HTMLY5, JavaScript,
and jQuery
%24—Hour Trainer

Complete learning package with online video tutorials

Dane Cameron

HTMLS, JavaScript® and jQuery®
24-Hour Trainer

Dane Cameron

AN

WFroX

A Wiley Brand

HTMLS, JavaScript® and jQuery®, 24-Hour Trainer

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-119-00116-4
ISBN: 978-1-119-00118-8 (ebk)
ISBN: 978-1-119-00117-1 (ebk)

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is
sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional ser-
vices. If professional assistance is required, the services of a competent professional person should be sought. Neither the
publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred
to in this work as a citation and/or a potential source of further information does not mean that the author or the pub-
lisher endorses the information the organization or Web site may provide or recommendations it may make. Further, read-
ers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work
was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with stan-
dard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such
as a CD or DVD that is not included in the version you purchased, you may download this material at http://book-
support .wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2014958522

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. JavaScript is a registered trademark of Oracle, Inc. jQuery is a registered
trademark of JQuery Foundation, Inc. All other trademarks are the property of their respective owners. John Wiley &
Sons, Inc., is not associated with any product or vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://booksupport.wiley.com
http://www.wiley.com

ABOUT THE AUTHOR

DANE CAMERON is an author and software engineer living in Wellington, New Zealand. He has
worked professionally as a software engineer for many years, developing large-scale enterprise
systems, and for the last five years has specialized in the development of HTMLS5 web applications.

Dane has a double major in Computer Science and English Literature from the University of Otago.
A Venn diagram of career prospects quickly identified technical writing as a likely option, and he has
built a career based around developing interesting software and passing on what he has learned to
others through his books.

Dane currently works for Fronde Systems Group in Wellington, New Zealand, and uses the tech-
nologies outlined in this book on a daily basis.

Dane enjoys reading, hiking, and taking road trips across America with his wife.

ABOUT THE TECHNICAL EDITOR

ROHAN HART is a software engineer living in Wellington, New Zealand. He has an extensive back-
ground in a variety of languages and technologies, and has worked on several large-scale HTMLS5
and Java projects over the last few years.

Rohan has a Bachelor of Computing and Mathematical Science, and a Master’s degree in Computer
Science from Waikato University. When not entranced by code and programming theory, he plays
strategy games, tramps the wilderness, and tries to keep up with two sons.

CREDITS

PROJECT EDITOR
Adaobi Obi Tulton

TECHNICAL EDITORS
Rohan Hart
Bede Bignell

PRODUCTION EDITOR
Dassi Zeidel

COPY EDITOR
Nancy Rapoport

MANAGER OF CONTENT DEVELOPMENT
& ASSEMBLY
Mary Beth Wakefield

MARKETING DIRECTOR
David Mayhew

MARKETING MANAGER
Carrie Sherrill

PROFESSIONAL TECHNOLOGY & STRATEGY

DIRECTOR
Barry Pruett

BUSINESS MANAGER
Amy Knies

ASSOCIATE PUBLISHER
Jim Minatel

PROJECT COORDINATOR, COVER
Patrick Redmond

PROOFREADER
Josh Chase, Word One New York

INDEXER
John Sleeva

COVER DESIGNER
Wiley

COVER IMAGE
©iStock.com/Visiofutura

ACKNOWLEDGMENTS

I would like to thank Bob Elliott from Wiley who first contacted me about writing this book, and
who worked with me to develop the original outline. This early feedback was invaluable, and made
the writing process so much easier.

I would also like to thank the entire Wiley editorial team, especially Adaobi Obi Tulton and
Nancy Rapoport, who worked tirelessly to pull the material together and offered outstanding
feedback and insights. I would also like to thank the other members of the Wiley team, including
Mary Beth Wakefield and Jim Minatel. The entire team made the process of delivering this book
seem simple.

Additionally, I would like to thank Rohan Hart for agreeing to act as the technical editor on this
book. I have worked with Rohan for around 10 years, and in all that time he has never failed to spot
my mistakes and clean them up.

I would also like to thank Bede Bignell for providing the final technical proof read of the book, and
catching any final issues.

I would also like to thank all the developers at Fronde, particularly those I have worked with over
the last five years as we worked out the best way to use the functionality HTMLS has offered to
deliver high-quality systems to our customers.

Finally, I would like to thank my wife and family for being patient and supportive while I completed
this book (even when I was supposed to be on holiday) and for agreeing not to make too much noise
while I worked on the screencasts.

CONTENTS

INTRODUCTION xvii

PART I: HTML AND CSS

LESSON 1: INTRODUCTION TO HTMLS 3
What Is a Markup Language? 3
The Simplest HTML Page Possible 4
An HTML Template 6
Understanding Elements and Attributes 8
Try It 9

Lesson Requirements 10
Step-by-Step 10

LESSON 2: BASIC HTML 1
Structuring Text 11
Links and Images 14
Try It 16

Lesson Requirements 16
Step-by-Step 16

LESSON 3: LISTS AND TABLES 19
Lists 19
Tables 21
Try It 24

Lesson Requirements 24
Step-by-Step 24

LESSON 4: INTRODUCTION TO CSS 27
CSS Selectors 28
CSS Files and Inline Styles 32
Specificity 32
Inheritance 33
Browser Defaults 34

Chrome Scratch Pad 34

CONTENTS

Try It 36
Lesson Requirements 36
Step by Step 36

LESSON 5: STRUCTURING PAGES WITH CSS 39

The Box Model 39

Display Type 41

Positioning Elements 42

Controlling Positions 46

Try It 48
Lesson Requirements 48
Step-by-Step 48

LESSON 6: HTML FORMS 51

What Is a Form? 51

Adding Fields to a Form 53

HTMLS Input Fields 56

Try It 59
Lesson Requirements 59
Step-by-Step 59

LESSON 7: SEMANTIC TAGS 61

Grouping and Segmenting Content 62
Header 63
Footer 63
Main 63
Section 63
Aside 63
Article 63
Nav 64
Address 64

Styling Semantic Tags with CSS 64

Microformats 65

Summing Up 66

Try It 66
Lesson Requirements 66
Step-by-Step 66

LESSON 8: HTML5 VALIDATION 69

Adding Validation Rules 69

Customizing Validation 72

viii

CONTENTS

Disabling Validation 74
Try It 74
Lesson Requirements 74
Step-by-Step 74
LESSON 9: DRAG AND DROP 77
Understanding Events 78
Drag and Drop Example 78
Try It 82
Lesson Requirements 83
Step-by-Step 84
LESSON 10: DYNAMIC ELEMENTS 85
Summary and Details Tags 85
Progress Bar and Meter 86
Range Element 88
Polyfills 88
Try It 90
Lesson Requirements 90
Step-by-Step 90
WITH JAVASCRIPT AND JQUER
LESSON 11: JAVASCRIPT 95
JavaScript Console 95
Data Types 96
Strings 96
Numbers 97
Booleans 98
Null 98
Undefined 99
Arrays 99
Objects 100
Functions 100
Control Structures 101
Truthy and Falsy Values 103
Dynamic Typing 104
Try It 105
Lesson Requirements 105
Step-by-Step 105

CONTENTS

LESSON 12: DEBUGGING 107
Try It 108
Lesson Requirements 109
Step-by-Step 109
Finding Errors 111

Try It 112
Lesson Requirements 112
Step-by-Step 112
LESSON 13: FUNCTIONS 115
Closures 118
Hoisting and Block Scope 120
Arguments 121
Bind 122
Try It 122
Lesson Requirements 123
Step-by-Step 123
LESSON 14: OBJECTS 125
Object Literals 125
Prototypes 127
Constructor Functions 130
Modules 131
Try It 133
Lesson Requirements 133
Step-by-Step 133
LESSON 15: JSON 135
Replacing and Reviving 138
Try It 140
Lesson Requirements 140
Step-by-Step 140
LESSON 16: DOCUMENT OBJECT MODEL 141
Nodes and Objects 141
Selecting Elements 144
Traversing the DOM 145
Manipulating the DOM 145
Responding to Events 146

CONTENTS

Try It 147
Lesson Requirements 147
Step-by-Step 147

LESSON 17: JQUERY SELECTION 151

Loading jQuery 151

Selecting Elements 153

Pseudo-selectors 154

Selection Within a Context 155

Wrapped Objects 156

Try It 157
Lesson Requirements 157
Step-by-Step 157

LESSON 18: JQUERY TRAVERSAL
AND MANIPULATION 159

Traversal 159

Chaining 160

Manipulation 161

Changing Elements 163

Iteration 164

Try It 165
Lesson Requirements 166
Step-by-Step 166

LESSON 19: JQUERY EVENTS 167

Registering Event Listeners 167

Delegated Event Listeners 170

Form Events 172

Screen Events 173

Animation 174

Try It 174
Lesson Requirements 174
Step-by-Step 175

LESSON 20: DATA ATTRIBUTES AND TEMPLATES 177

Template Tag 177

Data Attributes 178

Using the Template 180

Try It 182

Xi

CONTENTS

Lesson Requirements 182
Step-by-Step 182
LESSON 21: JQUERY PLUGINS 185
jQuery Ul 185
Writing a Plugin 188
Try It 191
Lesson Requirements 191
Step-by-Step 191
LESSON 22: HTML5 AUDIO 195
File Formats 195
Audio Tag 198
Controlling Playback 199
Try It 201
Lesson Requirements 201
Step-by-Step 201
LESSON 23: HTML5 VIDEO 203
File Formats 203
Controlling Volume 205
Controlling Playback Speed 207
Controlling Video Size 207
Media Source Extensions 209
Encrypted Media Extensions 209
Web Cryptography 210
Try It 210
Lesson Requirements 210
Step-by-Step 210
LESSON 24: CANVAS: PART | 213
Simple Drawing 214
Drawing Lines 216
Circles and Curves 216
Drawing Text 218
Try It 219

xii

CONTENTS

Lesson Requirements 219
Step-by-Step 219
LESSON 25: CANVAS: PART Il 221
Linear Gradients 221
Shadows 222
Images 223
Transforming Shapes 224
Basic Animation 227
Try It 228
Lesson Requirements 228
Step-by-Step 228
LESSON 26: CSS3: PART | 231
Selectors 231
CSS Borders 233
Custom Fonts 237
Try It 239
Lesson Requirements 239
Step-by-Step 240
LESSON 27: CSS3: PART Il 241
Linear Gradients 241
Calc Function 243
Text Effects 243
2D Transformations 245
Transitions 248
Try It 250
Lesson Requirements 250
Step-by-Step 250
LESSON 28: CSS3 MEDIA QUERIES 253
Adding Media Queries 254
External Stylesheets 256
Try It 257
Lesson Requirements 257
Step-by-Step 257

xiii

CONTENTS

PART IV: HTML5 APIS

LESSON 29: WEB SERVERS 261
URLs 262
Choosing a Web Server 262
Try It 263

Lesson Requirements 263
Step-by-Step (OS X) 263
Step-by-Step (Windows) 264

LESSON 30: WEB STORAGE 267
Client-Side Storage 268
Web Storage API 269
Storing Structured Data 271
Try It 273

Lesson Requirements 273
Step-by-Step 273

LESSON 31: INDEXEDDB 275
Creating a Database 276
Storing Data 278
Reading Data 279
Deleting Data 281
Try It 281

Lesson Requirements 281
Step-by-Step 281

LESSON 32: APPLICATION CACHE 285
Manifest Files 285
Updating Resources 288
Cache Events 289
Try It 290

Lesson Requirements 290
Step-by-Step 290

LESSON 33: WEB WORKERS 293
JavaScript Event Model 294
Web Workers 296

Try It 300

Xiv

CONTENTS

Lesson Requirements 300
Step-by-Step 300
LESSON 34: FILES 303
FileReader API 304
Other File-Related APIs 307
Try It 308
Lesson Requirements 308
Step-by-Step 308
LESSON 35: AJAX 311
AJAX Requests 312
Try It 316
Lesson Requirements 317
Step-by-Step 317
LESSON 36: PROMISES 319
Working with Promises 320
Creating Promises 322
Try It 325
Lesson Requirements 325
Step-by-Step 325

PART V: MOBILE

LESSON 37: RESPONSIVE WEB DESIGN 329
Testing Screen Resolution 330
Flexible Grids 331
Media Queries 336
Try It 340

Lesson Requirements 341
Step-by-Step 341

LESSON 38: LOCATION API 343
Monitor Movement 345
Loading the Application 349

Windows Instructions 350
OS X Instructions 352
Using the Application 352

XV

CONTENTS

Try It 353
Lesson Requirements 353
Step-by-Step 353

LESSON 39: JQUERY MOBILE: PART | 355

Understanding jQuery Mobile 356
Importing jQuery Mobile 357
Mobile Design 358

JQUERY Mobile Pages 358
Form-Based Pages 362
JavaScript 365

Try It 366
Lesson Requirements 366
Step-by-Step 366

LESSON 40: JQUERY MOBILE: PART Il 369

Ul Components 369
Collapsible Components 371
Popups 372
Selection 372
Flip-Switch 373

Events 373
Gestures 374
Lifecycle Events 375

Try It 376
Lesson Requirements 376
Step-by-Step 376

INDEX

XVi

379

INTRODUCTION

THE BASIC TECHNOLOGIES BEHIND THE WEB are now almost a quarter of a century old. HTML
dates all the way back to 1993, the same year the first popular web browser, Mosaic, appeared on
the scene.

You may have thought, therefore, that the technologies behind the Web would have entered a
comfortable middle-age—still improving around the edges maybe—but not innovating with the
pace and excitement of their early years.

In fact, nothing could be further from the truth. The last ten years have been some of the most
exciting and innovative in the history of the Web, and this pace of change is continuing to accelerate.
As a result, the Web is no longer the preserve of simple “websites.” It is the realm of “web
applications”: feature-rich applications that just happen to run inside web browsers.

A whole new class of computing devices has accentuated the pace of this change. Web browsers are
no longer the preserve of desktops and laptops: They now appear on a myriad of devices from smart
phones to smart TVs. The fact that web browsers are the one universal feature across these diverse
devices has served to enhance the appeal of browser-based web applications: You write the web
application once, and your users use it from any device they choose.

This innovation of the last decade did not happen by accident. Various standards committees have
been hard at work for more than a decade devising a set of standards that have been grouped under the
umbrella of “HTMLS5.” These standards have now made their way into all the major web-browsers.

If you are familiar with HTML, the term HTMLS may simply imply a new version of the HTML
markup language—which may be interesting—but not revolutionary. In fact, HTMLS is far more
than a markup language; it is a set of programming APIs, implemented by browsers, that allow web
pages to perform tasks that had never before been possible.

For example, it is now possible for an HTML page to store massive amounts of data in your
browser, operate without a network connection, request more information from a web server as and
when it needs it, and perform complex computations in the background without interfering with
your browsing experience.

The goal of this book is to teach you how to write web applications. In order to achieve this, you
need to understand more than HTMLS. You need to understand a set of related technologies. More
importantly, however, you need to understand how these technologies work together.

HTMLYS, for instance, is closely tied to JavaScript. In many cases, if you want to use HTMLS3,
you need to do so through a JavaScript APIL. It is thus not possible to master HTMLS without also
mastering JavaScript.

JavaScript is also approaching middle age, yet it too continues to evolve in tandem with HTMLS.
Historically considered something of an oddity, JavaScript has turned into a rich and expressive
programming language, capable of much more than the simple tasks (such as form validation) that it
was consigned for so many years.

INTRODUCTION

A large part of the appeal of JavaScript is the myriad of enormously useful, freely available libraries
that are written in the language. Chief among these is jQuery, a JavaScript library that has taken
on a life of its own and come to redefine the way programmers add dynamic features to their web
pages. You can write web applications without learning jQuery, but your code will lack the concise-
ness of expression the jQuery library affords.

Finally, in order to produce visually appealing web applications you will need to learn Cascading
Style Sheets. Just like all other web technologies, CSS also continues to grow and evolve, and the
newest version of CSS—called CSS3—means that web pages can achieve dazzling visual effects.

WHO THIS BOOK IS FOR

This book is for anyone who wants to learn how to build dynamic websites and web applications
using standards-based technologies.

You may have experience with HTML4, although that is not required because the early lessons
provide an in-depth look at all of the most important features of HTML. More experienced readers
may, on the other hand, choose to skip these lessons.

This book contains many code examples based on JavaScript. It is expected that you have some
programming experience before reading this book, although not necessarily with JavaScript. If you
have no experience with programming, you may want to prepare with some online tutorials and
exercises before beginning.

Finally, this book is for programmers who want to learn by doing.

WHAT THIS BOOK COVERS

xviii

HTMLS is a “versionless” standard. The specifications behind HTMLS continue to grow and
evolve, but this evolution is not matched with “official” or versioned releases.

As such, this book does not focus on a specific version of HTMLS; instead, it focuses on the aspects
of HTMLS that have achieved widespread adoption in all of the most common web browsers.

The JavaScript language does contain versioned releases, but unlike most programming languages,
you have no control over the version that your users will choose because this is a byproduct of the

browser that they select. As a result, this book will not focus on a specific version of JavaScript: It

will focus on the features that are universally available in all the major browsers.

This book will use a number of JavaScript libraries that are subject to change over time. Whenever a
library is used, a specific version will be specified. In many cases, a more recent version of the library
will work without issue, although the code is only guaranteed to work with the specified version.

This book is intended as a hands-on guide. Each lesson includes code and exercises that you can fol-
low along with, and even augment if you choose. It is important that you follow along with these

INTRODUCTION

exercises because it is this process that will consolidate your understanding of how the technologies
really work.

HOW THIS BOOK IS STRUCTURED

This book is split into five sections. The first two sections are intended to be read in order because
they provide you with the foundation knowledge required to add more complex functionality. The
remaining three sections can be read in any order you choose.

The first section of the book provides an introduction to HTML and CSS and looks at how to build
static web pages with these technologies. By the end of this lesson, you will have a solid foundation
on which to start adding more complex functionality.

In the second section, you turn your attention to JavaScript and jQuery, and look at how a static
web page can be converted into a dynamic web application.

The third section of the book looks at the multimedia capabilities of web browsers and how you can
harness these through technologies such as the Canvas API and CSS3.

Once you have an understanding of JavaScript, you can turn your attention to the HTMLS APIs
that allow you to store data inside the browser, access data from web servers, and execute tasks
on background processes. It is these features that truly turn your website into a feature-rich web
application.

In the final section of the book, you will turn your attention to mobile devices and address the
question of how you can convert your web application into a mobile web application that functions
on any mobile device your users may choose to use.

A large portion of this book is structured around the development of a sample web application. If
you choose to skip a lesson, you will therefore need to download a completed version of that lesson’s
web application before starting the next lesson.

WHAT YOU NEED TO USE THIS BOOK

In order to complete most of the exercises in this book, you will need nothing more than a text
editor and the Chrome web browser.

If you have a favorite text editor, you can continue to use it for this book. If you do not have a text
editor installed, Notepad++ (http://notepad-plus-plus.org) is a good option for Windows,
Text Wrangler (http://www.barebones.com/products/textwrangler) is a good choice for Macs,
and EMacs is a good choice for Linux. You may also choose to use an Integrated Development
Environment (IDE) such as Eclipse.

The Chrome web browser has been chosen for this book not so much for the capabilities of the
browser itself, but for the developer tools that accompany it. You can choose to use an alternative
web browser if you wish, but the examples will focus on Chrome.

XiX

http://notepad-plus-plus.org
http://www.barebones.com/products/textwrangler

INTRODUCTION

The Chrome web browser is subject to frequent updates, and it is assumed that you will use the
latest version of the browser.

In later sections of this book, you will also need a web server. A lesson is provided to guide you
through the process of installing and configuring a web server.

The source code for the samples is available for download from the Wrox website at:

www . wrox.com/go/html5jsjquery24hr

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

WARNING Warnings hold important, not-to-be-forgotten information that is
directly relevant to the surrounding text.

NOTE Notes indicate notes, tips, hints, tricks, or asides to the current
discussion.

As for styles in the text:
> We highlight new terms and important words when we introduce them.
> We show keyboard strokes like this: Ctrl+A.
> We show filenames, URLs, and code within the text like so: persistence.properties.
> We present code in two different ways:
We use a monofont type with no highlighting for most code examples.

We use bold to emphasize code that is particularly important in the present
context or to show changes from a previous code snippet.

SOURCE CODE

XX

As you work through the examples in this book, you may choose either to type in all the code man-
ually or to use the source code files that accompany the book. All the source code used in this book

is available for download at www.wrox.com. For this book, the code download is on the Download
Code tab at:

www . wrox .com/go/html5jsjquery24hr

http://www.wrox.com/go/html5jsjquery24hr
http://www.wrox.com
http://www.wrox.com/go/html5jsjquery24hr

INTRODUCTION

You can also search for the book at www.wrox.com by ISBN (the ISBN for this book is 978-1-1190-
0116-4) to find the code. A complete list of code downloads for all current Wrox books is available
at www . wrox.com/dynamic/books/download. aspx.

Most of the code on www.wrox.com is compressed in a .ZIP or .RAR archive, or a similar archive
format appropriate to the platform. Once you download the code, just decompress it with an appro-
priate compression tool.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you find an error in one of our books, such as a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration, and at the same time, you will be helping us provide even
higher quality information.

To find the errata page for this book, go to

Www.wWrox.com/go/html5jsjquery24hr

and click the Errata link. On this page you can view all errata that has been submitted for this book
and posted by Wrox editors.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsup-
port.shtml and complete the form there to send us the error you have found. We’ll check the infor-
mation and, if appropriate, post a message to the book’s errata page and fix the problem in
subsequent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at http://p2p.wrox.com. The forums are

a Web-based system for you to post messages relating to Wrox books and related technologies and
interact with other readers and technology users. The forums offer a subscription feature to email you
topics of interest of your choosing when new posts are made to the forums. Wrox authors, editors,
other industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com, you will find a number of different forums that will help you, not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

1. Gotonhttp://p2p.wrox.com and click the Register link.
2. Read the terms of use and click Agree.

3. Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

4. You will receive an email with information describing how to verify your account and
complete the joining process.

Xxi

http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com
http://www.wrox.com/go/html5jsjquery24hr
http://www.wrox.com/contact/techsup-port.shtml
http://www.wrox.com/contact/techsup-port.shtml
http://www.wrox.com/contact/techsup-port.shtml
http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com

INTRODUCTION

NOTE You can read messages in the forums without joining P2P, but in order to
post your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
emailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specific to P2P

and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

XXii

PART |
HTML and CSS

» LESSON 1: Introduction to HTMLS5

» LESSON 2: Basic HTML

» LESSON 3: Lists and Tables

» LESSON 4: Introduction to CSS

» LESSON 5: Structuring Pages with CSS
» LESSON 6: HTML Forms

» LESSON 7: Semantic Tabs

» LESSON 8: HTMLS5 Validation

» LESSON 9: Drag and Drop

» LESSON 10: Dynamic Elements

Introduction to HTML5

This lesson is an introduction to the HTMLS markup language. The HTMLS markup
language is a language for structuring and expressing the content of a web page in a manner
that can be consistently interpreted by a web browser.

If you are already familiar with HTML, much of this lesson will look very familiar. It is
still important that you read through this lesson, however, because there are a number of
important changes in HTMLS5, and many of these are very subtle.

If you are not familiar with HTML, or have only a passing familiarity, this lesson will provide
you with the background you need to understand the basics of an HTML web page. This
lesson is only an introduction, however; the material in this lesson will be enhanced in the
remainder of this section.

WHAT IS A MARKUP LANGUAGE?

A markup language is a language for annotating a document with a set of tags. These tags
are used to provide additional meaning and structure to the text of the document, or provide
instructions on the manner in which it should be displayed to the reader.

For instance, a tag may state that one portion of the text is a header, while another portion is
a paragraph of text. Consider the following document fragment:

<hl>This is a heading</hl>
<p>This is a paragraph of text</p>

In this example, the tags can be clearly differentiated from the content of the document by the
angle brackets. The following represents the start of a heading;:

<hl>
while this represents the end of the heading:
</hl>

4 | LESSON 1 INTRODUCTION TO HTML5

NOTE HTML defines six categories of header from h1 to h6. The lower the
number, the more important the header is.

The entire h1 structure—including the start tag, the end tag, and its textual content—is referred to
as an element.

The HTMLS markup language specifies the tags that can be used in an HTML document, how they
should be used, and what additional information (called attributes) they can contain.

In the early days of HTML, many of the tags included in the markup language instructed the
browser how to present information. For instance, tags were used to dictate font size and color.

The HTML markup language is no longer responsible for dictating the presentation of a document, and
in HTMLS most of the remaining presentation tags have been removed. Presentation is now the sole pre-
serve of another technology called Cascading Style Sheets, which will be examined later in this section.

Instead, the HTMLS5 markup language is responsible for conveying the meaning of the various
components of the document and how they interact with other components.

NOTE Browsers can still provide their own default styles for tags, however, and
this is why an h1 element will appear in large, bold text.

HTMLS greatly enhances the expressiveness of earlier version of HTML, however, and allows
sections of the document to be marked as, amongst other things, headers, footers, and asides.

Earlier versions of HTML were based on a technology called SGML, which is a language for express-
ing markup languages. As of HTMLS, the HTML markup language is not based on any other tech-
nology. This has removed a number of restrictions from the language; therefore, if you are familiar
with HTML, you will notice in the sections that follow that a number of the old rules no longer apply.

THE SIMPLEST HTML PAGE POSSIBLE

When learning any technology, it’s always a good idea to start out with the simplest implementation
possible. In HTMLS, the simplest page you can possibly write is as follows:

<!DOCTYPE html>
hello world!!!

Open your favorite text editor, enter this text, and save the document
as hello.html.

Now, open Chrome, and select Ctrl-O in Windows or 38-O on a Mac, navigate to the file you have
just saved, and select “Open”. This should look like Figure 1-1 when loaded in the web browser.

C [file://localhg

hello world!!!

FIGURE 1-1

The Simplest HTML Page Possible | §

This may not look like a web page; after all, there are no tags in the page except the strange looking
tag on the first line of the document.

With the page open in Chrome, now select to open the developer tools:
> Command+Option+I on OS X
> F12 or Ctrl+Shift+I on Windows

This should open the window shown in Figure 1-2 below the web page.

Q, | Elements | Network Sources Timeline Profiles Resources Audits Console

¥ <html=
<head=</head=>
<body=hello world!!!
=/body=
</html=

FIGURE 1-2

This is the web-browser’s internal representation of the web page. As you can see, this has
normalized the structure of the document, and does provide a set of tags nested inside one another.
On the outermost level is the html element, and inside this are two elements: head and body. The
content of the body element is the text you wrote in the text editor.

The document has been normalized to conform to the rules of the Document Object Model (DOM).
The DOM will turn out to be enormously important throughout this book because much of the power
of modern web pages comes from their ability to manipulate the DOM after the page has loaded.

The manner in which a Document Object Model should be constructed from an HTML page has
been a contentious issue since HTML first appeared. Historically, different browsers would generate
different models for the same HTML, and this made it very difficult to write cross-browser web pages.

In order to counteract cross-browser issues, the World Wide Web Consortium (W3C), which is the
standards body behind web standards such as HTML, decided to recommend a set of standards
placing the onus on the web page developer. These standards, called HTML Strict and XHTML,
forced the web page developer to create a normalized web page, and therefore made it easy for web
browsers to render pages consistently.

This approach did not work very well. The real power behind HTML is not the standards bodies,
but the browser vendors because they ultimately decide what is a valid web page. They did not want
to enforce this strictness on web pages because failing to load web pages would only serve to make
their browser look deficient.

As the W3C continued on with their strict standards, a rival group called WHATWG started work
on a rival standard that would eventually become HTMLS. The members of this group were made
up of participants from the main browser vendors, and their goals were far more pragmatic. Rather
than creating a whole new set of standards, this group first looked at what browsers were already
doing and, where possible, formed standards from this.

W3C eventually abandoned their efforts for strictness and joined WHATWG’s efforts, and the two
groups each publish a version of the HTMLS standard.

6 | LESSON1 INTRODUCTION TO HTML5

A large part of the HTMLS standard describes how browser vendors should create a normalized
DOM from a non-normalized HTML document. This is why Chrome created the DOM that it did
in the preceding example, and why Firefox, IE, and Safari would create exactly the same structures.

AN HTML TEMPLATE

In the previous section, you wrote the simplest web page you could write. In this section, you
will write a web page following a basic template that is intended to represent the simplest HTML
structure you should write.

I will first present the template, and then I will walk you through it line by line. Open a new docu-
ment in your text editor, and save the following as template.html:

< !DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
</head>
<body>
This is the body of the document.
</body>
</html>

If you open this in Chrome, and then view the DOM in the developer tools, it will look like the
example in Figure 1-3.

Q, | Elements | Network Sources Timeline Profiles Res,

¥ <html lang="en"=>
¥ <head>
=<meta charset="utf-8"=
=/head=
=body>
This is the body of the document.

=/body=
=/html=

FIGURE 1-3

As you can see, in this case there is far closer alignment between the content you provided in the
HTML file and the normalized structure generated by the browser.

Let’s now walk through each line in the document and examine its purpose.
The first line in the document is as follows:
<!DOCTYPE html>

This line defines the document type of the page. Because there have been many different HTML
standards over the years, the browser uses this line to understand which of these standards the page
is using, and then uses the rules applicable for this standard to interpret the content of the page and
render it accordingly.

An HTML Template | 7

This is the HTMLS document type definition, and comes as a pleasant surprise for developers who
may be accustomed to copying and pasting DOCTYPE declarations such as:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/
strict.dtd"s

The other main surprise about this document type definition is that it does not include a version
number: The document type is simply html.

Although the specification is referred to as HTMLS, it defines a “living-standard” that will be subject
to incremental change as and when browser vendors implement, and agree on, new features. Put
another way, there will never be another version of HTML, but HTML will always continue to evolve.

The next line contains the opening html tag, which encapsulates the remainder of the document:
<html lang="en">

This tag contains an attribute called 1ang, which has been given the value en. Attributes provide a
mechanism for providing extra meaning to tags. This particular attribute is stating that the
language of the document is English.

NOTE The ISO standard 639-1 defines the set of two-letter codes that can be
used for languages. These can also be paired with a country code, for instance
en-US. Country codes are defined in the ISO standard 3166.

As with many aspects of HTMLS5, although the specification defines the attributes and their
expected values, it is up to the browser to decide what to do with this information. The browser may
use this information to suggest a translation to a non-English speaker, or it may do absolutely noth-
ing with this information.

The next element in the document is the head element. This is the section of the document where
you can provide important metadata about the document, along with links to other files needed by
the document. The head section never contains any visual components of the web page. In this par-
ticular case, the head contains one important piece of metadata:

<meta charset="utf-8" />

This specifies that the character encoding of the document is UTF-8. I will not cover character
encodings in this section, but the specification recommends setting this.

There is one other element that is commonly added to the head element: the title element. This is
the text that the browser will display in the title bar when the web page is loaded. Therefore, add the
following inside the head section:

<title>Basic template</title>

and then view the page in Chrome; the tab header will appear as follows:

8 0o _, Basic template x

FIGURE 1-4

http://www.w3.org/TR/html4/strict.dtd
http://www.w3.org/TR/html4/strict.dtd

8 | LESSON 1 INTRODUCTION TO HTML5

Next you come to the body element. This is where all the visual elements of the page will be
described. In this particular example, the body consists of a single text string, but it is this area of
the document that you will enhance in the lessons ahead to create interesting web pages.

UNDERSTANDING ELEMENTS AND ATTRIBUTES

Even though the examples you have created are very simple, you can already see that elements can
be nested inside one another, and as a result, create a tree-like structure.

Every HTML document has a single top-level element, which is always the html element (the docu-
ment type element is not part of the document as such).

In addition, every element in the document can have zero or more children. The html element has
two children: head and body. The head element in turn has a child of its own: the meta element.

Every element in the document (except the html element) has one (and only one) parent. The parent
of the head element is the html element. The parent of the meta element is the head element.

As you will see, the structure of pages will become considerably more complex, and the degrees of
nesting will increase enormously. No matter how complex the pages become, however, all the ele-
ments will follow these simple rules.

You have examined how elements consist of an opening and closing tag; for instance the opening of the
head tag is <head> while the closing is an identically named tag preceded by a forward slash </head>.

Some elements do not require any content: The tag and its attributes provide all the information that
is required. In this case, the start and the end tag can be combined into the following construct:

<meta charset="utf-8" />

The forward slash before the end of the tag indicates that the tag is being closed. This is the direct
equivalent of the following:

<meta charset="utf-8"></metas>

You should always ensure that all tags are closed in the reverse order they are opened. For example,
you should never write markup as follows:

<p>Hello</p>

In this case, the strong element is supposed to be the child of the p element, but the p element ends
before the strong element.

NOTE The strong tag is used to indicate that a piece of text is important.
Although this is often confused with the now deprecated bold tag, it is, in fact,
still a valid HTMLS tag. This tag is not considered a presentation tag because
it indicates that text is important, not how this text should be styled. You may
decide that strong elements are colored red rather than with a bold font.

Trylt | 9

¥ <body=

If you add this to your template.html file before the

ending body tag, and then view the normalized structure [his 35 The body of the document.

. . . ¥ <p=
in Chrome, you will notice that the browser has rearranged eatrangsHello/strongs
these tags, as you can see in Figure 1-5. iR

=/html=

Although the HTMLS specification does have rules for
fixing up your mistakes, it is generally best not to make
mistakes in the first place because the rules of the HTMLS
specification may not be what you intended.

FIGURE 1-5

I generally find it best to write tags in lowercase. As it turns out, tag names are entirely case insensi-
tive because they are automatically converted to lowercase in the DOM. The following is therefore
valid, but should be avoided for obvious readability reasons:

<HEADER>this is a header</headers>

The final feature I will cover in this lesson is attributes. You have already seen two examples of attri-
butes, on the html tag and on the meta tag. Many other tags also support attributes, and you will
examine these throughout the book.

Attributes often consist of a name/value pair. When an attribute has a value, the value can either be
included in single or double quotes. The following are equivalent:

<meta charset="utf-8" />
<meta charset='utf-8' />

A tag can contain more than one attribute, in which case they are simply separated by white space:
<p id="firstParagraph" class="bold">

Additionally, some attributes do not have a value. These are referred to as Boolean attributes. The
presence of the attribute is all that is required. For instance:

<input read-only/>

In this case, the attribute is called read-only, but the presence of the attribute is enough to indicate
that the element is read-only. It is still possible to add a value to a Boolean attribute, but it has no
meaning. For instance, the following input field is still read-only:

<input read-only="false"/>

Attribute names should also be written in lowercase (because this is how they will be represented in
the DOM). Generally attribute names will also use hyphens if they contain more than one word.

TRY IT

In this Try It, you will duplicate the template html page outlined in the lesson. You may choose to
skip this portion if you are familiar with HTML, but the simple act of typing code word for word
enhances your understanding.

If you get stuck in this example, you can refer back to the example earlier in the lesson, or use the
screencast to guide you though the process.

10 | LESSON 1 INTRODUCTION TO HTML5

Lesson Requirements

You will need a text editor and a web browser.

Step-by-Step

1.

o Ul A WN

© N

10.
1.

Open your text editor and create a new document.

Add the HTMLS5 doctype to the document.

Add an html element (both the opening and closing tags) below the document type.

Indicate the language of the document using an attribute on the html tag.

Add a head element inside the html element. You will need both an opening and a closing tag.

Add a title inside the head element, and give the document a name. Remember that this
needs to be a child of the head element.

Add a body element inside the html element just below the closing head tag.
Add a meta element to the head indicating that the charset is UTF-8.

Add any text you like to the body of the document. Any text that you add should be
displayed back to you when you open the web page in Chrome.

Save the document with a .html extension.

Open the document in Chrome and inspect the Document Object Model in the developer tools.

When you open this in Chrome, and then open the development tools to inspect the elements, the
markup should look like Figure 1-6.

Q, | Elements | Network Sources Timeline Profiles Resou

‘Select an element in the page to inspect it.

P <head=>..</head>
=body>
This is the body of the document.

=/body>
=/html=

FIGURE 1-6

There is also a complete example in the Lesson 1 folder on the book’s website called tryit.html.

REFERENCE Please select the video for Lesson 1 online at www.wrox.com/go/
htmls5jsjquery24hr. You will also be able to download the code and resources
for this lesson from the website.

http://www.wrox.com/go

Basic HTML

This lesson provides a basic introduction to the most common HTML tags. If you are already
familiar with HTML and are reading this book primarily to learn about HTMLS, you could
choose to skip the next two lessons, although each lesson does include material that is specific
to HTMLS.

In the previous lesson, you created an HTML template. In this lesson, you will start adding
content to the body of this template using some of the most common HTML tags.

STRUCTURING TEXT

You will begin by examining the ways you can structure text in a web page. HTML originally
started life as a means of sharing research papers; thus, text formatting has always been an
important part of HTML.

Begin by opening the template.html file created in the previous lesson. Replace the body of
the web page, as shown in the following markup:

<!DOCTYPE html>

<html lang="en">

<head>
<meta charset="utf-8">

</head>

<body>
<hl>This is a top level heading</hl>
<h2>This is a second level heading</h2>
<h3>This is a third level heading</h3>

</body>

</html>

12 | LESSON 2 BASICHTML

The body now contains three separate header elements. If you open this in Chrome, it should look
like Figure 2-1.

This is a top level heading

This is a second level heading

This is a third level heading

FIGURE 2-1

Notice that the h1 element’s text is displayed in a larger font than the h2 element. As it happens, this
has nothing to do with the HTML specification; this is simply the default style provided by the web
browser, just as the font is the default font of the browser. In Lesson 4, you will see how this can be
overridden with Cascading Style Sheets (CSS).

You will also notice that each heading is displayed on a new line. This is not because the elements
are placed on new lines in the HTML file; in fact, white space is mostly ignored in HTML. In order
to prove this, change the h1 tag as follows:

<h1>This is a top
level heading</hl>

<h2>This is a second level heading</h2>

If you reload the web page, you will see that this change makes no difference to the way the head-
ings display. Although a single whitespace character is displayed as a space inside an element, a
sequence of whitespace characters, even if it contains new-line characters, is collapsed down to a
single white space character.

HTML does provide a special character sequence, snbsp;, for adding extra whitespace characters,
but new lines should be created using the tags introduced shortly.

NOTE The ampersand character, followed by a sequence of characters and
terminated by a semicolon, indicates that this is a special character sequence.

There are a number of special character sequences in HTML. Perhaps the most
common ones you will encounter are < and sgt;, which are used for the less
than (<) and greater than (>) characters respectively. These are required because
the < and > characters have special meaning in HTML. In case you were won-
dering, nbsp stands for “non-breaking space.”

So what did generate the new lines after each heading? These appear because the elements h1
through hé are block elements. All visual HTML elements have a display type, the most common
of which are block and inline. Whenever a block element ends, the next element automatically
begins on a new line.

Structuring Text | 13

Next, you can continue by adding some paragraphs to the body:

<p>This is the first paragraph</p>
<p>This is the second paragraph</p>

If you refresh the web page, it will look like what you see in Figure 2-2.

This is a top level heading

This is a second level heading

This is a third level heading

This is the first paragraph

This is the second paragraph

FIGURE 2-2

Each paragraph appears on a new line, and there is a space between each paragraph.

It is actually possible to omit the ending tag from a p tag. In fact, there are many cases where the
ending tag can be omitted because the next tag in the document implies it. [usually find it easier
to add the ending tag in these cases, but the specification makes this entirely optional. You will see
throughout the examples that I sometimes omit the closing tag and sometimes include it.

WHAT ABOUT XHTML?

If you are already familiar with HTML, you may be aware of XHTML, which is
an XML-based version of HTML. HTMLS extends and replaces XHTML as well
as HTML. In order to serialize an HTMLS5 page to XML, all tags must be closed,
and the document as a whole must be well-formed. In addition, the html tag should
be declared as follows:

<html xmlns="http://www.w3.0rg/1999/xhtml">

and the content type of the document should be set to application/xhtml+xml
rather than text/html when it is served to the browser.

If you are not already familiar with XHTML, you can ignore it for the duration
of this book: It is typically only used if you have a need to process an HTML page
with XML parsers and tools.

The text in a paragraph will automatically wrap if it reaches the far right side of the browser.
Additionally, if the user resizes their browser, the text will automatically be adjusted: This process is
referred to as a browser reflow.

http://www.w3.org/1999/xhtml

14

LESSON 2 BASIC HTML

Sometimes the browser will break your paragraphs in an inconvenient place, especially if it contains
very large words. In order to give you more control over line breaks, HTMLS5 has introduced a tag
called wbr that can be added anywhere inside a paragraph as a hint to the browser that this would
be a good place to add a line break.

If you would like a line break within a paragraph, you can use the br tag. This is also a self-closing
tag so it can be used as follows:

<p>This is a paragraph
that spans two lines</p>

HTML supports several other tags for encapsulating blocks of text. The final one you will look at in
this section is the blockquote element, which can be used to capture quoted text, optionally with a
citation:

<blockquote>Tell me and I forget. Teach me and I remember. Involve me and I learn.

<cites>Benjamin Franklin</cites>
</blockquotes>

This structure is slightly more complex: The blockquote tag contains the quote, while cite, which
is an optional child tag, captures the source of the quote. Figure 2-3 shows an example of this tag in
Chrome.

Tell me and I forget. Teach me and I remember. Involve me and I learn. Benjamin Franklin

FIGURE 2-3

Notice that the blockquote is indented and that the cite element displays in italics. Again, these
are browser defaults rather than part of the HTMLS specification.

Finally, as your web pages become more complex, you may find cases where you would like to add
comments to remind you what the markup means. Comments can be added as follows, and will not
display to the user:

<!-- This is a comment -->

LINKS AND IMAGES

HTML pages naturally consist of far more than text. This section will introduce two of the most
fundamental tags found in most web pages: hyperlinks and images.

I will assume you know what hyperlinks are: They are a mechanism for referencing another HTML
document and can be clicked to allow the user to navigate to that document.

Start by creating a new page in the same folder as the page you developed in the previous section, but
call this one page2.html. Add some contents to this page so that you can distinguish it when it loads.

Now, in the original HTML file, add the following paragraph:

<p>Please click here to view page 2</p>

If you reload the page, this HTML will generate the text found in Figure 2-4.

Links and Images | 15

Please click here to view page 2

FIGURE 2-4

Notice that the text displayed to the user is derived from the content of the a tag, while the page that
is loaded when the link is clicked can be found in the href attribute.

This particular URL is referred to as a relative URL because it does not start with a forward slash
or a domain name. The browser will attempt to find page2.html in a location relative to the page
currently being displayed.

If you had created page2.html in a subfolder called sub, the URL would be represented as follows:
<p>Please click here to view page 2</p>

When running a website inside a web server, it is also possible to use absolute URLs. These begin
with a leading / and require the full path for the file to be specified.

It is also possible to add URLSs to other websites. For example:

Link to Google

You will also notice that the a tag does not cause an implicit new line to be generated in the document.
This is because, unlike most of the other tags you have examined, it has a display type of inline.

Hyperlinks can be surprisingly complex. As you progress through the book you will see more
interesting features of hyperlinks, such as the manner in which they can encode parameters, but for
now a basic understanding is sufficient.

Images can be inserted into an HTML page with the img tag. I seldom use the img tag anymore: I
typically use CSS to embed images as the background of other tags because this provides greater
control for positioning the image, but it is important to understand how this tag works.

You can either find an image you would like to use or download photo1.jpg from the Lesson 2 files
at the book’s website.

Now, add the following to the HTML page:

<p>This is a photo I took in Cambridge
<img src="photol.jpg"
title="Cambridge, England" width="200"></p>

If you view this in Chrome, it will display in much the same way as you see in Figure 2-5.

This is a photo I took in Cambridge

FIGURE 2-5

http://www.google.com

16 | LESSON 2 BASICHTML

This is the first tag you have examined with multiple attributes.

>

The src attribute is used to specify the location of the file. Just like hyperlinks, this can be an
absolute or a relative URL, or it can even reference an image on another website.

The title attribute is used to specify a tooltip that will be displayed to the reader when the
reader hovers over the image with her mouse cursor, and to describe the image to screen
readers.

The width attribute is used to specify the width of the image in pixels. It is also
possible to specify a height, but if just width or height is specified, the image will be
scaled appropriately.

Browsers support many different image types, but by far the most common are PNG, GIF, and
JPEG images.

The img tag previously supported a number of other presentation-orientated attributes. These are
deprecated in HTMLS, and CSS properties should be used instead.

NOTE When a feature is deprecated, it is still available to use, and will probably
still work, but it is strongly suggested that you find an alternative because
support may be removed entirely in the future.

TRY IT

This Try It is an opportunity to experiment with the tags that have been discussed in this lesson.
You do not necessarily need to follow this lesson exactly; just try to create an interesting web page
from the tags that have been introduced.

Lesson Requirements

You will need the template.html file from Lesson 1, a text editor, and a web browser.

Step-by-Step

1.
2.
3.

Open the template.html page in your text editor.
Add an h1 element to the page and include some header text.

Add some paragraphs to the web page using the p tag, and split some paragraphs across
multiple lines with the br tag.

Add a quote to the page along with a citation, using the blockquote and cite tags.

Find an image you would like to include in the page, and add it at the bottom. Make the
image a fixed width, and allow the browser to determine the correct height.

Trylt | 17

6. Add a hyperlink to your page to point to another page in a subfolder of the current page.

N

Add a hyperlink to an external website such as Google.

8. Although I have not covered it, attempt to turn the image into a hyperlink so that it loads
another page when it is clicked. Hint: The image will need to be a child element of the
hyperlink.

My example can be found in the Lesson 2 resources on the tryit.html website.

REFERENCE Please select the video for Lesson 2 online at www.wrox.com/go/
html5jsjquery24hr. You will also be able to download the code and resources
for this lesson from the website.

http://www.wrox.com/go

Lists and Tables

In this lesson, you will look at two important ways content can be structured in web pages:

lists and tables.

LISTS

Lists are common to anyone who has worked with word processing tools such as Microsoft
Word: They are the bulleted and numbered lists that are used for capturing a sequence of
points. HTML lists are very similar to these lists. In this section, I introduce the three types of

list provided by HTML.

Unordered lists

Unordered lists are used to create the familiar set of bullet points seen in Word documents. In
order to create an unordered list, a set of 1i elements is placed inside an ul element. 11 stands
for “list item,” while ul stands for “unordered list.”

The following is an example:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
</head>
<body>

<1i>This is the first point
<1li>This is the second point
<1i>This is the third point

</body>
</html>

20 | LESSON 3 LISTS AND TABLES

If you save this in an HTML file and open it in Chrome, it will display
like the example in Figure 3-1.

The 1i tag is self-closing, so I have omitted the ending tag. Obviously,
this could have been included without affecting the display of the list.

+ This is the first point
» This is the second point
+ This is the third point

FIGURE 3-1

Although unordered lists are simple, once they are combined with CSS, they can become very
powerful. Whenever you see a horizontal list of navigation links at the top of a web page, there is a

good chance that they were created from an unordered list.

Ordered Lists

Ordered lists are identical to unordered lists, except they use the ol tag rather than the ul tag. The

only visual difference between the two lists is that ordered lists are numbered:

<1i>This is the first point
This is the second point
<1i>This is the third point

Figure 3-2 illustrates how this displays.

Any element can be used as the content for an 11i tag; thus, it is possible
to nest lists within lists. The following example lists an unordered list
inside an ordered list:

point 1

sub point 1
<lis>sub point 2

</1li>
point 2

sub point 1
<lis>sub point 2</1li>

</1li>
<lispoint without sub points</lis

The result of this can be seen in Figure 3-3.

Description Lists

1. This is the first point
2. This is the second point
3. This is the third point

FIGURE 3-2

1. point 1
< sub point 1
o sub point 2
2. point 2
o sub point 1
< sub point 2
3. point without sub points

FIGURE 3-3

Description lists are probably the least used type of list. They are a type of list where each entry
captures a name-value group. Each group in turn consists of one or more names, followed by one or
more definitions. Consider the following list, which captures information about the drinks served by a

cafe:

<dl>
<dt>Coffee</dt>
<dd>Cappuccino</dd>

Tables | 21

<dd>Espresso</dd>

<dd>Mocha</dd>
<dt>Tea</dt>

<dd>Earl grey</dd>

<dd>CGreen tea</dd>

<dd>Chai tea</dd>

</dl>
o s . . Coffee

This list contains two groups: coffee and tea. Each group then consists of a Cappuccino

set of beverages relating to that group. You can see the result of this in Figure 3-4. %;5'13;50

Definition lists were originally specified purely in terms of terms and definitions. Tea Barl grey

The HTMLS standard broadens the suggested uses of definition lists and Green tea

encourages you to think in terms of groups with names and values. Chai tea
FIGURE 3-4

TABLES

Tables are a more complex structure than lists and support the familiar notion of rows and columns.

Throughout the course of this book, you will write a web application from scratch, and this web
application will utilize a table. The web application will perform basic Customer Relationship
Management (CRM) capabilities; in particular, it will keep track of a set of contacts and the last
date they were contacted.

In order to start this web application, create a folder somewhere on your file system called CRM.
This will hold all the files needed by the web application.

Next, add a file called contacts.html to this folder, and populate it with the basic HTMLS
template outlined in Lesson 1.

You will now create a table in the body of the web page for capturing the following information:
> Contact name

Phone number

>

> Email address
> Contact’s company
>

Date last contacted

To start, begin by creating an opening and closing table tag in the body of the web page:

<table>
</table>

HTML tables are row orientated: You add one row at a time using the tr (table row) element and
provide values for all the relevant columns. The rows can either be added to the header, body or
footer of the table. Add the following inside the table element:

<thead>

<tr>
<th>Contact name</th>
<th>Phone number</th>

22

LESSON 3 LISTS AND TABLES

<th>Email address</th>
<th>Company name</th>
<th>Last contacted</th>
</tr>
</thead>

The row in the thead element contains five children of its own: These th (table heading) elements
are the individual cells in the row of the table.

Next, you will add two rows to the body of the table. The body of the table is encapsulated in a
tbody element. The individual cells in the body use the td (table datum) element rather than the th
element. Add the following after the end of the thead element:

<tbody>
<tr>
<td>William Smith</td>
<td>555-642-7371</td>
<td>williametesting.com</td>
<td>ACME Industries</tds>
<td>2014-10-21</td>
</tr>
<tr>
<td>Bob Morris</tds>
<td>555-999-2991</td>
<td>bobetesting.com</td>
<td>ABC Corp</td>
<td>2014-09-12</td>
</tr>
</tbody>

Next, you will add a footer row to the table. The footer will simply state how many rows are in the
table; thus, it only needs to occupy a single cell. This presents a dilemma because you want all the
rows in the able to have the same number of columns. The solution to this is to utilize the colspan
attribute with the td element to specify that a single td spans multiple columns. Add the following
after the end of the tbody element:

<tfoot>
<tr>
<td colspan="5">2 contacts displayed</td>
</tr>
</tfoot>

Finally, you will add a caption for the table. This can be added anywhere in the table, provided it is
a direct child of the table element itself:

<caption>Sales leads</caption>

The complete web page should now look as follows:

<table>
<thead>
<tr>
<th>Contact name</th>
<th>Phone number</ths>

Tables

23

<th>Email address</th>
<th>Company name</th>
<th>Last contacted</th>
</tr>
</thead>
<tbody>
<tr>
<tds>William Smith</td>
<td>555-642-7371</td>
<td>williametesting.com</td>
<td>ACME Industries</td>
<td>2014-10-21</td>
</tr>
<trs>
<td>Bob Morris</td>
<td>555-999-2991</td>
<td>bobetesting.com</td>
<td>ABC Corp</td>
<td>2014-09-12</td>
</tr>
</tbody>
<tfoot>
<trs>
<td colspan="5">2 contacts displayed</td>
</tr>
</tfoot>
<caption>Sales leads</captions>
</table>

If you open the page in Chrome, it should display as you see in Figure 3-5.

Sales leads
Contact name Phone number Email address Company name Last contacted
William Smith 555-642-7371 willlam@testing.com ACME Industries 2014-10-21
Bob Morris ~ 555-999-2991 bob@testingcom ABC Corp 2014-09-12
2 contacts displayed

FIGURE 3-5

You will notice that the columns in the table have sized themselves according to the data that has
been added to them, but the last row in the table spans column boundaries.

Technically, you could have avoided using the thead, tbody, and tfoot tags, and just wrapped
every row in a tr element directly within the table element. There are, however, a number of
reasons why it is worth adding the extra structure to the table that these tags afford:

> It will help you style the different components of the table differently. Usually, the header
and footer rows will be styled differently from the rows in the body of the table.

> You can add extra functionality to the table such as sorting and filtering. In this case, you
would not want to sort or filter the header and footer rows.

24 | LESSON 3 LISTS AND TABLES

Prior to HTMLS, the table tag supported a number of attributes for controlling the presentation of the
table such as the border size, the width of the table, the background color of the table, and the padding
that should surround each cell. These have all been removed in HTMLS5, and you should not use them.

NOTE In the early days of website development, it was common to use tables
as a layout mechanism. This is now strongly discouraged because CSS provides
more than enough power to lay out complex web pages by itself. Tables should
only be used for data where data needs to be stored in columns and rows.

TRY IT

In this Try It, you will experiment with lists and tables. As with the previous lesson, you do not need
to follow this lesson implicitly, the most important thing is to experiment with the tags and discover
for yourself the way they can be combined to create interesting web pages.

Lesson Requirements

You will need the template.html file from Lesson 1, a text editor, and a web browser.

Step-by-Step
1. Open the template.html page in your text editor.

2. Start by creating a simple numbered list of all the tags that you have learned about in this
lesson—for instance table, tfoot, and thead.

3. Now, imagine that you want to categorize these based on whether they are relevant to tables
or lists. Try to convert the numbered list into a description list. Each category should be
captured in a dt element, while the tag names should be placed in dd elements. The goal is to
create a structure that looks like Figure 3-6.

Lists

Table
table
thead
tfoot
tbody
r
td

FIGURE 3-6

Trylt | 25

4. Now you will add a table to the web page to present the same information in the same way.
Create a table with the following columns:

> Tag name

> Category (for example, list, table)

> Description
Ensure that the table utilizes the thead and the tbody elements.
Provide a caption for the table.

The first few rows of the table may look like Figure 3-7.

Tags in lesson 3
Tag name Category Description
ul List creates an unordered list
ol List creates an ordered list
it List creates a list item
dl List creates a description list

FIGURE 3-7

REFERENCE Please select the video for Lesson 3 online at www.wrox . com/go/
html5jsjquery24hr. You will also be able to download the code and resources
for this lesson from the website.

http://www.wrox.com/go

Introduction to CSS

The first three lessons of the book introduced you to a large number of tags, but it has so
far not been possible to style the presentation of these tags when they appear onscreen.
As mentioned, HTMLS5 has removed most of the remaining presentation-based tags and
attributes, and presentation and style are instead the responsibility of another technology
called Cascading Style Sheets (CSS).

The main reason for this is a concept called “separation of concerns.” The HTML markup
language is responsible for providing the content of the page, while CSS is responsible for the
presentation and styling of this content. This means it is possible to change either without
affecting the other.

For instance, it is usually possible to completely restyle an existing web page without changing
the HTML at all. Additionally, it is possible to change the content of a web page without
needing to change the CSS at all.

This lesson will introduce the fundamentals of CSS, and will mainly focus on the way
individual elements can be styled. In the next lesson, you will consolidate this knowledge, and
also look at how CSS behaves when elements interact with one another.

The HTMLS specification includes a companion specification called CSS3—version 3 of
Cascading Style Sheets—that greatly enhances the power of CSS. You will look in-depth
at CSS3 later in the book, but for the next two lessons you will focus on the fundamentals
of CSS.

NOTE The capabilities of CSS are truly astounding, so this lesson will not intro-
duce you to everything CSS can do. The aim of this lesson is instead to provide
you with a sound understanding of the fundamentals: once these are understood
it is easy to find information about specific features.

28 | LESSON4 INTRODUCTION TO CSS

CSS SELECTORS

In this section, you will get started with CSS by styling the web page developed in Lesson 2.
This page utilized header and paragraph elements to format text, and also included images and
hyperlinks. Ensure you have the following HTML available to work with in this section:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
</head>
<body>
<h1>This is a top level heading</hl>
<h2>This is a second level heading</h2>
<h3>This is a third level heading</h3>
<p>This is the first paragraph</p>
<p>This is the second paragraph</p>
<blockquote>
Tell me and I forget. Teach me and I remember. Involve me and I learn.
<cites>Benjamin Franklin</cites>
</blockquote>
<p>Please click here to view page 2</p>
<p>This is a photo I took in Cambridge
</p>

</body>
</html>

As you will see, CSS can be included in a web page in three different ways. This section will focus
on a single approach: adding CSS within a style element in the head of the web page.

In order to apply a style to an element, you first need a way of selecting the elements that you wish
to style. CSS provides four key selection mechanisms, the most simple of which is to select the
elements based on their tag name. For instance, if you wanted to select all the h1 elements in the
document and display them in a red font, you could add the following to the head section:

<style>
hil {
color: red;
}

</style>

If you refresh the web page, the top header will display in red.

NOTE A number of colors can be referenced directly by name, but it is more
common to represent colors as a string such as #FF0000. This is a hash,
followed by three sets of hexadecimal numbers specifying the ratio of red, green,
and blue respectively. There are many resources online for finding colors using
this format, and you will see many examples throughout this book.

CSS Selectors |

29

This simple example demonstrates most of what you need to know about the syntax of CSS. You
start by specifying the selector: h1 in this case. Next, you place a set of stylistic properties between
curly brackets where each stylistic property is in the form of a name/value pair. In this case, the
name of the property is color (technically this is foreground color), while the value is red. A colon
separates the name and value, and the whole construct is concluded with a semicolon. I will refer to
this entire construct as a CSS rule.

It is possible to add multiple stylistic properties to the same selection. The following rule also speci-
fies the font-family and the fact that the text should be underlined.

<style>
h1l {
color: red;
text-decoration:underline;
font-family: Arial, Helvetica, sans-serif;
!
</style>

Figure 4-1 shows the result.

This is a top level heading

FIGURE 4-1

The font-family property has a more interesting value than color. Many fonts are proprietary;
therefore, you cannot be sure which fonts the user’s browser will provide. The value of the property
therefore contains a list of fonts in priority order. In this case, the value states:

> Try to use Arial if it is available.
> If that is not available use Helvetica.

> If that is not available use any sans-serif font.

Imagine now that you want this style to apply to all the headings in the web page. Obviously, you
could duplicate this rule three times and select h1, h2 and h3 in three separate rules. You always
want to avoid duplication if you can, however, because it leads to maintenance issues.

There are, in fact, two ways you can achieve this without duplication. The first is by specifying the
three different tags separated by a comma:
hl, h2, h3 {
color: red;

text-decoration:underline;
font: Arial, Helvetica, sans-serif;

}

A more elegant solution, however, is to use classes. Any element can be assigned one or more classes
with the class attribute. A class is just an arbitrary name you choose and usually describes some
aspect that a set of elements have in common. For example:

<hl class="redHeader">This is a top level heading</hl>

<h2 class="redHeader">This is a second level heading</h2>
<h3 class="redHeader">This is a third level heading</h3>

30

LESSON 4 INTRODUCTION TO CSS

In this case, redHeader is the class name. It is then possible to style all elements with this class
using the following selector:
.redHeader {
color: red;

text-decoration:underline;
font: Arial, Helvetica, sans-serif;

}

Notice the dot at the start of the selector: This always implies that you are selecting elements by a
class. If you redisplay the web page, all three headers will display with the specified properties.

If you want to assign two classes to an element, the class names are separated by a space. For example:

<hl class="redHeader pageHeading">This is a top level heading</hl>
You can then select elements based on either of these classes.

Another common way to select elements is by their id. Any element can be given an id, but,
unlike classes, IDs must be unique within a document. The following is an example of a paragraph
with an id:

<p id="firstParagraph">This is the first paragraph</p>
It is then possible to create a CSS rule that selects this element as follows:

#firstParagraph {
font-weight: bold;
}

Notice that the selector begins with a # to indicate it is based on id. This particular example will
display the paragraph with the matching id in bold.

The final common way to select elements is via pseudo-classes. These allow you to select elements
based on features that cannot be expressed by the other selectors, for instance, every even numbered
row in a table.

If you consider the firstparagraph example, you may notice that there is a potential issue lurking
here. If a new paragraph is added before the current first paragraph, you would need to remember
to swap the id onto this element—which would be easy to forget. A better option is to state that you
want the first paragraph to be in bold, without specifying which paragraph is the first in the docu-
ment. This can be achieved as follows:

p:first-of-type {
font-weight: bold;
}

This selector first selects all the p elements, and then limits this selection to just the first element found of
its type. Because all the elements returned have the type of p, the first-of -type selector will return the
first p element in the document. Pseudo-class selectors always begin with a single or double colon.

Pseudo-classes are also useful for providing styles to elements based on their state. For instance, if you
wanted links to turn green when the user hovered over them, you could use the following selector:

a:hover {
color: green;
}

CSS Selectors | 31

There is no way to perform this selection without pseudo-classes.

NOTE CSS actually supports two related, but technically distinct, mechanisms:
pseudo-classes and pseudo-elements. Technically, the selectors you have looked
at are pseudo-classes because they select elements that you could not select via
other selectors. CSS also supports pseudo-elements: These allow a portion of an
element to be selected, such as the first letter in a paragraph, or the first line in a
paragraph.

Pseudo-element selectors are supposed to use a double colon rather than a single
colon, but some browsers do not support the double colon syntax, so the single
colon syntax is regularly used for both types of selector.

When selecting the first paragraph in the document, you are actually combining two types of
selector: an element selector and a pseudo-class selector. It turns out that you can combine selectors
in many interesting ways.

For example, if I wanted to select all the h1 elements that had the class redParagraph, I could use
the following selector:

hl.redHeader {
text-align: center;
}

Notice that there is no space between the element selector and the class selector. Alternatively, if I
wanted to select all n1 elements that had both the redHeader and pageHeader classes, I could use
the following;:

hl.redHeader.pageHeader {
text-align: center;

}

Alternatively, you can select elements only when they are children of elements returned by other
selections. For instance, you can specify that the cite element should be capitalized, but only when
it is a child of a blockquote element (which, as it happens, it always is):

blockquote cite {
text-transform: uppercase;

Notice in this case there is a space between the two selections. This will match cite elements if
they are a descendant of a blockquote element, even if blockquote is not their immediate parent.
Another way to think about this is two distinct selections. CSS first selects all the blockquote
elements, and then it searches for any cite elements that are descendants.

With the > operator, it is possible to specify that the selection should only occur if the element is an
immediate child of the first selection:

blockquote > cite {
text-transform: uppercase;

32 | LESSON4 INTRODUCTION TO CSS

CSS FILES AND INLINE STYLES

So far, you have used the style element to add CSS to a web page. Although this is an easy way of
adding CSS, it has the disadvantage that you cannot use the same CSS across multiple pages.

It is therefore far more common to place all the CSS in a file with a . css extension and link it to each
web page that needs to use it. In order to try this out, save the styles you have added so far in a file called
examples.css. Place this in the same folder as the HTML page, but do not include the style element.

Now, remove the whole style element from the head of the document, and replace it with the
following:

<link rel="stylesheet" type="text/css" href="examples.css">

Again, the href attribute is using a relative URL to load the style sheet, but it could also use an
absolute URL. If you reload the web page it should display the same as before.

An alternative way of specifying CSS properties is via the style attribute on individual elements.
Although this approach is generally discouraged, it can be useful when a style is unique to a single
element. As you will also see, these styles have a higher precedence, so it can be a useful approach
for overriding global styles. The following is an example:

<blockquote style="color: #888888;font-size:12px;">

Notice that the inline styles use the same basic syntax: Colons separate names and properties, and
semicolons separate styles. Obviously, they do not include a selector because they are applied to the
element they are declared on.

SPECIFICITY

The same element may match multiple CSS rules. When this occurs, all the properties defined in all
the rules are applied to the element. You have already seen an example of this with the h1 element.

Imagine, however, if you had the following in your style sheet:

h1l {
color: blue;
}

hl.redHeader {
color: green;
}

.redHeader {
color: pink;
}

All three of these styles match the first header in the document; therefore, what color should it be
assigned? The answer to this lies in a concept called specificity. In order to determine the style to
use, CSS assigns points to each rule that matches an element based on its selector:

> If the selector matches on an element or pseudo-element 1 point is assigned.

> If it matches on class or pseudo-class, 10 points are assigned.

Inheritance | 33

> 1If it matches based on id, 100 points are assigned.

> 1If the style is contained in a style attribute on the element, 1,000 points are assigned—
which usually ensures it automatically wins.

You can therefore determine which of these three rules should be used:
> Rule 1 matches on an element so it receives 1 point.
> Rule 2 matches on an element and a class so it receives 11 points.

> Rule 3 matches on a class so it receives 10 points.

As a result, the color of the header should be green.

It is, of course, possible that two styles will have the same specificity. In this case, the rule defined
last will have precedence. If the two rules are in the same external style sheet, the rule that occurs
closest to the end will win. If they are in separate style sheets, the last style sheet declared in the web
page will win.

There is one important exception to this rule. If a style is so important that you never want it to
be overwritten by a rule with a higher specificity, you can assign it a tag called important. For
instance, if the following two rules were defined:

h1 {

color: blue;
text-align: center !important;

}

hl.redHeader {
color: green;
text-align: left

}

the color will be green because of specificity, but the text will be aligned in the center because
it is marked as important. It is best not to overuse this approach, but it works well in an
emergency.

INHERITANCE

Obviously, it is annoying to need to style every single element. There are many cases where you want
many elements to share the same style, and therefore it would be convenient to specify that the style
applies to an element and all its descendants. This concept is called inberitance because styles are
inherited from a parent.

CSS supports this concept for many, but not all, styles. For instance, you may want all the text in
the document to use the same font family. You could therefore specify the following:

body {
font-family: Arial, Helvetica, sans-serif;
}

34 |

LESSON 4 INTRODUCTION TO CSS

Because all the visual elements in the document have the body element as a parent (even if not a
direct parent), all the elements in the document will inherit this style. Likewise, if you were to
specify the following;:

blockquote {
text-decoration: underline;
}

the text for both the blockquote and cite elements will be underlined.

Inheritance does not always make sense, however. Imagine that you used the border property to
add a 1-pixel solid black border around the blockquote.

blockquote {
border: 1lpx solid black;

}

Should a separate border be drawn around the cite element? I think you can probably agree that
borders should not be inherited, and, in fact, they are not.

If you would like to inherit a non-inherited style, you can do so by using the following syntax:

cite {
border: inherit;
}

BROWSER DEFAULTS

All browsers have a set of default styles that they apply to elements. These defaults include font
types and sizes, the space between lines and paragraphs and the weight of the fonts on table headers.
Browser defaults are only used when you do not provide your own style for an element.

One problem with browser defaults is that they tend to vary between browser vendors. This may

mean your web page looks perfect in Chrome but looks terrible in IE because it is picking up a
default.

Because of these issues, it is common to completely remove the browser defaults. This is typically
performed using a separate style sheet called reset .css (you will find examples on the Internet),
which is then the first style sheet that is loaded on each page.

CHROME SCRATCH PAD

When experimenting with CSS, it can be an annoyance to make changes to the style sheet, save the
changes, and reload the web page. Fortunately, Chrome makes it easy to experiment with styles
directly in the browser. In order to demonstrate this, right-click on the first h1 element and choose
Inspect Element.

Chrome Scratch Pad | 35

On the left-hand side of the console, you will see the control shown in Figure 4-2.

|Sw|es|Compuled Event Listeners »

element.style { + ER
}
hl.redHeader { example.html:12
color: Moreen;
ewt—abber et
}
h1l.redHeader {
Fext—aiar—eerters
}
.redHeader { example.html:17
ke [pirber
}
.redHeader {
eoter—lreds

text-decoration: Punderline;

h1 { example.html:7
eoter— M btuer
text-align: center !important;

hl { user agent stylesheet
display: block;
font-size: Zem;
-webkit-margin-before: @.67em;
-webkit-margin-after: B.67em;
-webkit-margin-start: 8px;
-webkit-margin-end: B8px;
font-weight: bold;

}
Inherited from body
body { example.html:3@
font-family: Arial, Helvetica,
sans-serif;
}
FIGURE 4-2

This is telling you all the rules that match the element, from the most specific at the top, to the
least specific at the bottom. Any time that a style is not used because of specificity, a line is drawn
through it.

At the bottom of this panel, you can see the styles inherited from the browser defaults (called “user
agent stylesheet”) and those inherited from other elements (for instance, body).

This can be very useful for determining why certain styles are used. For instance, have a look at the
example in Figure 4-2 and determine which rule provided the text-align property and why.

You can also change styles, or add styles to any of these rules: These
changes will be reflected in the web page in real time. You can also eliminate any styles you want by
clearing the checkbox that appears next to them when you hover over them.

Additionally, if you click on the very first rule called element .style, | |styles|Computed Event Listeners »

you can add new rules just for this element. For instance, you could ;E“E”"F‘“E L +
R color: Mblue;

make the color of the header blue by adding the property demon- ¥

strated in Figure 4-3. FIGURE 4-3

36 | LESSON4 INTRODUCTION TO CSS

TRY IT

In this Try It, you will style the table that you created in Lesson 4 to hold contact information.

Lesson Requirements

You will need the contacts.html file from Lesson 4, a text editor, and a web browser.

Step by Step

1.
2.

Start by creating a file called contacts.css in the same folder as contacts.html.

Add a link in the head section of contacts.html to the CSS file following the instructions
earlier in the lesson.

Set the font family for the entire document to use Arial, Helvetica, sans-serif.
Remember that you will need a rule that matches the body element.

Add a 1-pixel solid black border to the elements table, th, and td. You will find an example
of a border style earlier in this lesson.

Load the page in Chrome. You will notice that there is a double border around cells (see
Figure 4-4) because each cell has its own border, and there is a gap between these. To fix this,
add a new style to this rule with the property border-collapse, and a value of collapse.
This will collapse the duplicate borders into a single border.

Sales leads

Contact name || Phone number Email address Company name || Last contacted

William Smith || 555-642-7371 || william@testing.com | ACME Industries | 2014-10-21

Bob Morris 555-989-2991 || bob@testing.com ABC Corp 2014-09-12

2 contacts displayed

FIGURE 4-4

Add some space between the content and the border of each cell (td element). Add a prop-
erty called padding, and set this to 5px.

Add a style for the thead element. Set the background to the color #305620, and set the
color to white.

Set the caption for the table to display in bold, but ensure this is only applied if caption is
a child of a table element.

Set the font of the tfoot element to be three-quarters the size of the font used elsewhere.
Hint: Setting the font to 2em would double the size of the font (you will look at this setting
further in the next lesson). In addition, set the text alignment to be on the right-hand side of

the table.

Trylt | 37

10.

Every second row of the table body should be given a background color of #E6E6F5. In order
to select every second row, use the pseudo-class selector tr:nth-child (even), but ensure
this is only applied to children of tbody because thead and tbody also have tr elements.

When complete, the table should look like the screenshot in Figure 4-5.

Sales leads
Contact name Phone number Email address Company name Last contacted

William Smith | 565-642-7371 | william@testing.com | ACME Industries | 2014-10-21

Bob Morris 555-999-2991 | bob@testing.com ABC Corp 2014-09-12

2 contacts displayed

FIGURE 4-5

REFERENCE Please select the video for Lesson 4 online at www.wrox . com/go/
html5jsjquery24hr. You will also be able to download the code and resources
for this lesson from the website.

http://www.wrox.com/go

Structuring Pages with CSS

In the previous lesson, you looked at how individual elements could be styled with CSS. This
lesson builds on this knowledge and looks at how elements come to occupy the screen position
that they do, how this can be manipulated, and how this impacts other elements around them.

THE BOX MODEL

The box model is one of the most important CSS concepts and dictates the width and height
each element will occupy onscreen. The box model starts from the observation that all
elements in the document occupy rectangular boxes, but the rules for calculating their height
and width are not as straightforward as you may think.

For a start, the height and width occupied by an element is greater than the height and width
required for the content of the element for several reasons. For instance, the element may have

a border that occupies additional space. In the previous lesson, you created borders that were 1
pixel in size. Thus, these borders added 2 pixels to the height and width required for the element.

Padding may also be added between the content and the border, as with the table cells in
the previous lesson. Finally, it may also be necessary to add additional margin between the
element and its neighboring elements.

The total space occupied by the element’s box can therefore be visualized in Figure 5-1.

