.,” and “Mrs.”). If they do not use a prefix before
their name, they can select “N/A” for not applicable. This control is called a list box, since by
pressing the down arrow button, the user will see several options from which they can choose.

3 MoversGuide - Your Complete Moving Solution - Microzoft Internet Explorer |_ O] x]
_| File Edit “iew Favorites Toolz Help |ﬁ
& 2.0 B Ad1a & @ 35 2
| Back Fanyard Stop Refresh Home Search Favortes Media Histany I ail
UNITED STATES i
POSTAL SERVICE«
Hotrie
MoversGuide (CHANGE YOUR ADDRESS ONLINE
Change your address E 1
Moving services Fill out the change of address form
Helpful tips
Community info Name
Other services Prefix Title: Help)
First Mame (or intial): (Help)
Middle MName (or inttial): (Help
LastMame: {Hel
Suffix Title: (Heip
| 3
|£] Done ’_’_%_ o Internet 4

The form field labeled “First Name” is a text box, allowing the user to enter one or more
characters using the keyboard. Sometimes, programmers place restrictions on this field using
JavaScript, but often the user can enter any combination of letters, numbers, or special symbols.
Programmers can use HTML to specify a maximum length for this field.

When the user has finished entering his or her personal data, they are asked to click on an
HTML submit button. The submit button causes the data from the web form to be sent to a program
waiting on a web server for processing. Using JavaScript, web developers can have the data validated
before allowing the web server submission to proceed.

Process Form Input with Client-Side JavaScript

Once the form has been filled out and submitted, it is often sent to a web server for processing.

It is important to note that it does not have to be sent to a web server—oftentimes web forms can
be processed entirely on the client using JavaScript. You will often see these client-side forms in
the form of online calculators and similar tools, where JavaScript is smart enough to calculate the
desired result and perform the requested action without needing help from a web server.

CHAPTER 8: Manipulate Web Forms 183

Figure 8-2 shows an example of such a client-side form. The web page displayed in the
figure (http://javascript.internet.com/calculators/amortization.html) can calculate the monthly
mortgage payments if you provide the amount of the loan, the interest rate, and the amortization
term. This is calculated using a JavaScript function embedded in the web page.

We will examine how to create JavaScript code that can respond to web forms later in this
chapter, in the “Catch Web Form Submissions with onsubmit” section.

Process Form Input on a Web Server
Web forms that require complex processing—those that access a database, for instance—must be
submitted to an application waiting on the server. There are many prominent technologies available
to create these form-handling programs:

M Server-side JavaScript

B Application Server Pages (ASP)

B Java Servlets

; The JavaSchpt Source: Calculators: Amortization - Microsoft Intemnet Explorer

| File Edit ‘iew Favortes Toole Help

& . > . 9 O

Back Fariarnd Stop Refresh Home

(G

a G & 3

Search Favorter Media History

Home » Calculators » Amortization

Calculate manthly mortgage payments quickly and easily. Displays an
Amattization Table. Great!

Anticipated Amount of House b3 I1 25000

Amount of Down Payment § |31 280

Anticipated Interest Eate{ 00 format) ID.DE?S

Anticipated length of loan, m years. !20

Start Date of Loan (month and year) Ijanuary 12004

Calculate Mortgage l

House Price b -
i ;l-J

|
|“ﬂ Dane |_ [ag

[@ e

SIC{U{=EVA Calculating monthly mortgage payments using an HTML form

184

How to Do Everything with JavaScript

Java Server Pages (JSP)
Perl
PHP

A compiled binary written in almost any language (such as C)

Once these programs accept the data submitted by the web form, they usually perform any
processing required and then respond to the browser with another HTML page. The communication
process between client and server is depicted in Figure 8-3. It shows an example of a user performing
a search at one of the major search engine web sites. The web server accepts the keywords using
an HTML form, checks its database for related web pages, and returns a new HTML web page
with the results.

Insert an HTML Form into a Web Page

Forms are added to web pages in the same way that images, text, and other elements of the page
are, with HTML markup. Developers can define all the parts of a form, including the controls it
contains and how they are arranged, using standard HTML tags.

Use the <form> Tag

In HTML, forms are defined using the <form> tag. The <form> tag allows you to define the type
of form you wish to create, including the URL of the program waiting to accept the user’s input
(if any). These are specified using the <form> element’s atfributes. An attribute is an element’s
named parameter and associated data. Attributes are specified in the following manner:

<element attributel="valuel" attribute2="value2" ... attribute3="value3">

]
Google.com http://www.google.com
—

1. Form submitted
to web server. R

- 2. Web server -
web browser __ checks its database.
3. New web page database
B returned to user.

Google.com J

i

&
web server

H[C{UI{=BW Communication between client and server when an HTML form is submitted

CHAPTER 8: Manipulate Web Forms

The <form> element has the following attributes:

id String that must be unique across the entire web page

class List of associated CSS classes

style Inline CSS style commands

title Advisory title

lang SO language code

dir Direction of text (right to left or left to right)

action URI of program that will handle form data

method The way data will be transmitted to the server (either GET or POST)
enctype MIME encoding type

accept List of MIME types accepted for file upload

accept-charset List of supported charsets

In addition to all those attributes, the <form> element can also contain a number of event
handlers. Events are actions usually initiated by the user, such as a mouse movement or certain
keypresses. Event handlers are JavaScript code and functions that are designed to act when
certain events happen. We will examine all the predefined HTML event handlers in more detail
in Chapter 9.

Have a Form’s Contents

~ Mailed to You

The <form> tag’s action attribute allows you to specify the web server URI for the program
that will process the form. Typically, this program is an ASP page, Java servlet, or a Perl
script running on the target web server.

You can also direct the browser to e-mail you the contents of the form instead. This is
done by providing an e-mail address using the mailto: protocol to the action attribute. To
construct a URI using the mailto: protocol, you simply append the actual e-mail address
to the mailto: string, like so:

mailto:president@whitehouse.gov

If you used the preceding string as the URI for the action attribute, the contents of the
web form would be mailed to the President of the United States.

This technique is not guaranteed, however, since it uses the mail program installed on the
user’s computer. The program might not be set up correctly for sending e-mail, or the user
might cancel the e-mail from being sent.

185

186 How to Do Everything with JavaScript

For now, we are only concerned with two possible events that can happen to a web form:

B onsubmit JavaScript code that will be run before the form is submitted

B onreset JavaScript code that will be run before the form’s data is erased

Some HTML elements have mandatory attributes, that is, attributes that must always be
present. The <form> element is one of those, as the action attribute must always be specified
in order for the HTML to be valid.

The most basic type of form is the following:

<form action="#">
</form>

This HTML code creates an empty form that does not contain any controls. Forms such
as this are quite useless, of course, because they have no purpose. HTML <form> elements by
themselves are invisible, in that they do not have a visual component. Form controls (buttons and
text boxes, for instance) are the visual components of forms. Forms can also contain text, tables,
and other HTML elements.

It is common to use the pound sign (#) as the value of the action attribute of the <form>
tag when none is needed, since the action attribute is mandatory and cannot be omitted.
You might use this for forms designed to only exist on the client, which will never need
to be submitted to a server. The pound sign (#) is one of the shortest valid URLSs.

Add Form Controls

As we have seen, forms are pretty useless without controls. Form controls allow a web page to
accept user input. Some controls allow users to enter text themselves, and some provide users
several predefined options to choose from. Form controls are added to <form> elements with
HTML of their own. Table 8-1 lists the common input controls along with the HTML required
to add them to a web page.

Accept Text Input with a Text Box

Perhaps the most common type of form control is the text box. In fact, the text box control is
the default type of the <input> element. The following HTML code will create a web form with
a single text box inside.

<form action="#">
<input>
</form>

Control Name
Text box
Password box
Text area
Hidden text
List box
Radio button
Check box
File upload
Push button
Push button
Submit button
Image button
Reset button
Object control

CHAPTER 8: Manipulate Web Forms

HTML Code

<input type="text"...>

—_n

<input type="password"...>
<textarea...> </textarea>
<input type="hidden"...>
<select...> </select>

<input type="radio"...>
<input type="checkbox"...>
<input type="file"...>
<input type="button"...>
<button...>

<input type="submit"...>
<input type="image"...>
<input type="reset"...>

<object...> </object>

AN A A List of HTML Form Controls

Of course, creating a form like that has several drawbacks. First, anyone who encountered
that form in their web browser would not know what to do with it—the control is unlabeled. It’s
just a text box sitting on a page by itself. Second, web developers looking at that code might find
it a bit confusing, since the <input> control has so many forms. It might be better to explicitly set
the control type.

A better example of a web form would be the following:

<form action="#">
Please enter your age:

<input type="text" name="age">
</form>

This type of web form is easier to use for both the web developer and the web page visitor.

The text box control has several attributes that give developers more control over the look
and behavior of the control:

M id String that must be unique across the entire web page

B class List of associated CSS classes

187

188 How to Do Everything with JavaScript

style Inline CSS style commands

title Advisory title

lang ISO language code

dir Direction of text (right to left or left to right)

name The name of the control

value The default value

size The size of the control on the screen, in characters

maxlength The maximum number of characters that can be entered
readonly Locks the control so its value cannot be modified by the user
accesskey Sets the keyboard shortcut key

tabindex Sets the order in which controls receive focus on a form

disabled Locks the control so that it cannot receive focus or be modified by the user

In web programming, we say a control has focus when it is the currently active control.
The browser often lets us know which control has focus by using a flashing vertical line
for text boxes or some other highlight for buttons and other controls. Most browsers
draw a temporary dotted box around nontext controls that have focus.

—

Besides the preceding attributes, our input control can also capture a number of events as
well. We will examine all the predefined HTML event handlers in more detail in Chapter 9.
For now, we will only concern ourselves with the following HTML events:

M onfocus JavaScript code that will be run when a control receives focus
B onblur JavaScript code that will be run when a control loses focus

B onchange JavaScript code that will be run when a control loses focus and
the value of its contents has been altered

By using some of these attributes on our text box, we can improve the look and behavior of
our control:

<form action="#">
Please enter your <u>a</u>ge:

<input type="text" name="age" size="5" maxlength="3"
value="" accesskey="A">
</form>

CHAPTER 8: Manipulate Web Forms 189

We have reduced the horizontal length of the control to five characters wide by using the
size="'5"" attribute on the <input> control. By specifying maxlength=""3"" we are restricting input
to a maximum of three characters in length. Since we are asking for an age, it is reasonable to
assume three digits will be enough.

The value=""" attribute sets the default contents of the field to an empty string. The accesskey
parameter, which is set to "A" in our example, allows users to jump to the control by using the
ALT-A key combination in most versions of Windows, or the CONTROL-A key combination for
most Mac systems.

The key combination required to activate an access key is dependent on both the
browser type and operating system, so check your browser documentation if you
cannot get it to work.

—

'5 Form Controls - Microsoft Internet Explorer Hi=lE
_| File Edit “iew Favortez Tool: Help !n
(& ->.9 @ A'Q G & 3B
| Back Fanward Stop Refresh Home Search Favortes Media Histary Mail |
= 8
-

A Typical Text Box Control

Please enter your age:

]35|
¥ S A— -';
|£] Done [i T | =] My Computer v

Provide a List Box Control

A list box is a convenient control to use when you need the user to select one of multiple choices.
In HTML, list boxes are created using the <select> element, and items in the list are defined
using the <option> element. There are two types of list boxes you can use inside your web-based
forms: the drop-down list box and the scrolled list box.

190

How to Do Everything with JavaScript

Privacy and the Internet

HTML forms are commonly used to allow visitors to log in to a web site. Users must
normally supply a valid user ID and password to the server before being allowed into
the restricted areas of the site.

From a developer’s point of view, a text box should be used to request the user ID from
the user. As an added level of security, a password box control should be used to request a
user’s password. The password box replaces the characters typed in with asterisks, so that
password becomes ******%* Thig is done so that other individuals looking at the same
computer monitor (from over the user’s shoulder, for instance) will not be able to read the
password.

You should know, however, that this is a very weak type of security. Unless the form
data is encrypted using Secure Sockets Layer (SSL), typically using HTTPS protocol, the
password will be sent over the Internet as plain text, which can be easily read by anyone
along the path or by anyone with access to the web server’s activity logs.

The drop-down list box appears as a text box with a small arrow button next to it. Clicking
the arrow causes the control to create a scrollable pop-up window in which the user can select
one of multiple choices, as you can see here.

'3 Form Controls - Microsoft Internet Explorer
| File Edit View Favortes Tool: Help n
¢ .+ 0 B &4 @ @ @ @ | B
F Stop Refrezsh Home Search Favoites Media Histaory il |
[
-
A Drop-Down List Box Control
How many hours a week do you watch television?
]— Flease Select One _L]
—Flease Select One —
0 hours
1-5 hours
[6-10 hours
11-15 hours
hdare than 15 hours
ey ~ =~ o ST T ™ _j
|£] Dane ||| =) My Computer

CHAPTER 8: Manipulate Web Forms

Users cannot type their own text into the text box—they must select one of the predefined
items. This type of control is best used when there are at least three options to choose from, such
as when asking the user to select their home state or country. Other controls, such as radio buttons
and check boxes, are better for having the user select from only two or three options.

The scrolled list box appears as a combination of a multiline text box attached to a vertical
scroll bar, as you can see here.

'3 Form Controls - Microsoft Internet Explorer [_ (O] x|
_| File Edit Miew Favortes Tool: Help !“
A i - [P i — i T = |
| 9 O A(@ @ & I &
| Stop Refrezsh Home Search Favoites Media Histaory il ‘
|
-
A Scrolled List Box Control
How many hours a week do you watch television?
11-15 haurs
Mare than 15 hours
! o
|£] Done || | |5 My Computer v

A scrolled list box is created by specifying the number of items to be displayed at once using
the size attribute of the HTML <select> element. Users may select more than one option from a
scrolled list box if the developer has specified the multiple attribute. A user can select multiple
options by holding down the CTRL (PC) or COMMAND (Mac) key on the keyboard when selecting
items from the list.

The following HTML will create a form with a single drop-down list box inside it.

<form action="#">
What would you like for dinner?

<select name="dinner">
<option selected value="1">Chicken</option>
<option value="2">Beef</option>
<option value="3">Pork</option>
<option value="4">Fish</option>
<option value="5">Vegetables</option>

191

192

How to Do Everything with JavaScript

</select>

</form>

By specifying the size attribute, we can modify the drop-down list box to become a scrolling
list box. Since our size attribute only allows three items to display at once, the user will be able
to see the remaining two items by using the scroll bar.

<form action="#">

What would you like for dinner?

<select name="dinner" size="3">

<option value="1" selected>Chicken</option>
<option value="2">Beef</option>

<option value="3">Pork</option>

<option value="4">Fish</option>

<option value="5">Vegetables</option>

</select>

</form>

The HTML <select> element has several attributes that give web developers more control
over the look and behavior of the list box control:

id String that must be unique across the entire web page

class List of associated CSS classes

style Inline CSS style commands

title Advisory title

lang SO language code

dir Direction of text (right to left or left to right)

name Name of the control

size Number of rows to display at once

multiple Allows the control to accept multiple selections
tabindex Sets the order in which controls receive focus on a form

disabled Locks the control so that it cannot receive focus or be modified by the user

Beside the preceding attributes, our list box control can also capture a number of events as
well. We will examine the predefined HTML event handlers in more detail in Chapter 9. The list
box can capture the following three events:

onfocus JavaScript code that will be run when a control receives focus
onblur JavaScript code that will be run when a control loses focus

onchange JavaScript code that will be run when a control loses focus and
the value of its contents has been altered

CHAPTER 8: Manipulate Web Forms

The HTML <option> element has several attributes of its own:

id String that must be unique across the entire web page

class List of associated CSS classes

style Inline CSS style commands

title Advisory title

lang SO language code

dir Direction of text (right to left or left to right)

selected Defines this list item as the default

disabled Locks the control so that it cannot receive focus or be modified by the user
label Defines a label for the list item

value The string returned to the server when a user selects the item

The <option> element can also receive a number of events. We will examine all the
predefined HTML event handlers in more detail in Chapter 9.

Accept Text Input with a Text Area

One variation of the text box is the zext area. The text area control accepts multiple lines of input
and is defined using the HTML <textarea> element. One drawback of the text area control is that
you cannot easily restrict the amount of data a user adds to that control.

The most common attributes for the <textarea> element are rows, cols (columns), and name.
As you would expect, you specify the height of the control using the rows attribute, and the width
of the control using the cols attribute. For example, the following text area will hold 5 rows that
are 60 characters wide.

<form action="#">
<textarea rows="5" cols="60">
This is my example text area.
</textarea>

</form>

Default text is inserted between the <textarea> and </textarea> tags.

Add a Push Button Control to a Form

Unlike other controls, push buttons (or just buttons) are generally not used to provide user input.
Their purpose is to cause the browser to execute some JavaScript code through the button’s onclick
event handler. There is a special type of push button control called a submit button that can be
used to provide user input. We will examine submit buttons in the next section.

193

194

How to Do Everything with JavaScript

In HTML, there are two ways to create a simple push button: with the <input> element and
with the <button> element. The <input> element is used to create the most basic type of push
button, as follows:

<form action="#">
<input type="button" wvalue="Push me" onclick="dothis()">
</form>

The push button defined in this form will call a JavaScript function named dothis() when
pressed. The value attribute defines the button’s caption, or the text label on the button.

The <button> element allows developers to create a more complex type of push button. The
<button> element accepts complex HTML input (including text and images) as its caption. For
example, the following push button displays a check mark image next to the word OK, which is
in bold print. It too will call the JavaScript dothis() function when clicked.

<form action="#">
<button onclick="dothis()">

<i>0K</i>
</button>
</form>

Here is how this special type of push button looks in a browser window.

Form Controls - Microsoft Internet Explorer
_| File Edit iew Favortes Tool: Help !n
e - ~>.9 I a & 8 3B
| Bach Fanward Stop Fefresh Home Search Favoites Media History il |

=
The HTML <button> Control in Action

v OK

" R T A— -';
|&] Done i_ i_ i_ |_,%‘ My Computer v

CHAPTER 8: Manipulate Web Forms

Add a Submit Button

Submit buttons are a special type of form control, in that they cause a form to submit itself to the
server. The variables and data defined in the form are sent to the web server application defined
in the action attribute of the <form> element, using the method defined in the method attribute.

For instance, the following code defines a form that submits itself to an ASP web page. The

ASP web page is responsible for processing the data and sending a new web page for the browser

to display.

<form
action="http://www.example.com/scripts/myscript.asp"
method="GET">
Full Name: <input type="text" name="fullname">

Age: <input type="text" name="age" size="5">

Date of Birth: <input type="text" name="DOB" size="10">

<input type="submit" value="Submit Form">

</form>

When the user clicks the Submit Form button, the three other form controls on the form

(fullname, age, and DOB) will be sent to the ASP web page, along with whatever text the user
entered in those fields.

Only named form fields will be submitted to the server for processing. Fields without
an assigned name attribute, even text fields, will not be submitted to the server. It is
common to omit the name of submit buttons. The only time it would be useful to name
them would be if there were more than one submit button on a form and the server
needed to know which button was used to submit the form.

Catch Web Form Submissions with onsubmit

Previously in this chapter, in the section entitled “Use the <form> Tag,” we saw that the HTML
<form> element has a number of predefined event handlers. Handling an event is known as
catching it, and in this section we will take a brief look at one of the <form> element’s events
and how to catch it.

The onsubmit attribute allows us to specify some JavaScript code that will be executed

before the web form is submitted to the web server. This JavaScript code is usually stored inside
a function, and so the event handler only refers to that function. But sometimes the JavaScript
code will appear directly in the event handler attribute.

<script language="JavaScript" type="text/javascript">

function checkname () {

}

alert ("Your name is " + document.forms[0].fullname.value);

</script>

<form action="http://www.myserver.com/formhandler"

196

How to Do Everything with JavaScript

method="GET"

onsubmit="return checkname()">

What is your name?

<input type="text" name="fullname">

<input type="submit" value="Submit Form">
</form>

In the preceding HTML code, we have specified a JavaScript function that will be called at the
time the form is submitted to the web server using the onsubmit event handler attribute of the
<form> element. The function that will be called is checkname(), which we have defined just
above the form. Once the checkname() function finishes, the form data will be sent to the URL
http://www.myserver.com/formhandler for processing.

Here you can see the HTML form that is created. | have already typed in the five letters of
my first name as an example.

'3 Form Controls - Microsoft Internet Explorer EEE

_| File Edit View ngorites- lools- .ﬂelp I . . !n
| Back Fanyard Stop Refrezh Home Search Favoites Media Hiztary il ‘

|

-

The onsubmit Event Handler
TWhat 15 your name?
lscott
| S <
[2] Done i_ i_i_ | My Computer v

The button labeled “Submit Form” is actually a submit button, which will cause the form
to be sent to the web server. Before it is submitted, however, the checkname() function is called.
That function simply retrieves the contents of the text box and displays it in a JavaScript alert box.
Once the alert box is accepted by the user, the form sends its data to the web server for processing.

CHAPTER 8: Manipulate Web Forms

Microsoft Internet Explorer

4 ! *f'our name is scott

Our onsubmit event handler actually has the ability to stop the web form from being submitted.
Returning the Boolean value false from the function causes processing to stop without the form
being submitted to the server.

<script language="JavaScript" type="text/javascript">
function checkname () {
var username = document.forms[0].fullname.value;

if (username != "Scott") {
alert ("Sorry, " + username + ". I cannot let you proceed.");
return false;

} else {

return true;

}
</script>

The preceding JavaScript function, when called by the same HTML form, will not submit to
the web server if the user does not type Scott into the name field.

Catch Events on Form Controls

Like the HTML <form> tag, form controls can also have programmable events. A program
can define a JavaScript function or code that will be executed when a certain event occurs. For
instance, JavaScript can detect when the mouse cursor passes over a control, when it has gained
or lost focus, or when its value has changed.

For example, the following code demonstrates how some of the text box control’s events can
be captured.

<html>
<head>
<title>Capture Form Control Events</title>
<script language="JavaScript" type="text/javascript">
<!-- // Begin

function modifylayer (changetext) {
var lefield = document.getElementById("lastevent");
lefield.innerHTML = changetext + "

 ";

’

197

198 How to Do Everything with JavaScript

// End -->
</script>
</head>
<body>
<hl>Capture Form Control Events</hl>

<form action="#" method="get">

Move the mouse in and out of this field,

or change its contents.

<textarea name="samplefield" rows="10" cols="30"
onmouseover="modifylayer ('mouseover')"
onmouseout="modifylayer ('mouseout')"
onchange="modifylayer ('change')"
onkeypress="modifylayer ('keypress')"
>Sample text</textarea>

Last event captured:
<div id="lastevent"
style="background-color: #CCCCCC; font-weight:bold">

</div>

</form>

</body>
</html>

The body of the HTML document has an HTML <form> that contains a single control—
a multiline text box called a <textarea>. We have also defined an HTML <div> area, which
contains text that we can change using JavaScript.

The <textarea> also defines a number of event handlers. The web browser will call a
JavaScript function named modifylayer() if any of the following events occurs for this control:

B onmouseover When the mouse cursor enters the control

B onmouseout When the mouse cursor leaves the control

B onchange When the contents of the control have changed and
the control has lost focus

M onkeypress When a keyboard key has been pressed

We define the modifylayer() function using the <script> tag inside the document header
section. That function will write the name of the event out to the <div> area we have defined.

CHAPTER 8: Manipulate Web Forms 199

You can see a list of all the browser events supported by Internet Explorer on
Microsoft’s web site at http://msdn.microsoft.com/workshop/author/dhtml/reference/

——
events.asp. We also discuss web browser events more thoroughly in Chapter 9.

Of course, there is also a way to capture the name of the event without having to pass it to the
function explicitly using the window.event DOM object. We could modify our JavaScript code
to the following to take advantage of this technique.

function modifylayer () {
var lefield = document.getElementById("lastevent");
var ename = window.event.type;
lefield.innerHTML = ename + "

 ";

}

With this type of function, we would no longer need to pass the name of the event inside
each event handler. The modifylayer() function can handle all four events on its own.

<textarea name="samplefield" rows="10" cols="30"
onmouseover="modifylayer ()" 8
onmouseout="modifylayer ()"
onchange="modifylayer ()"
onkeypress="modifylayer ()"
>Sample text</textarea>

We can see from the following screen capture what this web page will look and act like in
a web browser.

'3 Capture Form Control Events - Microsoft Internet Explorer |_ (O]]
_| File Edit “iew Favorites Tools Help !n
i N 3 I A - o = »
(¢ . > . @ @ &A@ @ @ 3B
| Bach Fanyard Stop Fefresh Home Search Favortes Media Histary b ail |
=
Capture Form Control Events
Ilowe the mouse i and out of this field, or change itz contents.
Sample text ;!
&
Last event captured:
mouseover
' R T A— ;1
|£] Done |1 | |2 My Computer y

200 How to Do Everything with JavaScript

Retrieve and Set Form Control Values in JavaScript

One of the code samples from the preceding section demonstrated one of the many possible ways
of retrieving values from a web form. The DOM provides JavaScript programs several ways to
access the controls on a form and their values, including:

M As a property of the forms array
B As key values in the elements array

B Using one of three different methods of the document object

Not all of these techniques work in older versions of the major browsers, so you may
have to employ some of the cross-browser scripting techniques discussed in Chapter 7.

Access Form Values Using the forms Array

One technique that will work in all JavaScript-enabled browsers is accessing form controls using
the forms array. The forms array is a property of the DOM document object; it contains an indexed
list of all the forms on a web page. Indexes in JavaScript start at zero.

We start by creating a variable that refers to the form itself.

var myform = document.forms[0];

We can then access any control on the form by name. For instance, the following code allows
you to access the contents of a text box called fullname:

var fullname = myform.fullname.value;

As in “Accept Text Input with a Text Box,” earlier in this chapter, value is a property of the
text box control. The preceding code placed the contents of that text box in a variable we called
fullname.

Using this technique allows us to access any control on the form, as long as it is named. The
following code demonstrates a form that contains a text boxes, a list box, and a group of radio
buttons. Before the form is submitted, a function named checkform() verifies that the user entered
text or made a selection in each of the fields.

<html>
<head>
<title>JavaScript Test</title>
<script language="JavaScript" type="text/javascript">
<!-- // Begin

function checkform() {

var myform = document.forms[0];

// Accessing text boxes is easy

CHAPTER 8: Manipulate Web Forms 201

var fullname = myform.fullname.value;
var emailaddr = myform.email.value;

// Which drop down item is selected?
var ageldx = myform.age.selectedIndex;

var age = myform.age.options|[ageldx].value;

// Which radio button is selected?

var hearObj = myform.hear;
var hear = "";
for (var 1 = 0; i1 < hearObj.length; i++) {

if (hearObj[i].checked) {
hear = hearObj[i].value;

// Check if any fields are blank
if ((fullname == "") || (emailaddr == "") ||
(age == "None") || (hear == "")) {
alert ("Some information appears to be missing.");
return false;
} else {
return true;

// End -->
</script>
</head>
<body>
<hl>JavaScript forms Array</hl>

<form action="#" onsubmit="return checkform()">
<center>
<table width="400" cellspacing="12">
<tr>
<td align="right">Name:</td>
<td><input type="text" name="fullname"></td>
</tr>
<tr>
<td align="right">Email:</td>

202 How to Do Everything with JavaScript

<td><input type="text" name="email"></td>
</tr>
<tr>
<td align="right">Age:</td>
<td><select name="age">
<option value="None">-- Please select --</option>
<option value="16-32">16-32</option>
<option value="33-49">33-49</option>
<option value="Over 50">50+</option>
</select></td>
</tr>
<tr>
<td align="right">How did you

hear about us?</td>
<td valign="top">
<input type="radio" name="hear" value="t"> TV

<input type="radio" name="hear" value="r"> Radio

<input type="radio" name="hear" value="n"> Newspaper

<input type="radio" name="hear" value="o"> Other</td>
</tr>
<tr>
<td align="middle" colspan="2">
<input type="submit" value="Send to server"></td>
</tr>
</table>

</center>
</form>
</body>
</html>

Figure 8-4 shows how this form would look in a typical web browser.
If we were to try to submit this form without filling out one of the fields, the checkform()
function would catch it, and report this error:

Microsoft Internet E xplorer

__f' ! Some information appears to be missing.

Access Form Values Using the elements Array

Another way to access the controls on forms is through the elements array. The elements array
is a sequential list of all the form controls that appear on a web page. To access the value of

CHAPTER 8: Manipulate Web Forms 203

/2§ JavaScript Test - Microsoft Internet Explorer

File Edit ‘iew Favortes Tools Help n

s . @ @ AQ G @ I |B

Stop Refresh Home Search Favortes Media Histary M ail

JavaScript forms Array

Name: |
Email: |
Age:]W
o TV

How did you ¢ Radio
hear aboutus? Newspaper

" Cther 8

Send to server

2|

Ci-l Done S Tl gj M'_;,I Efomputer

FIC{O{=H-'W A web page that contains various form controls

a specific control, you need to know its position in the array beforehand. This array is convenient
if you need to access all the controls in an array or search the array for a specific control.

var earray = document.forms[0].elements;
for (var count = 0; count < earray.length; count++) {
alert (earray[count] .name) ;

The preceding code demonstrates how the elements array can be queried. It successfully
finds the first control on the form.

Microsoft Internet Explorer B

! '} fullhame

204

How to Do Everything with JavaScript

Access Form Values Using getElementBylId()

Both the techniques we have just examined (forms array and elements array) are the old way
of using the DOM. The main problem with those methods is that they are specific to forms.
If you wanted to access the contents of the <h1> element (the document heading) and change it,
you could not.

The getElementByld() DOM method is the new preferred way to access any object on a web
page—whether it is a form control, a <div> tag, or even a Java applet embedded in the page.

To retrieve the value of the fullname text box, we would use the getElementByld() function
as follows:

var fullname = document.getElementById("fullname") .value;

This code looks for an element with an ID of fullname anywhere inside the current document.
JavaScript does not know (or care) at this point what type of object it is—it could be any HTML
element. As its name implies, this function attempts to look up an element by its ID. Most
HTML elements have an ID attribute (id="""), and in order to use this function on an element,
you should set the ID attribute accordingly.

<input type="text" id="fullname" name="fullname">

Most browsers will also search for elements by their name attributes if they cannot find
an ID that matches.

