smr ULt 1S Wl s L
as-—chud,.e“,,h

.ht.\. N —y
Ql.i)‘a :"Efn“ta'_l_‘:u B C\wﬁ;““
\ t ‘.‘
‘?11 1 chs;f:.: m%\éwfa\\u\-ﬂ“ a
. B N e e]
TETAN Loge
Lne

Ty hr“‘"*“&mu\w
hrefs"variapie-, L

- Ldth 2

e test inonial-g\ ges e I Nartate 1ag

The Essential
Guide to HTMLs

Using Games to Learn HTML5
and JavaScript

Third Edition

Jeanine Meyer

The Essential Guide to
HTML5

Using Games to Learn HTML5
and JavaScript

Third Edition

Jeanine Meyer

Apress-

The Essential Guide to HTML5: Using Games to Learn HTML5 and JavaScript

Jeanine Meyer
Purchase, NY, USA

ISBN-13 (pbk): 978-1-4842-8721-7 ISBN-13 (electronic): 978-1-4842-8722-4
https://doi.org/10.1007/978-1-4842-8722-4

Copyright © 2023 by Jeanine Meyer

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Divya Modi

Development Editor: James Markham

Coordinating Editor: Divya Modi

Copy Editor: Kim Wimpsett

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springersbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at https://github.com/Apress/The-Essential-Guide-
to-HTML5-3rd-Edition-by-Jeanine-Meyer. For more detailed information, please visit www.apress.com/
source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-8722-4

To Annika, Daniel, Aviva, and Anne, and to Esther and Joseph,
who are still in our lives.

Table of Contents

About the AUROFcccccemmismninsnssssss s n s san s an s nnnannn s nnnnnnns xi
About the Technical REVIEWETcccccussssmmsssssnsssssnsssssnsssssnsssssnsssssnsssssnsssssnssnssnnsnss xiii
Acknowledgments.......cccceuuisssmmmmmmmmmmmssssssssssnnssmesssssssssssnnsseesssssssssnnnnnnsesssssssnnnnnnnnness XV
INtroductionccccimiimmminns s ———————_———————— xvii
Chapter 1: The BaSiCS..uuuuueermmmmmmmmmmsnnsnnsssmmmmsmmsssssssssssssssssssssssnssssssssssssssssnnnnssssssssssnns 1
A0 oS 1
INEPOAUCTION.....c.eceeee e e r e r e se e e nnnn s 1
Critical REQUIFEMENTScoeeiiiicircrere s s 4
HTML5, CSS, and JavaScript FEAtUIESc.ccvvereririerreereserses e sesesesssessessesssessessessessssssssnessennes 4
Basic HTML Structure and TAQSccvevererierereninsesesessssessessessesessessessesssssssessesssssssessesaesssssssessees 4
Using Cascading Style SHEEtS.......ccvevrrriernnrrsre s ss s sre e e naesnes 10
JavaScript ProgramimMingccocveeveeversersersersesessessesessssessesessessssessessesssssssesssssesssssssessessssssssnsessens 14
USING @ TEXE EAITOrooviirccecer e e e e s 16
Building the APPlICALIONSccciviiierr e e e s 19
Testing and Uploading the Application ..o s 25
E 1] 04 RS 26
Chapter 2: DiCe GAMEcccursenmssansssnsssnsssassssassssnsssanssssssssnsssansssassssnsssansssnnsssnnnsansas 27
INEFOTUCTION ...t e 27
Critical REQUITEMENTSccvuevieierierere s re e res e s e sse s sas e sse s e sa s s ssesae e ssesaesassassessesaesessensesseses 30
HTML5, CSS, and JavaScript FEAtUrES..........cecceriervrrerrererrersee e reressee e ser e s sae e ssesesssesnessennens 31
Pseudorandom Processing and Mathematical EXPreSsionsc.cccvvevnnnnenesnsensessesesessensenns 32
Variables and Assignment STatements ... 33
Programmer-Defined FUNCHIONS ..o sre e sae s 35
Conditional Statements: ifand SWITCHccovrreiesnrnser s 37

TABLE OF CONTENTS

Drawing 0N the CANVASccvvverrerrerenirsirere e ssesse s s e s sasses e ssesassessessessessssessesaeseessssessesas 40
Displaying Text Output USiNg @ FOIM ..o s s sn s snes 51
Building the Application and Making It YOUr OWN ... 52
THrowing @ SiNGIE DBcccveeerreserrrereseserseseressesesesesssse s sessssessesessesesessesessesessssessssssssssssssessssnnes 54
THrOWING TWO DICE....coviueeerreserreserrsesessese s e e s e se e s e s e e e e s e 61
The Complete GAME OF Craps.......ccivvrrrrerierenenserseseses s sesessessssessessessesessessessessesessessesssssssessessens 68
Making the Application YOUF OWNccvcveerennienieneneses s ssssessessesassessessessesssssssessesesssssessesaes 76
Testing and Uploading the AppliCation ... s 78
SUIMIMANY.....eeeeeeecee e e e e e e Re e e e s e e e e e Re e e R e e e e e e e Re e s Ee e nr e e e nnnneas 79
Chapter 3: Bouncing Ball..........ccccusemmmnsemmmmssmmmmsssmsssssmsssssmsssssssssssssssssssssassssssssnssnnss 81
L1070 11T 0 o S 81
Critical REQUIFEBIMENTSccoverireirecrisse s n s ss s 86
HTMLS, CSS, and JavaScript FEATUIEScccevviririerie v sse e e sre e ssesnes 87
Drawing a Ball or an Image or IMages.......c.ccuverririnnnnensnnnen s s s sssssessessens 88
Gradients with a Side Trip 10 EXPIAIN AFTQYSccoeevrierirenrnse e e sessesese e s e ssssesessenens 91
Setting Up @ TiImMiNG EVENT ..o 96
Calculating a New Position and Collision Detection............cccuvernnennenenssennseseseses s sesessesessenens 98
Starting, Positioning and Restarting the video with use of an anonymous function........... 102
ValidALION ... 102
Stopping and Resuming Animation Triggered by BUttons..........ccccvevevnvvceniennsensenenee s sesenens 104
o o T T= TN =] o Vo SRS 105
Preloading IMAQGES ..o s s 105
Building the Application and Making It YOUr OWN ..o 106
Testing and Uploading the Application............cccvvrinnrnininnnnsne e 129
11T 111 1T o OSSOSO 130
Chapter 4: Cannonball and SIingShotcccueemmmnenmmsnmmmsenmssssmmssnmmsssmssnmmm. 131
INEFOTUCTION ...t 131
Critical REQUIFEMENTSoevvereeieriere s ses s s se s see e s s e sa s e sse s sae e sessesaessssessesaesaesesnesnesaes 135
HTMLS5, CSS, and JavaScript FEATUIESccvrvvrrrerrerierrrerrereresessesersessssessessesssssssessessessssessessens 136
Arrays and Programmer-Defined ODJECTSc.vocoereiereicrrrrer s 137

TABLE OF CONTENTS

Rotations and Translations for Drawingc.ccccvvrrnnenininsn e s ssessssssessessenns 139
Drawing Ling SEOMENTS.......c..cccoreeirricririerire st se s s se st 145
Mouse Events for Pulling on the SIiNgShot ... 147
Changing the List of ltems Displayed Using Array SPliCe.........cccrinnnnnnininnsnsensese s sesenens 149
Distance BEIWEEN POINTSccovererirerinesrnesens s ss s e s 150
Building the Application and Making It YOUr OWNccvvvrerevrsenienesessensesessesessessessesessessesaens 151
Cannonball: With Cannon, Angle, and SPEEd..........cceivrerrvierevnrenseresesessere e sss s sessesessessesaes 158
Slingshot: Using a Mouse to Set Parameters of Flight............cccooeevrnvnnincnincvncseccccvseen 168
Testing and Uploading the Application............cccvvriincnininnsnsne s 179
£ 11T 1117 S 180
Chapter 5: The Memory (aka Concentration) Game.........osmsmsmsmsssmsmsssssssssssasasaes 181
INEPOAUCTION.....c. e e e nr s 181
Critical REQUIFEMENTSceveveeiiriere e sere s se s s s a e e s s a e e s aesa e e s nnen 188
HTMLS, CSS, JavaSCript FEALUIESccvvrrerrerrrrerrerersesessessesessssessessesssssssessesssssssessessesssssssessens 189
Representing Cards.........ccccvrerreneresernsesire e ses e ses e s ses e st se s s se s se s s sessesens 190
USiNg Date fOr TIMING......cceorereererererese e s 191
Providing @ PAUSEcccoeveeernisrnesess s s sss e e sss s e sn s e s sessssssssssssssssesssnenns 192
DraWing TEXE ..ccveceeriererreserree s e ne e r e 193
Drawing POIYQONScoeiereereriesererese s sse e sss e s e saesssse s e ssesaesessessesaessssessesaesaesssnesaessessssensesnens 196
S T T 0 T R 198
Implementing Clicking 0N @ Card..........cccccvrenrincrnierne et sessesens 199
Preventing Certain Types of Cheatingc.ccccoveerrrrnncnerese e 200
Building the Application and Making It YOUr OWNc.cccccrenrennnncsene s sessesenns 201
Testing and Uploading the AppliCation.........cucccvecrniennnesnnse s s sessenens 223
£ 11134 R 224
Chapter 6: QUIZ.....ccuccerssesmssnmsssmsssssssnmsssssssssssnssssnssssssssnssssnssssssssnsssansssnnsssnsnsnnsssnns 225
INEFOAUCTION.....c.eiciice e e 225
Critical Requirements for @ QUIZ GAMEcccorvererererererinerere s sas e 230
HTML5, CSS, and JavaScript FEAtUrES.......c.ccevervrvrreererierser e sersee e sesessesssessesesseessessesaenns 231

vii

TABLE OF CONTENTS

Storing and Retrieving INformation in Arrays.......cceveeverrvierennsensessesssessessesessssessesessssessessesses 231
Creating HTML During Program EXECULION..........ccccveverieccrinicnire s ses e e sens 234
Using CSS in the Style EIBMENL............ccovoreirerere e 236
Responding t0 Player MOVES.........cccvurermnmrenesesenesrssesessssessssessssesesssssssssessssssssssssssssssssssssssssenns 237
Presenting AUdio and VIAEOccccceverernsesnnesenine s ssssess s s ssssssssessssssessesenns 238
Checking the PlaYEr’s ANSWEN........c.ccvvrrrerersenenseressessssessessesssssssessessesssssssessessssessessessessssessesses 240
Building the Application and Making It YOUr OWNcccveevrerenessensenessssensesessesessessessessssessenaens 241
Testing and Uploading the Application............cccvrenicninnnsns e 252
£ 253
Chapter 7: MAzes......ccuusemmmmssssnnnmssssssnnmsssssnnsesssssnnnssssssnnnsssssnnnnessssnnnnsssssnnnsesssnnnnnss 255
G20 (0 3T 255
INEFOAUCTION.....c..eeeiccice e e e e e e 255
Critical REQUIFEMENTSceveveeiiriere e sse e e s a e se s s s a e e s s a e e e naennen 263
HTMLS5, CSS, and JavaScript FEATUIESccvvvrrerrerieresssseresesessessessessssessessessssessessessessssensesaens 264
Representation of Walls and the TOKEN. ... 264
Mouse Events to Build and Position @ Wallcoooorenrerrencrrcrere e 265
Detecting the ArrOW KEYS.......ccoveemrenernsesenesessse s se s ssssssssssssssssssessssenns 266
Collision Detection: Token and Any Wall..........cccocevenmnnnennnennessssse s ssssesessssessssesenns 268
USING LOCAI STOFAQEveoererverrriererese s s stsses e ssesssse s e ssesaesessessesaessssessessessessssessessesssssssesaens 271
Encoding Data for LoCal STOrage........ccevrerrerrerrnrersererssssssessesessssessessesssssssessesssssssessessesssssssessens 279
3T oI 2T 0] 1 281
Building the Application and Making It YOUr OWN ..o 282
Creating the Travel Maze AppliCation ... 295
Testing and Uploading APPlICALioNcovceeeverenesennsesine e e 306
£ 11134 R 307

Chapter 8: Rock, Paper, SCISSOrSccuuuesrmmrmsmsssnsssssssssssss 309

0100 T 1 o S 309
Critical REQUIFEIMENTSccourueeiriecrire sttt e se s e et 313
HTML5, CSS, and JavaScript FEAtUrES.........ccevervrvrrerericrser e sererses e ssesessessaessesesssessessessenns 314

viil

TABLE OF CONTENTS

Providing Graphical Buttons for the PIAYErccccvevvirrnieninnessensenessssessesessssessessessessssessessens 314
Generating the ComPULEr MOVE ... 319
Displaying Results Using ANIMAatioN..........ccoeoererenrnnrensenereseres s se s e e 325
Audio and DOM ProCESSING......ccoueerersererreserrasersnsmssssessanes 329
STAMING Off.....veeecceice e 331
Building the Application and Making It YOUr OWNccvvvrerevrsenienesessensesessesessessessesessessesaens 332
Testing and Uploading the Application ... 342
£ 111117 OO 343
Chapter 9: GUeSS @ WOIdccisurrssnnrssssnssssanssssansesssnsesssnsesssnsesssnsesssnnesssnnssssanssssas 345
L C €070 1T 0 o 345
Critical REQUIFEMENTSc.coueieciriere et e s b s e 352
HTMLS5, CSS, and JavaScript FEAtUrEScccuvvirrrerrrrrre s sss e snens 353
Storing a Word List as an Array Defined in an External Script Fileccccvvevvinveriennnenieniennns 353
Generating and Positioning HTML Markup, Then Changing the Markup to Buttons,
and Then Disabling the BUHIONS ..o s 354
Creating the Feedback About Remaining Wrong LEters.........ccccoreernienercsersscresseseseseseeees 358
Maintaining the Game State and Determining a Win or LOSS.........c.cocvminnnnsssenensenes 359
Checking a Guess and Revealing Letters in the Secret Word by Setting textContent............... 360
Building the Application and Making It YOUr OWNccvvveerenensenienesessessesessesessessessesessessessens 361
Testing and Uploading the Application.........c.cccccvirvninnnnininsee s 371
£ 111117 OO 371
Chapter 10: BIaCKJACKccussursasssasssasssnsssssasssasssssssnssssssnsssnsssnssssssssssnsssnsnsnsnnssnnnas 373
L (0T 1T 0 o 373
Critical REQUIFEMENTSc.coueiiiriere st e s b e s 380
HTMLS5, CSS, and JavaScript FEAtUrESccuvvirvniernrrrene st ssesnens 381
Source for Images for Card Faces and Setting Up the Image Objects.........ccvvvrveriererrerieriennnn 381
Creating the Programmer-Defined Object for the Cardsccvvvrerererserseriensssensersessesessessenaes 382
STAtING @ GAME ... e e e e 383
Dealing the Cards.........ccoeeerrrererenerese s ne e 384
SHUTFlING the DECK.......ecereeeererererese s s 389

TABLE OF CONTENTS

CaPLUFING KBY PrESSES ...cuerverreieriersersessnsersersesssssssessessessssessessesssssssessessssssssssessesssssssessssssssssensesses 390
Using Header and Footer EIeMent TYPEScccccvvieriinnnncne s sssse s s e ssssessesaens 392
Building the Application and Making It YOUr OWN ..o 393
Testing and Uploading the Application............cccvvrinnrnininnnnsne e 409
11T 111 1T o OSSOSO 410
Appendix: More Techniques for Drawing.......ccccussseesmmssssnsnmsssssssssssssssssssssssssssssssnns 411
CirCles and AITOWScocouiuruicrisere s se s s 41
L0111 413
Details of IMplementation ..o 414
What YOU LEAINEM.......c.cueeriiriiirince s s 430
Crossing a Line (JUMPING @ FENCE).....ccvrererirrerierersessssesessesssssssessesssssssessessessssssssssesssssssessesses 430
OVEIVIBW.....cuererrsseseesesesssss e se e sa s se s R e R 434
Details of IMplementation ... 438
Using Scalar VECtor GraphiCs..........ccueccrrvenrenereserssesiseses e ssssesessesesssses e sessesessssessesessssesenns 451
Using SVG t0 Draw the HTIMLS LOQO0coveeeerererecren e se s s 452
0T T 456
Details of Implementation ... ———————— 457
Using SVG to Draw and Modify @ Cartoonc.cccvveernenesesesnsssessesssssesssesessesessssessssesessesenns 465
0T P 466
Details of Implementation ... ———————— 467
1T - 479

About the Author

Jeanine Meyer is a professor emerita at Purchase College/
SUNY and past coordinator of the Mathematics/Computer
Science Board of Study. Before Purchase, she taught at
Pace University and before that worked as a research staff
member and manager in robotics and manufacturing
research at IBM Research and as a consultant for IBM’s

educational grant programs. She is the author or coauthor
of ten books on topics such as educational uses of multimedia, programming (three
published by Apress/Springer), databases, number theory, and origami.

She earned a PhD in computer science at the Courant Institute at New York
University, an MA in mathematics at Columbia University, and an SB (the college used
the Latin form) in mathematics from the University of Chicago. She is a member of Phi
Beta Kappa, Sigma Xi, Association for Women in Science, and Association for Computing
Machinery, and was a featured reviewer for ACM Computing Reviews.

For Jeanine, programming is both a hobby and a vocation. Every day she plays
computer puzzles online (including Words with Friends, various solitaire card games,
and Duolingo for Spanish, which she views as a game). She also participates in Daf
Yomi, the seven-and-a-half-year study of Talmud, which certainly has puzzle-solving
aspects. She tries The New York Times crossword puzzle many days but does better at the
mini-puzzle, KenKen, and Two Not Touch, in which she sometimes competes with her
children. She enjoys cooking, baking, eating, gardening, travel, and a moderate amount
of walking. She misses her mother, who inspired many family members to take up
piano, and her father, who gave Jeanine a love of puzzles. She is an active volunteer for
progressive causes and candidates.

About the Technical Reviewer

Vadim Atamanenko is a software developer with more

than 20 years of experience. He participates in international
hackathons both as a judge and as a mentor and is a member
of the Harvard Square Business Association.

He has developed many complex solutions in various
business areas that have helped thousands of people
automate manual processes.

Currently he is the CIO at Freedom Holding Corp., but

he still finds time to regularly participate in international IT
conferences.

He enjoys meeting new people and sharing his knowledge. If you have a question for
him, visit https://www.linkedin.com/in/vadim-atamanenko/.

xiii

https://www.linkedin.com/in/vadim-atamanenko/

Acknowledgments

Much appreciation to my students and colleagues at Purchase College/State University

of New York for their inspiration, stimulation, and support; and to family and friends

who indulge me in my use of family photos and video clips for my courses and my books.
Thanks to the crew at Apress and Springer for all their efforts.

Introduction

When it was first released, there was considerable enthusiasm about the new capabilities
of HTMLS5, and even suggestions that no other technologies or products are necessary to
produce dynamic, engrossing, interactive websites. The excitement has not gone away,
and the new features are still exciting. HTML is HTMLS5. It now is possible, using just
HTML, Cascading Style Sheets, and JavaScript, to draw lines, arcs, circles, and ovals on
the screen and specify events and event handling to produce animation and respond to
user actions. You can include video and audio on your website with standard controls,
and you can include the video or audio in your application exactly when and where
needed. You can create forms that validate the input and provide immediate feedback
to users. You can use a facility similar to cookies to store information on the client
computer. And you can use new elements, such as headers and footers, to help structure
your documents. HTML, CSS, and JavaScript work together. You can use JavaScript to
create new HTML elements, and this is helped by what can be done with CSS.

This book is based on my teaching practices and past writings. Delving into the
features of a technology or general programming concepts is best done when there is a
need and a context. Games, especially familiar and simple ones, supply the context and
thus the motivation and much of the explanation. When learning a new programming
language, one of my first steps is to program the game of craps. Also, if I can build a
ballistics simulation with animation, such as the slingshot game, and make a video
or audio clip play when a specific condition occurs, I am happy. IfI can construct my
own maze of walls, determine ways to provide visual as well as text feedback, and store
information on the player’s computer, I am ecstatic. That’s what we will do in this book.
As you learn how to build these simple games, you'll build your expertise as well. I hope
you go on to make your own exciting, compelling applications.

This goal of this book, developed with considerable help from the Apress staff and
the technical reviewers, is to introduce you to programming, with the motivation of

implementing interactive websites to share with others.

xvii

INTRODUCTION

o Atthe time of updating this book, browser support for HTML5
features is close to complete. The applications have been tested using
Chrome and Safari. However, it is important to keep in mind that

browsers can change.

e My focusis on plain HTML and JavaScript because it has been my
experience that knowledge and experience with the basics is the
best introduction. Frameworks and libraries exist and continue to be
developed and refined, and at some point, these tools are appropriate
to study. This is especially true if you work in an organization that
has adopted specific tools. You can turn to these topics after getting
comfortable with the basics. Note that [have updated my HTML5
and JavaScript Projects book, which is a step up from this one in level
of complexity.

Who Is This Book For?

This book is for people who want to learn how HTML, JavaScript, and Cascading Style
Sheets can serve to build dynamic, exciting websites. It’s for you if you know something
about programming and want to see what the current versions of HTML and JavaScript
offer. It’s also for you if you have no programming experience whatsoever. Perhaps you're
a web designer or website owner and you want to know how to make things happen
behind the scenes or how to request features from programmers.

With this book, we want to showcase the new(er) features of HTML5 and demystify
the art of programming. Programming is an art, and creating appealing games and
other applications requires talent and attention to the audience. However, if you can put
together words to form sentences and put together sentences to form paragraphs, then
you can program.

How Is This Book Structured?

The book consists of ten chapters plus an appendix, each organized around a familiar
game or similar application. There is considerable redundancy in the chapters, so you can
skip around if you like, though the games do get more complex as the book progresses.
Each chapter starts by describing the application and listing the technical features and
programming concepts that will be covered. We look first at the critical requirements in a

xviii

INTRODUCTION

general sense: what we need to implement the application, independent of any specific
technology. We then focus on the features of HTMLS5, JavaScript, Cascading Style Sheets, and
general programming methodologies that satisfy the requirements. Finally, we examine the
implementation of each application in detail. I break out the code line by line in a table, with
comments next to each line. In the cases where multiple versions of a game are described,
only the new lines of code may be explained in detail. This isn’t to deprive you of information
but to encourage you to see what is similar and what is different, and to demonstrate how
you can build applications in stages. It certainly is appropriate to consult the commented
programs on an as-needed basis. Each chapter includes suggestions on how to make the
application your own and how to test and upload the application to a website. The summary
at the end of each chapter highlights what you've learned and what you'll find ahead.

The appendix was added in this edition to provide more advanced examples of
creating and manipulating graphics on the screen using algebra and geometry and
Scalar Vector Graphics images.

Conventions Used in This Book

The applications in this book are HTML documents. The JavaScriptisin a script
element in the head element, and the CSS is in the style element in the head element.
The body element contains the static HTML, including any canvas elements. Several
examples depend on external image files, and one example requires external video files
and audio files and another external audio files.

Layout Conventions

To keep this book as clear as possible, the following text conventions are used throughout:
e Codeis presented in fixed-width font.

e The complete code for each application is presented in a table, with
each statement explained with a comment.

e Pseudocode is written in italic fixed-width font.

e Sometimes code won't fit on a single line in a book. Where this
happens, I use an arrow like this: <.

So, with these formalities out of the way, let’s get started.

Xix

CHAPTER 1

The Basics

Keywords

HTML Document; HTML Structure; Hypertext Markup Language (HTML); HTML File;
Cascading Style Sheets (CSS).
In this chapter, we cover the following:

¢ The basic structure of an HTML document
o Thehtml, head, title, script, style, body, img, and a elements
e A Cascading Style Sheet (CSS) example

e AJavaScript code example, using Date and document.write

Introduction

Hypertext Markup Language (HTML) is the language for delivering content on the Web.
HTML is not owned by anyone but is the result of people working in many countries

and many organizations to define the features of the language. An HTML document is

a text document that you can produce using any text editor. HTML documents contain
elements surrounded by tags—text that starts with a < symbol and ends with a > symbol.
An example of a tag is . This particular tag will display the image
held in the file home.gif. These tags are the markup. It is through the use of tags that
hyperlinks, images, and other media are included in web pages.

Basic HTML can include directives for formatting in a language called Cascading
Style Sheets (CSS) and programs for interaction in a language called JavaScript.
Browsers, such as Firefox and Chrome, interpret the HTML along with any CSS and
JavaScript to produce what we experience when we visit a website. HTML holds the

© Jeanine Meyer 2023
J. Meyer, The Essential Guide to HTMLS5, https://doi.org/10.1007/978-1-4842-8722-4_1

https://doi.org/10.1007/978-1-4842-8722-4_1

CHAPTER 1 THE BASICS

content of the website, with tags providing information on the nature and structure

of the content as well as references to images and other media. CSS specifies the
formatting. The same content can be formatted in different ways. JavaScript is a
programming language that’s used to make the website dynamic and interactive. In all
but the smallest working groups, different people may be responsible for the HTML, CSS,
and JavaScript, but it’s always a good idea to have a basic understanding of how these
different tools work together. If you are already familiar with the basics of HTML and
how CSS and JavaScript can be added together, you may want to skip ahead to the next
chapter. Still, it may be worth casting your eye over the content in this chapter to make
sure you are up to speed on everything before we start on the first core examples.

The latest version of HTML (and its associated CSS and JavaScript) is HTML5.

It has generated considerable excitement because of features such as the canvas for
displaying pictures and animation; support for video and audio; and tags for defining
common document elements such as header, section, and footer. You can create a
sophisticated, highly interactive website with HTMLS5. As of this writing, not all browsers
accept all the features, but you can get started learning HTMLS5, CSS, and JavaScript
now. Learning JavaScript will introduce you to general programming concepts that will
be beneficial if you try to learn any other programming language or if you work with
programmers as part of a team.

The approach I'll use in this book is to explain HTMLS5, CSS, and JavaScript concepts
in the context of specific examples, most of which will be familiar games. Along the way,
I'll use small examples to demonstrate specific features. Ideally, this will help you both
understand what you want to do and appreciate how to do it. You will know where we
are headed as I explain the concepts and details.

The task for this chapter is to build a web page of links to other websites. In this way,
you'll get a basic understanding of the structure of an HTML document, with a small
amount of CSS code and JavaScript code. For this and other examples, please think
of how to make the project meaningful to you. The page could be a list of your own
projects, favorite sites, or sites on a particular topic. For each site, you'll see text and a
hyperlink. The second example includes some extra formatting in the form of boxes
around the text, pictures, and the day’s date and time. Figure 1-1 and Figure 1-2 show
examples I've created.

CHAPTER 1 THE BASICS

My games

The Dice game presents the game called craps.

The Cannonball 15 a ballistics simulation. A ball appears to move on the screen m an arc. The program deterrunes when it
hits the ground or the target. The player can adjust the speed and the angle.

The Slingshot simulates shooting a slingshot. A ball moves on the screen, with the angle and speed depending on how far
the player has pulled back on the shngshot usmg the mouse.

The Concentrabon/memory game presents a set of plan rectangles you can think of as the backs of cards. The player
clicks on first one and then another and pictures are revealed. If the two pictures represent a match, the two cards are
removed. Otherwise, the backs are displayed. The game continues untl all matches are made. The time elapsed s
calculated and displayed.

The Quiz game presents the player with 4 boxes holding names of countries and 4 boxes holding names of capital cities.
These are selected randomly from a larger bist. The player clicks to indicate matches and the boxes moved to make the
guessed boxes be together. The program displays whether or not the player is correct.

The Maze program is a multi-stage game. The player builds a maze by using the mouse to build walls. The player then can
move a token through the maze. The player also can save the maze on the local computer using a name chosen by the
player and retneve it later, even after closing the browser or even turming off the computer.

Figure 1-1. An annotated list of games

Sun Jul 10 2022 14:05:15 GMT-0400 (Eastern Daylight Time)

Favorite Sites

The website for Purchase College/State University of New York.

?The Aviva Meyer's photographs site is a collection of Aviva's photographs stored on a site called smugmug. The
;ca_tg:g‘&r‘itcs are Music, Adventures, Family (which requires a password) and others.

Figure 1-2. Favorite sites, with extra formatting

CHAPTER 1 THE BASICS

When you reload the Favorite Sites page, the date and time will change to the current
date and time according to your computer.

Critical Requirements

The requirements for the list of links application are the very fundamental requirements
for building a web page containing text, links, and images. For the example shown in
Figure 1-1, each entry appears as a paragraph. In the example shown in Figure 1-2, in
contrast, each entry has a box around it. The second example also includes images and
a way to obtain the current day, date, and time. Later applications will require more
discussion, but for this one we’ll go straight to how to implement it using HTML, CSS,
and JavaScript.

HTMLS, CSS, and JavaScript Features

As Inoted, HTML documents are text, so how do we specify links, pictures, formatting,
and coding? The answer is in the markup, that is, the tags. Along with the HTML that
defines the content, you'll typically find CSS styles, which can be specified either inside
the HTML document or in an external document. You also might include JavaScript for
interactivity, again specified in the HTML document or in an external document. We'll
start with a look at how you can build simple HTML tags and how you can add inline CSS
and JavaScript all within the same document.

Basic HTML Structure and Tags

An HTML element begins with a starting tag, which is followed by the element content
and an ending tag. The ending tag includes a / symbol followed by the element type, for
example /head. Elements can be nested within elements. A standard HTML document
looks like this:

<html>
<head>
<title>Very simple example
</title>
</head>

CHAPTER 1 THE BASICS

<body>
This will appear as is.
</body>

</html>

Note that I've indented the nested tags here to make them more obvious, but HTML
itself ignores this indentation (or whitespace, as it’s known), and you don’t need to add
it to your own files. In fact, for most of the examples throughout this book, I don’t indent
my code.

This document consists of the html element, indicated by the starting tag <html> and
ending with the closing tag: </html>.

HTML documents typically have a head and a body element, as this one has. This
head element contains one element, title. The HTML title shows up different places
in different browsers. Figure 1-3 shows the title, “Very Simple Example,” on a tab

in Chrome.
@ & & Very simple example X -+
<« @ File | /Usersfjeaninemeyer/Documents/essentialGuide3rdEdition/simple.html

This will appear as is.

Figure 1-3. The HTML title on a tab in the Chrome browser

In most cases, you will create something within the body of the web page that you'll
think of as a title, but it won’t be the HTML title! Figure 1-3 also shows the body of the
web page: the short piece of text. Notice that the words html, head, title, and body do not
appear. The tags “told” the browser how to display the HTML document.

We can do much more with text, but let’s go on to see how to get images to appear.
This requires an img element. Unlike the html, head, and body elements that use starting
and ending tags, the img element just uses one tag. It is called a singleton tag. Its element
type is img (not image), and you put all the information within the tag itself using what
are termed attributes. What information? The most important item is the name of the file
that holds the image. The tag

CHAPTER 1 THE BASICS

tells the browser to look for a file with the name frog and the file type . jpg. In this
case, the browser looks in the same directory or folder as the HTML file. You can also
refer to image files in other places, and I'll show this later. The src stands for source.
Itis termed an attribute of the element. The slash before the > indicates that this is
a singleton tag. There are common attributes for different element types, but most
element types have additional attributes. Another attribute for img elements is the width
attribute.

This specifies that the image should be displayed with a width of 200 pixels. The
height will be whatever is necessary to keep the image at its original aspect ratio. If you
want specific widths and heights, even if that may distort the image, specify both width
and height attributes.

Tip You'll see examples (maybe even some of mine) in which the closing slash
is missing that work just fine. It is considered good practice to include it. Similarly,
you’ll see examples in which there are no quotation marks around the name of
the file. HTML is more forgiving in terms of syntax (punctuation) than most other
programming systems. Finally, you’ll see HTML documents that start with a tag of
type !DOCTYPE and have the HTML tag include other information. At this point, we
don’t need this, so | will keep things as simple as | can (but no simpler, to quote
Einstein).

Producing hyperlinks is similar to producing images. The type of element for a
hyperlink is a, and the critical attribute is href.

Purchase College website

As you can see, this element has a starting and ending tag. The content of the
element, whatever is between the two tags—in this case, Purchase College website—is
what shows up in blue and is underlined. The starting tag begins with a. One way to
remember this is to think of it as the most important element in HTML so it uses the first
letter of the alphabet. You can also think of an anchor, which is what the a actually stands
for, but that isn’t as meaningful for me. The href attribute (think hypertext reference)
specifies the website where the browser goes when the hyperlink is clicked. Notice that
this is a full web address (called a Universal Resource Locator, or URL, for short).

6

CHAPTER 1 THE BASICS

Web addresses can be absolute or relative. An absolute address starts with http://.
A relative address is relative to the location of the HTML file. Using relative addressing
makes it easier to move your project to a different website, and you can indicate the
folder one level up by using

./

at the start of the reference. In the favorite sites example, the avivasmugmug.png file
and the apressshot.png file are located in the same folder as the HTML file. They are
there because I put them there! For large projects, many people put all the images in a
subfolder called images and write addresses as images/postcard.gif. File management
is a big part of creating web pages.

We can combine a hyperlink element with an img element to produce a picture on
the screen that a user can click. Remember that elements can be nested within other
elements. Instead of putting text after the starting <a> tag, put an tag:

Let’s put these concepts to work in another example:

<html>

<head>

<title>Second example </title>
</head>

<body>

This will appear as is.

Jeanine Meyer's Academic
Activities

</body>

</html>

CHAPTER 1 THE BASICS

I created the HTML file, saved it as second.html, and then opened it in the Chrome
browser. Figure 1-4 shows what is displayed.

® 0 ® @ secondexample X 4
<« & @ File | fUsersfjeaninemeyer/D:] ialGuide3rdEdition/: d.html
4 : =
- Explire you vechncal {parkaps bghily chaeriive) ;“
% = = r e, i gain & Pty e that e and =
This will appear as is. Purchase College/SUNY = wesmmmictiamnmic e

Figure 1-4. Example with images and hyperlinks

This produces the text; the image in its original width and height; the image with
the width fixed at 200 pixels and height proportional; a hyperlink that will take you to
the Purchase College website; and another link that uses an image that will take you to
the web page on the Purchase College website for the Mathematics/Computer Science
department. However, this isn’t quite what I had in mind. I wanted these elements
spaced down the page.

This demonstrates something you need to remember: HTML ignores line breaks and
other whitespace. If you want a line break, you have to specify it. One way is to use the
br singleton tag. I'll show other ways later. Take a look at the following modified code.
Notice that the
 tags don’t need to be on a line by themselves.

<html>

<head>

<title>Second example Spaced Out</title>

</head>

<body>

This will appear as is.

<a href=Error! Hyperlink reference not valid. College/SUNY

</body>

</html>

CHAPTER 1 THE BASICS

Figure 1-5 shows what this code produces. Notice that I changed the title. I also
decided to leave the origami frog images together, and I put two
 tags after the link
to Purchase College/SUNY.

@ & @ Second example X @ Second example Spaced Out X 4

<« (@ @ File | /Usersfjeaninemeyer/Documents/essentialGuide3rdEdition/secondSpacedOut.html

This will appear as is.

Purchase College/SUNY

MATHEMATICS/COMPUTER
SCIENCE

Explore your technical (perhaps slightly obsessive)
side, and gain a mastery of the ideas and m
technologies the rest of us see as magic.

Figure 1-5. Text, images, and links with line breaks

There are many HTML element types: the h1 through h6 heading elements produce
text of different sizes; there are various elements for lists and tables, and others for forms.
CSS, as we'll see in a moment, is also used for formatting. You can select different fonts,
background colors, and colors for the text, and control the layout of the document. It’s
considered good practice to put formatting in CSS, create interactivity in JavaScript,
and keep the HTML for the content. HTML5 provides new structural elements—such
as article, section, footer, and header—putting formatting into the style element
and making use of the new elements, called semantic tags , to facilitate working with

CHAPTER 1 THE BASICS

other people. However, even when you're working just with yourself, separating content,
formatting, and behavior lets you easily change the formatting and the interactions.
Formatting, including document layout, is a large topic. In this book, I stick to the basics.

Using Cascading Style Sheets

CSSis a special language just for formatting. A style is essentially a rule that specifies
how a particular element will be formatted. This means you can put style information

in a variety of places: a separate file, a style element located in the head element, or a
style within the HTML document, perhaps within the one element you want to format
in a particular way. The styling information cascades, or trickles down, unless a different
style is specified. To put it another way, the style closest to the element is the one that’s
used. For example, you might use your official company fonts as given in the style
section in the head element to flow through most of the text but include a specification
within the local element to style one particular piece of text. Because that style is closest
to the element, it is the one that is used.

The basic format includes an indicator of what is to be formatted followed by
one or more directives. In the examples for this chapter, I'll specify the formatting for
elements of type section, namely, a border or box around each item, margins, padding,
alignment, and a background of white. The complete HTML document in Listing 1-1 is
a mixture (some would say a mess!) of features. The elements body and p (paragraph)
are part of the original version of HTML. The section element is one of the new element
types added in HTML5. The section element does need formatting, unlike body and p,
which have default formatting that the body and each p element will start on a new line.
CSS can modify the formatting of old and new element types. Notice that the background
color for the text in the section is different from the background color for the text outside
the section.

In the code in Listing 1-1, I specify styles for the body element (there is just one) and
the section element. If I had more than one section element, the styling would apply to
each of them. The style for the body specifies a background color and a color for the text.
In the beginning, browsers accepted a set of only 16 colors by name, including black,
white, red, blue, green, cyan, and pink. However, now the up-to-date browsers accept
140 colors by name.

See https://www.w3schools.com/colors/colors_names.asp.

10

CHAPTER 1 THE BASICS

You can also specify color using RGB (red, green, blue) hexadecimal codes, but you'll
need to use a graphics program—such as Adobe Photoshop, Corel Paint Shop Pro, or
Adobe Flash Professional—to figure out the RGB values, or you can experiment. I used
Paint Shop Pro to determine the RGB values for the green in the frog head picture and
used that for the border as well.

The text-align directives are just what they sound like: they indicate whether to
center the material or align it to the left. The font-size sets the size of text in pixels.
Borders are tricky and don’t appear to be consistent across browsers. Here I've specified
a solid green border of 4 pixels. The width specification for section indicates that the
browser should use 85 percent of the window, whatever that is. The specification for p
sets the width of the paragraph at 250 pixels. Padding refers to the spacing between the
text and the borders of the section. The margin is the spacing between the section and its

surroundings.

Listing 1-1. A Complete HTML Document with Styles

<html>

<head>

<title>CSS example </title>

<style>

body {
background-color:tan;
color: #660000;
text-align:center;
font-size:22px;

}

section {
width:85%;
border:4px #00FF63 solid;
text-align:left;
padding:5px;
margin:10px;
background-color: white;

}

p{
width: 75%;

}

11

CHAPTER 1 THE BASICS

aside {
font-style: italic;

}

</style>

</head>

<body>
The background here is tan and the text is the totally arbitrary RED
GREEN BLUE

value #660000.

<section>
This section has text--this sentence--and then a paragraph with an image,
and text.

<p>

 The frogface model can be made to move its jaw.
</p>

</section>

<section>
As you may have noticed, I like origami. <p> The next image is a photo of
the Flapping Bird, one of the best known origami models, in action.