Margin

Border
Padding

FIGURE 5-1

| LESSON5 STRUCTURING PAGES WITH CSS

In order to see this in action, create a web page as follows:

<!DOCTYPE html>
<html lang="en">

<head>
<meta charset="utf-8">
<style>
hi {
width:400px;
height:30px;
padding:10px;
border:2px solid #999999;
background: #dddddd;
margin: 10px 20px 20px 10px;
}
</style>
</head>
<body>
<hl1>This is a header</hl>
</body>
</html>

This code declares an h1 element with the following sizes (working from the inside of the box to the

outside):

> A width of 400 pixels and a height of 30 pixels. If these were omitted, the element would
have a default height and width calculated from the content of the element.

> Ten pixels of padding between the content and the border. When specifying a single value,
the value is automatically applied to the top, right, left, and right of the box.

A 2-pixel border.

> A margin between itself and its neighbors, but this has different values on each side.
Therefore, four values are provided. You can remember which side these apply to with the
acronym TRouBLe (Top, Right, Bottom, Left). For instance, in this case the left margin is

10 pixels.

It is also possible to specify the border, padding, or margin for
any side individually by using properties such as margin-left,

border-top, and padding-right.

Open this web page and view it in Chrome. Right-click on the h1
element, and select Inspect Element. Ensure the element is selected
in the Elements tab, and then take a look to the bottom right of the
console. It should show a box like the one in Figure 5-2, which is a

visualization of the box model for the element.

You can therefore use this to determine how much height and width

the element will need onscreen:

Dmegn w |
i border 2 i
| ipdang 0 |
110 zim 10!2|20!
| 10 Pl
W 2 |
5_ 2 j
FIGURE 5-2

> The width will need 10 + 2 + 10 + 400 + 10 + 2 + 20 = 454 pixels.

> The height will need 10 + 2 + 10 + 30 + 10 + 2 + 20 = 74 pixels.

Display Type | 41

One other interesting aspect you may notice about the box model is the scope of the background
color. The background color fills the content and the padding, but not the margin or border.

If you add two more h1 elements to the document and then refresh the web page, you will notice
that there is a margin between the elements, as shown in Figure 5-3.

This is a header

This is a header

This is a header

FIGURE 5-3

You may notice something unusual here however. Each of the headers has a top margin of 10
pixels and a bottom margin of 20 pixels. You might therefore expect that there would be 30 pixels
between each element.

If you select the top element in Chrome, however, you will notice that the bottom margin is only
20 pixels (as demonstrated by the fact the space taken by the element extends down to the top of
the next element). You can see this in Figure 5-4. The top margin for the second header has been
ignored.

This is a header

hl 424px = Sd4px

is is a header

FIGURE 5-4

This is referred to as collapsed margins. The top and bottom margin of block elements are
collapsed into a single margin that is calculated as the greatest of the top and bottom margin:

20 pixels in this case. Working around collapsing margins can be a headache; therefore, it is often
better to rely on only top or bottom margins, not both.

DISPLAY TYPE

I have alluded to display types several times already in this book, but now is the time to look at this

property in more depth. Every element has a display type and is initially defaulted to the appropriate
type for each tag. There are quite a number of display types, but you really need to understand only

four of them.

42

LESSON 5 STRUCTURING PAGES WITH CSS

By default, h1 elements have a display type of block. As mentioned previously, block elements
insert a break in the document meaning the next element will appear below the previous element.
It is possible to control both the height and width of a block element, as you saw in the previous
section.

The next most widely used block type is inline. Add the following rule to the style section and
refresh the web page:

h1l {
display: inline;
}

This will now display as you see in Figure 5-5. As you can see, inline elements sit alongside one
another. If they exceed the width of the page, they will then automatically wrap to a new line.
Although it is possible to control the width of an inline element, it is not possible to control their
height: This is automatically calculated.

This is a header | | This is a header | This is a header

FIGURE 5-5

Additionally, it is only possible to add margin and padding to the left and right of the element, not
to the top and bottom. As you can see, the elements are positioned at the very top of the web page,
without any margin between the headers and the address bar.

The third major category of display type is inline-block. When elements are assigned this display
type, they sit alongside one another, just like inline elements, but it is possible to specify their
height, and add margin and padding to all four sides.

The final display type to understand is none. When an element is assigned this display type the
element is hidden from the viewer but remains in the document. Change the second header as fol-
lows and then refresh the web page:

<hl style="display:none">This is a header that is hidden</hl>
If you reload the page, you will see that there is no sign of this element: It does not even leave an

empty space for the position it would hold if it had visibility. It is common to dynamically hide and
show content with JavaScript by manipulating the display type, as you will see later in this book.

POSITIONING ELEMENTS

Now that you understand the box model, it is possible to start looking at how different elements
interact.

Imagine that you want to create a web page split into five sections:
> A 100-pixel high header that spans the width of the page
> A 50-pixel high footer that spans the width of the page

Positioning Elements | 43

> A content section broken into three sections:

> An area to the left where menus can be positioned: This should occupy 20 percent of
the width and have a minimum height of 500 pixels.

> An area on the right for advertising material: This will also occupy 20 percent of the
width and have a height of 500 pixels.

> A main content section in the middle occupying as much of the remaining space as it
requires.

The screen therefore consists of the five boxes seen in Figure 5-6. The first question you might want to
ask yourself is: What type of element is each of these boxes? Essentially, they are just containers for other
elements, and you may want to encapsulate many different elements inside each of these containers.

FIGURE 5-6

HTML supports a tag I have not discussed so far called a div. This is potentially the most widely
used tag in HTML: It is a block element with no default presentation itself; it is simply used as a
container to group other elements together.

HTML supports a second related tag called a span (perhaps the second most widely used tag in
HTML). This is the same as a div, except it is an inline element rather than a block element.

You will start by creating a page called structure.html with the following body:

<body>
<div id="header">This is the header</div>
<div id="sidebar">This is the sidebar</divs>
<div id="content">This is the main content</divs>
<div id="advertising">These are adverts</divs>
<div id="footer"sThis is the footer</divs>
</body>

Because these are block elements, you will notice that the five elements simply sit on top of each other
for now. I have added id attributes to the elements to allow them to be styled individually in CSS.

In order to style the header element, add a style element with the following value:

#header {
height:100px;
background:pink;

44 |

LESSON 5 STRUCTURING PAGES WITH CSS

When I am laying out a web page, I find it convenient to give every element a distinctive background
color to start—this allows me to see exactly how much space has been allocated to each element.

If you view this web page in Chrome, you will see that the header has a white margin around it.
This is the result of a style inherited from the body element; therefore, you should also add the
following to the styles section to remove this:

body {
margin: O;
}

Now, add the following for the sidebar element:

#sidebar {
width:20%;
background:orange;
height:500px;
float:left;

}

Notice that the width element uses a percent for the unit rather than pixels: This means it will
utilize 20 percent of the space potentially available to it, which for a top-level element like this is the
entire width of the screen. Sizes are also commonly expressed in the following formats:

> mm: Millimeters
> in: Inches

> em: 1 em is the equivalent size of the current font; this measurement therefore allows elements
to be sized in relation to the standard font size.

This element also declares a height. This property ensures that the element occupies 500 pixels of
vertical space.

The most interesting property here, however, is the £loat property. Because you need three block
elements to sit alongside each other, you need to control how they interact with each other horizon-
tally. The float property can be used to position block elements to either the left or the right of the
area available to them, and in addition, this suppresses the break that would normally accompany
block elements in the left-to-right flow.

Although using the float property is similar to declaring the display type as inline-block, it has
the additional benefit that it is possible to position elements to the left or the right of their available
space. By comparison, inline-block elements always float to the left of the available space.

Next, you will add style for the content element. You will leave this without any style, except you
will specify that it should float to the left of its available space, which will position the element
directly to the right of the sidebar element. Add the following to the styles:

#content {
float:left;
}

With this in place, you want to place the element with the id of advertising on the right side of
the screen. The style for this element is therefore virtually identical to sidebar, except you will
request that it floats right:

Positioning Elements | 45

#advertising {
width:20%;
background:blue;
height:500px;
float:right;

}

Notice that this is not sitting directly up against the content element; instead, it is being positioned
directly against the right of the screen.

Finally, you come to the footer. It may seem that you can simply add the following;:

#footer {
height :50px;
background:pink;

}

If you try loading this page, however, you will see that the footer div sits beside the content div.
You need to request that this element drops below the floated elements preceding it with the follow-

ing property:
clear: both;

In this case, both refers to the fact that this element should drop below both left and right floated
elements.

If you load the page, you will see that it looks exactly as expected (see Figure 5-7). Once the page
structure is in place, you can then start adding content to each of the divs.

[This is the header

This is the sidebar This is the main content

This is the footer

FIGURE 5-7

46

LESSON 5 STRUCTURING PAGES WITH CSS

CONTROLLING POSITIONS

Up until this point, the position elements that have been placed onscreen have been a product
of the elements that appear before them in the DOM and the properties of the element itself.
Elements are simply laid out in the order they appear in the web page and take up as much
space as they need. This then impacts the position assigned to elements that appear after them
in the DOM.

This is technically called static positioning, but it is only one of several ways of positioning elements.
This section will briefly look at three other ways of positioning elements.

In order to demonstrate positioning, start by creating the following web page, which consists of
three boxes. These three boxes are sufficient to demonstrate the various approaches to positioning:

<!DOCTYPE html>
<html lang="en">

<head>
<meta charset="utf-8">
<style>
.box {
height:200px;
width:200px;
display:inline-block
}
</style>
</head>
<body>

<div class="box" style="background:red"></div>
<div id="middleBox" class="box" style="background:green"></div>
<div id="lastBox" class="box" style="background:blue"></div>
</body>
</html>

If you view the web page, you will see that it consists of three boxes sitting alongside one another
(see Figure 5-8).

FIGURE 5-8

Imagine that that we want to move the second box (with the id of middleBox) 50 pixels to the
right and 50 pixels down without impacting the third box at all. This is not possible with static
positioning because adding 50 pixels of width to the second element would push the third element
50 pixels right.

Controlling Positions | 47

In order to achieve this, add the following rule to the style section:

#middleBox {
position: relative;
top:50px;
left: 50px;

}

This starts by setting the position of the middleBox element to relative. This means that you
want to set its position relative to the default position it would be given on the page.

Once the position property has been set, you can start using the left, right, top, and bottom
properties to move the element to a different position on the screen. In this case, you then want to
specify that you want 50 pixels of space added to the 1eft and 50 pixels of space added to the top.
If you view this, you will see the screen displayed in Figure 5-9.

FIGURE 5-9

Notice that the elements now overlap one another: The third box is simply given the position it
would have held if you had not moved the second element to the right.

It is also possible to use a position of absolute to position an element relative its parent. Try
changing the preceding style as follows:

#middleBox {
position: absolute;
top: 150px;
left: 150px;

}

Because the parent of middleBox is the body element itself,
you are effectively positioning the element relative to the
browser window. If you view the page now, it should look
like what you see in Figure 5-10.

Using absolute positioning removes the element from the
flow of the page, and therefore the position of the third
box is also impacted.

You can also control which of these elements sits in the
foreground and which are relegated to the background.
This is controlled by a CSS property called z-index. FIGURE 5-10

48 | LESSON5 STRUCTURING PAGES WITH CSS

The element with the highest z-index will be placed in the foreground. Therefore, if you add the
following to the style of middleBox, it will be relegated to the background:

z-index:-1;

The final main type of positioning is fixed. This is similar to absolute positioning, except elements

are positioned relative to the browser window. In the preceding example, fixed and absolute posi-
tioning would achieve the same result.

TRY IT

In this step-by-step, you will pick up the CRM application from the previous lesson and add more
structure to the overall web page. This will include adding a header, a footer, and an area for adding
new contacts (although we will not populate this until the next lesson).

Lesson Requirements

You will need the CRM application as it stood at the end of Lesson 4. You will also need a text
editor and the Chrome web browser.

Step-by-Step

1.

2.

Open the contacts.html page and add a div immediately after the opening body tag. In the
body of the tag, enter Contacts. Assign the id of header to this tag.

Wrap a div tag around the table, and give this the id of contactList. The opening tag
should be immediately before the opening table tag, while the closing tag should be immedi-
ately after the closing table tag.

Add another div immediately before the closing body tag and give this the id of footer.
Add a copyright statement to this div.

Add one final div immediately after the header div, and give this the id of contactDetails.
This is where you will eventually place a new form for adding contacts. Add an h2 element to
this with the text Contact Details.

Open contacts.css. Start by adding a margin: 0 property to the body rule to ensure you
remove white space from around the header.

Create a rule for the div with the id of header. This should specify that the background
and color are the same as for the thead element rule from the last lesson. Additionally, add
a text-align property with a value of center, and a 1ine-height property with a value of
70px.

line-height is similar to height, but it will ensure that the text is vertically aligned. If you
had simply specified height, the text would be positioned near the top of the div. Also add
a font-size of 3em: three times larger than the standard font.

contactDetails and contactList need to share a number of properties, so create a rule
that matches both of these elements. Add a border with a 1px solid line and a color of
#999999. Also add margin and padding of 15px around all sides.

Trylt | 49

8. Add a style for the footer div. This should be the same as the header, except the 1ine-
height should be 40, and the font-size should be 0.8em.

9. Black font can be quite overpowering, so set the color property of the body to color:
#333333, which is a very dark grey.

If you open the page, it should look like the example in Figure 5-11. If you need assistance,
the finished version can be downloaded from the Lesson 5 resources, or you can watch the
screencast online.

Contact details

Sales leads
Contact name Phone number Email address Company name Last contacted

William Smith | 555-642-7371 | willam@testing.com | ACME Industries | 2014-10-21
Bob Morris 555-999-2991 | bob@testing.com ABC Corp 2014-09-12

2 contacts displayed

Copyright 2014

FIGURE 5-11

REFERENCE Please select the video for Lesson 5 online at www.wrox.com/go/

html5jsjquery24hr. You will also be able to download the code and resources
for this lesson from the website.

http://www.wrox.com/go

HTML Forms

The HTML tags examined up until this point have all been used to display content to the
user. This lesson examines HTML forms, which allow the user to submit data back to the web
server. Any time you enter data into text fields, or select values from drop-down lists, you are
using HTML forms.

This lesson will provide an introduction to HTML forms, but will also look at some of the
interesting changes that have occurred to forms in HTMLS. These changes were originally
called Web Forms 2.0, but have since been integrated into the HTMLS5 standard. Therefore,
even if you are familiar with HTML forms, this lesson is recommended.

WHAT IS A FORM?

A form is a set of input fields, grouped together inside a single element, with the purpose of
obtaining a set of information from the user. Forms have historically consisted primarily of the
following fields:

> Text fields

Select lists

Text boxes (multiline text fields)
Checkboxes

Radio buttons

Password fields

Y YV VY Y Y

As you will see shortly, this list has been greatly enhanced with HTMLS.

In addition, fields contain a Submit button that causes their contents to be posted to a specified
URL on the server. The server can then process this data as required and return a new web
page as a result.

52

LESSON 6 HTML FORMS

In this book, you will make extensive use of forms but will not post their contents to a server. You
will instead extract and process their data using JavaScript. In this lesson, I will present a more con-
ventional view of forms but will not provide server-side code for processing the form information
because this would require me to introduce a whole new set of technologies.

This section of the lesson introduces a very simple form and examines its component parts. You will
then create a more complicated form for the Contacts web page.

Create a new page called simpleform.html and add the following body to it:

<body>
<form action="submit.html" method="post">
<label for="firstName">First Name</label>:
<input id="firstName" name="firstName" type="text"/>
<p>
<label for="lastName">Last Name</label>:
<input id="lastName " name="lastName" type="text"/>

<p>
<input type="submit" value="Submit">
</form>
</body>
First Name:

If you open this in Chrome, it will look like Figure 6-1. Last Name:
Notice that all the input fields are nested inside a form element. All =
of the input fields within a form should represent a related set of data
that is processed together. FIGURE 6-1

The form element contains two important attributes. The action attribute is the address on the web
server that the contents of the form will be posted to when the form is submitted. It is assumed that
this address will be capable of processing the contents of the form and redirecting the user to a new
web page as a result.

The method attribute refers to the HTTP method that will be used to send the data to the server.
When you simply type an address in a browser address bar, you are using an HTTP method called
GET. This is a simple mechanism for requesting a web page, although it can contain data if required.

When you send form data to the server, you typically have a large quantity of data that needs to

be sent; therefore, you use the HTTP posT method. With this method, all the input fields and their
values are included in the body of the HTTP request rather than encoded in the URL. You do not
need to understand HTTP methods to progress through the book, although you will look at them in
slightly more detail when AJAX is introduced.

In this particular case, the form consists of two labels and two input fields.

Obviously, labels do not allow the user to provide input; thus, you may be wondering why you need
to use them rather than just adding text to the form. Labels have the following benefits:

> Clicking on the label puts the cursor focus in the input field. This relies on the fact that the
value of the for attribute is the id of the input field that it relates to.

> Labels provide more structure to the document because they make it obvious that the label is
associated with a specific input field.

Adding Fields to a Form | 53

HTML uses an element called input for many, but not all, input fields. For this reason, an attribute
is added to the element specifying the type of input it accepts. In this particular case, you have spec-
ified that the type is text (which is the default).

Finally, a button is added to the form allowing it to be submitted. Notice that this is also an
input element, but because it is given a type of submit, it displays as a button rather than an
input field.

When the submit button is clicked, the fields are serialized into a textual string of name/value
pairs. The name attribute for each input field is used as the name, and the current value of the field
is used as the value. The textual string is then placed in the body of an HTTP request and posted
to the server.

If I enter Dane and Cameron into the two fields, and then press the submit button, it will post an
HTTP request to the server, as shown in Figure 6-2 (this was captured from the Network tab of
Chrome’s developer tools after first clicking the Preserve Log option).

¥ Request Headers CAUTION: Provisional headers are shown.
Content-Type: application/x—www—Torm—urlencoded

Origin: null

Referer:

User-Agent: Mozilla/5.8 (Macintosh; Intel Mac 05 X 1@0_8_5) App
¥ Form Data view source view URL encoded

firstName: Dane
lastName: Cameron

FIGURE 6-2

ADDING FIELDS TO A FORM

In this section, you create the form for capturing information about a person in your Contacts web
application.

To complete this section, open the contacts.html file as it stood at the end of Lesson 3, or down-
load it from the book’s website.

Start by adding the following content to the contactDetails div:

<div id="contactDetails"><h2>Contact details</h2>
<form method="post">
<div class="formRow">
<label for="contactName"s>Contact name</labels>
<input name="contactName" id="contactName" type="text"/>
</div>
</form>
</div>

This adds a form with a single input field. The 1abel and input elements have been placed in a div
with a class of formRow, which ensures that each pair will be placed on a row of its own.

54 | LESSON 6 HTMLFORMS

Because you want all your labels and fields to have a consistent size, add the following to
contacts.css:

label {
width:150px;
display: inline-block;
vertical-align: top;

input {
width:200px;
}

Notice that you need to change the display type of the 1abel in order to set its width.

You can now add input fields for the email address and phone number fields:

<div class="formRow">

<label for="phoneNumber"s>Phone number</label>

<input name="phoneNumber" id="phoneNumber" type="text"/>
</div>
<div class="formRow">

<label for="emailAddress">Email address</label>

<input name="emailAddress" id="emailAddress" type="text"/>
</div>

Because you also want some space between each row, add the following to the style sheet. Figure 6-3

shows what the form should look like.

.formRow {
margin-bottom:10px;
}

Contact details

Contact name
Phone number

Email address

FIGURE 6-3

Next you will add a field for capturing the company of the contact. In this case, you may want the
user to select from a list of companies that have already been added into the system. This can be
achieved with a different input type called a select list. Start by adding this to the form:

<div class="formRow">
<label for="companyName">Company name</labels>
<select name="companyName" id="companyName">
<option value="-1">Please select</option>
<option value="1">ABC Incorporated</options

Adding Fields to a Form | 55

<option value="2">XZY Ltd</options>
<option value="3">ACME iInternational</options>
</select>
</div>

Notice that the select list is encapsulated inside an element called select. Within this, you have a
series of option elements providing the various possibilities. Each option consists of two values:
The text between the opening and closing option tag is the text that will be presented to the user.
Each option tag also has a value attribute, however, and this is the value that will be assigned to
the field when the form is submitted.

It is possible for the text and the value to carry the same value, but it is also common for them
to differ. For instance, in this case the value may represent a unique code for each company, as
assigned by an accounting system.

By default, a select list selects the first option, although it is possible to add a selected attribute to any other
option to make it the default. This is a Boolean attribute; thus, it does not require a value. For example:

<option value="3" selected>ACME ilInternational</option>

You will now add one more field for capturing notes about the contact. This will be slightly differ-

ent from the other text-based fields because you want to provide space for a large amount of text to
be captured. You will notice that the input fields you have used up until now do not even allow line
breaks, so they are not appropriate for capturing large quantities of text.

You therefore want to add a different input type called a textarea:

<div class="formRow">

<label for="notes"s>Notes</label>

<textarea cols="40" rows="6" name="notes" ></textareas
</divs>

Notice that the text area allows you to specify the number of columns and rows that the textarea
contains. Although these dictate the size of the element, and therefore are semi-presentational, they
are still valid attributes in HTMLS.

With this in place, the form should now look like Figure 6-4.

Contact details

Contact name
Phone number
Email address

Company name | Please select

Notes

FIGURE 6-4

56 |

LESSON 6 HTML FORMS

Finally, add a submit button to the bottom of the form. Because you want this to be smaller than
other input fields, you will use an inline style.

<div class="formRow">
<input style="width:70px" type="submit" value="Save"/>
</div>

HTMLS INPUT FIELDS

There is one final field you should add: You want to capture the date that the contact was last
spoken to or emailed by your staff. Users generally expect to provide this information by selecting a
date from a calendar.

Up until the release of HTMLS, you needed to resort to JavaScript libraries in order to achieve this.
One of the great enhancements in HTMLS is the introduction of a whole set of new input types,
including a date input type. This allows browsers to provide native support for selecting dates.

In order to see this in action, add the following row to the form, before the row with the submit
button:

<div class="formRow">

<label for="lastContacted"sLast contacted</labels>

<input name="lastContacted" id="lastContacted" type="date"/>
</div>

Notice that the only difference between this and other input fields is that the type has been specified
as date. If you open this in Chrome, however, you will see that a date picker has been provided for
you, as shown in Figure 6-5.

Last contacted |dd/am/ yyyy i)

July 2014 ~ e E

5un Mon Tue Wed Thu Fri Sat

1 2 3 4 5
Contact name Phg 6 7 9 10 11 12

William Smith |555- | 13 14 15 16 17 18 19

- 20 21 22 23 24 25 26
Bob Morris 555-
27 28 29 30 31

-]

FIGURE 6-5

The great thing about native support for calendars is that different browsers ——
can implement them in the most appropriate way they see fit. For instance, if wmeTi1 12012
you viewed this page on an iPad, the date picker would look like the example in July |12 f2013
Figure 6-6.

As you can see, this has been optimized for a touch-based operating system.

FIGURE 6-

HTMLS Input Fields | 57

The main problem with the date input type is that all browsers do not support it. This means that,
for now, you will probably need to rely on a technique called polyfills, as outlined later in Lesson 10.

HTMLS actually specifies many additional input types. As with the date input type, the specifica-
tion does not tell browsers how they should implement each type, and in fact, many are not widely
supported, but the following are some of the input types that have been included in the specification:

> email: Allows the user to capture an email address.
> color: Allows the user to capture a color, presumably from a color picker.

> number: Limits the user to entering a number in an input field, and allows the user to increase
or decrease the value by a step amount.

> range: Lets the user specify a number from a possible range of numbers. This will also be
introduced in Lesson 10.

tel: Lets the user capture a telephone number.
url: This lets the user capture a URL.

» datetime: This is similar to date, but allows the user to select time as well as date
information.

> time: This is also similar to date, but limits the selection to the time of day.

In order to see what these elements do, change the email address and phone number fields to use
email and tel respectively. If you now reload the page, you probably will not notice any difference.

As you will see in Lesson 8, this is not entirely true; HTMLS provides native support to validate
fields based on their type. In addition, although Chrome on a desktop does not treat these types any
differently from text fields, this may not be true of other browsers.

For instance, if you were to click on either of these fields in a mobile phone or tablet browser, you
can envisage that the software-based keyboard would change to reflect the keys needed by the input
type. The same would be true if the input type was set to number.

It is worth reiterating that one of the key strengths with the HTMLS5 specification is that it does not
second-guess how browsers should implement features. A browser on a phone may therefore attempt
to auto-complete phone numbers based on the user’s phone book if it determines this is useful to

the user.

Datalist Element

HTMLS also contains a new input type called a datalist. This is similar to a select list, but
it does not limit the user to the values in the list: It allows the user to type his or her own value if
required. The following is an example:

<input list="companies" name="companyName">
<datalist id="companies"s>

<option value="ABC Incorporated"s>

<option value="XZY Ltd"s>

<option value="ACME iInternational"s>
</datalist>

58

LESSON 6 HTML FORMS

As you can see, this element is made up of two distinct tags. The first is an input field, which,
because its type is not specified, defaults to a text input field. This specifies a special attribute
called 1ist.

The next element is a datalist, which has the same id as the 1ist specified on the input field. This
then provides a default list for the user to select from, and also allows the value to be autocompleted
as the user types.

IXZY Ld ¥ J
Although you will not use this in the contacts web page, if you were to ABC Incorporated

add it, it would display as you see Figure 6-7. XZY Ltd

ACME ilnternational

Form Attributes

FIGURE 6-7
In addition to new input types, HTMLS provides a number of new
attributes for existing input types. You will look at several of these in Lesson 8 when you look at
HTMLS validation, but it is worth mentioning a number of them in this lesson.

The placeholder attribute allows you to provide a hint to users to help them enter a value. For
instance, if you changed the telephone input field as follows:

<input placeholder="Include area code" name="phoneNumber" type="tel"/>

the field would display as you see in Figure 6-8. Notice the gray text in the field. This will disappear
as soon as the user starts typing in the field.

Phone number

Email address

FIGURE 6-8

The autocomplete attribute can be used to specify whether the browser should attempt to autocom-
plete text entered by the user based on values that they have provided before. The following is an
example that turns autocomplete off on the contact name field:

<input autocomplete="off" name="contactName" type="text"/>

The autocomplete attribute can also be used on the form as a whole.

The autofocus attribute is used to automatically set the cursor in a specific field when the page
loads. It has always been possible to do this with JavaScript, but this attribute makes it far simpler.
For instance, if you added the following to contact name field, you will notice that the cursor is in
this field when the page loads:

<input autofocus autocomplete="off" name="contactName" type="text"/>

Finally, the form attribute can be used to specify that an input field is part of a form, even if it is
not nested inside of it. If this attribute is given a value corresponding to the id of a form, it will
be included in the post to the server when the form is submitted, regardless of where it is placed in
the page.

Trylt | 59

This can be useful if you have a field that is located in a completely different area of the screen from
other fields.

TRY IT

In this Try It, you will experiment with the various form elements and input fields introduced in this
lesson. This Try It also covers the few remaining form elements not covered so far in the lesson.

You are encouraged to experiment here; the goal is to gain an understanding of how the form
elements work. If you get stuck, my version is available on the book’s website in a file called tryit.

html, or you can watch the screencast online.

Lesson Requirements

You will also need a text editor and a web browser.

Step-by-Step

1.

2.

Start by creating a simple HTMLS web page that you can use to add the elements outlined in
this lesson.

Begin by adding a form element to the web page and adding a method of post to this.
Because you will not submit this form, you do not need to add an action.

Start by adding a simple text input field with the name of fullName. Use the placeholder
attribute to provide a hint to the user, and request that this field receives focus when the
page loads.

Add a 1abel for this field, and use the for attribute to specify the id of the field that this
relates to.

You want to add radio buttons to specify whether the person is male or female. Add the fol-
lowing markup to the web page:

<label for="male">Male</label>

<input checked type="radio" name="gender" id="male" value="male">
<label for="female">Female</labels>

<input type="radio" name="gender" id="female" value="female">

Notice in this example that both input types are given the same name. This is how the
browser knows that the two radio buttons are connected, and ensures that only one can be
selected. When the form is submitted, the field will be given the value of the radio button
currently selected.

Add a checkbox to the form asking if the user wants to subscribe to your newsletter. A
checkbox is identical to a radio button, but the type of the input field is checkbox. In addi-
tion, you do not need to specify a value with checkboxes: The value of the field will be set to
either on or of f.

60 |

LESSON

6 HTML FORMS

7. Add a textarea for capturing notes. This should be sized to capture 5 rows and 30 columns.
8. Add a “Date of birth” input field that uses an input type of date.
Q. Add a salary field to the form. Specify this as type number, and define a step attribute with a
value of 500.
10. Add a submit button to the bottom of the form to allow the contents to be submitted.
11. Ensure that you have added a
 before each 1abel to make sure the inputs are placed on
separate lines.
The finished result should look something like the screenshot in Figure 6-9, but you are
encouraged to experiment, and try out the other features outlined in this lesson.
Last contacted |
Male(s) Female
Subscribe to newsletter? ()
Notes 4
Date of birth .ddfmmfyyyy
Salary [s0000 |
| Submit |
FIGURE 6-9

You should notice one new feature on this form: if you enter a value into the salary field,
Chrome provides up and down arrows for increasing and decreasing this value by the step
amount. This also ensures that the value is rounded down to a multiple of the step amount.

REFERENCE Please select the video for Lesson 6 online at www.wrox.com/go/
html5jsjquery24hr. You will also be able to download the code and resources
for this lesson from the website.

http://www.wrox.com/go

Semantic Tags

Most of the tags you have encountered up until this point will be familiar to anyone who
has worked with earlier versions of HTML. In this lesson, you will explore a new set of tags
defined in HTMLS called semantic tags.

If you consider the lessons you have looked at so far, thanks to the power of CSS, it is possible
to create the body of even complex web pages entirely from span and div tags. In fact, many
web pages are created exactly like this.

Each element that appears on a page—from a header banner, to a table cell, to an image—is
responsible for providing the presentation for a rectangular area of the screen, and therefore a
div or span can fulfill this role.

Although this approach works from a presentation perspective, the individual tags do not
contain any meaning about their purpose in the web page: They are therefore said to lack
semantic meaning. Not only that, it would be very difficult to deduce from the markup what
role each element played in the web page.

NOTE The “semantic web” was a term coined by the inventor of the World Wide
Web, Tim Berners-Lee. He envisaged a web of data that could be processed by
machines as well as people. Although Tim’s vision remains largely unfulfilled, the
tags you will look at in this lesson are one step along the line to achieving this.

Let’s look at a concrete example. A header section for a web page could be defined as follows:

<div class="header">This is the header</div>

You will notice that the class name does describe the purpose of the div, but is just an arbi-
trary name: I could just as easily have called this class headSection or head.

In many ways, it would be better if there were a semantic tag called header, and everyone
used this to indicate the header of their pages.

62 | LESSON7 SEMANTIC TAGS

The rationale for semantic tags comes from the observation that if the browser knows this is a
header, it may be able to provide additional services or features to the reader based on this fact:

> It may decide to render the information differently on different devices. For instance, on a
small screen device such as a phone, it may only show the header when the user taps near the
top of the page.

> It may support different modes. For instance, a user may indicate that he or she wants to
read the content of the page without any distractions (similar to the Reader mode in Safari);
therefore, the header could be temporarily removed.

> It may provide support for alternative browsers, such as screen readers for the visually
impaired. For instance, it would help the screen reader understand that this is the title section
of the page and should be read first.

In addition to these benefits, there are clear benefits to the web page developer. Pages consisting of
heavily nested div tags can become very difficult to maintain. Not only is it easy to miss an ending
tag, but it becomes difficult to determine which tag needs which style applied to it.

In order to support these benefits, there needs to be a way to definitively mark an element as the
header. Therefore, the HTMLS specification defines a set of semantic tags, including the following:

<header>This is the header</ header >

This lesson will walk you through the most important semantic tags and look at how you can struc-
ture a web page with these tags.

As it happens, few of these tags do currently provide any of the potential benefits outlined. Still,
recommend that you take advantage of these tags because they will make your code easier to read
and comprehend, and they may offer advantages in the future.

GROUPING AND SEGMENTING CONTENT

Many of the semantic tags are used for building the core structure of a web page—for instance,
the header, the footer, sections of content, and asides. The example that follows contains a num-
ber of semantic tags: Start by reading through this example. you will then look at the meaning of

each tag:
<body>
<header>This is the header</headers>
<mains>
<aside>This is where the advertising goes</aside>
<section>This is the first section in the page</section>
<section>This is the second section in the page</section>
</main>
<footer>This is the footer</footers
</body>

As you can see, this example is taking advantage of a number of tags that you have not encountered
so far. The next sections will describe these tags and explain where they should be used. It will also
cover a number of other tags not found in this example.

Grouping and Segmenting Content | 63

Header

The header tag is used to group introductory information such as the title of the page and any
relevant header imagery. The header should also contain the main navigation links for the page.

There can, in fact, be more than one header on a page: Each section may have its own header
element, while the page as a whole may have its own header element.

Footer

The footer tag is used to group information that should appear at the bottom of a web page or
section. For instance, this may contain copyright information or contact information.

As with headers, it is possible to have multiple footers in a page, and footers do not need to be
paired with headers.

Main

The main tag should surround the content that forms the central functionality or content of the web
page. There should only be one main tag on a page, and it cannot be nested inside other elements
such as header, section, or footer.

I have not placed the headers and footers inside the main element, but this is a choice I have made.
The HTMLS specification leaves you a wide degree of discretion over how and where you use the
tags, and how they interact with other tags. It would therefore also be perfectly valid to nest the
header and footer inside the main element.

Section

Sections are used to capture discreet subdivisions of a document. For example, in the web page you
have been developing, the editable portion of the screen may be considered a section, and the list of
contacts may be considered another section.

In order to determine if a portion of the web page is a section, consider whether you could pick up
this whole area of the page and reposition it elsewhere within the web page. If so, it is a good candi-
date to be tagged as a section.

Aside

Asides are used for content that is loosely associated with other content around it, but which could
be considered separate. It may also be used for advertising material or other unrelated information.
An aside will often be visually separated from the content around it with a border or font.

Article

An article is similar to a section in that it contains self-contained information, but it is generally
used for segregating textual content, such as blog posts or reviews, rather than just generic sections
of the document.

64

LESSON 7 SEMANTIC TAGS

Some people prefer to see the article tag not as a magazine article, but instead like an article of
clothing: something that exists in its own right, but can be mixed and matched with other articles.

I personally prefer to use article only for self-composed text blocks that could be extracted from
one web page and embedded in another. For this reason, article is not appropriate for the contacts
web page because this page does not contain self-contained text blocks.

Nav

A nav element provides a container for the main navigation links on the page. This allows them to
be located by alternative browsers such as screen readers.

This is an easy element to overuse: The specification does not expect all navigation links to be
encapsulated in a nav element, only the primary navigation options for the page.

Address

The address tag is not new at all, but it does fit in with the other semantic tags, and is part of the
HTMLS specification. This element is used to define the address or contact details of the maintainer
of the page.

STYLING SEMANTIC TAGS WITH CSS

If you save the markup from the previous section in a file called semantic.html and then open it in
Chrome, you may be disappointed with the results (see Figure 7-1).

This is the header

This is where the advertising goes
This is the first section in the page
This is the second section in the page
This is the footer

FIGURE 7-1

Although the semantic tags imply presentation information in their names, browsers typically

do not style them differently from regular div elements: They are simple block components. For
instance, the header tag tells the browser the content of the element contains header information; it
does not tell it what to do with this.

Semantic elements need to be styled with CSS, just like regular elements. In addition, you can style
these tags any way you like—there is nothing (except common sense) to stop you from placing the
footer at the top of the page and the header at the bottom of the page.

In order to style these tags, place the following in a style section in the head of the page:

header, footer {
padding: 30px 0 30px 0;
width:100%;
background: #B3B2CF;
text-align:center;

Microformats | 65

header {
font-size:22px;

}

section {
float: left;
padding: 10px;
margin:20px;
width:70%;
border: 1lpx solid black;

aside {
position:relative;
float:right;
padding: 10px;
margin:20px;
width:150px;
height:200px;
border: 1lpx solid black;

}

footer {
clear: both;
margin-top: 50px;
font-size:18px;

}

If you now refresh the page the various elements will be displayed in an appropriate style for their
names.

MICROFORMATS

So far you have examined the way semantic tags can be used for encapsulating a portion of a
page, and labeling it according to its role in the page. Semantic tags can, however, also exist on a
micro scale.

Consider the elements in the contacts web page displaying date information. Currently, these are
placed in td elements, but HTMLS provides a new element called time for encapsulating date and
time information in a more meaningful way. This element allows the date and time information to
be provided in a human-readable and machine-readable manner simultaneously. For instance

<time datetime="2014-08-20">20th August 2014</time>

This could also have been written:

<time datetime="2014-08-20">August 2014</time>

Notice that in each case, the same information is provided twice. The first version of the date is
presented in an attribute and conforms to the ISO standards for dates (and times if required). The
second version appears between the tags and is the version that will be displayed to the user.

Although dates and times, in all their myriad of formats, are very easy for a human to read and
comprehend, they can be notoriously difficult for a computer to process. By allowing tags to always
provide an ISO-compliant version of the date, it suddenly becomes trivial for a computer to process
the element and comprehend its meaning.

66 | LESSON7 SEMANTIC TAGS

Features such as this are referred to as microformats and are widely used in computing to provide
semantic meaning to search engines and other automated clients, while providing human-friendly
versions of the same data to humans.

Microformats have not been officially included in the HTMLS specification at this point, although
the time element is an example of a microformat. There are several standards for additional micro-
formats, and it is likely that HTMLS will be expanded to support these in the future.

SUMMING UP

It would be overly optimistic to think that semantic tags are going to revolutionize your approach to
web page development. They are, in many ways, one of the least interesting features of HTMLS because
they do not provide any visual or functional capabilities that could not be achieved with HTMLA4.

They do, however, have an important role to play in enhancing the readability of your code, and
may provide other benefits in the future once browsers begin incorporating features that rely on
semantic tags. In many ways, it is not until web page developers start using these tags consistently,
and en masse, that browser vendors will begin to provide functional support for them.

As a final note, it is also important not to overuse the semantic tags. There is still nothing wrong
with using div and span elements for structuring sections of a page: Save the semantic tags for the
main building blocks of the web page.

TRY IT

In this Try It, you will take the web application from Lesson 6 and add semantic tags in the appro-
priate places.

Lesson Requirements

You will need the files from the end of Lesson 6, a text editor, and a web browser.

Step-by-Step
1. Open the contacts.html page in your text editor.
. Locate the div with the class header and convert this into a header element without a class.
. Locate the div with the class footer and convert this into a footer element without a class.

2
4. Convert the div with the id= "contactDetails" into a section.
5. Convert the div with the id= "contactList" into a section.

[}

. Surround the two sections with a main element and give this an attribute
id= "contactScreen".

7. Find the td elements containing dates and convert these to time elements with both a human
readable and machine-readable form.

Trylt | 67

10.
1.
12.
13.
14.

Save contacts.html.

Open contacts.css and change the selector for the header class from an id selector to an
element selector.

Also change the selector for the footer from an id selector to an element selector.
Save contacts.css.

Open contacts.html in Chrome. The page should not look any different.
Right-click the header element and choose “Inspect Element.”

Confirm that this has the element type header.

REFERENCE Please select the video for Lesson 7 online at www .wrox .com/go/
html5jsjquery24hr. You will also be able to download the code and resources
for this lesson from the website.

http://www.wrox.com/go

HTML5 Validation

When the user submits a form, it is common to perform validation of the data the user has
entered within the browser. This allows any issues, such as missing data, to be resolved before
the form is sent to the server, and generally provides a superior user experience.

Form validation has traditionally been performed with JavaScript: In fact, until recently this
was the most common use of JavaScript within web pages. HTMLS5 provides built-in form
validation, and allows fields to be validated based on attributes added directly to the fields
themselves. This lesson will look at how you can enable validation on the form created in
Lesson 6.

The HTMLS form validation specification is not perfect—it lacks some of the rules you would
expect in a complete validation framework. It does, however, have the advantage of being

a native solution and is very easy to use. It is therefore necessary to decide at the outset of

a project whether HTMLS validation is sufficient, or whether you will use one of the many
JavaScript libraries available—for instance, jQuery validation.

ADDING VALIDATION RULES

This section will add form validation to the contacts.html web page as it stood at the end of
Lesson 7. If you would like to follow along, open this file now, or download it from the book’s
website.

The most common form of validation is specifying that a field is mandatory. You can indicate
that the user is required to provide a value for a field by simply adding the required attribute
to it. This is a Boolean attribute, so it does not require a value:

<input required autofocus autocomplete="off"
name="contactName" id="contactName" type="text" />

If you open this page in Chrome, you will not initially notice any difference. If you now press
Enter in the Contact name field without first providing a value, however, you will receive the
message shown in Figure 8-1.

70

LESSON 8 HTML5 VALIDATION

Contact details

Contact name | |

Phone number o [0 Please fill out this field.
Email address
FIGURE 8-1

Unfortunately, you only receive this error when you press Enter in the field, or press the Submit but-
ton without providing a value for the field. Tabbing out of the field is not enough to trigger the vali-
dation message.

With field validation, it is generally better to provide immediate feedback to the user when a field is
invalid. Users can become frustrated when told a number of fields are invalid when they submit the
form because they need to locate each of these individually and provide values.

One way to provide immediate feedback to a user is via a pair of CSS pseudo-classes called valid
and invalid. In order to demonstrate these, add the following to the contacts.css:

.validated:invalid {
background: #FAC3C9;
}

.validated:valid {
background: #BDF0AS;
}

These rules will set the background color of an element a shade of pink if it is invalid or a shade of
green if it is valid.

Notice that you have specified that these rules only apply if the element is tagged with the va1i-

dated class. Technically, all input fields can be valid or invalid, even ones with no rules applied to

them, such as submit buttons. Rather than have these appear green, you will explicitly add a class

when you want an element to use these styles. Therefore, add the validated class to the input field:
<input required autofocus autocomplete="off"

name="contactName" id="contactName" class="validated" type="text" />

If you reload the web page it should initially display with the pink background, as shown in
Figure 8-2.

Contact details

Contact name

Phone number

FIGURE 8-2

Adding Validation Rules | 71

If you now type some text into the field, you will notice that it immediately turns green.

Another common validation rule for a field relates to the number of characters it can contain. It is
common to specify both a minimum and a maximum number of characters for a field.

The HTMLS specification specifies two new attributes called min and max that look promising in
this respect. Unfortunately these are only useful for validating that a number is between a minimum
and maximum value; they are of no use at all for textual data.

The specification does provide an attribute called maxlength that can be used to control the maxi-
mum number of characters that can be added to a field. This works by physically preventing the
user from typing into the field when this limit is reached. The only way to perform validation for a
minimum length, however, is to use the pattern attribute. This accepts a regular expression. For
example:

<input required autofocus autocomplete="off" name="contactName"
type="text" class="validated" id="contactName" pattern=".{5,100}"/>

NOTE Regular expressions are a formal language for expressing textual pat-
terns and checking if a string of text matches this pattern. In this particular case
the “.” matches any single character, while the two numbers in curly brackets
specify that this must occur between 5 and 100 times. I will not explain regular
expressions in any more detail in this book, but there are many online resources
available for learning more.

If you reload the web page and start typing into it, you will notice that the background does not
turn green until you type the fifth character. Additionally, if you type more than 100 characters, it
will turn pink again.

You can add similar validation to the phone number field:
<input required pattern=" [0-9() 1{5,15}" placeholder="Include area code"

name="phoneNumber" type="tel" id="phoneNumber" class="validated"/>

In this case, you ensure that the number of characters is between five and fifteen, and you are limit-
ing the characters the field will accept to numbers, brackets, and spaces.

When you come to the email address field, things become slightly more interesting. If you simply
add the required attribute, you may be pleasantly surprised by the resulting behavior:

<input required name="emailAddress" id="emailAddress" type="email"
class="validated" />

If you start typing into the field, you will notice that it does not turn green until you enter the @
symbol. Because the type has been specified as email, the browser automatically checks that the
value adheres to the rules for email addresses.

72 | LESSON 8 HTMLS5 VALIDATION

For the select box, you also want to ensure that the user selects a genuine value, not the first entry
from the list. You can achieve this as follows:

<select required name="companyName" id="companyName" class="validated">
<option value="">Please select</option>
<option value="1">ABC Incorporated</option>
<option value="2">XZY Ltd</options>
<option value="3">ACME iInternational</options>
</select>

Notice that, in addition to setting the select box to required, you have also specified that the value
of the first option is an empty string. This does not count as a value; therefore, the select will turn
green only if the user selects another value from the list of options.

Finally, for the notes field, you will simply specify a maximum number of characters that can be
entered because this field is not mandatory.
<textarea cols="40" rows="6" name="notes" id="notes" class="validated"

maxlength="1000"></textarea>

This means that the field will appear green when the screen first loads because even an empty value
is valid.

NOTE The textarea element does not support the pattern atiribute. This
means there is no straightforward way to ensure a textarea contains a mini-
mum quantity of text.

You do not need to add any information to the last contacted field. This field is not mandatory, and
Chrome has provided an input mask to ensure that the user cannot enter an invalid date.

CUSTOMIZING VALIDATION

The browser itself has generated all the validation messages that have been displayed up until this
point. This brings some benefits; for instance, the messages are automatically localized based on the
user’s location and operating system settings.

If you look at the error that is generated when the contact name is less than five characters, however,
it will appear as in the example in Figure 8-3.

Contact details

Contact name Dané

Phone number 4 [Please match the requested
) format.

Email address

FIGURE 8-3

Customizing Validation | 73

This does not tell the user what the pattern should be; therefore, it is unlikely they would know how
to resolve the issue.

It is possible to control the validation messages displayed to users, but unfortunately it is not as
straightforward as you might expect and needs to be accomplished with JavaScript.

NOTE The next example contains relatively simple JavaScript. You may, how-
ever, decide to return to this example after reading Lesson 11.

In order to customize the contact name message, add the following immediately before the closing
html tag.

<script>
var contactName = document.getElementById('contactName')
contactName.oninvalid = function(e) {
e.target.setCustomvalidity("");
if (le.target.validity.valid) f{
if (e.target.value.length == 0) {
e.target.setCustomvValidity ("Contact name is required.");
} else if (e.target.value.length < 5) {
e.target.setCustomValidity ("Contact name must be at least 5
characters.") ;

!
}
i

</script>

NOTE This needs to be placed at the bottom of the page because it attempts to
access the contactName field when it executes. If it were added to the head tag
the field would not have been present when this code executed. Although placing
JavaScript at the end of the page is an acceptable solution to this problem, you
will look at a more elegant solution later in the book.

If you enter four characters in the field, it should now display the message you have specified (see
Figure 8-4).

Contact details

Contact name [and]

Phone number a - Contact name must be at least 5
characters.

Email address

FIGURE 8-4

74 | LESSON 8 HTML5 VALIDATION

In this code, you add an event listener to the contactName field, after retrieving it with the native
DOM APL You then request that the browser sends you an event every time its validity status
changes. When you receive that event, you first determine whether the field is invalid by accessing
property on the field itself.

If the field is invalid, you can determine the current value of the field, and therefore determine
which of the validation rules has been breached and create the appropriate message.

Once you determine the message you want to display to the user, you can call the setCustom
validity function on the field to set this value.

DISABLING VALIDATION

HTMLS provides a number of additional attributes for controlling validation.

A novalidate attribute can be added to the form in order to disable validation. If this is added,
fields are still marked as valid and invalid, so the CSS styling you added to the web page will still
work, but error messages will not be displayed to the user, and it is possible for the user to submit
the web page, even if it is invalid.

Because HTMLS validation is enabled by default, this option is sometimes useful. For instance, any
time a field is marked as type email, validation will be automatically added, even if you did not
want it.

It is also possible to mark individual fields with the attribute formnovalidate to disable validation.
It is common to add this attribute dynamically to fields when specific circumstances are met: For
instance, some fields do not need to be validated if specific data is entered elsewhere in the form.
This is a form of cross-field validation.

This can also be used to disable the default validation on a field—for instance, to allow an email
field to contain an invalid email address.

TRY IT

In this Try It, you will add validation to the form you created in the Try It for Lesson 6. You can
download this from the book’s website or use the version you created in Lesson 6.

The book’s website contains a completed version of this exercise under the name tryit.html. You
can also view the screencast if you need additional help.

Lesson Requirements

You will need the tryit.html from Lesson 6, a text editor, and a browser.

Step-by-Step

1. Open the tryit.html file in your text editor.

Trylt | 75

2. Add attributes to the fullName field so that it is mandatory for the user to enter a value, and
the minimum length of 7 characters, and a maximum length of 50 characters.

3. For the notes field, make the field mandatory and add a pattern that ensures the field con-
tains no more than 500 characters of text.

4. Change the salary field to define a minimum salary of $20,000, and a maximum salary of
$200,000. Although this was not shown in the lesson, it can be achieved with the min and
max attributes, but make sure not to include commas or the dollar sign in the numbers.

5. Add a style to the web page so that any invalid input field or textarea displays with a red
border. Although it may not seem like it, the line around an input field or textarea is just a
simple border and can therefore be modified with CSS.

The finished version of the form should display as you see in Figure 8-5 when a validation error
occurs.

Last contacted [fnier e name |
Male(s) Female(
Subscribe to newsletter? ()

Notes £

FIGURE 8-5

REFERENCE Please select the video for Lesson 8 online at www .wrox . com/go/
html55sjquery24hr. You will also be able to download the code and resources
for this lesson from the website.

http://www.wrox.com/go

Drag and Drop

Drag and drop has been a common paradigm in user interface design for decades. What is less
known is that drag and drop has been supported by web browsers for well over a decade and
first appeared in IES in 1999.

The implementation of drag and drop that has been standardized in HTMLS is largely the
same version from IE5. Where possible, HTMLS5 standards are based on existing implementa-
tions. This is both a strength and a weakness of HTMLS5. A drag and drop standard devel-
oped from the ground up would have significantly improved and streamlined the API outline
in this lesson, but it would have taken longer for browsers to adopt.

Drag and drop is a technique allowing elements to be dragged from their original location on
the screen, and dropped in a different area of the screen. Drag and drop follows the following
process:

> The drag processes begins with a mouse down event. This selects the element that will
be the source of the event.

> While holding the mouse button down, the user can move the element around the
screen with his or her mouse.

> The process ends when the user releases the mouse button. The element that the mouse

is over at the time becomes the target of the drag-and-drop event.

Drag and drop can therefore be seen as an approach for connecting two different elements that
are related in some way.

NOTE Before beginning, it is worth mentioning that this lesson will use simple
JavaScript. Although this should be easy to follow if you have some program-
ming experience, you may opt to return to this lesson after reading Lesson 11.

78 | LESSSON9 DRAG AND DROP

UNDERSTANDING EVENTS

The drag-and-drop API relies heavily on events. Nodes within the DOM generate events when the
user performs various operations on them. For example:

> Clicking the mouse
> Typing text into them
> Hovering over them with the mouse

Dynamic web applications are largely based on writing JavaScript code to respond to these events
and performing some operation as a result. This is often referred to as “event-driven programming”.

Responding to events involves the following process:
> A JavaScript function is registered with a node in the DOM for a specific type of event.

> When the event occurs, the browser automatically calls this JavaScript function, and passes
it an Event object. This object contains context about the event that has occurred—for
instance, the element that generated it.

> The JavaScript function can respond to the event in any way it needs, including manipulating
the DOM.

In this lesson you will use native DOM events. In the next section, you will start using jQuery to
listen to events. Therefore, this lesson will not look in-depth at how event handling works.

DRAG AND DROP EXAMPLE

In this section, you will write a simple drag-and-drop example, consisting of a screen that looks like
Figure 9-1.

FIGURE 9-1

Drag and Drop Example | 79

You will then implement the following drag-and-drop functionality:

> The user can drag any of the colored boxes on the top line to any of the white boxes on the

second line.

If the user drops a colored box on a white box, it will adopt the color for itself.

> When a colored box is dragged, its color should appear lighter to indicate it is the source of

the event.

> When a colored box is over the top of a white box, the white box’s border should be
enhanced to show it is the target for a drop.

Although simple, this example is sufficient to demonstrate all the important drag-and-drop events.

Start by creating a web page called boxes . html with the following content:

<!DOCTYPE html>
<html lang="en">

<head>

<meta charset="utf-8">

<style>
.box

}
</style>
</head>
<body>

<div

<div
<div
<p>
<div
<div
<div
</body>
</html>

{

height:200px;
width:200px;
display:inline-block;
border: 2px solid black;

class="box" style="background:red"></divs>
class="box" style="background:green"></div>
class="box" style="background:blue"></div>

class="box"></div>
class="box"></div>
class="box"></div>

Most visual elements can be marked as draggable to make them available to be the source of a
drag-and-drop operation; therefore, add the following attribute to each of the boxes on the top row:

<div draggable="true" class="box" style="background:red"></div>

Next, you want the browser to invoke a JavaScript function when the user starts to drag a box.
Within this function, you will extract the color of the element being dragged and store it away for
later in the drag-and-drop process. This will ensure that the color is available to the target element
when the drop event occurs.

Start by adding the following to each of the boxes on the top row:

<div ondragstart="startDragging(event)" draggable="true" class="box"
style="background:red"></div>

80 |

LESSSON 9 DRAG AND DROP

ondragstart is triggered when the mouse is clicked on a draggable element. When this occurs, the
startDragging JavaScript function will be invoked (you will write this function shortly). This is an
arbitrary name for the function; you could call it anything you wanted.

When the function is called, you want to pass information about the event to it (providing context
about the event). Thus, you place event between brackets to indicate it will be passed as a param-
eter to the function. The event object will be created and populated by the browser itself; your code
simply needs to pass it on.

In this lesson, you will embed JavaScript directly in the head section of the web page. JavaScript can
be added by simply including it within a script element. Therefore, add the following just below
the end of the style element:

<scripts>

function startDragging(evt) {
evt.dataTransfer.setData("Color", evt.target.style.background) ;
evt.target.style.opacity = 0.3;

}

</scripts>

NOTE Functions that are invoked when events occur are commonly called “call-
back functions.” You are responsible for implementing these functions, but you
then ask the event handling framework to invoke them at the appropriate time.

The event object contains a wide variety of information about the event that has occurred, but most
importantly, it allows you to access the element that has caused the event by invoking evt . target.

A JavaScript object represents each node in the DOM. Once you have access to the object, you can
start inspecting it and interacting with it. For instance, you can access the current CSS styles of the
element with the code evt .target.style.

Additionally, the event object provides a dataTransfer object that enables you to store informa-
tion for the duration of the drag-and-drop operation. You are storing an arbitrary parameter called
color, which is given the value of the background color for the source element.

On the second line of the function, you are manipulating the style of the element that caused the
event using the native DOM API to set the opacity level of the element.

NOTE Opacity describes the transparency of an element. If an element has
opacity of 1.0, it has no transparency. As the value moves toward 0, the element
becomes more transparent, which in this example, will make the color appear

faded.

Drag and Drop Example | 81

Next, you want to provide functionality to the boxes on the second line of the web page: These are
the boxes that will act as the targets for the drag-and-drop operation.

To start, you will add the functionality so that the border of the box is set to 4 pixels in size if the
user hovers over it with the mouse down, and then is set back to normal if the user’s mouse leaves
the box. Remember, the user may move her mouse over the element without releasing the mouse
button.

Add the following to the three boxes on the second row:

<div ondragenter="setBorderSize(event, '4px')" ondragleave="setBorderSize (event,
'2px') " class="box"></div>

This registers the same JavaScript function with two different events, ondragenter and
ondragleave, but passes a different parameter to the function in each case. This is simply a design
decision on my part to reduce the number of functions that I needed to write. I could have just as
easily implemented this with two JavaScript functions.

The implementation of the function is as follows:

function setBorderSize (evt, size) {
evt.currentTarget.style.border = size + " solid black";

This implementation should look familiar now; the only interesting aspect is that I am using the
size parameter passed in to set the size of the border but assuming it is still solid and black.

In order to drop the source onto the target you need to add two additional event listeners:

<div ondrop="drop (event)" ondragover="allowDrop (event)"
ondragenter="setBorderSize (event, '4px')"
ondragleave="setBorderSize (event, '2px')" class="box"></div>

First, you need to listen for an ondragover event. This event will be called to determine whether or
not the element the mouse is hovering over is a valid target for the drop event.

You may be wondering why I did not change the border in the ondragover event. This event is
called every time the mouse moves by event one pixel; therefore, it is potentially called hundreds or
thousands of times as the mouse hovers over the element. As a result, you want to make sure that
the function called by this event does as little as possible.

By default, elements are not targets for drop events; therefore, all the function needs to do is prevent
this default behavior. This can be achieved by calling a special function on the event itself, as shown
here:

function allowDrop (evt) {
evt.preventDefault () ;
}

82

LESSSON 9 DRAG AND DROP

Next, you need to add the ondrop event listener. This is the event that occurs when the user releases
the mouse button while hovering above the element. The implementation of the drop function is as
follows:

function drop (evt)
var color = evt.dataTransfer.getData("Color") ;
evt.currentTarget.style.background = color;
setBorderSize (evt, '2px');

On the first line of this function, you access the value of the color property you set previously and
store it in a local variable called color.

Next, you set the background color of the target element to this color. Notice that the target of the
event is now the element that is the target rather than the source of the operation.

Finally, because the ondragleave event will not be fired in this case, you need to manually set the
border of the target back to the normal size by invoking setBordersize. Notice that you can pass
the event object to other functions if required.

You still have one more feature to implement: You need to change the opacity of the source element
back to 1.0. This can be achieved by adding another event listener to the boxes on the top row:

<div ondragend="dragEnded(event)" ondragstart="startDragging(event)"
draggable="true" class="box" style="background:red"></div>
The event listener should then be implemented as follows:

function dragEnded (evt) {
evt.target.style.opacity = 1.0;
}

The target of the event is the source of the drag-and-drop operation rather than the target; thus, you
can simply change its opacity style.

A finished version of this web page is also available on the book’s web site called boxes.html.

Although this is a simple example, it has introduced you to the six key events that are commonly
used with the APL. In some cases, it is not necessary to listen for all six events because, for instance,
you may not need to perform any action when the mouse leaves an element.

You should now be able to open the web page and try out the functionality. Figure 9-2 shows a drag
operation in progress.

TRY IT

In this Try It, you will use the techniques outlined in this lesson to create a very simple web page.

You will create a web page with a single drop zone. When any element is dropped onto this, it will
display the text from this element.

Trylt | 83

There is a finished version of this Try It on the book’s website under the name simpledragand-
drop_finished.html.

-

FIGURE 9-2

Lesson Requirements

You can use the file simpledraganddrop.html from the Lesson 9 resources on the website as the
basis for this Try It. You will also need a text editor and a web browser.

If you like, you can create the web page yourself as follows:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<style>
.box {
height:200px;
width:400px;
display:inline-block;
text-align:center;
border: 2px dashed black;
line-height: 200px;
margin: 50px;
}

</style>

</head>
<body>
<div class="box">Drag something onto me</div>

84 | LESSSON9 DRAG AND DROP

<hl>I am a header 1 tag</hl>
<h3>I am a header 3 tag</h3>
<p>I am a p tag</p>

</body>

</html>

Step-by-Step

1.

2.

10.

1.

Open the simpledraganddrop.html file in your text editor, or create it from the markup in
the previous section.

Start by adding the draggable="true" attribute to the h1, h3, and p elements.

Add an ondragstart attribute to these events. This should invoke a function called start-
Dragging and pass the event to this function.

Add a script block to the head section of the web page. This is where all the JavaScript
functions will be located.

Create a JavaScript function in the script block called startbragging. This should accept a
parameter called evt.

The body of the function should set a property called Text on evt.dataTransfer using the
technique outlined earlier in this lesson. In order to extract the text from the element being
dragged, use the call evt . target.textContent.

The text of an element is actually contained in a child node of the element in the DOM,
and therefore it can be accessed with firstchild. The text can then be extracted with
textContent.

Ensure that the div element allows other elements to be dropped on it by using the ondra-
gover event. This should invoke a JavaScript function that prevents the default behavior of
the event, as outlined earlier in this lesson.

Provide functionality to support the drop operation. Start by adding an ondrop attribute to
the div and have this invoke a function called drop.

The drop JavaScript function that is fired during the ondrop event first needs to extract the
value of the Text property from the dataTransfer object on the event.

The function also needs to set this text on the div. This can be achieved by providing a value
for evt. target.textContent.

You should now be able to open the web page and start dragging elements onto the div.
Every time you drop an element onto the div, its text will be updated to reflect the element
that was dropped on it.

REFERENCE Please select the video for Lesson 9 online at www.wrox.com/go/
html5jsjquery24hr. You will also be able to download the code and resources
for this lesson from the website.

http://www.wrox.com/go

10

Dynamic Elements

This lesson is based around four additional features added in HTMLS that provide dynamic
components: a native progress bar, a meter element, a range control, and a set of tags that
allow the user to expand a summary to view its details.

These differ from many other tags you have examined because browser support is not consis-
tent. Therefore, you will also look at a concept called polyfills that enables you to upgrade the
functionality of a browser when a feature is missing.

SUMMARY AND DETAILS TAGS

One of the most frequent pieces of JavaScript I find myself writing is code to show extra infor-
mation to a user when he or she chooses based on a summary.

Because this is such common functionality, the HTMLS specification defines two tags that
combine to provide native support for this functionality. In order to see this in action, create
the following web page:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
</head>
<body>
<header>This page provides an example of the summary and details
tags</header>
<details>
<summary>Table of contents</summary>
<lisLesson 1</1li>
<lisLesson 2</1li>
<lisLesson 3</1i>
Lesson 4</1i>
<lisLesson 5
</details>
</body>
</html>

86 |

LESSON 10 DYNAMIC ELEMENTS

This page includes a tag called details, which then has a child element called summary. In addition,
the details tag itself contains additional information: an unordered list in this case. If you open
this in Chrome, it will display as you see in Figure 10-1.

This page provides an example of the summary and details tags
» Table of contents

FIGURE 10-1

By default, this shows only the contents of the summary tag. If you then click on the arrow to the left
of the summary, it displays the full details (see Figure 10-2).

This page provides an example of the summary and details tags
¥ Table of contents

+ Lesson 1
+ Lesson 2
+ Lesson 3
+ Lesson 4
+ Lesson 5

FIGURE 10-2

Notice that the arrow automatically points down to indicate that the details are being displayed.
Naturally, it is possible to style these elements with CSS; you have a lot of flexibility regarding how
this arrow will look to users.

Although these tags are a great addition to HTML, unfortunately browser support is currently
minimal. The functionality works fine in Chrome, but if you open this same page in IE or Firefox,
you will be disappointed.

If you want to know whether features are supported in various browsers, the best website available
is www.caniuse.com. This details support levels for all HTMLS and CSS3 features across a wide
variety of browsers. If you view the web page, www.caniuse.com/details, you can see the support
level for this specific tag.

PROGRESS BAR AND METER

HTMLS also provides a native progress bar and a related element called a meter.

You will begin by looking at the meter element because this is slightly simpler. This element can
be used to show a value within a range. For instance, if you wanted to show a value that was 60
percent of a target, you could add the following element to a web page:

<meter value="6" min="0" max="10">6 our of 10</meter>

If you add this to a simple template web page, it should display as you see in
Figure 10-3: FIGURE 10-3

http://www.caniuse.com
http://www.caniuse.com/details

Progress Bar and Meter | 87

Notice that, in this case, you have specified a minimum and a maximum value of 0 and 10 respec-
tively, and then set the value of the element to 6. Because min and max default to 0 and 1 respec-
tively, this could also have been expressed as follows:

<meter value="0.6" >60%</meter>

The value between the tags is not needed; I have just added that for clarity.

The color used for the meter can take on meaning when you use additional attributes supported by
the element. For instance, the following meter contains an expected range along with a
possible range:

<meter value="1" high="8" low="3" min="0" max="10">6 our of 10</meters>

In this case, you have stated that the value is expected to be between 3 and 8. Because the value is
lower than the expected range, the color of the bar changes from green to orange.

Alternatively, the following example, which is above the maximum range, displays in red:

<meter low="60" high="80" max="100" value="95"></meter>

Naturally it is possible to change these colors using CSS.

A progress bar is similar to a meter, except it is expected to change its value as an event occurs.
Typically, you will use JavaScript to update the progress bar as you perform other processing.

It is possible to add a progress bar to a web page as follows:

<progress value="20" max="100" min="0" ></progress>

Figure 10-4 shows a static progress bar, one-fifth complete.
FIGURE 10-4

Naturally a static progress bar is not much use; therefore, the
following is an example of a progress bar that updates 1 percent every 200 milliseconds seconds.
Don’t worry about the JavaScript for now; this will be explained over the next few lessons:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<scripts>
setInterval (updateProgessBar, 200) ;

function updateProgessBar () {
var progressBar = document.getElementById("progressBar") ;
progressBar.value += 1;
}
</scripts>
</head>
<body>
<progress id="progressBar" value="0" max="100"></progress>
</body>
</html>

88

LESSON 10 DYNAMIC ELEMENTS

One of the hardest things about progress bars is that it is often not possible to determine how far
through an operation you are. If you would like to indicate to the user that you do not know how
much time is remaining, you can simply remove the value and the
progress bar will look like Figure 10-5.

.. . . . FIGURE 10-5
This is referred to as a progress bar with an indeterminate value.

RANGE ELEMENT

The progress and meter elements you have looked at are a mechanism for displaying a value to the
user. The range element is similar, except it is designed to allow the user to choose a value within a
range.

The range element is therefore a form input type, except the possible values that the user can select
are controlled by the minimum and maximum values for the range.

As an example, consider a case where you want the user to indicate how complete a task is as a per-
centage. You might add the following to a form:

0%<input type="range" name="percentComplete" min="0" max="100"
step="5" value="50">100%

Notice that this is a simple input element, but the type is set to range.

This example specifies a minimum possible value of 0, a maximum possible value of 100, and a
default value of 50. It also states that any movement of the range

will step by 5. Thus, it is not possible to choose a value of 23—the pgg=—- * 100%
user would need to choose 20 or 25. Figure 10-6 shows an exam-

ple of a range element.

FIGURE 10-6

Notice that the labels for the minimum and maximum value have been added manually: These are
not part of the element.

My biggest criticism of the range element is that browser implementations typically do not provide
an easy mechanism to show the user the value that they have chosen; it is therefore necessary to do
this manually with JavaScript. For instance, in the preceding example, it would be difficult for the

user to know whether they had chosen a value of 20 or 25.

POLYFILLS

The features outlined in this lesson pose a quandary to programmers. Although these elements
provide interesting functionality, all browsers do not support them. For instance, IE, prior to IE 10,
does not support the meter and progress elements.

Polyfills | 89

Thus, if you elect to use these features, some users may receive a lower-quality experience. For
instance, when the range element is not supported, it simply displays as an input field. This is
becoming less of an issue as browsers move to use auto-updating release models because most users
have up-to-date browsers; many users in corporate environments, however, are still restricted to
older versions of browsers.

This section will look at an approach that provides a workaround to browser support issues. It
allows you to use native HTMLS functionality where it is available but provide custom implementa-
tions where it is not: This is a technique referred to as “polyfills.”

In order to support polyfills, your web page needs to perform two distinct tasks:
> Determine whether the browser supports the features you wish to use

> Provide a JavaScript-based implementation if support is missing

Modernizr is a popular JavaScript library for performing these tasks. It is available from nttp://
modernizr.com/.

The example that follows uses a version of Moderinzr from the Lesson 10 resources, or you can
download your own version. The basic usage of Modernizer typically looks like this:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<script src="modernizr.js"></scripts>

<scripts>
if (!Modernizr.inputtypes.range) {
// provide JavaScript implementation

}

</script>
</head>
<body>
O0%<input type="range" name="percentComplete" min="0"
max="100" step="5" value="50">100%
</body>
</html>

In the head section, the Modernizr script is imported. Once this has been imported, it is possible to
test whether features are available. In this example, you will notice the code:

if (!Modernizr.inputtypes.range) {

This states that if the range element is not available, the JavaScript block following the statement
should be executed. Modernizr allows you to test for a wide range of features using similar state-
ments that return true or false, depending on whether the feature is supported.

http://modernizr.com
http://modernizr.com

90 | LESSON 10 DYNAMIC ELEMENTS

Within this block, it is necessary to provide a polyfill. The Modernizr website has links to many
JavaScript polyfills, each with their own instructions on how they should be used.

TRY IT

This Try It will allow you to experiment with the elements introduced in this lesson. It will not
contribute anything to the Contacts web application so you do not need to follow the instructions
exactly if you choose. Instead, it is an opportunity to experiment.

The website for this book contains a file called tryit.html with a complete example, or you can
watch the screencast online if you need extra help.

Lesson Requirements

You will also need a text editor and a web browser.

Step-by-Step

1.

2.

7.

Start by creating a simple HTMLS web page that you can use to add the elements outlined in
this lesson.

Imagine you wish to provide information on a patient’s heart rate for a medical website. Start
by creating a meter tag with a maximum possible value of 200 and a minimum possible value
of 0.

Indicate the likely range for a healthy individual: Set the low value to 60 and the high range
to 100.

Experiment with various different values for the meter—for instance, 20, 70, or 120—and
observe what happens to the color of the bar.

Now imagine that instead of presenting the heart rate to the user, you want to allow a doctor
to input a patient’s heart rate.

Add a range element to the web page and set the minimum and maximum possible values to
0 and 200 respectively. In addition, set the step to be 3 because you do not need the input to
be so precise.

Add a summary and detail section to the bottom of the page. Within this, the summary sec-
tion should state “List of patients with high heart rates.”

When the user clicks to view details, show a table with patient names and heart rates.

Trylt | 91

Your completed version should look like the screenshot in Figure 10-7.

Patient's last heart rate

Patient's new heart rate

Q=100

¥ Patients with high heart rates
Patient Rate

John Smith 112

John Johnson 113

Simon Brown 109

FIGURE 10-7

REFERENCE Please select the video for Lesson 10 online at www.wrox.com/go/

html5jsjquery24hr. You will also be able to download the code and resources
for this lesson from the website.

http://www.wrox.com/go

PART Il

Dynamic HTMLS5 Web
Applications with JavaScript and
jQuery

» LESSON 11: JavaScript

» LESSON 12: Debugging

» LESSON 13: Functions

» LESSON 14: Objects

» LESSON 15: JSSON

» LESSON 16: Document Object Model

» LESSON 17: jQuery Selection

» LESSON 18: jQuery Traversal and Manipulation
» LESSON 19: jQuery Events

» LESSON 20: Data Attributes and Templates

» LESSON 21: jQuery Plugins

11

JavaScript

JavaScript has been around almost as long as web browsers themselves. It first appeared in
1995 with Netscape Navigator 2.0 and is the only programming language supported by all the
most popular browsers. As a result, if you want to build dynamic websites, you need to know
JavaScript.

For a long time, JavaScript was dismissed as a second-rate language, only appropriate for
implementing basic functionality such as field validation. In the last five years, JavaScript’s
reputation has improved dramatically. This happened partly as a result of the massive perfor-
mance increases that have occurred with JavaScript engines, beginning in Chrome and rip-
pling out to all the other major browsers. More important, however, programmers began to
re-evaluate the language itself and learned to harness its power.

Although JavaScript contains more than its fair share of idiosyncrasies, and although the
designers of the language made some unusual decisions, JavaScript turns out to be a powerful
and flexible language when it is used correctly. The goal of the next few lessons is to not only
introduce the language, but also to offer some advice on how you should use the language if
you want to write large and complex web applications.

This lesson will provide a quick introduction to the data types and syntax of JavaScript. These
aspects of the language are reasonably conventional and are easy to pick up for anyone with a
background in other programming languages.

JAVASCRIPT CONSOLE

In this lesson, you will write JavaScript directly in the Chrome JavaScript console. In order
to use this, open the contacts.html web page from Lesson 8, and open the development
tools using:

> Command+Option+i on OS X
> F12 or Ctrl+Shift+I on Windows

96 | LESSON 11 JAVASCRIPT

Once the development tools are open, click the Console tab. This provides a command prompt for
writing JavaScript and allows you to directly manipulate the current web page. In order to see this,
type the equation 1 + 1 at the command prompt. This should display the result immediately, as
shown in Figure 11-1.

Q, Elements Network Sources Timeline Profiles Resources Audits | Console |
® v <topframe> ¥

> 1+1
2
>

FIGURE 11-1

Pressing Enter always executes the statement in the console; therefore, if you need to write code that
spans more than one line, hold down the Shift key when you press Enter.