Access Form Values Using getElementsByName()

Just as the getElementByld() function will search for elements by ID attribute, the
getElementsByName() function will search for elements by their name. The one difference
between the two functions is that getElementsByName returns an array of elements. Thus,
it can return more than one element.

var hearObj = document.getElementsByName ("hear") ;

This code will return an array of all the elements named hear on the web page. Earlier we
created some HTML that included a set of radio buttons named hear—there were four elements
named hear on the page (see “Access Form Values Using the forms Array”). Using this code on
that form would return an array of four elements. The JavaScript code we used would then
correctly determine which of the four radio buttons were selected.

for (var 1 = 0; i < hearObj.length; i++) {
if (hearObj[i].checked) {
hear = hearObj[i].value;

CHAPTER 8: Manipulate Web Forms

Access Form Values Using getElementsByTagName()

The final method provided by the new JavaScript DOM is getElementsByTagName(). This
method is very helpful in retrieving elements that are not named, such as the submit button on
our previous form example. This function allows us to look up objects on a web page by their
HTML element name.

var mybutton = document.getElementsByTagName ("input") ;
mybutton[6] .value = "Please wait...";
mybutton[6] .disabled = true;

By adding this code to the beginning of our checkform() function, we can disable
the submit button to stop the user from submitting the form more than once. The
getElementsByTagName(“input”) function returns an array of all the <input> elements
on a web page. We know the submit button is the seventh element on the web page created
using the HTML <input> tag—the other six are two text boxes and four radio buttons. Since
the array starts at index zero, the submit button is located in the sixth index in the array.

'3 JavaScript Test - Microzoft Internet Explorer
I_| File Edit “iew Favortes Toolz Help . . !“
‘ijfj a H @ J‘;
| Back Fanyard Stop Refresh Home Search Favortez Media Histam M ail ‘
[
L]
JavaScript forms Array
Name: !
Email: |
Age: I—Please select— '1
o TV
How did you ¢ Radio
hear about us? © MNewspaper
© Other
e TRty ‘;-i
|2] Done [|| | =My Camputer >

Button has been disabled and
caption set to “Please wait.”

205

206 How to Do Everything with JavaScript

So as you can see, the DOM provides a number of different methods for accessing the
contents of a form. In the next chapter, we will examine the ins and outs of browser events.
We will start off by looking at the different types of events in HTML and how to write event
handlers to deal with them. And we will look at some of the special cross-browser compatibility
issues that arise when dealing with events.

Handle Browser

C h d pte I 9 Events

208 How to Do Everything with JavaScript

How to...

B Write JavaScript event handlers
B Handle events using the event property
B Trigger events in JavaScript

B Overcome browser incompatibility

The dictionary defines an event as “something that takes place” and that is exactly what it means
in web programming as well. An event handler is JavaScript code that is designed to run each
time a particular event occurs. Of course, this means that your JavaScript code may execute
dozens of times, or not at all, depending on the circumstances.

There are 18 events officially defined in the HTML 4.01 specification. In addition, browsers
that support the official DOM Level 2 Events specification need to provide several more events for
programmers to work with. However, Microsoft and Netscape have gone beyond the events listed
in the official specifications and provide many more: IE supports more than 75 events, and Netscape
supports at least 50.

The DOM Level 2 Events specification can be found on the official W3C web site at
http://www.w3.org/TR/DOM-Level-2-Events.

—

The key to knowing how to write appropriate event handlers is understanding what the
events are and when they occur. For instance, the following events are just three of the official
18 HTML 4.01 events:

B load event Occurs when the HTML document has finished loading in the browser
window

B click event Occurs when the left mouse button has been clicked

B Kkeypress event Occurs when a keyboard key has been pressed

JavaScript can be used to intercept these events when they occur and take certain actions
(sometimes it is allowed to cancel the event). Intercepting an event is called capturing the event,
and it is done by writing event handler code. If no event handling code is written, the browser
will continue to process the event as normal using default behavior.

In this chapter, we will examine the various events provided by most HTML elements and
how event handlers should be written for each. We will also see how a JavaScript program can
cause these events to occur manually, and we’ll look into the differences in event handling
between the various browsers.

Write JavaScript Event Handlers

You saw some examples of event handlers in the previous chapter, in the “Catch Web Form
Submissions with onsubmit” section. Writing an onsubmit event handler enabled our JavaScript
program to check that all the fields on a form were filled out before the form submission was
allowed to continue.

CHAPTER 9: Handle Browser Events

Events fall into four major categories:

B User interface events
B Mouse events

B Key events

B HTML events

User interface events happen as controls or other objects on a web page gain and lose focus.
These events are often caused by other user actions (such as a tab key press or a mouse click),
but they can happen programmatically as well.

Mouse events occur when the user moves the mouse or presses one of the mouse buttons.
These events allow a web page to respond to mouse movements by, for example, highlighting
an image when the mouse moves over it.

Key events occur when the user presses and/or releases one of the keyboard keys. Only
certain HTML elements can capture keyboard events, as we will see later in this chapter.

Finally, there are several events specific to certain HTML elements. They often relate to the
browser window itself or to form controls and other objects embedded in a web page. The onsubmit
event handler discussed in the last chapter falls into this category.

Handle User Interface Events

User interface events deal exclusively with the transfer of focus from one object inside the web
page to another. There are three user interface events defined in most web browsers.

Event Name Event Handler Name Defined In
focus onfocus HTML 4.01
blur onblur HTML 4.01
activate onactivate DOM Level 2

For example, let’s assume we have a web page with two text boxes.

<form action="#">
<input type="text" name="boxl">

<input type="text" name="box2">
</form>

Say the active cursor is presently inside the text box named box1. When we hit the keyboard
TAB key, we expect focus to transfer to the second text box, box2. Ignoring for a moment the
keyboard events, the three user interface events fire (occur) in a predictable order.

First, the activate event fires on box2. Next, the blur event fires on box1. Finally, the focus
event fires on box2. We can modify the web page slightly to see that the events always fire in
a predictable order.

209

210

How to Do Everything with JavaScript

<script type="text/javascript" language="javascript">
function upd(instr) {
document. forms[0] .statusbox.value += instr + "; ";
}
</script>
<form action="#">
<input type="text" name="boxl"
onblur="upd('blur boxl') ">

<input type="text" name="box2"
onfocus="upd('focus box2")"
onactivate="upd('activate box2') ">

Event firing order:
<input type="text" name="statusbox" size="40">

</form>

In the preceding code, we have added a third text box called statusbox to the screen, to display
the results of our event firing test. We have provided JavaScript to the three event handlers (onblur,
onfocus, and onactivate) that will append the event and control names to the end of the statusbox
text box.

The results of the test are shown in Figure 9-1. As you can see, the events listed in the status
box match the order we expected.

'3 JavaScript 5ample Web Page - Microzoft Internet Explorer

_| File Edit Wiew ngorites- Iools- .ﬂelp . . .) !n
(e . > . @ O AT@ G & QI
| Bach Fanyard Stap Refresh Home Search Favortes Media Histary I ail |
-
. -

Firing Order for Blur and Focus
|
[
Event firing order: iactivate hox2; blur box1; focus box2;

4
|§] Dane l_ l_ l_ @ Iy Computer 7

FIC]U =AW User interface events are fired in a predictable order.

CHAPTER 9: Handle Browser Events

Handle Mouse Events

The seven mouse events listed in the following table all relate to actions taken by the user using
the mouse. JavaScript programs have the ability to track mouse movement and button clicks as
they relate to the web page and controls inside.

Event Name Event Handler Name Defined In

mousedown onmousedown HTML 4.01
mouseup onmouseup HTML 4.01
mouseover onmouseover HTML 4.01
mousemove onmousemove HTML 4.01
mouseout onmouseout HTML 4.01
click onclick HTML 4.01
dblclick ondblclick HTML 4.01

Tracking these mouse events is often done to enhance the user’s experience by highlighting
menu items as the mouse pointer rolls over them or by updating screen text to provide more
information about the element beneath the pointer.

For example, the following HTML code inserts an image into an web page using the
element. By capturing the mouseover and mouseout events, we can cause the image to change
when the mouse pointer is over the image and change back to the original image once it leaves.

<script type="text/javascript" language="javascript">
function changeimage (num) {
var img = document.getElementById("SampleImage") ;

if (num == 1) {
img.src = "NewImg.gif";
} else {
img.src = "OriginalImg.gif";
}
}
</script>

<img src="OriginalImg.gif"
id="SampleImage"
alt="Sample image"
onmouseover="changeimage (1) "
onmouseout="changeimage (2)" >

The mouseover event fires the moment the mouse pointer enters the boundaries of the image.
The onmouseover event handler calls the changeimage() function with a parameter of 1. The
changeimage() function starts off by assigning a reference to the image to a variable based on
its id, Samplelmage. The src attribute of the image allows us to dynamically modify the image
displayed in the browser.

211

212 How to Do Everything with JavaScript

The mouseout event fires once the mouse pointer leaves the boundaries of the image. The
changeimage() function handles this event as well, causing the image to go back to its original source.
We can see the effects of this image rollover in Figure 9-2.

Handle Key Events

JavaScript programmers rarely use key event handlers to catch key events. While there are a few
situations where you might want to use them, this type of event handling is more commonly found
in Windows applications (such as Visual Basic programs) than in web-based programming.

Like the user interface events, key events fire in a predictable sequence. There are three main

key events in HTML.
Event Name Event Handler Name Defined In
keypress onkeypress HTML 4.01
keydown onkeydown HTML 4.01
keyup onkeyup HTML 4.01

By slightly modifying the code found in the “Handle User Interface Events” section, we can
see the predictable order the events fire in.

<script type="text/javascript" language="javascript">
function upd(instr) {
document. forms[0] .statusbox.value += instr + "; ";
}
</script>
<form action="#">
<input type="text" name="boxl"
onkeypress="upd('keypress')"
onkeydown="upd ('keydown"') "
onkeyup="upd ('keyup') ">

Event firing order:
<input type="text" name="statusbox" size="40">

</form>

Before After

FIC{U{=H IV The mouseover and mouseout events power image rollover effects.

CHAPTER 9: Handle Browser Events 213

'; JavaScript Sample Web Page - Microzoft Internet Explorer
_| Eile Edit “iew Favorites Toolz Help - . !n
(e . @9 @ Al@ @ @ 3B
Bact E Stop Refresh Home Search Favortes Media Histom b ail |
=
- -
Key Event Firing Order
|a
Event firing order: Jkeyvdown: keyvpress: keyup:
|
[g] Done ’_ I_ ’_ | =] My Computer &

HIC{UR{HEN The order of the key events is keydown, keypress, and keyup.

As you can see from the screenshot in Figure 9-3, the order of events is

1. keydown
2. keypress
3. keyup

The keydown event occurs when almost any keyboard key has been pressed down, including
nonalphanumeric keys such as HOME, ESCAPE, INSERT, and DELETE. The keypress event, on the other
hand, only fires when certain alphanumeric keys are pressed, including punctuation, SPACEBAR, and
ENTER. The keyup event is the complement to keydown, since it fires when almost any key has been
released.

Both the keydown and keypress events can be canceled. To cancel an event, you just need to make
its event handler return false. Canceling a keydown or keypress event will cause the browser to ignore
those keys. For example, if you wanted to restrict the types of characters entered into a form field, you
could capture its keydown event and return false anytime a key is not in an acceptable range.

214 How to Do Everything with JavaScript

<script type="text/javascript" language="javascript">
function checkkey () {
var keycode = window.event.keyCode;
if (keycode < 48 || keycode > 57) {
return false;
} else {

return true;

}
</script>
<form action="#">
<input type="text" name="boxl"
onkeydown="return checkkey () ">

</form>

The preceding code shows how the keydown event can be captured. Since we want to be able
to cancel the event, we include a return statement inside the event handler along with a call to the
checkkey() function.

The first 127 characters of the Unicode character set match the corresponding ASCII
codes character for character. More information on the Unicode character set can be
Sfound at http://'www.unicode.org.

—

The checkkey() function gets the Unicode character code associated with the key by checking
the keyCode attribute of the window.event DOM object. We compare the value of the keyCode
against the range of values for numeric keys, which happen to be 48-57. If the keyCode we
intercepted falls outside that acceptable range, we return false from the function to indicate that
the key is to be ignored. Of course, we return true if the key falls inside the acceptable range.

The keyCode property of the window.event object is only available in Netscape version 6

and later and Internet Explorer.

This results in a text box that only accepts numeric input and ignores all other characters.
The following table lists several common characters along with their keyCode values.

keyCode Values Correspond To

48 through 57 0 through 9

65 through 90 A through Z (capital letters)
97 through 122 a through z (lowercase letters)
46 . (period)

44 , (comma)

40 and 41 (‘and) (parentheses)

36 $ (dollar sign)

35 % (percent sign)

34 " (quotation mark)

CHAPTER 9: Handle Browser Events

Handle HTML Events

In this context, HTML events means any events that do not belong in the user interface, mouse, or
key event categories. Some HTML events are triggered directly by a user action, while others are
fired only as an indirect result of a user action.

The following table lists the HTML events, the event handler name, and the official specification
that defined them.

Event Name Event Handler Name Fires When (Event) Defined In
load onload Browser finishes loading document HTML 4.01
unload onunload Browser about to unload document HTML 4.01
submit onsubmit Form about to be submitted HTML 4.01
reset onreset Form about to be reset HTML 4.01
select onselect Text box contents selected HTML 4.01
change onchange Form control contents changed HTML 4.01
abort onabort User aborts download of image DOM Level 2
error onerror Error occurs on object loading DOM Level 2
resize onresize Size of object about to change DOM Level 2
scroll onscroll User uses the scroll bar DOM Level 2

Let’s take a quick look at what these events do.

load event The onload event handler is called when the HTML document finishes
loading into the browser window. This event is commonly relied on to do any initialization
required in the document. For instance, if form fields need to be preloaded with text, and
that was not covered by the HTML code itself, it is best to wait until the document is fully
loaded before initializing those fields.

unload event The unload event fires when a browser is leaving the current document.
This happens when the browser window is being closed or the user has moved on to
another document. The main purpose of this event is to perform cleanup tasks before
the document closes.

The unload event is commonly used in some of the seedier web locations to provide final
pop-up advertising before a user leaves a web site. This is generally considered bad
etiquette. The unload event should be avoided unless absolutely necessary.

submit event The submit event occurs just before a form is submitted to a web server.
It is common to capture this event to perform edit checking before allowing a form
submission to continue. Since this event can be canceled, JavaScript can stop the

form from being processed if everything is not in order.

reset event The reset event occurs when the reset button on a form is clicked. The reset
button clears a form by resetting all the values back to their defaults.

215

216 How to Do Everything with JavaScript

B select event The select event occurs when the user selects text inside a text box or text
area. Text can be selected by holding the left mouse button down while dragging across
the text or by holding the SHIFT key down while using the arrow keys to move the cursor
across the text.

B change event The change event occurs when a control loses focus (the user tabs out of
it) and its value has been altered. This way, in text boxes the change event does not fire
for each and every keystroke when a user is entering a value but only when the user
leaves the field. This same event fires on radio buttons, check boxes, and select lists in
the same manner.

B abortevent The abort event occurs when the browser stops trying to load an image
on the web page. This can occur when the user hits the browser’s Stop button or clicks
a link to go to another page. In my experience, this event is rarely used.

B error event The error event occurs when an error happens while the web page is being
loaded. This could be an error specific to a particular object (such as a Java applet’s failing
to load) or a run-time error caused by poorly written JavaScript code. This is another event
that is rarely captured in most web pages.

B resize event The resize event fires when an object is being resized—for instance, if a
browser window has been resized by the user, or a frame. There may be times when you
would like to be able to resize the individual controls inside the window based on the
available space, although capturing this event is still rare.

B scroll event For web objects that scroll, such as the browser window or a text area form
control, the scroll event is fired anytime the object’s scroll bar is changed. This can be done
using the mouse to move the scroll bar manually, by using arrow keys, or by other means.

The following code demonstrates how the load event can be captured using the onload event
handler. Our web page contains a form, and the onload event handler code populates a list box on
that form with some predefined values.

<html>
<head>
<title>JavaScript Sample Web Page</title>
<script language="JavaScript" type="text/javascript">
<!-- // Begin

function initialize() {
var lst = document.getElementById("samplelist");
var opn = new Array(20);
var temp;

var counter;

for (counter = 1; counter <= 10; counter++) {
opn[counter] = document.createElement ("option") ;
lst.options.add (opn[counter]) ;
temp = counter * 10;
opn[counter] .innerText = temp.toString();

CHAPTER 9: Handle Browser Events

// End -->
</script>

</head>

<body onload="initialize()">
<hl>Initialize a Form with onload</hl>

<form action="#">
<select id="samplelist"></select>

</form>

</body>
</html>

In the preceding HTML code, the browser calls the JavaScript initialize() function as soon
as it finishes loading into the browser window. This is done by programming the onload event
handler in the <body> tag.

Inside the initialize() function, the program adds 10 items to the empty <select> list box
defined in the body of the web page. We can see the results of this function in Figure 9-4.

'3 JavaScript Sample Web Page - Microzoft Internet Explorer

_| File Edit “iew Favoites Tool: Help !n
.2 . @ B d[@ @ & J (B 7
Bach E Stop Refrezh Home Search Favortes Media Hiztory I ail ‘
[

Initialize a Form with onload
" S A— ;;
[£] Done i_i_i_|»_~»E.’ My Computer -

FIC{U{=H LW Ten items have been added to the drop-down list box.

217

218 How to Do Everything with JavaScript

Handle Events Using the Event Property

There are two ways to set the JavaScript event handler for an HTML tag:

B Set the event handler property inside HTML
B Set the event handler property inside JavaScript

We have already seen how to set the event property in HTML:

<img src="OriginalImg.gif"
id="SampleImage"
alt="Sample image"
onmouseover="changeimage (1) "
onmouseout="changeimage (2)" >

In this code, we have set the JavaScript functions that will handle the mouseover and
mouseout events using the corresponding event handlers.
We could rewrite the code using JavaScript to set the event handlers:

<img src="OriginalImg.gif"
id="SampleImage"
alt="Sample image">

<script type="text/javascript" language="javascript">
var img = document.getElementById("SampleImage") ;
img.onmouseover = changeimageover;
img.onmouseout = changeimageout;
function changeimageover () {
img.src = "NewImg.gif";
}
function changeimageout () {
img.src = "OriginalImg.gif";
}

</script>

The HTML tag has two attributes called onmouseover and onmouseout that
can be set using HTML and JavaScript. Setting event attributes using JavaScript adds
some flexibility, in that the JavaScript function used to handle the event can be changed
dynamically, after the page has been displayed. But as you can see from the sample
JavaScript code, you cannot pass parameters using this technique, so it is also less flexible
in some respects.

CHAPTER 9: Handle Browser Events 219

How Event Bubbling Works

Let’s assume you have a web form that contains a push button. You have created JavaScript
onclick event handlers for both the <form> tag and the <input type="button"> tag. When you
click the push button control using the mouse, which onclick event handler do you think will
be called—the one for the button or the one for the form? In fact, the browser will execute
both event handlers.

The onclick event handler for the button will be called first, since it is the innermost
element. Next, the onclick event handler for the form will be called. If there are any other
onclick event handlers eligible to handle this event (for instance, on the <body> tag), they
will be called in turn as well. This process, where an event is first handled by the innermost
element, followed by the next innermost element, and so on, is called event bubbling.

Trigger Events in JavaScript

There will be times when you would like to have your JavaScript program cause an event to
occur. This is called triggering the event, and many objects inside the web page provide methods
you can call to trigger the event.

There are two ways to cause an event to be triggered in JavaScript:

M Call the method associated with the event
M Call the fireEvent method to fire the event manually

Call the Method Associated with an Event

The first technique is to call the method associated with an event. Most events have a method that

will simulate the activity that causes the event to fire. For instance, the HTML <form> object has

a method called submit() that will attempt to submit the form, causing the submit event to fire.
We can demonstrate this with the following HTML code. The code shows how to use

a hyperlink to simulate a submit button.

<script type="text/javascript" language="javascript">
function clickme() {
document . forms[0] .submit () ;
}
</script>
<form action="http://www.example.com/cgi-bin/entry.pl"

220 How to Do Everything with JavaScript

method="get">
Please enter your full name:

<input type="text" name="fullname">

Click here to
submit the form
</form>

When the user clicks the hyperlink inside the form, JavaScript calls the clickme() function.
The clickme() function calls the submit() method on the form object, which causes the form to
submit itself. The submit() method acts exactly as if the user clicked a submit button on the form,
causing the submit event to fire.

In IE, calling the submit() method will cause the form to submit, but will not call any
submit event handlers attached to the form. If your <form> has an onsubmit attribute,
you will have to call those JavaScript functions manually before calling the submit() method.

—

Other events also have associated methods that cause the event to occur. For instance, the
focus() method will cause a control to gain focus, while the blur() method will cause a control
to lose focus. Similarly, there is a click() method that allows HTML objects to simulate being
clicked with the mouse.

Use the fireEvent Method

The second technique is to call the fireEvent() method to trigger the event manually. In IE,
fireEvent() is a method of most objects in the DOM, and it can be used to trigger events. For
example, you can trigger the onclick event of a push button control in the following manner:

var btnl = document.forms[0].helpButton;
btnl.fireEvent ("onclick") ;

Unfortunately, this method is not very reliable. Although this technique is supposed to be able
to trigger events on any object, I have found that it does not work for certain events or objects, such
as the onsubmit event on a form object, or the onclick event on a submit button object.

Given that it is not part of the official DOM standard and does not work in any browser
other than IE, developers should be very careful when using this technique.

Overcome Browser Incompatibility

Browser events are a weak spot when it comes to cross-browser compatibility. Sure, HTML defined
a small number of standard events, and the various DOM specifications (Levels 1 and 2) have taken
events a step further. But browser manufacturers have added many more programmable events for
JavaScript developers to use, as evidenced by the more than 50 events supported by both Netscape
and [E.

Some of the additional events are slight modifications of existing events. For instance, IE
provides onbeforeactivate and onbeforeunload event handlers to allow programmers to capture

CHAPTER 9: Handle Browser Events

the onactivate and onunload events before they fire. These additional events are cancelable,

which means you can stop the activate or unload events from occurring, while the existing

onactivate and onunload events fire after the event occurs, and therefore cannot be canceled.
Other event handlers allow programmers access to events that are not specified by the standards:

M onbeforeprint and onafterprint allow access to browser print events.
M ondrag, ondragstart, and ondragend allow access to drag-and-drop events.
M onmousewheel allows access to the mouse wheel movements.

B oncut, oncopy, and onpaste allow access to copy-and-paste events.

The problem is, of course, that these events are generally supported by only one browser and not
another. They are also often supported only by newer versions and not by older browsers. Although
having access to some of these interesting events might be tempting from a programmer’s point of
view, you will have to take some of the precautions listed in Chapter 7 and use browser sniffing code
before relying on these methods.

Of course, one good thing about these proprietary events is that they will generally not cause
the browser to crash if they are coded properly. For instance, the following code tries to capture the
onpaste event on a text box control.

<form action="#">
<input type="text" name="myctl" onpaste="pasteevent()">
</form>

Of course, since the onpaste event handler is being set inside the HTML element, the browser will
simply ignore that code if it does not support the paste event on that control. The only consequence is
that the paste event will not be captured in incompatible browsers.

However, if you are absolutely relying on this event handler to perform some critical code,
such as submitting the form, you will have to use browser sniffing code to provide alternate code
for browsers that do not support it.

In the next chapter, we will discuss browser frames. JavaScript programs face special
challenges when dealing with a multiple-frame environment, and we will examine some of
the issues and how best to work around them.

221

This page intentionally left blank

Communicat
C h d pter 1 0 B(e)twe:n l;foafser

Frames

224

How to Do Everything with JavaScript

How to...

B Create a frameset
Define and name frames in a frameset

Call JavaScript functions from other frames

Handle synchronization between frames

In web programming, a frameset is used to divide a single web page into two or more smaller
pieces. Each of these pieces, or frames, is a separate HTML web page. Web developers can
define several important properties for these frames, including the overall dimensions, location,
and visibility of the borders.

In this chapter, we will examine the use of framesets on the Internet today. In particular, we
will see some the challenges faced by JavaScript programmers when using frames and look at
some suggestions for overcoming them.

Learn the Basics of HTML Frames

Frames are extremely useful for displaying the static sections of a web site, such as menus,
banners, and site-navigation tools. Since all the frames in a frameset are independent of each
other, they provide several important benefits to web site developers and visitors. When used
properly, frames can

B Decrease the length of time required to navigate a web site

B Make a web site easier and more intuitive for visitors to use

B Make a web site easier for developers to maintain

Figure 10-1 shows an example of a web page that uses frames. The figure contains three
frames: a top frame with links to other areas of the site, a left frame that contains a menu,
and a center frame (known as the main frame) that contains the key contents of the web site.

As convenient as frames are for both web programmers and visitors, there are quite a few
people who do not like them. A number of problems can be introduced when frames aren’t used

properly:

M Browser bookmarks can’t be properly set.

B Web sites look awful at very small or very large monitor resolutions.

B Search engines can’t accurately index the contents of a frameset.

Adding to these problems is the increasing use of and browser support for Cascading
Style Sheets (CSS). Style sheets can provide many of the same benefits as frames, including

user-friendly navigation and even static banners and menus. Many popular web sites that once
contained framesets now use DHTML menus and other more modern dynamic elements.

CHAPTER 10: Communicate Between Browser Frames 225

) XHTHL 1.0 reference with examples - Microsoft Internet Explorer

J File Edit “iew Favortes Tools Help

J@.%.@ﬁ

Back Fomyard Stop Refresh Home

a = & @

Search Fawvortes Media History

B
:

tail

|.. useful links . =l shortcuts . _ XSLT Tutorial - - rasate to Russian

cld [st] ZVON = References = XHTML Reference i

del [st] Intro / Search /2VON.

cfin [st] Frameset XHTML > Frameset << |

dlir [st]

div [st] Go to Standard

dl [st] ‘Element: |-‘rameset

dt [st] | class | cols | id | onload |

em [st] Attributes: jonunload | rows | style |

fieldset [st] title |

font [st] ‘Parents: || frameset | himl | o

form [st] : | frame | frameset |

frame [st] Children: noframes |

[st] 5
ia | KT | _'l—I 10

[&] |_|_|_|@ Internet v

FCU =AM Example of a web site (ZVON.org) that contains frames

Create a Frameset in HTML

In HTML, frames are created using a combination of two tags: <frameset> and <frame>.
The <frameset> tag is used to define the dimensions and positioning of the frames inside the
frameset. The <frame> tag is used to define the properties of the individual frames, such as
the source HTML document, and the visibility of the frames borders.
The <frameset> element has the following attributes:
id String that must be unique across the entire web page
class List of associated CSS classes
style Inline CSS style commands
title Advisory title
lang ISO language code
dir Direction of text (right to left or left to right)
rows A comma-separated list of row heights

cols A comma-separated list of column widths

226 How to Do Everything with JavaScript

The <frameset> tag also supports the onload and onunload event handlers.

The web page shown in Figure 10-1 consists of four separate HTML files. One HTML file
contains the frameset layout—typically only a <head> section and the <frameset> and <frame>
tags. The other three HTML files contain the individual contents of each of the three frames—
each HTML file in this example relates to exactly one frame.

Of course, this is not always true. More than one frame can relate to the same HTML file, and
some frames can be dynamically generated using JavaScript, and so will have no file associated
with them. The only way to tell is by looking at the code.

The following code is a complete example of a frameset document.

<html>
<head>
<title>Framesets</title>
</head>
<frameset rows="100, *">
<frame src="banner.html" name="banner">
<frameset cols="150, *">
<frame src="menu.html" name="menu">
<frame src="mainbody.html" name="bodyframe">
</frameset>
</frameset>
</html>

The preceding HTML code defines a frameset with three frames. It uses a technique discussed
later in this chapter, in the section entitled “Create Nested Framesets.” We can tell the number of
frames in a document by counting the number of <frame> tags.

Notice that the frameset document contains the usual <html>, <head>, and <title> tags, but it
does not contain a <body> tag. This is because a frameset document cannot contain a <body> of
its own—that is not allowed. We can, however, use all the valid contents of the <head> section,
including JavaScript code, meta data, and style sheet definitions using the appropriate HTML tags.

Handle Browsers That Do Not Support Frames

Providing a site using frames may be convenient to many visitors to your site. The vast majority
of web surfers today (more than 99 percent, by the latest estimates) have browsers capable of
displaying frames. But there is still a small minority of web browsers that do not support them.
Many early browsers, such as IE 2 for Windows or Netscape 2 for OS/2, do not. And other
web-enabled devices, such as PDAs and mobile phones, often have difficulty rendering frames
correctly.

HTML provides the <noframes> tag to allow web developers to display content for users
whose browsers do not support the <frameset> tag. Browsers that do support the tag will ignore
the contents of any <noframes> sections.

CHAPTER 10: Communicate Between Browser Frames

For instance, we can revise the HTML code we saw earlier to include a <noframes> tag;

<html>
<head>
<title>Framesets</title>
</head>
<frameset rows="100, *">
<frame src="banner.html" name="banner">
<frameset cols="150, *">
<frame src="menu.html" name="menu">
<frame src="mainbody.html" name="bodyframe">
</frameset>
<noframes>
It appears you are using a browser that does not support
frames. If you would like to view this site, you will
need to upgrade your browser. I suggest either Netscape
or IE.
</noframes>
</frameset>
</html>

According to the HTML 4.01 specification, the <noframes> tag must be contained inside
a <frameset> tag.

Set Frame Size Values with the rows and cols Attributes

As we saw earlier in the chapter, the size and positioning of frames inside the frameset are handled
with the HTML <frameset> tag. The two main attributes of the <frameset> tag are rows and cols.
The rows attribute is used to define the row heights of the horizontal frames of a frameset, and the
cols attribute is used to define the column widths of the vertical frames. Each attribute accepts
a list of one or more values, separated by commas.

There are three ways to specify a size value in the rows and cols attributes:

M Absolute size, in pixels

B Relative size, as a percentage

B A combination of absolute and relative sizes, using the asterisk symbol

Both rows and cols are optional attributes. The default value for each is "100%"; this defines

one frame that takes up all the available space in a browser window.
Examples of the three types of size value and what they represent are shown in Table 10-1.

22]

10

228 How to Do Everything with JavaScript

Value Frame Size

250 250 screen or print pixels

25% 25 percent (1/4) of the total available screen or print pixels

* An equal share of the available space, after the sizes of the other frames have

been taken into account

3% An unequal share of the available space, after the sizes of the other frames
have been taken into account

AVACIR=R(B M Examples of Size Values and How They Affect the Frameset

The special asterisk value is explained in more detail later in this chapter, in the section

entitled “Set Frame Size Values Using Both Absolute and Relative Values.”