 </p>

<aside>There are many books and websites to learn how to fold the Flapping
Bird. Here is a plug for one of my origami books <a href="https://
origamiusa.org/catalog/products/origami-explanations”>0Origami with
Explanations from The Source, the store of OrigamiUSA. It also is
available on Amazon and elsewhere. Visit my <a href="https://www.amazon.
com/Jeanine-Meyer/e/B001JPA5SC%3Fref=dbs_a mng rwt scns_share">Jeanine
Meyer Author page. I put these comments in an aside, a semantic
element. See the style specifications for how I made it be shown in
italics.

</aside>

</section>

</body>

</html>

12

CHAPTER 1 THE BASICS
This produces the screen shown in Figure 1-6.

The background here is tan and the text is the totally arbitrary RED GREEN BLUE value #660000.

This section has text--this sentence--and then a paragraph with an image, and text.

The frogface model can be made to move its jaw.

As you may have noticed, I like origami.

The next image is a photo of the Flapping Bird, one of the best known origami models, in action.

There are many books and websites to learn how to fold the Flapping Bird. Here is a plug for one of my origami books Qrigami
with Explanations from The Source, the store of OrigamiUSA. It also is available on Amazon and elsewhere. Visit my Jeanine
Meyer Author page. I put these comments in an aside, a semantic element. See the style specifications for how I made it be shown
in italics.

Figure 1-6. Sample use of CSS styles

Tip Don’t be concerned if you don’t understand everything immediately. Modify
these examples and make up your own. You'll find lots of help on the Web. In
particular, see the official source for HTML 5 at http://dev.w3.org/htmls5/
spec/Overview.html.

There are many things you can do with CSS. You can use it to specify formatting
for types of elements, as shown here; you can specify that elements are part of a class;
and you can identify individual elements using the id attribute. In Chapter 6, where we
create a quiz, [use CSS to position specific elements in the window and then JavaScript
to move them around.

13

CHAPTER 1 THE BASICS

JavaScript Programming

JavaScript is a programming language with built-in features for accessing parts of an
HTML document, including styles in the CSS element. It is termed a scripting language
to distinguish it from compiled languages, such as C++. Compiled languages are
translated all at once, prior to use, while scripting languages are interpreted line by
line by browsers. This text assumes no prior programming experience or knowledge
of JavaScript, but it may help to consult other books, such as Getting Started with
JavaScript, by Terry McNavage (friends of ED, 2010), or online sources such as http://
en.wikipedia.org/wiki/JavaScript.

Each browser owns its version of JavaScript.

An HTML document holds JavaScript in a script element, located in the head
element. To display the time and date information as shown in Figure 1-2, I put the
following in the head element of the HTML document:

<script>
document.write(Date());
</script>

JavaScript, like other programming languages, consists of statements of various
types. In later chapters, I'll show you assignment statements, compound statements
such as if and switch and for statements, and statements that create what are called
programmer-defined functions. A function is one or more statements that work together
in a block and can be called any time you need that functionality. Functions save writing
out the same code over and over. JavaScript supplies many built-in functions. Certain
functions are associated with objects (more on this later) and are called methods.

The code

document.write("hello");

is a JavaScript statement that invokes the write method of the document object with
the argument "hello". An argument is additional information passed to a function or
method. Statements are terminated by semicolons. This piece of code will write out the
literal string of characters h, ¢, [, I, 0 as part of the HTML document.

The document.write method writes out anything within the parentheses. Since I
wanted the information written out to change as the date and time change, I needed a
way to access the current date and time, so I used the built-in JavaScript Date function.

14

CHAPTER 1 THE BASICS

This function produces an object with the date and time. Later, you'll see how to use
Date objects to compute how long it takes for a player to complete a game. For now, all
I want to do is display the current date and time information, and that’s just what this
code does:

document.write(Date());

To use the formal language of programming: this code calls (invokes) the write
method of the document object, a built-in piece of code. The period (.) indicates that the
write to be invoked is a method associated with the document produced by the HTML
file. So, something is written out as part of the HTML document. What is written out?
Whatever is between the opening parenthesis and the closing parenthesis. And what
is that? It is the result of the call to the built-in function Date. The Date function gets
information maintained by the local computer and hands it off to the write method.
Date also requires the use of parentheses, which is why you see so many. The write
method displays the date and time information as part of the HTML document, as
shown in Figure 1-2. The way these constructs are combined is typical of programming
languages. The statement ends with a semicolon. Why not a period? A period has
other uses in JavaScript, such as indicating methods and serving as a decimal point for
numbers.

Natural languages, such as English, and programming languages have much in
common—different types of statements; punctuation using certain symbols; and
grammar for the correct positioning of elements. In programming, we use the term
notation instead of punctuation, and syntax instead of grammar. Both programming
languages and natural languages also let you build up very complex statements out of
separate parts. However, there is a fundamental difference: as I tell my students, chances
are good that much of what I say in class is not grammatically correct, but they’ll still
understand me. But when you're “talking” to a computer via a programming language,
your code must be perfect in terms of the grammatical rules of the language to get what
you want. The good news is that unlike a human audience, computers do not exhibit
impatience or any other human emotion, so you can take the time you need to get
things right. There’s also some bad news that may take you a while to appreciate. If you
make a mistake in grammar—termed a syntactic error—in HTML, CSS, or JavaScript, the
browser still tries to display something. It’s up to you to figure out what and where the
problem is when you don’t get the results you wanted in your work.

15

CHAPTER 1 THE BASICS

Using a Text Editor

You build an HTML document using a text editor and you view/test/play the document
using a browser. Though you can use any text editor program to write the HTML, I
suggest TextPad for PCs and Sublime for Macs. These are shareware, which makes

them relatively inexpensive. You should consider making donations! Don’t use a word
processing program, which may insert nontext characters. Notepad also works, although
the other tools have benefits such as color-coding that I'll demonstrate. To use the editor,
you open it and type in the code. Figure 1-7 shows what the Sublime screen looks like.

Figure 1-7. Starting off in Sublime

You will want to save your work frequently and, most important, save it as the file
type.html. Do this at the start, and then you will gain the benefits of the color-coding. In
Sublime, select File » Save As and then enter the name with the file extension .html, as
shown in Figure 1-8.

16

untitled

()

ARG RU RSB BN B R R BN N R NG abREsvcovanawnn
B FALAN

Figure 1-8. Saving a file as type HTML

<html>
<head>
<title>(SS example </title>
qr
b¢
Save As: third.html
Tags:
} | Favorites Today
S€ 32 Dropbox
E.’l Documents
) taxes2017 g
51 Medicare Minute :
| 51 processingBook March
| £ tax2016
[scripting =
} ‘ Ij wxml .
p | B Processing 2017

(] JeaninePatchers

£ snowySceneBranchFall 2
B instructor's manual

£ numberTheoryBook

=] HTMLSandJavascriptPr...
<% iCloud Drive

2% jeaninemeyer

=1 MaxClass

i New Folder

CHAPTER 1 THE BASICS

‘ary RED GRE

here is tex
— = 'hen, outsid
e * ,and then a

hyperlink. <p>The border color of the section matches the color of the
frog image. </p></section>

As you may have noticed, I Llike origami. The next image represents a fro

If you want to learn how to fold it, go t

Notice that I gave the file a name and a file extension and that I also specified the

folder where I want the file to reside. After saving the file, the window appears as shown

in Figure 1-9, with color coding.

17

CHAPTER 1 THE BASICS

® games.| UNREGISTERED

1 —dn
2 ———
3 AR I BT
4 tle» PP AT SO TR TN
5 IR UTRI LA T A
6
T g
8 The <s href="craps.html">Dice game</:> presents the game called craps.
9 <fp>
0 =
11 The C: l</2> is a ballistics simulation. A ball appears to move on the screen in an arc.
The program determines when the ball hits the ground or the target. The player can adjust the speed and the angle.
12 </p>
13 <=
14 The 5lingshot</s> simulates shooting a slingshot. A ball moves on the screen, with the angle and
speed depending on how far the player has pulled back on the slingshot using the mouse.
15 </p=
16 <>
17 The <z href="memory.html">Concentration/memory game</:> presents a set of plain rectangles you can think of as the backs
of cards. The player clicks on first one and then another and pictures are revealed. If the two pictures represent a
match, the two cards are removed. Otherwise, the backs are displayed. The game continues until all matches are made. The
time elapsed is calculated and displayed.
18 <fp>
19 <>
20 The =: href="quizl.html">Quiz game</s> presents the player with 4 boxes holding names of countries and 4 boxes holding
names of capital cities. These are selected randomly from a larger list. The player clicks to indicate matches and the
boxes are moved to put the guessed boxes together. The program displays whether or not the player is correct.
21 <fp>
22 <
23 The < href="maze.html">Maze</=> program is a multi-stage game. The player builds a maze by using the mouse to build
walls. The player then can move a token through the maze. The player can also save the maze on the local computer using a
name chosen by the player and retrieve it later, even after closing the browser or turning off the computer.
24 <fp>
25 </body>
26 </hial>
| 22
TabSze4 HTML

Figure 1-9. After saving the file as HTML

The color coding, which you'll see only after the file is saved as HTML, indicates
tags and quoted strings. This can be valuable for catching many errors. Sublime and the
other editors do provide options for changing the color scheme. Assuming that you are
using the one shown here, if you see long sections of yellow, the color for quoted strings,
it probably means a missing closing quotation marks. By the way, you can use single or
double quotation marks, but you can’t mix them up. Also, if you copy and paste from
Word or PowerPoint and copy so-called “smart” quotation marks, ones that curve, this
will cause problems.

18

CHAPTER 1 THE BASICS

Building the Applications

The source code for an HTML document typically includes an HTML document and
other files.

e The simple.html file is complete in itself and was shown in
Figure 1-3.

e The second.html application was shown in Figure 1-4, and
secondspacedout.html was shown in Figure 1-5. Two image files are
referenced: frog.gif two times and jhome.gif one time.

e The third.html file, with the garish colors, references two image
files: frogface.gif and flappingbird.png.

o The games.html file is complete in itself in that it does not reference
any image files. If the files mentioned in the href attributes of the
a tags are not present, then there will be error messages when the
hyperlinks are clicked.

e The FavoriteSites.html file references two image files:
avivasmugmug.jpeg and apressshot. jpeg.

Keeping track of files is a critical part of building HTML applications.

Now let’s delve into the HTML coding statement by statement, first for the list of
annotated links describing games and then for the favorite sites. The code uses the
features described in the previous section. Table 1-1 shows the complete code that
produced the display shown in Figure 1-1: paragraphs of text with links to different files,
all located in the same folder.

19

CHAPTER 1 THE BASICS

Table 1-1. The “My Games” Annotated Links Code

Code Explanation
<html> Opening html tag.
<head> Opening head tag.

<title>Annotated links</title>

</head>
<body>
<h1>My games</h1>

<p>
The Dice

game presents the game
called craps.

</p>

<p>

The <a href="cannonball.
html">Cannonball is a ballistics
simulation. A ball appears to move
on the screen in an arc. The program
determines when the ball hits the
ground or the target. The player can
adjust the speed and the angle.

</p>

<p>

Opening title tag, the title text, and closing
title tag.

Opening body tag.
Opening h1 tag, text, and then closing h1 tag.

This will make “My Games” appear in a big
font. The actual font will be the default.

Opening p for paragraph tag.

Text with an a element. The opening a tag has
the attribute href set to the value craps.
html. Presumably this is a file in the same
folder as this HTML file. The contents of the a
element—uwhatever is between the <a> and
the —will be displayed, first in blue and
then in mauve once clicked, and underlined.

Closing p tag.
Opening p tag.

See the previous case. The a element here
refers to the cannonball. html file, and the
displayed text is Cannonball.

Closing p tag.
Opening p tag.

20

(continued)

Table 1-1. (continued)

CHAPTER 1 THE BASICS

Code

Explanation

The Slingshot</
a> simulates shooting a slingshot. A
ball moves on the screen, with the

angle and speed depending on how far

the player has pulled back on the
slingshot using the mouse.

</p>

<p>

The <a href="memory.
html">Concentration/memory game
presents a set of plain rectangles you
can think of as the backs of cards.

The player clicks on first one and then
another and pictures are revealed. If
the two pictures represent a match, the
two cards are removed. Otherwise, the
backs are displayed. The game continues
until all matches are made. The time
elapsed is calculated and displayed.
</p>

<p>

The Quiz game
presents the player with 4 boxes holding
names of countries and 4 boxes holding
names of capital cities. These are
selected randomly from a larger list. The
player clicks to indicate matches and the
boxes are moved to put the guessed boxes
together. The program displays whether or
not the player is correct.

See previous. This paragraph contains the
hyperlink to s1ingshot.html.

Closing p tag.
Opening p tag.

See previous. This paragraph contains the
hyperlink to memory . html.

Closing p tag.
Opening p tag.

See previous. This paragraph contains the
hyperlink to quiz1.html.

(continued)

21

CHAPTER 1 THE BASICS

Table 1-1. (continued)

Code Explanation

</p> Closing p tag.

<p> Opening p tag.

The Maze See previous. This paragraph contains the
program is a multi-stage game. The hyperlink to maze.html

player builds a maze by using the
mouse to build walls. The player then
can move a token through the maze.
The player can also save the maze

on the local computer using a name
chosen by the player and retrieve it
later, even after closing the browser
or turning off the computer.

</p> Closing p tag.
</body> Closing body tag.
</ html> Closing html tag.

Once you have created several of your own HTML applications, you may build a
document such as this one to serve as your own annotated list. If you use folders, the
href links will need to reflect the location in terms of the HTML document.

The Favorite Sites code has the features of the annotated list with the addition of
formatting: a green box around each item and a picture in two of the three items. See
Table 1-2.

22

Table 1-2. The Favorites Sites Code

CHAPTER 1 THE BASICS

Code Explanation
<html> Opening html tag.
<head> Opening head tag.

<title>Annotated links</title>

<style>

article {

width:60%;

text-align:left;
margin:10px;
border:2px green double;

padding:2px;

display:block;

}
img {display:block;}

</style>

<script>

document.write(Date());

Complete title element: opening and closing tag
and “Annotated links” in between.

Opening style tag. This means we’re now going
to use CSS.

Start of a style. The reference to what is being
styled is all article elements. The style then
has a brace: {. The opening and closing braces
surround the style rule we’re creating, much like
opening and closing tags in HTML.

The width is set to 60% of the containing element.
Note that each directive ends with a ; (semicolon).

Text is aligned to the left.
The margin is 10 pixels.
The border is a 2-pixel green double line.

The space between the text and the border is 2
pixels.

The article is a block, meaning there are line
breaks before and after.

Closes the style for article.

Style img elements to block style: line break before
and after.

Closing style tag.

Opening script tag. We are now writing
JavaScript code.

One statement of code: write out what is produced
by the Date() call.

(continued)

23

CHAPTER 1 THE BASICS

Table 1-2. (continued)

Code Explanation
</script> Closing script tag.
</head>

<body> Opening body tag.

<h3>Favorite Sites</h3>

<article>

The <a href=http://www.purchase.
edu/> The website for Purchase
College/State University of

New York.

</article>
<article>

The <a href="https://avivameyer.
smugmug.com/">Aviva Meyer's
photographs site is a

collection of Aviva's photographs

stored on a site called smugmug.
The categories are Music,
Adventures and Family (which
requires a password).

<img src="avivasmugmug.png"
width="300"/>

</article>

Text surrounded by h3 and /h3 tags. This makes
the text appear somewhat larger than the norm.
Opening article tag.

This text will be subject to the style specified. It
includes an a element.

Closing article tag.
Opening article tag.

This article is similar to the previous one, with an a
element and some text.

An img tag. The source of the image is the file
avivasmugmug.jpeg. If the file had a . jpg
extension, this would not work. The width is set
at 300 pixels. There are line breaks before and
afterward because of the style directive in the
style section.

Closing article tag.

24

(continued)

http://www.purchase.edu
http://www.purchase.edu
http://www.purchase.edu
https://avivameyer.smugmug.com/
https://avivameyer.smugmug.com/

CHAPTER 1 THE BASICS

Table 1-2. (continued)

Code Explanation

<article> Opening article tag.

Apress This is similar to the previous article: an a element
publishers is the site for the and some text.
publishers of this book.

<img src="apressshot.png" An img element. The source is apressshot.
width="300"/> jpeg. The width is set at 300 pixels.
</article> Closing article tag.

</body> Closing body tag.

</ html> Closing html tag.

It is pretty straightforward how to make this application your own: use your own
favorite sites! In most browsers, you can download and save image files if you want to use
a site logo for the hyperlink, or you can include other pictures. It is my understanding
that making a list of sites with comments and including images such as logos is within
the practice called “fair use,” but I am not a lawyer. For the most part, people like links
to their sites. It doesn’t affect the legal question, but you can also choose to set the src
in the img tag to the web address of the site where the image lives if you'd rather not
download a particular image file to your computer and then upload it to your website.

You also can make this application your own by changing the formatting. Styles can
be used to specify fonts, including specific font, font family, and size. This lets you pick
a favorite font and specify what font to use if the preferred font is not available on the
user’s computer. You can specify the margin and padding or vary independently the
margin-top, margin-left, padding-top, and so forth.

Testing and Uploading the Application

You need to have all the files, in this case the single HTML file plus all image files, in the
same folder unless you are using full web addresses. For the links to work, you need to
have the correct addresses for all href attributes. My examples show how to do this for
HTML files in the same folder or for HTML files somewhere else on the Web.

25

http://apress.com

CHAPTER 1 THE BASICS

You can start testing your work even if it is not completely done. For example, you
can putin a single img element or a single a element. Open a browser, such as Firefox,
Chrome, or Safari. In Firefox, click File and then “Open file” and browse to your HTML
file. In Chrome, press Ctrl on the PC (Cmd on the Mac) and then browse to the file and
click OK to open it. You should see something like my examples.

Click the hyperlinks to get to the other sites. Reload the page using the reload icon for
the browser and observe the different time. If you don’t see what you expect—something
like my examples—you need to examine your code. The following are common mistakes:

e Missing or mismatched opening and closing tags.

o Wrong name for image files or HTML files, or wrong file extension for
the image files. You can use image files of type JPG, GIFE or PNG,
but the file extension named in the tag must match the actual file
type of the image.

e Missing quotation marks. The color coding, as available in the
editors, can help you identify this.

Summary

In this chapter, you learned how to compose HTML documents with text, images, and
hyperlinks. This included the following:

o The basic tags, including html, head, title, style, script, and body
o Two semantic element tags: section and aside

o The img element for displaying images

o The a element for hyperlinks

o Simple formatting using a style element written following Cascading
Style Sheet (CSS) rules

o Asingle line of JavaScript code to provide date and time information

This chapter was just the beginning, though it’s possible to produce beautiful and
informative web pages using basic HTML, with or without Cascading Style Sheets. In the
next chapter, you learn how to include randomness and interactivity in an application
and how to use the canvas element, the critical feature of HTMLS5.

26

CHAPTER 2

Dice Game

In this chapter, we cover the following:
e Drawing on a canvas
e Random processing
e Game logic

e Form output

Introduction

Among the most important new features in HTMLS5 is the canvas element. This element
provides a way for developers to make line drawings, include images, and position text
in a totally free-form fashion, a significant improvement over the older HTML. Although
you could do some fancy formatting in the earlier versions, layouts tended to be boxy
and pages less dynamic. How do you draw on the canvas? You use a scripting language,
usually JavaScript. I will show you how to draw on canvas, and I'll explain the important
features of JavaScript that we’ll need to build an implementation of the dice game
called craps: how to define a function, how to invoke pseudorandom behavior, how to
implement the logic of this particular game, and how to display information to a player.
Before we go any further, though, you need to understand the basics of the game.

The game of craps has the following rules:

The player throws a pair of dice. The sum of the two top faces is what matters, so a 1
and a 3 is the same as 2 and 2. The sum of two 6-sided dice can be any number from 2 to
12. If the player throws a 7 or 11 on the first throw, the player wins. If the player throws a
2, 3, or 12, the player loses. For any other result (4, 5, 6, 8, 9, 10), this result is recorded as
what is called the player’s point, and a follow-up throw is required. On follow-up throws,
a throw of 7 loses and a throw of the player’s point wins. For anything else, the game
continues with the follow-up throw rules.

27
© Jeanine Meyer 2023

J. Meyer, The Essential Guide to HTMLS5, https://doi.org/10.1007/978-1-4842-8722-4_2

https://doi.org/10.1007/978-1-4842-8722-4_2

CHAPTER2 DICE GAME

Let’s see what our game play might look like. Figure 2-1 shows the result of a throw of
two ones at the start of the game.

Stage: First Throw ‘Pomt: | | Outcome: | You lose!

Figure 2-1. First throw, resulting in a loss for the player

It is not apparent here, but our dice game application draws the die faces each time
using the canvas tag. This means it’s not necessary to download images of individual
die faces.

A throw of two 1s means a loss for the player since the rules define 2, 3, or 12 on a
first throw as a loss. The next example shows a win for the player, a 7 on a first throw, as
shown in Figure 2-2.

28

CHAPTER 2 DICE GAME

Stage: First Throw Pomt Qutcome: | You win!

Figure 2-2. A 7 on a first throw means the player wins

Figure 2-3 shows the next throw—an 8. This is neither a win nor a loss, but it means
there must be a follow-up throw.

Stage: Need follow-up throw Pomnt: 8 Outcome:

Figure 2-3. An 8 means a follow-up throw with a player’s point of 8 carried over

29

CHAPTER2 DICE GAME

Let’s assume that the player eventually throws an 8 again, as indicated in Figure 2-4.

Stage: |Back to first throw. Point: Outcome: |You win!

Figure 2-4. It’s another throw of 8, the point value, so the player wins

As the previous sequence shows, the only thing that counts is the sum of the values
on the faces of the dice. The point value was set with two 4s, but the game was won with
a2andabé.

The rules indicate that a game will not always take the same number of throws of the
dice. The player can win or lose on the first throw, or there may be any number of follow-
up throws. It is the game builder’s job to build a game that works—and working means
following the rules, even if that means play goes on and on. My students sometimes act
as if their games work only if they win. In a correct implementation of the game, players
will win and lose.

Critical Requirements

The requirements for building the dice game begin with simulating the random throwing
of dice. At first, this seems impossible since programming means specifying exactly what
the computer will do. Luckily, JavaScript, like most other programming languages, has

a built-in facility that produces results that appear to be random. Sometimes languages
use the middle bits (1s and 0s) of a very long string of bits representing the time in

30

CHAPTER 2 DICE GAME

milliseconds. The exact method isn’t important to us. We will assume that the JavaScript
furnished by the browser does an OK job with this, which is called pseudorandom
processing.

Assuming now that we can randomly get any number from 1 to 6 and do it twice
for the two die faces, we need to implement the rules of the game. This means we
need a way to keep track of whether we are at a first throw or a follow-up throw. The
formal name for this is the application state, which means the way things are right now,
and is important in both games and other types of applications. Then we need to use
constructs that make decisions based on conditions. Conditional constructs such as if
and switch are a standard part of programming languages, and you'll soon understand
why computer science teachers like me—who have never been in a casino or a back
alley—really like the game of craps.

We need to give the player a way to throw the dice, so we’ll implement a button
on the screen to click for that. Then we need to provide information back to the player
on what happened. For this application, I produced graphical feedback by drawing
dice faces on the screen and also displayed information as text to indicate the stage
of the game, the point value, and the result. The older term for interactions with users
was input-output (I/0), back when that interaction mainly involved text. The term
graphical user interface (GUI) is now commonly used to indicate the vast variety of
ways that users interact with computer systems. These include using the mouse to
click on a specific point on the screen or combining clicks with dragging to simulate
the effect of moving an object (see the slingshot game in Chapter 4). Drawing on the
screen requires the use of a coordinate system to specify points. Coordinate systems
for the computer screen are implemented in similar ways in most programming
languages, as I'll explain shortly.

HTML5, CSS, and JavaScript Features

Let’s now take a look at the specific features of HTML5, CSS, and JavaScript that provide
what we need to implement the craps game.

31

http://dx.doi.org/10.1007/978-1-4842-4155-4_4

CHAPTER2 DICE GAME

Pseudorandom Processing and
Mathematical Expressions

Pseudorandom processing in JavaScript is performed using a built-in method called
Math.random. Formally, random is a method of the Math class. The call Math.random()
generates a number from 0 up to but not including 1, resulting in a decimal number, for
example, 0.253012. This may not seem immediately useful for us, but it’s actually a very
simple process to convert that number into one we can use. We multiply that number,
whatever it is, by 6, which produces a number from 0 up to but not including 6. For
example, if we multiply the .253012 by 6, we get 1.518072. That’s almost what we need,
but not quite. The next step is to strip away the fraction and keep the whole number.

To do that, we use another Math method, Math.floor. This method produces a whole
number after removing any fractional part. As the name suggests, the floor method
rounds down. In our particular case, we started with .253012, then arrived at 1.518072,
and, therefore, made the call Math.floor(1.58072) with the result the whole number 1.
In general, when we multiply our random number by 6 and floor it, we’ll get a number
from 0 to 5. The final step is to add a 1, because our goal is to get a number from 1 to 6,
over and over again, with no particular pattern.

You can use a similar approach to get whole numbers in any range. For example, if
you want the numbers 1 to 13, you'd multiply the random number by 13 and then add 1.
This could be useful for a card game. You'll see similar examples throughout this book.

We can combine all of these steps together into what is called an expression.
Expressions are combinations of constants, methods, function calls, and some things
we'll explore later. We put these items together using operators, such as + for addition
and * for multiplication.

Remember from Chapter 1 how tags can be combined—nesting a tag within another
tag—and the one line of JavaScript code we used in the Favorite Sites application:

document.write(Date());

We can use a similar process here. Instead of having to write the random call and then
the floor method as separate statements, we can pass the random call as an argument of
the floor method. Take a look at this code fragment:

1+Math.floor(Math.random()*6)

32

http://dx.doi.org/10.1007/978-1-4842-4155-4_1

CHAPTER 2 DICE GAME

This expression will produce a number from 1 to 6. I call it a code fragment because it
isn’t quite a statement. The operators + and * refer to the arithmetic operations and are
the same as you'd use in normal math. The order of operations starts from the inside and
works out.

1. Invoke Math.random() to get a decimal number from 0 up to, but
not quite, 1.

2. Multiply the result by 6.

3. Take that and strip away the fraction, leaving the whole number,
using Math. floor.

4. Add1.

You'll see a statement with this expression in our final code, but we need to cover a
few other things first.

Variables and Assignment Statements

Like other programming languages, JavaScript has a construct called a variable, which
is essentially a place to put a value, such as a number. It is a way of associating a name
with a value. You can use the value later by referencing the name. One analogy is to
office holders. In the United States, we speak of “the president.” In 2010, when I worked
on the first edition of this book, the president was Barack Obama. Now, in July 2022,
the president is Joseph Biden. The value held by the term “the president” changes. In
programming, the value of the variable can vary as well, which is where it gets its name.

The term var is used to declare a variable.

The names of variables and functions, described in the next section, are up to the
programmer. There are rules, including no internal blanks, no use of a period, and the
name must start with an alphabetic character. There is a limit on the length of a name,
but our inclination is to make names short to avoid typing. However, I advise you to
not make them so short that you forget what they are. You do need to be consistent, but
you don’t need to obey the rules of English spelling. For example, if you want to set up
avariable to hold the sum of values and you believe that sum is spelled som, that’s fine.
Just make sure you use som all the time. But if you want to refer to something that’s a part
of JavaScript, such as function or document or random, you need to use the spelling that
JavaScript expects.

33

CHAPTER2 DICE GAME

You should avoid using the names of built-in constructs in JavaScript (such as
random or floor) for your variables. Try to make the names unique but still easily
understandable. One common method of writing variable names is to use what'’s
called camelCasing. This involves starting your variable name in lowercase and then
using a capital letter to denote when a new word starts, for example, numberOfTurns or
userFirstThrow. You can see why it’s called camel case—the capitals form “humps”
in the word. You don’t have to use this naming method, but it’s a convention many
programmers follow.

The line of code that will hold the pseudorandom expression explained in the
previous section is a particular type of statement called an assignment statement. For
example,

var ch = 1+Math.floor(Math.random()*6);

sets the variable named ch to the value that is the result of the expression on the right
side of the equal sign. When used in a var statement, it also would be termed an
initialization statement. The = symbol is used for setting initial values for variables as in
this situation and in the assignment statements to be described next. I chose to use the
name ch as shorthand for choice. This is meaningful for me. In general, though, if you
need to choose between a short name and a longer one that you will remember, pick
the longer one! Notice that the statement ends with a semicolon. You may ask, why not
a period? The answer is that a period is used in two other situations: as a decimal point
and for accessing methods and properties of objects, as in document.write.

Assignment statements are the most common type of statements in programming.
Here’s an example of an assignment statement for a variable already defined:

bookName = "The Essential Guide to HTML5";

The use of the equal sign may be confusing. Think of it as making it true that the left
side equals what’s produced by the right side. You’'ll encounter many other variables and
other uses of operators and assignment statements in this book.

Caution The var statement defining a variable is called a declaration statement.
JavaScript, unlike many other languages, allows programmers to omit declaration
statements and just start using a variable. | try to avoid doing that, but you will see
it in many online examples.

34

CHAPTER 2 DICE GAME

For the game of craps, we need variables that define the state of the game, namely,
whether it is a first throw or a follow-up throw, and what the player’s point is (remember
that the point is the value of the previous throw). In our implementation, these values
will be held by so-called global variables, variables defined with var statements outside
of any function definition so as to retain their value (the values of variables declared
inside of functions disappear when the function stops executing).

You don’t always need to use variables. For example, the first application we create
here sets up variables to hold the horizontal and vertical positions of the dice. I could
have put literal numbers in the code because I don’t change these numbers, but since I
refer to these values in several different places, storing the values in variables mean that
if I want to change one or both, I need to make the change in only one place.

Programmer-Defined Functions

JavaScript has many built-in functions and methods, but it doesn’t have everything you
might need. For example, as far as I know, it does not have functions specifically for
simulating the throwing of dice. So JavaScript lets us define and use our own functions.
These functions can take arguments, like the Math.floor method, in which the
argument, say the variable rawScore in the invocation Math.floor (rawScore), is used
to calculate to biggest whole number not bigger than the current value of rawScore. The
statement

score = Math.floor(rawScore);

would be used to set the variable score with whole numbers, based on values in
rawScore, which may have fractional parts. I am showing off a use of camel casing. Do
keep in mind that it is my coding and only my coding that makes the connection.

Arguments are values that may be passed to the function. Think of them as extra
information.

The format for a function definition is the term function followed by the name you
want to give the function, followed by parentheses holding the names of any arguments,
followed by an open bracket, some code, and then a closed bracket. As I note in the

previous sections, the programmer chooses the name. Here’s an example of a function

35

CHAPTER2 DICE GAME

definition that returns the product of the two arguments. As the name indicates, you
could use it to compute the area of a rectangle. I use as names for the arguments in the
function header: wd and 1n. These would stand for width and length.

function areaOfRectangle(wd,1ln) {
return wd * 1n;

}

Within the function definition, notice the return keyword. This tells JavaScript to
send the result of the function back to us. In our example, this lets us write something
like this:

rectl = areaOfRectangle(5,10;

This would assign a value of 50 (5 x 10) to our rect1 variable. The function definition
would be written as code within the script element. It might or might not make sense
to define this function in real life because it is pretty easy to write multiplication in the
code, but it does serve as a useful example of a programmer-defined function. Once this
definition is executed, which probably would be when the HTML file is loaded, other
code can use the function just by calling its name, as in areaOfRectangle(100,200) or
areaOfRectangle(x2-x1,y2-y1).

The second expression assumes that x1, x2, y1, y2 refer to coordinate values that are
defined elsewhere.

Functions also can be called by setting certain tag attributes. For example, the body
tag can include a setting for the onLoad attribute:

<body onLoad="init();">

My JavaScript code contains the definition of a function I call init. Putting this into
the body element means that JavaScript will invoke my init function when the browser
first loads the HTML document or whenever the player clicks the reload/refresh button.
Similarly, using one of the new features of HTMLS5, I could include the following button
element:

<button onClick="throwdice();">Throw dice </button>

This creates a button holding the text Throw dice. When the player clicks it,
JavaScript invokes the throwdice function I defined in the script element.
The form element, described later, could invoke a function in a similar way.

36

CHAPTER 2 DICE GAME

Conditional Statements: if and switch

The craps game has a set of rules. One way to summarize the rules is to say, if itis a
first-throw situation, we check for certain values of the dice throw. If it’s not the first
throw, we check for other values of the dice throw. JavaScript provides the if and switch
statements for such purposes.

The if statement is based on conditions, which can be a comparison or a check for
equality—for example, is a variable named temp greater than 85 or does the variable
named course hold the value "Programming Games"? Comparisons produce two
possible logical values—true or false. So far you've seen values that are numbers and
values that are strings of characters. Logical values are yet another datatype. They are
also called Boolean values, after the mathematician, George Boole. The condition and
check that I mentioned would be written in code as

temp>85
and
course == "Programming Games"

Read the first expression as: is the current value of the variable temp greater than 85?

And the second one as: is the current value of the variable course the same as the
string "Programming Games"?

The comparison example is easy to understand; we use > to check if one value is
greater than another and < to check the opposite. The value of the expression will be one
of the two logical values, true or false.

The second expression is probably a little more confusing. You may be wondering
about the two equal signs and maybe also the quotation marks. The comparison
operator in JavaScript (and several other programming languages) that checks for
equality is this combination of two equal signs. We need two equal signs because the
single equal sign is used in assignment statements and it can’t do double duty. If we
had written course = "Programming Games", we would have been assigning the value
"Programming Games" to our course variable rather than comparing the two items. The
quotation marks define a string of characters, starting with P, including the space, and
ending with s.

37

CHAPTER2 DICE GAME

We can now look at how to write code that does something only if a condition is true.

if (condition) {
code

If we want our code to do one thing if a condition is true and another thing if it is
NOT true, the format is as follows:

if (condition) {
if true code

}

else {
if not true code

}

Note that I used italics here because this is what is called pseudocode, not real
JavaScript that we would include in our HTML document.

Here are some real code examples. They use alert, a built-in function that causes
a small window with the message indicated by the argument given between the
parentheses to pop up in the browser. The user must click OK to continue.

if (temp>85) {
alert("It is hot!");
}
if (age »= 21) {
alert("You are old enough to buy a drink.");
}
else {
alert("You are too young to be served in a bar.");

}

We could write the craps application using just if statements. However, JavaScript
supplies another construct that makes things easier to understand—the switch
statement. The general format is as follows:

switch(x) {
case a:
codea;

38

CHAPTER 2 DICE GAME

case b:
codeb;
default: codec;

}

JavaScript evaluates the value of x in the first line of the switch statement and
compares it to the values indicated in the cases. Once there is a hit, that is, x is
determined to be equal to a or b, the code following the case label is executed. If there
is no match, the code after default is executed. It’s not necessary to have a default
possibility. Left to its own devices, the computer would continue running through the
switch statement even if it found a matching case statement. If you want it to stop when
you find a match, you need to include a break statement to break out of the switch.

You can probably see already how if and switch will do what we need for the dice
game. You'll read how in the next section. First, let’s look at an example that determines
the number of days in the month indicated by the variable mon holding three-letter
abbreviations ("Jan", "Feb", etc.).

switch(mon) {

case "Sep":

case "Apr":

case "Jun":
case "Nov":
alert("This month has 30 days.");
break;
case "Feb":
alert("This month has 28 or 29 days.");
break;
default:

alert("This month has 31 days.");

If the value of the variable mon is equal to "Sep", "Apr", "Jun", or "Nov", control flows
to the first alert statement and then exits the switch statement because of the break. If
the value of the variable mon is equal to "Feb", the alert statement mentioning 28 or 29
days executes, and then the control flow exits the switch. If the value of mon is anything
else, including, by the way, an invalid three-letter abbreviation, the alert mentioning 31
days is executed.

39

CHAPTER2 DICE GAME

Just as HTML ignores line breaks and other whitespace, JavaScript does not require a
specific layout for these statements. You could put everything on one line if you wanted.
However, make things easy on yourself and use multiple lines and indenting.

Drawing on the Canvas

Now we get to one of the most powerful new features in HTMLS5, the canvas element. I
will explain the pieces of coding that go into an application involving canvas, then show
some simple examples, and finally get back to our goal of drawing dice faces on the
canvas. Recall that the outline for an HTML document is

<html>
<head>
<title>... </title>
<style>...</style>
<script> </script>
</head>
<body>
. Here is where the initial static content will go...
</body>
</html>

Note You do not have to include a title or a style or script element, and they
can be in any order. The favorites example in Chapter 1 used a style element, but
the dice example will not.

To work with the canvas, we include the tags for canvas in the body element of the
HTML document and JavaScript in the script element. I'll start by describing a standard
way to write a canvas element.

<canvas id="canvas" width="400" height="300">
Your browser doesn't support the HTML5 element canvas.
</canvas>

40

http://dx.doi.org/10.1007/978-1-4842-4155-4_1

CHAPTER 2 DICE GAME

If an HTML file with this coding is opened by a browser that does not recognize
canvas, the message Your browser doesn't support the HTML5 element canvas.
appears on the screen. If you were preparing web pages for all common browsers, you
could choose to direct visitors to your site to somewhere else or try another strategy. In
this book, I just focus on HTMLS5.

The HTML canvas tag defines this element to have an id of canvas. This could have
been anything, but there’s no harm in using canvas. You can have more than one canvas,
however, and in that case, you would need to use distinct values for each ID. That’s
not what we do for this application, though, so we don’t have to worry about it. The
attributes of width and height are set to specify the dimensions of this canvas element.

Now that we've seen the canvas in the body, let’s look at the JavaScript. The first step
in drawing on the canvas is to define the appropriate object in the JavaScript code. To do
this, I need a variable, so I set up one named ctx with the following line outside of any
function definition.

var ctx;

This makes it a global variable that can be accessed or set from any function. The
ctx variable is something that’s needed for all drawing. I chose to name my variable ctx,
short for “context,” copying many of the examples I've seen online. I could have chosen
any name.

Later in the code (you'll see all the code in the examples that follow, and you can
download the source code), I write the code to set the value of ctx.

ctx = document.getElementById('canvas').getContext('2d");

The statement setting ctx is in a function I define named init that is referenced in
the body tag.

<body onload="init();>

Placing the statement in the init function means that the statement is invoked after
everything in the body is downloaded and before any other function is invoked.

What the assignment statement setting ctx does is first get the element in the
document with the ID canvas and then extract what is called the 2d context. We can all
anticipate that the future may bring other contexts! For now, we use the 2d one.

41

CHAPTER2 DICE GAME

In the JavaScript coding, you can draw rectangles, create paths including line
segments and arcs, and position image files on the canvas. You can also fill in the
rectangles and the paths. Before we do this, however, we need to tackle coordinate
systems and radian measures.

Just as a global positioning system uses latitude and longitude to define your
location on the map, we need a way to specify points on the screen. These points are
called pixels, and we used them in the previous chapter to specify the width of images
and the thickness of borders. The pixel is a pretty small unit of measurement, as you
can see if you do any experiments. However, it’'s not enough for everyone to agree on
the linear unit. We also need to agree on the point from which we are measuring, just
as GPS systems use the Greenwich meridian and the equator. For the two-dimensional
rectangle that is the canvas, this goes by the name origin or registration point. The origin
is the upper-left corner of the canvas element. Note that in Chapter 6, when we describe
the quiz show by creating and positioning elements in the HTML document and not in a
canvas element, the coordinate system is similar. The origin is still the upper-left corner
of the window.