In the sections that follow I will insert a > to show I am writing code into the console. You should
omit this when you write the same code. Additionally, I will show the response on the next line if
appropriate. For instance:

>1 + 1
2

DATA TYPES

You will start your look at JavaScript by examining the different types it uses to represent data.

Strings
Character strings in JavaScript can be surrounded by either single or double quotes. To see an
example, type the following into the console:
> "Welcome to JavaScript"

This is referred to as a string literal because the statement evaluates to the string itself. It is of course
possible to assign a string to a variable. For instance:

> 81 = "Welcome to JavaScript";

NOTE A semicolon should terminate statements in JavaScript. The semicolon
is technically optional, but if it is omitted, JavaScript will insert a semicolon for
you, and there are some circumstances where it is inserted in unexpected loca-
tions, causing hard-to-understand bugs.

The variable s1 now refers to this string, and if you type s1 at the console, the string will be
printed. Additionally, you can ask JavaScript what data type the variable has:

> typeof sl1;
"string"

Data Types | 97

It is also possible to perform operations on a string. Technically these are called methods, as
you will see when you look at objects in Lesson 14. In order to see the available methods,
simply type s1. in the console; the autocomplete feature will then show the available methods
(see Figure 11-2).

This book is not a reference book so I will not you walk through the —
entire API, but the following methods are the most commonly used blink
methods on strings: :E;T’At
charCodeAt

> toUpperCase: Convert text to uppercase.

FIGURE 11-2
> toLowerCase: Convert text to lowercase.

> substr: Extract a portion of the string using a starting and (optional) ending index. For
instance, s1.substr (0, 7) returns Welcome. Counting always starts at 0.

> indexOf: Returns the first index of a provided string inside the string; for instance,
s1.indexOf ('e') returns 1. Counting in JavaScript always starts at 0, so the second char-
acter is at position 1.

> length: This is a property of the string rather than a method; therefore, you do not use
brackets when invoking it. For instance, s1.1length returns 21.

> replace: This method replaces the first occurrence of one string for the new one provided.
For instance, s1.replace('e', 'E') returns "WElcome to JavaScript".

It is also possible to append text to an existing string using the + operator. If you execute the follow-
ing, a new string will be returned that concatenates the two strings:

> sl + " - Let's get started";
If, however, you look at the value of s1 after executing this, you will see it has retained its old value:

> sl;
"Welcome to JavaScript"

Once a string has been assigned a value, it can never be modified (it is immutable). Any time an
operation appears to modify a string, a new string is actually created. Therefore, to update the value
of s1 you need to assign the result of the expression to it:

> sl =sl + " - Let's get started";

Finally, if you need to use special characters inside a string, you can prepend a backslash to it. For
instance, the next example contains a character inside a quoted string so I use a backslash before it:

s2 = 'This is Dane\'s code';

Of course, in this case I could have simply wrapped the string inside double quotes because the
quote character would have no special meaning in such a string:

s2 = "This is Dane's code";

Numbers

JavaScript uses a single numeric type for all numbers, including decimals: All numbers are
technically 64-bit floating-point numbers.

98 | LESSON 11 JAVASCRIPT

Variables can be assigned numeric values as follows:

> nl = 200;
> n2 = 2.432432432;

The typeof operator will confirm these are numbers:

> typeof nl

"number"
JavaScript then supports all the common mathematical operators for manipulating numbers. For
example:

>nl / 2

100

>nl * (200 + n2);

40486.486486400005
For more advanced operations, JavaScript also provides a library called Math that is modeled on the
same library in Java. For instance:

Math.pow(3,2)

Math.round (n2)

NV WO Vv

JavaScript also supports three special numeric values. These are numbers, but they cannot be
represented as conventional numbers:

> Number.POSITIVE INFINITY: This value is created when a positive number is divided by 0.
Although you may have been taught that numbers cannot be divided by 0, because all num-
bers are floating-point in JavaScript, the language assumes that the number 0 could be a tiny,
but still non-zero, number that cannot be represented in 64 bits of memory. If you divide a
number by such a tiny number, the result will approach infinity.

Number.NEGATIVE INFINITY: This is returned when a negative number is divided by 0.

> NaN: This stands for not-a-number, but confusingly, it is still a number. This value is
created when operations on numbers return values that cannot be represented as numbers.
For instance: 1 / "hello" or Math.sqgrt (-1). It is possible to check for this value using a
special JavaScript function: isNaN (Math.sqgrt (-1)).

Booleans

Booleans are used to capture the values true and false. For instance:

> bl = true;
> b2 = false;

Boolean values are commonly returned by logical operations. For instance:

> 10 > 5
true

Null

Before looking at what nul1 is, it is worth looking at variables in slightly more detail. When you
execute a statement such as this:

> nl = 200;

Data Types | 99

the variable n1 takes on the data type of number. The variable n1 is not intrinsically linked to num-
bers, however; you can change its type by assigning it a new value:

> nl = "Testing";

Another way of looking at this is that the variable n1 starts out by referring to the number 200, and
then it is changed to refer to the string "Testing". You can therefore also change n1 so that it refers
to nothing at all:

> nl = null;
null therefore means the absence of a value. JavaScript has a small quirk with nu11 values:

> typeof nl
"object"

This is a historic bug in the language itself: Despite this, null is a distinct data type in JavaScript.

Undefined

The value of undefined is returned if you access a variable, or a property on an object, that does
not exist. For instance, if you type the following at the command line, the value of undefined will
be returned:

> typeof n3
"undefined"

Arrays

Arrays are not technically a distinct data type; they are a type of object, but it is still worth
introducing them in this section.

An array contains zero or more elements of any data type. You can declare an array as follows:
al = [];

The initial elements in the array can also be provided as a comma separated list inside the square
brackets:

al = [1,2,3,4];

You do not need to declare the size of the array; you can simply start inserting elements, and it will
expand to support them:

all2] = 20;
alf[l] = "hello"

Because arrays are objects, they also support methods; for instance, this will add a new element at
the end of the array.

al.push(200) ;
while this will sort the array:
al.sort ()
You can access elements in the array by specifying their position inside the square brackets:

> alll]
"hello"

100

| LESSON 11 JAVASCRIPT

The lessons ahead will make extensive use of arrays, and many additional features will
be introduced.

Objects

All other values in JavaScript are objects. You will spend a lot of time looking at these over the next
few lessons so I will not discuss them here.

Functions

Functions are the basic building blocks of many JavaScript applications. A function in JavaScript
accepts zero or more parameters, executes a series of statements, and then optionally returns
a value.

You can create a function as follows (remember to hold down the Shift key when entering a new line
into the console; you may also decide to copy and paste the code from a text editor):

function doubleTheNumber (num) {
var result = num * 2;
return result;

}
In this example, you are creating a function called doubleTheNumber and have stated that it
accepts a single parameter called num.

In the body of the function you then multiply num by 2 and store the result in a local variable called
result. Finally, on the last line of the function you return this variable. The curly brackets denote
the code block relating to the function.

You can then execute this function as follows:

> doubleTheNumber (9) ;

18
Notice that the variable result is declared with the var keyword. This means that the variable is
local to the function, and is automatically destroyed when the function ends. The var keyword can
be omitted, and the function will still work. To prove this, change the function as follows:

function doubleTheNumber (num) {

result = num * 2;
return result;

}

If you execute this, it will continue to work as expected:

> doubleTheNumber (10) ;

20
The overall outcome is not the same, however. The variable result has been created as a global
variable, and will exist even after the function has finished executing. You can see this by executing
the following:

> result;
20

Control Structures

101

Using global variables is dangerous and should be kept to a minimum because there is always the
possibly that two independent blocks of code will accidentally use the same variable name.

You will return to look at functions in substantially more detail in Lesson 13.

CONTROL STRUCTURES

JavaScript includes a standard set of control structures for looping and branching. These will be

familiar to anyone with a programming background because they use the same basic syntax as those

in Java, C#, and Python (among others).

It is possible to perform looping with either a for loop or a while loop. The following example uses

a for loop to add the contents of an array together:

>al = [3,6,4,1,4,9]
> var result = 0;
> for (var i = 0; i < al.length; i++) {
result = result + all[i];
}

> result
27

The for loop consists of three distinct portions:
> A variable called i is declared to act as the counter; this is initially set to the value 0.

> You declare that looping should continue while the value of i is less than the length of the
array (6).

> You declare that the variable i should have its value increased by 1 (i++) each time the loop

completes a cycle.

The loop also uses curly brackets to denote its scope so each time the loop executes, the following

statement will be executed:

result = result + all[il;

Because the first index of an array is 0, the first iteration will therefore set the result variable to 3,

and so on, until all the elements in the array have been evaluated.

If you would like to see more details as the loop executes, you can add console. log statements to

print logging information to the console. For instance:

for (var 1 = 0; i < al.length; i++) {
console.log('The value of i is ' + 1i);
console.log('The value in the array is ' + allil]);
result = result + allil;

}

The second main loop variant is the while loop. While loops evaluate an expression with each
iteration. While this is true, they keep iterating through the loop; if it is ever false the loop ceases.
For instance:

var result = 0;
var counter = 0;

102 | LESSON 11 JAVASCRIPT

while (counter < al.length) ({
result = result + al[counter];
counter++;

}

result;

You will notice that this still initializes a counter variable to 0 and increments its value with each
iteration, but these are done before the loop starts and inside the loop respectively, not in the
loop declaration.

JavaScript supports break and continue statements to control loop execution. I will introduce these
along with the next subject: control structures. The following function accepts two parameters: an
array of positive numbers, and a number. It then adds together all the even numbers in the array and
returns true if this sums to more than the number passed as an argument to the second parameter:

function checkCountEven(al, nl) {

var result = false;

var count = 0;

for (var 1 = 0; i < al.length; i++) {
var number = all[il;
if (number % 2 != 0) {

continue;

}

count = count + number;

if (count > nl) ({
result = true;
break;

}
}
return result;

}

You can call this as follows:

>al = [3, 6, 4, 1, 4, 9]
> checkCountEven(al, 20)
false

This function starts by declaring two local variables and then starts looping through the array using
a for loop.

Inside the for loop, you start by extracting the number from the array for the position you are at.
You then check whether this is an odd number using the expression number % 2 != 0. This expres-
sion literally states “return true if the remainder of dividing the number by 2 is not 0. If this is true,
the if block executes.

If the statement returns true, you do not want to count the number so you use the continue key-
word to skip immediately to the next loop iteration.

If the number is even, you add it to the result and then check to see whether the running total is
greater than the number passed in using another if statement. If this evaluates to true, you know
that the overall result must be true, and therefore you do not need to check any more numbers in
the loop. You therefore use the break keyword to jump out of the loop immediately, and the func-
tion simply returns its result.

Truthy and Falsy Values | 103

Conditional expressions can also support if else and else statements. For instance:

function describeNumber (num) {

if (num >= 0 && num % 2 == 0) {
console.log(num + ' is a positive even number') ;

} else if (num >= 0 && num % 2 == 1) {
console.log(num + ' is a positive odd number') ;
} else if (num < 0 && num % 2 == 0) {
console.log(num + ' is a negative even number');
} else {

console.log(num + ' is a negative odd number');
}
}

Notice in this example that you combine multiple Boolean expressions with the and (s&) operator.
When this is used, the entire expression returns true only if both sub-expressions are true.

NOTE This example has used == to determine if two values are equal. You
should generally avoid this because it still returns true if the data types are
different. For instance, the string “1” is equal to the number 1. In general, you

should use the === operator to determine if values are equal and the == opera-
tor to determine if values are not equal, since this also checks the data-types are
the same.

JavaScript also supports a switch statement and a ternary operator for performing conditional logic.
Although these will not be introduced, they work in a manner familiar to anyone who has used
them in other languages.

TRUTHY AND FALSY VALUES

One unique aspect of JavaScript is that every value and every expression evaluates to either true or
false. To see this in action, create the following function:

function whatAmI (vl) {

if (v1) |
console.log('I am true');
} else {

console.log('I am false');

}
}

Notice that because values evaluate to true or false, you can simply state if (v1) to determine if
the argument passed in is true. You can now call this with a variety of values:

whatAmI ("hello™")
am true

whatAmI ("")

am false

H Vv H Vv

104 | LESSON 11 JAVASCRIPT

whatAmI (22)

am true
whatAmI (null)
am false
whatAmI(8 + 9)
am true

H YV HV H V

There are some surprising results here. The following are not true:

> false

> 0 (zero)

> wn (empty string)

> null

> undefined

> NaN (this value is neither true or false, which is why the isNaN function is needed to detect it)

All other values evaluate to true.

You can actually simplify this function down to a single line as follows:

function whatAmI (vl) {
console.log('I am '+ !!vl);
}

1 is the not operator so if it is applied to any variable, it returns the opposite of its Boolean value.
You can then negate this with an additional ! operator to return its actual truthy value.

JavaScript code makes extensive use of the fact that values are either true or false in 1 £ state-
ments. For instance, if you only want to print the string held in s1 if it has a value, you can use the
following:

if (s1) |
console.log(sl) ;
}

DYNAMIC TYPING

JavaScript is a dynamically typed language. This means that the types of variables are only
determined at runtime. Although dynamically typed languages are very flexible in many ways, they
are also prone to bugs when types are not as expected. Consider a function such as this:

function add(nl, n2) {
return nl+n2;
}

This function operates as expected when called with two numbers, but what happens if you invoke
this as follows?

> add(1, '0'")
In this case, the result is the string value 10. This may or may not be what you were expecting.

In a statically typed language, you would declare that n1 and n2 were numbers and refuse to allow it
to be invoked with strings. This is not possible in JavaScript.

Trylt | 105

This is made slightly worse due to the fact that JavaScript is very forgiving. Consider the following

examples:
> add(1, [1)
n l n
> add (1, true)
2

JavaScript does have its own internal logic to explain these results, but they are seldom intuitive or
expected. In order to circumvent issues such as this, it is common to write functions so that they
generate errors if they are passed unexpected data types. For instance:

function add(vi, v2) {

if (typeof vl === "number"
&& typeof v2 === "number") {
return v1+v2;
} else {

throw "both arguments must be numbers";

}
}

Notice the throw statement in this example: This will generate an error to the caller, as shown in
Figure 11-3.

» add(1, true)
This is still not as explicit as a compile time error, but at least it @ "hoth argunments must be numberst
ensures that, if the program fails, it is obvious why it has failed.

FIGURE 11-3

TRY IT

In this Try It, you will use the techniques you have learned in this lesson to write two utility func-
tions. If you get stuck on either of these examples, you may want to watch the screencast, which
will walk through both examples. Completed versions of both functions are available on the book’s
website.

Lesson Requirements

You will use the Chrome console for these examples. It is, however, recommended that you write the
code in a text editor and copy the completed versions into the Chrome console.

Step-by-Step

The first utility function you will create will accept a single parameter, which should be a string,
and will return the reverse of the string: If it is passed “Hello,” it will return “olleH.”

1. Start by creating a function called reverse and declare that it accepts a single parameter.

2. Check that the argument passed in is a string: If it is not, then throw an error for the caller.
3. You will construct an empty string variable to hold the result of the operation.
4

. You can now iterate through the string one character at a time using a for loop. You will
need to initialize a counter variable with an initial value of 0, and loop while this is less than
the length of the string.

106

LESSON 11 JAVASCRIPT

6.

7.

With each iteration, you want to extract the character at the position “length of the

string — current count - 1”. This will ensure that you extract the last character of the string
on the first iteration, the second to last on the second iteration, and so on. For instance, if the
string has seven characters, you will extract the character at position 6 on the first iteration
(remember that the count starts at 0 so the last position in a string with seven characters is
6). You can use the charat method to extract a character at a given position.

Once the character has been extracted, you need to append it to the result variable using
the + operator.

Once the loop completes, you need to return the result.

Once the function is complete, you should be able to call it as follows:

> reverse ("Hello");
"olleH"

The second utility function will accept an array of numbers, and return true if the sum of all the
positive numbers is greater than the sum of the absolute value of all the negative numbers.

1.

2.

Start by creating a function called calculatesums, and declare that it accepts a single
parameter, which in this case will be an array.

Create two variables to hold the result of the positive and negative numbers respectively.
These should be initialized to 0.

You will use a while loop in this example so you also need to create a counter variable and
initialize it to 0.

Create a while loop, and add curly brackets for its code block. The while loop should test
that the counter is less than the length of the array.

Inside the code block, you need to add an if-else block to determine if the number is greater than 0.

If the number is greater than or equal to 0, simply add it to the sum of positive numbers. If it
is less than 0, you need to calculate its absolute value using Math.abs () and add the result to
the sum of negative numbers.

You also need to remember to increase the counter variable by 1 inside the loop. If you omit
this, the while loop will run forever: This is called an infinite loop.

After the loop finishes, you can simply return whether the sum of positive numbers is greater
than or equal to the sum of negative numbers.

It should be possible to call the function as follows:

> calculateSums([-1,2])
true

> calculateSums([-1,2,-3])
false

REFERENCE Please go to the book’s website at www.wrox.com/go/html5s] -
query24hr fo view the video for Lesson 11, as well as download the code and
resources for this lesson.

http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto

12

Debugging

Now that you have some working code, it is worth taking a step back to look at the development
tools provided by Chrome to help analyze JavaScript-based web applications.

Probably the most important tool for development purposes is a debugger. Debuggers allow
you to examine an application while it is running and therefore diagnose the cause of any
problems or bugs.

All major browser vendors have introduced development tools such as debuggers into their
browsers. For instance, Firefox supports similar tools to the ones you will look at here with
the Firebug plugin.

This lesson is very much a practical lesson. It will consist of two Try It sections, and you are
encouraged to follow along with the examples.

Both Try It sections will use the same web page to demonstrate the various features in the
debugger. This is available from the book’s website in the Lesson 12 folder under the name
tryit.html, but you can also choose to write it yourself:

< !DOCTYPE htmls>

<html lang="en">

<head>
<meta charset="utf-8">
<scripts>

function calculateAbsoluteSumOfArray(a)
var result = 0;
for (var 1 = 0; i < a.length; i++) {
var num = al[i];
result = result + Math.absolute (num) ;

}

return result;

108 | LESSON 12 DEBUGGING

function calculateSumOfArray(a) {
var result = 0;
for (var 1 = 0; i < a.length; i++) {
var num = al[i];
result = result + num;

}

return result;

}

function findHighestSum(arrays) {
var result = Number.NEGATIVE INFINITY;
for (var 1 = 0; i < arrays.length; i++) {
var a = arraysl[i];
var sum = calculateSumOfArray(a) ;
if (sum > result) {
result = sum;
}
}

console.log('The largest sum is '+ result);

var arrays = [[1,2,3,4,5],1[6,4,2],[1.9]1];
</script>
</head>
<body>
This page is for trying out the debugger
<p>
<button onclick="findHighestSum(arrays)">Click me to sum arrays</buttons
<p>
<button onclick="calculateAbsoluteSumOfArray (arrays[0])">Click me cause an
error</buttons>
</body>
</html>

TRY IT

In the first Try It, you will debug two functions that are responsible for processing a two-dimen-
sional array that has been defined as follows:

var arrays = [[1,2,3,4,5],[6,4,2],[1.91];

NOTE A two-dimensional array is simply a conventional array where each element
is itself an array.

The first function, called £indHighestSum, will iterate through all the inner
arrays in the array provided, and pass each array in turn to another function
called calculatesumofArray that will sum the numbers in the array. The job of
findHighestSum is to determine which of the inner arrays sums to the highest
value.

Trylt | 109

Lesson Requirements

In order to complete this lesson, you will need the Chrome web browser and the tryit.html web
page mentioned previously.

Step-by-Step
1. In order to start the debugger, first open the tryit.html page in Chrome. Then use one of
the following approaches to open the development tools:
> Command+Option+i on OSX
> F12 or Ctrl+Shift+I on Windows

2. Once the development tools are open, click the Sources tab. Once in this tab, you will notice
that the tryit.html page appears in the left-hand panel: Double-click on this to open it in
the middle panel (see Figure 12-1).

Q. [| Elements Network | Sources| Timeline Profiles Resources Audits Console = # |El‘x
So... |Co.. Sni.. |[Etryit.html x oI} n o~ + t e 0O
v @ localhost 1 |_I| Pause On Caught Exceptions
. 2 =<html lang="en"= -
22 tryit.html 3| <head= N » Watch Expressions +
4 =meta charset="utf-8"= ¥ Call Stack |:|A5ync
5 =script=
6 Not Paused
7 function calculatedbsoluteSumOfArray(a) { v Scope Variables
8 var result = @;
9 for (var i = 8; i = a.length; i++) { Not Paused
10 var num = al[il; -
11 result = result + Math.absolute({num); ¥ Breakpoints
= P . o tryit.html:26
ii ' return result; var result = Number.NEGATIVE_ ..
15 o tryit.html:34
ot an e al ol S S sl console. logl'The largest sum ..
{} Line 1, Column 1 — -
FIGURE 12-1

3. The first step in debugging code is defining a breakpoint. A breakpoint is the point in the
processing when you want the program to pause so you can examine it line by line. Find the
first line of the findHighestSum function and click once in the margin where its line number
is shown—for me this was line 26. A blue marker should appear in the margin, as shown in

Figure 12-2.
24
25 function findHighestSum{arrays) {
var result = Number . NEGATIVE_INFINITY;
27 for {var i = B; i = arrays.length; i++) {
28 var a = arrays[il;
29 var sum = calculateSumOfArrayial;

FIGURE 12-2

110

LESSON 12 DEBUGGING

Click the button Click Me to Sum Arrays. As soon as you click this, the program should
display a message stating “Paused in debugger,” and the various panels of the debugger will
populate. In addition, the line that the program is currently paused on will be shaded blue, as
shown in Figure 12-3.

Q, [| Elements Network | Sources| Timeline Profiles Resources Audits Console = # |EI‘ x

So.. |Co.. sni.. |[H|wryithemi x BIuf, »~ + t v @

v @ localhost 21 } |_I| Pause On Caught Exceptions

<] tryit.html g y return result; » Watch Expressions + c
24 v Call Stack [Async
25 function findHighestSum{arrays) {
var result = Mumber.MEGATIVE_INFINITY;

27 for (var 1 = B; i = arrays.length; i++) { Sl tryit.html:44
28 var a = arrays[il;
29 var sum = calculateSumOfArrayial; Paused on a JavaScript breakpoint.
IA if (oum = recnltd

FIGURE 12-3

Now that the program is paused, you can begin interacting with it. One of the most
common uses of the debugger is to step through the execution of the program line by
line. You can achieve this with a set of buttons in the top right of the debugger, as
shown in Figure 12-4.

B, t t e O

FIGURE 12-4

If you hover over these buttons, their tooltips will tell you their purpose. You will start
by using the second button from the left, which should have the tooltip “Step over next
function call.” If you press this button, the execution will jump to the next line in the
function. Press this two more times so that the blue line is shading line 29, as shown in
Figure 12-3.

As the function executes code, a number of local variables have been assigned values. For
instance, the arrays variable contains the two-dimensional array, the a variable contains
the array you are about to sum up, and the i variable contains the current counter value of
the for loop. You can see the values for these variables in the right-hand side of the console,
as shown in Figure 12-5. To see the values in any of the arrays, simply click the arrow next
to them.

¥ Scope Variables
¥ Local
»a: Array[5]
p arrays: Array[3]
i: @
result: -Infinity
sum: undefined
b this: Window
b Global Window

FIGURE 12-5

Try lt | 111

8. Itis also possible to interact with the program as it executes. For instance, if you swap to the
Console tab, you can write code that uses the variables currently in scope, and you can even
modify their values (see Figure 12-6).

Q, Elements Network Sources Timeline Profiles Resources Audits | Console |
Q ¥ <topframe> w

> a
1, 2,
» al2] =
7
> a
[1, 2, 7, 4, 5]
>

3, 4, 5]
7

FIGURE 12-6

This is a great way to try out code before adding it to the web page because you receive
immediate feedback from the Console.

There is also a mini-console at the bottom of the Sources tab that can be used for the same
purpose, and means you do not need to swap back and forward between tabs.

9. Switch back to the Source tab. You will now step into a function call rather than step over
it so click the button with the tooltip Step into next function call. When you do this,
execution should jump into the calculateSumofarray function, and you can now step
through this function. Step through this function until it finishes, and watch the local
variables update as it executes.

10. When calculatesumofarray finishes executing, the debugger will immediately return to
the findHighestSum function where it left off. Rather than stepping through the rest of the
execution, you may decide you want to jump immediately to the line that prints information
to the console. In order to do this, add a breakpoint to this line by clicking in the margin, and
then press the Resume Script Execution button. When you do this, the debugger should pause
on the appropriate line, and the local variables will have been updated to reflect the processing
that has occurred.

11. In order to finish the debugging session, simply press Resume Script Execution one more time.

Finding Errors

Debuggers are an excellent way to understand the behavior of a program as it executes, but they are
most commonly used to diagnose problems. Programming bugs can be difficult to find in JavaScript
code because if a problem occurs the JavaScript simply ceases to execute.

The user of the web page will not even necessarily be aware that an error has occurred; she will simply
notice that a piece of functionality does not work as she expects.

This section will therefore walk you through an example of a program with a bug in it, and look at
how you can identify and remedy the problem.

112 | LESSON 12 DEBUGGING

Try It

In this Try It, we will press a button that invokes a faulty JavaScript function. This uses the same
web page as the previous Try It, so ensure that you have opened this in Chrome.

Lesson Requirements

In order to complete this lesson, you will need the Chrome web browser and the tryit.html exam-
ple mentioned previously.

Step-by-Step

1. In order to start the debugger, first open the tryit.html page in Chrome. Then use one of
the following approaches to open the development tools:

» Command+Option+i on OSX
> F12 or Ctrl+Shift+I on Windows

2. Identify the toolbar shown in Figure 12-7, and press the pause W~ 1T O
button (on the right-hand side of the toolbar with the tooltip @ Pause On Caught Exceptions
Pause on Exceptions). When you click this, it should turn blue, » Watch Expressions +c

and an additional checkbox should appear. For this example, it

FIGURE 12-7
will not matter if you select this checkbox.

3. Inorder to run the faulty code, click the button with the label Click Me to Cause an Error.
As soon as you click this, the debugger should pause on the line that has the error, despite the
fact that you did not add a breakpoint to this line. This is shown in Figure 12-8.

Q Elements Metwork | Sources | Timeline Profiles Resources Audits Console
So.. |Co.. Sni.. |[&eryit.html % B
¥ 0 3 <head=
(localhast 4 <meta charset="utf-8"=>
=2 tryit.html 5 <scripts
6
7 function calculateAbsoluteSumDfArray(a) {
8 var result = 8;
9 for (var i = @; i = a.length; i++) {
18 var num = a[il;
11| result = result + Math.absolute(num};
12
13 return result;
14 }
15
16 function calculateSumOfArray(a) {
17 var result = 8;
18 for (var i = B: i = a.lenath: i++) {
{} Line 11, Column 1
FIGURE 12-8

4. In order to determine why this line is faulty, copy it from the editor using your keyboard
shortcut. Then open the Console tab, paste it in, and press Enter. The cause of the error will
be displayed, as shown in Figure 12-9:

Trylt | 113

Q. Elements Network Sources Timeline Profiles Resources Audits | Console |

® ¥ <topframe> w

» result = result + Math.absolute(num);
@ P TypeError: undefined is not a function
>

FIGURE 12-9

This shows that you are calling a function that does not exist. The function name has been
specified as absolute rather than abs; you can confirm this by executing this alternate

version of the code with the function name corrected, as shown in Figure 12-10.

Q, Elements Network Sources Timeline Profiles Resources Audits | Console |

® ¥ <topframe> w

» result = result + Math.absolute(num);
@ P TypeError: undefined is not a function
» result = result + Math.abs(num);
1
> |

FIGURE 12-10

Once the problem has been identified, you can fix up your source code and try again.

REFERENCE Please go to the book’s website at www .wrox.com/go/html5]s] -
query24hr to view the video for Lesson 12, as well as download the code and

resources for this lesson.

http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto

13

Functions

Functions may seem simple in JavaScript, but beneath this simplicity lies enormous power.
Gaining an understanding of this power is one of the keys to mastering the JavaScript
language.

In Lesson 11, you created simple functions and invoked them from the console. For
instance:

function isPositive (num) {
return num >= 0;

In JavaScript, functions are objects so it is possible to assign them to variables:

f1 = function isPositive (num) {
return num >= 0;

If you ask JavaScript the type of £1, it will respond as follows:

> typeof f1
"function"

This is another example of JavaScript being slightly disingenuous. Functions are not a distinct
data-type; they are objects and therefore support all the features you will learn about in the
next lesson, such as the ability to invoke methods on them.

Once you have assigned a function to a variable, you can invoke it via its variable name by
appending brackets and parameters:

> £1(9)
true

In fact, you can use this variable wherever you can use any other variable in JavaScript; for
instance, you can pass it as a parameter to another function.

116 | LESSON 13 FUNCTIONS

Consider an example where you want to write a function that counts how many positive numbers
are in an array. With the power of functions, you can do this by writing a generic algorithm as
follows:

function countForArray (array, condition) ({
var result = 0;
for (var 1 = 0; i < array.length; i++) {
var element = arrayl[i];
if (condition(element)) {
result++;
}
}

return result;

}

This algorithm accepts an array and a function. It then loops through every element in the array and
passes it to the function provided. If the function returns true, the count is incremented by one. You
can then call this as follows:

>a=1[1,2,-3,2,-5]

> countForArray(a, £f1)
3

Notice that you are passing a reference to the function you defined earlier. It may not looked like
you have gained much in this example; after all, the countForarray method could have very easily
checked if the number was positive without using the function passed in.

The beauty of countForArray, however, is that it is a generic function that can be made to behave
differently very easily. For instance, if you want to count the negative numbers you can use the
following code:

> countForArray(a, function(num) {
return num < 0;
}

2

Notice that in this case you did not even create the function in advance; you simply declared it
as part of the call to countForarray. The function that you have created does not even have a
name; it is therefore called an anonymous function. Its scope is limited to the duration of this
function call.

Once you have a function such as countForArray, you can use it for a whole variety of tasks that
you may not even have thought about when you originally wrote it.

Functions that are passed to other functions are often called callback functions because they allow
another function to “call back” to them at the appropriate time.

JavaScript arrays natively support a number of functions that can be used for performing common
operations. For instance, one of the most common operations performed on arrays is to filter out
a set of elements that do not meet a set of criteria. For instance, you might want to filter all the
negative numbers out of an array, leaving only the positive numbers.

Closures | 117

JavaScript arrays provide a filter method for performing this operation. Just like count
ForArray, this passes each element in the array in turn to a function provided, and retains those
that return true:

> a.filter(£f1)
(1, 2, 2]

Likewise, you can filter out positive numbers with the following code:

> a.filter (function (num) {
return num < 0;

[-3, -5]

You may have noticed that the £ilter function is not actually modifying the underlying array;
instead, it is returning a new array with the relevant elements filtered out.

Another common operation performed on arrays is to transform each element in some way. With
this particular array, you might want to transform the elements so that all the numbers are positive;
this can be achieved with the map function.

The map function works in exactly the same way: You pass it a function, and the map function
invokes it with each element in the array. The function you provide is responsible for modifying the
element in some way and returning the modified version as a result.

The following returns an array of elements where each number has been converted to a positive value:

> a.map (function (num) {
return Math.abs (num) ;
}

)
(1, 2, 3, 2, 5]

Because functions such as map and filter both operate on arrays and return arrays, it is possible to
chain together a whole set of function calls. Imagine that you want to return the absolute value of
all even numbers in an array. This can be achieved as follows:
>al = [-2,1-3,5,6]
> a.filter (function (num) {
return num%2==0;
}) .map (function (num)
return Math.abs (num) ;
}

)
(2, 2, 6]

7

This example is a bit harder to follow, so start by breaking out its component parts. It starts out by
performing a filter operation:

> al.filter (function (num) {
return num%2==0;

118

LESSON 13 FUNCTIONS

It then performs a map operation on the result: you can simulate this as follows:

> [-2, -2, 6].map(function (num) {
return Math.abs (num) ;

)
[2, 2, 6]

When writing JavaScript code it is often a good idea to think in terms of simple functions that
perform a single task, and do not store or modify any global state. These functions can then be
combined together to create more advanced functionality. Building software in this way tends to be
simpler because it is very easy to understand, develop, and test each function in isolation.

CLOSURES

Closures can be a difficult concept to explain, so I will explain them through examples.

Imagine a case where you want to write a function that can produce unique, incrementing numbers
that can be used by other code in your web application. The only condition of this functionality is
that if the last call to the function returned 10, the next call must return 11.

It is possible to write this functionality with a global variable:

> count = 0;
> function getNextCount () {
return count++;

getNextCount ()

getNextCount ()

P Vv OV -«

As has already been mentioned, however, global variables should be avoided because any other code
can modify them. For instance, any other code could reset the count variable:

count = -1;
or set it to a nonsense value:

count = 'hello';

These may look like contrived examples, but as web applications grow in size, global variables such
as this become the source of difficult to find bugs. Closures provide an alternative.

Before looking at the solution, consider what happens to local variables inside a function when it
finishes executing. The function that follows declares a local variable called mycount.
function counter () {

var myCount = 0;
return myCount++;

Closures | 119

If you execute this and then attempt to access the myCount variable, you will find it does not exist:

> counter ()

0

> myCount;

ReferenceError: myCount is not defined

The variable is created inside the function each time it is invoked, and it is automatically destroyed
when the function completes. This is why the counter function always returns 0:

> counter ()
0
> counter ()
0

Now, consider this slight variation on the preceding function:

function getCounter() {
var myCount = 0;
return function() {
return myCount++;
}

}

Rather than returning a number, this function returns another function. The function that it returns
has the following body:

function()
return myCount++;

You can now assign a variable to refer to this function:

counter = getCounter () ;

There is something strange about this function though: It is referring to the local variable mycount
that was defined inside the getCounter function. Based on my previous explanation, this should
have been destroyed when the call to getcounter finished. Therefore you might expect that if you
invoke the function returned by getcounter, it will fail.

Not only does it not fail, it gives you exactly the behavior you want:

> counter() ;
0
> counter () ;
1

The anonymous function created inside getCounter is referred to as a closure. When it is created, it
“closes” over all the variables in scope at the time, and obtains a reference to them. When the call to
getCounter finished, therefore, JavaScript recognized that the anonymous function still might need
to use the myCount variable and did not destroy it.

120

| LESSON 13 FUNCTIONS

Although the anonymous function can continue to use the mycount variable, it is completely hidden
from all other code. This means that it is not possible for any other code to interfere with the value
of this variable:

> myCount = 10;

10

> counter ()
2

The preceding code created a global variable called mycount, but this does not have any impact on
your counter, which continues to use the local variable of the same name.

In addition, if you were to create a second counter, it will have its own local myCount variable
that will not impact your original counter. Instead, the new counter will also start counting
from 0.

The beauty of this solution is that you have created private data. The function performing the
counting is using a variable that only it has access to. This is an important technique in JavaScript
because it does not support many of the mechanisms found in other languages for creating
private data.

HOISTING AND BLOCK SCOPE

One interesting feature in JavaScript is the scope of variables inside functions. In most programming
languages it is possible to declare variables within a sub-block (a loop for instance) and limit their
scope to this block. Consider the following example:

function iterate (array) {
var count = 0;
for (var 1 = 0; i < array.length; i++) {
var count = 10;
}

return count;

}

If you were to invoke this function with an array, it would always return 10 because the count
variable declared inside the for loop overwrites the count variable declared before the loop.

Part of the reason JavaScript operates in this manner is a concept called hoisting. Although it is
possible to declare variables anywhere in a function, when JavaScript executes a function, it first
searches for all the local variables in it and moves their declaration to the top of the function. They
are, however, left undefined until they are explicitly given a value in the body of the function. In
order to demonstrate this, create the following function:

function testHoisting() {
var num = numl + num2;
var numl = 10;
var num2 = 10;
return num;

Arguments | 121

If you call this function, you will notice it does not fail, even though it is using local variables before
they are defined:

> testHoisting()
NaN

If you tried the same thing with global variables, however, the code will fail because global variables
are not hoisted:

> function testHoisting() ({
var num = numl + num2;
numl = 10;
num2 = 10;
return num;

}

> testHoisting()
ReferenceError: numl is not defined

ARGUMENTS

As discussed many times, JavaScript functions can accept parameters. When you invoke a function,

however, the number of arguments you pass does not need to be constrained by the number of
parameters defined.

For instance, you can pass a single argument to a function accepting two parameters. In this case
the second parameter will have a value of undefined.

Likewise, you can pass three arguments to a function accepting two parameters. This may not sound
useful, but in fact JavaScript makes these arguments available in a special array called arguments.

Consider a case where you want to write a function to add together an arbitrary set of numbers.
Obviously, you could pass an array to the function, but you can also write it as follows:
function add()
var result = 0;
for (var 1 = 0; i < arguments.length; i++) {
result = result + arguments[i];
}

return result;

}
Notice that this function declares no parameters: Instead, it uses the arguments array to extract the
arguments passed to it. It is now possible to call this function with an arbitrary number of arguments:

> add(3,7,8,10)
28

122 | LESSON 13 FUNCTIONS

BIND

Since JavaScript functions are actually objects, it is possible to invoke methods on them. This
section looks at a widely used method called bind.

You have already seen how functions “close” over all variables in scope when they are created. This
set of variables can be thought of as the environment in which the function executes.

JavaScript is even more powerful than this: It is possible to provide the environment to the function
in the form of an object, therefore allowing the function to use an entirely different set of variables.

Imagine that you want to create a counter that is capable of starting from any number, not just 0.
One way to achieve this is to create the function as follows:

function getCount () {
return this.myCount++;

Notice in this case that you have not provided a starting value for myCount, and you are accessing
the variable with this invoke getCount () .myCount rather than just myCount. You will look at
the meaning of this in the next lesson.

If you were to create a counter function, it would not work because it does not have a value for mycount.

You can instead bind this function to a new environment by providing a set of name/value pairs for
the variables in the environment:

> var counter2 = getCount.bind ({myCount:100}) ;
undefined

> counter2 ()

100

> counter2 ()

101

NOTE The set of namelvalue pairs inside curly brackets is actually an object:
You will look at how objects can be constructed in a lot more detail in the next
lesson.

As you can see, the bind function returns a new version of the function, permanently bound to
the new environment. You can then invoke this function and obtain the appropriate results for the
environment it is bound to.

TRY IT

In this Try It, you will start by writing a function that takes advantage of the techniques you have
learned in this lesson. This function will implement a stand-alone version of the map method.

Trylt | 123

Next, you will look at another of the methods provided by arrays called reduce. This can be used to
aggregate the values in an array—for instance, to sum them.

Lesson Requirements

In order to complete this lesson, you will need the Chrome web browser. You may, however, want to
complete these exercises in a text editor and copy the results to the console.

Step-by-Step
1. Open the Chrome development tools and selecting the Console tab.

2. Define a function called map that accepts two parameters: an array and a function for
performing the map operation.

3. In the body of the function, you first need to construct an empty array to hold the result of
the function.

4. Usea for loop to iterate through all the elements in the array. Remember to use a counter
variable and declare that the loop should continue while this counter is less than the length of
the array.

5. Within the body of the for loop, extract the element that is at the position of the counter.
Store this in a local variable.

6. Pass the element to the function provided in the second parameter, and store the result in
another variable.

7. Add the mapped variable to the result array using the push method—for example, result
.push (value).

8. In order to execute this function, start by creating an array that contains a mixture of odd
and even numbers.

Q. Create a function that accepts a single parameter. If this parameter is even (remember, you
can use the modulus operator: %), it should simply be returned; if it is odd, add 1 to the
number and return it. This function therefore converts all numbers into even numbers.

10. Assign the function to a variable.

11. Call the map function you created earlier with the array, and the variable referring to the
function to convert numbers to even. The result should be an array of even numbers.

In the second section of this Try It, you will look at the reduce function. This is similar to map and
filter, but slightly more complex. This function is used to aggregate the data in an array to a single
value such as a sum or an average (the single value can also be an object or an array if required).
This function is more complex because it needs to keep track of a running total as it executes.

1. Create an array of numbers that can be summed together.

2. Create a function that can be used for summing the numbers together. This should be
called addToTotal and will accept two parameters, a current total and a new value to add
to this total.

124 | LESSON 13 FUNCTIONS

In the body of the function, return the sum of the two numbers.

Add logging to the addToTotal so you can see what is happening: print both parameters to
the console.

You now want to call the reduce method on the array. This accepts two arguments, a
function and an initial value for the aggregation: therefore pass in addToTotal and 0.

Remember that you are passing the function itself rather than calling it. Thus, when you
pass addToTotal, you should only include its name; you should not call it with a set of
parameters.

When I run this, it produces the following output:

[6, 2, 3].reduce(addToTotal, 0);
Current total:
Value: 6
Current total:
Value: 2
Current total:
Value: 3

REFERENCE Please go to the book’s website at www .wrox .com/go/html5s] -
query24hr to view the video for Lesson 13, as well as download the code and
resources for this lesson.

http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto

14

Objects

Most of the JavaScript data types you have looked at so far have held simple atomic values
such as strings or numbers. This lesson looks at objects: Objects encapsulate multiple data
properties, along with a set of methods capable of operating on these properties.

Objects are potentially the most difficult aspect of JavaScript for programmers migrating from
other languages because objects in JavaScript work in a fundamentally different way than
most other languages. As you will see, this is not a bad thing, but if you don’t understand
these fundamental differences, you will struggle to write complex web applications.

OBJECT LITERALS

Objects can be created in JavaScript by enclosing a set of properties and methods within a
pair of curly brackets. The following is an example of an object with two properties and
one method:

>0 = {
firstName: 'Dane',
lastName: 'Cameron',
getFullName: function() ({
return this.firstName + ' ' + this.lastName;
}

}

In this case, the two properties are firstName and lastName. These properties are both
strings, but they could be any data type: numbers, Booleans, arrays, or other objects.

Notice that the property names are separated from their values with colons, and the properties
are separated from one another with commas.

It is possible to access these properties in two different ways:

> o.firstName

n Dane n

> o['firstName']
"Dane"

126

| LESSON 14 OBJECTS

These two mechanisms are not exactly equivalent. The second mechanism (with the square
brackets) will always work, whereas the first mechanism will only work if property names follow
specific rules:

> They start with a letter, the underscore character, or the dollar sign.
> They only contain these characters or numbers.

For instance, it is possible to create an object as follows:

>0 = {
'first name':'Dane’',
'last name':'Cameron'

}

Because the property names contain spaces, however, they must be declared between quotes, and
the only way to access these properties is with the square bracket notation:

o['first name']
n Dane n

The method on this object is get FullName. You will notice that this accesses the properties on
the object with the keyword this. Inside a method, this refers to the object itself so this.
firstName means that you want to access the firstName property of the object, not the
variable called firstName (which would be undefined). It is possible to invoke the method

as follows:

> o.getFullName ()
"Dane Cameron"

Methods can therefore be thought of as functions that use the special value this differently.

After an object has been constructed, it is still possible to add additional properties or methods to it,
or redefine any existing properties or methods. For instance:

> o.profession = "Software Developer";
> o.getFullName = function()
return this.firstName + " " + this.lastName + " (" + this.profession + ")";

}
> o.getFullName () ;
"Dane Cameron (Software Developer)"

Notice that the call to get FullName picks up the redefined implementation, even though the object
was created when the redefinition occurred.

It is possible for two variables to refer to the same object, but in this case, any changes to the objects
are reflected to both variables. For instance, I can create a new variable called o2 and set it to o;
calling get Ful1Name will return the same value as calling the method on o:

> 02 = 0O;

> 02.getFullName () ;
"Dane Cameron (Software Developer)"

because o and o2 are referring to exactly the same object.

Prototypes | 127

PROTOTYPES

One of the main reasons programming languages use the concept of objects is to allow code reuse.
It is common to have many objects that share the same properties and methods but with different
property values.

For instance, the example in the previous section may represent a staff member in an employee

management system; you may therefore create many similar objects, all with the same property
names and methods, but each with distinct data in their properties. As a result, all these objects
can share the same methods. Obviously, you could just add the relevant methods to each object
you create, but this would become tedious.

If you have used languages such as Java or C#, you probably think of classes as the mechanism for
acquiring this reuse. Classes are templates for objects, and many languages insist that you construct
classes first, and then create objects from those classes. The classes therefore contain the methods
and property names that will appear in the objects, but each object has its own values for the
properties.

As you will see shortly, JavaScript does support syntax for creating objects in this manner, but it
is not the core mechanism for code reuse in JavaScript. Instead, JavaScript is designed around the
concept of prototypes.

As it turns out, every object in JavaScript has a prototype on which it is based, and it derives
properties and methods from this prototype. In order to convince yourself of this, enter the
following into the console:

>0 = {};

> o.toString()
" [object Object]™"

In this example, you create an empty object, with no properties or methods, and then invoke a
method on it called tostring. The tostring method comes from the new object’s prototype, which
happens to be called object.

A prototype is just a regular object in its own right. When a property or method is accessed on an
object, JavaScript first tries to access it on the object itself. If it is not available there, it attempts to
access it on the object’s prototype. In fact, as you will see shortly, the object’s prototype may have a
prototype of its own; therefore, there can be a whole chain of prototypes. If the property or method
still cannot be found after searching the prototypes, the value of undefined is returned.

Because many objects share the same prototype, adding functionality to prototypes provides a
mechanism for code reuse.

Consider the case of an array in JavaScript. Every array that is constructed in JavaScript has a
prototype object called Array: This is where the methods such as pop, map, and reduce are defined.
Array itself has a prototype of object, and this provides additional methods.

Because a prototype is just a regular object, you can add additional methods to it. These
methods will then automatically be available to all arrays, even arrays created before you added
the method.

128

| LESSON 14 OBJECTS

For instance, you might decide you would like arrays to support a method called contains. This
would accept an argument and return true if this existed as an element in the array. You can define
this as follows:

> Array.prototype.contains = function (val) {
for (var 1 = 0; i < this.length; i++) {
if (this[i] === val) {
return true;
}
}

return false;

}

Array, in this case, is a constructor function (you will look at these shortly), whereas Array.
prototype allows you to access the object that acts as the prototype to all arrays. Notice that
within the method you add, you can use this to refer to an array itself.

You can then write code as follows:

>al = [1,5,3,8,10]
[1, 5, 3, 8, 10]

> al.contains(8)
true

> al.contains(9)
false

Prototypes can also solve the code reuse problem discussed earlier with the staff member objects.
You can construct a single object that will act as the prototype of all staff member objects, and then
set this as the prototype of any staff member object you construct.

You will start by defining an object with methods on it to act as the prototype:

staffPrototype = {

increasePay : function(percentage) {
this.salary = this.salary + ((this.salary * percentage) / 100);
}

getFullName : function() {
return this.firstName + " " + this.lastName + " (" + this.profession + ")";

}

Notice that this accesses four properties: firstName, lastName, salary, and profession. None of these
properties has been defined on the object itself; therefore it is not possible to call these functions and have
meaningful results returned. Despite this, the object definition is still considered valid by JavaScript.

You now need a mechanism to set this object as the prototype for other objects. The best way to do
this is with the following function:

> function extend (obj) {
function T(){};
T.prototype = obj;

return new T();

Prototypes | 129

You will use this function first and then come and look at how it works. Start by creating a new
object with the following call:

> sl = extend(staffPrototype) ;

Now add the relevant properties to s1:

> sl.firstName = 'Morgan';

> sl.lastName = 'Thomas';

> sl.salary = 50000;

> sl.profession = 'Graphic Designer';

Now, you should be able to use the methods added to the prototype and have these methods use the
properties in your newly constructed object:

> sl.getFullName ()

"Morgan Thomas (Graphic Designer)"
> sl.increasePay(10)

> sl.salary

55000

You can construct as many objects as you like from this same prototype:

s2 = extend(staffPrototype) ;
g2.firstName = 'Sam';
s2.lastName = 'Donaldson';
s2.salary = 60000;
s2.profession = 'HR Manager';

vV V. V VvV VvV

All of these objects will use the methods you defined on the prototype but will have their own
distinct values in each of the properties.

Although this clearly works, the extend function is rather mysterious. The first line of this function
defines another function called T. Although this is a normal function, as you will see, it will be used
as a constructor function, just as Array was.

Constructor functions are normal functions, but they are intended to be invoked with the new keyword.
You will look at these in-depth in the next section. When they are invoked with the new keyword
(as you can see on the third line), they implicitly return a new object.

The second line of the function is where all the magic happens however: On this line, the object passed
into the function (staffPrototype in this case) is set as the prototype of the constructor function.
This means that any objects constructed from this function will have this object set as their prototype.

Finally, it’s important to understand that prototypes are read-only. For instance, the following code
might be executed on one of the objects to redefine the get FullName method:

> sl.getFullName = function() ({
return this.lastName + ", "+ this.firstName + " (" + this.profession + ")";
}

This code does succeed, but it only has the effect of providing a new definition of the method for the
s1 instance of the object. The underlying prototype is not affected, and any other objects based on
this prototype will also be unaffected.

130

| LESSON 14 OBJECTS

CONSTRUCTOR FUNCTIONS

The previous section briefly touched on the subject of constructor functions. These are the closest
JavaScript has to classes because they provide a mechanism to construct new objects, and initialize
their properties, all in a single step.

For instance, the following is a constructor function for initializing objects with the four properties
used in the previous section:

function Staff (firstName, lastName, salary, profession) ({
this.firstName = firstName;
this.lastName = lastName;
this.salary = salary;
this.profession = profession;

}

There is really nothing special about this function other than the following:

> It starts with a capital letter, when all the other functions and methods you have written start
with lowercase letters. This is a convention to remind you that this function is a constructor
function: You will see why this convention is important shortly.

> The body of the constructor function uses this to refer to a number of properties. As you
will see, constructor functions implicitly return a new object, and properties can be set on
the new object using this.

It is now possible to construct an object using this constructor function as follows:

s3 = new Staff('Brian', 'Downing', 40000, 'Software Tester');
This will create a new object and set its properties according to the arguments passed to the function.

This only constructs and initializes an object because it is invoked with the new keyword. If this
were omitted, the function would still succeed, except it would not construct a new object:

> s4 = Staff ('Brian', 'Downing', 40000, 'Software Tester');
undefined

As you can see, the function now returns the value of undefined. You may be wondering what
happened to the calls inside the function such as this.salary. If a function is invoked without
the new keyword, this refers to the JavaScript global namespace, which is the window object. The
values passed to the function have therefore been created as global variables, overwriting any other
global variables with the same name in the process:

> firstName
"Brian"

> salary
40000

Modules | 131

NOTE It is possible to use a stricter mode of JavaScript with the following
declaration: "use strict"; When using strict mode this is undefined inside a
function, and forgetting the new keyword would result in an error. Strict mode
also addresses many of the other quirks we have seen with JavaScript.

This is why it is important to name constructor functions with leading capital letters: to
remind yourself that they are constructor functions, and ensure that you precede them with
the new keyword.

NOTE If you are keeping count, you may have noticed that this has four
different meanings, depending on the context in which it is used.

> Inside a regular function, this refers to the global namespace, which in
browsers is the window object.

Inside methods, this refers to the object the method is defined on.

> Inside constructor functions, this refers to the implicitly constructed object,
but only when the function is invoked with the new keyword.

> When bind is used, this refers to the object passed as an argument.

Misunderstanding the meaning of this in each of these contexts is a common
source of bugs in JavaScript code.

MODULES

Most programming languages that support objects support a mechanism for controlling how data is
accessed. For instance, consider the salary property from the objects in the previous section. Any
code that has access to an object can set it to any value it wants, as you can see here:

sl.salary = 100000000;

In a real-world application, you may want to control the values that salary can be set to. For
example:

> sl.updateSalary = function(newSalary) {
if (newSalary > 0 && newSalary < 200000)
this.salary = newSalary;
} else {
throw 'The salary must be between 0 and 200000';
}

132

LESSON 14 OBJECTS

Although it is possible to expose methods such as this, this does not stop code from accessing the
object’s properties directly.

This may not sound like an important issue because you have full control over the code base, and
you can therefore check that no one updates the salary property directly. This becomes increasingly
difficult as the code base grows, however, and you introduce more and more rules about how
properties should be accessed and updated.

Fortunately, there is a solution to this problem, and it relies on closures. The following is an
example:
function createStaffMember (initialSalary, firstName, lastName) {
var salary = null;
o= {
setSalary : function() {
if (initialSalary > 0 && initialSalary < 200000) {
salary = initialSalary;
} else {
throw 'The salary must be between 0 and 200000';
}
b

getSalary : function()
return salary;
1

firstName : firstName,
lastName : lastName

}i
o.setSalary(initialSalary) ;
return o;

}

Notice that this function declares a local variable called salary and then constructs an object that
uses this local variable. When the object is returned at the end of the function, it retains a reference
to the salary variable so it is not destroyed. Despite this, there is no way any other code can set
this variable without using the method setsalary, and this ensures the value is always within the
acceptable range.

An object can be constructed from this function as follows:

> 85 = createStaffMember (50000, 'Tom', 'Braithwaite');
It may appear the salary property can be set as follows:

> s5.salary = 1000000000;

However, if you invoke the getsalary method, you will discover that the actual salary has not been
modified:

> s5.getSalary () ;
50000

You will also notice that the object’s methods do not access the salary variable with the this
keyword. This is because salary is not a property of the object; it is a local variable the object

Trylt | 133

has a reference to. Also notice that you need to provide a method (getsalary) for returning the
current value of salary because there is no other way code outside the object could access
this value.

The approach outlined in this section is a design pattern, which is a reusable solution to a
well-known problem. This design pattern is referred to as the module design pattern and is used
extensively in JavaScript programming.

TRY IT

In this Try It, you will use the module design pattern within the CRM web application. Although
it will not do much at this point, it will provide a well-structured base on which to add additional
functionality over the next few lessons.

Lesson Requirements

In order to complete this lesson, you will need the CRM web application as it stood at the end of
Lesson 8. This can be downloaded from the book’s website if you have not completed Lesson 8.
You will also need a text editor and the Chrome browser.

Step-by-Step

1. Start by creating a standalone JavaScript file called contacts.js. This should be placed in
the same folder as the contacts.html file.

2. Within this, start by creating a function called contactsscreen. This should accept a single
parameter called mainIp, and should return an empty object.

3. Define a local variable within the function (not within the object returned), called
appScreen, and set this to the parameter passed into the function. You are going to pass the
main element of the contacts.html page to this function when you eventually invoke it,

4. Create another local variable called initialized and set this to false.

5. Create a method inside the object returned called init. Add this method, and declare an
empty code block for it. This is where you will place any logic that needs to execute when the
web page first loads.

6. You want to make sure you only initialize the screen once. Therefore, at the top of the init
method, check if initialized is true: If so, simply invoke return.

7. Copy the JavaScript code from contacts.js (minus the script tags: leave these in place),
and add them to the body of the init method. In addition, set initialized to true at the
end of the init method.

My completed version of the JavaScript file is available on the book’s website.

8. You now need to link the JavaScript file to the HTML page to ensure it loads when the web
page loads. In order to do this, add the following to the body of the head element:

<script src="contacts.js"></script>

134 | LESSON 14 OBJECTS

NOTE If you have used earlier versions of HTML, you may be expecting to add
a type attribute to the script tag to specify the script is JavaScript. This is no
longer required because JavaScript is the assumed default.

10.

1.

12.

Now, pass the main element to the contactsScreen function and store the resulting object
in a local variable called appScreen. This needs to occur inside the script block at the
bottom of contacts.html.

Invoke the init method on the appScreen object. Your code block now looks as follows:

<scripts>
var mainElement = document.getElementById('contactScreen');
var appScreen = contactsScreen(mainElement) ;
appScreen.init () ;

</scripts>

If you now load the screen, you can add a breakpoint to the first line of the init method by
selecting the contacts.js file from the Sources tab.

You can now reload the page and step through the init function to ensure it loads correctly.

REFERENCE Please go to the book’s website at www.wrox.com/go/html57s] -
query24hr fo view the video for Lesson 14, as well as download the code and
resources for this lesson.

http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto

15

JSON

JSON (commonly pronounced Jason) stands for JavaScript Object Notation. It is a data format
for representing the properties of a JavaScript object as a string.

In computing, there are often instances where you need to convert data from one format to
another. For instance, if you consider a JavaScript object, you may want to convert it into a
String so that:

> You can send it across a network to another computer.
> You can store it in a file.
> You can use it with other JavaScript APIs that only support strings.

Conversely, you may eventually want to convert this string back into an object so that you can
use it in your JavaScript application.

The process of converting an object into a string is referred to as serialization, while the
process of converting it back is referred to as de-serialization.

In order to convert an object into a string, you need a data-format that specifies how

the object should be mapped to a character string—for instance, how do you denote the
properties and values of an object, and how do you encode the various data types such as
numbers and arrays?

Historically most data formats have been binary: This meant that it was not possible for a human
to read the formatted data and gain an understanding of its underlying structure or meaning.
Typically, data was converted to and from the binary format using a proprietary algorithm.

In recent years, there has been a move toward plain-text data formats. The most notable
example is XML, which uses a similar structure and syntax to HTML in order to differentiate
properties from their values.

There is nothing inherently wrong with using XML to serialize JavaScript objects, and
many web applications do use XML. For instance, this is a possible representation of a
contact in XML:

<?xml version="1.0" encoding="UTF-8"?>

<contact>
<contactName>William Jones</contactName>

136 | LESSON 15 JSON

<phoneNumber>555-2941</phoneNumber>
<emailAddress>william@testing.com</emailAddresss>
<company>

<code>123</code>

<name>ABC Incorporated</name>
</company>
<notes></notes>
<lastContacted>2014-09-25</lastContacteds>

</contact>

There are three main drawbacks with XML:

>

The ratio of tags to content in XML is reasonably high: In the previous example, far more
than half the message consists of tags.

A JavaScript library is required to convert between the JavaScript object and XML because
JavaScript does not natively support XML.

Although XML is simple in principle, numerous technologies have grown up around it, such
as namespaces and schemas, and they can complicate XML considerably.

JSON alleviates all of these issues. The main beauty of JSON is that it maps directly to JavaScript. If
you were to write out the structure of a JavaScript object on paper using the same syntax JavaScript
uses for declaring objects, it would probably look identical to JSON.

JSON is also natively supported in the latest versions of JavaScript; therefore you do not need any
libraries to work with JSON.

Finally, JSON is incredibly simple. It is described in a few hundred words on the following website:
http://www.json.org.

The JSON representation of a contact may look like this:

{

}

"contactName":"William Jones",
"phoneNumber":"555-2941",
"emailAddress":"william@testing.com",
"company" : {

"code":123,

"name" : "ABC Incorporated"
b
"notes":null,
"lastContacted":"2014-06-30T05:50:46.6592"

Notice how similar this looks to the literal notation for declaring a JavaScript object?

It is possible to convert a JavaScript object into a string using the utility function JSON. stringify.
In order to demonstrate this, start by creating a contact object using the object literal notation:

>

cl = {

contactName: "William Jones",
phoneNumber:"555-2941",
emailAddress:"williame@testing.com",
company : {

http://www.json.org
mailto:william@testing.com
mailto:william@testing.com

Replacing and Reviving | 137

code:123,
name: "ABC Incorporated"

notes:null
lastContacted: new Date()

}

Next, execute the following to store this as a string in the variable contactstring:

> contactString = JSON.stringify(cl)

"{"contactName":"William Jones", "phoneNumber":"555-2941", "emailAddress":"williame
testing.com", "company" : { "code":123, "name": "ABC Incorporated" } ,"notes":null, "lastCon
tacted":"2014—06—30TO6:06:56.306Z“}"

Notice that the properties and values are all retained, but property names are all automatically
embedded in double quotes.

JSON allows all the JavaScript data types to be represented in the serialized version. This ensures
that when the string is eventually converted back into an object, the various properties retain their
original data types.

> Strings always appear inside double quotes. Multiple examples can be seen in this
example—for instance "William Jones".

> Numbers appear literally, and do not need to be quoted; for instance, the code property has
a value of 123.

> Although not shown in this example, Boolean values are represented with the unquoted
keywords true and false.

> The unquoted keyword null is used to represent a null value, as you can see with the notes
property.

> Objects can encapsulate child objects, as the company property demonstrates. This nesting
can go to as many levels as you require.

> Arrays can be used as the value for any property. These use the familiar square brackets to
indicate the start and end of the array, while elements are separated with commas.

You can convert the string back into an object using the JSoN.parse function. The example in
Figure 15-1 shows this and demonstrates that you can access the properties of the de-serialized
object:

contact = JSOM.parse({contactString);

B Object {contactName: "William Jones", phoneNumber: "555-2941", emailAddress: "williamgtesting.com", company: Object,
notes: null.}

typeof contact

"object"

contact.contactName

"William Jones"

FIGURE 15-1

Although the JSON format is great for serializing properties, it cannot be used for serializing
methods: Any methods present on the object are simply ignored when JSON. stringify is invoked.

138

| LESSON 15 JSON

REPLACING AND REVIVING

Although JavaScript is great for working with most JavaScript data types, it does come with certain
limitations. One of the most difficult data types to handle is the pate object.

There are many different ways to serialize dates. For instance, you could use their time in milliseconds:

new Date() .getTime ()
1404088573560

The time in milliseconds is a number that represents the number of milliseconds that have passed
since midnight on January 1, 1970. This is not an ideal way to represent a date; among other
reasons, it does not contain time-zone information.

You could also use the tostring method on the Date object:

new Date() .toString()
"Mon Jun 30 2014 12:36:01 GMT+1200 (New Zealand Standard Time)"

This is better because it does contain time-zone information. However, it also contains unnecessary
information: The day of the week is implied by the date.

Ultimately, it does not really matter what format you choose, as long as it stores all the information
you require. The most important thing is that everyone agrees on the same format, thereby allowing
any serialized objects to be de-serialized by your web application.

For this reason, the JavaScript Date object now supports a method called togson, as you can see in
the following example:

new Date () .toJdSON() ;
"2014-06-30T00:37:09.3482"

This produces a date in the UTC time zone (essentially the same as Greenwich Mean Time),
regardless of the time zone of the computer itself. The timezone is denoted by the trailing Z on the
date format. The entire date/time string is formatted according to an ISO standard, which is widely
used in computing.

If you look at the JSON example earlier in this lesson, you will see that the date was converted into
a string conforming to this standard.

You may have noticed a problem in our example, however. When JsoN.parse was used to
transform the string back into an object, the lastContacted property was left as a string, rather
than converted back into a Date object.

This is not the desired behavior: You always want the serialization process to be completely
reversible by the de-serialization process. Fortunately, there is a way around this problem.

The JsoN.parse function supports an optional second parameter referred to as a “reviver.”
This can be used to convert values as they are transformed back onto the object. This parameter
expects to be passed a function, which in turn will be passed every property as it is parsed.
Where appropriate, the reviver can decide to modify the value of the property before it is set on
the object.

Replacing and Reviving | 139

In order to parse dates with a reviver function, you need to perform two tasks:
> Identify that a value is a date. The most common way to do this is with regular expressions.

> Convert it from a string to a Date object. The Date object has a constructor that supports
the ISO format; therefore, this is a simple process.

You saw regular expressions earlier in the book when you validated form fields. JavaScript supports
a literal notation for defining regular expressions: Any unquoted character string that starts with a
forward slash is assumed to be a regular expression.

The regular expression that follows is reasonably complex, so it is not important that you
understand it, but you should understand the approach:

dateReviver = function (name, value)

var regExp = /~(\d{4})-(\d{2})-(\a{2})T(\d{2}): (\d{2}) : (\@{2} (2:\.\d*)?)z$/

if (value && typeof value === 'string' && value.match(regExp)) {
return new Date (value) ;
} else {

return value;

}
}

This code starts by defining a regular expression that describes the pattern of characters you expect
to find in a date field.

Next, the if statement checks that you have been passed a value and that the value has a data type
of string. Finally, the if statement checks whether the value matches the regular expression: If it
does, then the match method will return a non-null value.

If the value is determined to be a serialized version of a date, it is simply passed to the constructor
of Date, and the resulting object is returned. If it is not a date, you simply return the value
untouched.

You can now use this function to de-serialize the contact into a new variable:

contact2 = JSON.parse (contactString, dateReviver);

If you now examine the lastContacted property, you can confirm it is a Date:

> typeof contact2.lastContacted

"object"

> contact2.lastContacted.toString()

"Mon Jun 30 2014 18:06:56 GMT+1200 (NZST)"

Notice that even though the serialized version used the UTC time zone, the de-serialized version has
been converted back into my local time zone.

Just as the JSON. parse function supports a reviver, the JSON. stringify function supports an
optional replacer function. This is identical to the reviver, except it allows you to convert values as
they are serialized.

140 | LESSON 15 JSON

TRY IT

In this Try It, we will experiment with the JSON data format. As you have already seen, JSON is an
extremely simple data format so you will use it for a slightly different purpose: cloning objects. To
clone an object is to make a copy of it: We will look at how this can be achieved with JSON.

Lesson Requirements

In order to complete this lesson, you will need the Chrome web browser. You may, however, want to
complete these exercises in a text editor and copy the results to the console.

Step-by-Step
1. Start by creating a sample object that you can clone. Make sure that this contains child
objects and arrays. My object looked like this:

o= {
studentName: 'William Jones',
school: 'Middletown High School',

grades: [
{subject: 'English',
grade: 'A'},

{subject: 'Algebra’,
grade: 'B+'},
{subject: 'Geometry',
grade: 'C'},

2. Create a clone function; this should declare a single parameter, which is the object to clone.

3. Within the function, call JsON.stringify on the object passed in, and store the result in a
new variable.

4. Parse the string stored in Step 3 using JSON . parse, and store the result in a new variable.

o

Return the newly created object from the function.

6. Confirm that you can change the value of properties in the newly created object and that
these are not reflected in the original object.

REFERENCE Please go to the book’s website at www.wrox.com/go/html5s] -
query24hr fo view the video for Lesson 15, as well as download the code and
resources for this lesson.

http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto

16

Document Object Model

The Document Object Model (DOM) and the DOM API have been mentioned several times
already in this book, but now it’s time to step back and look at them in depth.

As you will see over the next few lessons, you can largely avoid an in-depth understanding of
the DOM API if you use jQuery. jQuery is essentially a wrapper around the DOM; it provides
all the same basic functionality but with a more intuitive API.

It is, however, wise to have at least a basic understanding of how the underlying DOM
technology works before starting with jQuery because this places it in a wider context, and
helps you understand what jQuery is trying to achieve.

NODES AND OBJECTS

The Document Object Model is the in-memory browser representation of a web page. When
the browser loads a web page, it parses all the HTML tags and their content, and generates a
model for display in the browser.

As you have already seen, the DOM model may differ from the literal HTML in several ways.
For example:

> It will close any unclosed tags, such as self-closing tags.
> It will convert attribute names to lowercase.

> It will rearrange tags closed in the wrong order, per the rules in the HTMLS
specification.

> It will add certain tags that may be missing such as the body tag.

You have also seen how the DOM is represented as a tree-like structure via the Elements tab in
the Chrome developer tools.

The DOM is actually more complex than the Elements tab implies. In order to understand
the DOM, you need to think in terms of nodes rather than elements: The DOM is a hierarchy
of nodes.

142 | LESSON 16 DOCUMENT OBJECT MODEL

In this section you will gain an understanding of the DOM constructed for the following web page:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
</head>
<body>
<h1>This is the header</hls>
</body>
</html>

The DOM for this HTML will be modeled as you see in Figure 16-1. Each square box in this
diagram is called a node in the DOM tree. As you can see, there are many nodes that are not simple
elements in the document.

==interface==
document

!

==interface==
element
/ HTML
==interface== ==interface==
element element
head ==interfaces== hody
attribute
l} lang l}
==interface== ==interface==
element element
meta h1
==interface== ==interface==
attriburte text
charset This is the header
FIGURE 16-1

Figure 16-1 also lists the interface or object type of each node. The DOM represents each node as
an object (a JavaScript object in this case), and this object exposes an interface consisting of a set of
properties and methods.

You can see that the top-level node is called the document, and the html element is its child. Along
with the element nodes, you can also see examples of text and attr nodes in the tree because the
DOM models these as independent objects.

Nodes and Objects | 143

The following are the most common types of object:

> document: A document object represents the entire document. This can be accessed within
the browser using the global variable document. When you start using the DOM API shortly,
you will always do so from the context of the document.

> element: This object is used to represent the elements, or tags, in the document. Every tag—
such as td, head, or h1—is represented by an instance of this object, but their content and
attributes are modeled as independent objects.

> attr: The attr object type represents attributes. Each element can have zero to many
attr objects as its children.

> text: When the body of an element contains text, this is represented by a separate object
called the text object. In some cases an element can have multiple text nodes. For instance,
with the following HTML fragment <p>Left sideinnerright side</p>, the
p tag has two text nodes, one for the text on either side of the em tag, while the em tag also
has a text node.

You may be wondering why you need all these different object types. The primary reason is that you
want to do different things to different nodes in the document. For instance, the API exposed by the
document may contain functionality to determine the doctype, whereas the API exposed by the attr
object may contain functionality to change the attribute value. Alternatively, the element object allows
you to navigate, add, remove, and change its child nodes, whereas this is not possible with text nodes.

The API used for interacting with, and manipulating all these types of node is called the DOM API.
Browsers implement the DOM API in JavaScript, but the DOM API can be written in any language
and can exist outside a web browser.

The purpose of the DOM API is mainly to allow the DOM to be manipulated after the web page
has loaded. This allows you to implement dynamic functionality within web pages without resorting
to page refreshes. There are four essential aspects to the DOM API that allow this manipulation:

> Selecting nodes from the DOM—for example, finding all the nodes with a particular class

> Traversing from a selected node to another set of nodes—for example, finding the children
for a particular node

Manipulating the nodes in the DOM—for example, adding, replacing or deleting nodes

Responding to events generated by nodes—for example, responding to the user clicking an
element

Each of these will be briefly discussed in the text that follows. Before starting, it is worth
mentioning that the DOM API is very large, and I will only scratch the surface of what is possible.
The idea is to be introduced to broad themes rather than understand every aspect of the API.

The examples that follow will use the following web page:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
</head>

144 | LESSON 16 DOCUMENT OBJECT MODEL

<body>
<hl class="mainHeader">This is the title</hl>
<ol id="daysOfWeek">
<lisMonday
Tuesday
Wednesday
Thursday
Friday

</body>
</html>

You can either download this from the book’s website (it is called domexample.html), or you can
write it yourself.

This web page contains a heading and a list of days in an ordered list. You will interact with
this web page from the Chrome console, but the code could also be added to a script block in the
page itself.

Selecting Elements

You select elements from the DOM using the same basic criteria as CSS: Specifically, you select
elements by their type, their classes, or their IDs.

To select an element by ID, you can use the following method on the document object:

> document .getElementById ('daysOfWeek!') ;

This returns a single object, which is why it is very important you never duplicate IDs on a
web page.

Whenever you select an object from the DOM, you can determine its type by using the nodeType
property. For example:

> document .getElementById('daysOfWeek') .nodeType;
1

The DOM API uses numbers to represent the various types of node: 1 represents an element node, 2
represents an attribute node, 3 represents a text node, and so on.

Alternatively, you can determine the name of the element:

> document .getElementById ('daysOfWeek') .nodeName;
n OL n

It is also possible to select nodes by class name:
> document .getElementsByClassName ('mainHeader') ;
or tag name:

> document .getElementsByTagName ('1i')

Both of these methods return an array of objects rather than a single object. Therefore, if you know
only a single object will be returned, you still need to access it from the first index in the array
before using it:

> document .getElementsByTagName ('ol') [0] .nodeName
n OL n

Nodes and Objects | 145

Traversing the DOM

Once nodes have been selected, it is common to navigate from these nodes to other nodes. The
examples that follow demonstrate how it is possible to navigate from nodes to their children, and
from child nodes to parents:

// obtain a reference to the daysOfWeek node

o = document.getElementById('daysOfWeek') ;

// find all the children for this node (i.e., the 1li elements)

o.childNodes

// find the parent of this node, i.e., the body element

o.parentNode

// find the first child of this node

o.firstElementChild

The DOM API also supports a number of shortcuts for traversing from one node to another. For
instance, you can traverse from the document node to the body node as follows:

> document .body

Manipulating the DOM

Selection and traversal operations are used to select a set of nodes; these can then be manipulated to
dynamically change the appearance of the web page after it has loaded in the browser.

For example, you may want to add a new 1i element with the value saturday. This is a two-part
process: First, you need to construct the nodes that represent the new 11 element, and then you need
to insert it into the DOM at the appropriate location.

To start, you will create the 1i node, and assign this to the variable newLi. The node created will
not be part of the DOM at this stage; it will be a standalone DOM object, commonly referred to as
a document fragment.