Both the rows and cols attributes accept one or more values, separated by commas. Each
value you provide creates one frame inside the frameset.

Set Frame Size Values Using Absolute Pixel Values

HTML allows you to define the exact size of a frame, called its absolute size. The absolute size
of a frame is set by specifying a positive integer value for the rows and/or cols attributes.

For example, a frameset with two horizontal frames, one 200 pixels high and the other
280 pixels high, would be created with the following HTML code:

<frameset rows="200, 280">
<!-- <frame> tags go here -->
</frameset>

Even absolute sizes are not always absolute. If the actual size of the browser window
does not match the sum of the sizes of the frames, the browser will automatically resize
the frames to fit into the available space.

—

Of course, you’re not restricted to only two frames. You can set any number of frames in
a frameset. The following code sample defines four horizontal frames:

<frameset rows="200, 200, 400, 400">
<!-- <frame> tags go here -->
</frameset>

Although there is theoretically no maximum number of frames you can define in one

frameset, for aesthetic reasons you might want to limit the number to three or four.

CHAPTER 10: Communicate Between Browser Frames

Set Frame Size Values Using Relative Values

There is another way to define the size of frames beside specifying their exact pixel measurements.
Developers can specify the size as a percentage of total available space. This is called a relative
size, because the size of the frame is based purely on the size of the browser window, which can
vary between one computer and another.

<frameset rows="50%, 50%">
<!-- <frame> tags go here -->
</frameset>

The preceding code will create two frames, each taking up 50 percent of the available vertical
space in the browser window. In a window that is 480 pixels high, this would create two horizontal
frames, each 240 pixels high. If the user’s browser window were taller than 480 pixels, the actual
height of each frame in pixels would be adjusted to the proper relative size.

Set Frame Size Values Using Both Absolute and Relative Values

The third alternative is to combine the two approaches—to create some frames that are absolute
in size and others with sizes relative to the available space. To create this useful effect, specify the
absolute number of pixels for the fixed frames and use an asterisk (*) in place of the relative sizes.

For example, if you wanted to make the first frame 200 pixels high and to let the second
frame automatically resize to fit the rest of the window, you could use the asterisk (*) when
setting the height:

<frameset rows="200, *">
<!-- <frame> tags go here -->
</frameset>

This results in a frameset that contains two frames, one 200 pixels high and the other which takes
up all of the remaining vertical space.

If you were to use the asterisk more than once, the web browser would automatically resize
those frames equally to fill the available space after the fixed-height frames were taken into
consideration.

<frameset rows="200, 200, *, *">
<!-- <frame> tags go here -->
</frameset>

The <frameset> tag in the preceding code will create a frameset that contains four frames. The
first two frames will each be 200 pixels high, for a total of 400 pixels. If the viewable area of
the browser window is 480 pixels in height, the last two will split the remaining 80 pixels evenly,
so they will each be 40 pixels high. And if the browser window’s height expands to 600 pixels, those
two frames will have heights of 100 pixels each, since they will evenly split the 200 pixels left
after the fixed-height frames are accounted for.

229

10

230

How to Do Everything with JavaScript

There is also a way to instruct the browser to distribute available space unevenly when using
asterisks, by providing an asterisk multiplier. An asterisk multiplier is a number that can optionally
precede an asterisk, causing it to get more than an equal distribution of space.

For instance, the following frameset defines four frames, two of which are automatically
sized by the browser. But the remaining space will be allocated unequally.

<frameset rows="200, 200, *, 3*">
<!-- <frame> tags go here -->
</frameset>

Prefixing the asterisk that defines the final frame with the number 3 will cause that frame to
have a height that is three times that of the third frame. This means that the fourth frame will get
three-quarters of the available space, while the third frame will only get one-quarter of the available
space. So, if the browser window had a height of 800 pixels, the browser would split the remaining
400 pixels by assigning 100 pixels to the third frame and 300 pixels to the fourth frame.

Define Horizontal Frames with Rows

So far throughout this chapter, you have seen code like the following, which will create three
horizontal frames.

<frameset rows="80, 45, *">
<!-- <frame> tags go here -->
<frame src="framel.html">
<frame src="frame2.html">
<frame src="frame3.html">
</frameset>

These are called horizontal frames because each frame spans the entire width of the browser
window. Since we have used the rows attribute, horizontal lines separate the three frames in the
preceding example. In Figure 10-2 you can see how these horizontal frames would look in a browser.

Define Vertical Frames with Columns

Defining a set of vertical frames is not much different than defining horizontal ones. The cols
attribute of the <frameset> tag allows you to create frames that have a vertical border instead
of a horizontal one.

<frameset cols="165, *">
<!-- <frame> tags go here -->
<frame src="framel.html">
<frame src="frame2.html">
</frameset>

The preceding HTML code will create a frameset that contains two frames. The first will
have a width of 165 pixels, while the second will take up the remaining horizontal space in the
browser window. Figure 10-3 shows how vertical frames look.

CHAPTER 10: Communicate Between Browser Frames 231

/23 JavaSciipt 5ample Web Page - Miciosoft Internet Explorer

| File Edit View Favaites Tools Help |ﬁ
¢ . 2.9 @ A/ & & I [B
I} B Fenward Stop Refresh Home Search Favorkes Media History ail |
FRAMELHTML
FRAME3I.HTMIL
|&] Dare [50 My Computer 7

FICIUI=NEA An example of horizontal frames created using the rows attribute

10

'3 JavaSciipt Sample Web Page - Miciosoft Internet Explorer

| File Edit View Favailes Tools Help |

« . > .9 O Al u S BB *

| Bt Fenward Stop Refresh Home Search Favortes Media History | Mail

FRAMELHTML FRAME2.HTML

*_3] |_ |_ |_ | _;ﬂ My Camputer 7

SIC{U {2 W Creating vertical frames using the cols attribute

232

How to Do Everything with JavaScript

Define Frames with Rows and Columns

Framesets need not be only horizontal or only vertical. Web developers can create framesets that
contain both rows and columns, like a grid. This is done by specifying values for both the rows
and cols attributes.

For instance, to create a frameset that has three rows and two columns, you would use the
following HTML code:

<frameset rows="50, 100, *" cols="50%, 50%">
<!-- <frame> tags go here -->
<frame src="framel.html">
<frame src="frame2.html">
<frame src="frame3.html">
<frame src="framed.html">
<frame src="frame5.html">
<frame src="frame6.html">
</frameset>

The preceding code creates a frameset that contains six frames, arranged into three rows and
two columns. Notice that the number of rows and columns does not have to be equal. Figure 10-4
shows how this complex frameset will look in a browser.

'3 JavaScript 5ample Web Page - Microzoft Internet Explorer

J File Edit Miew Favortes Toole Help |“
« . > . 9 @ A @a @ e @B
Back Fonyard Stop Refresh Home Search Favortes Media Histony (ET
FRAME1.HTML :1 FRAME2.HTML =
= I
FRAME3.HTML FRAME4.HTML
FRAMES.HTML FRAMEG6.HTML
|;_iL| Done ’_l_l_ =) M_\J_Computer .

SOl {0 =W A frameset with both rows and columns

CHAPTER 10: Communicate Between Browser Frames

Create Nested Framesets

Creating complex framesets using both the rows and cols attributes has its limitations. Specifically,
the rows and columns are created in a grid pattern—all the columns in one row will be the same
width, and all the rows will be the same height, as shown in Figure 10-4. It will always be a perfectly
aligned grid, although the size of the cells in the grid can differ.

What could you do if you wanted to create unequal rows and columns? How could you
create a row that has only one column, but define several columns for the next row? The answer
is nested framesets.

A nested frameset is achieved by placing one or more framesets inside another, thus
subdividing a single frame into smaller pieces. All nested framesets must begin with a single,
outer frameset.

<frameset rows="80, *">
<!-- <frame> tags go here -->
<frame src="framel.html">
<frame src="frame2.html">
</frameset>

For instance, the preceding HTML code creates a simple frameset that contains two
horizontal frames.

Now let’s say we want to further subdivide the second frame into two columns. This
can be done with a second frameset:

<frameset rows="80, *">
<!-- <frame> tags go here -->
<frame src="framel.html">
<frameset cols="150, *">
<frame src="frame2.html">
<frame src="frame3.html">
</frameset>
</frameset>

I have replaced the second frame in the original code with a second frameset. This nested
frameset divides the second frame into two columns. You can see the effect of this type of
frameset in Figure 10-5.

Define and Name Frames in a Frameset
Now that you understand how simple and complex framesets are created using the <frameset>
tag, we should take a brief look at how the frames themselves are defined. Individual frames are
defined using the <frame> tag. The <frame> tag has the following attributes:

M id Documentwide unique ID

B class List of associated CSS classes

B style Inline CSS style commands

233

10

234

How to Do Everything with JavaScript

title Advisory title

longdesc Link to a longer description of the frame
name Internal name of the frame

src URI to the HTML document

frameborder Visibility of the frame borders

marginwidth Amount of space, in pixels, between the vertical border (or window
frame) and the HTML contents

marginheight Amount of space, in pixels, between the horizontal border (or window
frame) and the HTML contents

noresize Controls whether the user can resize the frame

scrolling Visibility of the scroll bar

All of the preceding attributes are optional. However, the <frame> tag is rarely defined
without an explicit sre attribute. This is the attribute that allows you to specify the source HTML
file for the frame.

3 JawvaScript Sample Web Page - Microsoft Internet Explorer
J File Edit “iew Favortes Toolz Help |n
T p -, Y s —. e o [= 3|
« .5 . @ [o | 8 G @ 3
Hack Fomyard Stop Refresh Home Search Favortes Media History tail ‘
FRAME1.HTML
FRAME2.HTIML | FRAME3.HTML
I —
|£] Dore [[| =] My Computer V7

SO {ZMEN Using a nested frameset to subdivide frames into unequal pieces

CHAPTER 10: Communicate Between Browser Frames 235

When using JavaScript in conjunction with frames, it is often handy to use the name attribute
to assign a unique name to the frame.

<frame src="/dir/subdir/myframe.html" name="framel">

The frame’s source can be any valid URI—it does not even have to exist on the same web
server as the other frames.

<frame src="http://www.cnn.com/" name="framel">

Using the contents of another web site inside your own site is known as web site
framing, and that practice has some potential legal ramifications involving trademark
and copyright law. There is a very good article on the topic at http://www.gigalaw.com/
articles/2000-all/kubiszyn-2000-04-all. html that you should read if you are interested in
framing another web site without the owner’s permission.

—

The default frame is created with resizable borders. You can easily create borders that cannot
be resized by specifying the noresize attribute.

<frame src="myframe.html" name="framel" noresize>

The noresize attribute does not need to have a value assigned to it—its presence inside a <frame>
tag signifies a fixed border.

In XHTML, the XML-compliant version of HTML, every attribute must be assigned 10
a value. In XHTML, you would assign noresize the value of its own name, such as
noresize="noresize".

——

By default, frames have visible borders separating one frame from the next. However,
this is not always desirable, since these borders do not always match the style of a site.
Fortunately, it is fairly easy to make the borders invisible, making the individual frames
less noticeable.

<frame src="myframe.html" name="framel" noresize
frameborder="0">

Of course, you will need to add this frameborder attribute to each of the frame tags in a frameset
to remove all borders.

Call JavaScript Functions from Other Frames

As discussed in the first section of this chapter, a web page made up of three frames actually
consists of four separate HTML files—one file for each of the frames and one master file for
the frameset.

These frames are independent of each other, but they are not ignorant of each other. It is
possible for each frame to access the contents of any other frame, including any JavaScript
variables and functions defined there.

236 How to Do Everything with JavaScript

Access Another Frame Using JavaScript

As discussed in Chapter 8, we can use the following JavaScript code to access the contents of
a form:

var myform = document.forms([0];
var fullname = myform.fullname.value;

This code will create a variable named myform, which directly refers to the first form on a web
page. It will then use the myform variable to access a control named fullname and its contents.

But how would we access the contents of that form if it were in another frame? Let’s assume
for a minute that we have a frameset that is defined with the following HTML code.

<html>
<head>
<title>Framesets</title>
</head>
<frameset rows="100, *">
<frame src="banner.html" name="banner">
<frameset cols="150, *">
<frame src="menu.html" name="menu">
<frame src="mainbody.html" name="bodyframe">
</frameset>
</frameset>
</html>

If we were in the second frame of that frameset (menu), how would we access the contents of
a form contained in the third frame (bodyframe)?

We do this by accessing the window object for the frameset. JavaScript provides several
types of window objects for use in programs. The various JavaScript window objects, and their
descriptions, are listed in Table 10-2.

The window object and the Document Object Model in general are discussed in greater
detail in Chapter 11.

——

Object Name Description

window The current frame or window

top The topmost window

parent The frameset that contains the current frame (not always the topmost window)
self The current frame or window; same as the window object

R CIR=R(2»l The JavaScript Window Objects

CHAPTER 10: Communicate Between Browser Frames

Each of the window objects listed in Table 10-2 contains an array named frames. When a
window object refers to an entire frameset, that object’s frames array contains one element for
each of the frames contained in the document. When a window object refers to a single frame,
this array will normally be empty. Of course, if the individual frames are also framesets, the
frames array will not be empty.

To access the contents of the bodyframe frame from JavaScript code inside the menu frame,
we start with the topmost window, using the top object. We then access the third element (index
2, since arrays start at index 0) in that array.

var bodyframe = top.frames[2];

The bodyframe variable represents a reference to the third frame defined in our frameset. We can
then access the document contained by that window using the document object from that frame.

var bodyframe = top.frames[2];
var bodydocument = bodyframe.document;

Finally, we can access the form, and the elements on that form, in the usual manner from the
document object represented by bodydocument.

var bodyframe = top.frames[2];

var bodydocument = bodyframe.document;
var myform = bodydocument.forms[0];
var fullname = myform.fullname.value;

This code is broken into four lines for manageability and easy reading. If a program needed
to reference more than a few elements on that form, or other objects on the bodyframe frame,
having a local variable that refers to that frame would be handy. To save some unnecessary
keystrokes, the preceding code can be written all on one line, like this.

var fullname = top.frames[2].document.forms[0].fullname.value;

This code is harder for the average programmer to read, however, and is slightly more confusing.
Code that is difficult to understand can often be a source of errors.
Instead of using the frames array, a frame can also be accessed by name.

var fullname = top.bodyframe.document.forms[0].fullname.value;

Accessing the frame by name makes the code a bit easier to read and allows frames to be
resorted without large code changes.

Call a JavaScript Function Located in Another Frame

You’ve already seen how the contents of a frame (its forms and other HTML components) can be
accessed from external frames, so it should be no surprise that JavaScript variables and functions
can be accessed externally as well.

237

10

238

How to Do Everything with JavaScript

To demonstrate, let’s assume we have a JavaScript function named sayhello() defined in the
menu frame.

function sayhello() {
// This function says "hello" to the user
alert ("Hello!");

We could define a button in the bodyframe frame that will call the sayhello() function from
the menu frame when clicked.

<form action="#">
<input type="button" value="Say Hello"
onclick="top.menu.sayhello()">
</form>

Figure 10-6 shows the result of clicking the Say Hello button in the browser window.
As long as JavaScript variables are defined outside of any function, they too can be accessed
from another frame.

-} Framesets - Microsoft Intemnet Explorer

J File Edit Miew Favontes Toolz Help |
.9 . Q@ [F A @ G @ @ i
Hach Farward Stop Refresh Home Search Favartez Media Histary il
Welcome to my web site!
Menu Say Hello |
Microsoft Internet Explorer
Home
Pictures & Hell!
Eesume
Hobbies
Favonte Web
Sites
Contact Wfe
|éi] Done |_|_|_|£E‘ b4y Computer 5

FICIU{=NECN Calling a JavaScript function defined in another frame

CHAPTER 10: Communicate Between Browser Frames

Cross-Frame Scripting Can Be Risky

—

Cross-frame scripting occurs when a frame that originates in one domain (like
www.myserver.com) attempts to access a frame that originates in a different domain
(like www.example.com) using JavaScript.

The problem with cross-frame scripting is that a web site could define a frame that
points to a secure web site, such as Microsoft’s Hotmail. The originating web site could
then access any cookies or other sensitive user information from the frame, allowing them
to use that information in a malicious manner. Because this a security risk, all [E browsers
from version 4 on do not allow cross-frame scripting.

Handle Synchronization Between Frames

In the last section, we saw some JavaScript code that relied on the existence of a JavaScript
function in another frame.

<form action="#">
<input type="button" value="Say Hello"
onclick="top.menu.sayhello()">
</form>

But what happens if the user clicks the button before the menu frame has even finished
loading? Most web browsers load frames in no particular order, and it is quite possible (actually,
quite probable) that some frames will load slower than others. In this case, a JavaScript error will
occur, since the sayhello() function could not be found.

This problem can be described as one of synchronization. When dealing with frames that
communicate with each other, we need a way to determine if all the frames are fully loaded
before proceeding. There are several techniques a JavaScript programmer can employ to handle
synchronization between frames.

The first technique is to create a cascading effect between the frames, where each frame is
responsible for loading the frames that depend on it. Using this method, we would have the menu
frame load the contents of the bodyframe frame.

top.bodyframe.document.location = "mainbody.html";

We could then be guaranteed that the menu frame has already loaded in the browser window
by the time the bodyframe document has finished loading as well.

The second technique is to create one or more Boolean JavaScript variables in the
frameset document. Each of the frames can set its respective Boolean variable to true when

239

10

240 How to Do Everything with JavaScript

it has completely loaded. For example, we can modify our frameset document to the following
HTML and JavaScript code:

<html>

<head>
<title>Framesets</title>
<script type="text/javascript" language="JavaScript">
var banner_loaded = false;
var menu_loaded = false;
var body_loaded = false;
</script>

</head>

<frameset rows="100, *">
<frame src="banner.html" name="banner">
<frameset cols="150, *">
<frame src="menu.html" name="menu">
<frame src="mainbody.html" name="bodyframe">
</frameset>
</frameset>
</html>

We can then add the following JavaScript code to the end of the menu frame in order to set
the appropriate variable to true.

<script type="text/javascript" language="JavaScript">
var menu_loaded = true;
</script>

Inside the code for the bodyframe, we should move the call to the sayhello() function into
a separate function, and add an if statement around it for safety.

<script type="text/javascript" language="JavaScript">
function callhello() {
// Check the variable named menu_loaded first
if (top.menu_loaded == true) {
top.menu.savhello() ;

}
</script>
<form action="#">

<input type="button" value="Say Hello" onclick="callhello() ">
</form>

In this example, the Say Hello button will not work until the menu frame has completely loaded.

CHAPTER 10: Communicate Between Browser Frames

Lastly, we could use a technique similar to the DOM-based browser sniffing code from Chapter 7.

We could simply test for the existence of the frame and the sayhello() function before accessing them.

<script type="text/javascript" language="JavaScript">
function callhello() {
// Check if the frame and function exist first
if (top.menu) {
if (top.menu.sayvhello) {
top.menu.sayhello() ;

}
</script>
<form action="#">
<input type="button" value="Say Hello" onclick="callhello() ">

</form>

This same technique can be used to test for the existence of JavaScript variables or web
form controls.

In the next chapter, we will investigate the various objects that make up the DOM.
It is through the methods and properties of these objects that we are able to interact with
the web browser.

241

10

This page intentionally left blank

Interact with the

C h d pter 1 1 Web Browser

244

How to Do Everything with JavaScript

How to...

M Manipulate the contents of a web page

Examine the entire browser window

Retrieve properties from the web browser software
Examine the operating system’s display settings

Access the web browser history list

Send the browser to a new location

Although JavaScript has a powerful yet flexible core language syntax, it doesn’t have any built-in
functions for reading data from file, database, or keyboard input, nor for writing data to a screen
or printer. In each of its environments, JavaScript relies on an external object model to provide it
basic input-output functionality.

Table 11-1 lists some of the environments that provide support for JavaScript (or some version of
it), and the object model that provides additional functionality beyond the core JavaScript functions.

The object model used by web browsers is called the Document Object Model, or DOM
for short. The DOM is a standard API (application programming interface) to the structure of
documents. It allows JavaScript developers easy access to the document contents (such as forms,
text, and style) as well as to browser-specific features (such as menus, scroll bars, and events).
The DOM has evolved since the first browser was introduced many years ago, but the basic
objects in a browser have not changed.

The DOM specification is managed by the W3C, along with the HTML and XML specifications.
Recent releases of the DOM standard now include methods and properties related to browser
events, manipulation of style sheets, document validation, and XPath expressions.

Many of the extensions to the DOM standard will not be covered in this chapter, as they
either do not relate directly to HTML or are too advanced for our purposes. If you are interested
in learning more about the new DOM, I encourage you to check out the specifications and other
documents located on the W3C DOM web site: http://www.w3.org/DOM.

JavaScript Environment Object Model

Web browsers DOM

NET (JScript) NET Framework
ASP (JScript) ASP object model
Server-side JavaScript Server-side extensions

IAGIRSMEBYI JavaScript Environments and Their Respective Object Models

CHAPTER 11: Interact with the Web Browser 245

Learn the Basics of the Document Object Model

To understand the DOM, you must first understand how the specification has evolved. There were
six basic objects in the original DOM, sometimes called DOM Level 0:

document
window
history
location
screen

navigator

DOM 0 defines some other objects as well, such as forms, frames, and images. But to get to
these objects, programs have to go through the top-level objects listed here. Objects could not be
dynamically created, modified, or removed, since DOM 0 was static and the document could not
be altered once rendered by the browser.

Figure 11-1 is a good representation of the objects in the original DOM and how they related
to each other.

window — Link 4' TextArea ‘ ‘ navigator ‘
H Layer
FileUpload
L Image MlmeType
m| Area 4 Hidden
H Applet
' Checkbox
[plugi
] Form } Select H Option

HIC{U{=MUBYl The original Netscape DOM

246 How to Do Everything with JavaScript

When the W3C adopted the DOM as a new web standard in 1998, it was called DOM Level 1,
which is sometimes abbreviated to DOM 1. DOM 1 was the first attempt to adapt the object model
for the emerging XML standard, which was set to revolutionize structured document formatting.

Unlike subsequent versions of the DOM, DOM Level 0 was never an official standard.

The DOM standard treats HTML (and XML) documents as hierarchies of data (called nodes).
In DOM, the following parts of the document are all considered nodes:

Markup tags (elements)

Attributes

Text

XML character data (CDATA) sections
Entity references

Entities

Processing instructions

Comments

The document itself

Nodes that are contained in other nodes are considered children of those nodes, while nodes
that are at the same level as other nodes are considered siblings.

DOM 1 allows programmers to access, add, delete, move, or modify almost any of the objects
in the DOM tree. More specifically, DOM 1 separates a core set of API from an HTML-specific
set. The HTML-specific API adds browser-related methods and properties to the objects defined
in the core set.

For example, let’s consider the following simple HTML code:

<html>
<head><title>My title</title></head>
<body>
This is a test of the <i>emergency broadcast system</i>.
I repeat, this is only a test.
</body>
</html>

Figure 11-2 shows how the preceding HTML code would look in a DOM 1 hierarchy. This
hierarchy is also called the DOM tree.

The next version of the DOM, known as Level 2, became an official W3C standard in
November 2000. The core standard did not change much from the previous release, as DOM 2
only added a few new properties and methods to the interfaces already defined in DOM 1. Its

CHAPTER 11: Interact with the Web Browser

/ (document.documentElement in JavaScript)

<html>
#text
“This is”
<head> <body> ftext .
a test
#text
“of the”
<title>
. #text
<> “emergency...”
ftext' 5 #text
My title “I repeat...”

FICIU/=NUEYE How a simple HTML document would look in a DOM tree

main purpose was to add support for views, events, and style sheets to the DOM APL. It also
defined a specification for DOM traversal, the ability to move forward and backward through
a DOM hierarchy.

DOM Level 3 was still in the W3C Working Draft stage at the time this book was published.

DOM 3 proposes to add two new interfaces to the core specification and will also add support
for XPath.

The Uses of XPath

XPath is a simple yet powerful language for addressing parts of an XML document. For
instance, you would use the following XPath expression to access the first <form> element
on an XHTML web page.

/html/body//form[1]

This expression will match the first <form> element that is a descendant (but not
necessarily a direct child) of a <body> element, which is itself the direct child of the root
<htmI> element.

2471

1

248 How to Do Everything with JavaScript

The remainder of this chapter focuses on JavaScript programming for DOM 1, since the vast

majority of browsers in use today support that version.

Manipulate the Contents of a Web Page

Perhaps the most useful of all the DOM objects is the document object. The document object
provides access to the entire contents of a web page, as it is the root of all other objects in the
HTML hierarchy. In Figure 11-2, the document object stands in place of the <html> element,
at the top of the tree.

The document object contains the following five arrays in JavaScript:

images
applets
links
forms

anchors

Each of the document object’s arrays contains an enumerated list of the related elements on
a web page. The images array contains a list of images, the applets array contains a list of Java
applets, and so on. We have already seen how the forms array is a convenient way of accessing all
the HTML <form> elements on a web page.

In addition to the five arrays, the document object also provides JavaScript read and write
access to any cookies associated with a web site (through the document.cookie property). A cookie
is a piece of text a browser will store locally on behalf of a web site. Cookies are frequently used to
store user ID and session information, so that a web site will be able to recognize known users
when they return.

The document object also contains the following six methods:

open()

close()

write()

writeln()
getElementByld()
getElementsByName()

The open(), close(), write(), and writeln() methods are used for printing raw HTML text to
a web page. [have often used document.write() in this book’s sample code as a simple way of
outputting results.

The getElementByld() and getElementsByName() methods allow us to quickly search a DOM for
specific elements. This is a better approach than manually searching up and down the DOM tree for
what we need, since these functions are optimized to return quickly.

CHAPTER 11: Interact with the Web Browser 249

Should we wish to navigate the contents of the HTML document without the convenience of
the various arrays (like the forms array) or the built-in search functionality (like getElementByld),
we can access the body property of the document object directly. The body property allows us to
access all the HTML objects below the document object, starting from the HTML <body> element.
This property is not typically used in JavaScript programming, as searching the DOM using the
document arrays or using the built-in search functions is generally quicker and easier.

Dynamically Modify the Contents of a Web Page

One of the more interesting ways to use JavaScript and the DOM together is for creating web
pages that can change themselves according to the user’s behavior. This can be done without
having to get the web server itself involved.

Let’s start by looking at a very basic web page.

<html>
<head><title>Basic Web Page</title></head>
<body>

<h2>The time now is: 00:00:00</h2>

</body>
</html>

As you can see in Figure 11-3, this HTML code creates a static web page. No matter what
time of day, it will always report the time as 00:00:00 (midnight).

1

43 Basic Web Page - Microsoft Intemet Explorer
| Ble Edi View Favodes Iook Hel Ex
¢ . > 90 @ A9 & & 3 B
| Ba Famyard Stop Refresh Home Search Favortes Media History bail |
=

The time now is: 00:00:00
o e
2| Dore | =] My Camputer g

HICIUT=MUERE A simple web page, before adding JavaScript

250

How to Do Everything with JavaScript

But what if we wanted to add a small JavaScript script to the page that will constantly keep
the time updated to the correct time? We can use the DOM document object to modify the contents
of the web page.

<script language="JavaScript" type="text/javascript">
function update_time() {
// The current date and time
var rightnow = new Date();

// Capture the hours as a string, "00" thru "23"
var hours = rightnow.getHours () ;
if (hours < 10)

var hourstring = "0" + hours.toString() ;
else

var hourstring = hours.toString() ;

// Capture the minutes as a string, "00" thru "59"

var minutes = rightnow.getMinutes() ;
if (minutes < 10)

var minutestring = "0" + minutes.toString();
else

var minutestring = minutes.toString() ;

// Capture the seconds as a string, "00" thru "59"

var seconds = rightnow.getSeconds () ;
if (seconds < 10)

var secondstring = "0" + seconds.toString() ;
else

var secondstring = seconds.toString();

// Put it all together, "00:00:00"
var timestring = hourstring + ":" +
minutestring + ":" +

secondstring;

// Manipulate the DOM, display it to the screen!

var timeplace = document.getElementById("time") ;

timeplace.childNodes[0] .nodeValue = timestring;
}

</script>

By calling the update time() function when the document first loads, we can get the browser
to update the string "00:00:00" with the current time.

<body onload="update_time () ">

The screenshot in Figure 11-4 shows how the browser has replaced the original HTML string
with the correct time.

CHAPTER 11: Interact with the Web Browser

'a Basic Web Page - Microszoft Internet Explorer
| Fle Edt View Favortes Iooks Hel [@ |
¢.». 0 R Ala & @ 3B
Bach ; arid Stop FRefresh Home Search Favoites Media History bdail |
[~

The time now is: 16:32:12
[] Dare [] | L] My Computer 4

HIC{OR{=MUE” N Using the document object to update the web page with the correct time

Using browser timers, we can even get our web page to update with the correct time every
second. All we need to do is add the following code to the end of our update time() function.

setTimeout ('update_time()', 1000);

The setTimeout() function tells JavaScript that we would like to execute certain JavaScript
code at a certain time in the future. In the preceding code, we are saying that we would like to
call the function update time() 1,000 milliseconds (1 second) from now. This will cause the
update time() function to be called once per second until the user leaves the web page.

Change the Items in a Drop-Down List Box

Not only can developers modify the contents of an HTML web page, even the items in a drop-down
list box can change after the web page has loaded.

How many calories does a cheeseburger contain?

<gelect id="listboxl">

<option>-- Please Select One --</option>

</select>

<script language="JavaScript" type="text/javascript">

251

1

252

How to Do Everything with JavaScript

var counter;
var listbox = document.getElementById("listboxl") ;

for (counter = 100; counter < 500; counter += 50) {
listbox.options[listbox.length] =
new Option (counter + " - " + (counter+49));
}
</script>

The preceding code creates an HTML drop-down list box with one item in it—"“Please Select
One.” Using JavaScript, it then adds eight more items to the list. Our JavaScript code starts by
getting a reference to the list box and storing it in the variable named listbox. Using a for loop,
we then create several new Option objects and add them to the end of the options array.

You can see how the browser displays our dynamic list box here. (I do not, however, care to
know how many calories a cheeseburger actually does contain.)

’; JavaScript Sample Web Page - Microsoft Internet Explorer

| File Edit Miew Favoites Tools Help |
1 Il
- @ B Al@8 W @ 3B "
Bach Stop Refresh Home Search Fawortes Media Hizstom tdail
=
How many calories does a cheeseburger contamn?
|400-443 =
—Flease Select One —
| I =
/€] Done | Ol | |~_~E‘ by Computer 7

Examine the Entire Browser Window

The window object is not technically an official DOM Level 1 object. It provides access to other
frames or open browser windows.

