
The Essential
Guide to HTML5

Using Games to Learn HTML5
and JavaScript
—
Third Edition
—
Jeanine Meyer

The Essential Guide to
HTML5

Using Games to Learn HTML5
and JavaScript

Third Edition

Jeanine Meyer

The Essential Guide to HTML5: Using Games to Learn HTML5 and JavaScript

ISBN-13 (pbk): 978-1-4842-8721-7		 ISBN-13 (electronic): 978-1-4842-8722-4
https://doi.org/10.1007/978-1-4842-8722-4

Copyright © 2023 by Jeanine Meyer

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Divya Modi
Development Editor: James Markham
Coordinating Editor: Divya Modi
Copy Editor: Kim Wimpsett

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springersbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at https://github.com/Apress/The-Essential-Guide-
to-HTML5-3rd-Edition-by-Jeanine-Meyer. For more detailed information, please visit www.apress.com/
source-code.

Printed on acid-free paper

Jeanine Meyer
Purchase, NY, USA

https://doi.org/10.1007/978-1-4842-8722-4

To Annika, Daniel, Aviva, and Anne, and to Esther and Joseph,
who are still in our lives.

v

About the Author�� xi

About the Technical Reviewer�� xiii

Acknowledgments��xv

Introduction��xvii

Table of Contents

Chapter 1: �The Basics�� 1

Keywords��� 1

Introduction�� 1

Critical Requirements�� 4

HTML5, CSS, and JavaScript Features��� 4

Basic HTML Structure and Tags��� 4

Using Cascading Style Sheets��� 10

JavaScript Programming��� 14

Using a Text Editor��� 16

Building the Applications��� 19

Testing and Uploading the Application��� 25

Summary��� 26

Chapter 2: �Dice Game�� 27

Introduction�� 27

Critical Requirements�� 30

HTML5, CSS, and JavaScript Features��� 31

Pseudorandom Processing and Mathematical Expressions�� 32

Variables and Assignment Statements�� 33

Programmer-Defined Functions��� 35

Conditional Statements: if and switch��� 37

vi

Drawing on the Canvas�� 40

Displaying Text Output Using a Form��� 51

Building the Application and Making It Your Own�� 52

Throwing a Single Die�� 54

Throwing Two Dice��� 61

The Complete Game of Craps�� 68

Making the Application Your Own�� 76

Testing and Uploading the Application��� 78

Summary��� 79

Chapter 3: �Bouncing Ball��� 81

Introduction�� 81

Critical Requirements�� 86

HTML5, CSS, and JavaScript Features��� 87

Drawing a Ball or an Image or Images��� 88

Gradients with a Side Trip to Explain Arrays�� 91

Setting Up a Timing Event�� 96

Calculating a New Position and Collision Detection��� 98

Starting, Positioning and Restarting the video with use of an anonymous function������������ 102

Validation��� 102

Stopping and Resuming Animation Triggered by Buttons�� 104

HTML Page Reload��� 105

Preloading Images��� 105

Building the Application and Making It Your Own�� 106

Testing and Uploading the Application��� 129

Summary��� 130

Chapter 4: �Cannonball and Slingshot�� 131

Introduction�� 131

Critical Requirements�� 135

HTML5, CSS, and JavaScript Features��� 136

Arrays and Programmer-Defined Objects�� 137

Table of Contents

vii

Rotations and Translations for Drawing��� 139

Drawing Line Segments��� 145

Mouse Events for Pulling on the Slingshot�� 147

Changing the List of Items Displayed Using Array Splice�� 149

Distance Between Points��� 150

Building the Application and Making It Your Own�� 151

Cannonball: With Cannon, Angle, and Speed�� 158

Slingshot: Using a Mouse to Set Parameters of Flight��� 168

Testing and Uploading the Application��� 179

Summary��� 180

Chapter 5: �The Memory (aka Concentration) Game��� 181

Introduction�� 181

Critical Requirements�� 188

HTML5, CSS, JavaScript Features�� 189

Representing Cards�� 190

Using Date for Timing��� 191

Providing a Pause�� 192

Drawing Text�� 193

Drawing Polygons�� 196

Shuffling Cards�� 198

Implementing Clicking on a Card��� 199

Preventing Certain Types of Cheating�� 200

Building the Application and Making It Your Own�� 201

Testing and Uploading the Application��� 223

Summary��� 224

Chapter 6: �Quiz�� 225

Introduction�� 225

Critical Requirements for a Quiz Game�� 230

HTML5, CSS, and JavaScript Features��� 231

Table of Contents

viii

Storing and Retrieving Information in Arrays��� 231

Creating HTML During Program Execution��� 234

Using CSS in the Style Element��� 236

Responding to Player Moves�� 237

Presenting Audio and Video��� 238

Checking the Player’s Answer�� 240

Building the Application and Making It Your Own�� 241

Testing and Uploading the Application��� 252

Summary��� 253

Chapter 7: �Mazes��� 255

Keywords��� 255

Introduction�� 255

Critical Requirements�� 263

HTML5, CSS, and JavaScript Features��� 264

Representation of Walls and the Token�� 264

Mouse Events to Build and Position a Wall�� 265

Detecting the Arrow Keys��� 266

Collision Detection: Token and Any Wall��� 268

Using Local Storage��� 271

Encoding Data for Local Storage�� 279

Radio Buttons��� 281

Building the Application and Making It Your Own�� 282

Creating the Travel Maze Application��� 295

Testing and Uploading Application��� 306

Summary��� 307

Chapter 8: �Rock, Paper, Scissors��� 309

Introduction�� 309

Critical Requirements�� 313

HTML5, CSS, and JavaScript Features��� 314

Table of Contents

ix

Providing Graphical Buttons for the Player�� 314

Generating the Computer Move��� 319

Displaying Results Using Animation��� 325

Audio and DOM Processing�� 329

Starting Off��� 331

Building the Application and Making It Your Own�� 332

Testing and Uploading the Application��� 342

Summary��� 343

Chapter 9: �Guess a Word��� 345

Introduction�� 345

Critical Requirements�� 352

HTML5, CSS, and JavaScript Features��� 353

Storing a Word List as an Array Defined in an External Script File�� 353

Generating and Positioning HTML Markup, Then Changing the Markup to Buttons,
and Then Disabling the Buttons��� 354

Creating the Feedback About Remaining Wrong Letters��� 358

Maintaining the Game State and Determining a Win or Loss��� 359

Checking a Guess and Revealing Letters in the Secret Word by Setting textContent���������������� 360

Building the Application and Making It Your Own�� 361

Testing and Uploading the Application��� 371

Summary��� 371

Chapter 10: �Blackjack��� 373

Introduction�� 373

Critical Requirements�� 380

HTML5, CSS, and JavaScript Features��� 381

Source for Images for Card Faces and Setting Up the Image Objects��������������������������������������� 381

Creating the Programmer-Defined Object for the Cards�� 382

Starting a Game��� 383

Dealing the Cards��� 384

Shuffling the Deck��� 389

Table of Contents

x

Capturing Key Presses��� 390

Using Header and Footer Element Types��� 392

Building the Application and Making It Your Own�� 393

Testing and Uploading the Application��� 409

Summary��� 410

�Appendix: More Techniques for Drawing��� 411

��Circles and Arrows��� 411

Overview��� 413

Details of Implementation�� 414

What You Learned��� 430

��Crossing a Line (Jumping a Fence)�� 430

Overview��� 434

Details of Implementation�� 438

��Using Scalar Vector Graphics��� 451

��Using SVG to Draw the HTML5 Logo�� 452

Overview��� 456

Details of Implementation�� 457

��Using SVG to Draw and Modify a Cartoon�� 465

Overview��� 466

Details of Implementation�� 467

�Index�� 479

Table of Contents

xi

About the Author

Jeanine Meyer is a professor emerita at Purchase College/

SUNY and past coordinator of the Mathematics/Computer

Science Board of Study. Before Purchase, she taught at

Pace University and before that worked as a research staff

member and manager in robotics and manufacturing

research at IBM Research and as a consultant for IBM’s

educational grant programs. She is the author or coauthor

of ten books on topics such as educational uses of multimedia, programming (three

published by Apress/Springer), databases, number theory, and origami. 

She earned a PhD in computer science at the Courant Institute at New York

University, an MA in mathematics at Columbia University, and an SB (the college used

the Latin form) in mathematics from the University of Chicago. She is a member of Phi

Beta Kappa, Sigma Xi, Association for Women in Science, and Association for Computing

Machinery, and was a featured reviewer for ACM Computing Reviews.

For Jeanine, programming is both a hobby and a vocation. Every day she plays

computer puzzles online (including Words with Friends, various solitaire card games,

and Duolingo for Spanish, which she views as a game). She also participates in Daf

Yomi, the seven-and-a-half-year study of Talmud, which certainly has puzzle-solving

aspects. She tries The New York Times crossword puzzle many days but does better at the

mini-puzzle, KenKen, and Two Not Touch, in which she sometimes competes with her

children. She enjoys cooking, baking, eating, gardening, travel, and a moderate amount

of walking. She misses her mother, who inspired many family members to take up

piano, and her father, who gave Jeanine a love of puzzles. She is an active volunteer for

progressive causes and candidates.

xiii

About the Technical Reviewer

Vadim Atamanenko is a software developer with more

than 20 years of experience. He participates in international

hackathons both as a judge and as a mentor and is a member

of the Harvard Square Business Association. 

He has developed many complex solutions in various

business areas that have helped thousands of people

automate manual processes.

Currently he is the CIO at Freedom Holding Corp., but

he still finds time to regularly participate in international IT

conferences.

He enjoys meeting new people and sharing his knowledge. If you have a question for

him, visit https://www.linkedin.com/in/vadim-atamanenko/.

https://www.linkedin.com/in/vadim-atamanenko/

xv

Acknowledgments

Much appreciation to my students and colleagues at Purchase College/State University

of New York for their inspiration, stimulation, and support; and to family and friends

who indulge me in my use of family photos and video clips for my courses and my books.

Thanks to the crew at Apress and Springer for all their efforts.

xvii

Introduction

When it was first released, there was considerable enthusiasm about the new capabilities

of HTML5, and even suggestions that no other technologies or products are necessary to

produce dynamic, engrossing, interactive websites. The excitement has not gone away,

and the new features are still exciting. HTML is HTML5. It now is possible, using just

HTML, Cascading Style Sheets, and JavaScript, to draw lines, arcs, circles, and ovals on

the screen and specify events and event handling to produce animation and respond to

user actions. You can include video and audio on your website with standard controls,

and you can include the video or audio in your application exactly when and where

needed. You can create forms that validate the input and provide immediate feedback

to users. You can use a facility similar to cookies to store information on the client

computer. And you can use new elements, such as headers and footers, to help structure

your documents. HTML, CSS, and JavaScript work together. You can use JavaScript to

create new HTML elements, and this is helped by what can be done with CSS.

This book is based on my teaching practices and past writings. Delving into the

features of a technology or general programming concepts is best done when there is a

need and a context. Games, especially familiar and simple ones, supply the context and

thus the motivation and much of the explanation. When learning a new programming

language, one of my first steps is to program the game of craps. Also, if I can build a

ballistics simulation with animation, such as the slingshot game, and make a video

or audio clip play when a specific condition occurs, I am happy. If I can construct my

own maze of walls, determine ways to provide visual as well as text feedback, and store

information on the player’s computer, I am ecstatic. That’s what we will do in this book.

As you learn how to build these simple games, you’ll build your expertise as well. I hope

you go on to make your own exciting, compelling applications.

This goal of this book, developed with considerable help from the Apress staff and

the technical reviewers, is to introduce you to programming, with the motivation of

implementing interactive websites to share with others.

xviii

•	 At the time of updating this book, browser support for HTML5

features is close to complete. The applications have been tested using

Chrome and Safari. However, it is important to keep in mind that

browsers can change.

•	 My focus is on plain HTML and JavaScript because it has been my

experience that knowledge and experience with the basics is the

best introduction. Frameworks and libraries exist and continue to be

developed and refined, and at some point, these tools are appropriate

to study. This is especially true if you work in an organization that

has adopted specific tools. You can turn to these topics after getting

comfortable with the basics. Note that I have updated my HTML5

and JavaScript Projects book, which is a step up from this one in level

of complexity.

�Who Is This Book For?
This book is for people who want to learn how HTML, JavaScript, and Cascading Style

Sheets can serve to build dynamic, exciting websites. It’s for you if you know something

about programming and want to see what the current versions of HTML and JavaScript

offer. It’s also for you if you have no programming experience whatsoever. Perhaps you’re

a web designer or website owner and you want to know how to make things happen

behind the scenes or how to request features from programmers.

With this book, we want to showcase the new(er) features of HTML5 and demystify

the art of programming. Programming is an art, and creating appealing games and

other applications requires talent and attention to the audience. However, if you can put

together words to form sentences and put together sentences to form paragraphs, then

you can program.

�How Is This Book Structured?
The book consists of ten chapters plus an appendix, each organized around a familiar

game or similar application. There is considerable redundancy in the chapters, so you can

skip around if you like, though the games do get more complex as the book progresses.

Each chapter starts by describing the application and listing the technical features and

programming concepts that will be covered. We look first at the critical requirements in a

Introduction

xix

general sense: what we need to implement the application, independent of any specific

technology. We then focus on the features of HTML5, JavaScript, Cascading Style Sheets, and

general programming methodologies that satisfy the requirements. Finally, we examine the

implementation of each application in detail. I break out the code line by line in a table, with

comments next to each line. In the cases where multiple versions of a game are described,

only the new lines of code may be explained in detail. This isn’t to deprive you of information

but to encourage you to see what is similar and what is different, and to demonstrate how

you can build applications in stages. It certainly is appropriate to consult the commented

programs on an as-needed basis. Each chapter includes suggestions on how to make the

application your own and how to test and upload the application to a website. The summary

at the end of each chapter highlights what you’ve learned and what you’ll find ahead.

The appendix was added in this edition to provide more advanced examples of

creating and manipulating graphics on the screen using algebra and geometry and

Scalar Vector Graphics images.

�Conventions Used in This Book
The applications in this book are HTML documents. The JavaScript is in a script

element in the head element, and the CSS is in the style element in the head element.

The body element contains the static HTML, including any canvas elements. Several

examples depend on external image files, and one example requires external video files

and audio files and another external audio files.

�Layout Conventions
To keep this book as clear as possible, the following text conventions are used throughout:

•	 Code is presented in fixed-width font.

•	 The complete code for each application is presented in a table, with

each statement explained with a comment.

•	 Pseudocode is written in italic fixed-width font.

•	 Sometimes code won’t fit on a single line in a book. Where this

happens, I use an arrow like this: ↪.

So, with these formalities out of the way, let’s get started.

Introduction

1

CHAPTER 1

The Basics

�Keywords
HTML Document; HTML Structure; Hypertext Markup Language (HTML); HTML File;

Cascading Style Sheets (CSS).

In this chapter, we cover the following:

•	 The basic structure of an HTML document

•	 The html, head, title, script, style, body, img, and a elements

•	 A Cascading Style Sheet (CSS) example

•	 A JavaScript code example, using Date and document.write

�Introduction
Hypertext Markup Language (HTML) is the language for delivering content on the Web.

HTML is not owned by anyone but is the result of people working in many countries

and many organizations to define the features of the language. An HTML document is

a text document that you can produce using any text editor. HTML documents contain

elements surrounded by tags—text that starts with a < symbol and ends with a > symbol.

An example of a tag is . This particular tag will display the image

held in the file home.gif. These tags are the markup. It is through the use of tags that

hyperlinks, images, and other media are included in web pages.

Basic HTML can include directives for formatting in a language called Cascading

Style Sheets (CSS) and programs for interaction in a language called JavaScript.

Browsers, such as Firefox and Chrome, interpret the HTML along with any CSS and

JavaScript to produce what we experience when we visit a website. HTML holds the

© Jeanine Meyer 2023
J. Meyer, The Essential Guide to HTML5, https://doi.org/10.1007/978-1-4842-8722-4_1

https://doi.org/10.1007/978-1-4842-8722-4_1

2

content of the website, with tags providing information on the nature and structure

of the content as well as references to images and other media. CSS specifies the

formatting. The same content can be formatted in different ways. JavaScript is a

programming language that’s used to make the website dynamic and interactive. In all

but the smallest working groups, different people may be responsible for the HTML, CSS,

and JavaScript, but it’s always a good idea to have a basic understanding of how these

different tools work together. If you are already familiar with the basics of HTML and

how CSS and JavaScript can be added together, you may want to skip ahead to the next

chapter. Still, it may be worth casting your eye over the content in this chapter to make

sure you are up to speed on everything before we start on the first core examples.

The latest version of HTML (and its associated CSS and JavaScript) is HTML5.

It has generated considerable excitement because of features such as the canvas for

displaying pictures and animation; support for video and audio; and tags for defining

common document elements such as header, section, and footer. You can create a

sophisticated, highly interactive website with HTML5. As of this writing, not all browsers

accept all the features, but you can get started learning HTML5, CSS, and JavaScript

now. Learning JavaScript will introduce you to general programming concepts that will

be beneficial if you try to learn any other programming language or if you work with

programmers as part of a team.

The approach I’ll use in this book is to explain HTML5, CSS, and JavaScript concepts

in the context of specific examples, most of which will be familiar games. Along the way,

I’ll use small examples to demonstrate specific features. Ideally, this will help you both

understand what you want to do and appreciate how to do it. You will know where we

are headed as I explain the concepts and details.

The task for this chapter is to build a web page of links to other websites. In this way,

you’ll get a basic understanding of the structure of an HTML document, with a small

amount of CSS code and JavaScript code. For this and other examples, please think

of how to make the project meaningful to you. The page could be a list of your own

projects, favorite sites, or sites on a particular topic. For each site, you’ll see text and a

hyperlink. The second example includes some extra formatting in the form of boxes

around the text, pictures, and the day’s date and time. Figure 1-1 and Figure 1-2 show

examples I’ve created.

Chapter 1 The Basics

3

Figure 1-1.  An annotated list of games

Figure 1-2.  Favorite sites, with extra formatting

Chapter 1 The Basics

4

When you reload the Favorite Sites page, the date and time will change to the current

date and time according to your computer.

�Critical Requirements
The requirements for the list of links application are the very fundamental requirements

for building a web page containing text, links, and images. For the example shown in

Figure 1-1, each entry appears as a paragraph. In the example shown in Figure 1-2, in

contrast, each entry has a box around it. The second example also includes images and

a way to obtain the current day, date, and time. Later applications will require more

discussion, but for this one we’ll go straight to how to implement it using HTML, CSS,

and JavaScript.

�HTML5, CSS, and JavaScript Features
As I noted, HTML documents are text, so how do we specify links, pictures, formatting,

and coding? The answer is in the markup, that is, the tags. Along with the HTML that

defines the content, you’ll typically find CSS styles, which can be specified either inside

the HTML document or in an external document. You also might include JavaScript for

interactivity, again specified in the HTML document or in an external document. We’ll

start with a look at how you can build simple HTML tags and how you can add inline CSS

and JavaScript all within the same document.

�Basic HTML Structure and Tags
An HTML element begins with a starting tag, which is followed by the element content

and an ending tag. The ending tag includes a / symbol followed by the element type, for

example /head. Elements can be nested within elements. A standard HTML document

looks like this:

<html>

 <head>

 <title>Very simple example

 </title>

 </head>

Chapter 1 The Basics

5

 <body>

 This will appear as is.

 </body>

</html>

Note that I’ve indented the nested tags here to make them more obvious, but HTML

itself ignores this indentation (or whitespace, as it’s known), and you don’t need to add

it to your own files. In fact, for most of the examples throughout this book, I don’t indent

my code.

This document consists of the html element, indicated by the starting tag <html> and

ending with the closing tag: </html>.

HTML documents typically have a head and a body element, as this one has. This

head element contains one element, title. The HTML title shows up different places

in different browsers. Figure 1-3 shows the title, “Very Simple Example,” on a tab

in Chrome.

Figure 1-3.  The HTML title on a tab in the Chrome browser

In most cases, you will create something within the body of the web page that you’ll

think of as a title, but it won’t be the HTML title! Figure 1-3 also shows the body of the

web page: the short piece of text. Notice that the words html, head, title, and body do not

appear. The tags “told” the browser how to display the HTML document.

We can do much more with text, but let’s go on to see how to get images to appear.

This requires an img element. Unlike the html, head, and body elements that use starting

and ending tags, the img element just uses one tag. It is called a singleton tag. Its element

type is img (not image), and you put all the information within the tag itself using what

are termed attributes. What information? The most important item is the name of the file

that holds the image. The tag

Chapter 1 The Basics

6

tells the browser to look for a file with the name frog and the file type .jpg. In this

case, the browser looks in the same directory or folder as the HTML file. You can also

refer to image files in other places, and I’ll show this later. The src stands for source.

It is termed an attribute of the element. The slash before the > indicates that this is

a singleton tag. There are common attributes for different element types, but most

element types have additional attributes. Another attribute for img elements is the width

attribute.

This specifies that the image should be displayed with a width of 200 pixels. The

height will be whatever is necessary to keep the image at its original aspect ratio. If you

want specific widths and heights, even if that may distort the image, specify both width

and height attributes.

Tip  You’ll see examples (maybe even some of mine) in which the closing slash
is missing that work just fine. It is considered good practice to include it. Similarly,
you’ll see examples in which there are no quotation marks around the name of
the file. HTML is more forgiving in terms of syntax (punctuation) than most other
programming systems. Finally, you’ll see HTML documents that start with a tag of
type !DOCTYPE and have the HTML tag include other information. At this point, we
don’t need this, so I will keep things as simple as I can (but no simpler, to quote
Einstein).

Producing hyperlinks is similar to producing images. The type of element for a

hyperlink is a, and the critical attribute is href.

Purchase College website

As you can see, this element has a starting and ending tag. The content of the

element, whatever is between the two tags—in this case, Purchase College website—is

what shows up in blue and is underlined. The starting tag begins with a. One way to

remember this is to think of it as the most important element in HTML so it uses the first

letter of the alphabet. You can also think of an anchor, which is what the a actually stands

for, but that isn’t as meaningful for me. The href attribute (think hypertext reference)

specifies the website where the browser goes when the hyperlink is clicked. Notice that

this is a full web address (called a Universal Resource Locator, or URL, for short).

Chapter 1 The Basics

7

Web addresses can be absolute or relative. An absolute address starts with http://.

A relative address is relative to the location of the HTML file. Using relative addressing

makes it easier to move your project to a different website, and you can indicate the

folder one level up by using

../

at the start of the reference. In the favorite sites example, the avivasmugmug.png file

and the apressshot.png file are located in the same folder as the HTML file. They are

there because I put them there! For large projects, many people put all the images in a

subfolder called images and write addresses as images/postcard.gif. File management

is a big part of creating web pages.

We can combine a hyperlink element with an img element to produce a picture on

the screen that a user can click. Remember that elements can be nested within other

elements. Instead of putting text after the starting <a> tag, put an tag:

Let’s put these concepts to work in another example:

<html>

<head>

<title>Second example </title>

</head>

<body>

This will appear as is.

Jeanine Meyer's Academic

 Activities

</body>

</html>

Chapter 1 The Basics

8

I created the HTML file, saved it as second.html, and then opened it in the Chrome

browser. Figure 1-4 shows what is displayed.

Figure 1-4.  Example with images and hyperlinks

This produces the text; the image in its original width and height; the image with

the width fixed at 200 pixels and height proportional; a hyperlink that will take you to

the Purchase College website; and another link that uses an image that will take you to

the web page on the Purchase College website for the Mathematics/Computer Science

department. However, this isn’t quite what I had in mind. I wanted these elements

spaced down the page.

This demonstrates something you need to remember: HTML ignores line breaks and

other whitespace. If you want a line break, you have to specify it. One way is to use the

br singleton tag. I’ll show other ways later. Take a look at the following modified code.

Notice that the
 tags don’t need to be on a line by themselves.

<html>

<head>

<title>Second example Spaced Out</title>

</head>

<body>

This will appear as is.

<a href=Error! Hyperlink reference not valid. College/SUNY

</body>

</html>

Chapter 1 The Basics

9

Figure 1-5 shows what this code produces. Notice that I changed the title. I also

decided to leave the origami frog images together, and I put two
 tags after the link

to Purchase College/SUNY.

Figure 1-5.  Text, images, and links with line breaks

There are many HTML element types: the h1 through h6 heading elements produce

text of different sizes; there are various elements for lists and tables, and others for forms.

CSS, as we’ll see in a moment, is also used for formatting. You can select different fonts,

background colors, and colors for the text, and control the layout of the document. It’s

considered good practice to put formatting in CSS, create interactivity in JavaScript,

and keep the HTML for the content. HTML5 provides new structural elements—such

as article, section, footer, and header—putting formatting into the style element

and making use of the new elements, called semantic tags , to facilitate working with

Chapter 1 The Basics

10

other people. However, even when you’re working just with yourself, separating content,

formatting, and behavior lets you easily change the formatting and the interactions.

Formatting, including document layout, is a large topic. In this book, I stick to the basics.

�Using Cascading Style Sheets
CSS is a special language just for formatting. A style is essentially a rule that specifies

how a particular element will be formatted. This means you can put style information

in a variety of places: a separate file, a style element located in the head element, or a

style within the HTML document, perhaps within the one element you want to format

in a particular way. The styling information cascades, or trickles down, unless a different

style is specified. To put it another way, the style closest to the element is the one that’s

used. For example, you might use your official company fonts as given in the style

section in the head element to flow through most of the text but include a specification

within the local element to style one particular piece of text. Because that style is closest

to the element, it is the one that is used.

The basic format includes an indicator of what is to be formatted followed by

one or more directives. In the examples for this chapter, I’ll specify the formatting for

elements of type section, namely, a border or box around each item, margins, padding,

alignment, and a background of white. The complete HTML document in Listing 1-1 is

a mixture (some would say a mess!) of features. The elements body and p (paragraph)

are part of the original version of HTML. The section element is one of the new element

types added in HTML5. The section element does need formatting, unlike body and p,

which have default formatting that the body and each p element will start on a new line.

CSS can modify the formatting of old and new element types. Notice that the background

color for the text in the section is different from the background color for the text outside

the section.

In the code in Listing 1-1, I specify styles for the body element (there is just one) and

the section element. If I had more than one section element, the styling would apply to

each of them. The style for the body specifies a background color and a color for the text.

In the beginning, browsers accepted a set of only 16 colors by name, including black,

white, red, blue, green, cyan, and pink. However, now the up-to-date browsers accept

140 colors by name.

See https://www.w3schools.com/colors/colors_names.asp.

Chapter 1 The Basics

11

You can also specify color using RGB (red, green, blue) hexadecimal codes, but you’ll

need to use a graphics program—such as Adobe Photoshop, Corel Paint Shop Pro, or

Adobe Flash Professional—to figure out the RGB values, or you can experiment. I used

Paint Shop Pro to determine the RGB values for the green in the frog head picture and

used that for the border as well.

The text-align directives are just what they sound like: they indicate whether to

center the material or align it to the left. The font-size sets the size of text in pixels.

Borders are tricky and don’t appear to be consistent across browsers. Here I’ve specified

a solid green border of 4 pixels. The width specification for section indicates that the

browser should use 85 percent of the window, whatever that is. The specification for p

sets the width of the paragraph at 250 pixels. Padding refers to the spacing between the

text and the borders of the section. The margin is the spacing between the section and its

surroundings.

Listing 1-1.  A Complete HTML Document with Styles

<html>

<head>

<title>CSS example </title>

<style>

body {

 background-color:tan;

 color: #660000;

 text-align:center;

 font-size:22px;

}

section {

 width:85%;

 border:4px #00FF63 solid;

 text-align:left;

 padding:5px;

 margin:10px;

 background-color: white;

}

p {

 width: 75%;

}

Chapter 1 The Basics

12

aside {

 font-style: italic;

}

</style>

</head>

<body>

The background here is tan and the text is the totally arbitrary RED

GREEN BLUE

 value #660000.

<section>

This section has text--this sentence--and then a paragraph with an image,

and text.

<p>

 The frogface model can be made to move its jaw.

</p>

</section>

<section>

As you may have noticed, I like origami. <p> The next image is a photo of

the Flapping Bird, one of the best known origami models, in action.

 </p>

<aside>There are many books and websites to learn how to fold the Flapping

Bird. Here is a plug for one of my origami books <a href="https://

origamiusa.org/catalog/products/origami-explanations">Origami with

Explanations from The Source, the store of OrigamiUSA. It also is

available on Amazon and elsewhere. Visit my <a href="https://www.amazon.

com/Jeanine-Meyer/e/B001JPA5SC%3Fref=dbs_a_mng_rwt_scns_share">Jeanine

Meyer Author page. I put these comments in an aside, a semantic

element. See the style specifications for how I made it be shown in

italics.

</aside>

</section>

</body>

</html>

Chapter 1 The Basics

13

This produces the screen shown in Figure 1-6.

Figure 1-6.  Sample use of CSS styles

Tip  Don’t be concerned if you don’t understand everything immediately. Modify
these examples and make up your own. You’ll find lots of help on the Web. In
particular, see the official source for HTML 5 at http://dev.w3.org/html5/
spec/Overview.html.

There are many things you can do with CSS. You can use it to specify formatting

for types of elements, as shown here; you can specify that elements are part of a class;

and you can identify individual elements using the id attribute. In Chapter 6, where we

create a quiz, I use CSS to position specific elements in the window and then JavaScript

to move them around.

Chapter 1 The Basics

14

�JavaScript Programming
JavaScript is a programming language with built-in features for accessing parts of an

HTML document, including styles in the CSS element. It is termed a scripting language

to distinguish it from compiled languages, such as C++. Compiled languages are

translated all at once, prior to use, while scripting languages are interpreted line by

line by browsers. This text assumes no prior programming experience or knowledge

of JavaScript, but it may help to consult other books, such as Getting Started with

JavaScript, by Terry McNavage (friends of ED, 2010), or online sources such as http://

en.wikipedia.org/wiki/JavaScript.

Each browser owns its version of JavaScript.

An HTML document holds JavaScript in a script element, located in the head

element. To display the time and date information as shown in Figure 1-2, I put the

following in the head element of the HTML document:

<script>

document.write(Date());

</script>

JavaScript, like other programming languages, consists of statements of various

types. In later chapters, I’ll show you assignment statements, compound statements

such as if and switch and for statements, and statements that create what are called

programmer-defined functions. A function is one or more statements that work together

in a block and can be called any time you need that functionality. Functions save writing

out the same code over and over. JavaScript supplies many built-in functions. Certain

functions are associated with objects (more on this later) and are called methods.

The code

document.write("hello");

is a JavaScript statement that invokes the write method of the document object with

the argument "hello". An argument is additional information passed to a function or

method. Statements are terminated by semicolons. This piece of code will write out the

literal string of characters h, e, l, l, o as part of the HTML document.

The document.write method writes out anything within the parentheses. Since I

wanted the information written out to change as the date and time change, I needed a

way to access the current date and time, so I used the built-in JavaScript Date function.

Chapter 1 The Basics

15

This function produces an object with the date and time. Later, you’ll see how to use

Date objects to compute how long it takes for a player to complete a game. For now, all

I want to do is display the current date and time information, and that’s just what this

code does:

document.write(Date());

To use the formal language of programming: this code calls (invokes) the write

method of the document object, a built-in piece of code. The period (.) indicates that the

write to be invoked is a method associated with the document produced by the HTML

file. So, something is written out as part of the HTML document. What is written out?

Whatever is between the opening parenthesis and the closing parenthesis. And what

is that? It is the result of the call to the built-in function Date. The Date function gets

information maintained by the local computer and hands it off to the write method.

Date also requires the use of parentheses, which is why you see so many. The write

method displays the date and time information as part of the HTML document, as

shown in Figure 1-2. The way these constructs are combined is typical of programming

languages. The statement ends with a semicolon. Why not a period? A period has

other uses in JavaScript, such as indicating methods and serving as a decimal point for

numbers.

Natural languages, such as English, and programming languages have much in

common—different types of statements; punctuation using certain symbols; and

grammar for the correct positioning of elements. In programming, we use the term

notation instead of punctuation, and syntax instead of grammar. Both programming

languages and natural languages also let you build up very complex statements out of

separate parts. However, there is a fundamental difference: as I tell my students, chances

are good that much of what I say in class is not grammatically correct, but they’ll still

understand me. But when you’re “talking” to a computer via a programming language,

your code must be perfect in terms of the grammatical rules of the language to get what

you want. The good news is that unlike a human audience, computers do not exhibit

impatience or any other human emotion, so you can take the time you need to get

things right. There’s also some bad news that may take you a while to appreciate. If you

make a mistake in grammar—termed a syntactic error—in HTML, CSS, or JavaScript, the

browser still tries to display something. It’s up to you to figure out what and where the

problem is when you don’t get the results you wanted in your work.

Chapter 1 The Basics

16

�Using a Text Editor
You build an HTML document using a text editor and you view/test/play the document

using a browser. Though you can use any text editor program to write the HTML, I

suggest TextPad for PCs and Sublime for Macs. These are shareware, which makes

them relatively inexpensive. You should consider making donations! Don’t use a word

processing program, which may insert nontext characters. Notepad also works, although

the other tools have benefits such as color-coding that I’ll demonstrate. To use the editor,

you open it and type in the code. Figure 1-7 shows what the Sublime screen looks like.

Figure 1-7.  Starting off in Sublime

You will want to save your work frequently and, most important, save it as the file

type.html. Do this at the start, and then you will gain the benefits of the color-coding. In

Sublime, select File ➤ Save As and then enter the name with the file extension .html, as

shown in Figure 1-8.

Chapter 1 The Basics

17

Figure 1-8.  Saving a file as type HTML

Notice that I gave the file a name and a file extension and that I also specified the

folder where I want the file to reside. After saving the file, the window appears as shown

in Figure 1-9, with color coding.

Chapter 1 The Basics

18

Figure 1-9.  After saving the file as HTML

The color coding, which you’ll see only after the file is saved as HTML, indicates

tags and quoted strings. This can be valuable for catching many errors. Sublime and the

other editors do provide options for changing the color scheme. Assuming that you are

using the one shown here, if you see long sections of yellow, the color for quoted strings,

it probably means a missing closing quotation marks. By the way, you can use single or

double quotation marks, but you can’t mix them up. Also, if you copy and paste from

Word or PowerPoint and copy so-called “smart” quotation marks, ones that curve, this

will cause problems.

Chapter 1 The Basics

19

�Building the Applications
The source code for an HTML document typically includes an HTML document and

other files.

•	 The simple.html file is complete in itself and was shown in

Figure 1-3.

•	 The second.html application was shown in Figure 1-4, and

secondspacedout.html was shown in Figure 1-5. Two image files are

referenced: frog.gif two times and jhome.gif one time.

•	 The third.html file, with the garish colors, references two image

files: frogface.gif and flappingbird.png.

•	 The games.html file is complete in itself in that it does not reference

any image files. If the files mentioned in the href attributes of the

a tags are not present, then there will be error messages when the

hyperlinks are clicked.

•	 The FavoriteSites.html file references two image files:

avivasmugmug.jpeg and apressshot.jpeg.

Keeping track of files is a critical part of building HTML applications.

Now let’s delve into the HTML coding statement by statement, first for the list of

annotated links describing games and then for the favorite sites. The code uses the

features described in the previous section. Table 1-1 shows the complete code that

produced the display shown in Figure 1-1: paragraphs of text with links to different files,

all located in the same folder.

Chapter 1 The Basics

20

Table 1-1.  The “My Games” Annotated Links Code

Code Explanation

<html> Opening html tag.

<head> Opening head tag.

<title>Annotated links</title> Opening title tag, the title text, and closing

title tag.

</head>

<body> Opening body tag.

<h1>My games</h1> Opening h1 tag, text, and then closing h1 tag.

This will make “My Games” appear in a big

font. The actual font will be the default.

<p> Opening p for paragraph tag.

The Dice

game presents the game

called craps.

Text with an a element. The opening a tag has

the attribute href set to the value craps.

html. Presumably this is a file in the same

folder as this HTML file. The contents of the a

element—whatever is between the <a> and

the —will be displayed, first in blue and

then in mauve once clicked, and underlined.

</p> Closing p tag.

<p> Opening p tag.

The <a href="cannonball.

html">Cannonball is a ballistics

simulation. A ball appears to move

on the screen in an arc. The program

determines when the ball hits the

ground or the target. The player can

adjust the speed and the angle.

See the previous case. The a element here

refers to the cannonball.html file, and the

displayed text is Cannonball.

</p> Closing p tag.

<p> Opening p tag.

(continued)

Chapter 1 The Basics

21

Code Explanation

The Slingshot</

a> simulates shooting a slingshot. A

ball moves on the screen, with the

angle and speed depending on how far

the player has pulled back on the

slingshot using the mouse.

See previous. This paragraph contains the

hyperlink to slingshot.html.

</p> Closing p tag.

<p> Opening p tag.

The <a href="memory.

html">Concentration/memory game

presents a set of plain rectangles you

can think of as the backs of cards.

The player clicks on first one and then

another and pictures are revealed. If

the two pictures represent a match, the

two cards are removed. Otherwise, the

backs are displayed. The game continues

until all matches are made. The time

elapsed is calculated and displayed.

See previous. This paragraph contains the

hyperlink to memory.html.

</p> Closing p tag.

<p> Opening p tag.

The Quiz game

presents the player with 4 boxes holding

names of countries and 4 boxes holding

names of capital cities. These are

selected randomly from a larger list. The

player clicks to indicate matches and the

boxes are moved to put the guessed boxes

together. The program displays whether or

not the player is correct.

See previous. This paragraph contains the

hyperlink to quiz1.html.

Table 1-1.  (continued)

(continued)

Chapter 1 The Basics

22

Code Explanation

</p> Closing p tag.

<p> Opening p tag.

The Maze

program is a multi-stage game. The

player builds a maze by using the

mouse to build walls. The player then

can move a token through the maze.

The player can also save the maze

on the local computer using a name

chosen by the player and retrieve it

later, even after closing the browser

or turning off the computer.

See previous. This paragraph contains the

hyperlink to maze.html.

</p> Closing p tag.

</body> Closing body tag.

</ html> Closing html tag.

Table 1-1.  (continued)

Once you have created several of your own HTML applications, you may build a

document such as this one to serve as your own annotated list. If you use folders, the

href links will need to reflect the location in terms of the HTML document.

The Favorite Sites code has the features of the annotated list with the addition of

formatting: a green box around each item and a picture in two of the three items. See

Table 1-2.

Chapter 1 The Basics

23

Table 1-2.  The Favorites Sites Code

Code Explanation

<html> Opening html tag.

<head> Opening head tag.

<title>Annotated links</title> Complete title element: opening and closing tag

and “Annotated links” in between.

<style> Opening style tag. This means we’re now going

to use CSS.

article { Start of a style. The reference to what is being

styled is all article elements. The style then

has a brace: {. The opening and closing braces

surround the style rule we’re creating, much like

opening and closing tags in HTML.

 width:60%; The width is set to 60% of the containing element.

Note that each directive ends with a ; (semicolon).

 text-align:left; Text is aligned to the left.

 margin:10px; The margin is 10 pixels.

 border:2px green double; The border is a 2-pixel green double line.

 padding:2px; The space between the text and the border is 2

pixels.

 display:block; The article is a block, meaning there are line

breaks before and after.

} Closes the style for article.

img {display:block;} Style img elements to block style: line break before

and after.

</style> Closing style tag.

<script> Opening script tag. We are now writing

JavaScript code.

document.write(Date()); One statement of code: write out what is produced

by the Date() call.
(continued)

Chapter 1 The Basics

24

Code Explanation

</script> Closing script tag.

</head>

<body> Opening body tag.

<h3>Favorite Sites</h3> Text surrounded by h3 and /h3 tags. This makes

the text appear somewhat larger than the norm.

<article> Opening article tag.

The <a href=http://www.purchase.

edu/> The website for Purchase

College/State University of

New York.

This text will be subject to the style specified. It

includes an a element.

</article> Closing article tag.

<article> Opening article tag.

The <a href="https://avivameyer.

smugmug.com/">Aviva Meyer's

photographs site is a

collection of Aviva's photographs

stored on a site called smugmug.

The categories are Music,

Adventures and Family (which

requires a password).

This article is similar to the previous one, with an a

element and some text.

<img src="avivasmugmug.png"

width="300"/>

An img tag. The source of the image is the file

avivasmugmug.jpeg. If the file had a .jpg

extension, this would not work. The width is set

at 300 pixels. There are line breaks before and

afterward because of the style directive in the

style section.

</article> Closing article tag.

Table 1-2.  (continued)

(continued)

Chapter 1 The Basics

http://www.purchase.edu
http://www.purchase.edu
http://www.purchase.edu
https://avivameyer.smugmug.com/
https://avivameyer.smugmug.com/

25

Code Explanation

<article> Opening article tag.

Apress

publishers is the site for the

publishers of this book.

This is similar to the previous article: an a element

and some text.

<img src="apressshot.png"

width="300"/>

An img element. The source is apressshot.

jpeg. The width is set at 300 pixels.

</article> Closing article tag.

</body> Closing body tag.

</ html> Closing html tag.

Table 1-2.  (continued)

It is pretty straightforward how to make this application your own: use your own

favorite sites! In most browsers, you can download and save image files if you want to use

a site logo for the hyperlink, or you can include other pictures. It is my understanding

that making a list of sites with comments and including images such as logos is within

the practice called “fair use,” but I am not a lawyer. For the most part, people like links

to their sites. It doesn’t affect the legal question, but you can also choose to set the src

in the img tag to the web address of the site where the image lives if you’d rather not

download a particular image file to your computer and then upload it to your website.

You also can make this application your own by changing the formatting. Styles can

be used to specify fonts, including specific font, font family, and size. This lets you pick

a favorite font and specify what font to use if the preferred font is not available on the

user’s computer. You can specify the margin and padding or vary independently the

margin-top, margin-left, padding-top, and so forth.

�Testing and Uploading the Application
You need to have all the files, in this case the single HTML file plus all image files, in the

same folder unless you are using full web addresses. For the links to work, you need to

have the correct addresses for all href attributes. My examples show how to do this for

HTML files in the same folder or for HTML files somewhere else on the Web.

Chapter 1 The Basics

http://apress.com

26

You can start testing your work even if it is not completely done. For example, you

can put in a single img element or a single a element. Open a browser, such as Firefox,

Chrome, or Safari. In Firefox, click File and then “Open file” and browse to your HTML

file. In Chrome, press Ctrl on the PC (Cmd on the Mac) and then browse to the file and

click OK to open it. You should see something like my examples.

Click the hyperlinks to get to the other sites. Reload the page using the reload icon for

the browser and observe the different time. If you don’t see what you expect—something

like my examples—you need to examine your code. The following are common mistakes:

•	 Missing or mismatched opening and closing tags.

•	 Wrong name for image files or HTML files, or wrong file extension for

the image files. You can use image files of type JPG, GIF, or PNG,

but the file extension named in the tag must match the actual file

type of the image.

•	 Missing quotation marks. The color coding, as available in the

editors, can help you identify this.

�Summary
In this chapter, you learned how to compose HTML documents with text, images, and

hyperlinks. This included the following:

•	 The basic tags, including html, head, title, style, script, and body

•	 Two semantic element tags: section and aside

•	 The img element for displaying images

•	 The a element for hyperlinks

•	 Simple formatting using a style element written following Cascading

Style Sheet (CSS) rules

•	 A single line of JavaScript code to provide date and time information

This chapter was just the beginning, though it’s possible to produce beautiful and

informative web pages using basic HTML, with or without Cascading Style Sheets. In the

next chapter, you learn how to include randomness and interactivity in an application

and how to use the canvas element, the critical feature of HTML5.

Chapter 1 The Basics

27

CHAPTER 2

Dice Game
In this chapter, we cover the following:

•	 Drawing on a canvas

•	 Random processing

•	 Game logic

•	 Form output

�Introduction
Among the most important new features in HTML5 is the canvas element. This element

provides a way for developers to make line drawings, include images, and position text

in a totally free-form fashion, a significant improvement over the older HTML. Although

you could do some fancy formatting in the earlier versions, layouts tended to be boxy

and pages less dynamic. How do you draw on the canvas? You use a scripting language,

usually JavaScript. I will show you how to draw on canvas, and I’ll explain the important

features of JavaScript that we’ll need to build an implementation of the dice game

called craps: how to define a function, how to invoke pseudorandom behavior, how to

implement the logic of this particular game, and how to display information to a player.

Before we go any further, though, you need to understand the basics of the game.

The game of craps has the following rules:

The player throws a pair of dice. The sum of the two top faces is what matters, so a 1

and a 3 is the same as 2 and 2. The sum of two 6-sided dice can be any number from 2 to

12. If the player throws a 7 or 11 on the first throw, the player wins. If the player throws a

2, 3, or 12, the player loses. For any other result (4, 5, 6, 8, 9, 10), this result is recorded as

what is called the player’s point, and a follow-up throw is required. On follow-up throws,

a throw of 7 loses and a throw of the player’s point wins. For anything else, the game

continues with the follow-up throw rules.

© Jeanine Meyer 2023
J. Meyer, The Essential Guide to HTML5, https://doi.org/10.1007/978-1-4842-8722-4_2

https://doi.org/10.1007/978-1-4842-8722-4_2

28

Let’s see what our game play might look like. Figure 2-1 shows the result of a throw of

two ones at the start of the game.

Figure 2-1.  First throw, resulting in a loss for the player

It is not apparent here, but our dice game application draws the die faces each time

using the canvas tag. This means it’s not necessary to download images of individual

die faces.

A throw of two 1s means a loss for the player since the rules define 2, 3, or 12 on a

first throw as a loss. The next example shows a win for the player, a 7 on a first throw, as

shown in Figure 2-2.

Chapter 2 Dice Game

29

Figure 2-2.  A 7 on a first throw means the player wins

Figure 2-3 shows the next throw—an 8. This is neither a win nor a loss, but it means

there must be a follow-up throw.

Figure 2-3.  An 8 means a follow-up throw with a player’s point of 8 carried over

Chapter 2 Dice Game

30

Let’s assume that the player eventually throws an 8 again, as indicated in Figure 2-4.

Figure 2-4.  It’s another throw of 8, the point value, so the player wins

As the previous sequence shows, the only thing that counts is the sum of the values

on the faces of the dice. The point value was set with two 4s, but the game was won with

a 2 and a 6.

The rules indicate that a game will not always take the same number of throws of the

dice. The player can win or lose on the first throw, or there may be any number of follow-

up throws. It is the game builder’s job to build a game that works—and working means

following the rules, even if that means play goes on and on. My students sometimes act

as if their games work only if they win. In a correct implementation of the game, players

will win and lose.

�Critical Requirements
The requirements for building the dice game begin with simulating the random throwing

of dice. At first, this seems impossible since programming means specifying exactly what

the computer will do. Luckily, JavaScript, like most other programming languages, has

a built-in facility that produces results that appear to be random. Sometimes languages

use the middle bits (1s and 0s) of a very long string of bits representing the time in

Chapter 2 Dice Game

31

milliseconds. The exact method isn’t important to us. We will assume that the JavaScript

furnished by the browser does an OK job with this, which is called pseudorandom

processing.

Assuming now that we can randomly get any number from 1 to 6 and do it twice

for the two die faces, we need to implement the rules of the game. This means we

need a way to keep track of whether we are at a first throw or a follow-up throw. The

formal name for this is the application state, which means the way things are right now,

and is important in both games and other types of applications. Then we need to use

constructs that make decisions based on conditions. Conditional constructs such as if

and switch are a standard part of programming languages, and you’ll soon understand

why computer science teachers like me—who have never been in a casino or a back

alley—really like the game of craps.

We need to give the player a way to throw the dice, so we’ll implement a button

on the screen to click for that. Then we need to provide information back to the player

on what happened. For this application, I produced graphical feedback by drawing

dice faces on the screen and also displayed information as text to indicate the stage

of the game, the point value, and the result. The older term for interactions with users

was input-output (I/O), back when that interaction mainly involved text. The term

graphical user interface (GUI) is now commonly used to indicate the vast variety of

ways that users interact with computer systems. These include using the mouse to

click on a specific point on the screen or combining clicks with dragging to simulate

the effect of moving an object (see the slingshot game in Chapter 4). Drawing on the

screen requires the use of a coordinate system to specify points. Coordinate systems

for the computer screen are implemented in similar ways in most programming

languages, as I’ll explain shortly.

�HTML5, CSS, and JavaScript Features
Let’s now take a look at the specific features of HTML5, CSS, and JavaScript that provide

what we need to implement the craps game.

Chapter 2 Dice Game

http://dx.doi.org/10.1007/978-1-4842-4155-4_4

32

�Pseudorandom Processing and
Mathematical Expressions
Pseudorandom processing in JavaScript is performed using a built-in method called

Math.random. Formally, random is a method of the Math class. The call Math.random()

generates a number from 0 up to but not including 1, resulting in a decimal number, for

example, 0.253012. This may not seem immediately useful for us, but it’s actually a very

simple process to convert that number into one we can use. We multiply that number,

whatever it is, by 6, which produces a number from 0 up to but not including 6. For

example, if we multiply the .253012 by 6, we get 1.518072. That’s almost what we need,

but not quite. The next step is to strip away the fraction and keep the whole number.

To do that, we use another Math method, Math.floor. This method produces a whole

number after removing any fractional part. As the name suggests, the floor method

rounds down. In our particular case, we started with .253012, then arrived at 1.518072,

and, therefore, made the call Math.floor(1.58072) with the result the whole number 1.

In general, when we multiply our random number by 6 and floor it, we’ll get a number

from 0 to 5. The final step is to add a 1, because our goal is to get a number from 1 to 6,

over and over again, with no particular pattern.

You can use a similar approach to get whole numbers in any range. For example, if

you want the numbers 1 to 13, you’d multiply the random number by 13 and then add 1.

This could be useful for a card game. You’ll see similar examples throughout this book.

We can combine all of these steps together into what is called an expression.

Expressions are combinations of constants, methods, function calls, and some things

we’ll explore later. We put these items together using operators, such as + for addition

and * for multiplication.

Remember from Chapter 1 how tags can be combined—nesting a tag within another

tag—and the one line of JavaScript code we used in the Favorite Sites application:

document.write(Date());

We can use a similar process here. Instead of having to write the random call and then

the floor method as separate statements, we can pass the random call as an argument of

the floor method. Take a look at this code fragment:

1+Math.floor(Math.random()*6)

Chapter 2 Dice Game

http://dx.doi.org/10.1007/978-1-4842-4155-4_1

33

This expression will produce a number from 1 to 6. I call it a code fragment because it

isn’t quite a statement. The operators + and * refer to the arithmetic operations and are

the same as you’d use in normal math. The order of operations starts from the inside and

works out.

	 1.	 Invoke Math.random() to get a decimal number from 0 up to, but

not quite, 1.

	 2.	 Multiply the result by 6.

	 3.	 Take that and strip away the fraction, leaving the whole number,

using Math.floor.

	 4.	 Add 1.

You’ll see a statement with this expression in our final code, but we need to cover a

few other things first.

�Variables and Assignment Statements
Like other programming languages, JavaScript has a construct called a variable, which

is essentially a place to put a value, such as a number. It is a way of associating a name

with a value. You can use the value later by referencing the name. One analogy is to

office holders. In the United States, we speak of “the president.” In 2010, when I worked

on the first edition of this book, the president was Barack Obama. Now, in July 2022,

the president is Joseph Biden. The value held by the term “the president” changes. In

programming, the value of the variable can vary as well, which is where it gets its name.

The term var is used to declare a variable.

The names of variables and functions, described in the next section, are up to the

programmer. There are rules, including no internal blanks, no use of a period, and the

name must start with an alphabetic character. There is a limit on the length of a name,

but our inclination is to make names short to avoid typing. However, I advise you to

not make them so short that you forget what they are. You do need to be consistent, but

you don’t need to obey the rules of English spelling. For example, if you want to set up

a variable to hold the sum of values and you believe that sum is spelled som, that’s fine.

Just make sure you use som all the time. But if you want to refer to something that’s a part

of JavaScript, such as function or document or random, you need to use the spelling that

JavaScript expects.

Chapter 2 Dice Game

34

You should avoid using the names of built-in constructs in JavaScript (such as

random or floor) for your variables. Try to make the names unique but still easily

understandable. One common method of writing variable names is to use what’s

called camelCasing. This involves starting your variable name in lowercase and then

using a capital letter to denote when a new word starts, for example, numberOfTurns or

userFirstThrow. You can see why it’s called camel case—the capitals form “humps”

in the word. You don’t have to use this naming method, but it’s a convention many

programmers follow.

The line of code that will hold the pseudorandom expression explained in the

previous section is a particular type of statement called an assignment statement. For

example,

var ch = 1+Math.floor(Math.random()*6);

sets the variable named ch to the value that is the result of the expression on the right

side of the equal sign. When used in a var statement, it also would be termed an

initialization statement. The = symbol is used for setting initial values for variables as in

this situation and in the assignment statements to be described next. I chose to use the

name ch as shorthand for choice. This is meaningful for me. In general, though, if you

need to choose between a short name and a longer one that you will remember, pick

the longer one! Notice that the statement ends with a semicolon. You may ask, why not

a period? The answer is that a period is used in two other situations: as a decimal point

and for accessing methods and properties of objects, as in document.write.

Assignment statements are the most common type of statements in programming.

Here’s an example of an assignment statement for a variable already defined:

bookName = "The Essential Guide to HTML5";

The use of the equal sign may be confusing. Think of it as making it true that the left

side equals what’s produced by the right side. You’ll encounter many other variables and

other uses of operators and assignment statements in this book.

Caution T he var statement defining a variable is called a declaration statement.
JavaScript, unlike many other languages, allows programmers to omit declaration
statements and just start using a variable. I try to avoid doing that, but you will see
it in many online examples.

Chapter 2 Dice Game

35

For the game of craps, we need variables that define the state of the game, namely,

whether it is a first throw or a follow-up throw, and what the player’s point is (remember

that the point is the value of the previous throw). In our implementation, these values

will be held by so-called global variables, variables defined with var statements outside

of any function definition so as to retain their value (the values of variables declared

inside of functions disappear when the function stops executing).

You don’t always need to use variables. For example, the first application we create

here sets up variables to hold the horizontal and vertical positions of the dice. I could

have put literal numbers in the code because I don’t change these numbers, but since I

refer to these values in several different places, storing the values in variables mean that

if I want to change one or both, I need to make the change in only one place.

�Programmer-Defined Functions
JavaScript has many built-in functions and methods, but it doesn’t have everything you

might need. For example, as far as I know, it does not have functions specifically for

simulating the throwing of dice. So JavaScript lets us define and use our own functions.

These functions can take arguments, like the Math.floor method, in which the

argument, say the variable rawScore in the invocation Math.floor(rawScore), is used

to calculate to biggest whole number not bigger than the current value of rawScore. The

statement

score = Math.floor(rawScore);

would be used to set the variable score with whole numbers, based on values in

rawScore, which may have fractional parts. I am showing off a use of camel casing. Do

keep in mind that it is my coding and only my coding that makes the connection.

Arguments are values that may be passed to the function. Think of them as extra

information.

The format for a function definition is the term function followed by the name you

want to give the function, followed by parentheses holding the names of any arguments,

followed by an open bracket, some code, and then a closed bracket. As I note in the

previous sections, the programmer chooses the name. Here’s an example of a function

Chapter 2 Dice Game

36

definition that returns the product of the two arguments. As the name indicates, you

could use it to compute the area of a rectangle. I use as names for the arguments in the

function header: wd and ln. These would stand for width and length.

function areaOfRectangle(wd,ln) {

 return wd * ln;

}

Within the function definition, notice the return keyword. This tells JavaScript to

send the result of the function back to us. In our example, this lets us write something

like this:

rect1 = areaOfRectangle(5,10;

This would assign a value of 50 (5 × 10) to our rect1 variable. The function definition

would be written as code within the script element. It might or might not make sense

to define this function in real life because it is pretty easy to write multiplication in the

code, but it does serve as a useful example of a programmer-defined function. Once this

definition is executed, which probably would be when the HTML file is loaded, other

code can use the function just by calling its name, as in areaOfRectangle(100,200) or

areaOfRectangle(x2-x1,y2-y1).

The second expression assumes that x1, x2, y1, y2 refer to coordinate values that are

defined elsewhere.

Functions also can be called by setting certain tag attributes. For example, the body

tag can include a setting for the onLoad attribute:

<body onLoad="init();">

My JavaScript code contains the definition of a function I call init. Putting this into

the body element means that JavaScript will invoke my init function when the browser

first loads the HTML document or whenever the player clicks the reload/refresh button.

Similarly, using one of the new features of HTML5, I could include the following button

element:

<button onClick="throwdice();">Throw dice </button>

This creates a button holding the text Throw dice. When the player clicks it,

JavaScript invokes the throwdice function I defined in the script element.

The form element, described later, could invoke a function in a similar way.

Chapter 2 Dice Game

37

�Conditional Statements: if and switch
The craps game has a set of rules. One way to summarize the rules is to say, if it is a

first-throw situation, we check for certain values of the dice throw. If it’s not the first

throw, we check for other values of the dice throw. JavaScript provides the if and switch

statements for such purposes.

The if statement is based on conditions, which can be a comparison or a check for

equality—for example, is a variable named temp greater than 85 or does the variable

named course hold the value "Programming Games"? Comparisons produce two

possible logical values—true or false. So far you’ve seen values that are numbers and

values that are strings of characters. Logical values are yet another datatype. They are

also called Boolean values, after the mathematician, George Boole. The condition and

check that I mentioned would be written in code as

temp>85

and

course == "Programming Games"

Read the first expression as: is the current value of the variable temp greater than 85?

And the second one as: is the current value of the variable course the same as the

string "Programming Games"?

The comparison example is easy to understand; we use > to check if one value is

greater than another and < to check the opposite. The value of the expression will be one

of the two logical values, true or false.

The second expression is probably a little more confusing. You may be wondering

about the two equal signs and maybe also the quotation marks. The comparison

operator in JavaScript (and several other programming languages) that checks for

equality is this combination of two equal signs. We need two equal signs because the

single equal sign is used in assignment statements and it can’t do double duty. If we

had written course = "Programming Games", we would have been assigning the value

"Programming Games" to our course variable rather than comparing the two items. The

quotation marks define a string of characters, starting with P, including the space, and

ending with s.

Chapter 2 Dice Game

38

We can now look at how to write code that does something only if a condition is true.

if (condition) {

 code

}

If we want our code to do one thing if a condition is true and another thing if it is

NOT true, the format is as follows:

if (condition) {

 if true code

}

else {

 if not true code

}

Note that I used italics here because this is what is called pseudocode, not real

JavaScript that we would include in our HTML document.

Here are some real code examples. They use alert, a built-in function that causes

a small window with the message indicated by the argument given between the

parentheses to pop up in the browser. The user must click OK to continue.

if (temp>85) {

 alert("It is hot!");

}

if (age >= 21) {

 alert("You are old enough to buy a drink.");

}

else {

 alert("You are too young to be served in a bar.");

}

We could write the craps application using just if statements. However, JavaScript

supplies another construct that makes things easier to understand—the switch

statement. The general format is as follows:

switch(x) {

case a:

 codea;

Chapter 2 Dice Game

39

case b:

 codeb;

default: codec;

}

JavaScript evaluates the value of x in the first line of the switch statement and

compares it to the values indicated in the cases. Once there is a hit, that is, x is

determined to be equal to a or b, the code following the case label is executed. If there

is no match, the code after default is executed. It’s not necessary to have a default

possibility. Left to its own devices, the computer would continue running through the

switch statement even if it found a matching case statement. If you want it to stop when

you find a match, you need to include a break statement to break out of the switch.

You can probably see already how if and switch will do what we need for the dice

game. You’ll read how in the next section. First, let’s look at an example that determines

the number of days in the month indicated by the variable mon holding three-letter

abbreviations ("Jan", "Feb", etc.).

switch(mon) {

case "Sep":

case "Apr":

case "Jun":

case "Nov":

 alert("This month has 30 days.");

 break;

case "Feb":

 alert("This month has 28 or 29 days.");

 break;

default:

 alert("This month has 31 days.");

}

If the value of the variable mon is equal to "Sep", "Apr", "Jun", or "Nov", control flows

to the first alert statement and then exits the switch statement because of the break. If

the value of the variable mon is equal to "Feb", the alert statement mentioning 28 or 29

days executes, and then the control flow exits the switch. If the value of mon is anything

else, including, by the way, an invalid three-letter abbreviation, the alert mentioning 31

days is executed.

Chapter 2 Dice Game

40

Just as HTML ignores line breaks and other whitespace, JavaScript does not require a

specific layout for these statements. You could put everything on one line if you wanted.

However, make things easy on yourself and use multiple lines and indenting.

�Drawing on the Canvas
Now we get to one of the most powerful new features in HTML5, the canvas element. I

will explain the pieces of coding that go into an application involving canvas, then show

some simple examples, and finally get back to our goal of drawing dice faces on the

canvas. Recall that the outline for an HTML document is

<html>

 <head>

 <title>... </title>

 <style>...</style>

 <script> </script>

 </head>

 <body>

 ... Here is where the initial static content will go...

 </body>

</html>

Note  You do not have to include a title or a style or script element, and they
can be in any order. The favorites example in Chapter 1 used a style element, but
the dice example will not.

To work with the canvas, we include the tags for canvas in the body element of the

HTML document and JavaScript in the script element. I’ll start by describing a standard

way to write a canvas element.

<canvas id="canvas" width="400" height="300">

Your browser doesn't support the HTML5 element canvas.

</canvas>

Chapter 2 Dice Game

http://dx.doi.org/10.1007/978-1-4842-4155-4_1

41

If an HTML file with this coding is opened by a browser that does not recognize

canvas, the message Your browser doesn't support the HTML5 element canvas.

appears on the screen. If you were preparing web pages for all common browsers, you

could choose to direct visitors to your site to somewhere else or try another strategy. In

this book, I just focus on HTML5.

The HTML canvas tag defines this element to have an id of canvas. This could have

been anything, but there’s no harm in using canvas. You can have more than one canvas,

however, and in that case, you would need to use distinct values for each ID. That’s

not what we do for this application, though, so we don’t have to worry about it. The

attributes of width and height are set to specify the dimensions of this canvas element.

Now that we’ve seen the canvas in the body, let’s look at the JavaScript. The first step

in drawing on the canvas is to define the appropriate object in the JavaScript code. To do

this, I need a variable, so I set up one named ctx with the following line outside of any

function definition.

var ctx;

This makes it a global variable that can be accessed or set from any function. The

ctx variable is something that’s needed for all drawing. I chose to name my variable ctx,

short for “context,” copying many of the examples I’ve seen online. I could have chosen

any name.

Later in the code (you’ll see all the code in the examples that follow, and you can

download the source code), I write the code to set the value of ctx.

 ctx = document.getElementById('canvas').getContext('2d');

The statement setting ctx is in a function I define named init that is referenced in

the body tag.

<body onload="init();>

Placing the statement in the init function means that the statement is invoked after

everything in the body is downloaded and before any other function is invoked.

What the assignment statement setting ctx does is first get the element in the

document with the ID canvas and then extract what is called the 2d context. We can all

anticipate that the future may bring other contexts! For now, we use the 2d one.

Chapter 2 Dice Game

42

In the JavaScript coding, you can draw rectangles, create paths including line

segments and arcs, and position image files on the canvas. You can also fill in the

rectangles and the paths. Before we do this, however, we need to tackle coordinate

systems and radian measures.

Just as a global positioning system uses latitude and longitude to define your

location on the map, we need a way to specify points on the screen. These points are

called pixels, and we used them in the previous chapter to specify the width of images

and the thickness of borders. The pixel is a pretty small unit of measurement, as you

can see if you do any experiments. However, it’s not enough for everyone to agree on

the linear unit. We also need to agree on the point from which we are measuring, just

as GPS systems use the Greenwich meridian and the equator. For the two-dimensional

rectangle that is the canvas, this goes by the name origin or registration point. The origin

is the upper-left corner of the canvas element. Note that in Chapter 6, when we describe

the quiz show by creating and positioning elements in the HTML document and not in a

canvas element, the coordinate system is similar. The origin is still the upper-left corner

of the window.

This is different from what you may recall from analytical geometry or from making

graphs. The horizontal numbers increase in value moving from left to right. The

vertical numbers increase in value moving down the screen. The standard way to write

coordinates is to put the horizontal value first, followed by the vertical value. In some

situations, the horizontal value is referred to as the x value and the vertical as the y value.

In other situations, the horizontal value is the left (think of it as from the left), and the

vertical value is the top (think of it as from the top).

Figure 2-5 shows the layout of a browser window 900 pixels wide by 600 high. The

numbers indicate the coordinate values of the corners and the middle.

Chapter 2 Dice Game

http://dx.doi.org/10.1007/978-1-4842-4155-4_6

43

Figure 2-5.  Coordinate system for browser window

Now we’ll look at several statements for drawing and then put them together to draw

simple shapes (see Figures 2-6 through 2-10). After that, we’ll see how to draw the dots

and rectangles to represent die faces.

Here’s the HTML5 JavaScript code for drawing a rectangle:

ctx.strokeRect(100,50,200,300);

This draws a hollow rectangle, with its top-left corner 100 pixels from the left side

and 50 pixels down from the top. The rectangle has width 200 and height 300. This

statement would use whatever the current settings are for line width and for color.

The next piece of code demonstrates setting the line width to 5 and the color of

the stroke, that is, the outline to the indicated RGB value, namely, red. The rectangle is

drawn using the values in the variables x, y, w, and h.

ctx.lineWidth = 5;

ctx.strokeStyle = "rgb(255,0,0)";

ctx.strokeRect(x,y,w,h);

This snippet

ctx.fillStyle = "rgb(0,0,255)";

ctx.fillRect(x,y,w,h);

Chapter 2 Dice Game

44

draws a solid blue rectangle at the indicated position and dimensions. If you want to

draw a blue rectangle with a red outline, you use two lines of code.

ctx.fillRect(x,y,w,h);

ctx.strokeRect(x,y,w,h);

HTML5 lets you draw so-called paths consisting of arcs and line segments. Line

segments are drawn using a combination of ctx.moveTo and ctx.lineTo. I’ll cover them

in a number of chapters: for the slingshot game in Chapter 4, the memory game using

polygons in Chapter 5, and word guessing game in Chapter 9. In the cannon ball game

in Chapter 4, I’ll also show you how to tilt a rectangle, and the word guessing game in

Chapter 9 demonstrates how to draw ovals. In this chapter, I’ll focus on the arcs.

You start a path using

ctx.beginPath();

and end it, with the path being drawn, with either

ctx.closePath();

ctx.stroke();

or

ctx.closePath();

ctx.fill();

There also are situations when you can omit the call to closePath.

An arc can be a whole circle or part of a circle. In the dice applications, we draw

only whole circles to represent the pips on the face of each die, but I’ll explain how arcs

work in general to make the code less mysterious. The method for drawing arcs has the

following format:

ctx.arc(cx, cy, radius, start_angle, end_angle, direction);

where cx, cy, and radius are the center horizontal and vertical coordinates and the

radius of the circle. Explaining the next two parameters requires discussing ways to

measure angles. You’re familiar with the degree unit for angles: we speak of making

a 180-degree turn, meaning a U-turn, and a 90-degree angle is produced by two

perpendicular lines. But most computer programming languages use another system,

called radians. Here’s one way to visualize radians—think of taking the radius of a circle

and laying it on the circle itself. You can dig into your memory and realize that it won’t

Chapter 2 Dice Game

http://dx.doi.org/10.1007/978-1-4842-4155-4_4
http://dx.doi.org/10.1007/978-1-4842-4155-4_5
http://dx.doi.org/10.1007/978-1-4842-4155-4_9
http://dx.doi.org/10.1007/978-1-4842-4155-4_4
http://dx.doi.org/10.1007/978-1-4842-4155-4_9

45

be a neat fit, because there are 2* PI radians around the circle, somewhat more than 6.

So if we want to draw an arc that is a whole circle, we specify a starting angle of 0 and an

end angle of 2*PI. Luckily, the Math class furnishes a constant Math.PI that is the value of

PI (to as much accuracy, as many decimal places, as necessary), so in the code, we write

2*Math.PI. If we want to specify an arc that is half a circle, we use Math.PI, while a right

angle (90 degrees) will be .5*Math.PI.

The arc method requires one more argument, direction. How are we drawing these

arcs? Think of the movement of the hands on a clock face. In HTML 5, clockwise is the

false direction, and counterclockwise is the true direction. (Don’t ask why. That’s just the

way it’s specified in HTML5.) I use the built-in JavaScript values true and false. This

will be important when we need to draw arcs that are not whole circles. The nature of the

particular problem dictates how you define the angles if you need to draw arcs that are

not full circles.

Here are some examples, with the complete code, for you to create (using TextPad

or TextWrangler) and then vary to test your understanding. The first one draws an arc,

representing a smile.

<html>

<head>

<title>Smile</title>

<script>

function init() {

 var ctx =document.getElementById("canvas").getContext('2d');

 ctx.beginPath();

 ctx.strokeStyle = "rgb(200,0,0)";

 ctx.arc(200, 200,50,0,Math.PI, false);

 ctx.stroke();

}

</script>

</head>

<body onLoad="init();">

<canvas id="canvas" width="400" height="300">

Your browser doesn't support the HTML5 element canvas.

</canvas>

</body>

</html>

Chapter 2 Dice Game

46

Figure 2-6 shows a portion of the screen with the arc produced by this code.

Figure 2-6.  The “smile” produced by the expression ctx.arc(200,200,50,0,Math.
PI, false);

You can look ahead to Figures 2-11, 2-12, and 2-13, in which I captured more of

the screen to see the positioning of the drawing. Please vary the numbers in your own

example so you can gain an understanding of how the coordinate system works and how

big a pixel actually is.

Before going on to see a frown, try making the arc wider or taller or changing the

color. Then try moving the whole arc up, down, left, and right. Hint: you need to change

the following line:

ctx.arc(200, 200,50,0,Math.PI, false);

Change 200,200 to reset the center of the circle, and change 50 to change the radius.

Now, let’s go on with other variations. Do take each one and experiment with it.

Changing the last parameter of the arc method to true:

ctx.arc(200,200,50,0,Math.PI,true);

This makes the arc go in a counterclockwise direction. The complete code is as follows:

<html>

 <head>

 <title>Frown</title>

<script type="text/javascript">

function init() {

 var ctx =document.getElementById("canvas").getContext('2d');

 ctx.beginPath();

 ctx.strokeStyle = "rgb(200,0,0)";

 ctx.arc(200, 200,50,0,Math.PI, true);

 ctx.stroke();

}

</script>

</head>

Chapter 2 Dice Game

47

<body onLoad="init();">

<canvas id="canvas" width="400" height="300">

Your browser doesn't support the HTML5 element canvas.

</canvas>

</body>

</html>

Notice that I also changed the title. The title appears on a tab in the browser. Your

users/audience do notice the titles. I find that I use titles in debugging to keep track of

different versions. This code produces the screen shown in Figure 2-7.

Figure 2-7.  The “frown” produced by the expression ctx.arc(200,200,50,0,Math.
PI, true);

Putting in the statement to close the path before the stroke, in the frown example,

will “finish off” the arc.

ctx.closePath();

ctx.stroke();

The complete code is as follows:

<html>

 <head>

 <title>Frown</title>

<script type="text/javascript">

function init() {

 var ctx =document.getElementById("canvas").getContext('2d');

 ctx.beginPath();

 ctx.strokeStyle = "rgb(200,0,0)";

 ctx.arc(200, 200,50,0,Math.PI, true);

 ctx.closePath();

 ctx.stroke();

}

</script>

</head>

Chapter 2 Dice Game

48

<body>

<body onLoad="init();">

<canvas id="canvas" width="400" height="300">

Your browser doesn't support the HTML5 element canvas.

</canvas>

</body>

</html>

This produces the screen shown in Figure 2-8.

Figure 2-8.  The frown becomes a half-circle by adding ctx.closePath(); before ctx.
stroke();

The closePath command is not always necessary, but it’s good practice to include

it. You will notice that I wait to invoke closePath and fill the statements for the multiple

dots. Experiment here and also look ahead to the drawing of the slingshot in Chapter 5

and the drawing of the hangman figure in Chapter 9. If you want the path filled in, you

use ctx.fill() in place of ctx.stroke(), which produces a black, filled-in shape, as

shown in Figure 2-9. The complete code is as follows:

<html>

 <head>

 <title>Smile</title>

<script type="text/javascript">

function init() {

 var ctx =document.getElementById("canvas").getContext('2d');

 ctx.beginPath();

 ctx.strokeStyle = "rgb(200,0,0)";

 ctx.arc(200, 200,50,0,Math.PI, false);

 ctx.closePath();

 ctx.fill();

}

</script>

</head>

Chapter 2 Dice Game

http://dx.doi.org/10.1007/978-1-4842-4155-4_5
http://dx.doi.org/10.1007/978-1-4842-4155-4_9

49

<body onLoad="init();">

<canvas id="canvas" width="400" height="300">

Your browser doesn't support the HTML5 element canvas.

</canvas>

</body>

</html>

Black is the default color.