> newLil = document.createElement ('li');

Next, you will create a new text node, also using a method on the document itself. Like the 11
node, this will not be part of the DOM:

> saturday = document.createTextNode ("Saturday") ;
Next, you will set the text node to be the first child of the new 1i node:
> newLi.appendChild (saturday) ;

Finally, you can add the 11 node into the DOM at the appropriate location. Many methods are
available for controlling where nodes are inserted in relation to other nodes, but you will use the
appendChild method; this simply adds the node as the last child of an existing node:

> document .getElementById ('daysOfWeek') .appendChild (newLi) ;

=1li=Thursda
As soon as you invoke this final line, a new 11 element (_u_‘Frid;;l{"
will appear in the web page. In addition, if you look at A —
the Elements tab in the developer tool, you can see that
the DOM has been updated (see Figure 16-2). <ntmls

FIGURE 16-2

146 | LESSON 16 DOCUMENT OBJECT MODEL

As you can see, working with the DOM API is somewhat convoluted: This code will be significantly
simplified once you introduce jQuery.

Responding to Events

The final aspect of the DOM API you need to understand is events. In fact, you have already seen
these when you wrote the drag-and-drop—based web page in Lesson 9.

Each type of DOM object supports a wide variety of events. These are primarily categorized as:

> Keyboard events, such as keyup and keydown

> hdouseevenm,sud1asonclick:ﬂuionmousedown

> Document events, such as onload and onresize

> Form events, such as onchange and onselect
In this section, you will take advantage of two mouse events. You will add functionality so that if
the user hovers over the header (a mouseenter event), the list will be displayed (its display property

will be set to block). When the mouse moves away from the header (a mouseleave event), the list
will be hidden again.

You will change the web page so that the list of days is initially hidden by adding the following to
the head element:

<style>

ol {
display:none;

}

</style>

Next you will add the appropriate event listeners in the script block before the closing body tag.

<scripts>
document .getElement sByClassName ('mainHeader!') [0]
.addEventListener ("mouseenter", function(event) {
document .getElementById ('daysOfWeek') .style.display

'block!';

b

document .getElement sByClassName ('mainHeader') [0]
.addEventListener ("mouseleave", function (event) {
document .getElementById ('daysOfWeek') .style.display = 'none';

1

</scripts>

In this example, you add two event listeners to the h1 element. One is fired when the mouse enters
the box of the header element; the other fires when the mouse leaves the box.

Within each event listener you simply locate the o1 node, and either hide it or show it as appropriate.
This is achieved by updating its display style to either block or none.

Trylt | 147

TRY IT

In this Try It, you will take the CRM web application from Lesson 14 and add two dynamic
features to it:

> You will change the contact details form so that it is initially hidden and only displayed if the
user clicks a link to add a new contact.

> You will create a hover effect for displaying notes: If the user hovers over the last contacted
time, you will display the notes to the user in a popup box.

Lesson Requirements

In order to complete this lesson, you will need the Chrome web browser and the CRM project files
from Lesson 14.

Step-by-Step

This step-by-step will be broken into two distinct sections. Work through each in turn, ensuring
that the functionality works as expected before moving on.

Displaying Form Dynamically
1. To start, you need to hide the section with the id contactDetails in the HTML. This can

be accomplished via an inline style on the element itself, which will set its display property
to none.

2. Add a hyperlink to the bottom of the contactList section (after the closing table tag) that
the user can click to add a new contact. The href for this should simply be # because you
will not use browser-based navigation (you will respond to the user click in JavaScript). You
need to also ensure the hyperlink has an id so you can select it from the DOM. You can
choose how this looks, but I added the following:

<div class="controls">

Add a new contact
</divs>

I also added the following to contacts.css to improve its appearance:

.controls
padding:15px;
}

3. Within the init method of contacts. s, select the hyperlink by id using document .
getElementById, and add an event listener to the object returned using addEventListsner.
The first parameter to addEventListener is the type of event you are listening for, which in
this case is click. The second parameter is a function that accepts a single parameter called
event. Create this as an anonymous function.

4. Within the function, you first need to disable the default behavior of clicking a hyperlink
to request a new page from the server. This can be achieved by calling the method
preventDefault () on the event itself.

148 | LESSON 16 DOCUMENT OBJECT MODEL

5. Select the element contactDetails by id, and set its style.display property to block.

6. If you reload the page and click the hyperlink, the contact details section should
immediately appear.

Showing Notes

You will now change the time field so that when the user hovers above it, the notes are
displayed, as shown in Figure 16-3.

Company name Last contacted
ACME Industries | 2014-10-21
ABC Corp These are my notes for William

Copyright 2014

FIGURE 16-3

1. In order to display notes, you first need to ensure that they are present, but hidden, in the
DOM when the page loads. Identify any table cells that contain time elements, and modify
them so that they contain an additional element with notes information. For example:

<td>

<time datetime="2014-09-12">2014-09-12</time>

<div class="overlay">These are my notes for William</divs>
</td>

Notice that I have also added a class called overlay to the div.

2. You now need to add a CSS rule for the overlay class. Try to add this yourself based on the
following specification:

> Set the height of the div to 100px.

Set the width of the div to 300px.

Add a 1px solid border to the div with a color of #333333.
Set the background color to #eeeeee.

Add 10px of padding between the content and the border.

Set the initial display to none.

Y Y VY Y Y Y

Use the position element to remove the element from the flow of the page, and
ensure that, when it is displayed, it does not impact the position of any other elements
in the DOM. Think about which position value most closely meets these needs.

> Set the z-index so that when the div is displayed, it appears over the top of
the table.

Try lt | 149

My CSS looked like this:

.overlay {
position: fixed;
height: 100px;
width: 300px;
border: 1lpx solid #333333;
background: f#eeeeee;
display: none;
z-index:1;
padding:10px;

You need to add event listeners to each of the time elements. Select all the time elements
using document . getElement sByTagName. Once these have been found and stored in a local
variable, iterate through them in a for loop.

Within the for loop, you need to add two different event listeners, one for mouseenter and
one for mouseleave. Create skeleton implementations for each of these and make sure the
anonymous function passed as their second parameter accepts the parameter event.

Within the function passed to each event listener, you need to find the notes div that is
closest to the time element that the mouse is hovering over. You can first find the time
element they are hovering over using event .target. You can then find the next sibling of
this element using nextElementSibling and set the display property to either block or
none, depending on whether you are hiding or showing the div.

The next sibling element allows you to find the next element in the DOM with the same
parent as the specified element. In the case of the time element, that will be the div element
containing the notes.

If you reload the page and hover the mouse over the time elements, the notes should display
and then immediately disappear if you hover away.

REFERENCE Please go to the book’s website at www .wrox.com/go/html5]s] -
query24hr to view the video for Lesson 16, as well as download the code and
resources for this lesson.

http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto

17

jQuery Selection

In this lesson, you will start gaining an understanding of jQuery and the way in which it can
simplify interaction with the DOM.

jQuery is an open-source library written entirely in JavaScript. Although it is intended to
simplify interaction with the DOM, it does not do anything that could not be achieved with
the DOM API. In fact, it uses the DOM API to perform its operations.

The following are the main reasons why jQuery is used in so many web applications:

> It provides an intuitive and easy-to-learn API for performing the most common tasks in
website development. For instance, the selection API you will use in this lesson is based
on CSS selectors.

> It provides genuine cross-browser support and hides some of the quirks that exist in the
DOM API implementations of certain browsers (most notably, older versions of IE).

> Itis very easy to write plugins to enhance the capabilities of jQuery, and there are
extensive libraries of freely available plugins on the Internet.

> The jQuery website contains extremely good documentation, and there is a wide
variety of help available on the Internet if you encounter problems.

jQuery is not the only library designed to assist with DOM interaction, but it has become the
de facto standard, and has a higher market share than all its competitors combined. Therefore,
if you are going to learn one JavaScript library, it makes sense for it to be jQuery.

LOADING JQUERY

Before using jQuery, you need to import it into your web pages. There are two ways you can

do this:

> You can download the relevant version of jQuery, store it on your server, and link to it
via a relative URL in a source tag. This is generally the best approach while developing
a web application.

152

| LESSON 17 JQUERY SELECTION

> Link to a version hosted by an external party. Many Content Distribution Networks
(CDNs), such as Google, provide hosted versions of popular JavaScript libraries, including
jQuery. This is generally the best option for production websites because CDN delivery
tends to be faster.

In this section, you look at how you can use both approaches.

The jQuery library used in this book is available from the book’s website, but these instructions
show you how to download your own version of the library. In order to download a version

of jQuery, first navigate to www.jquery.com. Find the Download link on the homepage and
click it.

In this book, you will use the 2.x release of jQuery. This does not support some older browsers,
such as IE8. Therefore, if you are developing a website that must support older browsers, you can
use the 1.x release of jQuery, which provides most of the same functionality.

Click to download the development version of the latest 2.x release of jQuery. The version used

in this book is 2.1.1, but the latest 2.x release can be used. jQuery offers both a production

and a development version. The only difference between these is that the production version is
“minimized,” which essentially means the code has been compressed. The code in both versions is,
however, functionally equivalent; it is just very hard to debug the minimized version.

Once it is downloaded, store it in the CRM directory along with contacts.html.

Now, simply import it into the web page using a source tag in the head of the document:

<script src="jquery-2.1.1.js"></script>

If you now load the page, you can test if jQuery is installed. In order to confirm this, type jQuery in
the console. It should produce the output shown in Figure 17-1.

Q, Elements Network Sources Timeline Profiles Resources Audits | Console |
® W <topframe> ¥

> jQuery
function { selector, context) {
/f The jQuery object is actually just the init constructor 'enhanced'
£/ Need init if jQuery is called (just allow error to be thrown if not included)
return new jQuery.fn.init{ selector, context };

FIGURE 17-1

If you choose to load jQuery via a CDN, you do not need to download jQuery; you can simply add
the following source tag to the head section of the web page:

<script src=http://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js >
</scripts>

If you now load the page, you can test if jQuery is installed. In order to confirm this, type jQuery
in the console. It should produce the output shown in Figure 17-2 (notice that this is a minimized
version of the library so the output is different):

http://www.jquery.com
http://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js

Selecting Elements | 153

Q, Elements Network Sources Timeline Profiles Resources Audits | Console |
® ¥ <topframe> w

> jQuery
function (a,bl{return new n.fn.init{a,bl}
>

FIGURE 17-2

SELECTING ELEMENTS

You are now ready to start selecting elements with jQuery. Selecting elements has no inherent
value; it is simply the first step in a sequence of operations. Typically, once you have selected a set of
elements, you will manipulate them in some way, but that is the subject of future lessons.

In this lesson, you will select elements from the contacts.html web page using the
Chrome console.

If you remember back to the lesson on the DOM API, elements were selected using methods on the
document object. With jQuery, you select elements by placing a selection string inside the following
structure:

$('selection string')

The dollar sign is an alias to the jQuery function and is intended to save on typing. It is also possible
to use the following construct:

jQuery ('selection string')

The great thing about selection strings in jQuery is that they mostly use the same syntax as CSS.
Therefore, to select all the td elements from the document, simply type the following:

> $('td');

This is an element selector, and like all jQuery selections, will return a jQuery object that provides
access to the underlying elements selected.

It is also possible to select elements using their ID, as you can see in this example:
> $('#contactList');
and by class name, as you can see in the following example:

> $('.controls') ;
Notice that in all these cases, the selection syntax is identical to the syntax used with CSS.

My discussion of CSS selectors skipped over one additional type of selection: selecting elements
based on their attributes. In order to select all elements with a particular attribute, simply add the
attribute name between square brackets:

> $('[datetime]');

It is also possible to state the element that the attribute is relevant to by prepending it to the
selection; this is useful when several different element types share the same attribute:

> $('time [datetime] ') ;

154 | LESSON 17 JQUERY SELECTION

And it is possible to specify that the attribute should have a specific value:
$('time[datetime="2014-10-21"]");

or not equal a certain value:
S('time [datetime!="2014-10-21"]");

Notice that in both of these cases, the value is provided in double quotes. Because you are providing
a string inside a string, you mix and match double and single quoted strings. You could have also
used the following syntax:

S("time [datetime!='2014-10-21"]1");

PSEUDO-SELECTORS

You can also use pseudo-selectors to select elements, just as with CSS pseudo-classes. This
particular example will select all the even numbered tr elements in the tbody element:

> $('tbody tr:even');
Pseudo-selectors are always prepended with a colon.

Notice also that the space between tbody and tr implies that the tr elements must be children of a
tbody element, just as it did in CSS.

The following are some of the most useful pseudo-selectors:
> :even finds all even numbered elements in a selection.
:0dd finds all odd numbered elements in a selection.
:not (selection) finds all elements that do not match the selection.
:gt (selection) finds all elements with an index greater than the supplied number.
:checked finds radio buttons or check boxes that are checked.
:selected finds options in select boxes that are selected.
:contains (text) finds elements that contain a given piece of text.
:empty finds all elements that have no children.
: focus finds the element that currently has focus.

:first finds the first element in a set.

Y Y Y VY Y Y VY VY VY Y

:last finds the last element in a set.

For instance, the following finds the first section in the web page:
> $('section:first');

while this finds all the tr elements, except the first one, in the page:

> $('tr:gt(0)");

Selection Within a Context | 155

The pseudo-selectors are not identical to the pseudo-classes in CSS, and in many cases they are used
to provide shorthand for a selection that could still be performed with conventional selectors. For
instance, this selection returns all the form input fields, including fields that do not use the input
element such as select and textarea:

> $(':input');
This same selection could have been performed as follows:

> $('input, select, textarea');

The other great thing about jQuery pseudo-selectors is that it is possible to write your own. For
instance, you may find that you are constantly writing the following selector to find input fields:

> $('input [type="email"]");

You can therefore add the following code to your web page (making sure jQuery has been loaded
before this is executed) to add your own special pseudo-selector called email.

> $.expr[':'].email = function(elem)
return $(elem).is("input") && $(elem).attr("type") === "email";
}

Don’t worry too much about the first line of this example; it is simply the mechanism used for add-
ing a new pseudo-selector to jQuery. Once this has been loaded, it can be used as follows:

> $(':email') ;
and it can be combined with other selectors:
> $('form :email');

jQuery will automatically pass the pseudo-selector every element in the web page (unless filtered out
by one of the other selectors in the selection string), and the pseudo-selector will check:

> Is the element a type of input field? $ (elem) .is ("input")
> Does it have an attribute with the name email? $ (elem) .attr ("type") === "email";

If it meets these criteria, the selector returns true.

SELECTION WITHIN A CONTEXT

You have already seen how it is possible to select elements that are children of other elements. For
instance, the following finds all the tr elements that are children of tbody elements:

> $('tbody tr:even');

Selecting elements within the context of a specific sub-tree of the DOM is very common. For
instance, in your CRM web application you may want to always select elements in the context of the
main tag for the page. This will ensure that even if your contacts web page is embedded in a larger
web application, it will only select elements that are relevant to it.

156

LESSON 17 JQUERY SELECTION

NOTE Iz is very common to write single page web applications. In a single web
page application, the entire web application is loaded as a single page, even
though it contains many logical pages. When the user navigates around the
application, they appear to be loading new pages from the server, but instead the
DOM is being manipulated in real time to hide and show the relevant portions
of the DOM. Single page web applications tend to provide a much faster
experience to the user because traditional navigation requires a whole set of
resources to be retrieved from the server whenever a navigation event occurs.

Because selecting elements in the context of other elements is so common, jQuery provides two
additional mechanisms for achieving it. The first mechanism uses the find method:

> $('#contactScreen') .find('txr');

This will first find the element with the ID contactsScreen and then will look inside the result for
any tr elements.

The other way of achieving exactly the same result is to use the optional second parameter to jQuery
after the selection string:

> $('tr', '#contactScreen')

The second parameter provides the context within which the selection should occur.

WRAPPED OBJECTS

If you consider the following line of jQuery again:

> $('#contactScreen') .find('tr');

you will see that jQuery is not simply returning a DOM object because DOM objects do not support
a £ind method.

In this particular case, jQuery has returned its own type of object wrapped over the DOM objects,
and it is the jQuery object that £ind is executed against.

As it happens, every jQuery selection returns a jQuery-specific object, not the underlying DOM
objects. The object returned is capable of masquerading as an array, however, and accessing specific
indexes returns the native DOM objects.

The following code assigns a native DOM object to the domobject variable:
> var domObject = $('td') [0];

It is always possible to convert a native DOM object into a jQuery object by embedding it in the
selection structure:

> $(domObject) ;

This then gives you access to all the additional features provided by jQuery. For instance, the
following returns the text of the element:

> $(domObject) .text ()

Trylt | 157

while this call queries whether the text of the element contains the word “contacts™:

> $(domObject) .is(':contains ("contacts")"');

You will typically work with jQuery objects rather than native DOM objects in the remainder of
this book, but you can always use this technique if you need to convert native DOM objects to
jQuery objects.

TRY IT

In this Try It, you will try out a number of the selection techniques discussed in the lesson. If you
want, you can follow along with these examples in the screencast.

Lesson Requirements

You will need the CRM web application, and you will need to have loaded the jQuery library using
one of the techniques outlined earlier in this lesson. Once the web page is loaded, you can perform
jQuery selections against the web page using the Chrome Console.

Step-by-Step
1. Select all the elements from the web page that have the class overlay.
2. Select all the input elements that have a name attribute on them. This will involve

first selecting the input elements using an element selector, and limiting this with an
attribute selector.

3. Find the element in the form that has a name attribute with the value companyName. Assign
the result to a variable called companySelector.

4. Invoke the £ind method on companySelector and have it return all the option elements
within it, except for the first one. You can achieve this with the gt pseudo-selector discussed
earlier in this lesson.

5. Find the 1abel for the phoneNumber field (using an attribute selector with a value), and print
out its text.

6. Find the odd numbered tr elements in either the tbody or the t foot elements (but not
the thead).

REFERENCE Please go to the book’s website at www.wrox.com/go/html57s-
jquery24hr fo view the video for Lesson 17, as well as download the code and
resources for this lesson.

http://www.wrox.com/go/html5js-jquery24hrto
http://www.wrox.com/go/html5js-jquery24hrto
http://www.wrox.com/go/html5js-jquery24hrto

18

jQuery Traversal
and Manipulation

In the previous lesson, you learned how to select elements from the DOM with jQuery. This
lesson will build on that knowledge and teach you how to:

> Traverse from those elements to another set of related elements.

> Manipulate the nodes in the DOM—this includes adding new nodes, modifying
existing nodes, and removing nodes from the DOM.

TRAVERSAL

When you execute a jQuery selection, the result is a jQuery object encapsulating a set of
elements. The traversal operations allow you to traverse from the initially selected elements to
a new set of elements. The result of a traversal is therefore also a jQuery object encapsulating a
set of elements.

You have already seen one instance of a traversal operation: the £ind method in the previous
lesson was a traversal operation because it began by finding an element (or set of elements),
and then finding other elements that are children of these elements.

It is also possible to traverse from elements to their parents. For instance, the following starts
by finding all the time elements, and then finds their parents, which are td elements:

> $('time') .parent () ;
This will return two td elements.

The parent function returns immediate parents; if you want to find elements that are indirect
parents, you can use the parents function. This returns any element that is an ancestor of the
selected elements, but it is possible to provide a selection to this function as a parameter. For
instance, you might want to return the form that is the parent of all the input fields. This can
be achieved as follows:

> $(':input') .parents('form');

160 | LESSON 18 JQUERY TRAVERSAL AND MANIPULATION

This only returns unique results; therefore a single form element is returned from this selection.

It is also possible to create a result set that contains the original elements along with the newly
selected elements. For example, the following selects all the input fields and the form element in a
single selection list using the andself function:

> $(':input') .parents('form') .andSelf () ;

Another common traversal is to select elements that are siblings of other elements (elements are
siblings if they have the same parent). For instance, you may want to select all the labels that are
siblings of input fields, but only if they contain the required attribute. In the “Manipulation”
section later in this lesson, you will modify the way these labels are displayed:

> $(':input [required] ') .siblings('label') ;

With most traversal functions, you can choose to add a selection filter (' 1abel' in this case), or omit
the parameter to receive all siblings.

There are a number of other traversal functions that find specific siblings:

>

>
>
>

last: Find the last sibling that (optionally) meets specific criteria.
first: Find the first sibling that (optionally) meets specific criteria.
next: Find the next sibling that (optionally) meets specific criteria.

prev: Find the previous sibling that (optionally) meets specific criteria.

There are a couple more important traversal functions you need to know before moving on:

>

>

add: This provides a mechanism to join together two different selections. For instance, the
following can be used to create a selection list of all the input fields and all the labels.

> $(':input') .add('label")

closest: The closest function finds the closest ancestor of an element, meeting specific criteria,
but, unlike the parents selector, considers the original element. Imagine if you want to select the
closest td element to any element that contains the text “Bob”. You can use the following:

> $(':contains ("Bob") ') .closest ('td'")

If the element containing the text is a td element, it is added to the result set. Otherwise,
jQuery ascends up through the parents of the element, searching for the first td element.

eq: The equals operator can be used to return the element at a specific index—for example,
the following returns the second section in the document:

> S('section') .eq(1l)

CHAINING

Traversal functions also highlight another great strength of jQuery:

>

>

The traversal functions are executed on a selection of jQuery elements.

The traversal functions return a selection of jQuery elements.

Manipulation | 161

To put it another way, the input for traversal functions is the same data type as their output. This
means that it is possible to chain together a whole set of traversal functions in a single statement.
Consider the following call:

> $('time') .siblings ('.overlay') .parents('tr') .last();
This code performs the following:
> Selects all time elements
> Selects any sibling of these elements that has the overlay class
> Selects the tr element that is a parent of these elements
> Selects the last element returned from the list

Effectively, this code selects the last row that has a time element with an overlay. This chaining can
continue almost indefinitely.

MANIPULATION

Now that you have written code to find elements, you can get to the interesting part of jQuery:
manipulating the DOM to provide dynamic behavior to the user.

Consider the selection earlier that found all the labels of input fields that had the required
attribute:

> $(':input [required] ') .siblings ('label') ;

You may decide that you want to change the text of labels such as this to display in red. This can be
achieved as follows:

> $(':input[required] ') .siblings('label') .css('color', 'red');
Running this single line of code is sufficient to color all the labels red.

Red labels are potentially overpowering so you will instead add a red asterisk next to each label.
Your goal is to create the following structure:

<label for="contactName" style="color: red;">
Contact name*
</label>

You will start by adding a class to contacts.css to match the requiredMarker class:

.requiredMarker {
color: red;
padding-left:7px;

}

The first task is to create a new element to add to each of the labels:

$('') .text ('*').addClass ('requiredMarker') ;

162

LESSON 18 JQUERY TRAVERSAL AND MANIPULATION

This performs the following:
» Creates a new span node that can be added to the DOM
> Adds an * as its text
> Adds the class redMarker to the span
> Returns the new span element as a result

Next, you select all the labels that you want to add the span to, and you use the append function to
insert this single span into all the labels:

$(':input [required] ') .siblings('label') .append (S ('"') .text ('*"').
addClass ('requiredMarker')) ;

Notice how this complex operation can be expressed in a single statement. If you run this and select
to create a contact, the relevant labels will appear as you see in Figure 18-1.

Contact name *

FIGURE 18-1

Once this line of code has been tested in the Console, you can add it to the init method in
contacts.js to ensure it always runs when the page loads.

Naturally, you could have added the asterisks to the labels manually, but the advantage of this
approach is that you are deriving this content directly from the data: If you mark a new field as
required, you do not need to remember to add an asterisk to the label. It is functionality such as
this that helps maintain consistency as the web application grows in size.

When adding new elements in relation to an existing element, there are four positions for which you
may want to insert new nodes. For instance, consider the h2 element selected in Figure 18-2:

¥<main id="contactScreen"=>
¥<section id="contactDetails" style="display:none"=
<hZ=Contact details=/h2=
Pk <form method="post"=.</form=
=/section=
P =section id="contactList"=.=/section=>
</main=

FIGURE 18-2

> You may want to insert a new element as a sibling of the h2 element, but before it in the
DOM. This can be achieved with the before function. For example:

$('h2') .before ('before"')

> Asasibling of the h2 element, but after it in the DOM. This can be achieved with the
after function.

> As the first child of the h2 element. This can be achieved with the prepend function.

As the last child of the h2 element. As already shown, this can be achieved with the
append function.

Any of these functions can either be passed a string of HTML markup or a DOM object.

Changing Elements | 163

Figure 18-3 shows where a span element would be inserted using each of these functions.

vesection id="contactDetails" style="display: block;"=
=span=before</span=>
¥ <h2>
<span=prepend</span=
"Contact details"
<span=append</span=>
</h2=
<span=after

FIGURE 18-3

Along with adding new nodes to the DOM, it is simple to remove nodes from the DOM with the
remove function. This can be seen in the following example:

> $('.requiredMarker') .remove () ;

This function returns all the elements that have been removed.

CHANGING ELEMENTS

The manipulation techniques you have looked at so far are designed to add or remove nodes from
the DOM. jQuery also provides the capability to modify existing elements.

For instance, you can directly manipulate the text of an element as follows:
> $('#contactDetails h2').text ('CONTACT DETAILS');
or you can modify its HTML as follows:

> $('#contactDetails h2') .html ('Contact Details');

This line of code positions the text inside a span element. jQuery is a very flexible library, so there
are typically many different ways to accomplish the same task. For example, the following code also
adds a span element around the text of the h2 element:

> $('#contactDetails h2') .wrapInner ('');
It is also possible to set the value of form inputs using the val function. For example:

> $ (' [name="contactName"]').val('testing 123'");

Any of these functions can be used without an argument to access the current value. The following
displays the current value of the contactName field:

> $ (' [name="contactName"] ') .val () ;

When used in this mode, only a single value will be returned so if you invoke these functions on a set
of elements, only the value of the first element will be returned. Additionally, because these functions
do not return jQuery objects, it is not possible to chain other jQuery functions onto their results.

Earlier in this lesson, you saw how individual CSS properties can be set using the css function, and
how classes can be added to an element with addclass. It is also possible to remove classes with
removeClass. For example, this will remove the class you added to all the span elements containing
asterisks:

> $('label span').removeClass ('requiredMarker');

164 | LESSON 18 JQUERY TRAVERSAL AND MANIPULATION

One additional useful function is toggleclass. This adds a class to an element if it does not
already have it, and removes it if it does. You will come back to this function when you look at
jQuery events.

Finally, it is possible to access and modify the attributes of an element. For instance, the following
returns the maxlength of the textarea in the form:

> $('textarea') .attr('maxlength');

while the following modifies the value of the attribute (or adds the attribute if it does not
already exist):

> $('textarea') .attr('maxlength', 200);

Alternatively, an attribute can be removed as follows:

> $('textarea') .removeAttr ('maxlength') ;

ITERATION

A common requirement once a set of elements has been selected is to iterate through each element
and perform an operation on it. Because the result of a jQuery selection mimics an array, it is
possible to use a for loop to iterate through it.

An easier approach to iteration is to use a jQuery helper function called each. jQuery contains a
number of helper functions that can be invoked directly rather than on a jQuery selection.

In this section you will write a function that iterates through all the input fields in the form, extracts
their name and value, and constructs an object of these name/value pairs. Essentially this function is
serializing the form to an object: You will then be able to use this object in your web application.

Start by creating a new method on the object returned from the contactsscreen function. This
should come immediately after the init function and be separated from it by a comma:

function contactsScreen(mainID) {
var screen = mainlID;
var initialized = false;
return {
init: function() {
// body omitted
b

serializeForm: function() {

}
}i
1

The first thing the function should do is obtain a reference to the input fields on the form. You also
want to create an empty object that can be returned as a result of the function:

var inputFields = $(screen).find('form :input');
var result = {};

Remember that you always want to select elements in the context of the screen element (which was
set to the main element).

Trylt | 165

Next, you want to iterate through all the input fields using each. The each function accepts two
arguments: a jQuery selection, and a function that should be passed the index and value of each
element in the selection:

$.each(inputFields, function(index, value) {

1)

Notice that the call to each is prepended with $. rather than just $: This indicates that each is a
helper function rather than a jQuery selection.

You now need to write the implementation of the function itself. This should first check whether
the input field has a name attribute. (This lets you omit input fields such as the submit button.) If it
does, it should write a property to the object using the name attribute as the property name and the
value of the input field as the value. The final version will look like this:

serializeForm: function() {
var inputFields = $(screen).find('form :input');
var result = {};
$.each(inputFields, function(index, value) ({
if ($(value).attr('name')) {
result[$(value) .attr('name')] = $(value).vall();
}
1

return result;

}

Notice that each time the value is accessed, it is converted into a jQuery object using the following
syntax: $ (value). This allows you to invoke methods, such as val and attr.

You can now invoke this from the console:

> appScreen.serializeForm() ;

Figure 18-4 shows the results of invoking this method with a given set of values in the input fields.

» appScreen.serializeForm();
¥ Object {contactName: "Dane Cameron”, phoneNumber: "555 433 33317,
companyName: "1"
contactName: "Dane Cameron™
emailAddress: "dane@cisdal.com™
lastContacted: "2814-11-86"
notes: "Notes™
phonelumber: "555 433 3331"
» __proto_: Object

> |

FIGURE 18-4

You will make more use of this method in the lessons ahead.

TRY IT

In this Try It, you will try out a number of the traversal and manipulation techniques discussed in
the lesson. If you want, you can follow along with these examples in the screencast.

166 | LESSON 18 JQUERY TRAVERSAL AND MANIPULATION

Lesson Requirements

You will need the CRM web application, and you will need to have loaded the jQuery library using
one of the techniques outlined earlier in this lesson. Once the web page is loaded, you can perform
jQuery selections against the web page using the Chrome Console.

Step-by-Step

1.

2.

Write a jQuery selection that starts by finding any time elements in the contacts.html web
page and then traverses from these to find each element’s parent tr element. Essentially, you
are finding all the rows in the table that contain a time element.

Find the input field in the document with the attribute autofocus. Traverse from this to its
parent element, ensuring that this is a div with the class formrow. Now, find the next sibling
of this node (which should also be a div with the class formRow), and find an input field
within this div. You should be able to achieve this entire operation in a single line of jQuery.

Imagine that you want to add placeholder text to every input field that has the required
attribute specifying, “This field is required.” Write a selection that finds all input fields that
match this selection and add a placeholder attribute with the appropriate text.

Write a line of jQuery to set the value of the companyName select box to 2.

Use the each function to iterate through all the input fields that have pattern attributes.
Inside the loop, append a sibling to each input field to display this pattern. The result should
display as you see in Figure 18-5.

Contact details

Contact name * {5,100}

Phone number * [0-9() 5,15}

Email address *

FIGURE 18-5

REFERENCE Please go to the book’s website at www .wrox .com/go/html5]s] -
query24hr to view the video for Lesson 18, as well as download the code and
resources for this lesson.

http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto

19

jQuery Events

Although you have come a long way in your understanding of jQuery, it is not possible to
unlock the full power of jQuery until you are introduced to jQuery events.

jQuery is typically used to manipulate the DOM after the page has loaded, but an event needs
to trigger this. This event might be:

> A mouse event, such as the user clicking on an element

> A keyboard event, such as the user typing into an input field
> A form event, such as the value of a select element changing
> A screen event, such as the window being resized

Just as it is possible to listen for events such as these using the native DOM API, it is
possible to listen for these events with jQuery. In fact, jQuery is actually providing a wrap-
per around DOM events so all the events discussed in this lesson are ultimately based on the
underlying DOM events.

Although this lesson is technically an introduction to jQuery events, I will use it as an
opportunity to bring together everything you have learned about jQuery so far.

REGISTERING EVENT LISTENERS

Registering event listeners begins with selecting the element that will generate the event. Once

selected, the appropriate method is invoked to register an event listener, and it is passed a

callback function that should be invoked when the event occurs. For instance, this code can be

added to the init function in contacts.js to add a mouse click listener to the submit button:
S (screen) .find ('form input [type="submit"] ') .click(

function (evt) {
evt.preventDefault () ;
}

) g

168 | LESSON 19 JQUERY EVENTS

This code first finds the submit button inside the form, and then calls the c1ick method on it.
As you can see, the callback function accepts an event object that contains important contextual
information about the event that has occurred. In this example, you are invoking a method on the

event object to prevent the default behavior of the submit button, which would be to post the form
data to the server.

You can now enhance the event listener to perform a number of other tasks:

> Check whether the form is valid according to the rules you added in Lesson 8.
> If the form is valid, extract a serialized version of the form using the function you wrote in

the previous lesson.
Create a new tr element based on the data in the serialized object.

> Add the new tr element to the table body.

The event listener for this will be one of the most complex blocks of code you have seen so far, so
take a look at it first: I will then walk you through it line by line:

S (screen) .find ('form input [type="submit"] ') .click(
function (evt) {
evt.preventDefault () ;

if ($(evt.target) .parents('form') [0].checkValidity()) {
var contact = this.serializeForm() ;
var html = '<tr><td>'+contact.contactName+'</td>"'+

'<td>"'+contact.phoneNumber+'</td>"+

'<td>'+contact.emailAddress+'</td>"+

'<td>'+contact.companyName+'</td>"+

'<td><time datetime="'+contact.lastContacted+'">"'+

contact.lastContacted+'</time>"'+

'<div class="overlay">'+contact.notes+'</div></td></tr>";
$(screen) .find('table tbody') .append (html) ;

}

}.bind (this)
)

You have already looked at the purpose of the first line of the function. The second line of the
function tests whether or not the form is valid. First, this line finds the jQuery element that has
generated the event $ (evt.target); from this you can use the parents function to find the form
that the event occurred within.

Once the form has been found, you can use the native DOM method checkvalidity to determine if
the form is valid. Because this is a native DOM method, you convert the jQuery selection to a native
DOM object by accessing the first (and only) element in the selection using [0]. It is also possible to

use .get (0) to achieve the same result.

You only want to execute the rest of the functionality in this event listener if the form is valid so the
remainder of the function is inside an if statement.

Once you have confirmed that the form is valid, you next use the serializeForm method to create
an object from the data in the form. Because this method resides on the same object, you would
expect to invoke this method by prefixing it with this:

var contact = this.serializeForm() ;

Registering Event Listeners | 169

There is, however, more to this line of code than meets the eye. The event listener itself is a function
inside a method. When a function is placed inside a method, the object it uses as its environment is
not the object itself, as you can see in the following simple example:
var obj = {
methodA : function() {
console.log('Outer this is '+this);

function inner () {
console.log('Inner this is '+this);
}

inner () ;
}

}

obj.methodA() ;
This block of code creates an object with a single method called methoda. Inside this method, a
function is created called inner, which is then invoked. At the end, methoda is invoked: This will
cause both the method and the inner function to write to the console the identity of their this
reference. Somewhat surprisingly, it prints the following:

Outer this is [object Object]
Inner this is [object Window]

Because the inner function uses the window as its this object, it cannot invoke methods or proper-
ties on the object it is actually executing within.

There are two common solutions to this problem. The first is to declare a local variable with a refer-
ence to this, and use that inside the function. Traditionally, the local variable is named that.
var obj = {
methodA : function() {

console.log('Outer this is '+this);

var that = this;

function inner() {

console.log('Inner this is '+that);
}

inner () ;

}
obj.methodA () ;

Executing this now produces the expected results:

Outer this is [object Object]
Inner this is [object Object]

The other way to solve this problem is to use the bind method I introduced earlier in the book. As
you remember from Lesson 12, the bind method allows you to provide an object that will act as the
this reference for a function, and it returns a new function permanently bound to it. You can there-
fore rewrite this functionality as follows:
var obj = {
methodA : function() {

console.log('Outer this is '+this);
inner = function() ({

170

| LESSON 19 JQUERY EVENTS

console.log('Inner this is '+this);
}.bind (this) ;
inner () ;

}
}
obj.methodA () ;

Notice that you are now saying that inner is a function bound to the methoda’s this reference
(which is the object); thus, both the method and the function have the same reference to this, and
the function produces the expected results:

Outer this is [object Object]
Inner this is [object Object]

This can be a difficult concept to grasp, so you may want to work through the preceding examples
to assure yourself exactly how it works.

As you can see, this is exactly the approach you have used with the click event listener, and therefore
this.serializeForm() works inside the event listener, just as it would outside the event listener.

If you need further evidence of the problem being solved here, remove .bind (this) once you have
the code working: Without this code, this.serializeForm() will attempt to access a function
called serializeForm on the window object, which will be undefined.

Once the object has been extracted from the form, you use simple string concatenation to create a
tr element populated with data. String concatenation such as this is somewhat error prone, so you
will find a better solution to this functionality in the next lesson.

Once the HTML has been constructed, it is simply added as the last child of tbody using the append
function.

Once you have a working example, you will add two additional lines to the end of the event listener to:
> Clear the form of all values (thereby leaving it ready to add a new contact).
> Hide the input section of the page.

This can be achieved with the following two lines:

S (screen) .find ('form :input[name]').val('"');
S (screen) .find ('#contactDetails') .hide() ;

Notice that the second line simply uses the helper method hide, rather than setting the display prop-
erty to none: This achieves the same result, but is more concise.

DELEGATED EVENT LISTENERS

You may have noticed a couple of problems with the save functionality. For a start, the company name
does not display properly (I will address this later in the book). Second, if you add notes and hover over
the last contacted field, the popup does not display because the event listeners you added for the time
elements were added when the DOM loaded, and this new time element did not exist at that point.

One solution to this is to add relevant event listeners after you add new elements to the DOM. This
is an error-prone approach, however. A better solution is to use delegated events.

Delegated Event Listeners | 171

With a delegated event, you select an element you know is in the DOM when the page loads (such as
the tbody element), and bind an event listener to any of its descendants (such as time elements). The
great thing about delegated events is that the descendants do not need to exist when the event listener
is registered; any newly added descendants will automatically be bound to the relevant event listener.

You can therefore rewrite this block of code from earlier in the book using jQuery delegated events:

var timeElements = document.getElementsByTagName ('time');
for (var 1 = 0; 1 < timeElements.length; i++) {
timeElements [i] .addEventListener ("mouseenter", function (event) {
event.target.nextElementSibling.style.display = 'block';
1
timeElements[i] .addEventListener ("mouseleave", function (event) {
event.target.nextElementSibling.style.display = 'none';
1

}

You can use the jQuery on method to add a delegated event listener to a particular sub-tree of the
DOM. The on method accepts the following parameters:

> A space-separated list of events to listen for
> A selector to find the descendants that will generate the events
> The function to execute when the event occurs

Replace the preceding code with the following:

S (screen) .find('tbody') .on ("mouseenter mouseleave", "td > time",
function (evt) {
if (evt.type === "mouseenter") ({
S (evt.target) .siblings('.overlay') .show() ;
} else {

$(evt.target) .siblings ('.overlay') .hide() ;

}

)i

Notice in this case that you register a single event listener and then determine from the event object
which type of event has occurred. You then use the show and hide methods to dictate whether the
popup is displayed or hidden.

If you now reload the page, first ensure that the popup functionality works for existing rows. If you
now add a new contact, and save it along with a date and notes, the popup will display when the
user hovers over it, just like it did for rows in the table when the page loaded.

The events you have looked at in the last two sections have dealt with mouse-based events. The
other most common mouse-based events that can be listened for are:

> dpleclick: Similar to click, but fires only if the same element is clicked twice in quick
succession

> mousedown: Fires when the user presses the mouse button down

172 | LESSON 19 JQUERY EVENTS

mouseup: Fires when the user releases the mouse button

> mousemove: Fires any time the mouse moves. Naturally, this event is fired often so it is
important not to perform intensive processing every time this event fires.

FORM EVENTS

The previous sections have focused on mouse events. The other main categories of event are form
events and keyboard events. These two categories are inherently linked because the focus for
keyboard events will be form elements. Thus, you will group these two categories of event together.

In this section, you will create an event listener that displays how many characters the user
has typed into a textarea. To begin, you will add a new span element next to the textarea in
the form:

<div class="formRow">

<label for="notes"sNotes</labels>

<textarea cols="40" rows="6" name="notes" class="validated" maxlength="1000">
</textarea>

</div>

The span will be updated to include a character count every time the user types a character into the
textarea.

Once this is in place, the following can be added to the init method in contacts.js:

$(screen) .find ('textarea') .keyup (function (evt) {
if ($(evt.target) .siblings('.textCount'))
var characters = $(evt.target).val().length;
$(evt.target) .siblings('.textCount') .text (characters + ' characters');

}
1

This code starts by finding any textareas in the form, and then uses the keyup method to add an
event listener whenever the user releases a keyboard key while typing in the textarea. When this
occurs, you will determine if the textarea has a sibling span element for recording text counts. If it
does, you will determine the number of characters currently typed into the field and update the text
on the span accordingly.

If you now reload the web page and start typing into the textarea, you should see a text count
updating in real time, as shown in Figure 19-1.

Notes this is a note

“ 14 characters

FIGURE 19-1

The great thing about this solution is that it is generic. You can enable this functionality for any
future textareas by adding the relevant span as its sibling.

Screen Events | 173

The other most useful form and keyboard events are as follows:

> change: This event is called whenever the value in a form field changes. This can be applied
to any form input field, but in the case of text-based input fields, the event only fires once the
user leaves the field. This is the reason you could not use change in the example earlier in
this section.

> focus: This event is invoked when an input field receives focus.
keydown: This is essentially the same as keyup, but is fired as soon as the key is pressed.

keypress: This event is not covered by official documentation so it can vary from browser
to browser. As a general rule, this is equivalent to keydown, but only fires if the key pressed
would produce a visual character; for example, it would not be fired if the Shift key were
pressed.

SCREEN EVENTS

The final major category of event is screen events. The most useful screen event is ready. The
JavaScript examples so far have placed JavaScript at the end of the web page to make sure the DOM
has loaded before element selection begins.

The ready event provides a safer way to ensure that the DOM has fully loaded before you attempt
to manipulate it. It is possible to register a ready event listener by enclosing the browser’s document
object in a jQuery selector and invoking the ready method on it. For instance, you could change the
code in contacts.html as follows:
$ (document) .ready (function (evt) {
var mainElement = document.getElementById('contactScreen');

var screen = contactsScreen (mainElement) ;
screen.init () ;

)

A companion function for ready is 1oad. This is similar, but only executes when all the resources
(such as JavaScript source files, images, and CSS files) have finished loading.

NOTE Notice that I have also renamed the variable screen rather than
appScreen. You cannot name a global variable screen because JavaScript
already contains a global variable with this name, but it is possible in this case
because the scope of the variable is the function passed to ready.

The other main browser-based event is the resize event. This fires whenever the user resizes the
window. This event should be bound to the browser’s window object:

$ (window) .resize (function (evt) {

174 | LESSON 19 JQUERY EVENTS

ANIMATION

Earlier in this lesson, you looked at how the hide and show functions could be used instead of
changing the display type of an element. As it happens, jQuery supports many other helpers for
displaying and hiding elements, complete with animated effects. These are a great way to make the
web page feel more alive to users.

In order to see how simple this can be, change the event listener for hiding and showing the notes
popup as follows:

if (evt.type === "mouseenter") ({
$ (evt.target) .siblings('.overlay') .slideDown() ;
} else {

S (evt.target) .siblings('.overlay') .slideUp() ;

}

If you reload the web page and hover over a time element, you will notice that the popup is
displayed as though it is being dragged down like a projector screen. Likewise, when it is hidden, it
is as though the projector screen has been released again.

It is possible to control how long the entire effect takes by providing a time in milliseconds as
the first parameter to these functions: The default is 400 milliseconds (0.4 of a second). It is
also possible to control many other aspects of the animation process. These features will not be
discussed in this book, but you can easily learn more from the jQuery website.

jQuery also supports other effects. For instance the fadeTn and fadeout functions can be used to
animate the opacity of an element as it is displayed or hidden. This has a similar effect to approach-
ing an object through a thick fog: It starts out pale and blurry and eventually becomes fully opaque.

TRY IT

In this Try It, you will use event listeners to add new functionality to the table. When the user
hovers over any row, you will change it so that the background color becomes blue and the
foreground color becomes white. This will help users read across the row if they are phoning or
emailing the contact. The finished result will look like Figure 19-2 when the user hovers over a
row in the table.

Sales leads
Contact name Phone number Email address Company name Last contacted

William Smith | 555-642-7371 | willlam@testing.com | ACME Industries | 2014-10-21

Bob Morris 555099 2991 bob@testing.com ABC Corp 2014-09-12

2 contacts displayed

FIGURE 19-2

Lesson Requirements

You will need the CRM web application, and you will need to have loaded the jQuery library using
one of the techniques outlined earlier in this section of the book.

Trylt | 175

In order to work through this example, you might want to start with a simple event listener and
place a breakpoint to allow you to debug code when the event is fired. This will allow you to try
out code in the context of an event. Once you have working code, you can copy it into the
JavaScript file.

Step-by-Step
1. As with all the event listeners, you will add code to the init method in contacts.js.

2. Because new rows can be added to the table after the DOM has loaded, the event listener will
need to be a delegated event listener. Therefore, start by selecting the tbody element, and use
the on method to register an event listener.

3. The two events that you should listen for are mouseenter and mouseleave. Add these as the
first parameter to on.

4. The second parameter to on is the element that will generate the event. Because you want to
be able to hover over any element in the row, add tr as the selector.

5. Add a function as the third parameter to on, and have this accept a single parameter
called evt.

6. Within the event listener function, use the event object passed as the parameter to determine
the event that has occurred. This can be extracted from the type property of the event.

7. 1f the event is a mouseenter event, you need to change two styles on the target of the event.
This can be achieved using the css method on the target of the event, as you saw earlier in
this lesson:

> Change the color property to white.
> Change the background property to #3056A0.

8. If the event is a mouseleave event, you want to clear the inline styles added. This can be
achieved by using the removeattr method to remove the style attribute.

9. If you reload the web page now and try this out, you will notice a problem. Only a single cell
will be shaded when the user hovers over it, not the entire row.

10. In order to determine the cause of this problem, set a breakpoint on the first line of the event
listener.

With the breakpoint in place, hover over a cell. Once the breakpoint is hit, move to the
Console tab and type evt .target. This will confirm that the target of the event is actually
a td element rather than the tr element that the event listener was registered with. This is
because the td element is the specific element the user was hovering over when the event
occurred.

11. In order to circumvent this problem, you can use the closest traversal operation to find the
closest tr element to the element that fired the event, and modify the style of this element.

There is one remaining problem with this solution. Because of CSS inheritance, the color of
the text in the overlay is also white now, meaning it cannot clearly be read. This is a perfect

176 | LESSON 19 JQUERY EVENTS

opportunity to use the !important attribute in CSS so add the following to the .overlay
rule in contacts.css

color: #333333 !important;

Your finished version of the code should look like this:

S (screen) .find ('tbody') .on("mouseenter mouseleave", "tr", function (evt) {
if (evt.type === "mouseenter") ({
S (evt.target) .closest ('tr') .css('color', 'white');
S (evt.target) .closest ('tr') .css('background', '#3056A0');
} else {

S (evt.target) .closest ('tr') .removeAttr ('style');

}
1

REFERENCE Please go to the book’s website at www.wrox.com/go/html5js] -
query24hr fo view the video for Lesson 19, as well as download the code and
resources for this lesson.

http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto

20

Data Attributes and Templates

In this lesson, you will look at two additional HTMLS features:

> Data attributes: These allow you to define your own attributes on any element and
thus bind data directly to the element. This has a number of useful purposes, as you
will see shortly.

> Templates: Templates are a relatively new HTMLS feature. They allow a document
fragment to be created independently of the DOM itself. The document fragment can
then be programmatically filled with data and added to the DOM. This will provide an
alternative approach to the complex string concatenation used in the previous lesson.

Although this lesson introduces these two technologies together, there is no fundamental
connection between them.

TEMPLATE TAG

In the previous lesson, you used string concatenation to create a new row in the contacts table.
As mentioned at the time, this is a problematic approach because it is very easy to make a
mistake with the String concatenation.

A preferable approach to string concatenation is to define the structure of the HTML using
regular tags but leave placeholders for the actual data. When you need to create a row, you

could simply add data to this structure, and add it to the DOM. The template tag has been
added to HTMLS to support this exact approach.

NOTE The template tag is not currently supported in Internet Explorer; thus,
it is best to confirm support across relevant browsers before using it. There are,
however, many other templating libraries available for JavaScript, and many
have more advanced features than the template tag introduced in this lesson.

178

| LESSON 20 DATA ATTRIBUTES AND TEMPLATES

In order to start using the template tag, you simply add it anywhere in the HTML and include the
relevant HTML structure inside it. You also typically provide an id for the template so you can
locate it. Therefore, start by adding the following immediately before the closing main tag:

<template id="contactRow"s>

<td></td>

<td></td>

<td></td>

<td></td>

<tds<time></time>

<div class="overlay"></div></td>
</template>

If you reload the web page, you will notice that this HTML does not display within the browser. In
addition, although it is possible to select the template element using DOM and jQuery selectors, it is
not possible to select its children. For instance:

S ('#contactRow td')
[]

When you use the template, you need to populate it with the appropriate data. Clearly, you could
simply set the contact name in the first child, the phone number in the second child, and so on.

Where possible, it is best to find generic solutions to common problems. Therefore, you will write an
algorithm that can take any template and any object, and will populate the template with the data in
the object based on a set of conventions.

In order to achieve this, you will use another technology called data attributes.

DATA ATTRIBUTES

In order to create the generic algorithm mentioned in the previous section, you need some way
of marking tags in the template with the property names from the object that should be used to
populate them.

There are several ways you could do this. For instance, if a td element should be populated with the
data in the contactName property, you could specify the td as follows:

<td id="contactName"></td>

The obvious problem with this approach is that IDs must be unique within the document, and
therefore you would need to make sure that the property names in your objects never conflicted with
the IDs of elements in the document.

An alternative approach is to specify the property name as a class:
<td class="contactName"></td>

There is nothing inherently wrong with using class names for non-CSS purposes; an obvious
problem with this solution, however, is that your CSS may contain a class that matches one of the
properties.

Data Attributes | 179

Another approach that has been used historically is to use attributes that are supported by the
specification but are not used by the browser. The most common attribute used for this purpose is rel:

<td rel="contactName"></td>

The problem with this approach is that, although browsers do not use this attribute, the rel
attribute does have meaning, and is used by search engines when used on a tags.

As you can see, historically, there has not been a good way of linking program-specific data to an
element. HTMLS offers a much better way to solve this problem. It is possible to specify your own
attributes on any element, provided they are prefixed with data-. You can see this in the following
example:
<template id="contactRow">
<td data-property-name="contactName"></td>
<td data-property-name="phoneNumber"></td>
<td data-property-name="emailAddress"></td>
<td data-property-name="companyName"></td>
<td><time data-property-name="lastContacted"></time>
<div data-property-name="notes" class="overlay"></div></td>
</templates>

Data attributes should follow the naming conventions shown here, specifically:
> They must start with data-.
> They should contain only lowercase characters.
> They should use hyphens to separate logical words.

You will look at why these conventions are important shortly.

Just like any attribute, data attributes can be assigned values. In this case, the value has been defined
as the property name from the object that should be used to populate the text of the element.

Once elements have been logically associated with property names, you can write a function that
binds the property values in the object to a document fragment. Add the following as a global func-
tion within contacts.js:

function bind(template, obj) {
$.each(template.find (' [data-property-name] '), function(indx, val)
var field = $(val) .data() .propertyName;
if (objlfield]) {
$(val) .text (obj[field]) ;
}
1

return template;

}

This may look complex, but if you walk through it line-by-line it is reasonably straightforward. You
start by iterating through every element that has a data-property-name attribute using the jQuery
each helper.

As shown in earlier lessons, you provide a callback function to each. Because this passes the index
and value of each element to the function provided, the parameter val will represent an element
with the data-property-name attribute.

180 | LESSON 20 DATA ATTRIBUTES AND TEMPLATES

On the next line, you extract the value of the data-property-name attribute. You may expect that
this line would read:

var field = $(val).attr('data-property-name') ;

This would be valid, but as you can see, calling the data method on an element provides access to
all the data attributes as properties on an object. This also automatically converts the names from
the conventions used on attributes to the convention used for property names, so:

data-property-name

becomes:

propertyName

On the next line, you check to see whether the object you were passed has a property with
this name:

if (obj[field]) {

Notice that you use the square bracket notation here for accessing the property. If the property does
exist, you simply set its value as the text of the element; if not, you do nothing.

The advantage of this code is that it does not need to know anything about the document fragment
or the object it has been passed; it only needs to know the convention you are using. Property names
in the object match data attributes on elements. This is known as “programming by convention,”
and is a very efficient mechanism for writing generic, reusable code.

USING THE TEMPLATE

Now that you have a template, and a function for binding data to a template, you need to put it all
together. Start by adding a new method called save to the object returned in contacts.js. Place it
between the init and serializeForm methods:

save: function(evt) {
if ($(evt.target) .parents('form') [0].checkValidity()) {
var fragment = $(screen).find('#contactRow') [0].content.cloneNode (true) ;
var row = S$('<tr>').append (fragment) ;
var contact = this.serializeForm() ;
row = bind(row, contact);
S (screen) .find('table tbody') .append (row) ;
$(screen) .find('form :input').val('")
S (screen) .find ('#contactDetails') .hide() ;
}
b

This method will replace the functionality in the submit button click listener; therefore, you start
by checking the validity of the form. Next, you find the template element with the ID contactRow.
Once you find this, you convert it to a native DOM object by accessing it as the first element in the
array returned.

If you access the content of a template directly in the DOM, you will notice that the value returned
is a document-fragment, as you can see in Figure 20-1.

Using the Template | 181

» document.getElementById{'contactRow').content
¥ #document-fragment
=td data-property-name="contactName"=</td>
=td data-property-name="phoneNumber"=</td=>
=<td data-property-name="emailAddress"=</td>
=td data-property-name="companyName"=</td>
p=td=.=/td>
> |

FIGURE 20-1

Unlike other nodes in the DOM, a document fragment does not have a parent, and therefore it is not
part of the DOM.

Your goal is to create a DOM node that contains the elements represented by the template;
therefore, you access the content of the template using its content property and clone (create a copy
of it) using the cloneNode method. The true value passed to the cloneNode method indicates you
also want to clone any children elements.

Once you have a copy of the document fragment, you append it to a tr element. Ideally, you would
have worked directly with the document-fragment, but unless you add it to another node, the
content of the document fragment cannot be queried by jQuery.

NOTE When you write code such as $ (' <tr>'), you are creating
jQuery-specific document fragments (it does not have a parent, and is not part
of the DOM). Therefore, think of the preceding approach as adding an HTMLS
document fragment to a jQuery document fragment.

Once the object and the template are obtained, you simply call the bind function to populate the
template:

row = bind(row, contact);
You can now change the submit button click event listener as follows:

S (screen) .find ('form input [type="submit"]"') .click(
function(evt) {
evt.preventDefault () ;
this.save (evt) ;
}.bind(this)
)i

Notice how you have broken the functionality in the save operation down to a number of distinct
components, each with its own generic, and reusable, implementation:

> Serializing the object from the data in the form
> Providing a template for a new row in the table
> Binding an object to a template

One of the keys to writing a large, maintainable web application is to write self-contained functions
or methods that each perform a specific task, but do so in a generic manner.

182 | LESSON 20 DATA ATTRIBUTES AND TEMPLATES

Once you have self-contained functions, you can enhance them over time. For instance, the current
implementation of bind does not add the datatime attribute to time elements; you can easily rectify
this as follows:

function bind(template, obj) {
$.each(template.find (' [data-property-name] '), function(indx, val) {

var field = $(val).data() .propertyName;
if (obj[field]) {

$(val) .text (obj [field]) ;

if ($(val).is('time')) {

$(val) .attr('datetime', objl[field]);
}

1
b

return template;

TRY IT

In this Try It, you will look at how you can modify the template created in this lesson to allow you
to delete rows from the table. Each row in the table will have a delete button, and clicking this will
remove the row from the table.

Lesson Requirements

You will need the CRM web application from Lesson 19. This lesson can then be completed in a
text editor and tested in Chrome.

Step-by-Step

1. Start by removing the tr elements from the tbody in contacts.html. From now on, you
will not have any rows when the screen initially loads. Later in the book, you will save
contacts, but for now you will need to create contacts each time the screen loads.

2. Add an additional th column to the thead element with the text “Actions,” and set the td
element in tfoot to span six columns. The table should now look like this:

<table>

<thead>
<th>Contact name</th>
<th>Phone number</ths>
<th>Email address</th>
<th>Company name</th>
<th>Last contacted</th>
<th>Actions</th>

</thead>

<tfoot>
<tr>

<td colspan="6">2 contacts displayed</tds>

</tr>

</tfoot>

<tbody>

</tbody>

<caption>Sales leads</caption>
</table>

Trylt | 183

Change the template to include a new td element at the end. The td element will contain
a hyperlink for deleting rows from the table. This hyperlink will in turn contain a data
attribute describing its role:

<td>Delete</td>

Add an event listener within the init method that fires when the user clicks an element with
the attribute data-delete-button. Because these elements will not be in the DOM when
the screen loads, you will need to use the on method, as described in the previous lesson. My
version can be found at the end of this section.

Within the event listener, start by preventing the default behavior of a hyperlink (to load a
new page). The event listener should call a method called delete (which you will write in the
next step) on the object, and pass it the event.

Add a new method to the main object in contacts.js called delete. This should accept a
parameter called evt, which will be the event object.

Use the target of the event, and find its closest parent that is a tr element. Once this is
located, use the remove method to remove it from the DOM.

Add a new method to the object called updateTablecount. This method should check how
many rows are in the table and then update the tfoot cell to display a count, for instance
“3 contacts displayed.” Once this is written, it should be called after the save or remove
method completes.

My event listener looked like this:

S (screen) .on("click", "[data-delete-button]",
function(evt) {
evt.preventDefault () ;
this.delete (evt) ;
}.bind (this)
)i

And my delete method looked like this:

delete: function(evt)
$(evt.target) .parents('tr') .remove() ;
1

My version of updateTableCount looked like this:

updateTableCount: function(evt) {
var rows = $(screen).find('table tbody tr');
S (screen) .find('table tfoot td').text (rows.length + ' contacts
displayed') ;

’

REFERENCE Please go to the book’s website at www .wrox.com/go/html5s] -
query24hr fo view the video for Lesson 20, as well as download the code and
resources for this lesson.

http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto

21

jQuery Plugins

In the lessons covered so far in this section, you have learned most of what you need to know
to start writing dynamic web applications. This lesson will cover one final subject that can
enhance dynamic web applications: jQuery plugins.

One of the reasons jQuery is so popular is that it is very easy to extend with plugins. As a
result, a huge number of jQuery plugins are freely available, and these can often be used as an
alternative to writing your own code.

In this lesson, you will briefly look at one of the most popular jQuery plugins, called
jQuery UL This plugin provides a set of user interface components, such as date pickers
and dialog boxes, and is used extensively, including on some of the Internet’s most
popular websites.

It is also possible to write your own jQuery plugins. A typical jQuery plugin uses a jQuery
selector to identify a set of elements, and then performs an operation on these elements,
returning the modified elements as a result.

Although it is obviously possible to modify elements without encapsulating the code in a
jQuery plugin, writing plugins provides a convenient mechanism for packaging code.

JQUERY Ul

jQuery Ul is probably the most widely used jQuery plugin. This plugin provides a variety of
user interface components, all of which work seamlessly across all the most common browsers.
jQuery Ul can therefore be used to provide polyfills for native HTML35 components, such as
date pickers and progress bars.

jQuery UI can be downloaded from http://jqueryui.com. This website also contains a set
of live demos for all the components included in the plugin, along with comprehensive docu-
mentation on all components.

http://jqueryui.com

186 | LESSON 21 JQUERY PLUGINS

Many of the Ul components provided by jQueryUI mirror equivalents in HTMLS, including the
following:

> A date-picker component

> A progress bar: Implements the same basic functionality as the HTMLS progress bar, but
works in all modern browsers.

> A slider: Implements the same basic functionality as the HTMLS range input field, although
again, in a cross-browser manner, and with additional configuration options.

> A spinner component: Implements the same functionality seen on number input fields in
Chrome.

> Drag and drop components: These include more advanced features not supported by
HTMLS, such as the ability to resize components, and the ability to reposition elements
onscreen without specifically dropping them on other elements.

jQuery Ul also contains more advanced widgets not currently found in HTMLS, including the
following:

> A tab component: Allows an interface to provide a set of tabs to the user.

> A dialog widget: Provides an implementation of all common varieties of dialog box, such as
confirmation, warning, and error dialogs.

> An accordion component: Allows panels to be expanded and collapsed. This has some
similarity to the summary/detail tags seen earlier in the book, but allows for many summary/
detail blocks to work together, and assumes one detail block will always be expanded. This
component is named after its passing resemblance to an accordion musical instrument.

A version of jQuery Ul is included with the Lesson 21 resources on the book’s website. Because
jQuery Ul is a large library, it is possible to tailor the download to the specific components needed,
and it is also possible to customize the themes of the components (such as colors and fonts) when
downloading the library. The version provided contains all components, and the default theme.

The jQuery Ul resources comprise the following:
> jquery-ui.js: Contains all the JavaScript code implementing the various components.
> jquery-ui.css: Contains the CSS used for styling the components.

> An images folder: Contains all the images needed by the components. For instance, the
date-picker uses arrows for moving between months: These are represented by images.

Copy all these resources to the folder containing contacts.html.

In this section, you will change the date input field in contacts.html to use the jQuery Ul imple-
mentation, rather than the native HTMLS5 implementation.

To begin, the jQuery UI JavaScript file and CSS file must be imported into the head of the web
page. It is essential that the JavaScript file is imported after the main jQuery file because jQuery Ul
extends the capabilities of jQuery:

<link rel="stylesheet" type="text/css" href="jquery-ui.css">
<script src="jquery-ui.js"></scripts>

jQuery Ul | 187

Next, change the lastContacted input field from a date-based field to a text-based field:

<input name="lastContacted" type="text" class="validated"/>

Once this is done, all that is required to enable the jQuery UI date-picker on the field is to execute
the following code:

S (' [name="lastContacted"] ') .datepicker() ;

Notice that this begins by selecting an element with a regular jQuery selector, and then calls a
datepicker method on the result. The datepicker method was provided by the jQuery Ul library,
but notice that it is available on a regular jQuery selection.

Add this code to the script block at the bottom of contacts.html.

If you now open the web page and click in the 1astcontacted field, a date-picker will be displayed,
as you can see in Figure 21-1.

Last contacted

[save | | |

Contact name Pho| IR HNFY R RETY RETHPPY |mo |
13) 14 15| 16 17| 18] 19| |

Add a new contact 200 21| 22 23 24| 25| 126

FIGURE 21-1

All jQuery UI components follow this same model: An element (or set of elements) is selected from
the DOM and converted into a dynamic component using a method provided by jQuery UL

jQuery Ul components accept a variety of configuration parameters, and in many ways are more
flexible than their HTMLS counterparts. Because of the large number of potential parameters
(the date-picker itself supports more than 50 different configuration parameters), and the fact that
all of these parameters are optional, any parameters required are provided within an object with
properties representing the required options.

For instance, the following sets the maximum date the date-picker will accept to today (0 means
zero days from today), and the minimum date to 6 months ago (-6m):

$(‘[name:"lastContacted"]').datepicker({
minDate: "-ém",
maxDate: 0

1
With these parameters set, any dates outside this range will be disabled.

The jQuery Ul website contains excellent documentation on all the options available for this
component, and all the other components supported by jQuery UL

188

| LESSON 21 JQUERY PLUGINS

WRITING A PLUGIN

You will now switch from using plugins developed by other programmers, to writing your own
plugins. The basic premise of a jQuery plugin is that it is passed a selection of elements; it then
performs an operation on these elements and (usually) returns the modified elements.

In this section, you will write a plugin that accepts time elements with a datetime attribute, and
changes the content of the element to contain a more readable representation of the date. Once this
is implemented, you will be able to select time elements and transform them to display the date as
you see in Figure 21-2.

Sales leads
Contact name Phone number Email address Company name Lastcontacted Actions
Dane Cameron | 555 778 1192 | dane@testing.com | 3 October 17, 2014 | Delete
1 contacts displayed
FIGURE 21-2

Because plugins should be reusable across websites, I recommend that you add them to a new
JavaScript file. Start by creating an empty JavaScript file called jquery-time.js. Place this in
the same directory as the other project resources, and import it into contacts.js (make sure the
import occurs after the main jQuery library).

<script src="jquery-time.js"></script>

In order to add a plugin to jQuery, you need to extend the capabilities of jQuery. Specifically, you
need to extend an object that can be accessed via jQuery. fn, and add a new method to it. The boil-
erplate code for adding a plugin to jQuery therefore looks like this:
(function($)
$.fn.extend ({

setTime: function()
return this;
1
b

}) (§Query) ;

This code uses a technique you have not seen previously: It declares an anonymous function that
accepts a single parameter (represented by $). The code then immediately calls this function (on
the last line) and passes it the jQuery function (which is the same function you have been accessing
through its $ alias).

This is a great technique when you only want a function to be executed a single time when the web
page loads: Because this is an anonymous function, and is not referred to by any variables, it can
never be executed again.

Once you have a reference to £n, you call a method on it called extend, and pass this an object.
This object will contain definitions of the methods you wish to add to jQuery: In this case, a single
method will be added called setTime.

If you reload the web page, you can use this plugin immediately. Figure 21-3 demonstrates an
example where you select a time element from the web page and then call setTime on the selection:

Writing a Plugin | 189

Q. Elements Network Sources Timeline Profiles Resources Audits | Console|
© W <topframe> w

> $('time').setTime()
[«time data-property-name="lastContacted" datetime="07/17/2014"=07/17/2014</time=]
> |

FIGURE 21-3

As you can see, the setTime method returns the selection it is passed. This is due to the fact that
the method returned this. The this variable can be used inside a plugin to extract the elements
selected, but can also be returned at the end to allow chaining. For example, it is possible to write
code such as the following;:

> $('time') .setTime () .parent ()

With the plugin skeleton in place, you can start writing the functionality of the plugin. JavaScript
does not contain a library for formatting dates, although there are numerous open-source libraries
available. You will therefore write your own rudimentary code for date formatting:

(function (%)
$.fn.extend ({
setTime: function() {
months = ['January', 'February', 'March', 'April', 'May',6 'June',
'July', 'August', 'September', 'October', 'November', 'December'];
$.each(this, function(indx, val)
if ($(val).attr('datetime'))
var date = new Date($(val) .attr('datetime'));
var display = months[date.getMonth()] + ' ';
display += date.getDate() + ', ';
display += date.getFullYear();
$(val) .text (display) ;

}
D

return this;

}
)

}) (jQuery) ;

JavaScript represents the months of the year with the numbers 0-11, so you begin by creating
an array that allows you to place a textual representation of each month in an array at its
relevant index.

Next, you use the jQuery each method to iterate through the selected elements. The method then
checks to see whether the element has a datetime attribute: This plugin will be compatible with
elements containing the datetime attribute, and therefore will not do anything if this attribute
is missing.

Because the datetime attribute contains an ISO-compliant representation of a date, it can be
converted into a JavaScript Date object using its constructor. Once a Date object is created, its
component parts (month, day, year) can be accessed through its methods.

The rest of this method uses simple string concatenation to create a textual representation of a date,
using the months array to find the textual representation of the month, and extracting the other
important date components with the relevant methods. Once a textual representation of a date is
created, it is set on the element using the text method.

190 | LESSON 21 JQUERY PLUGINS

If you load the screen, and ensure the table contains a row with a date in it, you can convert this
into a more readable representation with the following call:

> S('time') .setTime () ;

It is also possible to pass parameters to the plugin. As with jQuery UL, it is customary to pass an
object with relevant parameters and provide defaults for all parameters. For instance, you may want
the user to specify either a short or long form of the date: A short form will only print the first three
characters of the month and the last two numbers in the year.

In the following example, the params object can contain a style property: If this has a value of
short, the month and year will be truncated.

(function($)
$.fn.extend ({
setTime: function (params) {

months = ['January', 'February', 'March', 'April', 'May', 'June',

"July', 'August', 'September', 'October', 'November', 'December'];
$.each(this, function(indx, val) {
if ($(val).attr('datetime')) ({

var date = new Date($(val) .attr('datetime'));
var m = months[date.getMonth()];
if (params && params.style === 'short') {
m = m.substr(0, 3);
var display = m + ' ';
display += date.getDate() + ', ';
display += (date.getFullYear() % 100);
} else {
var display = m + ' ';
display += date.getDate() + ', ';
display += date.getFullYear() ;

}

$(val) .text (display) ;

}
b
return this;
1
b

1) (Fouery) ;
This can then be called as follows to use the short representation:

$('time') .setTime ({'style': 'short'})

The great thing about jQuery plugins is that they are completely reusable on other web pages. Each
plugin performs its own specific operation, and provided it is passed elements it is compatible with,
it does not need to know anything else about the web page.

You want to ensure that this plugin is called automatically whenever a new row is added to the table
so change the save method to invoke it as follows (the remainder of this function has been excluded
for brevity):

row = bind(row, contact);
$(row) .find('time') .setTime () ;
$ (screen) .find('table tbody') .append (row) ;

Trylt | 191

TRY IT

In this Try It, you will use one more feature in the jQuery UI library and write a new plugin of
our own.

Lesson Requirements

You will need the CRM web application from Lesson 20, but it is also assumed you have been
following this lesson, and have imported the jQuery UI resources. If not, you need to do this before
continuing with the Try It. This lesson can then be completed in a text editor and tested in Chrome.

Step-by-Step

In addition to providing a set of components, jQuery Ul contains a set of more advanced animation
effects than are found in jQuery itself. You will therefore use one of these effects when displaying
the contacts form.

1. The init method in contacts.js adds an event listener for displaying the form that uses the
following code:
document .getElementById ('contactDetails') .style.display = 'block';
This uses the native DOM API: In order to use a jQuery Ul effect, change this as follows:
S (screen) .find ('#contactDetails') .toggle("blind");

2. Load the web page, and click to add a contact. The form should slide down slowly from
the top.

3. Inorder to use jQuery UI effectively, you need to be able to access its documentation.
Therefore, open http://api.jqueryui.com/ in your web browser and click the Effects
category on the left-hand side. You should be able to find documentation on the b1ind effect
and learn about its various options.

4. The form section is hidden with the following code in the save method:

S (screen) .find ('#contactDetails') .hide () ;

This can be replaced with the exact same code used in step 1: Because the toggle method is
being used, a visible element will be automatically hidden.

You will now change the code that populates the contact count in the table footer to operate as a
jQuery plugin.
1. Start by creating a new plugin called jquery-tables.js and add the same boilerplate code
from jquery-time.js to this.

2. Import the new plugin into contacts.html.

3. Add a method to the plugin called updateFooter. This should accept a single parameter
called params.

4. This plugin will operate on tables that contain t foot and tbody children. Therefore, use
the each method to iterate through the selection provided to the plugin, and check that each
element has these child elements before processing the element further.

http://api.jqueryui.com

192 | LESSON 21 JQUERY PLUGINS

Within the if statement, start by counting how many tr elements are in the tbody.
Remember that the 1ength property can be used for ascertaining this. Store the number in a
local variable.
Update the td element in the tfoot to contain the text “X rows in table,” where X is the
count retrieved in Step 3.
You should now be able to update the footer by invoking the plugin on the table, as shown
in Figure 21-4.
Q, Elements Network Sources Timeline Profiles Resources Audits | Console |
© 7 <topframe> w
» ${'table').updateFooter()
) |[p <table=.</table=, p<table class="ui-datepicker-calendar"=.</table=]
FIGURE 21-4
The message displayed in the table should be configurable. Therefore, if the params object
contains a property called message, use its value instead of “rows in the table.” When
writing the code to use this, remember that both the params object and the message property
may be undefined.
You can now change the updateTableCount method to use this plugin. I have used the
following code:
$ (screen) .find ('table') .updateFooter ({'message':' contacts displayed'});
The full version of my plugin looks like this:
(function($)
$.fn.extend ({
updateFooter : function (params) {
$.each(this, function(indx, val) ({
if ($(val).find('tbody') && $(val).find('tfoot')) {
var count = $(val).find('tbody tr').length;
if (params && params.message) {
$(val) .find('tfoot td').text(count + ' ' + params.
message) ;
} else {
$(val) .find('tfoot td') .text(count + ' rows in the
table') ;
}
}
1
return this;
b
1
1) (Fouery)

REFERENCE Please go to the book’s website at www.wrox.com/go/html5js] -
query24hr to view the video for Lesson 21, as well as download the code and
resources for this lesson.

http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto

PART Il
HTML5 Multimedia

» LESSON 22: HTMLS5 Audio
» LESSON 23: HTMLS5 Video
» LESSON 24: Canvas: Part |
» LESSON 25: Canvas: Part Il
» LESSON 26: CSS3: Part |
» LESSON 27: CSS3: Part I

» LESSON 28: CSS3 Media Queries

.