In the last chapter, we discovered that there are four types of window objects in JavaScript.
Table 11-2 summarizes those objects.

CHAPTER 11: Interact with the Web Browser

Object Name Description

window Current frame or window

top Topmost window

parent Frameset that contains the current frame (not always the topmost window)
self Current frame or window; same as the window object

QA {NSREEVE JavaScript Window Objects

The four window objects may (or may not) point to different windows in the browser.
Typically, for a web page that does not contain framesets, all four objects refer to the same
underlying window.

The window object provides access to three underlying DOM objects:

B document
M history

M location

We discussed document in the last section, and we will have a chance to look at history and
location in the sections that follow this one.

The window object also provides access to the browser status bar, using the status property.
The status bar is the thin area below the main browser window that usually reports on the
progress of a page load and shows the URL of a hypertext link when the mouse pointer moves
over it. The following JavaScript code modifies the browser status bar to a custom value:

window.status = "Welcome to my web site!";

The following screenshot shows how this affects the status bar after our web page has loaded.

o AMIML LI
I 0" Search This .

|:2] Wheleome ta my web site!

In the last chapter you also learned that the window object contains an array named frames
that enumerates all the frames in a frameset. It is through the frames array that we can access the
HTML and JavaScript code located in another frame.

The window object also provides several methods that can be used to communicate with the
user or to open and close new browser windows. Table 11-3 lists some of the more interesting
window methods.

253

1

254 How to Do Everything with JavaScript

Method Description

alert() Creates an alert dialog box

blur() Causes the window to lose focus

close() Attempts to close the browser window

focus() Causes the window to gain focus

moveBy(), moveTo() Repositions the browser window

navigate() Loads a specific URL into the browser

open() Opens a new browser window

print() Attempts to print the browser contents to a printer
resizeBy(), resizeTo() Resizes the browser window

scroll(), scrollBy(), scrollTo() Causes the window to scroll

setTimeout(), clearTimeout() Causes JavaScript code to be executed after a specified delay

VA NS EBCE Useful window Methods

One interesting window method is open(). This method is used to create a new browser window
when you do not wish to interrupt the current web page. Sadly, this is the technique used for most
pop-up web advertisements. It is still quite useful, however, when you want to direct the user at
their request to some online help, such as a user manual or online glossary.

window.open ("userhelp.htm", "_blank",
"height=300,width=200, toolbar=no," +
"status=no,menubar=no, location=no") ;

The preceding code will open a new browser window and direct it to the HTML file
userhelp.htm. The code specifies a specific height and width for the window (300 by 200)
and removes all toolbars, menu bars, and the status bar, leaving a sparse window.

Figure 11-5 shows how this new HTML window will look in a typical web browser.

Retrieve Properties of the Web Browser Software

The programmers at Netscape probably still get some joy over the fact that the standard object
for retrieving browser information is called navigator, named after what used to be the most
widely used browser in the early days of the Web. You might recall that we talked about some
of the properties of the navigator object in Chapter 7, when it was used to retrieve the name and
version information from the user’s browser.

The navigator object contains one array, called plugins. This array contains a list of browser
plug-ins (although the contents of the list vary by browser maker). A browser plug-in is an
application that runs inside the browser, usually to provide support for embedded multimedia.
Shockwave Flash and RealNetworks RealPlayer are two popular plug-ins.

In Netscape and Mozilla web browsers, the plugins array can be used to determine which
browser plug-ins have been installed on the client PC. In Internet Explorer, the only plug-ins
listed in the plugins array are the ones currently in use on the web page.

CHAPTER 11: Interact with the Web Browser

&3 User Help - Microsof.._ [S[E E3

Date of Birth

The application recuires the
date on which you were born.

Enter the date m the following
tormat: ¥Y Y LLTD.

The system does not allow
dates that occur before
Jarary 1, 1900 or after
December 21, 1990, Ifyou
were born outside this range,

please contact the system
administratot.

HICIOIR{=MUEN A pop-up window can be used to provide quick online help.

For example, the following code, for Netscape web browsers, checks to see if the Macromedia

Flash plug-in is installed on the user’s computer.

var flashinstalled = false;
for (var i=0; 1 < navigator.plugins.length; i++) {

if (navigator.plugins[i].name == "Shockwave Flash") {
flashinstalled = true;
break;

if (flashinstalled) {
document .write ("I see you have Macromedia Flash installed!");
} else {

document .write ("If you want to see the multimedia installed ");

document.write ("on this web site, you will need to install ");
document .write ("Macromedia Flash.");

The navigator object also supports several properties, such as the following.

M appCodeName
M appName
B appVersion

255

1

256 How to Do Everything with JavaScript

M userAgent

M userLanguage

These properties provide JavaScript with some important information about the exact
browser type running on the client machine. For instance, you may wish to provide content
formatted in a simpler manner for older browsers (version 4) and content that relies on style
sheets for visitors using a newer browser.

Examine the Operating System’s Display Settings
Web programmers often develop web pages with a specific screen size in mind. For instance,
some sites are developed for screens that are 800 pixels wide by 600 pixels high (often called
800 by 600 resolution). If a user’s resolution is smaller, say 640 by 480, they will be unable to
see parts of the page. If a user’s resolution is bigger, say 1024 by 768, the web page will have
a lot of blank space.

The best-designed sites are frequently developed to expand or contract based on available
space. We have seen this with frames using relative sizing, and it can also be done with HTML
tables. Both these solutions allow the browser to automatically resize components based on the
amount of available screen space. (You may sometimes hear available screen space referred to
as real estate.)

But when dealing with Dynamic HTML, where elements are frequently placed in specific X
and Y coordinates on the screen, it is helpful to have some information about the screen resolution.
The DOM provides the screen object to give JavaScript a little more information about the
technical properties of the user’s display.

The screen object was not part of the original release of JavaScript. It was added in version 4
of the IE and Netscape browsers. The following table lists some of the properties of this object.

Property Name Purpose

availHeight Returns the height of the working area of the system screen, excluding the
Windows taskbar

availWidth Returns the width of the working area of the system screen, excluding the
Windows taskbar

colorDepth Returns the number of bits per pixel used for colors

height Returns the vertical resolution of the screen

width Returns the horizontal resolution of the screen

For example, the following JavaScript code will allow you to resize and then center the
browser window on the user’s monitor.

var newTopLeftX = (screen.availWidth - 640) / 2.0;
var newTopLeftY = (screen.availHeight - 480) / 2.0;
window.resizeTo (640, 480);

window.moveTo (newTopLeftX, newTopLeftY);

CHAPTER 11: Interact with the Web Browser 257

The code uses the window.resize() function to resize the browser to 640 pixels wide by
480 pixels tall. It then uses a common centering technique to place the window perfectly in
the center of the screen, regardless of the resolution setting of the user’s monitor.

Access the Web Browser History List

JavaScript has limited access to the browser history list through the history object. The browser
history list is an ordered list of web pages you recently visited, and it is stored internally by your
web browser. You access the browser history list every time you use the back and forward
buttons of your web browser.

Through the history object, JavaScript has the ability to send a browser back to the previous
web page—or back by an arbitrary number of web pages. For example, the following JavaScript
code will send the browser to the web page most recently visited before the current one.

history.back() ;

Programmers can also tell the browser to go back by any number of pages, by specifying
an integer to the history object’s go() method. The following code will send the browser back
five pages.

history.go(-5);

The history object only has one property, length. The length property will return the number
of items in the history list.

The history object has three methods. 1
Method Name Purpose
back() Go back one item in the history list; simulates the Back browser button.
forward() Go forward one item in the history list; simulates the Forward browser button.
2o() Go back or forward the specified number of items in the history list; a positive

number goes forward and a negative one goes back.

The history object is often used as an easy way to direct the user back to the previous page.

<html>
<head><tile>User Login Script</title></head>
<body>

<hl>Error: Unable to Log In</hl>
I'm sorry, the password you supplied was incorrect.

Please use the Back button on your browser to try again,
or click here to

258 How to Do Everything with JavaScript

be automatically sent there.

</body>
</html>

For security reasons, the history object does not provide JavaScript access to the names
or URLs of the web pages you have visited.

Send the Browser to a New Location

The location object gives JavaScript access to the browser address bar. Specifically, programmers can
determine the URL of the current page, reload the current page, or send the browser to a new URL.
The location object has eight properties.

Property Name Purpose

href Gets or sets the entire URL as a string

hash Gets or sets the portion of the URL after the hash sign (#)
host Gets or sets the hostname and port number portion of the URL
hostname Gets or sets the hostname portion of the URL

pathname Gets or sets the filename or path of the web page

port Gets or sets the port number portion of the URL

protocol Gets or sets the web protocol name of the URL (e.g., HTTP)
search Gets or sets the portion of the URL after the question mark (?)

The location object also has three methods.

Method Name Purpose

assign Loads a new web page

reload Reloads the existing web page

replace Replaces the existing web page by loading a new web page

The location object is commonly used to redirect the browser to a new web page.
location.href = "http://www.example.com/another/page.html";
But it can also be used just to reload the current page, similar to a browser refresh action.
location.reload() ;

In the next chapter, we will examine how to perform some simple animation using JavaScript,
CSS, and Dynamic HTML. Using a technique known as absolute positioning, we will be able to
place text and images anywhere we wish inside a web page.

Perform Simple

C h d pte I 1 2 Animation

260

How to Do Everything with JavaScript

How to...

B Format a web page using style sheets
Control text and image positioning

Modify styles using JavaScript

Perform basic animation using JavaScript

In Chapter 11, you saw how the browser DOM can be manipulated using JavaScript to modify
the HTML in a web page after it has already been loaded into the browser. This technique is
often used for allowing JavaScript to respond to user events or input without having to go back
to the web server to re-create the page.

As you’ll see in this chapter, Cascading Style Sheets (CSS) allow developers to specify
the exact layout and positioning of elements on the web page. Style sheets can be dynamically
modified in JavaScript as well, allowing elements to be given a different appearance or even
moved to a different position on the screen.

Animation is often nothing more than the repeated manipulation of the DOM and/or style
sheets using JavaScript. An animated butterfly can appear to flutter across the screen with
nothing more than the repeated swapping of a small number of images combined with the slow
repositioning of those images across the page. In this chapter, we will examine how style sheets
can be dynamically modified using JavaScript and how that technique can be used to create
some simple animation effects.

Learn the Basics of Cascading Style Sheets

We have touched briefly on the topic of style sheets before, but in this section we will examine it
in more detail to gain a better understanding of what style sheets can do for web developers and
how JavaScript can be used to dynamically affect style.

The style of a web page is the manner in which the contents of the web page, such as the text
and graphics, are formatted and arranged. Style encompasses everything from how fonts and colors
are used to the sizes and positioning of objects inside the browser window.

When the Web was first developed in 1991, very little consideration was given to style—
the emphasis was on content. The Web was used for the presentation and linking of related text
documents. In fact, one of the overriding philosophies of its design was that web clients (generally
browsers) should be responsible for rendering the web page in the manner they best saw fit.

For instance, the <h1> tag simply defined a first level heading, and it was up to the browser
to define the exact font type and size used for displaying the heading text. The content of <h1>
tags could theoretically look completely different depending on the brand of browser you were
using or the operating system you were running.

Of course, many developers needed more precise methods to format the contents of a web
page, so some pretty elaborate schemes were sometimes used to provide a complex page layout,
such as the use of invisible images to help solve spacing problems.

CHAPTER 12: Perform Simple Animation

Why CSS Are “Cascading”

—

We say that style sheets cascade because, aside from a few exceptions, HTML elements
inherit the style attributes of the elements they’re contained in. For example, assume you
have an HTML element that is inside a <u> element:

<u>This is some text.</u>

If you were to set the CSS font attribute of the <u> element, the element would

inherit that font setting as well. You can, however, override the cascading effect by assigning
a different font setting to the element.

The W3C introduced the CSS Level 1 standard in late 1996. IE 3 was the first browser to
include partial support for this new standard, and Netscape 4 soon followed with some partial
(albeit extremely buggy) support for CSS as well.

A style sheet is a group of definitions that describe the style for a set of HTML elements.
Using style sheets, you can completely redefine the way a certain element is rendered inside
the web browser, as each element exposes a number of attributes whose value can be changed.

The W3C has a very good web site for learning more about style sheets;
go to http://www.w3.org/Style.

Assign Style to Web Pages Using HTML Elements

The original method of formatting the contents of a web page was by using HTML style-related
elements and attributes. For instance, the tag could be used to set the typeface, size, or
color for text inside a document. The tag could be used to make text bold, <i> would create
italics, and so on.

However, this was a very inefficient method for styling a web page, for a number of reasons:

The style and layout of a web page could not be easily reused between two or more
HTML files, which created extra development work for web page authors.

Frames, nested tables, invisible images, and other complex and messy techniques
needed to be used to place text or graphics in a particular spot.

Duplicate HTML style tags, such as the tag, needed to be repeated many times
on the same web page.

It was a lot of work to change the style of a web page or of an entire site.

Web pages were larger, which meant it took longer for them to download to browsers.

261

12

262

How to Do Everything with JavaScript

How to Specify Colors in HTML

There are several places in HTML, CSS, and JavaScript that require a programmer to specify
a color. For instance, the HTML tag has a color attribute with which you can specify
the font’s color.

Colors can be specified by name or by RGB (red-green-blue) value. Several colors
have predefined names in HTML, such as black, white, yellow, and blue. There are dozens
of predefined colors.

If you would like to use a color that does not already have a name, you can specify an
exact RGB value. RGB values start with the pound symbol (#) followed by three pairs of
hexadecimal digits, such as #FF33C0.

The first pair of hexadecimal digits represents the amount of red in a color, ranging from
a value of 00 (darkest) to FF (brightest)— that’s 256 unique settings for red. The second pair
represents the amount of green, while the third pair represents the amount of blue.

So the color #FF33CO0 represents a combination of bright red, dark green, and medium
blue, which comes out looking a lot like fuchsia (a bright purplish-pink color). #FFFFFF
represents pure white, and #000000 represents pure black.

For example, the following HTML code defines a page with a moderately complex style.

The HTML code is messy and difficult to read due to all the extra HTML tags and attributes
that are required.

<html>

<head><title>Style sheets example</title></head>
<body bgcolor="white" link="purple" vlink="green">

<center>
<hl>

Introduction to XML

</hl>
</center>

<p>

 XML is one of the most
important new standards to come out of the W3C

 since HTML. All developers

CHAPTER 12: Perform Simple Animation

should be aware of what XML is and how it

 should be used. In this article,
we introduce the basics of XML, including a

 discussion on DTDs.</p>

</body>
</html>

The preceding code includes a number of formatting tags such as <center>, , and .
There are also a number of nonbreaking spaces () to help indent the paragraph, and the
<body> tag contains three style-related attributes. I also had to add manual line breaks (
)

to artificially set the spot where the text wraps to the next line.

Figure 12-1 shows how the browser is able to render a well-styled page from our sample

HTML code.

; Style sheets example - Microzoft Internet Explorer

| File Edit 'iew Favoites Tooks Help |

« .5 . @ B Ala @ B 3

Bact Foward Stop Refresh Home Search Favortes Media History

I ail

Introduction to XML

XML is one of the most important new standards to come out of the W3C
since HTML. All developers should be aware of what XML s and how it

should be used Inthis article, we introduce the basics of XML, including a
discussion on ODTDs.

|£] Done l_ l_ l_ | =] My Computer

HCU{=NPAM The traditional method of formatting a page using HTML style tags

263

12

264

How to Do Everything with JavaScript

Assign Style to Web Pages Using Style Sheets

Of course, we can create the same effect shown in Figure 12-1 using style sheets. The style sheet
solution, however, will be neater, easier to develop, and simpler to maintain in the future. We can
even share this style definition with any number of other web pages, saving us valuable development
time. We can also do some pretty cool things this way that HTML style tags just cannot do.

First, we will take our web page example and remove the HTML style tags and attributes
from it. We will use HTML <div> tags instead to mark the text that needs to be styled.

<html>
<head><title>Style sheets example</title></head>
<body>

<div id="heading">
Introduction to XML
</div>

<div id="summary">

<gspan id="boldintro">

XML is one of the most important new standards to come
out of the W3C since HTML.

All developers should be aware of what XML is and how it
should be used. In this article, we introduce the basics
of XML, including a discussion on DTDs.

</div>

</body>
</html>

We can create a simple style sheet for this document, and insert it into the web page
using the HTML <style> element. The <style> element belongs inside the <head> section
of the document.

<style type="text/css">
#heading {
font: 24pt Arial;
color: #333399;
text-align: center;
margin-bottom: 20pt;

#summary {
font: 12pt Arial;
color: #993333;

CHAPTER 12: Perform Simple Animation

margin-left: 20pt;

#boldintro {
font-weight: bold;

}

</style>

We will examine the syntax of the style sheet itself later in the chapter. But even without
knowing exactly what the style sheet means, you can see what it does. The resulting web page
is almost identical to the one displayed in Figure 12-1, which was styled with traditional HTML,
but the style sheet method is many times more flexible and powerful.

Use <div> and to Mark Dynamic Text

HTML 4.01 provides two special elements to support the integration of CSS and HTML.:
<div> and .

The <div> element is a marker for text blocks. A fext block is one or more complete paragraphs
that must start and end on a new line. The <div> element makes it easier for a document to be
styled using style sheets.

<div id="FirstError">Error! You have entered an incorrect user ID
and/or password. Please try again, and if you continue to have
difficulty, please contact a system administrator for help.</div>

The element is very similar, except it deals with inline text. /nline text does not
have to start or end on a new line, so can be used for applying style to single characters,
words, or sentences.

His main goal in life was
world domination, although
tonight he was willing to settle for a nice steak and a cold beer.

The primary attributes of <div> and are id, style, and class. id allows you to specify
a name for the enclosed text. This makes it easy to access the text using JavaScript or CSS. The
style attribute allows you to specify CSS directly inside the HTML. The class attribute is similar
to the id attribute, except several tags can have the same class attribute while the id attribute is
unique to a single tag.

Define Inline Styles

The HTML standard allows CSS style syntax to be defined inside the body of the document
using a technique called inline styles. Most HTML elements have an attribute called style that
can accept CSS definitions, like so:

<p style="font:Arial; font-weight:bold">
This is some text
</p>

265

12

266

How to Do Everything with JavaScript

Using this technique is quick and convenient, but you lose some of the benefits of using style
sheets. Specifically, the body of the document remains complex, messy, and hard to maintain.
The style sheet code is impossible to easily reuse. In fact, since the style is not separated from the
content at all, this technique is equivalent to using HTML style tags and attributes.

The one benefit you do get is the ability to use complex styles not available using the HTML
style tag method. For small web pages or those with unique style requirements this might be an
acceptable method.

Define Embedded Style Sheets

The next step up from inline styles is the use of embedded style sheets. An embedded style sheet
is one defined using the HTML <style> tag inside the header section of the document. Styles
defined in this manner are available to the entire web page, so it is entirely possible to define
only one or two style definitions for a large and complex document.

A style sheet is made up of one or more rules. A rule is a single definition for a style, in the
following format:

selector {
attributel : value;
attribute2 : value;

attributeN : value;

For example, in the previous section we had a style sheet with three rules. One of the rules
was defined with the following code:

#summary {
font: 12pt Arial;
color: #993333;
margin-left: 20pt;

The rule has a selector (#summary) and defines values for three attributes (font, color, and
margin-left). The selector determines which HTML tags have their attributes set to the specified
values. By the way, the rule does not have to be spaced over several lines as I have been doing.
You can place the rule all on one line, or break it up over several more lines to improve readability,
if you wish.

The following table shows how selectors work in CSS.

Selector HTML Code Affected
hl Affects all <h1> tags in the document.
#heading Affects the tag with an id attribute set to heading.

.blue Affects all tags with a class attribute set to blue.

CHAPTER 12: Perform Simple Animation

Selector HTML Code Affected

p#heading Affects all <p> tags in the document with an id attribute set to heading.

p.blue Affects all <p> tags in the document with a class attribute set to blue.

hl, h2, h3 Affects all <hl>, <h2>, and <h3> tags in the document.

pb Affects all <p> tags that are contained inside <p> tags; tags not inside <p> tags
are not affected.

ulul li Affects all tags that are inside at least two tags.

div .red Affects all tags with a class attribute set to red that are also inside a div attribute.

As you can see, there are ways to set the style for the entire document all at once and ways to
set the style of very specific elements within the document. You can ultimately create some very
complex and comprehensive style sheets using sophisticated selectors.

Import External Styles

There are two ways to import a style sheet from an external file into an HTML document:

B The HTML <link> element
B The style sheet @import command

This means that you can create a single style sheet file that can be applied to all the pages on
a web site. And with a few simple keystrokes in a text editor, you can radically change the style
of all the pages on your site at once.

To use the <link> element, place the following HTML code in the <head> section of your
web page:

<link rel="STYLESHEET" type="text/css"
href="http://www.example.com/mystyle.css">

The preceding code will cause the style sheet which is located at http://www.example.com/
mystyle.css to be imported into the web page. The file extension .css is often used for style sheets.
To import the same style sheet using the @import command, we actually need to add
a <style> section to the document header.

<style type="text/css">
@import url (http://www.example.com/mystyle.css) ;
</style>

All three types of style sheets (inline, embedded, and external) can be combined in a single
document. If styles conflict, the inline styles have precedence, followed by the embedded styles,
and lastly the external styles.

267

12

268

How to Do Everything with JavaScript

Use Basic Style Attributes

As mentioned in the “Define Embedded Style Sheets” section, a style sheet is made up one or
more of rules, and rules are made up of a selector plus one or more attributes. In this section, we
will look at the different types of attributes that can be used to set styles.

There are literally dozens of attributes defined in the official CSS 1 specification—so many
that I won’t even attempt to cover them all in this book. For more information on the available
CSS attributes, I suggest the following two excellent sources:

B The official W3C CSS 1 specification can be found at http://www.w3.org/TR/REC-CSSI.

B The Microsoft MSDN web site has an excellent reference guide at
http://msdn.microsoft.com/workshop/author/css/reference/css_ref entry.asp.

The MSDN reference guide is particularly well organized; CSS attributes are cross-
referenced with their related HTML elements. In fact, I believe this web site to be the most
complete web programming reference available on the Internet—not just for CSS, but for all
web-related programming topics.

Table 12-1 describes some of the most frequently used CSS attributes.

Several of the attributes listed in Table 12-1 are compound attributes, that is, they allow you
to set many properties of an element at once. For instance, the font attribute allows you to set up
to 14 font-related properties in one string:

BODY {
font: italic normal bold 12pt Arial;

This convenient shortcut is equivalent to the following code:

BODY {
font-style: italic;
font-variant: normal;
font-weight: bold;
font-size: 12pt;
font-family: Arial;

So as you can see, compound attributes save time and effort but add additional complexity,
in that they are more difficult to construct.

Position Elements on a Web Page

Some CSS attributes have nothing to do with text style and deal instead with layout and positioning.
Setting the positioning of an element allows you to specify the exact size (height and width) of
the object as well as its exact physical location (x and y coordinates) on the screen.

CHAPTER 12: Perform Simple Animation 269

Attribute Name Purpose

font Allows you to set up to a dozen font-related properties, including size and style

color Allows you to set the foreground color of an element

background Allows you to set up to five background-related properties, including color and image
text-align Allows you to set left, center, or right alignment for text

margin Allows you to set the size of the empty space around an element

border Allows you to set the size, style, and color of the border around an element

TABLE 12-1 Common CSS Attributes

For example, let’s assume we have the following HTML code:

<html>
<head>
<title>Style sheets example</title>
<link rel="STYLESHEET" type="text/css"
href="example.css">
</head>
<body>

<div id="special">This is a great example of separating
content from layout. From an HTML perspective, this text
is a pretty simple paragraph, with no formatting requirements.

Browsers that do not support style sheets will render ‘12
this text to the screen in a plain and simple manner.
</div>
</body>
</html>

This HTML code contains no formatting instructions. All we have done is provide a paragraph
of text surrounded by a <div> tag. The <div> tag does not do anything other than provide a way
to name a block of text. (We examined the difference between <div> and earlier in the
chapter, in the “Use <div> and to Mark Dynamic Text” section.)

Our HTML code does, however, contain a <link> reference to a style sheet file. The file,
example.css, will contain the formatting instructions we wish to use. In our case, it will define
CSS positioning attributes.

The example.css file will contain the following code:

#special {
position: absolute;
top: 50px;

270 How to Do Everything with JavaScript

left: 100px;
width: 3in;

background-color: #CCCCCC;
padding: 15px;

font: 12pt Arial;

border: solid 2pt black;

The preceding style sheet contains four of the CSS size and positioning attributes:

B position Tells the browser we wish to position the content ourselves
M top Sets the position of the top edge of the element

M left Sets the position of the left edge of the element

B width Sets the width of the element

In our case, the element is the <div> tag that surrounds our text. The <div> tag has an id
attribute of special, which matches the #special selector assigned to the rule.

There are a couple of additional positioning attributes that were not used, most notably height,
which can be used to set the height of the element. In our case, we are allowing the browser to
calculate the proper height for the element based on the size of the text contents. There is also an
attribute named visibility, which can make an element invisible.

Figure 12-2 shows how the text inside our HTML document has been positioned and sized
exactly as specified in our style sheet.

Modify Styles Using JavaScript

Now that we have examined what style sheets are and how they can be used to format a web
page, we can take a look at how JavaScript can be used to modify styles dynamically.

The DOM provides JavaScript access to the style-related properties of almost any object
on the page. For instance, assume we have a web form defined as follows:

<form action="#" method="get">
<div style="position:absolute;top:50px;left:100px; ">

Full Name:

<input type="text" name="fullname" id="fullname">

Email Address:

<input type="text" name="email" id="email">

</div>

</form>

CHAPTER 12: Perform Simple Animation

’3 Style sheets example - Microzoft Internet Explorer H=]E3

| File Edit “iew Favaorites Toolz Help n

| ; = = o a | = = »
.5 . @ @ Aa m B PE
Bapt Fonward Stop Refresh Home Search Favorte: Media Histaory bdail

]

;é_;'lllf)one mEj My Computer 4

This is a great example of
separating content from layout. From
an HTWL perspective, this text is a
pretty simple paragraph, with no
formatting requirements. Browsers
that do not support style sheets will
render this output this text to the
screen in a plain and simple
manner.

FlelV/=uPEVl The browser has successfully interpreted our style sheet.

Our JavaScript program can access the text box control named fullname using the DOM and
manipulate its style.

var

for

}

TextBoxes = document.getElementsByTagName ("input") ;
(var counter=0; counter < TextBoxes.length; counter++) {

var myTextBox = TextBoxes|[counter];
myTextBox.style.backgroundColor = "black";
myTextBox.style.color = "white";
myTextBox.style.font = "22pt Arial";

The preceding JavaScript code will locate all the <input> elements on the page and alter their
style properties. What we will end up with are two text boxes that have black backgrounds, white
text, and a large, 22-point Arial font. You can see the results of this code in Figure 12-3.

271

12

272 How to Do Everything with JavaScript

'3 Usze JavaScript to Modify Styles - Microzoft Internet Explorer
File Edit Miew Favortes Toole Help B
; = - - o | = = =

€ .2 . @ & Ala @ B 3B

Stop Fefresh Home Search Favaortes Media Hiztary b ail |
=l
Full Mame:
John Q. Doe
Email Address:
john.doe@example.com
|

'i_l Dane M_EJ M_;,I.t-omputer

-

HIClUI3{= PRl The styles have been altered dynamically using JavaScript.

The names of the JavaScript properties are often different than the names of the
corresponding CSS attributes. For instance, the CSS attribute background-color

B
is set using the JavaScript property backgroundColor.

Table 12-2 lists some of the CSS attribute names we have been using and the corresponding

DOM style property names.
As you can see, there is some consistency between the naming of CSS style attributes and

the corresponding JavaScript DOM property, but occasionally the two names differ, so it is best

to check whenever you are uncertain of the correct name.

Understand Cross-Platform Issues

CSS support used to be extremely inconsistent between the top two or three browser manufacturers.
Today, the vast majority of browsers in use fully support CSS 1. Most browsers have at least partial

support for the CSS 2 specification, and CSS 3 is currently under development.

CHAPTER 12:

Perform Simple Animation

CSS Attribute Corresponding DOM Property
background background
background-color backgroundColor
border border
border-bottom borderBottom
border-left borderLeft
border-right borderRight
border-top borderTop

color color

font font

font-family fontFamily
font-size fontSize
font-weight fontWeight
margin margin
margin-bottom marginBottom
margin-left marginLeft
margin-right marginRight
margin-top marginTop
text-align textAlign

RGN PEVE The Relationship Between CSS and JavaScript DOM Styles

Internet Explorer was the first browser to contain support for style sheets, and Microsoft
added several of their own attributes that were not part of the standard and do not work in other
browsers. Obviously, if you want your style sheets to work in all browsers, stick to attributes
and commands that are part of the official standard and avoid proprietary extensions.

Netscape 4 contains a buggy, partial implementation of the CSS standard. It is quite difficult
to get style sheets to work for that browser beyond a few basic attributes, so understand that a
web page that relies heavily on style sheets might not look as intended in the Netscape 4 web
browser. Fortunately, the market share for that browser has dipped below 3 percent, so the problem

will eventually go away on its own.

The W3C provides a CSS validator service. The CSS validator, located at

e—

http:/ljigsaw.w3.org/css-validator, will examine any HTML web page (or individual

style sheet) you specify to ensure the style sheet is completely valid. The tool provides
helpful feedback for finding out where problems lie, and so is very useful when
developing CSS-enabled web pages.

273

12

274 How to Do Everything with JavaScript

Perform Basic Animation Using JavaScript

We have discussed how JavaScript can be used to change elements within the DOM as well as
CSS style and positioning attributes. In this section, we will examine two of the most common
techniques for creating animation on a web page using JavaScript.

Dynamically Load Images

The simplest type of animation in JavaScript is accomplished by just switching images. You see
something similar to this all the time on the Web, where a graphical menu or button changes
when your mouse moves over it. In fact, you saw an example of that effect in Chapter 9, in the
discussion on mouse events:

<script type="text/javascript" language="javascript">
function changeimage (num) {
var img = document.getElementById("SamplelImage") ;

if (num == 1) {
img.src = "NewImg.gif";
} else {
img.src = "OriginalImg.gif";
}
}
</script>

<img src="OriginalImg.gif"
id="SampleImage"
alt="Sample image"
onmouseover="changeimage (1) "
onmouseout="changeimage (2)" >

In the JavaScript function changeimage(), we used the document.getElementByld() function
to retrieve the image object defined in the body of the HTML document. Depending on the type
of event (onmouseover or onmouseout), the src property of the image is pointed to a different file.