Figure 2-9.  Filling in the half circle using ctx.fill()

If you want a shape to be filled and have a distinct outline, you use both the fill and

stroke commands and specify different colors using the fillStyle and strokeStyle

properties. The color scheme is based on the same red/green/blue codes introduced

in Chapter 1. You can experiment or use a tool such as Photoshop or the online photo

editor pixlr.com to get the colors you want. Here is the complete code:

<html>

 <head>

 <title>Smile</title>

<script type="text/javascript">

function init() {

 var ctx =document.getElementById("canvas").getContext('2d');

 ctx.beginPath();

 ctx.strokeStyle = "rgb(200,0,0)";

 ctx.arc(200, 200,50,0,Math.PI, false);

 ctx.fillStyle = "rgb(200,0,200)";

 ctx.closePath();

 ctx.fill();

 ctx.strokeStyle="rgb(255,0,0)";

 ctx.lineWidth=5;

 ctx.stroke();

}

</script>

</head>

Chapter 2 Dice Game

http://dx.doi.org/10.1007/978-1-4842-4155-4_1
http://pixlr.com

50

<body onLoad="init();">

<canvas id="canvas" width="400" height="300">

Your browser doesn't support the HTML5 element canvas.

</canvas>

</body>

</html>

This code produces a half-circle filled in with purple (a combination of red and

blue), with a stroke, that is, an outline of pure red, as shown in Figure 2-10. The coding

specifies a path, then draws the path as a fill, and then draws the path as a stroke.

Figure 2-10.  Using fill and stroke with different colors

A full circle is produced by many different commands, including the following:

ctx.arc(200,200,50,0, 2*Math.PI, true);

ctx.arc(200,200,50, 0, 2*Math.PI, false);

ctx.arc(200,200,50, .5*Math.PI, 2.5*Math.PI, false);

You may as well stick with the first one—it’s as good as any other. Note that I still use

the closePath command. A circle may be a closed figure in geometric terms, but that

doesn’t matter in terms of JavaScript.

If you think of the canvas element as a canvas on which you put some ink or paint,

you realize you’ll need to erase the canvas or the appropriate part of it to draw something

new. To do this, HTML5 supplies the following command:

ctx.clearRect(x,y,width,height);

Later examples show how to draw a slingshot (Chapter 4), polygons for the memory/

concentration game (Chapter 5), walls for a maze (Chapter 7), and the stick figure in

hangman (Chapter 9). Now let’s get back to what we need for the dice game.

Chapter 2 Dice Game

http://dx.doi.org/10.1007/978-1-4842-4155-4_4
http://dx.doi.org/10.1007/978-1-4842-4155-4_5
http://dx.doi.org/10.1007/978-1-4842-4155-4_7
http://dx.doi.org/10.1007/978-1-4842-4155-4_9

51

�Displaying Text Output Using a Form
It is possible to write text on the canvas (see Chapter 5), but for the craps application, I

chose to use a form, an element in both the older and current versions of HTML. I don’t

use the form for input from the player. I do use it for outputting information on the

results of the throw of the dice. The HTML5 specification indicates new ways to set up

forms, including checking or validating the type and range of input. The application in

the next chapter demonstrates validation.

I used the following HTML to produce the form for the dice game:

<form name="f">

Stage: <input name="stage" value="First Throw"/>

Point: <input name="pv" value=" "/>

Outcome: <input name="outcome" value=" "/>

</form>

The form starts with a name attribute. The text Stage:, Point:, and Outcome: appear

next to the input fields. The input tags—notice these are singleton tags—have both

name and value fields. These names will be used by the JavaScript code. You can put any

HTML within a form and a form within any HTML.

Because the dice game uses the new button element, I just added the form element

with the fields used for displaying information to the player, without including an input

element of type submit. Alternatively, I could have used a standard form with a submit

input field (eliminating the need for the new button element) with the following code:

<form name="f" onSubmit="throwDice();">

Stage: <input type="text" name="stage" value="First Throw"/>

Point: <input type="text" name="pv" value=" "/>

Outcome: <input type="text" name="outcome" value=" "/>

<input type="submit" value="THROW DICE"/>

</form>

The input element of type submit produces a button on the screen. These are all the

concepts we need to build the craps application. We can now go ahead and code it.

Chapter 2 Dice Game

http://dx.doi.org/10.1007/978-1-4842-4155-4_5

52

�Building the Application and Making It Your Own
You may have already tried using the HTML5, CSS, and JavaScript constructs described

in this chapter in small examples. Hint: please do. The only way to learn is to make your

own examples. As a way to build up to the craps application, we will now look at these

three applications:

•	 Throwing a single die and reloading to throw again

•	 Throwing two dice by using a button

•	 The complete game of craps

Figure 2-11 shows a possible opening screen for the first application. I say possible

because it won’t always be a 4. I deliberately captured this screenshot to show practically

all of the window so you can see where the drawing is located on the screen.

Figure 2-11.  The single-die application

Figure 2-12 shows the opening screen of the application for throwing a pair of dice.

All that appears is the button.

Chapter 2 Dice Game

53

Figure 2-12.  The opening screen of the pair of dice application

Lastly, Figure 2-13 shows the screen after the player clicks the button.

Figure 2-13.  Clicking the button to throw the pair of dice

It is good technique to build your application in incremental steps. These

applications are built using a text editor, such as TextPad or TextWrangler. Remember to

save the file as type .html—and do this early and often. You don’t have to finish before

saving. When you complete the first application and have saved and tested it, you can

save it once more using a new name and then make the modifications to this new copy

to be the second application. Do the same for the third application.

Chapter 2 Dice Game

54

�Throwing a Single Die
The purpose of this first application is to display a random die face on the canvas, with

circles laid out in the standard way.

For any application, there are generally many approaches that would work. I realized

that I could get double duty out of some of the coding, because the pattern for the 3

die face could be made by combining the 2 and 1 patterns. Similarly, the pattern for 5

is a combination of 4 and 1. The pattern for 4 is a combination of the pattern for 2 plus

something unique. The pattern for 6 is a combination of the one for 4 and something

unique. I could have put all the coding into the init function or used a single drawface

function. In any case, this made sense to me, and I programmed and debugged it fairly

quickly. Table 2-1 lists all the functions and indicates what calls what. Table 2-2 shows

the complete code, explaining what each line does.

Table 2-1.  Functions in the Singe-Die Throw Application

Function Invoked By/Called By Calls

init Invoked by action of the onLoad in the <body> tag drawFace

drawFace Called by init draw1, draw2, draw4,

draw2mid

draw1 Called by drawFace in three places for 1, 3, and 5

draw2 Called by drawFace in three faces for 2, 3, and 4

draw4 Called by drawFace in three places for 4, 5, and 6 draw2

draw2mid Called by drawFace in one place for 6

Chapter 2 Dice Game

55

Table 2-2.  The Complete Code for the Throwing a Single-Die Application

Code Explanation

 <html> Opening html tag.

<head> Opening head tag.

<title>Throwing 1 die</title> Full title element.

<script> Opening script tag.

 var cwidth = 400; Variable holding the width of the canvas; also used to

erase the canvas to prepare for redrawing.

 var cheight = 300; Variable holding the height of the canvas; also used to

erase the canvas to prepare for redrawing.

 var dicex = 50; Variable holding the horizontal position of the single die.

 var dicey = 50; Variable holding the vertical position of the single die.

 var diceWidth = 100; Variable holding the width of a die face.

 var diceHeight = 100; Variable holding the height of a die face.

 var dotDadius = 6; Variable holding the radius of a dot.

 var ctx; Variable holding the canvas context, used in all the draw

commands.

function init() { Start of the function definition for the init function,

which is invoked onLoad of the document.

 �var ch = 1+Math.➥floor(Math.

random()*6);

Declare and set the value of the ch variable to randomly

be the number 1, 2, 3, 4, 5, or 6.

 drawFace(ch); Invoke the drawface function with the parameter ch.

} End function definition.

function drawFace(n) { Start of the function definition for the drawface

function, whose argument is the number of dots.

 ctx = document.

getElementById('canvas').

getContext('2d');

Obtain the object that is used to draw on the canvas.

 ctx.lineWidth = 5; Set the line width to 5.

(continued)

Chapter 2 Dice Game

56

Table 2-2.  (continued)

Code Explanation

 ctx.clearRect(dicex,dicey,➥

diceWidth,diceHeight);

Clear the space where the die face may have been

drawn. This has no effect the very first time.

 ctx.strokeRect(dicex,dicey,➥

diceWidth,diceHeight);

Draw the outline of the die face.

 ctx.fillStyle = "#009966"; Set the color for the circles. I used a graphics program

to determine this value. You can do this, or experiment.

 switch(n) { Start switch using the variable n indicating the number

of dots

 case 1: If it is 1.

 draw1(); Call the draw1 function.

 break; Break out of the switch.

 case 2: If it is 2.

 draw2(); Call the draw2 function.

 break; Break out of the switch.

 case 3: If it is 3.

 draw2(); First call draw2 and then.

 draw1(); Call draw1.

 break; Break out of the switch.

 case 4: If it is 4.

 draw4(); Call the draw4 function.

 break; Break out of the switch.

 case 5: If it is 5.

 draw4(); Call the draw4 function and then.

 draw1(); Call the draw1 function.

 break; Break out of the switch.

 case 6: If it is 6.

(continued)

Chapter 2 Dice Game

57

Code Explanation

 draw4(); Call the draw4 function and then.

 draw2mid(); Call the draw2mid function.

 break; Break out of the switch (not strictly necessary).

 } Close the switch statement.

} Close the drawface function.

function draw1() { Start of the definition of draw1.

 var dotx; Variable to be used for the horizontal position for

drawing the single dot.

 var doty; Variable to be used for the vertical position for drawing

the single dot.

 ctx.beginPath(); Start a path.

 dotx = dicex + .5*diceWidth; Set the center of this dot to be at the center of the die

face horizontally and…

 doty = dicey + .5*diceHeight; …vertically.

ctx.

arc(dotx,doty,dotrad,0,Math.

PI*2,true);

Construct a circle (which is drawn with the fill

command).

 ctx.closePath(); Close the path.

 ctx.fill(); Draw the path; that is, fill the circle.

} Close draw1.

function draw2() { Start of the draw2 function.

 var dotx; Variable to be used for the horizontal position for

drawing the two dots.

 var doty; Variable to be used for the vertical position for drawing

the two dots.

 ctx.beginPath(); Start a path.

(continued)

Table 2-2.  (continued)

Chapter 2 Dice Game

58

Code Explanation

 dotx = dicex + 3*dotrad; Set the center of this dot to be three radius lengths over

from the upper corner of the die face, horizontally and…

 doty = dicey + 3*dotrad; …vertically.

ctx.arc(dotx,doty,

dotrad,0,Math.PI*2,true);

Construct the first dot.

 �dotx = dicex+dicewidth-

3*dotrad;

Set the center of this dot to be three radius lengths in

from the lower corner of the die face, horizontally and…

 �doty = dicey+diceheight-

3*dotrad;

…vertically.

ctx.arc(dotx,doty,

dotrad,0,Math.PI*2,true);

Construct the second dot.

 ctx.closePath(); Close the path.

 ctx.fill(); Draw both dots.

} Close draw2.

function draw4() { Start of the draw4 function.

 draw2(); Draw two dots.

 var dotx; Variable to be used for the horizontal position for

drawing the dots.

 var doty; Variable to be used for the vertical position for drawing

the dots.

 ctx.beginPath(); Begin path.

 dotx = dicex + 3*dotrad; Position this dot inside the lower-left corner, horizontally

and…

 �doty = dicey + diceheight-

3*dotrad;

…vertically.

(continued)

Table 2-2.  (continued)

Chapter 2 Dice Game

59

Code Explanation

 �ctx.arc(dotx,doty,

dotrad,0,Math.PI*2,true);

Construct circle.

 �dotx = dicex+dicewidth-

3*dotrad;

Position this dot just inside the upper-right corner,

horizontally and…

 doty = dicey+3*dotrad; …vertically.

 �ctx.arc(dotx,doty,

dotrad,0,Math.PI*2,true);

Construct a circle.

 ctx.closePath(); Close the path.

 ctx.fill(); Draw two dots.

} Close the draw4 function.

function draw2mid() { Start the draw2mid function, which draws two dots in

the middle.

 var dotx; Variable to be used for the horizontal position for

drawing the two dots.

 var doty; Variable to be used for the vertical position for drawing

the two dots.

 ctx.beginPath(); Begin a path.

 dotx = dicex + 3*dotrad; Position the dots to be just inside horizontally…

 doty = dicey + .5*diceHeight; …and midway vertically.

 �ctx.arc(dotx,doty,dotrad,

➥0,Math.PI*2,true);

Construct a circle.

 �dotx = dicex+diceWidth-

3*dotrad;

Position this dot to be just inside the right border.

doty = dicey + .5*diceHeight;

//no change

Position y midway.

(continued)

Table 2-2.  (continued)

Chapter 2 Dice Game

60

Code Explanation

 ctx.

arc(dotx,doty,dotrad,➥0,Math.

PI*2,true);

Construct a circle.

 ctx.closePath(); Close the path.

 ctx.fill(); Draw dots.

} Close the draw2mid function.

</script> Close the script element.

</head> Close the head element.

<body onLoad="init();"> Starting the body tag, with the onLoad attribute set to

invoke the init() function.

<canvas id="canvas" width="400"

height="300">

Your browser doesn't support➥

the HTML5 element canvas.

</canvas>

Set up canvas and provide notice if the browser

doesn’t accept the canvas element.

</body>

</html>

Close body and close the html elements.

Table 2-2.  (continued)

You can and should put comments in your code. Comments are pieces of text that

are ignored by the browser but are there to remind you, and, perhaps, others who will

look at this program later, about what is going on. One form of comment starts with two

slashes on a line. Everything to the right of the slashes is ignored. For larger comments,

you use a slash and an asterisk to start the comment and an asterisk and a slash to end it.

/*

This is a comment.

*/

This is a case of do as I say, not as I do. Since I’m using tables to put explanations on

every line and you can consider the whole chapter a comment, I haven’t included many

comments in the code. I repeat: you should!

Chapter 2 Dice Game

61

Hint  When I was developing this code (and any code involving a random effect), I
did not want to have to do the initial testing with the random coding. So, right after
the line

var ch = 1+Math.floor(Math.random()*6);

I put the line

ch = 1;

and tested it; then I changed it to

ch = 2;

and so on. I removed this line (or commented it out using //) when I was done with this

phase of testing. This falls under the general advice: try to avoid having to play a game, in

all its complexity, while developing it.

�Throwing Two Dice
The next application uses a button to give the player something to do, rather than just

reloading the web page, and it also simulates the throwing of a pair of dice. Before

looking at the code, think about what you can carry over from the first application. The

general answer is: most of it. The “carrying over” is a savings in writing code and in

testing the code.

The second application will need to do something about the positioning of the two

die faces, using two more variables for this, dx and dy. It also needs to repeat the code

using Math.random and call drawFace twice to produce each of the die faces. And there

needs to be a change in what invokes a throw. Table 2-3, which describes the functions

calling and being called, is essentially the same as Table 2-1, except now there’s a

function called throwDice, which is invoked by an action set up by the onClick attribute

of the button tag. Table 2-4 contains the full HTML document for the application of

throwing two dice.

Chapter 2 Dice Game

62

Table 2-4.  The Complete Two-Dice Application

Code Explanation

<html> Opening html tag.

<head> Opening head tag.

<title>Throwing dice</title> Full title element.

<script> Opening script tag.

 var cwidth = 400; Variable holding the width of the canvas.

 var cheight = 300; Variable holding the height of the canvas; also used to

erase the canvas to prepare for redrawing.

 var dicex = 50; Variable holding the horizontal position of the single die;

also used to erase the canvas to prepare for redrawing.

 var dicey = 50; Variable holding the vertical position of the single die.

 var diceWidth = 100; Variable holding the width of a die face.

 var diceHeight = 100; Variable holding the height of a die face.

 var dotrad = 6; Variable holding the radius of a dot.

 var ctx; Variable holding the canvas context, used in all the

draw commands.

(continued)

Table 2-3.  Functions in the Two-Dice Application

Function Invoked By/Called By Calls

throwDice Invoked by action of the onClick in the <button> tag drawFace

drawFace Called by throwDice draw1, draw2,

draw4, draw2mid

draw1 Called by drawFace in three places for 1, 3, and 5

draw2 Called by drawFace in two places for 2, 3, and 4

draw4 Called by drawFace in three places for 4, 5, and 6 draw2

draw2mid Called by drawFace in one place for 6

Chapter 2 Dice Game

63

Code Explanation

 var dx; Variable used for horizontal positioning and changed for

each of the two die faces.

 var dy; Variable used for vertical positioning. It is the same for

both die faces.

function throwDice() { Start of the throwDice function.

 � var ch = 1+Math.floor(Math.

random()*6);

Declare the variable ch and then set it with a random

value.

 dx = dicex; Set dx for the first die face.

 dy = dicey; Set dy for the first and the second die faces.

 drawFace(ch); Invoke drawFace with ch as the number of dots.

 dx = dicex + 150; Adjust dx for the second die face.

 �ch=1 + Math.floor(Math.

random()*6);

Reset ch with a random value.

 drawFace(ch); Invoke drawFace with ch as the number of dots.

} Close throwdice function.

function drawFace(n) { Start of the function definition for the drawFace

function, whose argument is the number of dots.

 ctx = document.getElementById

➥('canvas').getContext('2d');

Obtain the object that is used to draw on the canvas.

 ctx.lineWidth = 5; Set the line width to 5.

 ctx.clearRect(dx,dy,diceWidth,

diceHeight);

Clear the space where the die face may have been

drawn. This has no effect the first time.

 ctx.strokeRect(dx,dy,diceWidth,

diceHeight);

Draw the outline of the die face.

 var dotx; Variable to hold horizontal position.

 var doty; Variable to hold vertical position.

 ctx.fillStyle = "#009966"; Set the color.

Table 2-4.  (continued)

(continued)

Chapter 2 Dice Game

64

Code Explanation

 switch(n) { Start switch using the number of dots.

 case 1: If it is 1.

 draw1(); Call the draw1 function.

 break; Break out of the switch.

 case 2: If it is 2.

 draw2(); Call the draw2 function.

 break; Break out of the switch.

 case 3: If it is 3.

 draw2(); First call draw2 and then.

 draw1(); Call draw1.

 break; Break out of the switch.

 case 4: If it is 4.

 draw4(); Call the draw4 function.

 break; Break out of the switch.

 case 5: If it is 5.

 draw4(); Call the draw4 function and then.

 draw1(); Call the draw1 function.

 break; Break out of the switch.

 case 6: If it is 6.

 draw4(); Call the draw4 function and then.

 draw2mid(); Call the draw2mid function.

 break; Break out of the switch (not strictly necessary).

 } Close the switch statement.

} Close the drawface function.

function draw1() { Start of the definition of draw1.

Table 2-4.  (continued)

(continued)

Chapter 2 Dice Game

65

Code Explanation

 var dotx; Variable to be used for the horizontal position for

drawing the single dot.

 var doty; Variable to be used for the vertical position for drawing

the single dot.

 ctx.beginPath(); Start a path.

 dotx = dx + .5*diceWidth; Set the center of this dot to be at the center of the die

face (using dx) horizontally and…

 doty = dy + .5*diceHeight; …(using dy) vertically.

 ctx.

arc(dotx,doty,dotrad,➥0,Math.

PI*2,true);

Construct a circle (it is drawn with the fill command).

 ctx.closePath(); Close the path.

 ctx.fill(); Draw the path, that is, the circle.

} Close draw1.

function draw2() { Start of the draw2 function.

 var dotx; Variable to be used for the horizontal position for

drawing the two dots.

 var doty; Variable to be used for the vertical position for drawing

the two dots.

 ctx.beginPath(); Start a path.

 dotx = dx + 3*dotrad; Set the center of this dot to be three radius lengths

over from the upper corner of the die face, horizontally

and…

 doty = dy + 3*dotrad; …vertically.

 �ctx.arc(dotx,doty,

dotrad,0,➥Math.PI*2,true);

Construct the first dot.

Table 2-4.  (continued)

(continued)

Chapter 2 Dice Game

66

Code Explanation

 dotx = dx+diceWidth-3*dotrad; Set the center of this dot to be 3 radius lengths in from

the lower corner of the die face, horizontally and…

 �doty = dy+diceHeight-

3*dotrad;

…vertically.

 �ctx.arc(dotx,doty,

dotrad,0,➥Math.PI*2,true);

Construct the second dot.

 ctx.closePath(); Close the path.

 ctx.fill(); Draw both dots.

} Close draw2.

function draw4() { Start of the draw4 function.

 draw2();

 var dotx; Variable to be used for the horizontal position for

drawing the dots.

 var doty; Variable to be used for the vertical position for drawing

the dots.

 ctx.beginPath(); Begin path.

 dotx = dx + 3*dotrad; Position this dot inside the lower-left corner, horizontally

and…

 �doty = dy + diceheight-

3*dotrad;

…vertically.

 �ctx.arc(dotx,doty,

dotrad,0,Math.PI*2,true);

Construct circle.

 dotx = dx+dicewidth-3*dotrad; Position this dot just inside the upper-right corner,

horizontally and…

 doty = dy+3*dotrad; …vertically.

Table 2-4.  (continued)

(continued)

Chapter 2 Dice Game

67

Table 2-4.  (continued)

Code Explanation

 �ctx.arc(dotx,doty,

dotrad,0,Math.PI*2,true);

Construct circle.

 ctx.closePath(); Close path.

 ctx.fill(); Draw two dots.

} Close the draw4 function.

function draw2mid() { Start the draw2mid function.

 var dotx; Variable to be used for the horizontal position for

drawing the two dots.

 var doty; Variable to be used for the vertical position for drawing

the two dots.

 ctx.beginPath(); Begin path.

 dotx = dx + 3*dotrad; Position the dots to be just inside horizontally…

 doty = dy + .5*diceHeight; …and midway vertically.

 �ctx.arc(dotx,doty,

dotrad,0,➥Math.PI*2,true);

Construct circle.

 dotx = dx+diceWidth-3*dotrad; Position this dot to be just inside the right border.

 doty = dy + .5*diceHeight; Position y midway (no change).

 �ctx.arc(dotx,doty,

dotrad,0,➥Math.PI*2,true);

Construct a circle.

 ctx.closePath(); Close the path.

 ctx.fill(); Draw dots.

} Close the draw2mid function.

</script> Close the script element.

</head> Close the head element.

<body> Starting body tag.

(continued)

Chapter 2 Dice Game

68

Code Explanation

<canvas id="canvas" width="400"

height="300">

Canvas tag start.

Your browser doesn't support

the ➥ HTML5 element canvas.

Set up a canvas and provide notice if the browser

doesn’t accept the canvas element.

</canvas> Close the canvas tag.

 Line break.

<button

onClick="throwDice();">➥ Throw

dice </button>

Button element (note attribute onClick setting to

invoke throwDice).

</body> Close the body tag.

</html> Close the html tag.

Table 2-4.  (continued)

�The Complete Game of Craps
The third application is the complete game of craps. Again, much can be carried over

from the previous application. However, now we need to add in the rules of the game.

Among other things, this will mean using the conditional statements if and switch, as

well as global variables (that is, variables defined outside of any function definition), to

keep track of whether it is a first turn (firstTurn) and what is the player’s point (point).

These two variables hold the application state for the game of craps. It is the presence

of this relatively simple application state, and the use of global and local variables, the

conditional statements, and random processing that makes craps a favorite topic of

programming teachers.

The function table is identical to the one given for the second application (see

Table 2-3), so I won’t repeat it. Table 2-5 holds the code for this application. The new

action is all in the throwdice function. I will comment the new lines.

Chapter 2 Dice Game

69

(continued)

Table 2-5.  The Complete Craps Application

Code Explanation

<html>

<head>

<title>Craps game</title>

<script>

 var cwidth = 400;

 var cheight = 300;

 var dicex = 50;

 var dicey = 50;

 var diceWidth = 100;

 var diceHeight = 100;

 var dotrad = 6;

 var ctx;

 var dx;

 var dy;

 var firstturn = true; Global variable, initialized to the value true.

 var point; Global variable, does not need to be initialized

because it will be set before use.

function throwDice() { Start of the throwdice function.

 var sum; Variable to hold the sum of the values for the two

dice.

 �var ch = 1+Math.floor(Math.

random()*6);

Set ch with the first random value.

 sum = ch; Assign this to sum.

 dx = dicex; Set dx.

 dy = dicey; Set dy.

 drawFace(ch); Draw the first die face.

Chapter 2 Dice Game

70

Code Explanation

 dx = dicex + 150; Adjust the horizontal position.

 �ch=1 + Math.floor(Math.

random()*6);

Set ch with a random value. This is the one for the

second die.

 sum += ch; Add ch to what is already in sum.

 drawFace(ch); Draw the second die.

 if (firstTurn) { Now start the implementation of the rules. Is it a

first turn?

 switch(sum) { If it is, start a switch with sum as the condition.

 case 7: For 7…

 case 11: …or 11.

 �document.f.outcome.

value="You win!";

Display You win!.

 break; Exit the switch.

 case 2: For 2…

 case 3: …or 3…

 case 12: …or 12.

 �document.f.outcome.

value="You lose!";

Display You lose!.

 break; Exit the switch.

 default: For anything else.

 point = sum; Save the sum in the variable point.

 document.f.pv.value=point; Display the point value.

 firstTurn = false; Set firstTurn to false.

 �document.f.stage.value="Need

follow-up throw.";

Display Need follow-up throw.

Table 2-5.  (continued)

(continued)

Chapter 2 Dice Game

71

Code Explanation

 �document.f.outcome.

value=" ";

Erase (clear) the outcome field.

 } End the switch.

 } End the if-true clause.

 else { Else (not a first turn).

 switch(sum) { Start the switch, again using sum.

 case point: If sum is equal to whatever is in point.

 �document.f.outcome.value="You

win!";

Display You win!.

 �document.f.stage.value="Back

to first throw.";

Display Back to first throw.

 document.f.pv.value=" "; Clear the point value.

 firstTurn = true; Reset firstturn so it is again true.

 break; Exit the switch.

 case 7: If the sum is equal to 7.

 �document.f.outcome.value="You

lose!";

Display You lose!.

 �document.f.stage.value="Back

to first throw.";

Display Back to first throw.

 document.f.pv.value=" "; Clear the point value.

 firstTurn = true; Reset firstturn so it is again true.

 } Close the switch.

 } Close the else clause.

} Close the throwdice function.

Table 2-5.  (continued)

(continued)

Chapter 2 Dice Game

72

Code Explanation

function drawFace(n) {

 ctx = document.

getElementById('canvas').

getContext('2d');

 ctx.lineWidth = 5;

 ctx.clearRect(dx,dy,diceWidth,

diceHeight);

 ctx.strokeRect(dx,dy,diceWidth,

diceHeight) ;

 ctx.fillStyle = "#009966";

 switch(n) {

 case 1:

 draw1();

 break;

 case 2:

 draw2();

 break;

 case 3 :

 draw2();

 draw1();

 break;

 case 4:

 draw4();

 break;

 case 5:

 draw4();

Table 2-5.  (continued)

(continued)

Chapter 2 Dice Game

73

Table 2-5.  (continued)

Code Explanation

 draw1();

 break;

 case 6:

 draw4();

 draw2mid();

 break ;

 }

}

function draw1() {

 var dotx;

 var doty;

 ctx.beginPath();

 dotx = dx + .5*dicewidth;

 doty = dy + .5*diceheight;

 ctx.arc(dotx,doty,dotrad,0,

Math.PI*2,true);

 ctx.closePath();

 ctx.fill();

}

function draw2() {

 var dotx ;

 var doty;

 ctx.beginPath();

 dotx = dx + 3*dotrad;

 doty = dy + 3*dotrad;

(continued)

Chapter 2 Dice Game

74

Code Explanation

 �ctx.arc(dotx,doty,dotrad,0,Math.

PI*2,true);

 dotx = dx+dicewidth-3*dotrad;

 doty = dy+diceheight-3*dotrad ;

 �ctx.arc(dotx,doty,dotrad,0,Math.

PI*2,true);

 ctx.closePath();

 ctx.fill();

}

function draw4() {

 draw2();

 var dotx;

 var doty;

 ctx.beginPath();

 dotx = dx + 3*dotrad;

 doty = dy + diceheight-3*dotrad;

 �ctx.arc(dotx,doty,dotrad,0,Math.

PI*2,true);

 dotx = dx+dicewidth-3*dotrad;

 doty = dy+ 3*dotrad;

 �ctx.arc(dotx,doty,dotrad,0,Math.

PI*2,true);

 ctx.closePath();

 ctx.fill() ;

}

Table 2-5.  (continued)

(continued)

Chapter 2 Dice Game

75

Code Explanation

function draw2mid() {

 var dotx;

 var doty ;

 ctx.beginPath();

 dotx = dx + 3*dotrad;

 doty = dy + .5*diceheight;

 �ctx.arc(dotx,doty,dotrad,0,Math.

PI*2,true);

 dotx = dx+dicewidth-3*dotrad;

 �doty = dy + .5*diceheight; //no

change

 �ctx.arc(dotx,doty,dotrad,0,Math.

PI*2,true);

 ctx.closePath();

 ctx.fill();

}

</script>

</head>

<body>

<canvas id="canvas" width="400"

height="300">

Your browser doesn't support the

HTML5 element canvas .

</canvas>

Table 2-5.  (continued)

(continued)

Chapter 2 Dice Game

76

Code Explanation

<button onClick="throwdice();">

Throw dice </button>

<form name="f"> Start a form named f.

Stage: <input name="stage"

value="First Throw"/>

With the text Stage: right before it, set up an input

field named stage.

Point: <input name="pv" value="

"/>

With the text Point: right before it, set up an input

field named pv.

Outcome: <input name="outcome"

value=" "/>

With the text Outcome: right before it, set up an

input field named outcome.

</form> Close the form.

</body> Close body.

</html> Close html.

Table 2-5.  (continued)

�Making the Application Your Own
Making this application your own is not as straightforward as with the favorite sites

application, because the rules of craps are the rules of craps. If you don’t want to change

them, there still are many things you can do. Change the size and color of the dice faces,

using fillRect and setting fillStyle to different colors. Change the color and size of

the whole canvas. Change the text for the outcomes to something more colorful. You also

can implement other games using standard or specially made dice.

You can look ahead to the next chapter and learn about drawing images on the

canvas instead of drawing each die face using arcs and rectangles. HTML5 provides a

way to bring in external image files. The drawback to this approach is that you do have to

keep track of these separate files.

You can develop coding for keeping score. For a gambling game, you can start the

player with a fixed amount of money, say 100 of whatever the currency unit is, and

deduct some amount, say 10, for playing a game, and add some amount, say 20, if and

only if the player wins. You can add this bankroll information as part of the form element

in the body.

Chapter 2 Dice Game

77

<form name="f" id="f">

Stage: <input name="stage" value="First Throw"/>

Point: <input name="pv" value=" "/>

Outcome: <input name="outcome" value=" "/>

Bank roll: <input name="bank" value="100"/>

</form>

JavaScript (and other programming languages) distinguish between numbers

and strings of characters representing numbers. That is, the value "100" is a string

of characters, 1, 0, and 0. The value 100 is a number. In either case, however, the

value of a variable is stored as a sequence of 1s and 0s. For numbers, this will be the

number represented as a binary number. For strings of characters, each character will

be represented using a standard coding system, such as ASCII or Unicode. In some

situations, JavaScript will make the conversion from one datatype to the other, but don’t

depend on it. The coding I suggest uses the built-in functions String and Number to do

these conversions.

In the throwDice function, before the if(firstTurn) statement, add the code in

Table 2-6 (or something like it).

Table 2-6.  Adding a Bank for the Player

Code Explanation

var bank =

Number(document.f.bank.value);

Set a new variable bank to be the number

represented by the value in the bank input field.

if (bank<10) { Compare bank to 10.

 �alert("You ran out of money!

Add some more and try again.");

If bank is less than 10, put out an alert.

 Return; Exit the function without doing anything.

 } Close the if true clause.

bank = bank – 10; Decrease bank by 10. This line is reached only when

bank was greater than 10.

document.f.bank.value =

String(bank);

Put the string representation of that value in the bank

field.

Chapter 2 Dice Game

78

Then, in each place where the player wins (in the switch statement for a first turn

after the 7 and 11 cases, or in the switch statement for a follow-up turn, after the point

case), add the code in Table 2-7.

When the player loses or when it is a follow-up turn, you don’t add any code. The

bank value goes down before each new game.

�Testing and Uploading the Application
These applications are complete in the HTML file. No other files, such as image files, are

used. Instead, the dice faces are drawn on the canvas. (For your information, my versions

of dice games written in the older HTML used one or two img elements. To make these

fixed img elements display different images, I wrote code that changed the src attribute

to be a different external image file. When I uploaded the application, I had to upload all

the image files.)

Open the HTML file in the browser. The first application needs to be reloaded to get a

new (single) die. The second and third applications (the third one being the craps game)

use a button to roll the dice.

I repeat what I wrote earlier. To test this program, you do need to check the many

cases. You are not done when you, acting as the player, win. Typical problems include

•	 Missing or mismatched opening and closing tags.

•	 Mismatched opening and closing brackets, the { and the }

surrounding functions, switch statements, and if clauses.

Table 2-7.  Increasing the Value of the Bank

Code Explanation

bank = Number(document.

f.bank.value);

Set bank to be the number represented by the value in the bank

input field. Setting bank again allows for the possibility of the player

resetting the bank amount in the middle of a game.

bank +=20; Use the += operator to increase the value of bank by 20.

document.f.bank.

value = String(bank);

Put the string representation of the bank amount in the bank field.

Chapter 2 Dice Game

79

•	 Missing quotation marks. The color coding, as available when using

TextPad and some other editors, can help here, as it will highlight

keywords it recognizes.

•	 Inconsistency in naming and using variables and functions. These

names can be anything you choose, but you need to be consistent.

The function draw2mid will not be invoked by drawmid2().

These are all, except arguably the last, mistakes in syntax, analogous to mistakes

in grammar and punctuation. A mistake of semantics, that is, meaning, can be more

difficult to detect. If you write the second switch statement to win on a 7 and lose on

the point value, you may have written correct JavaScript code, but it won’t be the game

of craps.

It shouldn’t happen here because you can copy my code, but a common mistake is

to get confused about the coordinate system and think that vertical values increase going

up the screen instead of down.

�Summary
In this chapter, you learned how to

•	 Declare variables and use global variables to represent

application state

•	 Write code to perform arithmetic operations

•	 Define and use programmer-defined functions

•	 Use several built-in features of JavaScript, including the Math.random

and Math.floor methods

•	 Use if and switch statements

•	 Create a canvas using an HTML element

•	 Draw rectangles and circles

Chapter 2 Dice Game

80

This chapter introduced a key feature of HTML5, the canvas, as well as the notions

of randomness and interactivity. It also presented many programming features you’ll

use in the examples in the rest of the book. In particular, the technique of building an

application in stages is useful. The next chapter features the animation of a ball bouncing

in a box—preparation for the real games in Chapter 4—the ballistics simulations called

cannon ball and slingshot.

Chapter 2 Dice Game

http://dx.doi.org/10.1007/978-1-4842-4155-4_4

81

CHAPTER 3

Bouncing Ball
In this chapter we cover the following:

•	 Creating programmer-defined objects

•	 Using setInterval for animation

•	 Drawing images

•	 Accepting and validating form input

•	 Using buttons

•	 Using for loops

•	 Drawing with gradients

•	 Preloading images

�Introduction
Animation, whether at the movies, using a flipbook, or generated in a computer game,

involves displaying a sequence of still images fast enough so that we interpret what we

see as movement as life. In this chapter, I’ll show you how to produce animated scenes

by simulating a ball bouncing in a two-dimensional box, with horizontal and vertical

speeds that can be changed by a player. The first iteration of our program calculates

new positions for the ball at fixed intervals of time and displays the result, and it also

determines when there would be a virtual collision of ball and wall and how the ball

would bounce off the wall. After that, we’ll see how you can replace the ball with an

image and how to draw rectangles using gradients. We’ll examine the HTML5 feature for

validating form input. I then will show you an interactive example that provides a player

with a way to stop and restart the bouncing. A final example is a rectangle holding and

playing a video will bounce against a photo. The following are the five examples:

© Jeanine Meyer 2023
J. Meyer, The Essential Guide to HTML5, https://doi.org/10.1007/978-1-4842-8722-4_3

https://doi.org/10.1007/978-1-4842-8722-4_3

82

•	 Making a ball bounce in a 2D box (see Figure 3-1)

•	 Replacing the ball with an image and using a gradient for the box

walls (see Figure 3-2)

•	 Validating the input (see Figure 3-3)

•	 Bouncing an image against a background image and providing a way

to stop and resume action (see Figure 3-4)

•	 Bouncing a video against a background image

Note  The kind of animation we’re going to produce is called computed
animation, in which the position of an object is recalculated by a computer
program and the object is then redisplayed. This is in contrast to cel (or frame-by-
frame) animation, which uses predrawn individual static pictures. Animated GIFs
are examples of cel animation and can be produced in many graphics programs.

You’ll have to imagine the animation represented by these static pictures. In

Figure 3-1, notice the form with fields for setting the horizontal and vertical velocity.

Figure 3-1.  A bouncing ball

Chapter 3 Bouncing Ball

83

In Figure 3-2, the ball has been replaced by an image, and the walls are filled in using

a gradient.

HTML5 lets you specify what the input should be. In this example, I’ve specified the

input should be a number and indicated minimum and maximum values. I used CSS to

specify that if a user makes an invalid entry, the color of the field turns red. This is shown

in Figure 3-3.

Figure 3-2.  The ball is now an image from an external file

Chapter 3 Bouncing Ball

84

Figure 3-3.  A form showing bad input

This set of applications demonstrates substantial programming, but it’s not really a

game, though people enjoy seeing heads or other images bouncing in a box. Inspired

by a recent family picture, I decided to produce a program with a bouncing picture with

the additional features to stop and resume the animation. I also include the feature of

displaying a background picture. Figure 3-4 shows one screenshot. The game objective

is to get the moving object, a photo of cotton candy, to stop close to the child, Annika,

wearing face paint to represent a panda. See Figure 3-4. This provides me with an

example to demonstrate the advantages of so-called event-driven programming.

Chapter 3 Bouncing Ball

85

Figure 3-4.  Bouncing cotton candy game

The newest example features a video. My daughter, Aviva, is manipulating an origami

model, the Kissy Fish designed by Junior Fritz Jacquet. The background is a photo I took

at the Atlanta Botanical Garden of Aviva sitting on a bench, next to a statue of a frog, as

shown in Figure 3-5. For this, you will need to imagine the rectangle holding the video

moving and the movement within the rectangle of the fish’s jaws closing and opening.

Chapter 3 Bouncing Ball

86

Figure 3-5.  Video bouncing in box

The bouncing video program is simpler than the other examples, and you may

want to add ways for player interaction. However, the “Click to start” button served an

important purpose. To prevent website creators from forcing viewers to see videos that

they did not request, some user interaction is required. The button is for this purpose.

�Critical Requirements
It is important for this application and, indeed, for all programming to define the

requirements before you begin writing any code. The application requires things I

demonstrated in previous chapters: drawing shapes on a canvas element and using a

form canvas element. For this example, we will actually use the form fields for input. In

the dice game described in Chapter 2, they were used strictly for output.

In Chapter 1, the HTML document made use of external image files. In Chapter 2, we

drew the faces of the dice entirely with coding. In this chapter, I’ll demonstrate both: a

bouncing circle drawn with code and a bouncing image from an image file.

To accomplish this, we need some code that will be able to do something—right

now, it doesn’t matter what—at fixed intervals of time. The intervals need to be short

enough that the result looks like motion.

Chapter 3 Bouncing Ball

http://dx.doi.org/10.1007/978-1-4842-4155-4_2
http://dx.doi.org/10.1007/978-1-4842-4155-4_1
http://dx.doi.org/10.1007/978-1-4842-4155-4_2

87

In this case, the something-to-be-done is to reposition the ball, or what is standing

in for a ball. In addition, the code needs to determine if the ball would hit any wall.

Now, there isn’t a ball, and there aren’t any walls. It is all virtual, so it is all coding. We’ll

write code to perform a calculation on the virtual position of the ball versus the virtual

position of each of the walls. If there is a virtual hit, the code adjusts the horizontal or

vertical displacement values so the ball bounces off the wall. To be more accurate at the

risk of being pedantic, the code sets certain values so that it in the next iteration, the ball

object proceeds in a different direction.

To calculate the repositioning, we use either the initial values or any new values

typed into the input fields of the form. However, the goal is to produce a robust system

that will not act on bad input from the player. Bad input would be an entry that wasn’t

a number or a number outside of the specified range. We could just not act on the bad

input. However, we want to give feedback to the player that the input was bad, so we’ll

make the input boxes change color, as Figure 3-3 shows.

Wanting to provide a way for the user, now to be called the player, a way to interact

with an application, I added coding to present a stop button and a resume button to

what the player sees. A function that responds to clicking on the Stop button stops the

time interval event. A function that responds to clicking on the Resume button starts the

time interval event.

To make the video in the bouncing video loop, I added code to restart after the

“ended” event. This is because I read that the loop attribute in a video element may not

work in all browsers. The program, with my restart code, works in Chrome and Safari.

�HTML5, CSS, and JavaScript Features
Let’s take a look at the specific features of HTML5, CSS, and JavaScript we need to

implement the bouncing ball applications. We’ll build on material covered in previous

chapters, specifically the general structure of an HTML document, using a canvas

element, programmer-defined and built-in functions, and a form element.

Chapter 3 Bouncing Ball

88

�Drawing a Ball or an Image or Images
As described in Chapter 2, drawing anything on the canvas, such as a circle to represent

the ball, requires including the canvas element in the body section of the HTML

document. Next we need to define a variable, ctx, and add code that sets up the value of

this variable so we can use JavaScript. Here’s the statement to implement this:

ctx = document.getElementById('canvas').getContext('2d');

As we saw in Chapter 2, a circle is created by drawing an arc as part of a path.

The following lines of code start the path, set the color for the fill, specify the arc, and

then use the fill method to draw a closed, filled-in path. Notice that the arc method

uses variables to specify the coordinates of the center of the circle and the radius. The

parameters 0 and Math.PI*2 represent angles, in this case 0 to Math.PI*2, making

a complete circle. The true parameter indicates counterclockwise, although in this

particular case, false would produce the same effect.

ctx.beginPath();

ctx.fillStyle ="rgb(200,0,50)";

ctx.arc(ballx, bally, ballrad,0,Math.PI*2,true);

ctx.fill();

For the first version of the bouncing ball, the box is drawn as a rectangle outline. The

width of the outline, termed the stroke, is set using

ctx.lineWidth = ballrad;

You can experiment with the line width. Keep in mind that if you make the width

small and set the ball to travel fast, the ball can bounce past the wall in one step.

The statement that draws the rectangle is

ctx.strokeRect(boxx,boxy,boxwidth,boxheight);

I put the code for the ball before the code for the rectangle so the rectangle would be

on top. I thought this looked better for the bouncing.

The second version of the program displays an image for the ball. This requires code

to set up an img object using the new operator with a call to Image(), assigning that to a

variable, and giving the src property a value. In the application, we do all this in a single

statement, but let’s take a look at the individual parts.

Chapter 3 Bouncing Ball

http://dx.doi.org/10.1007/978-1-4842-4155-4_2
http://dx.doi.org/10.1007/978-1-4842-4155-4_2

89

You read about var statements in Chapter 2. Such statements define, or declare,

a variable. It is okay to use the name img for our var here; there’s no conflict with the

HTML img element. The new operator is well-named: it creates a new object, in this case

of the built-in type Image. The Image function is called a constructor: it constructs an

object of type Image. The Image function does not take any arguments, so there are just

opening and closing parentheses.

Image objects have attributes, just like HTML elements such as img do. The particular

image used is indicated by the value of the src attribute. Here, pearl.jpg is the name of an

image file located in the same folder as the HTML document. The following two statements

set up the img variable and set its src (source) to the address, the URL, of the image file.

var img = new Image();

img.src="pearl.jpg";

For your application, use the name of an image file you’ve chosen. It can be of type

JPG, PNG, or GIF, and be sure to either put it in the same folder as your HTML document

or include the appropriate path. Be careful about matching the case both in the name

and the extension.

To draw this image on the canvas, we need a single line of code specifying the image

object, the location for the upper-left corner of the image, and the width and length to

be used in the display of the image. As was the case with the rectangles, this code is a call

of a method of a context object, so I use the variable ctx defined in the init function. I

need to adjust the ballx and bally values I used for the center of the circle to indicate

the upper corner. I use two times the ball radius for both the width and the length. The

statement is

ctx.drawImage(img,ballx-ballrad,bally-ballrad,2*ballrad,2*ballrad);

Let’s take a break now. It’s your turn, dear reader, to do some work. Consider the

following HTML document:

<html>

<head>

<title>The Origami Frog</title>

<script>

var img = new Image();

img.src = "frogface.gif";

var ctx;

Chapter 3 Bouncing Ball

http://dx.doi.org/10.1007/978-1-4842-4155-4_2

90

function init() {

 ctx =document.getElementById("canvas").getContext('2d');

 ctx.drawImage(img,10,20,100,100);

}

</script>

</head>

<body onLoad="init();">

<canvas id="canvas" width="400" height="300">

Your browser doesn't support the HTML5 element canvas.

</canvas>

</body>

</html>

Find your own image file and use its name in place of frogface.gif. Change the title

to something appropriate. Experiment with the line

ctx.drawImage(img,10,20,100,100);

That is, change the 10, 20 to reposition the image and change the 100,100 to change

the width and the height. Make the changes and see if the program responds as you

intended. Remember that as you specify the width and height, you could be changing

the shape—the aspect ratio—of the picture.

An important point to note here is that since the code is drawing or painting the

canvas, to produce the effect of a moving ball, we also need code to erase everything and

then redraw everything with the ball in a new spot. The statement to erase everything is

ctx.clearRect(boxx,boxy,boxwidth,boxheight);

It might be possible to erase (clear) just parts of the canvas, but I chose to erase and

then redraw everything. In each situation, you need to decide what makes sense.

Think about drawing two images on the canvas. You’ll need to have two different

variables in place of img. For this task, give the variables distinctive names. If you are

emulating Dr. Seuss, you can use thing1 and thing2; otherwise, choose something

meaningful to you!

For drawing a background image and then the moving cotton candy, my code simply

draws the background image first, always in the same place, and then the cotton candy

in its calculated position. The complete code follows. You will read about moveandcheck

in a later section.

Chapter 3 Bouncing Ball

91

function moveBall(){

 ctx.clearRect(boxx,boxy,boxWidth,boxHeight);

 moveAndCheck();

 ctx.drawImage(bkg,0,0,4000,3000,0,0,400,300);

 ctx.drawImage(ball,0,0,388,435,ballx-ballrad,bally-ballrad,388/10,435/10);

 ctx.strokeRect(0,0,400,300);

}

You may ask why the background needs to be redrawn. The answer is that once

something is drawn on the canvas, it is just the equivalent of dots of paint—the term is

pixels, picture elements—set to a specific color. Something changes at each iteration

(wait for the next section on timing intervals), and while most of the canvas remains

the same, the best way to produce the new picture is to clear the canvas, draw the

background, and draw the ball.

�Gradients with a Side Trip to Explain Arrays
Let’s see how to use a gradient, a rainbow-like combination of colors, for the bouncing

program. You can use gradients to set the fillStyle property. I didn’t want to have the

ball on top of a filled-in rectangle, so I needed to figure out how to draw the four walls

separately.

A gradient is a type of object in HTML5. There are linear gradients and radial

gradients. In this application we use a linear gradient. The code defines a variable (I

named it grad) to be a gradient object, using a method of a canvas context that we

defined earlier with the variable ctx. The code for the gradient looks like this:

var grad;

grad=ctx.createLinearGradient(boxx,boxy,boxx+boxwidth,boxy+boxheight);

The gradient stretches out over a rectangle shape.

Gradients involve sets of colors. A typical practice is to write code to set what are

called the color stops, such as to make the gradient be a rainbow. For this, I set up an

array of arrays in a variable named hue.

You can think of an array as a holder for a collection of values. Whereas a variable

can hold only one value, an array can hold many. In the next chapter, you’ll read about

an array named everything that will hold all the objects to be drawn on the screen.

Chapter 3 Bouncing Ball

92

In Chapter 9, which describes the hangman game, the word list is an array of words.

You’ll read about many applications of arrays in this book. Here’s a concrete example.

The following var statement sets up a variable to be a specific array:

var family = ["Daniel","Aviva", "Annika"];

The variable family is an array. Its datatype is array. It consists of a list of people

in my family. To access or to set the first element of this array, you’d use family[0].

The values to specify specific members of an array are called index values or indices.

Array indexing starts with zero. The expression family[0] would produce "Daniel".

The expression family[1] would produce "Aviva". The expression family[2] would

produce "Annika". If the value of a variable relative was 1, then family[relative]

would produce Aviva. To determine the number of elements in the array, you’d use

family.length. In this case, the length is 3. Note that the length is 3; the indices go

from 0 to 2.

The individual items in an array can be of any type, including arrays. For example, I

could modify the family array to provide more information:

var family = [["Daniel","son"],

 ["Aviva", "daughter"],

 ["Annika","granddaughter"]

];

The formatting, with the line breaks and indents, is not required, but it’s good

practice. It is not interpreted by JavaScript. We have to get the brackets and the commas

correct!

The expression family[2][1] produces “grandDaughter”. Remember, array indexing

starts at 0, so the index value 2 for the array, sometimes termed the outer array in this

type of example, produces [“Annika”, “grandDaughter”], and for that array, the index

1 produces “granddaughter”. These inner arrays do not have to be the same length.

Consider the following example:

var family = [["Daniel","teacher"],

 ["Aviva", "government staff"],

 ["Annika"]

];

Chapter 3 Bouncing Ball

http://dx.doi.org/10.1007/978-1-4842-4155-4_9

93

The code would check the length of the array, and if it was 2 instead of 1, the second

item would be the profession of the individual. If the length of the inner array was 1, it

would be assumed that the individual does not have a profession.

Arrays of arrays can be useful for product names and costs. The following statement

specifies the limited inventory of a store:

var inventory = [

 ["toaster",25.99],

 ["blender",74.99],

 ["dish",10.50],

 ["rug",599.99]

];

This store has four items, with the cheapest being the dish, represented in the

position at index 2, and the most expensive the rug at index 3.

Now, let’s see how we can use these concepts for defining a gradient. We’ll use an

array whose individual elements are also arrays.

Each inner array holds the RGB values for a color, namely, red, yellow, green, cyan,

blue, magenta.

var hue = [

 [255, 0, 0],

 [255, 255, 0],

 [0, 255, 0],

 [0, 255, 255],

 [0, 0, 255],

 [255, 0, 255]

] ;

These values represent colors ranging from red (RGB 255,0,0) to magenta (RGB

255,0,255), with four colors specified in between. The gradient feature in JavaScript fills

in the colors to produce the rainbow pattern shown in Figure 3-2. Gradients are defined

by specifying points along an interval from 0 to 1. You can specify a gradient other than a

rainbow. For example, you can use a graphics program to select a set of RGB values to be

the so-called stop points, and JavaScript will fill in values to blend from one to the next.

The array numeric values are not quite what we need, so we will have to manipulate

them to produce what JavaScript demands.

Chapter 3 Bouncing Ball

94

Manipulation of arrays often requires doing something to each member of the array.

One construct for doing this, present in many programming languages, is the for loop,

which uses a variable called an indexing variable. The structure of the for loop is

for (initial value for indexing variable; condition for continuing;

change for

 indexing variable) {

 �code to be done every time. The code usually references the indexing

variable

}

This says: start with this initial value, keep doing the loop as long as this condition

holds, and change the index value in this specified way. A typical expression for the

change will use operators such as ++. The ++ operator increments the indicated variable

by 1. A typical for header statement is

for (n=0;n<10;n++)

This for loop uses a variable named n, with n initialized to 0. If the value of n is less

than 10, the statements inside the loop are executed. After each iteration, the value of

n is increased by 1. In this case, the loop code will be executed 10 times, with n holding

values 0, 1, 2, all the way up to 9.

Here’s one more example, a common one to demonstrate arrays. Let the grades

variable be set up to hold a set of grades for a student:

var grades = [4.0, 3.7, 3, 2.3, 3];

Depending on the institution, this could indicate grades of A, A-, B, C+, and B. The

following snippet computes the grade-point average and stores it in the variable named

gpa. Notice that we need to initialize the variable named sum to start with a value of

0. The += operator adds to the value held in sum the value in the grades array at index

value g.

var sum = 0;

for (g=0;g<grades.length;g++) {

 sum += grades[g];

}

var gpa;

gpa = sum/grades.length;

Chapter 3 Bouncing Ball

95

To produce what we need to build the gradient, the code extracts values from the hue

array and uses them to produce character strings indicating RGB values. We use the hue

array along with a variable called color to set the color stops to define the gradient. The color

stops are set at any point between 0 and 1, using a for loop that sets color to be a character

string of the required format, namely, starting with rgb(, and including the three values.

for (h=0;h<hue.length;h++) {

 color = 'rgb('+hue[h][0]+','+hue[h][1]+','+hue[h][2]+')';

 grad.addColorStop(h*1/hue.length,color);

}

The assignment statement setting color may seem strange to you: there’s a lot

going on—and what are those plus signs doing? Remember, our task is to generate the

character strings indicating certain RGB values. The plus signs do not indicate addition of

numbers here but concatenation of strings of characters. This means that the values are

stuck together rather than mathematically added, so while 5+5 yields 10, '5'+'5' would

give 55. Because the 5s in the second example are enclosed by quote marks, they are

strings rather than numbers. The square brackets are pulling out members of the array.

JavaScript converts the numbers to the character string equivalent and then combines

them. Remember that it’s looking at arrays within arrays, so the first number within square

brackets (in this case, provided by our variable h) gives us the first array, and the second

number within square brackets gives us our number within that array. Let’s look at a quick

example. The first time our loop runs, the value of h will be 0, which gives us the first entry

within the hue array. We then look up the separate parts of that entry to build our final color.

After all that, our code has set up the variable grad to be used to indicate a fill

pattern. Instead of setting fillStyle to be a color, the code sets it to be the variable grad.

ctx.fillStyle = grad;

Drawing the rectangles is the same as before, but now with the indicated fill. These

are four narrow walls at the left, right, top, and bottom of the original rectangle. I make

the walls as thick as the radius of the ball. This thickness is the width in the case of the

vertical walls and the height in the case of the horizontal walls.

ctx.fillRect(boxx,boxy,ballrad,boxheight);

ctx.fillRect(boxx+boxwidth-ballrad,boxy,ballrad,boxheight);

ctx.fillRect(boxx,boxy,boxwidth,ballrad);

ctx.fillRect(boxx,boxy+boxheight-ballrad,boxwidth,ballrad);

Chapter 3 Bouncing Ball

96

�Setting Up a Timing Event
Setting up timing events in HTML5 is actually similar to the way it’s done in the older

versions of HTML. There are two built-in functions: setInterval and setTimeout. We’ll

look at setInterval here and at setTimeout in the memory game in Chapter 5. Each

of these functions takes two arguments. Remember that arguments are extra pieces of

information included in function or method calls. In Chapter 1, we saw that document.

write took as its single argument what was to be written out on the screen.

I’ll describe the second argument first. The second argument specifies an amount

of time, in milliseconds. There are 1,000 milliseconds to a second. This may seem like a

very short unit to work with, but it turns out to be just what we want for games. A second

(1,000 milliseconds) is quite long for a computer game.

The first argument specifies what is to be done at the intervals specified by the

second argument. The first argument can be the name of a function. For this application,

the init function definition contains the following line:

setInterval(moveBall,100);

This tells the JavaScript engine to invoke the function moveBall every 100

milliseconds (10 times per second). moveBall is the name of a function that will be

defined in this HTML document; it is the event handler for the timing interval event.

Don’t be concerned if you write this line of code before writing the code to define the

function. What counts is what exists when the application is run.

JavaScript also provides a way other than a function name for the event handler. You

could write

setInterval("moveBall();",100);

for the same effect. Putting it another way, for cases when the action is the call of a

function without parameters, the name of the function will do. For more complex cases,

you can write a string to specify code. Suppose I had a function named slide that itself

took one argument, I wanted the argument to be 10 times the value of the variable d, and

I wanted this to happen every one and one-half seconds, I would code

setInterval("slide(10*d);",1500);

I note that the reason that moveball does not need parameters is because of the use

of global variables for the position and the displacements.

Chapter 3 Bouncing Ball

http://dx.doi.org/10.1007/978-1-4842-4155-4_5
http://dx.doi.org/10.1007/978-1-4842-4155-4_1

97

It is often the case that you want to indicate the passage of time on the screen. The

following example will display 0, 1, …, etc., with the number changing every second.

<html>

<head>

<title>elapsed</title>

<script>

function init() {

 setInterval(increase,1000);

}

function increase() {

 document.f.secs.value = String(1+Number(document.f.secs.value));

}

</script>

</head>

<body onLoad="init();">

<form name="f">

<input type="text" name="secs" value="0"/>

</form>

</body>

</html>

This is a good example for you to take the time to write and run, both because it

showcases timing events and because it will make you appreciate how long a second

lasts. The code takes the value out of the secs input field in the form named f, converts

that value to a number, adds 1 to that number, and then converts it back to a string to

assign as the value of the secs element. Try replacing the single statement inside the

increase function with the statement

document.f.secs.value = 1+document.f.secs.value;

and see what happens. This is a lesson in the difference between numbers and character

strings. Please play around with this little example. If you want to make the numbers go

up in smaller increments, change the 1000 to 250 and the 1 to .25. This makes the script

show quarter-second changes.

Chapter 3 Bouncing Ball

98

If you want to allow your code to stop a particular event, you can set up a global

variable (one that’s outside of any function). I use a variable named tev, my shorthand

for timing event.

var tev;

You would then modify the setInterval call to be as follows:

tev = setInterval(moveBall,100);

When you wanted to stop this event, you’d include this code:

clearInterval(tev);

By the way, if my code invoked the statement with the setInterval function again

without issuing a clearInterval, it would be the equivalent of setting up an additional

alarm clock. The effect would be to increase the speed. When I describe the cotton candy

game, you will notice that my code includes multiple clearInterval statements.

To reiterate, the setInterval function sets up a timing event that keeps occurring

until it is cleared. If you know you want an event to happen just once, the setTimeout

method sets up exactly one event. You can use either method to produce the same

results, but JavaScript furnishes both to make things easier.

For the bouncing ball application, the moveBall function calculates a new position

for the ball, does the calculations to check for collisions, and when they occur, redirects

the ball and draws a new display. This is done over and over—the calls to moveBall keep

happening because we used setInterval.

�Calculating a New Position and Collision Detection
Now that we know how to draw, and how to clear and redraw, and we know how to do

something at fixed intervals, the challenge is how to calculate the new positions and

how to do collision detection. We’ll do this by declaring variables ballx and bally to

hold the x and y coordinates of the ball’s center; ballvx and ballvy to hold the amount

by which the ball position is to be changed; and boxBoundx, inboxBoundx, boxBoundy,

and inboxBoundy to indicate a box slightly smaller than the actual box for the collision

calculation. The amounts by which the ball position is to be changed are initialized to 4

Chapter 3 Bouncing Ball

99

and 8 (totally arbitrarily) and are changed if and when a player makes a valid change (see

the next section) and clicks the change button. These amounts are termed displacements

or deltas and, less formally, velocities or speeds.

The change in direction is pretty simple in this situation. If the ball “hits” a vertical

wall, the horizontal displacement must change sign; i.e., if the ball was moving four

units to the right and we hit a wall, we want to start adding -4 to its position, which will

make it move to the left. The vertical displacement stays the same. The hit is determined

by comparing the next horizontal value with the boundary. Similarly, if the ball “hits” a

horizontal wall as determined by comparing the vertical position with the appropriate

boundary, the vertical displacement changes sign while the horizontal displacement

remains the same. The change is for the next iteration. The check for collisions is done

four times, that is, for each of the four walls. The calculation consists of comparing the

proposed new x or y value, as appropriate, with the boundary condition for the particular

wall. The tentative new position is adjusted if the ball center goes past one of the four

walls to be exactly at the boundary. This has the effect of making the ball go slightly

behind each wall or appear to be squeezed by each wall. The boundary values are set up

to be just inside the box with the upper corner at boxx, boxy, a width of boxWidth, and

a height of boxHeight. I could use a more complex calculation to compare any point on

the circle with any point on the walls. However, there is a more fundamental principle

involved here. There are no walls and no ball. This is a simulation based on calculations.

The calculations are done at intervals. If the ball is moving fast enough and the walls are

thin enough, thinner than the ballrad specified here, the ball can escape the box. This is

why I do the calculation in terms of the next move and a slightly smaller box.

var boxBoundx = boxWidth+boxx-ballrad;

var boxBoundy = boxHeight+boxy-ballrad;

var inboxBoundx = boxx+ballrad;

var inboxBoundy = boxy+ballrad;

Here is the code for the moveAndCheck function, the function that checks for

collisions and repositions the ball:

function moveAndCheck() {

 var nballx = ballx + ballvx;

 var nbally = bally +ballvy;

 if (nballx > boxBoundx) {

 ballvx =-ballvx;

Chapter 3 Bouncing Ball

100

 nballx = boxBoundx;

 }

 if (nballx < inboxBoundx) {

 nballx = inboxBoundx

 ballvx = -ballvx;

 }

 if (nbally > boxBoundy) {

 nbally = boxBoundy;

 ballvy =-ballvy;

 }

 if (nbally < inboxBoundy) {

 nbally = inboxBoundy;

 ballvy = -ballvy;

 }

 ballx = nballx;

 bally = nbally;

}

You might say that not much actually happens here, and you’d be correct. The

variables ballx and bally are modified to be used later when things get drawn to

the canvas.

It is not obvious from this code, but do keep in mind that vertical values (y values)

increase going down the screen and horizontal values (x values) increase going from left

to right.

The moveAndCheck function is slightly different for the bouncing video. I wrote

it “from scratch,” and it provides the reader with a slightly—very slightly—different

approach. It does provide reasons to tell you how to determine the width and height of

specific types of objects. Here is code for the init function;

function init(){

 v = document.getElementById("videoE");

 c = document.getElementById("con");

 img = document.getElementById("AandF");

 iwidth = img.clientWidth;

 iheight = img.clientHeight;

 vwidth = v.videoWidth;

Chapter 3 Bouncing Ball

101

 vheight = v.videoHeight;

 leftEdge = 5; //arbitrary margin

 rightEdge = leftEdge+iwidth-.6*vwidth;

 topEdge = 5; //arbitrary margin

 botEdge = topEdge+iheight-.6*vheight;

}

With the “Edge variables, the moveAndCheck function is as follows:

function moveAndCheck() {

 var nballx = ballx + ballvx;

 var nbally = bally + ballvy;

 if (nballx < leftEdge) {

 ballvx =-ballvx;

 nballx = leftEdge;

 }

 if (nballx> rightEdge) {

 nballx = rightEdge;

 ballvx = -ballvx;

 }

 if (nbally > botEdge) {

 nbally = botEdge;

 ballvy =-ballvy;

 }

 if (nbally < topEdge) {

 nbally = topEdge;

 ballvy = -ballvy;

 }

 ballx = nballx;

 bally = nbally;

 c.style.top=bally+"px";

 c.style.left=ballx+"px";

}

The video moves slightly past the bottom and right edges. It is not easy to make the

bounce be exact. The object does not move continuously in space!

Chapter 3 Bouncing Ball

102

Starting, Positioning and Restarting the video with use of
an anonymous function
As I indicated previously, my program makes use of a button to start the video. User

interaction is required. The button invokes the startV function. See the following code.

The video starts playing. The display is set to block. It has been none. The div element

holding the video, which I have named c for container, is positioned at the arbitrary

value of the variables ballx and bally.

The restarting of the video, not of the movement of the video on the screen, is

accomplished by setting the event handler for the event ended. I decided to demonstrate

this using what is termed an anonymous function. The whole function is contained in the

call to v.addEventListener.

function startV(){

 v.play();

 v.style.display= "block";

 c.style.top = bally +"px";

 c.style.left = ballx + "px";

 v.addEventListener('ended', function() {

 v.currentTime = 0;

 v.play();

 }

);

One reason not to use an anonymous function is that debugging tools do not have

a function to track. It does have the benefit of being right there. I have used spacing and

line breaks here. You can compress it into one line.

�Validation
Forms, ways of obtaining input from a user/player/client, are part of the original

HTML. The form element starts with a <form> tag, which provides a way to specify the

action on submitting a form and contains input elements. HTML5 provides new facilities

for validating form input. The creator of a form can specify that an input field is of type

number as opposed to text, and HTML5 will immediately check that the user/player

entered a number. Similarly, we can specify max and min values. The code for the form is

Chapter 3 Bouncing Ball

103

<form name="f" id="f" onSubmit="return change();">

Horizontal velocity <input name="hv" id="hv" value="4" type="number"

min="-10" max="10" />

Vertical velocity <input name="vv" id="vv" value="8" type="number"

min="-10" max="10"/>

<input type="submit" value="CHANGE"/>

</form>

The input is still text, that is, a string of characters, but the values are to be text that

can be interpreted as a number in the indicated range.

Other types of input include "email" and "URL", and it is handy to have HTML5

check these. Of course, you can check any character string to see if it’s a number using

isNumber and more complicated coding, including regular expressions (patterns of

characters that can be matched against), to check for valid email addresses and URLs.

One common tactic for checking an email address is to make the user type it in twice so

you can compare the two and make sure the user hasn’t made any mistakes.

We want to take advantage of the work HTML5 will do for us, but we also want to let

the user/player know if something is wrong. You can use HTML5 and CSS to do this, by

specifying a style for valid and invalid input.

input:valid {background:green;}

input:invalid {background:red;}

HTML5 validation is operational in the latest version of browsers, at least on

computers, but you need to decide what you want to do for older browsers and for

devices. If you’re using a compliant browser, such as Chrome, you can test the example

given in the next section. Notice that the ball keeps bouncing even if an invalid value, say

abc, is entered where a number was specified, because the program continues to use the

current settings.

Tip  Validating input and generating appropriate feedback to users is important
in any application. Among the new features HTML5 provides is a pattern attribute
in the input element in which a special language called regular expressions can be
used to specify valid input. Enter HTML5 regular expressions into a search field
to find up-to-date information.

Chapter 3 Bouncing Ball

104

�Stopping and Resuming Animation Triggered
by Buttons
When I decided to add stopping and resuming, I decided that an important lesson was

how much this could be just an addition, with no change to the rest of the program.

A term for what is going on here is event-driven programming. We, the builders, think

about the different events more or less distinctly. I also decided to use button elements,

a feature introduced as part of HTML5. A button element provides a way to specify the

event, in this case, onClick, and the function that will handle the event. The text between

the <button> tag and the </button> tag is what appears in the lozenge-shaped button.

The old way was to use forms, which, for my example, would have meant multiple forms.

The following code produces the two buttons. The next section describes the

significance of the return statement. The is what is called an entity and produces

a space but does not force a line break.

<button onClick="return stopcc();">STOP </button>

<button onClick="return resume();">RESUME </button>

I now owe you the definition of the stopcc function and the resume function.

The task for the stopcc function is to stop the moving of the cotton candy image

over the background. You know how to do that: invoke clearInterval. My code does

need to do a few more things. Because I will want to resume the bouncing, I write code

to save the ballvx and ballvy values. This may be unnecessary, but certain cases seem

to require it. The code also invokes moveBall to produce one more picture. The use of

return is explained in the next section. The code follows:

function stopcc() {

 clearInterval(tid);

 stoppedx = ballvx;

 stoppedy = ballvy;

 moveBall();

 return false;

}

The resume function does contain a call to setInterval, but I need to do something

else to protect the players from themselves. If a player clicked the resume button without

having stopped the animation, or just to see what would happen, then invoking multiple

Chapter 3 Bouncing Ball

105

setIntervals would produce multiple timing events. This, in turn, would have the

effect of making the bouncing appear faster and faster. To present this, I insert a call to

clearInterval. If there is no timing event in place, nothing will happen. My code resets

ballvx and ballvy using the previously saved values. This may be not necessary, but it is

a precaution.

function resume(){

 clearInterval(tid);

 ballvx = stoppedx;

 ballvy = stoppedy;

 tid = setInterval(moveball,100);

 return false;

}

�HTML Page Reload
Before continuing, I want to mention some issues that may cause unexpected problems.

Browsers come with reload/refresh buttons. The document is reloaded when the

button is clicked. We used this in the simple die throw application in Chapter 2.

However, at times you may want to prevent a reload, and in such cases, you can put a

return (false); in functions that don’t have anything to return to keep the page from

reloading.

When a document has a form, reloading does not always reinitialize the form input.

You may need to leave the page and then reload it using the full URL.

Lastly, browsers attempt to use files previously downloaded to the client (user)

computer rather than requesting files from a server based on inspection of the date and

time. The files on the client computer are stored in what is called the cache. If you think

you made a change but the browser isn’t displaying the latest version, you may need to

take steps such as clearing the cache.

�Preloading Images
Computers are so fast and, in general, our perception is sufficiently slow that we expect

no delays in anything we do. However, images on websites must be downloaded from

the server to our local computer and large images are, obviously, large files. Actually,

I should make another point. Our modern cameras produce images made up of

Chapter 3 Bouncing Ball

http://dx.doi.org/10.1007/978-1-4842-4155-4_2

106

thousands of pixels, which is termed high resolution. This makes the files large. To make

sure that the images are ready for use, one trick is to create img elements holding the

images in the body element. For this example, this includes the background photo and

the cotton candy photo. The files will be loaded before the init function is invoked by

action of the onLoad attribute in the body tag. The fully loaded background image will be

available to be drawn before the cotton candy image is drawn on top of it. The challenge

is how to prevent those two images from being displayed. The answer is to include the

following directive in the style element:

img {visibility: hidden;}

The CSS directive stops any img file from being displayed. In my example, the img

elements are never displayed. What are displayed are the Image elements created and

manipulated by code.

�Building the Application and Making It Your Own
I will now explain the code for the basic bouncing ball application, the application that

uses an image for the ball and gradients for the walls, and the application that validates

the input and the bouncing cotton candy. Table 3-1 shows all the function calls and what

is being called. The table includes the functions for all four applications. The stopcc and

resume functions are present only in the fourth application.

Table 3-1.  Functions in the Bouncing Ball Applications

Function Invoked By/Called By Calls

init Action of onLoad in the body tag moveBall

moveBall Invoked directly by init and by action of setInterval moveAndCheck

moveAndCheck Invoked by moveBall

change Invoked by action of onSubmit in the form tag

stopcc Invoked by action of onClick in a button tag moveBall

resume Invoked by action of onClick in a button tag

Chapter 3 Bouncing Ball

107

The moveAndCheck code could be part of the moveBall function. I chose to separate it

because it is a good practice to define functions that perform specific actions. Generally,

more, smaller functions are better than fewer, larger ones when you’re developing

applications. By the way, when doing your own programming, don’t forget to put

comments in the code as described in Chapter 2. And add blank lines to make the code

more readable. Table 3-2 shows the code for the basic bouncing ball application and

explains what each line does.

Table 3-2.  The Bouncing Ball Application

Code Explanation

<html> Start html.

<head> Start head.

 <title>Bouncing Ball➥ with inputs

</title>

Complete the title element.

 <style> Start style.

 form { Start form styling.

 width:330px; Set up width.

 margin:20px; Set margin.

 background-color:brown; Set background color.

 padding:20px; Set internal padding.

} Close this style.

 </style> Close the style element.

 <script type="text/javascript"> Start the script element. (The type is not

required. I show it here just to let you know what

you’ll see in many examples online.)

 var boxx = 20; x location of the upper corner of the box.

 var boxy = 30; y location of the upper corner of the box.

 var boxWidth = 350; Box width.

 var boxHeight = 250; Box height.

(contiuned)

Chapter 3 Bouncing Ball

http://dx.doi.org/10.1007/978-1-4842-4155-4_2

108

Code Explanation

 var ballrad = 10; Radius of ball.

 � var boxBoundx = ➥ boxWidth+boxx-

ballrad;

Right boundary.

 �var boxBoundy = ➥ boxHeight+boxy-

ballrad;

Bottom boundary.

 var inboxBoundx = ➥ boxx+ballrad; Left boundary.

 var inboxBoundy = ➥ boxy+ballrad; Top boundary.

 var ballx = 50; Initial x position of ball.

 var bally = 60; Initial y position of ball.

 var ctx; Variable holding canvas context.

 var ballvx = 4; Initial horizontal displacement.

 var ballvy = 8; Initial vertical displacement.

function init() { Start of the init function.

ctx = document.

getElementById ('canvas').

getContext('2d');

Set the ctx variable.

 ctx.linewidth = ballrad; Set the line width.

ctx.fillStyle ="rgb(200,0,50)"; Set the fill style.

 moveBall(); Invoke the moveball function the first time to

move, check, and display the ball.

setInterval(moveBall,100); Set up the timing event.

} Close of init function.

function moveBall(){ Start of the moveball function.

 ctx.clearRect(boxx,boxy,boxWidth,

boxheight);

Clear (erase) the box (including any paint from a

ball).

 moveAndCheck(); Do the check and then move the ball.