This is different from what you may recall from analytical geometry or from making
graphs. The horizontal numbers increase in value moving from left to right. The
vertical numbers increase in value moving down the screen. The standard way to write
coordinates is to put the horizontal value first, followed by the vertical value. In some
situations, the horizontal value is referred to as the x value and the vertical as the y value.
In other situations, the horizontal value is the left (think of it as from the left), and the
vertical value is the top (think of it as from the top).

Figure 2-5 shows the layout of a browser window 900 pixels wide by 600 high. The
numbers indicate the coordinate values of the corners and the middle.

42

http://dx.doi.org/10.1007/978-1-4842-4155-4_6

CHAPTER 2 DICE GAME

0.0

450,300

0,600 900,600

Figure 2-5. Coordinate system for browser window

Now we’ll look at several statements for drawing and then put them together to draw
simple shapes (see Figures 2-6 through 2-10). After that, we’ll see how to draw the dots
and rectangles to represent die faces.

Here’s the HTMLS5 JavaScript code for drawing a rectangle:

ctx.strokeRect(100,50,200,300);

This draws a hollow rectangle, with its top-left corner 100 pixels from the left side
and 50 pixels down from the top. The rectangle has width 200 and height 300. This
statement would use whatever the current settings are for line width and for color.

The next piece of code demonstrates setting the line width to 5 and the color of
the stroke, that is, the outline to the indicated RGB value, namely, red. The rectangle is
drawn using the values in the variables X, y, w, and h.

ctx.lineWidth = 5;
ctx.strokeStyle = "rgb(255,0,0)";
ctx.strokeRect(x,y,w,h);

This snippet

ctx.fillStyle = "rgb(0,0,255)";
ctx.fillRect(x,y,w,h);

43

CHAPTER2 DICE GAME

draws a solid blue rectangle at the indicated position and dimensions. If you want to
draw a blue rectangle with a red outline, you use two lines of code.

ctx.fillRect(x,y,w,h);
ctx.strokeRect(x,y,w,h);

HTMLS5 lets you draw so-called paths consisting of arcs and line segments. Line
segments are drawn using a combination of ctx.moveTo and ctx.lineTo. I'll cover them
in a number of chapters: for the slingshot game in Chapter 4, the memory game using
polygons in Chapter 5, and word guessing game in Chapter 9. In the cannon ball game
in Chapter 4, I'll also show you how to tilt a rectangle, and the word guessing game in
Chapter 9 demonstrates how to draw ovals. In this chapter, I'll focus on the arcs.

You start a path using

ctx.beginPath();
and end it, with the path being drawn, with either

ctx.closePath();
ctx.stroke();

or

ctx.closePath();
ctx.fill();

There also are situations when you can omit the call to closePath.

An arc can be a whole circle or part of a circle. In the dice applications, we draw
only whole circles to represent the pips on the face of each die, but I'll explain how arcs
work in general to make the code less mysterious. The method for drawing arcs has the
following format:

ctx.arc(cx, cy, radius, start angle, end angle, direction);

where cx, cy, and radius are the center horizontal and vertical coordinates and the
radius of the circle. Explaining the next two parameters requires discussing ways to
measure angles. You're familiar with the degree unit for angles: we speak of making

a 180-degree turn, meaning a U-turn, and a 90-degree angle is produced by two
perpendicular lines. But most computer programming languages use another system,
called radians. Here’s one way to visualize radians—think of taking the radius of a circle
and laying it on the circle itself. You can dig into your memory and realize that it won't

44

http://dx.doi.org/10.1007/978-1-4842-4155-4_4
http://dx.doi.org/10.1007/978-1-4842-4155-4_5
http://dx.doi.org/10.1007/978-1-4842-4155-4_9
http://dx.doi.org/10.1007/978-1-4842-4155-4_4
http://dx.doi.org/10.1007/978-1-4842-4155-4_9

CHAPTER 2 DICE GAME

be a neat fit, because there are 2* PI radians around the circle, somewhat more than 6.
So if we want to draw an arc that is a whole circle, we specify a starting angle of 0 and an
end angle of 2*PI. Luckily, the Math class furnishes a constant Math.PI that is the value of
PI (to as much accuracy, as many decimal places, as necessary), so in the code, we write
2*Math.PI. If we want to specify an arc that is half a circle, we use Math.PI, while a right
angle (90 degrees) will be .5*Math.PI.

The arc method requires one more argument, direction. How are we drawing these
arcs? Think of the movement of the hands on a clock face. In HTML 5, clockwise is the
false direction, and counterclockwise is the true direction. (Don’t ask why. That’s just the
way it’s specified in HTMLS5.) I use the built-in JavaScript values true and false. This
will be important when we need to draw arcs that are not whole circles. The nature of the
particular problem dictates how you define the angles if you need to draw arcs that are
not full circles.

Here are some examples, with the complete code, for you to create (using TextPad
or TextWrangler) and then vary to test your understanding. The first one draws an arc,

representing a smile.

<html>

<head>

<title>Smile</title>

<script>

function init() {
var ctx =document.getElementById("canvas").getContext('2d");
ctx.beginPath();
ctx.strokeStyle = "rgh(200,0,0)";
ctx.arc(200, 200,50,0,Math.PI, false);
ctx.stroke();

}

</script>

</head>

<body onLoad="init();">

<canvas id="canvas" width="400" height="300">

Your browser doesn't support the HTML5 element canvas.

</canvas>

</body>

</html>

45

CHAPTER2 DICE GAME

Figure 2-6 shows a portion of the screen with the arc produced by this code.

\ /
. o

Figure 2-6. The “smile” produced by the expression ctx.arc(200,200,50,0,Math.
PI, false);

You can look ahead to Figures 2-11, 2-12, and 2-13, in which I captured more of
the screen to see the positioning of the drawing. Please vary the numbers in your own
example so you can gain an understanding of how the coordinate system works and how
big a pixel actually is.

Before going on to see a frown, try making the arc wider or taller or changing the
color. Then try moving the whole arc up, down, left, and right. Hint: you need to change
the following line:

ctx.arc(200, 200,50,0,Math.PI, false);

Change 200, 200 to reset the center of the circle, and change 50 to change the radius.
Now, let’s go on with other variations. Do take each one and experiment with it.
Changing the last parameter of the arc method to true:

ctx.arc(200,200,50,0,Math.PI,true);
This makes the arc go in a counterclockwise direction. The complete code is as follows:

<html>

<head>
<title>Frown</title>

<script type="text/javascript">

function init() {
var ctx =document.getElementById("canvas").getContext('2d");
ctx.beginPath();
ctx.strokeStyle = "rgh(200,0,0)";
ctx.arc(200, 200,50,0,Math.PI, true);
ctx.stroke();

}

</script>

</head>

46

CHAPTER 2 DICE GAME

<body onLoad="init();">

<canvas id="canvas" width="400" height="300">

Your browser doesn't support the HTML5 element canvas.
</canvas>

</body>

</html>

Notice that I also changed the title. The title appears on a tab in the browser. Your
users/audience do notice the titles. I find that I use titles in debugging to keep track of
different versions. This code produces the screen shown in Figure 2-7.

o

Figure 2-7. The “frown” produced by the expression ctx.arc(200,200,50,0, Math.
PI, true);

Putting in the statement to close the path before the stroke, in the frown example,
will “finish off” the arc.

ctx.closePath();
ctx.stroke();

The complete code is as follows:

<html>
<head>
<title>Frown</title>
<script type="text/javascript">
function init() {
var ctx =document.getElementById("canvas").getContext('2d");

ctx.beginPath();
ctx.strokeStyle = "rgh(200,0,0)";
ctx.arc(200, 200,50,0,Math.PI, true);
ctx.closePath();
ctx.stroke();

}

</script>

</head>
47

CHAPTER2 DICE GAME

<body>

<body onlLoad="init();">

<canvas id="canvas" width="400" height="300">

Your browser doesn't support the HTML5 element canvas.
</canvas>

</body>

</html>

This produces the screen shown in Figure 2-8.

Figure 2-8. The frown becomes a half-circle by adding ctx.closePath(); before ctx.
stroke();

The closePath command is not always necessary, but it’s good practice to include
it. You will notice that I wait to invoke closePath and fill the statements for the multiple
dots. Experiment here and also look ahead to the drawing of the slingshot in Chapter 5
and the drawing of the hangman figure in Chapter 9. If you want the path filled in, you
use ctx.fill() in place of ctx.stroke(), which produces a black, filled-in shape, as
shown in Figure 2-9. The complete code is as follows:

<html>
<head>
<title>Smile</title>
<script type="text/javascript">
function init() {
var ctx =document.getElementById("canvas").getContext('2d");
ctx.beginPath();
ctx.strokeStyle = "rgh(200,0,0)";
ctx.arc(200, 200,50,0,Math.PI, false);
ctx.closePath();
ctx.fill();
}
</script>
</head>

48

http://dx.doi.org/10.1007/978-1-4842-4155-4_5
http://dx.doi.org/10.1007/978-1-4842-4155-4_9

CHAPTER 2 DICE GAME

<body onLoad="init();">

<canvas id="canvas" width="400" height="300">

Your browser doesn't support the HTML5 element canvas.
</canvas>

</body>

</html>

Black is the default color.

Figure 2-9. Filling in the half circle using ctx.fill()

If you want a shape to be filled and have a distinct outline, you use both the fill and
stroke commands and specify different colors using the fillStyle and strokeStyle
properties. The color scheme is based on the same red/green/blue codes introduced
in Chapter 1. You can experiment or use a tool such as Photoshop or the online photo
editor pix1lr.comto get the colors you want. Here is the complete code:

<html>

<head>
<title>Smile</title>

<script type="text/javascript">

function init() {
var ctx =document.getElementById("canvas").getContext('2d");
ctx.beginPath();
ctx.strokeStyle = "rgh(200,0,0)";
ctx.arc(200, 200,50,0,Math.PI, false);
ctx.fillStyle = "rgb(200,0,200)";
ctx.closePath();
ctx.fill();
ctx.strokeStyle="rgb(255,0,0)";
ctx.lineWidth=5;
ctx.stroke();

}

</script>

</head>

49

http://dx.doi.org/10.1007/978-1-4842-4155-4_1
http://pixlr.com

CHAPTER2 DICE GAME

<body onLoad="init();">

<canvas id="canvas" width="400" height="300">

Your browser doesn't support the HTML5 element canvas.
</canvas>

</body>

</html>

This code produces a half-circle filled in with purple (a combination of red and
blue), with a stroke, that is, an outline of pure red, as shown in Figure 2-10. The coding

specifies a path, then draws the path as a fill, and then draws the path as a stroke.

Figure 2-10. Using fill and stroke with different colors

A full circle is produced by many different commands, including the following:

ctx.arc(200,200,50,0, 2*Math.PI, true);
ctx.arc(200,200,50, 0, 2*Math.PI, false);
ctx.arc(200,200,50, .5*Math.PI, 2.5*Math.PI, false);

You may as well stick with the first one—it’s as good as any other. Note that I still use
the closePath command. A circle may be a closed figure in geometric terms, but that
doesn’t matter in terms of JavaScript.

Ifyou think of the canvas element as a canvas on which you put some ink or paint,
you realize you'll need to erase the canvas or the appropriate part of it to draw something
new. To do this, HTMLS5 supplies the following command:

ctx.clearRect(x,y,width,height);

Later examples show how to draw a slingshot (Chapter 4), polygons for the memory/
concentration game (Chapter 5), walls for a maze (Chapter 7), and the stick figure in
hangman (Chapter 9). Now let’s get back to what we need for the dice game.

50

http://dx.doi.org/10.1007/978-1-4842-4155-4_4
http://dx.doi.org/10.1007/978-1-4842-4155-4_5
http://dx.doi.org/10.1007/978-1-4842-4155-4_7
http://dx.doi.org/10.1007/978-1-4842-4155-4_9

CHAPTER 2 DICE GAME

Displaying Text Output Using a Form

It is possible to write text on the canvas (see Chapter 5), but for the craps application, I
chose to use a form, an element in both the older and current versions of HTML. I don’t
use the form for input from the player. I do use it for outputting information on the
results of the throw of the dice. The HTMLS5 specification indicates new ways to set up
forms, including checking or validating the type and range of input. The application in
the next chapter demonstrates validation.

I used the following HTML to produce the form for the dice game:

<form name="f">
Stage: <input name="stage" value="First Throw"/>

Point: <input name="pv" value=" "/>
Outcome: <input name="outcome" value=" "/>
</form>

The form starts with a name attribute. The text Stage:, Point:, and Outcome: appear
next to the input fields. The input tags—notice these are singleton tags—have both
name and value fields. These names will be used by the JavaScript code. You can put any
HTML within a form and a form within any HTML.

Because the dice game uses the new button element, I just added the form element
with the fields used for displaying information to the player, without including an input
element of type submit. Alternatively, I could have used a standard form with a submit
input field (eliminating the need for the new button element) with the following code:

<form name="f" onSubmit="throwDice();">
Stage: <input type="text" name="stage" value="First Throw"/>

Point: <input type="text" name="pv" value=" "/>
Outcome: <input type="text" name="outcome" value=" "/>
<input type="submit" value="THROW DICE"/>

</form>

The input element of type submit produces a button on the screen. These are all the
concepts we need to build the craps application. We can now go ahead and code it.

51

http://dx.doi.org/10.1007/978-1-4842-4155-4_5

CHAPTER2 DICE GAME

Building the Application and Making It Your Own

You may have already tried using the HTML5, CSS, and JavaScript constructs described
in this chapter in small examples. Hint: please do. The only way to learn is to make your
own examples. As a way to build up to the craps application, we will now look at these
three applications:

o Throwing a single die and reloading to throw again
o Throwing two dice by using a button
e The complete game of craps

Figure 2-11 shows a possible opening screen for the first application. I say possible
because it won’t always be a 4. I deliberately captured this screenshot to show practically
all of the window so you can see where the drawing is located on the screen.

Figure 2-11. The single-die application

Figure 2-12 shows the opening screen of the application for throwing a pair of dice.
All that appears is the button.

52

CHAPTER 2 DICE GAME

Threw dice

Figure 2-12. The opening screen of the pair of dice application

Lastly, Figure 2-13 shows the screen after the player clicks the button.

Theow dice |

Figure 2-13. Clicking the button to throw the pair of dice

It is good technique to build your application in incremental steps. These
applications are built using a text editor, such as TextPad or TextWrangler. Remember to
save the file as type .html—and do this early and often. You don’t have to finish before
saving. When you complete the first application and have saved and tested it, you can
save it once more using a new name and then make the modifications to this new copy
to be the second application. Do the same for the third application.

53

CHAPTER2 DICE GAME

Throwing a Single Die

The purpose of this first application is to display a random die face on the canvas, with
circles laid out in the standard way.

For any application, there are generally many approaches that would work. I realized
that I could get double duty out of some of the coding, because the pattern for the 3
die face could be made by combining the 2 and 1 patterns. Similarly, the pattern for 5
is a combination of 4 and 1. The pattern for 4 is a combination of the pattern for 2 plus
something unique. The pattern for 6 is a combination of the one for 4 and something
unique. I could have put all the coding into the init function or used a single drawface
function. In any case, this made sense to me, and I programmed and debugged it fairly
quickly. Table 2-1 lists all the functions and indicates what calls what. Table 2-2 shows
the complete code, explaining what each line does.

Table 2-1. Functions in the Singe-Die Throw Application

Function Invoked By/Called By Calls

init Invoked by action of the onLoad in the <body> tag drawFace

drawFace Called by init drawi, draw2, draw4,
draw2mid

drawl Called by drawFace in three places for 1, 3, and 5

draw2 Called by drawFace in three faces for 2, 3, and 4

draw4 Called by drawFace in three places for 4, 5, and 6 draw2

draw2mid Called by drawFace in one place for 6

54

CHAPTER 2 DICE GAME

Table 2-2. The Complete Code for the Throwing a Single-Die Application

Code Explanation
<html> Opening html tag.
<head> Opening head tag.

<title>Throwing 1 die</title>
<script>

var cwidth = 400;

var cheight = 300;

var dicex

50;
50;
var diceWidth = 100;

var dicey

var diceHeight = 100;
var dotDadius = 6;

var ctx;

function init() {

var ch = 1+Math.wsfloor(Math.

random()*6);
drawFace(ch);

}

function drawFace(n) {

ctx = document.
getElementById('canvas').
getContext('2d");

ctx.lineWidth = 5;

Full title element.
Opening script tag.

Variable holding the width of the canvas; also used to
erase the canvas to prepare for redrawing.

Variable holding the height of the canvas; also used to
erase the canvas to prepare for redrawing.

Variable holding the horizontal position of the single die.
Variable holding the vertical position of the single die.
Variable holding the width of a die face.

Variable holding the height of a die face.

Variable holding the radius of a dot.

Variable holding the canvas context, used in all the draw
commands.

Start of the function definition for the init function,
which is invoked onLoad of the document.

Declare and set the value of the ch variable to randomly
be the number 1, 2, 3, 4, 5, or 6.

Invoke the drawface function with the parameter ch.
End function definition.

Start of the function definition for the drawface
function, whose argument is the number of dots.

Obtain the object that is used to draw on the canvas.

Set the line width to 5.

(continued)

55

CHAPTER2 DICE GAME

Table 2-2. (continued)

Code

Explanation

ctx.clearRect(dicex,dicey,=
diceWidth,diceHeight);

ctx.strokeRect(dicex,dicey,=

diceWidth,diceHeight);
ctx.fillStyle = "#009966";

switch(n) {

case 1:
drawi();
break;
case 2:
draw2();
break;
case 3:
draw2();
draw1();
break;
case 4:
draw4();
break;
case 5:
draw4();
drawi();
break;

case 6:

Clear the space where the die face may have been
drawn. This has no effect the very first time.

Draw the outline of the die face.

Set the color for the circles. | used a graphics program
to determine this value. You can do this, or experiment.

Start switch using the variable n indicating the number
of dots

Ifitis 1.

Call the draw1 function.
Break out of the switch.

If it is 2.

Call the draw2 function.
Break out of the switch.

If it is 3.

First call draw2 and then.
Call draw1.

Break out of the switch.
Ifitis 4.

Call the draw4 function.
Break out of the switch.
Ifitis 5.

Call the draw4 function and then.
Call the draw1 function.
Break out of the switch.

If it is 6.

56

(continued)

Table 2-2. (continued)

CHAPTER 2 DICE GAME

Code Explanation
drawa(); Call the draw4 function and then.
draw2mid(); Call the draw2mid function.
break; Break out of the switch (not strictly necessary).
} Close the switch statement.
} Close the drawface function.

function drawi() {

var dotx;

var doty;

ctx.beginPath();

dotx = dicex + .5*diceWidth;

doty = dicey + .5*diceHeight;

ctx.
arc(dotx,doty,dotrad,0,Math.
PI*2,true);

ctx.closePath();
ctx.fill();

}

function draw2() {

var dotx;

var doty;

ctx.beginPath();

Start of the definition of draw1.

Variable to be used for the horizontal position for
drawing the single dot.

Variable to be used for the vertical position for drawing
the single dot.

Start a path.

Set the center of this dot to be at the center of the die
face horizontally and...

...vertically.

Construct a circle (which is drawn with the fill
command).

Close the path.

Draw the path; that is, fill the circle.
Close draw1.

Start of the draw2 function.

Variable to be used for the horizontal position for
drawing the two dots.

Variable to be used for the vertical position for drawing
the two dots.

Start a path.

(continued)

57

CHAPTER2 DICE GAME

Table 2-2. (continued)

Code Explanation
dotx = dicex + 3*dotrad; Set the center of this dot to be three radius lengths over
from the upper corner of the die face, horizontally and...
doty = dicey + 3*dotrad; ...vertically.
ctx.arc(dotx,doty, Construct the first dot.

dotrad,0,Math.PI*2,true);

dotx = dicex+dicewidth-
3*dotrad;

doty = dicey+diceheight-
3*dotrad;

ctx.arc(dotx,doty,
dotrad,0,Math.PI*2,true);

ctx.closePath();
ctx.fill();

}

function draw4() {
draw2();

var dotx;

var doty;

ctx.beginPath();
dotx

dicex + 3*dotrad;

doty = dicey + diceheight-
3*dotrad,;

Set the center of this dot to be three radius lengths in
from the lower corner of the die face, horizontally and...

...vertically.

Construct the second dot.

Close the path.

Draw both dots.

Close draw2.

Start of the draw4 function.
Draw two dots.

Variable to be used for the horizontal position for
drawing the dots.

Variable to be used for the vertical position for drawing
the dots.

Begin path.

Position this dot inside the lower-left corner, horizontally
and...

...vertically.

58

(continued)

Table 2-2. (continued)

CHAPTER 2 DICE GAME

Code

Explanation

ctx.arc(dotx,doty,
dotrad,0,Math.PI*2,true);

dotx = dicex+dicewidth-
3*dotrad;

doty = dicey+3*dotrad,

ctx.arc(dotx,doty,
dotrad,0,Math.PI*2,true);

ctx.closePath();
ctx.fill();

function draw2mid() {

var dotx;

var doty;

ctx.beginPath();
dotx
doty

dicex + 3*dotrad;

dicey + .5*diceHeight;

ctx.arc(dotx,doty,dotrad,
w(0,Math.PI*2,true);

dotx = dicex+diceWidth-
3*dotrad;

doty = dicey + .5*diceHeight;
//no change

Construct circle.

Position this dot just inside the upper-right corner,
horizontally and...

...vertically.

Construct a circle.

Close the path.
Draw two dots.
Close the draw4 function.

Start the draw2mid function, which draws two dots in
the middle.

Variable to be used for the horizontal position for
drawing the two dots.

Variable to be used for the vertical position for drawing
the two dots.

Begin a path.
Position the dots to be just inside horizontally. ..
...and midway vertically.

Construct a circle.

Position this dot to be just inside the right border.

Position y midway.

(continued)

59

CHAPTER2 DICE GAME

Table 2-2. (continued)

Code Explanation
ctx. Construct a circle.
arc(dotx,doty,dotrad,=0,Math.
PI*2,true);
ctx.closePath(); Close the path.
ctx.fill(); Draw dots.
} Close the draw2mid function.
</script> Close the script element.
</head> Close the head element.
<body onLoad="init();"> Starting the body tag, with the onLoad attribute set to

invoke the init() function.

<canvas id="canvas" width="400" Set up canvas and provide notice if the browser
height="300"> doesn’t accept the canvas element.

Your browser doesn't supportws

the HTML5 element canvas.

</canvas>

</body> Close body and close the html elements.
</html>

You can and should put comments in your code. Comments are pieces of text that
are ignored by the browser but are there to remind you, and, perhaps, others who will
look at this program later, about what is going on. One form of comment starts with two
slashes on a line. Everything to the right of the slashes is ignored. For larger comments,
you use a slash and an asterisk to start the comment and an asterisk and a slash to end it.

/*
This is a comment.
*/

This is a case of do as I say, not as I do. Since I'm using tables to put explanations on
every line and you can consider the whole chapter a comment, I haven’t included many
comments in the code. I repeat: you should!

60

CHAPTER 2 DICE GAME

Hint When | was developing this code (and any code involving a random effect), |
did not want to have to do the initial testing with the random coding. So, right after
the line

var ch = 1+Math.floor(Math.random()*6);
I put the line

ch = 1;

and tested it; then I changed it to

ch = 2;

and so on. I removed this line (or commented it out using //) when I was done with this
phase of testing. This falls under the general advice: try to avoid having to play a game, in
all its complexity, while developing it.

Throwing Two Dice

The next application uses a button to give the player something to do, rather than just
reloading the web page, and it also simulates the throwing of a pair of dice. Before
looking at the code, think about what you can carry over from the first application. The
general answer is: most of it. The “carrying over” is a savings in writing code and in
testing the code.

The second application will need to do something about the positioning of the two
die faces, using two more variables for this, dx and dy. It also needs to repeat the code
using Math.random and call drawFace twice to produce each of the die faces. And there
needs to be a change in what invokes a throw. Table 2-3, which describes the functions
calling and being called, is essentially the same as Table 2-1, except now there’s a
function called throwDice, which is invoked by an action set up by the onClick attribute
of the button tag. Table 2-4 contains the full HTML document for the application of
throwing two dice.

61

CHAPTER2 DICE GAME

Table 2-3. Functions in the Two-Dice Application

Function Invoked By/Called By Calls
throwDice Invoked by action of the onClick in the <button>tag drawFace
drawFace Called by throwDice drawl, draw2,

draw4, draw2mid

draw1 Called by drawFace in three places for 1, 3, and 5

draw2 Called by drawFace in two places for 2, 3, and 4

draws4 Called by drawFace in three places for 4, 5, and 6 draw2
draw2mid Called by drawFace in one place for 6

Table 2-4. The Complete Two-Dice Application

Code Explanation
<html> Opening html tag.
<head> Opening head tag.
<title>Throwing dice</title> Full title element.
<script> Opening script tag.
var cwidth = 400; Variable holding the width of the canvas.
var cheight = 300; Variable holding the height of the canvas; also used to
erase the canvas to prepare for redrawing.
var dicex = 50; Variable holding the horizontal position of the single die;
also used to erase the canvas to prepare for redrawing.
var dicey = 50; Variable holding the vertical position of the single die.
var diceWidth = 100; Variable holding the width of a die face.
var diceHeight = 100; Variable holding the height of a die face.
var dotrad = 6; Variable holding the radius of a dot.
var ctx; Variable holding the canvas context, used in all the

draw commands.

(continued)

62

Table 2-4. (continued)

CHAPTER 2 DICE GAME

Code Explanation
var dx; Variable used for horizontal positioning and changed for
each of the two die faces.
var dy; Variable used for vertical positioning. It is the same for

function throwDice() {

var ch = 1+Math.floor(Math.
random()*6);

dx = dicex;
dy = dicey;
drawFace(ch);

dx = dicex + 150;

ch=1 + Math.floor(Math.
random()*6);

drawFace(ch);

}

function drawFace(n) {

ctx = document.getElementById
w ('canvas').getContext('2d");

ctx.lineWidth = 5;

ctx.clearRect(dx,dy,diceWidth,
diceHeight);

ctx.strokeRect(dx,dy,diceWidth,
diceHeight);

var dotx;
var doty;

ctx.fillStyle = "#009966";

both die faces.
Start of the throwDice function.

Declare the variable ch and then set it with a random
value.

Set dx for the first die face.

Set dy for the first and the second die faces.
Invoke drawFace with ch as the number of dots.
Adjust dx for the second die face.

Reset ch with a random value.

Invoke drawFace with ch as the number of dots.
Close throwdice function.

Start of the function definition for the drawFace
function, whose argument is the number of dots.

Obtain the object that is used to draw on the canvas.

Set the line width to 5.

Clear the space where the die face may have been
drawn. This has no effect the first time.

Draw the outline of the die face.

Variable to hold horizontal position.
Variable to hold vertical position.

Set the color.

(continued)

63

CHAPTER2 DICE GAME

Table 2-4. (continued)

Code Explanation
switch(n) { Start switch using the number of dots.
case 1: Ifitis 1.
draw1(); Call the drawa function.
break; Break out of the switch.
case 2: Ifitis 2.
draw2(); Call the draw2 function.
break; Break out of the switch.
case 3: Ifitis 3.
draw2(); First call draw2 and then.
draw1(); Call draw.
break; Break out of the switch.
case 4: If it is 4.
drawa(); Call the draw4 function.
break; Break out of the switch.
case 5: Ifitis 5.
drawa(); Call the draw4 function and then.
draw1(); Call the draw1 function.
break; Break out of the switch.
case 6: If it is 6.
draw4(); Call the draw4 function and then.
draw2mid(); Call the draw2mid function.
break; Break out of the switch (not strictly necessary).
} Close the switch statement.
} Close the drawface function.
function drawi() { Start of the definition of draw1.

(continued)

64

Table 2-4. (continued)

CHAPTER 2 DICE GAME

Code Explanation
var dotx; Variable to be used for the horizontal position for
drawing the single dot.
var doty; Variable to be used for the vertical position for drawing

ctx.beginPath();
dotx = dx + .5*diceWidth;

doty = dy + .5*diceHeight;

ctx.
arc(dotx,doty,dotrad,=0,Math.
PI*2,true);

ctx.closePath();
ctx.fill();

}

function draw2() {

var dotx;

var doty;

ctx.beginPath();

dotx = dx + 3*dotrad;

doty

dy + 3*dotrad;

ctx.arc(dotx,doty,
dotrad,0,=Math.PI*2,true);

the single dot.
Start a path.

Set the center of this dot to be at the center of the die
face (using dx) horizontally and...

...(using dy) vertically.

Construct a circle (it is drawn with the fill command).

Close the path.

Draw the path, that is, the circle.
Close drawi.

Start of the draw2 function.

Variable to be used for the horizontal position for
drawing the two dots.

Variable to be used for the vertical position for drawing
the two dots.

Start a path.

Set the center of this dot to be three radius lengths
over from the upper corner of the die face, horizontally
and...

...vertically.

Construct the first dot.

(continued)

65

CHAPTER2 DICE GAME

Table 2-4. (continued)

Code Explanation

dotx = dx+diceWidth-3*dotrad;

doty = dy+diceHeight-
3*dotrad,;

ctx.arc(dotx,doty,
dotrad,0,=Math.PI*2,true);

ctx.closePath();
ctx.fill();

function draw4() {
draw2();

var dotx;

var doty;

ctx.beginPath();
dotx = dx + 3*dotrad;

doty = dy + diceheight-
3*dotrad;

ctx.arc(dotx,doty,
dotrad,0,Math.PI*2,true);

dotx = dx+dicewidth-3*dotrad;

doty = dy+3*dotrad;

Set the center of this dot to be 3 radius lengths in from
the lower corner of the die face, horizontally and...

...vertically.

Construct the second dot.

Close the path.
Draw both dots.
Close draw2.

Start of the draw4 function.

Variable to be used for the horizontal position for
drawing the dots.

Variable to be used for the vertical position for drawing
the dots.

Begin path.

Position this dot inside the lower-left corner, horizontally
and...

...vertically.
Construct circle.
Position this dot just inside the upper-right corner,

horizontally and...

...vertically.

(continued)

Table 2-4. (continued)

CHAPTER 2 DICE GAME

Code Explanation
ctx.arc(dotx,doty, Construct circle.
dotrad,0,Math.PI*2,true);
ctx.closePath(); Close path.
ctx.fill(); Draw two dots.

} Close the draw4 function.

function draw2mid() {

var dotx;

var doty;

ctx.beginPath();
dotx = dx + 3*dotrad;
doty = dy + .5*diceHeight;

ctx.arc(dotx,doty,
dotrad,0,=Math.PI*2,true);

dotx

dx+diceWidth-3*dotrad;

doty = dy + .5*diceHeight;
ctx.arc(dotx,doty,
dotrad,0,=Math.PI*2,true);
ctx.closePath();
ctx.fill();

}

</script>

</head>

<body>

Start the draw2mid function.

Variable to be used for the horizontal position for
drawing the two dots.

Variable to be used for the vertical position for drawing
the two dots.

Begin path.
Position the dots to be just inside horizontally...
...and midway vertically.

Construct circle.

Position this dot to be just inside the right border.
Position y midway (no change).

Construct a circle.

Close the path.

Draw dots.

Close the draw2mid function.
Close the script element.
Close the head element.

Starting body tag.

(continued)

67

CHAPTER2 DICE GAME

Table 2-4. (continued)

Code Explanation

<canvas id="canvas" width="400" Canvas tag start.
height="300">

Your browser doesn't support Set up a canvas and provide notice if the browser
the w» HTML5 element canvas. doesn’t accept the canvas element.

</canvas> Close the canvas tag.

 Line break.

<button Button element (note attribute onC1lick setting to

onClick="throwDice();">= Throw invoke throwDice).
dice </button>

</body> Close the body tag.
</html> Close the html tag.

The Complete Game of Craps

The third application is the complete game of craps. Again, much can be carried over
from the previous application. However, now we need to add in the rules of the game.
Among other things, this will mean using the conditional statements if and switch, as
well as global variables (that is, variables defined outside of any function definition), to
keep track of whether it is a first turn (firstTurn) and what is the player’s point (point).
These two variables hold the application state for the game of craps. It is the presence
of this relatively simple application state, and the use of global and local variables, the
conditional statements, and random processing that makes craps a favorite topic of
programming teachers.

The function table is identical to the one given for the second application (see
Table 2-3), so I won't repeat it. Table 2-5 holds the code for this application. The new
action is all in the throwdice function. I will comment the new lines.

68

CHAPTER 2 DICE GAME

Table 2-5. The Complete Craps Application

Code

Explanation

<html

<head

<title>Craps game</title>

>

>

<script>

var

var

var

var

var

var

var

var

var

var

var

var

cwidth = 400;
cheight = 300;

dicex

50;
50;
diceWidth = 100;

dicey

diceHeight = 100;
dotrad = 6;

ctx;

dx;

dy;

firstturn = true;

point;

function throwDice() {

var sum;

var ch = 1+Math.floor(Math.

random()*6);

sum

dx
dy

= ch;
dicex;

dicey;

drawFace(ch);

Global variable, initialized to the value true.

Global variable, does not need to be initialized
because it will be set before use.

Start of the throwdice function.

Variable to hold the sum of the values for the two
dice.

Set ch with the first random value.

Assign this to sum.
Set dx.
Set dy.

Draw the first die face.

(continued)

69

CHAPTER2 DICE GAME

Table 2-5. (continued)

Code Explanation
dx = dicex + 150; Adjust the horizontal position.
ch=1 + Math.floor(Math. Set ch with a random value. This is the one for the
random()*6); second die.
sum += ch; Add ch to what is already in sum.
drawFace(ch); Draw the second die.
if (firstTurn) { Now start the implementation of the rules. Is it a
first turn?
switch(sum) { If it is, start a switch with sum as the condition.
case 7: For7...
case 11: ...or 1.
document.f.outcome. Display You win!.
value="You win!";
break; Exit the switch.
case 2: For 2...
case 3: ...or3...
case 12: ...or12.
document.f.outcome. Display You lose!.
value="You lose!";
break; Exit the switch.
default: For anything else.
point = sum; Save the sum in the variable point.

document.f.pv.value=point; Display the point value.
firstTurn = false; Set firstTurn to false.

document.f.stage.value="Need Display Need follow-up throw.
follow-up throw.";

(continued)

70

CHAPTER 2 DICE GAME
Table 2-5. (continued)
Code Explanation
document.f.outcome. Erase (clear) the outcome field.
value=" ";
} End the switch.
} End the if-true clause.
else { Else (not a first turn).
switch(sum) { Start the switch, again using sum.
case point: If sum is equal to whatever is in point.
document.f.outcome.value="You Display You win!.
win!";
document.f.stage.value="Back Display Back to first throw.
to first throw.";
document.f.pv.value=" "; Clear the point value.
firstTurn = true; Reset firstturn so it is again true.
break; Exit the switch.
case 7: If the sum is equal to 7.
document.f.outcome.value="You Display You lose!.
lose!";
document.f.stage.value="Back Display Back to first throw.
to first throw.";
document.f.pv.value=" "; Clear the point value.
firstTurn = true; Reset firstturn soitis again true
} Close the switch.
} Close the else clause.
} Close the throwdice function.
(continued)

71

CHAPTER2 DICE GAME

Table 2-5. (continued)

Code Explanation

function drawFace(n) {

ctx = document.
getElementById('canvas').
getContext('2d");

ctx.lineWidth = 5;

ctx.clearRect(dx,dy,diceWidth,
diceHeight);

ctx.strokeRect(dx,dy,diceWidth,
diceHeight) ;

ctx.fillStyle = "#009966";

switch(n) {
case 1:
draw1();
break;
case 2:
draw2();
break;
case 3
draw2();
drawi();
break;
case 4:
draw4();
break;
case 5:

draw4();

72

(continued)

Table 2-5. (continued)

CHAPTER 2 DICE GAME

Code Explanation

drawi();
break;

case 6:
draw4();
draw2mid();

break ;

}

function drawi() {
var dotx;
var doty;
ctx.beginPath();
dotx = dx + .5*dicewidth;
doty = dy + .5*diceheight;

ctx.arc(dotx,doty,dotrad,0,
Math.PI*2,true);

ctx.closePath();
ctx.fill();

}

function draw2() {
var dotx ;
var doty;
ctx.beginPath();
dotx = dx + 3*dotrad;
doty = dy + 3*dotrad;

(continued)

73

CHAPTER2 DICE GAME

Table 2-5. (continued)

Code Explanation

ctx.arc(dotx,doty,dotrad,0,Math.
PI*2,true);

dotx = dx+dicewidth-3*dotrad;
doty = dy+diceheight-3*dotrad ;

ctx.arc(dotx,doty,dotrad,0,Math.
PI*2,true);

ctx.closePath();
ctx.fill();
}
function draw4() {
draw2();
var dotx;
var doty;
ctx.beginPath();
dotx = dx + 3*dotrad;
doty = dy + diceheight-3*dotrad;

ctx.arc(dotx,doty,dotrad,0,Math.
PI*2,true);

dotx = dx+dicewidth-3*dotrad;
doty = dy+ 3*dotrad;

ctx.arc(dotx,doty,dotrad,0,Math.
PI*2,true);

ctx.closePath();
ctx.fill() ;

(continued)

74

Table 2-5. (continued)

CHAPTER 2

DICE GAME

Code Explanation

function draw2mid() {
var dotx;
var doty ;
ctx.beginPath();
dotx = dx + 3*dotrad;
doty = dy + .5*diceheight;

ctx.arc(dotx,doty,dotrad,0,Math.
PI*2,true);

dotx

doty
change

dx+dicewidth-3*dotrad;

dy + .5*diceheight; //no

ctx.arc(dotx,doty,dotrad,0,Math.
PI*2,true);

ctx.closePath();
ctx.fill();

}

</script>

</head>

<body>

<canvas id="canvas" width="400"
height="300">

Your browser doesn't support the
HTML5 element canvas

</canvas>

(continued)

75

CHAPTER2 DICE GAME

Table 2-5. (continued)

Code

Explanation

<button onClick="throwdice();">
Throw dice </button>

<form name="f">

Stage: <input name="stage"
value="First Throw"/>

Point: <input name="pv" value="
ll/>

Outcome: <input name="outcome"
value=" "/>

</form>
</body>
</html>

Start a form named f.

With the text Stage: right before it, set up an input
field named stage.

With the text Point: right before it, set up an input
field named pv.

With the text Outcome: right before it, set up an
input field named outcome.

Close the form.
Close body
Close html.

Making the Application Your Own

Making this application your own is not as straightforward as with the favorite sites

application, because the rules of craps are the rules of craps. If you don’t want to change

them, there still are many things you can do. Change the size and color of the dice faces,

using fillRect and setting fillStyle to different colors. Change the color and size of

the whole canvas. Change the text for the outcomes to something more colorful. You also

can implement other games using standard or specially made dice.