Mouseover events are the shortest form of animation—sort of like a half-second movie. In
order to create a longer effect, we need to do several rapid image switches in a row. For instance,
let’s build a fairly simple animation effect that uses timer events:

1. Start with a set of related images that make up the animation.

S

image.qif image2.gif image3 gif imaged gif

CHAPTER 12: Perform Simple Animation

Place the first image on a web page using the HTML tag. Be sure to assign the
 an id attribute.

Then create a JavaScript function called animate() that alternates between each of the
three images at regular intervals, say every % second.

// The counter variable controls the animation

var counter = 0;

function animate() {
var img = document.getElementById("anim") ;

// Proceed to the next image
counter ++;
// There are only four images, so restart when we're done

if (counter > 3) counter = 0;
if (counter == 0) {
// Display the first image
img.src = "imagel.gif";
} else if (counter == 1) {
// Display the second image
img.src = "image2.gif";
} else if (counter == 2) {
// Display the third image
img.src = "imagel3.gif";
} else {

// Display the fourth image
img.src = "imaged.gif";

// We need to call the animate function again in 0.10 seconds
// Pause for 1 second between the fourth and first image

if (counter == 3) {

setTimeout ("animate ()", 1000);
} else {

setTimeout ("animate ()", 100);
}

275

12

276

How to Do Everything with JavaScript

4. We can start the animation by calling the function from within the <body> element’s
onload event handler.

<body onload = "animate() ">
5. The net result is that our graphic appears to be animated inside the browser window.

Rapidly switching sequentially through the different graphics creates an animation that draws
a circle in the browser window.

Make Content Move Around the Screen

The other way to perform basic animation is by moving an object around on the screen. We have
already seen that JavaScript can access the CSS positioning attributes of any object on a page. It
would be fairly easy, then, to use that same technique to create JavaScript animation.

Let’s start with the image of a ball.

A

ball gif

The image is placed on a web page using the HTML tag:

<img src="ball.gif"
id="ball"
class="ballstyle">
<div class="boxstyle"> </div>

We should also create a style sheet for this page, so that the ball and box will start off with
the correct style and positioning.

<style type="text/css">

.ballstyle {
position: absolute;
top: 50px;
left: 100px;

.boxstyle {
position: absolute;

CHAPTER 12: Perform Simple Animation

top: 50px;

left: 100px;

height: 250px;

width: 400px;

border: solid 1pt black;

</style>

We will need a function, called moveball(), to animate the image by altering its top and left
style attributes.

// Set the starting coordinates
var mytop, myleft;

mytop = 50;

myleft = 100;

function moveball () {
img = document.getElementById("ball");
mytop += 10;
myleft += 2;

if (mytop > 230) mytop = 50;
if (myleft > 430) myleft = 100;

img.style.top = mytop;
img.style.left = myleft;

setTimeout ("moveball ()", 100);

We must start the ball moving by calling the moveball() function from within the onload
event handler of the <body> element.

As you can see in Figure 12-4, we have created a rather interesting effect. The image of the
ball continues to move slowly down and to the right of the screen until it reaches the edge of
the box. Once there, it switches back to the other side of the box and continues its motion.

Text can also be animated using this same technique. Instead of moving the position of
an image, we could surround some text with a <div> tag and move it around. Obviously, more
complicated animations, such as animated objects that move in a random manner or change

direction when they reach the edge of the window, require a longer and more complicated script.

271

12

278 How to Do Everything with JavaScript

; Testing JavaScrpt Applications - Microsoft Internet Explorer

_| File Edit ‘iew Favortez Toolz Help |ﬂ

. .0 O A QA = @ 3B
Bacl Fapward Stop Fefresh Home Search Favortes Media Higtom b ail

|&] Done e | 2 My Camputer

B

FlelV/=uP2 N By modifying the CSS position attributes, we are able to make a ball move.

In the next chapter, we will discuss the fundamentals of debugging JavaScript code. A bug is
a software flaw, and debugging is the process of finding and repairing the bugs in a program. We
will take a look at some of the tools available to developers who are looking to discover these
errors, as well as some of the programming techniques for making bugs easier to find.

Tak '
Part ||| [reesims
Level

This page intentionally left blank

Debug JavaScript

C h d pter 1 3 Programs

282

How to Do Everything with JavaScript

How to...

B Understand JavaScript error messages
B Add debugging code to your programs
M Use the JavaScript console
H

Use a JavaScript debugger

There is nothing more frustrating for a web surfer than to arrive at a web page and immediately
be presented with error messages. The visitor will likely be wary of proceeding any further into
the site and is less likely to want to return.

Ensuring that the JavaScript scripts on your web page help your visitors rather than annoying
them could be as simple as testing your web page using a variety of browser types, operating systems,
and version numbers. Yes, it does sound like a lot of work, but there is no substitute for actual
testing if you want to make sure your viewers will be happy with what you’ve done on the site.

But what would you do if a web page you were working on displayed an error message? Or
perhaps your code wasn’t working the way you had expected—or wasn’t working at all. How
would you go about finding the source of the problem and fixing it? Several tools are available
to help JavaScript developers with this task, and in this chapter we will discuss how to debug
JavaScript programs.

Understand the Possible Causes of Errors

Finding an error message while you are testing a web page is like finding a $5 bill on the sidewalk—
it’s worth the time to stop and pick it up. Not only does the error message tell you that there
was a problem, it also shows you the first place you should look for the problem and even gives
a brief description of what went wrong.

Of course, the browser is only giving you its best guess about what the error might be. When
you actually look at the code and figure out the problem, you might find that the error message
hadn’t pinpointed the problem exactly. That’s understandable, since some errors have so many
possible causes that it would be impossible for a computer to choose the correct one.

Different browsers have different ways of reporting errors, and it is even possible to turn error
reporting off. For instance, in IE, with error reporting turned on, a JavaScript error will cause the
following message box to appear:

ZY Intemet Explorer
3 Problems with thiz \Web page might present it from being displayed properly
A | of functioning properly. In the future, pou can display thiz meszage by
) double-clicking the warning icon dizplaved in the status bar.

v Slwaps dizplay this message when a page containz errors.

0K

CHAPTER 13: Debug JavaScript Programs

Even with error reporting turned off, IE still gives you a visual hint that the page did not
load successfully. An error icon will be placed in the lower left-hand corner of the browser
window, like so:

&

Netscape always hides JavaScript errors from end users—it won’t even tell you that one
occurred. You’ll need to load the JavaScript Console, which is discussed later, in the section
“Use the JavaScript Console,” to see what if anything went wrong.

There are three basic types of errors in JavaScript:

Syntax errors Errors in the basic programming syntax of the language, such as
mismatched quotes or brackets

Run-time errors Errors that can be detected only at run time, such as attempting to
use variables that do not exist

Logic errors Errors in your programming logic or algorithms that cause an incorrect
result, such as a loop that exits one iteration too early

Any of these types of errors can cause JavaScript to either stop running or return an incorrect
result. There are dozens of possible reasons why an error would occur inside a JavaScript 1.5
program, including:

Calling a function or using a variable that is undefined
Attempting to modify the value of a constant

Passing a string to a function or operator that expects a number
Passing an incorrect number of parameters to a function

Using an unescaped quotation mark inside a string

Using statements such as the for loop incorrectly

Although JavaScript 2.0 attempts to retain the flexibility of previous versions, some of the
new features have the potential to introduce new problems. In addition, JavaScript 2.0 gives

programmers the option to enforce a stricter level of error checking (called strict mode). Potential

errors for JavaScript 2.0 programs include:

Assigning an incorrect data type to a variable that’s expecting another data type
Trying to access variables or functions defined as private
Namespace issues

Running JavaScript 2.0 in a browser that only supports JavaScript 1.5

I have always felt that finding and fixing errors is like unraveling a mystery. You start with
only a few clues and, with good detective work and perhaps a little luck, you eventually figure
out exactly what went wrong.

283

13

284

How to Do Everything with JavaScript

Turn on Error Reporting in IE

Internet Explorer has two advanced options that affect the way JavaScript errors are reported
and handled. The Advanced Options menu can be found by selecting Internet Options from
the Tools menu and selecting the Advanced tab.

On this tab, the first option setting we are concerned with is called “Display a notification
about every script error.”” This should be enabled in order to see the JavaScript error messages
we are talking about in this chapter.

The other option that may affect us is called “Disable script debugging.” Depending on
the software installed on your computer, [E may give you the option of loading the web page
into a tool called a debugger to find out more about the problem.

Generally, this option should be enabled; that is, you do not want to be given the option
to view the code in a debugger. (However, if you really do want to go into a debugger for
every error and you have some experience in that software, then by all means disable the
debugging option.)

Find the Source of an Error Message

When JavaScript encounters an error inside a script and the program does not handle it, then the
user is notified of the error by an error message box. In IE, the details of the error are usually
hidden, since they can be overly technical to the novice user. Instead, a somewhat friendlier
message like the following is displayed.

"3 Intemet Explorer
Problems with thiz "Web page might prevent it from being dizplayed properly

| or functioning properly. In the future, you can display thiz message by

[iie double-clicking the warning icon displayed in the status bar.

WV Alwaps dizplay this message when a page containg errars.

Show Details =»

By clicking the Show Details button we can see some of the technical details about the
particular error.

—

CHAPTER 13: Debug JavaScript Programs

fa Internet Explorer
/ Prablems with this Web page might prevent it from being displaved properly
i | of functioning properly. In the future, you can display this meszage by
fom double-clicking the warming icon displaped it the status bar,

~ Alwayz display thiz meszage when a page containg errars.

Hide Detailz <<

Line: 10

Char: 1

Error: Expected '}

Code:0

URL: file://T:ATEMPWS T est. htm

et

IE gives programmers a number of important details regarding the source of the error:

B Line The line number where JavaScript first noticed the problem. This is not always
the line that contains the problem, although it usually is. Having a text editor that shows
line numbers will save you from having to manually count them out. Windows Notepad
on XP can view line numbers by turning on the status bar (View | Status Bar).

Char The character number on the line where the problem might lie.
Error A string that tries to describe what JavaScript believes went wrong.
Code Some errors have an error code attached to them.

URL The web address of the HTML file that had the problem, in case there was
any doubt.

The line number listed in an error message includes any HTML lines that precede the
script, unless the script exists in a file by itself (an external script) in which case it is
the actual line number of the script file.

The line number referenced in the details of the error message is usually the best place to start
looking for an error. You also want to read the description of the error provided by the message
box, since that gives you the second clue needed to solve this mystery.

Interpret Error Messages

Perhaps the best way to see how closely (or not) the JavaScript error message relates to the actual
source of the error is to look at an example. In this section, we will examine a piece of JavaScript code
that has a serious bug in it and see how the two major browsers (Netscape and IE) report the error.

285

13

286

How to Do Everything with JavaScript

To start the exercise, let’s take a look at the following HTML and JavaScript code.

<html>
<head><title>Interpreting error messages</title></head>
<body>
<script language="JavaScript" type="text/javascript">
function add (inputl, input2) {
return inputl + input2;

var result = ad (1, 2);
</script>
</body>

</html>

When we first run this code, we expect that after the add() function is called with the values
1 and 2, the result returned would be 3. Instead, we encounter a JavaScript error. IE gives the
rather cryptic message “Object expected.”

<3 Internet E xplorer
Froblems with thiz \Web page might prevent it from being dizplaved properly
I | of functioning properly. n the future, pou can display this message by
fica double-clicking the warming icon dizplayed in the status bar.

™ Always display thiz message when a page contains erars.

Hide Detailz <<

Line: 9

Char: 1

Ermor: Object expected

Code: 0

URL: file://C:ATEMPYS Test htm

But it does give us a line number. Remember, the line number includes all the HTML code before
the script on the web page. The ninth line of code points to a problem with the following line:

var result = ad (1, 2);

The Netscape JavaScript console does a better job of describing the error—although, as
discussed earlier in this chapter, you have to open the console window in order to know that
one exists. The console reports, more usefully, “ad is not defined.”

CHAPTER 13: Debug JavaScript Programs 287

@) JavaScript Console M= E3
. File Edit “iew Toolz Help
;I_ Errars Warnings Messa_ges Clzar

Al | Evaluate

Ermor ad iz not defined
Source File: file:///CATEMPAIST est. hitm Lime: 9

With careful examination, we can see that we have mistyped the name of the function; it
should be add(), instead of ad(). Correcting the typo makes the error go away in both browsers.

Use a JavaScript Validator

One way to check your JavaScript code for strange bugs is to run it through a program that checks
it to make sure it is valid—that it follows the official syntax rules of the language. These programs
are called validating parsers, or just validators for short, and often come with commercial HTML
and JavaScript editors.

One limitation some validating parsers have is that they can only understand JavaScript
language components that are part of the official ECMAScript specification. Some of these
tools do not understand DOM function calls or some of the extensions to the language
added by browser manufacturers that are not part of the ECMAScript specification.

—

Perhaps the most convenient validator for JavaScript is Douglas Crockford’s JavaScript Lint,

which is available free online at http://www.crockford.com/javascript/jslint.html. Simply visit 13

that web page, paste your JavaScript code into the text area provided, and click the jslint button.
Voila! The results appear onscreen in seconds.

JavaScript Lint will parse through your JavaScript code, ensuring that any variable and
function definitions follow the correct syntax. It will also check JavaScript statements, such as if
and while, to ensure they too follow the correct format. This program will not catch all the errors
in your JavaScript programs, but it will catch the obvious ones, such as missing brackets or undefined
variables and functions.

Add Debugging Code to Your Programs

Often when a JavaScript script is not producing the desired results it’s not obvious why the
problem exists. For instance, you may be expecting that after a series of mathematical operations
a variable is going to come back with a specific value—but it doesn’t. There won’t be any JavaScript

288

How to Do Everything with JavaScript

error messages to help you find the line that is causing the problem, and even a JavaScript validator
may not be of any use.

One thing programmers can do to help themselves is to add some debugging code to the
program. Debugging code is code that exists purely to help the developer figure out what is going
on behind the scenes while code is being modified. You would usually remove or comment out
the debugging code once regular visitors to your page are using the script.

Programmers commonly use the alert() or document.write() methods when adding debugging
code to a program. For instance, the following script has a number of additional alert() message
boxes that will give the developer an idea of what is going on inside the program.

// Converts a number from "9999999" to "9,999,999"
function convert_number (input) {
var counter, output;

alert ("input = " + input);
alert ("input length = " + input.length);

// Not long enough to get commas
if (input.length < 4) return input;

alert ("length larger than 3");

// Empty output
output = "";

// Loop through input string, three chars at a time

for (counter = input.length-3; counter > 0; counter -= 3) {
output = "," + input.substr (counter, counter+2) + output;
alert ("counter = " + counter + ", output = " + output);

// Final set of numbers
output = input.substr (0, counter+3) + output;
alert ("counter = " + counter + ", output = " + output);

return output;

In the preceding code, all the calls to the alert() message box are used for debugging purposes
only. Their sole purpose is to provide the programmer with some clues about what is going on
inside the function: what the original value is, what happens after each iteration of the loop, and
the final result.

CHAPTER 13: Debug JavaScript Programs

Microszoft Internet Explorer
;o

f! counter = 1, output = 234 567

Again, once we are satisfied this function is working properly, we should remove or
comment out those alert boxes to save our visitors from a lot of unnecessary mouse clicks.

A similar debugging technique involves the careful and incremental use of comments.

Let’s say you have a JavaScript function that does not appear to be working correctly.
You have looked over the source code, and cannot figure out the source of the problem.

// Converts a number from "9999999" to "9,999,999"
function convert_number (input) {
var counter, output;

if (input.length < 4) return input;

output = "";

for (counter = input.length-3; counter > 0; counter -= 3) {
output = "," + input.substr (counter, counter+3) + output;

}

output = input.substr (0, counter+3) + output;

return output;

1. Start by commenting out the contents of the entire function. If the function is supposed
to return a value, force it to return a hard-coded value that simulates what you are expecting.
Test the script to make sure it is now working correctly with the hard-coded value.

// Converts a number from "9999999" to "9,999,999"
function convert_number (input) {

// var counter, output;

//

// if (input.length < 4) return input;

// output = "";

//

// for (counter = input.length-3; counter > 0; counter -= 3) {
// output = "," + input.substr (counter, counter+3) + output;

// }

289

13

290 How to Do Everything with JavaScript

// output = input.substr (0, counter+3) + output;
// return output;

// ** Hard-coded return value **
return "1,234,567";
}

2. Next, uncomment a few of those lines. For instance, make the function return its input
string instead of the hard-coded value. Again, test that this expected result (the input
string) is working correctly.

// Converts a number from "9999999" to "9,999,999"
function convert_number (input) {
var counter, output;

if (input.length < 4) return input;

output = "";
// for (counter = input.length-3; counter > 0; counter -= 3) {
// output = "," + input.substr (counter, counter+3) + output;
// }
// output = input.substr (0, counter+3) + output;
// return output;

// ** Return the input value **
return input;

}

3. Carefully uncomment more lines from the script. Know in advance what you expect the
return value to be after each set of comments is removed, and then retest.

4. Repeat step 3 as necessary. At some point, you will discover that the return value is not
the value you expected. The most recently uncommented lines are the most likely source
of the problem!

Adding debugging code and using comments are two of the most useful techniques for
manually figuring out the source of errors inside scripts.

Use the JavaScript Console

The Netscape and Mozilla browsers include a useful utility called the JavaScript console. The
JavaScript console opens in its own window, and this is the place where Netscape outputs
any JavaScript errors it encounters. The console will continue to accumulate error messages
from web pages until the browser is closed or the console is cleared manually.

CHAPTER 13: Debug JavaScript Programs

) JavaScript Conzole =] E3
. Fil= Edit “iew Tools Help
.m Enp_rs Wa[nings Me§sag§s Cllear_

il | Evaluate

[Errar: .m.issiﬁg | after ;algu.rﬁent-list

Source File: filee /W C/TEMPAIS Tt hitrn Line: B
war b = new Date(July 17, 2009);

FICU{SNEAM The Netscape console shows JavaScript errors.

To access the console in Netscape 7, go to Tools | Web Development, and choose JavaScript
Console. (In Netscape 6, the JavaScript Console option is located in Tasks | Tools.) The console
is empty when the browser is first opened, but will accumulate error messages as they occur for
many different pages and sites as you surf.

The console also allows developers to input JavaScript code for the browser to execute.
Simply type the variable name into the console, click Evaluate, and the console will tell you
the last value for that variable. Or you can have JavaScript manually call a function by typing
in the function name along with any parameters.

Figure 13-1 shows what the console looks like in the Netscape 7 web browser.

Use a JavaScript Debugger

The final weapon in the programmer’s arsenal against bugs is to use debugging software. A
debugger is a program that gives you complete access to the internal workings of the application.
A JavaScript debugger will typically include a user-friendly interface and will allow a developer
to step through the script one line at a time. The developer can see the current value of any variables
and get more detailed feedback in order to help them find the true source of a bug.

Debuggers are typically shipped inside HTML and JavaScript editors. For example, Microsoft
FrontPage 2002 contains a JavaScript editor and debugger called Microsoft Script Editor. Macromedia
Dreamweaver also contains a JavaScript debugger in its Dreamweaver MX product. There are
also a number of third-party editors that contain debuggers, such as C Point’s JavaScript Editor
(http://www.c-point.com).

291

13

292 How to Do Everything with JavaScript

For those who don’t use a professional HTML editor, a number of free JavaScript debuggers
are also available. Most prominent among them is the JavaScript Debugger available from the
open-source Mozilla project.

As you may know, the Netscape and Mozilla web browsers are based on the same core set of
source code. Netscape, however, does not include the JavaScript Debugger with its version, while
Mozilla does. So developers who use the Netscape 7 (and later) browsers will need to download
and install the debugger as a separate tool.

The latest Netscape web browser is available for download from http://
www.netscape.com. The latest version of the Mozilla JavaScript Debugger
(code-named Venkman) for both Mozilla and Netscape browsers can be
downloaded at http://www.hacksrus.com/~ginda/venkman.

——

The Mozilla JavaScript Debugger is available on multiple operating systems (specifically
Windows, Mac OS, and Unix), and does a great job helping developers step through their
JavaScript programs. We can see a screenshot of this debugger in Figure 13-2.

#) JavaScript Debugger =l
. File Edit %iew Debug Profile Tools ‘Window Help

8 o O8

- Continue Step Over Step Into Step Out | Profile Pretty Print

] | Loaded Scripts | x O | Source Code | x
Search | | J5Test htm

Name T |£-_4 5] function GetHMonthitring (datestring) | -
b %JSTesthim = =] var today = new Date (datestring);

7 .
= 3 var months = ["Jan", "Feb", "Mar", " :
= 9 "Jul®™, "Aug", "Sep”, "Oct'H

10
- | 11 var mymonth = today.getMonthi() ;
o ocal Yanables o = ||l var mymonthstring = months [mymonth] ;
| 13 =l
Mame | Walue [7l I ol
7 4 scope {Call} |~
i @9 datestring "y 17, 2004 =
|'> % months {wrap} = | | Int tive Sezsion [context: J5Test htm, scope: GetMonthString] | b4
X mymonth wvoid - 17, 2004™) in <file:/C:/TEMP/JT8Test.htm> line 8 ||
X mymanthstring void | | | 008: var months = ["Jan", "Feb", "Mar",
B . £ b "Apr", "May", "Jun",
E - #0: function GetMonthitring(datestring=string:"July
o [Call Stack |x |l 17, 2008") in <file:/C:/TEMP/T8Test.htu> line 9
Nare | Location [I 009: "Jul", "Rug", "Sep", "Oct',
[»GettanthS... JSTesthtm, line 11, pc 104 "How", "Dec"];
_ toplevel JSTesthim, line 18, pc 8 - #0: function GetMonthftring(datestring=string:"July | |
17, 2004™) in <file:/C:/TEMP/J8Test.htm> line 11 =
| 011: wvar mymonth = today.getMonth) ; =

I3 S5 | welcome to the Javas cript Debugger

FIelU/{SNkIVl Stepping through a JavaScript program using the Mozilla debugger

e—

CHAPTER 13: Debug JavaScript Programs

To access the JavaScript Debugger in Mozilla 1 or Netscape 7, go to the Tools |
Web Development menu, and choose JavaScript Debugger.

Microsoft also provides a free debugger, the Microsoft Script Debugger. It is available for
download at http://www.microsoft.com/script/debugger. Script Debugger supports many of the
key debugger features, such as the ability to view and step through code, set breakpoints, and
view and change variable values.

No matter which browser you use, you are bound to find the ability to step through complex
JavaScript programs very useful. For small scripts, adding debugging code may be all you need
to find problems. But when your program contains a lot of functions and you need some of
the advanced debugging features such as breakpoints, a good JavaScript debugger can be the
programmer’s best friend.

The next chapter deals with some of the important concepts around using try-catch statements
to intercept system errors before the browser does. You will also see how to use exceptions in your
own programs.

What a Breakpoint Is

In debugging, a breakpoint is a line of code designated by the programmer as the point where
the debugger will pause (or break) the program. The programmer can perform a number of
tasks inside the debugger before letting the program continue executing.

The benefit of having a debugger that supports breakpoints is that instead of having to
step through every single line of code in a script manually, you can let the debugger execute
all lines automatically until it reaches its first breakpoint. Once you have checked the contents
of some data variables, you can either step through the program manually or let it run
automatically until it reaches the next breakpoint.

293

13

This page intentionally left blank

Chapter 14 ewdee

Errorproof

296

How to Do Everything with JavaScript

How to...

B Understand exceptions and how they are caused
Catch exceptions using the try and catch statements

Create exceptions using the throw statement

Design programs that are easy to debug from the start

Designing and developing programs that are immune to errors is a difficult task when using
programming languages such as Visual Basic and Java. But it is in some ways even more
difficult when working with JavaScript.

One of the reasons this is true is that, as a scripting language, JavaScript is generally
distributed as source code. In normal circumstances, there is no compiler to catch syntax errors
before users see the final program in action. With other languages, the compilation step provides
a layer of protection against certain types of errors.

Another reason for the difficulty is that JavaScript is often developed using nothing more
than a basic text editor. Languages such as Visual Basic are created using integrated development
environments (IDEs) that help developers create better code and include built-in debuggers.

And yet another reason is that the number of target environments (browsers and operating
systems) is so diverse—literally dozens of combinations—that it becomes practically impossible
to test the program in all the possible environments.

But there are some techniques developers can use to make sure the JavaScript programs they
create will work properly in as many environments as possible. In this chapter, we will examine
some of the most practical ways to ensure programming success.

Learn the Basics of Exceptions

In the early days of web programming, when JavaScript encountered a error while executing a
program the result was always fatal: the browser would stop executing the code and report the
error to the user. In effect, errors were always reported directly to the browser—the application
had no opportunity to try and handle the error itself. You can imagine how impossible it was to
create an errorproof program when you couldn’t even detect when an error occurred.

In addition, JavaScript developers had to invent their own ways of returning errors back to
the program. Take the following example:

function simple_addition(a, b) {
// This function will add two numbers,
// but only if they both are between 0 and 9
if (a <0 |] a>9) {
return "First number is not between 0 and 9.";

} else if (b < 0 || b > 9) {

CHAPTER 14: Make Your Program Errorproof

return "Second number i1s not between 0 and 9.";

} else {
return a + b;

Every place inside the program that made a call to this function had to have several extra
lines of code (more if statements) to check the return value to see whether an error occurred
before using the number. Other programmers might solve the same problem differently, with
special return codes (like using the value —1) to return an error.

JavaScript uses exceptions to pass system errors back to the program for handling. In
addition, JavaScript programmers can use the same system of exceptions inside their code to
return application-specific errors back from functions. For example, we can rewrite the source
code from the previous example to use exceptions instead, by using the throw statement.

function simple addition(a, b) {
// This function will add two numbers, but only if they are less than 10
if (a <0 || a>9) {
throw "First number is not between 0 and 9.";

} else if (b <0 || b>9) {
throw "Second number is not between 0 and 9.";

} else {
return a + b;

You will learn more about the statements that deal with creating and capturing exceptions in
the next two sections.

Catch Exceptions Using the try and catch Statements

The try-catch statement was introduced in JavaScript 1.4; it is modeled on similar statements
in Java and C++. When JavaScript encounters a try-catch statement in code, it will begin to
execute the block of code contained inside the try clause. If any of the statements inside that
block cause an exception to occur, JavaScript will not execute any of the remaining statements
inside that block and will jump immediately to the code contained inside the catch clause. Of
course, if no exceptions occur inside the try clause, the code inside the catch clause will never
be executed.

297

14

298

How to Do Everything with JavaScript

The following code shows how the try-catch statement can be used to protect the code from
exceptions.

var isIE = (navigator.userAgent.indexOf ("MSIE")) > -1;
try {

var a = 1;

var ¢ = a / b;

alert ("The result of a / b is " + c);

}
catch (e) {
var msg = "JavaScript encountered the following error:\n\n";
// IE and Netscape pass errors differently to the catch clause
if (isIE) {
msg += e.description;
} else {
msg += e;
}

alert (msg);

1E and Netscape each has its own way of passing errors to the catch clause. IE passes
the error as an Error object—in order to get the actual error message you have to
access one of the properties of that object. Netscape passes the error as a string, which
can be used like any other string.

The preceding code attempts to use an undefined variable, b, inside the try block. As soon
as our code attempts to use that variable in an expression, an exception occurs, and the rest of the
code inside the block does not execute. The error message generated by the catch clause for [E
looks like this.

Microsoit Internet Explorer

”"f JavaScript encountered the following error:

'b' iz undefined

Netscape encounters the same error when executing the code inside the try block. Its error
message is worded slightly differently, however:

CHAPTER 14: Make Your Program Errorproof

[JavaScript Application]
]' t JavaScript encountered the following error;
L ReferenceEmaor bis not defined

Understand Exception Bubbling

The try-catch statement can also capture errors generated inside function calls within the try
clause. For instance, say we were to move some of the code from the previous example into
a function of its own.

var isIE = (navigator.userAgent.indexOf ("MSIE")) > -1;
function calculate() {
var a = 1;

return a / b;

try {
var ¢ = calculate();
alert ("The result of a / b is " + c);

}
catch (e) {
var msg = "JavaScript encountered the following error:\n\n";
// IE and Netscape pass errors differently to the catch clause
if (isIE) {
msg += e.description;
} else {
msg += e;
}

alert (msg);

The try-catch statement will still receive notification of the error, even though it occurs inside
the calculate() function. This is because exceptions, like events, bubble. Exception bubbling is the
term that is used to describe the process of how an exception will seek out the first try-catch
statement eligible to handle it. If there is no try-catch statement immediately surrounding the
line of code with the error, control will jump back to the code that called the function containing
the error. If there is no try-catch there, control will jump back to the code that called it, and so on,
until either a try-catch is found or the browser handles the exception by displaying it to the user.

299

14

300 How to Do Everything with JavaScript

For example, the following code generates an error after several levels of function calls
have been made. The exception still manages to make its way back to the try-catch statement
surrounding the first function call.

var isIE = (navigator.userAgent.indexOf ("MSIE")) > -1;

function fnl () {

// The first function (fnl) calls the second (fn2)
fn2();

function fn2 () {
// The second function (fn2) calls the third (£fn3)
fn3 () ;

function fn3 () {
// The third function (fn3) calls the fourth (fn4)
fnd () ;

function fn4d () {
// The fourth function (fn4) calls the fifth (£fnb)
fn5() ;

function fn5 () {
// The fifth function (fn5) contains an error
return some_undefined_variable;

// MAIN program

try {
fnl();
} catch (e) {
var msg = "JavaScript encountered the following error:\n\n";

// IE and Netscape pass errors differently to the catch clause
if (isIE) {
msg += e.description;
} else {
msg += e;
}

alert (msg);

CHAPTER 14: Make Your Program Errorproof

As you can see from the following screenshot, both Netscape and IE are able to pass the
exception properly to our catch clause.

Microsoft Internet Explorer [JavaScript Application]

\j JavaSeript encountered the following error: : :
L | ; & 'I JavaScript encountered the following eror;
i ®

‘some:_undefined_variable’ is undefined FeferenceEmor: some_undefined_variable iz not defined

You do not always have to respond to an exception by displaying a message to the user.
You could always ignore the error and continue.