(contiuned)

Table 3-2.  (contiuned)

Chapter 3 Bouncing Ball

109

Code Explanation

 ctx.beginPath(); Start the path.

 ctx.arc(ballx, bally,

ballrad,0,Math.PI*2,true);

Setup to draw the circle at the current location of

the ball.

 ctx.fill(); Fill in the path; that is, draw a filled circle.

 �ctx.strokeRect(boxx,boxy,boxWidth,

boxHeight);

Draw the rectangle outline.

} Close moveball.

function moveAndCheck() { Start of moveandcheck.

 var nballx = ballx + ballvx; Set the tentative next x position.

 var nbally = bally +ballvy; Set the tentative next y position.

 if (nballx > boxBoundx) { Is this x value beyond the right wall?

 ballvx =-ballvx; If so, change the horizontal displacement.

 nballx = boxBoundx; Set the next x to be exactly at this boundary.

 } Close the clause.

 if (nballx < inboxBoundx) { Is this x value less than the left boundary?

 nballx = inboxBoundx; If so, set the x value to be exactly at the

boundary.

 ballvx = -ballvx; Change the horizontal displacement.

 } Close the clause.

 if (nbally > boxBoundy) { Is the y value beyond the bottom boundary?

 nbally = boxBoundy; If so, set the y value to be exactly at the

boundary.

 ballvy =-ballvy; Change the vertical displacement.

 } Close the clause.

 if (nbally < inboxBoundy) { Is the y value less than the top boundary?

 nbally = inboxBoundy; If so, set the y value to be exactly the boundary.

Table 3-2.  (contiuned)

(contiuned)

Chapter 3 Bouncing Ball

110

Table 3-2.  (contiuned)

Code Explanation

 ballvy = -ballvy; Change the vertical displacement.

 } Close the clause.

 ballx = nballx; Set the x position to nballx.

 bally = nbally; Set the y position to nbally.

} Close the moveandcheck function.

function change() { Start of the change function.

 �ballvx = Number(document.f.hv.

value);

Convert input to a number and assign it to

ballvx.

 �ballvy = Number(document.f.vv.

value);

Convert input to a number and assign it to

ballvy.

 return false; Return false to make sure there isn’t a page

reload.

} Close the function.

</script> Close the script.

</head> Close the head.

<body onLoad="init();"> Start the body element. Set up the call to the

init function.

<canvas id="canvas" width= "400"

height="300">

Start of the canvas element.

Your browser doesn't support

the HTML5 element canvas.

Message for noncompliant browsers.

</canvas> Close the canvas element.

 Line break.

<form name="f" id="f"

onSubmit= "return change();">

Start of the form. Give the name and ID (may

need for some browsers). Set up the action on

the submit button.

(contiuned)

Chapter 3 Bouncing Ball

111

Code Explanation

 Horizontal velocity <input name="hv"

id="hv" value="4" type="number"

min="-10" max="10" />

Label an input field for horizontal velocity.

 Line break.

 Vertical velocity <input name= "vv"

id="vv" value="8" type="number"

min="-10" max="10"/>

Label an input field for vertical velocity.

<input type="submit"

value="CHANGE"/>

Submit button.

</form> Close form.

</body> Close body.

</html> Close html.

Table 3-2.  (contiuned)

The application that uses an image as the ball is similar to the one that uses

gradient-filled walls. Table 3-3 shows all the code—but I just comment the code that is

different. I’m not being lazy; the idea is to let you see how each application is built on the

previous one.

Chapter 3 Bouncing Ball

112

Table 3-3.  The Second Application, with an Image as the Ball and Gradient-

Filled Walls

Code Explanation

<html>

<head>

 <title>Bouncing Ball with inputs</title>

 <style>

 form {

 width:330px;

 margin:20px;

 background-color:#b10515;

 padding:20px;

}

 </style>

 <script type="text/javascript">

 var boxx = 20;

 var boxy = 30;

 var boxWidth = 350;

 var boxHeight = 250;

 var ballrad = 20; This isn’t a substantial change, but the

picture required a bigger radius.

 var boxBoundx = boxWidth+boxx-ballrad;

 var boxBoundy = boxHeight+boxy-ballrad;

 var inboxBoundx = boxx+ballrad;

 var inboxBoundy = boxy+ballrad;

 var ballx = 50;

 var bally = 60;

(contiuned)

Chapter 3 Bouncing Ball

113

Code Explanation

 var ballvx = 4;

 var ballvy = 8;

 var img = new Image(); Defining the img variable as an Image

object. This is what the new operator and

the call to the Image function do.

 img.src="pearl.jpg"; Set the src for this image to be the

"pearl.jpg" file.

 var ctx;

 var grad; Set grad as a variable. It will be assigned

a value in the init function.

 var color; Used in setting up the gradient grad.

 var hue = [Used in setting up the gradient grad. This

is an array of arrays, each inner array

supplying RGB values.

 [255, 0, 0], Red.

 [255, 255, 0], Yellow.

 [0, 255, 0], Green.

 [0, 255, 255], Cyan.

 [0, 0, 255], Blue.

 [255, 0, 255] Purple (magenta).

]; Close array.

function init(){ Used to set up the gradient.

 var h;

 ctx = document.getElementById('canvas').

 getContext('2d');

 grad = ctx.createLinearGradient(boxx,box

y,boxx+boxWidth,boxy+boxHeight);

Create and assign a gradient value.

Table 3-3.  (contiuned)

(contiuned)

Chapter 3 Bouncing Ball

114

Table 3-3.  (contiuned)

Code Explanation

 for (h=0;h<hue.length;h++) { Start of the for loop.

 �color = 'rgb('+hue[h][0]+','+hue[h]

[1]+','+hue[h][2]+')';

Set up color as a character string that

indicates an RGB value.

 �grad.addColorStop(h*1/hue.

length,color);

Set up the color stop to define the gradient.

 } Close the for loop.

 ctx.fillStyle = grad; Set the fill to be grad.

ctx.lineWidth = ballrad;

 moveball();

 setInterval(moveBall,100);

}

function moveBall(){

 �ctx.clearRect(boxx,boxy,boxwidth,

boxheight);

 moveAndCheck();

 �ctx.drawImage(img,ballx-ballrad,

bally-ballrad,2*ballrad,2*ballrad);

Draw an image.

 �ctx.fillRect(boxx,boxy,ballrad,

boxheight);

Draw the left wall.

 �ctx.fillRect(boxx+boxWidth-ballrad,

boxy,ballrad,boxHeight);

Draw the right wall.

 �ctx.fillRect(boxx,boxy,boxWidth,

ballrad);

Draw the top wall.

 �ctx.fillRect(boxx,boxy+boxHeight-

ballrad,boxWidth,ballrad);

Draw the bottom wall.

}

(contiuned)

Chapter 3 Bouncing Ball

115

Code Explanation

function moveAndCheck() {

 var nballx = ballx + ballvx;

 var nbally = bally +ballvy;

 if (nballx > boxBoundx) {

 ballvx =-ballvx;

 nballx = boxBoundx;

 }

 if (nballx < inboxBoundx) {

 nballx = inboxBoundx;

 ballvx = -ballvx;

 }

 if (nbally > boxBoundy) {

 nbally = boxBoundy;

 ballvy =-ballvy;

 }

 if (nbally < inboxBoundy) {

 nbally = inboxBoundy;

 ballvy = -ballvy;

 }

 ballx = nballx;

 bally = nbally;

}

function change() {

 ballvx = Number(document.f.hv.value);

 ballvy = Number(document.f.vv.value);

Table 3-3.  (contiuned)

(contiuned)

Chapter 3 Bouncing Ball

116

Code Explanation

 return false;

}

</script>

</head>

<body onLoad="init();">

<canvas id="canvas" width= ➥"400"

height="300">

This browser doesn't support ➥ the HTML5

canvas element.

</canvas>

<form name="f" id="f" onSubmit= ➥"return

change();">

 Horizontal velocity <input name= ➥"hv"

id="hv" value="4" type= ➥"number" min="-

10" max="10" />

 Vertical velocity <input name= ➥"vv"

id="vv" value="8" type= ➥"number" min="-

10" max="10"/>

<input type="submit" value="CHANGE"/>

</form>

</body>

</html>

Table 3-3.  (contiuned)

I chose to put the modest change of the style information building on the

first application. Table 3-4 shows the third bouncing ball application, with form

validation. Again, I have only commented the new code, but I include all the code for

completeness sake.

Chapter 3 Bouncing Ball

117

Table 3-4.  The Third Bouncing Ball Application, with Form Validation

Code Explanation

<html>

<head>

 <title>Bouncing Ball with inputs</title>

 <style>

 form {

 width:330px;

 margin:20px;

 background-color:brown;

 padding:20px;

}

input:valid {background:green;} Set up feedback for valid input.

input:invalid {background:red;} Set up feedback for invalid input.

 </style>

 <script type="text/javascript">

 var cWidth = 400;

 var cHeight = 300;

 var ballrad = 10;

 var boxx = 20;

 var boxy = 30;

 var boxWidth = 350;

 var boxHeight = 250;

 var boxBoundx = boxWidth+boxx-ballrad;

 var boxBoundy = boxHeight+boxy-ballrad;

 var inboxBoundx = boxx+ballrad;

 var inboxBoundy = boxy+ballrad;

(contiuned)

Chapter 3 Bouncing Ball

118

Table 3-4.  (contiuned)

(contiuned)

Code Explanation

 var ballx = 50;

 var bally = 60;

 var ctx;

 var ballvx = 4;

 var ballvy = 8;

function init(){

 ctx = document.

getElementById('canvas'). getContext('2d');

ctx.lineWidth = ballrad;

 moveBall();

 setInterval(moveBall,100);

}

function moveBall(){

 ctx.clearRect(boxx,boxy,boxwidth,boxheight);

 moveAndCheck();

 ctx.beginPath();

 ctx.fillStyle ="rgb(200,0,50)";

 ctx.arc(ballx, bally, ballrad,0,Math.

PI*2,true) ;

 ctx.fill();

 ctx.strokeRect(boxx,boxy,boxWidth,

boxHeight);

}

function moveAndCheck() {

 var nballx = ballx + ballvx;

 var nbally = bally +ballvy;

Chapter 3 Bouncing Ball

119

Code Explanation

 if (nballx > boxBoundx) {

 ballvx =-ballvx;

 nballx = boxBoundx;

 }

 if (nballx < inboxBoundx) {

 nballx = inboxBoundx;

 ballvx = -ballvx;

 }

 if (nbally > boxBoundy) {

 nbally = boxBoundy;

 ballvy =-ballvy;

 }

 if (nbally < inboxBoundy) {

 nbally = inboxBoundy;

 ballvy = -ballvy;

 }

 ballx = nballx;

 bally = nbally;

}

function change() {

 ballvx = Number(document.f.hv.value);

 ballvy = Number(document.f.vv.value);

 return false;

}

</script>

</head>

Table 3-4.  (contiuned)

(contiuned)

Chapter 3 Bouncing Ball

120

Code Explanation

<body onLoad="init();">

<canvas id="canvas" width="400"

height="300">

Your browser doesn't support the HTML5

element canvas.

</canvas>

<form name="f" id="f" onSubmit="return

change();">

 Horizontal velocity <input name="hv"

id= ➥"hv" value="4" type="number" min="-10"

max="10" />

 Vertical velocity <input name="vv" id= ➥"vv"

value="8" type="number" min="-10" max="10"/>

<input type="submit" value="CHANGE"/>

</form>

</body>

</html>

Table 3-4.  (contiuned)

The fourth application is the game with the bouncing cotton candy. The first thing I

did was outside the scope of the HTML/JavaScript/CSS programming. I used online tool

pixlr to extract the portion of the original picture of the cotton candy and used another

photo to fill in the missing space.

I am not going to include the complete code for the cotton candy game, but just

indicate the additions. See Table 3-5.

Chapter 3 Bouncing Ball

121

Table 3-5.  Code for the Cotton Candy Game

<style>

...

img {visibility: hidden;} Sets any img element to not be visible. The two img elements

will not be made visible. However, the loaded image files will

be used by drawImage to be drawn on the canvas.

</style>

<script type="text/

javascript">

...

var bkg = new Image(); The bkg is a global variable holding an Image object.

var stoppedx = ballvx; Will be changed by stopcc.

var stoppedy = ballvy; Will be changed by stopcc.

function init(){

...

bkg.src = "reunion.jpg";

ball.src = "candy.png";

Set the value of the src of these two Image objects.

...

}

...

function stopcc() { Header for the stopcc function.

 clearInterval(tid); Stop the timing interval event.

 stoppedx = ballvx; Save the current ballvx.

 stoppedy = ballvy; Save the current ballvy.

 moveBall(); Invoke moveball to display the scene. This is sometimes

redundant.

 return false; Return false to prevent a page reload.

} Close the stopcc function.

(contiuned)

Chapter 3 Bouncing Ball

122

function resume(){ Header for the resume function.

 clearInterval(tid); Stop the timing interval event.

 ballvx = stoppedx; Set ballvx to the stoppedx value. In most cases, this will

be the value set in stopcc.

 ballvy = stoppedy; Set ballvy to the stopped value. In most cases, this will be

the value set in stopcc.

 �tid = setInterval

(moveBall,100);

Start the timing interval event.

 return false; Return false to prevent a page reload.

} Close the resume function.

</script>

</head>

<body onload="init();"> The body tag. Note that the init function is invoked when

everything is loaded, including the image files mentioned in

the tags.

...

<form name="f" id="f"

onSubmit="return

change();">

 ...

<button onClick="return

stopcc();">STOP </button>

Button to invoke stopcc. Note use of to position the

next button.

<button onClick="return

resume();">RESUME </

button>

Button to invoke resume.

</form>

Table 3-5.  (contiuned)

(contiuned)

Chapter 3 Bouncing Ball

123

 An img tag to cause the candy.png file to be fully loaded

before anything happens.

 An img tag to cause the reunion.jpg file to be fully loaded

before anything happens.

</body>

</html>

Table 3-5.  (contiuned)

Lastly, the functions in the bouncing video are described in Table 3-6.

Table 3-6.  Functions for Bouncing Video

Function Invoked By/Called By Calls

init Action of onLoad in the body tag

startV Invoked by event handling in the “Click here to start” button moveball

moveball Invoked directly by startv and by action of setInterval moveandcheck

moveandcheck Invoked by moveball

Do understand that the event handling for the ended event invokes the anonymous

(unnamed) function to reset the currenttime for the video and play the video. Note also

that I kept moveBall and moveAndCheck as two distinct functions to follow the example of

the other programs in which moveBall did have other tasks to do.

The code for the bouncing video in shown in Table 3-7. I will include practically all of

it, though much should be familiar to you.

Chapter 3 Bouncing Ball

124

Table 3-7.  Code for the Bouncing Video

Code Explanation

<html>

<head>

 <title>Bouncing Video</title>

 <style>

 #videoE {position: absolute;

display: none; z-index: 1;}

Set up for the video to be on top of the image. Start

with no display.

 #con {position: absolute;} Set up positioning for the div container.

 </style>

 <script type="text/javascript">

 var rightEdge; Right edge of the imaginary box.

 var leftEdge; Left edge.

 var topEdge; Top edge.

 var botEdge; Bottom edge.

 var ballx = 250; Initial x coordinate for bouncing container/video.

 var bally = 260; Initial y coordinate.

 var v; Will hold reference to video.

 var c; Will hold reference to the div, which I call the

container.

 var img; Will hold reference to the image.

 var iWidth; Will hold the width of the image.

 var iHeight; Will hold the height of the image.

 var vWidth; Will hold the width of the video.

 var vHeight; Will hold the height of the video.

 var ballvx = 14; Initial change in horizontal coordinate.

 var ballvy = 18; Initial change in vertical coordinate.

function init(){ Header for the init function.

(contiuned)

Chapter 3 Bouncing Ball

125

Table 3-7.  (contiuned)

Code Explanation

 v = document.

getElementById("videoE");

Get pointers/references to the video object.

 c = document.

getElementById("con");

The div object that serves as a container for the

video.

 img = document.

getElementById("AandF");

The image that fills the div object.

 iwidth = img.clientWidth; Set the width of the image.

 iheight = img.clientHeight; Set the height of the image.

 vwidth = v.videoWidth; Set the width of the video.

 vheight = v.videoHeight; Set the height of the video.

 leftEdge = 5; Set the leftEdge to be a little away from the actual

edge.

 rightEdge = leftEdge+iwidth-

.6*vwidth;

Set the rightEdge so that the bounce happens

quickly.

 topEdge = 5; Set the topEdge to be a little away from the actual

edge.

 botEdge = topEdge+iheight-

.6*vheight;

Set the botEdge so that the bounce happens quickly.

} Close init.

function startV(){ Header for startV.

 v.play(); Start the video playing.

 v.style.display= "block"; Make the video visible.

c.style.top = bally +"px"; Set the initial x coordinate.

 c.style.left = ballx + "px"; Set the y coordinate.

 v.addEventListener('ended',

function(){

Set up event handling for when the video ends, using

the anonymous function.

 v.currentTime = 0; Set currentTime to 0, that is, the start.

(contiuned)

Chapter 3 Bouncing Ball

126

Code Explanation

 v.play(); Start the video playing.

 } Close the definition of the anonymous function.

); Close the addEentListener call.

 moveball(); Call moveball.

 setInterval(moveball,100); Use the setInterval function for repeated calls to

moveball.

} Close startV.

function moveBall(){ Header for moveball.

 moveAndCheck(); Invokes moveAndCheck.

} Close of moveBall.

function moveAndCheck() { Header for moveAndCheck.

 var nballx = ballx + ballvx; Calculate the possible next x value for the moving

object.

 var nbally = bally + ballvy; Calculate the y value.

Now start to do the checks against each edge.

 if (nballx < leftEdge) { If the object is to the left of the leftedge.

 ballvx =-ballvx; Reverse the sign of ballvx.

 nballx = leftEdge; Set the next x position to be the leftEdge.

 } Close the if.

 if (nballx> rightEdge) { If the object is to the right of the rigthEdge.

 nballx = rightEdge; Set the next x to rightEdge.

 ballvx = -ballvx; Reverse sign of ballvx.

 } Close the if.

 if (nbally > botEdge) { If the object is below the botEdge.

 nbally = botEdge; Set the next y position to botEdge.

Table 3-7.  (contiuned)

(contiuned)

Chapter 3 Bouncing Ball

127

Code Explanation

 ballvy =-ballvy; Reverse the sign of ballvy.

 } Close the if.

 if (nbally < topEdge) { If the object is above the topEdge.

 nbally = topEdge; Set the next position to topEdge.

 ballvy = -ballvy; Reverse the sign of ballvy.

 } Close the if.

 ballx = nballx; Now set ballx.

 bally = nbally; Set bally.

 c.style.top=bally+"px"; Set the top attribute using px.

 c.style.left=ballx+"px"; Set the left attribute using px.

} Close the moveAndCheck function.

</script> Close the script element.

</head> Close the head element.

<body onLoad="init();"> Start the body. In the body tag set up the call to

init.

<image id="AandF" src="readers.

jpg" width=auto height=100%/>

Set the image, giving the ID and the source. Setting

width to be auto and then height to be 100% makes

it fit the screen, without distortion. There may be

leftover space to the right.

<div id="con" width="300" > Define a div to serve as the container. Set its width to

match the video.

<video controls width="300"

id="videoE">

Set the video and give an ID. Note: the controls are

present but difficult to use.

 <source src="talk.theora.ogv" Three video clips are provided. They are suggested for

different browsers.

 type="video/ogg" />

Table 3-7.  (contiuned)

(contiuned)

Chapter 3 Bouncing Ball

128

Code Explanation

 <source src="talk.mp4video.mp4"

 type="video/mp4" />

 <source src="talk.webvmp8.webm"

 type = "video/webm" />

 �Sorry, your browser doesn't

support embedded videos.

An error message will be displayed as appropriate.

</video> Close the video element.

</div> Close the div element.

<button onclick="startV()">

Click to start </button>

Button to provide user interaction. This will invoke

startV.

</body> Close the body element.

</html> Close the html element.

Table 3-7.  (contiuned)

There are many ways you can make applications like this for yourself. You can select

your own image for the ball and experiment with the colors for the walls, with or without

the gradients. You can change the position and the dimensions of each wall. You can

add text and HTML markup to the page. You can change the look of the form. You can

add the form and other features found in the first bouncing applications to the bouncing

video. Of course, you can add your own video and images for the background. A useful

addition would be a way to access the controls that is not moving around on the screen.

You can include more than one ball, keeping track of the positions of each. If you

decide to use two balls, you need two sets of variables and two lines of code for each one

line you had before. One systematic way to do this is to use the search function in the editor

to find all instances of ball and, for each line, substitute two lines, so in place of ballx, you

have ball1x and ball2x, and in place of the var ballx = 50; use the following:

var ball1x = 50;

var ball2x = 250;

This puts the second ball 200 pixels over on the canvas.

You would also need a second set of all the comparisons for the walls.

Chapter 3 Bouncing Ball

129

If you want to use more than two balls, you may want to consider using arrays.

Subsequent chapters will show you how to handle sets of objects.

You also can try writing code that slows the ball each time it hits a wall. This is a nice

effect and does simulate a real physical result. In each of the places in the code where the

direction is changed by changing the sign of the appropriate variable, add in a factor to

decrease the absolute value. For example, if I chose to decrease the value by 10 percent, I

would write the following:

 if (nballx > boxBoundx) {

 ballvx =-ballvx *.9;

 nballx = boxBoundx;

 }

This means that the incremental change in the vertical direction would go down to

90 percent of what it was.

You can build on and/or be inspired by the cotton candy game by using your own

photos and making the game more game-like. Think about a test for the resting place

being good enough. Limit the number of stop and resume actions. Study the examples in

the rest of this text (and move on the HTML5 and JavaScript Projects book) to learn other

actions, such as use of mouse or touch.

�Testing and Uploading the Application
The first and third applications are complete in the HTML documents. The second and

fourth applications require the image files to be present in the same folder, and the fifth

requires the image and the videos. You can access files anywhere on the Web, but you

need to make sure you include the correct address. For example, if you upload the HTML

document to a folder called myGames and upload pearl.jpg to a subfolder of myGames

named images, the line indicating this must be

img.src = "images/pearl.jpg";

You also must use accurate file extensions, such as JPG, that indicate the correct

file type. Some browsers are forgiving, but many are not. You can try to submit bad

data and see the response using different browsers. However, for all of this, you should

respect intellectual property rights and not use images or videos for which you have not

obtained permission.

Chapter 3 Bouncing Ball

130

�Summary
In this chapter, you learned how to create an application with animation that changes

based on input from the user. We covered a number of programming and HTML5

features, including the following:

•	 Using setInterval to set up a timing event for the animation and

clearInterval to top the event

•	 Validating form input

•	 Using programmer-defined functions to reposition a circle or an

image horizontally and vertically to simulate a bouncing ball

•	 Testing for virtual collisions

•	 Drawing rectangles, images, and circles, including gradients for the

coloring

•	 Using button elements

•	 Ensuring downloading of image files

•	 Moving a video element

•	 Starting a video to comply with requirements for user participation

•	 Restarting a video

The next chapter describes the cannonball and slingshot games in which the player

attempts to hit targets. These applications use the same programming and HTML5

features we used to produce the animations but take them a step further. You also see an

example of animation in the rock-paper-scissors implementation in Chapter 8.

Chapter 3 Bouncing Ball

http://dx.doi.org/10.1007/978-1-4842-4155-4_8

131

CHAPTER 4

Cannonball and Slingshot
In this chapter, we cover the following:

•	 Maintaining a list of objects to draw on the screen

•	 Rotating objects drawn on the screen

•	 Mouse drag-and-drop operations

•	 Calculations to simulate ballistic motion (effects of gravity) and

collisions

�Introduction
This chapter demonstrates another example of animation, in this case simulation of

ballistics, also called projectile motion. A ball or ball-like object maintains a constant

horizontal (x) displacement, with the vertical displacement changing as it would due to

gravity. The resulting motion is an arc. The ball stops when it (virtually) hits the ground

or the target. The code you’ll see produces the animation using the same technique

demonstrated for the ball bouncing in a box. The code repositions the ball and redraws

the scene at fixed intervals. We will look at three examples.

•	 A very simple ballistics simulation. We’ll look at a ball taking off

and traveling in an arc before hitting a target or the ground. The

parameters of flight are horizontal and initial vertical speeds, which

are set by the player using form input fields. The ball simply stops

when it hits the target or the ground.

•	 An improved cannonball, with a rectangle representing the cannon

tilted at an angle. The parameters of flight are the speed out of the

cannon and the angle of the cannon. Again, these are set by the

player using form input fields. The program calculates the initial

horizontal and vertical displacement values.

© Jeanine Meyer 2023
J. Meyer, The Essential Guide to HTML5, https://doi.org/10.1007/978-1-4842-8722-4_4

https://doi.org/10.1007/978-1-4842-8722-4_4

132

•	 A slingshot. The parameters of flight are determined by the player

dragging, and then releasing, a ball shape tethered to a stick drawing

representing a slingshot. The speed is determined by the distance

from the ball to a place on the slingshot. The angle is the angle from

the horizontal of this part of the slingshot.

Figure 4-1 shows the simple (no cannon) application.

Figure 4-1.  The ball lands on the ground

Chapter 4 Cannonball and Slingshot

133

Figure 4-2 shows the opening screen for the second application. The target is an

Image, and the rectangle representing the cannon can be rotated. Notice the controls

refer to an angle and an initial velocity.

Figure 4-2.  Rotating cannon with image as target

Figure 4-3 shows the scene after a successful hit. Notice that the cannon is rotated,

and the original image for the target has been replaced with a new image.

Chapter 4 Cannonball and Slingshot

134

Figure 4-3.  After firing the cannon and hitting target

Figure 4-4 shows the opening screen of the slingshot application. This application is

similar to the cannon, but the parameters of flight are set by the player using a mouse to

drag on the ball (representing the rock in the slingshot), and the target is now a chicken.

Figure 4-4.  Opening screen of the slingshot application

For the slingshot, I decided I wanted the ball to keep going until it hit the ground.

However, if the chicken was hit, I wanted it to be replaced by feathers, as shown in

Figure 4-5. Notice that the strings of the slingshot remain where they were when the

mouse button was released and the ball took flight. I found I needed more time looking

at the strings to plan my next shot. If you want, you can change the game so that the

strings snap back to their original position or create a new-game button. In my example,

the game is replayed by reloading the HTML file.

Chapter 4 Cannonball and Slingshot

135

Figure 4-5.  The ball lands on ground after hitting the chicken, where only
feathers remain

The programming for these applications uses many of the same techniques

demonstrated in the bouncing ball applications. The repositioning of the ball in flight

is only as different as it needs to be to simulate the effects of the vertical displacement

changing because of gravity. The slingshot application provides a new way for the player

to interact with the application, using drag-and-drop actions with the mouse.

The cannonball with the cannon and the slingshot use drawing features for the

cannon and slingshot and external image files for the original targets and hit targets. If

you want to change the targets, you’ll need to find image files and upload them with the

application.

�Critical Requirements
Our first requirement is to produce animation by setting up an event to occur at fixed

intervals of time and then setting up a function to handle the event by repositioning

the ball and checking for collisions. We covered this in the previous chapter with the

bouncing ball application. What’s new here is the calculation for simulating gravity. The

calculation indicated by a simple physics model works out a new vertical displacement

based on changing the vertical displacement by a constant amount and then computing

the average of the old and new displacements to compute the new position.

•	 The horizontal displacement (held by variable dx) is the horizontal

velocity (horvelocity) and does not change. In code, it’s dx =

horvelocity;.

•	 The vertical velocity at the start of the interval is verticalvel1.

Chapter 4 Cannonball and Slingshot

136

•	 The vertical velocity at end of the interval is verticalvel1 plus

the acceleration amount (gravity). In code, it’s verticalvel2 =

verticalvel1 + gravity;.

•	 The vertical displacement for the interval (dy) is the average of

verticalvel1 and verticalvel2. In code, it’s dy = (verticalvel1

+ verticalvel2)*.5;.

This is a standard way of simulating gravity or any other constant acceleration.

Note I made up my value for gravity to produce a pleasing arc. You can use a
standard value, but you’ll need to do research to assign realistic values for the
starting velocity out of the mouth of the cannon and for a slingshot. You also need
to determine the mapping between pixels and distances. The factor would be
different for the cannonball and the slingshot.

The second version of the program must rotate the cannon based on either the

initial values or the player’s input for the velocity out of the mouth of the cannon and the

cannon angle and calculate the horizontal and vertical values based on these values.

The third version of the program, the slingshot, must allow the player to press and

hold the mouse button and drag the ball along with the strings of the slingshot and then

let the mouse button up to release the ball. The motion parameters are calculated based

on the angle and the distance of the ball from the top of the slingshot.

Both the second and third versions of the program require a way to replace the target

image with another image.

�HTML5, CSS, and JavaScript Features
Now let’s look at the specific features of HTML5 and JavaScript that provide what we

need to implement the ballistics simulation applications. Luckily, we can build on

material covered in previous chapters, specifically the general structure of an HTML

document, using a canvas element, programmer-defined and built-in functions, a form

element, and variables. Let’s start with programmer-defined objects and using arrays.

Chapter 4 Cannonball and Slingshot

137

�Arrays and Programmer-Defined Objects
HTML5 lets you draw on a canvas, but once something is drawn, it’s as if paint or ink

were laid down; the thing drawn doesn’t retain its individual identity. HTML5 is not

like a system with real 3D modeling in which objects are positioned on a stage and can

be individually moved and rotated. However, we can still produce the same effects,

including rotation of individual objects. In later chapters, we move objects around in the

browser window.

Because these applications have a somewhat more complicated display, I decided

to develop a more systematic approach to drawing and redrawing different things on the

canvas. To that end, I created an array called everything that holds the list of objects

to be drawn on the canvas. Think of an array as a set or, more accurately, a sequence

of items. In previous chapters, we discussed variables set up to hold values such as

numbers or character strings. An array is another type of value. My everything array

will serve as a to-do list of what needs to be drawn on the canvas. My approach does

draw the items in a certain order, which does mean that the ground is on top of the feet

of the chicken in the Slingshot program. My code also determined the location of certain

objects in the everything array, using the targetIndex and cannonIndex variables.

I am using the term objects in both the English and the programming sense. In

programming terms, an object consists of properties and methods, that is, data and

coding or behavior. In the annotated links example described in the first chapter, I

demonstrated the write method of the document object. I used the variable ctx, which

is of type 2D context of a canvas object, methods such as fillRect, and properties

such as fillStyle. These were built-in; that is, they were already defined objects in

HTML5’s version of JavaScript. For the ballistics applications, I defined my own objects,

specifically Ball, Picture, myRectangle, and Sling. Each of these different objects

includes the definition of a draw method as well as properties indicating position and

dimensions. I did this so I can draw each of a list of things. The appropriate draw method

accesses the properties to determine what and where to draw. I also included a way to

rotate individual objects.

Defining an object is straightforward: I simply define a function called the

constructor function for Ball, Picture, myRectangle, and Sling , and use these functions

with the operator new to assign the values to variables. There is a convention that the

constructor function start with an uppercase letter. I can then write code using the

familiar dot notation to access or assign the properties and to invoke methods I’ve set up

in the constructor function. Here is the constructor function for a Ball object:

Chapter 4 Cannonball and Slingshot

138

function Ball(sx,sy,rad,styleString) {

 this.sx = sx;

 this.sy = sy;

 this.rad = rad;

 this.draw = drawball;

 this.moveit = moveball;

 this.fillstyle = styleString;

}

The term this refers to the object that’s created when this function is used with

the keyword new. The fact that this.draw and this.moveit are assigned the names

of functions is not obvious from looking at the code, but that’s what happens. The

definitions of those two functions follow. Notice that they each use the term this to get

at the properties necessary to draw and move the object.

function drawball() {

 ctx.fillStyle=this.fillstyle;

 ctx.beginPath();

 ctx.arc(this.sx,this.sy,this.rad,0,Math.PI*2,true);

 ctx.fill();

}

Note  JavaScript has started to add to its support of classes and objects, though
it still does not include full inheritance. A relevant website is the following:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Classes

The drawBall function draws a filled-in circle, a complete arc, on the canvas. The

color of the circle is the color set when this Ball object was created.

The function moveBall doesn’t move anything immediately. Looking at the issue

abstractly, moveBall changes where the application positions the object. The function

changes the values of the sx and sy properties of the object, and when it is displayed

next, these new values are used to make the drawing.

Chapter 4 Cannonball and Slingshot

139

function moveBall(dx,dy) {

 this.sx +=dx;

 this.sy +=dy;

}

The next statement, declaring the variable cball, builds a new object of type Ball

by using the operator new and the function Ball. The parameters to the function are

based on set values for the cannon because I want the ball to appear at the mouth of the

cannon to start out.

var cball = new Ball(cannonx+cannonlength,cannony+cannonht*.5,ballrad,

"rgb(250,0,0)");

The Picture, myRectangle, and Sling functions are similar and will be explained

in a bit. They each specify a draw method. For this application, I only use moveit for

cball, but I defined moveit for the other objects just in case I later want to build on this

application. The variables cannon and ground will be set to hold a new myRectangle, and

the variables target and htarget will be set to hold a new Picture.

Tip N ames made up by programmers are arbitrary, but it’s a good idea to be
consistent in both spelling and case. HTML5 appears to disregard case, in contrast
to a version of HTML called XHTML. Many languages treat upper- and lowercase
as different letters. I generally use lowercase, but I capitalized the first letter of
Ball, Picture, Slingshot, and myRectangle because the convention is that
functions intended to be constructors of objects should start with capital letters.

Each of the variables will be added to the everything array using the array method

push, which adds a new element to the end of the array.

�Rotations and Translations for Drawing
HTML5 lets us translate and rotate drawings. As you saw in Chapters 2 and 3, drawings

are made and objects such as images are positioned in terms of a coordinate system.

An important aspect of the coordinate system is its origin, the 0,0 position. HTML5

provides a way to change the coordinate system. A translate operation changes the

origin. A situation that most of us are familiar with is using a GPS system in our car.

Chapter 4 Cannonball and Slingshot

http://dx.doi.org/10.1007/978-1-4842-4155-4_2
http://dx.doi.org/10.1007/978-1-4842-4155-4_3

140

Directions are given in terms of where we are. You can think of this as resetting the

origin. A rotate operation does a rotation around the origin! The next few paragraphs

take you through some examples. Do take the time to study the examples and make

modifications to see what happens.

Take a look at the following code. I urge you to create this example and then

experiment with it to improve your understanding. The code draws a large red rectangle

on the canvas with the upper corner at (50,50) and a tiny blue square on top of it.

<html>

<head>

 <title>Rectangle</title>

 <script type="text/javascript">

 var ctx;

function init(){

 ctx = document.getElementById('canvas').getContext('2d');

 ctx.fillStyle = "rgb(250,0,0)";

 ctx.fillRect(50,50,100,200);

ctx.fillStyle = "rgb(0,0,250)";

 ctx.fillRect(50,50,5,5);

}

</script>

</head>

<body onLoad="init();">

<canvas id="canvas" width="400" height="300">

Your browser doesn't support the HTML5 element canvas.

</canvas>

</body>

</html>

The result is shown in Figure 4-6.

Chapter 4 Cannonball and Slingshot

141

Figure 4-6.  Rectangle (no rotation)

In this exercise, the goal is to rotate the large rectangle, pivoting on the upper-left

corner where the small blue square is. I want the rotation to be counterclockwise.

One slight complication, common to most programming languages, is that the angle

input for rotations as well as the trigonometry functions must be in radians, not degrees.

Radians were explained in Chapter 2, but here’s a reminder. Instead of 360 degrees in a

full circle, the measurement is based on two times the mathematical constant pi radians

in a circle. Fortunately, we can use the built-in feature of JavaScript, Math.PI. One pi

radians is equivalent to 180 degrees, and pi divided by 2 is equivalent to a right angle, 90

degrees. To specify a rotation of 30 degrees, we use pi divided by 6 or, in coding, Math.

PI/6. To change the init function given previously to do a rotation, I put in a rotation of

negative pi divided by 6 (equivalent to 30 degrees going counterclockwise), draw the red

rectangle, and then rotate back, undoing the rotation, to draw the blue square:

function init(){

 ctx = document.getElementById('canvas').getContext('2d');

 ctx.fillStyle = "rgb(250,0,0)";

 ctx.rotate(-Math.PI/6);

 ctx.fillRect(50,50,100,200);

 ctx.rotate(Math.PI/6);

 ctx.fillStyle = "rgb(0,0,250)";

 ctx.fillRect(50,50,5,5);

}

Chapter 4 Cannonball and Slingshot

http://dx.doi.org/10.1007/978-1-4842-4155-4_2

142

Unfortunately, the drawing in Figure 4-7 is not what I wanted.

Figure 4-7.  Drawing and rotating a rectangle

The problem is the rotation point is at the origin, (0,0) and not at the corner of the

red rectangle. So, I need to write code to perform a translation to reset the origin, then

the rotation, then a translation back in order to draw the next item at the correct place.

I can do this using features of HTML5. All drawing on the canvas is done in terms of a

coordinate system, and I can use the save and restore operations to save the current

coordinate system—the position and orientation of the axes—and then restore it to make

additional drawings.

function init(){

 ctx = document.getElementById('canvas').getContext('2d');

 ctx.fillStyle = "rgb(250,0,0)";

 ctx.save();

 ctx.translate(50,50); //move origin

 ctx.rotate(-Math.PI/6); //do rotation

 ctx.translate(-50,-50); // move origin back

 ctx.fillRect(50,50,100,200); //draw rectangle

 ctx.restore(); //undo all the transformations

 ctx.fillStyle = "rgb(0,0,250)";

 ctx.fillRect(50,50,5,5); //draw little blue square

}

The rotate method expects an angle in radian units, and clockwise is the positive

direction. So my code is rotating 30 degrees counterclockwise, producing what I had in

mind, as shown in Figure 4-8.

Chapter 4 Cannonball and Slingshot

143

Figure 4-8.  Save, translate, rotate, translate, restore

Again, I urge you to modify this example to help you understand transformations

and radians. Make small changes, one statement at a time.

By the way, we can’t expect our players to put in angles using radians. They, and we,

are too accustomed to degrees (90 degrees is a right angle, 180 degrees is your arc when

you make a U-turn, etc.). The program must do the work. The conversion from degrees

to radians is to multiply by pi/180.

Note  Most programming languages use radians for angles in trig functions as
well as rotation operations.

With this background, I add to the information in the everything array indications

as to whether there is to be a rotation and, if so, the required translation point. This was

my idea. It has nothing to do with HTML5 or JavaScript, and it could have been done

differently. The underlying task is to create and maintain information on objects in the

simulated scene. The canvas feature of HTML5 provides a way to draw pictures and

display images, but it does not retain information on objects!

The items in the everything array for the second and third applications are

themselves arrays. The first (0th index) value points to the object. The second (1st index)

is true or false. A value of true means that a rotation angle value and x and y values for

translation follow. In practice, this means that the inner arrays have either two values,

with the last one being false, or five values.

Chapter 4 Cannonball and Slingshot

144

Note A t this point, you may be thinking: she set up a general system just to
rotate the cannon. Why not put in something just for the cannon? The answer is we
could, but the general system does work, and something just for the cannon might
have had just as much coding.

The first application uses horizontal and vertical displacement values picked

up from the form. The player must think of the two separate values. For the second

application, the player inputs two values again, but they are different. One is the speed

out of the mouth of the cannon, and the other is the angle of the cannon. The program

does the rest. The initial and unchanging horizontal displacement and the initial vertical

displacement are calculated from the player’s input: the velocity out of the cannon and

an angle. The calculation is based on standard trigonometry. Luckily, JavaScript provides

the trig functions as part of the Math class of built-in methods.

Figure 4-9 shows the calculation of the displacement values from the out of cannon

and angle values specified by the player. The minus sign for the vertical is due to the way

JavaScript screen coordinates have y values increasing going down the screen.

Figure 4-9.  Calculating horizontal * vertical displacements

At this point, you may want to skip ahead to read about the implementation of the

cannonball applications. You can then come back to read about what is required for the

slingshot.

Chapter 4 Cannonball and Slingshot

145

�Drawing Line Segments
For the slingshot application, I have added a new object type by defining two functions,

Sling and drawsling. My idealized slingshot is represented by four positions, as

shown in Figure 4-10. Please understand that we could have done this in a number of

different ways.

Figure 4-10.  The idealized slingshot

The Sling function resembles the other constructors, for example, Ball.

function Sling(bx,by,s1x,s1y,s2x,s2y,s3x,s3y,styleString) {

 this.bx = bx;

 this.by = by;

 this.s1x = s1x;

 this.s1y = s1y;

 this.s2x = s2x;

 this.s2y = s2y;

 this.s3x = s3x;

 this.s3y = s3y;

 this.strokeStyle = styleString;

 this.draw = drawSling;

 this.moveit = moveSling;

}

Chapter 4 Cannonball and Slingshot

146

The Sling function sets up drawSling to be the function invoked whenever draw

is used in connection with a Sling object. Though it does not happen in the current

application, moveSling would be invoked if you or I build on this application to move the

location of the slingshot.

Drawing the slingshot consists of drawing four line segments based on the four

points. The bx,by point will change as I’ll describe in the next section. HTML5 lets us

draw line segments as part of a path. We’ve already used paths for drawing circles. You

can draw a path as a stroke or as a fill. For the circles, we used the fill method, but for

the slingshot, I just want lines. Drawing a line may involve two steps: move to one end of

the line and then draw it. HTML5 provides the moveTo and lineTo methods. The path is

not drawn until the stroke or fill method is invoked. The drawSling function is a good

illustration of line drawing.

function drawSling() {

 ctx.strokeStyle = this.strokeStyle;

 ctx.lineWidth = 4;

 ctx.beginPath();

 ctx.moveTo(this.bx,this.by);

 ctx.lineTo(this.s1x,this.s1y);

 ctx.moveTo(this.bx,this.by);

 ctx.lineTo(this.s2x,this.s2y);

 ctx.moveTo(this.s1x,this.s1y);

 ctx.lineTo(this.s2x,this.s2y);

 ctx.lineTo(this.s3x,this.s3y);

 ctx.stroke();

}

It does the following:

•	 Adds to the path a line from bx,by to s1x,s1y

•	 Adds to the path a line from bx,by to s2x,s2y

•	 Adds to the path a line from s1x,s1y to s2x,s2y

•	 Adds to the path a line from s2x,s2y to s3x,s3y

Chapter 4 Cannonball and Slingshot

147

As always, the way to learn this is to experiment with your own designs. If there’s

no invocation of moveTo, the next lineTo draws from the destination of the last lineTo.

Think of holding a pen in your hand and either moving it on the paper or lifting it up and

moving without drawing anything. You also can connect arcs. Chapter 5 demonstrates

drawing polygons.

�Mouse Events for Pulling on the Slingshot
The slingshot application replaces form input with mouse drag-and-drop operations.

This is appealing because it’s closer to the physical act of pulling back on a slingshot.

When the player presses the mouse button, it is the first of a sequence of events to be

managed by the program. Here is pseudocode for what needs to be done.

When the player presses the mouse button, check if the mouse is on top of the ball. If

not, do nothing. If so, set a variable named inMotion.

If the mouse is moving, check inMotion. If it is set, move the ball and the strings of the

slingshot. Keep doing this until the mouse button is released.

When the player releases the mouse button, reset inMotion to false. Calculate the

angle and initial velocity of the ball and, from these, calculate the horizontal velocity and

the initial vertical velocity. Start the ball moving.

You can use HTML5 and JavaScript to set up event handling for pressing the

standard (left) mouse button, moving the mouse, and releasing the mouse button. The

code uses a method based on the canvas element directly, not the so-called context.

Here is the code, which is in the init function:

canvas1 = document.getElementById('canvas');

canvas1.addEventListener('mousedown',findball,false);

canvas1.addEventListener('mousemove',moveit,false);

canvas1.addEventListener('mouseup',finish,false);

Now because this event is in terms of the whole canvas, the findBall function

must determine if the mouse is over the ball. The first task is to get the mouse x and y

coordinates. When I wrote this originally, different browsers implement mouse events in

different ways. The following code works for Safari and Chrome:

 mx = ev.pageX;

 my = ev.pageY;

Chapter 4 Cannonball and Slingshot

http://dx.doi.org/10.1007/978-1-4842-4155-4_5

148

Now, the next step is to determine if the (mx,my) point is on the ball. I am repeating

myself, but it is important to understand that the ball is now the equivalent of ink or

paint on canvas, and we can’t go any further without determining whether the (mx,my)

point is on top of the ball. How do we do this? We can calculate how far (mx,my) is from

the center of the ball and see if that’s less than the radius of the ball. There is a standard

formula for distance in the plane. My code is a slight variation on this idea. It makes the

determination by calculating the square of the distance and comparing it to the square

of the ball’s radius. I do this to avoid computing the square root.

Note I n the appendix, I include a program for moving circles connected with
arrows. Because I create the circles as elements defined by HTML markup, I can
use event handling for each circle, and I do not need to write code for checking if
the mouse is on the circle.

If the mouse click was on the ball, that is, within a radius distance of the center of the

ball, this function sets the global variable inMotion to true. The findBall function ends

with a call to drawAll().

Whenever the mouse moves, there’s a call to the moveit function where we check

whether inMotion is true. If it isn’t, nothing happens. If it is, the same code as before

is used to get the mouse coordinates and the ball’s center, and the bx,by values for the

slingshot are set to the mouse coordinates. This has the effect of dragging the ball and

stretching the slingshot strings.

When the mouse button is released, we call the finish function, which doesn’t do

anything if inMotion is not true. When would this happen? If the player is moving the

mouse around not on the ball and pressing and releasing the button.

If inMotion is true, the function immediately sets it to false and does the

calculations to determine the flight of the ball, generating the information that in the

earlier cannonball application was entered by the player using a form. The information

is the angle of the initial path of the rock from a horizontal and the distance of the ball to

the straight part of the slingshot. This is the angle formed by (bx,by) to (s1x, s1y), and

a horizontal lineand and the distance from (bx,by) to (s1x, s1y), more precisely, the

square of the distance.

Chapter 4 Cannonball and Slingshot

149

I use Math.atan2 to do these calculations: calculating an angle from change in x and

change in y. This is a variant of the arctangent function.

I use the distsq function to determine the square of the distance from (bx,by) to

(s1x, s1y). I want to make the velocity dependent on this value. Pulling the strings back

farther would mean a faster flight. I did some experiments and decided that using the

square and dividing by 700 produced a nice arc.

The last step is to put in a call first to drawall() and then to setInterval to set

up the timing event. Again, finish does an analogous job to fire in the cannonball

applications. In the first application, our player entered the horizontal and initial vertical

values. In the second application, the player entered an angle (in degrees) and a velocity

out of the mouth of the cannon, and the program did the rest. In slingshot, we did away

with a form and numbers and provided a way for the player to pull back, or virtually pull

back, on a slingshot. The program had more to do, in terms of responding to both mouse

events and calculations.

Please note that I make no provisions for the player being silly and aiming the

ball away from the chicken or aiming it straight up or pulling the ball down below the

ground. In the latter case, the ball moves up and stops at the ground. Experiment and

decide what checks and messages you would include.

�Changing the List of Items Displayed Using
Array Splice
The last task to explain is the replacement of the target image with another picture. Since

I wanted two different effects, I used different approaches. For the second application,

I wanted the ball to disappear along with the original target and display what I set up

in the variable htarget. What I do is keep track of where the original target was placed

on the everything array and remove it and substitute htarget. Similarly, I remove the

ball from the everything array. For the slingshot operation, I don’t remove the target but

change its img property to be feathers. Note that in the code, chicken and feathers are

Image objects. Each has a src property that points to a file.

 var chicken = new Image();

 chicken.src = "chicken.jpg";

 var feathers = new Image();

 feathers.src = "feathers.gif";

Chapter 4 Cannonball and Slingshot

150

For both of these operations, I use the array method splice. It has two forms: you

can just remove any number of elements or you can remove and then insert elements.

The general form of splice is

arrayname.splice(index where splice is to occur, number of items to be removed, new

item(s) to be added)

If more than one item is to be added, there are more arguments. In my code, I add a

single item, which is itself an array. My representation of objects in the everything array

uses an array for each object. The second argument of the array indicates if there is any

rotation.

The following two lines of code do what I need: remove the target, stick in htarget

with no rotation, and then remove the ball.

everything.splice(targetindex,1,[htarget,false]);

everything.splice(ballindex,1);

By the way, if I simply wanted to remove the last item in an array, I could use the

method pop. In this situation, however, the target may be somewhere in the middle of

the everything array, so I need to write code to keep track of its index value.

�Distance Between Points
There are two places in the slingshot program in which I use the distance between points

or, more accurately, the square of the distance. I need to find out if the mouse cursor is

on top of the ball, and I want to make the initial velocity—the equivalent of the velocity

out of the cannon—depending on the stretch, so to speak, of the slingshot, the distance

(bx,by) to (s1x, s1y). The formula for the distance between two points, x1,y1 and x2,y2,

is the square root of the sum of the squares of (x1-x2) and (y1-y2). I decided to avoid

the computation of taking a square root by just computing the sum of the squares.

This provides the same test for the mouse cursor being on top of the ball. For the other

task, I decided it was okay to use the square of the distance for the initial velocity. I

experimented with some numbers and, as I mentioned earlier, 700 seemed to work.

Chapter 4 Cannonball and Slingshot

151

�Building the Application and Making It Your Own
Let’s now take a look at the code for the basic firing of a cannonball, without a cannon,

based on horizontal and initial vertical speeds; the firing of a cannonball from a cannon,

based on angle and initial speed out of the cannon; and the slingshot, based on angle

and initial speed determined from the position of the mouse. As in previous chapters,

I’ll present the functions and what they call or are called by for each application. In this

case, the tables are similar, though not identical, for all three applications. The calling is

more varied than previous examples in that there are situations in which functions are

invoked because they are named as methods of a programmer-defined object or as part

of a declaration (var) statement. This is a characteristic of object-oriented, event-driven

programming. I’ll also present the complete code for each application in its own table,

along with an explanation of what each line does. Table 4-1 shows the functions for the

basic cannonball application.

Table 4-1.  Functions in the Simplest Cannonball Application

Function Invoked By/Called By Calls

init Action of the onLoad in body tag drawall

drawall Invoked directly by init, fire, change Calls the draw method of all objects

in the everything array; these are

the functions drawBall, drawRects

fire Invoked by action of the onSubmit attribute

in form

drawAll

change Invoked by action of the setInterval

function called in fire

drawall, calls the moveit method

of cBall, which is moveBall

Ball Invoked directly by code in a var statement

MyRectangle Invoked directly by code in a var statement

drawBall Invoked by call of the draw method for the

one Ball object

drawRects Invoked by call of the draw method for the

target object

moveBall Invoked by call of the moveit method for

the one Ball object

Chapter 4 Cannonball and Slingshot

152

Table 4-2 shows the complete code for the simplest application, with the ball moving

in an arc and no actual cannon.

Table 4-2.  The First Cannonball Application

Code Explanation

<html> Opening html tag.

<head> Opening head tag.

 <title>Cannonball</title> Complete title element.

 <style> Opening style tag.

 form { Style for the form.

 width:330px; Width.

 margin:20px; External margin.

 background-color:brown; Set background color for the form.

 padding:20px; Internal padding.

} Close this style.

 </style> Close the style element.

 <script> Opening script tag.

 var cwidth = 600; Set the value for the width of the canvas; used for

clearing.

 var cheight = 400; Set the value for the height of the canvas; used

for clearing.

 var ctx; Variable to hold canvas context.

 var everything = []; Array to hold all objects to be drawn. Initialized as

an empty array.

 var tid; Variable to hold identifier for the timing event.

 var horVelocity; Variable to hold the horizontal velocity (aka

displacement).

 var verticalVel1; Variable to hold vertical displacement at start of

interval.

(continued)

Chapter 4 Cannonball and Slingshot

153

Table 4-2.  (continued)

Code Explanation

 var verticalVel2; Variable to hold vertical displacement at end of

interval, after change by gravity.

 var gravity = 2; Amount of change in vertical displacement.

Arbitrary. Makes for a nice arc.

 var iballx = 20; Initial horizontal coordinate for the ball.

 var ibally = 300; Initial vertical coordinate for the ball.

function Ball(sx,sy,rad,

styleString) {

Start of function to define a Ball object. Use the

parameters to set the properties.

 this.sx = sx; Set the sx property of the this object.

 this.sy = sy; Set the sy property of the this object.

 this.rad = rad; Set the rad property of the this object.

 this.draw = drawBall; Set the draw property of the this object. Since

drawball is the name of a function, this makes

draw a method that can be invoked.

 this.moveit = moveBall; Set the moveit propert to the function moveball.

 this.fillStyle = styleString; Set fillstyle to the value of styleString.

} Close the Ball function.

function drawBall() { Header for the drawball function.

 ctx.fillStyle=this.fillstyle; Set up the fillStyle using the property of this

object.

 ctx.beginPath(); Start a path.

 �ctx.arc(this.sx,this.sy,this.

rad,0,Math.PI*2,true);

Set up to draw a circle.

 ctx.fill(); Draw the path as a filled path.

} Close the function.

function moveBall(dx,dy) { Header for the moveball function.

(continued)

Chapter 4 Cannonball and Slingshot

154

Table 4-2.  (continued)

Code Explanation

 this.sx +=dx; Increment the sx property by dx.

 this.sy +=dy; Increment the sy property by dy.

} Close the function.

var cball = new Ball(iballx,ibally,

10,"rgb(250,0,0)");

Create a new Ball object at the indicated

position, radius, and color. Assign it to the variable

cball. Note that nothing is drawn at this time.

The information is just set up for later use.

function myRectangle(sx,sy,swidth,

sheight,stylestring) {

Header for function to construct a Myrectangle

object.

 this.sx = sx; Sets the sx property of this object.

 this.sy = sy; Sets the sy property

 this.swidth = swidth; Sets the swidth property

 this.sheight = sheight; Sets the sheight property

 this.fillstyle = styleString; Sets the stylestring property

 this.draw = drawRects; Sets the draw property. This sets up a method

that can be invoked.

 this.moveit = moveBall; Sets the moveit property. This sets up a method

that can be invoked. It is not used in this program.

} Close the Myrectangle function.

function drawRects() { Header for the drawrects function.

 �ctx.fillStyle = this.fillStyle; Set the fillStyle.

 �ctx.fillRect(this.sx,this.

sy,this.swidth,this.sheight);

Draw the rectangle using the object properties.

} Close the function.

(continued)

Chapter 4 Cannonball and Slingshot

155

Table 4-2.  (continued)

Code Explanation

var target = new

myRectangle(300,100,

80,200,"rgb(0,5,90)");

Build a Myrectangle object and assign to the

target.

var ground = new myRectangle(0,300,

600,30,"rgb(10,250,0)");

Build a Myrectangle object and assign to the

ground.

everything.push(target); These statements are outside of any function but

do work. Add the target to everything.

everything.push(ground); Add ground.

everything.push(cball); Add cball (which will be drawn last, so on top of

everything else).

function init(){ Header for init function.

 ctx = document.

getElementById('canvas').

getContext('2d');

Set up ctx to draw on the canvas.

 drawall(); Draw everything.

} Close init.

function fire() { Head for fire function.

 cball.sx = iballx; Reposition cball in x.

 cball.sy = ibally; Reposition cball in y.

 horvelocity = Number(document.f.hv.

value);

Set horizontal velocity from form. Make a number.

 verticalvel1 =

Number(document.f.vv.value);

Set initial vertical velocity from form.

 drawall(); Draw everything.

 tid = setInterval(change,100); Start timing event.

 return false; Return false to prevent refresh of HTML page.

} Close the function.

(continued)

Chapter 4 Cannonball and Slingshot

156

Table 4-2.  (continued)

Code Explanation

function drawall() { Function header for drawall.

 �ctx.clearRect(0,0,cwidth,

cheight);

Erase canvas.

 var i; Declare var i for the for loop.

for (i=0;i<everything.length;i++) { For each item in everything array…

 everything[i].draw();} …invoke the object’s draw method. Close for

loop.

} Close the function.

function change() { Header for change function.

 var dx = horvelocity; Set dx to be horvelocity.

 �verticalvel2 = verticalvel1 +

gravity;

Compute new vertical velocity (add gravity).

 �var dy = (verticalvel1 +

verticalvel2)*.5;

Compute average velocity for the time interval.

 verticalvel1 = verticalvel2; Now set old to be new.

 cball.moveit(dx,dy); Move cball the computed amount.

 var bx = cball.sx; Set bx to simplify the if statement.

 var by = cball.sy; …and by.

 �if ((bx>=target.

sx)&&(bx<=(target.sx+target.

swidth))&&

Is the ball within the target horizontally…

 �(by>=target.sy)&&(by<=(target.

sy+target.sheight))) {

…and vertically?

 clearInterval(tid); If so, stop motion.

 } Close the if true clause.

 if (by>=ground.sy) { Is the ball beyond ground?

 clearInterval(tid); If so, stop the motion.

(continued)

Chapter 4 Cannonball and Slingshot

157

Table 4-2.  (continued)

Code Explanation

 } Close the if true clause.

 drawAll(); Draw everything.

} Close the change function.

</script> Close the script element.

</head> Close the head element.

<body onLoad="init();"> Open body and set the call to init.

<canvas id="canvas" width= "600"

height="400">

Define the canvas element.

Your browser doesn't support the

HTML5 element canvas.

Warning to users of noncompliant browsers.

</canvas> Close the canvas element.

 Line break.

<form name="f" id="f"

onSubmit="return fire();">

Starting form tag, with name and ID. This sets up

call to fire.

Set velocities and fire cannonball.

Label and line break.

Horizontal displacement <input

name= "hv" id="hv" value="10" type=

"number" min="-100" max="100" />

Label and specification of input field.

 Line break.

Initial vertical displacement

<input name="vv" id="vv"

value="-25" type="number" min="-

100" max="100"/>

Label and specification of input field.

<input type="submit" value="FIRE"/> Submit input element.

</form> Close form element.

</body> Close the body element.

</html> Close the html element.

Chapter 4 Cannonball and Slingshot

158

You certainly can make improvements to this application, but it probably makes

more sense to first make sure you understand it as is and then move on to the next.

�Cannonball: With Cannon, Angle, and Speed
Our next application adds a rectangle to represent the cannon, a picture for the original

target instead of the simple rectangle used in the first application, and a second picture

for the hit target. The cannon rotates as specified by input in the form. I made the

everything array an array of arrays because I needed a way to add the rotation and

translation information. I also decided to make the result more dramatic when the

cannonball hits the target. This means the code in the change function for checking for

a collision is the same, but the code in the if-true clause removes the old target, puts

in the hit target, and removes the ball. Now, having said all this, most of the coding is the

same. Table 4-3, which shows the functions, has two additional lines for Picture and

drawAnImage.

Chapter 4 Cannonball and Slingshot

159

Table 4-3.  Functions in the Second Cannonball Application

Function Invoked By/Called By Calls

init Action of the onLoad in body tag drawall

drawall Invoked directly by init, fire, change Calls the draw method of all objects

in the everything array; these

are the functions drawball and

drawrects

fire Invoked by action of the onSubmit attribute

in form

drawall

change Invoked by action of the setInterval

function called in fire

drawall, calls the moveit method

of cball, which is moveBall

Ball Invoked directly by code in a var statement

myRectangle Invoked directly by code in a var statement

drawBall Invoked by call of the draw method for the

one Ball object

drawRects Invoked by call of the draw method for the

target object

moveBall Invoked by call of the moveit method for

the one Ball object

Picture Invoked directly by code in var statements

drawAnImage Invoked by call of the draw method for a

Picture object

Table 4-4 shows the complete code for the second application, but only the changed

lines have comments.

Chapter 4 Cannonball and Slingshot

160

Table 4-4.  The Second Cannonball Application

Code Explanation

<html>

<head>

 <title>Cannonball</title>

 <style>

 form {

 width:330px;

 margin:20px;

 background-color:brown;

 padding:20px;

}

 </style>

 <script type="text/javascript">

 var cwidth = 600;

 var cheight = 400;

 var ctx;

 var everything = [];

 var tid;

 var horvelocity;

 var verticalvel1;

 var verticalvel2;

 var gravity = 2;

 var cannonx = 10; x location of cannon.

 var cannony = 280; y location of cannon.

 var cannonLength = 200; Cannon length (i.e., width).

 var cannonht = 20; Cannon height.

(continued)

Chapter 4 Cannonball and Slingshot

161

Table 4-4.  (continued)

Code Explanation

 var ballrad = 10;

 var targetx = 500; x position of target.

 var targety = 50; y position of target.

 var targetw = 85; Target width.

 var targeth = 280; Target height

 var htargetx = 450; x position of the hit target.

 var htargety = 220; y position of the hit target.

 var htargetw = 355; Hit target width.

 var htargeth = 96; Hit target height.

function Ball(sx,sy,rad,styleString) {

 this.sx = sx;

 this.sy = sy;

 this.rad = rad;

 this.draw = drawBall;

 this.moveit = moveBall;

 this.fillstyle = styleString;

}

function drawBall() {

 ctx.fillStyle=this.fillStyle;

 ctx.beginPath();

 //ctx.fillStyle= rgb(0,0,0);

 �ctx.arc(this.sx,this.sy,this.rad,0,Math.

PI*2,true);

 ctx.fill();

}

(continued)

Chapter 4 Cannonball and Slingshot

162

Table 4-4.  (continued)

Code Explanation

function moveBall(dx,dy) {

 this.sx +=dx;

 this.sy +=dy;

}

var cball = new Ball(cannonx+cannonLength,

cannony+cannonht*.5,ballrad,"rgb(250,0,0)");

function myRectangle(sx,sy,swidth,sheight,

stylestring) {

 this.sx = sx;

 this.sy = sy;

 this.swidth = swidth;

 this.sheight = sheight;

 this.fillstyle = stylestring;

 this.draw = drawrects;

 this.moveit = moveball;

}

function drawRects() {

 ctx.fillStyle = this.fillStyle;

 �ctx.fillRect(this.sx,this.sy,this.

swidth,this.sheight);

}

function Picture (sx,sy,swidth,

sheight,filen) {

Header for function to set up

Picture object.

 var imga = new Image(); Create an Image object.

 imga.src=filen; Set the filename.

 this.sx = sx; Set the sx property.

(continued)

Chapter 4 Cannonball and Slingshot

163

Table 4-4.  (continued)

Code Explanation

 This.sy = sy; Set the sy property.

 this.img = imga; Set the img property to imga.

. this.swidth = swidth; Sets the swidth property

 this.sheight = sheight; Sets the sheight property

 this.draw = drawAnImage; Sets the draw property. This will be the

draw method for objects of this type.

 this.moveit = moveBall; This will be the moveit method. Not

used.

} Close the Picture function.

function drawAnImage() { Header for the drawAnImage

function.

 �ctx.drawImage(this.img,this.sx,this.

sy,this.swidth,this.sheight);

Draw image using properties of this

object.

} Close the function.

var target = new Picture(targetx,targety,

targetw,targeth,"hill.jpg");

Construct a new Picture object

and assign it to the target variable.

var htarget = new Picture(htargetx, htargety,

htargetw, htargeth, "plateau.jpg");

Construct a new Picture object

and assign it to the htarget

variable.

var ground = new myRectangle(0,300,

600,30,"rgb(10,250,0)");

Construct a new myRectangle

object and assign it to ground.

var cannon = new myRectangle(cannonx, cannony,

cannonlength,cannonht,"rgb(40,40,0)");

Construct a new myRectangle

object and assign it to cannon.

var targetindex = everything.length; Save what will be the index for

target.

everything.push([target,false]); Add target to everything.

everything.push([ground,false]); Add ground to everything.

(continued)

Chapter 4 Cannonball and Slingshot

164

Table 4-4.  (continued)

Code Explanation

var ballindex = everything.length; Save what will be the index for

cball.

everything.push([cball,false]); Add cball to everything.

var cannonIndex = everything.length; Save what will be the index for

cannon.

everything.push([cannon,true,0, cannonx,

cannony+cannonht*.5]);

Add cannon to everything;

reserve space for rotation.

function init(){

 ctx = document.getElementById

('canvas').getContext('2d');

 drawall();

}

function fire() {

 var angle = Number(document.f.ang.value); Extract angle from form; convert to

number.

 � var outOfCannon = Number(document.f.vo.

value);

Extract velocity out of cannon from

form; convert to number.

 var angleRadians = angle*Math.PI/180; Convert to radians.

 � horvelocity = outOfCannon*Math.

cos(angleradians);

Compute the horizontal velocity.

 �verticalvel1 = - outOfCannon*Math.

sin(angleradians);

Compute the initial vertical velocity.

 everything[cannonIndex][2]= - angleRadians; Set information to rotate the cannon.

 �cball.sx = cannonx + cannonLength*Math.

cos(angleRadians);

Set x for cball at the mouth of

what will be rotated cannon.

 �cball.sy = cannony+cannonht*.5 -

cannonLength*Math.sin(angleRadians);

Set y for cball at the mouth of

what will be rotated cannon.

(continued)

Chapter 4 Cannonball and Slingshot

165

Table 4-4.  (continued)

Code Explanation

 drawAll();

 tid = setInterval(change,100);

 return false;

}

function drawAll() {

ctx.clearRect(0,0,cwidth,cheight);

 var i;

for (i=0;i<everything.length;i++) {

 var ob = everything[i]; Extract array for object.

 if (ob[1]) { Need to translate and rotate?

 ctx.save(); Save original axes.

 ctx.translate(ob[3],ob[4]); Do indicated translation.

 ctx.rotate(ob[2]); Do indicated rotation.

 ctx.translate(-ob[3],-ob[4]); Translate back.

 ob[0].draw(); Draw object.

 ctx.restore(); } Restore axes.

 else { Else (no rotation).

 ob[0].draw();} Do drawing.

 } Close the for loop.

} Close the function.

function change() {

 var dx = horVelocity;

verticalVel2 =verticalVel1 + gravity;

var dy=(verticalVel1 + verticalVel2)*.5;

verticalVel1 = verticalVel2;

(continued)

Chapter 4 Cannonball and Slingshot

166

Table 4-4.  (continued)

Code Explanation

 cball.moveit(dx,dy);

 var bx = cball.sx;

 var by = cball.sy;

 �if ((bx>=target.sx)&&(bx<=(target.

sx+target.swidth))&&

 �(by>=target.sy)&&(by<=(target.sy+target.

sheight))) {

 clearInterval(tid);

 � everything.splice(targetindex,1,[htarget,

false]);

Remove target and insert

htarget.

 everything.splice(ballindex,1); Remove the ball.

 drawall();

 }

 if (by>=ground.sy) {

 clearInterval(tid);

 }

 drawAll();

}

</script>

</head>

<body onLoad="init();">

<canvas id="canvas" width="600" height="400">

Your browser doesn't support the HTML5

element canvas .

</canvas>

(continued)

Chapter 4 Cannonball and Slingshot

167

Table 4-4.  (continued)

Code Explanation

<form name="f" id="f" onSubmit= "return

fire();">

Set velocity, angle and fire cannonball.

Velocity out of cannon <input name= "vo"

id="vo" value="10" type= "number" min="-100"

max="100" />

Label indicating that this is the

velocity out of the mouth of the

cannon.

Angle <input name="ang" id="ang" value="0"

type="number" min= "0" max="80"/>

Label indicating that this is the angle

of the cannon.

<input type="submit" value="FIRE"/>

</form>

</body>

</html>

This application provides many possibilities for you to make it your own. You can

change the cannon, the ball, the ground, and the target. If you don’t want to use images,

you can use drawings for the target and the hit target. You can draw other things on

the canvas. You just need to make sure that the cannonball (or whatever you set your

projectile to be) is on top or wherever you want it to be. You could, for example, make the

ground cover up the ball. You can use an animated GIF for any Image object, including

the htarget. You could also use images for the cannon and the ball. One possibility is to

use an animated GIF file to represent a spinning cannonball. Remember that all image

files referenced in the code must be in the same folder as the uploaded HTML file. If they

are in a different place on the Web, make sure the reference is correct.

The support for audio and video in HTML5 varies across the browsers. You can look

ahead to the presentation of video as a reward for completing the quiz in Chapter 6, and

to the audio presented as part of the rock-paper-scissors game in Chapter 8. If you want

to tackle this subject, it would be great to have a sound when the cannonball hits the

target and a video clip showing the target exploding.

Chapter 4 Cannonball and Slingshot

http://dx.doi.org/10.1007/978-1-4842-4155-4_6
http://dx.doi.org/10.1007/978-1-4842-4155-4_8

168

Moving away from the look of the game, you can invent a scoring system, perhaps

keeping track of attempts versus hits.

�Slingshot: Using a Mouse to Set Parameters
of Flight
The slingshot application is built on the cannonball application. There are differences,

but much is the same. Reviewing and understanding how more complicated

applications are built on simpler ones will help you to create your own work.

Creating the slingshot application involves designing the slingshot, implementing

the mouse events to move the ball and parts of the slingshot, and then firing the ball. The

form is absent because the player’s moves are just the mouse actions. In addition, I used

a somewhat different approach for what to do when the target was hit. I check for the ball

to intersect with an area within the target by 40 pixels. That is, I require the ball to hit the

middle of the chicken! When there’s a hit, I change the target.src value to be another

Image element, going from a picture of a chicken to a picture of feathers. Moreover, I

don’t stop the animation, so the ball stops only when it hits the ground. As I indicated

earlier, I don’t have the slingshot slings return to their original position, as I wanted to

see the position to plan my next attempt.

Table 4-5 shows the functions calling and being called in the slingshot application.

This table is quite similar to the one of the cannonball applications.

Chapter 4 Cannonball and Slingshot

169

Table 4-5.  Functions in the Slingshot Application

Function Invoked By/Called By Calls

init Action of the onLoad in body tag drawall

drawall Invoked directly by init,

change

Calls the draw method of all

objects in the everything array;

these are the functions drawBall,

drawRects, drawSling, and

drawAnImage

findball Invoked by action of addEventListener in

init for the mousedown event

drawall and distsq

distsq Called by findBall

moveit Invoked by action of addEventListener in

init for the mouseMove event

drawAll

finish Invoked by action of the addEventListener

in init for the mouseup event

drawAll and distsq

change Invoked by action of the setInterval

function called in finish

drawAll, calls the moveit method

of cball, which is moveBall

Ball Invoked directly by code in a var statement

Myrectangle Invoked directly by code in a var statement

drawball Invoked by call of the draw method for the

one Ball object

drawrects Invoked by call of the draw method for the

target object

moveball Invoked by call of the moveit method for the

one Ball object

Picture Invoked directly by code in var statements

drawAnImage Invoked by call of the draw method for a

Picture object

Sling Invoked directly by code in var statements

drawsling Invoked by call of the draw method for

mysling

Chapter 4 Cannonball and Slingshot

170

Table 4-6 shows the code for the slingshot application, with most lines commented,

even ones that were the same in the earlier programs. Notice that the form is absent

from the body element. Before looking at the code, try to identify what parts would be the

same as in the cannonball application and what would be different.

Table 4-6.  The Slingshot Application

Code Explanation

<html>

<head>

 <title>Slingshot pulling back</title>

 <script type="text/javascript">

 var cwidth = 1200;

 var cheight = 600;

 var ctx;

 var canvas1;

 var everything = [];

 var tid;

 var startrockx = 100; Starting position x.

 var startrocky = 240; Starting position y.

 var ballx = startrockx; Set ballx.

 var bally = startrocky; Set bally.

 var ballrad = 10;

 var ballradsq = ballrad*ballrad; Save this value.

 var inmotion = false; Flag variable used to check if the rock

is moving.

 var horvelocity; For horizontal velocity.

 var verticalvel1; For vertical velocity at the start of an

interval.

(continued)

Chapter 4 Cannonball and Slingshot

171

Table 4-6.  (continued)

Code Explanation

 var verticalvel2; For vertical velocity at the end of the

interval.

 var gravity = 2; Value of gravity. See my comments.

 var chicken = new Image(); Name of original target.

 chicken.src = "chicken.jpg"; Set the image file.

 var feathers = new Image(); Name of the hit target.

 feathers.src = "feathers.gif"; Set the image file.

function Sling(bx,by,s1x,s1y,s2x,s2y,

s3x,s3y,stylestring) {

Function defining a slingshot based on

the four points plus a color.

 this.bx = bx; Set property bx.

 this.by = by; …by.

 this.s1x = s1x; …s1x.

 this.s1y = s1y; …s1y.

 this.s2x = s2x; …s2x.

 this.s2y = s2y; …s2y.

 this.s3x = s3x; …s3x.

 this.s3y = s3y; …s3y.

 this.strokeStyle = stylestring; …strokeStyle.

 this.draw = drawsling; Set the draw method.

 this.moveit = movesling; Set the move method (not used).

} Close the function.

function drawSling() { Function header for drawsling.

 ctx.strokeStyle = this.strokeStyle; Set this style.

 ctx.lineWidth = 4; Set the line width.

 ctx.beginPath(); Start the path.

(continued)

Chapter 4 Cannonball and Slingshot

172

Table 4-6.  (continued)

Code Explanation

 ctx.moveTo(this.bx,this.by); Move to bx,by.

 ctx.lineTo(this.s1x,this.s1y); Set up to draw to s1x,s1y.

 ctx.moveTo(this.bx,this.by); Move to bx,by.

 ctx.lineTo(this.s2x,this.s2y); Set up to draw to s2x,s2y.

 ctx.moveTo(this.s1x,this.s1y); Move to s1x,s1y.

 ctx.lineTo(this.s2x,this.s2y); Set up to draw to s2x,s2y.

 ctx.lineTo(this.s3x,this.s3y); Draw to s3x,s3y.

 ctx.stroke(); Now draw the path.