You can look ahead to the next chapter and learn about drawing images on the

canvas instead of drawing each die face using arcs and rectangles. HTML5 provides a

way to bring in external image files. The drawback to this approach is that you do have to

keep track of these separate files.

You can develop coding for keeping score. For a gambling game, you can start the

player with a fixed amount of money, say 100 of whatever the currency unit is, and

deduct some amount, say 10, for playing a game, and add some amount, say 20, if and

only if the player wins. You can add this bankroll information as part of the form element

in the body.

76

CHAPTER 2 DICE GAME

<form name="f" id="f">
Stage: <input name="stage" value="First Throw"/>

Point: <input name="pv" value=" "/>
Outcome: <input name="outcome" value=" "/>
Bank roll: <input name="bank" value="100"/>
</form>

JavaScript (and other programming languages) distinguish between numbers
and strings of characters representing numbers. That is, the value "100" is a string
of characters, 1, 0, and 0. The value 100 is a number. In either case, however, the
value of a variable is stored as a sequence of 1s and 0s. For numbers, this will be the
number represented as a binary number. For strings of characters, each character will
be represented using a standard coding system, such as ASCII or Unicode. In some
situations, JavaScript will make the conversion from one datatype to the other, but don’t
depend on it. The coding I suggest uses the built-in functions String and Number to do
these conversions.

In the throwDice function, before the if(firstTurn) statement, add the code in
Table 2-6 (or something like it).

Table 2-6. Adding a Bank for the Player

Code Explanation
var bank = Set a new variable bank to be the number
Number (document.f.bank.value); represented by the value in the bank input field.
if (bank<10) { Compare bank to 10.

alert("You ran out of money! If bank is less than 10, put out an alert.

Add some more and try again.");

Return; Exit the function without doing anything.
} Close the if true clause.
bank = bank - 10; Decrease bank by 10. This line is reached only when
bank was greater than 10.
document.f.bank.value = Put the string representation of that value in the bank
String(bank); field.

77

CHAPTER2 DICE GAME

Then, in each place where the player wins (in the switch statement for a first turn
after the 7 and 11 cases, or in the switch statement for a follow-up turn, after the point
case), add the code in Table 2-7.

Table 2-7. Increasing the Value of the Bank

Code Explanation

bank = Number(document. Set bank to be the number represented by the value in the bank
f.bank.value); input field. Setting bank again allows for the possibility of the player
resetting the bank amount in the middle of a game.

bank +=20; Use the += operator to increase the value of bank by 20.

document.f.bank. Put the string representation of the bank amount in the bank field.
value = String(bank);

When the player loses or when it is a follow-up turn, you don’t add any code. The
bank value goes down before each new game.

Testing and Uploading the Application

These applications are complete in the HTML file. No other files, such as image files, are
used. Instead, the dice faces are drawn on the canvas. (For your information, my versions
of dice games written in the older HTML used one or two img elements. To make these
fixed img elements display different images, I wrote code that changed the src attribute
to be a different external image file. When I uploaded the application, I had to upload all
the image files.)

Open the HTML file in the browser. The first application needs to be reloaded to get a
new (single) die. The second and third applications (the third one being the craps game)
use a button to roll the dice.

I repeat what I wrote earlier. To test this program, you do need to check the many
cases. You are not done when you, acting as the player, win. Typical problems include

e Missing or mismatched opening and closing tags.
e Mismatched opening and closing brackets, the { and the }

surrounding functions, switch statements, and if clauses.

78

CHAPTER 2 DICE GAME

Missing quotation marks. The color coding, as available when using
TextPad and some other editors, can help here, as it will highlight
keywords it recognizes.

Inconsistency in naming and using variables and functions. These
names can be anything you choose, but you need to be consistent.
The function draw2mid will not be invoked by drawmid2 ().

These are all, except arguably the last, mistakes in syntax, analogous to mistakes

in grammar and punctuation. A mistake of semantics, that is, meaning, can be more

difficult to detect. If you write the second switch statement to win on a 7 and lose on

the point value, you may have written correct JavaScript code, but it won’t be the game

of craps.

It shouldn’t happen here because you can copy my code, but a common mistake is

to get confused about the coordinate system and think that vertical values increase going

up the screen instead of down.

Summary

In this chapter, you learned how to

Declare variables and use global variables to represent
application state

Write code to perform arithmetic operations
Define and use programmer-defined functions

Use several built-in features of JavaScript, including the Math.random
and Math.floor methods

Use if and switch statements
Create a canvas using an HTML element

Draw rectangles and circles

79

CHAPTER2 DICE GAME

This chapter introduced a key feature of HTMLS5, the canvas, as well as the notions
of randomness and interactivity. It also presented many programming features you'll
use in the examples in the rest of the book. In particular, the technique of building an
application in stages is useful. The next chapter features the animation of a ball bouncing
in a box—preparation for the real games in Chapter 4—the ballistics simulations called

cannon ball and slingshot.

80

http://dx.doi.org/10.1007/978-1-4842-4155-4_4

CHAPTER 3

Bouncing Ball

In this chapter we cover the following:
o Creating programmer-defined objects
o Using setInterval for animation
e Drawing images
o Accepting and validating form input
o Using buttons
e Using for loops
o Drawing with gradients

e Preloading images

Introduction

Animation, whether at the movies, using a flipbook, or generated in a computer game,
involves displaying a sequence of still images fast enough so that we interpret what we
see as movement as life. In this chapter, I'll show you how to produce animated scenes
by simulating a ball bouncing in a two-dimensional box, with horizontal and vertical
speeds that can be changed by a player. The first iteration of our program calculates
new positions for the ball at fixed intervals of time and displays the result, and it also
determines when there would be a virtual collision of ball and wall and how the ball
would bounce off the wall. After that, we'll see how you can replace the ball with an
image and how to draw rectangles using gradients. We’ll examine the HTMLS5 feature for
validating form input. I then will show you an interactive example that provides a player
with a way to stop and restart the bouncing. A final example is a rectangle holding and
playing a video will bounce against a photo. The following are the five examples:

81
© Jeanine Meyer 2023

J. Meyer, The Essential Guide to HTMLS5, https://doi.org/10.1007/978-1-4842-8722-4_3

https://doi.org/10.1007/978-1-4842-8722-4_3

CHAPTER 3 BOUNCING BALL

e Making a ball bounce in a 2D box (see Figure 3-1)

e Replacing the ball with an image and using a gradient for the box
walls (see Figure 3-2)

e Validating the input (see Figure 3-3)

e Bouncing an image against a background image and providing a way
to stop and resume action (see Figure 3-4)

e Bouncing a video against a background image

Note The kind of animation we’re going to produce is called computed
animation, in which the position of an object is recalculated by a computer
program and the object is then redisplayed. This is in contrast to cel (or frame-by-
frame) animation, which uses predrawn individual static pictures. Animated GlFs
are examples of cel animation and can be produced in many graphics programs.

You'll have to imagine the animation represented by these static pictures. In
Figure 3-1, notice the form with fields for setting the horizontal and vertical velocity.

[CHANGE |

Figure 3-1. A bouncing ball
82

CHAPTER 3 BOUNCING BALL

In Figure 3-2, the ball has been replaced by an image, and the walls are filled in using
a gradient.

Figure 3-2. The ball is now an image from an external file

HTMLS5 lets you specify what the input should be. In this example, I've specified the
input should be a number and indicated minimum and maximum values. I used CSS to
specify that if a user makes an invalid entry, the color of the field turns red. This is shown
in Figure 3-3.

83

CHAPTER 3 BOUNCING BALL

Figure 3-3. A form showing bad input

This set of applications demonstrates substantial programming, but it’s not really a
game, though people enjoy seeing heads or other images bouncing in a box. Inspired
by a recent family picture, I decided to produce a program with a bouncing picture with
the additional features to stop and resume the animation. I also include the feature of
displaying a background picture. Figure 3-4 shows one screenshot. The game objective
is to get the moving object, a photo of cotton candy, to stop close to the child, Annika,
wearing face paint to represent a panda. See Figure 3-4. This provides me with an
example to demonstrate the advantages of so-called event-driven programming.

84

CHAPTER 3 BOUNCING BALL

Click STOP to stop the cotton candy moving to get it near Panda Anr
You can click RESUME to have the candy start moving again.
You can change the velocitics.

- — —
) ¥ T
: g :
b1} [
- 2 pra i :
'

Figure 3-4. Bouncing cotton candy game

The newest example features a video. My daughter, Aviva, is manipulating an origami
model, the Kissy Fish designed by Junior Fritz Jacquet. The background is a photo I took
at the Atlanta Botanical Garden of Aviva sitting on a bench, next to a statue of a frog, as
shown in Figure 3-5. For this, you will need to imagine the rectangle holding the video
moving and the movement within the rectangle of the fish’s jaws closing and opening.

85

CHAPTER 3 BOUNCING BALL

4| Click to start

Figure 3-5. Video bouncing in box

The bouncing video program is simpler than the other examples, and you may
want to add ways for player interaction. However, the “Click to start” button served an
important purpose. To prevent website creators from forcing viewers to see videos that
they did not request, some user interaction is required. The button is for this purpose.

Critical Requirements

It is important for this application and, indeed, for all programming to define the
requirements before you begin writing any code. The application requires things I
demonstrated in previous chapters: drawing shapes on a canvas element and using a
form canvas element. For this example, we will actually use the form fields for input. In
the dice game described in Chapter 2, they were used strictly for output.

In Chapter 1, the HTML document made use of external image files. In Chapter 2, we
drew the faces of the dice entirely with coding. In this chapter, I'll demonstrate both: a
bouncing circle drawn with code and a bouncing image from an image file.

To accomplish this, we need some code that will be able to do something—right
now, it doesn’t matter what—at fixed intervals of time. The intervals need to be short
enough that the result looks like motion.

86

http://dx.doi.org/10.1007/978-1-4842-4155-4_2
http://dx.doi.org/10.1007/978-1-4842-4155-4_1
http://dx.doi.org/10.1007/978-1-4842-4155-4_2

CHAPTER 3 BOUNCING BALL

In this case, the something-to-be-done is to reposition the ball, or what is standing
in for a ball. In addition, the code needs to determine if the ball would hit any wall.
Now, there isn’t a ball, and there aren’t any walls. It is all virtual, so it is all coding. We'll
write code to perform a calculation on the virtual position of the ball versus the virtual
position of each of the walls. If there is a virtual hit, the code adjusts the horizontal or
vertical displacement values so the ball bounces off the wall. To be more accurate at the
risk of being pedantic, the code sets certain values so that it in the next iteration, the ball
object proceeds in a different direction.

To calculate the repositioning, we use either the initial values or any new values
typed into the input fields of the form. However, the goal is to produce a robust system
that will not act on bad input from the player. Bad input would be an entry that wasn'’t
anumber or a number outside of the specified range. We could just not act on the bad
input. However, we want to give feedback to the player that the input was bad, so we’ll
make the input boxes change color, as Figure 3-3 shows.

Wanting to provide a way for the user, now to be called the player, a way to interact
with an application, I added coding to present a stop button and a resume button to
what the player sees. A function that responds to clicking on the Stop button stops the
time interval event. A function that responds to clicking on the Resume button starts the
time interval event.

To make the video in the bouncing video loop, I added code to restart after the
“ended” event. This is because I read that the loop attribute in a video element may not
work in all browsers. The program, with my restart code, works in Chrome and Safari.

HTML5, CSS, and JavaScript Features

Let’s take a look at the specific features of HTMLS5, CSS, and JavaScript we need to
implement the bouncing ball applications. We'll build on material covered in previous
chapters, specifically the general structure of an HTML document, using a canvas
element, programmer-defined and built-in functions, and a form element.

87

CHAPTER 3 BOUNCING BALL

Drawing a Ball or an Image or Images

As described in Chapter 2, drawing anything on the canvas, such as a circle to represent
the ball, requires including the canvas element in the body section of the HTML
document. Next we need to define a variable, ctx, and add code that sets up the value of
this variable so we can use JavaScript. Here’s the statement to implement this:

ctx = document.getElementById('canvas').getContext('2d");

As we saw in Chapter 2, a circle is created by drawing an arc as part of a path.
The following lines of code start the path, set the color for the fill, specify the arc, and
then use the fill method to draw a closed, filled-in path. Notice that the arc method
uses variables to specify the coordinates of the center of the circle and the radius. The
parameters 0 and Math.PI*2 represent angles, in this case 0 to Math.PI*2, making
a complete circle. The true parameter indicates counterclockwise, although in this
particular case, false would produce the same effect.

ctx.beginPath();

ctx.fillStyle ="rgh(200,0,50)";

ctx.arc(ballx, bally, ballrad,0,Math.PI*2,true);
ctx.fill();

For the first version of the bouncing ball, the box is drawn as a rectangle outline. The
width of the outline, termed the stroke, is set using

ctx.lineWidth = ballrad;

You can experiment with the line width. Keep in mind that if you make the width
small and set the ball to travel fast, the ball can bounce past the wall in one step.
The statement that draws the rectangle is

ctx.strokeRect (boxx,boxy,boxwidth,boxheight);

I put the code for the ball before the code for the rectangle so the rectangle would be
on top. I thought this looked better for the bouncing.

The second version of the program displays an image for the ball. This requires code
to set up an img object using the new operator with a call to Image(), assigning that to a
variable, and giving the src property a value. In the application, we do all this in a single
statement, but let’s take a look at the individual parts.

88

http://dx.doi.org/10.1007/978-1-4842-4155-4_2
http://dx.doi.org/10.1007/978-1-4842-4155-4_2

CHAPTER 3 BOUNCING BALL

You read about var statements in Chapter 2. Such statements define, or declare,
avariable. It is okay to use the name img for our var here; there’s no conflict with the
HTML img element. The new operator is well-named: it creates a new object, in this case
of the built-in type Image. The Image function is called a constructor: it constructs an
object of type Image. The Image function does not take any arguments, so there are just
opening and closing parentheses.

Image objects have attributes, just like HTML elements such as img do. The particular
image used is indicated by the value of the src attribute. Here, pearl. jpg is the name of an
image file located in the same folder as the HTML document. The following two statements
set up the img variable and set its src (source) to the address, the URL, of the image file.

var img = new Image();
img.src="pearl.jpg";

For your application, use the name of an image file you've chosen. It can be of type
JPG, PNG, or GIF, and be sure to either put it in the same folder as your HTML document
or include the appropriate path. Be careful about matching the case both in the name
and the extension.

To draw this image on the canvas, we need a single line of code specifying the image
object, the location for the upper-left corner of the image, and the width and length to
be used in the display of the image. As was the case with the rectangles, this code is a call
of a method of a context object, so I use the variable ctx defined in the init function. I
need to adjust the ballx and bally values I used for the center of the circle to indicate
the upper corner. I use two times the ball radius for both the width and the length. The
statement is

ctx.drawImage(img,ballx-ballrad,bally-ballrad,2*ballrad,2*ballrad);

Let’s take a break now. It’s your turn, dear reader, to do some work. Consider the
following HTML document:

<html>
<head>
<title>The Origami Frog</title>
<script>
var img = new Image();

"frogface.gif";

img.src

var ctx;

89

http://dx.doi.org/10.1007/978-1-4842-4155-4_2

CHAPTER 3 BOUNCING BALL

function init() {
ctx =document.getElementById("canvas").getContext('2d");
ctx.drawImage(img,10,20,100,100);

}

</script>

</head>

<body onLoad="init();">

<canvas id="canvas" width="400" height="300">

Your browser doesn't support the HTML5 element canvas.

</canvas>

</body>

</html>

Find your own image file and use its name in place of frogface.gif. Change the title
to something appropriate. Experiment with the line

ctx.drawImage(img,10,20,100,100);

That is, change the 10, 20 to reposition the image and change the 100,100 to change
the width and the height. Make the changes and see if the program responds as you
intended. Remember that as you specify the width and height, you could be changing
the shape—the aspect ratio—of the picture.

An important point to note here is that since the code is drawing or painting the
canvas, to produce the effect of a moving ball, we also need code to erase everything and
then redraw everything with the ball in a new spot. The statement to erase everything is

ctx.clearRect(boxx,boxy,boxwidth,boxheight);

It might be possible to erase (clear) just parts of the canvas, but I chose to erase and
then redraw everything. In each situation, you need to decide what makes sense.

Think about drawing two images on the canvas. You'll need to have two different
variables in place of img. For this task, give the variables distinctive names. If you are
emulating Dr. Seuss, you can use thing1 and thing2; otherwise, choose something
meaningful to you!

For drawing a background image and then the moving cotton candy, my code simply
draws the background image first, always in the same place, and then the cotton candy
in its calculated position. The complete code follows. You will read about moveandcheck
in a later section.

90

CHAPTER 3 BOUNCING BALL

function moveBall(){

ctx.clearRect(boxx,boxy,boxWidth,boxHeight);

moveAndCheck();

ctx.drawImage(bkg,0,0,4000,3000,0,0,400,300);
ctx.drawImage(ball,o0,0,388,435,ballx-ballrad,bally-ballrad,388/10,435/10);
ctx.strokeRect(0,0,400,300);

}

You may ask why the background needs to be redrawn. The answer is that once
something is drawn on the canvas, it is just the equivalent of dots of paint—the term is
pixels, picture elements—set to a specific color. Something changes at each iteration
(wait for the next section on timing intervals), and while most of the canvas remains
the same, the best way to produce the new picture is to clear the canvas, draw the
background, and draw the ball.

Gradients with a Side Trip to Explain Arrays

Let’s see how to use a gradient, a rainbow-like combination of colors, for the bouncing
program. You can use gradients to set the Til1Style property. I didn’t want to have the
ball on top of a filled-in rectangle, so I needed to figure out how to draw the four walls
separately.

A gradient is a type of object in HTML5. There are linear gradients and radial
gradients. In this application we use a linear gradient. The code defines a variable (I
named it grad) to be a gradient object, using a method of a canvas context that we
defined earlier with the variable ctx. The code for the gradient looks like this:

var grad;
grad=ctx.createlLinearGradient(boxx,boxy,boxx+boxwidth,boxy+boxheight);

The gradient stretches out over a rectangle shape.

Gradients involve sets of colors. A typical practice is to write code to set what are
called the color stops, such as to make the gradient be a rainbow. For this, I set up an
array of arrays in a variable named hue.

You can think of an array as a holder for a collection of values. Whereas a variable
can hold only one value, an array can hold many. In the next chapter, you'll read about
an array named everything that will hold all the objects to be drawn on the screen.

91

CHAPTER 3 BOUNCING BALL

In Chapter 9, which describes the hangman game, the word list is an array of words.
You'll read about many applications of arrays in this book. Here’s a concrete example.
The following var statement sets up a variable to be a specific array:

var family = ["Daniel","Aviva", "Annika"];

The variable family is an array. Its datatype is array. It consists of a list of people
in my family. To access or to set the first element of this array, you'd use family[0].
The values to specify specific members of an array are called index values or indices.
Array indexing starts with zero. The expression family[0] would produce "Daniel”.
The expression family[1] would produce "Aviva". The expression family[2] would
produce "Annika". If the value of a variable relative was 1, then family[relative]
would produce Aviva. To determine the number of elements in the array, you'd use
family.length. In this case, the length is 3. Note that the length is 3; the indices go
from 0 to 2.

The individual items in an array can be of any type, including arrays. For example, I
could modify the family array to provide more information:

var family = [["Daniel","son"],
["Aviva", "daughter"],
["Annika","granddaughter"]

I

The formatting, with the line breaks and indents, is not required, but it’s good
practice. It is not interpreted by JavaScript. We have to get the brackets and the commas
correct!

The expression family[2][1] produces “grandDaughter” Remember, array indexing
starts at 0, so the index value 2 for the array, sometimes termed the outer array in this
type of example, produces [“Annika’; “grandDaughter”], and for that array, the index
1 produces “granddaughter”. These inner arrays do not have to be the same length.
Consider the following example:

var family = [["Daniel","teacher"],
["Aviva", "government staff"],
["Annika"]
1;

92

http://dx.doi.org/10.1007/978-1-4842-4155-4_9

CHAPTER 3 BOUNCING BALL

The code would check the length of the array, and if it was 2 instead of 1, the second
item would be the profession of the individual. If the length of the inner array was 1, it
would be assumed that the individual does not have a profession.

Arrays of arrays can be useful for product names and costs. The following statement
specifies the limited inventory of a store:

var inventory = [
["toaster",25.99],
["blender",74.99],
["dish",10.50],
["rug",599.99]
]

)

This store has four items, with the cheapest being the dish, represented in the
position at index 2, and the most expensive the rug at index 3.

Now, let’s see how we can use these concepts for defining a gradient. We’ll use an
array whose individual elements are also arrays.

Each inner array holds the RGB values for a color, namely, red, yellow, green, cyan,
blue, magenta.

var hue = [
[255, 0, O],
[255, 255, O],
[0, 255, O],
[0, 255, 255],
[0, 0, 255],
[255, 0, 255]

1

These values represent colors ranging from red (RGB 255,0,0) to magenta (RGB
255,0,255), with four colors specified in between. The gradient feature in JavaScript fills
in the colors to produce the rainbow pattern shown in Figure 3-2. Gradients are defined
by specifying points along an interval from 0 to 1. You can specify a gradient other than a
rainbow. For example, you can use a graphics program to select a set of RGB values to be
the so-called stop points, and JavaScript will fill in values to blend from one to the next.

The array numeric values are not quite what we need, so we will have to manipulate

them to produce what JavaScript demands.

93

CHAPTER 3 BOUNCING BALL

Manipulation of arrays often requires doing something to each member of the array.
One construct for doing this, present in many programming languages, is the for loop,
which uses a variable called an indexing variable. The structure of the for loop is

for (initial value for indexing variable; condition for continuing;
change for
indexing variable) {
code to be done every time. The code usually references the indexing
variable

This says: start with this initial value, keep doing the loop as long as this condition
holds, and change the index value in this specified way. A typical expression for the
change will use operators such as ++. The ++ operator increments the indicated variable
by 1. A typical for header statement is

for (n=0;n<10;n++)

This for loop uses a variable named n, with n initialized to 0. If the value of n is less
than 10, the statements inside the loop are executed. After each iteration, the value of
n is increased by 1. In this case, the loop code will be executed 10 times, with n holding
values 0, 1, 2, all the way up to 9.

Here’s one more example, a common one to demonstrate arrays. Let the grades
variable be set up to hold a set of grades for a student:

var grades = [4.0, 3.7, 3, 2.3, 3];

Depending on the institution, this could indicate grades of A, A-, B, C+, and B. The
following snippet computes the grade-point average and stores it in the variable named
gpa. Notice that we need to initialize the variable named sum to start with a value of
0. The += operator adds to the value held in sum the value in the grades array at index
value g.

var sum = 0,

for (g=0;g<grades.length;g++) {
sum += grades[g];

}

var gpa;

gpa = sum/grades.length;

94

CHAPTER 3 BOUNCING BALL

To produce what we need to build the gradient, the code extracts values from the hue
array and uses them to produce character strings indicating RGB values. We use the hue
array along with a variable called color to set the color stops to define the gradient. The color
stops are set at any point between 0 and 1, using a for loop that sets color to be a character
string of the required format, namely, starting with rgb(, and including the three values.

for (h=0;h<hue.length;h++) {

color = 'rgb('+hue[h][0]+", "+hue[h][1]+", "+hue[h][2]+")";
grad.addColorStop(h*1/hue.length,color);

}

The assignment statement setting color may seem strange to you: there’s a lot
going on—and what are those plus signs doing? Remember, our task is to generate the
character strings indicating certain RGB values. The plus signs do not indicate addition of
numbers here but concatenation of strings of characters. This means that the values are
stuck together rather than mathematically added, so while 5+5 yields 10, '5"'+'5" would
give 55. Because the 5s in the second example are enclosed by quote marks, they are
strings rather than numbers. The square brackets are pulling out members of the array.
JavaScript converts the numbers to the character string equivalent and then combines
them. Remember that it’s looking at arrays within arrays, so the first number within square
brackets (in this case, provided by our variable h) gives us the first array, and the second
number within square brackets gives us our number within that array. Let’s look at a quick
example. The first time our loop runs, the value of h will be 0, which gives us the first entry
within the hue array. We then look up the separate parts of that entry to build our final color.

After all that, our code has set up the variable grad to be used to indicate a fill
pattern. Instead of setting TillStyle to be a color, the code sets it to be the variable grad.

ctx.fillStyle = grad;

Drawing the rectangles is the same as before, but now with the indicated fill. These
are four narrow walls at the left, right, top, and bottom of the original rectangle. I make
the walls as thick as the radius of the ball. This thickness is the width in the case of the
vertical walls and the height in the case of the horizontal walls.

ctx.fillRect(boxx,boxy,ballrad,boxheight);
ctx.fillRect(boxx+boxwidth-ballrad,boxy,ballrad,boxheight);
ctx.fillRect(boxx,boxy,boxwidth,ballrad);
ctx.fillRect(boxx,boxy+boxheight-ballrad,boxwidth,ballrad);

95

CHAPTER 3 BOUNCING BALL

Setting Up a Timing Event

Setting up timing events in HTMLS5 is actually similar to the way it’s done in the older
versions of HTML. There are two built-in functions: setInterval and setTimeout. We'll
look at setInterval here and at setTimeout in the memory game in Chapter 5. Each
of these functions takes two arguments. Remember that arguments are extra pieces of
information included in function or method calls. In Chapter 1, we saw that document.
write took as its single argument what was to be written out on the screen.

I'll describe the second argument first. The second argument specifies an amount
of time, in milliseconds. There are 1,000 milliseconds to a second. This may seem like a
very short unit to work with, but it turns out to be just what we want for games. A second
(1,000 milliseconds) is quite long for a computer game.

The first argument specifies what is to be done at the intervals specified by the
second argument. The first argument can be the name of a function. For this application,
the init function definition contains the following line:

setInterval(moveBall,100);

This tells the JavaScript engine to invoke the function moveBall every 100
milliseconds (10 times per second). moveBall is the name of a function that will be
defined in this HTML document; it is the event handler for the timing interval event.
Don’t be concerned if you write this line of code before writing the code to define the
function. What counts is what exists when the application is run.

JavaScript also provides a way other than a function name for the event handler. You
could write

setInterval("moveBall();",100);

for the same effect. Putting it another way, for cases when the action is the call of a
function without parameters, the name of the function will do. For more complex cases,
you can write a string to specify code. Suppose I had a function named s1lide that itself
took one argument, I wanted the argument to be 10 times the value of the variable d, and
I wanted this to happen every one and one-half seconds, I would code

setInterval("slide(10*d);",1500);

I note that the reason that moveball does not need parameters is because of the use
of global variables for the position and the displacements.

96

http://dx.doi.org/10.1007/978-1-4842-4155-4_5
http://dx.doi.org/10.1007/978-1-4842-4155-4_1

CHAPTER 3 BOUNCING BALL

It is often the case that you want to indicate the passage of time on the screen. The
following example will display 0, 1, ..., etc., with the number changing every second.

<html>

<head>

<title>elapsed</title>

<script>

function init() {
setInterval(increase,1000);

}

function increase() {
document.f.secs.value = String(1+Number(document.f.secs.value));

}

</script>

</head>

<body onLoad="init();">

<form name="f">

<input type="text" name="secs" value="0"/>

</form>

</body>

</html>

This is a good example for you to take the time to write and run, both because it
showcases timing events and because it will make you appreciate how long a second
lasts. The code takes the value out of the secs input field in the form named f, converts
that value to a number, adds 1 to that number, and then converts it back to a string to
assign as the value of the secs element. Try replacing the single statement inside the
increase function with the statement

document.f.secs.value = 1+document.f.secs.value;

and see what happens. This is a lesson in the difference between numbers and character
strings. Please play around with this little example. If you want to make the numbers go
up in smaller increments, change the 1000 to 250 and the 1 to .25. This makes the script
show quarter-second changes.

97

CHAPTER 3 BOUNCING BALL

If you want to allow your code to stop a particular event, you can set up a global
variable (one that’s outside of any function). I use a variable named tev, my shorthand
for timing event.

var tev;

You would then modify the setInterval call to be as follows:
tev = setInterval(moveBall,100);

When you wanted to stop this event, you'd include this code:
clearInterval(tev);

By the way, if my code invoked the statement with the setInterval function again
without issuing a clearInterval, it would be the equivalent of setting up an additional
alarm clock. The effect would be to increase the speed. When I describe the cotton candy
game, you will notice that my code includes multiple clearInterval statements.

To reiterate, the setInterval function sets up a timing event that keeps occurring
until it is cleared. If you know you want an event to happen just once, the setTimeout
method sets up exactly one event. You can use either method to produce the same
results, but JavaScript furnishes both to make things easier.

For the bouncing ball application, the moveBall function calculates a new position
for the ball, does the calculations to check for collisions, and when they occur, redirects
the ball and draws a new display. This is done over and over—the calls to moveBall keep
happening because we used setInterval.

Calculating a New Position and Collision Detection

Now that we know how to draw, and how to clear and redraw, and we know how to do
something at fixed intervals, the challenge is how to calculate the new positions and
how to do collision detection. We’ll do this by declaring variables ballx and bally to
hold the x and y coordinates of the ball’s center; ballvx and ballvy to hold the amount
by which the ball position is to be changed; and boxBoundx, inboxBoundx, boxBoundy,
and inboxBoundy to indicate a box slightly smaller than the actual box for the collision
calculation. The amounts by which the ball position is to be changed are initialized to 4

98

CHAPTER 3 BOUNCING BALL

and 8 (totally arbitrarily) and are changed if and when a player makes a valid change (see
the next section) and clicks the change button. These amounts are termed displacements
or deltas and, less formally, velocities or speeds.

The change in direction is pretty simple in this situation. If the ball “hits” a vertical
wall, the horizontal displacement must change sign; i.e., if the ball was moving four
units to the right and we hit a wall, we want to start adding -4 to its position, which will
make it move to the left. The vertical displacement stays the same. The hit is determined
by comparing the next horizontal value with the boundary. Similarly, if the ball “hits” a
horizontal wall as determined by comparing the vertical position with the appropriate
boundary, the vertical displacement changes sign while the horizontal displacement
remains the same. The change is for the next iteration. The check for collisions is done
four times, that is, for each of the four walls. The calculation consists of comparing the
proposed new x or y value, as appropriate, with the boundary condition for the particular
wall. The tentative new position is adjusted if the ball center goes past one of the four
walls to be exactly at the boundary. This has the effect of making the ball go slightly
behind each wall or appear to be squeezed by each wall. The boundary values are set up
to be just inside the box with the upper corner at boxx, boxy, a width of boxWidth, and
a height of boxHeight. I could use a more complex calculation to compare any point on
the circle with any point on the walls. However, there is a more fundamental principle
involved here. There are no walls and no ball. This is a simulation based on calculations.
The calculations are done at intervals. If the ball is moving fast enough and the walls are
thin enough, thinner than the ballrad specified here, the ball can escape the box. This is
why I do the calculation in terms of the next move and a slightly smaller box.

var boxBoundx = boxWidth+boxx-ballrad;
var boxBoundy = boxHeight+boxy-ballrad;
var inboxBoundx = boxx+ballrad;
boxy+ballrad;

var inboxBoundy

Here is the code for the moveAndCheck function, the function that checks for
collisions and repositions the ball:

function moveAndCheck() {
var nballx = ballx + ballvx;
var nbally = bally +ballvy;
if (nballx > boxBoundx) {
ballvx =-ballvx;

99

CHAPTER 3 BOUNCING BALL

nballx = boxBoundx;

}

if (nballx < inboxBoundx) {
nballx = inboxBoundx
ballvx = -ballvx;

}

if (nbally > boxBoundy) {
nbally = boxBoundy;

ballvy =-ballvy;

}

if (nbally < inboxBoundy) {
nbally
ballvy
}
ballx
bally

inboxBoundy;

-ballvy;

nballx;
nbally;

}

You might say that not much actually happens here, and you'd be correct. The
variables ballx and bally are modified to be used later when things get drawn to
the canvas.

It is not obvious from this code, but do keep in mind that vertical values (y values)
increase going down the screen and horizontal values (x values) increase going from left
to right.

The moveAndCheck function is slightly different for the bouncing video. I wrote
it “from scratch,” and it provides the reader with a slightly—very slightly—different
approach. It does provide reasons to tell you how to determine the width and height of
specific types of objects. Here is code for the init function;

function init(){

v = document.getElementById("videoE");
c = document.getElementById("con");

img = document.getElementById("AandF");
iwidth = img.clientWidth;

iheight = img.clientHeight;

vwidth = v.videoWidth;

100

CHAPTER 3

vheight = v.videoHeight;

leftkdge = 5; //arbitrary margin
rightEdge = leftEdge+iwidth-.6*vwidth;
topEdge = 5; //arbitrary margin
botEdge = topEdge+iheight-.6*vheight;

With the “Edge variables, the moveAndCheck function is as follows:

function moveAndCheck() {
var nballx = ballx + ballvx;
var nbally = bally + ballvy;
if (nballx < leftEdge) {
ballvx =-ballvx;
nballx = leftEdge;

if (nballx> rightEdge) {
nballx = rightEdge;
ballvx = -ballvx;

if (nbally > botEdge) {
nbally = botEdge;
ballvy =-ballvy;

if (nbally < topEdge) {
nbally = topEdge;
ballvy = -ballvy;

}
ballx = nballx;
bally = nbally;

c.style.top=bally+"px";
c.style.left=ballx+"px";

BOUNCING BALL

The video moves slightly past the bottom and right edges. It is not easy to make the

bounce be exact. The object does not move continuously in space!

101

CHAPTER 3 BOUNCING BALL

Starting, Positioning and Restarting the video with use of
an anonymous function

AsIindicated previously, my program makes use of a button to start the video. User
interaction is required. The button invokes the startV function. See the following code.
The video starts playing. The display is set to block. It has been none. The div element
holding the video, which I have named c for container, is positioned at the arbitrary
value of the variables ballx and bally.

The restarting of the video, not of the movement of the video on the screen, is
accomplished by setting the event handler for the event ended. I decided to demonstrate
this using what is termed an anonymous function. The whole function is contained in the
call tov.addEventListener.

function startV(){

-play();

v.style.display= "block";
c.style.top = bally +"px";
c
v

<

.style.left = ballx + "px";
.addEventListener('ended', function() {
v.currentTime = 0;

v.play();

)5

One reason not to use an anonymous function is that debugging tools do not have
a function to track. It does have the benefit of being right there. I have used spacing and
line breaks here. You can compress it into one line.

Validation

Forms, ways of obtaining input from a user/player/client, are part of the original

HTML. The form element starts with a <form> tag, which provides a way to specify the
action on submitting a form and contains input elements. HTML5 provides new facilities
for validating form input. The creator of a form can specify that an input field is of type
number as opposed to text, and HTML5 will immediately check that the user/player
entered a number. Similarly, we can specify max and min values. The code for the form is

102

CHAPTER 3 BOUNCING BALL

<form name="f" id="f" onSubmit="return change();">

Horizontal velocity <input name="hv" id="hv" value="4" type="number"
min="-10" max="10" />

Vertical velocity <input name="wv" id="vv" value="8" type="number"
min="-10" max="10"/>

<input type="submit" value="CHANGE"/>

</form>

The input is still text, that is, a string of characters, but the values are to be text that
can be interpreted as a number in the indicated range.

Other types of input include "email” and "URL", and it is handy to have HTML5
check these. Of course, you can check any character string to see if it's a number using
isNumber and more complicated coding, including regular expressions (patterns of
characters that can be matched against), to check for valid email addresses and URLs.
One common tactic for checking an email address is to make the user type it in twice so
you can compare the two and make sure the user hasn’t made any mistakes.

We want to take advantage of the work HTML5 will do for us, but we also want to let
the user/player know if something is wrong. You can use HTML5 and CSS to do this, by
specifying a style for valid and invalid input.

input:valid {background:green;}
input:invalid {background:red;}

HTMLS5 validation is operational in the latest version of browsers, at least on
computers, but you need to decide what you want to do for older browsers and for
devices. If you're using a compliant browser, such as Chrome, you can test the example
given in the next section. Notice that the ball keeps bouncing even if an invalid value, say
abc, is entered where a number was specified, because the program continues to use the

current settings.

Tip Validating input and generating appropriate feedback to users is important
in any application. Among the new features HTML5 provides is a pattern attribute
in the input element in which a special language called regular expressions can be
used to specify valid input. Enter HTML5 regular expressions into a search field
to find up-to-date information.

103

CHAPTER 3 BOUNCING BALL

Stopping and Resuming Animation Triggered
by Buttons

When I decided to add stopping and resuming, I decided that an important lesson was
how much this could be just an addition, with no change to the rest of the program.
A term for what is going on here is event-driven programming. We, the builders, think
about the different events more or less distinctly. I also decided to use button elements,
a feature introduced as part of HTML5. A button element provides a way to specify the
event, in this case, onClick, and the function that will handle the event. The text between
the <button> tag and the </button> tag is what appears in the lozenge-shaped button.
The old way was to use forms, which, for my example, would have meant multiple forms.
The following code produces the two buttons. The next section describes the
significance of the return statement. The is what is called an entity and produces
a space but does not force a line break.

<button onClick="return stopcc();">STOP </button>
<button onClick="return resume();">RESUME </button>

Inow owe you the definition of the stopcc function and the resume function.

The task for the stopcc function is to stop the moving of the cotton candy image
over the background. You know how to do that: invoke clearInterval. My code does
need to do a few more things. Because I will want to resume the bouncing, I write code
to save the ballvx and ballvy values. This may be unnecessary, but certain cases seem
to require it. The code also invokes moveBall to produce one more picture. The use of
return is explained in the next section. The code follows:

function stopcc() {
clearInterval(tid);
stoppedx = ballvx;
stoppedy = ballvy;
moveBall();
return false;

The resume function does contain a call to setInterval, but I need to do something
else to protect the players from themselves. If a player clicked the resume button without
having stopped the animation, or just to see what would happen, then invoking multiple

104

CHAPTER 3 BOUNCING BALL

setIntervals would produce multiple timing events. This, in turn, would have the

effect of making the bouncing appear faster and faster. To present this, I insert a call to
clearInterval. If there is no timing event in place, nothing will happen. My code resets
ballvx and ballvy using the previously saved values. This may be not necessary, but it is
a precaution.

function resume(){

clearInterval(tid);
ballvx = stoppedx;
ballvy = stoppedy;

tid = setInterval(moveball,100);
return false;

HTML Page Reload

Before continuing, I want to mention some issues that may cause unexpected problems.
Browsers come with reload/refresh buttons. The document is reloaded when the
button is clicked. We used this in the simple die throw application in Chapter 2.
However, at times you may want to prevent a reload, and in such cases, you can put a
return (false); in functions that don’t have anything to return to keep the page from
reloading.

When a document has a form, reloading does not always reinitialize the form input.
You may need to leave the page and then reload it using the full URL.

Lastly, browsers attempt to use files previously downloaded to the client (user)
computer rather than requesting files from a server based on inspection of the date and
time. The files on the client computer are stored in what is called the cache. If you think
you made a change but the browser isn’t displaying the latest version, you may need to
take steps such as clearing the cache.