Use the IE Error Object

As we observed in the previous section, Internet Explorer passes an Error object to the parameter
of the catch clause. The Error object contains two properties:

B number A numeric value related to the error

B description A string describing the error

The code in this section will work only in Internet Explorer.

——

IE automatically creates an Error object whenever an exception occurs, but you are also free
to create your own error using the following new statement syntax:

var myerr = new Error (1000,

"Value falls outside acceptable range of 0-81.");

Using this object allows your program to easily distinguish between different types of errors
while also retaining the plain-English description to display to the user.

// BError 1000: Ignore, set return code to 0
if (e.number == 1000) {
var returncode = 0;

// Error 1001: Exit loop, set return code to 9999
} else if (e.number == 1001) {
var returncode = 9999;

// Other error code: Can't handle this, report to user
} else {
alert (e.description) ;

301

14

302 How to Do Everything with JavaScript

The only real problem with this method is that Netscape uses a different approach, which
means you have to have browser-sniffing code in order to create cross-platform-compatible code.

Use Netscape-Only catch Clauses

Netscape has a special syntax for catch clauses that allows for more than one of them to exist in
a try-catch statement. Netscape calls them conditional catch blocks.

IE does not support this syntax, and it is not part of the official ECMA standard.

—

Basically, Netscape allows developers to insert an if keyword to determine which catch
block is called after an exception is thrown:

try {
var input = get_user_input () ;
edit_check (input) ;

}

catch (e if e == "Value too high") {
// What do we do when the user enters a value that is too high?
//

}

catch (e 1f e == "Value too low") {
// What do we do when the user enters a value that is too low?
//

}

catch (e if e == "No value entered") {
// What do we do when the user does not enter a value?
//

}

catch (e) {
// Some other error occurred
//

I recommend that this proprietary method be avoided if at all possible. Since adding an
if-else statement into a single catch clause can generate the same effect, there is no benefit to
coding it like this.

Use Nonstandard finally Clauses

Java and C++ programmers will recognize the optional finally clause in the try-catch statement,
although those familiar with the official ECMAScript specification will not. Both Netscape and

—

CHAPTER 14: Make Your Program Errorproof

IE web browsers support this clause, even though it does not exist in the official standard and
therefore is not supported by all JavaScript environments.

Basically, the finally clause contains code that will always be executed, regardless of whether
an exception occurs in the try block or not. Even if there are return statements inside the try or
catch clauses (which triggers an exit from the function), the finally clause is guaranteed to run.

The only time the finally clause will not be executed is if an unhandled exception occurs
inside the catch clause. An unhandled exception is an exception that has to be handled
by the browser, since there are no remaining try-catch statements to handle it.

For example, the following code triggers an exception inside the try clause, and both the
code inside the catch clause and the code inside the finally clause are executed before the control
is passed back outside the function.

function function_that_will_fail() {
var a = 1;
var b = 2;
this_function_does_not_exist(a, b);

function capture_error() {

try {
document .write ("try: ");
document.write("Calling the function.

");
function_that_will_fail();

}

catch (err) {
document .write ("catch: ");
document .write("An error has occurred.

");
return;

}

finally {
document.write("finally: ");
document .write("This code is guaranteed to execute.
");

capture_error () ;

As you can see from Figure 14-1, even though there is a return statement inside the catch
clause, the finally clause does indeed execute.

303

14

304

How to Do Everything with JavaScript

; JavaScript try-catch Example - Microzoft Internet Explorer
| File Edit Miew Favartes Tools Help |n
. " A | = v e »
‘ = @ & oA @[@ s ‘
Bacl Stop Refresh Home Search Fawvortes Media Histary
|
The finally Clause
try: Calling the function.
catch: 4n error has occurred.
finally: This code iz guaranteed to execute.
| R
|£] Dore ||| | B My Computer %

FICIU =NV A M The finally clause gets the last say: exception or no exception.

Create Exceptions Using the throw Statement

One thing that makes the try-catch statement more useful is the throw statement. The throw
statement allows developers to create their own exceptions. This means that you can have a
single set of try-catch statements to capture all system and application errors, which certainly
saves a lot of coding effort.

It also allows you to leverage the exception bubbling mechanism in order to pass an error
message from deep inside a function up to the try-catch statement waiting several function calls
back. Without this exception bubbling, we would have to write a lot of extra code in order to
capture errors inside each function and then remember to diligently pass them back up to the
next level.

For example, the following code causes an exception to occur. By definition, processing
inside the function stops immediately, and the exception is passed to the waiting try-catch
statement one level back.

function throw_an_error () {
throw "Ouch! I stubbed my toe!";

CHAPTER 14: Make Your Program Errorproof

try {
throw_an_error () ;
document .write("This line will never be executed.");
} catch (myerrl) {
document .write("The following error occurred:
");
document .write (myerrl) ;

Notice that I was able to use the myerrl variable as a string and did not have to include
browser-sniffing code to determine whether or not we need to use the IE Error object. The reason
is that since we used the throw statement to pass a string literal, the catch clause receives only
the string. IE does not automatically create an Error object for you if you choose to throw a string.

You can, however, create your own Error object and throw it.

How to Re-throw an Exception

When the try-catch statement encounters an exception that it does not want to handle, it can
use the throw statement to send the exception back to another try-catch defined elsewhere
in the program. This is called re-throwing it.

For example, the following code re-throws an error that it is not prepared to handle:

function calculate_total() {
try {
var subtotal = get_item_amount() ;
} catch (e) {

if (e = "No items remaining") {
return 0;
} else {

// must have been a system error,
// let JavaScript handle it
throw e;

305

14

306

How to Do Everything with JavaScript

function throw_an_error () {
var eobj = new Error (0, "Ouch! I stubbed my toe!");
throw eobj;

}

However, this code works only in Internet Explorer, since there is no Error object in Netscape.
So with this approach we would need to introduce browser-sniffing code as well.

The best approach is to throw a string, as you would expect. In the catch clause, test to see
whether the parameter passed is a string or an object.

catch (myerrl) {
if (myerrl instanceof Error) {

var errstring = myerrl.description;
} else {
var errstring = myerrl;

}

document.write("The following error occurred:
");
document .write(errstring) ;

The preceding catch clause works in both IE and Netscape and will properly detect whether
the parameter passed is an Error object or just a string.

Design Programs That Are Easy to Debug from the Start

Certain programming styles lead to less bugs (and less debugging hassles), while others have
the opposite effect. Whenever your JavaScript program looks like it is going to be long and
complicated, you may save yourself some time and headaches later if you take the right design
approach from the start.

We discussed the four programming styles in some detail in Chapter 3:

B Unstructured Sequence of statements acting on global data
Procedural Main program that calls functions to perform certain tasks

Modular Main program that uses modules to group related functionality

Object-oriented Main program that uses objects to group related data and
functionality

Each of these methodologies has its pros and cons when it comes to writing errorproof
programs. The unstructured technique is good for small scripts but terrible for large ones.
Object-oriented is the opposite—good for large programs and poor for short scripts. Having
a rough idea of the complexity of your program beforehand will help you decide on the best
approach.

CHAPTER 14: Make Your Program Errorproof

Avoid Unstructured Programming

Unstructured methodology is usually best for short, simple scripts. Essentially, this program consists
of a set of JavaScript statements that do not define or use any functions, modules, or objects.

In some ways the unstructured technique is the simplest of them all, but when your program
exceeds more than a page or two of code, you should think about breaking it up into more
manageable pieces.

The biggest problem you’ll encounter with a large program of this type is the complexity
and number of interdependencies in the code. Statements later on in the program will rely on
variables set several hundred lines earlier. Making a change to one part of the program might
break the code in another area.

Building a program in such a fashion is similar to building a house out of one large piece of
wood. One small adjustment, such as relocating a window, becomes next to impossible without
starting over completely. That is OK only if your house is very small.

Break Code into Manageable Chunks

There’s a reason houses aren’t made in one big piece, but one wall, roof, floor, and staircase at
atime. That way, relocating a window does not affect other walls or other structural elements,
and the worst thing that such an adjustment can do is cause you to have to rebuild a single wall.
Houses are built of separate components, and computer programs generally should be as well.
The easiest way to “componentize” a program is to organize it into several functions. It

is best if these functions fall into separate areas of responsibility, if at all possible, so that two
or more functions are not working at cross-purposes or doing the same task. For example, the
following code snippet shows how using functions improve program organization and readability:

function groceries () {
var grocerylist = get_grocery_ list();
drive_to_store() ;
for (var item in grocerylist) {
get_item(item) :
}
pay_cashier () ;
drive_home () ;
put_food_away () ;

return;

}

We could have alternatively used an unstructured program that attempted to do all those tasks in
order. But that program would have been harder to read, test, and make changes to.

307

14

308 How to Do Everything with JavaScript

To test a function, we only need to make sure that it performs the tasks and returns the value
that is expected of it. Most functions rely on the way the rest of the program is structured, so you
can never be 100 percent sure that nothing will go wrong. Because functions are easier to test,
you will find that procedural programming offers a higher sense of reliability than unstructured
programming does.

Reuse Code Using Classes and Objects

The other way to componentize your code would be to break it into a number of classes and
objects. Classes allow you to separate all related functions and variables into a single module.
This allows you to create classes that can be easily reused in other applications.

For instance, you can create a class that represents an item in the user’s online shopping
cart. Since this item code is generic, the exact same code can be reused in other applications
that need access to an item, say, an inventory program.

class Item {
var SKU : String;

var productName : String;
var size : String;
var color : String;

var retailPrice : Number;
var wholesalePrice : Number;

function Item(inSKU : String, inName : String,

inSize : String, inColor : String,
inPricel : Number, inPrice2 : Number) ({

this.SKU = inSKU;

this.productName = inName;

this.size = inSize;

this.color = inColor;

this.retailPrice = inPricel;

this.wholesalePrice = inPrice2;

// More methods would follow...

Classes and objects are much easier to test as well. You would only need to check once to
make sure the object behaves the way it is expected to. As long as there are no code changes in
the class, the object can be considered completely tested.

CHAPTER 14: Make Your Program Errorproof

Test Your JavaScript Code Thoroughly

The final key to ensuring that your program is immune from errors is to perform thorough testing
on it. Testing involves running the program many different times under many different scenarios
to make sure it operates as expected.

For short scripts, testing does not have to be complicated. For instance, testing mouse rollover
effects may just entail rolling the mouse across an image several times to make sure that it
toggles as expected. For more complicated scripts, such as those involving DHTML or interframe
communication, more rigorous testing may be required.

Create a Testing Harness

A testing harness is a program whose job it is to help test other programs. In JavaScript
programming, a testing harness generally takes the form of a custom web page that exposes
buttons and form fields used for testing the behind-the-scenes scripts.

Figure 14-2 shows an example of a good testing harness. The web page allows a developer
or tester to manually trigger certain events or to force-feed certain values to functions embedded
on the page.

; Testing JavaScnpt Applications - Microzoft Intemnet Explorer

‘ >

_|_Eile Edit “iew Favorites Toolz Help

& .2 0 Q9 [4 A

Hach Farvard Stop Refresh Home

9 & 9 3

Search Favortes Media Histary

s

Sample Testing Harness

Employee ID: I

Create Employes Ohject

| Delete Employee Ohject |

First: |
Last |
Update Emplovee Name

Fetrieve Employee Name

First |
Last |

Job Role: i

Update Job Role |

Retrieve Job Role |
Job Role: |

|§'| Dane

E_N%ﬂ ty Computer

B

FIC{U{=V:BVl Use a testing harness to help test JavaScript programs.

309

14

310 How to Do Everything with JavaScript

To see a testing harness in action, let’s start with a small JavaScript script that we wish to test.

// This script will validate an e-mail address
function validate_email (inputstr) {
// The following complex regular expression pattern checks
// for a valid e-mail address: user.name@domain-name.com
var pattern =
/" [a-2zA-Z20-9_\-.1+@([a-zA-Z0-9\-1+\.)+[a-2zA-Z]1{2,3}$/;

if (inputstr.search(pattern) > -1) {
return true;

} else {
return false;

Now we could just choose to use this straight in our program, but it would be a good idea
to verify that it is completely working before doing so. By creating the following HTML testing
harness that includes our script, we can test dozens of different e-mail addresses in an easy and
straightforward fashion.

<html>
<head>
<title>HTML Testing Harness</title>
<script language="JavaScript" type="text/javascript">

// This script will validate an e-mail address
function validate_email (inputstr) ({
// The following complex regular expression pattern checks
// for a valid e-mail address: user.name@domain-name.com
var pattern =
/" la-zA-Z0-9_\-.1+@([a-zA-20-9\-1+\.)+[a-zA-Z]1{2,3}$/;

if (inputstr.search(pattern) > -1) {
return true;

} else {
return false;

</script>
</head>
<body>
<center>
<h1>HTML Testing Harness</hl>

CHAPTER 14: Make Your Program Errorproof

<h2>for E-mail Checker</h2>
</center>

<form action="#" method="get">

E-mail address:

<input type="text" name="email">

<input type="button" value="Test"

onclick="alert (validate_email (document.forms[0].email.value)) ">
</form>
</body>
</html>

The preceding HTML code exists only to test the JavaScript function validate email(). It
consists of a simple HTML form that contains a text box and a push button. Using this form,
testers and developers can type in dozens of different test e-mail addresses to verify that our
script is working as expected.

If this process is repeated with each complex function in a program, you will reduce the
likelihood of users discovering strange behavior when using your web page.

Force Errors to Test Error-Handling Code

One thing that occurs when developers test their own programs is what I call “Sunny Day Syndrome.”
We tend to use only valid dates when functions are expecting a date in a parameter field or use
only numbers when functions expect numeric values.

But it’s important to see what happens when you send an invalid date (such as “02/29/2005”
or “12/33/2005”) to such a field—or even to try sending something that’s not a date (such as the
string “Boo”). How does your function respond to invalid inputs? How is your error-handling code?

You might even have to modify the code to force such errors. For example, in the following
code, I have hard-coded an array to be empty in order to see how the code handles empty arrays.
This is only to test the error-handling capabilities of the code that called this function.

function print_listing() {
var litemarray = get_product_list();

// BEGIN TESTING:: Empty array added just for testing
// Forcing an error

itemarray = new Array();

// END TESTING

for (var item in itemarray) {
// Rest of code

311

14

312 How to Do Everything with JavaScript

We only modify the code to see what would happen were something to go wrong. This is
a very easy way to test for things that rarely happen in real life.

Try Your Program in Many Different Environments

After you have used the try-catch statement to capture and handle errors and have designed
your program in a modular, easy-to-test manner, there is only one thing left to do: system testing.
System testing is the process of trying a program on all the different software environments it
could possibly run on.

JavaScript programs embedded in web pages still need to be checked in several different
browsers and operating systems in order to be considered errorproof. You might not have that
many operating systems at your disposal, but it isn’t difficult to download and install two or
more web browsers so you can at least test your program in those environments.

It is fairly difficult to get multiple versions of IE running on the same machine, but it can
be done. It has always been much easier to get several versions of Netscape— all you have to
do is install them in different directories.

The web site http://browsers.evolt.org contains a copy of almost every browser ever
produced. It’s a pretty impressive site. If you ever want to see what the Internet of
today looks like in Netscape 0.9 , you can download and install it to find out.

You probably don’t have to test every browser ever produced, but at a minimum you should
check your scripts using IE 5, Netscape 4 and 7, and Mozilla 1.

The next chapter is the final chapter of the book. It explores how JavaScript can be used to
interact with multimedia objects on the page. JavaScript was originally developed to interact
with Java, but it can also deal with movies and music embedded in web pages.

Chapter 15 v

Plug-Ins

314 How to Do Everything with JavaScript

How to...

B [Insert scriptable objects into HTML web pages
Include Sun Java applets

Embed movies and music in web pages

Use the Microsoft Calendar Control in web pages

Since its initial release in December 1995, JavaScript has been primarily used for web site
automation. Tens of thousands of useful scripts have been created for everything from handling
web site navigation to running online shopping carts. The widespread adoption of JavaScript has
meant that web pages now display information in a more interesting and dynamic manner.

Over the years, many companies have created their own technologies to enhance the web
experience for users even further. These companies have developed and distributed their own
applications, called browser plug-ins, so that users of the various web browsers can view these
enhancements.

There are two standards for creating these browser enhancements: the Netscape Plug-In API
and Microsoft ActiveX. These two standards are not compatible, so developers must create versions
of their plug-ins for both. Throughout this chapter, I will refer to components developed under
either architecture as “plug-ins,” for the sake of convenience.

As you may have guessed from the way the two standards are named, browsers based on the
Mozilla engine (including Netscape browsers) only support the Netscape Plug-In API standard,
and Microsoft Internet Explorer only supports the ActiveX standard. Plug-in developers often
need to support both types of plug-ins, since the browser companies do not appear to be settling
on any one standard.

You can download many ActiveX controls for IE from http://activex.microsoft.com.
At http://home.netscape.com/ plugins Netscape also provides a place to download
plug-ins.

—

There are literally dozens of plug-ins available for download, and some browsers ship with
several of the popular ones already loaded. The following list contains some of the most popular
plug-ins and the URLs where they can be downloaded:

B Macromedia Flash, http://www.macromedia.com/software/flash
Macromedia Shockwave, http://www.macromedia.com/software/shockwaveplayer
Sun Java, http://sun.java.com
RealNetworks RealOne Player, http://www.real.com
Apple QuickTime, http://www.apple.com/quicktime

Microsoft Windows Media Player, http://www.microsoft.com/windows/windowsmedia

CHAPTER 15: Use JavaScript to Manage Browser Plug-Ins 315

Users are required to install plug-ins in order to view some content because browsers only
know how to display two types of content without help: text and images. For web pages that
include other types of content, such as movies, music, and 3-D virtual reality models, browsers
must rely on external plug-ins to handle the content.

In this chapter, we will examine how to add these different types of content to a web page
and how to use JavaScript to control them. From Java applets to ActiveX controls, we’ll see
how JavaScript can call the methods and functions that those objects provide.

Insert Scriptable Objects into HTML Web Pages

Web browsers treat content managed by plug-ins as they would any other content on the web
page—Ilike an object. The movies, music, and Java applets embedded on a page become one
more node in the Document Object Model hierarchy. Since they often also provide properties
and methods that can be manipulated by JavaScript, we call them scriptable objects.

There are three HTML tags that are able to add these scriptable objects to a web page:

B <applet>

B <embed>

M <object>

Of the three, only <object> is part of the official HTML standard. Both <applet> and
<embed> have been available in web browsers since Netscape 2, but the Internet standards body

had decided that those tags were ill conceived, and instead encourages web developers to use the
alternative <object> element.

Include Sun Java Applets

Java is an easy-to-use programming language that is used by many different types of developers—
from serious corporate types to the home user. The Java Virtual Machine (JVM) was one of the
first plug-ins ever released, and it was actually included with the Netscape Navigator 2 web
browser. A version of the JVM is available for dozens of platforms, including:

B Cell phones 15
Personal digital assistants (PDAs)
Web browsers

Personal computers that run Microsoft Windows XP, Apple Mac OS, Linux

Business computers that run Sun Solaris, Microsoft Windows 2000, Unix

Applets are small Java programs that are designed to run inside a web browser. On the
Internet today, applets are frequently used to provide stock tickers, interactive charts and graphs,
crossword puzzles, and chat rooms.

316

How to Do Everything with JavaScript

To see how easy it is to include Java applets in a web page, let’s look at a simple example of
some Java code. The following code needs to be saved in a text file named HelloWorld.java:

/* My first Java program */

import java.applet.Applet;
import java.awt.Graphics;

public class HelloWorld extends Applet {
public void paint (Graphics g) {
g.drawString ("Hello world!", 75, 75);

Since Java programs are compiled, we first need to run this code through a compiler before it
can be used inside a web browser. The process of compiling turns a plain-text .java code file into
a binary .class file. This .class file can be executed on any computer with a JVM, since binary
Java files are platform-independent code that does not rely on a specific operating system.

M 5.5 5 cile|el B Al

IC:NTEMP> Javac Helloworld. java

I+

C:NTEMP>dir Hello®

Wolume in drive C is CROOT
Wolume Serial Mumber is 141D-1EF4
Directory of C:N\TEMP

HELLOW~1 CLA 372 01-21-03 12:28a Helloworld.class | |
HELLOw~1 14 216 01-21-03 12:27a Helloworld. java

2 file(s) 588 bytes

0 dir(s) 1,319.31 ME free
[C:\TEMP >

[|

3
il

In HTML, Java programs are added to a web page using the <applet> tag. Although <applet>
is not part of the official HTML 4.01 specification, both Netscape and IE support it. For example,
the following HTML embeds a Java applet into a web page:

<applet code="HelloWorld.class"
width="250"
height="150"
id="myapplet">
</applet>

CHAPTER 15: Use JavaScript to Manage Browser Plug-Ins 317

_ Download the Java SDK

Sun Microsystems provides several pieces of its Java platform free to anyone who wants to
download them, including the JVM (which is part of the Java Runtime Environment, or JRE)
and the Java compiler (which is part of the Java Software Development Kit, or SDK).

In order to ensure you have the latest JVM, head over to the Sun Java web site at
http:// java.sun.com/getjava/index.html. That page will make sure your web browser has
the latest version of Java installed and ready to go.

If you would like to download a compiler so that you can try your hand at creating
Java applets, you can download your own SDK for free from http://java.sun.com/j2se/
downloads.html. There are several good tutorials available on the Sun Java web site
to help you create your first Java program.

Using this HTML code, the web browser will attempt to load the Java applet called
HelloWorld.class and will reserve an area on the screen for it that is 250 pixels wide by
150 pixels tall.

You can see how this Java applet will look in the web browser in Figure 15-1.

The HTML <applet> tag has a number of optional attributes that can be used to further
define the applet’s properties inside the browser. Table 15-1 lists these attributes.

Attribute Purpose

code The class file name

codebase The class file subdirectory

archive The name of the .zip file containing the class file

alt Text that should be displayed by browsers that don’t support the <applet> tag
align How the applet should be aligned with text and images placed beside it 15
height The height of the applet in pixels or as a percentage

width The width of the applet in pixels or as a percentage

hspace The amount of horizontal space to reserve around the applet in pixels

vspace The amount of vertical space to reserve around the applet in pixels

mayscript Permits the applet to access JavaScript

name The name of the applet to be used in the DOM

ACIHSR R Attributes of the HTML <applet> Tag

318 How to Do Everything with JavaScript

; Add an Applet to a Web Page - Microzoft Internet Explorer
| File Edit Mew Favoites Tools Help in
- e a w8 B[E
| Bach Fenward Stop Fefresh Home Seach Favoites Media Hiztory b ail
_.._l
-
My First Java Applet

Hello world!
. R
|e5=_'| Done | | | |_,%j ty CompLiter i

HICU NIl A simple Java applet inserted into a web page

Web page developers also have the option of passing in several parameters to the Java applet
to help customize it using the HTML <param> tag. For instance, we can modify our Hello World
Java applet to accept one parameter:

/* My first Java program */

import java.applet.Applet;
import java.awt.Graphics;

public class HelloWorld extends Applet {
String displayString;

public void init () {
// We are expecting a <param> named "display"
displayString = getParameter ("display");

CHAPTER 15: Use JavaScript to Manage Browser Plug-Ins

public void paint (Graphics g) {
g.drawString (displayString, 75, 75);
}

We can then use the HTML <param> tag inside the <applet> tag to pass a customized string
to display to the applet, like so:

<applet code="HelloWorld.class"
width="250"
height="150"
id="myapplet">
<param name="display" value="This is my applet!">
</applet>

Using this new parameter, we can change the string our Java applet displays without having
to recompile the code. An applet can accept multiple parameters, so your Java applet can be
designed to be completely configurable from outside the compiled code.

Connect to Java Applets Using JavaScript

As you would expect, JavaScript is able to call the public methods and set the public properties
of any Java applet. The Java applet we created in the last section already has a number of public
properties and methods, some of which are automatically provided by HelloWorld’s parent
class—Applet.

We can create a small JavaScript function that will modify the string being displayed and
force the applet to refresh by calling the appropriate public properties and methods, as follows:

<script language="JavaScript" type="text/javascript">

function displayString() {
var applet = document.getElementById("myapplet");
applet.displayString = "String is set here";
applet.repaint () ;

}

</script>

This JavaScript function starts by creating a variable that will point to the Java applet on our
HTML web page using the familiar document.getElementByld() function.

We then modify the displayString property, which was defined inside the HelloWorld Java
applet. In order to get Java to display our new string to the screen, we have to call the applet’s
repaint() method.

319

1)

320

How to Do Everything with JavaScript

Of course, it would also be helpful to display a small button or other user control in order to
trigger this JavaScript function with an onclick event.

<applet code="HelloWorld.class"
width="250"
height="150"
id="myapplet">
<param name="display" value="This is my applet!">
</applet>

<form action="#">
<input type="button" value="Modify Applet"
onclick="displayString() ">

</form>

This HTML code will add a small push-button control underneath the applet window.
Clicking the button will cause the string displayed by our applet to be altered, as you can see
in Figure 15-2.

21 Add an Applet to a Web Page - Microsoft Interet Explorer S
|| Fle Edt Visw Favoites Tooks Help ﬂ
| 2 Al Q@ @ B | B
Bk Stop Fiefresh Home | Search Favortes Media History | Mail)
=l
- -
Use JavaScript to Modify the Applet
String is set here
| 2] Done | | | fgj by Computer 7

FICIUI=NITYl The applet has been modified as a result of our JavaScript function.

CHAPTER 15: Use JavaScript to Manage Browser Plug-Ins 321

Embed Movies and Music in Web Pages

Embedding movies and music in web pages is handled quite differently from embedding Java
applets. First, the <applet> tag cannot be used to embed these types of files into a web page
(unless you use a Java applet to display them, of course).

The first way to insert a multimedia file into a web page is by using the <embed> tag. Using
the <embed> tag is certainly easier than using the <object> tag, but when using it, remember
that <embed> is not part of the official standard.

<embed src="myMovie.avi" autostart="true" loop="true"
width="160" height="120"></embed>

With the <embed> tag, you pass all the parameters to the plug-in using attributes inside the
tag itself. There is no <param> tag for <embed>. The <embed> tag supports three parameters
for itself—src, width, and height. The source URL for the embedded content is passed using
the sre attribute. The amount of space reserved inside the browser is passed using the width
and height attributes.

Your computer would need a browser plug-in that could handle Windows AV files in
order to see the movie in our example. Most of the popular video players can, however,
including Windows Media Player, Apple Quicktime, and RealNetworks RealOne Player.

—

In the preceding example, the plug-in that is responsible for playing the movie is being
passed the autostart parameter, as well as the loop parameter. It is up to the plug-in software,
of course, to interpret what they mean and what to do with them.

1E is currently the only browser that supports ActiveX controls such as Windows
Media Player.

—

We can also use the official <object> tag to embed the movie in our web page. The <object>
tag is slightly more complex, particularly since plug-ins are referred to using an extremely long
hexadecimal number.

<object id="ActiveMoviel"
classid="CLSID:05589FA1-C356-11CE-BF01-00AA0055595A™"
width="320" height="240">

<param name="ShowDisplay" value="1">

<param name="ShowControls" value="1">

<param name="AutoStart" value="1">

<param name="PlayCount" wvalue="10">

<param name="FileName" value="myMovie.avi">
</object>

The preceding HTML code inserts an object using the Microsoft ActiveMovie control, which
is identified using that long classid attribute. ActiveMovie is the ActiveX control installed with

322

How to Do Everything with JavaScript

Embed a Windows Media Player 9

Object in a Web Page

With the release of Windows Media Player 9, Microsoft has further enhanced the capabilities
of its video and music playback application. Windows Media Player 9 also includes an
ActiveX control that allows developers to embed music and movies in web pages.

However, since not everyone has had an opportunity to upgrade to this new player yet,
it might be better not to force your visitors to download it in order to see your content. But
if you can be reasonably sure that your audience already has this software installed, you can
easily include this new <object> tag in your web pages.

Notice in the following HTML code that the classid value is different, as is the name of
the parameter used to specify the name of the media file.

<object id="Player" height="0" width="0"
classid="CLSID:6BF52A52-394A-11d3-B153-00C04F79FAAG"
width="160" height="120">

<param name="URL" value="myMovie.avi">
</object>

Microsoft Windows Media Player 6.4 that manages the details of the display and playback

of movies. Developers can pass the ActiveMovie control several properties to control the size,

volume, balance, and position. You can see an example of the ActiveMovie control in Figure 15-3.
If we do not want to rely on Windows Media Player to play our movie, we can use the classid

attribute belonging to the Apple Quicktime Player, as follows:

<object id="QuicktimeMoviel"
classid="clsid:02BF25D5-8C17-4B23-BC80-D3488ABDDC6B"
width="320" height="240"
codebase="http://www.apple.com/gtactivex/gtplugin.cab">
<param name="src" value="myMovie.avi">
<param name="autoplay" value="true">
<param name="controller" value="false">

</object>

The preceding code will use the Apple Quicktime Player plug-in instead to display our
movie. Again, this will only work in web browsers that support ActiveX controls.

Connect to Music and Media Objects Using JavaScript

Just as we could use JavaScript to reset the properties and call the method of Java applets, we can
also use that same principle when handling other embedded objects. For instance, the following

CHAPTER 15: Use JavaScript to Manage Browser Plug-Ins

’; Add a Movie to a Webh Page - Microsoft Internet Explorer

File Edit Wiew Favorites Toolz Help E
- . > .0 B o |a = @ 3B

Stop Refresh Home Search Favortes hedia Higtory b ail

Use the <object> Tag to Embed a Movie

Paused o001

il Dane [. [M:EJ M_l,l tomputer

FC{U{=NITeM Embedding a movie in an HTML page

JavaScript functions can be used to stop and start the movie displayed in our ActiveMovie
control.

<script language="JavaScript" type="text/javascript">
var movie = document.getElementById("ActiveMoviel") ;
function startMovie() {

movie.Run() ;
}
function stopMovie() {

movie.Stop () ;
}

</script>

The preceding JavaScript code gets a variable reference to the element named ActiveMoviel,
which happens to be our embedded movie control. We can then call the Run() and Stop() methods
of that control to start and stop the movie.

We can take advantage of these functions by adding two HTML push-button controls to the
web page, allowing users to stop and start the movie themselves.

323

15

324 How to Do Everything with JavaScript

<form action="#">
<input type="button" wvalue="Start Movie" onclick="startMovie() ">

<input type="button" wvalue="Stop Movie" onclick="stopMovie() ">

</form>

Use the Microsoft Calendar Control in Your Web Pages

Microsoft provides some interesting ActiveX controls that you can use in your HTML web
pages. One such control is the Microsoft Calendar Control, which can be used to display a
calendar and allows your users to choose a date. For choosing dates in the near past or future,
this tool can be a valuable time-saver.