} Close the function.

function moveSling(dx,dy) { Header for movesling.

 this.bx +=dx; Add dx to bx.

 this.by +=dy; Add dy to by.

 this.s1x +=dx; Add dx to s1x.

 this.s1y +=dy; Add dy to s1y.

 this.s2x +=dx; Add dx to s2x.

 this.s2y +=dy; Add dy to s2y.

 this.s3x +=dx; Add dx to s3x.

 this.s3y +=dy; Add dy to s3y.

} Close the function.

var mySling= new Sling(startrockx,startrocky,

startrockx+80,startrocky-10,startrockx+80,

startrocky+10,startrockx+70, startrocky+180,

"rgb(120,20,10)");

Build new Sling and assign it to the

mysling variable.

function Ball(sx,sy,rad,stylestring) { Header for Ball.

 this.sx = sx; Set property sx.

 this.sy = sy; …sy.

(continued)

Chapter 4 Cannonball and Slingshot

173

Table 4-6.  (continued)

Code Explanation

 this.rad = rad; …read.

 this.draw = drawball; ….draw.

 this.moveit = moveball; …moveit.

 this.fillstyle = stylestring; …fillstyle.

} Close Ball.

function drawBall() { Header for drawball.

 ctx.fillStyle=this.fillstyle; Set the fillStyle from the property.

 ctx.beginPath(); Start the path.

 �ctx.arc(this.sx,this.sy,this.rad,0,

Math.PI*2,true);

Draw the arc.

 ctx.fill(); Fill.

} Close drawBall.

function moveBall(dx,dy) { Header for moveball. Parameters

have the change in position.

 this.sx +=dx; Increment sx.

 this.sy +=dy; Increment sy.

} Close moveit.

var cball = new Ball(startrockx,startrocky,

ballrad,"rgb(250,0,0)");

Set cBall to be a new Ball object.

function myRectangle(sx,sy,swidth,

sheight,stylestring) {

Header for Myrectangle.

 this.sx = sx; Set the property sx.

 this.sy = sy; …sy.

 this.swidth = swidth; …swidth.

 this.sheight = sheight; ..sheight.

 this.fillstyle = stylestring; …fillStyle.

(continued)

Chapter 4 Cannonball and Slingshot

174

Table 4-6.  (continued)

Code Explanation

 this.draw = drawrects; …draw.

 this.moveit = moveball; …moveit.

} Close Myrectangle.

function drawRects() { Header for drawrects.

 ctx.fillStyle = this.fillstyle; Set fillStyle from the property.

 �ctx.fillRect(this.sx,this.sy,this.

swidth,this.sheight);

Draw.

} Close drawrects.

function Picture (sx,sy,swidth,

sheight,imga) {

Header for Picture.

 this.sx = sx; Set the property sx.

 this.sy = sy; …sy.

 this.img = imga; …img.

 this.swidth = swidth; …swidth.

 this.sheight = sheight; …sheight.

 this.draw = drawAnImage; …drawAnImage.

 this.moveit = moveball; …moveit.

} Close Picture.

function drawAnImage() { Header for drawAnImage.

 �ctx.drawImage(this.img,this.sx,this.

sy,this.swidth,this.sheight);

Uses drawImage.

} Close drawAnImage.

var target = new Picture(700,210,209,

179,chicken);

Build a new Picture object and

assign it to target. Note chicken

here refers to a variable of datatype

Image.

(continued)

Chapter 4 Cannonball and Slingshot

175

Table 4-6.  (continued)

Code Explanation

var ground = new myRectangle(0,370,

1200,30,"rgb(10,250,0)");

Create the rectangle serving as the

ground.

function init(){ Header for init.

 �ctx = document.getElementById('canvas').

getContext('2d');

Set ctx for the canvas context.

 �canvas1 = document.

getElementById('canvas');

Set canvas1 as the variable holding

the canvas element.

 �canvas1.addEventListener('mousedown',

findball,false);

Set up event handling for the

mousedown event.

 �canvas1.addEventListener('mousemove',

moveit,false);

Set up event handling for the

mousemove event.

 �canvas1.addEventListener('mouseup',finish,

false);

Set up event handling for the

mouseup event.

everything.push(target); Note: I have moved these inside the

init function.

Add target to the list.

everything.push(ground); Put the ground on top of the

chicken’s feet.

everything.push(mysling); Add mysling.

everything.push(cball); Add cball.

 drawAll(); Draw everything.

} Close init.

function findBall(ev) { Function header for the mousedown

event.

 var mx; Variable to hold mouse x.

 var my; Variable to hold mouse y.

 mx = ev.pageX; Set mx.

(continued)

Chapter 4 Cannonball and Slingshot

176

Table 4-6.  (continued)

Code Explanation

 my = ev.pageY; Set my.

 �if (distsq(mx,my, cball.sx,cball.sy)

<ballradsq) {

Is the mouse over the ball?

 inmotion = true; Set inmotion.

 drawall(); Draw everything.

 } Close if over ball.

} Close function.

function distsq(x1,y1,x2,y2) { Header for distsq.

 return (x1-x2)*(x1-x2)+(y1-y2)*(y1-y2); Return distance squared.

} Close the function.

function moveit(ev) { Function header for the mousemove

event.

 var mx; For mouse x.

 var my; For mouse y.

 if (inMotion) { In motion?

 mx = ev.pageX; Use it for mx.

 my = ev.pageY; Use offsetY for my.

 cball.sx = mx; Position ball x.

 cball.sy = my; …and y.

 mysling.bx = mx; Position sling bx.

 mysling.by = my; …and by.

 drawall(); Draw everything.

 } Close if in motion.

} Close the function.

(continued)

Chapter 4 Cannonball and Slingshot

177

Table 4-6.  (continued)

Code Explanation

function finish(ev) { Function for mousedown.

 if (inMotion) { In motion?

 inMotion = false; Reset inmotion.

var outOfCannon = distsq(mysling.bx,mysling.

by, mysling.s1x,mysling.s1y)/700;

Base outOfCannon proportional to

square of bx,by to s1x,s1y.

 �var angleRadians = -Math.atan2(mysling.

s1y-mysling.by,mysling.s1x-mysling.bx);

Compute angle.

 �horVelocity = outOfCannon*Math.

cos(angleradians);

Calculate horizontal velocity.

 verticalvel1 = - outOfCannon*Math.

sin(angleradians);

Calculate vertical velocity.

 drawAll(); Draw everything.

 tid = setInterval(change,100); Start animation.

 } Close inmotion text.

} Close finish.

function drawAll() { Header for drawall.

 ctx.clearRect(0,0,cwidth,cheight); Clear the canvas.

 var i; Used for loop over everything.

 for (i=0;i<everything.length;i++) { for loop.

 everything[i].draw(); Draw each object in the everything

array.

 } Close the loop.

} Close drawall.

function change() { Header for change.

 var dx = horVelocity; Set to horvelocity. This will not

change.

(continued)

Chapter 4 Cannonball and Slingshot

178

Table 4-6.  (continued)

Code Explanation

 verticalVel2 = verticalVel1 + gravity; Set the vertical velocity for the end of

the interval.

 �var dy = (verticalVel1 +

verticalVel2)*.5;

Compute the averagle vertical velocity.

 verticalVel1 = verticalVel2; Now set verticalvel1 for the next

iteration.

 cball.moveit(dx,dy); Move the ball the calculated amounts.

 var bx = cball.sx; Access the bx for the next calculation.

 var by = cball.sy; … and the by.

 �if ((bx>=target.sx+40)&&(bx<=(target.

sx+target.swidth-40))&& (by>=target.

sy+40)&&(by<=(target.sy+target.

sheight-40))) {

Check for inside of target (40 pixels).

 target.img = feathers; Change target img value.

 } Close the if clause if a hit.

 if (by>=ground.sy) { Check if the ball is beyond (beneath)

the ground.

 clearInterval(tid); If so, stop the animation.

 } Close the if clauseon on ground test.

 drawAll(); Draw everything.

} Close change.

</script> End of script.

</head> End of head.

<body onLoad="init();"> Body tag. Set up call to init.

<canvas id="canvas" width="1200"

height="600">

Canvas header.

(continued)

Chapter 4 Cannonball and Slingshot

179

Table 4-6.  (continued)

Code Explanation

Your browser doesn't support the HTML5

element canvas.

Message for old browsers.

</canvas> Close of canvas.

 Line break.

Hold mouse down and drag ball. Releasing

the mouse button will shoot the slingshot.

Slingshot remains at the last position.

Reload page to try again.

Instructions for using mouse.

</body> Close of body.

</html> Close of html.

�Testing and Uploading the Application
The “look and feel” of these applications is pretty crude and should inspire you to

improve them! Using images for the original target and the hit target is fun, but you must

remember to include those files when you upload your project and also have the correct

name and extension. At one point, I used a system that automatically renamed JPG files

to be JPEG, and this needed to be corrected. You can choose your own targets. Perhaps

you feel kindly toward chickens!

You’ll need to test that the program performs correctly in three situations: when the

ball plops down to the left of the target, when the ball hits the target, and when the ball

sails over the target. Note that I massaged the values so that the chicken needs to be hit

in the middle, so it is possible for the ball to touch the head or tail and not cause the

feathers to appear.

You can vary the position of the cannon and its target and hit target, and the

slingshot and the chicken and the feathers, by changing the variables such as

startRockx, and you can modify the gravity variable. If you put the slingshot closer to

the target, you can have more ways to hit the chicken: pulling more to the left for a direct

shot versus pulling down for more of a lob. Enjoy!

Chapter 4 Cannonball and Slingshot

180

As I mentioned, you could use an animated GIF for the hit target in the cannonball

and slingshot applications. This would produce a nice effect.

If you do use more and/or bigger pictures or other media, then it would be best to

use a technique to make sure that all the media is downloaded from your website before

being used. I describe such a technique in Chapter 6, which plays a video clip and an

audio clip when the player successfully completes a turn.

�Summary
In this chapter, you learned how to create two ballistics applications. It is important

to understand how they are the same and how they are different. The programming

techniques and HTML5 features included the following:

•	 Programmer-defined objects

•	 setInterval to set up a timing event for the animation, as was done

for the bouncing ball

•	 Building an array using the push method and using the array as a list

of what to display

•	 Modifying arrays using the splice method

•	 Using trig functions and transformations to rotate the cannon and

to resolve the horizontal and vertical velocities in the cannon and

slingshot applications so as to simulate gravity

•	 Using a form for player input

•	 Handling mouse events (mousedown, mousemove, and mouseup), with

addEventListener to obtain player input

•	 Drawing arcs, rectangles, lines, and images on a canvas

The technique of programmer-defined objects and the use of an array of objects to

display will come up again in later chapters. The next chapter focuses on a familiar game

known as either memory or concentration. It uses a different timing event as well as the

Date function, which was introduced in Chapter 1.

Chapter 4 Cannonball and Slingshot

http://dx.doi.org/10.1007/978-1-4842-4155-4_6
http://dx.doi.org/10.1007/978-1-4842-4155-4_1

181

CHAPTER 5

The Memory (aka
Concentration) Game
In this chapter, we cover the following:

•	 Drawing polygons

•	 Placing text on the canvas

•	 Programming techniques for representing information

•	 Programming a pause

•	 Calculating elapsed time

•	 One method of shuffling a set of card objects

�Introduction
This chapter demonstrates two versions of a card game known variously as memory

or concentration. Cards appear face down, and the player turns over two at a time (by

clicking them) in an attempt to find matched pairs. The program removes matches from

the board but (virtually) flips back cards that do not match. When players make all the

matches, the game shows the elapsed time.

The first version of the game I describe uses polygons for the face cards; the second

uses family photos. You’ll notice other differences, which were made to illustrate several

HTML5 features, but I also urge you to think about what the versions have in common.

© Jeanine Meyer 2023
J. Meyer, The Essential Guide to HTML5, https://doi.org/10.1007/978-1-4842-8722-4_5

https://doi.org/10.1007/978-1-4842-8722-4_5

182

Figure 5-1 shows the opening screen of version one. When a player completes the

game, the form that keeps track of matches also shows the elapsed time.

Figure 5-1.  Opening screen of the memory game, version 1

Figure 5-2 displays the result after a player has clicked two cards (the purple

squares). The depicted polygons don’t match, so after a pause, the program replaces

them with images of the card backs, making the cards appear to have flipped over.

Chapter 5 The Memory (aka Concentration) Game

183

Figure 5-2.  Two card fronts: no match

When two cards match, the application removes them and notes the match in the

form (see Figure 5-3).

Chapter 5 The Memory (aka Concentration) Game

184

Figure 5-3.  The application has removed the two cards that matched

As illustrated in Figure 5-4, the game displays the result—in this case, 6 matches in 36

seconds—when the player finishes.

Figure 5-4.  Version 1 of the game after the player has completed it

Chapter 5 The Memory (aka Concentration) Game

185

In version 2 of the game, the card fronts display photographs of people rather than

polygons. And note that although many memory games consider images to be the same

only if they’re completely identical, this one is similar to a 2 of hearts matching a 2 of

diamonds in a deck of playing cards. To illustrate a programming point, we’ll define a

match as the same person, even in differing pictures. This requires a method of encoding

the information we use to determine matching states. Version 2 of the game also

demonstrates writing text on the canvas, as you can see in Figure 5-5, which depicts the

opening screen.

Figure 5-5.  The memory game, version 2, opening screen

To see one possible result of clicking two cards in our new game, look at Figure 5-6.

Chapter 5 The Memory (aka Concentration) Game

186

Figure 5-6.  Nonmatching photos

Because the result shows two different people—after pausing to let the player

view both pictures—the application flips the cards over and lets the player try again.

Figure 5-7 shows a successful selection—two images of the same person (albeit in

different pictures).

Chapter 5 The Memory (aka Concentration) Game

187

Figure 5-7.  A match (different scenes, but the same person)

The application removes matched images from the board. When all cards are

removed, the time taken to complete the game appears along with instructions on how

to play again, as shown in Figure 5-8.

Chapter 5 The Memory (aka Concentration) Game

188

Figure 5-8.  The final screen of the game (photo version); all images have been
matched, so no cards appear

You can play the game using photos available with the source code, but it’s more fun

to use your own. You can start with a small number—say two or three pairs of images—

and then work up to images of the whole family, class, or club. And for version 1 of the

game, you can replace the polygons with your own designs.

�Critical Requirements
The digital versions of the games require ways to represent the card backs (which are all

the same) and the fronts with their distinct polygons or photos. The applications must

also be able to tell which cards match and where cards are on the board. Additionally,

players require feedback. In the real-world game, participants flip over two cards and

look for a match (which takes a few moments). If there’s none, they flip the cards face

down again.

The computer program must show the faces of the selected cards and pause after

revealing the second card so players have time to see the two faces. This pause is an

example of something required for a computer implementation that occurs more or less

naturally when people play the game. The application should also display the current

number of pairs found and, when the game is complete, the length of time participants

took to find them all. The polygon and photo versions of the program use different

approaches to accomplish these tasks.

Chapter 5 The Memory (aka Concentration) Game

189

Here’s a summary of what the two game versions must do:

•	 Draw the card backs.

•	 Shuffle the cards before a player makes an initial selection so the

same array of choices doesn’t appear every time.

•	 Detect when a player clicks a card and distinguish between a first and

a second click.

•	 On detecting a click, show the appropriate card face by drawing

polygons in the case of game version 1 or displaying the correct

photograph for version 2.

•	 Remove pairs that match.

•	 Operate appropriately even if those pesky players do the unexpected,

such as clicking the same card twice or clicking an empty space

formerly occupied by a card.

�HTML5, CSS, JavaScript Features
Let’s go over the specific HTML5 and JavaScript features that provide what we need

to implement the games. We’ll build on material covered previously: the general

structure of HTML documents; how to draw rectangles, images, and paths made up

of line segments on a canvas element; programmer-defined and built-in functions;

programmer objects; the form element; and arrays.

New HTML5 and JavaScript features include the time-out event, the use of Date

objects for the calculation of elapsed time, writing and drawing text on the canvas, and

several useful programming techniques that you’ll find valuable in future applications.

As in the previous chapters, this section describes the HTML5 features and

programming techniques in general terms. You can see all the code in context in the

“Building the Application” section. If you like, you can skip to that section to see the code

and then return here for explanations of how the features work.

Chapter 5 The Memory (aka Concentration) Game

190

�Representing Cards
When we hold a physical card in our hands, we can see what it is. There’s a card face

and back, and the backs are all the same. We can clearly determine the cards’ positions

on the game board and whether their faces or backs show. To implement a computer

game, we must represent—encode—all that information. Encoding is an essential part of

creating many computer applications, not just games.

In this chapter (and throughout the book), I describe one way to accomplish the

task. Keep in mind, though, that there’s rarely just one way to implement a feature of

an application. That said, different strategies for building an application will likely have

some techniques in common.

Our approach to handling cards will employ a programmer-defined object. Creating

a programmer-defined object in JavaScript involves writing the constructor function; in

this case, we’ll call it Card. The advantage of using programmer-defined objects is that

JavaScript provides the dot notation needed to access information and code for objects

of a common type. We did this for the cannonball and slingshot games in Chapter 4.

We’ll give the Card object properties that will hold the card’s location (sx and sy) and

dimensions (sWidth and sHeight), a pointer to a function to draw a back for the card,

and for each case, the information that specifies the appropriate front (info).

In the case of a polygon, the value of info will indicate the number of sides to be

drawn. (In a later section we’ll discuss the code for drawing it.) For a photo card face, the

value will be a reference, img, to an Image object we’ve created. The object will hold a

specific image file along with a number (info) that ties together pictures that match. To

draw the image for the file, we’ll use the built-in drawImage method.

Needless to say, the cards don’t exist as physical entities, with two sides. The

application draws the card’s face or back on the canvas where the player expects to see it.

The function flipBack draws the card’s back. To give the appearance of a removed card,

flipBack effectively erases a card by drawing a rectangle that’s the color of the board.

Both applications use a function named makeDeck to prepare the deck, a process

that includes creation of the Card objects. For the polygon version of the game, we store

the number of sides (from three to eight) in the Card objects. The application draws no

polygons during setup, though. The photos version sets up an array called pairs, listing

the image file names for the photos. You can follow this example to create your own

family or group memory game.

Chapter 5 The Memory (aka Concentration) Game

http://dx.doi.org/10.1007/978-1-4842-4155-4_4

191

Tip I f you use the online code to play the game, as noted earlier, you can
download the image files. To make the game your own, you need to upload the
pictures and then change the code to reference your files. The code indicates what
you need to change.

The makeDeck function creates the Image objects and uses the pairs array to set the

src property to the image object. When the code creates Card objects, it puts in the index

value that controls the pairs array so that matched photos have the same value. As in the

polygon version, the application draws no image on the canvas during the creation of the

deck. On the screen, the cards all appear the same; the information is different, though.

These cards are in fixed positions—shuffling comes later.

The code interprets position information, the sx and sy properties, differently for

Card and Polygon. In the first case, the information refers to the upper-left corner. In the

second case, the value identifies the center of the polygon. You can compute one from

the other, though.

�Using Date for Timing
We need a way to determine how long the player took to make all the matches. JavaScript

provides a way to measure elapsed time. You can view the code in context in the

“Building the Application” section. Here I provide an explanation of how to determine

the number of seconds between two distinct events in a running program.

A call to Date() generates an object with date and timeDate and time information.

The two lines

startTime = new Date();

startTime = Number(startTime.getTime());

store the number of milliseconds (thousands of a second) since the start of 1970 in

the variable startTime. (The reason JavaScript uses 1970 doesn’t matter.) You can do

arithmetic with Date objects, but I have chosen to extract the millisecond values.

When either of our two memory programs determines the game is over, it invokes

Date() again as follows:

var now = new Date();

var nt = Number(now.getTime());

var seconds = Math.floor(.5+(nt-startTime)/1000);

Chapter 5 The Memory (aka Concentration) Game

192

This code

	 1.	 Creates a new Date object and stores it in the variable now.

	 2.	 Extracts the time using getTime, converts it to Number, and

assigns it to the variable nt. This means nt holds the number of

milliseconds from the start of 1970 until the point at which the

code called Date. The program then subtracts the saved starting

time, startTime, from the current time, nt.

	 3.	 Divides by 1,000 to get to seconds.

	 4.	 Adds .5 and invokes Math.floor to round the result up or down

to whole seconds. We want numbers with fractional parts equal

or greater than .5 to be rounded up and numbers less than .5 to be

rounded down.

If you need more precision than seconds provides, omit or modify the last step.

You can use this code whenever you need to calculate time elapsed between two

events in a program.

�Providing a Pause
When we play memory using real cards, we don’t consciously pause before flipping

nonmatching cards face down. But as noted earlier, our computer implementation

must provide a pause so players have time to see the two differing cards. You may recall

from Chapters 3 and 4 that the animation applications—bouncing ball, cannonball,

and slingshot—used the JavaScript function setInterval to set up events at fixed time

intervals. We can employ a related function, setTimeout, in our memory games. (To see

the complete code in context, go to the “Building the Application” section.) Let’s see how

to set up the event and what happens when the pause time runs out.

The setTimeout function sets up a single event, which we can use to impose a pause.

The choose function, called when a player clicks the canvas, first checks the firstPick

variable to determine if the person has made a first or second selection. In either case,

the program draws the card front on the canvas in the same spot as the card back. If the

click was a second choice and the two cards match, the code sets the variable matched

to true or false, depending on whether the cards did or didn’t match. If the application

determines that the game isn’t over, the code invokes

Chapter 5 The Memory (aka Concentration) Game

http://dx.doi.org/10.1007/978-1-4842-4155-4_3
http://dx.doi.org/10.1007/978-1-4842-4155-4_4

193

setTimeout(flipback,1000);

This leads to a call to the flipBack function in 1,000 milliseconds (1 second). The

function flipBack then uses the matched variable to determine whether to redraw card

backs or erase the cards by drawing rectangles with the table background color at the

appropriate card locations.

You can use setTimeout to set up any individual timed events. You need to

specify the time interval and the function you want invoked when the interval expires.

Remember that the time unit is milliseconds.

�Drawing Text
HTML5 includes a mechanism for placing text on the canvas. This provides a much

more dynamic, flexible way to present text than previous versions. You can create some

good effects by combining text placement with the drawing of rectangles, lines, arcs, and

images we’ve already demonstrated. In this section, we outline the steps for placing text

in a canvas element, and we include a short example that you can try. If you want, skip

ahead to the “Building the Application” section to view the complete description of the

code that produces what you see in Figures 5-5 through 5-8 for the photos version of the

memory game.

To put text on the canvas, we write code that sets the font, and then we use fillText

to draw a string of characters starting at a specified x-y location. The following example

creates words using an eclectic set of fonts (see the caution note later in the section):

<html>

<head>

 <title>Fonts</title>

<script type="text/javascript">

var ctx;

function init(){

 ctx = document.getElementById('canvas').getContext('2d');

 ctx.font="15px Lucida Handwriting";

Chapter 5 The Memory (aka Concentration) Game

194

 ctx.fillText("this is Lucida Handwriting", 10, 20);

 ctx.font="italic 30px HarlemNights";

 ctx.fillText("italic HarlemNights",40,80);

 ctx.font="bold 40px HarlemNights";

 ctx.fillText("HarlemNights",100,200);

 ctx.font="30px Accent";

 ctx.fillText("Accent", 200,300);

}

</script>

</head>

<body onLoad="init();">

<canvas id="canvas" width="900" height="400">

Your browser doesn't support the HTML5 element canvas.

</canvas>

</body>

</html>

This HTML document produces the screenshot shown in Figure 5-9.

Figure 5-9.  Text in different fonts drawn on the canvas, produced using the font
and fillText functions

Chapter 5 The Memory (aka Concentration) Game

195

Caution  Make sure you pick fonts that will be present on the computers of all
your players. In Chapter 10, you’ll learn how to use a CSS feature, called font-
family, that provides a systematic way to specify a primary font and backups.

Note that although what you see appears to be text, you’re actually looking at ink on

the canvas—that is, bitmap images of text, not a text field that you can modify in place.

This means that to change the text, we need to write code that will completely erase the

current image. We do so by setting the fillStyle to the value we placed in the variable

tableColor earlier, and use fillRect at the appropriate location and with the necessary

dimensions.

After creating the text image, the next step is to set fillStyle to a color other than

tableColor. We’ll use the color we chose for the card backs. For the opening screen

display of the photograph memory game, here’s the code to set the font used for all text:

ctx.font="bold 20pt sans-serif";

Using the sans-serif font makes sense, since it’s a standard font present on any

computer.

Putting together what we’ve done to this point, here’s the code to display the number

of matches at a particular point in the game:

ctx.fillStyle= tableColor;

ctx.fillRect(10,340,900,100);

ctx.fillStyle=backColor;

ctx.fillText

 ("Number of matches so far: "+String(count),10,360);

The first two statements erase the current tally, and the next two put in the updated

result. The expression "Number of matches so far: "+String(count) deserves more

explanation. It accomplishes two tasks:

•	 It takes the variable count, which is a number, and turns it into a

string of characters.

•	 It concatenates the constant string "Number of matches so far: "

with the result of String(count).

Chapter 5 The Memory (aka Concentration) Game

http://dx.doi.org/10.1007/978-1-4842-4155-4_10

196

The concatenation demonstrates that the plus sign has two meanings in JavaScript.

If the operands are numbers, the sign indicates addition. If the operands are character

strings, it indicates the two strings should be concatenated—put together. A fancy phrase

for a single symbol having several meanings is operator overloading.

What will JavaScript do if one operand is a string and the other a number? The

answer depends on which of the two operands is what datatype. You’ll see examples of

code in which the programmer doesn’t put in the commands to convert text to a number

or vice versa, but the statement works because of the specific order of operations.

I suggest not taking chances, though. Instead, try to remember the rules that govern

interpretation of the plus sign. If you notice that your program increases a number

from, say, 1 to 11 to 111 when you’re expecting 1, 2, 3, your code is concatenating strings

instead of incrementing numbers, and you need to convert strings to numbers.

�Drawing Polygons
Creating polygons provides a good demonstration of HTML5’s drawing facilities. To

understand the code-development process used here for drawing polygons, think of the

geometric figure as a wheel-like shape with spokes emanating from its center to each

of its vertices. The spokes will not appear in the drawings but are to help you, like they

helped me, figure out how to draw a polygon. Figure 5-10 illustrates this with a triangle.

Figure 5-10.  Representing a triangle as a geometric shape can help clarify code
development for drawing polygons; the arrow indicates the first point in the
drawing path

Chapter 5 The Memory (aka Concentration) Game

197

To determine the measure of the angle between spokes, we divide the quantity

2*Math.PI (representing a complete circle) by the number of sides the polygon

has. We use the angle value and the moveTo method to draw the points of the path. The

source code has a simple HTML program drawing a triangle; that is, a variable n is set to

3. You can modify it to draw other regular polygons by changing the statement declaring

and initializing n.

The program draws the polygon as a filled-in path that starts at the point (indicated

by the arrow in Figure 5-10) specified by one-half the value of angle. To get to the point,

we use the moveTo method along with the radius, Math.sin and Math.cos. We then

use the lineTo method for n-1 more points, proceeding in clockwise fashion. For the

triangle, n-1 is two more points. For the octagon, it would be seven more. After running

through a for loop with the lineTo points, we invoke the fill method to produce a

filled-in shape. Here is the critical code for drawing the triangle:

 var ctx;

 var rad = 50;

 var centerX = 200;

 var centerY = 200;

 var n = 3;

 var angle = (2*Math.PI)/n;

 function init(){

 ctx = document.getElementById('canvas').getContext('2d');

 ctx.fillStyle="rgb(255,0,0)";

 var i;

 ctx.beginPath();

 �ctx.moveTo(centerX+rad*Math.cos(-.5*angle),centerY+rad*Math.

sin(-.5*angle));

 for (i=1;i<n;i++) {

 �ctx.lineTo(centerX+rad*Math.cos((i-.5)*angle),

centerY+rad*Math.sin((i-.5)*angle));

 }

 ctx.closePath();

 ctx.fill();

 }

Chapter 5 The Memory (aka Concentration) Game

198

Notice that n is a variable that can be set with different values. You will see something

similar in the program for the memory game using polygons.

Note  Drawing and redrawing polygons takes time, but that doesn’t cause
problems with this application. If a program has a large number of intricate
designs, preparing them ahead of time as pictures may make sense. That
approach, however, requires users to download the files, which can take quite a
while. You need to experiment to see which approach works better overall.

�Shuffling Cards
As noted previously, the memory game requires the program to shuffle the cards before

each round, since we don’t want the cards to appear in the same position time

after time. The best way to shuffle sets of values is the subject of extensive research.

In Chapter 10, which describes the card game called blackjack or 21, you’ll find a

reference to an article that describes a technique claimed to be the most efficient way to

produce a shuffled deck.

For memory/concentration, let’s implement the way I played the game as a child.

I and the others would lay out all the cards and then pick up and swap pairs. When

we thought we had done it a sufficient number of times, we would begin to play. In

this section, we’ll explore a few more concepts behind this approach. (To examine the

shuffle function, you can skip ahead to the “Building the Application” section.)

To write the JavaScript for the swap method of shuffling, we first need to define

“sufficient number of times.” Let’s make that three times the number of cards in the deck,

which we’ve represented in the array variable deck. But since there are no cards, just

data representing cards, what are we swapping? The answer is the information uniquely

defining each card. For the polygon memory game, this is the property info. For the

picture game, it’s info and img.

To get a random card, we use the expression Math.floor(Math.random()*dl), where

dl, standing for deck length, holds the number of cards in the deck. We do this twice to

obtain the pair of cards to be (virtually) swapped. This could produce the same number,

meaning a card is swapped with itself, but that’s not really a concern. If it happens, this

step in this process has no effect. The code mandates a large number of swaps, so one

swap not doing anything is okay.

Chapter 5 The Memory (aka Concentration) Game

http://dx.doi.org/10.1007/978-1-4842-4155-4_10

199

Carrying out the swap is the next challenge, and it requires some temporary storage.

We’ll use one variable, holder, for the polygon version of the game and two variables,

holderImg and holderInfo, for the picture case.

�Implementing Clicking on a Card
The next step is to explain how we implement the player moves, namely, the player

clicking on a card. In HTML5, we can handle the click event employing much the same

approach that we took with the mouseDown event (described in Chapter 4). We’ll use the

addEventListener method.

canvas1 = document.getElementById('canvas');

canvas1.addEventListener('click',choose,false);

This appears in the init function. The choose function must contain code

to determine which card we choose to shuffle. The program must also return the

coordinates of the mouse when the player clicks the canvas. The methodology for

obtaining mouse coordinates is the same as that covered in Chapter 4.

As I have written before, in the previous edition, I used more complex coding to pick

up the mouse coordinates. However, things appeared to have eased in terms of browsers.

The following works in Chrome and Safari:

mx = ev.pageX;

my = ev.pageY;

Because the cards are rectangles, going through the deck and doing compare

operations is relatively easy using the mouse cursor coordinates (mx, my), the location of

the upper-left corner, and the width and height of each card. Here’s how we construct

the if condition:

if ((mx>card.sx)&&(mx<card.sx+card.sWidth)&&(my>card.sy)&&(my<card.sy+card.

sHeight))

Note T he next chapter, which describes the way you create HTML markup at
runtime, shows how to set up event handling for specific elements positioned on
the screen as opposed to using the whole canvas element.

Chapter 5 The Memory (aka Concentration) Game

http://dx.doi.org/10.1007/978-1-4842-4155-4_4
http://dx.doi.org/10.1007/978-1-4842-4155-4_4

200

We clear the variable firstPick and initialize it as true, which indicates that this

is the first of two picks by a player. The program changes the value to false after the

first pick and back to true after the second. Variables like this, which flip back and forth

between two values, are called flags or toggles.

�Preventing Certain Types of Cheating
Note that the specifics of this section apply just to these memory games, but the general

lesson holds for building any interactive application. There are at least two ways a player

can thwart the game. Clicking the same card twice is one; clicking a region where a card

has been removed (that is, the board has been painted over) is another.

To deal with the first case, after the if-true clause that determines whether the

mouse is over a certain card, insert this if statement:

if ((firstPick) || (i!=firstCard)) break;

This line of code triggers an exit from the for statement if the index value (i) is fine,

which happens when either: 1) this is a first pick or 2) this isn’t a first pick and i doesn’t

correspond to the first card chosen.

Preventing the second problem—clicking a “ghost” card—requires more work. When

the application removes cards from the board, in addition to painting over that area of

the canvas, we can assign a value (-1, say) to the sx property. This will mark the card as

having been removed. This is part of the flipBack function. The choose function contains

the code that examines the sx property and does the checking (only if sx is >= 0). The

function incorporates both cheating tests in the following for loop:

for (i=0;i<deck.length;i++){

 var card = deck[i];

 if (card.sx >=0)

if ((mx>card.sx)&&(mx<card.sx+card.sWidth)&&(my>card.sy)&&(my<card.sy+card.

sHeight)) {

 if ((firstPick)|| (i!=firstCard)) break;

 }

}

Chapter 5 The Memory (aka Concentration) Game

201

In the three if statements, the second is the whole clause of the first. The third has

the single statement break, which causes control to leave the for loop. Generally, I

recommend using brackets (for example: { and }) for if true and else clauses, but

here I used the stripped-down format for single statements to show you that format and

also because it seemed clear enough.

Now let’s move on to building our two memory games.

�Building the Application and Making It Your Own
This section presents the complete code for both versions of the game. Because the

applications contain multiple functions, the section provides a table for each game that

tells what each function calls and is called by.

Table 5-1 is the function listing for the polygon version of the memory game. Notice

that some of the invocation of functions is done based on events.

Table 5-1.  Functions in the Polygon Version of the Memory Game

Function Invoked By/Called By Calls

init Invoked in response to the onLoad in the

body tag

makeDeck

shuffle

choose Invoked in response to the

addEventListener in init

Polycard

drawPoly (invoked as the draw

method of a polygon)

flipBack Invoked in response to the setTimeout call

in choose

drawBack Invoked as the draw method for a card in

makedeck and flipBack

Polycard Called in choose

shuffle Called in init

makeDeck Called in init

Card Called by makeDeck

drawPoly Called as the draw method of Polygon in

choose

Chapter 5 The Memory (aka Concentration) Game

202

Table 5-2 shows the commented code for the complete polygon version of the

application. When reviewing it, think about the similarities to applications described in

other chapters. And remember that this illustrates just one way to name the application’s

components and program it. Other ways may work equally well.

Table 5-2.  Complete Code for the Polygon Version of the Memory Game

Code Explanation

<html> Starting html tag.

<head> Starting head tag.

     <title>Memory game using polygons</title> Complete title element.

     <style> Starting style tag.

       form { Specify styling for the form.

       width:330px; Set the width.

       margin:20px; Set the external margin.

       background-color:pink; Set the color.

       Padding:20px; Set the internal padding.

       } Close the style.

       input { Set the styling for input fields.

       text-align:right; Set right alignment—suitable for

numbers.

       } Close the style.

       </style> Close the style element.

     <script type="text/javascript"> Start the script element. The

type specification isn’t necessary

but is included here because you’ll

see it.

       var ctx; Variable that holds the canvas

context.

(continued)

Chapter 5 The Memory (aka Concentration) Game

203

Code Explanation

       var firstPick = true; Declare and initialize firstPick.

       var firstCard; Declare a variable to hold the info

defining the first pick.

       var secondCard; Declare a variable to hold the info

defining the second pick.

       var frontbgcolor = "rgb(251,215,73)"; Set the background color value for

the card fronts.

       var polyColor = "rgb(254,11,0)"; Set the color value for the

polygons.

       var backColor = "rgb(128,0,128)"; Set the color value for card backs.

       var tableColor = "rgb(255,255,255)"; Set the color value for the board

(table).

       var cardRad = 30; Set the radius for the polygons.

       var deck = []; Declare the deck, initially an

empty array.

       var firstsx = 30; Set the position in x of the first

card.

       var firstsy = 50; Set the position in y of the first

card.

       var margin = 30; Set the spacing between cards.

       var cardWidth = 4*cardRad; Set the card width to four times

the radius of the polygons.

       var cardHeight = 4*cardRad; Set the card height to four times

the radius of the polygons.

       var matched; This variable is set in choose and

used in flipback.

       var startTime; This variable is set in init and

used to calculate elapsed time.

Table 5-2.  (continued)

(continued)

Chapter 5 The Memory (aka Concentration) Game

204

Code Explanation

function Card(sx,sy,sWidth,sHeight,info) { Header for the Card function,

setting up card objects.

       this.sx = sx; Set the horizontal coordinate.

       this.sy = sy; Set the vertical coordinate.

       this.sWidth = sWidth; Set the width.

       this.sHeight = sHeight; Set the height.

       this.info = info; Set info (the number of sides).

       this.draw = drawBack; Specify how to draw.

} Close the function.

function makeDeck() { Function header for setting up the

deck.

       var i; Used in the for loop.

       var aCard; Variable to hold the first of a pair

of cards.

       var bCard; Variable to hold the second of a

pair of cards.

       var cx = firstsx; Variable to hold the x coordinate.

Start out at the first x position.

       var cy = firstsy; Will hold the y coordinate. Start

out at the first y position.

       for(i=3;i<9;i++) { Loop to generate cards for

triangles through octagons.

          � aCard = new Card(cx,cy,cardWidth,card

Height,i);

Create a card and position.

           deck.push(aCard); Add to deck.

          � bCard = new Card(cx,cy+cardHeight+

margin,cardWidth,cardHeight,i);

Create a card with the same info,

but after the previous card on the

screen.

Table 5-2.  (continued)

(continued)

Chapter 5 The Memory (aka Concentration) Game

http://this.info

205

Code Explanation

           deck.push(bCard); Add to deck.

           cx = cx+cardWidth+ margin; Increment to allow for card width

plus margin.

           aCard.draw(); Draw the first card on the canvas.

           bCard.draw(); Draw the second card on the

canvas.

       } Close the for loop.

} Close the function.

function shuffle() { Header for shuffle function.

var i; Variable to hold a reference to a

card.

var k; Variable to hold a reference to a

card.

var holder; Variable needed to do the swap.

var dl = deck.length; Variable to hold the number of

cards in the deck.

var nt; Index for the number of swaps.

       for (nt=0;nt<3*dl;nt++) { The for loop.

         i = Math.floor(Math.random()*dl); Get a random card.

         k = Math.floor(Math.random()*dl); Get a random card.

         holder = deck[i].info; Store the info for i.

         deck[i].info = deck[k].info; Put in i info for k.

         deck[k].info = holder; Put into k what was in k.

       } Close the for loop.

} Close function.

Table 5-2.  (continued)

(continued)

Chapter 5 The Memory (aka Concentration) Game

206

Code Explanation

function Polycard(sx,sy,rad,n) { Function header for Polycard.

   this.sx = sx; Set up the x coordinate.

   this.sy = sy; Set up the y coordinate.

   this.rad = rad; Set up the polygon radius.

   this.draw = drawPoly; Set up how to draw.

   this.n = n; Set up number of sides.

   this.angle = (2*Math.PI)/n Compute and store the angle.

} Close the function.

function drawPoly() { Function header.

       ctx.fillStyle= frontbgcolor; Set the front background.

      � ctx.fillRect(this.sx-2*this.rad,this.sy-

2*this.rad,4*this.rad,4*this.rad);

The corner of the rectangle is up

and to the left of the center of the

polygon.

       ctx.beginPath(); Start the path.

       ctx.fillStyle=polyColor; Change to color for polygon.

       var i; Index variable.

       var rad = this.rad; Extract the radius.

      � ctx.moveTo(this.sx+rad*Math.cos

(-.5*this.angle),this.sy+rad*Math.

sin(-.5*this.angle));

Move up to the first point.

       for (i=1;i<this.n;i++) { The for loop for the successive

points.

      � ctx.lineTo(this.sx+rad*Math.cos

((i-.5)*this.angle),this.sy+rad*Math.

sin((i-.5)*this.angle));

Set up drawing of line segments.

       } Close the for loop.

Table 5-2.  (continued)

(continued)

Chapter 5 The Memory (aka Concentration) Game

207

Code Explanation

       ctx.fill(); Fill in the path.

} Close function.

function drawBack() { Function header.

       ctx.fillStyle = backColor; Set card back color.

      � ctx.fillRect(this.sx,this.sy,this.

sWidth,this.sHeight);

Draw rectangle.

} Close function.

function choose(ev) { Function header for choose (click

on a card).

       var mx; Variable to hold mouse x.

       var my; Variable to hold mouse y.

       var pick1; Variable to hold reference to

created Polygon object.

       var pick2; Variable to hold reference to

created Polygon object.

       mx = ev.pageX; Set mx.

       my = ev.pageY; Set my.

       var i; Declare variable for indexing in

the for loop.

       for (i=0;i<deck.length;i++){ Loop through the whole deck.

             var card = deck[i]; Extract a card reference to

simplify the code.

             if (card.sx >=0) Check that card isn’t marked as

having been removed.

            � if ((mx>card.sx)&&(mx<card.sx+card.

sWidth)&&(my>card.sy)&&(my<card.

sy+card.sHeight)) {

And then check if the mouse is

over this card.

Table 5-2.  (continued)

(continued)

Chapter 5 The Memory (aka Concentration) Game

208

Table 5-2.  (continued)

(continued)

Code Explanation

                  � if ((firstPick)||

(i!=firstCard)) break;

If so, check that the player isn’t

clicking the first card again, and if

this is true, leave the for loop.

             } Close the if true clause.

       } Close the for loop.

       if (i<deck.length) { Was the for loop exited early?

             if (firstPick) { If this is a first pick…

                   firstCard = i; …Set firstcard to reference

the card in the deck

                   firstPick = false; Set firstpick to false.

                  � pick1 = new Polycard(card.

sx+cardwidth*.5,card.

sy+cardHeight*.5,

cardRad,card.info);

Create polygon with its

coordinates at the center.

                   pick1.draw(); Draw polygon.

             } Close if first pick.

             else { Else…

                   secondCard = i; …Set secondcard to reference

the card in the deck.

                  � pick2 = new Polycard(card.

sx+cardWidth*.5,card.

sy+cardHeight*.5,

cardRad,card.info);

Create a polygon with its

coordinates at the center.

                   pick2.draw(); Draw the polygon.

                  � if (deck[i].

info==deck[firstCard].info) {

Check for a match.

                         matched = true; Set matched to true.

Chapter 5 The Memory (aka Concentration) Game

http://card.info
http://card.info

209

Code Explanation

                        � var nm =

1+Number(document.f.

count.value);

Increment the number of matches.

                        � document.f.count.value

= String(nm);

Display the new count.

                        � if (nm>= .5*deck.

length) {

Check if the game is over.

                              � var now = new

Date();

Get new Date info.

                              � var nt =

Number(now.

getTime());

Extract and convert the time.

                              � var seconds =

Math.floor

(.5+(nt-

startTime)/1000);

Compute the seconds elapsed.

document.f.elapsed.value = String(seconds); Output the time.

                         } Close if this is the end of the

game.

                   } Close if there’s a match.

                   else { Else…

                         matched = false; …Set matched to false.

                   } Close the else clause.

                   firstPick = true; Reset firstpick.

                   setTimeOut(flipback,1000); Set up the pause.

             } Close not first pick.

       } Close good pick (click a card—

for loop exited early).

Table 5-2.  (continued)

(continued)

Chapter 5 The Memory (aka Concentration) Game

210

Code Explanation

} Close the function.

function flipBack() { Function header—flipback

handling after the pause.

       if (!matched) { If no match…

       deck[firstcard].draw(); …Draw the card back.

 deck[secondCard].draw(); …Draw the card back.

 } …Close the clause.

       else { Else need to remove cards.

             ctx.fillStyle = tableColor; Set to the table/board color.

                  � ctx.fillRect(deck

[secondCard].sx,

deck[secondCard].sy,

deck[secondCard].

sWidth,deck[secondCard].

sHeight);

Draw over the card.

                  � ctx.fillRect(deck[firstCard].

sx,deck[firstCard].

sy,deck[firstCard].

sWidth,deck[firstCard].

sHeight);

Draw over the card.

                   deck[secondCard].sx = -1; Set this so the card won’t be

checked.

                   deck[firstCard].sx = -1; Set this so the card won’t be

checked.

       } Close if there’s no match.

} Close the function.

Table 5-2.  (continued)

(continued)

Chapter 5 The Memory (aka Concentration) Game

211

Code Explanation

function init(){ Function header init.

   � ctx = document.getElementById('canvas').

getContext('2d');

Set ctx to do all the drawing.

    canvas1 = document.getElementById('canvas'); Set canvas1 for event handling.

   � canvas1.addEventListener('click',choose,

false);

Set up event handling.

    makeDeck(); Create the deck.

    document.f.count.value = "0"; Initialize the visible count.

    document.f.elapsed.value = ""; Clear any old value.

    starttime = new Date(); First step to setting the starting

time.

    starttime = Number(starttime.getTime()); Reuse the variable to set the

milliseconds from benchmark.

    shuffle(); Shuffle the card info values.

} Close the function.

</script> Close the script element.

</head> Close the head element.

<body onLoad="init();"> Body tag, set up init.

<canvas id="canvas" width="900" height="400"> Canvas start tag.

Your browser doesn't support the HTML5 element

canvas.

Warning message.

</canvas> Close the canvas element.

 Line break before instructions.

Click on two cards to see if you have a match. Instructions.

<form name="f"> Form start tag.

Table 5-2.  (continued)

(continued)

Chapter 5 The Memory (aka Concentration) Game

212

Code Explanation

Number of matches: <input type="text"

name="count" value="0" size="1"/>

Label and input element used for

output.

<p> Paragraph break.

Time taken to complete puzzle: <input

type="text" name="elapsed" value=" " size="4"/>

seconds.

Label and input element used for

output.

</form> Close form.

</body> Close body.

</html> Close html.

Table 5-2.  (continued)

Whatever programming choices you make, put comments in your code (using two

slashes per line: //) and include blank lines. You don’t need to comment every line,

but doing a decent job of commenting will serve you well when you have to go back to

your code to make improvements. What is even more important than comments is the

naming of variables and functions.

You can change this game by changing the font, font size, color, and background

color for the form. More ways to make the application your own are suggested later in

this section.

The version of the memory game that uses pictures has much the same structure as

the polygon version. It doesn’t require a separate function to draw the picture. Table 5-3

is the function listing for this version of the game.

Chapter 5 The Memory (aka Concentration) Game

213

Table 5-3.  Functions in the Pictures Version of the Memory Game

Function Invoked By/Called By Calls

init Invoked in response to the onLoad in the body tag makeDeck

shuffle

choose Invoked in response to the addEventListener in init

flipBack Invoked in response to the setTimeout call in choose draw method for Card

objects

drawBack Invoked as the draw method for a card in makeDeck and

flipBack

shuffle Called in init

makedeck Called in init

Card Called by makeDeck

The code for the pictures version of the memory game is similar to that for the

polygon version. Most of the logic is the same. But because this example demonstrates

the writing of text on the canvas, the HTML document doesn’t have a form element. The

code follows in Table 5-4, with comments on the lines that are different. I also indicate

where you would put in the names of the image files for your photographs. Before

looking at this second version of the memory game, think about which parts are likely to

be the same and which may be different.

Chapter 5 The Memory (aka Concentration) Game

214

Table 5-4.  Complete Code for the Photos Version of the Memory Game

Code Explanation

<html>

<head>

 <title>Memory game using pictures</title> Complete title element.

 <script type="text/javascript"> Header for script element.

 var ctx; Will hold context for the canvas.

 var firstPick = true; Boolean (aka a flag) starts with true.

 var firstCard = -1; Will hold index into the deck for the

first card. The -1 is an invalid number.

 var secondCard; Will hold second card index into deck.

 var backColor = "rgb(128,0,128)"; Color for card backs.

 var tableColor = "rgb(255,255,255)"; Used to erase cards.

 var deck = []; The deck array will be populated in

makedeck.

 var firstsx = 30; Horizontal coordinate of first row of

cards.

 var firstsy = 50; Vertical coordinate.

 var margin = 30; Space between cards.

 var cardWidth = 100; You may need to change this if you

want your pictures to be a different

width…

 var cardHeight = 100; …and/or height.

 var matched;

 var startTime;

 var finished = false; Used to stop extra erasing at end.

 var count = 0; Needed to keep count internally.

(continued)

Chapter 5 The Memory (aka Concentration) Game

215

Code Explanation

 var pairs = [The array of pairs of image files for

the five people. This array of arrays

contains the association of the two

picture for each of the five people.

["anneGorge.jpg" , "anneNow.jpg"],[

"esther.jpg" , "pigtailEsther.jpg"],[

"pigtailJeanine.jpg" , "jeanineGorge.jpg"

],["pigtailAviva.jpg" , "avivacuba.jpg"],[

"pigtailAnnika.jpg" , "annikaTooth.jpg"]

This is where you put in the names of

your picture files.

You can use any number of paired

pictures, but notice how the array

holding the last pair does not have a

comma after the bracket.

]; Close the deck array.

function Card(sx,sy,sWidth,sHeight, img,

info) {

Header for Card contructor function.

 this.sx = sx; Sets the horizontal location using the

parameter…

 this.sy = sy; …the vertical.

 this.sWidth = sWidth; …the width.

 this.sHeight = sHeight; …the height.

 this.info = info; Indicates matches.

 this.img = img; Img reference.

 this.draw = drawBack; Sets the function that will draw the

card back.

} Close of Card.

Table 5-4.  (continued)

(continued)

Chapter 5 The Memory (aka Concentration) Game

http://this.info

216

Code Explanation

function makeDeck() { Header for makedeck.

 var i; Used in the loop.

 var acard; The first of two cards that will

match…

 var bcard; …the second.

 var pica; The picture that will go into acard…

 var picb; …bcard.

 var cx = firstsx; Horizontal location.

 var cy = firstsy; Vertical location.

 for(i=0;i<pairs.length;i++) { Loop to extract information from the

pairs array.

 pica = new Image(); Create the Image object.

 pica.src = pairs[i][0]; Set to the first file.

 �acard = new Card(cx,cy,cardWidth,

cardHeight,pica,i);

Create Card.

 deck.push(acard); Add card to the deck.

 picb = new Image(); Create the Image object.

 picb.src = pairs[i][1]; Set to the second picture file.

bcard = new Card(cx,cy+cardHeight+margin,

cardWidth,cardHeight,picb,i);

Create Card. Notice that both the

acard and the bcard have the same

value in the parameter that will be

stored in the info property. Notice

also one is on top vertically.

 deck.push(bcard); Add card to the deck.

 cx = cx+cardWidth+ margin; Get ready for the next pair.

 acard.draw(); Draw the acard.

Table 5-4.  (continued)

(continued)

Chapter 5 The Memory (aka Concentration) Game

217

Code Explanation

 bcard.draw(); Draw the bcard.

 } Close the loop.

} Close makedeck.

function shuffle() { Header for shuffle.

var i;

var k;

var holderInfo; Temporary place for the swap.

var holderImg; Temporary place for the swap.

var dl = deck.length Number of cards.

var nt; Number of times of swapping.

 for (nt=0;nt<3*dl;nt++) { do the swap 3 times deck.

length times

 i = Math.floor(Math.random()*dl); Choose two random numbers.

 k = Math.floor(Math.random()*dl); It is OK if they are the same.

 holderInfo = deck[i].info; Save the info.

 holderImg = deck[i].img; Save the img.

 deck[i].info = deck[k].info; Put k’s info into i.

 deck[i].img = deck[k].img; Put k’s img into i.

 deck[k].info = holderInfo; Set to the original info.

 deck[k].img = holderImg; Set to the original img.

 } Close the for loop.

} Close the shuffle.

function drawBack() { Header for drawback.

ctx.fillStyle = backColor; Set for the color of card back.

Table 5-4.  (continued)

(continued)

Chapter 5 The Memory (aka Concentration) Game

218

Code Explanation

ctx.fillRect(this.sx,this.sy,this.

sWidth,this.sHeight);

Draw a rectangle.

} Close drawback.

function choose(ev) { Header for choose. This is invoked by

event handling for the mouse click.

 var out; Used for message to be displayed.

 var mx; The mouse x coordinate.

 var my; The mouse y coordinate.

 var pick1; First pick.

 var pick2; Second pick.

 mx = ev.pageX; Extract the x coordinate from the event

ev.

 my = ev.pageY; Extract the y coordinate.

 var i; Used for loop.

 for (i=0;i<deck.length;i++){ for loop to go through deck

determining which card has been

clicked.

 var card = deck[i]; Extract a card. This is to simplify the

rest of the code.

 if (card.sx >=0) This is the way to avoid checking for

clicking this space.

 �if ((mx>card.sx)&&(mx<card.sx+card.

sWidth)&&(my>card.sy)&&(my<card.sy+card.

sHeight)) {

Check for being on a given card.

 if ((firstPick)|| (i==firstCard)) { Leave for-loop for firstcard or if

player picked the same card twice.

Table 5-4.  (continued)

(continued)

Chapter 5 The Memory (aka Concentration) Game

219

Code Explanation

 break;} Leave loop.

 } Close test for on a card.

 } Close the loop through deck.

if (i<deck.length) { Card in deck.

if (firstPick) { For a firstpick.

 firstCard = i; Now set firstcardto the card index.

 firstPick = false; Set firstpick to false.

ctx.drawImage(card.img,card.sx,card.sy,card.

sWidth,card.sHeight);

Draw the photo.

 } Close if a first pick.

else {

secondCard = i; This is a second pick.

ctx.drawImage(card.img,card.sx,card.sy,card.

sWidth,card.sHeight);

Draw the photo.

if (card.info ==deck[firstCard].info) { Check if there’s a match using the

info fields.

 matched = true; Set matched.

 count++; Increment count.

 ctx.fillStyle= tableColor; This will erase the displayed cards.

 ctx.fillRect(10,340,900,100); Erase area where text will be.

 ctx.fillStyle=backColor; Reset to the color for text.

ctx.fillText("Number of matches so far:

"+String(count),10,360);

Write out count.

if (count>= .5*deck.length) { Check for completion of matching.

finished = true; Prevents possible extra erasing at end.

var now = new Date(); Get a Date object.

Table 5-4.  (continued)

(continued)

Chapter 5 The Memory (aka Concentration) Game

http://card.info

220

Code Explanation

var nt = Number(now.getTime()); Extract the time.

var seconds = Math.floor(.5+(nt-

startTime)/1000);

Calculate the elapsed time.

 ctx.fillStyle= tableColor; Prepare to erase.

 ctx.fillRect(0,0,900,400); Erase the whole canvas.

 ctx.fillStyle=backColor; Set for drawing.

out="You finished in "+String(seconds)+"

secs.";

Prepare the text.

 ctx.fillText(out,10,100); Write the text.

ctx.fillText("Reload the page to try

again.",10,300);

Write the text.

} Close check if game is done.

} Close match.

else { Else.

 matched = false; Not a match.

 } Close the else branch.

 firstPick = true; Prepare for next pair of selections.

 setTimeOut(flipBack,1000); Set up call to flip back to allow players

to see what they selected.

 } Within second pick.

 } Close else for second pick.

} Close choose.

function flipBack() { Header for flipback. Invoked by action

of setTimeout.

 var card;

Table 5-4.  (continued)

(continued)

Chapter 5 The Memory (aka Concentration) Game

221

Code Explanation

 if (finished) return; Prevent erasing of some of final

message.

 if (!matched) { If no match, then…

 deck[firstCard].draw(); …draw first card. This is the back.

 deck[secondCard].draw(); …draw second card.

 } Close of no match.

 else {

 ctx.fillStyle = tableColor; Set color to prepare to erase these

cards.

 �ctx.fillRect(deck[secondCard].

sx,deck[secondCard].sy,deck[secondCard].

sWidth,deck[secondCard].sHeight);

Draw over second card.

 � ctx.fillRect(deck[firstCard].

sx,deck[firstCard].sy,deck[firstCard].

sWidth,deck[firstCard].sHeight);

Draw over first card.

 deck[secondCard].sx = -1; Set this value to not allow this card to

be taken again.

 deck[firstCard].sx = -1; Ditto.

 } Close the else; there was a match.

} Close the flipback function.

function init(){ Header for init.

 ctx = document.getElementById('canvas').

getContext('2d');

Set ctx.

canvas1 = document.getElementById('canvas'); Set canvas to reference the canvas.

Used to set up the event handling.

canvas1.addEventListener('click',choose,

false);

Set event handling for click.

Table 5-4.  (continued)

(continued)

Chapter 5 The Memory (aka Concentration) Game

222

Table 5-4.  (continued)

Code Explanation

 makeDeck(); Make the deck.

 shuffle(); Shuffle (crude shuffling).

 ctx.font="bold 20pt sans-serif"; Set font.

 �ctx.fillText("Click on two cards to make a

match.",10,20);

Display instructions as text on the

canvas.

 �ctx.fillText("Number of matches so far:

0",10,360);

Display the count.

 startTime = new Date(); Get a Date object.

 startTime = Number(startTime.getTime()); Extract the time to be the

starttime.

 } Close init.

</script> Close the script element

</head> Close head.

<body onLoad="init();"> Opening body tag. Sets up call to

init.

<canvas id="canvas" width="900"

height="400">

The canvas tag.

Your browser doesn't support the HTML5

element canvas.

Standard message for old browsers.

</canvas> Closing canvas tag.

</body> Close body.

</html> Close html.

Chapter 5 The Memory (aka Concentration) Game

223

Though these two programs are working games, they can be improved. For example,

the player can’t lose. After reviewing this material, try to figure out a way to force a loss,

perhaps by limiting the number of moves or imposing a time limit.

These applications start the clock when they’re loaded. Some games wait to begin

timing until the player performs the first action. If you want to take this friendlier approach,

you’d need to set up a logical variable initialized to false and create a mechanism in the

choose function for checking whether this variable has been set to true. Since it may not

have been, you’d have to include code for setting the starttime variable.

This is a single-player game. You can devise a way to make it a game for two. You

probably need to assume that the people are taking turns properly, but the program can

keep separate scores for each participant.

Some people like to set up games with levels of difficulty. To do so, you could

increase the number of cards, decrease the pause time, and/or take other measures.

You can make this application yours by using your own pictures. You can, of course,

use images of friends and family members, but you could also create an educational

game with pictures that represent items or concepts such as musical-note names and

symbols, countries and capitals, maps of counties and names, and more. You can change

the number of pairs as well. The code refers to the length of the various arrays, so you

don’t need to go through the code changing the number of cards in the deck. You may

need to adjust the values of the cardWidth and cardHeight variables, though, to arrange

the cards on the screen.

Another possibility, of course, is using a standard deck of 52 cards (or 54 with jokers).

For an example using playing cards, skip ahead to Chapter 10, which takes you through

creation of a blackjack game. For any matching game, you’ll need to develop a way to

represent the information defining which cards match.

A player can try to cheat. I believe my code prevents clicking on a card that has been

erased; but, I may not have prevented other cheating.

�Testing and Uploading the Application
When we, the developers, check our programs, we tend to do the same thing on each

pass. Users, players, and customers, however, often do strange things. That’s why getting

others to test our applications is a good idea. So ask friends to test out your game. You

should always have people who had no hand in building the application test it. You may

discover problems you didn’t identify.

Chapter 5 The Memory (aka Concentration) Game

http://dx.doi.org/10.1007/978-1-4842-4155-4_10

224

The HTML document for the polygon version of the memory game contains the

complete game, since the program draws and redraws the polygons on the fly. The

pictures version of the game requires you to upload all the images. You can vary this

game by using image files from the Web (outside of your own web page). Do respect

intellectual property rights. It really is more fun using your own photos. Note that the

pairs array needs to have the correct addresses.

�Summary
In this example, you learned how to implement two versions of the game known as

memory or concentration using programming techniques and HTML5 features. These

included the following:

•	 Examples of programmer-defined functions and programmer-

defined objects

•	 How to draw polygons on the canvas using moveTo and lineTo along

with Math trig methods

•	 Guidance on how to use a form to show information to players

•	 A method for drawing text with a specified font on the canvas

•	 Instructions about how to draw images on the canvas

•	 Using setTimeout to force a pause

•	 Employing Date objects to compute elapsed time

The applications demonstrated ways to represent information to implement two

versions of a familiar game. The next chapter will temporarily depart from the use of the

canvas to demonstrate dynamic creation and positioning of HTML elements. It also will

feature the use of HTML5’s video element.

Chapter 5 The Memory (aka Concentration) Game

225

CHAPTER 6

Quiz
In this chapter, we cover the following:

•	 Creating HTML elements by code

•	 Responding to clicks of the mouse on specific elements and stopping

responding to clicks of the mouse on specific elements

•	 Creating and accessing arrays

•	 Playing an audio clip and a video clip

•	 Checking player responses and preventing bad behavior

�Introduction
This chapter demonstrates how HTML elements can be created dynamically and then

positioned on the screen. This is in contrast not only to drawing on a canvas element

but also to the old way of creating more or less static web pages using HTML markup.

Our goal is to produce a quiz in which the player put into chronological order a set

of presidents of the United States. The set of presidents is randomly chosen from the

complete list of presidents. There is a reward for a correct ordering: playing a video clip

and an audio clip. The ability to display video and audio directly (also termed natively)

using HTML5 is a big improvement over the old system, which required using the

<object> element and third-party plugins on the player’s computer. In our game, the

video and audio serve only a minor role, but the fact that developers and designers can

use HTML5 and JavaScript to produce a specific video at a specific point in the running

of an application is very important.

Autoplay refers to video clips played without user action. As of April 2018, the

Chrome browser adopted a policy for autoplaying video (see https://developers.

google.com/web/updates/2017/09/autoplay-policy-changes for details).

© Jeanine Meyer 2023
J. Meyer, The Essential Guide to HTML5, https://doi.org/10.1007/978-1-4842-8722-4_6

https://developers.google.com/web/updates/2017/09/autoplay-policy-changes
https://developers.google.com/web/updates/2017/09/autoplay-policy-changes
https://doi.org/10.1007/978-1-4842-8722-4_6

226

This policy is intended to prevent autoplay in many cases. The reasoning is that

autoplay of video may subject users to data fees and may overload networks. Video

ads can be annoying. I accept the reasoning; however, I want the reward to happen as

soon as the player successfully completes a game. The Chrome browser has a method

of determining what they term user engagement. The reward that I have programmed

for player success consists of a muted video played at the same time as an audio clip.

This appears to pass the Chrome test for user engagement, and the media does get

played. Still, autoplay policies are something you need to be aware of and investigate in

the future.

The basic information for the quiz consists of an array of arrays, with the inner arrays

holding the president’s name and a second item that is used to make sure the random

process does not choose two instances of the same name. The program chooses the

names of four presidents and creates the HTML markup for boxes holding the names,

along with a number. The program positions the boxes in the window. Figure 6-1 shows

an opening screen.

Figure 6-1.  An opening screen for the quiz

This gives me a chance to comment on this particular game. I can recite the

presidents in order and so can play this game very well. This situation has problems,

because I need to make sure the quiz works when players give wrong answers OR

misbehave in other ways that I explain later. The purpose of this chapter is to introduce

Chapter 6 Quiz

227

HTML, CSS, and JavaScript features and general techniques that you can use to build

your own quiz, making your own choice of topics. Keep in mind that you probably are

not building the game for yourself.

By the way, for the U.S. presidents, I needed to provide some way to address the

issue of Grover Cleveland, the only person who occupied the presidency for two,

nonconsecutive terms. I chose to include on the list the names Grover Cleveland (1) and

Grover Cleveland (2). Perhaps you will need to take a similar step for your subject matter.

Players click successive choices. I have started a new game. Figure 6-2 shows the

screen after the player chooses what she believes (knows) to be the earliest president

in this set. Notice that the number 2 appears under Your Order and the Fillmore box is

now gold.

Figure 6-2.  The player chooses what she believes is the earliest president in this
set of 4

Any box clicked will turn gold whether it is correct or not. I will not try to make

any mistakes. Figure 6-3 shows two choices and the numbers 2 1 appearing under

Your Order.

Chapter 6 Quiz

228

Figure 6-3.  The player has clicked Fillmore and then McKinley

I completed the quiz. Figure 6-4 shows the results. What is displayed at this point is

a frame of a video clip and the controls for an audio file. I had a video clip of fireworks

near the Statue of Liberty. The accompanying audio track on this video was “New York,

New York.” I decided to find a free version of “Ruffles and Flourishes” (also called “Hail

to the Chief”). You will read later the minor steps I needed to take to combine the video

and the audio.

Chapter 6 Quiz

229

Figure 6-4.  After successful ordering of the set of presidents

Let me invoke a new game and now put in an incorrect ordering. Figure 6-5 shows

the results of making the order wrong. The player’s order is shown, and the message

WRONG appears. This is a tricky question. The set of presidents came up when I was

preparing the images, and it did have Grover Cleveland (1). This term was before

Benjamin Harrison.

Chapter 6 Quiz

230

Figure 6-5.  Incorrect ordering by the player

�Critical Requirements for a Quiz Game
A quiz requires a way to store information or, to use a fancier term, a knowledge base. We

need a way to choose specific questions to ask, randomly, so the player sees a different

set of challenges each time. Since what we’re storing is names, we can use a simple

technique.

Next we need to present questions to the player and provide feedback on the player’s

actions. We can decide on how much feedback. My game changes the color of a box once

it is clicked, and the order is displayed under the heading “Your Order.” I decided to wait

to check the player’s ordering until it is complete. My technical reviewer pointed out

that in an early version of the game, my coding permitted a player to click the same box

two times. I decided to handle this by not responding to an extra click. You can decide

if this is the approach you want to take. The general issue is that you need to expect that

players/clients/users can do strange things. Sometimes you may want to tell them that

this is wrong and sometimes you, meaning your code, should simply ignore the action.

I decided that a correct ordering deserved a reward: the playing of a patriotic video

clip. As I will explain, this required acquiring a video clip and a separate audio clip.

Chapter 6 Quiz

231

�HTML5, CSS, and JavaScript Features
Now let’s delve into the specific features of HTML5, CSS, and JavaScript that provide

what we need to implement the quiz. I again build on what has been explained before,

with some redundancy just in case you skipped around in your reading.

�Storing and Retrieving Information in Arrays
You may remember that an array is a sequence of values and that a variable can be set

up as an array. The individual components of an array can be any data type—including

other arrays! Recall that in the memory games in Chapter 5, we used an array variable

named pairs in which each element was itself an array of two elements, the matching

photo image files.

In the quiz application, we will again use an array of arrays. For the quiz show, we

set up a variable named facts as an array to hold the names of presidents. The critical

information is the order of the items in the array. Each element of the facts array is itself an

array. My first thought on creating this application was that there would be simply an array

of String objects, each String holding a president’s name with the array in order. However, I

then decided I would need an array of arrays, with the second element holding a Boolean

(true/false) value to be used to prevent picking the same name twice for a single game.

The individual components of an array are accessed or set using square brackets.

Arrays in JavaScript are indexed starting from zero and ending at one less than the total

number of elements in the array. One trick to remember that the indexing starts from

zero is to imagine the array all lined up. The first element will be at the start; the second 1

unit away; the third 2 units away; and so on.

The length of the array is kept in an attribute of the array named length. To access

the first item in the facts array, you use facts[0]; for the second element, facts[1],

and so on. You will see this in the coding.

A common way to do something with each element in an array is to use a loop.

(See also the explanation for setting up the gradient in the walls of the bounding box

in Chapter 3.) Suppose you have an array named prices and your task is to write code

to increase each of the prices by 15 percent. Further, each price has to increase by a

minimum of 1, even if 1 is more than the 15 percent. You could use the construct in

Table 6-1 to perform this task. As you can see in the Explanation column, the for loop

does the same thing for each component of the array, using the indexing variable i in

this example. This example also shows the use of the Math.max method.

Chapter 6 Quiz

http://dx.doi.org/10.1007/978-1-4842-4155-4_5
http://dx.doi.org/10.1007/978-1-4842-4155-4_3

232

Table 6-1.  Increasing Prices in an Array Using a for Loop

Code Explanation

for (var

i=0;i<prices.

length;i++) {

Execute the statements inside the brackets, changing the value of i,

starting at 0 and increasing by 1 (that’s what i++ does), until the value is

not less than prices.length, the number of elements in the array.

 prices[i]

+= Math.max➥

(prices[i]*.15,1);

Remember to interpret this from the inside out. Compute .15 times

the ith element of the array prices. See what’s greater, this value or

1. If it is this value, that’s what Math.max returns. If it is 1 (if 1 is more

than prices[i]*.15), use 1. Add this value to the current value of

prices[i]. That’s what += does.

} Close the for loop.

Notice that the code does not state the size of the prices array explicitly. Instead, it

is represented in the expression prices.length. This is good because it means that the

value of length changes automatically if and when you add elements to the array. Of

course, in our example we know the number to be 46, the number of presidents. This

does change, and we changed it for the new edition, so it’s better to keep things flexible.

This application can be a model for a quiz involving any number of facts when a fact is

one piece of information, with the order being important.

JavaScript supports only one-dimensional arrays. The facts array is one-

dimensional. However, the items in the array are themselves arrays: the facts[0]

element is itself an array, and so on.

Note I f the knowledge base was much more complex or if I were sharing the
information or accessing it from somewhere else, I might need to use something
other than an array of arrays. I could also store the knowledge base separate from
the HTML document, perhaps using an eXtended Markup Language (XML) file.
JavaScript has functions for reading in and accessing XML. Most important of all,
I would put the facts away on a server so players could not view the source to see
what the order actually is. My defense in not doing that is that 1) I did not want to
get into server-side programming, and 2) if a player worked that hard, they would
learn something.

Chapter 6 Quiz

233

The design for the quiz is to present a randomly chosen set of four names for each

game, so we define a variable nq (standing for number in a quiz) to be 4. This never

changes, but making it a variable means that if we wanted to change it, it would be

easy to do.

The HTML that’s created dynamically (see the next section) will produce a display of

a single column. The logic, presented here in pseudocode, is the following

Make a random choice, from 0 to facts.length. If this fact has been used,

try again. Mark this choice as used.

Create new HTML to be a block, with the text and a number (1, 2, 3, or 4

and the name of the president.

Make the block visible and position it in the window.

Set up an event and event handling to respond to the player clicking in

the box.

So how do we code this? I will explain the creation of new HTML in the next section.

As indicated earlier, the fact array contains arrays, and the second element of each

inner arrays is a Boolean variable. Initially, these values will each be false, meaning the

elements haven’t yet been used in the game. It could happen, of course, that the random

call returns a number that has been selected, so I use another type of loop, a do-while

construct that will keep trying until it comes to a fact that hasn’t been used:

do {c = Math.floor(Math.random()*facts.length);}

while (facts[c][2]==true);

The do-while exits as soon as facts[c][2] is false, that is, when the element at index

c is available for use.

The facts array is something I created in its entirety and put in the HTML

document. It does not change. In contrast, for each game of the quiz, my code creates an

area called slots. It starts off as an empty array:

var slots =[];

Each time the player makes a move, that is, clicks on a block, information is added to

this array using the push method. The slots array is accessed by the checkorder function

to be described in the “Checking the Player’s Answer” section.

Chapter 6 Quiz

234

�Creating HTML During Program Execution
An HTML document typically consists of the text and markup you include when you

initially write the document. However, you can also add to the document while the file is

being interpreted by the browser, specifically, when the JavaScript in the script element

is being executed (called execution time or runtime). This is what I mean by creating

HTML dynamically. In this application, like most of the ones in this text, the body tag has

the onload attribute set to invoke a program I name init. This function calls another

function that sets up the game.

For the quiz application, I created a type I named pres. This is done with the

following:

d = document.createElement('pres');

Then I need to put something into the newly created object. This actually takes a few

statements.

I use an assignment statement. Note: the uniqueid variable already has been set.

d.innerHTML="<divclass='thing' id='"+uniqueid+"'>placeholder</div>";

The div is a block type, meaning it can contain other elements as well as text, and it

is displayed with line breaks before and after. I use

thingelem = document.getElementById(uniqueid);

to set thingElement to reference the newly created object. I use

thingElem.textContent = String(i+1)+": "+facts[c][0];

to provide the visible content. The i+1 is so the player sees indexing starting at 1

and not 0.

Dynamically created HTML needs to be appended to something already visible, such

as the body element, in order to be displayed. This is done using appendChild.

document.body.appendChild(d);

The body element often is the appropriate choice, but you can use appendChild

on other elements as well, which can be useful. For example, you can use the attribute

childNodes to get a collection (a NodeList) of all the child nodes of a specific element to

do something for each one, including remove it.

Chapter 6 Quiz

235

Table 6-2 shows methods we’ll use.

Table 6-2.  Methods Typically Used in Dynamic Creation of HTML

Code Explanation

createElement Creates the HTML element

appendChild Adds the element to the document by appending it to something in the document

getElementByID Gets a reference to the element

The formatting of each block is done in the CSS in the style element (see next). The

code creates a unique ID for each block. This unique ID is constructed from the index of

the name in the facts array. It is used when checking the player’s ordering.

Once we create these new HTML elements, we use addEventListener to set up

events and event handlers. The addEventListener method is used for a variety of events.