HTMLS Audio

The third section of the book will cover many of the multimedia enhancements added in
HTMLS, beginning with HTMLS5’s audio capabilities.

Audio has been part of the web almost since browsers first appeared but, unlike images
that are natively supported by the browser, audio support has always been provided by
third-party plugins such as QuickTime. Browser plugins are supported by the HTML
object tag, and are used to support a wide selection of media types such as audio, video,
PDF files, and animations.

There are a number of problems with plugins, however:

> They often rely on the user installing a plugin manually, and this can be an
inconvenience for users. Additionally, users are typically required to update plugins
independently of the browser’s update cycle, which can lead to further frustration.

> Plugins can effectively do anything they want on the computer running the browser
(or at least, anything that the browser could do). This presents a security loophole, and
has been exploited on many occasions.

> Plugins can cause stability issues in browsers because a bug in a plugin can cause the
browser to crash.

> Plugins are not standards-based for the most part, and therefore they encourage
lock-in to proprietary formats.

In order to counteract these issues, HTMLS supports an audio tag (along with a video tag, as
you will see in the next lesson). The audio tag is intended to remove the need for plugins, and
has begun to find widespread adoption.

FILE FORMATS

Although HTMLS specifies an audio tag, it does not specify an audio format. In fact, it does
not even specify a single default format that all browsers are required to support.

196 | LESSON 22 HTML5AUDIO

As you will see, this is not such a problem for audio because the two most popular formats are well
supported, but it is a bigger issue for video.

There are good reasons why there are multiple audio formats. Different formats compress audio in
different ways, and these in turn present trade-offs in terms of quality on the one hand, and file size
on the other.

Because raw audio files are extremely large, it is almost always necessary to compress them in some
manner. This compression fits into two main categories:

>

Lossless compression: This means the size of the audio file is reduced, but no audio quality
is lost. This is similar to zipping a text file: The file size is reduced, but the text can be fully
recovered at a later date.

Lossy compression: This means that some information is lost during the compression
process, but the algorithm tries to lose information that will not be noticed by the listener.
Most audio formats use lossy compression.

The other main difference between audio formats relates to patents and licensing;:

>

>

>

Some audio formats require a license or the payment of royalties to create or stream files
using the audio format.

Some audio formats are protected by patents but are available royalty free.

Some audio formats are unencumbered by patents and royalties completely.

This can present problems to browser vendors, particularly in the open source world, and is the
reason Firefox historically has not supported some of the most popular file formats.

NOTE Even in cases where an audio format is unencumbered by patents, it is
possible patent holders will assert their rights in the future. The main reason
HTMLS could not specify a single default audio or video format was for fear
that once the format achieved critical mass, a patent holder would assert their
rights over the technology.

Before looking at the various formats, it is important to distinguish two different types of format.
This will become even more important when you start looking at video:

>

Container formats: A container format is used for storing the data, and dictates the file exten-
sion. A container format is like an envelope: It contains the audio data along with any other
relevant information about the file.

Codec format: The codec format specifies the way in which the audio should be encoded
and decoded.

In many cases a single container format supports many different codecs. One of the responsibilities
of the container format, therefore, is to describe the codec format.

File Formats |

197

The most common audio codecs are as follows:

>

MP3: This format is in many ways the de-facto standard for music files and uses lossy
compression. The degree of loss can be specified when an MP3 file is created by specify-
ing the bit rate per second. Many organizations have claimed patent rights over various
aspects of the MP3 format, and a license is required to stream MP3 content on a com-
mercial site.

MP3 is technically a codec, but it does perform many of the functions of a container, and
therefore does not need to be placed inside a container format.

AAC (Advanced Audio Coding): This format is in many ways the successor to MP3, and
generally achieves superior sound quality at equivalent bit rates. It is not necessary to pay
royalties to stream AAC content, which makes it an attractive option over MP3.

AAC files can exist as a raw bit stream (typically with the .aac extension) but are usually
packaged in the MPEG-4 container and given a variety of extensions such as .mp4, .m4p,
and .m4a.

Vorbis: This is a free audio format that performs lossy compression. This format can techni-
cally be stored in any container format but is most commonly stored inside the OGG con-
tainer format. It is also often used in conjunction with the WebM container format.

Opus: This is another free, lossy format that has been standardized by IETF. Like
Vorbis, Opus is supported by both the OGG and WebM container formats. As you will
see in the next lesson, this is becoming increasingly popular for encoding the audio
stream of a video.

Table 22-1 outlines the support of the various formats in the most common browsers.

TABLE 22-1: Audio Support in Browsers

MP3 ACC (MP4) VORBIS (OGG, WEBM) OPUS (OGG, WEBM)
CHROME Yes Yes Yes Yes
FIREFOX Partial Partial Yes Yes
INTERNET Yes Yes No No
EXPLORER
OPERA Yes Yes Yes Yes
SAFARI Yes Yes Supported with the No

OGG container format

The main outlier here is Firefox. Older versions of Firefox did not support the royalty encumbered
audio formats, but newer versions of Firefox do support these formats, as long as the underlying
operating system provides support (both OS X and Windows do).

198

| LESSON 22 HTMLS5 AUDIO

AUDIO TAG

The following is a simple example of the audio tag in use:

<audio controlss>

<source src="test.ogg" type="audio/ogg">
Your browser does not support the audio element.
</audio>

The test.ogg audio file referred to can be downloaded from the book’s website: This contains an
audio version of one of the book’s screencasts, so feel free to use your own audio file if you would
prefer. This file uses the Vorbis codec and the OGG container format.

If you embed this in an HTML page, and open

the page in Chrome, it will display as you see

in Figure 22-1.

o FIGURE 22-1
If, on the other hand, you open this in Internet

Explorer, it will display as you see in Figure 22-2

s aborted

This should not come as a surprise because the
OGG format is not supported in Internet Explorer. FIGURE 22-2

In order to circumvent this, it is possible to specify more than one audio file in a single audio tag.
For example:

<audio controls>
<source src="test.ogg" type="audio/ogg"s>
<source src="test.mp4" type="audio/mp4">
Your browser does not support the audio element.
</audio>

The test .mp4 file can also be downloaded from the book’s website and contains an AAC encoded
audio stream inside an MP4 container.

Where multiple formats are provided, the browser will use the first version that it supports.

You will notice that this example specifies the MIME type of each audio file. Specifically, it contains
information on the type of the container because the container itself contains information on the
codec. Although it is optional, it is recommended that you add the type attribute. If it is omitted,
the browser will sample each file until it finds one that is in a compatible format, and this will likely
cause a delay.

You will notice that when the file is displayed in Chrome, it contains a set of components for
controlling playback. This has been provided because the controls attribute has been added to the
tag. If this was omitted, the controls would not be shown.

It is common to omit the controls if you want the audio to play in the background when the page
loads. Although this is a major annoyance to many users, setting the autoplay attribute supports it:

<audio autoplay>

In order to annoy users even further, the 1oop attribute can be added to make the audio track play
in a loop indefinitely:

<audio autoplay loop>

Controlling Playback | 199

The final attribute supported by the audio tag is preload. This can be set to the following:

> auto: A hint to the browser that it should load the audio when the page loads. This should
be used if you are reasonably confident the user will play the file.

> none: A hint to the browser that it should not begin downloading the file until the user
selects to play it.

> metadata: A hint to the browser that only metadata should be downloaded when the
page loads.

CONTROLLING PLAYBACK

Rather than relying on the default browser controls, it is possible to add your own set of controls
and interact with the audio track via JavaScript. The audio element is represented in the DOM by an
object that supports an assortment of methods, properties, and events.

In this section, you will write your own set of controls to create
the interface shown in Figure 22-3. Play Pause Stop
. . , FIGURE 22-3

This contains the following controls:

> A progress bar that shows how far through the track is as it plays
> Three hyperlinks for controlling playback

Start by creating the following page and save it as audio.html:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<script src="jquery-2.1.1.js"></script>
</head>
<body>
<audio id="audioTrack">
<source src="test.ogg" type="audio/ogg">
<source src="test.mp3" type="audio/mpeg">
Your browser does not support the audio element.
</audio>
<div id="controls">
<progress></progress>
<div id="buttons" style="padding:5px;">
Play
Pause
Stop
</div>
</div>
</body>
</html>

In order to simplify your interaction with the DOM, you will use jQuery so ensure that the jQuery
file is in the same directory as audio.html.

200 | LESSON 22 HTML5AUDIO

Once you confirm that the page looks as expected, you can start adding JavaScript to the page, so
create a script block immediately before the closing body tag.

You will begin by writing the code for updating the progress bar. This will be triggered via a
timeupdate event generated by the audio element. As the track plays, the audio element will
generate one of these events approximately every second.

In order to register an event listener for this event, you can use the following code:

$("audio") .on('timeupdate', function (evt) {

1

NOTE Notice that you are omitting the selector as the second element. This is
optional, and therefore jQuery will bind the 'timeupdate' event to the audio tag.

By default, a progress bar starts at 0 and ends at 1 so you need to find:

> How long the audio file is: This is supported by the duration property on the DOM object
and returns the time in seconds.

> How much of the audio has been played so far: This is supported by the currentTime
property on the DOM object and also returns the time in seconds.

The target of the event will be the DOM object representing the audio tag; therefore, the properties
can be accessed directly from this. Once you know the value of these two properties, you can simply
divide the current position by the total duration (which will be a value between 0 and 1) and update
the value of the progress bar.

$("audio") .on('timeupdate', function (evt) {
var duration = evt.target.duration;
var current = evt.target.currentTime;
$ ('progress') .val (current/duration) ;

1
You can now add jQuery click listeners to the three hyperlinks as follows:

$('#play') .click (function(evt) {
evt.preventDefault () ;
$("audio") [0] .play () ;

b

$('#pause') .click (function (evt) {
evt.preventDefault () ;
$("audio") [0] .pause() ;

b s

$('#stop') .click (function(evt) {
evt.preventDefault () ;
$("audio") [0] .currentTime = 0;
$("audio") [0] .pause() ;

1

Try lt | 201

The play functionality simply invokes the play method on the underlying DOM object, and the
pause functionality uses the pause method. The stop functionality is slightly more complex; in this
case, you want to:

> Pause the audio if it is playing.

> Set the current position back to the start of the audio file. As you can see, the currentTime

property is writable.

The functionality of these controls will be enhanced in the Try It section, and additional API
methods will be introduced in the next lesson, but this example gives you an idea of how simple it is
to interact with an audio file.

TRY IT

In this Try It, you will enhance the controls by adding a range Play Pause Stop

input field. The user will be able to use this component to select —
the position in the audio file that they want to jump to. Figure 22-4 FIGURE 22-4

shows the finished version of the audio controls.

Lesson Requirements

You need to have created the audio.html file outlined in this lesson. Alternatively, you can down-
load audio_pre.html from the book’s website, along with the audio files.

Step-by-Step

1. Start by adding an input element with a type attribute set to range. This should have a min
attribute set to 0, and a max attribute set to 100.

2. You need to add an event listener for detecting changes to the input field. This can be
achieved by selecting the range input field with jQuery and using the change method to
specify an event listener.

3. Start by finding the value of the range input field using the jQuery val method. Store the
value in a local variable.

4. Find the duration of the audio file using the duration property on the native DOM
object. Remember that you need to access this property on the native DOM object, not the

jQuery wrapper.

5. Given that the value of the range field is a number between 0 and 100, you can consider this
as a percentage. Therefore, work out what position you should set the audio file to in order
to represent this percentage. For instance, if the audio file was 90 seconds long, and the user
chose a value of 50 with the range control, you would want to set the position to 45 seconds.

6. Once you determine the position the audio file should be set to, set the currentTime
property to this value. Additionally, call the play method on the audio just in case it was not
playing when the user interacted with the range input field.

202 | LESSON 22 HTML5AUDIO

My input field looked like this:

<input type="range" min="0" max="100" value="0" id="setLocation"/>

And my event listener looked like this:

S ('#setLocation') .change (function (evt) {

1)

var val = $(evt.target).val();

var duration = $("audio") [0] .duration;

var location = duration* (parselnt (val)/100);
$("audio") [0] .currentTime = location;
$("audio") [0] .play () ;

REFERENCE Please go to the book’s website at www.wrox.com/go/html5js] -

query24hr to view the video for Lesson 22, as well as download the code and
resources for this lesson.

http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto

S

HTML5 Video

Like audio, video has been widely supported in browsers for many years, but has gained
increased prominence in recent years with the advent of sites such as YouTube and Netflix.
Although the technical capabilities to deliver video over the Internet have been around for a
long time, the increased prominence of video is largely a result of faster Internet connections
because video tends to be bandwidth intensive.

As with audio, video has been supported in browsers via plugins. Adobe Flash currently domi-
nates the video plugin market, largely due to the overwhelming success of YouTube, but many
other plugins also support video, such as QuickTime and Silverlight.

HTMLS provides native support for video inside a browser. The HTMLS video capabilities
are essentially the same as the audio capabilities, but obviously the format types for video are
quite different from the format types for audio. As with audio, the HTMLS standard does not
specify a default video format that all browsers must support.

HTMLS video has received more attention than HTMLS5 audio, and received an extra boost
when Apple declined to support Adobe Flash on phones and tablets, suggesting instead that
HTMLS should be used in its place. As you will see later in this lesson, there are still some
impediments to the commercialization of HTMLS video, but it continues to gain traction.
Even YouTube now supports HTMLS5 video for much of its content.

FILE FORMATS

Video formats are slightly more complex than audio formats because the container format is
required to encapsulate an audio and a video stream. In fact, the same video container may
support multiple audio streams to provide audio in multiple languages. Thus, a video file typi-
cally consists of the following formats:

> A container format such as OGG, WebM, or MP4
» A video codec such as H.264 or VP8

» An audio codec such as AAC or Vorbis

204 | LESSON 23 HTML5VIDEO

The following are the main video codecs and their accompanying container and audio formats:

>

Theora: Theora is an open, royalty-free video format using lossy compression. There was
a concerted push from some quarters to make Theora the standard HTMLS5 video format,
but because of resistance from some browser vendors, those efforts have largely failed.
Theora is typically used with the Vorbis audio format and packaged in the OGG container
format.

H.264: H.264 is an extremely common video codec, used for everything from Blu-Ray discs,
to YouTube, to iTunes. H.264 supports both lossy and lossless compression, but most com-
monly is used in a lossy mode.

H.264 is a patent-encumbered format, and there has been a certain amount of controversy
surrounding the use of H.264 in browsers. Google has suggested support may be removed

from Chrome in the future, and Firefox only supports H.264 where it is natively supported
by the operating system.

H.264 is typically used with the MP4 container format and the AAC audio format.

VP8: VP8 is a competitor of H.264 and produces very similar quality to H.264 for similar
sized files. Google acquired the intellectual property behind VP8, but it has released all
patents pertaining to the VP8 codec.

VP8 is typically used with the WebM container format and the Vorbis audio format.

VP9: VP9 is the successor to VP8. It is also developed by Google, and is also royalty free.
Unlike VP8, VP9 is based on open standards. VP9 is likely to grow in prominence due to the
resources Google has spent on the project.

VP9 is typically used with the WebM container format and the Opus audio format.

Table 23-1 demonstrates support for these formats across the most popular browsers.

TABLE 23-1: Video support in browsers

THEORA H.264 VP8 VP9
Chrome Yes Yes Yes Yes
Firefox Yes Partial Yes Yes
Internet Explorer No Yes No No
Opera Yes Yes Yes Yes
Safari No Yes No No

A video tag can be added to a web page as follows:

<video width="800" controls>

<source src="test.mé4v" type="video/mp4">

Your browser does not support the video element.
</video>

Controlling Volume | 205

The video file referenced is available on the book's website, and is a 90-second section from one of
the screencasts. Naturally, you can use your own video file if you wish.

You will notice that this example contains a width attribute for controlling the size of the video
element. As with the image tag, it is considered acceptable to provide height and width directly on
the tag, rather than through CSS, even though these attributes do affect presentation.

As with images, it is generally advisable to only provide a height or a width, and if the size is
omitted, the size will be based on the size of the encoded video.

As with audio, multiple formats can be specified. In addition, the type attribute specifies the
container format, just as with the audio tag, but it is also possible to specify the codecs supported
by each container. For example:

<video width="800" controls>
<source src="test.ogg" type='video/ogg; codecs="theora, vorbis"'s>
<source src="test.m4v" type="video/mp4">

Your browser does not support the video element.

</video>

Specifying the codecs can helping the browser make a quicker decision about whether it supports a
particular file.

Another interesting attribute supported by the video tag is the poster. This allows a static image to
be used in place of the video before it begins playing:

<video width="800" controls poster="poster.png">
<source src="test.ogg" type='video/ogg; codecs="theora, vorbis"'s>
<source src="test.m4v" type="video/mp4">

Your browser does not support the video element.

</video>

The poster.png file is available from the book's website.

Finally, the video tag also supports an attribute called muted. This allows the video to be played
with mute initially enabled, and is useful when video is set to play automatically. The user can then
decide to increase the audio as required.

<video width="800" controls muted autoplay poster="poster.png">

CONTROLLING VOLUME

Just as it is possible to interact with audio files with JavaScript, it is also possible to interact with
video files. All of the methods and properties you looked at in the previous lesson are also supported
by video. In this lesson, you will look at a number of additional methods supported by both audio
and video.

In this lesson, you will also look at an alternative approach for interacting with native DOM objects
with jQuery. Up until this point, when you have needed to set properties on native DOM objects,
you have accessed them through the array of elements returned by jQuery. For instance:

$('table') [0] .nodeType

206

| LESSON 23 HTML5VIDEO

This allowed you to access the underlying DOM object. jQuery also supports alternative mechanisms
for achieving this without accessing the native DOM object:

$('table') .prop ('nodeType') ;
The second parameter to prop can be used to set the value of the property if required.

Likewise, if you want to invoke a method (or trigger an event) on a jQuery selection, you have used
the following approach:

$("audio") [0] .play () ;

This can also be written with jQuery using the trigger method:
$('audio') .trigger('play"') ;

Again, this allows you to work directly with a jQuery selection rather than obtaining a reference to
the native DOM object. The trigger method name can also accept any other parameters needed by
the method that will be invoked.

The following web page declares a video element without adding any controls, although it is set to
autoplay. It then provides two buttons to increase or decrease volume. The volume property on a
video can be set to any value between 0 and 1, and defaults to the value of 1. A value of 0 is equivalent
to mute.

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<script src="jquery-2.1.1.js"></script>
</head>
<body>
<video width="800" autoplay poster="poster.png"s>
<source src="test.ogg" type='video/ogg; codecs="theora, vorbis"'s
<source src="test.m4v" type="video/mp4">
Your browser does not support the video element.
</video>
<div id="buttons" style="padding:5px;">
Lower volume
Increase volume
</divs>
<scripts>
$ ('#decreaseVolume') .click (function (evt) {
evt.preventDefault () ;
var currentVolume = parseFloat ($('video') .prop('volume')) ;
$('video!') .prop('volume', Math.max (0, currentVolume-0.1));
b ;
$('#increaseVolume') .click (function (evt) {
evt.preventDefault () ;
var currentVolume = parseFloat ($('video') .prop('volume')) ;
$('video') .prop ('volume', Math.min(1l, currentVolume+0.1));
1
</scripts>
</body>
</html>

Controlling Video Size | 207

Notice that this example is careful to keep the volume in the range 0 to 1 by using the built-in
functions Math.min and Math.max. For instance, if the volume was already 1, and the user asked

to increase the volume, the new volume would be set to the minimum of 1 and 1 + 0.1, which would
be 1. If the volume was 0.8 and they requested to increase the volume, you would set it to the
minimum of 1 and 0.8 + 0.1, which is 0.9. If you attempt to set the volume outside the 0 to 1 range,
an error will be generated.

Also notice in this case that [was careful to convert the volume property to a number before using it
with the + operator. Because attribute values are strings by default, using the + operator with a raw
attribute value would perform string concatenation.

CONTROLLING PLAYBACK SPEED

Another common feature with video, which is less common with audio, is the ability to play the
track at a faster or slower rate. Slower rates are used for slow motion effects, whereas faster rates are
used to allow the user to visually fast-forward to a particular point in the track.

The JavaScript API provides the ability to control the playback via the playbackRate property. This
has a default value of 1, and therefore setting this to a value of 4 makes the video play at four times
its normal rate, whereas setting it to 0.5 makes it play at half its normal rate, and setting it to O is
the equivalent of pausing playback.

In order to demonstrate this, add two more controls to the screen:

Slow down
Speed up

And add the following JavaScript to modify the playbackRrate property:

$('#slowDown') .click (function(evt) {
evt.preventDefault () ;
var currentRate = parseFloat ($('video!') .prop('playbackRate!'));
$('video') .prop ('playbackRate', Math.max (0, currentRate-0.1));
1
$('#speedUp') .click (function (evt) {
evt.preventDefault () ;
var currentRate = parseFloat ($('video!') .prop('playbackRate!'));
$('video') .prop('playbackRate', Math.min(5, currentRate+0.1));

)

There is no maximum playback rate, but in this example the user is prevented from setting
playbackRate to greater than 5.

CONTROLLING VIDEO SIZE

The HTMLS specification has been extended to allow for full screen video. The video can be made
full screen by invoking the requestFullScreen method on the video element.

Because the Fullscreen API is so new, most browsers do not support this method. Instead, browsers
support their own variants of the method.

208

| LESSON 23 HTML5 VIDEO

It is common for browsers to provide their own implementations of JavaScript APIs or CSS
properties for new specifications. In such cases, the browser family will prefix the method or
property name, typically:

> webkit for Chrome or Safari
> moz for Firefox
> ms for Internet Explorer
> opera for Opera
In order to see this in Chrome, add the following control:
Fullscreen
and then add the following JavaScript:

$('#fullscreen') .click (function(evt) {
evt.preventDefault () ;
$('video') .trigger ('webkitRequestFullScreen') ;

1) s

Notice that the method invoked is webkitRequestFullScreen. If you open this example in Chrome
or Safari, you will be able to enter full-screen mode.

If you want to write an example that works in any browser, you need to determine which browser
the page has been loaded into and invoke the correct method. The typical way of achieving this is as
follows:

S ('#fullscreen') .click (function (evt) {

evt.preventDefault () ;

var video = $('video!') [0];

if (video.requestFullscreen) {
video.requestFullscreen() ;

} else if (video.mozRequestFullScreen) {
video.mozRequestFullScreen () ;

} else if (video.webkitRequestFullScreen) {
video.webkitRequestFullScreen() ;

} else if (video.msRequestFullScreen) {
video.msRequestFullScreen() ;

}

3K

Browsers will eventually support the request Fullscreen method; therefore, the code first attempts
to use this. If this is not provided, it tests whether the method is available under a browser-specific
name. This code relies on the fact that an undefined function returns undefined (which is false),
whereas a defined function will return the function definition (which evaluates to true).

Different browsers may also choose to add addi-
tional security around this functionality. For

instance, Firefox displays the warning shown in ~ jesta : Press ESC at any time to exit.
Figure 23-1. "

Browsers typically provide users with the abil-

ity to exit full-screen mode; it is, however,

FIGURE 23-1

Encrypted Media Extensions | 209

possible to listen for a keypress and invoke the exitFullscreen method (or its browser-specific
implementations).

MEDIA SOURCE EXTENSIONS

Although the video tag is sufficient for displaying video on most websites, it is not sufficient for
some of the larger video providers. Websites such as Netflix and YouTube have requirements that are
not covered by the functionality discussed so far.

The next three sections will briefly cover some of the more advanced standards that are emerging in
the HTMLS video space.

One of the key requirements for many streaming websites is the capability to downgrade the video
quality if the user's Internet connection slows down. This removes the need to freeze the video
entirely while it buffers.

Additionally, a user may choose to jump to the 60-minute point of a 90-minute video. It is extremely
wasteful on bandwidth if the user is still required to download the entire video file.

The Media Source API is an extension to the HTMLS audio and video tags that enables more
fine-grained control over the source of media. Rather than linking to a static video file on the server,
it allows JavaScript to build streams for playback from “chunks” of video. This enables techniques
such as adaptive streaming and time shifting.

In order to facilitate this, the Media Source API allows a media stream to be defined in JavaScript as
follows:

var stream = new MediaSource() ;
and its type to be defines as follows:

stream.addSourceBuffer ('video/webm; codecs="vorbis,vp9" ');

It is then possible to dynamically add chunks of video to the stream:

stream.appendBuffer (chunkOfvideo) ;

The chunk of video will typically be requested from the server on an “as-needed” basis, and may only
cover a few seconds of the overall video track. This means that when each chunk is requested, the
appropriate portion of the video can be retrieved, using the appropriate bitrate for the user's connection.

ENCRYPTED MEDIA EXTENSIONS

The other main feature required by many commercial websites is the ability to stop the video from
being pirated using Digital Rights Management (DRM). This has been a highly controversial area of
the HTMLS specification.

The main specification for protecting video is Encrypted Media Extensions (EME). This provides
an API for encrypting media streams using the video and audio tags. EME defines a standard for
determining how HTMLS browsers should detect that encrypted streams are being used, and then
find an appropriate Content Decryption Module (CDM) that will verify the license associated with
the video. It will also perform the task of decrypting the video data.

210 | LESSON 23 HTML5VIDEO

Encrypted Media Extensions therefore provides an API that enables web applications to interact
with content protection systems, to allow playback of encrypted audio and video.

EME is an optional extension to the HTMLS specification so browsers can choose not to support it.
If it is not supported, websites may decide not to play video inside the browser.

WEB CRYPTOGRAPHY

The final specification being developed to support video inside the browser is the Web Cryptography
API (WebCrypto). This is a JavaScript API for performing common cryptographic functions, such as
encoding and decoding data using common cryptographic algorithms.

Although this API is not directly related to the other video APIs, it is one of the ingredients needed
to support the EME specification.

The Web Cryptography APl is large and complex and not fully supported by most browsers, but it is
an important standard to watch over the coming years.

TRY IT

In this Try It, you will add a simple enhancement to the web page that has been developed during
this lesson so far. If you have not been developing this throughout the lesson, it can be downloaded
from the book's website (it is called video pre.html).

This enhancement will allow the user to skip 10 seconds forward or backwards in the video by
clicking a button.

Lesson Requirements

You need to have created the video pre.html file, along with its dependent resources such as
jQuery, poster.png, and the video files. These are all available from the book's website.

Step-by-Step

1. Start by adding two new controls to the web page called “Jump forward” and “Jump back.”
Assign appropriate IDs to both elements.

2. Add an event listener to the jump back button. This should start by obtaining the
currentTime property from the video and converting it into a number.

3. Subtract 10 from the currentTime property, and set this as the new currentTime. Ensure
that this does not result in a negative number by using Math.max.

4. Add an event listener for the jump forward button. This is essentially the same, but it needs
to also access the duration property, and ensure that the currentTime is not set to a value
greater than this.

My controls looked like this:

Jump forward
Jump back

Try lt | 211

And my event listeners looked like this:

$ ('#jumpBack') .click (function (evt) {
evt.preventDefault () ;
var currentTime = parseFloat ($('video') .prop('currentTime')) ;
var newTime = currentTime-10;
$('video') .prop('currentTime', Math.max (0, newTime)) ;
1
$ ('#jumpForward') .click (function (evt) {
evt.preventDefault () ;
var currentTime = parseFloat ($('video') .prop('currentTime')) ;

var duration = parseFloat ($('video') .prop ('duration'));

var newTime = currentTime+10;
$('video!') .prop ('currentTime', Math.min(duration, newTime)) ;

)

REFERENCE Please go to the book's website at www .wrox.com/go/html5]s] -
query24hr to view the video for Lesson 23, as well as download the code and

resources for this lesson.

http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto

24

Canvas: Part |

The HTMLS canvas element provides a canvas for capturing bitmap images. The Canvas

API, on the other hand, allows you to interact with the canvas element using JavaScript. The
canvas can be used for simple drawing, such as shapes and lines, and for more advanced fea-
tures, such as animation. The canvas element and API provide an alternative to plugins such

as Adobe Flash.

This lesson covers the basics of the Canvas API; the next lesson covers some of the advanced
features. Although the features covered in this lesson appear quite basic, they can still be
combined to construct complex images.

The Canvas API is, however, a reasonably low-level APIL. This has the benefit of making
almost anything possible, but it also means that it is sometimes tedious to perform relatively
simple operations.

The canvas element creates a bitmap (or raster) image. Essentially, this means that each pixel
on the screen is represented by a position in memory that describes the color of the pixel.

NOTE Orviginally, bitmap images were referred to as bitmaps because each pixel
could have a 0 or 1 value to denote black or white. Because the canvas supports
multiple colors, it is technically a pixmap.

The other major category of image is vector graphics. Vector graphics describe shapes as
mathematical formulas, and therefore do not need to store information about every pixel. The
shapes can then be assigned properties such as their fill color. Vector graphics work extremely
well when the user may zoom into the image because the quality of the image remains the
same regardless of how far the user zooms in.

NOTE Browsers do also support vector graphics natively, in the form of SVG,
but that is beyond the scope of this book.

214 | LESSON 24 CANVAS: PART |

In order to get started with the HTMLS canvas, you need to add a canvas element to the web page.
In addition, it is customary to provide it with an ID to allow it to be selected:

<canvas width="800" height="500" id="myCanvas"s></canvass>

Notice also that the height and width have both been specified to control the size the canvas
onscreen. Because the height and width default to 0, these are mandatory, unless you use CSS to
control the size of the canvas.

If you open this web page, you will see a white screen. Although the canvas is present, every pixel is
colored white by default, and therefore you will not see anything.

With the canvas in place, you can start using the Canvas API to begin drawing shapes on the can-
vas. In order to draw a shape, you need to describe:

> Where on the canvas the shape should appear
> The type of shape you wish to draw, along with its size

> Any other properties associated with the shape, such as its color

I will address these needs one at a time in the sections that follow.

SIMPLE DRAWING

The Canvas API uses pixels for specifying sizes. If you wish to draw a new shape onto the canvas,
you need to specify the coordinates of the shape relative to the top-left corner of the canvas. The
top-left corner can be thought of as having a position of 0, 0. You can therefore specify the position
of the shape, relative to this position, using x and y coordinates.

For instance, if you wanted the shape to be drawn 200 pixels from the top of the screen and 300
pixels from the left of the screen, you would use a position of 300, 200 as the top-left corner of
the shape. The x-axis is always specified first, and represents the horizontal axis, while the y-axis
represents the vertical axis.

Suppose you are drawing a rectangle: You would also need to specify the height and width of the
rectangle.

Once you determine these properties, you can obtain a reference to the canvas’s graphical context,
and use the JavaScript API to draw the shape, a rectangle in this case:

<canvas width="800" height="500" id="myCanvas"s></canvas>
<scripts>
var context = $('#myCanvas') [0].getContext ("2d");
context.fillRect (300, 200, 100, 200);
</scripts>

NOTE If following along the examples in this lesson, ensure the code is placed
inside an HTMLS page structure, and that the jQuery library is included in the
head section.

Simple Drawing | 215

When the canvas context is requested, it must include the parameter 2d because the canvas element
can also support 3D APIs, most notably WebGL. This API is outside the scope of this book and is
not currently well supported.

Notice that the £i11Rect method accepts four parameters:
> The x-position of the rectangle
> The y-position of the rectangle
> The width of the rectangle
>

The height of the rectangle

This code produces the shape shown in Figure 24-1. FIGURE 24-1

By default, the rectangle will be filled with a black color, but this can easily be
overridden by specifying the fi11style for the canvas context:

<scripts>
var context = $('#myCanvas') [0] .getContext ("2d") ;
context.fillStyle = 'red';
context.fillRect (300, 200, 100, 200);

</script>

Shapes can overlap on the canvas, but in this case
the last shape drawn simply overwrites the pixels of
the shape below it. For instance, the following code:

<scripts>
var context = $('#myCanvas') [0].
getContext ("2d") ;
context.fillStyle = 'lightgrey';
context.fillRect (300, 200, 100, 200);
context.fillStyle = 'grey';
context.fillRect (50, 300, 400, 100); FIGURE 24-2
</script>

produces the result shown in Figure 24-2. Notice that the light-grey shape appears behind the grey
shape.

It is also possible to specify the border of a rectangle without coloring the fill area. This can be
achieved by using strokeRect, as you can see in the following example:

<scripts>
var context = $('#myCanvas') [0] .getContext ("2d") ;
context.fillStyle = 'lightgrey';
context.fillRect (300, 200, 100, 200);
context.strokeStyle = 'grey';
context.lineWidth = 3;
context.strokeRect (50, 300, 400, 100);

</script>

216 | LESSON 24 CANVAS: PART |

This produces the drawing shown in Figure 24-3.

DRAWING LINES

Rectangles can only take you so far; to draw more
complex shapes you need to use lines. For instance,
the API does not provide a method for drawing

triangles, but it is easy to draw one as follows:

FIGURE 24-3

<scripts>

var context = $('#myCanvas') [0] .getContext ("2d") ;

context.beginPath() ;

context.moveTo (100,20) ;

context.lineTo(30,100) ;

context.lineTo(170,100) ;

context.fill () ;
</scripts>

You begin by specifying that you are beginning a path, and then use moveTo to move to the position
you want to start drawing from. You then specify that you want to draw from here to another point
using lineTo. You can then call 1ineTo as many times as necessary, each time specifying the

coordinates you want the line to end up at.

In this example, you have only specified two of the three sides for the triangle,

but when you call £i11, the third line is implied because it is only possible to fill a

closed shape. This code therefore produces the drawing shown in Figure 24-4.

It is also possible to draw the outline of the shape by using the stroke method.

<scripts>
var context = $('#myCanvas') [0] .getContext ("2d") ;
context.beginPath() ;
context.moveTo (100,20) ;
context.lineTo(30,100) ;
context.lineTo(170,100) ;
context.lineTo(100,20) ;
context.stroke () ;
</scripts>

FIGURE 24-4

In this case, however, it would be necessary to specify all three lines of the triangle; alternatively, the

third 1ineTo call could be replaced with the following line of code:

context.closePath() ;

CIRCLES AND CURVES

The Canvas API also provides methods for drawing curved lines and shapes such as circles. This can

be achieved with the arc method, as shown in the following example:

Circles and Curves | 217

<scripts

var context = $('#myCanvas') [0].getContext ("2d");
context.beginPath() ;

context.arc (70, 70, 50, 0, 2 * Math.PI, true)
context.fill () ;

</script>

The arc method accepts the following parameters:

>

>

This example produces the circle shown in Figure 24-5.

It is also possible to draw the outline of a circle without filling it by using the stroke

The x and y coordinates for the center of the circle, which have both been specified as 70.
The radius of the circle in pixels.

The starting angle in radians—a value of 0 is equivalent to the three o’clock position
on a clock.

The ending position in radians: 2 * Math.PI is equivalent to 360 degrees, whereas Math.PI
would be equivalent to 180 degrees.

A fifth parameter is also accepted, which specifies whether the arc should be drawn clockwise
or counter clockwise, with the default being false, which indicates clockwise. This is not
relevant if drawing a full circle.

method. The following example draws an arc beginning at 0 radians, and ending at FIGURE 24-5
0.5 * Math.PI, which is equivalent to 6 o’clock. This particular example is drawn
counter-clockwise, meaning the line extends 270 degrees:

<scripts>

var context = $('#myCanvas') [0] .getContext ("2d");
context.beginPath() ;

context.arc (70, 70, 50, 0, 0.5 * Math.PI, true);
context.stroke() ;

</scripts>

This code produces the line shown in Figure 24-6.

It is also possible to draw an arc between two points using the arcTo method. This

FIGURE 24-6

method lets you specify the coordinates for two tangents to the curve and then define
the radius of a circle that would touch those two tangents. This method is slightly
more difficult to explain, but assume that you started from the coordinates of 50,50:

context.moveTo (50,50) ;

Next, you specify that the coordinates of the first tangent are 150, 20. You would
therefore draw an imaginary line between 50, 50 and 150, 20. Next, you draw an
imaginary line from this point to a second point specified—for example, 150, 150.
You therefore have specified the imaginary lines shown in Figure 24-7. FIGURE 24-7

218

| LESSON 24 CANVAS: PART |

Now you specify that the radius of the circle that touches these
tangents is 80 pixels:

var context = $('#myCanvas') [0].getContext ("2d");
context.beginPath() ;

context.moveTo (50,50) ;
context.arcTo(150,20,150,150,80) ;

context.stroke () ;

This effectively creates the imaginary circle shown in Figure 24-8,
and therefore creates the arc shown in Figure 24-9. FIGURE 24-8 FIGURE 24-9

DRAWING TEXT

The final feature this lesson will cover is text. It is possible to draw text onto the canvas using the
fillText method, as shown in the following example:

<scripts>
var context = $('#myCanvas') [0] .getContext ("2d") ;
context.font="20px Courier";
context.fillText ("Hello World!",20,50) ;

</script>

Notice that the font of the context is set, and then the £i11Text is called with the relevant text and
the coordinates for the text to start at. The coordinates represent the bottom-left corner of the text;
therefore, it is not possible to specify O for the y-axis because the text would be positioned above
the canvas.

The preceding example produces the result shown in Figure 24-10. Hello World!

Adding text to a canvas is not like adding text to an HTML document. The FIGURE 24-10

text will not wrap if it reaches the right-hand edge of the canvas, and there are

no checks to ensure that the text displays on the canvas at all. It is possible to

specify a forth parameter to £i11Text, which specifies the maximum width of the text, but this will
not cause text to wrap.

To help with issues positioning text, the Canvas API does support a measureText method. This
allows you to determine the width of an arbitrary string of text, given the current font. For example:

context.measureText ("Hello World") ;

The Canvas API also supports a strokeText method. This is identical to £i11Text, except it only
draws the outline of the text. For example, the following code:

<script>
var context = $('#myCanvas') [0] .getContext ("24");
context.font="30px Georgia";
context.strokeText ("Hello World!",20,50) ;

</scripts> H(@ﬂ& P"’;?@T‘—ldg

produces the text shown in Figure 24-11. FIGURE 24-11

Trylt | 219

TRY IT

In this Try It, you are going to create a “random walk.” Random walks are often used to describe
price movements of commodities, stocks, and currencies in economics, and are derived by imagin-
ing the path followed by a drunk who wakes at intermittent intervals and staggers in a random
direction.

In this Try It, you will perform 10,000 random walks, each time moving 3 pixels up, down, left, or
right from a given starting position. The pattern created each time you run this will be different, but
Figure 24-12 shows an example I created.

FIGURE 24-12

Lesson Requirements

You will need a text editor for writing the code and the Chrome browser for running the code.

Step-by-Step
1. Start by creating a standard HTMLS web page, and include an import for jQuery.

2. Add a canvas element to the web page, assign it an ID, and give it a width and height
of 800.

3. Start by finding the canvas element, and call getContext ("2d") on it, assigning the result
to a variable called context.

4. Call beginPath on the context, and then use the moveTo method to move to the center of
the canvas.

5. Create two variables to record the current X and Y coordinates. These should be initialized
to the values you passed to the moveTo method.

6. Create a for-loop that iterates 10,000 times. Steps 7—10 will occur inside the for-loop.

7. Start be creating a random number using Math.random(), and assign this to a variable.

220 | LESSON 24 CANVAS: PART |

8. Create an if-else block that has four branches depending on whether the random number is:
> Less than 0.25
> Less than 0.5
> Less than 0.75
> Lessthan 1

Q. Within each of these four blocks, perform one of these four operations (making sure each
operation is performed in one, and only one, branch):

> Subtract 3 from the current Y coordinate.

> Add 3 to the current Y coordinate.

> Subtract 3 from the current X coordinate.

> Add 3 to the current X coordinate.
10. Use the 1ineTo method to move to the new X and Y coordinates.
11. After the for-loop finishes, call stroke on the context.

12. You can try running the web page as many times as you like. Each time you run it, you will
be surprised at how different the patterns look.

My version of the JavaScript supporting this page looked like this:

<scripts>
var context = $('#myCanvas') [0] .getContext ("2d") ;
context.beginPath() ;
context.moveTo (400,400) ;
var currentX = 400;
var currentY = 400;
for (var 1 = 0; i < 10000; i++) {
var r = Math.random() ;
console.log(r) ;
if (r < 0.25)
currentX = currentX-3;
} else if (r < 0.5) {
currentX = currentX + 3;
} else if (r < 0.75) {
currentY = currentY - 3;
} else {
currentY = currentY + 3;
}

console.log('Moving to ' + currentX + ' ' + currentY);
context.lineTo (currentX, currentY);
context.stroke () ;
</script>

REFERENCE Please go to the book’s website at www.wrox.com/go/html5js] -
query24hr to view the video for Lesson 24, as well as download the code and
resources for this lesson.

http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto

25

Canvas: Part |l

In the previous lesson, you learned how to use the Canvas API to create simple two-
dimensional bitmaps. This lesson will consolidate your knowledge from the previous lesson,
and also look at some of the more advanced canvas features, such as animation.

LINEAR GRADIENTS

In the previous lesson, all lines and shapes used block colors. Linear gradients allow you
to create colors that start with a specific color and end with another color, and gradually
transform from one color to the other over the area of the feature being colored.

In order to create a linear gradient, you first need to use the createlLinearGradient method,
and specify the x and y coordinates for an imaginary line through which the color should be
transformed. For example:

var gradient = context.createLinearGradient (50,0,350,0);

In this case, the gradient runs horizontally from the x-coordinate of 50 to the x-coordinate of
350. This is not coloring any feature; it is just creating a line through which features can be
colored with a linear gradient.

Next, you need to specify the color at specific points along the line using the addstopColor
method. Usually, specifying the starting and ending color is sufficient, but you can specify the
color for as many points along the line as you need. The following specifies the color for the
start and end of the line:

gradient.addColorStop (0.0, "black");
gradient.addColorStop (1.0, "white");

The first parameter to addStopColor represents the position on the line: A value of 0
represents the start of the line, while 1.0 represents the end of the line. The second parameter
represents the color for that position on the line.

222 | LESSON 25 CANVAS: PART Il

Once the gradient has been defined, it can be specified as the fill style of the context, and you can
use any of the methods from the previous lesson to add features to the canvas:

context.fillStyle=gradient;
context.fillRect (50,50,350,350) ;

This will produce the result shown in Figure 25-1.

Notice that the line defined above does not actually run
through the rectangle (it is above it), but it does run the
entire horizontal length of the rectangle. The line defined

is simply a guide for the color that should appear at specific
points on the canvas, and only takes on meaning when
features are added within the bounds of that line. FIGURE 25-1

It is also possible to define more complex gradients. For
example, the following starts out red, gradually becomes white and stays white for 20 percent of the
length of the line, and then gradually becomes blue.

gradient.addColorStop (0, "red");
gradient.addColorStop (0.4, "white");
gradient.addColorStop (0.6, "white");
gradient.addColorStop (1, "blue");

It is naturally also possible to define vertical gradients, or gradients that run on an angle through
the canvas. For instance, the following code creates a gradient that runs on an angle from top left to
bottom right of the canvas:

var gradient = context.createLinearGradient (50,50,250,250);
gradient.addColorStop (0, "black");

gradient.addColorStop (1, "white");
context.fillStyle=gradient;

context.fillRect (50,50,200,200) ;

This produces the result shown in Figure 25-2.

SHADOWS

Another interesting color-based effect involves the use of shadows.
Just like linear gradients, shadows can be applied to any of the
features you have looked at so far, including text, rectangles, and arcs.

To begin using shadows, you first instruct the canvas context to use FIGURE 25-2
shadows by specifying a shadow color:

context.shadowColor = "#ABABAB";

Next, you need to specify the direction of the shadow. This is achieved by specifying how far the
shadow should extend from each point on the feature in both the horizontal and vertical direction.
For instance, if you want the shadow to extend 10 pixels up and 10 pixels to the right of a feature,
you specify the following:

context.shadowOffsetX = 10;
context .shadowOffsetY -10;

Images | 223

In order to visualize how the shadow works, think of each pixel as having a position of 0, 0. Then
imagine the coordinates where the shadow should end in relation to this point.

Next, you add visual elements just as you normally would; for instance, the following adds text to
the canvas in a 50-point font:

context.font="50px Courier";
context.fillText ("Hello World!",20,50) ;

In this case, the effect shown in Figure 25-3 is created.

You will notice that in this case, the shadow is He l l O WO Y l d !.

very crisp. It is possible to make the shadow
blurry by setting the following property: FIGURE 25-3

context.shadowBlur = 5;

The default value is 0, and the larger the number,

the more blur is applied. For instance, a blur level He l l e Wor ld |
-

of 5 creates the image shown in Figure 25-4.

Once you have specified a shadow color, any visual FIGURE 25-4
elements added after that point will have a shadow.
There are several ways to stop shadows, such as setting shadowoffsetx and shadowoffsetY to 0.

There is a more general solution, however: It is possible to save the state of the context at any point
and then revert back to this state in the future. For example:

var context = $('#myCanvas') [0].getContext ("2d");
context.fillStyle = 'red';

context.save () ;

context.shadowColor = "#ABABAB";

context .shadowOffsetX = 10;

context.shadowOffsetY = -10;

context.font="50px Courier";

context.fillText ("Hello World!",20,50);
context.restore () ;

context.fillRect (100,100,200,200) ;

In this example, the fil1style is set to red, and then the context is saved. The shadow properties
are then set, and the text is written to the canvas. You then revert back to the saved version of the
canvas using restore, and draw a rectangle. In this case, the rectangle will have a red fill color, but
will not have a shadow.

The save and restore methods are used extensively when creating complex bitmaps because they
allow you to save a default set of properties, and then temporarily augment these as needed.

IMAGES

Rather than drawing on the canvas, it is possible to load an existing image directly onto the canvas.
Once an image has been added, it is possible to draw over top of the image; therefore, it is often
useful to use an image as the background of a canvas.

224 | LESSON 25 CANVAS: PARTII

To start, create an Image object, and set the src property to the absolute or relative URL of the image:

var image = new Image();
image.src "cat.jpg";

The image specified can be downloaded from the book’s website, or you can use your own image.

A complication with adding images to the canvas is that they need to be downloaded from the web
server before they can be added to the canvas. You therefore need to add an event listener to the
image to listen for the download to complete; you can then add it to the canvas:

image.addEventListener ('load', function()
context.drawImage (image, 20, 20, 360, 260);

1
The call to drawImage contains the following parameters:
» The Image to be drawn.
> The x and y coordinates to position the top-left corner of the image.

> The width and height of the image: These can be omitted, in which case the image will not
be scaled.

The preceding code will add the image to the canvas, as shown in Figure 25-5.

FIGURE 25-5

TRANSFORMING SHAPES

Up until this point, each feature has been added with its own location and its own size. In some
cases, it can be easier to repeatedly draw the same feature, while changing the way the canvas
context scales, positions, or skews these features.

You can achieve this by using the transform method. As a very simple example of the transform
method in action, consider the following:

context.fillStyle="'4#444444";
context.fillRect (10,10, 180,180);
context.transform(0.5, 0, 0, 0.5, 30, 30);
context.fillStyle="#CCCCCC';
context.fillRect (10,10, 180,180);

Transforming Shapes | 225

This example starts by drawing a rectangle in a dark grey color. Once the first rectangle is drawn,
the transform method is called on the canvas context, and passed six parameters that control how
any future features are moved, skewed, or scaled. These six parameters are:

> The amount of horizontal scaling that should be applied, with 1.0 being the default: In the
previous example, the horizontal scaling is 50 percent, meaning any new features will only be
half as wide as they otherwise would have been.

> The amount of horizontal skew: You will look at this parameter shortly, but it is used to
angle the horizontal axis up or down.

> The amount of vertical skew: You will look at this parameter shortly, but it is used to
transform the vertical axis left or right.

> The amount of vertical scaling, with 1.0 being the default: In the preceding example,
the vertical scaling is 50 percent, meaning any new features will only appear at half the
height specified.

> The number of pixels to offset drawing by horizontally: In this case, the offset is 30 pixels, so
any drawing will occur 30 pixels to the right of where it would have otherwise. This can be a
negative number to move features to the left.

> The number of pixels to offset drawing by vertically: In this case, the offset is 30 pixels, so
any drawing will occur 30 pixels below where it would have otherwise. This can be a nega-
tive number to move features higher.

These six values represent the transformation matrix of the canvas context, and all values default to 0.

NOTE A transformation matrix is a set of nine numbers, ordered into three
rows, and is used to transform a bitmap via linear algebra. The six parameters
mentioned in the preceding bulleted list are listed as parameters a—f, while the
last row of the matrix always has the values 0

01:

ace

bdf

001

It is not necessary to have an understanding of how linear algebra works, but
you should understand the purpose of each parameter in the matrix.

Once the context has been transformed, you can draw the exact same
rectangle in a lighter grey, and the result will be as you see in Figure 25-6.

If you were to call transform again and draw another shape in white,
the current context (which is already drawing at a 50 percent scale)
would be transformed. For instance, in the following case, you will
draw a third rectangle at 25 percent the size of the original.

context.transform(0.5, 0, 0, 0.5, 30, 30);
context.fillStyle='white'; FIGURE 25-6
context.fillRect (10,10, 180,180);

226 | LESSON 25 CANVAS: PARTII

This produces the result shown in Figure 25-7. Notice in this case
that the 30-pixel horizontal and vertical movement is also scaled.

It is also possible to use setTransform rather than transform. This
method accepts identical parameters but will set the transformation
matrix back to its default values before setting the requested values.
This ensures that you are not transforming a transformation matrix
that has already been augmented.

This example can also be changed to include skewing. The following FIGURE 25-7

code skews the squares by 0.3 horizontally, and —0.3 vertically:

context.fillStyle="'#444444";

context.fillRect (10,10, 180,180);
context.transform(0.5, 0.3, -0.3, 0.5, 80, 30);
context.fillStyle="'#CCCCCC';

context.fillRect (10,10, 180,180);
context.transform(0.5, 0.3, -0.3, 0.5, 80, 30);
context.fillStyle='white';

context.fillRect (10,10, 180,180);

This produces the result shown in Figure 25-8.

The values used for the skew parameters are tangents; therefore, if you
know the angle you would like to skew shapes by, you can use the
utility method Math. tan, and pass the angle as a parameter.

The horizontal skew of 0.3 lifts the bottom-left corner, creating an
angle of approximately 60 degrees. The vertical skew of —0.3 pulls
the bottom-left corner to the left, creating an angle of approximately
60 degrees.

FIGURE 25-8

If you want to maintain the shape of a feature, the horizontal and
vertical values need to be the inverse of one another. For instance,
if both values are set to 0.3, the effect in Figure 25-9 is produced.

The Canvas API provides three additional utility methods for
modifying the transformation matrix. If you only need to modify
the vertical and horizontal scale, you can use the scale method and
pass it two parameters.

FIGURE 25-9

If, on the other hand, you only need to modify the horizontal and
vertical offset, you can use the translate method, and pass it two
parameters. You can think of the translate method as a mechanism
for modifying where the 0, 0 coordinate appears on the canvas.

Finally, it is possible to use the rotate method to rotate the context of the canvas by a given number
of radians. This does not rotate the canvas itself, but means that any features drawn onto the canvas
will appear at an offset angle. You will look at this method in the Try It section.

Basic Animation | 227

BASIC ANIMATION

The final subject that will be introduced in this lesson is basic animation. Up until this point, all
shapes, lines, and text have been static: Once they are added, they don’t change. It is also possible to
animate these features.

Basic animation works by redrawing the canvas, or portions of the canvas, at a specified interval. In
order to perform a task at a given interval, it is common to use the built-in setInterval JavaScript
function. This accepts two parameters: a function to execute, and the time in milliseconds between
each execution. The function will then be invoked indefinitely at the specific interval.

NOTE There is no guarantee setInterval will execute at exactly the specified
interval. Instead, setInterval places an event on a queue at the appropriate
time, and JavaScript executes this when all other tasks at hand have completed.

JavaScript is inherently single threaded, meaning it can perform only a single
task at a time. The event queue is therefore a mechanism of controlling the order
in which processing will occur.

In this example, you will write an animation that shows a blue box running from the top left of
the canvas to the bottom right. The canvas is assumed to be 400 by 400 pixels. Once it reaches the
bottom, it will change direction and head for the top right again. The animation will update every
30 milliseconds in this example, creating a reasonably smooth animation.

The only new method that will be introduced in this example is clearrect. This is the opposite of
fillRect, and this example therefore works by clearing the previously drawn rectangle and creating
a new one.

var context = $('#myCanvas') [0] .getContext ("2d") ;
context.fillStyle="'blue’';

var startX = 0;

var start¥ = 0;

var forward = true;

setInterval (drawRectangle, 30);

function drawRectangle()
context.clearRect (startX, startY, 40, 40);

if (forward && startX === 400)
forward = false;
} else if (!forward && startX === 0)

forward = true;
}
if (forward) {
startX = startX + 1;
startY = start¥ + 1;
} else {
startX = startX - 1;
startY = startyY

1
=

}

context.fillRect (startX, startyY, 40, 40);

228 | LESSON 25 CANVAS: PART Il

As you can see, the rest of the code in this example is straightforward. You use global variables to
keep track of the x-coordinate and y-coordinate, and either increase or decrease these by 1 before
re-drawing the rectangle.

TRY IT

In this Try It, you are going to create an animated clock that counts the seconds as they pass.
This will use a combination of the techniques covered in this lesson, and those covered in the
previous lesson.

Lesson Requirements

You will need a text editor for writing the code and the Chrome browser for running the code.

Step-by-Step

1.
2.
3.

11.

12.

13.
14.

© 0 © O gk

Start by creating a standard HTMLS web page, and include an import for jQuery.
Create a canvas with height and width set to 400.

Create a script block and obtain a reference to the canvas context using the approach
outlined in Lesson 24.

Begin by setting the fil1style to blue.

Create a circle using an arc with a center at 200, 200. The radius should be set to 130.

Use the £i11 method to fill the arc.

Set the 1inewidth property to 2. You will use this when you start drawing the second hand.
Use the translate method to set the offset to the center of the circle (position 200, 200).
Create a new function for drawing the second hand called drawseconds.

This method should start by overwriting the second hand that was drawn previously, so set
the strokeStyle to blue.

Invoke the beginPath method, and then use the moveTo method to move to position 0, 0.
(This is the center of the circle as a result of the translation that occurred in Step 8.)

Invoke the 1ineTo method with an x-coordinate of 0, and a y-coordinate of =120. This will
draw a line up from the center of the circle.

Invoke the stroke method.

You now want to rotate the canvas context by an amount corresponding to 1 second. The
easiest way to do this is to invoke the rotate method (which accepts the number of radians
to rotate the canvas context), and pass the parameter: (2 * Math.PI) / 60. Remember
that 2 * Math.PT is 360 degrees; thus, dividing this by 60 produces the number of degrees
in one second.

Try lt | 229

15. Set the strokestyle to white, and draw a new line using the exact same actions outlined in
Steps 11-13.

16. Invoke the setInterval method, passing a reference to the drawseconds function, and use
an interval of 1000 milliseconds.

17. Load the page, and leave it open. The result should be an animated white second hand on a
blue clock.

Your code should now look like this:

<scripts>
var context = $('#myCanvas') [0] .getContext ("2d") ;
context.fillStyle="'blue’';
context.arc (200, 200, 130, 0, 2 * Math.PI, true);
context.fill () ;
context.lineWidth = 2;
context.translate(200,200) ;
setInterval (drawSeconds, 1000) ;

function drawSeconds () {
context.strokeStyle = 'blue';
context .beginPath() ;
context.moveTo (0,0) ;
context.lineTo(0,-120) ;
context.stroke () ;

context.rotate((2 * Math.PI) / 60);
context.beginPath() ;
context.strokeStyle = 'white';
context.moveTo (0,0) ;
context.lineTo(0,-120) ;
context.stroke () ;

}

</script>

You may notice a problem with my implementation: Faint white outlines are left when the white line
is overwritten. Try to find one of the many solutions for resolving this issue.

REFERENCE Please go to the book’s website at www .wrox.com/go/html5]s] -
query24hr fo view the video for Lesson 25, as well as download the code and
resources for this lesson.

http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto

26

CSS3: Part |

Just like HTML, CSS is evolving over time. The latest version of CSS is called CSS3 and adds
several important modules to CSS that will be explored over the next two lessons.

Nothing fundamental has changed with CSS in version 3: The language still uses selectors to
identify elements and still allows a set of stylistic properties to be defined for these elements.
CSS3 is important, however, because it specifies a number of new selectors style properties.
Together, these selectors and properties greatly improve the expressiveness of CSS.

Unlike with HTML, you may have noticed that it is not necessary to specify which version of
CSS you are using. CSS3 is entirely backwards compatible; therefore, if you want to use CSS3
features, you simply include them in your existing style sheets, and the browser will simply
ignore them if it does not support them.

The next two lessons will not provide an exhaustive introduction to CSS3, but they will intro-
duce the most interesting features, and will further help consolidate your knowledge of CSS.

SELECTORS

CSS3 provides a number of new selectors for selecting elements based on a wider set of
criteria.

CSS3 includes one new operator called the tilde operator. This is used to select elements that
are siblings of a specified element, and are declared anywhere after that element. For instance,
in contacts.css, you might want to style t foot elements differently if they have a sibling
element of type thead; this could be achieved as follows:

thead ~ tfoot {

font-size: 0.75em;
text-align:right;

232

| LESSON 26 CSS3:PARTI

This will only match tfoot elements if a sibling that is a thead precedes them.

This operator is similar to the + operator introduced in CSS2, but the + operator only finds elements
that are immediately preceded by the specified element, which it is not in this case.

The + operator could be used to match tbody elements that are preceded by thead elements because

tbody is directly preceded by thead. Therefore, the following rule could be used in contacts.css:
thead + tbody {

CSS3 also greatly enhances the way selectors can interact with attribute values. Before looking at

these, I will briefly examine three additional CSS2 selectors that allow CSS selections based on
attributes.

To match an attribute name, the following selector can be used:
[required] {
Notice that this uses the same square bracket notation seen with jQuery. Additionally, in order to
match both the attribute name and value, the following syntax can be used:
[name= "emailAddress"]
Often, you match attribute values based on more complex rules. For instance, you may want to

match any name attribute that has a value beginning with email. This can be achieved with the fol-
lowing selector:

[name”= "email"]

Alternatively, you may want to match attributes with values ending in a specific value. For example,
the following CSS3 rule will color two labels red (the contactName and companyName labels):

label [for$= "Name"] {
background:red;
}

Finally, you may want to match any element that has an attribute value containing specified text.
For instance, the following will select any elements that have an inline style attribute that contains
a display property override:

[style*= "display"] {

Most of the other new selectors are pseudo-class and pseudo-element selectors. As you will remem-
ber from earlier in the book, pseudo-class and pseudo-element selectors directly tie CSS rules to the
state of the DOM: If the DOM changes, elements will dynamically be selected or deselected based
on their state.

Some of these have already been introduced earlier in the book. The remainder of the most widely
used selectors are introduced in the selection listed in Table 26-1, but this is not an exhaustive list.

CSS Borders | 233

TABLE 26-1: CSS3 Selectors

SELECTOR PURPOSE

:checked Finds radio buttons or checkboxes that are checked.

:disabled Finds input fields that are disabled, and that therefore restrict user entry. Input
fields can be disabled via the disabled attribute.

:empty Finds elements that do not have any children.

:enabled This is the opposite of :disabled.

:invalid As you have seen in earlier lessons, this selects elements that have failed
validation.

:not Selects elements that do not meet specific criteria. For instance, the following

rule selects any elements that are not divs: :not (div).

:nth-child Selects elements that have a specific index among their siblings. For instance,
the following finds the third element within the tbody element, provided it is a
tr element: tbody > tr:nth-child(3).

:nth-of-type This is essentially the same as :nth-child, except it only looks for elements
of the specified type. For example, this selector finds the third tr element that
is a child of the tbody element: tbody > tr:nth-of-type (3).

:optional Selects any input fields that are not marked as required.

:read-only Selects any input fields that have been marked with the readonly attribute.

:read-write Selects any input fields that are not marked as readonly or disabled.

:valid Selects all the input fields that have passed validation, or that do not need
validation.

CSS BORDERS

You have already seen numerous examples of CSS borders using the border property. Although
these borders allow you to express the style of the border, the thickness of the border, and the color
of the border, they are somewhat limited.

CSS3 adds three important capabilities, each of which will be explored in this section. All the exam-
ples in this section will be added to the div element shown in the following example:

<!DOCTYPE html>
<html lang="en">

234 | LESSON 26 (CSS3: PART |

<head>
<meta charset="utf-8">
<style>
div {
margin:50px;
width:300px;
height:300px;
background:#cdcded;
}
</style>
</head>
<body>
<divs</divs>
</body>
</html>

CSS3 allows for curved corners on borders. Curved corners are commonly used as a stylistic device
to soften the impact of the border. In order to demonstrate this, you need to ensure the element
already has a border, so add the following to the div rule:

border: 1lpx solid #555555; Ve Y

Then simply add one additional property:

border-radius: 20px;

The value specifies how much the corners should be curved. If
you open the web page, it will look like what you see in
Figure 26-1.

The second addition to borders is the ability to use images for
borders. This allows you to create more interesting borders
because you are not limited to simple lines. Imagine that you
have the photographic pattern shown in Figure 26-2, and you N
want to use it for a border. FIGURE 26-1

This picture is available on the book’s website, named border. png.
You can begin by specifying a transparent border with the required thickness:

border: 30px solid transparent;

The width of the border should be the thickness you want the photographic image to appear, in this
case 30 pixels. With that in place, you can use the border-image property to specify the image that
should be used for the border:

border-image:url ("border.png") 30 30 30 30 stretch;
This property accepts the following parameters:
> The file that should be used.

> Four different values specifying how to slice the image—these will be discussed shortly. These
can either be percentages or pixels. Oddly, if they are percentages, the % sign must be used,
but if the values are pixels, the px suffix cannot be used.

CSS Borders | 235

> How to deal with the fact that the image may not be the same size as the border. In this case,
I have specified that the image should be stretched. Other possible values are:

> repeat: The border image will be repeated as many times as necessary.

> round: The image will be repeated to fill the area, and it will ensure that there are a
round number of repetitions, scaling the image if necessary.

FIGURE 26-2

This produces the effect shown in Figure 26-3.

FIGURE 26-3

The four values used (all of which were set to 30 pixels) effectively state how much of the image
should be used for the top, right, bottom, and left of the border. I have specified these as the same
size as the border, meaning the image does not need to be stretched in order to fit into each position.

236 | LESSON 26 CSS3:PART I

NOTE If you are referring to images from an external CSS style sheet, it is
important to realize that the file locations will be relative to the style sheet loca-
tion, not the web page itself.

The third main enhancement to borders is the ability to add shadows to elements, just as you saw
with the Canvas API. This feature is not explicitly linked to borders because it is possible to add
shadows to any element, regardless of whether it has a border or not.

In order to demonstrate the use of shadows, add the following property to the div element:
box-shadow: 10px -10px 10px #888888;
The parameters used are as follows:

> The horizontal position of the shadow: Because this is a positive number, the shadow will
appear on the right side of the div.

> The vertical position of the shadow: Because this is a negative number, the shadow will
appear above the div.

» The amount of blur to use: If a value of 0 is used, there is no blur at all to the shadow,
whereas in this case, the blur extends for 10 pixels.

> The color of the shadow. In the example above this has been specified as a shade of grey.

This example produces the effect in Figure 26-4.

FIGURE 26-4

It is possible to place a border around the entire element using an optional parameter immediately
before the color. This specifies the size of the border:

box-shadow: 0 0 10px 10px #888888;

Custom Fonts | 237

In this case, a 10-pixel border, with 10 pixels of blur, extends around all four sides of the element.
Notice that I have set the first two parameters to 0 to indicate that the border is not offset to the
left, right, top, or bottom.

It is also possible to produce a shadow inside the element. This is produced by specifying inset as
the final parameter. For example:

box-shadow: 0 0 10px 10px #888888 inset;

This produces the effect in Figure 26-5.

CUSTOM FONTS

One problem with specifying fonts is that there is no guarantee
which fonts will be available inside each browser. This is the
reason that fonts have been specified as follows:

font-family: Arial, Helvetica, sans-serif;

This allows the browser to select the best available font that
matches your requirements. If Arial or Helvetica are available,
they will be used; otherwise, the default browser sans-serif font
will be used.

FIGURE 26-5

NOTE A serif is a small line attached to the end of a line on a character. Serif
fonts are typically used in print books because it is argued that they are more
readable. Web pages, on the other hand, tend to use sans-serif fonts.

This approach can be problematic. As a result of the difference in size of different characters
in different fonts, a web page may look quite different if an alternative font is used. In order to
circumvent this problem, it is possible for a website to provide its own fonts, have the browser
download them, and use them in the CSS.

One of the reasons that different browsers support different fonts is that many fonts need to be
licensed from their creators. In this section, you will use the Open Sans font, which was commis-
sioned by Google and is available for use with an open license.

NOTE The main disadvantage of using your own fonts is that the user needs to
download them, and they can be several megabytes in size.

238 | LESSON 26 CSS3:PART |

Open Sans is an ideal font for web pages because it strives to present a neutral impression that is
pleasing to the eye and easy to read.

In order to get started with Open Sans, you need to obtain a copy of the font files. These are
made available in a collection of files with .ttf extensions (for true-type font). Different files are
available for regular font, bold font, italic font, and bold-italic font. These can be found on the
book’s website.

NOTE Open Sans actually provides 10 variants, including light, semi-bold, and
extra bold. If you download these and wish to use them, it is possible to indicate
the variant that should be used via the font -weight property: Along with values
such as bold, this can be assigned a number between 100 and 1000. 400 is the
same as normal, and 700 is the same as bold; therefore, 600 will use a semi-bold
font, provided that variant is supported by your chosen font.

Once they are downloaded, you need to refer to them in your style sheet or the style section of the
web page. For example:

@font-face {
font-family: "Open Sans";
src: url (OpenSans-Regular.ttf);
font-weight: normal;

}

@font-face {
font-family: "Open Sans";
src: url (OpenSans-Bold.ttf) ;
font-weight: bold;

}

@font-face {
font-family: "Open Sans";
src: url (OpenSans-BoldItalic.ttf);
font-weight: bold;
font-style: italic;

}

@font-face
font-family: "Open Sans";
src: url (OpenSans-Italic.ttf);
font-weight: normal;
font-style: italic;

}

Notice that these are not regular CSS selectors because they do not select elements from the DOM.
Instead, these rules define the name of the font and the location of the font file.

You can now add a font-family style, confident that you do not need to provide any fallback
options:

body {
font-family: "Open Sans";
}

Try lt | 239

Finally, you can add the following markup to the page to use this font:

<p>This is open sans</p>
<p>This is open sans bold</p>
<p>This is open sans bold</p>

NOTE Remember that the b and i tags for bold and italics have been depre-
cated, but it is considered acceptable to use strong and em (short for emphasis).
These tags are considered acceptable because they describe the effect that should
be used, rather than exactly how this effect should be achieved.

This will produce the web page shown in Figure 26-6. This is open sans
This is open sans bold

TRY |T This is open sans bold

FIGURE 26-6

In this Try It, you will create a layout that appears as tabs, using a number
of the techniques learned in this lesson.

The goal is to create a set of tabs, as shown in Figure 26-7.

- " s %%

[This is the body

FIGURE 26-7

This Try It will only contain very general hints rather than specific steps. This lesson, together with
the lessons on CSS, provides all the necessary information to implement this panel.

Lesson Requirements

You will need a text editor for writing the code and the Chrome browser for running the code.

240 | LESSON 26 CSS3:PART |

Step-by-Step

1.
2.

Start by creating a standard HTMLS5 web page.

Create a layout for the various elements on the page. I used div and a elements: Each of the
tabs is an a element, and the three tabs are surrounded by a div. I also used a div for the tab
content and surrounded the entire structure with a div.

The font I have used is Open Sans, so import this into the style sheet, and declare that the
tabs use Open Sans.

I have two distinct types of tabs. Active tabs use a white font and a dark background, while
inactive tabs use the inverse of this.

The inactive tabs have a shadow around the top and right sides.

The tabs should have rounded corners on the top edges. The border-radius property can
accept four sizes representing the radius of all four corners, starting in the top left. This can
be used to prevent rounded corners appearing on the bottom border of the tabs.

The example that follows does not implement functionality for changing tabs, but you can
try implementing behavior if you like: Every time the user clicks a tab, you could set it to the
active tab and change the contents of the panel.

My version can be found on the book’s website, and is named tryit.html.

REFERENCE Please go to the book’s website at www.wrox .com/go/html5s] -
query24hr to view the video for Lesson 26, as well as download the code and
resources for this lesson.

http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto

27

CSS3: Part |l

This lesson will continue where the previous lesson left off, and continue looking at CSS3
features. The features introduced in this lesson may seem somewhat familiar because many of
these features were introduced with the Canvas API, such as linear gradients, transformations,
and transitions.

These features have been introduced to allow browsers to natively implement complex visual
effects that previously could only be achieved with images, or DOM manipulation.

NOTE Before beginning this lesson, it is worth reiterating that CSS3 is a major
specification in its own right; thus, this lesson will only touch the surface of what
can be achieved with these features.

LINEAR GRADIENTS

CSS3 linear gradients have a lot in common with those introduced with the Canvas APL.

A line is imagined for the gradient to run through, and colors are defined for points along
the line. The browser is then responsible for creating a smooth transition from one color to
the next.

In order to define a linear gradient, it is necessary to use a CSS function called 1inear-gra-
dient. Although I have not discussed CSS functions so far, you have seen them in action. For
instance, in the previous lesson a URL was defined as follows:

url ("border.png")

A CSS function is just like a JavaScript function: It accepts parameters and returns a value.
Throughout this lesson, you will use a number of useful CSS functions, beginning with

242 | LESSON 27 CSS3:PARTII

linear-gradient. The main difference between CSS and JavaScript functions is that you cannot
create your own CSS functions.

The simplest form of the 1inear-gradient function accepts the following parameters:
> The angle of the line that the gradient runs through
> The start color
» The end color

For instance, after creating an HTML page with a single div
element, add the following style to create a linear gradient that
runs at a 45-degree angle through a div.

<style>
div {
margin:20px;
width:250px;
height:250px;
background:linear-gradient (45deg, white, black);

}

</style>

FIGURE 271

This produces the effect seen in Figure 27-1.

Rather than specifying an angle in degrees, it is possible to use one of
the following shortcuts:

> to top: The gradient runs from the bottom to the top of the element. This is equivalent to 0
degrees.

> to bottom: The gradient runs from the top to the bottom of the element. This is equivalent
to 180 degrees.

> to left: The gradient runs from the right to the left of the element. This is equivalent to 270
degrees.

> to right: The gradient runs from the left to the right of the element. This is equivalent to 90
degrees.

For instance, the following creates a linear gradient that changes from white to black as it progresses
from left to right:

background: linear-gradient (to right, white, black);

The 1inear-gradient function accepts as many colors as required and automatically creates a
linear gradient from one color to the next. For example:

background:linear-gradient (45deg, red, white, blue);

These are equivalent to color stops seen with the Canvas API, and, as with the Canvas API, it is
possible to specify where each color stops based on pixels or percentages. For example:

background: linear-gradient (45deg, red 0%, white 20%, blue 100%);

Text Effects | 243

CALC FUNCTION

Another useful CSS function introduced in CSS3 is the calc function. This allows you to specify
sizes as calculations, which can be extremely useful when you need to size elements using a combi-
nation of two or more units of measure.

When laying out web pages, there are generally two ways to size elements:

> As absolute sizes, for instance specifying width and height in pixels: This approach is great
for providing a consistent user experience but means content must be sized for the smallest
supported browser resolution.

> As percentages, specifying how much of the available space each element should use: This is
great for taking advantage of the user’s entire browser but can cause issues if the browser is
sized too small because there may not be enough space available for a specific element.

The calc function essentially provides the best of both worlds because it lets you mix and match
units. For instance, imagine a case where you want a div to use 30 percent of the space available,
minus 20 pixels. This can be specified as follows:

width:calc(30% - 20px);
The calc function allows you to perform calculations using any combination of addition, subtrac-
tion, division, and multiplication, and also lets you specify operator precedence. For instance:
width:calc((30% / 2) - 20px);
CSS3 also specifies two companion functions that have the potential to be even more useful.

Consider a case where you want the width of an element to use 30 percent of its available space, but
never be less than 200 pixels. This can be achieved with the min function:

width:min (30%, 200px) ;

Likewise, it is possible to use the max function to specify that the width should be the greater of
two values.