Preloading Images

Computers are so fast and, in general, our perception is sufficiently slow that we expect
no delays in anything we do. However, images on websites must be downloaded from
the server to our local computer and large images are, obviously, large files. Actually,

I should make another point. Our modern cameras produce images made up of

105

http://dx.doi.org/10.1007/978-1-4842-4155-4_2

CHAPTER 3 BOUNCING BALL

thousands of pixels, which is termed high resolution. This makes the files large. To make
sure that the images are ready for use, one trick is to create img elements holding the
images in the body element. For this example, this includes the background photo and
the cotton candy photo. The files will be loaded before the init function is invoked by
action of the onLoad attribute in the body tag. The fully loaded background image will be
available to be drawn before the cotton candy image is drawn on top of it. The challenge
is how to prevent those two images from being displayed. The answer is to include the
following directive in the style element:

img {visibility: hidden;}

The CSS directive stops any img file from being displayed. In my example, the img
elements are never displayed. What are displayed are the Image elements created and
manipulated by code.

Building the Application and Making It Your Own

I will now explain the code for the basic bouncing ball application, the application that
uses an image for the ball and gradients for the walls, and the application that validates
the input and the bouncing cotton candy. Table 3-1 shows all the function calls and what
is being called. The table includes the functions for all four applications. The stopcc and
resume functions are present only in the fourth application.

Table 3-1. Functions in the Bouncing Ball Applications

Function Invoked By/Called By Calls
init Action of onLoad in the body tag moveBall
moveBall Invoked directly by init and by action of setInterval moveAndCheck

moveAndCheck Invoked by moveBall

change Invoked by action of onSubmit in the form tag
stopcc Invoked by action of onClick in a button tag moveBall
resume Invoked by action of onClick in a button tag

106

CHAPTER 3 BOUNCING BALL

The moveAndCheck code could be part of the moveBall function. I chose to separate it
because it is a good practice to define functions that perform specific actions. Generally,
more, smaller functions are better than fewer, larger ones when you're developing
applications. By the way, when doing your own programming, don’t forget to put
comments in the code as described in Chapter 2. And add blank lines to make the code
more readable. Table 3-2 shows the code for the basic bouncing ball application and
explains what each line does.

Table 3-2. The Bouncing Ball Application

Code Explanation
<html> Start html.
<head> Start head.

<title>Bouncing Ballws with inputs Complete the title element.
</title>

<style> Start style.
form { Start form styling.
width:330px; Set up width.
margin:20px; Setmargin.
background-color:brown; Set background color.
padding:20px; Set internal padding.
} Close this style.
</style> Close the style element.
<script type="text/javascript"> Start the script element. (The type is not

required. | show it here just to let you know what
you’ll see in many examples online.)

var boxx = 20; X location of the upper corner of the box.
var boxy = 30; y location of the upper corner of the box.
var boxWidth = 350; Box width.
var boxHeight = 250; Box height.
(contiuned)

107

http://dx.doi.org/10.1007/978-1-4842-4155-4_2

CHAPTER 3 BOUNCING BALL

Table 3-2. (contiuned)

Code Explanation
var ballrad = 10; Radius of ball.
var boxBoundx =w» boxWidth+boxx- Right boundary.

ballrad;

var boxBoundy = w» boxHeight+boxy-

ballrad;

var inboxBoundx =w» boxx+ballrad;

var inboxBoundy = boxy+ballrad;

var ballx

50;
60;

var bally

var ctx;

var ballvx = 4;
var ballvy = 8;

function init() {

ctx = document.
getElementById ('canvas').
getContext('2d");

ctx.linewidth = ballrad;
ctx.fillStyle ="rgh(200,0,50)";
moveBall();

setInterval(moveBall,100);
}
function moveBall(){

ctx.clearRect(boxx,boxy,boxWidth,
boxheight);

moveAndCheck();

Bottom boundary.

Left boundary.

Top boundary.

Initial x position of ball.

Initial y position of ball.
Variable holding canvas context.
Initial horizontal displacement.
Initial vertical displacement.
Start of the init function.

Set the ctx variable.

Set the line width.
Set the fill style.

Invoke the moveball function the first time to
move, check, and display the ball.

Set up the timing event.
Close of init function.
Start of the moveball function.

Clear (erase) the box (including any paint from a
ball).

Do the check and then move the ball.

108

(contiuned)

Table 3-2. (contiuned)

CHAPTER 3 BOUNCING BALL

Code

Explanation

ctx.beginPath();

ctx.arc(ballx, bally,
ballrad,0,Math.PI*2,true);

ctx.fill();

ctx.strokeRect (boxx,boxy,boxWidth,
boxHeight);

}
function moveAndCheck() {
var nballx = ballx + ballvx;
var nbally = bally +ballvy;
if (nballx > boxBoundx) {
ballvx =-ballvx;
nballx = boxBoundx;
}
if (nballx < inboxBoundx) {

nballx = inboxBoundx;

ballvx = -ballvx;

}
if (nbally > boxBoundy) {

nbally = boxBoundy;

ballvy =-ballvy;

}
if (nbally < inboxBoundy) {

nbally = inboxBoundy;

Start the path.

Setup to draw the circle at the current location of
the ball.

Fill in the path; that is, draw a filled circle.

Draw the rectangle outline.

Close moveball.

Start of moveandcheck.

Set the tentative next x position.

Set the tentative next y position.

Is this x value beyond the right wall?

If s0, change the horizontal displacement.
Set the next x to be exactly at this boundary.
Close the clause.

Is this x value less than the left boundary?

If s0, set the x value to be exactly at the
boundary.

Change the horizontal displacement.
Close the clause.
Is the y value beyond the bottom boundary?

If so, set the y value to be exactly at the
boundary.

Change the vertical displacement.
Close the clause.
Is the y value less than the top boundary?

If so, set the y value to be exactly the boundary.

(contiuned)

109

CHAPTER 3 BOUNCING BALL

Table 3-2. (contiuned)

Code

Explanation

ballvy = -ballvy;

}
ballx = nballx;
bally = nbally;
}

function change() {

ballvx = Number(document.f.hv.

value);

ballvy = Number(document.f.vv.

value);

return false;

}

</script>
</head>

<body onLoad="init();">

<canvas id="canvas" width= "400"

height="300">

Your browser doesn't support
the HTML5 element canvas.

</canvas>

<form name="f" id="f"
onSubmit= "return change();">

Change the vertical displacement.
Close the clause.

Set the x position to nballx.

Set the y position to nbally.

Close the moveandcheck function.
Start of the change function.

Convert input to a number and assign it to
ballvx.

Convert input to a number and assign it to
ballvy.

Return false to make sure there isn’t a page
reload.

Close the function.
Close the script.
Close the head.

Start the body element. Set up the call to the
init function.

Start of the canvas element.

Message for noncompliant browsers.

Close the canvas element.
Line break.

Start of the form. Give the name and ID (may
need for some browsers). Set up the action on
the submit button.

110

(contiuned)

CHAPTER 3 BOUNCING BALL

Table 3-2. (contiuned)

Code Explanation

Horizontal velocity <input name="hv" Labelan input field for horizontal velocity.
id="hv" value="4" type="number"
min="-10" max="10" />

 Line break.

Vertical velocity <input name= "vv" Label an input field for vertical velocity.
id="vv" value="8" type="number"
min="-10" max="10"/>

<input type="submit" Submit button.
value="CHANGE"/>

</form> Close form.
</body> Close body
</html> Close html.

The application that uses an image as the ball is similar to the one that uses
gradient-filled walls. Table 3-3 shows all the code—but I just comment the code that is
different. I'm not being lazy; the idea is to let you see how each application is built on the

previous one.

111

CHAPTER 3

BOUNCING BALL

Table 3-3. The Second Application, with an Image as the Ball and Gradient-
Filled Walls

Code

Explanation

<html>

<head>

<title>Bouncing Ball with inputs</title>

<style>

form {

width:330px;

margin:20px;

background-color:#b10515;

padding:20px;

<script type="text/javascript">

}
</style>
var boxx = 20;
var boxy = 30;
var boxWidth = 350;

var

var

var

var

var

var

var

var

boxHeight = 250;

ballrad = 20;

boxBoundx =
boxBoundy =
inboxBoundx
inboxBoundy
ballx
bally

50;
60;

boxWidth+boxx-ballrad;
boxHeight+boxy-ballrad;

boxx+ballrad;

boxy+ballrad;

This isn’t a substantial change, but the
picture required a bigger radius.

112

(contiuned)

Table 3-3. (contiuned)

CHAPTER 3 BOUNCING BALL

Code Explanation
var ballvx = 4;
var ballvy = 8;

var img = new Image();

img.src="pearl.jpg";

var ctx;

var grad;

var color;

var hue = [

255, 0, 0],
255, 255, 0],
0, 255, 0],
0, 255, 255],
0, 0, 255 1],
255, 0, 255]

15

function init(){

[
[
[
[
[
[

var h;

ctx = document.getElementById('canvas').

getContext('2d");

Defining the img variable as an Image
object. This is what the new operator and
the call to the Image function do.

Set the src for this image to be the
"pearl.jpg" file.

Set grad as a variable. It will be assigned
a value in the init function.

Used in setting up the gradient grad.

Used in setting up the gradient grad. This
is an array of arrays, each inner array
supplying RGB values.

Red.

Yellow.

Green.

Cyan.

Blue.

Purple (magenta).
Close array.

Used to set up the gradient.

grad = ctx.createLinearGradient(boxx,box Create and assign a gradient value.

y,boxx+boxWidth,boxy+boxHeight);

(contiuned)

113

CHAPTER 3 BOUNCING BALL

Table 3-3. (contiuned)

Code

Explanation

for (h=0;h<hue.length;h++) {

color = 'rgb('+hue[h][0]+", +hue[h]

[1]+", "+hue[h][2]+")";
grad.addColorStop(h*1/hue.
length,color);

}
ctx.fillStyle = grad;
ctx.lineWidth = ballrad;
moveball();
setInterval(moveBall,100);
}
function moveBall(){

ctx.clearRect(boxx,boxy,boxwidth,
boxheight);

moveAndCheck();

ctx.drawImage(img,ballx-ballrad,
bally-ballrad,2*ballrad,2*ballrad);

ctx.fillRect(boxx,boxy,ballrad,
boxheight);

ctx.fillRect (boxx+boxWidth-ballrad,
boxy,ballrad,boxHeight);

ctx.fillRect(boxx,boxy,boxWidth,
ballrad);

ctx.fillRect(boxx,boxy+boxHeight-
ballrad,boxWidth,ballrad);

Start of the for loop.

Set up color as a character string that
indicates an RGB value.
Set up the color stop to define the gradient.

Close the for loop.
Set the fill to be grad.

Draw an image.

Draw the left wall.

Draw the right wall.

Draw the top wall.

Draw the bottom wall.

114

(contiuned)

Table 3-3. (contiuned)

CHAPTER 3 BOUNCING BALL

Code Explanation

function moveAndCheck() {

var nballx = ballx + ballvx;

var nbally = bally +ballvy;
if (nballx > boxBoundx) {
ballvx =-ballvx;
nballx = boxBoundx;
}
if (nballx < inboxBoundx) {
nballx = inboxBoundx;
ballvx = -ballvx;
}
if (nbally > boxBoundy) {
nbally = boxBoundy;
ballvy =-ballvy;
}
if (nbally < inboxBoundy) {
nbally = inboxBoundy;
ballvy = -ballvy;
}
ballx
bally
}
function change() {
ballvx
ballvy

nballx;
nbally;

Number (document.f.hv.value);

Number (document.f.vv.value);

(contiuned)

115

CHAPTER 3 BOUNCING BALL

Table 3-3. (contiuned)

Code Explanation

return false;
}
</script>
</head>
<body onlLoad="init();">

<canvas id="canvas" width=w"400"
height="300">

This browser doesn't support = the HTMLS
canvas element.

</canvas>

<form name="f" id="f" onSubmit=w"return
change();">

Horizontal velocity <input name= w="hv"
id="hv" value="4" type= w"number" min="-
10" max="10" />

Vertical velocity <input name= w="vv"
id="vv" value="8" type= w"number" min="-
10" max="10"/>

<input type="submit" value="CHANGE"/>
</form>
</body>
</html>

I chose to put the modest change of the style information building on the
first application. Table 3-4 shows the third bouncing ball application, with form
validation. Again, I have only commented the new code, but I include all the code for
completeness sake.

116

CHAPTER 3 BOUNCING BALL

Table 3-4. The Third Bouncing Ball Application, with Form Validation

Code Explanation

<html>
<head>

<title>Bouncing Ball with inputs</title>
<style>

form {

width:330px;

margin:20px;

background-color:brown;

padding:20pXx;

}

input:valid {background:green;} Set up feedback for valid input.

input:invalid {background:red;} Set up feedback for invalid input.
</style>

<script type="text/javascript">
var cWidth = 400;

var cHeight

300;

var ballrad

10;

var boxx

20;
var boxy = 30;
var boxWidth = 350;

var boxHeight

250;

var boxBoundx = boxWidth+boxx-ballrad;

var boxBoundy = boxHeight+boxy-ballrad;

var inboxBoundx

boxx+ballrad;

var inboxBoundy = boxy+ballrad;

(contiuned)

117

CHAPTER 3 BOUNCING BALL

Table 3-4. (contiuned)

Code Explanation
var ballx = 50;
var bally = 60;
var ctx;
var ballvx = 4;
var ballvy = 8;

function init(){

ctx = document.
getElementById('canvas'). getContext('2d");

ctx.lineWidth = ballrad;

moveBall();

setInterval(moveBall,100);

}

function moveBall(){
ctx.clearRect(boxx,boxy,boxwidth,boxheight);
moveAndCheck();

ctx.beginPath();

ctx.fillStyle ="rgb(200,0,50)";

ctx.arc(ballx, bally, ballrad,o,Math.
PI*2,true) ;

ctx.fill();

ctx.strokeRect (boxx,boxy,boxWidth,
boxHeight);

}
function moveAndCheck() {

var nballx = ballx + ballvx;

var nbally = bally +ballvy;

118

(contiuned)

Table 3-4. (contiuned)

CHAPTER 3 BOUNCING BALL

Code

Explanation

if (nballx > boxBoundx) {
ballvx =-ballvx;
nballx = boxBoundx;

}

if (nballx < inboxBoundx) {
nballx = inboxBoundx;
ballvx = -ballvx;

}

if (nbally > boxBoundy) {
nbally = boxBoundy;
ballvy =-ballvy;

}

if (nbally < inboxBoundy) {
nbally = inboxBoundy;
ballvy = -ballvy;

}

ballx

bally

}

function change() {
ballvx
ballvy
return false;

}

</script>

</head>

nballx;
nbally;

Number (document.f.hv.value);

Number (document.f.vv.value);

(contiuned)
119

CHAPTER 3 BOUNCING BALL

Table 3-4. (contiuned)

Code Explanation

<body onLoad="init();">

<canvas id="canvas" width="400"
height="300">

Your browser doesn't support the HTML5
element canvas.

</canvas>

<form name="f" id="f" onSubmit="return
change();">

Horizontal velocity <input name="hv"
id=w"hv" value="4" type="number" min="-10"
max="10" />

Vertical velocity <input name="vv" id=ws"vv"
value="8" type="number" min="-10" max="10"/>

<input type="submit" value="CHANGE"/>
</form>
</body>
</html>

The fourth application is the game with the bouncing cotton candy. The first thing I
did was outside the scope of the HTML/JavaScript/CSS programming. I used online tool
pixlr to extract the portion of the original picture of the cotton candy and used another
photo to fill in the missing space.

I am not going to include the complete code for the cotton candy game, but just
indicate the additions. See Table 3-5.

120

CHAPTER 3 BOUNCING BALL

Table 3-5. Code for the Cotton Candy Game

<style>

img {visibility: hidden;}

</style>

<script type="text/
javascript">

var bkg = new Image();
var stoppedx = ballvx;
var stoppedy = ballvy;

function init(){

bkg.src = "reunion.jpg";
ball.src = "candy.png";

function stopcc() {
clearInterval(tid);
stoppedx = ballvx;
stoppedy = ballvy;

moveBall();

return false;

}

Sets any img element to not be visible. The two img elements
will not be made visible. However, the loaded image files will
be used by drawImage to be drawn on the canvas.

The bkg is a global variable holding an Image object.
Will be changed by stopcc.
Will be changed by stopcc.

Set the value of the sxc of these two Image objects.

Header for the stopcc function.
Stop the timing interval event.
Save the current ballvx.

Save the current ballvy.

Invoke moveball to display the scene. This is sometimes
redundant.

Return false to prevent a page reload.

Close the stopcc function.

(contiuned)

121

CHAPTER 3 BOUNCING BALL

Table 3-5. (contiuned)

function resume(){

clearInterval(tid);
ballvx = stoppedx;
ballvy = stoppedy;

tid = setInterval
(moveBall,100);

return false;
}
</script>
</head>
<body onload="init();">

<form name="f" id="f"
onSubmit="return
change();">

<button onClick="return
stopcc();">STOP </button>

<button onClick="return
resume();">RESUME </
button>

</form>

Header for the resume function.
Stop the timing interval event.

Set ballvx to the stoppedx value. In most cases, this will
be the value set in stopcc.

Set ballvy to the stopped value. In most cases, this will be
the value set in stopcc

Start the timing interval event.

Return false to prevent a page reload.

Close the resume function.

The body tag. Note that the init function is invoked when
everything is loaded, including the image files mentioned in
the tags.

Button to invoke stopcc. Note use of to position the
next button.

Button to invoke resume.

122

(contiuned)

CHAPTER 3 BOUNCING BALL

Table 3-5. (contiuned)

 An img tag to cause the candy . png file to be fully loaded
before anything happens.

 An img tag to cause the reunion. jpg file to be fully loaded
before anything happens.

</body>
</html>

Lastly, the functions in the bouncing video are described in Table 3-6.

Table 3-6. Functions for Bouncing Video

Function Invoked By/Called By Calls

init Action of onLoad in the body tag

startV Invoked by event handling in the “Click here to start” button moveball
moveball Invoked directly by startv and by action of setInterval moveandcheck

moveandcheck Invoked by moveball

Do understand that the event handling for the ended event invokes the anonymous
(unnamed) function to reset the currenttime for the video and play the video. Note also
that I kept moveBall and moveAndCheck as two distinct functions to follow the example of
the other programs in which moveBall did have other tasks to do.

The code for the bouncing video in shown in Table 3-7. I will include practically all of
it, though much should be familiar to you.

123

CHAPTER 3 BOUNCING BALL

Table 3-7. Code for the Bouncing Video

Code

Explanation

<html>

<head>

<title>Bouncing Video</title>
<style>

#videoE {position: absolute;
display: none; z-index: 1;}

#con {position: absolute;}
</style>

<script type="text/javascript">
var rightEdge;

var leftEdge;

var topEdge;

var botEdge;

var ballx

250;

var bally

260;
var v;

var c;

var img;

var iWidth;
var iHeight;
var viidth;
var vHeight;

var ballvx

14;
var ballvy = 18;

function init(){

Set up for the video to be on top of the image. Start
with no display.

Set up positioning for the div container.

Right edge of the imaginary box.

Left edge.

Top edge.

Bottom edge.

Initial x coordinate for bouncing container/video.
Initial y coordinate.

Will hold reference to video.

Will hold reference to the div, which | call the
container.

Will hold reference to the image.

Will hold the width of the image.

Will hold the height of the image.

Will hold the width of the video.

Will hold the height of the video.

Initial change in horizontal coordinate.
Initial change in vertical coordinate.

Header for the init function.

124

(contiuned)

Table 3-7. (contiuned)

CHAPTER 3 BOUNCING BALL

Code

Explanation

v = document.
getElementById("videoE");

¢ = document.
getElementById("con");

img = document.
getElementById("AandF");

iwidth = img.clientWidth;
iheight = img.clientHeight;
vwidth = v.videoWidth;
vheight = v.videoHeight;
leftEdge = 5;

rightEdge = leftEdge+iwidth-
.6*vwidth;

topEdge = 5;

botEdge = topEdge+iheight-
.6*vheight;

}

function startV(){

v.play();

v.style.display= "block";
c.style.top = bally +"px";
c.style.left = ballx + "px";

v.addEventListener('ended’,
function(){

v.currentTime = 0;

Get pointers/references to the video object.

The div object that serves as a container for the
video.

The image that fills the div object.

Set the width of the image.
Set the height of the image.
Set the width of the video.
Set the height of the video.

Set the 1eftEdge to be a little away from the actual
edge.

Set the rightEdge so that the bounce happens
quickly.

Set the topEdge to be a little away from the actual
edge.

Set the botEdge so that the bounce happens quickly.

Close init.
Header for startV.

Start the video playing.
Make the video visible.
Set the initial x coordinate.
Set the y coordinate.

Set up event handling for when the video ends, using
the anonymous function.

Set currentTime to 0, that is, the start.

(contiuned)

125

CHAPTER 3 BOUNCING BALL

Table 3-7. (contiuned)

Code Explanation

v.play(); Start the video playing.
} Close the definition of the anonymous function.
); Close the addEentListener call.
moveball(); Call moveball.

setInterval(moveball,100);

}
function moveBall(){

moveAndCheck();
}
function moveAndCheck() {

var nballx = ballx + ballvx;

var nbally = bally + ballvy;

if (nballx < leftEdge) {
ballvx =-ballvx;
nballx = leftEdge;

}

if (nballx> rightEdge) {
nballx
ballvx

}

if (nbally > botEdge) {
nbally = botEdge;

rightEdge;
-ballvx;

Use the setInterval function for repeated calls to
moveball.

Close startV.
Header for moveball.
Invokes moveAndCheck.
Close of moveBall.

Header for moveAndCheck.

Calculate the possible next x value for the moving
object.

Calculate the y value.

Now start to do the checks against each edge.
If the object is to the left of the 1leftedge.
Reverse the sign of ballvx.

Set the next x position to be the leftEdge.
Close the if.

If the object is to the right of the rigthEdge.
Set the next x to rightEdge.

Reverse sign of ballvx.

Close the if.

If the object is below the botEdge.

Set the next y position to botEdge.

126

(contiuned)

Table 3-7. (contiuned)

CHAPTER 3 BOUNCING BALL

Code

Explanation

ballvy =-ballvy;

}

if (nbally < topEdge) {
nbally
ballvy

}

ballx = nballx;

bally = nbally;

c.style.top=bally+"px";

topEdge;

-ballvy;

c.style.left=ballx+"px";
}

</script>
</head>

<body onlLoad="init();">

<image id="AandF" src="readers.
jpg" width=auto height=100%/>

<div id="con" width="300" >
<video controls width="300"
id="videoE">

<source src="talk.theora.ogv"

type="video/ogg" />

Reverse the sign of ballvy.

Close the if.

If the object is above the topEdge.

Set the next position to topEdge.
Reverse the sign of ballvy.

Close the if.

Now set ballx.

Set bally.

Set the top attribute using px.

Set the left attribute using px

Close the moveAndCheck function.

Close the script element.

Close the head element.

Start the body. In the body tag set up the call to
init.

Set the image, giving the ID and the source. Setting
width to be auto and then height to be 100% makes

it fit the screen, without distortion. There may be
leftover space to the right.

Define a div to serve as the container. Set its width to
match the video.

Set the video and give an ID. Note: the controls are
present but difficult to use.

Three video clips are provided. They are suggested for
different browsers.

(contiuned)

127

CHAPTER 3 BOUNCING BALL

Table 3-7. (contiuned)

Code Explanation

<source src="talk.mp4video.mp4
type="video/mp4" />
<source src="talk.webvmp8.webm"

type = "video/webm" />

Sorry, your browser doesn't An error message will be displayed as appropriate.
support embedded videos.

</video> Close the video element.

</div> Close the div element.

<button onclick="startv()"> Button to provide user interaction. This will invoke

Click to start </button> startV.

</body> Close the body element.

</html> Close the html element.

There are many ways you can make applications like this for yourself. You can select
your own image for the ball and experiment with the colors for the walls, with or without
the gradients. You can change the position and the dimensions of each wall. You can
add text and HTML markup to the page. You can change the look of the form. You can
add the form and other features found in the first bouncing applications to the bouncing
video. Of course, you can add your own video and images for the background. A useful
addition would be a way to access the controls that is not moving around on the screen.

You can include more than one ball, keeping track of the positions of each. If you
decide to use two balls, you need two sets of variables and two lines of code for each one
line you had before. One systematic way to do this is to use the search function in the editor
to find all instances of ball and, for each line, substitute two lines, so in place of ballx, you
have ballix and ball2x, and in place of the var ballx = 50; use the following:

var ballix
var ball2x

50;
250;

This puts the second ball 200 pixels over on the canvas.
You would also need a second set of all the comparisons for the walls.

128

CHAPTER 3 BOUNCING BALL

If you want to use more than two balls, you may want to consider using arrays.
Subsequent chapters will show you how to handle sets of objects.

You also can try writing code that slows the ball each time it hits a wall. This is a nice
effect and does simulate a real physical result. In each of the places in the code where the
direction is changed by changing the sign of the appropriate variable, add in a factor to
decrease the absolute value. For example, if I chose to decrease the value by 10 percent, I
would write the following:

if (nballx > boxBoundx) {
ballvx =-ballvx *.9;
nballx = boxBoundx;

This means that the incremental change in the vertical direction would go down to
90 percent of what it was.

You can build on and/or be inspired by the cotton candy game by using your own
photos and making the game more game-like. Think about a test for the resting place
being good enough. Limit the number of stop and resume actions. Study the examples in
the rest of this text (and move on the HTML5 and JavaScript Projects book) to learn other
actions, such as use of mouse or touch.

Testing and Uploading the Application

The first and third applications are complete in the HTML documents. The second and
fourth applications require the image files to be present in the same folder, and the fifth
requires the image and the videos. You can access files anywhere on the Web, but you
need to make sure you include the correct address. For example, if you upload the HTML
document to a folder called myGames and upload pearl. jpg to a subfolder of myGames
named images, the line indicating this must be

img.src = "images/pearl.jpg";

You also must use accurate file extensions, such as JPG, that indicate the correct
file type. Some browsers are forgiving, but many are not. You can try to submit bad
data and see the response using different browsers. However, for all of this, you should
respect intellectual property rights and not use images or videos for which you have not

obtained permission.

129

CHAPTER 3 BOUNCING BALL

Summary

In this chapter, you learned how to create an application with animation that changes
based on input from the user. We covered a number of programming and HTML5
features, including the following:

e Using setInterval to set up a timing event for the animation and
clearInterval to top the event

e Validating form input

e Using programmer-defined functions to reposition a circle or an
image horizontally and vertically to simulate a bouncing ball

o Testing for virtual collisions

o Drawing rectangles, images, and circles, including gradients for the
coloring

e Using button elements

e Ensuring downloading of image files

e Moving a video element

o Starting a video to comply with requirements for user participation
e Restarting a video

The next chapter describes the cannonball and slingshot games in which the player
attempts to hit targets. These applications use the same programming and HTML5
features we used to produce the animations but take them a step further. You also see an
example of animation in the rock-paper-scissors implementation in Chapter 8.

130

http://dx.doi.org/10.1007/978-1-4842-4155-4_8

CHAPTER 4

Cannonball and Slingshot

In this chapter, we cover the following:
e Maintaining a list of objects to draw on the screen
o Rotating objects drawn on the screen
e Mouse drag-and-drop operations

o Calculations to simulate ballistic motion (effects of gravity) and
collisions

Introduction

This chapter demonstrates another example of animation, in this case simulation of
ballistics, also called projectile motion. A ball or ball-like object maintains a constant
horizontal (x) displacement, with the vertical displacement changing as it would due to
gravity. The resulting motion is an arc. The ball stops when it (virtually) hits the ground
or the target. The code you'll see produces the animation using the same technique
demonstrated for the ball bouncing in a box. The code repositions the ball and redraws
the scene at fixed intervals. We will look at three examples.

e Averysimple ballistics simulation. We'll look at a ball taking off
and traveling in an arc before hitting a target or the ground. The
parameters of flight are horizontal and initial vertical speeds, which
are set by the player using form input fields. The ball simply stops
when it hits the target or the ground.

e Animproved cannonball, with a rectangle representing the cannon
tilted at an angle. The parameters of flight are the speed out of the
cannon and the angle of the cannon. Again, these are set by the
player using form input fields. The program calculates the initial
horizontal and vertical displacement values.

131

© Jeanine Meyer 2023
J. Meyer, The Essential Guide to HTMLS5, https://doi.org/10.1007/978-1-4842-8722-4_4

https://doi.org/10.1007/978-1-4842-8722-4_4

CHAPTER 4 CANNONBALL AND SLINGSHOT

e Aslingshot. The parameters of flight are determined by the player
dragging, and then releasing, a ball shape tethered to a stick drawing
representing a slingshot. The speed is determined by the distance
from the ball to a place on the slingshot. The angle is the angle from
the horizontal of this part of the slingshot.

Figure 4-1 shows the simple (no cannon) application.

Figure 4-1. The ball lands on the ground

132

CHAPTER 4 CANNONBALL AND SLINGSHOT

Figure 4-2 shows the opening screen for the second application. The target is an
Image, and the rectangle representing the cannon can be rotated. Notice the controls
refer to an angle and an initial velocity.

Figure 4-2. Rotating cannon with image as target

Figure 4-3 shows the scene after a successful hit. Notice that the cannon is rotated,
and the original image for the target has been replaced with a new image.

133

CHAPTER 4 CANNONBALL AND SLINGSHOT

Figure 4-3. After firing the cannon and hitting target

Figure 4-4 shows the opening screen of the slingshot application. This application is
similar to the cannon, but the parameters of flight are set by the player using a mouse to
drag on the ball (representing the rock in the slingshot), and the target is now a chicken.

Figure 4-4. Opening screen of the slingshot application

For the slingshot, I decided I wanted the ball to keep going until it hit the ground.
However, if the chicken was hit, I wanted it to be replaced by feathers, as shown in
Figure 4-5. Notice that the strings of the slingshot remain where they were when the
mouse button was released and the ball took flight. T found I needed more time looking
at the strings to plan my next shot. If you want, you can change the game so that the
strings snap back to their original position or create a new-game button. In my example,
the game is replayed by reloading the HTML file.

134

CHAPTER 4 CANNONBALL AND SLINGSHOT

[
- ™
-

Figure 4-5. The ball lands on ground after hitting the chicken, where only
feathers remain

The programming for these applications uses many of the same techniques
demonstrated in the bouncing ball applications. The repositioning of the ball in flight
is only as different as it needs to be to simulate the effects of the vertical displacement
changing because of gravity. The slingshot application provides a new way for the player
to interact with the application, using drag-and-drop actions with the mouse.

The cannonball with the cannon and the slingshot use drawing features for the
cannon and slingshot and external image files for the original targets and hit targets. If
you want to change the targets, you'll need to find image files and upload them with the
application.

Critical Requirements

Our first requirement is to produce animation by setting up an event to occur at fixed
intervals of time and then setting up a function to handle the event by repositioning

the ball and checking for collisions. We covered this in the previous chapter with the
bouncing ball application. What’s new here is the calculation for simulating gravity. The
calculation indicated by a simple physics model works out a new vertical displacement
based on changing the vertical displacement by a constant amount and then computing
the average of the old and new displacements to compute the new position.

e The horizontal displacement (held by variable dx) is the horizontal
velocity (horvelocity) and does not change. In code, it’s dx =
horvelocity;.

o The vertical velocity at the start of the interval is verticalvell.

135

CHAPTER 4 CANNONBALL AND SLINGSHOT

o The vertical velocity at end of the interval is verticalvel1 plus
the acceleration amount (gravity). In code, it’s verticalvel2 =
verticalvell + gravity;.

o The vertical displacement for the interval (dy) is the average of
verticalvelland verticalvel2.Incode, it'sdy = (verticalveli
+ verticalvel2)*.5;.

This is a standard way of simulating gravity or any other constant acceleration.

Note | made up my value for gravity to produce a pleasing arc. You can use a
standard value, but you’ll need to do research to assign realistic values for the
starting velocity out of the mouth of the cannon and for a slingshot. You also need
to determine the mapping between pixels and distances. The factor would be
different for the cannonball and the slingshot.

The second version of the program must rotate the cannon based on either the
initial values or the player’s input for the velocity out of the mouth of the cannon and the
cannon angle and calculate the horizontal and vertical values based on these values.

The third version of the program, the slingshot, must allow the player to press and
hold the mouse button and drag the ball along with the strings of the slingshot and then
let the mouse button up to release the ball. The motion parameters are calculated based
on the angle and the distance of the ball from the top of the slingshot.

Both the second and third versions of the program require a way to replace the target
image with another image.

HTMLS, CSS, and JavaScript Features

Now let’s look at the specific features of HTML5 and JavaScript that provide what we
need to implement the ballistics simulation applications. Luckily, we can build on
material covered in previous chapters, specifically the general structure of an HTML
document, using a canvas element, programmer-defined and built-in functions, a form
element, and variables. Let’s start with programmer-defined objects and using arrays.

136

CHAPTER 4 CANNONBALL AND SLINGSHOT

Arrays and Programmer-Defined Objects

HTMLS5 lets you draw on a canvas, but once something is drawn, it’s as if paint or ink
were laid down; the thing drawn doesn’t retain its individual identity. HTMLS5 is not

like a system with real 3D modeling in which objects are positioned on a stage and can
be individually moved and rotated. However, we can still produce the same effects,
including rotation of individual objects. In later chapters, we move objects around in the
browser window.

Because these applications have a somewhat more complicated display, I decided
to develop a more systematic approach to drawing and redrawing different things on the
canvas. To that end, I created an array called everything that holds the list of objects
to be drawn on the canvas. Think of an array as a set or, more accurately, a sequence
of items. In previous chapters, we discussed variables set up to hold values such as
numbers or character strings. An array is another type of value. My everything array
will serve as a to-do list of what needs to be drawn on the canvas. My approach does
draw the items in a certain order, which does mean that the ground is on top of the feet
of the chicken in the Slingshot program. My code also determined the location of certain
objects in the everything array, using the targetIndex and cannonIndex variables.

I am using the term objects in both the English and the programming sense. In
programming terms, an object consists of properties and methods, that is, data and
coding or behavior. In the annotated links example described in the first chapter, I
demonstrated the write method of the document object. I used the variable ctx, which
is of type 2D context of a canvas object, methods such as fillRect, and properties
such as fillStyle. These were built-in; that is, they were already defined objects in
HTMLS5’s version of JavaScript. For the ballistics applications, I defined my own objects,
specifically Ball, Picture, myRectangle, and S1ing. Each of these different objects
includes the definition of a draw method as well as properties indicating position and
dimensions. I did this so I can draw each of a list of things. The appropriate draw method
accesses the properties to determine what and where to draw. I also included a way to
rotate individual objects.

Defining an object is straightforward: I simply define a function called the
constructor function for Ball, Picture, myRectangle, and S1ing, and use these functions
with the operator new to assign the values to variables. There is a convention that the
constructor function start with an uppercase letter. I can then write code using the
familiar dot notation to access or assign the properties and to invoke methods I've set up
in the constructor function. Here is the constructor function for a Ball object:

137

CHAPTER 4 CANNONBALL AND SLINGSHOT

function Ball(sx,sy,rad,styleString) {
this.sx = sx;

this.sy = sy;

this.rad = rad;

this.draw = drawball;

this.moveit = moveball;
this.fillstyle = styleString;

The term this refers to the object that’s created when this function is used with
the keyword new. The fact that this.draw and this.moveit are assigned the names
of functions is not obvious from looking at the code, but that’s what happens. The
definitions of those two functions follow. Notice that they each use the term this to get
at the properties necessary to draw and move the object.

function drawball() {
ctx.fillStyle=this.fillstyle;
ctx.beginPath();
ctx.arc(this.sx,this.sy,this.rad,0,Math.PI*2,true);
ctx.fill();

Note JavaScript has started to add to its support of classes and objects, though
it still does not include full inheritance. A relevant website is the following:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Classes

The drawBall function draws a filled-in circle, a complete arc, on the canvas. The
color of the circle is the color set when this Ball object was created.

The function moveBall doesn’t move anything immediately. Looking at the issue
abstractly, moveBall changes where the application positions the object. The function
changes the values of the sx and sy properties of the object, and when it is displayed
next, these new values are used to make the drawing.

138

CHAPTER 4 CANNONBALL AND SLINGSHOT

function moveBall(dx,dy) {
this.sx +=dx;
this.sy +=dy;

The next statement, declaring the variable cball, builds a new object of type Ball
by using the operator new and the function Ball. The parameters to the function are
based on set values for the cannon because I want the ball to appear at the mouth of the
cannon to start out.

var cball = new Ball(cannonx+cannonlength,cannony+cannonht*.5,ballrad,
"rgh(250,0,0)");

The Picture, myRectangle, and S1ing functions are similar and will be explained
in a bit. They each specify a draw method. For this application, I only use moveit for
cball, butI defined moveit for the other objects just in case I later want to build on this
application. The variables cannon and ground will be set to hold a new myRectangle, and
the variables target and htarget will be set to hold a new Picture.

Tip Names made up by programmers are arbitrary, but it’s a good idea to be
consistent in both spelling and case. HTML5 appears to disregard case, in contrast
to a version of HTML called XHTML. Many languages treat upper- and lowercase
as different letters. | generally use lowercase, but | capitalized the first letter of
Ball, Picture, Slingshot, and myRectangle because the convention is that
functions intended to be constructors of objects should start with capital letters.

Each of the variables will be added to the everything array using the array method
push, which adds a new element to the end of the array.

Rotations and Translations for Drawing

HTMLS5 lets us translate and rotate drawings. As you saw in Chapters 2 and 3, drawings
are made and objects such as images are positioned in terms of a coordinate system.
An important aspect of the coordinate system is its origin, the 0,0 position. HTML5
provides a way to change the coordinate system. A translate operation changes the
origin. A situation that most of us are familiar with is using a GPS system in our car.

139

http://dx.doi.org/10.1007/978-1-4842-4155-4_2
http://dx.doi.org/10.1007/978-1-4842-4155-4_3

CHAPTER 4 CANNONBALL AND SLINGSHOT

Directions are given in terms of where we are. You can think of this as resetting the
origin. A rotate operation does a rotation around the origin! The next few paragraphs
take you through some examples. Do take the time to study the examples and make
modifications to see what happens.

Take a look at the following code. I urge you to create this example and then
experiment with it to improve your understanding. The code draws a large red rectangle
on the canvas with the upper corner at (50,50) and a tiny blue square on top of it.

<html>
<head>
<title>Rectangle</title>
<script type="text/javascript">
var ctx;
function init(){
ctx = document.getElementById('canvas').getContext('2d");
ctx.fillStyle = "rgb(250,0,0)";
ctx.fillRect(50,50,100,200);
ctx.fillStyle = "rgb(0,0,250)";
ctx.fillRect(50,50,5,5);
}
</script>
</head>
<body onlLoad="init();">
<canvas id="canvas" width="400" height="300">
Your browser doesn't support the HTML5 element canvas.
</canvas>
</body>
</html>

The result is shown in Figure 4-6.

140

CHAPTER 4 CANNONBALL AND SLINGSHOT

'] Rotating

Figure 4-6. Rectangle (no rotation)

In this exercise, the goal is to rotate the large rectangle, pivoting on the upper-left
corner where the small blue square is. I want the rotation to be counterclockwise.