IE is currently the only browser that supports ActiveX controls such as the

Calendar Control.

Figure 15-4 gives an idea of how the calendar control looks in a web browser. Of course,
knowing the class ID of the calendar control makes adding it to a web page fairly easy, using
the <object> tag.

3 Use Other ActiveX Controls - Microsoft Internet Explorer
File Edit “iew Favoites Toolz Help ﬂ

B A la & 2 @B 7

Stop Refresh Home Search Favortes Media Hiztary Faail
Embed the Microsoft Calendar Control
into a Web Page
July 2004 [July -| [2004 -]
Sun Mon Tue Wed Thu Fri Sat
2 1 & 3
4 & G 7 g 9 10
11 12 13 14 15 16
18] 20 21 22 23 :'7_4
25 26 27 25 29 30 3
|£] Done | 2 My Computer ;

FIC{U{=NIT W The predefined calendar control can be used to select a date.

CHAPTER 15: Use JavaScript to Manage Browser Plug-Ins

<object id="myCalendar" width="480" height="190"
classid="CLSID:8E27C92B-1264-101C-8A2F-040224009C02">
<param name="Year" value="2004">
<param name="Month" value="7">
<param name="Day" value="17">
</object>

We can pass the current year, month, and date to be displayed using the familiar <param>
syntax.

Of course, the calendar control is scriptable, like most other objects embedded in the web
page. So all we need is a variable that contains a reference to the object and then we are free
to modify its properties and settings using JavaScript.

The basic principles introduced in this chapter can be extended to almost any type of content
you can imagine. Macromedia Flash animations, virtual reality 3-D models, and Adobe Acrobat
PDF documents can all be handled inside the browser window using plug-ins. And most of those
objects can be scripted using JavaScript.

JavaScript has firmly implanted itself as a core technology in web site development. As the
Internet moves into the age of XML and XHTML, and away from the age of HTML, we can
trust that JavaScript will remain a popular standard, since there is no better technology to bring
automation and interactivity to web pages.

325

1)

This page intentionally left blank

AL HIMIL 4.01 Tags

328 How to Do Everything with JavaScript

The following table lists each of the HTML 4.01 tags and gives a brief description of its use. But
note that Microsoft and Netscape have in some cases added their own tags, so their lists might
not match this.

Tag Name Purpose

<a> Creates a hyperlink, or defines a bookmark inside a page
<abbr> Denotes an abbreviated form

<acronym> Denotes an acronym

<address> Denotes a mailing address

<applet> Officially deprecated; embeds a Java applet
<area> Part of the client-side image map syntax

 Defines the enclosed text as bold print
<base> Defines the base URI for the document
<basefont> Officially deprecated; defines the base font size for the document
<bdo> Internationalization (i18n BiDi override)
<big> Defines the enclosed text as extra large print
<blockquote> Defines the enclosed text as a block quotation
<body> Indicates the body of the web page

 Inserts a new line

<button> Adds a command button to a form

<caption> Adds a caption to a table

<center> Officially deprecated; centers text horizontally
<cite> Citation

<code> Defines the enclosed text as code

<col> Defines a table column’s properties
<colgroup> Groups columns in a table

<dd> Definition description for a definition list
 Defines the enclosed text as deleted text
<dfn> Instance definition

<dir> Officially deprecated; creates a directory list
<div> Defines a block of text as an entity

<dI> Creates a definition list

<dt> Definition term for a definition list

 Defines the enclosed text as emphasis print
<fieldset> Form control group

 Officially deprecated; sets the font type for the enclosed text

Appendix A: HTML 4.01 Tags
Tag Name Purpose
<form> Defines an HTML web form
<frame> Defines framed content
<frameset> Defines a group of frames
<h1> Defines heading text, level 1 (largest)
<h2> Defines heading text, level 2
<h3> Defines heading text, level 3
<h4> Defines heading text, level 4
<h5> Defines heading text, level 5
<h6> Defines heading text, level 6 (smallest)
<head> Indicates the head section of the web page
<hr> Inserts a horizontal rule
<html> The parent tag of every other element
<i> Defines the enclosed text as italic print
<iframe> Defines a floating frame
 Inserts an image
<input> Adds a form control to a form
<ins> Defines the enclosed text as inserted text
<isindex> Officially deprecated; single line prompt
<kbd> Defines the enclosed text as text to be entered by the user
<label> Inserts a label into a form
<legend> The legend for a fieldset
 A list item for a list
<link> A media independent link
<map> Defines a client-side image map
<menu> Officially deprecated; defines a menu list
<meta> Inserts data related to the HTML document (called meta data)
<noframes> Alternate content for browsers that do not support frames
<noscript> Alternate content for browsers that do not support scripting
<object> Inserts an object into the document
 Defines an ordered list
<optgroup> Defines a group of options
<option> Defines an option for a select list
<p> Indicates a paragraph
<param> Provides a property to be passed to embedded content

329

330 How to Do Everything with JavaScript

Tag Name Purpose

<pre> Defines the enclosed text as preformatted

<q> Defines the enclosed text as a short inline quotation

<s> Officially deprecated; defines the enclosed text as strikethrough
<samp> Defines the enclosed text as sample program output

<script> Defines an embedded script

<select> Inserts a list box control into a web form

<small> Defines the enclosed text as small text

 Defines inline text as an entity

<strike> Officially deprecated; defines the enclosed text as strikethrough
 Defines the enclosed text as strong text

<style> Defines an embedded style sheet (CSS)

<sub> Defines the enclosed text as subscript

<sup> Defines the enclosed text as superscript

<table> Creates a table

<tbody> Defines the table body

<td> Inserts a new cell into a table

<textarea> Inserts a multiline text form control into a web form

<tfoot> Defines the table foot

<th> Inserts a new header cell into a table

<thead> Defines the table head

<title> Gives the document a title

<tr> Inserts a new row into a table

<tt> Defines the enclosed text as monospace (fixed-width) text
<u> Officially deprecated; defines the enclosed text as underlined
 Creates an unordered list (bullet points)

<var> Defines the enclosed text as a program variable

JavaScript
Quick Reference

Appendix B

332 How to Do Everything with JavaScript

This appendix lists the statements and system objects available for use in JavaScript. Table B-1
shows all the statements available for use in JavaScript 1.5. No new statements have been added
to the list for JavaScript 2.0. Tables B-2 and B-3 list the system objects for JavaScript 1.5 and 2.0,
respectively.

Statement Description

// Creates a single line of comments

A Creates a block of comments

break Jumps out of a loop or switch statement

continue Starts a loop over at the next iteration

do-while Creates a loop that executes one or more statements as long as the specified condition
is true, but always executes it at least once

for Creates a loop that executes one or more statements until a counter reaches a set value

for-in Creates a loop that iterates over the properties of an object or the contents of an array

if-else Only executes code if the specified condition is true

label Allows break or continue statements to jump out of nested loops

return Causes a function to exit, optionally returning a value

switch Chooses to execute only one of several cases based on the value of the specified
expression

throw Causes an exception to be raised

try-catch Intercepts an exception and handles it

while Creates a loop that executes one or more statements as long as the specified condition
is true

with Allows access to the properties and methods of an object without having to use that object

AC{H=N=RY Statements Available in JavaScript 1.5 and 2.0

Appendix B: JavaScript Quick Reference

Class Name Description

Array Allows lists of data to be stored in a single variable
Boolean A wrapper for Boolean values

Date Lets you work with dates and times

Function Allows you to define a function programmatically

Math Contains convenient mathematical constants and functions
Number A wrapper for primitive numeric values

Object All objects derive from this data type

RegExp Provides support for regular expressions in JavaScript
String A wrapper for string values

QVA{HSN=EVA Built-in System Objects Available in JavaScript 1.5

Class Name Description

Array Allows lists of data of type Object to be stored in a single variable; equivalent to
the Array[Object] data type

Array[type] Allows lists of data of type #ype to be stored in a single variable

Boolean Supports variables that can store only the values true and false

char Supports variables that can store only a single character

ConstArray Allows lists of data of type Object to be stored in a single constant; is equivalent
to the ConstArray[Object] data type

ConstArray[type] Allows lists of data of type fype to be stored in a single constant

DynamicArray[type] Allows resizable lists of data of type fype to be stored in a single variable

Function The “data type” of functions

Integer Supports variables that can only store integers

Never Supports variables that cannot contain any value

Null Supports variables that can only store the value null

Number Supports variables that can only store numbers

Object Supports variables that can contain any value

Prototype Supports variables that contain prototype-based objects (JavaScript 1.5’s way of
handling objects)

StaticArray[type] Allows writable lists of data of type #ype to be stored in a single variable

String Supports variables that can only store strings

Type The “data type” of data types

Void Supports variables that can only store the value undefined

QVACIRSEel Built-in System Objects Available in JavaScript 2.0

333

This page intentionally left blank

Symbols
" (double quotes), for string literals, 74
"" (empty string), 34, 73, 87
(pound sign)
as a valid URL, 186
for RGB values, 262
#special selector, 270
$ (dollar sign), in regular expressions, 87
% (modulus) operator, 42
' (single quotes), for string literals, 74
() (parentheses), for parameter lists, 52
(...) rest parameter, 61
* (asterisk multiplier), 229-230
*/ (asterisk slash), block comment ending, 44
++ operator, 35
. (dot) operator, 73, 77-78
.class file (Java), 316
.css files, 267, 269-270
Jjava code file, 316
s file extension, 157
NET Framework (Microsoft), 14
. (dot) operator, 73, 77-78
.class file (java), 316
Jjava code file, 316
Js file extension, 157
NET Framework (Microsoft), 14
/ (forward slash)
in HTML, 143
in regular expressions, 87, 89
/* (slash asterisk), block comment beginning, 44
// (double forward slashes), as comment markers,
19, 44
: (colon)
label ending, 43
separating properties and values, 122
; (semicolon)
for appending JavaScript commands, 159
statement ending, 100
<and > (angle brackets), in HTML, 142
<!-- and --> HTML comment markers, 19, 144, 156

Index

<IDOCTYPE> tag, 146-147
<?xml?> declaration, 145
<applet> tag, 315-317, 319
<applet> tag attributes, 317
 tag, 261, 263
<body> tag/element, 19, 276-277

 tag, 263
<button> element, 194
<center> tag, 263
<div> tag/element, 174-176, 198, 264-265,
269,277
attributes, 265
with id attribute of special, 270
<embed> tag, 315, 321-324
attributes, 321
height attribute, 321
src attribute, 321
width attribute, 321
 tag, 261-263
 tag color attribute, 262
<form> tag/element, 184-186
action attribute, 185-186, 195
attributes, 184-185
event handlers, 195
method attribute, 195
onsubmit attribute, 195-197, 220
submit() method, 219-220
<frame> tag, 225-226
attributes, 233-234
frameborder attribute, 235
name attribute, 235
noresize attribute, 235
src attribute, 234
<frameset> tag/element, 225, 229
attributes, 225
onload and onunload event handlers, 226
rows and cols attributes, 227-232
<head> tag, 18, 226
<h1> header tag, 19
<html> tag, 18, 145

336 How to Do Everything with JavaScript

<i> tag, 261 Access key, key combination to activate, 189
 tag/element, 211, 276 Accesskey parameter, 189
attributes, 218 Activate event, 209
id attribute, 275 ActiveMovie control (Microsoft), 321-323
src attribute, 211 ActiveScript, 142
<input> element, 187, 194, 271 ActiveX controls, 321, 324
default type, 186 ActiveX (Microsoft), 314
maxlength attribute, 189 Address bar (browser), 258
size attribute, 189 Adobe Acrobat PDF documents, 142
value attribute, 189, 194 Adobe GoLive, 12-13
<layer> tag, 172-175 Alert box, 20-21, 197
<link> element, 267, 269 Alert message, displaying, 20-21, 288-289
<meta> tag, 147-148 Alert (message) box, 288-289
<meta> tag attributes, 147 Alert() method, 288
<noframes> tag, 226-227 Allaire Corporation, 11
<noscript> tag, 154-156 Ancestor, class as, 130
<object> tag/element, 315, 321-322, 324 Angle brackets (< and >), in HTML, 142
<object> tag classid attribute, 321-322 Animate() function, creating, 275
<option> element, 189, 193 Animating text, 277
<option> element attributes, 193 Animation, 259-278
<param> tag, 318-319 explained, 260
<script> tag/element, 16, 153-154, 158, 198 using JavaScript for, 274-278
attributes, 19, 153-154 using timer events, 274
in an HTML page, 17-18 API (application programming interface), 244
language attribute, 153 Apple Quicktime Player, 322
src attribute, 157 Applets (Java), 5, 315-320
type attribute, 154 Application error, defined, 46
<select> element, 189 Array of arrays, 110, 112
attributes, 192 Array class, 102
for a list box, 217 Array class subclasses, 111
multiple attribute, 191 Array elements
size attribute, 191-192 accessing, 104-106
 element, 265 restricting to type, 113
 element attributes, 265 Array index, 96, 104-105
<style> tag/element, 151, 264, 266-267 Array literals, 100-101
<textarea> element, 193, 198 Array object, 96
<textarea> element attributes, 193 creating, 97-104
<title> tag, 147 index property, 101
? (question mark), in expression matching, 34 input property, 101
[1 (square brackets operator), 73, 96, 104-106 length property, 99, 101
~ (caret), in regular expressions, 87 methods, 102-104
{ and }, for enclosing statements, 32 properties and methods, 101-104
{} (curly brackets), for object literals, 122 Array of zero length, 97
\ (backslash), in regular expressions, 88-89 Arrays, 95-115
\\ double backslash (escaped backslash), 89 creating empty, 97-99
\d tokens, in regular expressions, 87-88 creating and initializing in one code line, 100
, (comma) creating using the Array class, 102
separating parameters, 52 JavaScript 2.0 enhanced, 111-112
separating property-value pairs, 122 of long lists, 100

multidimensional, 107-115

with numerical indexes, 106
A parallel, 109-110

setting and retrieving values in, 104-106
Abort event, 216 specifying an initial length for, 99

Absolute positioning, 258

As operator, 51

ASCII codes, 214

ASP NET platform, 14

ASP (Application Server Page), 142

ASP web page, form that submits itself to, 195
Asterisk (*) multiplier, 229-230

Asterisk and slash (*/), block comment ending, 44
Attributes, explained, 184

AVI files, 321

B

Backslash (\), in regular expressions, 88-89
Block comments, 44
Blur event, 209-210
Blur event firing order, 210
Blur() method, 220
Body section (HTML document), 18-19, 145
Boolean data type, 27, 91
converting other data types to, 31
expressions that return, 50
for loaded frames, 239-240
Boolean literals, 91
Break statement, 34, 40-41, 58
Breakpoints, in debugging, 293
Browser address bar, 258
Browser compatibility issues, 162-170
of code, 171-177
of DHTML, 171
of events, 220-221
of styles, 272-273
Browser DOMs, 14, 162
Browser error messages, interpreting, 282
Browser events, 158
handling, 207-221
supported by Internet Explorer, 199
Browser frames. See Frames (browser)
Browser history list, 257-258
Browser market features competition, 170
Browser plug-ins, 254, 313-325
Browser refresh, 258
Browser sniffing code, 221
Browser software properties, 254-256
Browser status bar, 253
Browser support for methods, 169-170
Browser timers, 251
Browser type, detecting, 164, 167, 256
Browser usage statistics, 163
Browser version
detecting, 164
knowing the minimum needed, 15
Browser window, 252-254
resizing and centering, 256-257
writing text to, 21-22

Index

Browsers
checking your code on, 312
detecting, 174
detecting the type running, 164-169
DOMs of, 14, 162
first JavaScript-enabled, 6
getting for testing your code, 312
interacting with, 243-258
with no support for frames, 226-227
redirecting to a new web page, 258
reliance of on external plug-ins, 315
sending back to previous page(s), 257
testing on all, 312
that don't support scripting, 154-156
using the latest release, 163
web surfer use of, 162-163, 169
Bug, defined, 278
Button caption, 194
Button controls (form), 193-194, 220, 320, 323
Buttons (form), 193
Byte, 91

C

Calculators (online), 182-183
Calendar Control (Microsoft), 324-325
Call stack, 102
Calling a function, 53
Captions for push buttons, 194
Capturing an event, explained, 208
Caret ("), in regular expressions, 87
Case clauses, 33-34
Catch blocks, Netscape conditional, 302
Catch clause, 297-304
Catching, explained, 195
Change event, 216
Changeimage() function, 211-212, 274
Char data type, 91-92
Checkform() function, 200-202
Checkkey() function, 214
Child classes, 131
Child nodes, 246
Class attribute of HTML elements, 265
Class inheritance, benefits of, 132-133
Class members, 68
public vs. private, 136
static vs. instance, 135-136
Class properties, 78. See also Properties
accessing, 120, 128
creating by assigning a value, 126
defining in JavaScript 2.0, 127
inherited, 131, 134
Classes
adding constructor functions to, 127

337

How to Do Everything with JavaScript

adding methods and properties to, 123-125
as ancestors, 130
attaching functions to, 124
built-in, 63-93
and code reuse, 308
containing multiple constructors, 131
creating, 117-137
creating methods using, 128
defining functions in, 128
defining in JavaScript 2.0, 127-129
extending, 123-125
inheriting properties and methods, 131, 134
instantiating using the new keyword, 128
JavaScript 1.5, 70
organizing using inheritance, 130-135
for shopping cart items, 308
testing, 308
turning properties and functions into, 68-69
using as data types, 71
Classid attribute (<object> tag), 321-322
Click() method, 220
Clickme() function, 220
Client, defined, 8
Client-server analogy, 8
Client-server communication, 184
Client-side forms, 182-183
Client-side JavaScript
defined, 8
processing form input, 182-183
Client-side language, JavaScript as, 14
Closing tags (HTML), 142-143
Code reuse
by class inheritance, 132
by copy and paste, 122
using classes and objects, 308
Colon (2)
label ending, 43
separating properties and values, 122
Colors, specifying in HTML, 262
Cols attribute (<frameset> tag), 227-232
Commas
for separating parameters, 52
for separating property-value pairs, 122
Comment markers, HTML vs. JavaScript, 19, 44
Commenting out a function (in debugging),
289-290
Comments
HTML, 19, 144, 156
JavaScript, 19, 43-44
uses for, 44, 289-290
Compiler, defined, 9
Componentizing a program, 307
Compound attributes, explained, 268
Conditional catch blocks (Netscape), 302
Conditional statements, 30-34

Confirm box, 21
Console (JavaScript), 283, 286-287, 290-291
Const keyword, 28
Constants, 27-29, 67, 114-115
ConstArray, creating, 114-115
ConstArray class, 114-115
Constructors (constructor functions), 72
adding to classes, 127
calling, 119-121
class containing multiple, 131
creating, 119
creating objects from, 121
Continue statement, 40-41
Control focus, explained, 188
Control name, accessing a control by, 200
Cookies, explained, 248
Copy and paste, code reuse by, 122
Counter variable, 28, 55-56
Cross-browser compatibility issues, 162-170
of code, 171-177
of DHTML, 171
of events, 220-221
of styles, 272-273
Cross-frame scripting, security risks of, 239
CSS attributes, 268
vs. JavaScript property names, 272-273
list of, 269
reference guide to, 268
CSS (Cascading Style Sheets), 150-153. See also
Style sheets
basics of, 260-273
benefits of, 150
vs. frames, 224
selectors in, 266-267
sizing and positioning, 269-270, 276-277
why they are cascading, 261
CSS Level 1 standard (W3C), 261
CSS positioning attributes, 270
animation using, 276-277
defining, 269
CSS validator service (W3C), 273
Curly brackets ({})
for enclosing statements, 32
for object literals, 122
Current date and time, retrieving, 64

D

Data integrity, private class members for, 136
Data lists. See Array object; Arrays
Data storage, 26-29
Data types (JavaScript 2.0), 28, 59, 69-71, 91-93
converting to Boolean, 31
using classes as, 71

Date class, 64, 79-80
Date class constructor formats, 82
Date constructor, 80, 82
Date object, 79-80, 124
Date object getMonth() function, 99
Date object methods, list of, 80-82
Date-handling functions, 79-82
Debuggers, 291-293
Debugging code
adding to programs, 287-290
explained, 288
Debugging (of JavaScript programs), 281-293
defined, 278
designing for easy, 306-308
use of breakpoints, 293
using commenting for, 289-290
Debugging software, 291-293
Default clause (switch statement), 34
Default object, setting, 44-46
Deprecated HTML tags, 145-146
Developers testing their own programs, 311
Development environments, 7-13
DHTML (Dynamic HTML), 151, 171-177
DHTML menu, 172
Display settings (operating system), 256-257
Document model, querying, 169-170
Document object, 248-252
arrays, 248
body property, 249
forms array, 200-202
in Internet Explorer 6.0, 74
methods, 248
using to update the time, 251
Documentation, using comments for, 144
Document.write() function, 21-22, 42, 54, 58,
248,288
Dollar sign ($), in regular expressions, 87
DOM (browser), 14, 162
DOM (Document Object Model), 5, 8, 244
basics of, 245-248
document parts considered nodes, 246
explained, 244
objects in, 245
DOM (JavaScript), 7
DOM Level 1 (DOM 1), 169, 246
DOM Level 3, 247
DOM Level 2, 246, 247
DOM Level 2 Events specification, 208
DOM Level 0, 245

DOM methods, checking before using, 169-170

DOM 1 hierarchy (DOM tree), 246
DOM standard (W3C), 8, 244
DOM traversal, 247

DOM tree, 246-247

Index 339

DOS/Windows environment, JavaScript in, 9

Dot operator (.), 73, 77-78

Dothis() function, 194

Double backslash (\\), 89

Double forward slashes (//), for comment markers,
19, 44

Double quotation marks ("), for string literals, 74

Douglas Crockford's JavaScript Lint validator, 287

Do-while loop, 37

Dreamweaver MX, 10-12, 291

Drop-down list box control, 189-190, 217, 251-252

Dynamic list box, 251-252

Dynamic style modifications, 270-272

Dynamic text, marking, 265

Dynamically loading images, 274-276

DynamicArray, creating, 114

DynamicArray class, 114

E

ECMA (European Computer Manufacturers
Association), 5, 59
ECMAScript, 6
ECMAScript Edition 4 standard, 6
ECMAScript specification, 287
800 by 600 resolution, 256
Elements array, for accessing form values, 202-203
Else clause, 32
Else-if clause, 32
E-mail, form contents in, 185
Embedded multimedia, plug-ins for, 254
Embedded style sheets, defining, 266-267
Empty arrays
creating, 97-99
testing for potential use of, 311
Empty function, defining, 119
Empty string (""), 34, 73, 87
Environments, JavaScript versions in different, 142
Error checking, stricter level of, 283
Error details in 1E, 285
Error event, 216
Error handling, 46-49
Error icon, 283
Error message box (in IE), 284
Error messages, 47
finding the source of, 284-285
interpreting, 282, 285-287
in JavaScript console, 286-287
line numbers listed in, 285-286
Error object (IE), 298, 301
creating, 301
properties, 301
Error reporting, turning off and on, 282-284
Error string (Netscape), 298

340

How to Do Everything with JavaScript

Error types in JavaScript, 283
Error-handling code, testing, 311
Errorproofing a program, 295-312
Errors, 46
causes of, 282-287
detecting programmatically, 48
forcing to test error-handling code, 311
returning back to the program, 296
sources of, 163
things that can go wrong, 46
Escape() function, 85
Escaped character sequence, 85
Escaping a file, explained, 85
Event attributes, setting, 218
Event bubbling, 219
Event firing test, 210, 212-213
Event handlers, 185, 208
<form> element, 195
returning false, 213
setting for HTML tags, 218
using the event property, 218
viewing, 218
writing, 208-217
Event handling (browser events), 207-221
Event names, capturing, 199
Event property, 218
Event triggering in JavaScript, 219-220
Events specification (DOM Level 2), 208
Events (web form), 185-186, 188, 192, 208
and browser incompatibility, 220-221
cancelling, 213-214
capturing, 208
catching on form controls, 197-199
categories of, 209
first handled by innermost element, 219
form control programmable, 197-199
intercepting, 208
invoking JavaScript in response to, 158
order of firing, 209-210, 212-213
that are not specified by standards, 221
Exception bubbling, 299-301, 304
Exceptions, 296-297
catching using try-catch, 297-304
creating using the throw statement, 304-306
re-throwing, 305
unhandled, 303
Expandable tree menu using DHTML, 173
Expressions, 27, 31-32, 38, 49-50
as parameters to function, 50
list of types of, 49
that return Boolean values, 50
Extends keyword, 130

External JavaScript file, loading, 157-158
External styles, importing, 267

F

F (float) suffix, 71
FactorString variable, 57
FIFO (first in first out) order, 102
File, escaping, 85
Finally clause in try-catch statement, 302-304
Finally clauses (nonstandard), 302-304
FireEvent() method, 220
Firing of events, order of, 209-210, 212-213
Flash files (Macromedia), 142
Float number (F) suffix, 71
Focus (control), explained, 188
Focus event, 209-210
Focus event firing order, 210
Focus() method, 220
Font attribute, 268
Font style elements (HTML 4.01), 148-149
For loop, 37-38, 252
For-in loop, 38-40, 61, 73, 105-106
iterating over an array, 106
iterating over a hash table, 105
Form control values, 200-205
accessing with getElementByld(), 204
accessing with getElementsByName(), 204
accessing with getElementsByTagName(), 205
accessing using an elements array, 202-203
accessing using a forms array, 200-202
Form controls
catching events on, 197-199
currently active, 188
list of, 187
programmable events, 197
testing for existence of before accessing, 241
Form-handling programs, technologies to create, 183
Forms array, 200-202, 248
Forms (web), 179-206
adding controls to, 186-195
getting in e-mail, 185
handling user input, 180
initializing, 217
onfocus/onblur/onchange events, 188, 192
onsubmit and onreset events, 186
processing with client-side JavaScript,
182-183
processing input on a web server, 183-184
requesting user input, 181-182
submissions with onsubmit, 195-197

Fortran, 64
Forward slash (/)
in HTML, 143
in regular expressions, 87, 89
Frame borders, making invisible, 235
Frame size values
absolute, 228-230
relative, 229-230
setting, 227-230
Frames array, 237, 253
Frames (browser), 223-241
absolute size of, 228-230
accessed by name, 237
accessing in a different domain, 239
accessing using JavaScript, 236-237
assigning names to, 235
benefits of, 224
Boolean variable for loaded, 239-240
and browsers that do not support, 226-227
calling JavaScript functions from, 235-238
cascading effect between, 239
vs. CSS, 224
defined, 224
defining and naming, 233-235
horizontal, 230-231
limiting the number of, 228
problems of, 224
relative size of, 229-230
synchronization between, 239-241
testing for existence of, 241
vertical, 230-231
Frameset document HTML code, 226
Frameset HTML, explained, 146
Frameset layout, 226
Framesets, 224
with both rows and columns, 232
creating in HTML, 225-233
defining and naming frames in, 233-235
and frame size, 228
nested, 233-234
FrontPage Explorer, 10-11
FrontPage Server Extensions, 10
FrontPage 2002, 10
Function keyword, 52
Function parameters, 52, 54-56
expressions as, 50
named, 60-61
passed by value, 56
unlimited number of, 61
unnamed, 61
Function syntax, 52

Index

Functions (JavaScript), 27, 51-59, 68, 277
attaching to classes, 124
attaching to objects, 124-125
calling, 53
calling from frames, 235-238
in classes, 68-69
commenting out (in debugging), 289-290
debugging, 289-290
defined, 27, 68
defining, 52-55, 119, 128
defining inside classes, 128
to detect browser type, 167
empty, 54, 119
for error-checking, 297

forcing to return hard-coded values, 289-290

hyperlinks calling, 158-159

to improve organization and readability, 307

specific to version 2.0, 59-61

syntax of, 52

testing, 308

testing for existence of before
accessing, 241

that cause the program to exit, 93

that do not return a value, 92-93

triggering with onclick event, 320

G

GetElementByld() method, 169-170, 175, 204, 248,

274,319
GetElementsByName() method, 204, 248
GetElementsByTagName() method, 205
GetMonth() function, 99
GoLive (Adobe), 12-13
GUI (graphical user interface), 4

H

Hash tables, 104-105

Header section (HTML document), 18-19, 145
Height attribute, 270

Hexadecimal color values, 262
Hierarchical tree, 130

History object, 257-258

History object go() method, 257
History object length property, 257
History object methods, 257
HomeSite 5, 11-12

Horizontal frames, defining, 230-231
HTML comments, 19, 144, 156

341

342

How to Do Everything with JavaScript

HTML document
body section, 145
building, 145-146
in a DOM tree, 247
head section, 145
keywords in, 147-148
parts of, 18-19
title for, 147
HTML editors, 10-13
HTML elements
ID attributes of, 204
inheritance of style attributes, 261
style attributes, 261, 266
style/class/id attributes, 265
using to assign style, 261-263
HTML event handling, 215-217
HTML events, 209, 215-217
HTML files for frames and frameset, 235
HTML form controls, list of, 187
HTML forms, 180-199
adding controls to, 186-195
client-server communication when
submitted, 184
with client-side JavaScript, 182-183
inserting on a web page, 184-199
onfocus/onblur/onchange events, 188, 192
onsubmit and onreset events, 186
processing input on a web server, 183-184
requesting user input, 181-182
HTML 4.01
font style elements, 148-149
phrase elements, 148-149
HTML 4.01 tags, complete list of, 328-330
HTML frames, 224-235
HTML (Hypertext Markup Language), 4. See also
HTML elements; HTML tags
basic structure of, 142-153
creating framesets in, 225-233
testing JavaScript programs with, 16-19
text formatting, 148-153
user controls in, 180-181
viewing underlying, 144
HTML markup tags. See HTML tags
HTML tag names, lowercasing, 146
HTML tags, 142
<A HREF>, 158
<noscript>, 154-156
<script>, 153-154, 157
<style>, 151
to add scriptable objects, 315
closing tags, 142-143
complete list of, 328-330
deprecated, 145-146
end tag, 145

for formatting a page, 261-263
for formatting text, 148-150
proprietary, 170-171
setting an event handler for, 218
start tag, 145

HTML testing harness, 310

HTML validation service, 170

HTTPS protocol, 190

Hyperlink
to simulate a submit button, 219
using to call JavaScript, 158-159

1d attribute of HTML elements, 204, 265
IDEs (integrated development environments),
7,296