Unfortunately min and max have not appeared in most browsers as yet, but expect them to be added
in the near future.

TEXT EFFECTS

Although a wealth of textual information is contained in web pages, it has never been possible to
control the presentation of text in web pages to the degree that is possible with other formats, such
as PDF.

CSS3 has countered this problem from two angles. The first is pseudo elements, which allow you to
add classes to specific portions of an element, such as the first line of a paragraph; the other is via
text effects.

244 | LESSON 27 CSS3:PARTII

This section will look at the text effects that have been implemented in most browsers. CSS3 also
specifies a number of other text effects that have not been adopted by any browsers but are likely to
appear in the future.

To begin, let’s look at text shadows. Just as it is possible to provide shadows for elements, it is pos-
sible to provide shadows for text. For instance, the following example adds a text shadow to any h1
elements on a web page:

h1 {

font-family: Arial, sanf-serif;
text-shadow: 3px 3px 5px #888888;

}

In this case, the shadow extends 3 pixels below and 3 pixels

This has a shadow

to the right of the text, and has 5 pixels of blur. This pro-

FIGURE 27-2
duces the effect shown in Figure 27-2.

A number of the other text effects introduced deal with how to Thisshow saproblemwithaveryldngword
handle overflowing text. Very long words can cause a particular
problem to browsers because the web browser does not know how
to break them, and therefore, by default, never does break them.
In the example in Figure 27-3, the text is placed inside the div but

overflows its boundary: FIGURE 27-3

It is now possible to specify that the web browser can break the

word by using the following property: Thisshowsaproblemwithaveryl

ord

word-wrap:break-word; e

This will produce the result shown in Figure 27-4.

Another common gverﬂow problem occurs when text is t0o FIGURE 27-4

long for its containing element. This can be a particularly

difficult problem when using relative sizing because the size

available will depend on the resolution of the user’s web

browser. This can lead to the effect shown in Figure 27-5. [This text is too long for]its assigned space.

FIGURE 27-5

You will notice in this case that the text overflows to the right
rather than the bottom. The following property created this
effect:

white-space: nowrap;

The nowrap value means that text does not wrap when it reaches the right-hand boundary of an
element. In order to prevent the text spilling outside its boundary it is possible to use the following

property:

overflow: hidden;

2D Transformations | 245

This presents a problem however because it simply truncates any text that overflows the element,
and it not obvious that the text has been truncated. CSS3 therefore supports a more graceful alter-
native by adding a text-overflow property:

text-overflow:ellipsis;

This produces the result shown in Figure 27-6. This text & too long

Unfortunately the technique outlined here only works when the text FIGURE 27-6
overflows to the right of the element, not when it overflows below an element.

2D TRANSFORMATIONS

The concept of a transformation matrix was introduced in Lesson 235 in relation to the Canvas APIL.
This allowed canvas features to be scaled, skewed, or offset based on a matrix of values provided to
the APIL. As discussed, a transformation matrix is a generic mechanism for transforming shapes.

CSS3 also introduces the concept of a transformation matrix and allows elements to be manipu-
lated in a manner almost identical to the Canvas API. CSS3 introduces a function called matrix
that allows the six non-constant values to be provided for the transformation matrix, but before
looking at this, you will look at the functions that allow you to control the individual aspects of the
transformation.

NOTE Many of the 2D Transformation functions are only supported via
browser-specific prefixes. Where appropriate, the examples that follow will use
-webkit- prefixes (for Chrome and Safari), but remember to also include pre-
fixes for other browsers where appropriate: moz for Firefox and ns for Internet
Explorer.

When adding CSS properties that require prefixes, it is also best practice to also
provide a non-prefixed version of the property. This will ensure that when the
property is eventually supported, the CSS does not need to be changed. A typical
example will look as follows:

-webkit-property=value

-moz-property=value

-ms-property=value

property=value

All the examples in this section will operate on the two div elements defined in the following
web page:

<!DOCTYPE html>
<html lang="en">

246 | LESSON 27 CSS3:PARTII

<head>
<meta charset="utf-8">
<style>
div {
height:200px;
width:200px;
border:1px solid black;
margin:50px;
background:#888888;
float:left;
}
#div2 {
background: #bcbcbce;
}
</style>
</head>
<body>

<div id="divl"s</div>
<div id="div2"></div>
</body>
</html>

To begin, you will scale the div with the ID div2 so that it is 50 percent the size of the other div.
This can be achieved by adding the following rule to #diva2:

transform: scale(0.5,0.5);

In these examples, the property name will always be transform, while the function names utilized
will vary. The two parameters passed to the function in this case refer to the width and the height,
although it is possible to use scalex or scalevY if you only need to scale a single axis. This produces
the result shown in Figure 27-7.

FIGURE 27-7

It is also possible to skew elements by using the rotate function. For example:
-webkit-transform: rotate (45deg) ;
You can also skew an element by defining an angle for the X and Y-axis respectively. For example:

-webkit-transform: skew(10deg,-45deg) ;

2D Transformations | 247

This produces the result shown in Figure 27-8.

FIGURE 27-8

Finally, it is possible to move elements from where they otherwise would be placed by using the
translate function. As with the Canvas AP, the best way to think about this is that it is a mecha-
nism for offsetting where the 0,0 coordinate would be for each element. For instance, the following
code will position an element 40 pixels to the right and 40 pixels above where it otherwise would be
positioned:

transform: translate (40px,-40px) ;

If you only want to offset the X- or Y-axis, you can use the translatex and translateY functions
respectively.

If you wish to invoke more than one of the translate functions, you can simply list them in a
space-separated manner. For example:

transform: translate (40px,-40px) scale(0.5,0.5);

Alternatively, if you are transforming more than one aspect of an element, you can use the matrix
function. This accepts the following parameters:

> The scaling for the X parameter, with 1 being the default.

The amount to skew the X-axis by. A value of 0.45 is equivalent to 45 degrees.

The amount to skew the Y-axis by.

The scaling for the Y parameter, with 1 being the default.

The X-axis offset. Offsets are expressed in pixels, but the px suffix must be omitted.

The Y-axis offset.

Y Y Y VY Y

I hope you noticed that this list is exactly the same as with the Canvas API.

248 | LESSON 27 CSS3:PARTII

The following is an example use of the matrix function:

transform: matrix (0.5, 0.45, -0.45, 0.5, -300, 0);

This produces the result shown in Figure 27-9.

FIGURE 27-9

NOTE The transitions demonstrated in this section have been 2D transitions
because they adjust the element in two dimensions. CSS3 also supports three-
dimensional transitions. Although these are beyond the scope of this book, you
may want to explore them in your own time. The CSS functions supporting this
an?translate3d,scale3d,rotate3d,and1natrix3d.T%eseareessenﬁa”ytbe
same as the functions demonstrated in this section, except they accept param-
eters representing the third dimension.

TRANSITIONS

Earlier in the book, I introduced simple animation effects with jQuery. These effects essentially
controlled the behavior as an element transitioned from one state to another, usually from hidden to
visible, or vice versa.

CSS3 has also introduced a form of animation called CSS Transitions. These achieve many of the
same effects as the jQuery animation libraries, but because they are implemented directly by the
browser, tend to produce smoother effects.

CSS Transitions allow you to define when a transition effect will begin, how long the transition will
last, and the behavior the transition will take (for instance, run at a constant speed, speed up as it
nears completion, or slow down as it nears completion).

In order to see transitions in action, consider the following web page:

< !DOCTYPE htmls>
<html lang="en">
<head>
<meta charset="utf-8">
<style>
div {

Transitions | 249

height:20px;
width:200px;
margin:50px;
background:black;
color:white;
transition:height 3s, color 2s, background 2s, border 2s;

}

div:hover ({
background: white;
color:black;
border: 1px solid black;
height:200px;
}

</style>
</head>
<body>
<div id="divl">Hover to expand</divs>
</body>
</html>

This defines a single div element. The aspect of the code that allows for transition effects is the
following CSS property:

transition:height 3s, color 2s, background 2s, border 2s;

This property defines how long the browser will take to transition from one state to another when
various stylistic properties on the element are changed. The times are expressed in seconds, but can
also be expressed in milliseconds by using the ms suffix.

By itself this property does not do anything. CSS Transitions rely on the stylistic properties being
manipulated in some manner. In this case the styles are changed when the user hovers over the
element (since the hover pseudo-class modifies the value of various properties), but they could be
changed in other ways, such as through JavaScript manipulation of the DOM.

When a CSS property is changed, the browser checks to see whether there is a transition rule associ-
ated with that property. If there is, it applies those rules as the property is changed.

If you open this web page and hover over the element, you will notice that it takes 3 seconds for the
height to change from 20 pixels to 200 pixels. Likewise, you will notice that it takes 2 seconds for
the background to change from black to white, and that it changes in a linear manner, starting as a
dark grey and gradually becoming lighter, until finally it is white.

In this example, the only aspect of the transition that is controlled is the time taken to complete
the transition. It is also possible to control the effect that will be used and the delay that will occur
before the effect begins.

As an example, you may want to specify that the effect does not begin for 1 second, and that the
effect eases in and eases out:

transition-delay: 1s;
transition-timing-function: ease-in-out;

These effects can also be specified directly on the transition property, and therefore can be different
for different properties. For example:

250 | LESSON 27 CSS3:PARTII

transition:height 3s ease-in-out, color 2s linear 1ls, background 2s ease-in 2s,
border 1s ease-out 3s;

Combining different delays, durations, and effects is a useful way of creating a more interesting
transition effect.

Naturally, not all CSS properties can be animated when their values change. For instance, it is not
possible to animate changing from one font to another. The vast majority of properties that change
the size or color of an element in any way can be animated, however.

TRY IT

In this Try It, you will use some of the transformation and transition techniques learned in this
lesson. Begin by writing the following web page that defines a single div element:

< !DOCTYPE htmls>
<html lang="en">
<head>
<meta charset="utf-8">
<script src="jquery-2.1.1.js"></script>

<style>
div {
height:200px;
width:200px;
margin:50px;
background:green;
}
</style>
</head>
<body>
<div id="divl"></div>
</body>
</html>

You will then add a click listener so that when the div is clicked, it transitions through four sets of
colors, and rotates by 90 degrees as it changes color.

Lesson Requirements

You will need a text editor for writing the code and the Chrome browser for running the code.

Step-by-Step

1. Start by creating the web page with the div element. Be sure to import the jQuery library
because this will be used to add a click listener.

2. The div CSS rule needs to be given a transition property, which needs to contain values
for changes to the background color and transformation (this will be -webkit-transform
because you will use the rotate function, and this uses browser prefixes), so add two sets of
transition rules specifying the number of seconds the transition should take, and the effect for
the transition.

Trylt | 251

3. Create a script block in the web page and add an array of four colors. For example:
var colors = ['green', 'teal', 'indigo', 'purple'];
4. Add a click listener to the div element. When this is clicked, perform Steps 5-7.

5. Increment a counter variable by 1, and then use the modulus operator to determine whether
this is state 0, 1, 2, or 3.

6. Change the background color to the next value in the array, cycling back to the start when
the end is reached.

7. Use the rotate function to rotate the div by an additional 90 degrees. The easiest way to do
this is to multiply 90 by 0, 1, 2, or 3.

My version of the web page can be found on the book’s website, and is named tryit.htmil:

REFERENCE Please go to the book’s website at www.wrox.com/go/html57s-
jquery24hr fo view the video for Lesson 27, as well as download the code and
resources for this lesson.

http://www.wrox.com/go/html5js-jquery24hrto
http://www.wrox.com/go/html5js-jquery24hrto
http://www.wrox.com/go/html5js-jquery24hrto

28

CSS3 Media Queries

You will end this section by taking a first look at CSS3 media queries. This is a subject you
will return to when you look at developing web applications for mobile phones, but this lesson
will introduce the fundamentals for developing web applications that render differently on
different devices, and in different contexts.

It is now very common for a web application to be used on many different devices. For
example:

> In a web browser, on a desktop or laptop

> Qutput to a printer

> On a small screen device, such as a smart phone
>

On an alternative device, such as a TV

Although the basic functionality of the web application may be the same in each case, it may
be necessary to reposition, hide, or augment the display of specific elements for each device.

There are several ways to solve this problem. Historically, the most common approach has
been for the web server to detect the browser (or user agent) accessing the web page, and
directing the user to a page created specifically for this device.

Any time a browser requests a web page, it provides a variety of information in HTTP
headers. These can be can be used by the web server to reliably detect the browser and
operating system. For example, Figure 28-1 shows the headers that were passed to the web
server when performing a simple HTTP GET request, including the User Agent header.

There are two main problems with this approach. The first is that it does not necessarily
provide the entire context of the user’s web browser. For instance, if the user is using a
tablet, it will not contain information on whether he or she is using landscape or portrait
mode. Likewise, it cannot be used to augment the web page for printing because printing a
page does not trigger a request for a new web page from the server.

254 | LESSON 28 CSS3 MEDIA QUERIES

@, Elements | Network | Sources Timeline Profiles Resources Audits Console = # 18, x
® ©® T := [Preserve log [Disable cache
Name %
Path Headers | Preview Response Cookies Timing
P publishing.html ¥ Request Headers view source
== Accept: text/html,application/xhtml+xml,application/xml;q=0.9, image/webp,=/*;q=0.8
default.css Accept-Encoding: gzip,deflate,sdch
O Accept-Language: en-US,en;g=8.8
Cache-Control: max-age=8
___—| cover.jpg Connection: keep-alive
=] Jimages Cookie: __utma=56518521.1893152668. 1400979810, 1408657661, 1488821823.6; __utmb=5651@521.1.1@.148882
j Paling 1823; __utmc=5651@521; __utmz=56510521.148@979810.1.1.utmcsr=(direct) |utmcen=(direct) |utmemd={non
Bl e)
) (Dt Host: cisdal.cem
!—| bg2.jpg User-Agent: Mozilla/5.8 (Macintosh; Intel Mac 05 X 1@_8_5) AppleWebKit/537.36 (KHTML, like Gecko)
L= simages Chrome/36.8.1985.125 Safari/537.36
. . ¥ Response Headers view source
16 requests | 4.4 KB transferre... Arrant-Bannac hutac
FIGURE 28-1

The second problem is that it can become difficult to maintain content in this manner. There will
often be large amounts of duplication across the different versions of the web pages. When a change
is required to the web application, it may therefore be necessary to make the same change in many

different files.

CSS3 now offers an alternative mechanism for solving this problem in the form of media queries.
These queries allow a stylesheet to tell the browser how to behave in various contexts, and therefore
allow the same page to render differently without changing any markup.

With media queries, it is up to the browser itself to determine whether specific stylesheets, or portions
of stylesheets, are relevant for them based on a set of rules, and to render the web page appropriately.

Media queries allow a stylesheet to provide custom rules based on:
> The device type—for instance, screen, printer, or TV
> The width or height of the browser or screen
> Whether the orientation is landscape or portrait
> Whether the device is color or monochrome

This lesson will focus on the first of these bullet points and return to examine the other bullet points
when you develop mobile web applications in future lessons.

ADDING MEDIA QUERIES

Imagine that you wish to add print capabilities to the CRM web application. When clicked, this will
only print the contacts in the table; it will never print the editable section of the screen, even if it is
present, and it will not print the header or the footer.

One way to achieve this may be to add a new class called noprint to every element you do not wish
to print. For example:

<header class="noprint"s>Contacts</header>

Adding Media Queries | 255

Then, add the following rule to contacts.css:
@media print {

.noprint {
display: none;
}

}

Notice that the rule begins with the @media tag. This indicates that the rule will only apply in
specific contexts. The @media tag is followed by a query that allows the browser to determine
whether the rule is applicable in specific contexts. In this case, the query is print, which indicates
that the rule only applies if the web page is being printed.

The other common values for media queries are:

> all: Matches all device types.

> screen: Matches any screen-based device, which therefore excludes printers.
> tv: Matches when the page is viewed on a television.
>

handheld: This is intended to match browsers on small screen devices such as smart phones.
I don’t recommend that you use this option, however, because it is not reliably supported.
You will look at a more reliable alternative to this later in the book.

Next, add a print button to the screen, and also ensure that the “Add a new contact” button does
not print:
<div class="controls noprint">
Add a new contact
Print
</div>
I also updated the table so that the Actions column has the noprint class (both the th and td
elements). If you now elect to print the web application, it should generate a preview, as shown in
Figure 28-2.

=
| Cancel | Sales leads

Dana " January 20,
Save as PDF Cameron 555 677 911 |dane@testing.com (2 2015

Destination

1 contacts displayed

| Change...

FIGURE 28-2

You will notice that only the appropriate elements are included in the print preview. You may notice,
however, that the table header does not print as expected. In the web application, the header has a
blue background and a white font. When browsers print web pages, they typically suppress
background colors to save ink. As a result, they compensate by changing white fonts to have color.

256 | LESSON 28 CSS3 MEDIA QUERIES

In this case, the overall effect is not what you may want because the font is quite difficult to read.
You also may choose to remove the border and white space from around the table. You can therefore
add the following rules to your media query:

@media print {
.noprint {
display: none !important;

}

th {
color:black;
background:white;

}

#contactList {
border: none;
margin: none;
padding:none;

This will then generate the preview shown in Figure 28-3.

Sales leads
c::::l n‘:‘::l:::r Email address cun:r':l:nr cnll;-;:.ttad
g: e on 555322333 |dane@testing.com |2 ;3'11”53”' 5,
1 confacts displayed
FIGURE 28-3

EXTERNAL STYLESHEETS

The approach outlined in the previous text involves adding device-specific rules to stylesheets.
Often it is more convenient to create a base stylesheet that matches all device types, and then create
device-specific stylesheets that override relevant styles.

This can be achieved by using the media attribute on the 1ink element. For example:
<link rel="stylesheet" media="all" type="text/css" href="contacts.css">

After the base stylesheet is imported, the device-specific stylesheets can be imported. It is important
that these are listed after the base stylesheet because they are likely to have rules that supersede
those in the base stylesheet. For example:

<link rel="stylesheet" media="print" type="text/css" href="contacts print.css">

Naturally, when stylesheets are imported in this manner, the stylesheets themselves do not need to
contain media queries, although they still can if necessary.

It is important to realize that matches based on media queries do not have higher specificity than
they would otherwise so it can also be necessary to use the ! important modifier to ensure that
media-specific styles are used.

Trylt | 257

TRY IT

In this Try It, you will introduce a print-specific stylesheet for printing. If you have not followed
the example so far in this lesson, you may want to go back and implement the print functionality
outlined before starting this Try It.

Lesson Requirements

You will need a text editor to write the code and the Chrome browser to run the code.

Step-by-Step

1.

2.

Start by creating a new stylesheet called contacts print.css in the same folder as
contacts.css.

Add the print-specific functionality to this stylesheet and remove any media queries.

Import the print stylesheet after the contacts. css stylesheet, and indicate that it is
applicable for printing.

Add a media type to the contacts.css import, and indicate that it is applicable to all device
types.

Add a new header specifically for printing; this should state “Printed from CRM.”

Add a class called print_only to this element, and then add rules to both the base and print
stylesheets. The base stylesheet should set the display to none. The print stylesheet should
set the display to initial, which means to restore it to its default value.

Change the header style in the print stylesheet to use a black, 16-pixel font.

REFERENCE Please go to the book’s website at www.wrox.com/go/html55s7 -
query24hr to view the video for Lesson 28, as well as download the code and
resources for this lesson.

http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto

PART IV
HTMLS APIs

» LESSON 29: Web Servers

» LESSON 30: Web Storage

» LESSON 31: IndexedDB

» LESSON 32: Application Cache
» LESSON 33: Web Workers

» LESSON 34: Files

» LESSON 35: AJAX

» LESSON 36: Promises

29

Web Servers

Up until this point in the book, you have been opening web pages in the browser directly from
the file system. Obviously, if you intend your web pages to be viewed by others, you need to
make them available over a network. The software used for exposing web pages over a net-
work is a web server.

The term “web server” can either denote the hardware of the underlying server or the software
running on that server. For the purposes of this lesson, the term “web server” will be used to
denote the software, whereas “server” will be used to denote the hardware this software runs
on.

The primary purpose of a web server is to expose a set of resources from the file system of a
network enabled server via protocols such as HTTP and HTTPS. Resources are typically files
such as HTML pages, images, and CSS files, to video and audio files.

NOTE This view is slightly simplistic because many resources in real-world web
applications are dynamically generated and therefore do not exist on a physical
file system, but you will ignore this complication for the most part.

In this lesson, you will migrate the web application developed so far to a web server. You are
doing this for two main reasons:

> To give you an understanding of how a web server works: Any web page or web
application you develop will be uploaded eventually to a web server, so it is useful to
gain some understanding of how they work, and how to configure one.

> Many of the APIs introduced in this section need to run inside web servers: The APIs
included in this section will cover more advanced JavaScript APIs such as storing data
inside the browser. These APIs therefore need a mechanism for segregating the data
from different websites: Without this segregation, any website would be able to access
data stored by any other website, which would obviously create a security loophole.

262 | LESSON 29 WEB SERVERS

URLS

Before looking at web servers, this lesson will quickly cover the related topic of URLs (Uniform
Resource Locators). A URL provides a unique network address for a resource (image, web page,
CSS file). The “network” will often be the public Internet, but URLs can also be used to locate
resources on private networks, such as your personal WiFi network at home.

The web server is responsible for parsing the URL and determining the resource that should be
returned. The URL is also used by lower-level protocols, however, to determine how to route the
request to the appropriate server on the network.

URLs are surprisingly complex, but the most familiar pattern is as follows:
http://testing.com:80/testl/test.html
This URL consists of the following components:

> http: The protocol that is being used to access the resource; other common protocols are
https and ftp.

> testing.com: The domain name resolved by the browser to an IP address using a Domain
Name Server (DNS). The IP address (for instance 192.168.199.133) in turn maps to a server
running on a network.

> 80: The port number of the web server. Because a single server may expose multiple services
(for example, an FTP server and an HTTP server), port numbers provide a mechanism to
logically differentiate them. You will not usually see the port number in URLs because 80 is
the default for the HTTP protocol, and 443 is the default for the HTTPS protocol, and the

port number can therefore usually be omitted.

> testl: The directory on the web server. Typically, the web server will map its root directory
to a directory on the file system. In this case, there would be an assumption that this direc-
tory contains a subdirectory called test1.

> test.html: The name of the resource being accessed.

The two most important components used by the APIs in this section are the domain name and the
port. These are referred to as the “origin” of a resource. Typically, a resource will only be able to
interact with resources or information from the same origin: This is referred to as the same origin

policy.

CHOOSING A WEB SERVER

There are many web servers available, both commercial and open source. Many factors come into
play when choosing a web server, but these discussions are beyond the scope of this book. It is,
however, worth mentioning that by far the most popular web server, almost since the advent of the
World Wide Web, is the Apache web server.

http://testing.com:80/test1/test.html

Trylt | 263

Apache is an open source web server, and provides an excellent combination of stability, features,
and performance. If you use a hosting service, they will almost certainly make the Apache web
server available to you.

You will not use Apache in this book, mainly because it takes slightly more effort to install and con-
figure than the web server you will use, but you may opt to use it if you choose. It can be accessed
from http://httpd.apache.org/, and tutorials are available for guiding you through the installa-
tion and configuration process.

In this book, you will use the Mongoose web server (free edition). The main reason for choosing
this is its simplicity: It requires either very little or no configuration and is therefore ideal during the
development phase of your web application.

TRY IT

In this Try It, you install and configure the Mongoose web server. This Try It contains two sets of
steps, one for Windows and one for OS X.

NOTE Linux source code is also available at: http: //code.google.com/p/
mongoose/downloads/list. To run this, the simplest option is to cd to the
directory containing contacts.html and run mongoose. This runs in the
foreground so use ctrl-cC to stop.

Lesson Requirements

As part of the steps outlined next, you will need to download the Mongoose web server from the
site listed. This will involve agreeing to the non—commercial license agreement. You will also need
the Chrome web browser to test that the web server is working.

Step-by-Step (OS X)

1. Download the Free Edition OS X installer from: http://cesanta.com/downloads.html.
This requires you to accept the license agreement.

2. Once this has downloaded, double-click on the DMG file and drag it to Applications, just as
you would when installing any other application.

3. Open the Finder and navigate to the Applications folder. Find the Mongoose application, and
double-click on the icon to start the Mongoose server.

4. The Mongoose application can now be configured via the icon in the taskbar at the top of the
screen, as shown in Figure 29-1.

http://httpd.apache.org
http://code.google.com/p
http://cesanta.com/downloads.html

264 | LESSON 29 WEB SERVERS

5

web ser

5.4.1 [FREE EDITION]

i To: [0c11595afb]

Software Update: visit my cabinet on cesanta.com
Edit configuration
Go to my address: http://192.168.0.11:8080

’ro features exprire on 04-Oct-2014

Quit #Q
FIGURE 29-1

Select the Edit configuration option. This will open a browser window with the configuration
settings. Locate the document root text field, and change the directory to the directory that
contains the contacts.html file. For example /Users/dane/html5/CRM. Once entered,
click “Save settings to the config file”.

The Mongoose server operates by default on port 8080 rather than port 80. Because it is
running on your local machine, you can also use the hostname localhost. Therefore, to
open the contacts page, open Chrome, and enter http://localhost:8080/contacts.html. This
should show the main contacts web page.

Step-by-Step (Windows)

1.

Download the Free Edition OS X installer from http://cesanta.com/downloads.html.
This requires you to accept the license agreement.

Once the download is complete, copy the .exe file to the same directory that contains
contacts.html.

Double-click on the executable to start Mongoose.

The Mongoose application can now be configured via the icon in the taskbar at the bottom
of the screen, as shown in Figure 29-2 (although no configuration is required in this case).

i Mongoose web server vi4.l

Customize...

:38 p.m.

=
., w o 2
S0 s

FIGURE 29-2

http://localhost:8080/contacts.html
http://cesanta.com/downloads.html

Trylt | 265

The Mongoose server operates by default on port 8080 rather than port 80. Because it is
running on your local machine, you can also use the hostname 1ocalhost. Therefore, to
open the contacts page, open Chrome, and enter http://localhost:8080/contacts.html.

This should show the main contacts web page.

REFERENCE Please go to the book’s website at www .wrox.com/go/html5]s] -

query24hr to view the video for Lesson 29, as well as download the code and
resources for this lesson.

http://localhost:8080/contacts.html
http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto

30

Web Storage

When the World Wide Web was first envisioned, it was intended as a repository for static
documents, primarily academic papers. The key distinguishing feature of the World Wide
Web was hyperlinks, which allowed one document to provide a link to another document, and
therefore allowed convenient navigation from one piece of information to another.

It wasn’t long before web pages started providing more advanced features, such as online
shopping. This required web pages to dynamically respond to user interaction. As you have
seen, this was facilitated by technologies such as the DOM API, which allows a web page to
be modified after it was loaded.

HTML and JavaScript could only take you so far, however. It still was not possible to create
web pages or web applications that exhibited the features typically found in native desktop
applications. For instance, web pages lacked the following capabilities:

> The ability to interact with the file system beyond the simple file input type.

> The ability to store large amounts of data or configuration information inside the
browser (on the client).

> The ability to function without a network connection. Even if a page is cached inside a
browser, it typically is not usable without a network connection.

> The ability to perform intensive processing on a background thread without impacting
the user experience. Because all JavaScript processing occurs on a single thread, any
intensive processing will cause the web page to “lock up.”

> The ability to request additional data from a server after a page had loaded without
performing a refresh of the entire web page.

You can think of these features as the services accessible to a software application. For a
traditional desktop application, the operating system provides these services. Web pages
cannot interact directly with the operating system; they can only interact with the browser.
Therefore, unless the browser provided these services, web pages would always be constrained
from achieving a higher level of sophistication.

268

| LESSON 30 WEB STORAGE

Despite the historic limitations of HTML and JavaScript, there has been a strong push toward
browser-based web applications as opposed to native applications. Browser-based web applications
are enormously convenient because the same web application can be accessed on any device, from
any location, at any time. This push has only intensified with the move toward cloud computing, as
more and more data is pushed into globally available cloud computers.

Browser-based web applications also have the advantage that they do not need to be installed, and
they can be automatically updated without any action from the user.

In order to allow web applications to achieve the same level of sophistication as native applications,
the HTMLS specification provides a set of JavaScript APIs for implementing all the features just listed,
along with several others. This section will cover these APIs in detail, starting with client-side storage.

CLIENT-SIDE STORAGE

The HTTP protocol used to retrieve resources from a web server was designed as a stateless proto-
col. It begins with the browser establishing a network connection to the web server and requesting
a resource. The web server finds the resource and returns it as a response to the browser. Once the
response is received, the connection between the two is closed, and no link is retained that the two
ever communicated.

NOTE This is a slightly simplified view of HTTP. Because establishing
connections can be time consuming, the HTTP protocol was extended early on
to support a keep-alive option. This meant that multiple requests could be made
on the same connection. This feature cannot be relied on in order to continue

a conversation with the web server, however, because it is up to the web server
to decide how long to leave the connection open for.

This model clearly does not work well for a number of scenarios. If you consider a shopping website,
the server will need to retain a shopping cart for the user as he progresses from page to page: Clearly
this relies on the web server remembering each particular browser, and the history of their actions—
for instance, the products they have purchased. I will refer to all the actions performed by the same
browser as a session.

In order to support this, a technology was introduced called cookies. A cookie is simply a key/value
pair that can be sent by the web server to the browser on an HTTP response. The browser will
then store the information in this cookie for a configurable period of time (usually as small files on
the file system). Every time the browser sends a request to the same web server in the future, it will
include all the cookies that have been sent to it.

Although cookies can be used to store any textual information, typically they are used to store a
unique session ID for each browser. The web server generates this session ID whenever it receives a
request from a browser it has not seen before (where there is no cookie in the HTTP request), which
the browser then stores, and provides automatically on future requests. The web server can then
store information against this session ID, and provide that information back to the browser when
required, such as when the user decides to check out.

Web Storage APl | 269

Although cookies are great for storing small amounts of data, they do come with a number of
limitations. The principle limitation is that browsers are only required to allow 20 cookies per
domain name, and each cookie is limited to 4096 bytes of data. If you work through the sums, a
domain may only be able to store 80 kilobytes inside the browser, which, by modern standards, is
not a lot of data.

There are, however, very good reasons why a web application may want to store larger amounts of
data on the client, the two main ones being;:

> Performance: If the data is stored on the client, it is much faster to process and display in the
browser than if it needs to be retrieved from the web server. Despite the increase in network
speeds, accessing data locally is still many orders of magnitude faster.

> Availability: If the data is stored on the client, it can be accessed even when the browser is
not connected to a network.

HTMLS adds not one, but three distinct APIs for storing data inside the browser:

> Web storage: This is the subject of this lesson. This is the oldest storage API and has excellent
support across all browsers.

> Web SQL: This standard proposes a relational database—based API, but is not widely
supported, and is unlikely to see support across all browsers in the future. Although this API
has a lot to recommend it, it will be ignored in this book, because without universal browser
support, the API is unlikely to find widespread adoption.

> IndexedDB: This is the subject of the next lesson. This API is considerably more
complicated than the web storage API, but does offer a number of important additional
features.

WEB STORAGE API

The web storage API is by far the simplest of the three data storage APIs specified in HTMLS5, and,
as mentioned, it also has the best support across all major browser vendors.

The web storage API does come with certain limitations, however:

> It can only be used for storing textual data (JavaScript Strings). It is not possible to store
other types of data such as JavaScript objects.

> Browsers may restrict a domain to SMB of storage. Although this is a huge amount of data in
comparison to cookies, it may not be feasible for all scenarios.

NOTE The SMB limit is an even bigger constraint than it may sound. This is
due to the fact that each character in a JavaScript string uses 2 bytes of storage.
JavaScript uses a character encoding called UTF-16, which allows any Unicode
character to be represented in 2 or more bytes. Other encodings such as UTF-8
are now far more common, and only use 1 byte for the most common Unicode
characters (provided you are using a Western alphabet).

270 | LESSON 30 WEB STORAGE

The web storage API is remarkably simple to use; it relies on simple key/value pairs. In order to see
it in action, open the contacts.html web page using the relevant address for your web server (for
example, localhost :8080/contacts.html), and enter the following code in the JavaScript console:

> localStorage.setItem("test", "this is a test");

In this case, test is the key, and this is a test is the value. As you can see, the localStorage
object provided by the browser exposes the web storage API.

NOTE The browser also exposes the web storage API via a compan-

ion object called sessionStorage. Any data stored via 1ocalStorage is
retained indefinitely (or until the user deletes it), whereas data stored via
sessionStorage is automatically cleared when the browser is closed. You
should always be conscious of the fact that data stored via the web storage
API is not encrypted; therefore, it is not appropriate for sensitive data.

If you now open the Resources tab of the developer tools, and expand the Local Storage option, you
will see that the key/value pair has been captured (see Figure 30-1).

Q, Elements Network Sources Timeline Profiles | Resources | Audits Console = £
> Frames Ke‘r | Value
| web sQL | test this is a test
| IndexedDB | |
w [Local Storage
£5 http:/flocalhost: 8080

» [#] Session Storage
> [Cookies
& Application Cache |

FIGURE 30-1

Notice that this data is associated with the origin 1ocalhost:8080. Only pages served from this
origin will have access to this data.

The companion method for setItem is getItem. This allows an item to be retrieved based on a key.
For example:

> localStorage.getItem("test");
"this is a test"

This method will always return a JavaScript string, or undefined if there is no value stored against
the key specified. Two other useful methods are included in the API. The removeItem method can
be used to remove a value based on a key. For example:

> localStorage.removeltem("test");

Finally, the clear method can be used to remove all data stored by the origin:

> localStorage.clear() ;

These simple methods are all that is required to use web storage.

Storing Structured Data | 271

STORING STRUCTURED DATA

As mentioned earlier, the web storage API can only be used for storing textual data; it cannot be
used for storing structured data such as JavaScript objects. This presents a problem for your CRM
web application because you would ideally like to store the JavaScript contact objects in web storage
so that they are retained when the page is refreshed or the browser is closed.

NOTE The web storage API will not actually complain if you specify a
JavaScript object as the value for a key; it will simply convert the object
into a string by invoking its tostring method. This will usually mean that
the value persisted is [object Object] because this is the default value of
toString.

Fortunately, there is a simple solution to this: You can use the JSON. stringify function to convert
JavaScript objects to JSON encoded strings, and then store these strings in web storage. When you
need to retrieve data from web storage, you can convert it back into JavaScript objects with Json.
parse.

For instance, if you want to save a contact object, you can create the following function in
contacts.js:

function store(contact) {
var ¢ = JSON.stringify(contact) ;
localStorage.setItem('contacts', c);

}

This function adds a single contact to web storage.

Because you need to store multiple contacts, you may decide to create an array for holding the
objects. Additionally, you need to retrieve the existing array from web storage before adding a new
contact. The following function therefore provides the necessary functionality for storing multiple
contacts:

function store (contact) {
var contactsStored = localStorage.getItem('contacts');
var contacts = [];
if (contactsStored) {
contacts = JSON.parse (contactsStored) ;
}

contacts.push (contact) ;
localStorage.setItem('contacts', JSON.stringify (contacts)) ;

}

The first line of this function extracts the existing array from web storage. If it exists, it converts
it from a string into a JavaScript array. If no contacts have been saved, you simply create an empty
array to hold contacts. You then push the new contact onto the array, and persist the array to web
storage.

272 |

LESSON 30 WEB STORAGE

NOTE It is also possible to extract items from localStorage using traditional
dot notation—for instance, localStorage .contacts. In order to use this
approach, item keys must conform to the JavaScript property name standards.

The setItem method will overwrite any existing entry for the same key; thus, every time a new
contact is saved, the array stored in web storage will be entirely replaced.

The store function should be added to the contactsscreen function, immediately after the
following line:

var initialized = false;

The save method should then be changed to invoke this function:

save: function(evt) {

}

if ($(evt.target) .parents('form') [0].checkValidity()) {

var fragment = $(screen).find('#contactRow') [0].content.cloneNode (true) ;
var row = $('<tr>').append(fragment) ;

var contact = this.serializeForm() ;

store(contact) ;

row = bind(row, contact);

S(row) .find('time') .setTime () ;

S (screen) .find ('table tbody') .append (row) ;

$(screen) .find('form :input[name]').val('"');

S (screen) .find('#contactDetails') .toggle("blind");
this.updateTableCount () ;

You now need to add functionality to load existing contacts when the contacts.html web page
loads. This can be achieved by adding the following method to contacts.js (immediately after the
savelnethodﬁ

loadContacts: function() {

var contactsStored = localStorage.getItem('contacts');
if (contactsStored) {

contacts = JSON.parse (contactsStored) ;
$.each(contacts, function(i, v) {
var fragment = $(screen).find('#contactRow') [0].content.

cloneNode (true) ;

b

var row = S$('<tr>').append(fragment) ;

row = bind(row, Vv);

S(row) .find('time') .setTime () ;

S (screen) .find ('table tbody') .append (row) ;

b

This function is relatively straightforward; it simply extracts the contacts array from web storage,
iterates through the items, and adds each one to the table onscreen using code from earlier in the

book.

This function should then be invoked at the end of the init method with the following line of code:

Trylt | 273

this.loadContacts () ;

If you now save a contact and re-open the contacts.html web page, you should see any contacts
that are retained.

TRY IT

In this Try It, you will enhance the functionality added in this lesson by providing delete functional-
ity. Currently, the delete button removes the relevant row from the table, but it does not remove the
record from web storage: This means that once the page is refreshed, the contact will immediately
come back.

Lesson Requirements

To complete this lesson, you will need a text editor for writing code, and Chrome for running the
completed web page. It is also expected that you have completed the steps in the body of the lesson
before starting this Try It.

Step-by-Step

1. Open the contacts.js file in your text editor. You will make a change to the saving process:
When you save a new contact, you will assign it a unique ID. This will allow you to uniquely
identify the contact that is being deleted. The ID you will create will be based on the current
time in milliseconds. In order to achieve this, add a new line after this line:

var contact = this.serializeForm() ;

This line should set an ID property on the contact to have a value derived from the $.now ()
function call. This is another jQuery helper, and returns the current time in milliseconds (as
a JavaScript number).

2. Because any existing contacts will not have id properties, it is important that you delete
them. Use the localStorage.clear () method call from the command line to delete all data
from web storage.

3. When contact rows are added to the table in 1oadcontacts, you will add a data attribute to
the tr element specifying the ID of the contact in the row. The delete event listener will use
this to determine the ID of the contact that should be deleted. Identify the following line of
code:

var row = S$('<tr>') .append (fragment) ;

Now, change this so that the tr element created has an attribute called data-id with the
value from v.id. Hint: I split this into three separate lines of code.

4. The contacts. s file already has a delete method that removes a contact from the table.
You need to add code before the following line to identify the data-id associated with the
tr:

S (evt.target) .parents('tr') .remove () ;

Assign the ID to a variable called contact1d.

274 | LESSON 30 WEB STORAGE

5. Look up the contacts from web storage and convert it back into a JavaScript array using
JSON.parse.

6. Use the filter method on the array to retain any items that do not match this ID. Assign the
newly created array to a variable called newcontacts.

7. Update the contacts in web storage so that the array stored is the newly created array.
Remember to use JSON. stringify on the array before adding it to web storage.

NOTE You may be wondering why you needed an id to uniquely identify con-
tacts. Typically, adding a key such as this is the easiest way to uniquely identify
an object because none of the other properties on the object is guaranteed to be
unique. In this case, it may have been possible to make the email address the
unique key, but even this can be shared by multiple people in the real world.

REFERENCE Please go to the book’s website at www.wrox.com/go/html57s] -
query24hr fo view the video for Lesson 30, as well as download the code and
resources for this lesson.

http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto

31

IndexedDB

As mentioned in the previous lesson, HTMLS includes specifications for three distinct APIs
that allow data to be stored inside the browser. This lesson introduces the IndexedDB API.

The IndexedDB API is considerably more advanced than the web storage API. Therefore, if the
web storage API meets all your needs, you may opt to skip this lesson.

The IndexedDB API does, however, offer the following benefits over the web storage API:

>

It allows various data types to be stored rather than simple strings. For example, it is
possible to store JavaScript objects directly in IndexedDB.

It allows more sophisticated retrieval mechanisms. For example, it is possible to query
IndexedDB for a specific record, such as a single contact, based on its unique ID.

It allows create, update, and delete operations to be included in transactions. This
means you can perform a set of operations and guarantee that they will either all
succeed or all fail. If you are familiar with relational databases, this will be a familiar
concept.

It is capable of automatically generating unique keys for records. This will mean you
do not need to rely on mechanisms such as the current time in milliseconds, as you saw
in the previous lesson.

Browsers typically allow far more data to be stored in IndexedDB as opposed to web
storage.

NOTE Unlike the web storage API, the IndexedDB specification does not state
how much storage space must be allocated to each domain. Browsers typically
either place no limitations on IndexedDB (beyond what the hard drive will
support) or place an upper limit in the gigabytes.

Although these features can be enormously useful in some web applications, they do com-
plicate the API. The IndexedDB API is further complicated by the fact that it relies heavily

276 |

LESSON 31 INDEXEDDB

on callbacks for virtually all operations: Rather than simply invoking a method and receiving
a response, the IndexedDB API relies on you to register callbacks for various scenarios. These
callbacks will then be invoked when the specified event occurs.

The main reason the API relies on callbacks is to allow operations to be performed on background
threads if necessary. This means that if you are performing an intensive operation, the browser may
be able to perform this without impacting the user experience.

As you will see, the use of callbacks will significantly complicate the code you need to write because
it will often be necessary to ensure one operation has completed before performing the next
operation.

This lesson will provide an alternative implementation for the functionality added in Lesson 30.
Therefore, if you want to complete the exercises in this lesson, you should start with a version of
the CRM web application as it stood at the start of Lesson 30.

CREATING A DATABASE

In order to start using the IndexedDB API for the first time, you need to explicitly create a database,
and tell the API the types of data you wish to store in this database. Requesting to open a non-exis-
tent database automatically creates a database.

You will add two distinct sets of data to the database. In addition to contacts, you will add a list of
companies to the database, allowing the companies associated with contacts to be displayed cor-
rectly in the table (currently a number is displayed).

NOTE As you will see, IndexedDB is accessed via a browser-supplied object
called indexedDB. In Firefox, this must currently be referenced as mozIndexedDB,
and in IE it must be accessed via msIndexedDB. It is easy enough to create your
own alias to this object that will work in all browsers as follows:

myIndexedDB = indexedDB || msIndexedDB || mozIndexedDB;

The code you will use for creating the database is as follows. This should be placed at the end of the
init method in contacts.js to ensure it executes every time the page is loaded:

var request = indexedDB.open('contactsDB');
request.onsuccess = function(event) {

}

request .onupgradeneeded = function(event) {

}

NOTE Do not run this code yet. You need to provide implementations for these
functions, or an empty database will be created.

Creating a Database | 277

As you can see, you specify that you wish to open a database with a specific name, contactsDB in
this case. If the database has already been created inside the browser (this is not the first time the

user has accessed the web application), the callback function registered for the onsuccess event will
be invoked.

If the database has not previously been created, or if you provide an optional version number as the
second parameter to open, the function registered against onupgradeneeded will be invoked. It is
within this function that you can define the structure of your database.

Before providing implementations for these callbacks, in order to interact with the opened database
you will need a reference to it. Therefore, create a private variable called database as follows:

var initialized = false;
var database = null;

Now, provide the following implementations for the callback functions:

var request = indexedDB.open('contactsDB') ;
request.onsuccess = function(event) {
database = request.result;

request .onupgradeneeded = function(event) ({
database = event.target.result;
var objectStoreContacts = database.createObjectStore("contacts",
{keyPath: "id", autoIncrement: true });

var objectStoreCompanies = database.createObjectStore ("companies",
{keyPath: "id", autoIncrement: true });

}

The onsuccess callback is reasonably straightforward. This function simply records a reference to
the database, which you will start using shortly.

The onupgradeneeded callback is more complicated. In this callback, you begin by obtaining a
reference to the database and then create two object stores in the database. Each object store must
be given a unique name, and in each case you have also specified that you would like IndexedDB to
generate unique IDs for records via the autoIncrement property.

You have also specified that the unique ID for each record can be obtained from the id property, so

this is the property that will be automatically generated and assigned a unique ID when records are
stored.

NOTE If you are familiar with relational databases, you can think of each
object store as a table. The main difference is that you do not need to specify
the structure of the data that you will store; you simply need to state how each
record can be uniquely identified.

If you now open the Resources tab of the Chrome developer tools, you will see that a database has
been created, and that it contains two object stores (see Figure 31-1).

278 | LESSON 31 INDEXEDDB

Q, Elements Network Sources Timeline Profiles | Resources | Audits Console

» (I Frames Security origin: http://localhost:BOBR
F1web sqL Name: contactsDB
v | {IndexedDB Integer Version: 1

{1 contacrsDB2 - hup://l... String Version:

|| contacts
[&| companies
» [Local Storage

FIGURE 31-1

You can also see that the database has a version number. If you ever need to change the structure of
the database, you need to open it and provide a different version number. This will ensure that the
onupgradeneeded callback is invoked.

STORING DATA

You will begin by adding functionality to store data. Start by adding the following method to con-
tacts.js just after the save method:
store: function(contact) f{
var tx = database.transaction(["contacts"], "readwrite");
var objectStore = tx.objectStore("contacts");
var request = objectStore.put (contact) ;

request.onsuccess = function(event) {
console.log ("Added a new contact " + event.target.result);

b

This method begins by instructing the database that you wish to create a transaction. You provide
parameters specifying the object stores that will be involved in the transaction and you identify that
you wish to read and write data in the transaction.

All data access with IndexedDB needs to be performed in the context of a transaction. A transaction
can then consist of one or more requests. In this case, a single request is added to the transaction,
and this simply adds the contact to the relevant object store.

NOTE IndexedDB transactions exhibit the four important properties, usually
abbreviated to the acronym ACID:

Atomic: Either all the operations in the transaction succeed (commits), or all the
operations fail (roll back).

Consistent: The database will remain in a valid state at the end of the transaction
as defined by the rules of the database.

Isolation: The changes made by the transaction are isolated from other transac-
tions until all the changes have been successfully committed.

Durable: Once the changes are committed, they remain committed, even if the
database crashes immediately afterwards.

Reading Data | 279

As you can see, you can register an onsuccess callback with the request. This callback simply out-
puts the ID that has been assigned to the newly stored contact.

Although it is not shown here, you can also add an onsuccess callback to the transaction itself, and
this will be invoked after all requests in the transaction have completed. It is important to note that
the records added will not be available to other transactions until the transaction (rather than the
individual request) has succeeded.

Additionally, it is always possible to register an onerror callback along with an onsuccess call-
back. This provides you with an opportunity to handle any unexpected events.

Once the store method has been defined, you need to invoke it during the save operation, just as
you saw in the previous lesson. For example:

row = bind(row, contact);
this.store(contact);

If you now save a contact, the following message should be displayed in the console:

Added a new contact with the ID = 1

Additionally, you should be able to see the saved data in the Resources tab, as shown in Figure 31-2.

Q, Elements Network Sources Timeline Profiles | Resources | Audits Console a1 -3 o, x
» (I Frames « >
l {web sQL # Key (Key path: "id") Value
¥ | {indexedDB [t} 1 * {contactName: test33, phoneNumber:54335345, emailAddress:test@test:
v | | contactsDB - http://lo...
= contacts
[companies
{ 1 contactsDB2 - http://l...
» [Local Storage

FIGURE 31-2

Each time you add a new contact, the ID automatically assigned will increase by 1.

READING DATA

Now that you have stored data, you can add functionality to read it every time the web application
is opened. This functionality will perform the exact same operations as the 1oadContacts method
in the previous lesson, except it will read the data from IndexedDB.

Reading data from IndexedDB introduces a new concept called a cursor. A cursor is a mechanism
for holding a set of records. It is then possible to traverse through the cursor one record at a time
and process its contents.

Start by adding the following method to contacts.js immediately after the store method:

loadContacts: function()
var tx = database.transaction("contacts");
var objectStore = tx.objectStore("contacts");
objectStore.openCursor () .onsuccess = function(event) {
var cursor = event.target.result;

280 | LESSON 31 INDEXEDDB

if (cursor) ({

var contact = cursor.value;

var fragment = $(screen).find('#contactRow') [0].content.
cloneNode (true) ;

var row = $('<tr>');

row.data() .id = contact.id;

row.append (fragment) ;

row = bind(row, contact);

S(row) .find('time') .setTime () ;

$(screen) .find('table tbody') .append (row) ;

cursor.continue () ;

b

As you can see, this method begins by specifying that you wish to create a transaction, but this time
you do not specify that you need to write data. By default, transactions are always capable of read-
ing data.

Once the transaction is created, you can simply open the relevant object store and open a cursor
on the object store. By default, this cursor will provide a result set containing all the records in the
object store.

You then add an onsuccess callback to the cursor. This will automatically be passed the first record
in the cursor, which can be accessed from cursor.value and processed.

When you have finished processing the record, you invoke cursor.continue (). This automatically
causes the onsuccess callback to be invoked again with the next record in the result set. When the
value of cursor is null, you know that all the records have been processed.

You need to be careful to only invoke 1oadContacts after the database has been opened. In order to
achieve this, add the following code to the logic that opens the database.

var request = indexedDB.open('contactsDB');

request.onsuccess = function(event) {
database = request.result;
this.loadContacts() ;

}.bind (this) ;

Notice that you only attempt to read data from the database after IndexedDB has confirmed it has
been successfully opened.

If you wish to access a specific record from the object store, you can achieve this without processing
all the records in a cursor. For instance, the following code will find the contact with the ID of 2:
var request = objectStore.get(2);

request.onsuccess = function(event) {
var contact = event.target.result;

This will provide a significant performance boost as the object store increases in size because
IndexedDB optimizes this operation by creating an index on the ID.

Try lt | 281

NOTE It is also possible to index any of the other properties on an object (such
as emailAddress), allowing them to be searched directly and efficiently. This
subject will not be discussed in this lesson, but information is available on the
Internet if you wish to use this approach.

DELETING DATA

The final subject I will cover is deleting data. You will delete data records via their id, which, as you
will remember, is made available via a data attribute on the tr element.

In order to delete contacts, the delete method can be augmented as follows:

delete: function(evt) {
var contactId = $(evt.target).parents('tr').data() .id;
S (evt.target) .parents('tr') .remove () ;
this.updateTableCount () ;
var tx = database.transaction("contacts", "readwrite");
var objectStore = tx.objectStore("contacts");
var request = objectStore.delete(contactId):;

e
This code snippet begins by obtaining a reference to the id of the contact that is being deleted. It
then performs the familiar operations of creating a transaction (which needs to be readwrite) and
accessing the relevant object store.

Once a reference to the object store is obtained, the delete method can be invoked and passed the
relevant id.

TRY IT

In this Try It, you will enhance the functionality added in this lesson by providing functionality to
store a static list of companies. When a contact is stored, you will obtain a reference to the relevant
company and store this against the contact. Finally, when the contact is displayed in the table, you
will display the appropriate company name.

Lesson Requirements

To complete this lesson, you will need a text editor for writing code and Chrome for running the
completed web page. It is also assumed that you have completed the steps in the body of the lesson
before starting this Try It.

Step-by-Step

1. To begin, you will store a static list of company names in IndexedDB. You will perform this
in a new method called configureData, so start by adding this method immediately after the
init method in contacts.js.

282

LESSON 31 INDEXEDDB

You only need to add companies once (the first time the web application is used), so start by
determining if there are any records in the companies object store. You can determine this by
opening a cursor on the companies object store and determining whether event . target
.result evaluates to false in the onsuccess callback. If the first record in the cursor evalu-
ates to false, the object store is empty.

If there are no companies, you need to add three companies. These should be stored as
objects with a single property called name. The name should be set to the following value in
each record:

> ABC Incorporated
> XZY Ltd
» ACME International

Remember that you can use a single transaction and add three requests to it in order to store
these three companies. IndexedDB will automatically add id properties to these objects.

You need to ensure that the configurebata function is only invoked after the database has
initialized so invoke this immediately before the call to 1oadcontacts.

Refresh the web page and ensure three contacts are created in the companies object store.
Once verified, refresh the page again to ensure it does not create duplicate entries.

You now need to change the save operation so that it finds the company object that matches
the companyName property on the saved contact.

The code for finding the relevant company should be placed immediately after the following
line:
var contact = this.serializeForm() ;

Use the IndexedDB get method to find the company object with the appropriate id, and set
this as the companyName.

Remember also to use parseInt to convert the original companyName string into a number
because the get method expects a number.

There is now a complication: The remainder of the code in the save method needs to occur
in the onsuccess callback of get. This ensures that the company is actually set on the con-
tact before it is saved and displayed.

If you create a new contact now, it will display in the table as you see in Figure 31-3. This is
because the bind method simply converts the company object to a string.

Sales leads
Contact name Phone number Email address Company name Last contacted Actions

Dane Cameron | 555 333 123 dane@testing.com | [object Object] | January 6, 2015 | Delete

0 contacts displayed

FIGURE 31-3

Trylt | 283

This can be circumvented by adding additional logic to the bind method. One possible
approach is to use “programming by convention” and assume that if a field is of type
“object,” it will have a name property that can act as the display value:

if (typeof obj[field] == "object") {
$(val) .text (obj [field] .name) ;
} else {

$(val) .text (obj[field]) ;

}

An alternative approach would be to override the tostring method on company objects
and have this return the name field.

After the 1oadcontacts adds contacts to the table you need to invoke updateTableCount
to ensure the correct count of contacts is listed below the table. This will involve using the
bind function.

NOTE Although not shown in this Try It, you may also choose to populate the
options in the companyName select box from the companies stored in Indexed DB.
This will ensure that if you add new companies to IndexedDB, they will auto-
matically be available in the select box.

REFERENCE Please go to the book’s website at www.wrox.com/go
/html5]jsjquery24hr to view the video for Lesson 31, as well as download
the code and resources for this lesson.

http://www.wrox.com/go

32

Application Cache

In the previous two lessons, you learned how data can be stored inside the web browser.
Although this approach meant the web application was no longer reliant on Internet
connectivity to access data, the web application was still very much dependent on an Internet

connection to in order to load resources such as HTML pages, JavaScript files, images, and
CSS files.

For instance, if you shut down the web server and attempt to run the web application, you will
receive an error message that the web page is unavailable.

There are, however, many scenarios where you might wish to use a web application with-
out Internet connectivity. This is increasingly true now that web applications are regularly
accessed from portable devices, which may not have access to networks for periods of time.

Offline-able web applications was clearly a feature that needed to be addressed in order
for browser-based web applications to become a viable alternative to desktop applications;
therefore HTMLS introduced a technology called the application cache.

The application cache is a mechanism for specifying a set of resources that should be stored
inside the browser after they are accessed the first time. From this point forward they will be
accessed directly from the browser, removing all reliance on Internet connectivity.

In this lesson, you will learn how to configure a web application to work with the
application cache, along with approaches for interacting with the application cache via the
JavaScript API.

MANIFEST FILES

The key to understanding the application cache is the manifest file. This file specifies
the files that should be stored inside the browser, together with any other configuration
information required.

286 | LESSON 32 APPLICATION CACHE

In order to get started with the application cache, create a file called contacts.appcache in the
same directory as the contacts.html web page. Within this, add the following contents:

CACHE MANIFEST
contacts.html
contacts_print.css
contacts.css
contacts.js
jquery-2.1.1.3s
jquery-tables.js
jquery-time.js
jquery-ui.css
jquery-ui.js
images/ui-bg highlight-soft 100 eeeeee 1x100.png

FALLBACK:

NETWORK :
*

The application cache consists of three sections: An empty line separates these sections from
one another.

The first section is introduced with the heading cacHE MANTFEST. This section lists all the resources
in the web application that need to be cached offline. As you can see, each resource is listed on a
new line and can consist of a relative URL, an absolute URL, or even a URL to a resource on a
different web server.

NOTE [t is important to remember to include all the resources that are needed
by the web page, not just those directly referenced by the web page. For instance,
the last resource listed is not directly referenced by contacts.html, but is used
by jQuery UI and referenced in jquery-ui .css.

The (optional) second section is introduced with the heading FaLLBACK. This section allows you to
specify that alternative resources should be used when a resource is unavailable and has not been
cached offline. For instance, the web application may display the status of the web application using
an image; the fallback section may therefore appear as follows:

FALLBACK:
online.png offline.png

This configuration states that the browser should attempt to use online.png, but if that is not
available due to network connectivity, it should resort to using off1ine.png. In this case, there is
an assumption that offline.png is included in the application cache, thereby ensuring that it is
available without network connectivity.

The final (optional) section is the NETWORK section. This section specifies the files that can be
loaded from the network if they are not listed in the application cache. This is almost always set to
* which means any files not listed in the application cache can be loaded from the network.

Manifest Files | 287

Once the manifest file has been defined, the next step is to link it to an HTML page. This will
ensure that when the HTML page is requested from the server the first time, the manifest file will be
automatically processed, and the appropriate resources stored in the application cache.

The application cache can be linked to an HTML page via the manifest attribute on the html
element. For example:

<html lang="en" manifest="contacts.appcache">
Once you have added this, open Chrome with the console open and request the contacts.html web

page from the web server with the URL http://localhost:8080/contacts.html. When you do
this, you should see the output shown in Figure 32-1.

Q@ [] Elements Network Sources Timeline Profiles Resources Audits | Console |

® W <topframe> v

Creating Application Cache with manifest http://localhost:B288/contacts.appcache
Application Cache Checking event

Application Cache Downloading event

Application Cache Progress event (8 of 8) http://localhost:BARA/contacts, himl

Application Cache Progress event (1 of 9) s 5t /jquery-tables,js
Application Cache Progress event (2 of 9) 7 5 fcon 5.is
Application Cache Progress event (3 of 9) i/ 5 fiquery-. 5
Application Cache Progress event (4 of 9) i/ st 12 5 55
Application Cache Progress event (5 of 9) 7 5 fiquery-— 5
Application Cache Progress event (6 of 3) H 5 £ 5.CS5
Application Cache Progress event (7 of 9) i/ st /iquery-t 5
Application Cache Progress event (8 of 9) i/ st fiquery-. 5

Application Cache Progress event (9 of 9)
Application Cache Cached event
]

FIGURE 32-1

NOTE Even if contacts.html had not been included in the manifest, it still
would have been cached because it is the web page that the manifest is referenced
from.

Chrome performs the following operations when it detects a manifest file:

> It first checks the manifest to see whether it has previously downloaded these resources. At
this point, the browser generates a “checking” event.

> Once it determines that it needs to download resources, the browser generates a
“downloading” event and begins downloading resources one by one into the cache,
generating a “progress” event after each resource is cached.

> Once all the resources are downloaded, the browser generates a “cached” event.

This process is referred to as the application cache lifecycle.

http://localhost:8080/contacts.html

288

| LESSON 32 APPLICATION CACHE

As you will see shortly, it is possible to register callbacks to listen for these events. You can also use
a special URL within Chrome to view any applications that have been cached. To see this, browse to
chrome: //appcache-internals. You should see contents similar to that in Figure 32-2:

- C | [chrome://appcache-internals

Manifest: hitp:/localhost:8080/contacts appcache
Bemove View Eniries

« Size: 742 kB

« Creation Time: Thursday, September 11, 2014 1:55:22 PM

«+ Last Update Time: Thursday, September 11, 2014 1:55:22 PM
+ Last Access Time: Thursday, September 11, 2014 1:55:22 PM

FIGURE 32-2

This page can also be used to see exactly which resources have been cached and to remove the
application cache entirely.

You should now be able to shut down your web server and attempt to access the web application.
The web application should load exactly the same as it would with the web server running, and the
user should not notice anything different when using the web application.

There are two important points to note about the download process:

> If the browser cannot access one of the resources listed, it will abort the entire caching
process. This means it is vitally important that if you delete a resource, you also remove it
from the manifest file. It is also a good idea to check the console to ensure that the caching
process is working as expected.

> When the web page is accessed, the resources are actually downloaded twice. They are
initially downloaded for display to the user, and then, when the manifest is detected, they
are downloaded again. You will look at this feature in more detail when you look at how
resources are refreshed when they are modified.

UPDATING RESOURCES

With any web application, resources are likely to change over time. This presents a problem for the
application cache, however, because unlike with traditional browser caching, the browser will not
ever check to see whether any of the resources have been modified.

After resources are cached, they are always served from the application cache, even if the web
server is accessible. The only way to cause the browser to update resources is to change some-
thing in the manifest file itself. This is simple enough if you are adding or removing resources,
but presents an issue if the resources are the same but have been updated, because nothing in the
manifest would change.

The typical way around this is to add a comment to the manifest and change this comment when
you need a new version of the web application to be downloaded. For instance, you could add the
following to the end of the manifest:

version 1.1

chrome://appcache-internals

Cache Events | 289

The # symbol at the start of the line indicates that this is a comment and should not be processed by
the browser. Despite this, a change to a comment counts as a change to the manifest.

The web browser does not behave entirely as expected when resources have changed. The behavior
is as follows:

> The browser loads the web application using the cached resources.

» The manifest file is downloaded from the web server and checked to see if it has
been updated.

> If it has been updated, all resources are downloaded whether they have changed or not.

This means that the browser will still be displaying the old version of the web application until the
web page is refreshed in the browser. With a single page web application, it may be quite some time
until the web page is refreshed so you will look at a workaround to this issue shortly.

NOTE [¢ can be very frustrating to develop a web application with the
application cache enabled. For this reason, [recommend that you remove the
reference to the manifest when working through future lessons in this book.

CACHE EVENTS

As mentioned earlier, it is possible to register callbacks to listen for the various events that occur
during the application cache lifecycle. This can be useful for detecting the fact that a new version of
the web application is available, and potentially informing the user, or automatically refreshing the
web application as a result.

The basic mechanism for registering event listeners is as follows:

applicationCache.addEventListener ('updateready', function() {
console.log('An update is ready');
1

The applicationCache object is provided by the browser, and event listeners can be added for a
variety of events via the addEventListener method. The most common of these events are:

> downloading: This event fires when the browser determines it needs to download resources
from the web server.

progress: This event fires every time an individual resource is downloaded.

error: This event fires if the manifest file cannot be downloaded, or if one of the resources
cannot be downloaded.

> updateready: This event fires when a new set of resources has completed downloading.

It is possible to use these events to ensure the updated version of the web application is displayed
immediately after it is downloaded.

290 | LESSON 32 APPLICATION CACHE

There is a general purpose JavaScript function for reloading a web page:

location.reload() ;

NOTE The location object is provided by the browser and also provides infor-
mation about the origin of the web page.

This means it is possible to request that the browser reload the web application as soon as a new set
of resources has been downloaded and stored in the application cache:

applicationCache.addEventListener ('updateready', function() {
location.reload() ;

1

TRY IT

This Try It walks you through an example of updating resources in the application cache and
detecting that they have updated correctly. The primary purpose of this Try It is to ensure that you
fully understand the application cache lifecycle.

Lesson Requirements

To complete this lesson, you will need a text editor for writing code and Chrome for running the
completed web page. It is also expected that you have completed the steps in the body of the lesson
before starting this Try It.

Step-by-Step
1. Remove the line of code that will cause the application cache to reload the web page on an

updateready event.

2. Open the contacts web application and verify that the application cache is functioning as
expected by browsing to chrome: //appcache-internals. Make a note of both the Last
Update Time and the Last Access Time.

3. Click the View entries link, and verify that all the resources have downloaded.

4. Refresh the contacts.html page in the browser and then verify that the Last Access Time is
updated in the chrome: //appcache-internals web page. You should also notice that the
Last Update Time does not change.

5. Make an obvious change to the contacts.html page such as displaying the text in the
heading.

chrome://appcache-internals
chrome://appcache-internals

Try lt | 291

10.

Reload the web application and verify that the change is not visible inside the browser. This
demonstrates that the resource is always accessed directly from the cache.

Change the comment in the contacts.appcache file to indicate that the version has
changed.

Open the console and refresh the web page. The console should show that new resources are
being downloaded, but these should not be visible.

Refresh the web page one more time. This time, the application cache should determine that
no updates are required, but the changes downloaded in Step 8 should finally display.

Browse to chrome: //appcache-internals and verify that the Last Update Time has been
updated as expected.

REFERENCE Please go to the book’s website at www .wrox.com/go/html5]s] -
query24hr fo view the video for Lesson 32, as well as download the code and
resources for this lesson.

chrome://appcache-internals
http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto

33

Web Workers

JavaScript has always been a single threaded programming language. Essentially this means
that the language is only capable of performing a single operation at a time, and therefore only
capable of utilizing a single CPU on the underlying hardware.

This was not a problem when JavaScript was first created because the vast majority of devices
that ran browsers supported only a single CPU. Over the last 10 years there has been a major
change in hardware, however, and the vast majority of devices now support multiple CPUs.
Even smart phones typically support up to four CPUs.

NOTE The terms “processor” and “CPU” are essentially interchangeable and
refer to the hardware responsible for executing the instructions provided by
software. Many CPUs support multiple cores: A multi-core processor essentially
contains multiple independent units capable of executing instructions on the
same CPU. The terms “core” and “CPU” will therefore be used interchangeably
in this lesson.

A programming language is considered multi-threaded if it is capable of specifying multiple sets of
instructions that can be run in parallel. Each set of instructions is encapsulated inside a thread.

The key reason that multi-threaded programming languages are important is performance.

If you envisage a device with four CPUs, it is capable of executing four sets of instructions in
parallel. If a programming language is not multi-threaded, however, it is only capable of using
25 percent of the overall processing power at any point in time. The same software written in
a multi-threaded programming language may therefore execute up to four times faster.

NOTE Multi-threaded software can still execute on a device with a single CPU.
In this case the operating system is responsible for providing each thread a share
of the processor.

294 | LESSON 33 WEB WORKERS

There are good reasons why JavaScript does not support multiple threads. Programming with mul-
tiple threads can cause issues because two different threads may perform operations simultaneously
that impact the same underlying data. This is particularly true with the DOM: If two threads were to
simultaneously update the DOM it may be very difficult for the browser to determine what the out-
come should be.

JAVASCRIPT EVENT MODEL

In order to adapt to the changing face of hardware, HTMLS has introduced an important API
called web workers that can be used to create multi-threaded JavaScript programs.

Before looking at web workers, it is worth investigating how best to write responsive web pages
within the single-threaded model. These techniques are useful because, as you will see, there are
some limitations on web workers; therefore, they will not always be a viable option.

Imagine that the user presses a button onscreen, and this causes the browser to execute a set of
instructions that will take 10 seconds to complete. For instance, the button may call the following
function, which attempts to find the highest random number from one billion possibilities:

function findLargest() ({
var max = 0;
for (var i = 0; i <= 1000000000; i++)
max = Math.max(max, Math.random()) ;
}

console. log (max) ;

}

While this processing is occurring (which takes approximately 10 seconds on my computer) the web
browser will be completely unresponsive. If the user clicks buttons, nothing appears to happen: The
button will not even change appearance. This typically causes the user to click and click and click. If
that was not bad enough, once the processing finishes, all those clicks will suddenly fire, which can
cause havoc.

The code that is executed when the user clicks a button is wrapped in an event and placed on a
queue. The JavaScript engine is then responsible for processing the code in each event in the order
the events were created, not processing the next event until the previous one has completed.

In order to observe this, create the following web page or download it from the book’s website
(kiscaﬂedlongandshort.html%

<!DOCTYPE html>
<html lang="en">
<body>
Long operation
Short operation
</body>
<scripts>
function findLargest () {
var max = 0;
for (var i1 = 0; i <= 1000000000; i++) {
max = Math.max (max, Math.random()) ;
}

JavaScript Event Model | 295

console.log (max) ;

}

function getDate()
console.log("The time is "+new Date());
}

</script>
</html>

This page contains two buttons—one generates an event that runs for approximately 10 seconds,
while the other generates an event that takes milliseconds. Open this page with the console open
and perform the following;:

1. Click the Long operation link.
2. Immediately click the Short operation link 12 times.

You should see the output shown in Figure 33-1.

Q D Elements Network Sources Timeline Profiles Resources Audits | Console |

® ¥ <topframe> v

.9999999997671694
€5 The time is Tue Sep 16 2014 17:36:86 GMT+1208 (NZST)
5|

FIGURE 33-1

Even if you finish clicking the Short operation link before the Long operation finishes, none of the
clicks are processed until the Long operation completes.

This can create a terrible user experience. Any delay above approximately 200 milliseconds will be
noticeable to users and will affect their impression of the web page.

What should you do if you need to perform processing that will take more than 200 milliseconds,
and you cannot use web workers?

The ideal approach in this case is to take advantage of the setTimeout function. This function can
be used to create an event that will execute at a defined time in the future. For instance, execute the
following in the console:

setTimeout (function() {
console.log('Testing') ;
}, 2000);

The will print “Testing” in the console 2 seconds after the code is executed. The first parameter is
the code to execute, while the second parameter is the delay in milliseconds.

If you think about this in the context of the JavaScript event model, the function passed to set-
Timeout becomes an event and is added to the queue of events when the specified time is reached.
Just like any other event, it will not actually execute until it reaches the front of the event queue.

You can therefore split the algorithm up into separate portions and pass each to setTimeout in turn:

function findLargest () {
var max = 0;

296 | LESSON 33 WEB WORKERS

var iterations = 0;
function findLargestSub() {
while (true) {

iterations++;

if (iterations === 1000000000) {
console.log (max) ;
break;

} else if (iterations % 10000000 == 0) {
setTimeout (findLargestSub, 10);
break;

} else {
max = Math.max (max, Math.random()) ;

}

}
}
findLargestSub () ;

}

The findLargest function now contains a sub-function called findLargestsub. The sub-function is
essentially the same as the original function, except it processes a maximum of 10 million numbers.

If the processing has not completed after these 10 million numbers are processed, the sub-function
halts and requests that it be invoked again with a 10-millisecond delay. Not only is there a delay,
however, but the next portion of the algorithm will be placed at the end of the event queue, allowing
any other events that have occurred a chance to complete.

If you make these changes and run the same operations again, you should notice that pressing the
Short operation button produces an almost immediate response, even while the Long operation is
processing in the background.

It can be difficult to write algorithms in this manner, however, which is one reason web workers are
an attractive option.

WEB WORKERS

The web worker specification is part of HTMLS and is widely supported by the major browsers.
The web worker API allows you to create a JavaScript file that will execute on an entirely separate
thread from the JavaScript event thread. This code can, however, be passed messages from the
JavaScript event thread and provide results back when it completes. Figure 33-2 shows the basic
pattern used by web workers.

Page.html Worker.js
Post message

{
code

Post message

Browser thread Web worker thread

FIGURE 33-2

Web Workers | 297

The two outer boxes represent two operating system threads. The browser thread is responsible for
executing all the JavaScript included in the page or imported scripts, while the web worker thread is
responsible for executing code in a web worker file. The two threads can only communicate via mes-
sages routed by the web worker API.

NOTE You might be wondering how web workers handle the potential issues
mentioned earlier in this lesson if a web worker updates the DOM at the same
time as the code in the main JavaScript thread. The web worker API has a con-
venient answer for that problem; it is not possible to access the document object
from a web worker. If you need to update the DOM as a result of web worker
processing, the web worker needs to pass the result back to the main JavaScript
thread, which can then update the DOM.

Web workers actually have a number of limitations. In addition to the document object, they are
unabsz)accesslocalstorage or sessionStorage.

In order to see the benefit of web workers, you need a piece of code that runs for an extended period
of time. In order to simulate this, you will create an array of 100,000 random numbers, sort them,
and display the lowest number:

var result = [];

for (var 1 = 0; i < 1000000; i++) {
result.push (Math.random()) ;

}

result.sort () ;
console.log(result [0]) ;

Depending on the speed of your computer, you may want to increase or decrease the quantity
of numbers.

You will now create a web worker that accepts a parameter representing the number of random
numbers to create and returns the smallest number. The code of a web worker needs to be created in
a separate file so create a file called random. js (in the same folder as contacts.js so that it is avail-
able from the web server), and add the following contents:

self.addEventListener ('message', function (msg) {
var data = msg.data;
var result = [];
for (var i = 0; i < data; i++) {
result.push(Math.random()) ;
}

result.sort () ;
self.postMessage (result [0]) ;
}, false);

When this web worker is loaded, it starts by adding an event listener that allows it to be notified
when a message is available for it. As you will see, it does this by invoking addEventListener on an
object called self.

The self object represents the global namespace, and is therefore the equivalent of the window
object for conventional JavaScript code. In fact, if you type self at the console, it will return the

298

| LESSON 33 WEB WORKERS

window object. As mentioned, a web worker cannot access the window object so when it invokes
self it returns its own global namespace object, which happens to be called workerGlobalscope.