One slight complication, common to most programming languages, is that the angle
input for rotations as well as the trigonometry functions must be in radians, not degrees.
Radians were explained in Chapter 2, but here’s a reminder. Instead of 360 degrees in a
full circle, the measurement is based on two times the mathematical constant pi radians
in a circle. Fortunately, we can use the built-in feature of JavaScript, Math.PI. One pi
radians is equivalent to 180 degrees, and pi divided by 2 is equivalent to a right angle, 90
degrees. To specify a rotation of 30 degrees, we use pi divided by 6 or, in coding, Math.
PI/6.To change the init function given previously to do a rotation, I put in a rotation of
negative pi divided by 6 (equivalent to 30 degrees going counterclockwise), draw the red
rectangle, and then rotate back, undoing the rotation, to draw the blue square:

function init(){
ctx = document.getElementById('canvas').getContext('2d");
ctx.fillStyle = "rgb(250,0,0)";
ctx.rotate(-Math.PI/6);
ctx.fillRect(50,50,100,200);
ctx.rotate(Math.PI/6);
ctx.fillStyle = "rgb(0,0,250)";
ctx.fillRect(50,50,5,5);

141

http://dx.doi.org/10.1007/978-1-4842-4155-4_2

CHAPTER 4 CANNONBALL AND SLINGSHOT
Unfortunately, the drawing in Figure 4-7 is not what I wanted.

] Rectangle

Figure 4-7. Drawing and rotating a rectangle

The problem is the rotation point is at the origin, (0,0) and not at the corner of the
red rectangle. So, I need to write code to perform a translation to reset the origin, then
the rotation, then a translation back in order to draw the next item at the correct place.

I can do this using features of HTML5. All drawing on the canvas is done in terms of a
coordinate system, and I can use the save and restore operations to save the current
coordinate system—the position and orientation of the axes—and then restore it to make
additional drawings.

function init(){
ctx = document.getElementById('canvas').getContext('2d");
ctx.fillStyle = "rgb(250,0,0)";

ctx.save();

ctx.translate(50,50); //move origin
ctx.rotate(-Math.PI/6); //do rotation
ctx.translate(-50,-50); // move origin back
ctx.fillRect(50,50,100,200); //draw rectangle
ctx.restore(); //undo all the transformations

ctx.fillStyle = "rgb(0,0,250)";
ctx.fillRect(50,50,5,5); //draw little blue square

The rotate method expects an angle in radian units, and clockwise is the positive
direction. So my code is rotating 30 degrees counterclockwise, producing what I had in
mind, as shown in Figure 4-8.

142

CHAPTER 4 CANNONBALL AND SLINGSHOT

|| Rectangle

Figure 4-8. Save, translate, rotate, translate, restore

Again, [urge you to modify this example to help you understand transformations
and radians. Make small changes, one statement at a time.

By the way, we can’t expect our players to put in angles using radians. They, and we,
are too accustomed to degrees (90 degrees is a right angle, 180 degrees is your arc when
you make a U-turn, etc.). The program must do the work. The conversion from degrees
to radians is to multiply by pi/180.

Note Most programming languages use radians for angles in trig functions as
well as rotation operations.

With this background, I add to the information in the everything array indications
as to whether there is to be a rotation and, if so, the required translation point. This was
my idea. It has nothing to do with HTMLS5 or JavaScript, and it could have been done
differently. The underlying task is to create and maintain information on objects in the
simulated scene. The canvas feature of HTML5 provides a way to draw pictures and
display images, but it does not retain information on objects!

The items in the everything array for the second and third applications are
themselves arrays. The first (0™ index) value points to the object. The second (1% index)
is true or false. A value of true means that a rotation angle value and x and y values for
translation follow. In practice, this means that the inner arrays have either two values,
with the last one being false, or five values.

143

CHAPTER 4 CANNONBALL AND SLINGSHOT

Note At this point, you may be thinking: she set up a general system just to
rotate the cannon. Why not put in something just for the cannon? The answer is we
could, but the general system does work, and something just for the cannon might
have had just as much coding.

The first application uses horizontal and vertical displacement values picked
up from the form. The player must think of the two separate values. For the second
application, the player inputs two values again, but they are different. One is the speed
out of the mouth of the cannon, and the other is the angle of the cannon. The program
does the rest. The initial and unchanging horizontal displacement and the initial vertical
displacement are calculated from the player’s input: the velocity out of the cannon and
an angle. The calculation is based on standard trigonometry. Luckily, JavaScript provides
the trig functions as part of the Math class of built-in methods.

Figure 4-9 shows the calculation of the displacement values from the out of cannon
and angle values specified by the player. The minus sign for the vertical is due to the way
JavaScript screen coordinates have y values increasing going down the screen.

angleradians = angle*Math P1/180

outofcannon

-outofcannon*™ath sin(angleradians)

outofcann on*Math cos(angleradians)

Figure 4-9. Calculating horizontal * vertical displacements

At this point, you may want to skip ahead to read about the implementation of the
cannonball applications. You can then come back to read about what is required for the
slingshot.

144

CHAPTER 4 CANNONBALL AND SLINGSHOT

Drawing Line Segments

For the slingshot application, I have added a new object type by defining two functions,

Sling and drawsling. My idealized slingshot is represented by four positions, as

shown in Figure 4-10. Please understand that we could have done this in a number of

different ways.

sixsly

S S22y

b by

S$3x.s3y

Figure 4-10. The idealized slingshot

The Sling function resembles the other constructors, for example, Ball.

function Sling(bx,by,s1x,sly,s2x,s2y,s3x,s3y,styleString) {

this.bx = bx;

this.by = by;

this.six = six;

this.sly = siy;

this.s2x = s2x;

this.s2y = s2y;

this.s3x = s3x;

this.s3y = s3y;
this.strokeStyle = styleString;

this.
this.

draw = drawSling;

moveit = moveSling;

145

CHAPTER 4 CANNONBALL AND SLINGSHOT

The Sling function sets up drawSling to be the function invoked whenever draw
is used in connection with a S1ing object. Though it does not happen in the current
application, moveSling would be invoked if you or I build on this application to move the
location of the slingshot.

Drawing the slingshot consists of drawing four line segments based on the four
points. The bx, by point will change as I'll describe in the next section. HTMLS5 lets us
draw line segments as part of a path. We've already used paths for drawing circles. You
can draw a path as a stroke or as a fill. For the circles, we used the fill method, but for
the slingshot, I just want lines. Drawing a line may involve two steps: move to one end of
the line and then draw it. HTMLS5 provides the moveTo and 1ineTo methods. The path is
not drawn until the stroke or fill method is invoked. The drawSling function is a good

illustration of line drawing.

function drawSling() {
ctx.strokeStyle = this.strokeStyle;
ctx.lineWidth = 4;
ctx.beginPath();
ctx.moveTo(this.bx,this.by);
ctx.lineTo(this.six,this.s1y);
ctx.moveTo(this.bx,this.by);
ctx.lineTo(this.s2x,this.s2y);
ctx.moveTo(this.six,this.s1y);
ctx.lineTo(this.s2x,this.s2y);
ctx.lineTo(this.s3x,this.s3y);
ctx.stroke();

It does the following:
e Adds to the path aline from bx, by to six,s1y
e Adds to the path a line from bx, by to s2x, s2y
e Adds to the path aline from s1x,s1y to s2x, s2y

e Adds to the path a line from s2x,s2y to s3x,s3y

146

CHAPTER 4 CANNONBALL AND SLINGSHOT

As always, the way to learn this is to experiment with your own designs. If there’s
no invocation of moveTo, the next 1ineTo draws from the destination of the last 1ineTo.
Think of holding a pen in your hand and either moving it on the paper or lifting it up and
moving without drawing anything. You also can connect arcs. Chapter 5 demonstrates
drawing polygons.

Mouse Events for Pulling on the Slingshot

The slingshot application replaces form input with mouse drag-and-drop operations.
This is appealing because it’s closer to the physical act of pulling back on a slingshot.

When the player presses the mouse button, it is the first of a sequence of events to be
managed by the program. Here is pseudocode for what needs to be done.

When the player presses the mouse button, check if the mouse is on top of the ball. If
not, do nothing. If so, set a variable named inMotion.

Ifthe mouse is moving, check inMotion. Ifit is set, move the ball and the strings of the
slingshot. Keep doing this until the mouse button is released.

When the player releases the mouse button, reset inMotion to false. Calculate the
angle and initial velocity of the ball and, from these, calculate the horizontal velocity and
the initial vertical velocity. Start the ball moving.

You can use HTML5 and JavaScript to set up event handling for pressing the
standard (left) mouse button, moving the mouse, and releasing the mouse button. The
code uses a method based on the canvas element directly, not the so-called context.
Here is the code, which is in the init function:

canvasl = document.getElementById('canvas');
canvasl.addEventListener('mousedown',findball,false);
canvasl.addEventListener('mousemove',moveit,false);
canvasl.addEventListener('mouseup',finish,false);

Now because this event is in terms of the whole canvas, the findBall function
must determine if the mouse is over the ball. The first task is to get the mouse x and y
coordinates. When I wrote this originally, different browsers implement mouse events in
different ways. The following code works for Safari and Chrome:

mx

my

ev.pageX;
ev.pageyY;

147

http://dx.doi.org/10.1007/978-1-4842-4155-4_5

CHAPTER 4 CANNONBALL AND SLINGSHOT

Now, the next step is to determine if the (mx,my) point is on the ball. I am repeating
myself, but it is important to understand that the ball is now the equivalent of ink or
paint on canvas, and we can’t go any further without determining whether the (mx,my)
point is on top of the ball. How do we do this? We can calculate how far (mx,my) is from
the center of the ball and see if that’s less than the radius of the ball. There is a standard
formula for distance in the plane. My code is a slight variation on this idea. It makes the
determination by calculating the square of the distance and comparing it to the square
of the ball’s radius. I do this to avoid computing the square root.

Note In the appendix, | include a program for moving circles connected with
arrows. Because | create the circles as elements defined by HTML markup, | can
use event handling for each circle, and | do not need to write code for checking if
the mouse is on the circle.

If the mouse click was on the ball, that is, within a radius distance of the center of the
ball, this function sets the global variable inMotion to true. The findBall function ends
with a call to drawA11().

Whenever the mouse moves, there’s a call to the moveit function where we check
whether inMotion is true. If it isn’t, nothing happens. If it is, the same code as before
is used to get the mouse coordinates and the ball’s center, and the bx, by values for the
slingshot are set to the mouse coordinates. This has the effect of dragging the ball and
stretching the slingshot strings.

When the mouse button is released, we call the finish function, which doesn’t do
anything if inMotion is not true. When would this happen? If the player is moving the
mouse around rnot on the ball and pressing and releasing the button.

If inMotion is true, the function immediately sets it to false and does the
calculations to determine the flight of the ball, generating the information that in the
earlier cannonball application was entered by the player using a form. The information
is the angle of the initial path of the rock from a horizontal and the distance of the ball to
the straight part of the slingshot. This is the angle formed by (bx,by) to (s1x, s1y), and
a horizontal lineand and the distance from (bx, by) to (s1x, s1y), more precisely, the
square of the distance.

148

CHAPTER 4 CANNONBALL AND SLINGSHOT

Tuse Math.atan2 to do these calculations: calculating an angle from change in x and
change in y. This is a variant of the arctangent function.

I use the distsq function to determine the square of the distance from (bx, by) to
(s1x, s1y).Iwant to make the velocity dependent on this value. Pulling the strings back
farther would mean a faster flight. I did some experiments and decided that using the
square and dividing by 700 produced a nice arc.

The last step is to put in a call first to drawall() and then to setInterval to set
up the timing event. Again, finish does an analogous job to fire in the cannonball
applications. In the first application, our player entered the horizontal and initial vertical
values. In the second application, the player entered an angle (in degrees) and a velocity
out of the mouth of the cannon, and the program did the rest. In slingshot, we did away
with a form and numbers and provided a way for the player to pull back, or virtually pull
back, on a slingshot. The program had more to do, in terms of responding to both mouse
events and calculations.

Please note that I make no provisions for the player being silly and aiming the
ball away from the chicken or aiming it straight up or pulling the ball down below the
ground. In the latter case, the ball moves up and stops at the ground. Experiment and
decide what checks and messages you would include.

Changing the List of Items Displayed Using
Array Splice

The last task to explain is the replacement of the target image with another picture. Since
Iwanted two different effects, I used different approaches. For the second application,

I wanted the ball to disappear along with the original target and display what I set up

in the variable htarget. What I do is keep track of where the original target was placed
on the everything array and remove it and substitute htarget. Similarly, I remove the
ball from the everything array. For the slingshot operation, I don’t remove the target but
change its img property to be feathers. Note that in the code, chicken and feathers are
Image objects. Each has a src property that points to a file.

var chicken = new Image();
chicken.src

"chicken.jpg";
new Image();
"feathers.gif";

var feathers

feathers.src

149

CHAPTER 4 CANNONBALL AND SLINGSHOT

For both of these operations, I use the array method splice. It has two forms: you
can just remove any number of elements or you can remove and then insert elements.
The general form of splice is

arrayname.splice(index where splice is to occur, number of items to be removed, new
item(s) to be added)

If more than one item is to be added, there are more arguments. In my code, I add a
single item, which is itself an array. My representation of objects in the everything array
uses an array for each object. The second argument of the array indicates if there is any
rotation.

The following two lines of code do what I need: remove the target, stick in htarget
with no rotation, and then remove the ball.

everything.splice(targetindex,1, [htarget,false]);
everything.splice(ballindex,1);

By the way, if I simply wanted to remove the last item in an array, I could use the
method pop. In this situation, however, the target may be somewhere in the middle of
the everything array, so I need to write code to keep track of its index value.

Distance Between Points

There are two places in the slingshot program in which I use the distance between points
or, more accurately, the square of the distance. I need to find out if the mouse cursor is
on top of the ball, and I want to make the initial velocity—the equivalent of the velocity
out of the cannon—depending on the stretch, so to speak, of the slingshot, the distance
(bx,by) to (s1x, s1y). The formula for the distance between two points, x1,y1 and x2,y2,

is the square root of the sum of the squares of (x1-x2) and (y1-y2). I decided to avoid

the computation of taking a square root by just computing the sum of the squares.

This provides the same test for the mouse cursor being on top of the ball. For the other
task, I decided it was okay to use the square of the distance for the initial velocity. I
experimented with some numbers and, as I mentioned earlier, 700 seemed to work.

150

CHAPTER 4 CANNONBALL AND SLINGSHOT

Building the Application and Making It Your Own

Let’s now take a look at the code for the basic firing of a cannonball, without a cannon,
based on horizontal and initial vertical speeds; the firing of a cannonball from a cannon,
based on angle and initial speed out of the cannon; and the slingshot, based on angle
and initial speed determined from the position of the mouse. As in previous chapters,
I'll present the functions and what they call or are called by for each application. In this
case, the tables are similar, though not identical, for all three applications. The calling is
more varied than previous examples in that there are situations in which functions are
invoked because they are named as methods of a programmer-defined object or as part
of a declaration (var) statement. This is a characteristic of object-oriented, event-driven
programming. I'll also present the complete code for each application in its own table,
along with an explanation of what each line does. Table 4-1 shows the functions for the
basic cannonball application.

Table 4-1. Functions in the Simplest Cannonball Application

Function Invoked By/Called By Calls
init Action of the onLoad in body tag drawall
drawall Invoked directly by init, fire, change Calls the draw method of all objects

in the everything array; these are
the functions drawBall, drawRects

fire Invoked by action of the onSubmit attribute drawAll
in form
change Invoked by action of the setInterval drawall, calls the moveit method
function called in fire of cBall, which is moveBall
Ball Invoked directly by code in a var statement

MyRectangle Invoked directly by code in a var statement

drawBall Invoked by call of the draw method for the
one Ball object

drawRects Invoked by call of the draw method for the
target object

moveBall Invoked by call of the moveit method for
the one Ball object

151

CHAPTER 4 CANNONBALL AND SLINGSHOT

Table 4-2 shows the complete code for the simplest application, with the ball moving
in an arc and no actual cannon.

Table 4-2. The First Cannonball Application

Code Explanation
<html> Opening html tag.
<head> Opening head tag.
<title>Cannonball</title> Complete title element.
<style> Opening style tag.
form { Style for the form.
width:330px; Width.
margin:20px; External margin.
background-color:brown; Set background color for the form.
padding:20px; Internal padding.
} Close this style.
</style> Close the style element.
<script> Opening script tag.
var cwidth = 600; Set the value for the width of the canvas; used for
clearing.
var cheight = 400; Set the value for the height of the canvas; used
for clearing.
var ctx; Variable to hold canvas context.
var everything = []; Array to hold all objects to be drawn. Initialized as
an empty array.
var tid; Variable to hold identifier for the timing event.
var horVelocity; Variable to hold the horizontal velocity (aka
displacement).
var verticalVeli; Variable to hold vertical displacement at start of
interval.
(continued)

152

Table 4-2. (continued)

CHAPTER 4 CANNONBALL AND SLINGSHOT

Code Explanation
var verticalVel2; Variable to hold vertical displacement at end of
interval, after change by gravity.
var gravity = 2; Amount of change in vertical displacement.
Arbitrary. Makes for a nice arc.
var iballx = 20; Initial horizontal coordinate for the ball.
var ibally = 300; Initial vertical coordinate for the ball.

function Ball(sx,sy,rad,
styleString) {

this.
this.
this.
this.

this.
this.

}

SX = SX;
Sy = sy;
rad = rad;

draw = drawBall,;

moveit = moveBall;

fillStyle = styleString;

function drawBall() {
ctx.fillStyle=this.fillstyle;

ctx.beginPath();

ctx.arc(this.sx,this.sy,this.
rad,0,Math.PI*2,true);

ctx.fill();

}

function moveBall(dx,dy) {

Start of function to define a Ball object. Use the
parameters to set the properties.

Set the sx property of the this object.
Set the sy property of the this object.
Set the rad property of the this object.

Set the draw property of the this object. Since
drawball is the name of a function, this makes
draw a method that can be invoked.

Set the moveit propert to the function moveball.
Set fillstyle to the value of styleString.
Close the Ball function.

Header for the drawball function.

Set up the fil1Style using the property of this
object.

Start a path.

Set up to draw a circle.

Draw the path as a filled path.
Close the function.

Header for the moveball function.

(continued)

153

CHAPTER 4 CANNONBALL AND SLINGSHOT

Table 4-2. (continued)

Code

Explanation

this.sx +=dx;
this.sy +=dy;
}

var cball = new Ball(iballx,ibally,
10, "rgh(250,0,0)");

function myRectangle(sx,sy,swidth,
sheight,stylestring) {

this.sx = sx;
this.
this.
this

Sy = 5Y;

swidth = swidth;
.sheight = sheight;
this.fillstyle =
this.

styleString;

draw = drawRects;

this.moveit = moveBall;

}

function drawRects() {
ctx.fillStyle = this.fillStyle;

ctx.fillRect(this.sx,this.
sy,this.swidth,this.sheight);

Increment the sx property by dx.
Increment the sy property by dy.
Close the function.

Create a new Ball object at the indicated
position, radius, and color. Assign it to the variable
cball. Note that nothing is drawn at this time.
The information is just set up for later use.

Header for function to construct a Myrectangle
object.

Sets the sx property of this object.
Sets the sy property

Sets the swidth property

Sets the sheight property

Sets the stylestring property

Sets the draw property. This sets up a method
that can be invoked.

Sets the moveit property. This sets up a method
that can be invoked. It is not used in this program.

Close the Myrectangle function.
Header for the drawrects function.
Set the fillStyle.

Draw the rectangle using the object properties.

Close the function.

154

(continued)

Table 4-2. (continued)

CHAPTER 4 CANNONBALL AND SLINGSHOT

Code

Explanation

var target = new
myRectangle(300,100,
80,200, "rgb(0,5,90)");

var ground = new myRectangle(0,300,
600,30, "rgh(10,250,0)");

everything.push(target);

everything.push(ground);
everything.push(cball);

function init(){

ctx = document.
getElementById('canvas').
getContext('2d");

drawall();

}

function fire() {
cball.sx = iballx;
cball.sy = ibally;

horvelocity = Number(document.f.hv.

value);

verticalvell =
Number (document.f.vv.value);

drawall();
tid = setInterval(change,100);

return false;

Build a Myrectangle object and assign to the
target.

Build a Myrectangle object and assign to the
ground.

These statements are outside of any function but
do work. Add the target to everything.

Add ground.

Add cball (which will be drawn last, so on top of
everything else).

Header for init function.

Set up ctx to draw on the canvas.

Draw everything.

Close init.

Head for fire function.
Reposition cball in x.
Reposition cballiny.

Set horizontal velocity from form. Make a number.

Set initial vertical velocity from form.

Draw everything.
Start timing event.
Return false to prevent refresh of HTML page.

Close the function.

(continued)

155

CHAPTER 4 CANNONBALL AND SLINGSHOT

Table 4-2. (continued)

Code Explanation

function drawall() { Function header for drawall.
ctx.clearRect(0,0,cwidth, Erase canvas.
cheight);
var i; Declare var i for the for loop.

for (i=0;i<everything.length;i++) { Foreach itemin everything array...

everything[i].draw();} ...invoke the object’s draw method. Close for
loop.
} Close the function.
function change() { Header for change function.
var dx = horvelocity; Set dx to be horvelocity.

verticalvel2 = verticalvell + Compute new vertical velocity (add gravity).
gravity;

var dy = (verticalvel1 + Compute average velocity for the time interval.
verticalvel2)*.5;

verticalvell = verticalvel2; Now set old to be new.
cball.moveit(dx,dy); Move cball the computed amount.

var bx = cball.sx; Set bx to simplify the if statement.

var by = cball.sy; ...and by.

if ((bx>=target. Is the ball within the target horizontally. ..
sx)8&&(bx<=(target.sx+target.

swidth))&&

(by>=target.sy)8&&(by<=(target. ...and vertically?
sy+target.sheight))) {

clearInterval(tid); If so, stop motion.
} Close the if true clause.
if (by>=ground.sy) { Is the ball beyond ground?
clearInterval(tid); If so, stop the motion.

(continued)
156

Table 4-2. (continued)

CHAPTER 4 CANNONBALL AND SLINGSHOT

Code Explanation
} Close the if true clause.
drawAll(); Draw everything.
} Close the change function.
</script> Close the script element.
</head> Close the head element.

<body onLoad="init();">

<canvas id="canvas" width= "600"
height="400">

Your browser doesn't support the
HTML5 element canvas.

</canvas>

<form name="f" id="f"
onSubmit="return fire();">

Set velocities and fire cannonball.

Horizontal displacement <input
name= "hv" id="hv" value="10" type=
"number” min="-100" max="100" />

Initial vertical displacement
<input name="wv" id="wv"
value="-25" type="number" min="-
100" max="100"/>

<input type="submit" value="FIRE"/>
</form>
</body>
</html>

Open body and set the call to init.

Define the canvas element.

Warning to users of noncompliant browsers.

Close the canvas element.
Line break.

Starting form tag, with name and ID. This sets up
call to fire.

Label and line break.

Label and specification of input field.

Line break.

Label and specification of input field.

Submit input element.
Close form element.
Close the body element.

Close the html element.

157

CHAPTER 4 CANNONBALL AND SLINGSHOT

You certainly can make improvements to this application, but it probably makes
more sense to first make sure you understand it as is and then move on to the next.

Cannonball: With Cannon, Angle, and Speed

Our next application adds a rectangle to represent the cannon, a picture for the original
target instead of the simple rectangle used in the first application, and a second picture
for the hit target. The cannon rotates as specified by input in the form. I made the
everything array an array of arrays because I needed a way to add the rotation and
translation information. I also decided to make the result more dramatic when the
cannonball hits the target. This means the code in the change function for checking for
a collision is the same, but the code in the if-true clause removes the old target, puts
in the hit target, and removes the ball. Now, having said all this, most of the coding is the
same. Table 4-3, which shows the functions, has two additional lines for Picture and
drawAnImage.

158

CHAPTER 4 CANNONBALL AND SLINGSHOT

Table 4-3. Functions in the Second Cannonball Application

Function Invoked By/Called By Calls
init Action of the onLoad in body tag drawall
drawall Invoked directly by init, fire, change Calls the draw method of all objects
in the everything array; these
are the functions drawball and
drawrects
fire Invoked by action of the onSubmit attribute drawall
in form
change Invoked by action of the setInterval drawall, calls the moveit method
function called in fire of cball, which is moveBall
Ball Invoked directly by code in a var statement
myRectangle Invoked directly by code in a var statement
drawBall Invoked by call of the draw method for the
one Ball object
drawRects Invoked by call of the draw method for the
target object
moveBall Invoked by call of the moveit method for
the one Ball object
Picture Invoked directly by code in var statements
drawAnImage Invoked by call of the draw method for a

Picture object

Table 4-4 shows the complete code for the second application, but only the changed

lines have comments.

159

CHAPTER 4 CANNONBALL AND SLINGSHOT

Table 4-4. The Second Cannonball Application

Code Explanation

<html>
<head>
<title>Cannonball</title>
<style>
form {
width:330px;
margin:20px;
background-color:brown;

padding:20pXx;

</style>
<script type="text/javascript">
var cwidth = 600;
var cheight = 400;
var ctx;
var everything = [];
var tid;
var horvelocity;
var verticalveli;

var verticalvel2;

var gravity = 2;

var cannonx = 10; X location of cannon.

var cannony = 280; y location of cannon.

var cannonlLength = 200; Cannon length (i.e., width).
var cannonht = 20; Cannon height.

(continued)

160

CHAPTER 4 CANNONBALL AND SLINGSHOT

Table 4-4. (continued)

Code Explanation
var ballrad = 10;
var targetx = 500; X position of target.
var targety = 50; y position of target.
var targetw = 85; Target width.
var targeth = 280; Target height
var htargetx = 450; X position of the hit target.
var htargety = 220; y position of the hit target.
var htargetw = 355; Hit target width.
var htargeth = 96; Hit target height.

function Ball(sx,sy,rad,styleString) {

this.sx = sx;

this.sy = sy;

this.rad = rad;

this.draw = drawBall;

this.moveit = moveBall;

this.fillstyle = styleString;

}

function drawBall() {
ctx.fillStyle=this.fillStyle;
ctx.beginPath();
//ctx.fillStyle= rgh(0,0,0);

ctx.arc(this.sx,this.sy,this.rad,0,Math.
PI*2,true);

ctx.fill();

(continued)

161

CHAPTER 4 CANNONBALL AND SLINGSHOT

Table 4-4. (continued)

Code

Explanation

function moveBall(dx,dy) {
this.sx +=dx;
this.sy +=dy;

}

var cball = new Ball(cannonx+cannonLength,
cannony+cannonht*.5,ballrad, "rgh(250,0,0)");

function myRectangle(sx,sy,swidth,sheight,

stylestring) {

this.sx = sx;

this.sy = sy;
this.swidth = swidth;
this.sheight = sheight;
this.fillstyle = stylestring;
this.draw = drawrects;
this.moveit = moveball;

}

function drawRects() {
ctx.fillStyle = this.fillStyle;

ctx.fillRect(this.sx,this.sy,this.

swidth,this.sheight);
}

function Picture (sx,sy,swidth,
sheight,filen) {

var imga = new Image();
imga.src=filen;

this.sx = sx;

Header for function to set up
Picture object.

Create an Image object.
Set the filename

Set the sx property.

162

(continued)

CHAPTER 4 CANNONBALL AND SLINGSHOT

Table 4-4. (continued)

Code Explanation
This.sy = sy; Set the sy property.
this.img = imga; Set the img property to imga.
this.swidth = swidth; Sets the swidth property
this.sheight = sheight; Sets the sheight property

this.draw = drawAnImage;

this.moveit = moveBall;

}

function drawAnImage() {

ctx.drawImage(this.img,this.sx,this.
sy,this.swidth,this.sheight);

}

var target = new Picture(targetx,targety,
targetw,targeth, "hill. jpg");

var htarget = new Picture(htargetx, htargety,
htargetw, htargeth, "plateau.jpg");

var ground = new myRectangle(0,300,
600,30, "rgh(10,250,0)");

var cannon = new myRectangle(cannonx, cannony,
cannonlength,cannonht, "rgb(40,40,0)");

var targetindex = everything.length;

everything.push([target,false]);
everything.push([ground,false]);

Sets the draw property. This will be the
draw method for objects of this type.

This will be the moveit method. Not
used.

Close the Picture function.

Header for the drawAnImage
function.

Draw image using properties of this
object.

Close the function.

Construct a new Picture object
and assign it to the target variable.

Construct a new Picture object
and assign it to the htarget
variable.

Construct a new myRectangle
object and assign it to ground.

Construct a new myRectangle
object and assign it to cannon.

Save what will be the index for
target.

Add target to everything.
Add ground to everything

(continued)

163

CHAPTER 4 CANNONBALL AND SLINGSHOT

Table 4-4. (continued)

Code

Explanation

var ballindex = everything.length;

everything.push([cball,false]);

var cannonIndex = everything.length;

everything.push([cannon,true,0, cannonx,
cannony+cannonht*.5]);

function init(){

ctx = document.getElementById
('canvas').getContext('2d");

drawall();
}
function fire() {

var angle = Number(document.f.ang.value);

var outOfCannon = Number(document.f.vo.
value);

var angleRadians = angle*Math.PI/180;

horvelocity = outOfCannon*Math.

cos(angleradians);

verticalvell = - outOfCannon*Math.
sin(angleradians);
everything[cannonIndex][2]= - angleRadians;

cball.sx = cannonx + cannonlLength*Math.
cos(angleRadians);

cball.sy = cannony+cannonht*.5 -
cannonLength*Math.sin(angleRadians);

Save what will be the index for
cball.

Add cball to everything

Save what will be the index for
cannon.

Add cannon to everything;
reserve space for rotation.

Extract angle from form; convert to
number.

Extract velocity out of cannon from
form; convert to number.

Convert to radians

Compute the horizontal velocity.

Compute the initial vertical velocity.

Set information to rotate the cannon.

Set x for cball at the mouth of
what will be rotated cannon.

Set y for cball at the mouth of
what will be rotated cannon.

164

(continued)

CHAPTER 4 CANNONBALL AND SLINGSHOT

Table 4-4. (continued)

Code Explanation

drawAll();
tid = setInterval(change,100);
return false;
}
function drawAll() {
ctx.clearRect(0,0,cwidth,cheight);
var i;

for (i=0;i<everything.length;i++) {

var ob = everything[i]; Extract array for object.
if (ob[1]) { Need to translate and rotate?
ctx.save(); Save original axes.
ctx.translate(ob[3],0b[4]); Do indicated translation.
ctx.rotate(ob[2]); Do indicated rotation.
ctx.translate(-ob[3],-ob[4]); Translate back.
ob[0].draw(); Draw object.
ctx.restore(); } Restore axes.
else { Else (no rotation).
ob[0].draw();} Do drawing.

} Close the for loop.

} Close the function.

function change() {

var dx = horVelocity;
verticalVel2 =verticalVell + gravity;
var dy=(verticalVell + verticalVel2)*.s5;

verticalVell = verticalVel2;

(continued)

165

CHAPTER 4 CANNONBALL AND SLINGSHOT

Table 4-4. (continued)

Code Explanation

cball.moveit(dx,dy);
var bx = cbhall.sx;
var by = cball.sy;

if ((bx>=target.sx)8&&(bx<=(target.
sx+target.swidth))&8&

(by>=target.sy)8&(by<=(target.sy+target.
sheight))) {
clearInterval(tid);

everything.splice(targetindex,1,[htarget, Remove target and insert
false]); htarget.

everything.splice(ballindex,1); Remove the ball.
drawall();

}

if (by>=ground.sy) {
clearInterval(tid);

}
drawAll();

}

</script>

</head>

<body onLoad="init();">

<canvas id="canvas" width="600" height="400">

Your browser doesn't support the HTML5
element canvas

</canvas>

(continued)

166

CHAPTER 4 CANNONBALL AND SLINGSHOT

Table 4-4. (continued)

Code Explanation

<form name="f" id="f" onSubmit= "return
fire();">

Set velocity, angle and fire cannonball.

Velocity out of cannon <input name= "vo" Label indicating that this is the
id="vo" value="10" type= "number" min="-100" velocity out of the mouth of the
max="100" /> cannon.

Angle <input name="ang" id="ang" value="0" Label indicating that this is the angle
type="number" min= "0" max="80"/> of the cannon.

<input type="submit" value="FIRE"/>
</form>
</body>
</html>

This application provides many possibilities for you to make it your own. You can
change the cannon, the ball, the ground, and the target. If you don’t want to use images,
you can use drawings for the target and the hit target. You can draw other things on
the canvas. You just need to make sure that the cannonball (or whatever you set your
projectile to be) is on top or wherever you want it to be. You could, for example, make the
ground cover up the ball. You can use an animated GIF for any Image object, including
the htarget. You could also use images for the cannon and the ball. One possibility is to
use an animated GIF file to represent a spinning cannonball. Remember that all image
files referenced in the code must be in the same folder as the uploaded HTML file. If they
are in a different place on the Web, make sure the reference is correct.

The support for audio and video in HTMLS5 varies across the browsers. You can look
ahead to the presentation of video as a reward for completing the quiz in Chapter 6, and
to the audio presented as part of the rock-paper-scissors game in Chapter 8. If you want
to tackle this subject, it would be great to have a sound when the cannonball hits the
target and a video clip showing the target exploding.

167

http://dx.doi.org/10.1007/978-1-4842-4155-4_6
http://dx.doi.org/10.1007/978-1-4842-4155-4_8

CHAPTER 4 CANNONBALL AND SLINGSHOT

Moving away from the look of the game, you can invent a scoring system, perhaps
keeping track of attempts versus hits.

Slingshot: Using a Mouse to Set Parameters
of Flight

The slingshot application is built on the cannonball application. There are differences,
but much is the same. Reviewing and understanding how more complicated
applications are built on simpler ones will help you to create your own work.

Creating the slingshot application involves designing the slingshot, implementing
the mouse events to move the ball and parts of the slingshot, and then firing the ball. The
form is absent because the player’s moves are just the mouse actions. In addition, I used
a somewhat different approach for what to do when the target was hit. I check for the ball
to intersect with an area within the target by 40 pixels. That is, I require the ball to hit the
middle of the chicken! When there’s a hit, I change the target.src value to be another
Image element, going from a picture of a chicken to a picture of feathers. Moreover, I
don’t stop the animation, so the ball stops only when it hits the ground. As I indicated
earlier, I don’t have the slingshot slings return to their original position, as I wanted to
see the position to plan my next attempt.

Table 4-5 shows the functions calling and being called in the slingshot application.
This table is quite similar to the one of the cannonball applications.

168

CHAPTER 4 CANNONBALL AND SLINGSHOT

Table 4-5. Functions in the Slingshot Application

Function Invoked By/Called By Calls
init Action of the onLoad in body tag drawall
drawall Invoked directly by init, Calls the draw method of all
change objects in the everything array;
these are the functions drawBall,
drawRects, drawSling, and
drawAnImage
findball Invoked by action of addEventListenerin drawall and distsq
init for the mousedown event
distsq Called by findBall
moveit Invoked by action of addEventListener in drawAll
init for the mouseMove event
finish Invoked by action of the addEventListener drawAll and distsq
in init for the mouseup event
change Invoked by action of the setInterval drawAll, calls the moveit method
function called in finish of cball, which is moveBall
Ball Invoked directly by code in a var statement
Myrectangle Invoked directly by code in a var statement
drawball Invoked by call of the draw method for the
one Ball object
drawrects Invoked by call of the draw method for the
target object
moveball Invoked by call of the moveit method for the
one Ball object
Picture Invoked directly by code in var statements
drawAnImage Invoked by call of the draw method for a
Picture object
Sling Invoked directly by code in var statements
drawsling Invoked by call of the draw method for

mysling

169

CHAPTER 4 CANNONBALL AND SLINGSHOT

Table 4-6 shows the code for the slingshot application, with most lines commented,

even ones that were the same in the earlier programs. Notice that the form is absent

from the body element. Before looking at the code, try to identify what parts would be the

same as in the cannonball application and what would be different.

Table 4-6. The Slingshot Application

Code

Explanation

<html>

<head>

<title>Slingshot pulling back</title>

<script type="text/javascript">

var

var

var

var

var

var

var

var

var

var

var

var

var

var

var

cwidth = 1200;
cheight = 600;

ctx;

canvasi;

everything = [];
tid;

startrockx = 100;
startrocky = 240;
ballx = startrockx;
bally = startrocky;
ballrad = 10;

ballradsq = ballrad*ballrad;

inmotion = false;

horvelocity;

verticalvell;

Starting position x.
Starting position y.
Set ballx
Set bally.

Save this value.

Flag variable used to check if the rock
iS moving.

For horizontal velocity.

For vertical velocity at the start of an
interval.

170

(continued)

Table 4-6. (continued)

CHAPTER 4 CANNONBALL AND SLINGSHOT

Code

Explanation

var verticalvel2;

var gravity
var chicken
chicken.src
var feathers

feathers.src

function

2;

new Image();

"chicken.jpg";

new Image();

"feathers.gif";
Sling(bx,by,s1x,s1y,s2x,s2y,

s3x,s3y,stylestring) {

this.
this.
this.
this.
this.
this.
this.
this.
this
this.
this.
}

function

bx = bx;

by = by;

s1x = six;

sly = siy;

S2X = S2X;

s2y = s2y;

S3X = S3X;

s3y = s3y;

.strokeStyle = stylestring;

draw = drawsling;

moveit = movesling;

drawSling() {

ctx.strokeStyle = this.strokeStyle;
ctx.lineWidth = 4;
ctx.beginPath();

For vertical velocity at the end of the
interval.

Value of gravity. See my comments.
Name of original target.

Set the image file.

Name of the hit target.

Set the image file.

Function defining a slingshot based on
the four points plus a color.

Set property bx.

...by.

...S1IX.

...sly.

...S2X.

...S2y.

...S3X.

...S3y.

...strokeStyle.

Set the draw method.

Set the move method (not used).
Close the function.

Function header for drawsling.
Set this style.

Set the line width.

Start the path.

(continued)

171

CHAPTER 4 CANNONBALL AND SLINGSHOT

Table 4-6. (continued)

Code Explanation
ctx.moveTo(this.bx,this.by); Move to bx, by.
ctx.lineTo(this.six,this.s1y); Set up to draw to s1x,s1y
ctx.moveTo(this.bx,this.by); Move to bx, by.
ctx.lineTo(this.s2x,this.s2y); Set up to draw to s2x, s2y.
ctx.moveTo(this.six,this.s1y); Move to s1x,s1y.
ctx.lineTo(this.s2x,this.s2y); Set up to draw to s2x,s2y.
ctx.lineTo(this.s3x,this.s3y); Draw to s3x, s3y.
ctx.stroke(); Now draw the path.

} Close the function.

function moveSling(dx,dy) { Header for movesling.
this.bx +=dx; Add dx to bx.
this.by +=dy; Add dy to by.
this.six +=dx; Add dx to six.
this.s1ly +=dy; Add dy to s1y.
this.s2x +=dx; Add dx to s2x.
this.s2y +=dy; Add dy to s2y.
this.s3x +=dx; Add dx to s3x.
this.s3y +=dy; Add dy to s3y.

} Close the function.

var mySling= new Sling(startrockx,startrocky, Build new Sling and assign it to the
startrockx+80,startrocky-10,startrockx+80, mysling variable.
startrocky+10,startrockx+70, startrocky+180,

"rgh(120,20,10)");

function Ball(sx,sy,rad,stylestring) { Header for Ball.
this.sx = sx; Set property sx.
this.sy = sy; ...SY.