Remember, we used it on the canvas element in Chapter 4.

Arranging for the program to respond to the player makes use of the

addEventListener method. The statement thingelem.addEventListener('click',

pickelement); defines the event, namely, clicking the block, and the event handling:

invoking the pickelement function.

Note I f we didn’t have these elements and the capability to do the
addEventListener and refer to the attributes using the this (forgive the
awkward English) and instead drew stuff on a canvas, we would need to perform
calculations and comparisons to determine where the mouse cursor was and then
look up the corresponding information in some way to check for matches. (Recall
the coding for the slingshot in Chapter 4.) Instead, the JavaScript engine is doing
much of the work and doing it more efficiently—faster—than we could by writing
the code ourselves.

You’ll see the code in complete context in the “Building the Application” section.

Chapter 6 Quiz

http://dx.doi.org/10.1007/978-1-4842-4155-4_4
http://dx.doi.org/10.1007/978-1-4842-4155-4_4

236

�Using CSS in the Style Element
Cascading Style Sheets (CSS) lets you specify the formatting of parts of an HTML

document. Chapter 1 showed a basic example of CSS, which is powerful and useful even

for static HTML. Essentially, the idea is to use CSS for the formatting, that is, the look

of the application, and to reserve HTML for structuring the content. See David Powers’

Beginning CSS3 (Apress, 2012) for more information on CSS.

Let’s take a brief look here at what we’ll use to generate the dynamically created

blocks holding the names of the presidents.

A style element in an HTML document holds one or more styles. Each style refers to

one of these:

•	 An element type using the element type name

•	 A specific element, using the id value

•	 A class of elements

In Chapter 1, we used a style for the body element and for the section elements. For

the quiz, I write a directive for a class of elements I gave the name thing.

Now let’s set the formatting for a class of elements. The class is an attribute that

can be specified in any element starting tag. For this application, I came up with a class

thing. Yes, I know it’s lame. It refers to a thing our code will place on the screen. The

style is

.thing {position:absolute; left: 0px; top: 0px; border: 2px; border-

style: double;

 background-color: white; margin: 5px; padding: 5px; }

The padding setting determines the spacing between the text and the box; the

margin determines the spacing around the element. I think of a padded cell to help me

remember the difference. In fact, the margin setting is not necessary here because my

code positions the blocks vertically using the variable rowSize.

The period before thing indicates that this is a class specification. The position is

set to absolute, and top and left include values that can be changed by code.

The absolute setting refers to the way the position is specified in the document

window—as specific coordinates. The alternative is relative, which you’d use if the part

of the document was within a containing block that could be anywhere on the screen.

Chapter 6 Quiz

http://dx.doi.org/10.1007/978-1-4842-4155-4_1
http://dx.doi.org/10.1007/978-1-4842-4155-4_1

237

The unit of measurement is the pixel, so the positions from the left and from the top

are given as 0px for 0 pixels, and the border, margin, and padding measurements are 2

pixels, 5 pixels, and 5 pixels, respectively.

Now let’s see how to use the style attributes to position and format the blocks. For

example, after creating a dynamic element to hold a president’s name, we can use the

following lines of code to get a reference to the thing just created, put the text holding

the name into the element, and then position it at a specified point on the screen.

thingElem = document.getElementBy(uniqueid);

thingElem.textContent=

 String(i+1)+": "+facts[c][0];

thingElem.style.top = String(my)+"px";

thingElem.style.left = String(mx)+"px";

Here, my and mx are numbers. Setting style.top and style.left requires a string, so

our code converts the numbers to strings and adds the "px" at the ends of the strings.

�Responding to Player Moves
In the pickelement function, you’ll see code for responding and keeping track of the

player’s moves. The pickelement header has a single parameter called ev. However,

there also is what we can call an implicit parameter. The function is called because of

action on a specific element. The term this within the code refers to that element.

In the code, this refers to the current instance, namely, the element that the player

clicked. We set up listening for the event for each element, so when pickelement is

executed, the code can refer to the specific element that heard the click using the this.

When the player clicks a block holding the name John Quincy Adams, the code knows

it, where by “knows” I am anthropomorphizing the program more than I would like.

Putting it another way, the same pickElement function will be invoked for all the blocks

we have placed on the screen, but, by using this, the code can refer to the specific one

that the player clicks each time. The pickElement code extracts the ID from the element

and the first character in the textContent. The information from the ID is used to

populate an array, named slots, that will be used to check the player’s ordering. The

character from the textContent, 1 or 2 or 3 or 4, will be used to display to the player what

choices have been made.

Chapter 6 Quiz

238

We want to change the color of a box when the player clicks it. We can do this pretty

much as when changing the top and left to reposition the block. However, the name of

the attribute for JavaScript is slightly different than the one in the CSS: there is no dash.

this.style.backgroundColor = "gold";

The gold is one of the set of established colors, including red, white, blue, etc.,

that can be referred to by name. Alternatively, you can use the hexadecimal RGB values

available from a program such as Adobe Photoshop or an online site such as pixlr.com.

The pickElement function performs another task, and I think it is useful, though

embarrassing, to say that this was a late addition. What if the player, let’s call him the

pesky player, clicks a block more than once? In my testing, I never tried this, but my

technical reviewer pointed it out. You need to expect and plan for players and users in

general to do strange things. The fix is simple. I use the code to stop listening for the click

event. The statement is

this.removeEventListener('click',functionReference);

The functionReference variable has been set to point to pickElement.

The pickElement function extracts and converts to a number the original numeric

portion of the block ID. This is added (pushed) onto an array named slots. When the

length of the slots array is equal to nq, the checkOrder function is called.

Tip  You can specify a font in the style section. You can put “safe web fonts” in
any search engine and get a list of fonts purported to be available on all browsers
and all computers. However, an alternative approach is to specify an ordered list
of fonts so if the first one is not available, the browser will attempt to find the next.
See Chapter 8 for more information.

�Presenting Audio and Video
HTML5 provides the audio and video elements for presenting audio and video, either as

part of a static HTML document or under the control of JavaScript.

In brief, audio and video comes in different file types, just like images do. The file

types vary based on the containers for the video and the associated audio, and audio by

itself, as well as on how the video and the audio are encoded. The browser needs to know

Chapter 6 Quiz

http://pixlr.com
http://dx.doi.org/10.1007/978-1-4842-4155-4_8

239

how to handle the container and how to decode the video to display the frames—the still

images making up the video—in succession on the screen and how to decode the audio

to send the sound to the computer speakers.

Videos involve a considerable amount of data, so people still are working on the

best ways to compress the information, taking advantage, for example, of what is similar

between frames without losing too much quality. Websites are now displayed on small

screens on cell phones as well as large high-definition TV screens, so it’s important to

take advantage of any knowledge of what the display device will be. With this in mind,

though we can hope that browser makers standardize on one format in the future, the

HTML5 video element provides a way to work around the lack of standardization by

referencing multiple files. Developers, therefore, need to produce different versions of

the same video (that includes those of us creating this quiz application).

I downloaded a Fourth of July fireworks video clip and then used a free tool (Miro

video converter) to create three different versions with different formatting of the same

short video clip. I then used the new HTML5 video element as well as the source

element to code references to all three video files. The codecs attribute in the source

element provides information on what the encoding is for the file specified in the src

attribute. I then decided that I did not want to use the audio with the fireworks video,

but instead use the song “Ruffles and Flourishes,” which is traditionally played for

U.S. presidents. Luckily, the video tag comes with an attribute called muted that mutes

the audio for the video. I do not need the video and audio to be synced exactly, so this

approach works. In the body, I have

<audio id="ruffles" controls="controls" preload="auto" alt="Hail to

the Chief">

 <source src="hail_to_the_chief.mp3" type="audio/mpeg">

 <source src="hail_to_the_chief.ogg" type="audio/ogg">

Your browser does not accept the audio tag.

 </audio>

 <video id="vid" preload="auto" width="50%" alt="Fireworks video" muted>

<source src="sfire3.webmvp8.webm" type='video/webm; codec="vp8, vorbis"'>

<source src="sfire3.mp4">

<source src="sfire3.theora.ogv" type='video/ogg; codecs="theora, vorbis"'>

Including controls="controls" puts the familiar controls on the screen to allow the

player/user to start or pause the audio clip. I do not provide controls for the video.

Chapter 6 Quiz

240

The text starting “Your browser...” appears only if the browser does not

recognize audio.

At this point, you may be asking: where is the video and the audio control when the

quiz starts? The answer is that I use CSS to make the two not display:

audio {visibility: hidden;}

video {visibility: hidden; display: none; position:absolute;}

You also may ask why I don’t write code to create the video and audio elements

dynamically but have them in the HTML document. The answer to that is that I want

to make sure the audio and video files are downloaded completely. Since human play

does take some time, this probably would happen with no special work, but it is a good

precaution to take.

Tip  CSS has its own language, sometimes involving hyphens in terms. The
CSS term for expressing how elements are layered on the screen is z-index; the
JavaScript term is zIndex.

�Checking the Player’s Answer
The checkOrder function performs the task of checking if the player has clicked the

blocks in the correct order. It was not immediately obvious to me, but I did realize that

my program did not need to order the set of selected names. Instead, my code checks if

the player’s list as represented in the slots array is out of order. The slots array will

hold the index position of each president as ordered by the player. The code iterates

through the items to see if any item is greater than the following item. This for loop

accomplishes the task:

var ok = true;

 for (var i=0;i<nq-1;i++){

 if (slots[i]>slots[i+1]){

 ok = false;

 break;

 }

 }

Chapter 6 Quiz

241

The ok variable starts out as true, and the code in the for loop will change the value

of ok to false if there is any discrepancy from a correct ordering. The break statement

causes control to leave the for loop if and when this happens. If ok is set to false, the

for loop is exited. The next step is to provide either the audio/video reward along with

displaying the result CORRECT or displaying the result WRONG.

if (ok){

 res.innerHTML= "CORRECT";

 song.style.visibility="visible";

 song.currentTime = 4; //prevent seconds of no sound

 song.play();

 v.style.visibility="visible";

 v.currentTime=0;

 v.style.display="block";

 v.play();

 }

 else {

 res.innerHTML = "WRONG";

 }

With this background on JavaScript, HTML, and CSS, we are now ready to describe

the coding of the quiz application.

�Building the Application and Making It Your Own
The knowledge base for the quiz is represented in the facts variable, which is an array

of arrays. If you want to change the quiz to another topic, one that consists of pairs of

names or other text, you just need to change facts. Of course, you also need to change

the text that appears as an h1 element in the body element to let the player know the

category of questions. I defined a variable named nq, the number in each quiz (the

number of pairs to appear on the screen), to be 4. You can, of course, change this value

if you want to present a different number of pairs to the player. The other variables are

used for the original positions of the blocks and to hold status information, such as

whether it’s a first click or a second click.

Chapter 6 Quiz

242

I created four functions for this application: init, setupGame, pickElement, and

checkOrder. I could have combined init and setupGame and combined pickElement

with checkOrder but made them separate to facilitate a Replay button and also for

general principles. Defining distinct functions for distinct tasks is a good practice.

Table 6-3 describes these functions and what they call or are called by.

Table 6-3.  Functions in the Quiz Application

Function Invoked By/Called By Calls

init Invoked by the action of the onLoad in the <body> tag setupGame

setupGame init

pickElement Invoked as a result of the addEventListener calls in

setupGame

checkOrder

checkOrder pickElement

The setupGame function is where the HTML is created for the blocks. Briefly, an

expression using Math.random is evaluated to pick one of the rows in the facts array. If

that row has been used, the code tries again. When an unused row is found, it is marked

as used (the third element, index value 2), and the blocks are created.

The pickElement function is invoked when a block is clicked. It adds to the string

that is displayed on Your Order and adds to the slots array, which will be used by

checkOrder. The checkOrder function does the checking. It displays either WRONG or

CORRECT and, if the order was correct, makes the audio control and the video visible and

starts playing both.

Note that there is redundant code in my program. I did this to ease the effort to

enable repeat play without reloading or “do overs.” 

Table 6-4 supplies a line-by-line explanation of the code.

Chapter 6 Quiz

243

Table 6-4.  The Complete Code for the Presidents Quiz

<html> HTML tag.

 <meta charset="UTF-8"> Defines the charset, in this case a form of

Unicode. It can be omitted, and I do omit it

in many examples, but I include it here to

let you see it.

<head> Head tag.

<title>Ordering Quiz with Rewards</title> Complete title element.

<style> Style tag.

.thing {position:absolute; left: 0px;

top: 0px; border: 2px; border-style:

double; background-color: white; margin:

5px; padding: 5px; }

Formatting for what I have termed the

blocks with the name of a president.

audio {visibility: hidden;} Starts off audio control as hidden. Default

positioning.

video {visibility: hidden; display: none;

position:absolute;}

Starts off video as hidden.

</style> Close style element.

 <script type="text/javascript"> Script tag, starting script element, with

JavaScript specified.

 var facts = [Declaration of facts array.

 ["George Washington",false], Name and indication that this name is not

used.

 ["John Adams",false],

 ["Thomas Jefferson",false],

 ["James Madison",false],

 ["James Monroe",false],

 ["John Quincy Adams",false],

(continued)

Chapter 6 Quiz

244

<html> HTML tag.

 ["Andrew Jackson",false],

 ["Martin Van Buren",false],

 ["William Harrison",false],

 ["John Tyler",false],

 ["James Polk", false],

 ["Zachary Taylor",false],

 ["Millard Fillmore",false],

 ["Franklin Pierce",false],

 ["James Buchanan",false],

 ["Abraham Lincoln",false],

 ["Andrew Johnson",false],

 ["Ulysses Grant",false],

 ["Rutherford Hayes",false],

 ["James Garfield",false],

 ["Chester Arthur",false],

 ["Grover Cleveland (1)",false], This is how I chose to represent Grover

Cleveland’s first term in office.

 ["Benjamin Harrison",false],

 ["Grover Cleveland (2)",false], This is how I chose to represent Grover

Cleveland’s second term in office, which

was not consecutive with his first.

 ["William McKinley",false],

 ["Theodore Roosevelt",false],

 ["William Taft",false],

 ["Woodrow Wilson",false],

 ["Warren Harding",false],

Table 6-4.  (continued)

(continued)

Chapter 6 Quiz

245

<html> HTML tag.

 ["Calvin Coolidge",false],

 ["Herbert Hoover",false],

 ["Franklin Roosevelt",false],

 ["Harry Truman",false],

 ["Dwight Eisenhower",false],

 ["John Kennedy",false],

 ["Lyndon Johnson",false],

 ["Richard Nixon",false],

 ["Gerald Ford",false],

 ["Jimmy Carter",false],

 ["Ronald Reagan",false],

 ["George H. W. Bush",false],

 ["Bill Clinton",false],

 ["George W. Bush",false],

 ["Barack Obama",false],

 ["Donald Trump",false],

 ["Joseph Biden",false] What I added for this edition.

]; Close facts array.

 var thingelem; Used to hold created elements.

 var nq = 4; Number of facts presented.

 var col1 = 20; Horizontal position of column of names.

 var row1 = 200; Vertical position of first name.

 var rowsize = 50; Spacing allocated for each block.

 var slots = []; Used in checking to hold indices into facts.

 var answertext=" "; Initial value of answer.

Table 6-4.  (continued)

(continued)

Chapter 6 Quiz

246

<html> HTML tag.

 var song; Will hold reference to audio element.

 var functionReference; Will hold reference to pickelement.

 var v; Will hold reference to video element.

 var res; Will hold reference to place for result.

 var ans; Will hold reference to place for answer.

function init(){ Header init function.

 res = document.getElementById("results"); Get the reference.

 ans = document.getElementById("answer"); Get the reference.

 functionReference = pickElement; Set to be used to remove event handling.

 song = document.

getElementById("ruffles");

Get the reference.

 v = document.getElementById("vid"); Get the reference.

 row1= .5* window.innerHeight; Adapt to window height.

 setupGame(); Invoke setupGame.

} Close init.

function setupGame() { Header setupgame.

 slots=[]; Initialize slots. Redundant, but done here

to prepare for enhancements.

 answertext=""; Initialize answertext. Redundant, but

done here to prepare for enhancements.

 var i; Indexing variable.

 var c; Will hold index to facts.

 var mx = col1; Initial horizontal setting. It will not change.

 var my = row1; Initial vertical setting. This will change.

 var d; Holds newly created element.

Table 6-4.  (continued)

(continued)

Chapter 6 Quiz

247

<html> HTML tag.

 var uniqueid; Will hold the ID. It will be generated from

the random index into facts.

 for (i=0;i<facts.length;i++) { for loop to mark all facts as not being

used.

 facts[i][2] = false; Mark fact as not used.

 } Close the for loop.

 for(i=0;i<nq;i++) { for loop to select and create the four

boxes with names of presidents.

 � do {c = Math.floor(Math.

random()*facts.length);}

Get a random selection.

 while (facts[c][1]==true); If it has been selected already, repeat the

do clause.

 facts[c][1]=true; Now set this fact as being used.

 uniqueid = "p"+String(c); Create a unique ID by affixing "p" to the

index converted to a String.

 d = document.createElement('pres'); Create an element.

 d.innerHTML = Set its innerHTML to…

 � "<div class="thing"

id='"+uniqueid+"'>placeholder</div>";

…be a div, class="thing", and ID the

generated unqueid.

 document.body.appendChild(d); Append this to the body. This action makes

it visible.

 �thingelem = document.

getElementById(uniqueid);

Get a reference to it.

 �thingelem.textContent=String(i+1)+":

"+facts[c][0];

Make its content by the number followed

by the name.

 �thingelem.style.top =

String(my)+"px";

Position it vertically.

Table 6-4.  (continued)

(continued)

Chapter 6 Quiz

248

<html> HTML tag.

 �thingelem.style.left =

String(mx)+"px";

Position it horizontally.

 �thingelem.addEventListener('click',

pickElement);

Enable response to click.

 my +=rowsize; Increment my for the vertical positioning.

 } Close the for loop.

} Close setupGame.

 function pickElement(ev) { Header for pickElement. Invoked when

player clicks a block. Note: ev is not used

but necessary for event handlers. What is

used is the this term.

 var answert; Will hold the number 1, 2, etc.

 var positiont; Will hold position in original array as text.

 var positionn; Will hold position as number.

 positiont = this.id.substring(1); Create position by removing the first letter

of ID.

 � answert= this.textContent.

substring(0,1);

Create what will be added to answer

by taking the first character of the

textContent. Note: Works if fewer than

10 choices.

 answertext = answertext+answert+" "; Add the answer for this to what there is

already.

 ans.innerHTML= answertext; Display answertext.

 positionn = Number(positiont); Generate the number.

 this.style.backgroundColor = "gold"; Make block gold.

 �this.removeEventListener('click',

functionReference);

Remove event handling.

Table 6-4.  (continued)

(continued)

Chapter 6 Quiz

249

<html> HTML tag.

 slots.push(positionn); Add positionn to the slots array to be

used in the checking.

 if (slots.length==nq) { Have there been nq clicks on block?

 checkorder(); If so, invoke checkorder.

 } Close if.

} Close the pickelement function.

function checkOrder(){ Header for checkorder.

 var ok = true; Start off with ok set to true.

 for (var i=0;i<nq-1;i++){ Loop through all elements in slots.

 if (slots[i]>slots[i+1]){ If the ith slot is more than the (i+1)th

slot.

 ok = false; Set ok to false. The answer is not in

order.

 break; Leave the for loop.

 } Close if.

 } Close the for loop.

 if (ok){ The ok variable holds true or false. If

true…

 res.innerHTML= "CORRECT"; …display CORRECT.

 song.style.visibility="visible"; Make the song element, that is, the

controls, visible.

 song.currentTime = 4; This audio clip has some seconds

ofsilence, so this prevents seconds of no

sound.

 song.play(); Play the song.

Table 6-4.  (continued)

(continued)

Chapter 6 Quiz

250

<html> HTML tag.

 v.style.visibility="visible"; Set the video to visible.

 v.currentTime=0; Set to start at the start.

 v.style.display="block"; Make visible (may be redundant).

 v.play(); Start to play video.

 } Close the if ok true clause.

 else { else.

 res.innerHTML = "WRONG"; Display WRONG.

 } Close else.

} Close the checkorder function.

</script> Close the script element.

</head> Close the head element.

<body onload="init();"> Body tag. Note setting of onload.

<audio id="ruffles" controls="controls"

preload="auto" alt="Hail to the Chief">

Audio tag.

 <source src="hail_to_the_chief.mp3"

type="audio/mpeg">

The MP3 source.

 <source src="hail_to_the_chief.ogg"

type="audio/ogg">

The OGG source.

Your browser does not accept the audio

tag.

Done for older browsers.

 </audio> Close the audio element.

 <video id="vid" preload="auto"

width="50%" alt="Fireworks video" muted>

Video tag. Note the muted attribute.

<source src="sfire3.webmvp8.webm"

type='video/webm; codec="vp8, vorbis"'>

The WEBM source.

<source src="sfire3.mp4"> The MP4 sources.

Table 6-4.  (continued)

(continued)

Chapter 6 Quiz

251

<html> HTML tag.

<source src="sfire3.theora.ogv"

type='video/ogg; codecs="theora,

vorbis"'>

The OGG source.

Your browser does not accept the video

tag.

For older browsers.

 </video> Close the video element.

<h1>Order the Presidents</h1> Heading.

This is a challenge to put the presidents

displayed in the right order in terms of

time of term in office.
Click on the

boxes in the order you believe correct.

Instructions.

 Line break.

Reload for new game. More instructions.

 Line break.

Your order: Heading for player’s answers.

<div id="answer"></div> Place for player’s answers.

Result: <div id="results"></div> Will hold result.

</body> Close body.

</html> Close html.

Table 6-4.  (continued)

The first step to making this application your own is to choose the content of your

quiz. The values here are names, held in text, but they could be descriptions of events,

mathematical expressions, or names of songs. You also could create img tags and use the

information kept in the array to set the src values of img elements. More complicated,

but still doable, is to incorporate audio. Start simple, with something resembling the list

of U.S. presidents, and then be more daring. My personal view is being able to put events

in order is more important than knowing dates.

You can change the look of the application by modifying the original HTML and/or

the created HTML. You can modify or add to the CSS section.

Chapter 6 Quiz

252

You can easily change the number of questions (but can’t have more than 9), or

change the four-question game to a four-question round and make a new round happen

automatically after a certain number of guesses or when clicking a button. You would

need to decide if presidents are to be repeated from round to round.

You can also incorporate a timing feature. There are two general approaches: keep

track of time and simply display it when the player completes a game/round successfully

(see the memory games in Chapter 5) or impose a time limit. The first approach allows

someone to compete with themselves but imposes no significant pressure. The second

does put pressure on the player, and you can decrease the allowed time for successive

rounds. It could be implemented using the setTimeout command.

You can identify links to websites that discuss the facts or to Google map locations as

mini-awards for correct answers—or as clues.

You may not like the way the quiz blocks remain on the screen while the video is

showing. You can remove them using a loop that makes each element invisible.

�Testing and Uploading the Application
The random feature of the game does not impact the testing. If you want, you can

substitute fixed choices after the Math.random coding, do the bulk of the testing, and

then remove these lines of code and test again. The important thing to do for this and

similar games is to make sure your testing involves both correct guesses and incorrect

guesses, as well as bad behavior on the part of the player, like clicking on a choice

already made.

The presidents game is complete in the HTML file, but the audio and video clips are

distinct files. If you make your own quiz, you are not obliged to use both an audio clip

and a video clip. For media, you need to do the following:

•	 Create or acquire the video and/or audio

•	 Produce the different versions, assuming you want to support the

different browsers

•	 Upload all the files to the server

Chapter 6 Quiz

http://dx.doi.org/10.1007/978-1-4842-4155-4_5

253

You may need to work with your server staff to make sure the different video types

are properly specified. This involves something called the htaccess file. HTML5 has now

been around for a time, and this way of featuring video on web pages should be familiar

to server staff.

Alternatively, you can identify video and/or audio already online and use absolute

URLs as the src attributes in the source elements in the media elements.

�Summary
In this chapter, we implemented a simple quiz that asked a player to put a small set

chosen randomly from the complete list of U.S. presidents in order. Putting events in

chronological order is a reasonable topic for a quiz, but the main lesson of this chapter

is the distinct techniques used. The application used the following programming

techniques and HTML5 features:

•	 Creating HTML during runtime using document.createElement,

document.getElementById, and document.body.appendChild

•	 Setting up event handling for the mouse click event using

addEventListener

•	 Removing event handling for the mouse click event using

removeEventListener

•	 Changing the color of objects on the screen using code to change CSS

settings

•	 Creating an array of arrays to hold the quiz content

•	 Using for loops for iterating over the array

•	 Using do-while loops to make a random choice of an unused

question set

•	 Using substring for extracting strings to be used in the checking

•	 Turning a string into a number using the Number function

•	 Using video and audio elements for displaying video and audio

encoded in formats acceptable by different browsers

Chapter 6 Quiz

254

You can use dynamically created and repositioned HTML along with the drawing on

canvas that you learned in the previous chapters. For the third edition, I decided to add

a program using video to Chapter 3, so now you have seen two examples of video in use.

You can use video and audio as a small part of an application, as was done here, or as the

major part of a website. In the next chapter, we return to drawing on canvas as we build a

maze and then travel through the maze without crossing the walls.

Chapter 6 Quiz

255

CHAPTER 7

Mazes

�Keywords
KeyDown; Lastdate; Mouse Events; Arrow Keys; keyCode

In this chapter, we cover the following:

•	 Responding to mouse events

•	 Calculating collisions between circles and lines

•	 Responding to the arrow keys

•	 Form input

•	 Encoding, saving, decoding, and restoring information from local

storage using try and catch to test whether coding is recognized

•	 Using join and split to encode and decode information

•	 Using javascript: in a button to invoke functions

•	 Radio buttons

�Introduction
In this chapter, we’ll continue our exploration of programming techniques and HTML5

and JavaScript features, this time using programs that build and traverse mazes. Players

will have the ability to draw a set of walls to make up a maze. They will be able to save

and load their mazes and to traverse them using collision detection to make sure they

don’t cross any walls.

© Jeanine Meyer 2023
J. Meyer, The Essential Guide to HTML5, https://doi.org/10.1007/978-1-4842-8722-4_7

https://doi.org/10.1007/978-1-4842-8722-4_7

256

The general programming techniques include using arrays for everything that needs

to be drawn on the canvas as well as a separate array for the set of walls in the maze.

The number of walls is not known before play starts, so a flexible approach is required.

Once the maze is constructed, we’ll see how to respond to presses of the arrow keys

and how to detect collisions between the playing piece—a pentagon-shaped token—

and the walls. With HTML5, we can handle mouse events so the player can press the

mouse button down and then drag and release the button to define each wall of a maze;

respond to the arrow keys to move the token; and save and retrieve the layout of walls

on the local computer. As usual, we’ll build more than one version of the application.

In the first, everything is contained in one HTML file. That is, the player builds a maze,

can travel through it, and can optionally save it to the local computer or restore a set of

walls saved earlier. In the second version, there’s one program to create the mazes and

a second file that offers the player a choice of specific mazes to traverse, using radio

buttons. Perhaps one person might build the mazes on a given computer and then ask a

friend to try traversing them.

HTML5’s local storage facility accepts only strings of characters, so we’ll look at how

we can use JavaScript to encode the maze information into a character string and then

decode it back to rebuild the walls of the maze. The saved information will remain on the

computer even after it is turned off.

The individual capabilities we’ll discuss in this chapter—building structures, using

the arrow keys to move a game piece, checking for collisions, and encoding, saving, and

restoring data on the user’s computer—can all be reused in a variety of games and design

applications.

Note  HTML files are generally called scripts, while the term program is typically
reserved for languages such as Java or C. This is because JavaScript is an
interpreted language: the statements are translated one at a time at execution
time. In contrast, Java and C programs are compiled, that is, completely translated
all at once, with the result stored for later use. Some of us are not so strict and
use the terms script, program, application, or simply file or document for HTML
documents with JavaScript.

Chapter 7 Mazes

257

Figure 7-1 shows the opening screen building and traveling and saving and

retrieving a maze.

Figure 7-1.  Opening screen for the maze game

Figure 7-2 shows the screen after some fairly sloppy walls have been placed on

the canvas.

Chapter 7 Mazes

258

Figure 7-2.  Walls for a maze

Figure 7-3 shows the screen after the player has used the arrow keys to move the

token into the maze.

Chapter 7 Mazes

259

Figure 7-3.  Moving the token inside the maze

If the player wants to save a set of walls, he or she types in a name and clicks the

button. To retrieve the walls, which are added to whatever is currently on the canvas,

the player types in a name and presses the GET SAVED WALLS button. If there’s nothing

saved under that name, nothing happens.

The second script presents the player with a choice. Figure 7-4 shows the opening

screen. To repeat: the travelmaze program assumes that you have built and saved mazes

with the names easymaze, moderatemaze, and hardmaze, on your computer, using the

same browser. You can change and/or add to these names.

Chapter 7 Mazes

260

Figure 7-4.  Opening screen of the travelmaze script

I do this to demonstrate the local storage facility of HTML5, which is similar to

cookies—a way for web application developers to store information about users.

Note  Cookies, and now HTML5 localStorage, are the basis of what is termed
behavioral marketing. They bring convenience to us—we don’t have to remember
certain items of information such as passwords—but they are also a way to be
tracked and the target of sales. I am not taking a position here, just noting the
facility.

Chapter 7 Mazes

261

Figure 7-5 shows an easy maze.

Figure 7-5.  An easy maze

Figure 7-6 shows a slightly more difficult maze.

Chapter 7 Mazes

262

Figure 7-6.  A moderate maze

Figure 7-7 shows a more difficult maze, more difficult mainly because the player

needs to move away from the first entry point toward the bottom of the maze to make it

through. Of course, it is up to the player/creator to design the mazes.

Chapter 7 Mazes

263

Figure 7-7.  A harder maze

One important feature is that in the two-script application, clicking the GET maze

button forces the current maze to be erased and the newly selected maze to be drawn.

This is different from what happens in either buildmaze program when old walls

are added to what is present. As has been the case for the other examples, these are

just stubs of programs, created to demonstrate HTML5 features and programming

techniques. There is much opportunity for improvement to make the projects your own.

�Critical Requirements
The maze application requires the display of a constantly updated game board, as new

walls are erected and the token is moved.

The maze-building task requires responding to mouse events to collect the

information needed to build a wall. The application displays the wall being built.

The maze-traveling task requires responding to the arrow keys to move the token.

The game must not allow the token to cross any wall.

Chapter 7 Mazes

264

The save and retrieve operations require the program to encode the wall

information, save it on the local computer, and then retrieve it and use it to create and

display the saved walls. Mazes are moderately complex structures: a set of some number

of walls, with each wall defined by starting and ending coordinates, that is, pairs of

numbers representing x,y positions on the canvas. For the local storage facility to be

used, this information has to be turned into a single string of characters.

The two-document version uses radio buttons to select a maze.

�HTML5, CSS, and JavaScript Features
Now let’s look at the specific features of HTML5 and JavaScript that provide what we

need to implement the maze application. This builds on material covered in previous

chapters: the general structure of an HTML document; using programmer-defined

functions, including programmer-defined objects; drawing paths made up of line

segments on a canvas element; programmer objects; and arrays. Previous chapters

have addressed mouse events on the canvas (the cannonball and slingshot games in

Chapter 4 and the memory game in Chapter 5) and mouse events on HTML elements

(the quiz games in Chapter 6). New features we’ll be covering include a different type of

event: getting input from a player pressing the arrow keys, called keystroke capture; and

using local storage to save information on the local computer, even after the browser

has been closed and the computer turned off. Remember, you can skip ahead to the

“Building the Application” section to see all the code with comments and return to this

section to read explanations of individual features and techniques.

�Representation of Walls and the Token
To start, we’ll define a function, Wall, to define a wall object, and another function,

Token, to define a token object. We’ll define these functions in a more general manner

than required by this application, but I believe this is okay: the generality does not affect

much, if anything, in terms of performance, while giving us the freedom to use the code

for other applications, such as a game with different playing pieces. I chose the pentagon

shape because I liked it and use myPent as the variable name for the playing piece.

Chapter 7 Mazes

http://dx.doi.org/10.1007/978-1-4842-4155-4_4
http://dx.doi.org/10.1007/978-1-4842-4155-4_5
http://dx.doi.org/10.1007/978-1-4842-4155-4_6

265

The properties defined for a wall consist of the start and finish points specified

by the mouse actions. I name these sx, sy, fx, and fy. The wall also has a width and a

strokeStyle string, and a draw method is specified as drawAline. The reason this is more

general than necessary is because all walls will have the same width and style string, and

all will use the drawAline function. When it comes time to save the walls to local storage,

I save only the sx, sy, fx, and fy values. You can use the same techniques to encode more

information if and when you write other programs and need to store values.

The token that moves around the maze is defined by a call to the Token function.

This function is similar to the Polygon function defined for the polygon memory game.

The Token function stores the center of the token, sx and sy, along with a radius (rad),

number of sides (n), and a fillStyle, and it links to the drawToken function for the draw

method and the moveToken function for the moveit method. In addition, a property

named angle is computed immediately as (2*Math.PI)/n. Recall that in the radian

system for measuring angles, 2*Math.PI represents a full circle, so this number divided

by the number of sides will be the angle from the center to the ends of each side.

As was the case with previous applications (see Chapter 4), after an object is created,

the code adds it to the everything array. I also add all walls to the walls array. It is this

array that is used to save the wall information to local storage.

�Mouse Events to Build and Position a Wall
Recall that in previous chapters we used HTML5 and JavaScript to define an event and

specify an event handler. The init function contains code that sets up event handling for

the player pressing the main mouse button, moving the mouse, and releasing the button.

canvas1 = document.getElementById('canvas');

canvas1.addEventListener('mousedown',startWall,false);

canvas1.addEventListener('mousemove',stretchWall,false);

canvas1.addEventListener('mouseup',finish,false);

We’ll also use a variable called inMotion to keep track of whether the mouse button

is down. The startWall function determines the mouse coordinates (see Chapters 4

and 5 for accessing the mouse coordinates after an event), creates a new Wall object with

a reference stored in the global variable curWall, adds the wall to the everything array,

draws all the items in everything, and sets inMotion to be true. If inMotion is not true,

then the stretchWall function returns immediately without doing anything. If inMotion

is true, the code gets the mouse coordinates and uses them to set the fx and fy values

Chapter 7 Mazes

http://dx.doi.org/10.1007/978-1-4842-4155-4_4
http://dx.doi.org/10.1007/978-1-4842-4155-4_4
http://dx.doi.org/10.1007/978-1-4842-4155-4_5

266

of curWall. This happens over and over as the player moves the mouse with the button

pressed down. When the button is released, the function finish is called. This function

sets inMotion back to false and adds the curWall to an array called walls.

�Detecting the Arrow Keys
Detecting that a key on the keyboard has been pressed and which one it is is called capturing

a key stroke. This is another type of event that HTML5 and JavaScript can handle. We need

to set up a response to a key event, which is analogous to setting up a response to a mouse

event. The response to any key down will be a function I wrote named getKeyAndMove,

explained soon. Setting up the event involves invoking the addEventListener method, this

time for the window, the built-in HTML object that holds the HTML file:

window.addEventListener('keydown',getkeyAndMove,false);

The statement specifies the event, keyDown, in the first parameter and the handler for

the event, getkeyAndMove, in the second parameter. The third parameter, which could

be omitted because false is the default, relates to the order of responding to the event by

other objects. It isn’t an issue for this application.

This means the getkeyAndMove function will be invoked if and when a key is pressed.

Tip E vent handling is a big part of programming. Event-based programming is
often more complex than demonstrated in this book. For example, you may need
to consider if a contained object or a containing object also should respond to the
event or what to do if the user has multiple windows open. Devices such as cell
phones can detect events such as tilting or shaking or using your fingers to stroke
the screen. Incorporating video may involve invoking certain actions when the
video is complete. HTML5 JavaScript is not totally consistent in handling events
(setting up a timeout or a time interval does not use addEventListener), but
at this point, you know enough to do research to identify the event you want, try
multiple possibilities to figure out what the event needs to be associated with (e.g.,
the window or a canvas element or some other object), and then write the function
to be the event handler. Note also that some event handling uses the term callback.
The invoking of the specified function is called a callback.

Chapter 7 Mazes

267

Now, as you may expect at this point, the coding to get the information for which

key was pressed involves different code for different browsers. The following code, with

two ways to get the number corresponding to the key, works in all current browsers

recognizing other new features in HTML5:

if(event == null)

 {

 keyCode = window.event.keyCode;

 window.event.preventDefault();

 }

 else

 {

 keyCode = event.keyCode;

 event.preventDefault();

 }

The preventDefault method does what it sounds like: prevents any default action,

such as a special shortcut action that is associated with the particular key in the

particular browser. The only keys of interest in this application are the arrow keys. The

following switch statement moves the Token referenced by the variable myPent; that is,

the location information is changed so that the next time everything is drawn, the token

will move. (This isn't quite true. The moveit function contains a collision check to make

sure we don’t hit any walls first, but that will be described later.)

switch(keyCode)

 {

 case 37: //left arrow

 mypent.moveit(-unit,0);

 break;

 case 38: //up arrow

 mypent.moveit(0,-unit);

 break;

 case 39: //right arrow

 mypent.moveit(unit,0);

 break;

 case 40: //down arrow

 mypent.moveit(0,unit);

Chapter 7 Mazes

268

 break;

 default:

 window.removeEventListener('keydown',getkeyAndMove,false);

}

Tip  Do put comments in your code as demonstrated by the comments indicating
the keyCode for the different arrow keys. The examples in this book don’t have
many comments because I’ve supplied an explanation for every line of code in
the relevant tables, so this is a case of do as I say, not as I do here in this text.
Comments are critical for team projects and for reminding you of what’s going on
when you return to old work. In JavaScript, you can use the // to indicate that the
rest of the line is a comment or surround multiple lines with /* and */. Comments
are ignored by the JavaScript interpreter.

How did I know that the key code for the left arrow was 37? You can look up key

codes on the Web (for example, www.w3.org/2002/09/tests/keys.html), or you can

write code that issues an alert statement.

 alert(" You just pressed keycode "+keyCode);

The default action for our maze application, which occurs when the key is not one

of the four arrow keys, stops event handling on key strokes. The assumption here is

that the player wants to type in a name to save or retrieve wall information to or from

local storage. In many applications, the appropriate action to take would be a message,

possibly using alert, to let the user know what the expected keys are.

�Collision Detection: Token and Any Wall
To traverse a maze, the player must not move the token across any wall. We will enforce

this restriction by writing a function, intersect, that returns true if a circle with a given

center and radius intersects a line segment. For this task, we need to be exacting in

our language: a line segment is part of a line, going from sx, sy to fx, fy. Each wall

corresponds to a finite line segment. The line itself is infinite. The intersect function is

called for each wall in the array walls.

Chapter 7 Mazes

http://www.w3.org/2002/09/tests/keys.html

269

Tip  My explanation of the mathematics in the intersection calculation is fairly
brief but may be daunting if you haven’t done any math in a while. Feel free to skip
over it and accept the coding as is if you don’t want to work through it.

The intersect function is based on the idea of a parameterized line. Specifically,

the parameterized form of a line is as follows using mathematical formula, as opposed to

code (it is actually a hybrid format because I do use * for multiplication):

Equation a: x = sx + t*(fx-sx);

Equation b: y = sy + t*(fy-sy);

The (sx,sy) and (fx,fy) represent the ends of the line segment. I will use sx, sy,

etc., as variable names and not go to something like startX because it is understandable.

As parameter t goes from 0 to 1, the x and y take on the corresponding values of x, y

on the line segment. The goal is to determine if a circle with center cx,cy and radius

rad overlaps the line segment. One way to do this is to determine the closest point on

the line to cx,cy and see if the distance from that point is less than rad. In Figure 7-8,

you see a sketch of part of a line with the line segment depicted with a solid line and the

rest of what is shown of the line indicated by dots. The value of t at one end is 0, and the

other end is 1. There are two points c1x,c1y and c2x, c2y. The c1x,c1y point is closest

to the line outside the critical line segment. The point c2x,c2y is closest somewhere in

the middle of the line segment. The value of t would be between 0 and 1.

Figure 7-8.  A line segment and two points

Chapter 7 Mazes

270

The formula for the distance between the two points (x,y) and (cx,cy) is

 distance = Square_Root(((cx-x)*(cx-x)+(cy-y)*(cy-y)))

Substituting for x and for y using equations a and b, we get a formula for distance.

Equation c: distance = Square_Root(((cx-sx+t*(fx-sx))*(cx- sx + t*

(fx-sx))+(cy- sy + t*(fy-sy))*(cy- sy + t*(fy-sy))))

For our purposes, we want to determine the value of t when distance is at a

minimum. Lessons from calculus and reasoning about minimum versus maximum in

this situation tell us first that we can use the distance squared in place of the distance

and so avoid taking square roots. Moreover, the value is at a minimum when the

derivative (with respect to t) is zero. Taking the derivative and setting that expression

to zero produces the value of t at which the cx,cy is closest to the line. In the code, we

define two extra variables, dx and dy, to make the expressions simpler.

 dx = fx-sx

 dy = fy-sy;

 t= 0.0 –((sx-cx)*dx+(xy-cy)*dy)/((dx*dx)+(dy*dy))

This will produce a value for t. The 0.0 is used to force the calculations to be done

as floating-point numbers (numbers with fractional parts, not restricted to whole

numbers).

We use equations a and b to get the x,y point corresponding to the value of t. This is

the x,y closest to cx,cy. If the value of t is less than 0, we check the value for t = 0, and if

it is more than 1, we check the value for t = 1. This means that the closest point was not

a point on the line segment, so we will check the appropriate end of the line segment

closest to that point.

Is the distance from cx,cy to the closest point close enough to be called a collision?

We again use distance squared and not distance. We evaluate the distance squared from

cx, cy to the computed x,y. If it is less than the radius squared, there is an intersection

of the circle with the line segment. If not, there is no intersection. Using the distance

squared does not make a difference: if there is a minimum for the value squared, then

there is a minimum for the value.

Now the very good news here is that most of the equations are not part of the

coding. I did the work beforehand of determining the expression for the derivative. The

intersect function follows, with comments:

Chapter 7 Mazes

271

function intersect(sx,sy,fx,fy,cx,cy,rad) {

 var dx;

 var dy;

 var t;

 var rt;

 dx = fx-sx;

 dy = fy-sy;

 t =0.0-((sx-cx)*dx+(sy-cy)*dy)/((dx*dx)+(dy*dy)); //closest t

 if (t<0.0) { //closest beyond the line segment at the start

 t=0.0; }

 else if (t>1.0) { //closest beyond the line segment at the end

 t = 1.0;

 }

 dx = (sx+t*(fx-sx))-cx; // use t to define an x coordinate

 dy = (sy +t*(fy-sy))-cy; // use t to define a y coordinate

 rt = (dx*dx) +(dy*dy); //distance squared

 if (rt<(rad*rad)) { // closer than radius squared?

 return true; } // intersect

else {

 return false;} // does not intersect

}

In our application, the player presses an arrow key, and based on that key, the next

position of the token is calculated. We call the intersect function to see if there would

be an intersection of the token (approximated as a circle) and a wall. If intersect

returns true, the token is not moved. The checking stops as soon as there is an

intersection. This is a common technique for collision checking.

�Using Local Storage
The Web was originally designed for files being downloaded from the server to the

local, so-called client computer for viewing, but with no permanent storage on the

local computer. Over time, people and organizations building websites decided that

some sort of local storage would be advantageous. So, someone came up with the idea

of using small files called cookies to keep track of things, such as user IDs stored for

Chapter 7 Mazes

272

the convenience of the user as well as the website owner. The use of cookies in other

programming languages and now the HTML5 local storage has grown considerably with

the commercial Web. Unlike the situation for the applications shown here, the user often

does not know that information is being stored and by whom, and for what purpose the

information is accessed.

The localStorage facility of HTML5 is browser-specific. That is, a maze saved using

Chrome is not available to someone using Safari.

Let’s take a closer look at using local storage by examining a small application that

saves date and time information. Local storage and the Date function, introduced in

Chapter 1, provide a way to store date/time information. Think of local storage as a

database in which strings of characters are stored, each under a specific name. The

name is called the key, the string itself is the value, and the system is called key-value

pairs. The fact that local storage just stores strings is a restriction, but the next section

shows how to work around it.

Figure 7-9 shows the opening screen of a simple date-saving application.

Figure 7-9.  A simple save date application

The user has three options: store information on the current date and time, retrieve

the last information saved, and remove the date information. Figure 7-10 shows what

happens when clicking Retrieve Date Info the very first time using this application (or

after the date has been removed).

Figure 7-10.  Data not yet saved or after removal

Chapter 7 Mazes

http://dx.doi.org/10.1007/978-1-4842-4155-4_1

273

Our application uses a JavaScript alert box to show a message. The user needs to

click the OK button to remove the alert box from the screen.

Figure 7-11 shows the message after a user clicks the Store Date Info button.

Figure 7-11.  After storing date information

If the user later clicks the Retrieve Date Info button, they’ll see a message similar to

Figure 7-12.

Figure 7-12.  Retrieving the stored date information

You can give your players a way to remove the stored information using a Remove

Date Info button. Figure 7-13 shows the result.

Chapter 7 Mazes

274

Figure 7-13.  After removing stored information

HTML5 lets you save, fetch, and remove a key-value pair, using methods for the built-

in object localStorage.

The command localStorage.setItem("lastdate",oldDate) sets up a new key-

value pair or replaces any previous one with the key equal to lastdate. The statement

 last = localStorage.getItem("lastdate");

assigns the fetched value to the variable last. In the code for our simple example,

we just display the results. You can also check for something being null and provide a

friendlier message.

The command localStorage.removeItem("lastdate") removes the key-value pair

with lastdate as the key.

For our simple date application, we set the onClick attribute of each button object to

be some JavaScript code. For example:

<button onClick="javascript:store();">Store date info. </button>

causes store() to be invoked when the button is clicked.

You may be wondering if anyone can read any of the saved information in local

storage. The answer is that access to each key-value pair in localStorage (and in other

types of cookies) is restricted to the website that stored the information. This is a security

feature.

The Chrome browser allows testing of local storage with HTML5 scripts stored on the

local computer. At the time of writing for the first edition, Firefox did not, but required

files to be uploaded to a server to use local storage. Though localStorage appears to be

recognized by all browsers now, I mention this to prepare you for browsers being different.

Chapter 7 Mazes

275

Because there may be other problems such as exceeding limits set by the user for

local storage and cookies, it is a good practice to include some error checking. You can

use the JavaScript function typeof to check if localStorage is accepted by the browser:

if (typeof(localStorage)=="undefined")

Figure 7-14 shows the result of loading the date application and clicking the Store

Date Info button in an old version of Internet Explorer. (By the time you read this book,

the latest version of IE may be out, and this will not be a problem.)

Figure 7-14.  The browser didn’t recognize localStorage

JavaScript also provides a general mechanism for avoiding the display of errors. The

compound statement try and catch will try to execute some code, and if it doesn’t work,

it will go to the catch clause.

try {

 oldDate = new Date();

 localStorage.setItem("lastdate",oldDate);

 alert("Stored: "+oldDate);

 }

 catch(e) {

 alert("Error with use of local storage: "+e);}

}

If you removed the if (typeof(localStorage) test and tried the code in the old IE,

you’d see the message shown in Figure 7-15.

Chapter 7 Mazes

276

Table 7-1.  Complete Code for the Date Application

Code Explanation

<html> Opening html tag.

<head> Opening head tag.

<title>Local Storage test</title> Complete title.

<script> Opening script.

function store() { Store function header.

 �if (typeof(localStorage) ==

"undefined") {

Check if localStorage is recognized.

 �alert("Browser does not recognize HTML

local storage.");

Display alert message.

} Close if clause.

else { Else.

 try { Set up the try clause.

 oldDate = new Date(); Define new Date.

(continued)

Figure 7-15.  Browser error, caught in a try/catch

Table 7-1 shows the complete date application. Remember, you may need to upload

this to a server to test it.

Chapter 7 Mazes

277

Code Explanation

 �localStorage.

setItem("lastdate",oldDate);

Store in local storage using the key

"lastdate".

 alert("Stored: "+oldDate); Display message to show what was stored.

 } Close the try clause.

 catch(e) { Start the catch clause: if there was a

problem.

 �alert("Error with use of local

storage: "+e);}

Display a message.

} Close the try clause.

return false; Return false to prevent any page refresh.

} Close the function.

 function remove() { Remove the function header.

 �if (typeof(localStorage) ==

"undefined") {

Check if localStorage is recognized.

 �alert("Browser does not recognize

HTML local storage.");

Display the alert message.

} Close the if clause.

else { Else.

 localStorage.removeItem('lastdate'); Remove the item stored using the key

'lastdate'.

 alert("Removed date stored."); Display the message indicating what was

done.

 } Close the clause.

 return false; Return false to prevent a page refresh.

 } Close the function.

Table 7-1.  (continued)

(continued)

Chapter 7 Mazes

278

Table 7-1.  (continued)

Code Explanation

 function fetch() { Fetch the function header.

 �if (typeof(localStorage) ==

"undefined") {

Check if localStorage recognized.

 �alert("Browser does not recognize

HTML local storage.");

Display an alert message.

} Close the if clause.

else { Else.

 �alert("Stored "+localStorage.

getItem('lastdate'));

Fetch the item stored under the key

'lastdate' and display it.

 } Close the clause.

 return false; Return false to prevent a page refresh.

 } Close the function.

</script> Close the script element.

</head> Close the head element.

<body> Opening body tag.

<button onClick="javascript:store();">

Store date info </button>

Button for storing.

<button onClick="javascript:fetch();">

Retrieve date info </button>

Button for retrieving, that is, fetching the

stored data.

<button onClick="javascript:remove();">

Remove date info </button>

Button for removing.

</body> Closing body tag.

</html> Closing html tag.

Chapter 7 Mazes

279

Combining the Date function with localStorage lets you do many things. For

example, you can calculate the elapsed time between a player’s current and last use of

the application or, perhaps, the player winning two games. In Chapter 5, we used Date

to compute the elapsed time using the getTime method. Recall that getTime stores the

number of milliseconds from January 1, 1970. You can convert that value to a string,

store it, and then when you fetch it back, do arithmetic to calculate the elapsed time.

The localStorage key-value pairs last until they are removed, unlike JavaScript

cookies, for which you can set a duration.

�Encoding Data for Local Storage
For simplicity’s sake, the first application consists of just one HTML document. You can

use this version to create mazes, store and retrieve them, and move the token through

the maze. The second version of the application involves two HTML documents. One

script is the same as the first application and can be used for building, traversing, and

saving mazes as well as traveling each maze. The second script is just for traveling one

of a fixed list of saved mazes. A set of radio buttons allows the player to pick from easy,

moderate, and hard options, assuming someone has created and saved mazes with

the names easymaze, moderatemaze, and hardmaze. You can change these names to

anything you want and/or add as many as you want. You just need to be consistent

between what you create, name, and save in the build program and what you reference

in the travel program.

Now let’s address the issue that localStorage just stores character strings. The

applications described here must store enough information about the walls so that these

walls can be added to the canvas. In the one-document version, the old walls are actually

added to whatever is on the canvas. The two-document version erases any old maze and

loads the requested one. I use two forms, each with an input field for the name and a

submit button. The player chooses the name for saving a maze and must remember it for

retrieving.

The data to be stored is a character string, that is, a piece of text. We will create the

text holding the information for a set of walls by doing the following for each wall:

•	 Combine the sx, sy, fx, fy into an array called w for a single wall.

•	 Using the join method, use the w array to generate a string separated

by + signs.

Chapter 7 Mazes

http://dx.doi.org/10.1007/978-1-4842-4155-4_5

280

•	 Add each of these strings to an array called allw, for all the walls.

•	 Using the join method again, use the allw array to produce a string

called sw.

The sw string variable will hold all the coordinates (four numbers for each wall) for

all the walls. The next step is to use the localStorage.setItem method to store sw under

the name given by the player. We do this using the try and catch construction explained

in the previous section.

try {

 localStorage.setItem(lsname,sw);

}

catch (e) {

 alert("data not saved, error given: "+e);

}

This is a general technique that will try something, suppress any error message, and

if there is an error, will invoke the code in the catch block.

Note  This may not always work as you intend. For example, when executing
this application on Firefox directly on a computer, as opposed to a file downloaded
from a server, the localStorage statement does not cause an error, but nothing
is stored. This code works when the HTML file is downloaded from a server using
Firefox, and the creation script works both as a local file and when downloaded
using Chrome. The two-script version must be tested using a server for each of the
browsers.

Retrieving the information works in a corresponding way. The code extracts the

name given by the player to set the variable lsname and then uses

swalls = localStorage.getItem(lsname);

to set the variable swalls. If this is not null, we use the string method split to do the

opposite of join: split the string on the symbol given (we split at every semicolon) and

assign the values to the successive elements of an array. The relevant lines are

wallstgs = swalls.split(";");

Chapter 7 Mazes

281

and

 sw = wallstgs[i].split("+");

Next, the code uses the information just retrieved and the fixed information for wall

width and wall style to create a new Wall object:

curWall = new Wall(sx,sy,fx,fy,wallWidth,wallStyle);

Finally, there is code to add curWall to both the everything array and the

walls array.

�Radio Buttons
Radio buttons are sets of buttons in which only one member of the set can be selected.

If the player makes a new choice, the old choice is deselected. They are an appropriate

choice for the hard/moderate/easy selection for this application. Here’s the HTML

markup in the <body> section:

<form name="gf" onSubmit="return getWalls()" >

<input type="radio" value="hard" name="level" />Hard

<input type="radio" value="moderate" name="level" />Moderate

<input type="radio" value="easy" name="level" />Easy

<input type="submit" value="GET maze"/>

</form>

Notice that all three input elements have the same name. This is what defines one

group of radio buttons of which only one may be selected. In this case, the markup

creates an array called level. The getWalls function will be shown in full in the next

section. It is similar to the function in the all-in-one script. However, in this case, the

name of the localStorage item is determined from the radio buttons. The code is

for (i=0;i<document.gf.level.length;i++) {

 if (document.gf.level[i].checked) {

 lsname= document.gf.level[i].value+"maze";

 break;

 }

}

Chapter 7 Mazes

282

The for loop iterates over all the input items. The if test is based on the checked

attribute. When it detects a true condition, the variable lsname is constructed from the

value attribute of that item, and the break; statement causes execution to leave the for

loop. If you want your radio buttons to start with one of the items checked, use code

like this:

<input type="radio" value="easy" name="level" checked />

Or this:

<input type="radio" value="easy" name="level" checked="true" />

�Building the Application and Making It Your Own
Now let’s take a look at the coding for the maze applications, first the all-in-one script

and then the second script of the two-script version.

Table 7-2 shows the functions in the script for creating, saving, retrieving, and

traveling the maze. Notice that much of the invoking of functions is done through event

handling: the onLoad, onSubmit, and addEventListener calls. These do not invoke the

functions directly or immediately, but set up the call to be made when the indicated

event occurs.

Chapter 7 Mazes

283

Table 7-2.  Functions in the Maze Application

Function Invoked By/Called By Calls

init Invoked by action of onLoad in body tag drawAll

drawAll initstartWallstretchWallgetkeyAndMovegetWalls draw method for

Walls and for

token: drawToken

and drawAline

Token var statement declaring mypent

Wall startWall, getWalls

drawToken drawAll using draw method for the token object in the

everything array

moveToken getkeyAndMove using the moveit method for myPent intersect

drawAline drawAll using draw method for Wall objects in the

everything array

startWall Invoked by action of an addEventListener call in init drawAll, Wall

stretchWall Invoked by action of an addEventListener call in init drawAll

finish Invoked by action of an addEventListener call in init

getkeyAndMove Invoked by action of an addEventListener call in init moveToken

using the moveit

method for myPent

saveWalls Invoked by action of onSubmit for the sf form

getWalls Invoked by action of onSubmit for the gf form drawAll, Wall

Table 7-3 shows the complete code for the maze application, with explanations.

Chapter 7 Mazes

284

Table 7-3.  Complete Code for the All-in-One Maze Application

Code Explanation

<html> Opening html tag.

<head> Opening head tag.

 <title>Build maze & travel maze</

title>

Complete title element.

 <script type="text/javascript"> Opening script tag.

 var cwidth = 900; To clear the canvas.

 var cheight = 350; To clear the canvas.

 var ctx; To hold the canvas context.

 var everything = []; To hold everything.

 var curWall; For wall in progress.

 var wallWidth = 5; Fixed wall width.

 var wallStyle =

"rgb(200,0,200)";

Fixed wall color.

 var walls = []; Hold all the walls.

 var inMotion = false; Flag while wall is being built by dragging.

 var unit = 10; Unit of movement for token.

function

Token(sx,sy,rad,styleString,n) {

Function header to build token.

 this.sx = sx; Set the sx property.

 this.sy = sy; Set the sy property.

 this.rad = rad; Set the rad property (radius).

 this.draw = drawToken; Set the draw method.

 this.n = n; Set the n number of sides.

 this.angle = (2*Math.PI)/n ; Compute and set the angle.

(continued)

Chapter 7 Mazes

285

Code Explanation

 this.moveit = moveToken; Set the moveit method.

 this.fillstyle = styleString; Set the color.

} Close the function.

function drawToken() { Function header drawToken.

 ctx.fillStyle=this.fillstyle; Set the color.

 var i; Index.

 var rad = this.rad; Set rad.

 ctx.beginPath(); Begin path.

 �ctx.moveTo(this.sx+rad*Math.cos

(-.5*this.angle),this.sy+rad*Math.

sin(-.5*this.angle));

Move to the first vertex of the token polygon (which

is a pentagon).

 for (i=1;i<this.n;i++) { for loop to draw the n sides of the token: five sides

in this case.

 �ctx.lineTo(this.sx+rad*Math.

cos(i-.5)*this.angle),this.

sy+rad*Math.sin((i-.5)*this.

angle));

Specify line to next vertex, setting up the drawing of

a side of the pentagon.

 } Close for.

 ctx.fill(); Draw token.

} Close function.

function moveToken(dx,dy) { Function header.

 this.sx +=dx; Increment x value.

 this.sy +=dy; Increment y value.

 var i; Index.

 var wall; Used for each wall.

 for(i=0;i<walls.length;i++) { Loop over all walls.

Table 7-3.  (continued)

(continued)

Chapter 7 Mazes

286

Code Explanation

 wall = walls[i]; Extract ith wall.

 �if (intersect(wall.sx,wall.

sy,wall.fx,wall.fy,this.

sx,this.sy,this.rad)) {

Check for intersect. If there is an intersection

between the new position of the token and this

specific wall.

 this.sx -=dx; Change x back—don’t make this move.

 this.sy -=dy; Change y back—don’t make this move.

 break; Leave for loop because it isn’t necessary to do any

more checking if there is a collision with one wall.

 } Close the if true clause.

 } Close the for loop.

} Close the function.

function Wall(sx,sy,fx,fy,width,

styleString) {

Function header to make Wall.

 this.sx = sx; Set up the sx property.

 this.sy = sy; Set up sy.

 this.fx = fx; Set up fx.

 this.fy = fy; Set up fy.

 this.width = width; Set up width.

 this.draw = drawAline; Set the draw method.

 this.strokestyle = styleString; Set strokestyle.

} Close the function.

function drawAline() { Function header drawAline.

 ctx.lineWidth = this.width; Set the line width.

 �ctx.strokeStyle = this.

strokestyle;

Set the strokestyle.

 ctx.beginPath(); Begin path.

Table 7-3.  (continued)

(continued)

Chapter 7 Mazes

287

Code Explanation

 ctx.moveTo(this.sx,this.sy); Move to start of line.

 ctx.lineTo(this.fx,this.fy); Set line to finish.

 ctx.stroke(); Draw the line.

} Close function.

var mypent = new Token(100,100,

20,"rgb(0,0,250)",5);

Set up mypent as a pentagonal shape to be the

playing piece.

everything.push(mypent); Add to everything.

function init(){ Function header init.

 �ctx = document.

getElementById('canvas').

getContext('2d');

Define the ctx (context) for all drawing.

 �canvas1 = document.

getElementById('canvas');

Define canvas1, used for events.

 �canvas1.addEventListener

('mousedown',startWall,false);

Set up handling for mousedown.

 �canvas1.addEventListener

('mousemove',stretchWall,false);

Set up handling for mousemove.

 �canvas1.addEventListener

('mouseup',finish,false);

Set up handling for mouseup.

 �window.addEventListener('keydown',

getkeyAndMove,false);

Set up handling for use of the arrow keys.

 drawAll(); Draw everything.

} Close function.

function startWall(ev) { Function header startWall.

 var mx; Hold mouse x.

 var my; Hold mouse y.

Table 7-3.  (continued)

(continued)

Chapter 7 Mazes

288

Code Explanation

 mx = ev.pageX; Set mx.

 my = ev.pageY; Set my.

 �curWall = new Wall(mx,my,mx+1,

my+1,wallWidth,wallStyle);

Create a new wall. It is small at this point.

 inMotion = true; Set inMotion to true.

 everything.push(curWall); Add curWall to everything.

 drawAll(); Draw everything.

} Close function.

function stretchWall(ev) { Function header stretchWall to that uses the

dragging of the mouse to stretch out a wall while the

mouse is dragged.

 if (inMotion) { Check if inMotion.

 var mx; Hold mouse x.

 var my; Hold mouse y.

 mx = ev.pageX; Set mx.

 my = ev.pageY; Set my.

 curWall.fx = mx; Change curWall.fx to mx.

 curWall.fy = my; Change curWall.fy to my.

 drawAll(); Draw everything (will show growing wall).

 } Close if inMotion.

} Close function.

function finish(ev) { Function header finish.

 inMotion = false; Set inMotion to false.

 walls.push(curWall); Add curWall to walls.

} Close function.

Table 7-3.  (continued)

(continued)

Chapter 7 Mazes

289

Code Explanation

function drawAll() { Function header drawAll.

 �ctx.clearRect(0,0,cwidth,

cheight);

Erase whole canvas.

 var i; Index.

 �for (i=0;i<everything.

length;i++) {

Loop through everything.

 everything[i].draw(); Draw everything.

 } Close loop.

} Close function.

function getKeyAndMove(event) { Function header getKeyAndMove.

 var keyCode; Hold keyCode.

 if(event == null) { If event null.

 keyCode = window.event.keyCode; Get keyCode using window.event.

 window.event.preventDefault(); Stop default action.

 } Close clause.

 else { Else.

 keyCode = event.keyCode; Get keyCode from event.

 event.preventDefault(); Stop default action.

 } Close clause.

 switch(keyCode) { Switch on keyCode.

 case 37: If left arrow.

 mypent.moveit(-unit,0); Move back horizontally.

 break; Leave switch.

 case 38: If up arrow.

 mypent.moveit(0,-unit); Move up screen.

 break; Leave switch.

Table 7-3.  (continued)

(continued)

Chapter 7 Mazes

290

Code Explanation

 case 39: If right arrow.

 mypent.moveit(unit,0); Move left.

 break; Leave switch.

 case 40: If down arrow.

 mypent.moveit(0,unit); Move down screen.

 break; Leave switch.

 default: Anything else.

 �window.removeEventListener

('keydown',getkeyAndMove,false);

Stop listening for keys. Assume player trying to save

to local storage or retrieve from local storage.

 } Close switch.

 drawAll(); Draw everything.

 } Close function.

 �function intersect(sx,sy,fx,fy,

cx,cy,rad) {

Function header intersect.

 var dx; For intermediate value.

 var dy; For intermediate value.

 var t; For expression in t.

 var rt; For holding distance squared.

 dx = fx-sx; Set x difference.

 dy = fy-sy; Set y difference.

 t =0.0-((sx-cx)*dx+(sy-cy)*dy)/

((dx*dx)+(dy*dy));

This line is derived from taking the formula for the

distance squared from each point to cx,cy. Then

taking the derivative and solving for 0.

if (t<0.0) { If closest is at t <0.

 t=0.0; } Check at 0 (this will be further).

else if (t>1.0) { If closest is at t>1.

Table 7-3.  (continued)

(continued)

Chapter 7 Mazes

291

Code Explanation

 t = 1.0; Check at 1 (this will be further).

 } Close clause.

dx = (sx+t*(fx-sx))-cx; Compute the difference at this value of t.

dy = (sy +t*(fy-sy))-cy; Compute the difference at this value of t.

rt = (dx*dx) +(dy*dy); Compute the distance squared.

if (rt<(rad*rad)) { Compare to rad squared.

 return true; } Return true.

else { Else.

 return false;} Return false.

} Close function.

function saveWalls() { Function saveWalls header.

 var w = []; Temporary array.

 var allw=[]; Temporary array.

 var sw; Hold final string.

 var oneWall; Hold intermediate string.

 var i; Index.

 var lsname = document.sf.slname.

value;

Extract player’s name for the local storage.

 for (i=0;i<walls.length;i++) { Loop over all walls.

 w.push(walls[i].sx); Add sx to the w array.

 w.push(walls[i].sy); Add sy to the w array.

 w.push(walls[i].fx); Add fx to the w array.

 w.push(walls[i].fy); Add fy to the w array.

 onewall = w.join("+"); Make a string.

 allw.push(onewall); Add to the allw array.

Table 7-3.  (continued)

(continued)

Chapter 7 Mazes

292

Table 7-3.  (continued)

Code Explanation

 w = []; Reset w to the empty array.

 } Close the loop.

 sw = allw.join(";"); Now make allw into a string.

 try { Try.

 localStorage.setItem(lsname,sw); Save localStorage.

 } End try.

 catch (e) { If a catchable error.

 �alert("data not saved, error

given: "+e);

Display message.

 } End the catch clause.

 return false; Return false to avoid refresh.

} Close the function.

function getWalls() { Function header getWalls.

 var swalls; Temporary storage.

 var sw; Temporary storage.

 var i; Index.

 var sx; Hold the sw value.

 var sy; Hold the sy value.

 var fx; Hold the fx value.

 var fy; Hold the fy value.

 var curWall; Hold walls being created.

 � var lsname = document.gf.glname.

value;

Extract the player’s name for storage to be retrieved.

 �swalls=localStorage.

getItem(lsname);

Get the storage.

(continued)

Chapter 7 Mazes

293

Code Explanation

 if (swalls!=null) { If something was fetched.

 wallstgs = swalls.split(";"); Split to make an array.

 for (i=0;i<wallstgs.length;i++)

{

Loop through this array.

 sw = wallstgs[i].split("+"); Split individual item.

 sx = Number(sw[0]); Extract 0th value and convert to a number.

 sy = Number(sw[1]); Extract 1st and convert to a number.

 fx = Number(sw[2]); Extract 2nd and convert to a number.

 fy = Number(sw[3]); Extract 3rd and convert to a number.

 �curWall = new Wall(sx,sy,fx,fy,

wallWidth,wallStyle);

Create new Wall using the extracted and fixed

values.

 walls.push(curWall); Add to the walls array.

 everything.push(curWall); Add to the everything array.

 } Close the loop.

 drawAll(); Draw everything.

 } Close if not null.

 else { Was null.

 alert("No data retrieved."); No data.

 } Close clause.

 window.addEventListener('keydown',

➥getkeyAndMove,false);

Set up the keydown action.

 return false; Return false to prevent a refresh.

} Close the function.

</script>

</head> End the head element.

Table 7-3.  (continued)

(continued)

Chapter 7 Mazes

294

Code Explanation

<body onLoad="init();" > Start body; set up call to init.

<canvas id="canvas" width="900"

height="350">

Canvas tag.

Your browser doesn't support the

HTML5 element canvas.

Warning for certain browser.

</canvas> Close canvas.

 Line break.

Press mouse button down, drag and

release to make a wall.

Instructions.

Use arrow keys to move token.

Instructions and line break.

Pressing any other key will stop

key capture and allow you to save

the maze locally.

Instructions.

<form name="sf" onSubmit="return

saveWalls()" >

Form tag; set up call to saveWalls.

To save your maze, enter in a

name and click on the SAVE WALLS

button.

Instructions.

Use the names easymaze</

em>, moderatemaze, and

hardmaze for use in the

travelmaze program.

Extra instructions in the buildmaze program. These

names must match what are used in travelmaze.

Name: <input name="slname"

value="maze_name" type="text">

Label and input field.

<input type="submit" value="SAVE

WALLS"/>

Submit button.

Table 7-3.  (continued)

(continued)

Chapter 7 Mazes

295

Code Explanation

</form> Close form.

<form name="gf" onSubmit="return

getWalls()" >

Form tag; set up call to getWalls.

To add old walls, enter in the

name and click on the GET SAVED

WALLS button.

Instructions.

Name: <input name="glname"

value="maze_name" type="text">

Label and input field.

<input type="submit" value="GET

SAVED WALLS"/>

Submit button.

</form> Close form.

</body> Close body.

</html> Close HTML.

Table 7-3.  (continued)

�Creating the Travel Maze Application
The localStorage data can be accessed by a different HTML document from the one

that created the data, as long as it is on the same server. This is a security feature, as

mentioned previously, restricting readers of local storage to scripts on the same server.

The second script is based on this feature. Table 7-4 shows the functions calling or

being called; it is a subset of the previous one.

Chapter 7 Mazes

296

Table 7-4.  Functions in the Travel Maze Script

Function Invoked By/Called By Calls

init Invoked by action of onLoad in body tag drawAll

drawAll InitstartWallstretchWallgetkeyAndMovegetWalls draw method for

Walls and for token:

drawToken and

drawAline

Token var statement declaring mypent

Wall startWall, getWalls

drawToken drawAll using draw method for the token object in the

everything array

moveToken getKeyAndMove using the moveit method for mypent intersect

drawAline drawAll using draw method for Wall objects in the

everything array

getkeyAndMove Invoked by action of an addEventListener call in init moveToken using

the moveit method

for mypent

getWalls Invoked by action of onSubmit for the gf form drawAll, Wall

intersect moveToken

The functions are the same as in the all-in-one script with one exception, the

getWalls function, so I’ve commented on only the new or changed code. This

application also has radio buttons in place of the form input fields. Table 7-5 shows the

complete code for the travelmaze application.

Chapter 7 Mazes

297

Table 7-5.  Complete Code for the Travel Maze Script

Code Explanation

<html>

<head>

 <title>Travel maze</title> Travel maze.

 <script type="text/javascript">

 var cwidth = 900;

 var cheight = 700;

 var ctx;

 var everything = [];

 var curWall;

 var wallWidth = 5;

 var wallStyle = "rgb(200,0,200)";

 var walls = [];

 var inMotion = false;

 var unit = 10 ;

function Token(sx,sy,rad,styleString,n)

{

 this.sx = sx;

 this.sy = sy;

 this.rad = rad;

 this.draw = drawToken;

 this.n = n;

 this.angle = (2*Math.PI)/n

 this.moveit = moveToken;

 this.fillStyle = styleString;

}

(continued)

Chapter 7 Mazes

298

Code Explanation

function drawToken() {

 ctx.fillStyle=this.fillStyle;

 ctx.beginPath();

 var i;

 var rad = this.rad ;

 ctx.beginPath();

 �ctx.moveTo(this.sx+rad*Math.

cos(-.5*this.angle),this.sy+rad*Math.

sin(-.5*this.angle));

 for (i=1;i<this.n;i++) {

 �ctx.lineTo(this.sx+rad*Math.

cos((i-.5)*this.angle),this.

sy+rad*Math.sin((i-.5)*this.angle));

 }

 ctx.fill();

}

function moveToken(dx,dy) {

 this.sx +=dx;

 this.sy +=dy;

 var i;

 var wall;

 for(i=0;i<walls.length;i++) {

 wall = walls[i];

 �if (intersect(wall.sx,wall.sy,wall.

fx,wall.fy,this.sx,this.sy,

 this.rad)) {

Table 7-5.  (continued)

(continued)

Chapter 7 Mazes

299

Code Explanation

 this.sx -=dx;

 this.sy -=dy ;

 break;

 }

 }

}

function Wall(sx,sy,fx,fy,width,

styleString) {

 this.sx = sx;

 this.sy = sy;

 this.fx = fx;

 this.fy = fy;

 this.width = width;

 this.draw = drawAline;

 this.strokestyle = styleString;

}

function drawAline() {

 ctx.lineWidth = this.width;

 ctx.strokeStyle = this.strokestyle;

 ctx.beginPath();

 ctx.moveTo(this.sx,this.sy);

 ctx.lineTo(this.fx,this.fy);

 ctx.stroke() ;

}

Table 7-5.  (continued)

(continued)

Chapter 7 Mazes

300

Code Explanation

var mypent = new Token(100,100,20,

"rgb(0,0,250)",5);

everything.push(mypent);

function init(){

 ctx = document.

getElementById('canvas').

getContext('2d');

 window.addEventListener('keydown',

getkeyAndMove,false);

 drawAll();

}

function drawAll() {

 ctx.clearRect(0,0,cWidth,cHeight);

 var i;

 for (i=0;i<everything.length;i++) {

 everything[i].draw() ;

 }

}

function getKeyAndMove(event) {

 var keyCode;

 if(event == null)

 {

 keyCode = window.event.keyCode;

 window.event.preventDefault();

 }

Table 7-5.  (continued)

(continued)

Chapter 7 Mazes

301

Table 7-5.  (continued)

Code Explanation

 else

 {

 keyCode = event.keyCode;

 event.preventDefault();

 }

 switch(keyCode)

 {

 case 37: //left arrow

 mypent.moveit(-unit,0);

 break ;

 case 38: //up arrow

 mypent.moveit(0,-unit);

 break;

 case 39: //right arrow

 mypent.moveit(unit,0);

 break;

 case 40: //down arrow

 mypent.moveit(0,unit);

 break;

 default:

 �window.removeEventListener('keydown',

getkeyAndMove,false);

 }

 drawAll();

 }

(continued)

Chapter 7 Mazes

302

Table 7-5.  (continued)

Code Explanation

 function intersect(sx,sy,fx,fy,cx,cy,

rad) {

 var dx;

 var dy;

 var t ;

 var rt;

 dx = fx-sx;

 dy = fy-sy;

 t =0.0-((sx-cx)*dx+(sy-cy)*dy)/

((dx*dx)+(dy*dy));

if (t<0.0) {

 t=0.0; }

else if (t>1.0) {

 t = 1.0;

 }

dx = (sx+t*(fx-sx))-cx;

dy = (sy +t*(fy-sy))-cy;

rt = (dx*dx) +(dy*dy);

if (rt<(rad*rad)) {

 return true; }

else {

 return false;}

}

function getWalls() {

 var swalls ;

(continued)

Chapter 7 Mazes

303

Table 7-5.  (continued)

Code Explanation

 var sw;

 var i;

 var sx;

 var sy;

 var fx;

 var fy;

 var curWall;

 var lsname;

 �for (i=0;i<document.gf.level.

length;i++) {

Iterate through the radio buttons in the gf

form, group named level.

 if (document.gf.level[i].checked) { Is this radio button checked?