As you can see, when the web worker receives a message, it can extract the information from the
data variable on the message object—for the purposes of this example data will be a number.

The web worker then performs any processing necessary. It can use any features of the JavaScript
language it needs, including built-in libraries such as Math.

Once the web worker has a result, it can return it to the main browser thread using the postMes-
sagefuncﬂon.

You will now create a simple web page that allows a number to be entered into a form. When the
form is submitted, the number will be passed to the web worker, and the result added to a table.

Create a web page called £indnumbers.html in the same folder as contacts.html, with the follow-
ing content (this is available on the book’s website):

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<titlesLowest number</title>
<link rel="stylesheet" media="all" type="text/css" href="contacts.css">
<script src="jquery-2.1.1.js"></script>
</head>
<body>
<header>Find the lowest number</headers>
<form method="post" style="margin:30px">
<div class="formRow">
<label for="contactName"sEnter a number</label>
<input required name="theNumber" type="number"
class="validated" id="theNumber"/>
</divs>
<div class="formRow">
<input style="width:70px" type="submit"
title="Find" value="Find"/>
</div>
</form>
<section id="numberList" style="margin:30px">
<table>
<thead>
<th>Number entered</th><th>Result</ths>
</thead>
<tbody></tbody>
</table>
</section>
</body>
<scripts>
$('form input [type="submit"]"').click(
function (evt) {
evt.preventDefault () ;
var number = $('#theNumber') .val();
var row = $('<tr>').append('<td>'+number+'</td>"
) .append ('<td>"'+0+"'</td>") ;

Web Workers | 299

S ('#numberList table tbody') .append (row) ;
P
</script>
</html>

This has not been integrated with the web worker yet,
but if you open it (from the web server) and submit
some numbers, it should display as you see in

Enter a number 2000

Find |

Figure 33-3

You will now add the code to construct a web worker, 1000 0

pass it your numbers, and listen for the result. Start by i g
hanging th i follows; I will th

changing the JavaScript code as follows; I will then step FIGURE 33.3

through each new line:

$('form input [type="submit"]').click(
function (evt) {
evt.preventDefault () ;
var number = $('#theNumber') .val();
var worker = new Worker ('random.js');
worker.addEventListener ('message', function(evt) ({
var result = evt.data;
var row = $('<tr>').append('<td>'+number+'</td>"') .append('<td>' +result+'</
td>");
$ ("#numberList table tbody') .append (row) ;
}, false);
worker.postMessage (parselnt (number)) ;

)
The code starts by constructing a web worker using the following line of code:

var worker = new Worker ('random.js');

Notice that this passes a reference to the script you created earlier using a relative URL. Notice also
that you did not import the random. js script at the top of the web page: It is the reference to it here
that causes the script to be downloaded from the server.

NOTE If you need the web worker to function while offline, you can also add
web worker scripts to application cache manifest files.

Once the web worker has been constructed, you register an event listener with it so that you can
hear when it posts a message back to the main browser thread. In this example, this will occur when
the lowest random number is identified; therefore, you also have code to process this result.

The final line of code is where you actually post a message to the web worker, causing it to begin
processing. In this case, you pass the number that was extracted from the form.

You should now be able to submit numbers in the form and see them being passed to the web
worker. As you post progressively larger numbers, you will notice that there is a delay before the
table is updated, but despite this, it is still possible to submit another number in the form.

300 | LESSON 33 WEB WORKERS

You can try submitting several numbers at a time and then opening Task Manager on Windows or
Activity Monitor on OS X. For instance, I submitted four numbers on a machine with four cores,
and saw the results shown in Figure 33-4.

CPU Usage

% User: 4.63 @ Threads: 928
% System: 5.13 EI Processes: 130

% Idle: 90.25 |E‘

FIGURE 33-4

The four boxes on the right side show the utilization of the four CPUs over time. As you can see, as
soon as I submitted four numbers, all four CPUs used 100 percent of their available resources. This
ultimately meant that the task was completed four times quicker than it would have been without
web workers.

You should also notice that if you submit the numbers in quick succession, they all complete in
quick succession of one another, proving they processed in parallel.

It is also important to realize that even though my machine has only four cores, I could still sub-
mit 10 or 20 numbers simultaneously. In this case, each number would be processed on a separate
thread, and it would be up to the operating system to provide a share of the CPUs to each thread.

TRY IT

In this Try It, you will convert the longandshort .html web page from earlier in this lesson to use
web workers. This will ensure that it is always possible to push “Short operation” and receive imme-
diate feedback in the console.

Lesson Requirements

To complete this lesson, you will need a text editor for writing code and Chrome for running the
completed web page. You should also download longandshort .html from the book’s website.

This example needs to execute inside a web server so the resources mentioned need to be added to
the same folder as contacts.html, and the Mongoose web server needs to be running.

Step-by-Step
1. Create a web worker in a separate file and add code for it to listen for messages being posted
to it. I have called mine £ind number.js. The web worker will not read any data from
the message, but the message will be used to signal to the web worker that it should begin
processing.

Try lt | 301

Move the code from findLargest to the web worker, and when it finishes processing, post
the result (the maximum number) back to the main browser thread using postMessage.

Change the logic of findLargest so that it constructs a web worker and posts a message to
it. When the processing completes, it should receive the response from the web worker and
print this to the console.

Ensure that the processing of the Long operation does not block the Short operation from
executing immediately.

REFERENCE Please go to the book’s website at www .wrox.com/go/html5]s] -
query24hr to view the video for Lesson 33, as well as download the code and
resources for this lesson.

http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto

34

Files

Files and file systems have always been one of the most important concepts in computing
because they provide a convenient mechanism for providing input to, and storing output from,
computer software.

Despite this, browsers have been extremely limited in the manner they can interact with files
or the file system. This interaction has been limited to the file input type, which can be
declared as follows:

<input type="file" name="selectedFile"/>

This creates an input type that allows a file to be selected from

- ; : | Choose File | No file chosen
the file system. For instance, in Chrome, the input field appears —

as you see in Figure 34-1, while in Firefox, the input type

. . FIGURE 34-1
appears as you see in Figure 34-2.
Once a file is selected, its content will be submitted to the web | Browse... | No file selected.
server when the form is submitted: The file contents can then be
FIGURE 34-2

accessed by the web server and processed.

NOTE Some modern devices do not support the file input type because they do
not expose a file system that allows files to be selected. For instance, this input
type is not supported on either the iPad or iPhone.

Despite its simplicity, the file input type is extremely important to HTML, and many of the
most popular sites on the Internet could not exist without it. Any time you select a file from
your computer and post it to a website, you are using this input type.

Despite this, the file input type is also very constrained. These constraints stem primarily from
security concerns. For instance, imagine if the browser supported the following functionality:

> Add a hidden file input field to a form, programmatically select a file using JavaScript,
and programmatically submit the form to the server.

304 | LESSON 34 FILES

>

Change the appearance of the button on the file input field so it looks like a submit button,
but when it is pressed, select a file from the file system, and submit the form.

Clearly these represent huge security holes because they allow a web page to access files on your
device without your knowledge or permission. It is vitally important that web pages are not able to
access files from your file system in this manner.

In order to ensure that the £ile input field is not misused, the following restrictions apply:

>

The browser dictates the appearance of the file input type, and it is not possible to change
this appearance with CSS or JavaScript. In addition, most browsers now prevent the user
from typing a filename into a text box, and insist that the file is chosen from the operating
system’s file chooser.

Browsers do not allow an initial filename to be specified, even though the value attribute
technically supports this. This is to prevent the web page from suggesting a sensitive
filename.

It is not possible to interact with the file input field using JavaScript. For instance, it is not
possible to read the file contents without sending the file to the web server.

NOTE There are some well-known “hacks” that allow the appearance of the file
input field to be modified. These usually involve placing the £ile input field off
the side of the screen or below another control.

This lesson will examine an important API that overcomes some of these restrictions, in particular,
allowing a file to be processed with JavaScript.

FILEREADER API

There are many reasons why it may be useful to process a file with JavaScript rather than simply
submitting it to the server:

>

It allows the file to be validated before it is submitted to ensure it is appropriate in terms of
type, size, or contents.

It allows the file to be pre-processed, and potentially reduces the amount of data sent to
the server.

It allows files to be processed without an Internet connection, assuming the application is
loaded via the application cache.

In order to provide this functionality, the FileReader API has been introduced in HTMLS. This API
works with the conventional file input field, but allows you to listen for files being selected. Once the
user has selected a file it is possible to read its contents via JavaScript.

FileReader APl | 305

It is important to realize that the FileReader API does not allow you to programmatically open files
from the user’s file system because this would represent a major security loophole. It is only possible
to read the contents of a file once the user has explicitly selected it in some manner.

In order to demonstrate the FileReader API, you will add functionality to the CRM web application
so that a file can be selected. You will assume that this file contains an array of contacts stored in
JSON format, which you can then save.

In order to begin, you need to add a new section to contacts.html for selecting files. This can be
added after the contactList section:

<section id="fileImport"s>
<div class="formRow">
<label for="importJSONFile"sImport contacts</labels>
<input type="file" id="importJSONFile" name="importJSONFile">
</div>
</section>

You can style this any way you like, but I added the following to contacts.css, which resulted in
the design you see in Figure 34-3:

#fileImport {
margin: 20px;
border: 1lpx solid #999999;
border-radius: 10px;
width: 400px;
padding: 10px 10px Opx 10px;
background: #DAECFF;

‘ Import contacts | Choose File | No file chosen

FIGURE 34-3

There is nothing special about this file input field at this stage: It is identical to the file input
fields that have been available since HTML4.

The next step is to add a change event listener to the £ile input field, just as you would with any
other input field. The following code can be added to contacts.js:

$ (screen) . £ind ('#importJSONFile') .change (function (evt) {
var reader = new FileReader () ;
reader.onload = function(evt) ({
console.log('New file selected');
console.log(evt.target.result) ;
i

reader.readAsText (event.target.files[0]);

13N

The event listener starts by constructing an instance of the FileReader object. This object contains
a set of methods supporting the reading of files that have been selected.

306

| LESSON 34 FILES

Next, you register an onload event listener with the FileReader that will fire when the file has
been read. At this stage, you have only received a notification that a file has been selected. The
file will be read asynchronously by the API when requested, and the contents passed to this
event listener.

NOTE I¢ is also possible to add an onerror callback with the FileReader fo
listen for any problems reading the file.

Within the onload callback, the file content is available as a JavaScript string from evt.target
.result. You will look at how the file contents are converted to a string shortly. In this example,
you will simply write the contents to the console.

Finally, once the callback has been registered, you request the API to read the file with the following
line of code:

reader.readAsText (event.target.files[0]) ;

This will cause the file contents to be read into a JavaScript string, and will then invoke the onload
callback function.

As you can see, the selected file is available from the files property of the input field. Because the
file input field supports the selection of multiple files, the £iles property contains an array of files.
In this case, I have assumed that the user has only selected a single file, but obviously it would be
trivial to loop through the array and read each file selected.

In this case, I have also assumed that the file contains textual contents, and that it makes sense to
read the contents into a JavaScript string. The FileReader object also supports methods such as
readAsArrayBuffer and readAsBinaryString when dealing with binary files.

In order to use this API, create a file called contacts.txt that should contain three contacts
encoded in JSON format. This file is available from the book’s website, or you can create
it yourself:

[{"contactName":"James Cook", "phoneNumber":"55521882", '"emailAddress":"james@testing
.com", "companyName":"2", "notes":"This is a note","lastContacted":"09/18/2014"},
{"contactName":"William Pitt", "phoneNumber":"555919911", "emailAddress":"williame
testing.com", “companyName“:”3",”notes":"Test”,“lastContacted":"09/01/2014"},
{"contactName“:"Dane Cameron", "phoneNumber":"555291111", "emailAddress": "dane@
testing.com", "companyName":"3", "notes":"My note","1astContacted":”O9/18/20l4“f

Once the file is created, ensure that you can read it with the file input field and that its contents are
printed to the console.

In addition, if you place a breakpoint on the line that reads the file, you can access information
about the file, as you can see in Figure 34-4.

mailto:james@testing.com
mailto:james@testing.com

Other File-Related APIls | 307

» event.target.files[@].name
"contacts. txt"
» event.target.files[@].type
"text/plain”
» event.target.files[@].lastModifiedDate
Sat Sep 2@ 2014 12:15:28 GMT+1200 (NZST)
» event.target.files([@].size
476

FIGURE 34-4

This metadata can be very useful when determining how to read the file, or even if you should read

the file.

The final step is to save the contacts in the file using your existing store method. This can be
achieved as follows:

$ (screen) .find ('#importJSONFile') .change (function (evt) {
var reader = new FileReader();
reader.onload = function(evt)
var contacts = JSON.parse (evt.target.result) ;
for (var 1 = 0; i < contacts.length; i++)
this.store (contacts[i]) ;
}

location.reload() ;
}.bind (this) ;
reader.readAsText (event.target.files[0]) ;
}.bind (this)) ;

There are a couple of points to note about this code. The first is that it contains a callback within a
callback. In both cases, the callback function is bound to this, which means that the call to this
.store works as expected.

Second, note that instead of updating the table as each contact is added, you simply call reload on
the web page once all the contacts are saved.

NOTE There is a potential problem with this approach: IndexedDB may not
have finished storing the contacts when reload is called. Try to think of an
approach for solving this problem; you could either use setTimeout to delay the
reloading or a callback to listen for the storing process to complete.

If you load the contacts.txt file, it should result in the three contacts being added to the table.

OTHER FILE-RELATED APIS

The FileReader API is the most widely supported of the file related APIs introduced in HTMLS5, but
it is not the only API to deal with files and file systems.

308 | LESSON 34 FILES

The most ambitious of the file-related APIs is the FileSystem API. This API not only allows files
to be read, but it also allows them to be created, and provides access to a full range of file system
functions such as creating directories and deleting files.

This may sound like a very dangerous idea because clearly you do not want a web page deleting
files or creating enormous files without your permission. For this reason, the FileSystem API does
not allow the web page to access the operating system’s file system; it provides the domain access
to a sandboxed file system that is kept entirely separate from other domains and the underlying
operating system.

For this reason, the FileSystem API does not provide much functionality that cannot be implemented
using the other storage APIs demonstrated earlier in the book, but you may wish to investigate it
further if you are writing a web application that deals extensively with files.

The biggest problem with the FileSystem API, however, is that it is not widely supported. Support
currently limited to Chrome and Opera.

TRY IT

In this Try It, you look at how it is possible to select files via drag and drop. This section therefore
ties together two topics: the ability to use the drag-and-drop API and the ability to read the contents
of a file selected in this manner.

Using drag and drop for selecting files has become increasingly common and provides a more
intuitive interface for many users.

Lesson Requirements

In this lesson, you will create a standalone web page for reading files selected via drag and drop.
The web page will be based on the dropfile.html web page available from the book’s website.

You will need a text editor and Chrome to complete this Try It.

Step-by-Step
1. Open the dropfile.htnl file from the book’s website in your text editor.

2. The function that you are required to implement is the drop function. This will be invoked
whenever a file is dropped onto the rectangle with the dashed border.

3. Recall from Lesson 9 the way in which the dataTransfer object can be accessed. This will
contain an additional property called £iles, which will contain an array of the files selected.
Assign the first element in this array to a variable called file.

4. Construct a new FileReader object and add an onload callback. Within the callback,
extract the contents of the file using the techniques outlined earlier in this lesson, and set
them as the text for the element with the ID fileContents.

Try lt | 309

5. Use the readasText method on the FileReader to initiate the loading of the file stored in

the file variable.

6. Access the name of the file, and set this as the text for the element with the ID filepetails.

Figure 34-5 shows the result of dragging the contacts.txt file onto the drop zone.

1 1
1 1
1 1
1 1
] 1
1 1
1 1
, drag a file onto me... '
1 1
1]
1 1
1 1
1 1
1 1
1 1

contacts.txt

[{"contactName":"James

Cook","phoneNumber":"55521882","emailAddress": "james @testing.com”,"companyName":"2","no|
is a note","lastContacted":"09/18/2014"}, {"contactName":"William
Pitt","phoneNumber":"555919911","emailAddress":" william@testing.com","companyName":"3","n|
{"contactName":"Dane

Cameron”,"phoneNumber":"555291111","emailAddress":"dane @testing.com","companyName":"3"
note”,"lastContacted":"09/18/2014" }]

FIGURE 34-5

resources for this lesson.

REFERENCE Please go to the book’s website at www .wrox.com/go/html5s] -
query24hr fo view the video for Lesson 34, as well as download the code and

http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto

35

AJAX

The web was designed to operate with the HTTP protocol. As mentioned previously, the
HTTP protocol is a simple request/response protocol: The browser requests a resource, and a
response is received and rendered.

This model worked well for document-centric websites because a document (an HTML page)
or image could be requested and the response rendered directly in the browser. This model
does not work so well for dynamic web applications.

A common requirement for web applications is to request additional information after a page
has loaded. For instance, a browser-based chat application will constantly check for new
messages and display them immediately via DOM manipulation. Without this functionality,
the user is required to constantly refresh the entire web page to check for new messages.

Although it is possible to automatically refresh an entire web page at periodic intervals, the
refresh process will not only cause a very noticeable delay but it will interrupt whatever the
user is doing. For instance, if the user was halfway through typing a message, this message
would be cleared out and lost.

In order to support web applications such as a chat application, Microsoft introduced a
JavaScript feature into Internet Explorer called the xMLHt t pRequest object all the way back
in 1999. This allowed HTTP requests to be performed using JavaScript after the web page had
loaded, and the response to be processed and incorporated directly into the DOM.

XMLHt tpRequest was eventually reverse engineered into other browsers, and this approach has
come to be called AJAX. Although AJAX predates HTMLS3, the technology behind it has been
standardized as part of the HTMLS standards process.

NOTE The term AJAX was only popularized once the XMLHt tpRequest object
began to be widely adopted in web applications such as Google’s Gmail.

Although it was slow to catch on, AJAX was potentially the most important technology
leading to the widespread adoption of HTML-based web applications because it was finally

312 | LESSON 35 AJAX

possible to create truly dynamic web applications. A truly dynamic web application not only
changes in response to user input, but it changes in response to new information received from
external sources.

AJAX stands for Asynchronous JavaScript with XML

> It is asynchronous because the HTTP request does not block the browser thread; instead,
the HTTP response can be processed via a browser callback. This is an extremely important
feature because it means the browser does not freeze while an HTTP request is in-flight.

If AJAX were not asynchronous, the user of the imaginary chat application would not be
able to continue typing a message while the browser was checking for new messages.

> AJAX is based on a JavaScript object called xMLHt tpRequest. As you will see, however,
AJAX is typically used via libraries such as jQuery because XMLHt t pRequest does not have
the most intuitive API.

> AJAX was originally used primarily with the XML data format. AJAX is now more often coupled
with the JSON data format. Essentially, you can use any data format you want with AJAX.

NOTE The technologies associated with AJAX are particularly misleading. Not
only is it not inherently linked to XML, but AJAX requests do not need to be
asynchronous, although they typically are. Likewise, the XMLHt tpRequest is
not inherently linked to either XML or HTTP: It is possible to use alternative
protocols if required, although this also is not common.

This lesson will introduce AJAX and the jQuery functions that can be used to simplify server
interactions. AJAX is different from the other technologies that you have looked at so far,
however, because it also assumes code will be deployed to the web server to dynamically
generate responses to requests.

Server-side technologies are beyond the scope of this book; therefore, the examples that you will
look at will be based on static JSON responses. If you would like to learn more about creating
server-side services for responding to AJAX requests, you may might want to look at technologies
such as PHP or Node. js.

NOTE Node.js is a server-side technology based on JavaScript. This means it allows
you to leverage much of the knowledge you have gained throughout this book.

AJAX REQUESTS

In this section, you will request data from the web server, and the web server will return a response
from a static file. In order to make this available, take the contacts.txt file from the previous
lesson (or from the book’s website), rename it contacts.json, and copy it to the same directory as

AJAX Requests | 313

contacts.html. Once you have completed these steps, verify that it can be accessed from http://
localhost:8080/contacts.json.

You can now write code for requesting this data from the web server after the web page has loaded.
In this case, you will envisage a web application where many different clients can save contact
information to a central repository. You can then synchronize with this central repository on request
and save a copy of any contacts returned.

Begin by adding a new section to contacts.html, below the section added in the previous lesson:

<section id="serverImport'"s>
<div class="formRow">
Import from server
</divs>
</section>

Change the CSS in contacts.css so that this section uses the same styles as the
fileImport section.

You will now add an event listener to this hyperlink in the init method of contacts.js, and add
code to invoke the server:
$ (screen) . £ind ('#importFromServer') .click (function (evt)

$.get ("contacts.json", function(data) {
console.log(data)
1

)

With this code in place, open the console and press Import from server. Immediately after clicking
this, the console should print out the result shown in Figure 35-1. This shows that three contact
objects have been received in an array from the server.

|‘7 Import from server ‘

Q [] Elements Network Sources Timeline Profiles Resources Audits | Console |

Q ¥ <topframe> v

v [Object, Object, Object]
» 8: Object
> 1: Object
» 2: Object
length: 3

» __proto

: Array[@]

FIGURE 35-1

NOTE You can choose to implement functionality to store these contacts in
offline storage using the code developed in the previous lesson if you wish.

http://localhost:8080/contacts.json
http://localhost:8080/contacts.json

314 | LESSON 35 AJAX

The simplicity of this code hides the complexity of the operations that are being performed in the
background:

>

An HTTP GET request is sent to the server requesting a resource called contacts.json. This
is triggered by the invocation of $.get, which accepts the relevant URL as its first parameter.

A callback function is registered to listen for a response from the server. This is provided as a
second parameter to $.get.

The jQuery library receives an HTTP response. It detects that the response conforms to the
JSON format and automatically parses the response into an array of contact objects.

The parsed response is passed to the registered callback.

NOTE It is only possible to request services from the same origin as the
underlying HTML page. This is referred to as the single-origin policy, and is
familiar from many of the APIs you have looked at in this book. If you are
interested, there is a competing approach called [SONP that uses a “hack” to
circumuvent this restriction. Alternatively, a newer technology called Web Sockets
is emerging and is specifically designed to remove this restriction.

The beauty of libraries such as jQuery is that they abstract complex functionality behind a
simple fagade.

jQuery also supports an alternative function called $.ajax. This provides you more control over the
underlying request and response, but is not necessary in most situations. For example, the previous
example could be replaced with the following;:

$.ajax ({

url: "contacts.json",

dataType: "json",

cache : false,

type : "GET",

timeout: 5000,

success : function(data) f
console.log(data) ;

b

error: function(jgXHR, textStatus, errorThrown) {
console.log (errorThrown) ;

}

As you can see, this method allows you to specify:

>

>

The URL of the request.

The data format of the response. As you have seen, jQuery can usually determine this
without it being specified.

AJAX Requests | 315

> Whether the browser cache should be bypassed. Typically, you do want to avoid caching
when requesting data from the server because the same request may result in a different
response.

> The HTTP method to use: typically either GET or PoST.
> The maximum time (in milliseconds) to wait for a response before the request times out.
> The success and error callbacks.

In the previous example, the response contained JSON-encoded data. It is also common for an
AJAX response to contain HTML-encoded data, which can then be injected directly into the DOM
at the appropriate location.

In order to demonstrate this, create a resource in the same directory as contacts.html called noti -
fications.html. Add the following HTML fragment to this file:

<p style="color:red;font-weight:bold;margin-left:20px;">
The web server will be shutdown for scheduled maintenance in 5 minutes.
</p>

Notice that this is only a fragment of HTML, not intended to be loaded directly into a browser.

Now, add the following section to contacts.html:

<section id="notifications">
</section>

This is an empty section that will be populated after the web page has loaded.

You can now reload the web page and execute the following into the console:
S('#notifications') .load('notifications.html') ;
As soon as you execute this, the notifications.html resource will be loaded from the web

server and populated into the element with the ID notifications, resulting in the effect shown
in Figure 35-2.

The web server will be shutdown for scheduled maintenance in 5 minutes.

Copyright 2014

Q, [] Elements Network Sources Timeline Profiles Resources Audits | Console|

Q® ¥ <topframe> v

> $('#notifications®).load('notifications.html');
[»<section id="notifications">.</section=]
>

FIGURE 35-2

You will notice in this case that you have not even registered a callback for loading the markup; the
load method automatically assumes that when the response is received it should be loaded directly
into the element selected.

316 | LESSON 35 AJAX

On a side note, you can also use the Network tab of the developer tools to analyze the underlying
HTTP request and response. For example, Figure 35-3 shows the request sent in the previous example.

|Q [Elements | Network | Sources Timeline Profiles Resources Audits Console

‘. ®© W == [Preserve log [Disable cache
jame
ath *

'Headers Preview Response Timing

notifications.html Remote Address: 127.0.0.1:8088

Request URL: http://localhost:888@8/notifications.html
Request Method: GET

Status Code: @ 200 OK
¥ Request Headers view source
Accept: text/himl, */=; g=08.01
Accept-Encoding: gzip,deflate, sdeh
Accept-Language: en-US,en;q=0.8
Connection: keep-alive
Host: localhost:B@8e
Referer: http://localhost:80888/contacts.html
User-Agent: Mozilla/5.@ (Macintosh; Intel Mac 0S X 18_8_5) AppleWebKit/537.36

FIGURE 35-3

In most web applications, the HTML code fragment will be automatically generated based on specific
criteria rather than a static block of HTML. In order to facilitate this, the second parameter to 1ocad
can be an object or string that will be sent to the server along with the request. For example:

$('#notifications') .load('notifications.html', {name:'dane'});

Typically, whenever the browser needs to send data to the web server, the underlying HTTP method
used will be PosT rather than GeT. If you execute this call, you should be able to confirm in the

Network tab that the 1oad method has automatically switched to PosST and automatically encoded
the properties from the object into the form data.

NOTE As mentioned earlier in the book, GET requests can contain parameters as
name value pairs. These are embedded directly in the URL. Typically, the poST
method will be used once data extends beyond a handful of parameters.

jQuery also provides a general purpose method called $.post that can be used for sending data to
the server on a request and processing the response in any manner required.

TRY IT

This Try It looks at how you can create different themes for the web application so that users can
choose the color scheme that suits them. In this case, themes will be developed as JavaScript files,
and these will be dynamically loaded and executed via AJAX when selected by the user.

If a website supported many themes, it would be a waste of bandwidth to download all the themes

for users because they are likely to use only one or two. It therefore makes far more sense to
download themes “on-demand.”

Trylt | 317

The book’s website contains three sample theme files:
> orange_ theme.js
> red theme.js
> purple_theme.js

You can either use these or create your own. Each theme simply uses the jQuery css method to
manipulate the background of elements, but you can choose to add more interesting effects if
you like.

The theme files provided conform to the following format, but with different colors in each case:

S ('header, footer').css('background', 'linear-gradient (to top, #C644FC ,
#5856D6) ') ;

$('thead') .css('background', 'linear-gradient (to top, #C644FC , #5856D6)"');
S('#fileImport, #serverImport, #chooseTheme').css('background', '#DEDDF7');

Lesson Requirements

In this lesson, you will need a set of theme files, which can be downloaded from the book’s website.
You will need a text editor and Chrome to complete this Try It.

Step-by-Step

1. Open contacts.html, contacts.js, and contacts.css in your text editor. Attempt to
create the section shown in Figure 35-4 for selecting themes. This can be created using the
knowledge techniques learned earlier in the book.

Each square should be represented by a hyperlink element. The background of each square
should be the dominant color in the theme. Each square should also be given a data
attribute specifying its related JavaScript theme file. My version can be found at the end of
this lesson, and produces the design seen in Figure 35-4:

Choose a theme . j

FIGURE 35-4

2. Add a click listener to the squares created in Step 1. Start by extracting the relevant script file
from the element’s data attribute.

This code should be added in the init method of contacts.js.

3. Use the jQuery $.getscript method to load and execute the relevant script from the server.
The URL of the script should be passed as the first parameter to $.getScript.

4. Use the optional second parameter of $.getScript to register a callback method. Inside this,
set a property in web storage indicating the theme file that the user has selected. This will
allow you to remember the user’s preferred theme when the page is reloaded.

318 | LESSON 35 AJAX

5. When the web page is loaded, check to see whether a theme has been saved in web storage.
If it has, use $.getScript to load this theme. This code can be placed in the $ (document) .
ready callback of contacts.html.

The following are the HTML changes I added for the themes section:

<section id="chooseTheme">
<div class="formRow">Choose a theme
<a class="theme" href="#" style="background:#C644FC" data-theme-
file="purple theme.js">
<a class="theme" href="#" style="background: #FF5E3A" data-theme-file="red
theme.js">
<a class="theme" href="#" style="background:#FF9500" data-theme-
file="orange theme.js">
</div>
</section>

The relevant CSS changes were as follows:

#fileImport, #serverImport, #chooseTheme {
margin: 20px;
border: 1lpx solid #999999;
border-radius: 10px;
width: 400px;
padding: 10px 10px Opx 10px;
background: #DAECFF;

}

.theme {
width: 20px;
height: 20px;
display: inline-block;
border: 1lpx solid #999999;
border-radius: 3px;

}

I then added the following to contacts.js to listen for the user selecting a theme:

S (screen) .find('.theme') .click (function (evt) {
var url = S$(evt.target).data() .themeFile;
$.getScript (url, function() {

localStorage.setItem('theme', url);
1

b
Finally, I added the following to the $ (document) . ready section:

if (localStorage.theme) {
$.getScript (localStorage.theme) ;
}

REFERENCE Please go to the book’s website at www.wrox .com/go/
html5jsjquery24hr to view the video for Lesson 35, as well as download
the code and resources for this lesson.

http://www.wrox.com/go

36

Promises

Throughout this book, you have made extensive use of callback functions. You have used call-
back functions:

> To register event listeners that fire when specific events occur

> To listen for the completion of IndexedDB operations, such as the insertion of data or
the opening of the database

> When using the JavaScript filter, map, and reduce functions to process arrays
When listening for messages from web workers
When waiting for AJAX responses

As you can see, callback-based programming is enormously important to many JavaScript
APIs, and it is impossible to gain a solid understanding of JavaScript without understanding
callback functions.

Although callback-based APIs are enormously popular, they do bring their own set of prob-
lems. These problems are often referred to as “Callback hell” and stem largely from the fol-
lowing issues:

> It is often necessary to nest callbacks inside other callbacks, and this nesting can extend
to several levels. As this happens, code can become difficult to read because it is not
always obvious where each level of nesting ends.

> It is difficult to determine the behavior of an application because it is not possible to
logically follow code with your eye.

> Data scoping can become difficult with callbacks. You can see this primarily in relation
to the identity of this and the corresponding necessity to use bind on each callback to
ensure the correct this instance was set.

This lesson examines an alternative mechanism for implementing callback functions called
promises. Promises do not alleviate all of the problems mentioned, but they do help make call-
backs more manageable and add other useful functionality in the process.

320 | LESSON 36 PROMISES

This lesson is optional because it is always possible to write code without promises, as you have seen
so far in this book. It is, however, recommended that you complete this lesson because promises are
likely to gain greater attention as more and more APIs are designed to work with them.

WORKING WITH PROMISES

This book has used several asynchronous APIs. You may have noticed, however, that asynchronous
function calls still return a synchronous response. For instance, the following code invokes an asyn-
chronous AJAX operation:

$.get ('contacts.json')

Despite this, it returns the synchronous response shown in Figure 36-1.

> $.get('contacts.json')

¥ Object {readyState: 1, getResponseHeader: function,

p abort: function (statusText) {

always: function () {
complete: function () {
done: function () {
error: function () {
fail: function () {
getAl1ResponseHeaders: function () {
getResponseHeader: function (key) {
p overrideMimeType: function (type) {

FIGURE 36-1

YYYYYYY

Clearly, this response cannot be the response from the web server because it was not received asyn-
chronously, so you may be wondering what this object is.

This object is referred to as a “promise.”

NOTE Not all asynchronous APIs have been modified to generate promises. For
this reason, this lesson will focus on the jQuery AJAX library that was retrofit-
ted to operate with promises.

Promises provide a mechanism for interacting with an asynchronous process because they model
the flow of the underlying operation through its lifecycle. Promises always start with a status of
pending. From this they will transition to one of two other statuses:

> resolved: The underlying process has completed successfully.
> rejected: The underlying process has failed.

Once a promise has moved into the state resolved or rejected, it is considered settled, and will
not change state again.

Working with Promises | 321

Once you have a reference to a promise, you can request to be notified when the promise enters a
specific state. For instance, consider the following code:

var promise = $.get('contacts.json');
promise.done (function (data) {

console.log('First callback invoked!') ;
13N

promise.done (function (data) {
console.log('Second callback invoked') ;
)

This code requests contacts.json and then registers two callbacks that will be invoked when the
q g

promise is resolved. If you run this code, you will notice that both callback functions are executed,

one after the other.

This code immediately highlights one advantage of promises: It is possible to register more than one
callback for each state

It is also possible to add multiple £ail callbacks:

var promise = $.get ('unknown.json');
promise.fail (function(data) {

console.log('First callback invoked') ;
3N

promise.fail (function(data) {
console.log('Second callback invoked') ;
3N

This code requests a non-existent file; therefore, it enters the rejected state and invokes all the fail-
ure callbacks.

It is also possible to create an explicit pipeline of operations that should be performed on a response
via the then method. This is useful because it allows the response to be modified as it flows through
the pipeline.

For instance, in the following scenario, the first callback filters the response so that it contains only
contacts with a companyName value of 3. It then returns this modified response, which is then passed
automatically to other callbacks in the pipeline:

$.get ('contacts.json') .then(function(data) {
console.log('First callback invoked with ' + data.length + ' contacts');
data = data.filter(function(c) {
return c.companyName == '3';
P

return data;
}) .then(function(data) {
console.log('Callback invoked with ' + data.length + ' contacts');

1)

In this case, the second callback does not know or care that the data it is receiving has already been

processed by another callback. This therefore provides a convenient mechanism for pre-processing
data.

322

| LESSON 36 PROMISES

This code prints the following:

First callback invoked with 3 contacts
Callback invoked with 2 contacts

One final benefit of working with promises is that it is possible to register callbacks that are invoked
when more than one promise reaches a specific state. In order to demonstrate this, create a new file
called contacts2.json and add a different set of contacts to it.

You can now write code that performs two separate requests for these two separate resources, and
invokes the callback only if both requests succeed via the $.when function:

var promisel = $.get('contacts.json');

var promise2 = $.get('contacts2.json');

$.when (promisel, promise2).done(function(datal, data2) {
console.log('datal contains ' + datal.length + ' contacts');
console.log('data2 contains ' + data2.length + ' contacts');

1

This can be extremely useful if the two sets of data contain interdependencies. Without callbacks, it
would typically be necessary to place the second request in the success callback of the first request.

CREATING PROMISES

Not only can you use promises created by other libraries, but you can write your own APIs that gen-
erate promises. This allows the clients of these APIs to use all the techniques outlined in the previ-
ous section, and it effectively means that your API gains extra capabilities without your having to do
anything.

Promises are a useful addition to any API that performs operations that are (or can be)
asynchronous.

NOTE The client of an API is any code that invokes its functions or methods;
in many cases, this will be your own code. If you are developing libraries, on the
other hand, you may have no idea who will be the clients of your code.

In this section, you will create a function call for reading contacts from the web server. This func-
tion will have a catch, however. It will only invoke the server the first time it is invoked; from then
on it will simply return the response that it received on the first invocation.

This approach is referred to as caching and is often used to improve the performance of a web
application.

This functionality is interesting because it only needs to behave asynchronously the first time it is
invoked. On subsequent invocations it will have a response that can be returned immediately. As
you will see, promises are an excellent candidate for implementing this functionality.

Creating Promises | 323

Because your code needs to remember state (the contacts read from the server on the first invoca-
tion), you will create a new module in a new JavaScript file called £ind.contacts.js with the fol-
lowing basic structure:

findContacts = function() {
var contacts = null;
return function() {
console.log('this is where the logic goes');

YO

The outer anonymous function is executed as soon as this code is loaded via the () on the final line.
Therefore, as soon as this code is loaded, the findcontacts variable contains a reference to a func-
tion, which in turn can access the contacts variable via a closure.

You can now add the following implementation:

findContacts = function() {
var contacts = null;
return function() {
var deferred = $.Deferred();
if (contacts) {
console.log('Returning data from the cache');
deferred.resolve (contacts) ;
return deferred.promise() ;
} else {
var promise = $.get('contacts.json');
console.log('Returning data from the server');
promise.done (function (data) {
contacts = data;
deferred.resolve (contacts) ;

1

return deferred.promise() ;

YO
The code always begins by creating an instance of a deferred object:

var deferred = $.Deferred() ;

It is this object that allows you to not only create promises, but also control the lifecycle of these
promises by transitioning them from one state to another.

The preceding code contains two blocks. The first block will execute if you have already read the
list of contacts from the server. In this case, any promises can be set to resolved immediately;
therefore, you invoke resolve on the deferred object and pass it the cached list of contacts:

deferred.resolve (contacts) ;

On the next line of code, you generate a promise from the deferred object, and return this from the
function. Notice that in this case the promise will already be fulfilled:

return deferred.promise () ;

324 | LESSON 36 PROMISES

The second block of code begins by invoking the server and registering a callback to listen for the
response, but in this case you also return a promise from the function. Unlike the first block, the
promise is not resolved until a response is received from the server.

Because the server will respond very quickly, it is useful to simulate a slower server to appreciate the
benefit of this functionality. Therefore, change the AJAX response processing to include a 5 second
delay:
promise.done (function (data) {
setTimeout (function() {
contacts = data;
deferred.resolve (contacts) ;
}, 5000);

b s

You can now use this function. Begin by importing the JavaScript file into contacts.html, ensur-
ing that it is not imported before the jQuery library.

<script src="find.contacts.js"></script>

You can now change the event listener associated with the Import from the server button in
contacts.js, as follows:

$ (screen) . find ('#importFromServer') .click (function (evt) {
var promise = findContacts() ;
promise.done (function (data) {
console.log('Data has been retrieved');
console.log (data) ;

b
1

Notice that the event listener does not know how the findcontacts function operates; it only cares
that it produces a promise. The code then registers a callback for when this promise reaches its
resolved state.

If you now refresh the web page and open the console, you can try out the functionality. The first
time you press the button, you should see the following immediately printed to the console:

Returning data from the server

After a further 5 seconds, you should see the following:

Data has been retrieved

If you then press the button again, you should see the following lines printed immediately:

Returning data from the cache
Data has been retrieved

Notice in this case that you have registered a callback with a promise that has already been ful-
filled. When you do this, your callback simply executes immediately. It is even possible to register
additional callbacks with promises that are fulfilled or rejected, and these are simply invoked
immediately.

Trylt | 325

TRY IT

In this Try It, you will create a generic function for reading files and implement it so that it is com-
patible with promises. Although the FileReader object operates asynchronously, it does not pro-
duce a promise; therefore, it is not possible to use it with other utility functions such as $.when.

Lesson Requirements

You will need a text editor and Chrome to complete this Try It.

Step-by-Step

1. Open contacts. s, and start by adding a global function called readFilewithPromise
immediately below the bind function. This should accept a single parameter, which is the file
to read.

2. Create an instance of ¢ .Deferred and assign it to a variable called deferred.

3. Create an instance of FileReader and register an onload callback. Inside this callback, you
should resolve the deferred object and pass it the contents of event . target . result.

4. Read the file specified as the parameter using readasText. Remember that this will cause the
onload callback to be invoked when it completes, and will pass the contents of the file as a
JavaScript string.

5. Return a promise from the function.

6. Change the event listener invoked when a file is selected so that it invokes readFilewith-
promise and assigns the result to a variable called promise.

7. Add a success listener to the promise and accept a single parameter, which will be the textual
content of the file.

8. Modify the code of the callback so that the text is parsed and processed as it was previously.

My version of readFileWithPromise looks like this:

function readFileWithPromise(file) {
var deferred = $.Deferred() ;
var reader = new FileReader () ;
reader.onload = function(evt)
deferred.resolve (evt.target.result) ;
}

reader.readAsText (file) ;
return deferred.promise() ;

}
My callback listener looks like this:

$ (screen) . £ind ('#importJSONFile') .change (function (evt) {
var promise = readFileWithPromise (event.target.files[0]);

326 | LESSON 36 PROMISES

promise.done (function (data) {
var contacts = JSON.parse (data) ;
for (var 1 = 0; 1 < contacts.length; i++) {
this.store(contacts[i]) ;
}

location.reload() ;
}.bind (this)) ;
} .bind(this)) ;

REFERENCE Please go to the book’s website at www .wrox . com/go/
html5jsjquery24hr to view the video for Lesson 36, as well as download the
code and resources for this lesson.

http://www.wrox.com/go

PART V
Mobile

» LESSON 37: Responsive Web Design
» LESSON 38: Location API
» LESSON 39: jQuery Mobile: Part |

» LESSON 40: jQuery Mobile: Part Il

37

Responsive Web Design

Web users now expect every website they access to be available not only on a desktop or
laptop, but also on tablets and mobile phones. Although the browsers on mobile phones and
tablets support most of the features examined in this book, it is not always easy to write
HTML and CSS that provide an optimal experience on all devices because of their obvious
differences in screen resolution.

This lesson will investigate a series of techniques and technologies that can be leveraged in
order to create truly cross-device web pages. These techniques and technologies are often
grouped under the umbrella term responsive web design, or RWD for short.

Responsive web design encourages designers to create a single set of resources for all devices,
rather than creating specialized websites for different devices. This is becoming increasingly
important as screen sizes diverge even within the same class of devices.

Responsive web design addresses the screen resolution problem from three angles:

> The techniques that can be used to construct HTML that automatically adjusts to
different screen resolutions and creates the best possible user experience regardless
of the screen resolution. These techniques present all the same information
regardless of the screen resolution, but the manner in which content is sized and
placed on screen will differ depending on resolution.

> The use of flexibly sized images and video that takes into account the overall width
and height of the screen. This means ensuring that a resource does not use more
space than that allocated by the design, ensuring it scales appropriately, and also
ensuring that other elements adapt to the space taken by the resource as the screen
resolution changes.

> The technologies that can be used for changing the content displayed on a web page
based on screen resolution. For instance, it may be necessary to hide specific elements

330 | LESSON 37 RESPONSIVE WEB DESIGN

on small resolution devices. This can be achieved via a version of the CSS3 media queries you
encountered earlier in the book.

TESTING SCREEN RESOLUTION

It is usually possible to test the way in which your design will react to changes in screen
resolution by simply resizing the browser window. You can then determine the resolution
of the browser window (or viewport) using the JavaScript commands window. innerwidth
and window. innerHeight.

As you change the browser size, the web page will automatically adjust the content to adapt to the
new screen resolution. This is the same basic process that is performed by the browser when the
DOM is manipulated and involves calculating the position and size of each element.

Chrome also provides a helpful utility for emulating other devices. Selecting the mobile phone icon
in the developer tools will activate this.

Once enabled, you can choose from a variety of devices, or enter a custom screen resolution, as
shown in Figure 37-1.

Console Search | Emulation | Rendering
Device v Model: I: samsung Galaxy 54 ::
Media
Network v @ Emulate screen resolution
Sensors ¥ Resolution: 360 640
L Device pixel ratio: 3
Emulate mobile
@ Shrink te fit
FIGURE 37-1

This allows you to see how a web page will render with various different screen resolutions.

Although useful, unfortunately the emulator does not always accurately reflect the user experience.
This is primarily because mobile browsers have adapted to the fact that websites are not mobile
friendly and use numerous techniques to adjust. The emulator, by comparison, does not do this.
For instance, when viewed on the phone itself the web page displays very differently than the
emulator suggests. Figure 37-2 shows that an actual Galaxy S4 will resize elements so that they

all fit on screen:

Flexible Grids | 331

(s D NG T il 7:20 PM

192.168.0.10:8080/contacts2.html (5]

Contact details

Contact name *
Phone number +
Email address *
Company name * Please select v

Notes

Sales leads
Contact name Phone number Email address Company name | Last contacted Actions

Add a new contact Print

FIGURE 37-2

Although this is generally a useful feature, if you are building a truly responsive website, you
generally want to disable this feature. This feature can be disabled via the following meta tag in
the head section of the web page:

<meta name="viewport" content="width=device-width, initial-scale=1">

This tells the browser that it should not try to scale the website; it should just assume it has been
designed for the default width of the browser viewport. With this set, the Chrome emulator will
accurately reflect the actual user experience for each screen resolution.

FLEXIBLE GRIDS

Responsive web design encourages the use of flexible (or fluid) grids for laying out components.
Before beginning the exercise of converting the web application to use a flexible grid, let’s comment
out the table section. This element is naturally too wide for many devices, so we will address it
separately in the next section when you look at media queries. To comment out the table, add the
following to the opening table tag:

<!--table>

332 | LESSON 37 RESPONSIVE WEB DESIGN

and this to the closing tag:

</table-->

This will leave the table in the markup, but it will be treated as an HTML comment and not
displayed.

The current design of the CRM website uses fixed width elements. For instance:

input {
width:200px;
}

label {
width:150px;
display: inline-block;
vertical-align: top;

}

Although it is very easy to lay out components with fixed widths and sizes, this can make

it impossible for some devices to render them. For instance, the combined width of the label
and input fields in the preceding code is 350 pixels. Once margins, paddings, and borders
are taken into account, the total width of the label and input field is more than many
devices support.

It is generally only advisable to use pixel-based sizing if you are targeting a single screen resolution,
and, as outlined earlier, such a move would go against the principles of responsive web design.

A flexible grid layout is capable of adapting automatically to changes and differences in screen
resolution. The grids themselves are created with flexible units, such as percentages and em units,
and avoid fixed-width units such as pixels.

NOTE The grid system you will create is considerably simpler than many of the
grid systems openly available on the Internet. As always, you are encouraged to
explore openly available resources before crafting your own.

Your design will be based on grid cells that occupy either half or one-quarter of the available width:

.grid_gquarter {
display:inline-block;
vertical-align: top;
width:23%;
min-width:15em;
max-width:25em;

}

.grid_half {
display:inline-block;
vertical-align: top;
width:47%;

Flexible Grids | 333

min-width:15em;
max-width:50em;

}

A minimum and maximum size for grid cells is also specified. This ensures that grid cells remain
within sensible bounds.

The width properties have also be reduced slightly to allow for margins and borders. This means
that four grid_quarter elements should be able to be placed side by side—assuming the screen
resolution is greater than 60em.

NOTE A common variation on this pattern is to change the overall percentage
width of cells as the screen resolution decreases. This can be achieved via the
media queries that will be introduced in the next lesson, and you will use a
variation of this technique in the Try It at the end of the lesson.

You can now place your input fields and labels inside these grids, using the most appropriate grid
size for each element:

<form method="post">
<div class="formRow">
<div class="grid quarter"s>
<label for="contactName"s>Contact name</label>
<input required autofocus autocomplete="off" name="contactName"
type="text" class="validated" id="contactName" pattern:".{B,lOO}"/>
</div>
<div class="grid quarter"s>
<label for="phoneNumber"s>Phone number</label>

<input required pattern="[0-9() 1{5,15}" placeholder="Include area
code" name="phoneNumber" type="tel" id="phoneNumber" class="validated" />
</div>

<div class="grid quarter"s>
<label for="emailAddress">Email address</labels>
<input required name="emailAddress" id="emailAddress" type="email"
class="validated"/>
</div>
<div class="grid quarter">
<label for="companyName">Company name</labels>
<select required name="companyName" class="validated"s>
<option value="">Please select</option>
<option value="1">ABC Incorporated</options>
<option value="2">XZY Ltd</options>
<option value="3">ACME International</options>
</select>
</div>
</div>
<div class="formRow">
<div class="grid half">
<label for="notes">Notes</label>

334

| LESSON 37 RESPONSIVE WEB DESIGN

<textarea cols="40" rows="6" name="notes" class="validated"
maxlength="1000"></textarea>
<div class="textCount"></div>
</divs>
<div class="grid quarter"s>
<label for="lastContacted">Last contacted</label>
<input name="lastContacted" type="text" class="validated"/>
</div>
</divs>
<div class="formRow">
<input style="width:70px" type="submit" title="Save" value="Save"/>
</divs>
</form>

Notice that this design places each pairing of label and input field in its own grid element. These
grid elements are then placed within your existing formrow elements.

This design will also rearrange the way labels and input fields are positioned in relation to one
another. With a grid-based design, it is often advisable to place labels above input fields to prevent
large discrepancies in size between the label and input field. To achieve this, the CSS rules associated
with these elements have been changed as follows:

input, select, textarea {
width:90%;

label {
display: block;
}

With this in place, you can examine how the web page adjusts to changes in screen resolution. On a
display with high resolution, the form appears as you see in Figure 37-3.

Contact details

Contact name * Phone number * Email address * Company name *
[] [include area code Please select s
Notes Last contacted
Save
FIGURE 37-3

As the resolution is decreased, the grid elements naturally flow onto new lines, as you will see if you
slowly reduce the width of the browser. Once the screen resolution is decreased to that of a typical
mobile phone, it appears as you see in Figure 37-4.

Flexible Grids | 335

Contacts

Contact details

Contact name *

I |

bhcnenumber'

Email address *

Company nama *
PMease selec

-

Notes

Last contacted

Fave

FIGURE 37-4

This design is taking advantage of the manner in which inline elements (the grid elements) flow
within a block element (the form rows). You can imagine them flowing exactly the same as text does
within a paragraph: When the text reaches the edge of the screen, it simply wraps onto the next line.

It is also worth examining the percentages that have been used on input fields. These have been
set to 90 percent, which may sound unusual. Percentages are always specified in relation to the
total space allocated to the containing element. Therefore, if an input is placed inside a grid_
quarter element, it will use 90 percent of the 23 percent of the screen allocated to the grid cell, or

approximately 20 percent of the total width.

I have also changed header and footer elements to use em units to control their height:

header {

background: #3056A0;

color: white;

text-align:center;
line-height: 2em;

font-size: 3em;

}

footer {
line-height:2em;

background: #3056A0;

color: white;

text-align:center;
font-size: 0.8em;

336 | LESSON 37 RESPONSIVE WEB DESIGN

You will notice that although both header and footer are set to a 1ine-height of 2em, the two
elements have very different heights. This seeming discrepancy exists because the em unit type
expresses sizes in relation to the font size of the element itself, not the default font size of the entire
page. Because the header font is 3em, the height of the header is over three times higher than the
footer, which has a font size of 0. 8em.

NOTE The fact that the em units relate to the element they are defined in can
sometimes be a problem. For instance, if a single font size is changed, this may
be picked up by many elements, and a variety of element sizes will change as a
result. In order to counter this, CSS3 introduces a new unit called rem. This unit
allows sizes to be defined in relation to a font size defined on the html element
itself.

Most of the other changes made to the design involve changing pixels to em units and ensuring that
elements always have appropriate minimum widths. For instance, the following two rules eliminate
fixed sizes entirely:

#fileImport, #serverImport, #chooseTheme ({
margin: 2em;
border: lpx solid #999999;
border-radius: lem;
width: 50%;
min-width:12em;
padding: lem lem 0 lem;
background: #DAECFF;

}

.theme {
width: 1.5em;
height: 1.5em;
display: inline-block;
border: 1px solid #999999;
border-radius: 0.2em;

}

The one exception where pixel sizing is retained is with border sizes. This is usually considered
acceptable because it is common to need finer control over the size of borders to stop them from
becoming overpowering.

If you look through contacts.css on the book’s website, you will see a number of other minor
changes. The end result is that the web page can adjust to screen widths as low as 275 pixels, and it
would be trivial to change it to function on even smaller screen resolutions.

MEDIA QUERIES

Using a flexible grid should always be your starting point when creating a responsive design, but
often it is not sufficient for all your needs. Sometimes changes to screen resolution mean that you
need to make fundamental changes to your design.

Media Queries | 337

This section will demonstrate how media queries can be used to detect screen resolution and will
provide specific rules to suit this resolution.

Before beginning, uncomment the table in contacts.html because you will investigate
how this can be modified with media queries to ensure it displays appropriately at all
screen devices.

The table in the contactList section is a problem: There is no way that a six-column table will ren-
der on a small screen device such as a mobile phone. Although it is possible to add horizontal scroll-
ing, this typically annoys users. You will therefore change the CSS to dynamically hide columns as
the screen width shrinks.

Begin by adding three rules to contacts.css:

@media (max-width: 600px) {
.medium-suppressed {
display: none;
}
}
@media (max-width: 450px) {
.small-suppressed {
display: none;
}
}
@media (max-width: 300px) {

.tiny-suppressed {
display: none;

}

These rules specify three new classes:
> medium-suppressed: Can be used to hide elements on screens smaller than 600 pixels
> small-suppressed: Can be used to hide elements on screens smaller than 450 pixels
> tiny-suppressed: Can be used to hide elements on screens smaller than 300 pixels

These classes can then be applied to cells in the table header:

<thead>
<th>Contact name</th>
<th class="medium-suppressed">Phone number</th>
<th class="small-suppressed">Email address</th>
<th class="small-suppressed">Company name</th>
<th class="tiny-suppressed">lLast contacted</th>
<th class="noprint">Actions</th>

</thead>

and in the template that creates table rows:

<template id="contactRow">
<td data-property-name="contactName"></td>
<td class="medium-suppressed" data-property-name="phoneNumber"></td>
<td class="small-suppressed" data-property-name="emailAddress"></td>
<td class="small-suppressed" data-property-name="companyName"></td>
<td class="tiny-suppressed">

338 | LESSON 37 RESPONSIVE WEB DESIGN

<time data-property-name="lastContacted"></time>
<div data-property-name="notes" class="overlay"s>

</divs>
</td>
<td class="noprint"s>Delete</td>
</template>
If you now reload contacts.html, and progressively shrink the screen Biled loads

resolution, columns will automatically disappear. For instance, at a
width of 600 pixels, the web page appears as you see in Figure 37-5.

Dane October 3,
Cameron 2014

If the user turns his or her phone into landscape mode (with a screen
width of 640 pixels), however, the web page automatically adjusts as
you can see in Figure 37-6.

0 contacts displayed

FIGURE 37-5

Sales leads
Contact Last
e Email address Company name contacted Actions
Dane . ACME October 3,
Cameron dane@testing.com ilnternational 2014 Delete
0 contacts displayed
FIGURE 37-6

You now need an alternative approach for displaying the information that has been
suppressed. For the sake of the example here, you will take advantage of the overlay that
already displays notes.

Start by defining three classes that are the inverse of those created earlier: They hide elements as the
screen resolution reaches a minimum width. This is achieved with the min-width property:

@media (min-width: 650px) {
.medium-displayed {
display:none;
}
}
@media (min-width: 450px) {
.small-displayed {
display:none;
}
}
@media (min-width: 300px) {
.tiny-displayed {
display:none;
}
}

You can now rearrange the overlay so that it includes the various columns that may be hidden:

<div class="overlay">
<div class="medium-displayed" data-property-name="phoneNumber"></div>
<div class="small-displayed" data-property-name="emailAddress"></div>
<div class="small-displayed" data-property-name="companyName"></div>

Media Queries | 339

<div data-property-name="notes"></divs>
</div>

Finally, you will tidy up the overlay class in contacts.css so that it uses relative sizing:

.overlay {
position: fixed;
height: 60%;
max-height:10em;
width: 70%;
max-width:15em;
margin-left:-5em;
border: 1lpx solid #333;
background: #eee;
display: none;
z-index:1;
padding:10px;
color: #333333 !important;

}

If you use the overlay feature on a small screen device, it will now display as you see in
Figure 37-7.

Sales leads
Contact name Last contacted Actions

Dane Cameron January 6, 2015

565 222 333
dane@testing.com
ABC Incorporated
A{ Notes

Import contacts
Choose file | Mo file chosen

FIGURE 37-7

Along with min-width and max-width, media queries can also utilize the following properties:
> min-height: The same as min-width but is based on the height of the screen resolution
> max-height: The same as max-width but is based on the height of the screen resolution

> orientation: Accepts two values, portrait and landscape, and matches when the device
is using that orientation

The height and width selectors have companion selectors based on the device width—for
instance, min-device-width. These match on the overall resolution of the device, rather than
the resolution of the browser (or viewport). These should be avoided because the resolution of
the browser should always form the basis of your design decisions, not the theoretical resolution
available to the user.

340 | LESSON 37 RESPONSIVE WEB DESIGN

TRY IT

This Try It addresses the way resources, such as images and videos, should be sized in a responsive
design. This will involve modifying a fixed-width design so that it displays on a variety of screen
resolutions. You will start with a web page that displays as you see in Figure 37-8.

Lorem Ipsum

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute
irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat
non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.,

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem aperiam,
eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam
voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione voluptatem

FIGURE 37-8

You will then modify this in a number of ways:
> Make the text wrap around the image.

> Make the image adjust to the size of the screen, ensuring that some text always wraps to its
left until it reaches a very low resolution: At this point, the image will occupy 100 percent of

the width.

> Ensure that the text never displays more than approximately 70 characters on a line because
it can become difficult to read beyond this width.

NOTE The text on this web page is based on a block of Latin that has been used
in typesetting for decades.

Try lt | 341

Lesson Requirements

In this lesson, you will need the tryit.html page, which can be downloaded from the book’s
website, along with the image (photo1l.jpg) used within the page. You will need a text editor and
Chrome to complete this Try It.

Step-by-Step

1.
2.

Open tryit.html in your text editor and in Chrome.

Add a meta attribute instructing the viewport not to scale the website, but to assume it is
tailored for the device width.

The web page contains three logical units: a header, an image, and a block of text set over
four paragraphs. In order to clearly delineate these boundaries, place a span around the
image and another around the text, and assign these the class names imageHolder and
textHolder respectively.

You always want the image to display on the right of the screen; therefore, add a f1oat
property to imageHolder to specify this.

The img element has a width attribute specifying it should use 600 pixels of horizontal space.
Because you do not want to use absolute sizes, remove this attribute.

Without the width attribute, the image will expand to its natural resolution. However, you
want the image to use at most 50 percent of the available width. Start by specifying that the
width of imageHolder is 50 percent.

The image is not scaled in relation to the width of its parent. The easiest way to scale the
image is to add a rule that matches . imageHolder img, and specify that it has a max-width
of 100%. Essentially this is specifying that the maximum width of the image is the space avail-
able to it, ensuring that it scales both the height and width accordingly.

It can be difficult to read text if the line width is too short or too long so add a rule that
matches .textHolder p, and specify a maximum width of 45em and a minimum width of
15em.

A final problem with the web page is that the image becomes too small to see when the
resolution drops below a certain resolution. In order to overcome this, add a media query
that matches when the width is a maximum of 450 pixels. Add a rule to this specifying that
imageHolder has a width of 100 percent.

When the web page is displayed, it should appear as you see in Figure 37-9 for resolutions over 450
pixels in width.

342 LESSON 37 RESPONSIVE WEB DESIGN

Lorem Ipsum

Lorem ipsum dolor sit amet, consectetur .
adipiscing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim ad
minim veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate
velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim id
est laborum.

Sed ut perspiciatis unde omnis iste natus error sit ,
voluptatem accusantium doloremque laudantium, <aes
totam rem aperiam, eaque ipsa quae ab illo
inventore veritatis et quasi architecto beatae vitael
dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit,
sed quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt. Neque porro
quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non
numgquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut
enim ad minima veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, nisi ut
aliquid ex ea commodi consequatur? Quis autem vel eum iure reprehenderit qui in ea voluptate
velit esse quam nihil molestiae consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla
pariatur?

FIGURE 37-9

On a small screen device, such as a smart phone browser, the web page will display as shown in
Figure 37-10.

Lorem Ipsum

Lorem ipsum dolor sit amet, consectetur
adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi
ut aliquip ex ea commodo conseguat.
Duis aute irure dolor in reprehenderit in
voluptate velit esse cillum dolore au
fugiat nulla pariatur. Excepteur sint
occaecat cupidatat non proident, sunt in
culpa qui officia deserunt moliit anim id
est laborum.

FIGURE 37-10

REFERENCE Please go to the book’s website at www .wrox .com/go/html5]s-
jquery24hr to view the video for Lesson 37, as well as download the code and
resources for this lesson.

http://www.wrox.com/go/html5js-jquery24hrto
http://www.wrox.com/go/html5js-jquery24hrto
http://www.wrox.com/go/html5js-jquery24hrto

38

Location API

Developing web applications for mobile phones can simply mean utilizing the techniques and
technologies associated with responsive web design and ensuring that the user receives the best
possible experience regardless of the screen resolution.

It can also open up a whole world of possibilities, however, by taking advantage of the features
and services that are unique to mobile devices. For instance, mobile devices typically provide a
variety of services that can be used in applications:

> The ability to detect the location of the device
The ability to detect motion—for instance, the user moving the device side to side
The ability to know which direction the device is facing

The ability to take photos and videos

Y VYV VY

The ability to connect to periphery devices using wireless technologies such as
Bluetooth

> The ability to receive and generate notifications

Unfortunately it is not currently possible to interact with most of these services via JavaScript
because they are only made available with native APIs, and these vary across platforms.

One API that is available in JavaScript, however, is the Geolocation API. This lesson
looks at how you can take advantage of this API to create a web application that tracks a
user’s motion.

The Geolocation AP is available in JavaScript via the navigator.geolocation object. This
APl is available in all the most common browsers, regardless of the device the browser is
running on.

Despite the fact that the Geolocation API is available on all devices, it has obvious uses on
mobile devices because these change location on a regular basis, and the user is more likely
to perform actions in relation to his or her current location. These devices also typically have
more accurate mechanisms for determining location, such as GPS.

344 | LESSSON 38 LOCATION API

In order to see the Geolocation API in action, open contacts.html via the web server, open the
console and enter the following:

> navigator.geolocation.getCurrentPosition (function(location)
console.log('Latitude: '+ location.coords.latitude) ;
console.log('Longitude: '+ location.coords.longitude) ;
console.log('Altitude: '+ location.coords.altitude) ;
console.log('Accuracy: '+ location.coords.accuracy) ;

1

When you enter this code, Chrome adds a message at the top of the screen, as shown in
Figure 38-1.

&« - C ;j localhost:8080/contacts.html 5’?7

4

@ localhost:8080 wants to use your computer's location. Learn | Deny \ \ Allow |

FIGURE 38-1

The Geolocation API specification states that the browser must obtain permission before
providing access to the user’s location. This is similar to the approach taken with mobile phone
apps when they are installed, and it prevents websites from accessing a user’s location against the
user’s will.

Browsers employ a variety of approaches to ask for this permission, and most will either
remember the decision made by the user or provide you with an option for this decision to
be remembered.

One consequence of this approach is that you can only use the Geolocation API in a web page
downloaded from a web server, not from a web page loaded directly from the file system. This is
because the permission is associated with your origin—localhost:8080 in this case—and pages
loaded from the file system do not have an origin.

Once you click Allow, your coordinates will be printed to the console. For example:

Latitude: -41.22799199999996
Longitude: 174.88613729999998
Altitude: null

Accuracy: 25

The latitude and longitude are expressed as numbers. For latitude, a positive number indicates
North, a negative number indicates South, and a value of 0 indicates the equator. The numbers will
always be in the range —90 through to 90.

For longitude, a positive value indicates East, while a negative value indicates West. The value
0 indicates Greenwich, London, while all other locations have a value in the range —180 through
to 180.

The Geolocation API also provides altitude information. This will typically only be available if the
location information is obtained via GPS, or an in-built altimeter, but when available represents the
number of meters the device is above sea level.

Monitor Movement | 345

Finally, the API provides information regarding how accurate the location information is. As you
can see, in my case Chrome was capable of finding my location within 25 meters.

Devices have a variety of mechanisms for determining your location:

> The most accurate form of location information is via GPS. Later in the lesson, you
see how you can specifically request the device to provide information via GPS, where
supported.

> Where GPS information is not available, the device will typically attempt to calculate
its location based on the WiFi access points that are within range and their relative strengths.
This is how my location was obtained in the previous example and proves reasonably
accurate.

> Where a device has access to cellular networks, it may also try to triangulate its location
from the signal strength of cellular towers that are within range. This will typically only be
accurate to within a few hundred meters.

> Where no other information is available, the device may need to determine its location based
solely on IP address. This is likely to be an approximation at best, and could be wrong by an
enormous amount.

Different devices will determine location using different approaches, but the main lesson to under-
stand is that location information will not always be accurate, and you must take this inaccuracy
into account when designing web applications.

MONITOR MOVEMENT

In this section, you will use the Geolocation API to monitor the distance traveled by a user,
along with their current speed. In order to implement this, your web application will sample the
user’s location intermittently, and record the user’s location at each point in time. By comparing
two points in terms of both location and time, you can determine the speed that the user

is traveling.

In order to implement this web application, you need a mechanism for determining the
distance between two points. Although you could write this functionality yourself, it makes
sense to reuse existing code where available. You will use a library created by Google, which
is available on the book’s website (google.geometry.js). You can also download it from the
following URL:

http://maps.google.com/maps/api/js?sensor=true&libraries=geometry
Start by creating the following web page, and name it locate.html:

<!DOCTYPE html>

<html lang="en">

<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<script src="google.geometry.js"></scripts>

http://maps.google.com/maps/api/js?sensor=true&libraries=geometry

346 | LESSSON 38 LOCATION API

<script src="jquery-2.1.1.js"></scripts>
<style>
body {
font-family: Arial, Helvetica, sans-serif;
margin: 2em;
font-size: 2em color: #333333;
background: #E6DEDC;
}
#summary {
width:80%; min-height: 4em;
border: 1px solid #e2e2e2;
margin: lem 0 lem 0;max-width: 20em;
}
.button
font-size:2em; font-weight:bold;
color:white;background:#1BA61B;
width:7em; text-align:center;
text-decoration:none;line-height:2em;
display: inline-block;
}
.row {
padding:0.5em;
}

.row label ({
width:9em;display: inline-block;
}

</style>
</head>
<body>
<hl>Track movement</hl>
<div id="summary">
<div class="row">
<label>Current speed:</labels

</divs>
<div class="row">
<label>Total distance:</label>

</div>
<div class="row">
<labelsAltitude:</label>

</div>
<div class="row message"></div>
</div>
Start
</body>
<scripts>
</scripts>
</html>

This will produce the output shown in Figure 38-2.

Monitor Movement | 347

Track movement

Current speed:
Total distance:
Altitude:

FIGURE 38-2

The web page has been created according to the the principles of responsive web design, as outlined
in lesson 37, and therefore will function on small or large screens.

The screen consists of a button for starting the tracking and an area for displaying output. Notice
that it also imports the jQuery library, which you will use to add dynamic functionality.

The functionality will be implemented as a module with a single public method. Add the following
to the script block:

locationModule = function locationModule() {

var lastPosition = null;

var totalDistance = 0;

var id = null

function updateLocation (position) {

}

return {

toggleState: function(evt) {
if (lastPosition) ({
lastPosition = null;
lastPositionTime = null;
totalDistance = 0;
navigator.geolocation.clearWatch(id) ;
S (evt.target) .text ('Start');
} else {
startTime = $.now() ;
id = navigator.geolocation.watchPosition (updateLocation,
function (error) {console.log(error)},
{maximumAge: 3000, timeout: 20000,
enableHighAccuracy: true });

S (evt.target) .text ('Stop!') ;

YO
$('#activate') .click(locationModule.toggleState) ;

This has been implemented as a module because it needs to store state as the web application
executes. The state includes the total distance covered and the last position recorded. Using a mod-
ule allows this state to be stored as private variables that cannot be manipulated by other code.

348

| LESSSON 38 LOCATION API

The method exposed by the module is called togglestate. This method either starts or stops the
tracking, depending on its current state. The application is considered to be running if it has a
lastPosition; otherwise, it is considered stopped. As you can see, this method is invoked when
the button with the ID activate is clicked.

This application needs to sample the user’s position at regular intervals. Obviously, you could
use a combination of setInterval and getCurrentPosition for this, but the Geolocation
API provides a specific method for this purpose called watchPosition, which accepts the
following parameters:

> A success callback: Identical to the one used with getCurrentPosition.
> An optional error callback: Invoked if it is not possible to obtain the user’s location.

> An optional set of options that act as hints to the API: In this case, you have specified that
you would like an accurate location if possible (using GPS), that you would like to be
informed of the user’s location every 3 seconds (maximumage), and that you would like to
be notified of the user’s location no later than 20 seconds after watchPosition is invoked
(timeout). If the device cannot obtain a location in accordance with this contract, the error

callback will be invoked.
These three parameters are also accepted by the getCurrentPosition method.

The call to watchpPosition returns a number. This needs to be stored by the application because
it needs to be provided if you wish to cancel the tracking. You can see this in the following line
of code:

navigator.geolocation.clearWatch(id) ;

You can now implement the updateLocation callback, which is currently an empty function:

var lastPosition = null;
var totalDistance = 0;
var id = null
function updateLocation(position)
var updateDate = new Date (position.timestamp) ;
S ('.message') .text ('Last updated at ' +updateDate.getHours () +
':'+ updateDate.getMinutes()+':'+updateDate.getSeconds()) ;
if (lastPosition) {
// time in milliseconds since last reading
var timeSinceLastReading = position.timestamp-lastPosition.timestamp;
// distance travelled in meters
var distance = google.maps.geometry.spherical.computeDistanceBetween
(new google.maps.LatLng (position.coords.latitude,
position.coords.longitude),
new google.maps.LatLng(lastPosition.coords.latitude,
lastPosition.coords.longitude)) ;
totalDistance = totalDistance + distance;
if (timeSinceLastReading / 1000 > 0) {
var metersPerMinute = distance / (timeSincelastReading
/ 60 / 1000);
S ('#currentSpeed') .text (Math.round (metersPerMinute) +
' meters per minute');

Loading the Application | 349

S ('#distance') .text (Math.round (totalDistance) + ' meters travelled');
if (position.coords.altitude) {
$('#altitude') .text (Math.round (position.coords.altitude) +
' meters above sea level');

lastPosition = position;

}

You always need two positions in order to determine movement, so the first time this callback is
invoked, it will simply update a message onscreen stating the last time a reading was obtained, and
set the lastPosition variable to the location retrieved.

On subsequent invocations, this function will compare the new location to the previous location in
both time and distance.

To determine the time between two invocations, you can use the timestamp property. This contains
information on the exact timestamp (time in milliseconds) the user was in this location, not the time
that the callback function was invoked.

In order to determine the distance between two locations, you utilize the computeDistanceBetween
method from the Google API. To use this, you need to transform the coordinates you receive into
instances of the google .maps.LatLng class.

Once you know the time and distance traveled, you can compute the speed at which the user is
traveling. For the purposes of this exercise, you will only make this computation if the two readings
have different timestamps; otherwise, you would be dividing by zero.

You need to calculate the meters traveled per minute. Therefore, you divide the total distance
traveled by the time since the last reading, then 60, then 1000. For instance, if the user

had traveled 20 meters, and there were 10,000 milliseconds between the readings, you
would calculate:

distance = 20 / (10,000 / 1000/60)
distance =20/ (10 / 60)

distance = 20/ 0.16666

distance = 120

If the user traveled 20 meters in 10 seconds, he is likely to travel 120 meters in a minute, so this is
the expected answer.

You will also update a message onscreen for the total distance covered, and the current altitude if it
is available.

LOADING THE APPLICATION

Although you can use this web application from your desktop or laptop, it makes far more sense
to try it with a mobile device. To use this application on a mobile device, you first need to make it
available via your web server.

350 | LESSSON 38 LOCATION API

In order for your mobile device to connect to your web server, you will need to ensure the port is
“open” and also find the appropriate IP address to connect to. These instructions will then explain
how to request web pages from within your local network—for instance, your home WiFi network
on both Windows and OS X.

These instructions assume that your mobile device and the computer running your web server are
both attached to the same WiFi network.

Windows Instructions

You will need to ensure that your computer firewall is either turned off or configured to allow
Mongoose to accept inbound connections. This can be configured via the New Inbound Rule
Wizard and involves opening port 8080, as shown in Figures 38-3 and 38-4.

r =
B New Inbound Rule Wizard, RS _— - [

i — —— [P e —

Rule Type
Select the type of firewall rule to create

Steps:
@ Rule Type What type of rule would you like to create?
@ Protocol and Ports
@ Action) Program
P = Rule that controls connections for a program.
@ Name @ Port
Rule that controls connections for a TCP or UDP port,
) Predefined:
_EmnchCacha -Content Retrieval (Uses HTTF) ¥
Rule that controls connections for a Windows experience.

Custom

Custom rule..