(continued)

172

Table 4-6. (continued)

CHAPTER 4 CANNONBALL AND SLINGSHOT

Code Explanation
this.rad = rad; ...read.

this.draw = drawball;draw.
this.moveit = moveball; ...moveit.
this.fillstyle = stylestring; ...Tfillstyle.

} Close Ball.
function drawBall() { Header for drawball.

ctx.fillStyle=this.fillstyle;
ctx.beginPath();

ctx.arc(this.sx,this.sy,this.rad,o0,
Math.PI*2,true);

ctx.fill();

}
function moveBall(dx,dy) {

this.sx +=dx;
this.sy +=dy;
}

var cball = new Ball(startrockx,startrocky,
ballrad, "rgb(250,0,0)");

Set the fillStyle from the property.
Start the path.

Draw the arc.

Fill.
Close drawBall.

Header for moveball. Parameters
have the change in position.

Increment sx.
Increment sy.
Close moveit.

Set cBall to be a new Ball object.

function myRectangle(sx,sy,swidth, Header for Myrectangle.
sheight,stylestring) {

this.sx = sx; Set the property sx.

this.sy = sy; ...SY.

this.swidth = swidth; ...swidth.

this.sheight = sheight; ..sheight.

this.fillstyle = stylestring; ...fillStyle.

(continued)

173

CHAPTER 4 CANNONBALL AND SLINGSHOT

Table 4-6. (continued)

Code Explanation
this.draw = drawrects; ...draw.
this.moveit = moveball; ...moveit.

}

function drawRects() {

ctx.fillStyle = this.fillstyle;

ctx.fillRect(this.sx,this.sy,this.

swidth,this.sheight);
}

function Picture (sx,sy,swidth,
sheight,imga) {

this.sx = sx;

this.sy = sy;

this.img = imga;
this.swidth = swidth;
this.sheight = sheight;
this.draw = drawAnImage;
this.moveit = moveball;

}

function drawAnImage() {

ctx.drawImage(this.img,this.sx,this.

sy,this.swidth,this.sheight);
}

var target = new Picture(700,210,209,
179,chicken);

Close Myrectangle.
Header for drawrects.
Set fil1Style from the property.

Draw.

Close drawrects.

Header for Picture.

Set the property sx.
...SY.

...img.

...swidth.

...sheight.
...drawAnImage.
...moveit.

Close Picture.

Header for drawAnImage.

Uses drawImage.

Close drawAnImage.

Build a new Picture object and
assign it to target. Note chicken
here refers to a variable of datatype
Image.

174

(continued)

Table 4-6. (continued)

CHAPTER 4 CANNONBALL AND SLINGSHOT

Code

Explanation

var ground = new myRectangle(0,370,
1200, 30, "rgh(10,250,0)");

function init(){

ctx = document.getElementById('canvas"').
getContext('2d");

canvasl = document.
getElementById('canvas');

canvasl.addEventListener('mousedown’,
findball,false);

canvasl.addEventListener('mousemove’,
moveit,false);

canvasil.addEventListener('mouseup’,finish,
false);

everything.push(target);

everything.push(ground);

everything.push(mysling);
everything.push(cball);
drawAll();

}
function findBall(ev) {

var mx;
var my;

mx = ev.pageX;

Create the rectangle serving as the
ground.

Header for init.

Set ctx for the canvas context.

Set canvas1 as the variable holding
the canvas element.

Set up event handling for the
mousedown event.

Set up event handling for the
mousemove event.

Set up event handling for the
mouseup event.

Note: | have moved these inside the
init function.
Add target to the list.

Put the ground on top of the
chicken’s feet.

Add mysling.
Add cball.
Draw everything.
Close init.

Function header for the mousedown
event.

Variable to hold mouse x.
Variable to hold mouse y.

Set mx.

(continued)

175

CHAPTER 4 CANNONBALL AND SLINGSHOT

Table 4-6. (continued)

Code

Explanation

my = ev.pageyY,

if (distsq(mx,my, cball.sx,cball.sy)
<ballradsq) {

inmotion = true;

drawall();

}

function distsq(x1,y1,x2,y2) {
return (x1-x2)*(x1-x2)+(y1-y2)*(y1-y2);
}

function moveit(ev) {

var mx;

var my;

if (inMotion) {
mx = ev.pageX;
my = ev.pageyY;
cball.sx = mx;

cball.sy

my
mysling.bx = mx;
mysling.by = my;
drawall();

Set my.

Is the mouse over the ball?

Set inmotion.

Draw everything.
Close if over ball.

Close function
Header for distsq.
Return distance squared.
Close the function.

Function header for the mousemove
event.

For mouse x.

For mouse y.

In motion?

Use it for mx.

Use offsetY for my.
Position ball x.
...andy.

Position s1ing bx.
...and by.

Draw everything.
Close if in motion.

Close the function.

176

(continued)

Table 4-6. (continued)

CHAPTER 4 CANNONBALL AND SLINGSHOT

Code

Explanation

function finish(ev) {
if (inMotion) {

inMotion = false;

var outOfCannon = distsq(mysling.bx,mysling.

by, mysling.six,mysling.s1y)/700;

var angleRadians = -Math.atan2(mysling.
s1y-mysling.by,mysling.six-mysling.bx);

horVelocity = outOfCannon*Math.
cos(angleradians);

verticalvell = - outOfCannon*Math.
sin(angleradians);

drawAll();
tid = setInterval(change,100);

}

}
function drawAll() {

ctx.clearRect(0,0,cwidth,cheight);

var i;

for (i=0;i<everything.length;i++) {
everything[i].draw();

}
function change() {

var dx = horVelocity;

Function for mousedown.
In motion?
Reset inmotion

Base outOfCannon proportional to
square of bx, by to s1x,s1y.

Compute angle.

Calculate horizontal velocity.

Calculate vertical velocity.

Draw everything.

Start animation.

Close inmotion text.

Close finish.
Header for drawall.
Clear the canvas.

Used for loop over everything.
for loop.

Draw each object in the everything
array.

Close the loop
Close drawall.
Header for change.

Set to horvelocity. This will not
change.

(continued)

177

CHAPTER 4 CANNONBALL AND SLINGSHOT

Table 4-6. (continued)

Code

Explanation

verticalVel2 = verticalVell + gravity;

var dy = (verticalvel1 +
verticalvel2)*.5;

verticalVell = verticalVel2;

cball.moveit(dx,dy);
var bx = cbhall.sx;
var by = cball.sy;
if ((bx>=target.sx+40)8&&(bx<=(target.
sx+target.swidth-40))8& (by>=target.
sy+40)8&(by<=(target.sy+target.
sheight-40))) {

target.img = feathers;

}
if (by>=ground.sy) {

clearInterval(tid);

}
drawAll();

}

</script>

</head>

<body onlLoad="init();">

<canvas id="canvas" width="1200"
height="600">

Set the vertical velocity for the end of
the interval.

Compute the averagle vertical velocity.

Now set verticalveli for the next
iteration.

Move the ball the calculated amounts.
Access the bx for the next calculation.
... and the by.

Check for inside of target (40 pixels).

Change target img value.
Close the if clause if a hit.

Check if the ball is beyond (beneath)
the ground.

If so, stop the animation.

Close the if clauseon on ground test.
Draw everything.

Close change.

End of script.

End of head.

Body tag. Set up call to init.

Canvas header.

178

(continued)

CHAPTER 4 CANNONBALL AND SLINGSHOT

Table 4-6. (continued)

Code Explanation

Your browser doesn't support the HTML5 Message for old browsers.
element canvas.

</canvas> Close of canvas.

 Line break.

Hold mouse down and drag ball. Releasing Instructions for using mouse.

the mouse button will shoot the slingshot.
Slingshot remains at the last position.
Reload page to try again.

</body> Close of body .
</html> Close of html.

Testing and Uploading the Application

The “look and feel” of these applications is pretty crude and should inspire you to
improve them! Using images for the original target and the hit target is fun, but you must
remember to include those files when you upload your project and also have the correct
name and extension. At one point, I used a system that automatically renamed JPG files
to be JPEG, and this needed to be corrected. You can choose your own targets. Perhaps
you feel kindly toward chickens!

You'll need to test that the program performs correctly in three situations: when the
ball plops down to the left of the target, when the ball hits the target, and when the ball
sails over the target. Note that I massaged the values so that the chicken needs to be hit
in the middle, so it is possible for the ball to touch the head or tail and not cause the
feathers to appear.

You can vary the position of the cannon and its target and hit target, and the
slingshot and the chicken and the feathers, by changing the variables such as
startRockx, and you can modify the gravity variable. If you put the slingshot closer to
the target, you can have more ways to hit the chicken: pulling more to the left for a direct
shot versus pulling down for more of a lob. Enjoy!

179

CHAPTER 4 CANNONBALL AND SLINGSHOT

As I mentioned, you could use an animated GIF for the hit target in the cannonball
and slingshot applications. This would produce a nice effect.

If you do use more and/or bigger pictures or other media, then it would be best to
use a technique to make sure that all the media is downloaded from your website before
being used. I describe such a technique in Chapter 6, which plays a video clip and an
audio clip when the player successfully completes a turn.

Summary

In this chapter, you learned how to create two ballistics applications. It is important
to understand how they are the same and how they are different. The programming
techniques and HTMLS5 features included the following:

e Programmer-defined objects

o setInterval to setup a timing event for the animation, as was done
for the bouncing ball

e Building an array using the push method and using the array as a list
of what to display

o Modifying arrays using the splice method

e Using trig functions and transformations to rotate the cannon and
to resolve the horizontal and vertical velocities in the cannon and

slingshot applications so as to simulate gravity
e Using a form for player input

» Handling mouse events (mousedown, mousemove, and mouseup), with
addEventListener to obtain player input

o Drawing arcs, rectangles, lines, and images on a canvas

The technique of programmer-defined objects and the use of an array of objects to
display will come up again in later chapters. The next chapter focuses on a familiar game
known as either memory or concentration. It uses a different timing event as well as the
Date function, which was introduced in Chapter 1.

180

http://dx.doi.org/10.1007/978-1-4842-4155-4_6
http://dx.doi.org/10.1007/978-1-4842-4155-4_1

CHAPTER 5

The Memory (aka
Concentration) Game

In this chapter, we cover the following:
e Drawing polygons
e Placing text on the canvas
e Programming techniques for representing information
e Programming a pause
e (Calculating elapsed time

e One method of shuffling a set of card objects

Introduction

This chapter demonstrates two versions of a card game known variously as memory
or concentration. Cards appear face down, and the player turns over two at a time (by
clicking them) in an attempt to find matched pairs. The program removes matches from
the board but (virtually) flips back cards that do not match. When players make all the
matches, the game shows the elapsed time.

The first version of the game I describe uses polygons for the face cards; the second
uses family photos. You'll notice other differences, which were made to illustrate several
HTMLS5 features, but I also urge you to think about what the versions have in common.

181
© Jeanine Meyer 2023

J. Meyer, The Essential Guide to HTMLS5, https://doi.org/10.1007/978-1-4842-8722-4_5

https://doi.org/10.1007/978-1-4842-8722-4_5

CHAPTER5 THE MEMORY (AKA CONCENTRATION) GAME

Figure 5-1 shows the opening screen of version one. When a player completes the
game, the form that keeps track of matches also shows the elapsed time.

Click on two cards to see if you have a match.

Mumber of matches: _ 0|

Time taken to complete puzzle: seconds.

Figure 5-1. Opening screen of the memory game, version 1

Figure 5-2 displays the result after a player has clicked two cards (the purple
squares). The depicted polygons don’t match, so after a pause, the program replaces
them with images of the card backs, making the cards appear to have flipped over.

182

CHAPTERS5 THE MEMORY (AKA CONCENTRATION) GAME

Click on two cards to see if you have a match

Number of matches: ol

Time taken to complete puzzle: | seconds.

Figure 5-2. Two card fronts: no match

When two cards match, the application removes them and notes the match in the
form (see Figure 5-3).

183

CHAPTER5 THE MEMORY (AKA CONCENTRATION) GAME

R

Click on two cards to see if you have a match

Number of matches: 1|

Time taken to complete puzzle: | seconds.

Figure 5-3. The application has removed the two cards that matched

As illustrated in Figure 5-4, the game displays the result—in this case, 6 matches in 36
seconds—when the player finishes.

Click on two cards to see if you have a match.

Number of matches: _ E

Time taken to complete puzzle: 38_: seconds.

Figure 5-4. Version 1 of the game after the player has completed it

184

CHAPTERS5 THE MEMORY (AKA CONCENTRATION) GAME

In version 2 of the game, the card fronts display photographs of people rather than
polygons. And note that although many memory games consider images to be the same
only if they’re completely identical, this one is similar to a 2 of hearts matching a 2 of
diamonds in a deck of playing cards. To illustrate a programming point, we’ll define a
match as the same person, even in differing pictures. This requires a method of encoding
the information we use to determine matching states. Version 2 of the game also
demonstrates writing text on the canvas, as you can see in Figure 5-5, which depicts the
opening screen.

Click on two cards to make a match.

Number of matches so far: 0

Figure 5-5. The memory game, version 2, opening screen

To see one possible result of clicking two cards in our new game, look at Figure 5-6.

185

CHAPTER5 THE MEMORY (AKA CONCENTRATION) GAME

-

& = & @ file:f/Usersfjeaninemeyer/Documents/EssentialGuid: e @ & » =

Click on two cards to make a match.

Number of matches so far: 0

Figure 5-6. Nonmatching photos

Because the result shows two different people—after pausing to let the player
view both pictures—the application flips the cards over and lets the player try again.
Figure 5-7 shows a successful selection—two images of the same person (albeit in
different pictures).

186

CHAPTERS5 THE MEMORY (AKA CONCENTRATION) GAME

_ Memory game using pictures X Memory game using pictures

&~ C | @ file:ff/Usersfjeaninemeyer/Documents/EssentialGuid: e @ & » =

Click on two cards to make a match.

Number of matches so far: 1

Figure 5-7. A match (different scenes, but the same person)

The application removes matched images from the board. When all cards are
removed, the time taken to complete the game appears along with instructions on how
to play again, as shown in Figure 5-8.

187

CHAPTER5 THE MEMORY (AKA CONCENTRATION) GAME

You finished in 22 secs.

Reload the page to try again.

Figure 5-8. The final screen of the game (photo version); all images have been
matched, so no cards appear

You can play the game using photos available with the source code, but it's more fun
to use your own. You can start with a small number—say two or three pairs of images—
and then work up to images of the whole family, class, or club. And for version 1 of the
game, you can replace the polygons with your own designs.

Critical Requirements

The digital versions of the games require ways to represent the card backs (which are all
the same) and the fronts with their distinct polygons or photos. The applications must
also be able to tell which cards match and where cards are on the board. Additionally,
players require feedback. In the real-world game, participants flip over two cards and
look for a match (which takes a few moments). If there’s none, they flip the cards face
down again.

The computer program must show the faces of the selected cards and pause after
revealing the second card so players have time to see the two faces. This pause is an
example of something required for a computer implementation that occurs more or less
naturally when people play the game. The application should also display the current
number of pairs found and, when the game is complete, the length of time participants
took to find them all. The polygon and photo versions of the program use different
approaches to accomplish these tasks.

188

CHAPTER5 THE MEMORY (AKA CONCENTRATION) GAME

Here’s a summary of what the two game versions must do:

Draw the card backs.

Shuffle the cards before a player makes an initial selection so the
same array of choices doesn’t appear every time.

Detect when a player clicks a card and distinguish between a first and
a second click.

On detecting a click, show the appropriate card face by drawing
polygons in the case of game version 1 or displaying the correct
photograph for version 2.

Remove pairs that match.

Operate appropriately even if those pesky players do the unexpected,
such as clicking the same card twice or clicking an empty space
formerly occupied by a card.

HTMLS, CSS, JavaScript Features

Let’s go over the specific HTML5 and JavaScript features that provide what we need

to implement the games. We'll build on material covered previously: the general

structure of HTML documents; how to draw rectangles, images, and paths made up

of line segments on a canvas element; programmer-defined and built-in functions;

programmer objects; the form element; and arrays.

New HTMLS5 and JavaScript features include the time-out event, the use of Date

objects for the calculation of elapsed time, writing and drawing text on the canvas, and

several useful programming techniques that you'll find valuable in future applications.

As in the previous chapters, this section describes the HTML5 features and

programming techniques in general terms. You can see all the code in context in the

“Building the Application” section. If you like, you can skip to that section to see the code

and then return here for explanations of how the features work.

189

CHAPTER5 THE MEMORY (AKA CONCENTRATION) GAME

Representing Cards

When we hold a physical card in our hands, we can see what it is. There’s a card face

and back, and the backs are all the same. We can clearly determine the cards’ positions
on the game board and whether their faces or backs show. To implement a computer
game, we must represent—encode—all that information. Encoding is an essential part of
creating many computer applications, not just games.

In this chapter (and throughout the book), I describe one way to accomplish the
task. Keep in mind, though, that there’s rarely just one way to implement a feature of
an application. That said, different strategies for building an application will likely have
some techniques in common.

Our approach to handling cards will employ a programmer-defined object. Creating
a programmer-defined object in JavaScript involves writing the constructor function; in
this case, we'll call it Card. The advantage of using programmer-defined objects is that
JavaScript provides the dot notation needed to access information and code for objects
of a common type. We did this for the cannonball and slingshot games in Chapter 4.

We'll give the Card object properties that will hold the card’s location (sx and sy) and
dimensions (sWidth and sHeight), a pointer to a function to draw a back for the card,
and for each case, the information that specifies the appropriate front (info).

In the case of a polygon, the value of info will indicate the number of sides to be
drawn. (In a later section we'll discuss the code for drawing it.) For a photo card face, the
value will be a reference, img, to an Image object we've created. The object will hold a
specific image file along with a number (info) that ties together pictures that match. To
draw the image for the file, we’ll use the built-in drawImage method.

Needless to say, the cards don’t exist as physical entities, with two sides. The
application draws the card’s face or back on the canvas where the player expects to see it.
The function flipBack draws the card’s back. To give the appearance of a removed card,
flipBack effectively erases a card by drawing a rectangle that’s the color of the board.

Both applications use a function named makeDeck to prepare the deck, a process
that includes creation of the Card objects. For the polygon version of the game, we store
the number of sides (from three to eight) in the Card objects. The application draws no
polygons during setup, though. The photos version sets up an array called pairs, listing
the image file names for the photos. You can follow this example to create your own
family or group memory game.

190

http://dx.doi.org/10.1007/978-1-4842-4155-4_4

CHAPTER5 THE MEMORY (AKA CONCENTRATION) GAME

Tip If you use the online code to play the game, as noted earlier, you can
download the image files. To make the game your own, you need to upload the
pictures and then change the code to reference your files. The code indicates what
you need to change.

The makeDeck function creates the Image objects and uses the pairs array to set the
src property to the image object. When the code creates Card objects, it puts in the index
value that controls the pairs array so that matched photos have the same value. As in the
polygon version, the application draws no image on the canvas during the creation of the
deck. On the screen, the cards all appear the same; the information is different, though.
These cards are in fixed positions—shuffling comes later.

The code interprets position information, the sx and sy properties, differently for
Card and Polygon. In the first case, the information refers to the upper-left corner. In the
second case, the value identifies the center of the polygon. You can compute one from
the other, though.

Using Date for Timing

We need a way to determine how long the player took to make all the matches. JavaScript
provides a way to measure elapsed time. You can view the code in context in the
“Building the Application” section. Here I provide an explanation of how to determine
the number of seconds between two distinct events in a running program.

A call to Date() generates an object with date and timeDate and time information.
The two lines

startTime = new Date();
startTime = Number(startTime.getTime());

store the number of milliseconds (thousands of a second) since the start of 1970 in
the variable startTime. (The reason JavaScript uses 1970 doesn’t matter.) You can do
arithmetic with Date objects, but I have chosen to extract the millisecond values.

When either of our two memory programs determines the game is over, it invokes
Date() again as follows:

var now = new Date();
var nt = Number(now.getTime());

var seconds = Math.floor(.5+(nt-startTime)/1000);
191

CHAPTER5 THE MEMORY (AKA CONCENTRATION) GAME

This code
1. Creates anew Date object and stores it in the variable now.

2. Extracts the time using getTime, converts it to Number, and
assigns it to the variable nt. This means nt holds the number of
milliseconds from the start of 1970 until the point at which the
code called Date. The program then subtracts the saved starting
time, startTime, from the current time, nt.

3. Divides by 1,000 to get to seconds.

4. Adds .5 and invokes Math. floor to round the result up or down
to whole seconds. We want numbers with fractional parts equal
or greater than .5 to be rounded up and numbers less than .5 to be
rounded down.

If you need more precision than seconds provides, omit or modify the last step.
You can use this code whenever you need to calculate time elapsed between two
events in a program.

Providing a Pause

When we play memory using real cards, we don’t consciously pause before flipping
nonmatching cards face down. But as noted earlier, our computer implementation

must provide a pause so players have time to see the two differing cards. You may recall
from Chapters 3 and 4 that the animation applications—bouncing ball, cannonball,

and slingshot—used the JavaScript function setInterval to set up events at fixed time
intervals. We can employ a related function, setTimeout, in our memory games. (To see
the complete code in context, go to the “Building the Application” section.) Let’s see how
to set up the event and what happens when the pause time runs out.

The setTimeout function sets up a single event, which we can use to impose a pause.
The choose function, called when a player clicks the canvas, first checks the firstPick
variable to determine if the person has made a first or second selection. In either case,
the program draws the card front on the canvas in the same spot as the card back. If the
click was a second choice and the two cards match, the code sets the variable matched
to true or false, depending on whether the cards did or didn’t match. If the application
determines that the game isn’t over, the code invokes

192

http://dx.doi.org/10.1007/978-1-4842-4155-4_3
http://dx.doi.org/10.1007/978-1-4842-4155-4_4

CHAPTER5 THE MEMORY (AKA CONCENTRATION) GAME
setTimeout(flipback,1000);

This leads to a call to the flipBack function in 1,000 milliseconds (1 second). The
function flipBack then uses the matched variable to determine whether to redraw card
backs or erase the cards by drawing rectangles with the table background color at the
appropriate card locations.

You can use setTimeout to set up any individual timed events. You need to
specify the time interval and the function you want invoked when the interval expires.
Remember that the time unit is milliseconds.

Drawing Text

HTMLS5 includes a mechanism for placing text on the canvas. This provides a much
more dynamic, flexible way to present text than previous versions. You can create some
good effects by combining text placement with the drawing of rectangles, lines, arcs, and
images we've already demonstrated. In this section, we outline the steps for placing text
in a canvas element, and we include a short example that you can try. If you want, skip
ahead to the “Building the Application” section to view the complete description of the
code that produces what you see in Figures 5-5 through 5-8 for the photos version of the
memory game.

To put text on the canvas, we write code that sets the font, and then we use fillText
to draw a string of characters starting at a specified x-y location. The following example
creates words using an eclectic set of fonts (see the caution note later in the section):

<html>
<head>
<title>Fonts</title>
<script type="text/javascript">
var ctx;

function init(){
ctx = document.getElementById('canvas').getContext('2d");
ctx.font="15px Lucida Handwriting";

193

CHAPTER5 THE MEMORY (AKA CONCENTRATION) GAME

ctx.fillText("this is Lucida Handwriting", 10, 20);
ctx.font="italic 30px HarlemNights";
ctx.fillText("italic HarlemNights",40,80);
ctx.font="bold 40px HarlemNights";
ctx.fillText("HarlemNights",100,200);
ctx.font="30px Accent";
ctx.fillText("Accent", 200,300);

}

</script>

</head>

<body onlLoad="init();">

<canvas id="canvas" width="900" height="400">

Your browser doesn't support the HTML5 element canvas.

</canvas>

</body>

</html>

This HTML document produces the screenshot shown in Figure 5-9.

| Fonts

|

th&k&yl&ua&icvF{aﬁmdavrit&m%y

italic FarlermNiohis

HarlemNights

Accent

Figure 5-9. Text in different fonts drawn on the canvas, produced using the font
and fillText functions

194

CHAPTER5 THE MEMORY (AKA CONCENTRATION) GAME

Caution Make sure you pick fonts that will be present on the computers of all
your players. In Chapter 10, you’ll learn how to use a CSS feature, called font-
family, that provides a systematic way to specify a primary font and backups.

Note that although what you see appears to be text, you're actually looking at ink on
the canvas—that is, bitmap images of text, not a text field that you can modify in place.
This means that to change the text, we need to write code that will completely erase the
current image. We do so by setting the fil1Style to the value we placed in the variable
tableColor earlier, and use fillRect at the appropriate location and with the necessary
dimensions.

After creating the text image, the next step is to set fillStyle to a color other than
tableColor. We'll use the color we chose for the card backs. For the opening screen
display of the photograph memory game, here’s the code to set the font used for all text:

ctx.font="bold 20pt sans-serif";

Using the sans-serif font makes sense, since it’s a standard font present on any
computer.

Putting together what we’ve done to this point, here’s the code to display the number
of matches at a particular point in the game:

ctx.fillStyle= tableColor;
ctx.fillRect(10,340,900,100);
ctx.fillStyle=backColor;
ctx.fillText
("Number of matches so far: "+String(count),10,360);

The first two statements erase the current tally, and the next two put in the updated
result. The expression "Number of matches so far: "+String(count) deserves more
explanation. It accomplishes two tasks:

o It takes the variable count, which is a number, and turns it into a
string of characters.

e It concatenates the constant string "Number of matches so far:
with the result of String(count).

195

http://dx.doi.org/10.1007/978-1-4842-4155-4_10

CHAPTER5 THE MEMORY (AKA CONCENTRATION) GAME

The concatenation demonstrates that the plus sign has two meanings in JavaScript.
If the operands are numbers, the sign indicates addition. If the operands are character
strings, it indicates the two strings should be concatenated—put together. A fancy phrase
for a single symbol having several meanings is operator overloading.

What will JavaScript do if one operand is a string and the other a number? The
answer depends on which of the two operands is what datatype. You'll see examples of
code in which the programmer doesn’t put in the commands to convert text to a number
or vice versa, but the statement works because of the specific order of operations.

I suggest not taking chances, though. Instead, try to remember the rules that govern
interpretation of the plus sign. If you notice that your program increases a number
from, say, 1 to 11 to 111 when you're expecting 1, 2, 3, your code is concatenating strings
instead of incrementing numbers, and you need to convert strings to numbers.

Drawing Polygons

Creating polygons provides a good demonstration of HTML5’s drawing facilities. To
understand the code-development process used here for drawing polygons, think of the
geometric figure as a wheel-like shape with spokes emanating from its center to each

of its vertices. The spokes will not appear in the drawings but are to help you, like they
helped me, figure out how to draw a polygon. Figure 5-10 illustrates this with a triangle.

Vs
X

Figure 5-10. Representing a triangle as a geometric shape can help clarify code
development for drawing polygons; the arrow indicates the first point in the
drawing path

196

CHAPTER5 THE MEMORY (AKA CONCENTRATION) GAME

To determine the measure of the angle between spokes, we divide the quantity
2*Math.PI (representing a complete circle) by the number of sides the polygon
has. We use the angle value and the moveTo method to draw the points of the path. The
source code has a simple HTML program drawing a triangle; that is, a variable n is set to
3. You can moditfy it to draw other regular polygons by changing the statement declaring
and initializing n.

The program draws the polygon as a filled-in path that starts at the point (indicated
by the arrow in Figure 5-10) specified by one-half the value of angle. To get to the point,
we use the moveTo method along with the radius, Math.sin and Math. cos. We then
use the 1ineTo method for n-1 more points, proceeding in clockwise fashion. For the
triangle, n-1 is two more points. For the octagon, it would be seven more. After running
through a for loop with the 1ineTo points, we invoke the fill method to produce a
filled-in shape. Here is the critical code for drawing the triangle:

var ctx;
var rad = 50;
var centerX

200;

var centerY = 200;

var n = 3;
var angle = (2*Math.PI)/n;
function init(){
ctx = document.getElementById('canvas').getContext('2d");
ctx.fillStyle="rgb(255,0,0)";
var i;
ctx.beginPath();
ctx.moveTo(centerX+rad*Math.cos(-.5*angle),centerY+rad*Math.
sin(-.5*angle));
for (i=1;i<n;i++) {
ctx.lineTo(centerX+rad*Math.cos((i-.5)*angle),
centerY+rad*Math.sin((i-.5)*angle));
}
ctx.closePath();
ctx.fill();

197

CHAPTER5 THE MEMORY (AKA CONCENTRATION) GAME

Notice that n is a variable that can be set with different values. You will see something
similar in the program for the memory game using polygons.

Note Drawing and redrawing polygons takes time, but that doesn’t cause
problems with this application. If a program has a large number of intricate
designs, preparing them ahead of time as pictures may make sense. That
approach, however, requires users to download the files, which can take quite a
while. You need to experiment to see which approach works better overall.

Shuffling Cards

As noted previously, the memory game requires the program to shuffle the cards before
each round, since we don’t want the cards to appear in the same position time

after time. The best way to shuffle sets of values is the subject of extensive research.

In Chapter 10, which describes the card game called blackjack or 21, you'll find a
reference to an article that describes a technique claimed to be the most efficient way to
produce a shuffled deck.

For memory/concentration, let’s implement the way I played the game as a child.

I and the others would lay out all the cards and then pick up and swap pairs. When
we thought we had done it a sufficient number of times, we would begin to play. In
this section, we'll explore a few more concepts behind this approach. (To examine the
shuffle function, you can skip ahead to the “Building the Application” section.)

To write the JavaScript for the swap method of shuffling, we first need to define
“sufficient number of times.” Let’s make that three times the number of cards in the deck,
which we’ve represented in the array variable deck. But since there are no cards, just
data representing cards, what are we swapping? The answer is the information uniquely
defining each card. For the polygon memory game, this is the property info. For the
picture game, it’s info and img.

To get a random card, we use the expression Math.floor(Math.random()*dl), where
dl, standing for deck length, holds the number of cards in the deck. We do this twice to
obtain the pair of cards to be (virtually) swapped. This could produce the same number,
meaning a card is swapped with itself, but that’s not really a concern. If it happens, this
step in this process has no effect. The code mandates a large number of swaps, so one
swap not doing anything is okay.

198

http://dx.doi.org/10.1007/978-1-4842-4155-4_10

CHAPTER5 THE MEMORY (AKA CONCENTRATION) GAME

Carrying out the swap is the next challenge, and it requires some temporary storage.
We’ll use one variable, holder, for the polygon version of the game and two variables,
holderImg and holderInfo, for the picture case.

Implementing Clicking on a Card

The next step is to explain how we implement the player moves, namely, the player
clicking on a card. In HTML5, we can handle the click event employing much the same
approach that we took with the mouseDown event (described in Chapter 4). We'll use the
addEventListener method.

canvasl = document.getElementById('canvas');
canvasl.addEventListener('click',choose,false);

This appears in the init function. The choose function must contain code
to determine which card we choose to shuffle. The program must also return the
coordinates of the mouse when the player clicks the canvas. The methodology for
obtaining mouse coordinates is the same as that covered in Chapter 4.

As I have written before, in the previous edition, I used more complex coding to pick
up the mouse coordinates. However, things appeared to have eased in terms of browsers.
The following works in Chrome and Safari:

mx

my

ev.pageX;
ev.pageY;

Because the cards are rectangles, going through the deck and doing compare
operations is relatively easy using the mouse cursor coordinates (mx, my), the location of
the upper-left corner, and the width and height of each card. Here’s how we construct
the if condition:

if ((mx>card.sx)&&(mx<card.sx+card.sWidth)8&(my>card.sy)&&(my<card.sy+card.
sHeight))

Note The next chapter, which describes the way you create HTML markup at
runtime, shows how to set up event handling for specific elements positioned on
the screen as opposed to using the whole canvas element.

199

http://dx.doi.org/10.1007/978-1-4842-4155-4_4
http://dx.doi.org/10.1007/978-1-4842-4155-4_4

CHAPTER5 THE MEMORY (AKA CONCENTRATION) GAME

We clear the variable firstPick and initialize it as true, which indicates that this
is the first of two picks by a player. The program changes the value to false after the
first pick and back to true after the second. Variables like this, which flip back and forth
between two values, are called flags or toggles.

Preventing Certain Types of Cheating

Note that the specifics of this section apply just to these memory games, but the general
lesson holds for building any interactive application. There are at least two ways a player
can thwart the game. Clicking the same card twice is one; clicking a region where a card
has been removed (that is, the board has been painted over) is another.

To deal with the first case, after the if-true clause that determines whether the

mouse is over a certain card, insert this if statement:
if ((firstPick) || (i!=firstCard)) break;

This line of code triggers an exit from the for statement if the index value (i) is fine,
which happens when either: 1) this is a first pick or 2) this isn’t a first pick and i doesn’t
correspond to the first card chosen.

Preventing the second problem—clicking a “ghost” card—requires more work. When
the application removes cards from the board, in addition to painting over that area of
the canvas, we can assign a value (-1, say) to the sx property. This will mark the card as
having been removed. This is part of the flipBack function. The choose function contains
the code that examines the sx property and does the checking (only if sx is >= 0). The
function incorporates both cheating tests in the following for loop:

for (i=0;i<deck.length;i++){
var card = deck[i];
if (card.sx »=0)
if ((mx>card.sx)8&&(mx<card.sx+card.sWidth)&&(my>card.sy)8&&(my<card.sy+card.
sHeight)) {
if ((firstPick)|| (i!=firstCard)) break;

}

200

CHAPTER5 THE MEMORY (AKA CONCENTRATION) GAME

In the three if statements, the second is the whole clause of the first. The third has
the single statement break, which causes control to leave the for loop. Generally, I
recommend using brackets (for example: { and })for if true and else clauses, but
here I used the stripped-down format for single statements to show you that format and
also because it seemed clear enough.

Now let’s move on to building our two memory games.

Building the Application and Making It Your Own

This section presents the complete code for both versions of the game. Because the
applications contain multiple functions, the section provides a table for each game that
tells what each function calls and is called by.

Table 5-1 is the function listing for the polygon version of the memory game. Notice
that some of the invocation of functions is done based on events.

Table 5-1. Functions in the Polygon Version of the Memory Game

Function Invoked By/Called By Calls
init Invoked in response to the onLoad in the makeDeck
body tag shuffle
choose Invoked in response to the Polycard
addEventListenerin init drawPoly (invoked as the draw
method of a polygon)

flipBack Invoked in response to the setTimeout call
in choose

drawBack Invoked as the draw method for a card in
makedeck and flipBack

Polycard Called in choose
shuffle Called in init
makeDeck Called in init
Card Called by makeDeck

drawPoly Called as the draw method of Polygon in
choose

201

CHAPTER5 THE MEMORY (AKA CONCENTRATION) GAME

Table 5-2 shows the commented code for the complete polygon version of the

application. When reviewing it, think about the similarities to applications described in

other chapters. And remember that this illustrates just one way to name the application’s

components and program it. Other ways may work equally well.

Table 5-2. Complete Code for the Polygon Version of the Memory Game

Code Explanation
<html> Starting html tag.
<head> Starting head tag.

<title>Memory game using polygons</title>
<style>

form {

width:330px;

margin:20px;

background-color:pink;

Padding:20px;

}

input {

text-align:right;

}
</style>

<script type="text/javascript">

var ctx;

Complete title element.
Starting style tag.

Specify styling for the form.
Set the width.

Set the external margin.

Set the color.

Set the internal padding.
Close the style.

Set the styling for input fields.

Set right alignment—suitable for
numbers.

Close the style.
Close the style element.

Start the script element. The
type specification isn’t necessary
but is included here because you'll
see it.

Variable that holds the canvas
context.

202

(continued)

CHAPTER5 THE MEMORY (AKA CONCENTRATION) GAME

Table 5-2. (continued)

Code Explanation

var firstPick = true; Declare and initialize firstPick.

var firstCard; Declare a variable to hold the info
defining the first pick.

var secondCard; Declare a variable to hold the info
defining the second pick.

var frontbgcolor = "rgbh(251,215,73)"; Set the background color value for
the card fronts.

var polyColor = "rgh(254,11,0)"; Set the color value for the
polygons.

var backColor = "rgh(128,0,128)"; Set the color value for card backs.

var tableColor = "rgb(255,255,255)"; Set the color value for the board
(table).

var cardRad = 30; Set the radius for the polygons.

var deck = []; Declare the deck, initially an
empty array.

var firstsx = 30; Set the position in x of the first
card.

var firstsy = 50; Set the position in y of the first
card.

var margin = 30; Set the spacing between cards.

var cardWidth = 4*cardRad; Set the card width to four times
the radius of the polygons.

var cardHeight = 4*cardRad; Set the card height to four times
the radius of the polygons.

var matched; This variable is set in choose and
used in flipback.

var startTime; This variable is set in init and

used to calculate elapsed time.

(continued)

203

CHAPTER5 THE MEMORY (AKA CONCENTRATION) GAME

Table 5-2. (continued)

Code

Explanation

function Card(sx,sy,sWidth,sHeight,info) {

}

this.sx = sx;

this.sy = sy;
this.sWidth = sWidth;
this.sHeight = sHeight;
this.info = info;

this.draw = drawBack;

function makeDeck() {

var i;

var aCard;

var bCard;

var cx = firstsx;

var cy = firstsy;

for(i=3;i<9;i++) {
aCard = new Card(cx,cy,cardwidth,card
Height,i);

deck.push(aCard);

bCard = new Card(cx,cy+cardHeight+
margin,cardWidth,cardHeight,i);

Header for the Card function,
setting up card objects.

Set the horizontal coordinate.
Set the vertical coordinate.

Set the width.

Set the height.

Set info (the number of sides).
Specify how to draw.

Close the function.

Function header for setting up the
deck.

Used in the for loop.

Variable to hold the first of a pair
of cards.

Variable to hold the second of a
pair of cards.

Variable to hold the x coordinate.
Start out at the first x position.

Will hold the y coordinate. Start
out at the first y position.

Loop to generate cards for
triangles through octagons.

Create a card and position.

Add to deck.

Create a card with the same info,
but after the previous card on the
screen.

204

(continued)

http://this.info

CHAPTER5 THE MEMORY (AKA CONCENTRATION) GAME

Table 5-2. (continued)

Code Explanation
deck.push(bCard); Add to deck.
cx = cx+cardWidth+ margin; Increment to allow for card width
plus margin.
aCard.draw(); Draw the first card on the canvas.
bCard.draw(); Draw the second card on the
canvas.
} Close the for loop.
} Close the function.
function shuffle() { Header for shuffle function.
var i; Variable to hold a reference to a
card.
var k; Variable to hold a reference to a

var holder;

var dl = deck.length;

var nt;
for (nt=0;nt<3*dl;nt++) {
i = Math.floor(Math.random()*dl);
k = Math.floor(Math.random()*dl);
holder = deck[i].info;
deck[i].info = deck[k].info;
deck[k].info = holder;

card.
Variable needed to do the swap.

Variable to hold the number of
cards in the deck.

Index for the number of swaps.
The for loop.

Get a random card.

Get a random card.

Store the info for i.

Putin i info for k.

Put into k what was in k.
Close the for loop.