 �lsname= document.gf.level[i].

value+"maze";

If so, construct the local storage name using

the value attribute of the radio button

element.

 break; Leave the for loop.

 } Close if.

} Close for.

 swalls=localStorage.getItem(lsname); Fetch this item from local storage.

 if (swalls!=null) { If it is not null, it is good data.

 wallstgs = swalls.split(";"); Extract the string for each wall.

 walls = []; Remove any old walls from the walls array.

 everything = []; Remove any old walls from the

everything array.

 everything.push(mypent); Add the pentagon-shaped token called

mypent to everything.

(continued)

Chapter 7 Mazes

304

Table 7-5.  (continued)

Code Explanation

 for (i=0;i<wallstgs.length;i++) { Proceed to decode each wall. The remaining

code is the same as the all-in-one

application.

 sw = wallstgs[i].split("+");

 sx = Number(sw[0]);

 sy = Number(sw[1]);

 fx = Number(sw[2]);

 fy = Number(sw[3]);

 �curWall = new Wall(sx,sy,fx,fy,

wallWidth,wallStyle);

 walls.push(curWall);

 everything.push(curWall);

 }

 drawAll();

 }

 else {

 alert("No data retrieved.");

 }

 �window.addEventListener('keydown',

getkeyAndMove,false);

 return false ;

}

</script>

</head>

(continued)

Chapter 7 Mazes

305

Code Explanation

<body onLoad="init();" >

<canvas id="canvas" width="900"

height="700">

Your browser doesn't support the HTML5

element canvas.

</canvas>

Choose level and click GET MAZE button

to get a maze :

<form name="gf" onSubmit="return

getWalls()" >

<input type="radio" value="hard" 

name="level" />Hard

Set up the radio button, common level; value

hard.

<input type="radio" value="moderate" 

name="level" />Moderate

Set up the radio button, common level; value

moderate.

<input type="radio" value="easy" 

name="level" />Easy

Set up the radio button, common level; value

easy.

<input type="submit" value="GET

maze"/>

</form>

<p>

Use arrow keys to move token.

</p>

</body>

</html>

Table 7-5.  (continued)

Chapter 7 Mazes

306

There are a number of ways you can make this application your own.

Some applications in which the user places objects on the screen by dragging limit

the possibilities by doing what is termed snapping the endpoints to grid points, perhaps

even limiting the walls for a maze to be strictly horizontal or vertical.

The second application has two levels of user: the creator of the mazes and the

player who attempts to traverse the mazes. You may want to design very intricate mazes,

and for that you would want an editing facility. Another great addition would be a timing

feature. Look back at the timing for the memory game in Chapter 5 for ways to calculate

elapsed time.

Just as we added a video treat for the quiz show in Chapter 6, you could play a video

when someone completes a maze.

The ability to save to local storage is a powerful feature. For this, and any game or

activity that takes a fair amount of time, you may want to add the ability to save the

current state. Another common use for local storage is to save the best scores.

Do understand that I wanted to demonstrate the use of local storage for intricate

data, and these applications did do that. However, you may want to develop maze

programs using something other than local storage. To build on this application, you

need to define the sequence of starting and stopping points, four numbers in all, for

each wall, and define walls accordingly. Look ahead to the word list implemented as an

external script file in the guess-a-word game in Chapter 9.

This chapter and the previous one demonstrated events and event handling for

mouse, keys, and timing. New devices provide new events, such as shaking a phone or

using multiple touches on a screen. With the knowledge and experience you’ve acquired

here, you’ll be able to put together many different interactive applications.

�Testing and Uploading Application
The first application is complete in one HTML document, buildmazesavelocally.

html. The second application uses two files, buildmazes.html and travelmaze.html.

The buildmazesavelocally.html and buildmaze.html files are identical, except for the

titles, and buildmaze has additional instructions made with the following HTML:

Use the names easymaze, moderatemaze, and hardmaze</

em> for use in the travelmaze program.

Chapter 7 Mazes

http://dx.doi.org/10.1007/978-1-4842-4155-4_5
http://dx.doi.org/10.1007/978-1-4842-4155-4_6
http://dx.doi.org/10.1007/978-1-4842-4155-4_9

307

It is possible to travel a maze in all three programs. All three files are available with

the source code along with the document demonstrating local storage using Date. Please

note that travelmaze.html will not work until you create mazes and save them using

local storage on your own computer.

The two HTML documents for the two-script version work locally for modern

browsers, but must both be uploaded to the same server to test that mazes saved by the

building program on a server can be used by the traveling program on a server.

Some internet service providers may limit the use of local storage and cookies. There

are differences between these constructs. Using any of this in a production application

requires considerable work. The ultimate fallback is to store information on the server

using a language such as PHP.

If you have multiple applications open, you need to realize that “the computer,” that

is, the operating system, needs to determine which program is to handle any pushing

down on a key. The term used is focus. You may need to use the mouse to click the window

holding the maze program. This sets the focus, and then clicking the arrow keys will work.

�Summary
In this chapter, you learned how to implement a program to support building a maze of

walls and to store it on the local computer. You also learned how to create a maze travel

game. We used the following programming techniques and HTML5 features:

•	 Programmer-defined objects

•	 Capturing key strokes; that is, setting up event handling for key

presses and deciphering which key was pressed

•	 localStorage for saving the layout of the walls of the maze on the

player’s computer

•	 try and catch to check if certain coding is acceptable

•	 The join method for arrays and the split method for strings

•	 Mouse events

•	 Mathematical calculations for determining collisions between the

token and the walls of the maze

•	 Radio buttons to present a choice to the player

Chapter 7 Mazes

308

The use of local storage was fairly intricate for this application, requiring the

encoding and decoding of the maze information. A simpler use could serve for

storing the highest score or the current score on any game. You can refer to the

localstoragedate.html for a guide. You can go back to previous chapters and see if

you can incorporate this feature. Remember that localStorage is tied to the browser. In

the next chapter, you learn how to implement the rock-paper-scissors game and how to

incorporate audio in your application.

Chapter 7 Mazes

309

CHAPTER 8

Rock, Paper, Scissors
In this chapter, we cover the following:

•	 Playing against a computer

•	 Creating graphics to serve as buttons

•	 Arrays of arrays for game rules

•	 The font-family property

•	 Inherited style settings

•	 Audio

�Introduction
This chapter combines programming techniques with HTML5 JavaScript features to

implement the familiar rock-paper-scissors game. In the schoolyard version of this game,

each player uses hand symbols to indicate one of the three possibilities: rock, paper, or

scissors. The terminology is that a player throws one of the three options. The game rules

are stated this way:

•	 Rock crushes scissors

•	 Paper covers rock

•	 Scissors cuts paper

So, each symbol beats one other symbol: rock beats scissors; paper beats rock; and

scissors beats paper. If both players throw the same thing, it’s a tie.

Since this is a two-player game that our player will play against the computer, we

have to create the computer’s moves. We will generate random moves, and the player

needs to trust that the program is doing this and not basing its move on what the player

threw. The presentation must reinforce this trust.

© Jeanine Meyer 2023
J. Meyer, The Essential Guide to HTML5, https://doi.org/10.1007/978-1-4842-8722-4_8

https://doi.org/10.1007/978-1-4842-8722-4_8

310

The first version of our game just uses the visuals you’ll see here. The second version

adds audio: four different clips governed by the three winning events plus the tie option.

You can use either the sound files provided with the source code or your own sounds.

Note that you’ll need to change the file names in the code to match any new sound files

you use.

This is a situation in which we want to use special graphics for the player moves.

Figure 8-1 shows the opening screen of the application, consisting of three graphics that

serve as buttons, as well as a field labeled with the string "Score:" that holds an initial

value of zero.

Figure 8-1.  The rock-paper-scissors opening screen

The player makes a move by clicking one of the symbols. Let’s look at an example

with the player clicking the rock icon. We’ll assume the computer chose scissors. After

a short animated sequence in which a scissors symbol starts small and grows on the

screen, a text message appears, as shown in Figure 8-2. In the version with added audio,

the audio clip would play a sound corresponding to a rock crushing a scissors. Notice

that the score is now 1.

Chapter 8 Rock, Paper, Scissors

311

Figure 8-2.  The player threw rock, and the computer threw scissors

Next in the game, the player and the computer tie, as shown in Figure 8-3. There’s no

change in the score when a tie occurs, so the score is still 1.

Figure 8-3.  A tie

Chapter 8 Rock, Paper, Scissors

312

Later, the game has been even, but the player loses, and the score falls to negative 1,

meaning the player is behind, as Figure 8-4 shows.

Figure 8-4.  Later in the game, a losing move

This application, like all the examples in this book, is only a start. Both the plain and

audio versions keep a running score for the player in which a loss results in a decrease.

An alternative approach is to keep individual scores for player and computer, with only

wins counted for either side. You could display a separate count of the games played.

This is preferable if you don’t want to show negative numbers. You could also save the

player’s score using localStorage, as described in the maze game in Chapter 7.

A more elaborate enhancement might feature video clips (look back at Chapter 6)

or animated GIFs that show rock crushing scissors, paper covering rock, and scissors

cutting paper. You can also look at this as a model for many different games. In all cases,

you need to determine how to capture the player’s moves and how to generate the

computer’s moves; you need to represent and implement the rules of the game; and

you need to maintain the state of the game and display it for the player. The rock-paper-

scissors game has no state information except for the running score. Putting it another

way, a game consists of just one turn. This is in contrast to the dice game described

Chapter 8 Rock, Paper, Scissors

http://dx.doi.org/10.1007/978-1-4842-4155-4_7
http://dx.doi.org/10.1007/978-1-4842-4155-4_6

313

in Chapter 2, in which a game can involve one to any number of throws of the dice, or

the memory/concentration game described in Chapter 5, in which a turn consists of

two selections of cards and a completed game can take any number of turns with the

minimum equal to half the number of cards.

Note T here are competitions for rock-paper-scissors and also computer systems
in which the computer makes moves based on the player’s history of moves. There
even are computer versus computer events.

�Critical Requirements
The implementation of rock-paper-scissors uses many HTML5 and JavaScript constructs

demonstrated in earlier chapters, put together here in different ways. Programming is

similar to writing. It is putting the representation of ideas together in some logical order,

just like combining words into sentences and the sentences into paragraphs, and so on.

While reading this chapter, think back to what you have learned about drawing rectangles,

images, and text on the canvas, detecting where the player has clicked the mouse, setting

up a timing event using setInterval to produce animation, and using arrays to hold

information. These are the building blocks for the rock-paper-scissors application.

In planning this application, I knew I wanted our player to click buttons, one button

for each of the types of throws in the game. Once the player makes a throw, I wanted

the program to make its own move, namely, a random choice, and have a picture

corresponding to that move appear on the screen. The program would then apply the

rules of the game to display the outcome. A sound would play, corresponding to the three

possible situations in which one throw beats another, plus a groan when there was a tie.

This application starts off with what appear as buttons or icons on the screen. These

are pictures that the player can click to make their move. There is also a box for the score.

The application must generate the computer move randomly and then display it in a

way that appears as if the computer and the player are throwing their moves at the same

time. My idea for this is to have the appropriate symbol start small on the screen and

then get larger, seemingly emerging from the screen as if the computer were making its

throw toward the player. This action starts right after the player clicks one of the three

possible throws, but it is soon enough to give the impression that the two happened at

the same time.

Chapter 8 Rock, Paper, Scissors

http://dx.doi.org/10.1007/978-1-4842-4155-4_2
http://dx.doi.org/10.1007/978-1-4842-4155-4_5

314

The rules of the game must be obeyed! This includes both what beats what and the

folksy message displayed to explain it—“rock crushes scissors,” “paper covers rock,” and

“scissors cuts paper.” The score displayed goes up by one, down by one, or stays the same

depending on whether the turn is a win, loss, or tie.

The audio-enhanced version of the game must play one of four audio clips

depending on the situation.

�HTML5, CSS, and JavaScript Features
Now let’s take a look at the specific features of HTML5, CSS, and JavaScript that provide

what we need to implement the game. Except for basic HTML tags and functions and

variables, the explanations here are complete. If you’ve read the other chapters, you’ll

notice that much of this chapter repeats explanations given previously.

We certainly could have used the types of buttons demonstrated in the other

chapters, but I wanted these buttons to look like the throws they represent. As you’ll

see, the way we implement the buttons is built on the concepts demonstrated in prior

chapters. And we again use JavaScript pseudorandom processing for defining the

computer move, and setInterval for animating the display of the computer move.

Our rock-paper-scissors game will demonstrate HTML5's native audio facility. This

means the browser supports audio just using the features of HTML5 and JavaScript. We

will integrate coding for audio with applying the rules of the game.

�Providing Graphical Buttons for the Player
There are two aspects to producing clickable buttons or icons on the screen: drawing

the graphics on the canvas and detecting when the player has moved the mouse over a

button and clicked the primary mouse button.

The buttons or icons we’ll produce consist of the outline (stroke) of a rectangle, a

solid rectangle, and then an image on top of the rectangle with a vertical and horizontal

margin. Since the similar operations will occur for all three buttons, we can use the

approach first introduced in the cannonball and slingshot games in Chapter 4. We

will set up a programmer-defined class of objects by writing a function named Throw.

Recall that objects consist of data and coding grouped together. The function, described

Chapter 8 Rock, Paper, Scissors

http://dx.doi.org/10.1007/978-1-4842-4155-4_4

315

as a constructor function, will be used with the operator new to create a new object of

type Throw. The term this is used within the function to set the values associated with

each object.

function Throw(sx,sy, sMargin,sWidth,sHeight,rectColor,picture) {

 this.sx = sx;

 this.sy = sy;

 this.sWidth = sWidth;

 this.bWidth = sWidth + 2*sMargin;

 this.bHeight = sHeight + 2*sMargin;

 this.sHeight = sHeight;

 this.fillStyle = rectColor;

 this.draw = drawThrow;

 this.img = new Image();

 this.img.src = picture;

 this.sMargin = sMargin;

}

The parameters of the function hold all the information. The selection of names

sx, sy, and so on, avoids built-in terms by making a simple modification: putting s, for

stored, in front. The location of the button is at sx, sy. The color of the rectangle is

represented by rectColor. The file name for the image is held by picture. What we can

think of as the inner and outer widths and the inner and outer heights are calculated

based on the inputs sMargin, sHeight, and sWidth. The b in bHeight and bWidth

stands for big. The s stands for small and stored. Don't get too hung up on the proper

name—there is no such thing. The names are up to you, and if a name works, meaning

you remember it, it works. (A name having meaning for you is more important than size:

don’t try to make function and variable names short to save on typing.)

The img attribute of a Throw object is an Image object. The src of that Image object is

what points to the file name that was passed to the function in the picture parameter.

Notice that the attribute this.draw is set to be drawThrow. This sets up the drawThrow

function to be used as the draw method for all objects of type Throw. The coding is more

general than it needs to be: each of the three graphics has the same margin and width

and height. However, there’s no harm in making the coding general, and if you want to

build on this application to make one in which objects representing the player’s choices

are more complex, much of this code would work.

Chapter 8 Rock, Paper, Scissors

316

Tip  Don’t worry when writing programs if you have code such as this.draw
= drawThrow; and you haven’t written the drawThrow function yet. You will.
Sometimes it is impossible to avoid referencing a function or variable before it
has been created. The critical factor is that all this coding is done before you try to
execute the program.

Here’s the drawThrow method:

function drawThrow() {

 ctx.strokeStyle = "rgb(0,0,0)";

 ctx.strokeRect(this.sx,this.sy,this.bWidth,this.bHeight);

 ctx.fillStyle = this.fillstyle;

 ctx.fillRect(this.sx,this.sy,this.bWidth,this.bHeight);

 ctx.drawImage(this.img,this.sx+this.sMargin,this.sy+this.sMargin,

 this.sWidth,this.sHeight);

}

As promised, this draws an outline of a rectangle using black for the color

rgb(0,0,0). Recall that ctx is the variable set with the property of the canvas element

that is used for drawing. Black is actually the default color, making this line unnecessary.

However, we’ll put it in just in case you reuse this code in an application where the color

has been changed previously. Next, the function draws a filled-in rectangle using the

rectColor passed in for this particular object. Lastly, the code draws an image on top of

the rectangle, offset by the margin amount horizontally and vertically. The bWidth and

bHeight are calculated to be bigger than the sWidth and sHeight, respectively, by twice

the sMargin value. This in effect centers the image inside the rectangle.

The three buttons are created as Throw objects through the use of var statements, in

which the variable is initialized using the new operator and a call to the Throw constructor

function. To make this work, we need pictures of rock, paper, and scissors, which I’ve

acquired by a variety of means. The three image files are located in the same folder as the

HTML file.

var rockb = new Throw(rockbx,rockby,8,50,50,"rgb(250,0,0)","rock.jpg");

var paperb = new Throw(paperbx,paperby,8,50,50,"rgb(0,200,200)","paper.gif");

var scib = new Throw(scissorsbx,scissorsby,8,50,50,"rgb(0,0,200)",

"scissors.jpg");

Chapter 8 Rock, Paper, Scissors

317

As in our previous applications, an array named everything is declared and

initialized to the empty array. We push all three variables onto the everything array so

we can treat them systematically.

everything.push(rockb);

everything.push(paperb);

everything.push(scib);

For example, to draw all the buttons, we use a function called drawAll that iterates

over the elements in the everything array.

function drawAll() {

 ctx.clearRect(0,0,cWidth,cHeight);

 var i;

 for (i=0;i<everything.length;i++) {

 everything[i].draw();

 }

}

Again, this is more general than required, but it’s useful, especially when it comes to

object-oriented programming, to keep things as general as possible.

But how do we make these graphics act as clickable buttons? Because these are

drawn on the canvas, the code needs to set up the click event handling for the whole

canvas and then use coding to check which, if any, button was clicked.

In the slingshot game described in Chapter 4, you saw code in which the function

handling the mousedown event for the whole canvas made a calculation to see if the

mouse cursor was on the ball. In the quiz show described in Chapter 6, we set up

event handling for each country and capital block. The built-in JavaScript mechanism

indicated which object had received, so to speak, the click event. This application is like

the slingshot.

We set up the event handling in the init function, explained in full in the next

section. The task is to get JavaScript to listen for the mouse click event and then do

what we specify when the click happens. What we want is for the function choose to be

invoked. The following two lines accomplish this task:

canvas1 = document.getElementById('canvas');

canvas1.addEventListener('click',choose,false);

Chapter 8 Rock, Paper, Scissors

http://dx.doi.org/10.1007/978-1-4842-4155-4_4
http://dx.doi.org/10.1007/978-1-4842-4155-4_6

318

Tip O ur code needs to distinguish between the element with the id canvas and
the property of this element returned by getContext('2d'). That’s just the way
the HTML5 folks decided to do it. It is not something you could have deduced on
your own.

The choose function has the tasks of determining which type of throw was selected,

generating the computer move and setting up the display of that move, and applying the

rules of the game. Right now, we’re just going to look at the code that determines what

button has been clicked.

In my implementation, I did not provide for any pesky player clicking one of the

choices while the computer move was emerging, that is, getting bigger and bigger on the

screen. My able first technical reviewer, who knows how to act like a misbehaving player,

came up with the solution. We use a global variable, called inMotion, and initialize it to

be false.

var inMotion = false;

The choose function does nothing if inMotion is true. The variable is set to true

in the flyin function and also set back to false when the animation is determined to

be done.

The code starts by obtaining the coordinates of the mouse from the ev variable

holding the event information. You have seen this in previous chapters:

function choose(ev) {

if (!inMotion) {

 var mx;

 var my;

 mx = ev.pageX;

 my = ev.pageY;

The next section of code iterates through the elements of everything (there are

three elements, but that’s not mentioned explicitly) to see if the cursor is on any of the

rectangles. The variable ch holds a reference to a Throw and so all the Throw attributes,

namely, sx, sy, bWidth, and bHeight, can be used in the compare statements. This is

shorthand for all the choices of throws held in the everything array.

Chapter 8 Rock, Paper, Scissors

319

var i;

for (i=0;i<everything.length;i++){

 var ch = everything[i];

 if ((mx>ch.sx)&&(mx<ch.sx+ch.bWidth)&&

(my>ch.sy)&&(my<ch.sy+ch.bHeight)) {

 ...

 break;

 }

}

The <...> indicates coding to be explained later. The compound condition

compares the point mx,my with the left side, right side, top, and bottom of the outer

rectangle of each of the three objects representing possible throws by the player. Each

of these four conditions must be true for the point to be within the rectangle. This is

indicated by the && operator. Though long, this is a standard way to check for points

inside rectangles, and you will become accustomed to using it.

So that’s how the graphics are drawn on the canvas and how they serve as buttons.

Notice that if the player clicks outside of any button, nothing happens. Some people

might recommend providing feedback to the player at this point, such as an alert box

saying the following:

Please make your move by clicking on the rock, paper, or scissors!

Others would tell you to avoid cluttering on the screen and assume that the player

will figure out what to do.

�Generating the Computer Move
Generating the computer move is similar to generating a throw of the dice, as we did in

the dice game in Chapter 2. In the rock-paper-scissors game, we want a random selection

from three possible throws instead of six possible die faces. We get that number with

this line:

var compch = Math.floor(Math.random()*3);

The call to the built-in method Math.random() produces a number from zero up

to, but not including, 1. Multiplying this by 3 produces a number from 0 up to, but not

including, 3. Applying Math.floor produces a whole number not larger than its argument.

Chapter 8 Rock, Paper, Scissors

http://dx.doi.org/10.1007/978-1-4842-4155-4_2

320

It rounds the number down, knocking off any values over the highest integer floor.

Therefore, the expression on the right produces 0, 1, or 2, which is exactly what we want.

This value is assigned to compch, which is declared (set up) as a variable.

The code takes the computer move, one of the numbers 0, 1, or 2 chosen by the

calculation involving the random function, and uses it as an index for the choices array:

var choices = ["rock.jpg","paper.gif","scissors.jpg"];

These three elements refer to the same three pictures used in the buttons.

At this point, just in case you were concerned, the ordering of rock, paper, scissors

is arbitrary. We need to be consistent, but the ordering does not matter. If, at every

instance, we made the ordering paper, scissors, rock, everything would still work. The

player never sees the encoding of 0 for rock, 1 for paper, and 2 for scissors.

The next lines in the choose function extract one of the file names and assign it to the

src attribute of an Image variable compimg.

var compchn = choices[compch];

compimg.src = compchn;

The name of the local variable, compchn, stands for computer choice name. The

compimg variable is a global variable holding an Image object. The code sets its src

property to the name of the appropriate image file, which will be used to display the

computer move.

To implement the rules of the game, I set up two arrays:

var beats = [

 ["TIE: you both threw rock.","You win: paper covers rock.",

 "You lose: rock crushes scissors."],

 ["You lose: paper covers rock.","TIE: you both threw paper.",

 "You win: scissors cuts paper."],

 ["You win: rock crushes scissors.","You lose: scissors cuts paper.",

 "TIE: you both threw scissors"]];

Chapter 8 Rock, Paper, Scissors

321

And:

var points = [

 [0,1,-1],

 [-1,0,1],

 [1,-1,0]];

Each of these is an array of arrays. The two arrays together are called parallel

structures, meaning the elements correspond to each other. When I explain the addition

of sounds, I will describe another parallel structures, a third array of arrays. The beats

array holds all the messages, and the points array holds the amount to add to the score

of the player. Adding 1 increases the player’s score. Adding a -1 decreases the player’s

score by 1, which is the effect we want when the player loses a round. Adding 0 leaves

the score as is. Now, you may think that it would be easier to do nothing in the case of

ties rather than add zero, but handling this in a uniform way is the easier approach in

terms of coding, and adding 0 may actually take less time than doing an if test to see if it

was a tie.

The first index into each array will come from the computer move, compch, and the

second index, i, indicating the element in the inner array, will come from the player

move. The beats and points arrays are called parallel structures. The beats array is for

the text message, and the points array is for the scoring. Let’s check that the information

is correct by picking a computer move, say scissors, which corresponds to 2, and picking

a player move, say rock, which corresponds to 0. In the beats array, the value for the

computer move tells us to go to the array with index value 2. (I am avoiding saying the

second array, since arrays start with index 0, not with 1. The value indicated by 2 is the

third element of the array.) The element is as follows:

["You win: rock crushes scissors.","You lose: scissors cuts paper.",

 "TIE: you both threw scissors"]];

Now use the player value, namely, 0, to index this array. The result is "You win:

rock crushes scissors.", and this is exactly what we want. Doing the same thing with

the points array, the element with index 2 is as follows:

[1,-1,0]

Chapter 8 Rock, Paper, Scissors

322

and the value with index 0 into this array is 1, also exactly what we want: the player’s

score will be adjusted by 1.

result = beats[compch][i];

...

newScore +=points[compch][i];

Recall that the operator += in a statement

a += b;

is interpreted as follows:

Get the value of the variable a

Apply the + operator to this value and the value of the expression b

Assign the result back to the variable a

The second step is written in a general way since this could apply to + interpreted as

addition of numbers as well as concatenation of strings. In this particular situation, the

second step is as follows:

Add a and b

This result gets assigned back to the variable a.

The two variables, result and newScore, are global variables. This means they

are available to other functions and this is how we use them: set in one function and

referenced for use in another.

The score is presented using a form element in the body element of the HTML

document.

<form name="f">

Score: <input name="score" value="0" size="3"/>

</form>

Just to show you how these things are done, we’ll use styles for the score field. We set

up two styles, one for the form and one for the input field.

form {

 color: blue;

 font-family: Georgia, "Times New Roman", Times, serif;

 font-size:16px;

Chapter 8 Rock, Paper, Scissors

323

}

input {

 text-align:right;

 font:inherit;

 color:inherit;

}

We set the color for the text in the form to blue and specified the font using the font-

family property. This is a way to specify a particular font and backups if that font doesn’t

exist on the client computer. This is a powerful feature because it means you can be as

specific as you want in terms of fonts and, with work, still make sure that everyone can

read the material.

Tip  You can research online for web-safe fonts to see which fonts are widely
available. Then you can pick your favorite font for the first choice, pick one of the
web-safe fonts for the second, and make the last choice either serif or sans-serif.
You can even specify more than three choices if you want. Check out http://
en.wikipedia.org/wiki/Web_typography for ideas. Another option is to acquire
a font and put the file on your server and use the CSS @font-face rule to download it
with the other files (see https://www.w3schools.com/css/css3_fonts.asp).

In this style, we specify the font named Georgia, then "Times New Roman", then

Times, and then whatever the standard font with serifs is on the computer. Serifs are the

little extra flags on letters. The quotation marks around Times New Roman are necessary

because the name involves multiple terms. Quotation marks wouldn’t be wrong around

the other font names, but they aren’t necessary. We also specify the size as 16 pixels.

The input field inherits the font, including size, and the color from the form element,

its parent. However, because the score is a number, we use the text-align property to

indicate right alignment in the field. The label Score is in the form element. The actual

score is in the input element. Using the inherit setting for the input style properties

makes the two display in the same font, size, and color.

The value in the input field will be extracted and set using its name, score.

For example,

newScore = Number(document.f.score.value);

Chapter 8 Rock, Paper, Scissors

http://en.wikipedia.org/wiki/Web_typography
http://en.wikipedia.org/wiki/Web_typography
https://www.w3schools.com/css/css3_fonts.asp

324

Number is required here to produce the number represented by the text in the

field; that is 0 as opposed to “0” (the character). If we left the value as a string and the

code used a plus sign to add 1 to a string, this would not be addition; it would instead

be the concatenation of strings. (This is termed operator overloading, by the way: the

plus sign indicates different operations depending on the data type of the operands.)

Concatenating a “1” onto a “0” would yield “01.” You might think this is okay, but the next

time around, we would get “011” or “010” or “01-1.” Ugh. We don’t want that, so we write

the code to make sure the value is converted to a number.

To place an adjusted new score back into the field, the code is

document.f.score.value = String(newScore);

Now, as I frequently tell my students, I am compelled to tell you the truth. In fact,

String may not be necessary here. JavaScript sometimes does these conversions, also

termed casts, automatically. However, sometimes it doesn’t, so it is good practice to

make it explicit.

The size of the field is the maximum required for three characters. The Georgia font

is not a monospace font—all characters are not the same size—so this is the largest

space that might be necessary. You might notice different amounts of space left over

depending on the text in the field.

Note  JavaScript uses parentheses, curly brackets, and square brackets. They
are not interchangeable. The parentheses are used in function headers and in
function and method calls; in if, for, switch, and while statement headers;
and for specifying the order of operations in complex expressions. The curly
brackets are used to delimit the definition of functions and the clauses of if, for,
switch, and while statements. The square brackets are used to define arrays
and to return specific members of arrays. The language of Cascading Style Sheets
puts curly brackets around each style. HTML markup includes < and >, often called
pointy brackets or angle brackets.

Chapter 8 Rock, Paper, Scissors

325

�Displaying Results Using Animation
You’ve seen examples of animation in the bouncing ball application in Chapter 3 and the

cannonball and slingshot in Chapter 4. To recap, animation is produced by displaying

a sequence of still pictures in quick succession. The individual pictures are called

frames. In what is called computed animation, new positions for objects on the screen

are calculated for each successive frame. One way to produce animation is to use the

setInterval command to set up an interval event, like so:

tid = setInterval(flyin,100);

This causes the flyin function to be invoked every 100 milliseconds (10 times per

second). The variable tid, for timer identifier, is set so the code can turn the interval

event off. The flyin function will create Throw objects of increasing size holding the

appropriate image. When an object reaches a designated size, the code displays the

result and adjusts the score. This is why the variables result and newScore must be

global variables—they are set in choose and used in flyin.

The flyin function also uses a global variable named size that starts off at 15 and is

incremented by 5 each time flyin is invoked. When size exceeds 50, the timing event is

stopped, the result message displayed, and the score changed.

function flyin() {

 inMotion = true;

 ctx.drawImage(compimg, 70,100,size,size);

 size +=5;

 if (size>50) {

 clearInterval(tid);

 ctx.fillText(result,200,100,250);

 document.f.score.value = String(newScore);

 inMotion = false;

 }

}

Notice that the flyin function sets inMotion to be true each time it is invoked,

which means that inMotion is set to true when it already is true. This is fine and is the

way to do it. It does not make sense to do any checking. Notice that it is set to false just

one time.

Chapter 8 Rock, Paper, Scissors

http://dx.doi.org/10.1007/978-1-4842-4155-4_3
http://dx.doi.org/10.1007/978-1-4842-4155-4_4

326

By the way, I had to modify the code to grab these screenshots. Figure 8-5 is the

screen after the very first invocation of flyin.

Figure 8-5.  First call of flyin, with a tiny image representing the computer move

After a different modification of the code, Figure 8-6 shows the animation halted at a

later step.

Chapter 8 Rock, Paper, Scissors

327

Figure 8-6.  A step further in the animation

Figure 8-7 shows the animation completed, but just before the text messages with

the results.

Chapter 8 Rock, Paper, Scissors

328

Figure 8-7.  Just before text displayed on results

Now, here’s a confession that should be informative. You may need to skip ahead or

wait until you read through all the code to appreciate it. When I created this application

the first time, I had the code for displaying the message and adjusting the score in the

choose function. After all, that’s where the code determined the values. However, this

had a very bad effect. The player saw the results before seeing the computer move

emerge out of the screen in the animation. It looked like the game was fixed! When

I realized what the problem was, I changed the code in choose to store the message

and the new score values in global variables and display only the message and set the

updated score in the form input field after the animation was complete. Don’t assume

you can know everything about your application before you start. Do assume you will

find problems and be able to resolve them. Companies have whole groups devoted

solely to quality assurance. I will refrain from mentioning any names, but there are

professional, commercial games that display some of the results of computer moves

prematurely.

Chapter 8 Rock, Paper, Scissors

329

�Audio and DOM Processing
The situation with audio is quite similar to the one with video (see Chapter 6). Again,

the bad news is that browsers don’t all recognize the same formats. And again, the good

news is that HTML5 provides the <audio> element, and JavaScript supplies features for

playing audio along with ways of referencing different formats for the audio accepted by

the different browsers. Moreover, tools are available for converting from one format to

another. The two formats I use for these examples are MP3 and OGG, which appear to be

sufficient for Chrome, Firefox, and Safari. I used free sources for audio clips and found

acceptable samples in WAV and MP3. I then used the Miro converter I had downloaded

previously for working with video to produce MP3 and OGG for the WAV file and OGG

for the others. The Miro name for the OGG was theor.ogv, and I changed it just to keep

things simple. Many alternatives exist for doing audio conversions. The main point here

is that this approach requires two versions of each sound file.

Caution T he order of the audio file references should not be important, but I
found warnings that Firefox will not work if MP3 is listed first. That is, it won’t go
on to try and work with another file. I do not work with Firefox now, but consider
this a warning. This problem may have gone away by now, as browsers work to be
more robust in handling media.

The <audio> element has attributes I didn’t use in the rock-paper-scissors game.

The autoplay attribute starts playing immediately on loading, though you do need to

remember that with large files, loading is not instantaneous. The src attribute specifies

the source. However, good practice is to not use the src attribute in the <audio> tag,

but to specify multiple sources using the <source> element as a child of the <audio>

element. The loop attribute specifies looping, that is, repeating the clip. The controls

attribute puts controls on the screen. This may be a good thing to do because the clips

can be very loud. To make the audio a surprise, though, and to not add clutter to the

visual presentation, I chose not to do this.

Here’s a simple example for you to try. You will need to download sword.mp3 from

the book’s download page or find your own audio file and reference it by name here. If

you open the following HTML in Chrome, you’ll see what’s shown in Figure 8-8.

Chapter 8 Rock, Paper, Scissors

http://dx.doi.org/10.1007/978-1-4842-4155-4_6

330

Audio example

<audio src="sword.mp3" autoplay controls>

Your browser doesn't recognize audio

</audio>

Figure 8-8.  Audio tag with controls

Remember, for our game, we will play audio for the rock crushing the scissors, the

paper covering the rock, the scissors cutting the paper, and a sigh for any tie. Here is the

coding for the four audio clips in rock-paper-scissors:

<audio preload= "auto">

<source src="hithard.ogg" />

<source src="hithard.mp3" />

</audio>

<audio preload= "auto">

<source src="inhale.ogg" />

<source src="inhale.mp3" />

</audio>

<audio preload= "auto">

<source src="sword.ogg" />

<source src="sword.mp3" />

</audio>

<audio preload= "auto"r>

<source src="crowdohh.ogg" />

<source src="crowdohh.mp3" />

</audio>

This should appear reasonable for describing four sets of audio files, but you may be

wondering how the code knows which one to play. We could insert id attributes in each

<audio> tag. However, let’s do something else instead to demonstrate more JavaScript

Chapter 8 Rock, Paper, Scissors

331

that’s useful in many situations. You have seen the method document.getElementById.

There is a similar method: document.getElementsByTagname. The line:

musicElements = document.getElementsByTagName("audio");

extracts all elements of the tag name indicated by the parameter and creates an array,

which, in this line of code, assigns the array to a variable named musicElements. We

use this line in the init function so it’s performed at the very start of the application.

We construct another array of arrays, this one called music, and add two more global

variables, for a total of three global variables for handling sounds.

var music = [

 [3,1,0],

 [1,3,2],

 [0,2,3]];

var musicElements;

var musicch;

You can check that music and beats are parallel structures with 0 standing for rock

crushing scissors, 1 for paper covering rock, 2 for scissors cutting paper, and 3 for a tie.

The choose function will have this extra line:

musicch = music[compch][i];

The musicch variable—the name stands for choice for music—will hold 0, 1, 2, or 3.

This sets up something to happen in the flyin function when the animation is complete.

We don't play the clip immediately, as explained in my confession.

musicelEments[musicch].play();

The zeroth, first, second, or third element in musicElements is referenced by the

indexing using musicch; then its play method is invoked, and the clip is played.

�Starting Off
The application starts by setting up a call to a function in the onLoad attribute of the <body>

tag. This has been the practice in the other games. The init function performs several

tasks. It sets the initial score value to 0. This is necessary just in case the player reloads

the document; it is a quirk of HTML that form data may not be reset by the browser.

Chapter 8 Rock, Paper, Scissors

332

The function extracts values from the canvas element to be used for drawing (ctx) and

for the event handling (canvas1). This needs to happen after the whole document is

loaded because until then the canvas element does not exist. The function draws the

three buttons and sets up the font for the text drawn on the canvas and the fill style. After

that, nothing happens unless and until the player clicks the mouse button over one of

the three symbols.

Now that we’ve examined the specific features of HTML5 and JavaScript used for this

game, along with some programming techniques, such as the use of arrays of arrays, let’s

take a closer look at the code.

�Building the Application and Making It Your Own
The basic rock-paper-scissors applications use styles, global variables, six functions,

and HTML markup. The six functions are described in Table 8-1. I follow the convention

that functions start with lowercase letters unless the function is a constructor for a

programmer-defined object. I present the basic application first and then show the

modifications necessary to add audio.

Table 8-1.  Functions in the Basic Rock-Paper-Scissors Application

Function Invoked/Called By Calls

init Invoked by action of the onLoad in the <body>

tag

drawAll

drawAll init, choose Invokes the draw method of each

object, which in this application is

always in the function drawThrow

Throw var statements for global variables

drawThrow drawAll using the draw method of the Throw

objects

choose Invoked by action of addEventListener call

in init

drawAll

flyin Action of setInterval in choose

Chapter 8 Rock, Paper, Scissors

333

As you can see from the table, most of the invocation of functions is done implicitly—

by event handling, for example—as opposed to one function invoking another. After the

init function does the setup, the main work is performed by the choose function. The

critical information for the rules of the games is held in the two arrays of arrays.

Table 8-2 shows the code for the basic application, with comments for each line.

Table 8-2.  Complete Code for the Basic Rock-Paper-Scissors Application

Code Explanation

<html> Starting html tag.

<head> Starting head tag.

 <title>Rock Paper Scissors</title> Complete title element.

 <style> Starting style section.

 form { Style specified for all form elements. There is

just one in this document.

 color: blue; Color of text set to blue, one of the 16 colors

known by name.

 font-family: Georgia, "Times New

Roman", Times, serif;

Set up the fonts to try to use.

 font-size:16px; Set size of characters.

 } Close style.

 input { Style specified for all input elements. There is

just one.

 text-align:right; Make the text align to the right, appropriate for

numbers.

 font:inherit ; Inherit any font information from parent,

namely, form.

 color:inherit; Inherit color of text from parent, namely, form.

 } Close style.

(continued)

Chapter 8 Rock, Paper, Scissors

334

Code Explanation

 </style> Close the style element.

 <script > Start the script element.

 var cWidth = 600; Canvas width, used for clearing.

 var cHeight = 400; Canvas height, used for clearing.

 var ctx; Canvas ctx, used for all drawing.

 var everything = []; Holds the three graphics.

 var rockbx = 50; Horizontal position of rock symbol.

 var rockby = 300; Vertical position of rock symbol.

 var paperbx = 150; Horizontal position of paper symbol.

 var paperby = 300; Vertical position of paper symbol.

 var scissorsbx = 250; Horizontal position of scissors symbol.

 var scissorsby = 300; Vertical position of scissors symbol.

 var canvas1; Reference for setting up click event listening

for canvas.

 var newScore; Value to be set for new score.

 var size = 15; Initial size for changing image for computer

move.

 var result; Value to be displayed as result message.

 �var choices = ["rock.jpg","paper.

gif","scissors.jpg"];

Names for symbol images.

 var compimg = new Image(); Image element used for each computer move.

 var beats = [Start of declaration of array holding all the

messages.

 �["TIE: you both threw rock","You

win: computer played rock","You

lose: computer threw rock"],

The set of messages when the computer

throws rock.

Table 8-2.  (continued)

(continued)

Chapter 8 Rock, Paper, Scissors

335

Code Explanation

 �["You lose: computer threw

paper","TIE: you both threw

paper","You win: computer threw

paper"],

The set of messages when the computer

throws paper.

 �["You win: computer threw

scissors","You lose: computer

threw scissors","TIE: you both

threw scissors"]];

The set of messages when the computer

throws scissors.

 var points = [Start of declaration of array holding the

increments for the score: 0 for a tie, 1 for the

player winning, -1 for the player losing.

 [0,1,-1], The set of increments when the computer

throws rock.

 [-1,0,1], The set of increments when the computer

throws paper.

 [1,-1,0]]; The set of increments when the computer

throws scissors.

Var inMotion = false; Used to prevent response to a player making a

move while computer move is emerging.

function Throw(sx,sy, sMargin,

sWidth,sHeight,rectColor,picture) {

Header for constructor function to be used for

the three game symbols. Parameters include

x and y coordinates, margin, inner width and

height, color for the rectangle, and the picture

file.

 this.sx = sx; Assign the sx attribute.

 this.sy = sy; Assign the sy attribute.

 this.sWidth = sWidth; Assign the sWidth attribute.

Table 8-2.  (continued)

(continued)

Chapter 8 Rock, Paper, Scissors

336

Code Explanation

 this.bWidth = sWidth + 2*sMargin; Calculate and assign the outer width. This is

the inner width plus two times the margin.

 this.bHeight = sHeight + 2*sMargin; Calculate and assign the outer height. This is

the inner height plus two times the margin.

 this.sHeight = sHeight; Assign the sHeight attribute.

 this.fillStyle = rectColor; Assign the fillstyle attribute.

 this.draw = drawThrow; Assign the draw method to be drawThrow.

 this.img = new Image(); Create a new Image object.

 this.img.src = picture; Set its src to be the picture file.

 this.sMargin = sMargin; Assign the sMargin attribute. It is still needed

for drawing.

} Close the function.

function drawThrow() { Header for function to draw the symbols.

 ctx.strokeStyle = "rgb(0,0,0)"; Set the style for the rectangle outline to black.

 �ctx.strokeRect(this.sx,this.sy,this.

bWidth,this.bHeight);

Draw the rectangle outline.

 ctx.fillStyle = this.fillStyle; Set the style for the filled rectangle.

 �ctx.fillRect(this.sx,this.sy,this.

bWidth,this.bHeight);

Draw the rectangle.

 �ctx.drawImage(this.img,this.sx+this.

sMargin,this.sy+this.sMargin,this.

sWidth,this.sHeight);

Draw the image offset inside the rectangle.

} Close the function.

function choose(ev) { Header for function called upon a click event.

 If (!inMotion) { Respond only if computer move is not

emerging (in motion).

Table 8-2.  (continued)

(continued)

Chapter 8 Rock, Paper, Scissors

337

Table 8-2.  (continued)

(continued)

Code Explanation

 �var compch = Math.floor (Math.

random()*3);

Generate computer move based on random

processing.

 var compchn = choices[compch]; Pick out the image file.

 compimg.src = compchn; Set the src of the already created Image

object.

 var mx; Used for mouse x.

 var my; Used for mouse y.

 mx= ev.pageX; Set mx.

 my = ev.pageY; Set my.

 var i; Used for indexing over the different symbols.

 for (i=0;i<everything.length;i++){ for header for indexing over the elements

in the everything array, namely the three

symbols.

 var ch = everything[i]; Get the ith element.

 �if ((mx>ch.sx)&&(mx<ch.sx+ch .

bWidth)&&(my>ch.sy)&&(my<ch.

sy+ch.bHeight)) {

Check if the mx, my position is within the

bounds (the outer rectangle bounds) for this

symbol.

 drawAll(); If so, invoke the drawAll function, which will

erase everything and then draw everything in

the everything array.

 size = 15; Initial size of computer-move image.

 tid = setInterval (flyin,100); Set up timed event.

 result = beats [compch][i]; Set the result message. See the section after

the table for the addition for audio.

Chapter 8 Rock, Paper, Scissors

338

Table 8-2.  (continued)

(continued)

Code Explanation

 �newScore = Number(document.

f.score.value);

Get the current score, converted to a number.

 newScore += points[compch][i]; Add the adjustment and save to be displayed

later.

 break; Leave the for loop.

 } End the if clause.

 } End the for loop.

} End true class for inMotion being false.

} End the function.

function flyin() { Header for the function handling the timed

interval event.

 InMotion = true; Computer move emerging. This is set to true

multiple times.

 �ctx.drawImage(compimg,

70,100,size,size);

Draw the computer-move image on the screen at

the indicated place and with dimensions indicated.

 size +=5; Change the value of the dimensions by

incrementing size.

 if (size>50) { Use the size variable to see if the process has

gone on long enough.

 clearInterval(tid); Stop the timing event.

 ctx.fillText(result,

 200,100,250);

Display the message.

 �document.f.score.value =

String(newScore);

Display the new score. See the section after

the table for the addition for audio.

 inMotion = false; Set back to initial setting.

 } Close the if true clause.

} Close the function.

Chapter 8 Rock, Paper, Scissors

339

Table 8-2.  (continued)

(continued)

Code Explanation

 �var rockb = new

throw(rockbx,rockby,8,50,

50,"rgb(250,0,0)","rock.jpg");

Create the rock object.

 �var paperb = new Throw(paperbx,paper

by,8,50,50,"rgb(0,200,200)",

"paper.gif");

Create the paper object.

 �var scib = new Throw(scissorsbx,

scissorsby,8,50,50,"rgb(0,0,200)",

"scissors.jpg");

Create the scissors object.

everything.push(rockb); Add the rock object to the everything array.

everything.push(paperb); Add the paper object to the everything

array.

everything.push(scib); Add the scissors object to the everything

array.

function init(){ Header for function called on load of the

document.

 document.f.score.value = "0"; Set score to zero. I also could use

...= String(0);

(and it actually isn’t necessary since

JavaScript will convert a number to a string in

this situation).

 �ctx = document.

getElementById ('canvas').

getContext('2d');

Set the variable to be used for all drawing.

 �canvas1 = document.

getElementById ('canvas');

Set the variable to be used for the mouse click

event handling.

 �canvas1.addEvent

Listener ('click',choose,false);

Set up click event handling.

 drawAll(); Draw everything.

Chapter 8 Rock, Paper, Scissors

340

Table 8-2.  (continued)

Code Explanation

 ctx.font="bold 16pt Georgia"; Set the font to be used for the result

messages.

 ctx.fillStyle = "blue"; Set the color.

} Close the function.

function drawAll() { Header for the function.

 ctx.clearRect(0,0,cWidth,cHeight); Clear the canvas.

 var i; Variable for indexing.

 for (i=0;i<everything.length;i++) { Iterate through the everything array.

 everything[i].draw(); Draw the individual elements.

 } Close the for loop.

} Close the function.

</script> Close the script element.

</head> Close the head element.

<body onLoad="init();"> Starting body tag. Set up call to the init

function.

<canvas id="canvas" width="600"

height= "400">

Starting canvas tag.

Your browser doesn't support the HTML5

element canvas.

Message for noncompliant browsers.

</canvas> Closing tag.

 Line break.

<form name="f"> Starting tag for form, giving form a name.

Score: <input name="score" value="0" 

size="3"/>

Label and then input field, with initial value and

size.

</form> Closing tag for form.

</body> Closing tag for body.

</html> Closing tag for HTML document.

Chapter 8 Rock, Paper, Scissors

The audio enhanced version required three more global variables along with

additions in the init, choose, and flyin functions. The new global variables are

var music = [

 [3,1,0],

 [1,3,2],

 [0,2,3]];

var musicelements;

var musicch;

The init function needs the following statement:

musicElements = document.getElementsByTagName("audio");

The document method getElementsByTagName produces an array of all the audio

elements in the document, which is exactly what we need for musicelements.

Here is the clause in the choose function with the new line highlighted:

if ((mx>ch.sx)&&(mx<ch.sx+ch.bWidth)&&(my>ch.sy)&&(my<ch.sy+ch.bHeight)) {

 drawAll();

 size = 15;

 tid = setInterval(flyin,100);

 result = beats[compch][i];

 musicch = music[compch][i];

 newScore = Number(document.f.score.value);

 newScore +=points[compch][i];

 break;

}

Similarly, here’s the complete flyin function with the new line in bold:

function flyin() {

 inMotion = true;

 ctx.drawImage(compimg, 70,100,size,size);

 size +=5;

 if (size>50) {

 clearInterval(tid);

 ctx.fillText(result,200,100,250);

 document.f.score.value = String(newScore);

342

 musicelements[musicch].play();

 inMotion = false;

 }

}

Adding the audio enhancement, like adding video, provides an exercise in examining

just what needs to be changed and what remains the same. It certainly makes sense to

develop a basic application first.

My idea was to make sounds for the four results. You could also have applause for

any player win, booing for any player loss, and something in between for the ties.

Some people like to include additional possible moves, with funny remarks

describing what beats what, or even replacing rock, paper, and scissors with three

or more other possibilities. A few students of mine have produced this game using a

different language, such as Spanish. The more challenging task is to make the application

multilingual in a systematic way, by isolating the spoken language components. One

approach would involve changing the beats array to an array of arrays of arrays, with

the first index corresponding to the language. The label in the markup that holds the

word Score also would need to change, which you could accomplish by making it an

input field and using CSS to remove its border. Preparing applications for what is termed

localization has emerged as an important area of development for the Web.

�Testing and Uploading the Application
You need to create or acquire (a polite term for finding something and copying the file

to your computer—please respect intellectual property!) the three images to represent

rock, paper, and scissors. If you decide to enhance the application by adding sounds,

you need to produce or find appropriate audio clips; convert, if necessary, the files to the

two common formats; and upload all the sounds: this is four files times two formats for a

total of eight files.

Because this application involves a random element, make a concerted effort to do

all the testing. You want to test a player throwing each of the three possibilities versus

each of the three computer moves. You also want to test that the score goes up and down

and stays the same as the situation dictates. Typically, my testing routine is to make

the rock throw repeatedly until I see all three computer moves at least two times. Then

I move on to paper, and then scissors, and then I keep changing my throw, say, paper,

rock, paper, scissors.

Chapter 8 Rock, Paper, Scissors

343

Test the basic program and then decide on what enhancements you’d like to make

to the presentation and to the scoring. The images and the HTML document need to be

uploaded when you’ve tested the program on your local computer and decide to upload

it to a server. If you decide to use different images for computer moves than for player

moves, you’ll have to find and upload even more. Some people like to put images and

audio files in subfolders. If you do this, don’t forget to use the correct names in the code.

�Summary
In this chapter, you learned how to implement a familiar game using features of HTML5,

JavaScript, and CSS, along with general programming techniques. These included the

following:

•	 Styles, in particular the font-family property

•	 Form and input fields for displaying the score

•	 Event handling using addEventListener for the mouse click event

•	 Animation using setInterval and clearInterval

•	 audio elements for sound and source elements for working with

different browsers

•	 getElementsByTagName and play for specific control of audio clips

•	 Programmer-defined objects for drawing programmer-created

buttons on the screen, with logic for determining if the mouse cursor

was clicked on a specific button

•	 Arrays of arrays for game rules, which were organized in parallel

structures

The next chapter describes a guess-a-word game. It combines techniques for

working with strings of letter, implementing rules of a game, drawing on the canvas, and

creating HTML elements using code that you have learned in previous chapters, along

with some new CSS and JavaScript features.

Chapter 8 Rock, Paper, Scissors

345

CHAPTER 9

Guess a Word
In this chapter, we cover the following:

•	 Using CSS styles

•	 Generating markup for alphabet buttons and display of partially

hidden word

•	 Drawing based on calculations

•	 Using a character string for the secret word

•	 Creating an external script file for the word list

•	 Setting up and removing event handling

�Introduction
The goal for this chapter is to continue demonstrating programming techniques and the

features of HTML5, Cascading Style Sheets (CSS), and JavaScript, combining dynamic

creation of HTML markup along with drawing visual representations and displaying text

on the canvas to provide feedback on the state of the game. The example for this chapter

is a generic game for guessing a word by trying individual letters.

The game is played as follows: the program selects a word, termed the secret word,

and writes out dashes to let the player know how many letters are in that word. The

player guesses individual letters. If the letter appears in the word, the program replaces

the symbols representing each occurrence of the guessed letter with the actual letter.

This is the approach I have chosen here. In some word-guessing games, the player

must repeat a letter for multiple occurrences. If the letter does not appear in the secret

word, this is considered an error. The player has a limited number of allowed errors.

© Jeanine Meyer 2023
J. Meyer, The Essential Guide to HTML5, https://doi.org/10.1007/978-1-4842-8722-4_9

https://doi.org/10.1007/978-1-4842-8722-4_9

346

Feedback is provided to the player with a drawing and text showing the remaining

number of allowed errors. The game is over when the number of allowed errors is

exceeded or the player guesses all the letters of the secret word.

In our game, the computer picks the secret word from a word list (in this case

an admittedly very short list). You may use my list. When you make your own game,

use your own. It makes sense to start small and, once you are happy with your game,

make a longer list. My technique of using an external file for the word list supports this

approach.

For the user interface, I chose to place blocks with each letter of the alphabet on the

screen. The player chooses a letter by clicking a block. After a letter is selected, its block

disappears. This decision was influenced by the fact that most people playing the pencil-

and-paper version of these games write out the alphabet and cross out the letters as they

are chosen.

Figure 9-1 shows the opening screen. The computer has selected a word with four

letters. Notice also that buttons appear on the screen with the letters of the alphabet.

Figure 9-1.  Opening screen

One advantage to using a small word bank is that I know what the word is now, even

though my coding uses a random process to select the word. This means I can develop

the game without the stress of playing it! I decided to select an a first by clicking the a

button. As Figure 9-2 shows, this letter does not appear in the secret word.

Chapter 9 Guess a Word

347

Figure 9-2.  After guessing an a

Working through the vowels, I guess an e, with results shown in Figure 9-3. I am not

suggesting that this is a good strategy.

Figure 9-3.  The game after guessing an e

Next, I guess an i, resulting in my third wrong move, as shown in Figure 9-4.

Figure 9-4.  The game screen after three incorrect selections

Chapter 9 Guess a Word

348

Now, I guess an o, and this turns out to be correct (as I knew since I have insider

information), and an o appears as the third letter in the word, as shown in Figure 9-5.

Figure 9-5.  A correct guess of o

I try the next vowel, u, and that is correct, also, as Figure 9-6 indicates.

Figure 9-6.  Two letters have been identified

I now make some more guesses, first a t, as shown in Figure 9-7.

Figure 9-7.  Another wrong guess trying t

Chapter 9 Guess a Word

349

Then, I make another wrong guess, this time, an s, as shown in Figure 9-8.

Figure 9-8.  After a wrong guess of s

Figure 9-9 shows yet another wrong guess.

Figure 9-9.  After a wrong guess of d

I decide to make a correct guess (remember I know all the words), namely, m.

Figure 9-10 shows three identified letters and most of the person drawn on the screen.

Figure 9-10.  After a correct guess of m

Chapter 9 Guess a Word

350

At this point, I am trying to lose, so I guess b. This results in what is depicted in

Figure 9-11. The game is not lost, but it will be if the next letter guessed also does not

appear in the word.

Figure 9-11.  Game not yet lost

At this point, perhaps you, dear reader, can guess the word. However, I will play

ignorant and guess a q.

Figure 9-12.  Game lost

The complete secret word is revealed, and a message appears telling the player that

the game is lost and to reload to try again.

Figure 9-13 shows a screenshot from another game, and the computer has

responded to a guess of the letter e by showing it in two positions. Handling letters

appearing more than once in a word is not difficult, but that certainly was not obvious to

me before I started the programming.

Chapter 9 Guess a Word

351

Figure 9-13.  In this game, e appears in two spots

I make some other guesses and finally get this word correct. Again, the list from

which the choices are made is not very long, so I can guess the words from the number

of letters. Figure 9-14 shows the screenshot from this winning game. Notice that there are

two e’s and three f ’s in the secret word.

Figure 9-14.  Winning the game

The programming techniques and language features include manipulating character

strings; using an array holding the letters of the English alphabet; creating markup

elements to hold the alphabet and the spaces that represent the secret word, which

may or may not be replaced by letters; handling events for the created alphabet blocks;

and drawing a stack of rectangles representing the remaining number of allowed

wrong answers. This implementation also demonstrates the use of external script files

for holding the word list. This game has turns within a game, unlike, say, rock-paper-

scissors, so the program must manage the game state internally as well as display it on

the screen.

Chapter 9 Guess a Word

352

�Critical Requirements
As was true in the previous chapter, the implementation of this game uses many HTML5

and JavaScript constructs demonstrated in earlier chapters, but they are put together

here in different ways. Programming is similar to writing. In programming, you put

together various constructs, just like you write sentences composed of words that you

know and then put these into paragraphs, and so on. While reading this chapter, think

back to what you have learned about drawing on the canvas; creating new HTML

markup; setting up a mouse click event for markup on the screen; and using if and for

statements.

To implement this or other word-guessing games, we need access to a list of words. I

did not need to start with a list of all words that a player could possibly guess. That is, for

this game, the computer/player chooses a word. Other games may require that the word

list contain all the words a player may want to use. Creating and testing the program

does not require a long list, which could be substituted later. I decided to make it a

requirement that the word list be separate from the program. My word list is held in the

file words1.js, shown later in the section.

The user interface for player moves could have manifested in one of several ways,

for example, an input field in a form. However, I decided a better approach was to make

the interface include graphics representing the letters of the alphabet. It was necessary

to make each of the graphics act as a clickable button and provide a way to make each

letter disappear after it has been selected. This approach has the additional benefit of

preventing a mischievous player from clicking a correctly guessed letter multiple times.

The secret word must be represented on the screen, initially as all blanks and

then filled in with any correctly identified letters. I chose to use double lines as

blanks, because I wanted identified letters to be underlined. An alternative could be

question marks.

Last, the program must monitor the progress of the game and correctly determine

when the player has lost and when the player has won. The game state is visible to

the player, but the program must set up and check internal variables to make the

determination that the game is won or lost.

Chapter 9 Guess a Word

353

�HTML5, CSS, and JavaScript Features
Let’s now look at the specific features of HTML5, CSS, and JavaScript that provide what

we need to implement the guess-a-word game. Except for basic HTML tags and the

workings of functions and variables, the explanations here are complete. However, much

of this chapter repeats explanations given in earlier chapters. As before, you may choose

to look at all the code in the “Building the Application” section and return to this section

if you need explanations of specific features.

�Storing a Word List as an Array Defined
in an External Script File
The guess-a-word game requires access to a list of acceptable words, which can be called

the word bank. It would be a pretty sure bet to say that one approach is to use an array.

The short array we’ll use for this initial example is defined with this code:

var words = [

 "muon", "blight","kerfuffle","qat"

];

Notice that the words are all different lengths. This means that we can use the

random processing code that we will want for the final version and still know what word

has been selected when we’re testing. We’ll make sure the code uses words.length so

that when you substitute a bigger array, the coding still works.

Now, the question is how to use different arrays for this purpose if we want to

bring in a different list of words. It certainly is possible to change the HTML document.

However, in HTML5 (or previous versions of HTML), it is possible to include a reference

to an external script file in place of or in addition to a script element in the HTML

document. We can take the three lines that declare and define the variable words and

place them in a file named words1.js. We can include this file with the rest of the

document using the following line of code:

<script src="words1.js" defer></script>

The defer method will cause this file to be loaded while the browser is continuing with

the rest of the base HTML document. We could not load these two files simultaneously if

the external file contained part of the body, but it works in this situation.

Chapter 9 Guess a Word

354

I did incorporate a longer list in a version of the program I prepared for my classes.

It was the official spelling bee list for middle school in a specific state. I did need to do

some manipulation in Excel to produce the JavaScript. An enhanced program could

include multiple files with code for the player to select from among different levels or

languages.

�Generating and Positioning HTML Markup, Then
Changing the Markup to Buttons, and Then
Disabling the Buttons
The creation of the alphabet buttons and the secret word dashes is done with a

combination of JavaScript and CSS.

We’ll write code to create HTML markup for two parts of the program: the alphabet

icons and the blanks for the secret word. (You can go to the quiz game in Chapter 6 for

more on creating HTML markup as well as the appendix.) In each case, HTML markup is

created using the following built-in methods:

•	 document.createElement(x): Creates HTML markup for the new

element type x

•	 document.body.appendChild (d): Adds the d element as another

child element of the body element

•	 document.getElementById(id): Extracts the element with ID the

value of id

The HTML is created to include a unique ID for each element. The code involves

setting certain properties:

•	 d.innerHTML is set to hold the HTML

•	 thingelem.style.top is set to hold the vertical position

•	 thingelem.style.left is set to hold the horizontal position

Chapter 9 Guess a Word

http://dx.doi.org/10.1007/978-1-4842-4155-4_6

355

With this background, here is the coding for setting up the alphabet buttons. We first

declare a global variable alphabet:

var alphabet = "abcdefghijklmnopqrstuvwxyz";

The setupGame function has this code for making the alphabet buttons:

var i;

 var x;

 var y;

 var uniqueid;

 var an = alphabet.length;

 for(i=0;i<an;i++) {

 uniqueid = "a"+String(i);

 d = document.createElement('alphabet');

 d.innerHTML = (

 "<div class="letters" id='"+uniqueid+"'>"+alphabet[i]+"</div>");

 document.body.appendChild(d);

 thingelem = document.getElementById(uniqueid);

 x = alphabetx + alphabetWidth*i;

 y = alphabety;

 thingelem.style.top = String(y)+"px";

 thingelem.style.left = String(x)+"px";

 thingelem.addEventListener('click',pickElement,false);

 }

The variable i is used for iterating over the alphabet string. The unique ID is a

concatenated with the index value, which will go from 0 to 25. The HTML inserted into

the created element is a div with text containing the letter. The string is surrounded by

double quotation marks, and the attributes inside this string are surrounded by single

quotation marks. The elements are spaced across the screen, starting at the position

alphabetx, alphabety (each global variable is declared earlier in the document), and

incremented horizontally by alphabetWidth. The top and left attributes need to be set

to strings and end with "px", for pixels. The last step is to set up event handling so these

elements act as buttons.

Chapter 9 Guess a Word

356

The creation of the elements for the secret word is similar. A difference is that each

of these elements has two underscores as its text content. On the screen, these two

underscores look like one long underscore. The assignment to ch (for choice) is how our

program selects the secret word. Notice that length is an attribute of objects of datatype

String as well as arrays. In this case, I am using length for the words list. If my list were

longer than four elements, this code would still work.

var ch = Math.floor(Math.random()* words.length);

 secret = words[ch];

 for (i=0;i<secret.length;i++) {

 uniqueid = "s"+String(i);

 d = document.createElement('secret');

 d.innerHTML = (

 "<div class="blanks" id='"+uniqueid+"'> __ </div>");

 document.body.appendChild(d);

 thingelem = document.getElementById(uniqueid);

 x = secretx + secretwidth*i;

 y = secrety;

 thingelem.style.top = String(y)+"px";

 thingelem.style.left = String(x)+"px";

 }

At this point, you may be asking, how did the alphabet icons get to be letters inside

blocks with borders? The answer is that I used CSS. The usefulness of CSS goes far

beyond fonts and colors. The styles provide the look and feel of critical parts of the

game. Notice that the alphabet div elements have a class setting of 'letters', and the

secret word letter div elements have a setting of 'blanks'. The style section contains the

following two styles, which I have grouped for ease in reading. The line breaks have no

significance for the browser.

<style>

.letters {

 position:absolute;

 left: 0px; top: 0px;

 border: 2px; border-style: double;

 margin: 5px; padding: 5px;

 font-size: 24px;

Chapter 9 Guess a Word

357

 color:#F00; background-color:#0FC;

 font-family:"Courier New", Courier, monospace;

}

.blanks {

 position:absolute;

 left: 0px; top: 0px;

 border:none; margin: 5px; padding: 5px;

 color:#006; background-color:white;

 font-family:"Courier New", Courier, monospace;

 text-decoration:underline;

 color: black; font-size:24px;

}

</style>

The designation of a dot followed by a name means this style applies to all elements

of that class. This is in contrast to just a name, such as form in the previous chapter, in

which a style was applied to all form elements, or to a # followed by a name that refers

to the one element in the document with an ID of that name. Notice that the style for

letters includes a border, a color, and a background color. Specifying a font family is a

way to pick your favorite font for the task and then specify backups if that font is not

available. This feature of CSS provides wide latitude to designers. My choices here are

"Courier New", with a second choice of Courier, and a third choice of any monospace

font available (in a monospace font, all the letters are the same width). I decided to use

a monospace font to facilitate making icons that are the same in size and space nicely

across the screen. The margin attribute sets to the spacing outside the border, and

padding refers to the spacing between the text and the border.

We want the buttons representing letters of the alphabet to disappear after they

are clicked. The code in the pickElement function can use the term this to refer to the

clicked object. These two statements (which could be squeezed into one) make this

happen by setting the display attribute:

var id = this.id;

document.getElementById(id).style.display = "none";

Chapter 9 Guess a Word

358

When the game is over, either through a win or a loss, we remove the click event

handling for all the letters by iterating over all the elements:

for (j=0;j<alphabet.length;j++) {

 uniqueid = "a"+String(j);

 thingelem = document.getElementById(uniqueid);

 thingelem.removeEventListener('click',pickElement,false);

}

The removeEventListener event does what it sounds like: it removes the event

handling.

�Creating the Feedback About Remaining
Wrong Letters
I decided that the feedback to the player should be by both text and pictures. Text can be

read by a screen reader, and a picture can be forceful. I decided on a stack of rectangles

representing the remaining allowed wrong letters. The text and the stack of rectangles

are on the canvas. Positioning, displaying, and then erasing took some fiddling with

coordinate values but was eased considerably by the alphabet buttons and the secret

word not being written on the canvas.

The code to draw the stack of rectangles is as follows:

function drawRemain(remain){

 ctx.rect(startRx,startRy,unitX+10,5);

 var ypos=startRy-unitY;

 for (i=0;i<remain;i++){

 ctx.strokeRect(startRx,ypos,unitX,unitY);

 ypos=ypos-unitY;

 }

}

Tip  If you haven’t done so already (or even if you have), experiment with drawing.
Create another way to communicate the number of remaining wrong guesses.

Chapter 9 Guess a Word

359

�Maintaining the Game State and Determining
a Win or Loss
The requirement to encode and maintain the state of an application is a common one in

programming. In Chapter 2, our program kept track of whether the next move was a first

throw or a follow-up throw of the dice. The state of the guess a word game includes the

identity of the hidden word, what letters in the word have been correctly guessed, what

letters of the alphabet have been tried, and the number of remaining allowed wrong

guesses.

The pickElement function, invoked when the player clicks on an alphabet block, is

where the critical action takes place, and it performs the following tasks:

•	 Check if the player’s guess, kept in the variable picked, matches any

of the letters in the secret word held in the variable secret. For each

match, the corresponding letter in the blank elements is revealed by

setting textContent to that letter.

•	 Keep track of how many letters have been guessed using the variable

lettersGuessed.

•	 Check if the game has been won by comparing lettersGuessed to

secret.length. If the game is won, remove event handling for the

alphabet buttons and display the appropriate messages.

•	 If the selected letter did not match any letters in the secret word (if

the variable not is still true), increment the variable cur.

•	 Check if the game has been lost by comparing cur to guessLimit. If

cur is greater or equal, reveal all the letters, remove event handling,

and give appropriate feedback.

•	 Whether or not there is a match, make the clicked alphabet button

disappear by setting the display attribute to none and remove the

event handling.

These tasks are performed using if and for statements. The check to see if the

game has been won is done after determining that a letter has been guessed correctly.

Similarly, the check to see if the game has been lost is done only when it is determined

that a letter has not been correctly identified and the hanging has advanced. The state of

Chapter 9 Guess a Word

http://dx.doi.org/10.1007/978-1-4842-4155-4_2

360

the game is represented in the code by the secret, lettersGuessed, and cur variables.

The player sees the underscores and filled-in letters of the secret word and the remaining

alphabet blocks.

The code for the whole HTML document with line-by-line comments is in the

“Building the Application” section. The next section describes the critical first task of

handling a player’s guess. One general tactic to keep in mind is that several tasks are

accomplished by doing something for every member of an array even if it may not be

necessary for certain elements of the array. For example, when the task is to reveal all the

letters in the secret word, all have the textContent changed even if some of them have

already been revealed. Similarly, the variable not may be set to false multiple times.

�Checking a Guess and Revealing Letters
in the Secret Word by Setting textContent
The player makes a move by clicking a letter. The pickElement function is set up as

the event handler for each letter icon. Therefore, within the function, we can use the

term this to refer to the object that received (listened for and heard) the click event.

Consequently, the expression this.textContent will hold the selected letter. Therefore,

the statement

var picked = this.textContent;

assigns to the local variable picked the specific letter of the alphabet the player is

guessing. The code then iterates over all the letters in the secret word held in the variable

secret and compares each letter to the guess of the player. The created markup that

starts out being the double underlines corresponds to the letters in the secret word, so

when there is a correct guess, the corresponding element will be changed; that is, its

textContent will be set to the letter guessed by the player, which is held in picked.

for (i=0;i<secret.length;i++) {

 if (picked==secret[i]) {

 id = "s"+String(i);

 document.getElementById(id).textContent = picked;

 not = false;

 lettersGuessed++;

 ...

Chapter 9 Guess a Word

361

The iteration does not stop when a guess is correct; it keeps going. This means that

all instances of any one letter will be discovered and revealed. The variable not is set to

false each time there is a match. If there were two or more instances of the same letter,

this variable is set more than once, which is not a problem. I included the word kerfuffle

to make sure that repeated letters were handled correctly (besides the fact that I like the

word). You can examine all the code in the next section.

�Building the Application and Making It Your Own
The guess-a-word application makes use of CSS styles, HTML markup created by

JavaScript, and JavaScript coding. There are two initializing and setup functions (init

and setupGame), the function that does most of the work (pickElement), plus two more

functions to give feedback. The functions are described in Table 9-1.

Table 9-1.  Functions Invoked or Called by Calls

Function Invoked/Called By Calls

init Invoked by the action of onLoad in the

<body> tag

setupGame

setupGame init Sets up the alphabet and picks the

secret word

pickElement Invoked by the action of the

addEventListener calls in setupGame

showProgress pickElement drawRemain

drawRemain showProgress

Table 9-2 shows the complete implementation of the guess-a-word game.

Chapter 9 Guess a Word

362

Table 9-2.  The Complete Implementation of the Guess-a-Word Program, Code,

and Explanation

Code Explanation

<html> Opening html tag.

<head> Opening head tag.

 <title>Word Guess</title> Completes the title element.

<style> Opens the style element.

.letters {position:absolute;left:

0px; top: 0px; border: 2px; border-

style: double;margin: 5px; padding:

5px; color:#F00;background-color:#0FC;

font-family:"Courier New", Courier,

monospace;

Specifies styling for any element with

designated class letters, including the border,

colors, and font.

} Closing style directive.

.blanks {position:absolute;left:

0px; top: 0px; border:none; margin:

5px; padding: 5px; color:#006;

background-color: white; font-

family:"Courier New", Courier,

monospace; text-decoration:underline;

color: black;

Specifies styling for any element with

designated class blanks, including the

border, spacing, color, and font, and puts in

underlines.

} Closing style directive.

</style> Closes the style element.

<script src="words1.js" defer></

script>

Element calling for inclusion of the word

list held in an external file with the name

words1.js, with directive to load the file at

the same time as the rest of this document.

 <script > Opening tag for the script element.

 var ctx; Variable used for all drawing.

(continued)

Chapter 9 Guess a Word

363

Table 9-2.  (continued)

Code Explanation

 var thingelem; Variable used for created elements.