Leam more about nule types

e W N SN W W O S W W O W W NG W W

< Back [MNext >]{ Cancel J

[

FIGURE 38-3

Loading the Application

351

r
& New Inbound Rule Wizard

Protocol and Poris
Specify the protocols and ports to which this rule applies.
Steps:
Rule Type Does this rule apply to TCP or UDP?
Protocol and Ports @ TCP
@ Action - upP
@ Profile
N,
- one Does this nule apply to all local ports or specific local ports?
All local ports
@ Specific local ports: 8080
Bcample: 80, 443, 5000-5010
Leam more about protocol and ports
<Back || Ned> |[Cancel
|
FIGURE 38-4

You will then need to determine the IP address of the computer hosting the web server. There are
many ways to do this, but the easiest is to open a command prompt and type ipconfig. Your IP

address will be listed as IPv4 Address, as you can see in Figure 38-5.

Administrator: Command Prompt

IC:\Users>ipconfig

Windows IP Configuration

thernet adapter Local Area Connection:

Connection—specific DNS Suffix

Link-local IPv6 Address . . . feB@::dd?6 :a2bb :cBhP 315211
IPvd Address. . « = = =« o « & 192.168.23.11

Subnet Mask . . ® limt 255.255.255.8

Default Gateway : 192.168.23 .1

unnel adapter isatap.{C2488508-OCFF-4EC?-938A-879AE8C87CAL>:

Media State * Media disconnected
Connection—specific DNS Suffix . =

IC:\Users>_

[

FIGURE 38-5

352 | LESSSON 38 LOCATION API

You should now be able to load the web page from your mobile device using the relevant IP address,
and the port used by Mongoose—for example, http://192.168.23.11:8080/1locate.html.

OS X Instructions

You will need to ensure that your computer firewall is either turned off or configured to allow
Mongoose to accept incoming connections. This can be configured via the Security & Privacy menu
in System Preferences (see Figure 38-6).

0060 Security & Privacy

[Block all incoming connections

Blocks all incoming connections except those required for basic Internet services,
such as DHCP, Bonjour, and IPSec.

£2 Dropbox @ Allow incoming connections
@ iTunes @ Allow incoming connections

a ar

¥ Mongoose 8 Allow incoming connections

=]

FIGURE 38-6

You will then need to determine the IP address of your computer. This can be found in the Network
options of System Preferences, as Figure 38-7 illustrates.

2800 Network

Wi-Fi DNS = WINS | B02.1X | Proxies & Hardware [
Configure IPv4: [Using DHCP t]
IPv4 Address: 192.168.0.10 Renew DHCP Lease

FIGURE 38-7

You should now be able to load the web page from your mobile device using the relevant IP address
and the port used by Mongoose—for instance, http://192.168.0.10:8080/locate.html.

Using the Application

Once the web application is loaded on your mobile phone, you can begin using it by pressing
the Start button. As you start walking, you should see the screen update with your
distance traveled.

http://192.168.23.11:8080/locate.html
http://192.168.0.10:8080/locate.html

Trylt | 353

Because the web page is being loaded from your web server on your WiFi network, you will not
be able to reload the web page once you are outside the range of your WiFi network. You could,
however, choose to configure an application cache to make this web application available offline,
as outlined in lesson 32.

TRY IT

In this Try It, you will enhance the capabilities of the web application developed in this lesson:
> You will display to the user the direction they are heading in.

> You will smooth variations in the user’s speed per minute by averaging the last five
recordings (assuming five are available).

Lesson Requirements

In this lesson, you will need the 1ocate.html page, which can be downloaded from the book’s
website if you have not created it. You will also need two libraries used by this web page (jQuery
and Google geometry), which are also available from the book’s website.

Step-by-Step
1. Open locate.html in your text editor and in Chrome.

2. Start by adding a new div to the summary section for displaying the user’s heading or
direction. This should follow the same pattern as the other headings.

3. The user’s heading can be calculated in the same manner as her distance traveled by using
the computeHeading method. Invoke this with the current and previous LatLng objects and
store the result in a variable.

4. The heading represents the degrees from true North. Round this to a whole number, and
output it onscreen.

5. Create a private array in the module for storing the last five calculations of
metersPerMinute.

6. After metersPerMinute is calculated, add it to the array using the push method.

7. If the array contains more than five members, remove one using the shift method. This
approach ensures that the array uses a last in, first out (LIFO) strategy.

8. Create a private function for averaging the contents of an array. Try to use the reduce
method to calculate the sum of the members in the array, and then divide this by the length
of the array.

Q. Set the currentspeed to the average of the last five readings.

Your finished version will look something like Figure 38-8.

354 | LESSSON 38 LOCATION API

192.168.0.10:8080/locate_tryit html# (5]

Track movement

Current speed: 47 meters

per minute

Total distance: 48 meters
travelled

Altitude: 32 meters

above sea level
Heading: -45

Last updated at 12:37:19

FIGURE 38-8

REFERENCE Please go to the book’s website at www.wrox.com/go/html57s] -
query24hr fo view the video for Lesson 38, as well as download the code and
resources for this lesson.

http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto

39

jQuery Mobile: Part |

I began this section of the book by looking at how a web application can be designed for
mobile devices using the techniques and technologies associated with responsive web design.
Responsive web design encourages the use of a single set of resources while ensuring the con-
tent dynamically adjusts to all relevant screen resolutions.

Although responsive web design is increasingly popular, there is an alternative school of
thought that says large-screen devices and small-screen devices are fundamentally different,
and their respective needs can only be met by creating two different web applications.

The following are the main arguments in favor of mobile-specific versions of web applications:

>

Mobile devices support a different set of events from traditional desktop devices. This
stems primarily from the fact that the user is holding the device in her hands, meaning
it is possible to respond to touch- and motion-based events, such as the user swiping
the screen, tapping and holding, or rotating the screen.

Mobile applications typically approach navigation in a different manner than desktop
applications. Rather than providing a single page with a diverse set of information,
they provide information in bite-sized pages, and make it possible to quickly navigate
from one page to another.

Users of web applications on desktops and laptops, by comparison, typically become
frustrated by websites that require excessive navigation, even though this is a popular
technique used to increase advertising revenue on many sites.

Mobile devices are often connected to slower connections than networked devices
such as desktops, and users typically pay far more money for their mobile data. The
fact that a typical home page on a website is now over 1MB in size, and can be far
larger, can have a major impact on usability for mobile users, both in terms of time
and money.

A mobile-specific web application will therefore ensure that a minimal set of
resources is downloaded on page load and that subsequent resources are loaded
on-demand.

356 | LESSON 39 JQUERY MOBILE: PART |

The next two lessons will look at how the jQuery Mobile library can be used to create a mobile-spe-
cific web application. This will involve creating a new set of resources for the CRM web application
while retaining the majority of the JavaScript code.

NOTE The main disadvantage of this approach is that there will be two versions
of the web application that need to be supported. Not only does this add extra
effort, but it is also very easy to introduce inconsistencies between the two
versions of the web application. It is therefore essential to weigh the tradeoffs
before beginning a mobile-specific web application.

This lesson will focus on the way in which a mobile web application can be structured into a set of
pages and the manner in which the user can navigate between these pages. The next lesson will then
focus on mobile-specific Ul components and mobile-specific events.

UNDERSTANDING JQUERY MOBILE

Despite the fact that it has jQuery in its name, jQuery mobile encourages a very different form of
programming from what you have seen up until this point in the book.

jQuery Mobile is a framework for developing mobile web applications. In order to use jQuery
Mobile, you are responsible for describing the style and behavior of each element, but jQuery
Mobile—for the most part—is responsible for implementing this.

For example, consider the following hyperlink, which will form part of your web application:

<a href="#settingsPage" data-role="button" data-icon="gear" class="ui-btn-right"
data-transition="slideup">Settings

As you can see, this hyperlink contains three data attributes and a class, all of which have special
meaning to jQuery Mobile. Some of these describe the way the hyperlink should appear:

> It should be styled as a button.
> It should appear on the right side of its container.
> It has an icon provided by jQuery Mobile called “gear.”

Other data attributes describe the behaviors of this hyperlink when clicked; for example,
it transitions using a “slide-up” effect.

With these attributes and classes in place, simply importing the jQuery

Mobile library and style sheet is sufficient to create the button shown in
Figure 39-1 and provide its “click” functionality:
{3} Settings
jQuery Mobile supports well over a hundred data attributes, all with
their own specific purpose and set of values. Although this lesson
FIGURE 39-1

focuses on only a small number of these, once you understand the basic
approach, it is straightforward to discover a whole world of functionality
by browsing the demos and APIs at jquerymobile.com.

Understanding jQuery Mobile | 357

NOTE Using a framework like jQuery Mobile requires a mind-shift. You need
to be prepared to hand over more control to the framework and also to live
within its constraints to some extent. In return, you potentially need to write
considerably less CSS and JavaScript than you would otherwise.

Importing jQuery Mobile

To begin your mobile web application, create a file called mobile contacts.html in the same
folder as contacts.html.

You will use version 1.4.4 of jQuery Mobile in this lesson. As with most JavaScript libraries, you
have the choice of using a CDN-hosted version or downloading and hosting your own copy of this
library. In this lesson, you will host your own version of the library.

jQuery Mobile can be downloaded from the jQuery Mobile website at jquerymobile. com, or it is
available on the book’s website. The download consists of a zip file containing a set of JavaScript
files, CSS files, and images.

NOTE If you download the library yourself, it is also possible to construct a ver-
sion of jQuery Mobile conforming to your preferred themes. This process will
then construct a set of CSS files conforming to your required color scheme.

Once downloaded, extract the zip file into the folder containing mobile contacts.html, creating
a sub-folder called jquery.mobile. You should then import the relevant resources in the head
section of mobile contacts.html (ensuring that the jQuery Mobile library is imported after the
main jQuery library). Your HTML page should begin like this:

<!DOCTYPE htmls>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Contacts</title>
<script src="jquery-2.1.1.js"></scripts>
<script src="jquery-ui.js"></scripts>
<script src="contacts.js"></script>
<script src="jquery-time.js"></scripts>
<script src="jquery-tables.js"></scripts>
<script src="find.contacts.js"></script>
<link rel="stylesheet" type="text/css" href="jquery-ui.css">
<link rel="stylesheet" href="jquery.mobile/jquery.mobile-1.4.4.min.css" />
<script src="jquery.mobile/jquery.mobile-1.4.4.min.js"></script>
</head>
<body>
<main id="contactScreen"s>
</main>
</body>
</html>

358

| LESSON 39 JQUERY MOBILE: PART |

Notice that you also set the viewport width and initial-scale, and that you have imported any
other relevant files such as contacts.js. You do not import contacts.css, however, because
jQuery Mobile includes its own style sheets, and these will meet most of your needs.

Mobile Design

Your first task in designing your web application is to determine the pages that will make up the
web application, and the flow a user will follow as he navigates from one page to another.

This web application will consist of four logical pages:

> A page containing a list of saved contacts. This will be the default page presented to users
when the web application loads.

> A page for entering details for a new contact. Users can navigate to or from this page via the
list page.

> A page for viewing details and any notes relating to a contact: This has been implemented
as an overlay in the current web application but makes sense to implement as a page in your
mobile web application. This user will navigate to this page from the list view.

> A page for any settings or utilities such as file upload and server download functions. This
user will navigate to this page from the list view.

JQUERY MOBILE PAGES

A page in a jQuery Mobile web application does not need to be realized by an HTML file. Instead,
it is possible to group together many mobile pages in the same HTML page, and use jQuery Mobile
to navigate from one page to another.

jQuery Mobile achieves this via DOM manipulation: It simply hides the logical pages that are not
visible and transitions from one page to another through a combination of DOM manipulation and
animated transitions.

In order to indicate that an element in the web page represents a logical page, you tag it with the
attribute data-role="page", and provide an id to uniquely identify the page.

Although it is common to use div elements as the container for pages, it is possible to use any block-based
element, such as a section. For instance, the following represents a page for displaying a list of contacts.
Read through the code first, and I will then walk you through each relevant element and attribute:

<section id="contactListPage" data-role="page">
<div data-role="header">
<hl>Contact list</hl>
<a href="#settingsPage" data-role="button" data-icon="gear" class="ui-btn-
right" data-transition="slideup">Settings
</divs>
<div data-role="content">
<table data-role="table" data-mode="columntoggle"
class="ui-responsive ui-table">
<thead>
<tr>

jQuery Mobile Pages | 359

<th data-priority="1">Contact name</th>
<th data-priority="1">Phone number</th>
<th data-priority="1">Actions</th>
</tr>
</thead>
<tfoot>
<tr>
<td colspan="3">0 contacts displayed</td>
</tr>
</tfoot>
<tbody>
</tbody>
</table>
</div>
<div data-role="footer" class="ui-bar" data-position="fixed">
<a href="#contactDetailsPage" id="addContact" data-role="button" data-
transition="slide" data-icon="plus">Add
</div>
</section>

The page itself has been broken into three sections, each of which consists of a div with a data-
role attribute:

> The top div defines the header of the page; in mobile web applications, it is typical for this to
describe the content of the web page and to offer navigation links to other pages.

The middle div contains an area for the main content of the page.

> The bottom div contains the footer of the page. It is conventional for this area to contain a
toolbar for invoking actions on the page.

In this particular example, the footer has a property data-position="fixed": This will
ensure that the footer always appears fixed at the bottom of the screen, even if the table con-
tains a large number of contacts and requires scroll bars.

Within this basic structure, you begin adding content. For instance, the content area of the screen
contains the table of contacts. You will notice that this table has been defined with the following
attributes: data-role="table" data-mode="columntoggle".

The first of these attributes is used to tell jQuery Mobile that it needs to customize this table for
mobile devices, while the second attribute tells it what strategy to use for this customization.

jQuery Mobile supports two basic modes or strategy of table. These two modes are both intended to
allow the table to respond to varying screen resolutions, but each does so in its own unique way.

NOTE As you will see in the next lesson, adding data attributes to many elements
not only alters the way they look, but it causes them to be converted into fully
fledged UI components complete with their own set of methods and properties.

The default table mode is reflow: In this mode, the table is displayed in a conventional manner
where space permits, but when the resolution becomes too low, the columns are displayed vertically
rather than horizontally, as Figure 39-2 shows.

360

LESSON 39 JQUERY MOBILE: PART |

Contact name James Cook
Phone number 555222 111
Actions

Contact name William Pitt
Phone number 555 987 678
Actions

Contact name Dane Cameron
Phone number 555291 111
Actions

3 contacts displayed

FIGURE 39-2

For the example here, you will use the columntoggle mode. This mode will mean that a button is
automatically added to the screen to allow users to hide or show columns as required. In addition,
this mode allows th cells to be marked with the data-priority attribute: If the table contains too
many columns to fit the screen resolution, jQuery Mobile will start excluding columns that have the
lowest priority (the highest number). In this particular case, it will mean hiding the phone number
column. This produces the table shown in Figure 39-3.

Columns...

Contact name Actions
James Cook =

0 0
William Pitt .

Q0
Dane Cameron =

‘4’ O
3 contacts displayed

FIGURE 39-3

You will continue to use a template to add contacts to the web page so add the following to the web
page before the closing main tag. It is not necessary to add the data-priority attribute to the cells
in the body of the table:

<template id="contactRow"s>
<td data-property-name="contactName"></td>
<td data-property-name="phoneNumber"></td>
<td>
<div data-role="controlgroup" data-type="horizontal" class="ui-mini">
<a href="#" data-role="button" data-icon="delete" data-iconpos="notext"
style="height: 18px;" data-delete-button>

JQUERY Mobile Pages | 361

<a href="#" data-role="button" data-icon="info" data-iconpos="notext"
style="height: 18px;" data-notes-button>
</div>
</td>
</template>

This is essentially the same as the template in contacts.html, except it contains fewer columns and
one additional button for displaying the notes for the contacts.

Because two buttons are being displayed side-by-side in single columns, they have been contained
within a div defined with data-role="controlgroup": This control can be used wherever buttons
need to be grouped together, such as a menu. In this example, you have also specified that the but-
tons should be displayed horizontally, while the class ui-mini ensures that small icons are used.

You will also notice that you are taking advantage of more jQuery Mobile icons for these buttons:
delete and info. jQuery Mobile provides approximately 50 icons that will meet most of your
development needs; these are documented fully on the jQuery Mobile website.

NOTE Oune other change you will notice if you look at the JavaScript provided
for this lesson is that after rows are dynamically added to the table, it is neces-
sary to refresh the table and control groups because jQuery Mobile converts
many elements into Ul components or widgets, and this only happens at page
load by default. This process is explored further in the next lesson.

Once you have contacts loaded into the mobile web application, it will display as you see in Figure 39-4.

Contact list (%) settings
Columns...
Contact name Actions
James Cook
00
William Pitt
00
Dane Cameron
0 0
3 contacts displayed
€D ada

FIGURE 39-4

362 | LESSON 39 JQUERY MOBILE: PART |

NOTE A single jQuery Mobile can support up to 26 color swatches (labeled a
through z) defining a specific color palette for different elements. The jQuery
Mobile Theme Roller feature lets you specify these, but even the default
download contains five color swaiches. You can try these out by adding
attributes such as data-theme="b" to elements such as headers and footers.

Notice that you did not invoke a single line of JavaScript or define a single CSS rule, yet jQuery
Mobile has constructed a mobile website conforming to the conventions of mobile applications.

Form-Based Pages

You can now add the second page to your web application: This will be used for capturing
information about a new contact. To create this page, add the following code, immediately after
the page created earlier.

<section data-role="page" id="contactDetailsPage">
<form method="post">
<div data-role="header"s>
<hl>Enter details</hl>
<a href="#contactListPage" data-role="button" data-icon="home"
class="ui-btn-right">Home
</div>
<div data-role="content">
<div class="ui-field-contain">
<label for="contactName">Contact name</label>
<input required autofocus autocomplete="off"
name="contactName" type="text"class="validated"
id="contactName" pattern=".{5,100}" />
</div>
<div class="ui-field-contain">
<label for="phoneNumber"s>Phone number</label>
<input required pattern="[0-9() 1{5,15}"
placeholder="Include area code"
name="phoneNumber" type="tel"
id="phoneNumber" class="validated" />
</div>
<div class="ui-field-contain">
<label for="emailAddress">Email address</labels>
<input required name="emailAddress" id="emailAddress"
type="email" class="validated" />
</div>
<div class="ui-field-contain">
<label for="companyName">Company name</labels>
<select required name="companyName" class="validated">
<option value="">Please select</option>
<option value="1">ABC Incorporated</options>
<option value="2">XZY Ltd</options>
<option value="3">ACME iInternational</options>
</select>
</divs>

JQUERY Mobile Pages | 363

<div class="ui-field-contain">
<label for="notes"sNotes</label>
<textarea cols="40" rows="6" name="notes" class="validated"
maxlength="1000"></textarea>
<div class="textCount"></div>
</div>
<div class="ui-field-contain">
<label for="lastContacted"sLast contacted</label>
<input name="lastContacted" type="text" class="validated" />
</div>
</div>
<div data-role="footer" class="ui-bar" data-position="fixed">
<input data-role="button" class="ui-btn-right"
data-inline="true" data-icon="check" type="submit"
title="Save" value="Save" />
</div>
</form>
</section>

The basic structure of this page is exactly the same as the contact list page; it contains header,
footer, and content sections. The most interesting aspect of the form, however, is that each
label/form field pair is placed inside the following construct:

<div class="ui-field-contain">

The ui-field-contain class is responsible for determining the best way to lay out a label alongside
a form field. If space allows, the label will be placed to the left of the form field; otherwise, it will

be placed above it. This means that you can simply add fields without concerning yourself with how
they will be displayed.

When a jQuery Mobile web application is loaded, the first page defined in the HTML will be
displayed by default. In order to display the Create contact page, you therefore need to define a
transition. This was already provided in the footer of the Contacts list page:

<a href="#contactDetailsPage" id="addContact" data-role="button" data-
transition="slide" data-icon="plus">Add

Notice that the href contains a hash and then the ID of the page that is being transitioned to? When
clicked, this link will request the resource mobile contacts.html#contactDetailsPage. The hash
character has special meaning within a hyperlink: It is called a fragment identifier, and indicates
that the browser should navigate to a specific location defined within the page—in this case, a
specific location within mobile contacts.html.

NOTE The fragment identifier is interesting because it is the only portion of the
URL that is interpreted by the browser rather than the web server. This means
that if the only thing that changes about a URL is the fragment identifier, it is
not necessary to reload the page from the web server.

This is typically achieved by adding a link with a name attribute within the web page:

364 | LESSON 39 JQUERY MOBILE: PART |

These are referred to as named anchors. It is then possible to link directly to this position with
either relative or absolute URLs—for instance:

Go to section 2
or

Go to section 2

With jQuery Mobile, you are only responsible for ensuring that the text after the hash matches the
id of a page: jQuery Mobile will take care of the rest.

Also notice that it is possible to define transitions using the data-transition attribute: In this case,
we have defined a “slide” transition from one page to the other. Other supported transitions are
slideup, slidedown, pop, fade, or £1lip. It is also possible to reverse the direction of a transition
with data-direction="reverse".

NOTE jQuery Mobile makes it trivial to implement single page web appli-
cations. One complication of single-page web applications that [have not
addressed, however, is how to handle the browser’s Back button. Naturally, you
would like this to return the user to the last “logical” page she visited, not the
last “physical” page she visited.

Fortunately, as a user changes pages, the hash-value will change at the top of

the browser window, and this generates an HTMLS event called a hashchange.
Although you can listen for these events yourself and keep a history of page
changes, an object called window.history is keeping track of these changes for
you. This object provides methods such as window.history.back () to return to
the previous page, and window.history.go (-2) to return back two pages.

When writing single-page web applications, you can choose to manage this state
yourself using two other methods on the history API called pushState and pop-
state. These methods allow you fine-grained control over page navigation, even
if users are not physically changing pages.

Although the jQuery Mobile CSS files meet most of your needs, you will also add a small number of
styles at this point for specific functionality required by your web application. These can simply be
added in a style tag in the head section:

<style>
thead th {
border-bottom: 1px solid #dedede;
}
.validated:invalid {
background: #FAC3C9;
}

.validated:valid {
background: #BDF0AS;
}

http://page1.html#section2

JQUERY Mobile Pages | 365

.requiredMarker {
color: red;
padding-left:0.3em;

}

</style>

If you reload the web page and click the Add button in the footer, you should see the page shown in
Figure 39-5 displayed.

Enter details (_:) Home

Contact name *
Phone number *
Email address *

Company name *

Please select &

Last contacted

() save
FIGURE 39-5

JavaScript

The final change you need to make is to ensure that the relevant code in contacts.js is initialized.
This presents a minor problem because you do not need some of the functionality in contacts. s,
but you want to reuse 90 percent of the code.

In order to deal with this, you will pass a parameter to the contact’s controller indicating whether
this is a mobile web application; therefore, you should add the following to the end of the web page:

<script>
$ (' [name="lastContacted"] ') .datepicker ({
minDate : "-6m",
maxDate : 0
b
$ (document) .ready (function (evt) {
var mainElement = document.getElementById('contactScreen');
var screen = contactsScreen(mainElement, true);

366 | LESSON 39 JQUERY MOBILE: PART |

screen.init () ;

b

</script>

A version of contacts.js that implements the necessary changes is available from the book’s
website. This version of the code has also reverted to the web storage API as opposed to Indexed DB.
This is primarily because mobile browser support of APIs is typically behind desktop browsers, and
IndexedDB is not as widely supported.

TRY IT

In this Try It, you will enhance the mobile web application by adding the capability to view notes
for a contact.

Lesson Requirements

In this lesson, you will need the mobile contacts.html page, which can be downloaded from
the book’s website if you have not followed along with this lesson. You should also download
contacts.js from the book’s website.

Step-by-Step

1.
2.

Open mobile contacts.html in your text editor and in Chrome.

Start by adding a new page to the web application. This should have an id of
contactNotePage.

Add a header to the page, and include in this a description of the page (for example,
“Contact notes”), and a home button for returning to the List contacts page.

Add a content section to the page.

Within the contact section, add an h2 element for the contact name. You will use the bind
method to populate this (and the other fields that you will add) to add a data-property-
name attribute with the value contactName.

Add four more div elements with data-property-name attributes for phoneNumber,
emailAddress, notes, and lastContacted.

The buttons the user will press to view the notes have the data attribute data-notes-
button. Within contacts.js, add click listeners for these buttons.

The click listener first needs to determine the contact that has been clicked on by finding the
parent tr element, and the contact1d data attribute that has been set on this (if you need a
hint, look at what you did with the delete functionality).

Find the relevant contact in localStorage based on the ID found in Step 8. This will involve
parsing the contacts into an array and looping through until you find the contact with the
matching ID.

Trylt | 367

10. Invoke the bind function, passing it a reference to the contactNotepage and the contact
found in Step 9. This will populate the fields in the page with the appropriate values.

11. You now need to programmatically change pages. In order to do this, you first find the page
container using $ (" :mobile-pagecontainer"); in our case this will return the main element
because that is the parent of all the pages. The pagecontainer method can then be invoked
on this element and passed three parameters:

» nchange": Indicates that the page should be changed.
> ngcontactNotePage": This is the page that should be displayed.

> {transition: 'slide'}: This object accepts any optional parameters; for your
purposes here, you only need to specify the transition effect.

You should now be able to reload the web application and click the information button next
to any contact to display the notes recorded, as shown in Figure 39-6.

Notes ¢} Home

James Cook

555222 111
james@testing.com
This is a note
09/18/2014

FIGURE 39-6

REFERENCE Please go to the book’s website at www .wrox .com/go/html5]s -
query24hr fo view the video for Lesson 39, as well as download the code and
resources for this lesson.

http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto

40

jQuery Mobile: Part Il

In this lesson, you will continue with the creation of a jQuery Mobile web application but shift
your focus away from pages and navigation and toward mobile-specific Ul components and
mobile-based events. As mentioned in the previous lesson, mobile devices naturally lend them-
selves to different approaches from traditional desktops and laptops, and this can impact both
the UI components used and the event listeners registered.

Ul COMPONENTS

Mobile phone platforms such as iOS and Android each support a toolkit of UI components
(commonly referred to as widgets). Many of these, such as text fields, mirror HTML elements
extremely closely. Several others, however, are intended to address the unique needs of mobile
devices and do not match corresponding HTML elements.

In order to address this discrepancy, the jQuery Mobile library provides a wide variety of Ul
components that match those commonly found in native toolkits. You have already encoun-
tered several of these in the previous lesson: This included buttons, control groups, pages,
tables, headers and footers, and you will continue looking at several others in this section.

The components you have seen so far have all been based on conventional HTML elements
such as the table or select elements, but have been transformed into components by jQuery
Mobile based on their data attributes and CSS classes.

In fact, in many cases you are using jQuery Mobile components even without realizing it. If
you view the Add contact page, you will notice that the select element has been customized
specifically for mobile devices, as shown in Figure 40-1.
This looks similar to the components you will see in native Company name *
mobile applications, and follows the same
basic design philosophy.

Please select

<)

You will also notice that the appearance of this component rGure 40-1
has been significantly modified from the native Chrome

370 | LESSON 40 JQUERY MOBILE: PART Il

select element, as shown in Figure 40-2, despite the fact that

. ; . . . Company name *
no jQuery Mobile specific attributes or classes were provided. pany

| ABC Incorporated

Ak
-

If you inspect the HTML for the web page, you will see that
jQuery Mobile has achieved this partly via CSS classes, but FIGURE 40-2
more importantly, it has added a whole new set of elements to

the DOM, as you can see in Figure 40-3.

¥ediv class="ui-select">
¥<div id="select-24-button” class="ui-btn wi-icon-carat-d ui-btn-icon-right ui-corner-all ui-shadow"=
=span class="validated"=Please select=/span>
¥ <select reguired name="companyMame' class="walidated"=
<pption value=Please select=/option=
=option walue="1"=ABC Incorporated</option>
<option value="2"=XZY Ltd=/option=
=option wvalue="3"=ACME International=/option>
</select=
:after
=fdiv=
</div=
rafter

FIGURE 40-3

The top two div elements shown in Figure 40-3 have been added by jQuery Mobile itself and
provide a way of modifying the appearance and behavior of the select element contained within it.

Not only does this approach allow jQuery Mobile to create more mobile-friendly components that
are easier to interact with using your finger, it means that you can maintain a consistent look and
feel across different mobile browsers and platforms.

All jQuery Mobile components, even those based on conventional HTML elements, support a wide
array of properties and methods, and therefore act more like the feature-rich UI components found
in native frameworks.

For instance, if you open the Add contact screen and type the following:

S('select').selectmenu('disable');
the select component will be immediately disabled.

Each UI component is associated with a jQuery Mobile method. As you can see, select boxes are
associated with the selectmenu method, and this line of code therefore invokes a method called
disable on a selectmenu component.

Conversely, you can convert a jQuery Mobile component back into a conventional HTML compo-
nent by invoking destroy on it:

S ('select') .selectmenu('destroy')

You can also programmatically construct components by invoking the relevant method on them and
passing an optional object with any options:

$('select') .selectmenu({'icon': 'star'});

The options passed can almost always also be provided via the data attributes investigated in the
previous lesson, but there are times when it makes sense to programmatically construct components,

Ul Components | 371

particularly when they are added to the page after the page has loaded. In fact, because the contacts
are loaded into the main table after jQuery Mobile had initialized, it was necessary to manually ini-
tialize the components inside the table body with the following code:

S (screen) .find('table') .table ("refresh") ;
S (screen) .find (' [data-role="controlgroup"] ') .controlgroup() ;

NOTE The full list of options and methods supported by the various jQuery
Mobile components is beyond the scope of this book, but be sure to browse
the jQuery Mobile documentation at api . jquerymobile.com fo gain a greater
understanding of the power and flexibility of these UI components.

Collapsible Components

Let’s begin this look at new components by adding a final page to the web application. This page
will be used to contain any settings or configuration tools required by the web application. The code

for this page is as follows:

<div id="settingsPage" data-role="page">
<div data-role="header">
<hl>Settings</hl>
<a href="#contactListPage" data-role="button" data-icon="home" data-
transition="slidedown" class="ui-btn-right">Home
</div>
<div data-role="content"s>
<div data-role="collapsible-set">
<div data-role="collapsible" data-collapsed="false">
<h3>Import contacts</h3>

<p>
<label for="importJSONFile">Import contacts</label>
<input type="file" id="importJSONFile" name="importJSONFile">
</p>
</div>

<div data-role="collapsible">
<h3>Import from server</h3>

<p>
<a id="importFromServer" data-role="button"
href="#">Import from server
</p>
</div>
</div>
</div>

</div>

The structure and heading of this page should look very familiar, but the content contains a
new type of component called a collapsible set. This component functions like a set of vertical
tabs: Each entry in the set is assigned a header (indicated by an h3 tag) and a details section

372 | LESSON 40 JQUERY MOBILE: PART Il

(indicated by a p tag), and when a header is selected, its detail Settings © tome
section is displayed, as shown in Figure 40-4.

This component is ideal for mobile web applications because it © Import contacts
allows various options to be presented on the same page without

the detail of each option distracting the user. Notice also that kmport conkacte

jQuery Mobile automatically takes care of assigning appropriate Choose File | No file chosen
icons to each option: The plus icon indicates that the details can
be shown, whereas the minus icon indicates that the option is (3 Import from server

currently selected.

It is also possible to use collapsible components outside the
collapsible-set component. In this case, the component
functions identically to the summary and details elements you
encountered earlier in the book, but has the advantage of working
consistently across all browsers.

FIGURE 40-4

Popups

An alternative way of implementing the Settings screen would be as a popup. A popup leaves the
user in the context of the current page, and means users do not need to navigate back to where they
came from once they complete their action.

In order to implement a page as a popup, you need to start by changing the data-role of the div
from page to popup:

<div id="settingsPage" data-role="popup">

It is also necessary to move the markup for the page so that it sits inside the contactListPage
element, preferably just before the closing section tag.

You will also remove the header from the Settings page when it appears as a popup, and replace
it with a Close button on the right-hand side of the popup. This can be achieved by replacing the
header with the following:

<a href="#" data-rel="back" data-role="button" data-icon="delete" data-
iconpos="notext" class="ui-btn-right">Close

The final change is to add data-rel="popup" to the link that opens the settings page so that the
page opens as a popup:

<a href="#settingsPage" data-rel="popup" data-role="button" data-icon="gear"
class="ui-btn-right" data-transition="slideup">Settings

If you reload the web page and press the Settings button, the page will be displayed as a popup over
top of the current page.

Selection

jQuery Mobile also supports a widely used mobile component called a list. This provides a mecha-
nism for the user to select a single option from a list of options, usually with the intention of viewing
additional information.

Events | 373

This component could have provided an additional mechanism for arranging the Contact list screen.
For instance, the contacts could be arranged in a list as follows:

<div data-role="content"s>
<ul data-role="listview">
Dane Cameron
<lis>James Cook
William Pitt
</uls>
</divs>

This is a conventional unordered list, as encountered earlier in the book, except the ul element
has been tagged with the data-role="1listview" attribute, and each list item contains a link
to the relevant contact. When viewed, this appears as you see
in Figure 40-5.

Contact list (©) settings
Each element in the list could then be clicked to load the details
and notes of the contact. Because it is only possible to select a
single action per row, the delete functionality would need to

be managed in an alternative manner, such as a button on the William Pitt ©
Contacts Notes screen.

Dane Cameron ©

James Cook ©

Lists are often used as an alternative to tables in mobile web
applications because they tend to adjust more easily to small
resolutions. FIGURE 40-5

Flip-Switch

The final component we will address is a called a flip-switch. A flip-switch is used for selecting
between two possible states, and is therefore similar to the checkboxes commonly used in HTML
forms. In order to demonstrate this, add the following to the form on the Add contact screen:

<div class="ui-field-contain">

<label for="followUp"Follow up required</labels>

<input name="followUp" id="followUp" type="checkbox" data-role="flipswitch" />
</divs>

This component is modeled as a conventional checkbox, but assigned the attribute data-
role="flipswitch". This constructs the component shown in Figure 40-6.

Like many of these components, the main reason flip-switches are preferred
over checkboxes is that they are more “touch-friendly.” It feels more intui- m
tive for a finger to slide a switch and see its state toggled because the action

mirrors real-world switches such as light and socket switches. Pressing your

finger inside a square and seeing a check appear, by contrast, does not mirror
a real-world activity.

FIGURE 40-6

EVENTS

Our mobile web application now resembles a native mobile application in many ways, but there is
still one core feature to add: mobile events.

374 | LESSON 40 JQUERY MOBILE: PART I

The events generated by mobile devices are fundamentally different from traditional desktops in
three basic ways:

>

The user is holding the device; therefore they can convey meaning by moving the device. For
instance, shaking an iOS-enabled device triggers an undo operation.

The device (usually) supports touch screen; therefore the user can interact with the device by
touching it with his or her fingers, and using “gestures.”

As you have seen, navigation is typically implemented differently in mobile web applications;
therefore, mobile devices support a class of events linked to navigation.

Unfortunately, it is not possible to respond to the first class of events with mobile web applications
because the API is only available to native web applications, but the next lesson looks at a work-
around. This section addresses the other two classes of events.

Gestures

jQuery Mobile supports event listeners for four special types of events:

>

Swipe: The swipe event involves the user moving a finger horizontally across the screen
for 30 pixels or more within a time-range of 1 second. It is possible to listen for any swipe,
swipes to the left (swipeleft), or swipes to the right (swiperight).

Tap: The tap event is triggered by the user quickly touching the screen with a single
finger. This event type is very similar to (and often confused with) a click event, and, in
fact, mobile browsers will generate click events when the user taps the screen.

You may be wondering why you need to specifically listen for tap events when click events
are generated automatically. The main reason is performance: There is often a significant
lag between when the tap event is generated and when the click event is generated so if
you want to create a responsive web application, you need to ensure you register tap event
listeners.

If you are supporting mobile and non-mobile devices, you also need to ensure you register
click listeners, of course. In order to make this process easier, jQuery Mobile supports a
special event type called velick (virtual click), which ensures the appropriate event listener
is registered for the device.

Tap hold: The taphold event is triggered when the user taps an area of the screen with one
finger, and holds his finger in that spot for a sustained period (750 milliseconds by default).
This event type is commonly used as an alternative to right-mouse clicks in mobile applications,
and commonly produces a popup menu listing possible options from the context of the click.

Although this event has its uses, the main drawback of it is that the user may not be aware
the functionality behind this event exists.

Scroll: jQuery Mobile supports two scroll-based events: scrollstart and scrollstop.
These events fire as the user scrolls a page with her finger.

jQuery Mobile event listeners are registered in an identical manner to conventional jQuery events.
For instance, consider a case where you want a swipe on the Add contact screen to take the user
back to the Contact list screen. This can be achieved with the following event listener:

Events | 375

$ ('#contactDetailsPage') .on('swipe', function(evt) ({
$(":mobile-pagecontainer") .pagecontainer ("change", "#contactListPage", {
transition: 'slide', direction: 'reverse' });

1)

The event listener itself is registered on the entire page, meaning that the user can swipe anywhere
on the screen, and the event will be captured.

Lifecycle Events

The other major class of event is related to jQuery Mobile lifecycle and page navigation. Because the
user changes pages without loading a new HTML page, it is sometimes necessary to ensure a page is
initialized appropriately when a user navigates to it for the first time, or that it is refreshed when the
user navigates to it on subsequent occasions.

Just as jQuery supports a ready event, jQuery Mobile supports a mobileinit event: This method
is invoked once per page refresh and indicates that jQuery Mobile has completed its initialization of
the page. This event listener should be registered directly on the document—for instance:

$(document).on("mobileinit", function() {});

Just as the entire mobile web application is initialized, each page is also initialized once, on demand
when the user first navigates to it. It is at this point that jQuery Mobile constructs the relevant UI
components required by the page. It is possible to register an event listener that will be fired when
this process completes. For instance, if you want to execute specific code after the Settings page is
constructed, you can register the following event listener:

$ (document) .on ('pagecreate', '#settingsPage', function() {
console.log('Settings page is being created');
1

Most of the other events are navigation related and therefore relate specifically to the pagecon-
tainer component, which is the container holding all other pages. These events follow the lifecycle
that occurs in jQuery Mobile as a page change is completed:

> An event is fired on the page that will be hidden, but while it is still visible.
> An event will be fired on the page that will be displayed, but before it is visible.
> An event is fired on the page that has been hidden, after it has been hidden.
> An event will be fired on the new page displayed, once it is visible.
Event listeners can be registered with this component as follows:

$ (document) .on ("pagecontainerbeforechange", function(event, ui) ({
consgole.log('Before change event fired');
1

The event listener is always passed two objects: The first is the event object you are familiar with
from jQuery. In this particular case, because the page change has not occurred yet, you are afforded
the opportunity to veto the page change by invoking event .preventDefault ().

The second object provides context about the UI event. For instance, it contains a toPage property
indicating the page that the user is navigating to, and a prevPage property indicating the current page.

376 | LESSON 40 JQUERY MOBILE: PART II

The other events that occur during the page navigation lifecycle are (in order):
> pagecontainerbeforeshow
> pagecontainerhide
> pagecontainerload

It is also possible to register an event listener that simply fires whenever a page transition completes;
this can be accomplished by registering a listener with the pagecontainertransition event.

TRY IT

When developing mobile web applications, it is essential to have a fast turnaround between making
code changes and seeing the results on a mobile device.

In order to ease this process, it is common to turn to mobile phone emulators. As you have seen,
Chrome comes built in with a simple emulator, but in this Try It, you will install and use a more
complex emulator called Ripple.

Lesson Requirements

In this lesson, you will need the Chrome web browser and a version of the CRM mobile web appli-
cations you have developed in this lesson.

Step-by-Step

1. Open the Chrome browser and browse to chrome: //apps. From here, click the Web Store
link at the bottom of the page.

2. Change the Types filter to “Extensions,” and search for “Ripple.” The result should return
the app shown in Figure 40-7.

g~ chrome web store dane.moodie@fronde.com ~ | £

[ripple X l (g Ripple Emulator (Beta)
from ripple tinyhippos.com Developer Tools
&Pﬁ-&%

« Home | Clear all filters A browser based htmiS mobile application development and testing tool Ak (4585

Types

FIGURE 40-7

3. Select to install the Ripple application by clicking the + FREE button. The application will
automatically be installed without a restart.

4. Open the mobile contacts.html page through your web server. You will notice a small
green button to the right of the toolbar, as shown in Figure 40-8. Click this, and then
select Enable.

chrome://apps

Try lt | 377

Ripple Mission Control e

This is the Ripple control panel, where you can
enable and disable Ripple for the current page
URL and all pages contained within it.

Enable

Disable

New to Ripple? Hit up theMain
Documentationto get started.

FIGURE 40-8

5. You will be prompted with a list of platforms that you wish to emulate; choose Mobile web
(default).

6. You will be presented with a full screen emulator. Not only does this allow you to see how
the mobile web application will look in various devices, but it allows you to manually set
features such as the current location and the angle the phone is pointing.

7. 1In the top-left hand corner, select Devices and choose HTC Legend. The emulation should
immediately change to show how the web application would appear in this particular phone.

8. Select to change the orientation of the phone to landscape mode.

9. Select the Platforms option and choose WebWorks. Press the Change Platform button. This
will now show you how your web application will appear on a BlackBerry.

REFERENCE Please go to the book’s website at www.wrox.com/go/html57s] -
query24hr to view the video for Lesson 40, as well as download the code and
resources for this lesson.

http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto
http://www.wrox.com/go/html5jsj-query24hrto

INDEX

! operator, 104

! == operator, 103

> operator, 31

character, 289, 363
$ character, 126, 153
& character, 12

&& operator, 103

+ operator, 97, 207, 232
/ character, 8

; character, 96

== operator, 103
=== operator, 103

_ character, 126

~ operator, 231-232

atag, 15
AAC (Advanced Audio Coding)
files,
197,203,204
absolute
positioning, 47
URLs, 15
accordion component, jQuery
UI, 186
ACID (atomic, consistent,
isolation, durable), 278
add function, 160
address tag, 64
Advanced Audio Coding (AAC)
files, 197, 203, 204
AJAX, 311-318
$.ajax function, 314-315
and (&&) operator, 103
angle brackets, 3
animation, 227-229
Canvas API, 227-229
CSS Transitions, 248-250
jQuery events, 174
anonymous functions, 116
Apache web server, 262-263

application cache, 285-291

cache events, 289-290
lifecycle, 287
manifest files, 285-288
updating resources, 288-289
applicationCache object,
289-290
arc method, 216-217
arcTo method, 217-218
arguments, JavaScript, 121
arrays, 99
adding contents together, 101
aggregating values in, 123-124
arguments, 121
Array object, 127-129
chaining together function calls,
117-118
counting positive numbers
example, 116
filtering out elements, 116-117
transforming elements, 117
two-dimensional, debugging
example, 108-111
article tag, 63-64
aside tag, 63
attr object, 142, 143
attributes
Boolean, 9
data attributes, 178-180
form attributes, 58—-59
audio
audio tag, 195, 198-199
controlling volume, 205-207
encrypted media extensions,
209-210
file formats, 195-198
media source extensions,
209
plugins, 195
audio.html file, 199-201
audio pre.html file, 201-202
audio tag, 195, 198-199
autocomplete attribute, 58
autofocus attribute, 58
autoplay attribute, 198

b tag, 239
bind method, 122
bitmaps, drawing, 213
circles, 216-218
curves, 215-218
lines, 216
random walks example,
219-220
shapes, 214-216
text, 218
block element, 12, 42
blockquote element, 14, 31
body element, 5, 8-9, 12,
13,21-22
boldtag, 8
bold text, 4, 8, 30, 239
Boolean
attributes, 9
values, 98
border.png file, 234
borders, CSS3, 233-237
box model, CSS, 39-41
boxes.html file, 79-82
br tag, 14
break statement, 102
breakpoints, finding, 109
breaks
line breaks, 14
loop execution, 102
word breaks, 244
browser reflow, 13-14
browser-based web applications,
267-268
client-side storage, 268-269
structured data storage, 271-273
web storage API, 269-270

cache, application, 285-291
cache events, 289-290
lifecycle, 287

379

CACHE MANIFEST section - Digital Rights Management

manifest files, 285-288
updating resources, 288-289
CACHE MANIFEST section,
application cache, 286
cached, cache event, 287
calc function, 243
calculateSumOfArray
function,
108-111
calculateSums function, 106
callback functions, 80, 116
promises, 319-326
Callback hell, 319
Canvas API, 213-229
animation, 227-229
creating
circles, 216-218
curves, 216-218
linear gradients, 221-222
lines, 216
shadows, 222-223
shapes, 214-216
text, 218
loading images, 223-224
random walks example, 219-220
transforming shapes, 224-226
canvas element, 213-214. See also
Canvas API
Cascading Style Sheets. See CSS/
CSS3
CDM (Content Decryption
Module), 209
chaining
jQuery elements, 163-164
traversal functions, 160-161
change event, 173
: checked CSS pseudo-selector,
154,233
checking, cache event, 287
circles, drawing, 216-218
cite element, 14, 31
class attribute, 29-30
client-side storage, 268-269
closest function, 160
closures, 118-120
codec formats
audio, 196-197
video, 203-204
collapsed margins, 41
collapsible components, jQuery
Mobile, 371-372
color
canvas shapes, 215
HTMLS drag and drop, 79-82
jQuery Mobile color swatches,
362
linear gradients, 221-222,
241-242

380

shadows, 222-223
styling CSS elements, 28-33
color HTMLYS input type,
57
colspan attribute, 22
comments, adding, 14
computeDistanceBetween
method, 349
conditional expressions, 102-103
console, JavaScript, 95-96
log statements, printing, 101
constructor functions, 130-131
Contacts example application
animation effects, 191-192
application cache, updating
resources, 290-291
converting web page to use web
workers, 300-301
delete functionality, 273-274
dynamic features, adding,
147-149
form validation, 69-75
forms, creating, 53-60
headers/footers, adding, 48—49
input fields, 59-60
module design pattern, 133-134
print-specific stylesheet, 257
reading files, 325-326
selecting elements, 157
semantic tags, adding, 66-67
static lists, storing, 281-283
tables
adding functionality
with event listeners,
174-176
creating, 21-24
deleting rows, 182-183
styling, 36-37
themes, creating, 316-318
traversal techniques, 165-166
contacts.appcache file,
286-288
contacts.css file, 36-37
contacts.js file, 133-134
contacts.json file, 312-314,
320-322
contacts2.json file, 322
container formats
audio, 196-197
video, 203-204
:contains CSS pseudo-selector,
154
Content Decryption Module
(CDM), 209
continue statement, 102
control structures, JavaScript,
101-103
cookies, 268-269

createLinearGradient
method, 221-222
cryptography, 210
CSS/CSS3
borders, 233-237
box model, 39-41
browser defaults, 34
calculations, specifying sizes as,
243
custom fonts, 237-239
display types, 41-42
functions, 241-242
inheritance, 33-34
inline styles, 32
Inspect Element, 34-35
linear gradients, 241-242
media queries, 253-257, 336-339
positioning elements, 42—-49
selectors, 28-31, 231-233
semantic tags, styling, 64-65
specificity, 32-33
text effects, 243-245
transformation matrix, 245-248
transitions, 248-251
CSS Transitions, 248-250
curves, drawing, 216-218

data attributes, 178-180
data storage, 267-268
client-side, 268-269
IndexedDB API, 275-283
structured data, 271-273
web storage API, 269-271
data types, JavaScript, 96-101, 137
datalist input type, 57-58
dataTransfer object, 80, 84
date pickers, 56, 186-187
datetime HTMLS input type,
57
dblclick event, 171
de-serialization, 135. See also JSON
debugging, 107-113
debugging functions example,
108-111
finding breakpoints, 109
finding errors example, 111-113
delegated events, jQuery, 170-172
deprecated tags, 16
description lists, 20-21
design patterns, 133-134
details tag, 85-86
dialog widget component, jQuery
Ul, 186
Digital Rights Management
(DRM), 209

:disabled CSS3 pseudo-selector — > character sequence

:disabled CSS3 pseudo-selector,
233
display types, CSS, 41-42
div tag, 43-45, 48-49, 61, 64, 66
document object, 143, 144, 173,
297
DOM (Document Object Model),
5-6,141-149
manipulating, 145-146, 161-163
nodes, 141-144
responding to events, 146
selecting elements, 144
traversing, 145
domain names, 262
domexample.html file, 144
downloading cache event, 289
drag and drop, 77-84
events, 78
example, 79-82
drawing
circles, 216-218
curves, 216-218
lines, 216
random walks example, 219-220
shapes, 214-216
text, 218
drawSeconds function, 228-229
DRM (Digital Rights
Management), 209
dropfile.html file, 308-309
dynamic elements, 85-91
details, 85-86
meter, 86-87
polyfills, 88-90
progress, 86—88
range, 88
summary, 85-86
dynamic typing, 104-105

element object, 143
elements, CSS
applying styles, 28-34
box model, 39-41
display types, 41-42
inspecting, 34-35
positioning, 42-49
selecting, 28-31, 231-233
elements, HTML, 4-10
hyperlinks, 14-15
images, 15-16
lists, 19-21
tables, 21-25
text, 11-14
else statement, 103
em tag, 239

email HTMLS input type, 57

EME (Encrypted Media
Extensions), 209-210

:empty CSS pseudo-selector, 154,
233

:enabled CSS3 pseudo-selector,
233

Encrypted Media Extensions
(EME), 209-210

eq function, 160

error cache event, 289

:even CSS pseudo-selector, 154

event-driven programming, 78

events

cache events, 289-290

DOM events
drag-and-drop example,
78-82

responding to, 146-147
jQuery events, 167-176
animation, 174
delegated events, 170-172
form events, 172173
keyboard events, 172-173
mouse events, 167-172
registering event listeners,
167-170
screen events, 173
jQuery Mobile events, 373-376
external stylesheets, 256-257

fadeIn function, 174
fadeOut function, 174
FALLBACK section, application
cache, 286
false statement, 103-104
file input type, 303-304
FileReader API, 304-307
files
file input type, 303-304
FileReader API, 304-307
FileSystem API, 307-308
selecting via drag and drop,
308-309
FileSystem API, 307-308
fillRect method, 215
fillText method, 218
find_number. js file, 300-301
findHighestSum function,
108-111
findLargest function, 294
findLargestSub function, 296
findnumbers.html file, 298-
299
Firebug plugin, 107

:first CSS pseudo-selector, 154
first function, 160
fixed positioning, 48
flexible grids, 331-336
flip-switches, 373
fluid grids, 331-336
: focus CSS pseudo-selector, 154
focus event, 173
fonts
browser defaults, 34
CSS3 custom fonts, 237-239
font-family property, 29
footer tag, 63
for loop, 101
form attribute, 58-59
form events, jQuery, 172-173
formnovalidate attribute, 74
forms, HTML, 51-60
adding fields, 53-60
attributes, 58-359
validation, 69-75
adding validation rules,
69-72
customizing, 72-74
disabling, 74
forward slash (/), 8
fragment identifier, 363
full screen video, 207-209
Fullscreen API, 207-209
functions, 100-101
anonymous functions, 116
arguments, 121
binding, 122
callback functions, 80, 116,
319-326
closures, 118-120
constructor functions, 129,
130-131
CSS functions, 241-242
hoisting, 120-121
invoking methods on, 122
scope of variables, 120-121
traversal functions, 160

Geolocation API, 343-354

gestures, jQuery Mobile, 374-375

$.get method, 314

GET method, 52, 315-316

getCurrentPosition method,
348

$.getScript method, 317

global variables, 100-101

google.geometry.js file, 345

:gt CSS pseudo-selector, 154

> character sequence, 12

381

H.264 video files - JSONP

H.264 video files, 204
hashchange event, 364
head element, 3, 7, 8, 28, 80-82
header tag, 63
headings, 3-4, 12-13
hello.html file, 4-5
hoisting, 120-121
href attribute, 15, 32
html element, §, 8
HTML Strict, §
HTML/HTMLS
application cache, 285-291
attributes, 8-9
audio, 195-202
data attributes, 178-180
drag and drop, 77-84
dynamic elements, 85-91
elements, 8-9
FileReader API, 304-307
FileSystem API, 307-308
forms, 51-60
adding fields, 53-56
input fields, 56-59
validation, 69-75
Hello World example, 4-5
IndexedDB API, 275-283
overview, 3—4
semantic tags, 61-67
grouping content, 62—-64
microformats, 65-66
styling with CSS, 64-65
special character sequences, 12
structuring content
hyperlinks, 14-15
images, 15-16
lists, 19-21
tables, 21-25
text, 11-14
tables, 21-25
tags, 3—4
angle brackets, 3
attributes, 9
case sensitivity, 9
deprecated, 16
Hello World example, 4-5
nested, §
semantic, 61-67
template example, 6-8
video, 203-211
Web SQL API, 269
web storage API, 269-270
web worker API, 293-301
HTTP, 262
GET/POST methods, 52, 315-316
XMLHttpRequest object, 311,
312

382

hx element, 12, 31

hyperlinks, 14-15
fragment identifier, 363
jQuery Mobile, 356

i tag, 239
if else statement, 103
images
inserting into HTML pages,
15-17
loading onto canvas, 223-224
img tag, 15, 16
important tag, 33
IndexedDB API, 275-283
creating databases, 276-278
deleting data, 281
reading data, 279-280
storing data, 278-279
indexOf method, 97
infinite loops, 106
inheritance, 33-34
inline element, 12, 42
inline styles, CSS, 32
inline-block element, 42, 44
input fields, HTMLS5, 56-60
Inspect Element, 34-35
:invalid CSS3 pseudo-selector,
233
invalid class, 70-71
italic text, 14, 239
iteration, 164-165

JavaScript

console, 95-96

control structures, 101-103

data types, 96-101, 137

debugging, 107-113

dynamic typing, 104-105

event model, 294-296

functions, 100-101
anonymous functions, 116
arguments, 121
binding, 122

callback functions, 80, 116

closures, 118-120

constructor functions, 129,

130-131
hoisting, 120-121
invoking methods on, 122
scope of variables, 120-
121
objects, 125-134

constructor functions, 129,
130-131
converting to JSON-
encoded strings,
271-272
literals, 125-126
modules, 131-133
prototypes, 127-129
serialization, 135-140
storing, 271-273
web workers, 293-301
JavaScript Object Notation. See
JSON
jQuery
chaining elements, 163-164
events, 167-176
animation, 174
delegated events, 170-172
form events, 172-173
registering event listeners,
167-170
screen events, 173
iterating elements, 164-165
loading, 151-153
plugins, 185-192
jQuery UI, 185-187
writing, 188-192
reasons for use, 151
selecting elements, 153-157
traversal operations, 159-161
wrapped objects, 156-157
jQuery Mobile, 355-377. See also
mobile devices
data attributes, 356
events, 373-376
importing, 357-358
mobile design, 358
pages, 358-366
Theme Roller, 362
UI components, 369-371
collapsible, 371-372
flip-switches,
373
lists, 372-373
popups, 372
jQuery UI, 185-197
jquery-tables.js file,
191-192
jquery-time.js file, 188
jquery-ui.css file, 186, 286
jquery-ui.js file, 186
JSON (JavaScript Object Notation),
135-140
JSON.parse function,
137
JSON. stringify function,
271-272
JSONP, 314

keyboard events - overflowing text

keyboard events, 146, 172-173
keydown, 146, 173
keypress, 173
keyup, 146

lang attribute, 7
:last CSS pseudo-selector, 154
last function, 160
length method, 97
11 tag, 19-20
lifecycle
application lifecycle, 287
jQuery Mobile events, 375-376
line breaks, 14
linear gradients
Canvas API, 221-222
CSS3, 241-242
linear-gradient function,
241-242
lines, drawing, 216
links. See hyperlinks
lists, HTML, 19-21
description, 20-21
ordered, 20
unordered, 19-20
load event, 173
locate.html file, 345-347,
345-349,
353-354
log statements, printing, 101
longandshort.html file, 294-
296, 300-301
lossless compression, 196
lossy compression, 196
lowercase text, 97
&1t character sequence, 12

main tag, 63
manifest files, 285-288
margins, 39-41
markup languages, 3—-4
Math JavaScript library, 98
matrix function, 245, 247-248
matrix3d function, 248
max attribute, HTML3, 71, 75
max function, CSS, 243
maxlength attribute, 71
media queries, 253-257, 336-339
adding, 254-256
external stylesheets, 256-257

Media Source API, 209
@media tag, 255-256
medium-suppressed class,
337-338
meta element, 8
microformats, 65-66
min attribute, HTMLS, 71, 75
min function, CSS, 243
mobile devices
Geolocation API, 343-354
jQuery Mobile, 355-377
data attributes, 356
events, 373-376
importing, 357-358
mobile design, 358
pages, 358-366
Theme Roller, 362
UI components, 369-373
responsive web design, 329-342
flexible grids, 331-336
media queries, 336-339
testing screen resolution,
330-331
mobile contacts.html file,
357-358, 363, 366-367
mobileinit event, 375
Modernizr JavaScript library,
89-90
module design pattern, 133-134
modules, 131-134
Mongoose web server, installing/
configuring, 263-265
mouse events, 167-172
mousedown, 171
mouseenter, 146
mouseleave, 146
mousemove, 172
mouseup, 172
MP3 files, 197
multi-threaded languages, 293-294
muted attribute, 205

name/value pairs, 9

named anchors, 364

NaN (not-a-number), 98

nav tag, 64

 character sequence, 12

NEGATIVE_ INFINITY numeric
value, 98

nested tags, 5

NETWORK section, application
cache, 287

next function, 160

Node.js, 312

nodes, DOM, 141-144

non-breaking space, 12

none element, 42

:not CSS pseudo-selector, 154,
233

not (!) operator, 104

not-a-number (NaN), 98

notifications.html file,
315-316

novalidate attribute, 74

:nth-child CSS3 pseudo-
selector, 233

:nth-of-type CSS3 pseudo-
selector, 233

null data type, 98-99

number HTMLS input type, 57

numbers, 97-98

objects, JavaScript, 125-134
constructor functions, 130-131
converting to JSON-encoded

strings, 271-272
literals, 125-126
modules, 131-133
prototypes, 127-129
serialization, 135-140
storing, 271-273

:0dd CSS pseudo-selector, 154

ol tag, 20

onchange event, 146

onclick event, 146

ondragenter event, 81

ondragleave event, 81

ondragover event, 81

ondragstart event, 80

onload event, 146

onmousedown event, 146

onresize event, 146

onselect event, 146

opacity, 80, 82

Open Sans font, 237-239

operators

1,104

1==,103

&&, 103

+, 97,207,232

==,103

===,103

>, 31

precedence, 243

ternary, 103

:optional CSS3 pseudo-selector,

233

Opus audio files, 197, 204

orange_theme. js file, 317-318

ordered lists, 20

overflowing text, 244-245

383

p tag — tel HTMLS input type

p tag, 13
page2.html file, 14-15
pagecontainer event, 375
pagecontainerhide event, 376
pagecontainerload event, 376
pagecontainertransition
event, 376
pagecontainterbeforeshow
event, 376
paragraphs of text, 3, 13-14
effects, 243-245
with an id, 30-32
pattern attribute, 71
PHP, 312
placeholder attribute, 58
plugins, jQuery, 185-192
jQuery UI, 185-187
writing, 188-192
polyfills, 88-90
popRState method, 364
popState method, 364
popups, jQuery Mobile, 372
port numbers, 262
POSITIVE INFINITY numeric
value, 98
$.post method, 316
POST method, 52, 316
poster attribute, 205
poster.png file, 205
postMessage function, 298
preload attribute, audio tag,
199
prev function, 160
printing
adding print capabilities to CRM
web application, 254-256
log statements, 101
print-specific stylesheets, 257
programming by convention, 180,

progress bar, 86—88, 186
progress, cache event, 287, 289
promises, 319-326

prototypes, 127-129

purple theme.js file, 317-318
pushState method, 364

random walks, creating, 219-220

random. js file, 297, 299

range HTMLS input type, 57, 88

readFileWithPromise
function, 325-326

384

:read-only CSS3 pseudo-
selector, 233
:read-write CSS3 pseudo-
selector, 233
ready event, 173
rectangles, drawing, 214-216
red theme. js file, 317-318
regular expressions, 71, 139
rel attribute, 179
relative URLs, 15
replace method, 97
requests, AJAX, 312-316
required attribute, 69
reset .css file, 34
resize event, 173
responsive web design, 329-342
flexible grids, 331-336
media queries, 336-339
screen resolution, testing, 330—
331
Ripple emulator, 376-377
rotate function, 246, 250-251
rotate3d function, 248
RWD. See responsive web design

same origin policy, 262
scale3d function, 248
scope of variables, 120-121
screen events, jQuery, 173
screen resolution, testing, 330-331
scrollstart event, jQuery
Mobile, 374
scrollstop event, jQuery
Mobile, 374
section tag, 63
:selected CSS pseudo-selector,
154
selectors, CSS, 28-31, 231-233
semantic tags, 61-67
grouping content, 62-64
microformats, 65-66
styling with CSS, 64-65
semantic web, 61
semantic.html file, 64-65
separation of concerns, 27
serialization, 135. See also JSON
serifs, 237
setInterval function, 226-229
setTimeout function, 295-296
shadows, 222-223
shapes
drawing, 214-216
transforming, 224-226, 245-248
simpledraganddrop.html file,
83-84

simpledraganddrop
finished.html file, 83
simpleform.html file, 52-53
single-origin policy, 314
slider component, jQuery UI, 186
small-suppressed class,
337-338

span tag, 43, 61, 66, 162-163
special character sequences, 12
specificity, 32-33
spinner component, jQuery Ul, 186
src attribute, 16
startDragging function, 80
static positioning, 46
storage, 267-274

client-side, 268-269

structured data, 271-273

web storage API, 269-271
store function, 271-272
strict mode, 131
strings, 96-97
strokeRect method, 215
strokeText method, 218
strong element, 8, 239
structure.html file, 43-45
structured data, storing, 271-273
style attribute, 32
style element, 28-31, 32
substr method, 97
summary tag, 85-86
swipe event, jQuery Mobile, 374
switch statement, 103

T function, 129
tab component component, jQuery
Ul 186
table element, 21-22
tables, HTML, 21-25
tags, 3—4
angle brackets, 3
attributes, 9
case sensitivity, 9
deprecated tags, 16
Hello World example, 4-5
nested, 5
semantic, 61-67
grouping content, 62-64
microformats, 65-66
styling with CSS, 64-65
tap event, jQuery Mobile, 374
taphold event, jQuery Mobile,
374
tbody element, 22, 23
td element, 22
tel HTMLS input type, 57

template tag - z-index property

template tag, 177-178
template.html file, 6-8
adding lists and tables, 24-25
structuring text, 11-14, 16-17
templates, HTMLS, 177-183
ternary operator, 103
test.mp4 file, 198
test.ogg file, 198-199
text
bold, 4, 8, 30, 239
drawing, 218
italic, 14, 239
overflows, 244-245
structuring in web pages, 11-14
text object, 143
textarea element
adding to forms, 55
character counts, 172
maxlength attribute, 164
pattern attribute, 72
tfoot tag, 23
th element, 22
thead element, 22, 23
Theme Roller, 362
Theora video files, 204
tilde (~) operator, 231-232
time HTMLS input type,
57
tiny-suppressed class,
337-338
title attribute, 16
title element, 7
toggleState method, 348
toLowerCase method, 97
toUpperCase method, 97
tr element, 21-22, 23
transformation matrix
Canvas API, 225-226
CSS3, 245-248
transitions, CSS3, 248-251
translate function, 247
translate3d function, 248
translateX function, 247
translateY function, 247
traversal operations

DOM API, 145
jQuery, 159-161
triangles, drawing,
216
truth statement, 103-104
two-dimensional arrays, debugging
example, 108-111
typeof operator, 98

ul element, 19-20

undefined data type, 99

unordered lists, 19-20

updateLocation method,
348-349

updateready cache event, 289

uppercase text, 97

url HTMLS input type, 57

URLs (Uniform Resource
Locators), 15, 262

user agent stylesheet, 35

UTF character encodings, 269

valid class, 70-71
:valid CSS3 pseudo-selector, 233
validated class, 70-71
validation, HTMLS5 forms, 69-75
adding validation rules, 69-72
customizing validation, 72-74
disabling validation, 74
vector graphics, 213
video
Encrypted Media Extensions
(EME), 209-210
file formats, 203-205
Full Screen API, 207-209
Media Source API, 209
playback speed, controlling, 207
video tag, 204-205
volume, controlling, 205-207

Web Cryptography API, 210
video pre.html file, 210-211
volume, controlling, 205-207
Vorbis audio files, 187, 197, 204,

205
VP8 video files, 204
VP9 video files, 204

W3C (World Wide Web
Consortium), 5

watchPosition method,
348

wbr tag, 14

Web Cryptography API, 210

Web Forms 2.0, 51

web servers, 261-265

Web Sockets, 314

Web SQL API, 269

web storage API, 269-270

web workers, 293-301

WHATWG, 5

$.when function, 322

while loop, 101-102

whitespace, 12

width attribute, 16, 205

window.history object,
364

World Wide Web Consortium
(W3C), 5

wrapped objects, 156-157

XHTML, 5, 13
XMLHt tpRequest object, 311,
312

z-1index property, 47-48

385

AN

WFrox

A Wiley Brand

Programmer to Programmer”

Connect with Wrox.

Participate

Take an active role online by participating
in our P2P forums @ p2p.wrox.com

Wrox Blox

Download short informational pieces and code
to keep you up to date and out of trouble

Join the Community

Sign up for our free monthly newsletter
at newsletter.wrox.com

Wrox.com

Browse the vast selection of Wrox titles, e-books,
and blogs and find exactly what you need

User Group Program

Become a member and take advantage of all
the benefits

Wrox on

Follow @wrox on Twitter and be in the know
on the latest news in the world of Wrox

Wrox on

Join the Wrox Facebook page at
facebook.com/wroxpress and get updates
on new books and publications as well

as upcoming programmer conferences
and user group events

Contact Us.

We love feedback! Have a book idea? Need community support?
Let us know by e-mailing wrox-partnerwithus@wrox.com

mailto:partnerwithus@wrox.com

WILEY END USER LICENSE AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Cover������������
	Title Page�����������������
	Copyright����������������
	Contents���������������
	Introduction
	Who This Book is for
	What This Book Covers
	How This Book is Structured
	What you need to use This Book
	Conventions
	Source Code
	Errata
	P2P.Wrox.Com

	Part I HTML and CSS
	Lesson 1 Introduction to HTML5
	What Is a Markup Language?���������������������������������
	The Simplest HTML Page Possible��������������������������������������
	An HTML Template�����������������������
	Understanding Elements and Attributes��
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 2 Basic HTML
	Structuring Text�����������������������
	Links and Images�����������������������
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 3 Lists and Tables
	Lists������������
	Tables�������������
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 4 Introduction to CSS
	CSS Selectors��������������������
	CSS Files and Inline Styles����������������������������������
	Specificity������������������
	Inheritance������������������
	Browser Defaults�����������������������
	Chrome Scratch Pad�������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Step by Step�������������������

	Lesson 5 Structuring Pages with CSS
	The Box Model��������������������
	Display Type�������������������
	Positioning Elements���������������������������
	Controlling Positions����������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 6 HTML Forms
	What Is a Form?����������������������
	Adding Fields to a Form������������������������������
	HTML5 Input Fields�������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 7 Semantic Tags
	Grouping and Segmenting Content��������������������������������������
	Header�������������
	Footer�������������
	Main�����������
	Section��������������
	Aside������������
	Article��������������
	Nav����������
	Address��������������

	Styling Semantic Tags with CSS�������������������������������������
	Microformats�������������������
	Summing Up�����������������
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 8 HTML5 Validation
	Adding Validation Rules������������������������������
	Customizing Validation�����������������������������
	Disabling Validation���������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 9 Drag and Drop
	Understanding Events���������������������������
	Drag and Drop Example����������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 10 Dynamic Elements
	Summary and Details Tags�������������������������������
	Progress Bar and Meter�����������������������������
	Range Element��������������������
	Polyfills����������������
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Part II Dynamic HTML5 Web Applications with JavaScript and jQuery
	Lesson 11 JavaScript
	JavaScript Console�������������������������
	Data Types�����������������
	Strings��������������
	Numbers��������������
	Booleans���������������
	Null�����������
	Undefined����������������
	Arrays�������������
	Objects��������������
	Functions����������������

	Control Structures�������������������������
	Truthy and Falsy Values������������������������������
	Dynamic Typing���������������������
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 12 Debugging
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������
	Finding Errors���������������������
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 13 Functions
	Closures���������������
	Hoisting and Block Scope�������������������������������
	Arguments����������������
	Bind�����������
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 14 Objects
	Object Literals����������������������
	Prototypes�����������������
	Constructor Functions����������������������������
	Modules��������������
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 15 JSON
	Replacing and Reviving�����������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 16 Document Object Model
	Nodes and Objects������������������������
	Selecting Elements�������������������������
	Traversing the DOM�������������������������
	Manipulating the DOM���������������������������
	Responding to Events���������������������������

	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 17 jQuery Selection
	Loading jQuery���������������������
	Selecting Elements�������������������������
	Pseudo-selectors�����������������������
	Selection Within a Context���������������������������������
	Wrapped Objects����������������������
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 18 jQuery Traversal and Manipulation
	Traversal����������������
	Chaining���������������
	Manipulation�������������������
	Changing Elements������������������������
	Iteration����������������
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 19 jQuery Events
	Registering Event Listeners����������������������������������
	Delegated Event Listeners��������������������������������
	Form Events������������������
	Screen Events��������������������
	Animation����������������
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 20 Data Attributes and Templates
	Template Tag�������������������
	Data Attributes����������������������
	Using the Template�������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 21 jQuery Plugins
	jQuery UI����������������
	Writing a Plugin�����������������������
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Part III HTML5 Multimedia
	Lesson 22 HTML5 Audio
	File Formats�������������������
	Audio Tag����������������
	Controlling Playback���������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 23 HTML5 Video
	File Formats�������������������
	Controlling Volume�������������������������
	Controlling Playback Speed���������������������������������
	Controlling Video Size�����������������������������
	Media Source Extensions������������������������������
	Encrypted Media Extensions���������������������������������
	Web Cryptography�����������������������
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 24 Canvas: Part I
	Simple Drawing���������������������
	Drawing Lines��������������������
	Circles and Curves�������������������������
	Drawing Text�������������������
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 25 Canvas: Part II
	Linear Gradients�����������������������
	Shadows��������������
	Images�������������
	Transforming Shapes��������������������������
	Basic Animation����������������������
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 26 CSS3: Part I
	Selectors����������������
	CSS Borders������������������
	Custom Fonts�������������������
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 27 CSS3: Part II
	Linear Gradients�����������������������
	Calc Function��������������������
	Text Effects�������������������
	2D Transformations�������������������������
	Transitions������������������
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 28 CSS3 Media Queries
	Adding Media Queries���������������������������
	External Stylesheets���������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Part IV HTML5 APIs
	Lesson 29 Web Servers
	URLs�����������
	Choosing a Web Server����������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step (OS X)��������������������������
	Step-by-Step (Windows)�����������������������������

	Lesson 30 Web Storage
	Client-Side Storage��������������������������
	Web Storage API����������������������
	Storing Structured Data������������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 31 IndexedDB
	Creating a Database��������������������������
	Storing Data�������������������
	Reading Data�������������������
	Deleting Data��������������������
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 32 Application Cache
	Manifest Files���������������������
	Updating Resources�������������������������
	Cache Events�������������������
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 33 Web Workers
	JavaScript Event Model�����������������������������
	Web Workers������������������
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 34 Files
	FileReader API���������������������
	Other File-Related APIs������������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 35 AJAX
	AJAX Requests��������������������
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 36 Promises
	Working with Promises����������������������������
	Creating Promises������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Part V Mobile
	Lesson 37 Responsive Web Design
	Testing Screen Resolution��������������������������������
	Flexible Grids���������������������
	Media Queries��������������������
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 38 Location API
	Monitor Movement�����������������������
	Loading the Application������������������������������
	Windows Instructions���������������������������
	OS X Instructions������������������������
	Using the Application����������������������������

	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 39 jQuery Mobile: Part I
	Understanding jQuery Mobile����������������������������������
	Importing jQuery Mobile������������������������������
	Mobile Design��������������������

	JQUERY Mobile Pages��������������������������
	Form-Based Pages�����������������������
	JavaScript�����������������

	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 40 jQuery Mobile: Part II
	UI Components��������������������
	Collapsible Components�����������������������������
	Popups�������������
	Selection����������������
	Flip-Switch������������������

	Events�������������
	Gestures���������������
	Lifecycle Events�����������������������

	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Index
	EULA

HTMLS, JavaScript,
and jQuery
GaziHou T

G 20 Hour Tainer