IE (Microsoft Internet Explorer), 8, 162
ActiveX controls for, 314
browser events supported by, 199
calling the submit() method, 220
error details, 285
error message box, 284
Error object, 298, 301
JavaScript in, 5
navigator.appName property, 165
navigator.app Version property, 166
Object expected message, 286
turning error reporting off and on, 282-284

IE 6.0
document object in, 74
interpreting the <div> tag, 176

IE web site, 16

If keyword, 302

If statement, 31-32, 170, 240, 297
checking the format of, 287
forms of, 32

If-else statement, 32

If-else-if statement, 33

IIS web servers, 142

Image rollover effects, 212

Images
dynamically loading, 274-276
inserting, 211
switching to animate, 274-276

Images array, 248

Incrementor section (for loop), 38

Index (array), 96, 104-105

IndexOf() method, 78

Infinite loop, 35, 38

Inheritance, 130-135
benefits of, 132-133
of web page style attributes, 261

Initialize() function, 217

Initializer section (for loop), 38
Inline styles, defining, 265-266
Inline text, 265
Input-output functionality, 244
Instance members, 135-136
defined, 78
vs. static members, 78
Instantiating an object, 72
Integer data type, 91
Integers, range of values for, 28
Interfaces, 132
Internet, privacy and, 190
Internet search engines, specifying keywords for,
147-148
Invalid date, testing for potential use of, 311
Invalid inputs, testing for potential use of, 311
IPlanet Web Server, 14, 142
Is operator, 51

J

Java applets, 5, 315-320
Java compiler, 316-317
Java language, 315
Java SDK (Software Development Kit), 317
JavaScript (see also JavaScript 1.5; JavaScript 2.0)
adding to a Web page, 153-154
appending, 159
as a client-side language, 14
as a scripting language, 4
as a server-side language, 14-15
as an official standard, 5
calling using hyperlinks, 158-159
comments, 19
debugging, 281-293
designing for easy debugging, 306-308
developed using a text editor, 296
development tools, 9-13
distributed as source code, 296
errorproofing, 295-312
for form control values, 200-205
fundamentals of, 25-61
history of, 4-7
in DOS/Windows environment, 9
in Internet Explorer, 5
managing browser plug-ins with, 313-325
origin of, 5
vs. other languages, 13
programming terms, 27
quick reference to, 331-333
reasons for errors in, 283
replacing with HTML text, 156
testing using HTML, 16-19
types of errors in, 283

Index

what it can and cannot do, 13-15

what it is, 4

what not to use it for, 15

where it is today, 6-7

which version to use, 15
JavaScript Console, 283, 286-287, 290-291
JavaScript debugger, 291-293
JavaScript DOM, 5, 7
JavaScript Editor (C Points), 291
JavaScript environments and object models, 244
JavaScript file, loading external, 157-158
JavaScript Lint validator, 287
JavaScript 1.5

complete list of statements, 332

core classes, 70

creating objects in, 118-126

list of system objects, 333

reasons for errors, 283
JavaScript releases, chronology of, 7
JavaScript templates, 16-19
JavaScript 2.0

added features, 13-14

breaking code into manageable chunks, 307

breaking long lines of code, 100

browsers that don't support, 15

complete list of statements, 332

creating objects in, 126-137

data types, 28, 59, 69-71

defining classes, 127-129

enhanced arrays, 111-112

extra spaces in code, 100

functions, 59-61

interfaces and, 132

list of system objects, 333

new data types, 91-93

new operators, 51

newline character in code, 100
JavaScript versions, 7

in different environments, 142

specifying version numbers, 164
Javascript: prefix (in HREF URL), 159
JavaScript-enabled web browser, the first, 6
JavaScript-enabled web pages, developing, 7
JRE (Java Runtime Environment), 317
JScript (Microsoft), 5-6, 9
JSP (Java Server Page), 5
JVM (Java Virtual Machine), 315, 317

K

Key event firing order, 213
Key event handlers, 212-214
Key events, 209, 212-214
Key (index), 105

343

344 How to Do Everything with JavaScript

KeyCode property of window.event object, 214 embedding a Media Player 9 object, 322
Keydown event, 213-214 Media Player 6.4, 322

Keypress event, 213 Members (class), 68

Keyup event, 213 Methods, 44-45

Keyword, defined, 27 adding to classes, 123-125

Keywords in HTML documents, 147-148 attaching to objects, 125-126

browser support for, 169-170
calling, 129, 137
L calling public, 137
checking before using, 169-170
L (long) suffix, 71 of a class, 78, 123-125
creating using classes, 128

Label names, 43
Labeling a loop, 43
Labels (named lines of code), 42-43 gie}fln.ed,d6z 31134
Language attribute (<script> tag), 19 1nt er:te 7’3 >
Layers (in Netscape 4), 169, 172-174 Mi prfltvze,. Movi 1321323
LIFO (last in first out) order, 102 M¥croso f AcgveX O;’ ;Z control, .
Line numbers in error messages, 285-286 lcrosoft Actives,

: Microsoft ASP .NET platform, 14
List box controls (form), 189-193 .
Lists, storing, 96 M¥crosoft Calendar Control, 324-325
Literal, defined, 27 Microsoft FrontPage, 10

: . . Microsoft IE web site, 16
LiveWire server-side language, 14 . ’
Load event, 215-216 Microsoft IIS web server, 142

. : Microsoft JScript, 5-6
Location object, 258 . i
Location object methods, 258 Microsoft .NET Framework, 14

. ! . Microsoft Script Debugger, 293
Loc:fmon object properties, 258 Microsoft Script Editor, 291
Logic errors, 283 MIME standard. 154
Long integer, 71 sandard,

: . MIME type, 154
Long lines of code, breaking, 100 Modifylayer() function, 198-199

o Modular programming, 66
labeling, 43
Modules, 66
nested, 42 Nodues o o
uses for, 34 odulus (%) operator,

Months, converting numeric to string, 99
Mouse event handling, 211
Mouse events, 209

Low-level data types, 71

list of, 211
M tracking, 211
Machine type suffixes, 71 Mouseout events, 211-212
Machine types in JavaScript 2.0, 71-72 Mouseover events, 211-212, 274
Macromedia Dreamweaver MX, 10-12, 291 Moveball() function, creating, 277
Macromedia Flash files, 142 Movies, embedding in web pages, 321-324
Macromedia Flash plug-in, checking for, 255 Mozilla JavaScript Debugger, 292
Macromedia HomeSite 5, 11-12 Mozilla web browser, 8
Mailto: protocol, 185 MSDN CSS attributes reference guide, 268
Main frame, 224 Multidimensional arrays, 107-115
Manual line breaks (
), 263 Music, embedding in web pages, 321-324
Master array, 110-111 Music objects, connecting to with JavaScript,
Math class, 78 322-324

Math class static constants, list of, 79
Math object, 78
Math object static methods, list of, 79-80 N

Mathematical functions, 78 Named keyword, 60-61

Mgglg_ggfcts, connecting to with JavaScript, Named parameters, 60-61

Media Player (Windows), 321 NaN (Not a Number) constant, 71

Navigator 4.0 (Communicator), 8
Navigator object, 164, 254-256
appName property, 165
app Version property, 166, 168-169
properties, 164-169, 255-256
userAgent property, 166, 168, 175
Navigator 6, 8
Navigator 2.0 browser, 5-6
Nested framesets, creating, 233-234
Nested loop, 42
NetObjects Fusion 7, 13
Netscape Browser Central, 16
Netscape Communications, 5
Netscape Enterprise Server, 14
Netscape 4 web browser
layers in, 169, 172-174
style sheets in, 273
Netscape Navigator 4.0 (Communicator), 8
Netscape Navigator 6, 8
Netscape Navigator 2.0 browser, 5-6
Netscape Plug-In API, 314
Netscape 7.0, interpreting the <div> tag, 177
Netscape web browsers
error string, 298
navigator.appName property, 165
navigator.app Version property, 166
original DOM, 245
syntax for catch clauses, 302
Netscape/iPlanet web servers, 142
Never data type, 93
New keyword/operator, 69, 72, 78, 97,
128-129, 301
Nodes (hierarchies of data), 246
Nonbreaking spaces (), 263
Nonstandard coding practices, 170
Null data type, 93
Number data type, 91
Number primitive, 91
Numbers, converting strings into, 82-84
Numeric literals, assigning to a variable, 71
Numeric to string conversion, 99
Numerical indexes, arrays with, 106

O

Object arrays, 113

Object data type, 92

Object instantiation with the new operator, 72
Object literal, 122-123

Object methods. See Methods

Object models, JavaScript environments and, 244

Object properties. See Properties
Object-oriented programming, 66-69, 118
Objects, 44, 64-69

Index

accessing with [] operator, 73
attaching functions to, 124-125
attaching properties and methods to, 125-126
and code reuse, 308

creating, 117-137

creating as object literals, 122
creating in JavaScript 1.x, 118-126
creating in JavaScript 2.0, 126-137
creating from one constructor, 121
creating using the new keyword, 129
creating using an object literal, 123
defined, 67

extending, 125-126

setting default, 44-46

testing, 308

Officially deprecated, explained, 145
Onblur event (form), 188, 192
Onchange event (form), 188, 192
Onclick event (button), 220, 320
One-dimensional arrays, 107

Onfocus event (form), 188, 192
Onload event handler, 215-217, 226, 276-277
Onmouseout tag attribute, 218
Onmouseover tag attribute, 218
Onmouseover event handler, 211
Onpaste event handler, 221

Onpaste event (text box control), 221
Onreset event (form), 186

Onsubmit event (form), 186, 195-197
Onunload event handler, 226
Operands,defined, 27

Operating systems

display settings, 256-257
testing on all, 312

Operators, 27, 50-51

JavaScript 2.0 new, 51
types of, 50

Outer frameset, 233

P

Parallel arrays, 109-110
Parameter lists in parentheses, 52
Parameters (to functions), 52, 54-56

expressions as, 50
named, 60-61

passed by value, 56
unlimited number of, 61
unnamed, 61

Parent class, defining, 130

Parent object (window), 253

Parent-child relationship, 130

Parentheses (), for function parameter lists, 52, 54
ParseFloat() function, 82, 84

345

346

How to Do Everything with JavaScript

Parselnt() function, 82-83
Password box with asterisks displayed, 190
Pattern matching (regular expressions), 86-87
PDF documents (Adobe Acrobat), 12, 142
PDF (Portable Document Format), 12, 142
Perl language, 9
Phrase elements (HTML 4.01), 148-149
Plug-ins
defined, 314
explained, 254
list of URLSs for, 314
managing with JavaScript, 313-325
Plugins array, 254
Polymorphism, 92, 133
Pop-up dialog boxes, types of, 20
Pop-up web advertisements, 254
Pop-up window, 254-255
Position attributes (CSS), animation using, 276-277
Positioning elements on a Web page, 268-270
Pound sign (#)
for <form> action attribute, 186
for RGB values, 262
Practical Browser Sniffing Script, 168
Primitives, 91
Privacy and the Internet, 190
Private class members, 136
Private keyword, 136
Private properties and methods, 73
Procedural programming, 65-66, 308
Procedures, 65
Program errors, catching, 48-49
Program flow, 29-30
Programming methodologies, 65-68, 306
Programming terms, 27
Properties, 44, 67
accessing, 120, 128
accessing with [] operator, 73
adding to classes, 123-125
attaching to objects, 125-126
of a class, 68-69, 78
creating by assigning a value, 126
inherited, 131, 134
private, 73, 136
Property names (JavaScript)
case-sensitivity of, 122
vs. CSS attribute names, 272-273
Proprietary events, 221
Proprietary extensions, avoiding, 273
Proprietary markup tags, 170-171
Prototype property, 123
Prototyping, 123
Public class members, 136
Public keyword, 136
Public methods, calling, 137
Push button control (form), 193-194, 220, 320, 323

Q

Question mark (?), in expression matching, 34
Queue, 102

R

Real estate, 256
RegExp object
creating patterns with, 89-90
methods of, 89
Regular expression language, 87-88
Regular expression literal, 89
Regular expressions, 86-90
pattern matching, 86-87
special tokens, 88-89
syntax of, 88-89
uses for, 87
Reset event, 215
Resize event, 216
Rest parameter (...), 61
Re-throwing an exception, 305
Return statement, 53, 58-59
Return values (function), 58, 297
RGB (red-green-blue) values, 262
Rows attribute (<frameset> tag), 227-232
Rule selectors, 266-267
Run-time errors, 283

S

Screen object, 256
Screen object properties, 256
Screen size, 256
Screen space, resizing components based on, 256
Script, defined, 4
Script Debugger (Microsoft), 293
Script debugging, disabling in IE, 284
Script Editor (Microsoft), 291
Scriptable objects, inserting into web pages, 315
Scripting language, 14
Scroll bar (vertical), multiline text box with, 191
Scroll event, 216
Scrollable pop-up window of multiple choices, 190
Scrolled list box control, 189, 191
Search-and-replace, with regular expressions,
86-90
Security, private class members for, 136
Select event, 216
Self object (window), 253
Semicolon (;)
for appending JavaScript commands, 159
statement ending, 100

Server, defined, 8
Server-based web applications, creating, 8-9
Server-side JavaScript (SSJS), 8, 14-15, 142
SetTimeout() function, 251
Show Details button (IE error message box), 284
Sibling nodes, 246
Signed scripts, 8
Single quotation mark ('), for string literal, 74
Slash and asterisk (/*), for block comment, 44
Special data types, 92-93
Square brackets ([]) operator, 73, 96, 104-106
Src attribute
of <embed> tag, 321
of <frame> tag, 234
of tag, 211
of <script> tag, 157
SSL (Secure Sockets Layer), 190
Standards. See W3C
Starting tags (HTML), 142
Statement block, 32
Statements, 27, 30-49
categories of, 30
lists of JavaScript 1.5 and 2.0, 332
Static (class) members, 68, 135
defined, 78
vs. instance members, 78
Static keyword, 135
StaticArray, creating, 112-113
StaticArray class, 112-113
Status bar (browser), 253
Storing data, 26-29
Storing lists, 96
Strict HTML, explained, 146
Strict mode (error checking), 283
String class constructor, 76
String data type, 76, 91
String literal, 74-75
defined, 74
throw statement passing, 305-306
String object
creating, 73-78
creating using string data type, 76
creating using a string literal, 74-75
indexOf() method, 169
length property, 75
methods, 76-77
Strings, 27
converting into numbers, 82-84
converting numbers to, 99
with invalid characters, 85
using as array indexes, 104
valid, 73
ways to create, 74
Style attribute of HTML elements, 265-266, 268

Index

Style sheet @import command, 267
Style sheet rules, 266
Style sheets, 150-153, 261
advantages of, 264
creating, 276
defining embedded, 266-267
vs. frames, 224
in Netscape 4 web browser, 273
Styles, 260
assigning using HTML elements, 261-263
browser platform issues of, 272-273
changing for all pages at once, 267
importing external, 267
modifying using JavaScript, 270-272
precedence of, 267
for text boxes, 271
using style sheets for, 264-267
Submit button, 193, 195-196
disabling, 205
hyperlink to simulate, 219
Submit event, 215
Submit() method (<form> object), 219-220
Sun Microsystems, 14, 317
Sunny Day Syndrome, 311
Switch keyword, 33
Switch statement, 33-34
Syntax errors, 283
System classes, 63-93. See also Classes
System errors, 46, 48
System objects (see also Objects)
in JavaScript 1.5, 333
in JavaScript 2.0, 333
System testing, 312

T

Tags (HTML). See HTML tags
Templates (JavaScript), 16-19
body section, 19
creating in Notepad, 16-17
Testing harness, creating, 309-311
Testing your code, 282, 309-312
Text
animating, 277
marking dynamic, 265
preparing for sending to web server, 84-85
writing to the browser window, 21-22
Text area control, 193
Text block
explained, 265
naming, 269
Text box control events, capturing, 197

347

348

How to Do Everything with JavaScript

Text box controls (form), 186-189
attributes, 187-188
onpaste event, 221
style of, 271
Text editor, 9-10
Text formatting
HTML elements for, 148-150
with style sheets, 150-153
This object, 119
Three-dimensional arrays, 107
Throw statement, 48-49, 297, 304-306
Time, keeping correctly updated, 250
Timer events, animation effect using, 274
Today variable, 64
Top object (window), 253
Transitional HTML, explained, 146
Triggering events, 219-220
Try clause, 297-304
Try-catch statement finally clause, 302-304
Try-catch statements, 47-48, 297-304
Two-dimensional arrays, 107-110, 112
Type attribute (<script> tag), 19

U

UL (ulong) suffix, 71

Unhandled exceptions, 303

Unicode character set, 214

Unload event, 215

Unnamed parameters, 61

Unsigned long (ulong/UL), 71

Unstructured programming, 65, 307

Update time() function, 250-251

URL format, 84

URL string, characters in, 84

URLSs (Uniform Resource Locators), 84

U.S. Postal Service change of address form, 181
User controls, in HTML, 180-181

User ID and password, 190

User information, gathering and processing, 180
User input, requesting using HTML forms, 181
User interface event handling, 209-210
User-friendly message, 48

User-input prompt box, 21

Users, communicating with, 19-22

Vv

Valid JavaScript code, 287
Validating parsers (validators), 287
Value, defined, 27

Var keyword, 27

Variable scope, 56-58

Variables, 27, 67

assigning numeric literals to, 71

in classes, 68

defined as machine types, 71

defining, 27-29, 55

number of defined by a program, 96

scope of, 56-58

testing for existence of before accessing, 241
VBScript (Visual Basic Script), 5, 9
Versions of JavaScript in different environments, 142
Vertical frames, defining, 230-231
Vertical scroll bar, multiline text box with, 191
Visibility attribute, 270
Visual Studio .NET, 14
Void data type, 92-93

W

Web advertisements (pop-ups), 254
Web browser address bar, 258
Web browser compatibility issues, 162-170
of code, 171-177
of DHTML, 171
of events, 220-221
of styles, 272-273
Web browser DOMs, 162
Web browser error messages, interpreting, 282
Web browser events
explained, 158
handling, 207-221
supported by IE, 199
Web browser frames. See Frames (browser)
Web browser history list, 257-258
Web browser market features competition, 170
Web browser plug-ins, managing, 313-325
Web browser refresh, 258
Web browser sniffing code, 221
Web browser software properties, 254-256
Web browser status bar, 253
‘Web browser timers, 251
Web browser type, detecting, 164-169, 256
Web browser usage statistics, 163
Web browser version
detecting, 164
knowing the minimum needed, 15
Web browser window, 252-254, 256-257
Web browsers
checking your code on, 312
detecting, 164-169, 174, 256
DOMs of, 14
first JavaScript-enabled, 6
getting for testing your code, 312
interacting with, 243-258
with no support for frames, 226-227

with no support for scripting, 154-156
redirecting to a new web page, 258
reliance on external plug-ins, 315
sending back to previous page(s), 257
testing on all, 312
using the latest release, 163
web surfer use of, 162-163, 169
Web forms. See Forms (web)
Web page
adding JavaScript to, 153-154
inserting HTML forms on, 184-199
JavaScript-enabled, 7
positioning elements on, 268-270
Web page content
dynamically modifying, 249-251
manipulating, 248-252
moving to animate, 276-278
Web page elements
making invisible, 270
positioning, 268-270
sizing, 270
Web page style. See CSS; Style sheets; Styles
Web server
preparing text for sending to, 84-85
processing form input on, 183-184
Web server programming language, JavaScript as, 14
Web site framing, 235
Web standards. See W3C
Web surfers, browsers used by, 162-163, 169
Website Pros, 13
While loop, 35-36, 287
While statements, checking the format of, 287
Window object, 252-253
methods of, 254
open() method, 254

Index

resize() method, 257
status property, 253
underlying DOM objects of, 253
Window objects (JavaScript), 236
Window.event keyCode attribute, 214
Windows AVI files, 321
Windows environment, JavaScript in, 9
Windows Media Player, 321-322
Windows Script, 9
With statement, 44-46
WSH (Windows Scripting Host), 9
W3C (World Wide Web Consortium), 8, 170
CSS Level 1 standard, 261
CSS standard, 150, 261
CSS validator service, 273
deprecated HTML tags, 145-146
DOM Level 2 Events specification, 208
DOM standard, 8, 244
HTML validation service, 170
XHTML standard, 144

X

XHTML, 144, 146, 235

XML document, addressing parts of, 247
XML (Extensible Markup Language), 144
XPath, uses of, 247

Z

Zero length array, 97
ZVON.org web site, 225

349

INTERNATIONAL CONTACT INFORMATION

AUSTRALIA

McGraw-Hill Book Company Australia Pty. Ltd.
TEL +61-2-9900-1800

FAX +61-2-9878-8881
http://www.mcgraw-hill.com.au
books-it_sydney@mcgraw-hill.com

CANADA

McGraw-Hill Ryerson Ltd.
TEL +905-430-5000

FAX +905-430-5020
http://www.mcgraw-hill.ca

GREECE, MIDDLE EAST, & AFRICA
(Excluding South Africa)

McGraw-Hill Hellas

TEL +30-210-6560-990

TEL +30-210-6560-993

TEL +30-210-6560-994

FAX +30-210-6545-525

MEXICO (Also serving Latin America)
McGraw-Hill Interamericana Editores S.A. de C.V.
TEL +525-117-1583

FAX +525-117-1589
http://www.mcgraw-hill.com.mx
fernando_castellanos@mcgraw-hill.com

SINGAPORE (Serving Asia)
McGraw-Hill Book Company
TEL +65-863-1580

FAX +65-862-3354
http://www.mcgraw-hill.com.sg
mghasia@mcgraw-hill.com

SOUTH AFRICA

McGraw-Hill South Africa

TEL +27-11-622-7512

FAX +27-11-622-9045
robyn_swanepoel@mcgraw-hill.com

SPAIN

McGraw-Hill/Interamericana de Espaiia, S.A.U.
TEL +34-91-180-3000

FAX +34-91-372-8513
http://www.mcgraw-hill.es
professional@mcgraw-hill.es

UNITED KINGDOM, NORTHERN,
EASTERN, & CENTRAL EUROPE
McGraw-Hill Education Europe

TEL +44-1-628-502500

FAX +44-1-628-770224
http://www.mcgraw-hill.co.uk
computing_neurope@mcgraw-hill.com

ALL OTHER INQUIRIES Contact:
Osborne/McGraw-Hill

TEL +1-510-549-6600

FAX +1-510-883-7600
http://www.osborne.com
omg_international@mcgraw-hill.com

	How to Do Everything with JavaScript
	Front Page
	About the Author
	Copyright
	Acknowledgments
	Introduction

	Contents at a Glance (linked)
	Contents (linked)
	PART I Learn JavaScript Basics
	CHAPTER 1 Prepare to Program in JavaScript
	Learn the History of JavaScript
	The Origin of JavaScript
	JavaScript Makes Its Way into Internet Explorer
	JavaScript Becomes an Official Standard
	Where JavaScript Is Today

	Choose a Development Environment
	Develop JavaScript-Enabled Web Pages
	Create Server-Based Web Applications
	Use JavaScript in a DOS or Windows Environment
	JavaScript Development Tools

	Learn What JavaScript Can and Cannot Do
	Use JavaScript as a Client-Side Language
	Use JavaScript as a Server-Side Language

	Decide Which Version of JavaScript to Use
	Test JavaScript Programs Using HTML
	Create a JavaScript Template
	Understand the JavaScript Template

	Communicate with the User
	Display an Alert Message
	Write Text to the Browser Window

	Learn More about Topics Discussed in this Chapter

	CHAPTER 2 Learn JavaScript Fundamentals
	Understand Basic Terminology
	Store Data in Variables
	Define Variables
	Define Constants

	Understand Program Flow
	Control Program Flow with Statements
	Execute Code Conditionally
	Repeat Statements Using Loops
	Comment Your Code
	Set a Default Object
	Handle Errors

	Understand the Basics of Expressions
	Use Operators to Create Complex Expressions
	Organize Your Code into Functions
	Define Functions
	Accept Parameters
	Understand Variable Scope
	Return Values

	Use the Improvements in JavaScript 2.0 to Create More Powerful Functions
	Use Named Optional Parameters
	Accept Any Number of Parameters

	CHAPTER 3 Use Built-in JavaScript Classes
	Learn about Objects in JavaScript
	Write Unstructured Programs
	Organize Code into Procedures
	Separate a Program into Modules
	Use the Object-Oriented Approach
	Turn Properties and Functions into a Class

	JavaScript's Built-in Classes and Data Types
	Instantiate an Object with the new Operator
	Access an Object with the Operator
	Access an Object with the [] Operator

	Create a String Object in JavaScript
	Create a String Object Using a String Literal
	Create a String Object Using the String Data Type
	Use the String Object's Built-in Functionality

	Perform Mathematical Functions
	Apply JavaScript's Date-Handling Functions
	Convert Strings into Numbers
	Use the parseInt and parseFloat Functions

	Prepare Text Before Sending to Web Server
	Use the escape and unescape Functions

	Decide When to Use Regular Expressions
	Understand the Basics of Regular Expressions
	Create Patterns with a RegExp Object

	Understand JavaScript 2.0's Powerful New Data Types
	Use the Boolean, Integer, and Number Data Types
	Use the char Data Type
	Use the Object Data Type
	Understand Special Data Types

	CHAPTER 4 Organize Data into Arrays
	Create an Array Object
	Create an Empty Array
	Specify an Initial Array Length
	Create and Initialize an Array in One Line of Code
	Use Array Literals
	Call the Properties and Methods of the Array Object

	Set and Retrieve Values in an Array
	Use Multidimensional Arrays
	Use JavaScript 2.0's Enhanced Arrays
	The StaticArray Class
	The DynamicArray Class
	The ConstArray Class

	CHAPTER 5 Create Your Own JavaScript Classes
	Learn about Classes in JavaScript
	Create Objects in JavaScript 1.x
	Call a Constructor Function
	Use an Object Literal
	Extend an Existing Class
	Extend an Existing Object

	Create Objects in JavaScript 2.0
	Define Your Own Classes
	Organize Classes Using Inheritance
	Choose Between Static and Instance Members
	Make Class Members Public or Private

	PART II Build JavaScript-Enabled Web Sites
	CHAPTER 6 Embed JavaScript in a Web Page
	Understand Basic HTML Structure
	Build an HTML Document
	Indicate the Document Type with <!DOCTYPE>
	Add a Title and Define Document Keywords
	Format Text with HTML Elements
	Format Text with Style Sheets

	Use <script> to Add JavaScript to a Web Page
	Use <noscript> for Browsers That Don't Support Scripting
	Load an External JavaScript File
	Call JavaScript Using Hyperlinks
	Learn More about the Topics in this Chapter

	CHAPTER 7 Create Scripts That Work in Every Browser
	Understand Browser Differences
	What Kind of Errors Can Occur?
	Detect What Type of Browser the User Is Running
	Query the Document Model

	Stick to Web Standards
	Write Cross-Browser Code

	CHAPTER 8 Manipulate Web Forms
	Understand HTML Forms
	Request User Input Using an HTML Form
	Process Form Input with Client-Side JavaScript
	Process Form Input on a Web Server
	Insert an HTML Form into a Web Page

	Retrieve and Set Form Control Values in JavaScript
	Access Form Values Using the forms Array
	Access Form Values Using the elements Array
	Access Form Values Using getElementById()
	Access Form Values Using getElementsByName()
	Access Form Values Using getElementsByTagName()

	CHAPTER 9 Handle Browser Events
	Write JavaScript Event Handlers
	Handle User Interface Events
	Handle Mouse Events
	Handle Key Events
	Handle HTML Events

	Handle Events Using the Event Property
	Trigger Events in JavaScript
	Call the Method Associated with an Event
	Use the fireEvent Method

	Overcome Browser Incompatibility

	CHAPTER 10 Communicate Between Browser Frames
	Learn the Basics of HTML Frames
	Create a Frameset in HTML
	Define and Name Frames in a Frameset

	Call JavaScript Functions from Other Frames
	Access Another Frame Using JavaScript
	Call a JavaScript Function Located in Another Frame

	Handle Synchronization Between Frames

	CHAPTER 11 Interact with the Web Browser
	Learn the Basics of the Document Object Model
	Manipulate the Contents of a Web Page
	Dynamically Modify the Contents of a Web Page
	Change the Items in a Drop-Down List Box

	Examine the Entire Browser Window
	Retrieve Properties of the Web Browser Software
	Examine the Operating System's Display Settings
	Access the Web Browser History List
	Send the Browser to a New Location

	CHAPTER 12 Perform Simple Animation
	Learn the Basics of Cascading Style Sheets
	Assign Style to Web Pages Using HTML Elements
	Assign Style to Web Pages Using Style Sheets
	Use Basic Style Attributes
	Position Elements on a Web Page
	Modify Styles Using JavaScript
	Understand Cross-Platform Issues

	Perform Basic Animation Using JavaScript
	Dynamically Load Images
	Make Content Move Around the Screen

	PART III Take JavaScript to the Next Level
	CHAPTER 13 Debug JavaScript Programs
	Understand the Possible Causes of Errors
	Find the Source of an Error Message
	Interpret Error Messages

	Use a JavaScript Validator
	Add Debugging Code to Your Programs
	Use the JavaScript Console
	Use a JavaScript Debugger

	CHAPTER 14 Make Your Program Errorproof
	Learn the Basics of Exceptions
	Catch Exceptions Using the try and catch Statements
	Understand Exception Bubbling
	Use the IE Error Object
	Use Netscape-Only catch Clauses
	Use Nonstandard finally Clauses

	Create Exceptions Using the throw Statement
	Design Programs That Are Easy to Debug from the Start
	Avoid Unstructured Programming
	Break Code into Manageable Chunks
	Reuse Code Using Classes and Objects

	Test Your JavaScript Code Thoroughly
	Create a Testing Harness
	Force Errors to Test Error-Handling Code
	Try Your Program in Many Different Environments

	CHAPTER 15 Use JavaScript to Manage Browser Plug-Ins
	Insert Scriptable Objects into HTML Web Pages
	Include Sun Java Applets
	Connect to Java Applets Using JavaScript

	Embed Movies and Music in Web Pages
	Connect to Music and Media Objects Using JavaScript

	Use the Microsoft Calendar Control in Your Web Pages

	APPENDIX A HTML 4.01 Tags
	APPENDIX B JavaScript Quick Reference
	Index (linked)
	E-Book.pdf
	Local Disk
	file:///C|/Documents and Settings/me/デスクトップ/pictures/getpedia.html

	1.pdf
	Local Disk
	file:///C|/Documents and Settings/me/デスクトップ/desktop/pictures/getpedia.html