 �var alphabet = "abcdefghijkl

mnopqrstuvwxyz";

Defines letters of the alphabet, used for

alphabet buttons.

 var alphabety = 300; Vertical position for all alphabet buttons.

 var alphabetx = 20; Starting alphabet horizontal position.

 var alphabetWidth = 25; Width allocated for the alphabet elements.

 var secret; Will hold the secret word.

 var lettersGuessed = 0; Keeps count of letters guessed.

 var secretx = 160; Horizontal starting position for secret word.

 var secrety = 50; Vertical position for secret word.

 var secretwidth = 50; Width allocated for each letter in display of

secret word.

 var cur = 0; Initialize cur.

 var guessLimit = 7; You can change this if you want to change the

number of allowed wrong guesses.

var msgx = 100; Horizontal coordinate for a message.

var msgy = 120; Vertical coordinate for a message.

var clearX = 0; Horizontal coordinate of canvas upper-left

corner.

var clearY= 0; Vertical coordinate of canvas upper-left corner.

var clearW= 600; Width of canvas.

var clearH= 400; Height of canvas.

var startRx = 10; Starting x for stack of rectangles.

var startRy= alphabety-150; Calculate starting y to be above alphabet.

(continued)

Chapter 9 Guess a Word

364

Code Explanation

var unity = 140 / guessLimit; Calculate height of rectangle.

var unitX = 40; Set the variable holding the width of rectangle.

function init(){ Header for the function called on document

load.

 �ctx = document.

getElementById('canvas').

getContext('2d');

Sets up the variable for all drawing on canvas.

 setupGame(); Invokes the function that sets up the game.

 ctx.font="bold 20pt Ariel"; Sets the font.

} Closes the function.

function setupGame() { Header for the function that sets up the

alphabet buttons and the secret word.

 var i; Creates the variable for iterations.

 var x; Creates the variable for position.

 var y; Creates the variable for position.

 var uniqueid; Creates the variable for each set of created

HTML elements.

 var an = alphabet.length; Will be 26.

 for(i=0;i<an;i++) { Iterates to create alphabet buttons.

 uniqueid = "a"+String(i); Creates a unique identifier.

 �d = document.

createElement('alphabet');

Creates an element of type alphabet.

 d.innerHTML = (Defines the contents as specified in the next

line.

Table 9-2.  (continued)

(continued)

Chapter 9 Guess a Word

365

Code Explanation

 �"<div class="letters" id='"+uniqueid

+"'>"+alphabet[i]+"</div>");

Specifies a div of class letters with a unique

identifier and text content, which is the ith

letter of the alphabet.

 document.body.appendChild(d); Adds to body.

 �thingelem = document.getElementById

(uniqueid);

Gets the element with the ID.

 x = alphabetx + alphabetWidth*i; Computes its horizontal position.

 y = alphabety; Sets the vertical position.

 thingelem.style.top = String(y)+"px"; Using the style top; sets the vertical position.

 �thingelem.style.left =

String(x)+"px";

Using the style left; sets the horizontal

position

 �thingelem.addEventListener('click',

pickElement,false);

Sets up event handling for the mouse click

event.

 } Closes the for loop for the alphabet letters.

 �var ch = Math.floor(Math.

random()*words.length);

Chooses, at random, an index for one of the

words.

 secret = words[ch]; Set the global variable secret to be this

word.

 for (i=0;i<secret.length;i++) { Iterates for the length of the secret word.

 uniqueid = "s"+String(i); Creates a unique identifier for the word.

 d = document.createElement('secret'); Creates an element for the word.

 �d.innerHTML = ("<div class="blanks"

id='" +uniqueid+"'> __ </div>");

Sets the contents to be a div of class blanks,

with the ID of the word the uniqueid

just created. The text content will be an

underscore.

 document.body.appendChild(d); Appends the created element as a child of the

body.

Table 9-2.  (continued)

(continued)

Chapter 9 Guess a Word

366

Code Explanation

 �thingelem = document.getElementById

(uniqueid);

Gets the created element.

 x = secretx + secretwidth*i; Calculates the element’s horizontal position.

 y = secrety; Sets its vertical position.

 thingelem.style.top = String(y)+"px"; Using the style top, sets the vertical position.

 �thingelem.style.left =

String(x)+"px";

Using the style left, sets the horizontal

position.

 } Closes the for loop.

 return false; Returns false to prevent any refreshing of

the HTML page.

} Closes the function.

 function pickElement(ev) { Header for the function invoked as a result of

a click.

 var not = true; Sets not to true, which may or may not be

changed.

 var picked = this.textContent; Extracts the text content, namely, the letter,

from the object this references.

 var i; Iterates.

 var j; Iterates.

 var uniqueid; Used to create unique identifiers for elements.

 var thingelem; Holds the element.

 var out; Displays a message.

 for (i=0;i<secret.length;i++) { Iterates over the letters in the secret word.

 if (picked==secret[i]) { Says, “If the player guessed letter is equal to

this letter in secret....”

 id = "s"+String(i); Constructs the identifier for this letter.

Table 9-2.  (continued)

(continued)

Chapter 9 Guess a Word

367

Code Explanation

 �document.getElementById(id).

textContent = picked;

Changes the text content to be the letter.

 not = false; Sets not to false.

 lettersGuessed++; Increment the number of letters identified

correctly.

 if (lettersGuessed==secret.length) { Says, “If the whole secret word has been

guessed....”

 ctx.fillStyle=gallowsColor; Sets the color, which uses the brown of the

gallows, but could be anything.

 out = "You won!"; Sets the message.

 ctx.fillText(out,200,80); Displays the message.

 �ctx.fillText("Re-load the page to try

again.",200,120);

Displays another message.

 for (j=0;j<alphabet.length;j++) { Iterates over the whole alphabet.

 uniqueid = "a"+String(j); Constructs the identifier.

 �thingelem = document.getElementById

(uniqueid);

Gets the element.

 �thingelem.removeEventListener('click',

pickElement,false);

Removes the event handling.

 } Closes the j for loop iteration.

 } Closes if (lettersGuessed....), that is,

the all-done test.

 } Closes the if (picked==secret[i])

true clause.

 } Closes the for loop over letters in the secret

word iteration.

Table 9-2.  (continued)

(continued)

Chapter 9 Guess a Word

368

Code Explanation

 if (not) { Checks if no letters were identified.

 cur++; Increments the counter.

 showProgress(cur); Feedback text and drawing

 if (cur>=guessLimit) { Checks to see if all steps are finished.

 for (i=0;i<secret.length;i++) { Starts a new iteration over the letters in the

secret word to reveal all the letters.

 id = "s"+String(i); Constructs the identifier.

 �document.getElementById(id).

textContent = secret[i];

Obtains a reference to the element and sets it

to that letter in the secret word.

 } Close the iteration.

 ctx.fillStyle=”red”; Sets the color.

 �out = "You lost! Reload the page to

try again.";

Sets the message.

 �ctx.clearRect(clearX,clearY,clearW,

clearH);

Erase the canvas.

 ctx.fillText(out,msgx,msgy) Displays the out message.

 for (j=0;j<alphabet.length;j++) { Iterates over all of the letters in the alphabet.

 uniqueid = "a"+String(j); Constructs the unique identifier.

 �thingelem = document.getElementById

(uniqueid);

Gets the element.

 �thingelem.remove

EventListener('click',

pickElement,false);

Removes the event handling for this element.

 } Closes the j loop

 } Closes if cur >guessLimit

 } Closes the if (not) test (bad guess by

player).

Table 9-2.  (continued)

(continued)

Chapter 9 Guess a Word

369

Code Explanation

 var id = this.id; Extracts the identifier for this element.

 �thingelem = document.

getElementById(id);

Get the element reference.

 thingelem.style.display = "none"; Makes this particular alphabet button

disappear.

 �thingelem.removeEvenListener('click',

pickElement,false);

Remove event handling

 } Closes the pickElement function

function showProgress(cur) { Header for showProgress.

 �ctx.clearRect(clearX,clearY,clearW,

clearH);

Clear the canvas.

 var remain = guessLimit-cur; Calculate number remaining.

 drawRemain(remain); Go to another function to do the drawing.

 �out = String(remain)+" wrong guesses

remain.";

Prepare the text.

 ctx.fillText(out,msgx,msgy); Display the text.

 } Close showProgress.

function drawRemain(remain) { Header for drawRemain.

 var ypos = startRy-unitY; Determine starting vertical point (lowest).

 for (i=0;i<remain;i++){ Loop to draw rectangles.

 �ctx.strokeRect(startRx,ypos,unitX,

unity):

Draw rectangle.

 ypos = ypos – unity; Decrement ypos.

 } Close the loop.

 } Close the drawRemain function.

Table 9-2.  (continued)

(continued)

Chapter 9 Guess a Word

370

Code Explanation

</script> Closes the script.

</head> Closes the head.

<body onLoad="init();"> Opening tag that sets up call to init.

<h1>Word Guess</h1> Puts the name of game in big letters.

<p> Opening tag for paragraph.

<canvas id="canvas" width="600"

height="400">

Opening tag for canvas element. Includes

dimensions.

Your browser doesn't support the HTML5

element canvas.

Message for people using browsers that don’t

recognize canvas.

</canvas> Closing tag for canvas.

</body> Closes the body.

</html> Closes the document.

Table 9-2.  (continued)

A variation of guessing letters to reveal a word is guessing words to reveal a common

saying. Building on this game to create that one is a challenge for you. The critical steps

are handling of blanks between the words and the punctuation. You probably want to

reveal each instance of blanks between words and periods, commas, and question marks

immediately, making these things hints to the player. This means that you need to make

sure that lettersGuessed starts off with the correct count. Do not be concerned that the

selected letters are compared to blanks or punctuation.

Another variation would be to change the alphabet and, of course, the word list. I

carefully replaced all the instances of 26 with alphabet.length. You would also need

to change the language for the messages for winning and losing. Of course, this is not

applicable for languages that have characters as opposed to letters.

A suitable enhancement of the game is to make a New Word button. To do so, you need

to split up the workings of the setupGame button into two functions. One function creates

new alphabet icons and the positions for the longest possible secret word. The other makes

sure all the alphabet icons are visible and set up for event handling and then selects and

sets up the blanks for the secret word, making sure the appropriate number are visible. If

you do this, you may want to display a score and a number of games.

Chapter 9 Guess a Word

371

Continuing with the educational idea and assuming you use unusual words, you may

want to include definitions. The definition can be revealed at the end, by writing text

on the canvas. Or you can make a button to click to reveal the definition as a hint to the

player. Alternatively, you could create a link to a site, such as Dictionary.com.

�Testing and Uploading the Application
To test this application, you can download my word list or create your own. If you

create your own, start off with a short word list prepared as plain text, giving it the name

words1.js. When testing, do not always guess in the same pattern, such as choosing the

vowels in order. Misbehave and try to keep guessing after the game is over. When you are

satisfied with the coding, create a longer word list and save it under the name words1.js.

Both the HTML and words1.js files need to be uploaded to your server.

�Summary
In this chapter, you learned how to implement a familiar game using features of HTML5,

JavaScript, and CSS along with general programming techniques, which included the

following:

•	 Creating HTML markup dynamically

•	 Setting up and removing event handling using addEventListener

and removeEventListener for individual elements

•	 Using styles to remove elements from display and removing event

handling

•	 Manipulating variables to maintain the state of the game, with

calculations to determine if there is a win or a loss

•	 Creating an external script file to hold the word list for increased

flexibility

•	 Using CSS, including font-family for the selection of fonts, color,

and display

Chapter 9 Guess a Word

http://dictionary.com

372

Games like this one are appealing examples for demonstrating programming

concepts, and I use something similar in Programming 101: The How and Why of

Programming Revealed Using the Processing Programming Language (also published by

Apress).

The next and final chapter of this book describes the implementation of the card

game blackjack, which is also called 21. It will build on what you have learned and

describe some new techniques in programming, elements added to HTML5, and

more CSS.

Chapter 9 Guess a Word

373

CHAPTER 10

Blackjack
In this chapter, we cover the following:

•	 The footer and header tags, which are new to HTML5

•	 Capturing key presses

•	 Programmer-defined objects

•	 Generating Image elements using a set of external image files

•	 Shuffling a deck of cards

�Introduction
The objective of this chapter is to combine programming techniques and HTML5

and JavaScript features to implement the card game blackjack, also called the 21 card

game. The implementation will use new tags introduced in HTML5, namely, footer

and header. We will use the footer to give credit to the source for the card images

and the website we are using for the shuffling algorithm. The cards are created using

programmer-defined objects and Image objects, with coding to generate the names of

the image files. The player makes moves using key presses.

The rules of blackjack are as follows:

The player plays against the dealer (also known as the house). The player
and dealer are each dealt two cards. The first card of the dealer is hidden
from the player, but the other is visible. The value of a card is its face value
for the numbered cards, 10 for a jack, queen, or king, and either 1 or 11 for
an ace. The value of a hand is the sum of the cards. The object of the game
is to have a hand with a value as close to 21 as possible without going over
and to have a value greater than the other person. Thus, an ace and a face
card count as 21, a winning hand. The actions the player can take are to
request another card or to hold.

© Jeanine Meyer 2023
J. Meyer, The Essential Guide to HTML5, https://doi.org/10.1007/978-1-4842-8722-4_10

https://doi.org/10.1007/978-1-4842-8722-4_10

374

Since this is a two-person game, our player will play against “the computer,” and,

as was the case with rock-paper-scissors, we have the task of generating the computer

moves. However, we are guided by the practice of casinos—the dealer (house) will use

a fixed strategy. Our dealer will request another card if the value of the hand is under 17

(the game strategy in casinos may be slightly more complicated and may be dependent

on the presence of aces). Similarly, our game does declare a tie if the player and house

have the same total if the total is under 21; some casinos may have a different practice.

An opening screenshot is shown in Figure 10-1.

Figure 10-1.  Opening screen for blackjack

After the user presses the n key, the next screen would look something like

Figure 10-2. Remember that there are random processes involved, so this same set of

cards is not guaranteed to appear each time.

Chapter 10 Blackjack

375

Figure 10-2.  Cards dealt

Figure 10-2 shows what the player sees: all of their own hand and all but one card of

the dealer’s hard. The virtual dealer does not have knowledge of the player’s hand. In this

situation, the player’s hand has a value of 2 plus 10 for a total of 12. The dealer is showing

a 3. The player asks for another card by pressing d. Figure 10-3 shows the result.

Chapter 10 Blackjack

376

Figure 10-3.  Player with 20

The player now has a hand with value 20 and presses h for hold to stop play and to

see what the dealer has. The result is shown in Figure 10-4.

Figure 10-4.  Player wins with 20 and the house goes over

Chapter 10 Blackjack

377

The player wins since the house went over and the player did not.

The player can start a new game by pressing the n key or reloading the document.

Reloading the document would mean starting with a complete, freshly shuffled deck.

Pressing the n key continues with the current deck. Anyone who wants to practice

card counting, a way of keeping track of what still is in the deck and varying your play

accordingly, should opt to press the n key.

Figure 10-5 shows a new game.

Figure 10-5.  A new game

This time, the player presses h for hold, and Figure 10-6 shows the result.

Chapter 10 Blackjack

378

Figure 10-6.  The player loses.

The dealer was holding four cards for a total of 21. Remember that an ace counts as 1

or 11. The player had 14 and, consequently, lost.

Figure 10-7 shows the results of another game. The initial deal to the player was two

face cards for a total of 20. The player pressed h for hold, and the house played two more

cards and went over.

Chapter 10 Blackjack

379

Figure 10-7.  The player wins

The actual practices of dealers at casinos may be different from this. This is an

opportunity for research! The player also can bluff the House by going over and not

revealing it. This may lead the house to request another card and go over also. The game

is decided if and only if the player clicks the h key to hold and thus stops drawing cards.

You may want to provide feedback to the player when a key that is not d, h, or n is

pressed, as shown in Figure 10-8.

Chapter 10 Blackjack

380

Figure 10-8.  Feedback when a wrong key is pressed

�Critical Requirements
The blackjack game will use many of the HTML5, CSS, and JavaScript features described

for the previous games.

The first issue I had when starting the implementation was to find a source of images

for the card faces. I knew I could make my own drawings, but I preferred something

more polished than I could produce.

The next challenge was how to design what a card was in programming terms so

that I could implement dealing cards, showing the back or the face. I also wanted to

investigate how to shuffle the deck.

Another challenge was implementing the way a player would play the game. I chose

to use key presses: d to deal, h to hold, and n to begin a new game. There are, of course,

alternatives, for example, displaying buttons with words or graphics or using other keys,

such as the arrow keys. The absence of a clear, intuitive interface made it necessary to

display the directions on the screen.

The last challenges are the general ones of maintaining the state of the game, the

visible display, and internal information; generating the computer moves; and following

the rules.

Chapter 10 Blackjack

381

�HTML5, CSS, and JavaScript Features
Let’s now look at the specific features of HTML5, CSS, and JavaScript that provide

what we need to implement the blackjack card game. Except for basic HTML tags and

functions and variables, the explanations here are complete. If you have read the other

chapters, you will notice that much of this chapter repeats explanations given previously.

Remember that you can skip ahead to the “Building the Application” section to see the

complete code for the game with comments and then return to this section for more

explanation.

�Source for Images for Card Faces and Setting
Up the Image Objects
When working on the first edition, I did find an excellent source for the card faces,

which came with a Creative Commons license, and was happy to show the link and the

license, but the site no longer exists. I found another source, at the American Contract

Bridge League. The digital files were labeled as free, but I still did ask for and received

permission, and you can see from the screenshots that I indicated the source of the

digital files on the web page.

After copying the files to your computer, you need a way to access the 52 card face

image files without writing 52 different statements. (Note that the card back image file

is accessed in a different place, namely, the init function.) This can be accomplished

because the file names follow a pattern. The pattern for the new card images was slightly

different than the original one, and the coding was actually easier. The buildDeck

function is as follows:

function buildDeck() {

 var n;

 var si; //used for indexing over the suits

 var suitnames =["C","H","S","D"];

 var i;

 i=0;

 var pickName;

 var nums=["A","2","3","4","5","6","7","8","9","10","J","Q","K"];

 for (si=0;si<4;si++) {

Chapter 10 Blackjack

382

 for (n=0;n<13;n++) {

 pickName=nums[n]+suitnames[si]+".png";

 deck[i]=new MCard(n+1,suitnames[si],pickName);

 i++;

 }

 }

 }

 }

}

Notice the nested for loops. The outer loop handles the suits and the inner loops the

13 cards in a suit.

In this function, the outer loop manages the suits and the inner loop the cards within

each suit. The pickName variable will be set to the names of the files that we downloaded

from the source. The MCard function is the constructor function to create a MCard object,

that is, objects of the class we defined as a programmer-defined class of objects. n+1 will

be used as the value of the card, and there will be some adjustment for the face cards.

Note T he three statements in the nested for loops could be combined into
deck[i++]=new MCard(n+1,suitnames[si], suitnames[si]+"-
"+nums[n]+".png");.

This is because the ++ iteration operator takes place after the value has been generated

for indexing the deck array. However, I recommend that in this learning example you don’t

do it! Using three statements is much easier to write and to understand.

�Creating the Programmer-Defined Object
for the Cards
As we have seen in previous chapters, for example, Chapter 4 for the slingshot game,

JavaScript provides a way for programmers to create programmer-defined objects to

group together data; the different pieces of data called attributes or properties, and we

use dot notation to get at the different attributes. It is also possible to associate code

with the data by defining methods, but we don’t need to do that in this example. As

a reminder, the function setting up the new object is called the constructor function.

Chapter 10 Blackjack

http://dx.doi.org/10.1007/978-1-4842-4155-4_4

383

For cards, I defined MCard as the constructor, which was shown in use in the previous

section in the buildDeck function. The definition of this function follows:

function MCard(n, s, pickName){

//stands for card number, suit, picture

 this.num = n;

 if (n>10) n = 10;

 this.value = n;

 this.suit = s;

 this.picture = new Image();

 this.picture.src = pickName;

 this.dealt = 0;

 }

The line of the function

 if (n>10) n = 10;

will be triggered by the face cards (jack, queen, and king). Remember, the value of

each is 10. This line corrects the value to be 10 in these cases.

Notice that this if statement is structurally different from previous if statements.

There are not any opening and closing curly brackets setting off the if-true clause. The

single-statement clause is a legitimate form of the if statement. I generally avoid this

form because if I later decide to add another statement, I will need to insert the curly

brackets. However, I decided that it was okay in this situation. I also realized that you will

see both variations when examining code, so it makes sense to show you the format here.

Notice that nothing special is done when n equals 1. The rule for two possible values for

an ace is handled elsewhere in the program.

The properties of MCard objects include a newly created Image object with its src

attribute set to the pickName passed in. The last attribute, dealt, initialized to 0, will be

set to 1 or 2 depending on whether the card goes to the player or the dealer.

�Starting a Game
For my implementation of the game, the player chooses to start a new game with the

current deck by pressing the n key. If the player wants to start with a new deck, the

player reloads the HTML document. In fact, in the casinos, the dealer, not the player,

Chapter 10 Blackjack

384

decides when to use a new deck. Making this change would be a good addition to the

implementation. I should also note that some casinos use multiple decks to discourage a

practice called card counting. It occurs to me that an application could be built providing

players a way to practice card counting.

Another issue concerns player behavior. As I have revealed, I tend to assume that

players will behave properly. What should be done if a player clicks d for dealing one

more card or h for holding when a game has not been started? In situations like this

involving player nonstandard behavior, the choices we as application builders face

include displaying a message; trying to guess what the player wants to do, for example,

start a new game; or do nothing. I decided to display a message. To keep track of whether

a game has been started, I use a global variable, gamestart, which is initialized to

false. By the way, a term for such variables is flag. It is present in four functions (deal,

dealFromDeck, playerdone, and newGame), and you can examine them in context in the

code tables.

�Dealing the Cards
The buildDeck function constructs the deck array of MCard objects. The player’s hand

is kept in an array called playerhand with pi holding the index of the next position.

Similarly, the dealer’s hand is kept in an array called househand with hi holding

the index of the next position. An example showing the syntax (punctuation) for

referencing an attribute of an MCard object when the object is an element of an array is

playerhand[pi].picture.

The dealStart function has the task of dealing the first four cards: two to the player

and two to the dealer. One of the dealer’s cards is not shown; that is, the card’s back is

shown. The deal function is invoked when the player requests a new card (see later in

this section). The deal function will deal a card to the player and see if the dealer is to

get a new card. Both dealStart and deal accomplish the actual dealing by invoking the

dealFromDeck function, adding the cards to the playerhand and househand arrays and

drawing the cards on the canvas. Formally, the dealFromDeck is a function that returns a

value of type MCard. Its call appears on the right side of assignment statements. If the face

of the card is to show, the Image object drawn is referenced by the card. If the back of the

card is to show, the Image object is held in the variable back.

Here is the dealStart function. Cards are added to the playerhand array and the

househand array. Elements can be added to an array two distinct ways. One way is to

Chapter 10 Blackjack

385

use the push method. Another way, which is what I demonstrate here, uses an index

value where the index value is the current length of the array. That is, this places the

value in the next position in the array. Notice the four similar sets of statements: get the

card, draw the image, increment the x position for the next time, and increase indexing

variable, pi or hi, are used to deal out the four cards, two for the player and two for

the house.

function dealStart() {

 playerhand[pi] = dealFromDeck(1);

 ctx.drawImage(playerhand[pi].picture,playerxp,playeryp,cardw,cardh);

 playerxp = playerxp + 30;

 pi++;

 househand[hi] = dealFromDeck(2);

 ctx.drawImage(back,houseXp,houseYp,cardw,cardh);

 houseXp = houseXp+20;

 hi++;

 playerhand[pi] = dealFromDeck(1);

 ctx.drawImage(playerhand[pi].picture,playerxp,playeryp,cardw,cardh);

 playerxp = playerxp+30;

 pi++;

 househand[hi] = dealFromDeck(2);

 ctx.drawImage(househand[hi].picture,houseXp,houseYp,cardw,cardh);

 houseXp = houseXp+20;

 hi++;

 }

The deal function is similar. A card is added to the player’s hand and to the house if

more_to_house returns true.

function deal() {

 if (gamestart) {

 playerhand[pi] = dealFromDeck(1);

 ctx.drawImage(playerhand[pi].picture,playerxp,playeryp,cardw,cardh);

Chapter 10 Blackjack

386

 playerxp = playerxp+30;

 pi++;

 if (more_to_house()) {

 househand[hi] = dealFromDeck(2);

 ctx.drawImage(househand[hi].picture,houseXp,houseYp,cardw,cardh);

 houseXp = houseXp+20;

 hi++;

 }

 }

 else{

 alert("Press n to start a new game with the same deck.\n

 Reload page to start a game with a new deck.");

 }

 }

Note that more_to_house is a function that generates a true or false value. This

value will be based on a calculation of the dealer’s total. If the total is 17 or greater, the

value returned will be false; otherwise, it will be true. The function call is used as the

condition of an if statement, so if more_to_house returns true, the statements within

the if clause will be executed. The more_to_house code could be put inside the deal

function, but dividing up large tasks into smaller ones is good practice. It means I can

keep working on the deal function and postpone temporarily writing the more_to_house

function. If you want to refine the more_to_house calculation, you know exactly where

to do it.

Determining the specific card from the deck is the task of the dealFromDeck function.

Again, I make this well-defined task its own function. The parameter is the recipient of

the card. We don’t need to keep track of which recipient in this application, but we’ll

keep that information in the code in to prepare for building other card games. What is

critical is that the card has been dealt to someone. The dealt attribute changes from 0.

Notice the line return card;, which does the work of making an MCard object be the

result of invoking the function.

function dealFromDeck(who) {

 var card;

 var ch = 0;

 while ((deck[ch].dealt>0)&&(ch<51)) {

Chapter 10 Blackjack

387

 ch++;

 }

 if (ch>=51) {

 ctx.fillText("NO MORE CARDS IN DECK. Reload. ",200,200);

 ch = 51;

 gamestart = false;

 }

 deck[ch].dealt = who;

 card = deck[ch];

 return card;

}

Keep in mind that the deck array is indexed from 0 to 51. A while statement is another

type of looping construction. In most computer programming languages, a while loop is a

control flow statement that allows code to be executed repeatedly based on a given Boolean

condition; the while loop can be thought of as a repeating if statement. The statements

inside the curly brackets will execute as long as the condition inside the parentheses

remains true. It is up to the programmer to make sure that this will happen—that the loop

won’t go on forever. The while loop in our application stops when a card is identified that

has not been dealt, that is, its dealt attribute is 0. This function will say there are no more

cards when the last card, the 51st card, is available and dealt. If the player ignores the

message and asks for another card again, the last card will be dealt again.

As an aside, the issue of when the dealer chooses to gather the used cards together

or go to a new deck is significant for card counters attempting to figure out what cards

remain. At many casinos, dealers use multiple decks of cards to impede card counting.

My program does not give the house that capability. You can build on this program to

simulate these effects if you want a program to practice card counting. You can put the

number of decks under player control, use random processing, wait until the count of

remaining cards is under a fixed amount, or perhaps do something else.

The dealer may request another card when the player requests another card or when

the player decides to hold. As mentioned earlier, the function to evaluate if the dealer

asks for another card is more_to_house. The calculation is to add up the values of the

hand. If there are any aces, the function adds an extra 10 points if that will make the total

21 or less—that is, it makes 1 ace count as 11. Then, it evaluates if the sum is less than 17.

If it is, it returns true, which tells the calling function to request a new card. If the value

exceeds 17, it returns false.

Chapter 10 Blackjack

388

function more_to_house(){

 var ac = 0; //count of aces

 var i;

 var sumUp = 0; //will hold point value of house hand

 for (i=0;i<hi;i++) {

 sumUp += houseHand[i].value;

 if (houseHand[i].value==1) {ac++;}

 }

 if (ac>0) {

 if ((sumUp+10)<=21) {

 sumUp += 10;

 }

 }

 houseTotal = sumUp;

 if (sumUp<17) {

 return true;

 }

 else {

 return false;

 }

}

If you want to experiment with a different strategy for the house, more_to_house is

the function you change.

Starting a new game can be a challenge for programmers. First, it is necessary to

understand what starting again means. For this implementation of blackjack, I provide

an option to the player for starting a new hand, which means continuing with the same

deck. To start with a fresh deck that has no cards dealt out, the player must reload the

document. My name for the function that is invoked when the player presses the n key

is newGame. The required actions are to clear the canvas and reset the pointers for the

player’s and dealer’s hands, as well as the variables holding the horizontal position for

the next card. This function closes with a call to dealStart.

function newGame() {

 if (!gameStart) {

 gameStart = true;

 ctx.clearRect(0,0,cwidth,cheight);

Chapter 10 Blackjack

389

 pi=0;

 hi=0;

 playerXp = 100;

 houseXp= 500;

 dealStart();

 }

}

�Shuffling the Deck
The technique for shuffling featured in the concentration game (see Chapter 5)

represented an implementation of what my children and I did when playing the game:

we spread out the cards and seized pairs and switched their places.

For blackjack, a friend pointed me to a website by Eli Bendersky (http://eli.

thegreenplace.net/2010/05/28/the-intuition-behind-fisher-yates-shuffling/)

explaining the Fisher-Yates algorithm. The strategy of this algorithm is to make a random

determination for each position in the deck, starting from the end and working toward

the start. The calculation determines a random position in the deck from 0 up to and

including the current position and does a swap. The main shuffle function follows:

function shuffle() {

 var i = deck.length - 1;

 var s;

 while (i>0) {

 s = Math.floor(Math.random()*(i+1));

 swapinDeck(s,i);

 i--;

 }

 }

Recall that Math.random() * N returns a number from zero up to but not including

N. Taking Math.floor of the result returns an integer from zero up to N. So if we want

a number from 0 to i, we need to write Math.floor(Math.random()*(i+1)). To make

the shuffle function easier to read, I made a separate function called swapindeck

that swaps the two cards that are located at the positions indicated by the parameters

Chapter 10 Blackjack

http://dx.doi.org/10.1007/978-1-4842-4155-4_5
http://eli.thegreenplace.net/2010/05/28/the-intuition-behind-fisher-yates-shuffling/
http://eli.thegreenplace.net/2010/05/28/the-intuition-behind-fisher-yates-shuffling/

390

to the function. To perform a swap, an extra place is needed, and this is the variable

hold. This extra place is needed because the two assignment statements cannot be

accomplished at the same time.

 function swapinDeck(j,k) {

 var hold = new MCard(deck[j].num,deck[j].suit,deck[j].picture.src);

 deck[j] = deck[k];

 deck[k] = hold;

 }

�Capturing Key Presses
The use of the arrow keys was described in the maze game in Chapter 7. This essentially

is a repeat of that explanation.

Detecting that a key on the keyboard has been pressed and determining which key is

termed capturing the key strokes. The code must set up the response to a key event and is

analogous to setting up a response to a mouse event. The coding starts with invoking the

addEventListener method, this time for the window for this application.

window.addEventListener('keydown',getkey,false);

This means the getkey function will be invoked if and when a key is pressed.

Note T here also are keyup and keypress events. The keydown and keyup fire
only once. The keypress event will occur again after some amount of time if the
player holds down the key.

Now, as you may expect at this point, the coding to get the information for which

key involves code for different browsers. The following code, with two ways to get the

number corresponding to the key, works for Chrome, Firefox, and Safari:

if(event == null)

 {

 keyCode = window.event.keyCode;

 window.event.preventDefault();

 }

Chapter 10 Blackjack

http://dx.doi.org/10.1007/978-1-4842-4155-4_7

391

 else

 {

 keyCode = event.keyCode;

 event.preventDefault();

 }

The preventDefault function does what it sounds like: it prevents any default

action, such as special shortcut actions associated with particular keys. The only keys of

interest in this application are the three keys d, h, and n. The following switch statement

determines which key is pressed and invokes the correct function: deal, playerdone, or

newGame. A switch statement compares the value in the parentheses with the values after

the term case and starts executing the statements with the first one that matches. The

break; statement causes execution to jump out of the switch statement. The default

clause is what it sounds like. It is not necessary, but if it is present, the statement or

statements following default: are executed if nothing matches the case values provided.

 switch(keyCode) {

 case 68: //d

 deal();

 break;

 case 72: //h

 playerdone();

 break;

 case 78: //n

 newGame();

 break;

 default:

 alert ("Press d, h, or n.");

 }

Recall that you can determine the key code of any key by modifying the whole

switch statement to have just the following line in the default case:

alert(" You just pressed keycode "+keyCode);

and doing the experiment of pressing the key and writing down what number

shows up.

Chapter 10 Blackjack

392

Caution  If, like I sometimes do, you move among different windows on your
computer, you may find that when you return to the blackjack game and press a
key, the program does not respond. You will need to click the mouse on the window
holding the blackjack document. This lets the operating system restore the focus
on the blackjack document so the listening for the key press can take place.

�Using Header and Footer Element Types
HTML5 added some new built-in element types, including header and footer. The

rationale behind these and other new elements (for example, article and nav) was

to provide elements that serve standard purposes so that search engines and other

programs would know how to treat the material, though it still is necessary to specify the

formatting. These are the styles we will use in this example:

footer {

 display:block;

 font-family:Tahoma, Geneva, sans-serif;

 text-align: center;

 font-style:oblique;

}

header {

 width:100%;

 display:block;

}

The display setting can be block or inline. Setting these to block forces a line

break. Note that forcing the line break may not be necessary for certain browsers, but

using it does not hurt. The font-family attribute is a way to specify choices of fonts. If

Tahoma is available on the user’s computer, it will be used. The next font to try will be

Geneva. If neither one is present, the browser will use the sans-serif font set up as the

default. The text-align and font-style settings are what they appear to be. The width

setting sets this element to be the whole width of the containing element, in this case the

body. Feel free to experiment!

Note that you cannot assume the footer is at the bottom of the screen, nor the header

at the top. I made that happen by using positioning in the HTML document.

Chapter 10 Blackjack

393

I used the footer to display the sources for the card images and the shuffle algorithm.

Providing credit, showing copyright, and displaying contact information are all typical

uses of footer element, but there are no restrictions on how you use any of these new

elements or on where you put them in the HTML document and how you format them.

�Building the Application and Making It Your Own
Table 10-1 describes the functions used in this game.

Table 10-1.  The Blackjack Functions

Function Invoked/Called by Calls

init Invoked by the onLoad function in

the <body> tag

buildDeck, shuffle, and

dealStart

getKey Invoked by the window.

addEventListener call in init

deal, playerDone, and newGame

dealStart init dealFromDeck four times

deal getKey Two calls to dealFromDeck and one

call to more_to_house

more_to_house deal, playerDone

dealFromDeck deal, dealStart, playerDone

buildDeck init MCard

MCard buildDeck, swapInDeck

add_up_player playerDone

playerDone getKey more_to_house, dealFromDeck,

showHouse, and add_up_player

newGame getKey dealStart

showHouse playerDone

shuffle init swapInDeck

swapInDeck shuffle MCard

Chapter 10 Blackjack

394

The functions in this example feature a pattern of procedural calls with only init

and getKey invoked as a result of events. Please appreciate the fact that there are many

ways to program an application, including the definition of functions. Generally, it is

a good practice to split up code into small functions, but it is not necessary. There are

many places where similar lines of codes are repeated, so there is opportunity to define

more functions. The annotated document follows in Table 10-2.

Table 10-2.  The Annotated Code for the Blackjack Game

Code Explanation

<html> Opening html tag.

<head> Opening head tag.

 <title>Black Jack</title> Complete the title element.

 <style> Opening style tag.

 body { Specifies the style for the body element.

 background-color:white; Sets the background color.

 color: black; Sets the color of the text.

 font-size:18px; Sets the font size.

 font-family:Verdana,

Geneva, sans-serif;

Sets the font family.

} Closes the style.

footer { Specifies the style for the footer.

 display:block; Treats this element as a block.

 font-family:Tahoma,

Geneva, sans-serif;

Sets the font family.

 text-align: center; Aligns the text in the center.

 font-style:oblique; Makes the text slanted.

} Closes style.

header { Specifies the style for the header.

(continued)

Chapter 10 Blackjack

395

Code Explanation

 width:100%; Makes it take up the whole window.

 display:block; Treats it as a block.

} Closes style.

 </style> Closes the style element.

 <script> Starts the script element.

var cwidth = 800; Sets the width of the canvas; used when clearing the canvas.

var cheight = 500; Sets the height of the canvas; used when clearing the canvas.

var cardw = 75; Sets the width of each card.

var cardh = 107; Sets the height of each card.

var playerXp = 100; Sets the starting horizontal position for the cards in the

player’s hand.

var playerYp = 300; Sets the vertical position for the cards in the player’s hand.

var houseXp = 500; Sets the starting horizontal position for the cards in the

dealer’s hand.

var houseYp = 100; Sets the vertical position for the cards in the dealer’s hand.

var houseTotal; For the total value of the dealer’s hand.

var playerTotal; For the total value of the player’s hand.

var pi = 0; Index for the next card in player’s hand.

var hi = 0; Index for the next card in the dealer’s hand.

var deck = []; Holds all the cards.

var playerHand = []; Holds the cards for the player.

var houseHand = []; Holds the cards for the dealer.

var back = new Image(); Used for the card back.

var ctx; Used to hold canvas context.

var gameStart = false; Used to check if game has started.

Table 10-2.  (continued)

(continued)

Chapter 10 Blackjack

396

Table 10-2.  (continued)

(continued)

Code Explanation

function init() { Function called by onLoad in body to perform initialization

tasks.

 ctx = document.

getElementById('canvas').

getContext('2d');

Sets the variable used for all drawing.

 ctx.font="italic 20pt

Georgia";

Sets the font.

 ctx.fillStyle = "blue"; Sets the color.

 buildDeck(); Invokes the function to build the deck of cards.

 back.src ="cardback.png"; Specifies the image for the back of card (note that only one

back appears: the dealer’s hidden card).

 �canvas1 = document.

getElementById('canvas');

Sets the variable for event handling.

 �window.addEventListener

('keydown',getkey,false);

Sets up event handling for keydown presses.

 shuffle(); Invokes the function to shuffle.

 dealStart(); Invokes the function to deal out the first four cards.

 } Closes the function.

 function getKey(event) { Function to respond to keydown events.

 var keyCode; Holds the code designating the key.

 if(event == null) Browser-specific code to determine if the event is null.

 { Open clause.

 �keyCode = window.event.

keyCode;

Gets the key code from window.event.keyCode.

 �window.event.

preventDefault();

Stops other key responses.

Chapter 10 Blackjack

397

Table 10-2.  (continued)

(continued)

Code Explanation

 } Closes the clause.

 else { Clause.

 keyCode = event.keyCode; Picks up the key code from event.keyCode.

 event.preventDefault(); Stops other key responses.

 } Closes the clause.

 switch(keyCode) { Header for the switch statement based on keyCode.

 case 68: The d key has been pressed.

 deal(); Deals out another card to the player and maybe to the dealer.

 break; Leaves the switch.

 case 72: The h key has been pressed.

 playerDone(); Invokes the playerdone function.

 break; Leaves the switch.

 case 78: The n key has been pressed.

 newGame(); Invokes the newGame function.

 break; Leaves the switch.

 default: Default choice, which may be appropriate to remove if you

don’t feel the need to provide feedback to players if they use

an unrecognized key.

 �alert("Press d, h, or

n.");

Feedback message.

 } Closes the switch.

 } Closes the function.

function dealStart() { Header for the function for initially dealing cards.

 �playerHand[pi] =

dealFromDeck(1);

Gets the first card for player.

Chapter 10 Blackjack

398

Table 10-2.  (continued)

(continued)

Code Explanation

 �ctx.

drawImage(playerhand[pi].

picture,playerXp,playerYp,

cardw,cardh);

Draws on the canvas.

 playerXp = playerXp+30; Adjusts the horizontal pointer.

 pi++; Increases the count of cards to the player.

 �houseHand[hi] =

dealFromDeck(2);

Gets the first card for the dealer.

 �ctx.drawImage(back,houseXp,

houseYp,cardw,cardh);

Draws a card’s back on the canvas.

 houseXp = houseXp+20; Adjusts the horizontal pointer.

 hi++; Increases the count of cards to the dealer.

 �playerHand[pi] =

dealFromDeck(1);

Deals a second card to the player.

 �ctx.

drawImage(playerhand[pi].

picture,playerxp,playeryp,

cardw,cardh);

Draws on canvas.

 playerXp = playerXp+30; Adjusts the horizontal pointer.

 pi++; Increases the count of cards to the player.

 �houseHand[hi] =

dealFromDeck(2);

Deals a second card to the dealer.

 �ctx.

drawImage(househand[hi].

picture,houseXp,houseYp,

cardw,cardh);

Draws on the canvas.

 houseXp = houseXp+20; Adjusts the horizontal pointer.

Chapter 10 Blackjack

399

Table 10-2.  (continued)

(continued)

Code Explanation

 hi++; Increases the count of cards to the House.

 } Closes the function.

 function deal() { Header for the function for dealing through the game.

if (gameStart) { Checks if game has been started.

 �playerHand[pi] =

dealFromDeck(1);

Deals a card to the player.

 �ctx.

drawImage(playerhand[pi].

picture,playerxp,playeryp,

cardw,cardh);

Draws on the canvas.

 playerXp = playerXp+30; Adjusts the horizontal pointer.

 pi++; Increases the count of cards to the player.

 if (more_to_house()) { if function to say there should be more cards for the dealer.

 �houseHand[hi] =

dealFromDeck(2);

Deals a card to the house.

 �ctx.

drawImage(househand[hi].

picture,houseXp,houseYp,

cardw,cardh);

Draws a card on canvas.

 houseXp = houseXp+20; Adjusts the horizontal pointer.

 hi++; Increases the count of cards to the dealer.

 } Closes the if true clause.

} Closes if true clause for if(gamestart).

Chapter 10 Blackjack

400

Table 10-2.  (continued)

(continued)

Code Explanation

else{

 �alert("Press n to start

a new game with the

same deck.\n Reload

page to start a game

with a new deck.");

Prints out message to player to start a new game or reload to

get new deck.

} Closes else for game not started.

} Closes the function.

function more_to_house(){ Header for the function determining the dealer’s moves.

 var ac = 0; Variable to hold the count of aces.

 var i; Variable for iteration

 var sumUp = 0; Initializes the variable for the sum.

 for (i=0;i<hi;i++) { Iterates over all the cards.

 �sumUp += houseHand[i].

value;

Adds value of cards in the dealer’s hand.

 �if (houseHand[i].value==1)

{ac++;}

Keeps track of the number of aces.

 } Closes the for loop.

 if (ac>0) { if statement to determine if there were any aces.

 if ((sumUp+10)<=21) { If so, asks if making one of the aces take on the value of 11

still yield a total less than 21.

 sumUp +=10; If yes, do it.

 } Closes inner if.

 } Closes outer if.

 houseTotal = sumUp; Sets the global variable to be the sum.

 if (sumUp<17) { Asks if the sum is under 17.

Chapter 10 Blackjack

401

Table 10-2.  (continued)

(continued)

Code Explanation

 return true; Returns true if so, meaning it’s OK to get one more card.

 } Closes clause.

 else { Begins else clause.

 return false; Returns false, meaning the dealer won’t get another card.

 } Closes the else clause.

} Closes the function.

function dealFromDeck(who)

{

Header for the function to deal from the deck.

 var card; Holds the card.

 var ch = 0; Holds the index for the next undealt card.

 �while ((deck[ch].

dealt>0)&&(ch<51)) {

Asks if this card has been dealt.

 ch++; Increases ch to go on to the next card.

 } Closes the while loop.

 if (ch>=51) { Asks if there were no undealt cards.

 �ctx.f illText("NO MORE

CARDS IN DECK. Reload. ",

200,250);

Displays a message directly on the canvas.

 ch = 51; Sets ch to 51 to make this function work.

 gameStart = false; Prevents response to any player call for new card.

 } Closes the if true clause.

 deck[ch].dealt = who; Stores who, a nonzero value, so this card is marked as having

been dealt.

 card = deck[ch]; Sets a card.

 return card; Returns a card.

Chapter 10 Blackjack

402

Table 10-2.  (continued)

(continued)

Code Explanation

} Closes the function.

function buildDeck() { Header for the function that builds the MCard objects.

 var n; Variable used for inner iteration.

 var si; Variable used for outer iteration, over the suits.

 �var suitnames= ["clubs",

"hearts","spades",

"diamonds"];

Names of suits.

 var i; Keeps track of elements put into the deck array.

 i=0; Initializes the array to 0.

 var pickName; Simplifies the coding.

 �var nums=["a","2","3","4",

"5","6","7","8","9","10",

"j","q","k"];

The names for all the cards.

 for (si=0;si<4;si++) { Iterates over the suits.

 for (n=0;n<13;n++) { Iterates over the cards in a suit.

 �pickName=suitNames[si]+"-

"+nums[n]+"-75.png";

Constructs the name of the file.

 �deck[i]=new MCard(n+1,

suitNames[si],pickName);

Constructs an MCard with the indicated values.

 i++; Increments i.

 } Closes the inner for loop.

 } Closes the outer for loop.

} Closes the function.

function MCard(n, s,

pickName){

Header for the constructor function for making objects.

 this.num = n; Sets the num value.

Chapter 10 Blackjack

403

Table 10-2.  (continued)

(continued)

Code Explanation

 if (n>10) n = 10; Makes an adjustment in the case of the face cards.

 this.value = n; Sets the value.

 this.suit = s; Sets the suit.

 �this.picture = new

Image();

Creates a new Image object and assigns it as an attribute.

 �this.picture.src =

pickName;

Sets the src attribute of this Image object to the picture file

name.

 this.dealt = 0; Initializes the dealt attribute to 0.

 } Closes the function.

function add_up_player() { Header for the function determining the value of player’s

hand.

var ac = 0; Holds the count of aces.

var i; For iteration.

var sumUp = 0; Initializes the sum.

 for (i=0;i<pi;i++) { Loops over the cards in the player’s hand.

 �sumUp += playerHand[i].

value;

Increments the value of the player’s hand.

 �if (playerHand[i].

value==1)

Asks if the card is an ace.

 {ac++; Increments the count of aces.

 } Closes the if statement.

 } Closes the for loop.

 if (ac>0) { Asks if there were any aces.

 if ((sumUp+10)<=21) { If this doesn’t make sum go over.

 sumUp +=10; Makes one ace an 11.

Chapter 10 Blackjack

404

Table 10-2.  (continued)

(continued)

Code Explanation

 } Closes the inner if.

 } Closes the outer if.

 return sumUp; Returns the total.

} Closes the function.

function playerDone() { Header for the function invoked when player says hold.

If (gameStart) { Checks if game has been started.

 while(more_to_house()) { The more_to_house function indicates the dealer should get

another card.

 �houseHand[hi] =

dealFromDeck(2);

Deals a card to the dealer.

 �ctx.drawImage(back,houseXp,

houseYp,cardw,cardh);

Draws the card on the canvas.

 houseXp = houseXp+20; Adjusts the horizontal pointer.

 hi++; Increases the index for the dealer’s hand.

 } Closes the while loop.

 showHouse(); Reveals the dealer’s hand.

 �playerTotal = add_up_

player();

Determines the player’s total.

 if (playerTotal>21){ Asks if the player was over.

 if (houseTotal>21) { Asks if the house was over.

 �ctx.fillText("You

and house both went

over.",30,100);

Displays a message.

 } Closes the inner if statement.

 else { Begins else clause.

Chapter 10 Blackjack

405

Table 10-2.  (continued)

(continued)

Code Explanation

 �ctx.fillText("You went

over and lost.",30,100);

Displays a message.

 } Closes the else clause.

 } Closes the outer clause (player is over).

 else else the player is not over.

 if (houseTotal>21) { Asks if the dealer was over.

 �ctx.fillText("You won.

House went over.",30,100);

Displays a message.

 } Closes the clause.

 else Else.

 �if

(playerTotal>=houseTotal) {

Compares the two amounts.

 �if

(playerTotal>houseTotal) {

Performs a more specific comparison.

 �ctx.fillText("You

won.",30,100);

Displays the winner message.

 } Closes the inner clause.

 else { Begins the else clause.

 �ctx.fillText("TIE!",

30,100);

Displays a message.

 } Closes the else clause.

 } Closes the outer clause.

 else Else.

 if (houseTotal<=21) { Checks if the dealer is under.

 �ctx.fillText("You lost.",

30,100);

Displays a message.

 } Closes the clause.

Chapter 10 Blackjack

406

Table 10-2.  (continued)

(continued)

Code Explanation

 else { Begins the else clause.

 �ctx.fillText("You won

because house went over.");

Displays a message (player under, house over).

 } Closes the clause.

 gameStart = false; Resets gamestart.

} Closes if true class for if(gamestart).

else{

 �alert("Press n to start

a new game with the same

deck.\n Reload for a new

deck and then press n to

start a game.");

 }

Message to player.

 } Closes the function.

function newGame() { Header for the function for a new game.

 ctx.clearRect(0,0,cwidth,c

height);

Clears the canvas.

 pi=0; Resets the index for the player.

 hi=0; Resets the index for the dealer.

 playerXp = 100; Resets the horizontal position for the first card of the player’s

hand.

 houseXp= 500; Resets the horizontal position for the dealer’s hand.

 dealStart(); Calls the function to initially deal the cards.

} Closes the function.

function showHouse() { Header for the function to reveal the dealer’s hand.

 var i; For iteration.

 houseXp = 500; Resets the horizontal position.

Chapter 10 Blackjack

407

Table 10-2.  (continued)

(continued)

Code Explanation

 for (i=0;i<hi;i++) { for loop over the hand.

 ctx.

drawImage(househand[i].pic

ture,houseXp,houseYp,cardw

,cardh);

Draws the card.

 houseXp = houseXp+20; Adjusts the pointer.

 } Closes the for loop.

} Closes the function.

function shuffle() { Header for the shuffle.

 var i = deck.length - 1; Sets the initial value for the i variable to point to the last card.

 var s; Variable used for the random choice.

 while (i>0) { As long as i is greater than zero.

 �s = Math.floor(Math.

random()*(i+1));

Makes a random pick.

 swapindeck(s,i); Swaps with the card in the i position.

 i--; Decrements.

 } Closes the while loop.

 } Closes the function.

 function swapInDeck(j,k) { Helper function for the swapping.

 �var hold = new

MCard(deck[j].num,deck[j].

suit,deck[j].picture.src);

Saves the card in position j.

 deck[j] = deck[k]; Assigns the card in the k position to the j position.

 deck[k] = hold; Assigns the hold to card in the k position.

 } Closes the function.

</script> Closes the script element.

Chapter 10 Blackjack

408

Table 10-2.  (continued)

(continued)

Code Explanation

</head> Closes the head element.

<body onLoad="init();"> Opening tag to set the call to init.

<header>

 Press n for a new

game (same deck), d

for deal 1 more card, h</

b> for hold. Reload for a

new deck and then press n

for a new game.
</header>

Header element containing instructions.

<canvas id="canvas"

width="800" height="500">

Canvas opener.

Your browser doesn't

support the HTML5 element

canvas.

Warning to noncompliant browsers.

</canvas> Closes the element.

<footer>Card images obtained

courtesy of the American

Contract Bridge Association,

 <a href="http://acbl.

mybigcommerce.com/52-

playing-cards/">52 playing

cards

Opens the footer element, which gives credit and a link to the

source for the playing card images.

Fisher-Yates shuffle

explained at http://

eli.thegreenplace.

net/2010/05/28/the-

intuition-behind-fisher-

yates-shuffling

Adds the credit for article on the shuffle algorithm.

Chapter 10 Blackjack

http://eli.thegreenplace.net/2010/05/28/the-intuition-behind-fisher-yates-shuffling
http://eli.thegreenplace.net/2010/05/28/the-intuition-behind-fisher-yates-shuffling
http://eli.thegreenplace.net/2010/05/28/the-intuition-behind-fisher-yates-shuffling
http://eli.thegreenplace.net/2010/05/28/the-intuition-behind-fisher-yates-shuffling
http://eli.thegreenplace.net/2010/05/28/the-intuition-behind-fisher-yates-shuffling

409

Table 10-2.  (continued)

You can change the look and feel of this game in many ways, including offering

different ways for the player to request to be dealt a new card, to hold with the current

hand, or to request a new hand. You can create or acquire your own set of card images.

Keeping score from hand to hand, perhaps including some kind of betting, would be a fine

enhancement. Changing the rules for the dealer’s play is possible. As I indicated earlier,

implementing that starting a new deck is under computer/dealer control, based on a score

or done by a calculation involving random processing, is an idea to consider. Another

way to make the game more difficult is to use multiple decks. Keeping score is an obvious

feature, and one approach is to add a wallet feature, starting off with some amount of

money, which is reduced at each game (pay to play) and increased upon wins. Scores

and/or more complete results can be stored on the local computer using localStorage.

�Testing and Uploading the Application
This program requires considerable testing. Remember that the testing is not finished

when you, acting as tester, have won. It is finished when you have gone through many

different scenarios. I did my first testing of the game with an unshuffled deck. I then

put in the shuffling and kept track of the cases that the testing revealed. I pressed the d

key for dealing one more card, the h for holding, and the n for a new game in different

circumstances. This is definitely a situation when you want to bring in other people to

test your application.

Uploading the application requires uploading all the images. You will need to

change the buildDeck function to construct the appropriate names for the files if you use

something different than what I demonstrate here.

Code Explanation

</footer> Closes the footer.

</body> Closes the body.

</html> Closes the HTML file.

Chapter 10 Blackjack

410

�Summary
In this chapter, you learned how to implement a card game using features of HTML5,

JavaScript, and CSS along with general programming techniques. These included the

following:

•	 Generating a set of Image objects based on names of external files.

•	 Designing a programmer-defined class of objects for cards and

incorporating the Image elements, the card suit, and the card value.

•	 Drawing images and text on the screen.

•	 Using for, while, and if to implement the logic of blackjack.

•	 Using calculations and logic to generate the computer’s moves.

•	 Establishing event handling for the keydown event so that the player

could indicate a request to deal a new card, hold, or start a new game

and using switch to distinguish between the keys.

•	 Using the header and footer elements, new to HTML5, for directions

and giving credit to sources. With the footer, this included a way to

give credit to the source of the card face images.

This is the last chapter of this book. However, I have added an appendix, with

examples focused on techniques for drawing, including use of mathematics (algebra and

geometry) and Scalar Vector Graphics.

I hope you take what you have learned and produce enhanced versions of these

games and games of your own invention. Enjoy!

My HTML5 and JavaScript Projects (2nd edition) book has been updated to include an

implementation of a game called Add to 15, the use of new media, and an introduction

to tools to make your projects responsive to different devices with different screen

dimensions and touch as opposed to mouse events or accessible to people constrained

to just using the keyboard. In terms of programming techniques, it is an appropriate next

book for you. If you want to explore a different programming language, please consider

Programming 101: The How and Why of Programming Revealed Using the Processing

Programming Language. This is being updated now for its second edition.

Chapter 10 Blackjack

411

�APPENDIX

More Techniques
for Drawing
This book was planned to be an introduction to programming using the combined

tools of Hypertext Markup Language, Cascading Style Sheets and JavaScript, with the

most attention given to JavaScript. However, we decided for the third edition that some

additional, more advanced material, would be appreciated. As always, my choice of

examples was influenced by experiences with colleagues and students. What follows

are applications of mathematics (algebra and geometry) along with a tool called Scalar

Vector Graphics. The applications are complete so that you see the techniques in

context. However, as in the presentation of games in the first 10 chapters, the purpose of

the text is to teach programming concepts and the technical features of HTML, CSS, and

JavaScript, not how to build the specific games and applications. Some of this exposition

will repeat material from the previous ten chapters. You can use these individual

concepts and techniques to build a project of your own design.

�Circles and Arrows
The program starts with three circles connected by arrows. Note: I often call the arrows

links. Figure A-1 shows the opening screen.

© Jeanine Meyer 2023
J. Meyer, The Essential Guide to HTML5, https://doi.org/10.1007/978-1-4842-8722-4

https://doi.org/10.1007/978-1-4842-8722-4

412

Figure A-1.  Opening screen

The user/player can drag any of the circles. The arrows move to maintain the

connections. Figure A-2 shows the screen after some manipulation. If you copy the code

exactly as it is and open the document, you will see Figure A-1, but if you drag on the

circles, you most likely will produce something different, as shown in Figure A-2.

Appendix More Techniques for Drawing

413

Figure A-2.  Screen after some manipulation

My original motivation for building this program was to create an editor for diagrams

representing articles referencing other articles. You can use it for something similar, and

you may find other uses for the individual techniques.

�Overview
The tasks required for this example include drawing circles connected by arrows;

dragging, that is, moving, the arrows using mouse actions; and maintaining the proper

positioning of the connecting arrows. My program accomplishes these tasks using

the features of HTML and JavaScript along with some mathematics for drawing the

connecting lines and arrowheads. One tricky issue is handling vertical lines.

An HTML document is organized into what is termed the Document Object Model,

aka the document tree. In this example, the HTML defines the body element, which,

in turn, contains one canvas element. My JavaScript code creates individual canvas

elements, one for each circle. These elements are made visible by being appended to

Appendix More Techniques for Drawing

414

the body element in the document tree. The circles are displayed on top of the original

canvas. Their locations are specified by setting the text of the style element’s left and

top attributes. The links (arrows) are drawn directly on the original canvas.

The arrows are constructed to lie on a line defined as going from the center of

one circle to the center of another. However, the lines start and stop at the boundaries

(circumferences) of the circles. In particular, the arrowhead ends at the boundary

of the second circle. Each arrowhead is constructed to be a triangle with the base

perpendicular to the line. This all requires calculations, including special casing for

vertical and horizontal lines.

�Details of Implementation

Note  The examples in the appendix follow the now recommended practice of
starting each document with <!DOCTYPE html>. I also use a meta tag to declare
the character encoding. These are matters to investigate in your reading. Accept
them as is for now. The <!.... > structure is the way to write comments in
HTML. Comments in JavaScript are indicated by // for the rest of the line and
/* ... and */ for multiline comments.

As indicated already, the body part of the document holds one canvas element. The

single line of text within the canvas element appears if the browser does not recognize

canvas. It makes the situation less mysterious for older browsers and is considered good

practice. The size of the canvas is specified as taking up the whole window by setting the

width to 100 percent and the height to 100 percent.

<body onload="init();" onresize="init();">

<canvas id="canvas" width="100%" height="100%">

Your browser does not recognize canvas

</canvas>

</body>

You already have seen this sort of thing in this book. Similarly, you have seen

dynamic creation of html elements, such as in Chapter 6. The init function, invoked

at the time the page is loaded and after any resizing of the window, invokes the

buildCircles function to create new canvas elements, one for each circle, and then

Appendix More Techniques for Drawing

415

invokes the drawLinks function to draw the arrows (links). The specifications of the

circles and links are contained in the variable declarations at the start of the script

element.

var circles=[

 [200,300,20,"red"],

 [400,300,40,"blue"],

 [200,500,80,"purple"],

 [100,100,40,"pink"]

];

var links =[

 [0,1],

 [2,0],

 [1,2],

 [0,3],

 [3,1]

];

The circles and links arrays represent parallel structures. Each item in the

circles array is itself an array holding the location (horizontal and vertical coordinate),

radius, and color. Each item in the links array is an array containing references to the

circles array. So, links[0] indicates an arrow going from the 0th circle to the 1st circle.

Remember, arrays are indexed starting at 0. The horizontal and vertical coordinates held

in the circles array will be changed when the circle is moved. One step to explore this

program would be to add to the circles and links arrays. You need to use one of the

standard colors to specify the color of a circle.

Returning to the init function, it sets certain variables, makes sure the canvas is

the correct size for the window, and invokes buildCircles and then drawLinks. The

buildCircles function does what the name implies. Using a for loop, for each circle

described in the circles array, it creates a canvas element and appends it to the body

element to make it part of the document. It sets it to be visible. It draws a circle on this

canvas element of the specified size and fills it with the specified color. Each of these

canvas elements is pushed to make up the canvases array, one for each circle. A new

attribute is added to each of the newly created canvas elements, named aindex, to refer

to the item in the circles array. This is used to change the location. The function also

invokes addEventListener for the “mousedown” event, with the event handler specified

Appendix More Techniques for Drawing

416

to be the function startDragging. That is, it sets up the event handling for when the

player pressed down on the mouse button on top of the particular object.

The startDragging function invokes addEventListener twice for the object for

which the event has been triggered: one of the canvas elements. One time the event

is mousemove and the event handler is the function moving. The other time the event is

mouseup, and the event handler is the function stopmove. The moving function moves

the object, that is, the canvas containing the circle. Keep in mind, as I wrote before,

that the location of objects is specified by the left and top attributes. This means that

the String function is used to change numbers into strings, the + operator is used to

concatenate these strings with px, and the parseInt function is used to extract the

numerical value. The drawLinks function is invoked multiple times to redraw the

links (arrows) since the moving function is invoked multiple times by the underlying

JavaScript program responding to the event. The movement appears smooth. I think it

is theoretically possible to give the event handling too much work to do, but I have not

encountered this situation.

I split the drawing of the links into two functions, drawLinks and drawAdjustedLink,

to isolate the special casing for vertical or horizontal lines. It always is good to divide a

large task into some number of smaller tasks.

Table A-1 lists each function and indicates how it is invoked and which, if any,

function it invokes or sets up event handling to invoke.

Appendix More Techniques for Drawing

417

Table A-1.  Invoked/Invoking Function Table for Circles and Arrows

Function Invoked By Invoked by Event
Handling

Invokes Set Up Event
Handling

init onLoad,

onResize

buildCircles,

drawLinks

buildCircles init mouseDown

event handler

startDragging

drawLinks init,

moving,

stopMove

drawAdjustedLink

startDragging mouseDown set in

buildCircles

MouseMove event

handler moving,

mouseUp event

handler stopMove

moving mouseMove set in

startDragging

drawLinks

stopMove mouseUp set in

startDragging

drawLinks

drawAdjustedLink drawLinks

Notice (and appreciate) that we do not have to write code to determine which circle

is under the mouse! The event handling for the object does the work.

The complete code, with explanations, appears in Table A-2.

Appendix More Techniques for Drawing

418

Table A-2.  Code for Circles and Arrows

Code Statement Explanation

<!DOCTYPE html> DOCTYPE comment.

<html> Opening html tag.

<head> Opening head tag.

<meta charset="UTF-8"> Indicates the standard character set.

<meta name="viewport"

content="initial-scale=1">

Standard meta tag.

<title>Circles and arrows

</title>

Sets the title, which will appear in the tab in a browser.

<style> Opening style tag.

body {font-

family:Garamond,serif;

Opening body tag, indicating font family…

 font-size: 24px; …font size.

 position:absolute; …positioning.

 } Closes body style specifications.

 canvas {position:absolute;} Style specification for canvas.

</style> Closes style.

<script> Opening script tag.

var circles=[Start of declaration and setting for circles array: an

array of arrays.

 [200,300,20,"red"], Red circle.

 [400,300,40,"blue"], Blue circle.

 [200,500,80,"purple"], Purple circle.

 [100,100,40,"pink"] Pink circle.

]; Closes array.

var links =[Start of declaration and setting of links array: an array of

arrays.

(continued)

Appendix More Techniques for Drawing

419

Table A-2.  (continued)

Code Statement Explanation

 [0,1],

 [2,0],

 [1,2],

 [0,3],

 [3,1]

]; Closes links array.

var canvases = new Array(); Declaration and initialization of the canvases array. It will

be populated by the created canvases holding the circles.

var canvas; Will hold reference to the original canvas.

var ctx; Will hold reference to the context of the original canvas.

var cWidth; Will hold canvas width.

var cHeight; Will hold canvas height.

var movingObject; Will hold reference to the moving object. This will change.

var movingObjectIndex; Will hold the index into canvases for the moving object.

var oldx; Will hold the former x coordinate. Used in the moving

function. Set in startDragging and reset in moving.

var oldy; Will hold the former y coordinate. Used in the moving

function. Set in startDragging and reset in moving.

function init(){ Header init function.

 �canvas = document.

getElementById("canvas");

Get a reference to the original canvas.

 �ctx = canvas.

getContext("2d");

Get a reference to the context of the original canvas. This

is used for all drawing.

 cWidth = window.innerWidth; Get the width of the window.

(continued)

Appendix More Techniques for Drawing

420

Table A-2.  (continued)

Code Statement Explanation

 �cHeight = window.

innerHeight;

Get the height of the window.

 canvas.width = cWidth; Reset the canvas to take up the whole screen: width.

 canvas.height= cHeight; …height.

 ctx.strokeStyle="black"; Set the stroke to black.

 �ctx.strokeRect(0,0,cWidth,

cHeight);

Draw the boundary lines of the canvas.

 buildCircles(); Build the circles.

 drawLinks(); Draw the links.

} Close the init function.

function buildCircles() { Header buildCircles function.

 var i; Used in for loops.

 var can; Used as reference to each new canvas.

 var circle; Hold the circle information.

 var diam; The diameter of the circle to be created.

 var rad; The radius of the circle to be created.

 for (i=0;i<canvases.

length;i++) {

for loop to remove any previously built circles. Happens

with resize or reload.

 can = canvases[i]; Need to know what to remove.

 �document.body.

removeChild(can);

Remove from the document tree.

 } Close of the for loop.

 canvases = []; Reset canvases to empty array.

 for (i=0;i<circles.

length;i++){

for loop to create canvases holding the circles.

(continued)

Appendix More Techniques for Drawing

421

Table A-2.  (continued)

Code Statement Explanation

 circle = circles[i]; Get inner array for the ith element in circles.

 �can = document.

createElement('canvas');

Create a canvas element.

 can.aindex = i; Add a new attribute to refer back to circles.

 ctxc = can.getContext('2d'); Set the context.

 rad = circle[2]; Extract the radius value from the array.

 diam = 2*rad; Compute the diameter.

 can.width = diam; Use diam for the width.

 can.height= diam; …and height of the just created canvas.

 ctxc.fillStyle=circle[3]; Set the fillStyle.

 ctxc.beginPath(); Start the drawing of the circle on the new canvas as a

path.

 �ctxc.arc(rad,rad,rad,0,

2*Math.PI,true);

Draw an arc.

 ctxc.closePath(); Close the path.

 ctxc.fill(); Fill in the color.

 �circle[0] = Math.

min(circle[0],cWidth-rad);

Prepare values for the new canvas left coordinate, to fit

into the original canvas.

 �circle[1] = Math.

min(circle[1],cHeight-rad);

…for the top coordinate.

 �can.style.left =

String(circle[0]-rad)+"px";

Set the left attribute as a String with the addition of

px, which stands for pixels.

 �can.style.top =

String(circle[1]-rad)+"px";

Set the top.

 �can.addEventListener('moused

own',startDragging,false);

Set up event handling for the new canvas.

(continued)

Appendix More Techniques for Drawing

422

Table A-2.  (continued)

Code Statement Explanation

 canvases.push(can); Add the new canvas to the canvases array.

 �document.body.

appendChild(can);

Add a new canvas to the document tree.

 �can.style.visibility =

'visible';

Make visible.

 } Close the for loop.

} Close the buildCircles function.

function startDragging(ev) { Header startDragging function. The ev has information

on the event, including reference to the object.

 movingObj = ev.target; Set movingObj to be the canvas/circle object.

 �movingObjectIndex =

movingObj.aindex;

Extract the index into the circles array.

 oldx = parseInt(ev.pageX); Extract the x coordinate at the time of the mousedown

event.

 oldy = parseInt(ev.pageY); Extract the y coordinate at the time of the mousedown

event.

 �movingobj.addEventListener

("mousemove",moving,false);

Now set up the mousemove event.

 �movingobj.addEventListener

("mouseup",stopmove,false);

…and the mouseup event.

} Close startDragging.

function moving(ev) { Header for the moving function. The ev has information on

the event, including references to the location.

 if(movingObj) { Check if there is a moving object.

 newx = parseInt(ev.pageX); Extract the x coordinate.

(continued)

Appendix More Techniques for Drawing

423

Table A-2.  (continued)

Code Statement Explanation

 newy = parseInt(ev.pageY); Extract the y coordinate.

 delx = newx-oldx; Calculate the change in the x coordinate.

 dely = newy-oldy; …and the y coordinate.

 oldx = newx; Reset oldx to point to newx.

 oldy = newy; Reset oldy to point to newy.

 �curx = parseInt(movingObj.

style.left);

Extract the number value from the current left attribute.

 �cury = parseInt(movingObj.

style.top);

Extract the number value from the current top value.

 �movingObj.style.left =

String(curx+delx)+"px";

Do the calculation and convert the sum to a string and add

the px to get an updated value for the left. The px stands

for “pixel.”

 �movingObj.style.top =

String(cury+dely)+"px";

Do the calculation and convert the sum to a string and add

the px to get an updated value for the top. The px stands

for pixel.

 �circles[movingObjectIndex]

[0] += delx;

Update the value of the x coordinate back in the circles

array.

 �circles[movingObjectIndex]

[1] += dely;

Update the value of the y coordinate back in the circles

array.

 drawLinks(); Invoke drawLinks to redraw all the links, using the new

position of one circle.

 } Close if there is a movingObj.

} Close the moving function.

function stopMove(ev){ Header for stopmove. Parameter ev is set in

eventHandling.

(continued)

Appendix More Techniques for Drawing

424

Table A-2.  (continued)

Code Statement Explanation

 �movingObj.removeEventListener

("mousemove",moving,false);

Remove event listening.

 �movingObj.removeEventListener

("mouseup",stopmove,false);

Remove event listening.

 movingObj=null; Set movingobj to null.

 drawLinks(); Draw links.

} Close for stopmove.

function drawLinks() { Header for the drawLinks function.

 ctx.clearRect(0,0,cWidth,

cHeight);

Clear the canvas.

 ctx.strokeStyle="black"; Set the stroke to black.

 ctx.fillStyle = "black"; Set the fill to black.

 for (i=0;i<links.length;i++)

{

Loop through all the links (arrows).

 link = links[i]; Set the link to simplify the code that follows.

 circle1 = circles[link[0]]; Define the first circle.

 circle2 = circles[link[1]]; Define the second circle.

 startx = circle1[0]; Set the starting x.

 starty = circle1[1]; Set the starting y.

 endx = circle2[0]; Set the ending x.

 endy = circle2[1]; Set the ending y.

 �drawAdjustedLink(startx,

starty,circle1[2],endx,

endy,circle2[2]);

Invoke drawAdjustedLink for more detailed work.

 } Close the for loop.

(continued)

Appendix More Techniques for Drawing

425

Table A-2.  (continued)

Code Statement Explanation

} Close drawLinks.

function drawAdjustedLink

(x1,y1,rad1,x2,y2,rad2) {

Header for drawAdjustedLink. Parameters are the x

and y of the starting circle, its radius, the x and y of the

ending circle, and its radius.

 var t1x; Sets these to be local variables. The t1 and t2 points are

the ends of the arrowhead base.

 var t1y;

 var t2x;

 var t2y;

 var bx; The b point is the middle of the arrowhead base.

 var by;

 var mp; Slope of arrow.

 var sx; The s point is the start of the arrow.

 var sy;

 var ex; The e point is the end of the arrow (the tip of the

arrowhead).

 var ey;

 var dx = x2-x1; Compute the x change.

 var dy = y2-y1; Compute the y change.

 var dis; Will hold the distance.

 var ah = .3333*rad2; The height of arrowhead is set to about a third of the

target circle rad.

 if (dx==0) { If this is a vertical line.

 dis = Math.abs(y2-y1); Compute the dis as the absolute different in the y values.

 sx = x1; Start of arrow, x coordinate.

(continued)

Appendix More Techniques for Drawing

426

Table A-2.  (continued)

Code Statement Explanation

 sy = y1+(rad1/dis)*dy; Start of arrrow, y coordinate changed to be at the circle

boundary.

 ex = x2; End of arrow, x.

 ey = y2-(rad2/dis)*dy; End of arrow, y, adjusted to the end at the boundary.

 ctx.beginPath(); Start the path.

 ctx.moveTo(sx,sy); Start of the arrow.

 ctx.lineTo(ex,ey); Move to end—touching the circle.

 ctx.closePath(); Close the path.

 ctx.stroke(); Draw the line using the stroke.

 t1x = sx+ah; One side of the line.

 t2x = sx-ah; Other side of the line.

 �t1y = y2-((rad2+ah)/

dis)*dy;

Calculating coordinates for the base of the arrowhead.

 t2y = t1y; Same y.

 ctx.beginPath(); Draw a triangle representing the arrowhead.

 ctx.moveTo(ex,ey); From the point of the arrowhead.

 ctx.lineTo(t1x,t1y); …to one side of the base.

 ctx.lineTo(t2x,t2y); …to the other side of the base.

 ctx.closePath(); Close the path.

 ctx.fill(); Draw the arrowhead using fill.

 }

 else if (dy==0) { Check for a horizontal line.

 dis = Math.abs(x2-x1); Distance of absolute difference of x values.

 sx = x1+(rad1/dis)*dx; Start of arrow; x is at boundary.

 sy = y1 ;

(continued)

Appendix More Techniques for Drawing

427

Table A-2.  (continued)

Code Statement Explanation

 ex = x2-(rad2/dis)*dx; End of arrow; x is at boundary.

 ey = y2 ;

 ctx.beginPath();

 ctx.moveTo(sx,sy); Start of drawing of line.

 ctx.lineTo(ex,ey); End of line.

 ctx.closePath(); Close the path.

 ctx.stroke(); Draw the line.

 t1y = sy+ah; Now compute vertices of the arrowhead (triangle). The y

value is at one side for one vertex.

 t2y = sy-ah; The y value is at the other side for the other vertex.

 �t1x = x2-((rad2+ah)/

dis)*dx;

The x values are just off the boundary of the second circle.

 t2x = t1x; Shares the same x coordinate.

 ctx.beginPath(); Arrowhead triangle.

 ctx.moveTo(ex,ey); Start drawing the arrowhead.

 ctx.lineTo(t1x,t1y); Line to one vertex.

 ctx.lineTo(t2x,t2y); Line to other vertex.

 ctx.closePath(); Close the path.

 ctx.fill(); Draw the filled-in arrowhead.

 } Close the horizontal case.

 else { Neither vertical nor horizontal.

 �dis = Math.

sqrt(dx*dx+dy*dy);

Compute distance.

 sx = x1+(rad1/dis)*dx; General case. The arrowhead is at an angle. Compute the

starting point x.

 sy = y1+(rad1/dis)*dy; Compute the starting point y.

(continued)

Appendix More Techniques for Drawing

428

Table A-2.  (continued)

Code Statement Explanation

 ex = x2-(rad2/dis)*dx; Compute the ending point x.

 ey = y2-(rad2/dis)*dy; Compute the ending point y.

 ctx.beginPath(); Draw the arrow line.

 ctx.moveTo(sx,sy); Move to the start.

 ctx.lineTo(ex,ey); Draw the line to the end.

 ctx.closePath(); Close the path.

 Ctx.stroke(); Draw the line.

The slope of the line is = dy/dx, where dx is not zero.

 mp = -dx/dy ; The slope of the perpendicular dy is not zero.

 bx = x2-((rad2+ah)/dis)*dx; Start to define values for perpendicular x coordinate.

 by = y2-((rad2+ah)/dis)*dy; Start to define values for perpendicular y coordinate.

 bb = by - mp*bx; Equation of perpendicular is y = mp * (x-bx) + by.

Equation of perpendicular is y = mp*x + bb.

Solve intersection of line with circle centered at bx,by,

radius ah.

Quadratic formula with standard a, b, c:

//x*x - 2*x_bx + bx*bx - ah*ah/((mp*mp)

(1-bx)*(1-bx))

 d = 1-bx; Solving the equations.

 �c = bx*bx -ah*ah/

(1+mp*mp);

See the previous rows and the text about the equations for

the next few lines.

 b = -2*bx;

 a=1;

 �sqterm = Math.sqrt(b*b-

4*a*c);

 t1x = (-b+sqterm)/2;

(continued)

Appendix More Techniques for Drawing

429

Table A-2.  (continued)

Code Statement Explanation

 t2x = (-b-sqterm)/2;

 t1y = mp*t1x + bb;

 t2y = mp*t2x + bb;

 ctx.beginPath(); Start the path for drawing the arrowhead.

 ctx.moveTo(ex,ey); Move to the e point: where the line touches the second

circle.

 ctx.lineTo(t1x,t1y); Line to one vertex.

 ctx.lineTo(t2x,t2y); Line to other vertex.

 ctx.closePath(); Close the path.

 ctx.fill(); Draw the filled-in arrowhead.

 } Close the else for being neither vertical nor horizontal.

} Close drawAdjustedLinks.

</script> Close the script element.

</head> Close head.

<body onload="init();"

onresize="init();">

Opening body element. Set up a call to init.

<canvas id="canvas"

width="100%" height="100%">

canvas tag. Set the size to 100 percent of the window.

Your browser does not

recognize canvas

Standard warning for older browsers.

</canvas> Close canvas.

</body> Close body.

</html> Close html.

Appendix More Techniques for Drawing

430

�What You Learned
This example makes use of the Document Object Model for HTML. The coding adds

new elements. Event handling, that is, responding the mouse events, is what implements

the functionality of allowing the user/player to drag a circle and have the circle and any

connected arrows to move. The coding worked with numbers and strings containing

numbers. The mathematics required is basic algebra for dealing with lines.

�Crossing a Line (Jumping a Fence)
A colleague working on a game asked me to give him a function for determining whether

a token moving from position A to position B had crossed over a fixed-line segment. We

can think of the line segment as representing a fence. What I produced for this challenge

had ways to define positions A and B as well as the line segment—the fence. In one way,

the user/player presses the mouse button at the first position, drags the mouse, and

releases the button at the second position. Alternatively, the player can enter coordinates

of the two positions and the line into a form. Yet another possibility is to position the line

segment randomly in the window. The program indicates if the line segment was crossed

and draws a mark indicating the intersection point on the line. My colleague did not

need all this pre- and post-processing, but I needed it to test the function performing the

check. Figure A-3 shows the opening screen.

Appendix More Techniques for Drawing

431

Figure A-3.  Opening screen for jumping the fence

Figure A-4 shows the results of setting the two positions by mousedown, drag, and

mouseup. The calculation has been done; a message appears in the Result field; and red,

blue, and purple boxes appear. The purple box on the line indicates the intersection

point of the line segment from position A to position B and the line segment representing

the fence.

Appendix More Techniques for Drawing

432

Figure A-4.  Screen after changing the fence and marking the two positions

It could be that the line connecting the two positions intersects with the line

containing the line segment, but the line segment connecting the two positions and the

line segment representing the fence do not cross. Figure A-5 shows a situation where the

intersection of the line segment from the first position to the second crosses the line but

not on the line segment denoting the fence.

Appendix More Techniques for Drawing

433

Figure A-5.  Situation with intersection not on the fence

The code must detect this situation as well as others that are potentially

problematic, such as vertical lines. It was for the purpose of testing for these different

situations that I felt the need to build a form in which users could enter exact coordinate

values. Figure A-6 shows the use of the form to specify a line segment that is vertical.

Appendix More Techniques for Drawing

434

Figure A-6.  Vertical line segment representing the jump

�Overview
I begin the overview with a refresher from algebra and/or analytical geometry class to

describe the calculations. Then I will describe preparing the data and lastly presenting

feedback to the user/player.

�Mathematics Refresher

Let’s start with two points, each point represented by two values: (ax, ay) represents

the point with horizontal coordinate ax and vertical coordinate ay, and (bx, by)

represents the point with horizontal coordinate bx and vertical coordinate by. An

equation representing all points, x, y, on the line between (ax, ay) and (bx, by) is as

follows:

y – ay = ((by-ay) / (bx-ax)) * (x-ax)

Appendix More Techniques for Drawing

435

This can be solved for y, that is, rewritten to have the symbol by itself on one side of

the equation.

Equation 1: y = ((by-ay) / (bx-ax)) * (x-ax) + ay

Note  These are mathematical equations, not programming statements. The = symbol
stands for equality. However, I am including the * symbol for multiplication. All pairs
(x,y) that satisfy this equation are on the line. You can see a potential problem here:
what if bx is the same as ax? This would be the case for a vertical line. Let’s assume
now that it is not the case, but keep in mind that the program must check for this
situation. To address the challenge of finding out whether a ball going from point a to
point b crosses a line segment, the fence, that goes from point p to point q, assuming
neither line is vertical (bx does not equal ax and px does not equal qx), I did some
mathematics. I wrote the equation for the p-q line with y on one side, as follows:

Equation 2: y = ((qy-py) / (qx-px)) * (x-px) + py

What I will show now are the steps I took to get ideas for the code to put into my

program. I set the two expressions for y equal to each other.

((by-ay) / (bx-ax)) * (x-ax) + ay = ((qy-py) / (qx-px)) * (x-px) + py

Now, I do the usual manipulation to solve for x. However, first I define new variables,

abslope = ((by-ay) / (bx-ax)) and pqslope = ((qy-py) / (qx-px)). This

simplifies the calculation.

abslope * (x-ax) +ay = pqslope * (x-px) + py

I complete the multiplications on both sides.

abslope * x – abslope*ax + ay = pqslope * x – pqslope*px + py

My goal now is to get the terms involving x on one side of the equal sign and

everything else on the other side.

(abslope -pqslope) * x = abslope*ax – ay -pqslope*px +py

Appendix More Techniques for Drawing

436

Dividing both sides:

Equation 3: x= (abslope*ax-ay-pqslope*px+py) / (abslope-pqslope)

The values of all the variables on the right side of the equation are known to the

program. This means I can use what is a mathematical equation to write code. However,

before I use Equation 3 as a line of code, I needed to write code that checked if abslope

was equal to pqslope. If it was, I would not let the program execute that line! If abslope

is equal to pqsloope, the two lines are parallel and, perhaps, even the same line. For this

situation, I need to address the problem in a different way. If this is not the case, then my

program solves for x by executing Equation 3 as a line of code.

The next step is to put that value of x in either one of the two equations to get the

value of y. That is, the value of y at the intersection of the two lines. We are making

progress here, but we are not done. What I have described so far is the calculation of the

intersection of two lines, neither of which is vertical and which do not have the same

slope. The next step is to see if this intersection is on both of the line segments. To put it

another way, it is like the situation shown in Figure A-4 or Figure A-5. The way I chose to

do this is to calculate where x is in terms of the line segment from a to b and where it is in

the line segment from p to q. The coding is as follows:

tab = (x-ax)/(bx-ax);

tpq = (x-px)/(qx-px);

if ((tab>=0) && (tab<=1) && (tpq>=0) &&(tpq<=1))

 {

 retv = true;

 }

 else

 {

 retv = false;

 }

I will be using the variable retv later to indicate if the fence was jumped. In each of

the two cases, x values on the line segment go from 0 to 1. This is true if ax is less than bx

or if ax is greater than bx. The same reasoning holds for the p to q line segment. However,

I only need to do the check for x.

What I am calling the normal case is done. Now I briefly describe other situations.

Appendix More Techniques for Drawing

437

The following cases require special treatment:

•	 Exactly one of the two line segments, a to b and p to q, are vertical.

•	 Both the a to b line segment and the p to q line segment are vertical.

•	 Neither is vertical, but the slopes are the same.

For the first case, you will see in the coding of the oneVertical function that I

essentially determine the bounding box that holds the line segment by taking Math.

min and Math.max of the endpoints. The code then checks if the vertical line segment is

outside the box.

If both the a to b line and the p to q line are vertical (look at the coding of

bothVertical), there is no overlap if ax is not equal to px. If these two values are equal, I

say there is jumping of the fence, if the p to q line segment is totally within the a to b line

segment. This also makes use of the bounding box.

The same slopes case consists of two possibilities: the lines are not the same line.

In this case, they are parallel and do not meet or they are the same line. My code

determines that they are the same line if the y intercepts are the same. A y-intercept is

where the line crosses the y-axis. It is the value of the line expression when x is zero. If

they are not the same line, then they are parallel and do not meet, so there is no jumping

of the fence. If they are the same line, my code indicates jumping if the a to b segment is

entirely over the p to q segment, that is, the fence.

�Preparing Data

With the mathematics out of the way, let’s turn to the implementation. We can think of

it as having two additional tasks after the calculations: preparing the information and

presenting the information. As you will have gathered from the screenshots, my program

starts with a fence in a specific position. The user/player can define a jump, what I have

been calling a move from point a (ax,ay) to b (bx, by) by pressing the mouse button,

dragging, and then releasing the mouse button. This produces the data upon which

the calculation is made. I provide alternative ways to define the data. One way is to

position the fence based on calls to the random function. One term for this is stochastic

processing. The last method is for the user/player to enter the coordinates for all four

points: a, b, p, q. This is eight numbers. The bulk of the coding for preparing the data is in

the HTML.

Appendix More Techniques for Drawing

438

<body onload="init();">

 �Mouse down to mark first position; drag and mouse up to mark the second.

<button onClick="changeLine();">Change the fence randomly </button>

<canvas id="canvas" width="1200" height="600" style="border: 1px solid black;">

no canvas support

</canvas>

OR set positions yourself using coordinate values. Blanks are treated as

0s.

<form onSubmit="setValues(); return false;" name="f">

Fence start px: <input name="pxv"/> py: <input name="pyv"/>

Fence end qx: <input name="qxv"/> qy: <input name="qyv"/>

Ball travel start ax: <input name="axv"/> ay: <input name="ayv"/>

Ball travel end bx: <input name="bxv"/> by: <input name="byv"/>

<input type="submit" value="Enter coordinates"/>

Result: <input type="text" name="results" style="width: 400px;"/>

</form>

</body>

The HTML code contains calls (invocations) of JavaScript functions. These will be

described in detail in Table A-3 and Table A-4.

�Feedback to User/Player

The line representing the fence is drawn by the drawLine function. Small boxes are

displayed to indicate the start and stop of the a to b line segment, that is, the jump. The a

position is drawn by firstPosition and the b position by secondPosition. The results

are provided graphically by the appearance of a small purple box at the intersection

of the two lines if such an intersection is found. If the line segments intersect, then the

purple box will be on the fence itself.

�Details of Implementation
The JavaScript functions can be invoked by direct function calls or by event handling

setup in other functions or in HTML. This is the power of the combination of HTML and

JavaScript.

Appendix More Techniques for Drawing

439

Table A-3.  Invoked/Invoking Table for Jumping the Fence

Function Invoked by Invoked
by Event
Handling

Invokes Set Up Event
Handling

init onload,

onresize

drawLine mousedown,

mouseup

drawLine Init, setValues

firstPosition mousedown

set up in

init

secondPosition mouseup set

up in init

changeLine Button in

HTML

setValues onSubmit in

HTML

drawLine,

crossOverLine

crossOverLine secondPosition,

setValues

bothVertical,

oneVertical,

parallelLines

parallelLines crossOverLine

bothVertical crossOverLine

OneVertical crossOverLine

As is the case for most if not all programming tasks, there are different possibilities

for defining what will be in each function. My approach is to make smaller functions

out of large ones or put off work. You will see that the crossOverLine function calls the

functions oneVertical, bothVertical, and parallelLines. I wanted to get the first case

done before I worried about each of the others, which is good practice.

Appendix More Techniques for Drawing

440

Table A-4.  Code for Jumping the Fence

Code Statement Explanation

<!DOCTYPE html> DOCTYPE comment.

<html> Open html tag.

<head> Open head.

<title>Crossing the line</title> title element.

<script> Open script.

var px = 200; Initial values for the fence.

var py = 200;

var qx = 500;

var qy = 400;

var ctx; Will hold the context, which is what is to be

used for drawing on the canvas.

var canvas; Will be set to hold a reference to the

canvas element.

var ax; Will hold the starting and ending points for

the jump.

var ay;

var bx;

var by;

function changeLine() { Header for changeLine.

 �px = 100 + Math.floor(Math.

random()*1000);

Compute random values.

 �py = 50 + Math.floor(Math.random()*

500);

 �qx = 100 + Math.floor(Math.

random()*1000);

(continued)

Appendix More Techniques for Drawing

441

Table A-4.  (continued)

Code Statement Explanation

 �qy = 50 + Math.floor(Math.random()*

500);

 drawLine(); Draw the line.

 document.f.pxv.value = String(px); Put the coordinates back into the form.

 document.f.pyv.value = String(py);

 document.f.qxv.value = String(qx);

 document.f.qyv.value = String(qy);

} Close changeLine.

function init() { Header for init.

 �canvas = document.

getElementById("canvas");

Set the reference to the canvas.

 ctx = canvas.getContext("2d"); Set the context, used for all drawing.

 �canvas.addEventListener("mousedown",

firstPosition,false);

Set up event handling for mousedown.

 �canvas.addEventListener("mouseup",

secondPosition,false);

Set up event handling for mouseup.

 ctx.strokeStyle = "black"; Set the stroke.

 ctx.lineWidth = 3; Set the line width.

 drawLine(); Draw the line.

} Close init.

function drawLine() { Header for drawLIne.

Note: it uses the current value of px, py,

qx, qy.

 ctx.clearRect(0,0,1200,800); Clear the canvas.

 ctx.beginPath(); Draw the line as defined by global

variables.

(continued)

Appendix More Techniques for Drawing

442

Table A-4.  (continued)

Code Statement Explanation

 ctx.moveTo(px,py); Move to point p.

 ctx.lineTo(qx,qy); Line to point q.

 ctx.closePath(); Close the path.

 ctx.stroke(); Draw a line using the stroke.

 document.f.pxv.value = String(px); Insert values converted to character strings

into the form.

 document.f.pyv.value = String(py);

 document.f.qxv.value = String(qx);

 document.f.qyv.value = String(qy);

 document.f.results.value = "";

} Close of drawLine.

function firstPosition(ev) { Header for firstPosition. The ev is set

by the event handler.

 ax = ev.pageX; Extract the x value.

 ay = ev.pageY; Extract the y value.

 ctx.fillStyle = "red"; Set the fill to red for this first position.

 ctx.fillRect(ax,ay,10,10); Draw a small rectangle.

 document.f.axv.value = String(ax); Store the x value, converted to string, into

the form.

 document.f.ayv.value = String(ay); …y value.

} Close firstPosition.

function secondPosition(ev) { Header for secondPosition.

 bx = ev.pageX; Extract the x coordinate.

 by = ev.pageY; …y coordinate.

 ctx.fillStyle = "blue"; Set the fill for this rectangle to blue.

(continued)

Appendix More Techniques for Drawing

443

Table A-4.  (continued)

Code Statement Explanation

 ctx.fillRect(bx,by,10,10); Draw the small rectangle.

 document.f.bxv.value = String(bx); Store the x value into the form.

 document.f.byv.value = String(by); …y value.

 if ((bx==ax)&&(by==ay)) { Check if the points are the same.

 �alert("Start and end points are the

same. Try again: mouse down, drag,

then mouse up.");

Output feedback for player.

 } Close if true.

 �else crossOverLine(px,py,qx,qy,ax,ay,

bx,by);

Invoke the crossOverLine function.

} Close secondPosition.

function crossOverLine (px, py, qx, qy,

ax, ay, bx, by) {

Header for crossOverLine. Parameters

are the data specifying the line (fence) and

the jump.

 var retv = true; Initialize rety to true.

 if ((ax==bx) && (px==qx)) Check for both line segments being

vertical.

 {

 �retv = bothVertical(ax,ay,bx,by,px,

py,qx,qy);

Invoke the function for checking in this

situation.

 }

 else if (ax==bx) Check for the a-b line being vertical.

 {

 �retv = oneVertical(ax,ay,by,px,py,

qx,qy);

Invoke oneVertical with these

parameters.

 }

(continued)

Appendix More Techniques for Drawing

444

Table A-4.  (continued)

Code Statement Explanation

 else if (px==qx) Check for the p-q line being vertical.

 {

 �retv = oneVertical(px,py,qy, ax,

ay, bx, by);

Invoke oneVertical with these other

parameters.

 }

 else { Continue with “normal” situation: neither

line vertical.

 abslope= (by-ay)/(bx-ax); Set the abslope.

 pqslope = (qy-py)/(qx-px); Set the pqslope.

 if (abslope==pqslope) { Are the lines parallel? This includes being

the same line.

 �retv = parallelLines(abslope,

ax,ay,bx,by,px,py,qx,qy);

Invoke the appropriate function for this

situaiton.

 }

 else { I call this the normal case.

 �x = (abslope*ax-ay - pqslope*px+py)/

(abslope-pqslope);

Solve for x.

 y = abslope * (x-ax)+ay; Use x to solve for y.

 ctx.fillStyle="purple"; Set the color for the intersection to be

purple.

 ctx.fillRect(x,y,10,10); Draw the rectangle. Note: this may be off-

screen.

(continued)

Appendix More Techniques for Drawing

445

Table A-4.  (continued)

Code Statement Explanation

Now check for the intersection on both line

segments. Neither line is vertical.

tab = (x-ax)/(bx-ax); Set the proportion of x along the ab line.

tpq = (x-px)/(qx-px); Set the proportion of x along the pq line.

if ((tab>=0) && (tab<=1) && (tpq>=0)

&&(tpq<=1))

If these two numbers are within the

bounds 0 to 1.

 {

 retv = true; Return true.

 }

 else

 {

 retv = false; Return false.

 }

 } Closing slopes not equal.

} Closing normal case before slopes check.

 if (retv) { Now display result in the form. The retv is

set in multiple places.

 �document.f.results.value = "Jumped the

Fence";

 }

 else {

 �document.f.results.value = "did NOT

Jump the Fence";

 }

} Close of crossOverLine.

(continued)

Appendix More Techniques for Drawing

446

Table A-4.  (continued)

Code Statement Explanation

function setValues() { Header of setValues.

 ax = Number(document.f.axv.value); Extract ax.

 document.f.axv.value =String(ax); Set back into document. This will set a

blank as zero.

 ay = Number(document.f.ayv.value); Extract ay.

 document.f.ayv.value = String(ay);

 bx = Number(document.f.bxv.value); Extract bx.

 document.f.bxv.value = String(bx);

 by = Number(document.f.byv.value); Extract by.

 document.f.byv.value = String(by);

 px = Number(document.f.pxv.value); Extract px.

 document.f.pxv.value = String(px);

 py = Number(document.f.pyv.value); Extract py.

 document.f.pyv.value = String(py);

 qx = Number(document.f.qxv.value); Extract qx.

 document.f.qxv.value = String(qx);

 qy = Number(document.f.qyv.value); Extract qy.

 document.f.qyv.value = String(qy);

 drawLine(); Draw line using the values just set.

 ctx.fillStyle = "red"; Set color red.

 ctx.fillRect(ax,ay,10,10); Draw small rectangle at start of the ab line

segment.

 ctx.fillStyle = "blue"; Set color blue.

 ctx.fillRect(bx,by,10,10); Draw small rectangle at end of the ab line

segment.

(continued)

Appendix More Techniques for Drawing

447

Table A-4.  (continued)

Code Statement Explanation

 �document.f.results.value="results will

be here";

Display message. Will not be visible for

long.

 if ((bx==ax)&&(by==ay)) { Check for same start and stop. This will

happen if player lets up mouse button at

the start.

 �alert("Start and end points are the

same. Try again: mouse down, drag,

then mouse up.");

Display message to the player.

 return false;

 }

 else {

 �crossOverLine(px,py,qx,qy,ax,

ay,bx,by);

Invoke crossOverLine to do the

calculation.

 return false; Output false to present the page refresh.

 } Close else.

} Close setValues.

function oneVertical(vx,vy,wy,sx,sy,tx,

ty){

Header called if one of the two line

segments is vertical and the other is not.

The parameters start with the vertical line

(notice only three numbers) and then the

nonvertical line.

 minvwy = Math.min(vy,wy); Calculating min and max values makes

other computations easier.

 maxvwy = Math.max(vy,wy);

 minstx = Math.min(sx,tx);

(continued)

Appendix More Techniques for Drawing

448

Table A-4.  (continued)

Code Statement Explanation

 maxstx = Math.max(sx,tx);

 minsty = Math.min(sy,ty);

 maxsty = Math.max(sy,ty);

 slope = (ty-sy)/(tx-sx); Slope nonvertical line.

 y = slope * (vx-tx) + ty; Solve for y.

 x = vx; Set to use x and y for drawing intersection

of lines (not line segments).

 ctx.fillStyle="purple"; Set to draw purple rectangle.

 ctx.fillRect(x,y,10,10); Draw the rectangle.

 if (vx<minstx) {return false;} If vx is lower than the min value, return no

intersection.

 if (vx>maxstx) {return false;} …or greater than the max.

 if (maxvwy<minsty) {return false;} Or if the max is less than the min.

 if (minvwy>maxsty) {return false;} Or the min is greater than the max.

 return true; Otherwise, return true.

} Close the oneVertical function.

function bothVertical(ax,ay,bx,by,px,py,

qx,qy) {

Header for bothVertical.

 if (ax!=px){ If these are two distinct vertical lines, there

is no overlap.

 return false;

 }

Compute max and min values to use in

checking for overlap.

 minaby = Math.min(ay,by);

(continued)

Appendix More Techniques for Drawing

449

Table A-4.  (continued)

Code Statement Explanation

 maxaby = Math.max(ay,by);

 minpqy = Math.min(py,qy);

 maxpqy = Math.max(py,qy);

 if ((minaby<minpqy)&&(maxaby>maxpqy))

{return true;}

 else {return false;}

Must jump entirely over the fence segment.

} Close bothVertical.

function parallelLines(slope,

ax,ay,bx,by,px,py,qx,qy){

Header for parallelLines. Parameters

are the shared slope, and the a-b and p-q

coordinates.

 y1 = slope * (-ax)+ay; Solve for y intercept for the a-b line.

 y2 = slope * (-px)+py; Solve for y intercept for the p-q line.

 if (y1!=y2) {return false;} Parallel lines, not the same line.

Return true only if a to b jumps totally over

p to q.

 jumpax = (ax - qx)/(px-qx); Determine using x values where ax…

 jumpbx = (bx - qx)/(px-qx); …and bx lie on the p-q line.

 if ((jumpax<0)&&(jumpbx>1)) { If ax is below (along the line segment) and

bx lies above.

 return true; Return true.

 }

 else {

 return false; Return false.

 }

 } Close parallelLines.

(continued)

Appendix More Techniques for Drawing

450

Table A-4.  (continued)

Code Statement Explanation

</script>

</head>

<body onload="init();"> Set up event to invoke init.

 �Mouse down to mark first position;

drag and mouse up to mark the second.

<button onClick="changeLine();">Change

the fence randomly </button>

Instructions.

<canvas id="canvas" width="1200"

height="600" style="border: 1px solid

black;">

Define canvas.

no canvas support

</canvas> Close canvas.

OR set positions yourself using

coordinate values. Blanks are treated as

0s.

More instructions.

<form onSubmit="setValues(); return

false;" name="f">

Start of form. Submitting will invoke

setValues.

Fence start px: <input name="pxv"/> py:

<input name="pyv"/>

Fence end qx: <input name="qxv"/> qy:

<input name="qyv"/>

Ball travel start ax: <input name="axv"/>

ay: <input name="ayv"/>

Ball travel end bx: <input name="bxv"/>

by: <input name="byv"/>

<input type="submit" value="Enter

coordinates"/>

(continued)

Appendix More Techniques for Drawing

451

Table A-4.  (continued)

Code Statement Explanation

Result: <input type="text" name="results"

style="width: 400px;"/>

</form> Close form.

</body> Close body.

</html> Close html.

�What You Learned

This example demonstrated the use of the combination of algebra and geometry termed

analytic geometry. What I did to produce the JavaScript code was not the typical solving

of equations but did the trick of doing the calculation. The example made use of a form

and different ways of drawing on canvas. I would not call the interface elegant, but it did

the job of providing ways to prepare data for testing the calculations and demonstrated

the uses of JavaScript.

�Using Scalar Vector Graphics
Scalar Vector Graphics (SVG) is a system for defining graphics. It is independent of any

programming language. Instead of creating and maintaining a record of the graphic

pixel by pixel, possibly in a compressed format, SVG is a set of instructions. The format

for the instructions is eXtended Markup Language (XML), like HTML. SVG can be part

of an HTML document, and JavaScript can be used to modify the SVG. The benefits of

using SVG include the small size with no sacrifice of resolution. Tools exist for producing

SVG, but for these examples, you can use the editor you use for creating HTML/CSS/

JavaScript document. The examples shown here include polygons, lines, curves, and

text. You can find out about different ways to fill in spaces, including gradients, and

different things to do with colors. There are many sources online for learning more about

SVG. My advice is to have specific examples in mind when reading the many different

possibilities. In this appendix, I describe a static depiction of the HTML5 logo; the

HTML5 logo with an option to change the size; and a cartoon figure I call the daddy logo

that includes options to add to the original graphic, move it on the screen, and change

the position. It is these options that show the power of SVG.

Appendix More Techniques for Drawing

452

SVG, as an XML language, consists of markup elements. Each element of markup has

a type and either has an opening and closing tag, with contents in the middle, or has a /

ending the opening tag. The opening tag may contain attributes. Attributes have names

associated with the element type and values surrounded by quotation marks. Here are

some examples:

<svg id="wholesvg" height="600" width="800" xmlns="http://www.w3.org/2000/

svg" > ... </svg>

<polygon points="139 51, 139 82, 213 82, 216 51" fill="#FFFFFF";/>

<text x="75" y="60" font-family="'Trebuchet MS', 'Arial Bold', Helvetica,

sans-serif"; font-size="54"; font-weight: bold; >HTML</text>

The three dots, ..., indicate the presence of all the SVG content. The xmlns attribute,

what is termed a namespace designation, points to the svg standard.

An important aspect of SVG is that the markup must be “well-formed.” This means

that if a closing tag is omitted, the opening tag must have the closing slash. Attribute

values must be surrounded by quotation marks. The nesting of markup items must be

correct. This means you cannot have the following:

<a>

The SVG elements are part of the document tree, and the structure could be

important for the coding.

It is good practice to obey these rules for HTML, but it is not required, so we may

need to change our habits.

An SVG graphic is not like drawing on canvas in that the elements retain their

identity. However, it is somewhat like painting on canvas in that elements drawn on top

or partially on top of elements appearing earlier do cover up the earlier elements. This

will be demonstrated in the HTML5 logo examples.

�Using SVG to Draw the HTML5 Logo
The first example displays a static rendition of the HTML5 logo, as shown in Figure A-7.

It consists of polygons, filled in with different colors, along with text and a line. The

example also includes use of semantic tags, specifically footer and abbr. The semantic

tags, which was an addition to HTML for HTML5, represents a set of common features of

Appendix More Techniques for Drawing

453

documents. They do not come with any specific formatting or usage. Their presence in

the standard is (only) suggestive of usage and may help individuals and groups working

together. It is an important practice to provide references, and therefore mentioning the

World Wide Web Consortium, known as W3C, was my motivation for the footer. Note

that the font for HTML is not the one shown on the W3C website. In fact, the ownership

of the HTML standard is complicated. Please feel free to explore it.

Figure A-7.  SVG plain HTML5 logo

I will explain the coding for the plain HTML5 logo. However, to provide interaction

and, more importantly, further demonstrate the power of SVG, I am including another

example. This program provides a way to change the size of the graphic. Notice that in

Figure A-8, the slider on the opening screen is not all the way to the right.

Appendix More Techniques for Drawing

454

Figure A-8.  Opening screen for scalable HTML5 logo

Moving the slider to the end produces the screen shown in Figure A-9.

Appendix More Techniques for Drawing

455

Figure A-9.  Scalable HTML5 logo, showing the maximum size

Moving the slide back toward the left side produces a smaller version, as shown in

Figure A-10.

Appendix More Techniques for Drawing

456

Figure A-10.  Smaller version of HTML5 logo

�Overview
The tasks required for both the HTML5 logo examples include the specification of

polygons, the use of certain colors for the fill of each polygon, text, and, at the bottom

on both examples, a reference to the W3C organization. The scalable example features

a range control for changing the size of the logo. A JavaScript function, referenced in the

range control, performs the change.

Appendix More Techniques for Drawing

457

�Details of Implementation
Let’s get into the SVG.

The tree structure for the HTML5 logo examples looks like this:

•	 An svg element, id ="whilesvg", with one child node.

•	 A g element, id = "logo". This element has two child nodes.

•	 A text element.

•	 A g element, id = "shield", with six child nodes, each a

polygon element.

•	 Polygon elements.

There are multiple ways to produce the shield. The order of drawing matters:

polygons are drawn on top of prior polygons. The line down the center is an illusion

produced by the change in color. The code is as follows:

<svg id="wholesvg" height="600" width="800" xmlns="http://www.

w3.org/2000/svg" >

<g id="logo">

 �<text x="75" y="60" font-family="'Arial Bold', sans-serif";

font-size="54"; font-weight: bold; > HTML</text>

 <g id="shield" transform="translate(0,80)">

 <polygon points="39 250, 17 0, 262 0, 239 250, 139 278"

 fill= "#E34C26"; />

 <polygon points="139 257, 220 234, 239 20, 139 20"

 fill="#F06529"; />

 �<polygon points="139 113, 98 113, 96 82, 139 82, 139 51, 62 51, 70

144, 139 144"

 fill= "#EBEBEB"; />

 <polygon points="139 193, 105 184, 103 159, 72 159, 76 207, 139 225"

 fill="#EBEBEB"; />

 �<polygon points="139 113, 139 144, 177 144, 173 184, 139 193, 139

225, 202 207, 210 113"

 fill= "#FFFFFF"; />

Appendix More Techniques for Drawing

458

 <polygon points="139 51, 139 82, 213 82, 216 51"

 fill="#FFFFFF";/>

 </g>

</g>

</svg>

The indentation is ignored by the browser, as is the case with regular HTML, but is a

good practice.

Please note that the id values are not used in this example but are present here to

encourage good practices in thinking about the structure of a design and to prepare for

possible future modifications.

The svg element has attributes indicating the width and height. As mentioned in

the previous short list of svg examples, the xmlns attribute serves as a pointer to the svg

standard. It is critical.

The first g element specifies that the logo has two parts: the text, which is indicated

in the contents of the text element (that is, between the opening tag and the closing tag)

and is HTML, and the graphic representing the shield. The shield consists of the six

polygons. The second g element, with id = "shield", has a transform attribute. The

value, translate(0,80), sets what follows with 0 adjustment horizontally and 80 pixels

vertically. You are encouraged to change these two numbers. The six polygon elements

have two attributes each. One attribute, points, gives the coordinates of the points

making up the polygon. Each pair of numbers represents the horizontal (x) and vertical

(y) values and pairs are separated by commas. The number of pairs differ because the

polygons have different numbers of vertices. The fill attribute specifies a color, using

the RGB (red, green, blue) system. You are strongly encouraged to experiment with these

numbers. I did not make them up but got them from the W3C site. Each polygon element

is a singleton: there is just the opening tag, and it ends with />. Notice the closing two

</g> tags and the closing </svg> tag.

Separate from SVG, I decided to make use of semantic elements.

The scalable version of the HTML5 logo features a control of type range.

Scale percentage: <input id="slide" type="range" min="0" max="150"

value="100" onChange="changeScale(this.value)" step="10"/>

The effect of the min, max, and value attributes is to produce the opening screen with

the control two-thirds of the way to the right. The setting of onChange is what causes my

JavaScript function changeScale to be invoked when the user/player changes the value.

Appendix More Techniques for Drawing

459

The JavaScript function is called with a parameter with the current value held in the

control. The term this refers to this input control. The step attribute set to 10 means

that the value changes by 10. You can experiment with this. I decided that making it 10

would produce a reasonably smooth transition.

The last thing to explain is the CSS for the footer and article elements. I make use

of the technique of providing a sequence of font types in the order in which I want the

font to be. The browser takes the first one available on the computer interpreting the

document. The display attribute specifies line breaks before and after. The font-weight

in the footer style is set to bold. The border-top produces the orange line above the

footer. The margin in the article style is set to 5px. The code for the static HTML5 logo is

shown in Table A-5. I have omitted the function invoked/invoking table because there

are no functions.

Table A-5.  Code for Static HTML5 Logo

Code Statement Explanation

<!DOCTYPE html> DOCTYPE comment.

<html> The html tag.

<head> The head tag.

<title>HTML5 Logo </title> Complete title.

<meta charset="UTF-8"> This is a meta tag. It declares the

character encoding.

<style> The style tag.

footer {display:block; border-top: 1px solid

orange; margin: 10px; font-family: "Trebuchet

MS", 'Arial Bold', Helvetica, sans-serif;

font-weight: bold;}

The footer element is used to

display the reference to the World

Wide Web Consortium.

</style> Close the style element.

</head> Close the head element.

(continued)

Appendix More Techniques for Drawing

460

Table A-5.  (continued)

Code Statement Explanation

<body> Start the body element.

<svg id="wholesvg" height="600" width="800"

xmlns="http://www.w3.org/2000/svg" >

Starting tag for an svg element.

Notice the link to the namespace.

<g id="logo"> A g element for the group.

 �<text x="75" y="60" font-family="'Trebuchet

MS', 'Arial Bold', Helvetica, sans-serif";

font-size="54"; font-weight: bold; >HTML

</text>

The logo contains a text element.

 <g id="shield" transform="translate(0,80)"> …and a group with an id shield

and a transform that translates

down the screen for the graphic.

 �<polygon points="39 250, 17 0, 262 0,

239 250, 139 278"

There are several polygons.

 fill= "#E34C26"; /> You can look up these colors. I got

them from the W3C site.

 �<polygon points="139 257, 220 234, 239 20,

139 20"

The entire shield.

 fill="#F06529"; />

 �<polygon points="139 113, 98 113, 96 82,

139 82, 139 51, 62 51, 70 144, 139 144"

The lighter part on the right.

 fill= "#EBEBEB"; />

 �<polygon points="139 193, 105 184, 103 159,

72 159, 76 207, 139 225"

The very light gray on the left, on

the top.

 fill="#EBEBEB"; />

 �<polygon points="139 113, 139 144, 177 144,

173 184, 139 193, 139 225, 202 207, 210 113"

The very light gray on the left, on

the bottom.

(continued)

Appendix More Techniques for Drawing

http://www.w3.org/2000/svg

461

Table A-5.  (continued)

Code Statement Explanation

 fill= "#FFFFFF"; />

 �<polygon points="139 51, 139 82, 213 82,

216 51"

The white on the right, on bottom.

 fill="#FFFFFF";/>

 </g> The white on the right, on top.

</g> Close the outer g.

</svg> Close the svg element.

<footer>HTML5 Logo by <a href="http://www.

w3.org/"><abbr title="World Wide Web

Consortium">W3C</abbr>.

Footer with the text. It is of the style

abbr. This is not given any special

formatting.

</footer> Close footer.

</body> Close body.

</html> Close html.

For the scalable HTML5 logo, I made use of an init function to set a variable to point

to the point in the SVG tree to change the scale. The change is done in the changeScale

function. Invoking information for the two functions is described in Table A-6.

Table A-6.  Invoked/Invoking Functions for Scalable HTML5 Logo.

Function Invoked by Invoked by Event Handling Invokes Set Up Event Handling

Init onLoad

changeScale onChange

The scalable HTML5 logo document is essentially the static HTML5 logo with the

addition of the two functions. For completeness sake, I provide all the code, but I leave

the explanations of the lines in common blank. Please refer to Table A-7.

Appendix More Techniques for Drawing

http://www.w3.org/
http://www.w3.org/

462

Table A-7.  Code for Scalable HTML5 Logo.

Code Statement Explanation

<!DOCTYPE html> DOCTYPE comment.

<html> Start of html.

<head> Start of head.

<title>HTML5 Logo </title> Complete title.

<meta charset="UTF-8"> A meta tag stating the character

encoding.

<style> Start of style.

footer {display:block; border-top: 1px

solid orange; margin: 10px; font-family:

"Trebuchet MS", 'Arial Bold', Helvetica,

sans-serif; font-weight: bold;}

The formatting for the footer.

article {display:block; font-family:

Georgia, "Times New Roman", Times, serif;

margin: 5px;}

Formatting for the article.

</style> Close style.

<script language="Javascript"> Start of script element.

var factorvalue = 1; Used to change the scale.

var logo; Will be set with a pointer into the SVG.

function init() { Header for the init function.

 logo = document.getElementById("logo"); Sets the variable logo.

} Close init.

function changeScale(val) { Header for the changeScale function.

The argument val will hold the value

set by the range control.

 factorValue = val/100; Calculate factorValue as a

percentage.

(continued)

Appendix More Techniques for Drawing

463

Code Statement Explanation

 var factorValues = String(factorValue); Now convert factorValue to a string.

 �var trans = "translate(0,0)

scale("+factorValues+")";

Produce the trans value to put in the

SVG.

 �logo.setAttributeNS(null,"transform",

trans);

Set the attribute.

} Close the changeScale function.

</script> Close script.

</head> Close head.

<body onLoad="init();"> The body element. Set up a call to the

init function.

<article> Start of the article.

Scale percentage: <input id="slide"

type="range" min="0" max="150" value="100"

onChange="changeScale(this.value)"

step="10"/>

Define the range control, what we can

call a slider. Set up the invocation of the

changeScale function using the value

in the control.

</article> Close the article.

<svg id="wholesvg" height="600" width="800"

xmlns="http://www.w3.org/2000/svg" >

The svg is the same as the static case.

<g id="logo">

 �<text x="75" y="60" font-family="'Arial

Bold', sans-serif"; font-size="54";

font-weight: bold; > HTML</text>

 �<g id="shield"

transform="translate(0,80)">

 �<polygon points="39 250, 17 0, 262 0,

239 250, 139 278"

The entire shield.

 fill= "#E34C26"; />

Table A-7.  (continued)

(continued)

Appendix More Techniques for Drawing

http://www.w3.org/2000/svg

464

The next example shows more interactions leading to modification of the SVG.

Table A-7.  (continued)

Code Statement Explanation

 �<polygon points="139 257, 220 234, 239

20, 139 20"

The lighter part on the right.

 fill="#F06529"; />

 �<polygon points="139 113, 98 113, 96

82, 139 82, 139 51, 62 51, 70 144, 139

144"

The very light gray on the top left.

 fill= "#EBEBEB"; />

 �<polygon points="139 193, 105 184, 103

159, 72 159, 76 207, 139 225"

The very light gray on the bottom left.

 fill="#EBEBEB"; />

 �<polygon points="139 113, 139 144, 177

144, 173 184, 139 193, 139 225, 202

207, 210 113"

The white on the bottom right.

 fill= "#FFFFFF"; />

 �<polygon points="139 51, 139 82, 213

82, 216 51"

The white on the top right.

 fill="#FFFFFF";/>

 </g>

</g>

</svg>

<footer>HTML5 Logo by <a href="http://www.

w3.org/"><abbr title="World Wide Web

Consortium">W3C</abbr>.

Same as static case.

</footer> Close footer.

</body> Close body.

</html> Close html.

Appendix More Techniques for Drawing

http://www.w3.org/
http://www.w3.org/

465

�Using SVG to Draw and Modify a Cartoon
The second SVG example features a cartoon figure that my father used when signing

notes to the family. It is a peanut-shaped head with simple eyes, nose, and smile, and a

single hair. To demonstrate the flexibility of SVG, my program starts with only a peanut

shape together with buttons and a range control indicating possibilities for modifying

the graphic. Figure A-11 shows the opening screen.

Figure A-11.  Opening screen for daddy logo

The program provides options for adding the face, adding text, moving the head

incrementally down or to the right, and changing the size of the head and the text.

Figure A-12 shows the changes.

Appendix More Techniques for Drawing

466

Figure A-12.  Face, hair, text added, with change in size and position

�Overview
The tasks required for this program include coding the SVG elements for the peanut-

shaped head and, to be added after user interaction, eyes, nose, smile, hair, and text. The

interface includes a range control, as shown in the HTML5 logo example. In addition,

as in that example, a player uses it to make the head and, if present, the face and text

larger or smaller. Buttons provide ways to invoke functions that add the face (eyes,

nose, mouth, and hair) and the text, and move the graphic down or to the right. Moving

the graphic up and left is left as an exercise for you. Note that I also decided to provide

feedback to the player in the form of an alert statement if they tried to add text or add the

face after doing it once.

The initial graphic, the head, is defined in the HTML. One of these SVG elements is g

(for group), with an ID of head. The other elements are defined and created dynamically

and appended to the head. The init function, involved upon the onload event, uses the

following statement to set the variable myhead:

myHead = document.getElementById("head");

The newly created elements are appended to myHead.

Appendix More Techniques for Drawing

467

The components of the face include some of the possibilities that SVG provides for

curves, specifically ellipses for the eyes, Bezier cubic curves for the mouth and hair, and

a line and arc combination for the nose. Bezier curves, named after creator Pierre Bezier,

make use of endpoints and control points. The curve goes through—starts and stops at

the endpoints—and the resulting curve is tangent to the line segment from endpoint to

control point. Table A-8 shows some of the symbols. Note that uppercase and lowercase

are used. Uppercase means absolute values, and lowercase means relative values

(changed from the last value).

Table A-8.  Symbols Used in SVG Path Elements

Symbol Use

M Move to

A Elliptical arc

C Cubic Bezier curve

L Line to

S Shortcut designation; indicated next control point is reflection of the last

My suggestion for growing your understanding is, first, to examine and make small

adjustments to the code here. You may end up with strange faces. After doing this, do a

rough design of something you want to produce, such as a figure with one or two curves.

With a goal in mind, go to one of several online Bezier editors. These all produce the data

to use in your SVG code.

As was the case with the HTML5 logo, it is critical to organize the SVG elements

in a tree so that they can be moved and the size changed as you want. To repeat, the

specific coordinates do not have to be changed to make a larger head, with appropriate

positioned face and hair, and the text.

�Details of Implementation
In the daddy logo app, the svg tag in the body does not have a namespace declaration.

My code checks that the default namespace is the right one. I did this to be different from

the HTML logo examples since you may see both ways of doing the same thing.

Appendix More Techniques for Drawing

468

The peanut shape is made using what I would call a trick. It consists of three circles.

The middle circle serves to erase the boundary (stroke) curves.

Creating dynamic SVG elements requires creating the elements, setting attributes,

and appending the newly created element to something already part of the document

tree. One somewhat tricky aspect is that the attributes are strings. This means that in a

few cases, an integer value must be converted to a string using the String function.

All the functions in this example, except one, are invoked by event handling, as

shown in Table A-9. I could have combined createFace and setattributesface but

made the separation following the practice of dividing larger functions into smaller ones.

Table A-9.  Functions Invoked/Invoking Table

Function Invoked by Invoked by Event
Handling

Invokes Set Up Event
Handling

init onload in the body

tag

changeScale onChange in the

range tag

moveOvalh onClick in the

Move Horizontally

button

moveOvalv onClick in the

Move Vertically

button

createFace onClick in the Add

Face button

setAttributesface

addText onClick in the Add

Text button

setAttributesface createFace

With overview and general comments done, in the following table I present all the

code for the daddy logo example, with comments for each statement:

Appendix More Techniques for Drawing

469

Code Statement Explanation

<!DOCTYPE html> DOCTYPE comment.

<html> Start of html.

<head> Start of head.

<title>Little guy Joe</title> Complete title.

<script> Start of script.

var svgNS = "http://www.w3.org/2000/svg"; Set to hold the namespace reference.

var headx = 0; Used in moving the head (and face and

text); hold location of head x.

var heady = 0; Hold locaton of head y.

var cheadx = 60; Used in positioning hair. Center of head

horizontally.

var cheady = 100+ 20; Center of head vertically.

var rx = 50; Used for drawing the eye. This is an

ellipse, so a horizontal and vertical

diameter must be given. It is a circle.

var ry = 50; …vertical diameter.

var hairy=cheady - 2.2*ry; Location of the single hair.

var scaleFactor = 1; Initial scale factor.

var fillColor = "tan"; Color of skin.

var strokeColor = "none"; No outline for circles that are the peanut.

var myUpper; The next variables will hold references to

parts of the face, here the upper part.

var myMiddle; Middle.

var myLower; Lower.

var myHead; Reference to the head.

var myNose; Reference to the nose.

var myLeftEye; Reference to the left eye.

(continued)

Appendix More Techniques for Drawing

http://www.w3.org/2000/svg

470

Code Statement Explanation

var myRightEye; Reference to the right eye.

var myMouth; Reference to the mouth.

var myHair; Reference to the hair.

var faceadded=false; Boolean indicating the face has not been

added.

var textadded=false; Boolean indicating the text has not been

added.

var nosedatatail="l 15 22 a 20 20 0 0 1

 -15 4";

Details for nose: a line and then an arc.

 var hairdatatail = "c -50 30, 0 25, 15

30 s 2 12 -20 30";

Details for the hair: a cubic Bezier curve.

var upperradius = 50; Radius of the upper circle.

var lowerradius = 50; Radius of the lower circle.

var middleradius = 40; Radius of the middle circle (that erases the

boundaries).

var myPlace; Reference to the whole drawing.

var myText; Reference to the text.

function init() { Header for init.

 �myHead = document.

getElementById("head");

Sets myHEad.

 �if(myHead.namespaceURI != "http://www.

w3.org/2000/svg")

Check on namespace.

 �alert("Inline SVG in HTML5 is not

supported. This document requires a

browser that supports HTML5 inline

SVG.");

Alert the user if their browser does not

support SVG.

 �myPlace = document.

getElementById("place");

Set myPlace.

(continued)

Appendix More Techniques for Drawing

http://www.w3.org/2000/svg
http://www.w3.org/2000/svg

471

(continued)

Code Statement Explanation

 �myUpper = document.

getElementById("upper");

Set myUpper.

 �myLower = document.

getElementById("lower");

Set myLower.

 �myMiddle = document.

getElementById("middle");

Set myMiddle.

} Close init.

function createFace() { Header for createFace.

 if (faceAdded) { Check if already done and, if so…

 alert("face already added"); Message to player.

 return;} return.

 �myNose = document.

createElementNS(svgNS, "path");

Create new element and set myNose.

 �myMouth = document.createElementNS

(svgNS,"path");

Create a new element and set myMouth.

 �myLeftEye = document.create

ElementNS(svgNS,"ellipse");

Create a new element and set

myLeftEye.

 �myRightEye = document.create

ElementNS(svgNS,"ellipse");

Create a new element and set

myRightEye.

 �myMouth = document.createElement

NS(svgNS,"path");

Create a new element and set myMouth.

 �myHair = document.createElementNS

(svgNS,"path");

Create a new element and set myHair.

 �myLeftEye.setAttributeNS(null,

"id","myLeftEye");

This statement and the following sets the

attributes.

 �myLeftEye.setAttributeNS(null,

"fill","blue");

Appendix More Techniques for Drawing

472

Code Statement Explanation

 �myLeftEye.setAttributeNS(null,

"stroke","black");

 �myRightEye.setAttributeNS(null,

"id","myRightEye");

 �myRightEye.setAttributeNS(null,

"fill","blue");

 �myRightEye.setAttributeNS(null,

"stroke","black");

 �myMouth.setAttributeNS(null,"id",

"myMouth");

 �myMouth.setAttributeNS(null,

"stroke","red");

 �myMouth.setAttributeNS(null,

"fill","transparent");

 �myMouth.setAttributeNS(null,

"stroke-width",3);

 �myNose.setAttributeNS(null,"id",

"myNose");

 �myNose.setAttributeNS(null,

"stroke","black");

 �myNose.setAttributeNS(null,

"fill","transparent");

 �myHair.setAttributeNS(null,

"stroke","black");

 �myHair.setAttributeNS(null,

"fill","transparent");

 setAttributesFace(); Invoke the function to finish the task of

setting the attributes.

(continued)

Appendix More Techniques for Drawing

473

Code Statement Explanation

 myHead.appendChild(myNose); Make these elements visible by appending

to myHead.

 myHead.appendChild(myLeftEye);

 myHead.appendChild(myRightEye);

 myHead.appendChild(myMouth);

 myHead.appendChild(myHair);

 faceAdded = true; Set faceAdded to true.

} Close createFace.

function setAttributesFace() { Header for setAttributesfFace. Made

this distinct function just to divide the

coding.

 �var nosedata = "M"+String(cheadx)+"

"+String(cheady)+" "+nosedatatail;

Define nosedata. This includes

converting numbers to strings.

 var mouthx1 = cheadx - .25*rx; Starting x.

 var mouthy = cheady + ry; Starting y.

 var mouthx2 = cheadx+.25*rx; Endpoint x.

 var mouthyc = mouthy + .25*ry; Control point y.

 var mouthx1c = mouthx1+.15*rx; Left control point x.

 var mouthx2c = mouthx2-.15*rx; Right control point x.

 var mouthdata = "M"+String(mouthx1)+" " Now can set mouthdata.

 + String(mouthy)+" C"

 + String(mouthx1c) +" "

 + String(mouthyc)+", "

 +String(mouthx2c)+" "

 +String(mouthyc)+", "

 +String(mouthx2)+" "

(continued)

Appendix More Techniques for Drawing

474

Code Statement Explanation

 +String(mouthy);

myMouth.setAttributeNS(null,"d",mouthdata); Set the d attribute for myMouth.

myNose.setAttributeNS(null,"d",nosedata); Set the d attribute for myNose.

var hairdata = "M" +String(cheadx)+"

"+String(hairy)+" "+hairdatatail;

Define hairdata.

myHair.setAttributeNS(null,"d",hairdata); Set the d attribute for myHair.

var leftx = cheadx - .5*rx; Prepare variables for use in the eye

elements. Set leftx.

var eyey = cheady ;

var rightx = cheadx + .5*rx;

var ex = .2*rx;

var ey = .5*ex;

 myLeftEye.setAttributeNS(null,"cx",

leftx);

Set attributes for myLeftEye.

 myLeftEye.setAttributeNS(null,"cy",

eyey);

 myLeftEye.setAttributeNS(null,"rx",ex);

 myLeftEye.setAttributeNS(null,"ry",ey);

 myRightEye.setAttributeNS(null,"cx",

rightx);

Set attributes for myRightEye.

 myRightEye.setAttributeNS(null,"cy",

eyey);

 myRightEye.setAttributeNS(null,"rx",ex);

 myRightEye.setAttributeNS(null,"ry",ey);

} Close setattributesface.

(continued)

Appendix More Techniques for Drawing

475

Code Statement Explanation

function moveOvalh() { Header for moveOvalh.

 headx +=10; Increment the headx value for the

horizontal move.

 if (headx>300) {headx = 0;} Check for being too far over. The 300 is

arbitrary. Set back to the start.

 �var trans = "translate("+String(headx)+",

"+String(heady)+") scale("+String(scale

factor)+")";

Set up the transform string.

 �myHead.setAttributeNS(null,"transform",

trans);

Set the transform attribute to be trans.

} Close the moveOvalh function.

function moveOvalv() { Header moveOvalv.

 heady +=10; Increment heady.

 if (heady>100) {heady = 0;} Check if too big. If so, set back to 0.

 �var trans = "translate("+String(headx)+",

"+String(heady)+") scale("+String(scale

factor)+")";

Set up the trans variable.

 �myHead.setAttributeNS(null,"transform",

trans);

Set the transform attribute of myHead

using trans.

} Close moveOvalv.

function changeScale(val) { Header for changeScale. Parameter will

be used to set the scale factor.

 scaleFactor = val/100; Set scaleFactor to be fraction out of

100.

 �var trans = "translate("+String(headx)+",

"+String(heady)+") scale("+String(scale

factor)+")";

Define trans.

(continued)

Appendix More Techniques for Drawing

476

Code Statement Explanation

 �myHead.setAttributeNS(null,"transform",

trans);

Set the transform attribute of myHead

using trans.

} Close changeScale.

function addText() { Header for addText.

 if (textAdded) { Check if already added. If so…

 alert("text already added "); Put out message.

 return;} Return. Close clause.

 �myText = document.

createElementNS(svgNS, "text");

Create a new element of type text and

set myText.

 �myText.setAttributeNS

(null,"x",110);

Set attributes.

 �myText.setAttributeNS

(null,"y",12);

 �myText.setAttributeNS(null,

"font-family","serif");

 �myText.setAttributeNS(null,

"font-size",16);

 �myText.setAttributeNS(null,

"font-weight","bold");

 �myText.appendChild(document.

createTextNode("My Daddy Joe"));

 myHead.appendChild(myText); Make visible by appending to myHead.

 textAdded = true; Set textAdded to true.

} Close addText.

</script> Close the script element.

</head> Close the head element.

(continued)

Appendix More Techniques for Drawing

477

Code Statement Explanation

<body onload="init();"> The body tag. Sets up call to init.

<svg id="place" height="400" width="600"> Trimmed-down svg element.

 <g id="head"> Subelement is of type g for group. The id

is head.

 <circle id="upper" cx="60" cy="100"

r="50" fill="tan" stroke="black"/>

The upper circle.

 <circle id="lower" cx="60" cy="154"

r="50" fill="tan" stroke="black"/>

The lower circle.

 <circle id="middle" cx="60" cy="125"

r="40" fill="tan" stroke="transparent"/>

The middle circle. This must be drawn last.

 </g> Close the g element.

</svg> Close svg.

 Regular line break element.

<button onClick="moveOvalh();">Move

horizontally </button> <button

onClick="moveOvalv();">Move vertically

</button>

Buttons for moving.

<button onClick="createFace();">Add face

</button>

Button for creating the face.

<button onClick="addText();">Add Text

</button>

Button for adding the text.

Head scale <input type="range"

onChange="changeScale(this.value)"

min="10" max="300" value="100"/>

The range input element for changing the

size.

</body> Close body.

</html> Close html.

Appendix More Techniques for Drawing

478

�What You Learned

The three examples in this appendix introduced you to Scalar Vector Graphics. This

included a demonstration of how to produce static graphics as well as possibilities for

adding to the graphics based on player/user interactions.

My goal in this appendix and with other additions made for this edition was to

show you the power of using HTML and JavaScript together, as well as with algebra and

geometry and the more specialized tool of Scalar Vector Graphics. In general, be willing

to define functions, use names for variables and functions that have meaning for you,

and use algebra and geometry. Anything you do is limited only by your imagination.

Appendix More Techniques for Drawing

479

Index

A
addEventListener, 235, 253, 332, 361, 371,

390, 415
Alphabet buttons, 354, 355, 358, 359,

363, 369
Analytic geometry, 451
Animation, 81, 82, 104–105, 131, 325–328
appendChild, 234, 235, 354
Arrows, 411–429
Attributes, 5, 6, 25, 253, 318, 330, 382
Autoplay, 225, 226

B
Blackjack

annotates code, 394
functions, 393
key strokes, 390
opening screen, 374
rules, 373
testing/uploading, 409

Boolean values, 37
Bouncing ball

arrays, 91
family variable, 92
for loop, 94
gpa variable, 94
grad variable, 95
grades variable, 94
inner/outer, 92
manipulation, 94
numeric values, 93

product names/costs, 93
RGB values, 93
square brackets, 95

code, 107–111
collision detection, 98–100, 102
CSS, 87
drawing/images

attributes, 89
background image, 90, 91
changes, 90
circle, 88
constructor, 89
ctx variable, 89
erase everything, 90
file names, 89
HTML, 89, 90
Image(), 88
pixels, 91
rectangle, 88
statement, 88
stroke, 88
task, 90

form with fields, 82
functions, 106
gradient-filled walls/images, 111–116
gradients

assignment statement, 95
character strings, 95
code, 91
color stops, 91, 95
feature, 93
fillStyle property, 91

© Jeanine Meyer 2023
J. Meyer, The Essential Guide to HTML5, https://doi.org/10.1007/978-1-4842-8722-4

https://doi.org/10.1007/978-1-4842-8722-4

480

hue array, 95
linear, 91

HTML, 105
HTML5, 87
images

preloading, 105
replacement, 83

input, 83
JavaScript, 87
new position, 98–100, 102
rectangles, 95
requirements, 86, 87
search function, 128
slows down, 129
stopping/resuming, 104, 105
testing, 129
timing events, 96–98
uploading, 129
validation, 102, 116–120

Bouncing cotton candy game, 84, 85,
106, 120

Bouncing video, 85, 86
code, 123–128
functions, 123

Browsers, 1, 103, 105, 129, 267, 307, 390
buildCircles function, 414, 415
buildDeck function, 381, 383, 384, 409

C
Cannonball and slingshot application

angle, 132, 158, 167
arrays, 137–139
array splice, 149, 150
ball lands, ground, 132
bouncing ball applications, 135
cannon, 134, 158, 167

code, 152, 159, 160, 170
CSS features, 136
distance between points, 150
functions, 151, 159, 168, 169
HTML5 features, 136
JavaScript features, 136
line segments, 145–147
mouse events, pulling, 147–149
mouse to set parameters of flight, 168
programmer-defined objects,

137–139, 151
rectangle, 131
requirements, 135, 136
rotating cannon, 133
screen opening, 134
speed, 132, 158, 167
target hitting, 134
testing/uploading, 179, 180
translations/rotations,

drawing, 139–143
canvas element, 27, 40, 136, 199, 266,

332, 414
Card objects, 190, 191
Card counting, 377, 384, 387
Cascading Style Sheets (CSS), 1, 10–13,

236, 345, 353, 356, 357, 361, 371
changeScale function, 458, 461–463
checkOrder function, 238, 240
Chrome browser, 5, 8, 225, 226, 274
Circles, 411–415, 417–429
Client computer, 105, 271, 323
Collision detection

application, 271
floating-point numbers, 270
intersect function, 269
player, 268
points, 270
square roots, 270

Bouncing ball (cont.)

INDEX

481

Computed animation, 82, 325
Constructor function, 89, 137, 315, 382
Cotton candy game, 85, 120–122
crossOverLine function, 439
CSS styles, 4, 13, 361

D
Daddy logo, 451, 465, 467, 468
Date function, 14, 15, 180, 272, 279
Date application, 272, 274–276
deal function, 384–386
dealFromDeck function, 384, 386
dealStart function, 384, 388
defer method, 353
Dice game

assignment statements, 34, 35
building, 52, 53
canvas, drawing

arcs, 44–46
browser window, 42
closePath command, 47, 48, 50
colors, 43, 44, 49
commands, 50
ctx variable, 41
ctx.fill(), 48
fill/stroke, 50
frown, 46, 47
graphs, 42
HTML, 40
init function, 41
line segments, 44
pixels, 42
radians, 44, 45
rectangles, 42, 43
tags, 40, 41
2d context, 41

complete craps application, 68–76

conditional statements
if statement, 37–39
switch statement, 38, 39

CSS, 31
HTML5, 31
JavaScript, 31
making, 76–78
mathematical expressions, 32, 33
programmer-defined

functions, 35, 36
pseudorandom processing, 32, 33
requirements, 30
results, 28
rules, 27, 30
single die

code, 55–60
comments, 60, 61
functions, 54

testing, 78, 79
text output, form, 51
two dice

code, 62–68
functions, 61, 62

uploading, 78, 79
variables, 33–35

document.body.appendChild (d), 354
document.createElement(x), 354
document.getElementById, 331
document.getElementById(id), 354
document.getElementsByTagname, 331
Document Object Model, 413
drawAdjustedLink function, 416
drawBall function, 138, 151, 159, 169
drawImage method, 121, 190
drawLine function, 438
drawLinks function, 415, 416
drawSling function, 146
drawThrow function, 315, 316

INDEX

482

E
Event-driven programming, 84, 104, 151
Event handling, 355, 358, 359, 367, 369,

370, 430
Everything array, 137, 139, 143, 150,

158, 317
Execution time/runtime, 234
eXtended Markup Language (XML), 232,

451, 452

F
Facts array, 231–233, 235, 242
findBall function, 147, 148, 169
Fisher-Yates algorithm, 389
Flags/toggles, 200
flipBack function, 190, 193, 200
flyin function, 318, 325, 331, 341
Footer, 373, 392–393
Frames, 239, 325
functionReference variable, 238

G
getElementsByTagName method, 341, 343
getkeyAndMove function, 266, 283, 296
Guess-a-word game, 345

acceptable words, 353
arrays, 353
Building the Application, 360
character strings, 351
correct guess, 348, 349
feedback, 346, 358
functions, 361
guessing letters, 370
handling letters, 350
HTML5, CSS and JavaScript

features, 353

HTML markup, 354
implementation, 361, 362
incorrect selections, 347
opening screen, 346
requirements, 352
testing/uploading, 371
expression this.textContent, 360
winning game, 351
wrong guess, 348, 349

H
Harder maze, 263
Header, 373, 392–393
Househand array, 384
htaccess file, 253
HTML5, 345, 353, 371, 392

canvas element, 140
features, 136, 142, 180
moveTo and lineTo methods, 146
scripts, 274
storage facility, 256
translation/rotation, drawings, 139

HTML5 logo, 457
invoke, 461
scalable code, 462
static code, 459

Hypertext Markup Language (HTML), 139
annotated links, games, 19–22
CSS, 4
documents, 1, 279, 306, 307
elements, 224
fair use, 25
favorite sites, 2, 3, 22–25
files, 19
games, 2, 3
HTML5, 2, 4
JavaScript, 4

INDEX

483

requirements, 4
structure/tags

attributes, 6
concepts, 7
document, 4
elements, 5, 9
file management, 7
hyperlinks, 6, 8
images, 8
Purchase College website, 6, 8
semantic tags, 9
singleton tag, 8
text/images/links, 9
title, 5
web addresses, 7

tags, 1, 381
testing, 25
text editor, 16, 17
uploading, 25

I
if, for, switch, and while statements, 324
Image object, 149, 167, 190, 191, 315, 320
Image source, 381–382
init function, 147, 414, 415, 466

J
JavaScript, 1, 2, 14, 15, 345, 352–354,

361, 371
JavaScript alert box, 273
Jumping the fence, 431

code, 440
feedback, 438
intersection, 433
invoke, 439
mathematics, 435–437
positions, marking, 432

preparing data, 437
vertical line, 434

K
Keystroke capture, 264
Key-value pairs, 272, 274, 279

L
Localization, 342
localStorage facility, 272

M
makeDeck function, 191
Math.floor method, 35, 192
Math.max method, 231
Math.random method, 32, 33, 61, 242, 319
Maze applications, 263, 264, 268, 282–295
Maze-building task, 263
Mazes

application, 263, 268
detecting, 266
function, 265
games/design applications, 256
HTML5 and JavaScript, 264, 265, 267
HTML file, 256
inMotion, 265
keyDown, 266
opening screen, 259
player, 259
player/creator, 255, 262
programming techniques, 255, 256
properties, 265
screen building, 257
travelmaze script, 260
two-document version, 264
wall object, 264

INDEX

484

Maze-traveling task, 263
MCard function, 382
MCard object, 382–384
Memory (concentration) game

application, 187
cards, 181
cheating, prevention, 200, 201
click event, 199, 200
critical requirements, 188, 189
date for timing, 191, 192
face cards, 181
HTML5 and JavaScript

features, 189
images, 185
match, 183
pause, 192, 193
pictures version

code, 214
functions, 213
information, 223
items/concepts, 223
time limit, 223

player, 182
polygons, 196–198

complete code, 202
functions, 201

representing cards, 190, 191
shuffle cards, 198, 199
testing/uploading, 223, 224
text, 193–196
Version 2, 185

more_to_house function, 386, 388
Mouse events, 147–149, 256,

264–266, 307
moveit method, 265
moveTo method, 197
moving function, 416

N
Number function, 253

O
Operator overloading, 196, 324

P
padding setting, 236
Paper covers rock, 309, 314
Parallel structures, 321, 331, 415
pickElement function, 235, 237, 238, 242,

357, 359, 360
Player

behavior, 384
feedback, 380
loses, 378
wins, 376, 379

playerhand array, 384
Polygons, 181, 185, 188–191, 196–198
preventDefault function, 267, 391
Programmer-defined functions, 14, 35–36,

224, 264
Programmer-defined objects, 137–139,

180, 190, 307
Projectile motion, 131
Pseudorandom processing, 31–33, 314
push method, 233, 385

Q
Quiz application

array of arrays, 226
audio and video, 238–240
autoplay, 226
Boolean variable, 233

INDEX

485

code, 243
CSS, 235, 237–251
facts variable, 241
functions, 242
HTML5, CSS, and JavaScript, 231
HTML creation, 234, 235
HTML markup, 225
one-dimensional arrays, 232
player’s answer, 240, 241
players choices, 227
player’s order, 229, 230
prices array, 232
programming techniques, 253
pseudocode, 233
requirements, 230
response, player moves, 237, 238
screen opening, 226
storing/retrieving information, arrays,

231, 232
testing/uploading, 252, 253
third-party plugins, 225
timing feature, 252

R
Radio buttons, 281

application, 281
checked attribute, 282
elements, 281
localStorage item, 281

removeEventListener, 253, 358, 371
Rock crushes scissors, 314
Rock-paper-scissors application

animation, 325–328
audio/DOM processing, 329–331
audio enhancement, 342

code, 333
computer move, 319–324
computer threw scissors, 311
functions, 332, 333
graphical buttons, 314–319
HTML5, CSS and JavaScript features,

314, 343
player threw rock, 311
requirements, 313
screen opening, 310
starting off, 331
testing/uploading, 342, 343
throws, 313
tie, 311

S
sans-serif, 195
Scalar Vector Graphics (SVG), 411,

451, 452
cartoon, 465, 466
functions, 468
HTML5 logo, 452–456, 461

Scissors cuts paper, 314
setInterval function, 96, 98, 104, 105, 149,

192, 313, 314
setTimeout function, 96, 98, 192, 193
setupGame function, 242, 355, 361
shuffle function, 198, 201, 213, 389
Shuffling, 198–199, 389–390
Sling function, 139, 145, 146
startDragging function, 416, 417
Stochastic processing, 437
stretchWall function, 265, 283
String function, 416, 468
swapindeck function, 389, 393

INDEX

486

T
textContent, 360–361
Token function, 265
Travel maze application

applications, 306
code, 297
functions, 296

U, V
User engagement, 226

W
W3C organization, 456
Word bank, 346, 353
Word-guessing game (see Guess-a-

word game)
words1.js files, 352, 353, 362, 371

X, Y, Z
XHTML, 139

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: The Basics
	Keywords
	Introduction
	Critical Requirements
	HTML5, CSS, and JavaScript Features
	Basic HTML Structure and Tags
	Using Cascading Style Sheets
	JavaScript Programming
	Using a Text Editor
	Building the Applications
	Testing and Uploading the Application
	Summary

	Chapter 2: Dice Game
	Introduction
	Critical Requirements
	HTML5, CSS, and JavaScript Features
	Pseudorandom Processing and Mathematical Expressions
	Variables and Assignment Statements
	Programmer-Defined Functions
	Conditional Statements: if and switch
	Drawing on the Canvas
	Displaying Text Output Using a Form
	Building the Application and Making It Your Own
	Throwing a Single Die
	Throwing Two Dice
	The Complete Game of Craps
	Making the Application Your Own
	Testing and Uploading the Application
	Summary

	Chapter 3: Bouncing Ball
	Introduction
	Critical Requirements
	HTML5, CSS, and JavaScript Features
	Drawing a Ball or an Image or Images
	Gradients with a Side Trip to Explain Arrays
	Setting Up a Timing Event
	Calculating a New Position and Collision Detection
	Starting, Positioning and Restarting the video with use of an anonymous function

	Validation
	Stopping and Resuming Animation Triggered by Buttons
	HTML Page Reload
	Preloading Images
	Building the Application and Making It Your Own
	Testing and Uploading the Application
	Summary

	Chapter 4: Cannonball and Slingshot
	Introduction
	Critical Requirements
	HTML5, CSS, and JavaScript Features
	Arrays and Programmer-Defined Objects
	Rotations and Translations for Drawing
	Drawing Line Segments
	Mouse Events for Pulling on the Slingshot
	Changing the List of Items Displayed Using Array Splice
	Distance Between Points
	Building the Application and Making It Your Own
	Cannonball: With Cannon, Angle, and Speed
	Slingshot: Using a Mouse to Set Parameters of Flight
	Testing and Uploading the Application
	Summary

	Chapter 5: The Memory (aka Concentration) Game
	Introduction
	Critical Requirements
	HTML5, CSS, JavaScript Features
	Representing Cards
	Using Date for Timing
	Providing a Pause
	Drawing Text
	Drawing Polygons
	Shuffling Cards
	Implementing Clicking on a Card
	Preventing Certain Types of Cheating
	Building the Application and Making It Your Own
	Testing and Uploading the Application
	Summary

	Chapter 6: Quiz
	Introduction
	Critical Requirements for a Quiz Game
	HTML5, CSS, and JavaScript Features
	Storing and Retrieving Information in Arrays
	Creating HTML During Program Execution
	Using CSS in the Style Element
	Responding to Player Moves
	Presenting Audio and Video
	Checking the Player’s Answer
	Building the Application and Making It Your Own
	Testing and Uploading the Application
	Summary

	Chapter 7: Mazes
	Keywords
	Introduction
	Critical Requirements
	HTML5, CSS, and JavaScript Features
	Representation of Walls and the Token
	Mouse Events to Build and Position a Wall
	Detecting the Arrow Keys
	Collision Detection: Token and Any Wall
	Using Local Storage
	Encoding Data for Local Storage
	Radio Buttons
	Building the Application and Making It Your Own
	Creating the Travel Maze Application
	Testing and Uploading Application
	Summary

	Chapter 8: Rock, Paper, Scissors
	Introduction
	Critical Requirements
	HTML5, CSS, and JavaScript Features
	Providing Graphical Buttons for the Player
	Generating the Computer Move
	Displaying Results Using Animation
	Audio and DOM Processing
	Starting Off
	Building the Application and Making It Your Own
	Testing and Uploading the Application
	Summary

	Chapter 9: Guess a Word
	Introduction
	Critical Requirements
	HTML5, CSS, and JavaScript Features
	Storing a Word List as an Array Defined in an External Script File
	Generating and Positioning HTML Markup, Then Changing the Markup to Buttons, and Then Disabling the Buttons
	Creating the Feedback About Remaining Wrong Letters
	Maintaining the Game State and Determining a Win or Loss
	Checking a Guess and Revealing Letters in the Secret Word by Setting textContent
	Building the Application and Making It Your Own
	Testing and Uploading the Application
	Summary

	Chapter 10: Blackjack
	Introduction
	Critical Requirements
	HTML5, CSS, and JavaScript Features
	Source for Images for Card Faces and Setting Up the Image Objects
	Creating the Programmer-Defined Object for the Cards
	Starting a Game
	Dealing the Cards
	Shuffling the Deck
	Capturing Key Presses
	Using Header and Footer Element Types
	Building the Application and Making It Your Own
	Testing and Uploading the Application
	Summary

	Appendix: More Techniques for Drawing
	Circles and Arrows
	Overview
	Details of Implementation
	What You Learned

	Crossing a Line (Jumping a Fence)
	Overview
	Mathematics Refresher
	Preparing Data
	Feedback to User/Player

	Details of Implementation
	What You Learned

	Using Scalar Vector Graphics
	Using SVG to Draw the HTML5 Logo
	Overview
	Details of Implementation

	Using SVG to Draw and Modify a Cartoon
	Overview
	Details of Implementation
	What You Learned

	Index