Close function.

(continued)

205

CHAPTER5 THE MEMORY (AKA CONCENTRATION) GAME

Table 5-2. (continued)

Code Explanation
function Polycard(sx,sy,rad,n) { Function header for Polycard
this.sx = sx; Set up the x coordinate.
this.sy = sy; Set up the y coordinate.
this.rad = rad; Set up the polygon radius.
this.draw = drawPoly; Set up how to draw.
this.n = n; Set up number of sides.
this.angle = (2*Math.PI)/n Compute and store the angle.
} Close the function.
function drawPoly() { Function header.
ctx.fillStyle= frontbgcolor; Set the front background.
ctx.fillRect(this.sx-2*this.rad,this.sy- The corner of the rectangle is up
2*this.rad,4*this.rad,4*this.rad); and to the left of the center of the
polygon.
ctx.beginPath(); Start the path.
ctx.fillStyle=polyColor; Change to color for polygon
var i; Index variable.
var rad = this.rad; Extract the radius.
ctx.moveTo(this.sx+rad*Math.cos Move up to the first point.

(-.5*this.angle),this.sy+rad*Math.
sin(-.5*this.angle));

for (i=1;i<this.n;i++) { The for loop for the successive
points.
ctx.lineTo(this.sx+rad*Math.cos Set up drawing of line segments.

((i-.5)*this.angle),this.sy+rad*Math.
sin((i-.5)*this.angle));

} Close the for loop.

(continued)

206

CHAPTER5 THE MEMORY (AKA CONCENTRATION) GAME

Table 5-2. (continued)

Code Explanation
ctx.fill(); Fill in the path.
} Close function.

function drawBack() {
ctx.fillStyle = backColor;

ctx.fillRect(this.sx,this.sy,this.
sWidth,this.sHeight);

}

function choose(ev) {

var mx;
var my;

var picki;
var pick2;
mx

my

var i;

ev.pageX;

ev.pageY;

for (i=0;i<deck.length;i++){

var card = deck[i];

if (card.sx »>=0)

Function header.
Set card back color.

Draw rectangle.

Close function.

Function header for choose (click
on a card).

Variable to hold mouse x.
Variable to hold mouse y.

Variable to hold reference to
created Polygon object.

Variable to hold reference to
created Polygon object.

Set mx.
Setmy.

Declare variable for indexing in
the for loop.

Loop through the whole deck.

Extract a card reference to
simplify the code.

Check that card isn’'t marked as
having been removed.

if ((mx>card.sx)&&(mx<card.sx+card. And then check if the mouse is

sWidth)&&(my>card.sy)8&(my<card.
sy+card.sHeight)) {

over this card.

(continued)

207

CHAPTER5 THE MEMORY (AKA CONCENTRATION) GAME

Table 5-2. (continued)

Code

Explanation

}

if ((firstPick)||
(i'=firstCard)) break;

if (i<deck.length) {
if (firstPick) {

}

else {

firstCard = i;

firstPick = false;

pickl = new Polycard(card.
sx+cardwidth*.5,card.
sy+cardHeight*.5,
cardRad,card.info);

pick1.draw();

secondCard = 1i;

pick2 = new Polycard(card.
sx+cardWidth*.5,card.
sy+cardHeight*.5,
cardRad,card.info);
pick2.draw();

if (deck[i].
info==deck[firstCard].info) {

matched = true;

If so, check that the player isn’t
clicking the first card again, and if
this is true, leave the for loop

Close the if true clause.
Close the for loop.

Was the for loop exited early?
If this is a first pick...

...Set firstcard to reference
the card in the deck

Set firstpick to false.

Create polygon with its
coordinates at the center.

Draw polygon.
Close if first pick.
Else...

...Set secondcard to reference
the card in the deck.

Create a polygon with its
coordinates at the center.

Draw the polygon.

Check for a match.

Set matched to true.

208

(continued)

http://card.info
http://card.info

CHAPTER5 THE MEMORY (AKA CONCENTRATION) GAME

Table 5-2. (continued)

Code

Explanation

var nm =
1+Number (document. f.
count.value);

document.f.count.value
= String(nm);

if (nm>= .5*deck.
length) {

var now = new
Date();

var nt =
Number (now.
getTime());

var seconds =
Math.floor
(.5+(nt-

startTime)/1000);

document.f.elapsed.value = String(seconds);

}
}
else {

matched = false;
}

firstPick = true;

setTimeOut (flipback,1000);

Increment the number of matches.

Display the new count.

Check if the game is over.

Get new Date info.

Extract and convert the time.

Compute the seconds elapsed.

Output the time.

Close if this is the end of the
game.

Close if there’s a match.
Else...

...Set matched to false.
Close the else clause.
Reset firstpick.

Set up the pause.

Close not first pick.

Close good pick (click a card—
for loop exited early).

(continued)

209

CHAPTER5 THE MEMORY (AKA CONCENTRATION) GAME

Table 5-2. (continued)

Code

Explanation

}

function flipBack() {

if (!matched) {
deck[firstcard].draw();

deck[secondCard].draw();

}

ctx.fillStyle = tableColor;

ctx.fillRect(deck
[secondCard].sx,
deck[secondCard].sy,
deck[secondCard].
sWidth,deck[secondCard].
sHeight);

ctx.fillRect(deck[firstCard].

sx,deck[firstCard].
sy,deck[firstCard].
sWidth,deck[firstCard].
sHeight);

deck[secondCard].sx = -1;

deck[firstCard].sx = -1;

Close the function

Function header—f1ipback
handling after the pause.

If no match. ..

...Draw the card back.
...Draw the card back.
...Close the clause.

Else need to remove cards.
Set to the table/board color.

Draw over the card.

Draw over the card.

Set this so the card won’t be
checked.

Set this so the card won’t be
checked.

Close if there’s no match.

Close the function

210

(continued)

CHAPTER5 THE MEMORY (AKA CONCENTRATION) GAME

Table 5-2. (continued)

Code

Explanation

function init(){

ctx = document.getElementById('canvas').
getContext('2d");

canvasl = document.getElementById('canvas');

canvasi.addEventListener('click',choose,
false);

makeDeck();

document.f.count.value = "0";

document.f.elapsed.value = "";

starttime = new Date();

starttime

Number (starttime.getTime());

shuffle();
}
</script>
</head>
<body onLoad="init();">
<canvas id="canvas" width="900" height="400">

Your browser doesn't support the HTML5 element
canvas.

</canvas>

Click on two cards to see if you have a match.

<form name="f">

Function header init.

Set ctx to do all the drawing.

Set canvas1 for event handling.

Set up event handling.

Create the deck.
Initialize the visible count.
Clear any old value.

First step to setting the starting
time.

Reuse the variable to set the
milliseconds from benchmark.

Shuffle the card info values.
Close the function

Close the script element.
Close the head element.
Body tag, set up init.
Canvas start tag.

Warning message.

Close the canvas element.
Line break before instructions.
Instructions.

Form start tag.

(continued)

211

CHAPTER5 THE MEMORY (AKA CONCENTRATION) GAME

Table 5-2. (continued)

Code Explanation

Number of matches: <input type="text" Label and input element used for
name="count" value="0" size="1"/> output.

<p> Paragraph break.

Time taken to complete puzzle: <input Label and input element used for
type="text" name="elapsed" value=" " size="4"/> output.

seconds.

</form> Close form.

</body> Close body.

</html> Close html.

Whatever programming choices you make, put comments in your code (using two
slashes per line: //) and include blank lines. You don’t need to comment every line,
but doing a decent job of commenting will serve you well when you have to go back to
your code to make improvements. What is even more important than comments is the
naming of variables and functions.

You can change this game by changing the font, font size, color, and background
color for the form. More ways to make the application your own are suggested later in
this section.

The version of the memory game that uses pictures has much the same structure as
the polygon version. It doesn’t require a separate function to draw the picture. Table 5-3
is the function listing for this version of the game.

212

CHAPTER5 THE MEMORY (AKA CONCENTRATION) GAME

Table 5-3. Functions in the Pictures Version of the Memory Game

Function Invoked By/Called By Calls
init Invoked in response to the onLoad in the body tag makeDeck
shuffle

choose Invoked in response to the addEventListener in init

flipBack Invoked in response to the setTimeout call in choose draw method for Card
objects

drawBack Invoked as the draw method for a card in makeDeck and
flipBack

shuffle Calledin init
makedeck Called in init

Card Called by makeDeck

The code for the pictures version of the memory game is similar to that for the

polygon version. Most of the logic is the same. But because this example demonstrates

the writing of text on the canvas, the HTML document doesn’t have a form element. The

code follows in Table 5-4, with comments on the lines that are different. I also indicate

where you would put in the names of the image files for your photographs. Before

looking at this second version of the memory game, think about which parts are likely to

be the same and which may be different.

213

CHAPTER5 THE MEMORY (AKA CONCENTRATION) GAME

Table 5-4. Complete Code for the Photos Version of the Memory Game

Code Explanation

<html>
<head>

<title>Memory game using pictures</title> Complete title element.

<script type="text/javascript"> Header for script element.

var ctx; Will hold context for the canvas.

var firstPick = true; Boolean (aka a flag) starts with true.

var firstCard = -1; Will hold index into the deck for the
first card. The -1 is an invalid number.

var secondCard; Will hold second card index into deck.

var backColor = "rgbh(128,0,128)"; Color for card backs.

var tableColor = "rgb(255,255,255)"; Used to erase cards.

var deck = []; The deck array will be populated in
makedeck.

var firstsx = 30; Horizontal coordinate of first row of
cards.

var firstsy = 50; Vertical coordinate.

var margin = 30; Space between cards.

var cardWidth = 100; You may need to change this if you
want your pictures to be a different
width...

var cardHeight = 100; ...and/or height.

var matched;

var startTime;

var finished = false; Used to stop extra erasing at end.
var count = 0; Needed to keep count internally.
(continued)

214

Table 5-4. (continued)

CHAPTER 5

THE MEMORY (AKA CONCENTRATION) GAME

Code

Explanation

var pairs = [

["anneGorge.jpg" , "anneNow.jpg" 1, [

"esther.jpg" , "pigtailEsther.jpg" |,
"pigtailleanine.jpg" , "jeanineGorge.jpg"
1,["pigtailAviva.jpg" , "avivacuba.jpg"], [
"pigtailAnnika.jpg" , "annikaTooth.jpg"]

1;
function Card(sx,sy,sWidth,sHeight, img,
info) {

this.sx = sx;

this.sy = sy;

this.sWidth = sWidth;

this.sHeight = sHeight;

this.info = info;

this.img = img;

this.draw = drawBack;

The array of pairs of image files for
the five people. This array of arrays
contains the association of the two
picture for each of the five people.

This is where you put in the names of
your picture files.

You can use any number of paired
pictures, but notice how the array
holding the last pair does not have a
comma after the bracket.

Close the deck array.

Header for Caxrd contructor function.

Sets the horizontal location using the
parameter...

...the vertical.
...the width.
...the height.
Indicates matches.
Img reference.

Sets the function that will draw the
card back.

Close of Card.

(continued)

215

http://this.info

CHAPTER5 THE MEMORY (AKA CONCENTRATION) GAME

Table 5-4. (continued)

Code

Explanation

function makeDeck() {
var i;

var acard;

var bcard;
var pica;
var picb;
var cx = firstsx;
var cy = firstsy;

for(i=0;i<pairs.length;i++) {

pica = new Image();
pica.src = pairs[i][0];

acard = new Card(cx,cy,cardWidth,
cardHeight,pica,i);

deck.push(acard);
picb = new Image();
picb.src = pairs[i][1];

bcard = new Card(cx,cy+cardHeight+margin,
cardWidth,cardHeight,picb,i);

deck.push(bcard);
cx = cx+cardWidth+ margin;

acard.draw();

Header for makedeck.
Used in the loop.

The first of two cards that will
match. ..

...the second.

The picture that will go into acard...
...bcard.

Horizontal location.

Vertical location.

Loop to extract information from the
pairs array.

Create the Image object.
Set to the first file.

Create Card.

Add card to the deck.
Create the Image object.
Set to the second picture file.

Create Card. Notice that both the
acard and the bcard have the same
value in the parameter that will be
stored in the info property. Notice
also one is on top vertically.

Add card to the deck.
Get ready for the next pair.

Draw the acard.

216

(continued)

CHAPTER 5

Table 5-4. (continued)

THE MEMORY (AKA CONCENTRATION) GAME

Code Explanation
bcard.draw(); Draw the bcard.
} Close the loop.
} Close makedeck.
function shuffle() { Header for shuffle.
var i;
var k;

var holderInfo;

var holderImg;

var dl = deck.length
var nt;

for (nt=0;nt<3*dl;nt++) {

i = Math.floor(Math.random()*dl);
k = Math.floor(Math.random()*dl);
holderInfo = deck[i].info;

holderImg = deck[i].img;
deck[i].info = deck[k].info;
deck[i].img = deck[k].img;
deck[k]
deck[k]
}

}
function drawBack() {

ctx.fillStyle =

.info = holderInfo;

img = holderImg;

backColor;

Temporary place for the swap.
Temporary place for the swap.
Number of cards.

Number of times of swapping.

do the swap 3 times deck.
length times

Choose two random numbers.
It is OK if they are the same.
Save the info.

Save the img.
Putk’s info into i.

Put k’s img into 1.

Set to the original info.
Set to the original img.
Close the for loop.
Close the shuffle.
Header for drawback.

Set for the color of card back.

(continued)

217

CHAPTER5 THE MEMORY (AKA CONCENTRATION) GAME

Table 5-4. (continued)

Code Explanation
ctx.fillRect(this.sx,this.sy,this. Draw a rectangle.
sWidth,this.sHeight);
} Close drawback.
function choose(ev) { Header for choose. This is invoked by
event handling for the mouse click.
var out; Used for message to be displayed.
var mx; The mouse x coordinate.
var my; The mouse y coordinate.
var picki; First pick.
var pick2; Second pick.
mx = ev.pageX; Extract the x coordinate from the event
ev.
my = ev.pageyY; Extract the y coordinate.
var i; Used for loop.
for (i=0;i<deck.length;i++){ for loop to go through deck
determining which card has been
clicked.
var card = deck[i]; Extract a card. This is to simplify the

rest of the code.
if (card.sx »>=0) This is the way to avoid checking for
clicking this space.

if ((mx>card.sx)8&&(mx<card.sx+card. Check for being on a given card.
sWidth)8&(my>card.sy)8&(my<card.sy+card.
sHeight)) {

if ((firstPick)|| (i==firstCard)) { Leave for-loop for firstcard or if
player picked the same card twice.

(continued)

218

CHAPTER 5

Table 5-4. (continued)

THE MEMORY (AKA CONCENTRATION) GAME

Code Explanation
break;} Leave loop.
} Close test for on a card.
} Close the loop through deck.

if (i<deck.length) {

if (firstPick) {
firstCard = i
firstPick

15

false;

ctx.drawImage(card.img,card.sx,card.sy,card.
sWidth,card.sHeight);

}
else {
secondCard = i;

ctx.drawImage(card.img,card.sx,card.sy,card.
sWidth,card.sHeight);

if (card.info ==deck[firstCard].info) {

matched = true;

count++;

ctx.fillStyle= tableColor;
ctx.fillRect(10,340,900,100);

ctx.fillStyle=backColor;

ctx.fillText("Number of matches so far:
"+String(count),10,360);

if (count>= .5*deck.length) {
finished = true;

var now = new Date();

Card in deck.

Fora firstpick.

Now set firstcardto the card index.
Set firstpickto false.
Draw the photo.

Close if a first pick.

This is a second pick.

Draw the photo.

Check if there’s a match using the
info fields.

Set matched.

Increment count

This will erase the displayed cards.
Erase area where text will be.
Reset to the color for text.

Write out count.

Check for completion of matching.
Prevents possible extra erasing at end.

Get a Date object.

(continued)

219

http://card.info

CHAPTER5 THE MEMORY (AKA CONCENTRATION) GAME

Table 5-4. (continued)

Code

Explanation

var nt = Number(now.getTime());

var seconds = Math.floor(.5+(nt-
startTime)/1000);

ctx.fillStyle= tableColor;
ctx.fillRect(0,0,900,400);
ctx.fillStyle=backColor;

out="You finished in "+String(seconds)+
secs.";

ctx.fillText(out,10,100);

ctx.fillText("Reload the page to try
again.",10,300);

}
}
else {
matched = false;
}
firstPick = true;
setTimeOut(flipBack,1000);
}
}
}

function flipBack() {

var card;

Extract the time.

Calculate the elapsed time.

Prepare to erase.
Erase the whole canvas.
Set for drawing.

Prepare the text.

Write the text.
Write the text.

Close check if game is done.
Close match.

Else.

Not a match.

Close the else branch.

Prepare for next pair of selections.

Set up call to flip back to allow players
to see what they selected.

Within second pick.
Close else for second pick.
Close choose.

Header for flipback. Invoked by action
of setTimeout.

220

(continued)

CHAPTER 5

Table 5-4. (continued)

THE MEMORY (AKA CONCENTRATION) GAME

Code

Explanation

if (finished) return;

if (!matched) {
deck[firstCard].draw();
deck[secondCard].draw();
}

else {

ctx.fillStyle = tableColor;

ctx.fillRect(deck[secondCard].
sx,deck[secondCard].sy,deck[secondCard].
sWidth,deck[secondCard].sHeight);

ctx.fillRect(deck[firstCard].
sx,deck[firstCard].sy,deck[firstCard].
sWidth,deck[firstCard].sHeight);

deck[secondCard].sx = -1;

deck[firstCard].sx = -1;

}

function init(){

ctx = document.getElementById('canvas').
getContext('2d");

canvasl = document.getElementById('canvas');

canvasl.addEventListener('click',choose,
false);

Prevent erasing of some of final
message.

If no match, then...
...draw first card. This is the back.
...draw second card.

Close of no match.

Set color to prepare to erase these
cards.

Draw over second card.

Draw over first card.

Set this value to not allow this card to
be taken again.

Ditto.

Close the else; there was a match.
Close the flipback function.
Header for init.

Set ctx.

Set canvas to reference the canvas.
Used to set up the event handling.

Set event handling for click.

(continued)

221

CHAPTER5 THE MEMORY (AKA CONCENTRATION) GAME

Table 5-4. (continued)

Code Explanation
makeDeck(); Make the deck.
shuffle(); Shuffle (crude shuffling).
ctx.font="bold 20pt sans-serif"; Set font.
ctx.fillText("Click on two cards to make a Display instructions as text on the
match.",10,20); canvas.
ctx.fillText("Number of matches so far: Display the count.
0",10,360);
startTime = new Date(); Get a Date object.
startTime = Number(startTime.getTime()); Extract the time to be the
starttime.
} Close init.
</script> Close the script element
</head> Close head.
<body onlLoad="init();"> Opening body tag. Sets up call to
init.
<canvas id="canvas" width="900" The canvas tag.
height="400">
Your browser doesn't support the HTML5 Standard message for old browsers.
element canvas.
</canvas> Closing canvas tag.
</body> Close body.
</html> Close html.

222

CHAPTER5 THE MEMORY (AKA CONCENTRATION) GAME

Though these two programs are working games, they can be improved. For example,
the player can’t lose. After reviewing this material, try to figure out a way to force a loss,
perhaps by limiting the number of moves or imposing a time limit.

These applications start the clock when they're loaded. Some games wait to begin
timing until the player performs the first action. If you want to take this friendlier approach,
you'd need to set up a logical variable initialized to false and create a mechanism in the
choose function for checking whether this variable has been set to true. Since it may not
have been, you'd have to include code for setting the starttime variable.

This is a single-player game. You can devise a way to make it a game for two. You
probably need to assume that the people are taking turns properly, but the program can
keep separate scores for each participant.

Some people like to set up games with levels of difficulty. To do so, you could
increase the number of cards, decrease the pause time, and/or take other measures.

You can make this application yours by using your own pictures. You can, of course,
use images of friends and family members, but you could also create an educational
game with pictures that represent items or concepts such as musical-note names and
symbols, countries and capitals, maps of counties and names, and more. You can change
the number of pairs as well. The code refers to the length of the various arrays, so you
don’t need to go through the code changing the number of cards in the deck. You may
need to adjust the values of the cardWidth and cardHeight variables, though, to arrange
the cards on the screen.

Another possibility, of course, is using a standard deck of 52 cards (or 54 with jokers).
For an example using playing cards, skip ahead to Chapter 10, which takes you through
creation of a blackjack game. For any matching game, you'll need to develop a way to
represent the information defining which cards match.

A player can try to cheat. I believe my code prevents clicking on a card that has been
erased; but, I may not have prevented other cheating.

Testing and Uploading the Application

When we, the developers, check our programs, we tend to do the same thing on each
pass. Users, players, and customers, however, often do strange things. That’s why getting
others to test our applications is a good idea. So ask friends to test out your game. You
should always have people who had no hand in building the application test it. You may
discover problems you didn’t identify.

223

http://dx.doi.org/10.1007/978-1-4842-4155-4_10

CHAPTER5 THE MEMORY (AKA CONCENTRATION) GAME

The HTML document for the polygon version of the memory game contains the
complete game, since the program draws and redraws the polygons on the fly. The
pictures version of the game requires you to upload all the images. You can vary this
game by using image files from the Web (outside of your own web page). Do respect
intellectual property rights. It really is more fun using your own photos. Note that the
pairs array needs to have the correct addresses.

Summary

In this example, you learned how to implement two versions of the game known as
memory or concentration using programming techniques and HTMLS5 features. These
included the following:

o Examples of programmer-defined functions and programmer-
defined objects

o How to draw polygons on the canvas using moveTo and lineTo along
with Math trig methods

e Guidance on how to use a form to show information to players
o A method for drawing text with a specified font on the canvas

o Instructions about how to draw images on the canvas

e Using setTimeout to force a pause

» Employing Date objects to compute elapsed time

The applications demonstrated ways to represent information to implement two
versions of a familiar game. The next chapter will temporarily depart from the use of the
canvas to demonstrate dynamic creation and positioning of HTML elements. It also will
feature the use of HTML5’s video element.

224

CHAPTER 6

Quiz

In this chapter, we cover the following:
e Creating HTML elements by code

o Responding to clicks of the mouse on specific elements and stopping
responding to clicks of the mouse on specific elements

e Creating and accessing arrays
o Playing an audio clip and a video clip

e Checking player responses and preventing bad behavior

Introduction

This chapter demonstrates how HTML elements can be created dynamically and then
positioned on the screen. This is in contrast not only to drawing on a canvas element
but also to the old way of creating more or less static web pages using HTML markup.
Our goal is to produce a quiz in which the player put into chronological order a set
of presidents of the United States. The set of presidents is randomly chosen from the
complete list of presidents. There is a reward for a correct ordering: playing a video clip
and an audio clip. The ability to display video and audio directly (also termed natively)
using HTMLS5 is a big improvement over the old system, which required using the
<object> element and third-party plugins on the player’s computer. In our game, the
video and audio serve only a minor role, but the fact that developers and designers can
use HTML5 and JavaScript to produce a specific video at a specific point in the running
of an application is very important.

Autoplay refers to video clips played without user action. As of April 2018, the
Chrome browser adopted a policy for autoplaying video (see https://developers.
google.com/web/updates/2017/09/autoplay-policy-changes for details).

225
© Jeanine Meyer 2023

J. Meyer, The Essential Guide to HTMLS5, https://doi.org/10.1007/978-1-4842-8722-4_6

https://developers.google.com/web/updates/2017/09/autoplay-policy-changes
https://developers.google.com/web/updates/2017/09/autoplay-policy-changes
https://doi.org/10.1007/978-1-4842-8722-4_6

CHAPTER6 QUIZ

This policy is intended to prevent autoplay in many cases. The reasoning is that
autoplay of video may subject users to data fees and may overload networks. Video
ads can be annoying. I accept the reasoning; however, I want the reward to happen as
soon as the player successfully completes a game. The Chrome browser has a method
of determining what they term user engagement. The reward that I have programmed
for player success consists of a muted video played at the same time as an audio clip.
This appears to pass the Chrome test for user engagement, and the media does get
played. Still, autoplay policies are something you need to be aware of and investigate in
the future.

The basic information for the quiz consists of an array of arrays, with the inner arrays
holding the president’s name and a second item that is used to make sure the random
process does not choose two instances of the same name. The program chooses the
names of four presidents and creates the HTML markup for boxes holding the names,
along with a number. The program positions the boxes in the window. Figure 6-1 shows
an opening screen.

Order the Presidents

This is a challenge to put the presidents displayed in the right order in terms of time of term in office.
Click on the boxes in the order you believe correct.

Reload for new game.

Your order:

Result:

1: William McKinley

2: Millard Fillmore

3: George H. W. Bush

.4: Harry Truman .
Figure 6-1. An opening screen for the quiz

This gives me a chance to comment on this particular game. I can recite the
presidents in order and so can play this game very well. This situation has problems,
because I need to make sure the quiz works when players give wrong answers OR
misbehave in other ways that I explain later. The purpose of this chapter is to introduce

226

CHAPTER6 QUIZ

HTML, CSS, and JavaScript features and general techniques that you can use to build
your own quiz, making your own choice of topics. Keep in mind that you probably are
not building the game for yourself.

By the way, for the U.S. presidents, I needed to provide some way to address the
issue of Grover Cleveland, the only person who occupied the presidency for two,
nonconsecutive terms. I chose to include on the list the names Grover Cleveland (1) and
Grover Cleveland (2). Perhaps you will need to take a similar step for your subject matter.

Players click successive choices. I have started a new game. Figure 6-2 shows the
screen after the player chooses what she believes (knows) to be the earliest president
in this set. Notice that the number 2 appears under Your Order and the Fillmore box is
now gold.

Order the Presidents

This is a challenge to put the presidents displayed in the right order in terms of time of term in office.
Click on the boxes in the order you believe correct.

Reload for new game.

Your order:

2

Result:

|1: William McKinley |

|2: Millard Fillmore |

|3: George H. W. Bushl
|4: Harry Truman

Figure 6-2. The player chooses what she believes is the earliest president in this
setof 4

Any box clicked will turn gold whether it is correct or not. I will not try to make
any mistakes. Figure 6-3 shows two choices and the numbers 2 1 appearing under
Your Order.

227

CHAPTER6 QUIZ

Order the Presidents

This is a challenge to put the presidents displayed in the right order in terms of time of term in office.
Click on the boxes in the order you believe correct.

Reload for new game.

Your order:

21

Result:

| 1: William McKinley |

|2: Millard Fillmore |

[3: George H. W. Bush “

‘4: Harry Truman ‘

Figure 6-3. The player has clicked Fillmore and then McKinley

I completed the quiz. Figure 6-4 shows the results. What is displayed at this point is
a frame of a video clip and the controls for an audio file. I had a video clip of fireworks
near the Statue of Liberty. The accompanying audio track on this video was “New York,
New York.” I decided to find a free version of “Ruffles and Flourishes” (also called “Hail
to the Chief”). You will read later the minor steps I needed to take to combine the video
and the audio.

228

CHAPTER6 QUIZ

Il 0:15/0:40

-’" ' l;“ {/ /

o VS

1: William McKinley [RelPo el ARl

2: Millard Fillmore
3: George H. W. Bush
'

Figure 6-4. After successful ordering of the set of presidents

Let me invoke a new game and now put in an incorrect ordering. Figure 6-5 shows
the results of making the order wrong. The player’s order is shown, and the message
WRONG appears. This is a tricky question. The set of presidents came up when I was
preparing the images, and it did have Grover Cleveland (1). This term was before

Benjamin Harrison.

229

CHAPTER6 QUIZ

Order the Presidents

This is a challenge to put the presidents displayed in the right order in terms of time of term in office.
Click on the boxes in the order you believe correct.

Reload for new game.

Your order:

2413

Result:

WRONG

‘ 1: Woodrow Wilson ‘

‘ 2: Benjamin Han‘isonl

‘ 3: Ronald Reaganl

[4: Grover Cleveland (1) |

Figure 6-5. Incorrect ordering by the player

Critical Requirements for a Quiz Game

A quiz requires a way to store information or, to use a fancier term, a knowledge base. We
need a way to choose specific questions to ask, randomly, so the player sees a different
set of challenges each time. Since what we're storing is names, we can use a simple
technique.

Next we need to present questions to the player and provide feedback on the player’s
actions. We can decide on how much feedback. My game changes the color of a box once
itis clicked, and the order is displayed under the heading “Your Order” I decided to wait
to check the player’s ordering until it is complete. My technical reviewer pointed out
that in an early version of the game, my coding permitted a player to click the same box
two times. I decided to handle this by not responding to an extra click. You can decide
if this is the approach you want to take. The general issue is that you need to expect that
players/clients/users can do strange things. Sometimes you may want to tell them that
this is wrong and sometimes you, meaning your code, should simply ignore the action.

I decided that a correct ordering deserved a reward: the playing of a patriotic video
clip. As I will explain, this required acquiring a video clip and a separate audio clip.

230

CHAPTER6 QUIZ

HTML5, CSS, and JavaScript Features

Now let’s delve into the specific features of HTML5, CSS, and JavaScript that provide
what we need to implement the quiz. I again build on what has been explained before,
with some redundancy just in case you skipped around in your reading.

Storing and Retrieving Information in Arrays

You may remember that an array is a sequence of values and that a variable can be set
up as an array. The individual components of an array can be any data type—including
other arrays! Recall that in the memory games in Chapter 5, we used an array variable
named pairs in which each element was itself an array of two elements, the matching
photo image files.

In the quiz application, we will again use an array of arrays. For the quiz show, we
set up a variable named facts as an array to hold the names of presidents. The critical
information is the order of the items in the array. Each element of the facts array is itself an
array. My first thought on creating this application was that there would be simply an array
of String objects, each String holding a president’s name with the array in order. However, I
then decided I would need an array of arrays, with the second element holding a Boolean
(true/false) value to be used to prevent picking the same name twice for a single game.

The individual components of an array are accessed or set using square brackets.
Arrays in JavaScript are indexed starting from zero and ending at one less than the total
number of elements in the array. One trick to remember that the indexing starts from
zero is to imagine the array all lined up. The first element will be at the start; the second 1
unit away; the third 2 units away; and so on.

The length of the array is kept in an attribute of the array named length. To access
the first item in the facts array, you use facts[0]; for the second element, facts[1],
and so on. You will see this in the coding.

A common way to do something with each element in an array is to use a loop.

(See also the explanation for setting up the gradient in the walls of the bounding box
in Chapter 3.) Suppose you have an array named prices and your task is to write code
to increase each of the prices by 15 percent. Further, each price has to increase by a
minimum of 1, even if 1 is more than the 15 percent. You could use the construct in
Table 6-1 to perform this task. As you can see in the Explanation column, the for loop
does the same thing for each component of the array, using the indexing variable i in
this example. This example also shows the use of the Math.max method.

231

http://dx.doi.org/10.1007/978-1-4842-4155-4_5
http://dx.doi.org/10.1007/978-1-4842-4155-4_3

CHAPTER6 QUIZ

Table 6-1. Increasing Prices in an Array Using a for Loop

Code Explanation

for (var Execute the statements inside the brackets, changing the value of i,

i=0;i<prices. starting at 0 and increasing by 1 (that’s what i++ does), until the value is

length;i++) { not less than prices.length, the number of elements in the array.
prices[i] Remember to interpret this from the inside out. Compute . 15 times

+= Math.maxw the i" element of the array prices. See what’s greater, this value or

(prices[i]*.15,1); 1.Ifitis this value, that's what Math.max returns. If it is 1 (if 1 is more
than prices[i]*.15), use 1.Add this value to the current value of
prices[i]. That's what += does.

} Close the for loop.

Notice that the code does not state the size of the prices array explicitly. Instead, it
is represented in the expression prices.length. This is good because it means that the
value of length changes automatically if and when you add elements to the array. Of
course, in our example we know the number to be 46, the number of presidents. This
does change, and we changed it for the new edition, so it’s better to keep things flexible.
This application can be a model for a quiz involving any number of facts when a fact is
one piece of information, with the order being important.

JavaScript supports only one-dimensional arrays. The facts array is one-
dimensional. However, the items in the array are themselves arrays: the facts[0]
element is itself an array, and so on.

Note If the knowledge base was much more complex or if | were sharing the
information or accessing it from somewhere else, | might need to use something
other than an array of arrays. | could also store the knowledge base separate from
the HTML document, perhaps using an eXtended Markup Language (XML) file.
JavaScript has functions for reading in and accessing XML. Most important of all,
| would put the facts away on a server so players could not view the source to see
what the order actually is. My defense in not doing that is that 1) | did not want to
get into server-side programming, and 2) if a player worked that hard, they would
learn something.

232

CHAPTER6 QUIZ

The design for the quiz is to present a randomly chosen set of four names for each
game, so we define a variable nq (standing for number in a quiz) to be 4. This never
changes, but making it a variable means that if we wanted to change it, it would be
easy to do.

The HTML that’s created dynamically (see the next section) will produce a display of
a single column. The logic, presented here in pseudocode, is the following

Make a random choice, from 0 to facts.length. If this fact has been used,
try again. Mark this choice as used.

Create new HTML to be a block, with the text and a number (1, 2, 3, or 4
and the name of the president.

Make the block visible and position it in the window.

Set up an event and event handling to respond to the player clicking in
the box.

So how do we code this? I will explain the creation of new HTML in the next section.
As indicated earlier, the fact array contains arrays, and the second element of each
inner arrays is a Boolean variable. Initially, these values will each be false, meaning the
elements haven’t yet been used in the game. It could happen, of course, that the random
call returns a number that has been selected, so I use another type of loop, a do-while
construct that will keep trying until it comes to a fact that hasn’t been used:

do {c = Math.floor(Math.random()*facts.length);}
while (facts[c][2]==true);

The do-while exits as soon as facts[c][2] is false, that is, when the element at index
c is available for use.

The facts array is something I created in its entirety and put in the HTML
document. It does not change. In contrast, for each game of the quiz, my code creates an
area called slots. It starts off as an empty array:

var slots =[];

Each time the player makes a move, that is, clicks on a block, information is added to
this array using the push method. The slots array is accessed by the checkorder function
to be described in the “Checking the Player’s Answer” section.

233

CHAPTER6 QUIZ

Creating HTML During Program Execution

An HTML document typically consists of the text and markup you include when you
initially write the document. However, you can also add to the document while the file is
being interpreted by the browser, specifically, when the JavaScript in the script element
is being executed (called execution time or runtime). This is what I mean by creating
HTML dynamically. In this application, like most of the ones in this text, the body tag has
the onload attribute set to invoke a program I name init. This function calls another
function that sets up the game.

For the quiz application, I created a type I named pres. This is done with the
following:

d = document.createElement('pres');

Then I need to put something into the newly created object. This actually takes a few
statements.
I use an assignment statement. Note: the uniqueid variable already has been set.

d.innerHTML="<divclass="thing"' id='"+uniqueid+"'>placeholder</div>";

The div is a block type, meaning it can contain other elements as well as text, and it
is displayed with line breaks before and after. I use

thingelem = document.getElementById(uniqueid);
to set thingElement to reference the newly created object. I use
thingElem.textContent = String(i+1)+": "+facts[c][0];

to provide the visible content. The i+1 is so the player sees indexing starting at 1
and not 0.

Dynamically created HTML needs to be appended to something already visible, such
as the body element, in order to be displayed. This is done using appendChild.

document.body.appendChild(d);

The body element often is the appropriate choice, but you can use appendChild
on other elements as well, which can be useful. For example, you can use the attribute
childNodes to get a collection (a NodeList) of all the child nodes of a specific element to
do something for each one, including remove it.

234

CHAPTER6 QUIZ

Table 6-2 shows methods we’ll use.

Table 6-2. Methods Typically Used in Dynamic Creation of HTML

Code Explanation

createElement Creates the HTML element
appendChild Adds the element to the document by appending it to something in the document

getElementByID Gets a reference to the element

The formatting of each block is done in the CSS in the style element (see next). The
code creates a unique ID for each block. This unique ID is constructed from the index of
the name in the facts array. It is used when checking the player’s ordering.

Once we create these new HTML elements, we use addEventListener to set up
events and event handlers. The addEventListener method is used for a variety of events.
Remember, we used it on the canvas element in Chapter 4.

Arranging for the program to respond to the player makes use of the
addEventListener method. The statement thingelem.addEventListener('click’,
pickelement); defines the event, namely, clicking the block, and the event handling:
invoking the pickelement function.

Note If we didn’t have these elements and the capability to do the
addEventListener and refer to the attributes using the this (forgive the
awkward English) and instead drew stuff on a canvas, we would need to perform
calculations and comparisons to determine where the mouse cursor was and then
look up the corresponding information in some way to check for matches. (Recall
the coding for the slingshot in Chapter 4.) Instead, the JavaScript engine is doing
much of the work and doing it more efficiently—faster—than we could by writing
the code ourselves.

You'll see the code in complete context in the “Building the Application” section.

235

http://dx.doi.org/10.1007/978-1-4842-4155-4_4
http://dx.doi.org/10.1007/978-1-4842-4155-4_4

CHAPTER6 QUIZ

Using CSS in the Style Element

Cascading Style Sheets (CSS) lets you specify the formatting of parts of an HTML
document. Chapter 1 showed a basic example of CSS, which is powerful and useful even
for static HTML. Essentially, the idea is to use CSS for the formatting, that is, the look
of the application, and to reserve HTML for structuring the content. See David Powers’
Beginning CSS3 (Apress, 2012) for more information on CSS.

Let’s take a brief look here at what we’ll use to generate the dynamically created
blocks holding the names of the presidents.

A style element in an HTML document holds one or more styles. Each style refers to
one of these:

e An element type using the element type name
e A specific element, using the id value
e Aclass of elements

In Chapter 1, we used a style for the body element and for the section elements. For
the quiz, I write a directive for a class of elements I gave the name thing.

Now let’s set the formatting for a class of elements. The class is an attribute that
can be specified in any element starting tag. For this application, I came up with a class
thing. Yes, I know it’s lame. It refers to a thing our code will place on the screen. The
style is

.thing {position:absolute; left: Opx; top: Opx; border: 2px; border-
style: double;
background-color: white; margin: 5px; padding: 5px; }

The padding setting determines the spacing between the text and the box; the
margin determines the spacing around the element. I think of a padded cell to help me
remember the difference. In fact, the margin setting is not necessary here because my
code positions the blocks vertically using the variable rowSize.

The period before thing indicates that this is a class specification. The positionis
setto absolute, and top and left include values that can be changed by code.

The absolute setting refers to the way the position is specified in the document
window—as specific coordinates. The alternative is relative, which you'd use if the part
of the document was within a containing block that could be anywhere on the screen.

236

http://dx.doi.org/10.1007/978-1-4842-4155-4_1
http://dx.doi.org/10.1007/978-1-4842-4155-4_1

CHAPTER6 QUIZ

The unit of measurement is the pixel, so the positions from the left and from the top
are given as Opx for 0 pixels, and the border, margin, and padding measurements are 2
pixels, 5 pixels, and 5 pixels, respectively.

Now let’s see how to use the style attributes to position and format the blocks. For
example, after creating a dynamic element to hold a president’s name, we can use the
following lines of code to get a reference to the thing just created, put the text holding
the name into the element, and then position it at a specified point on the screen.

thingElem = document.getElementBy(uniqueid);
thingElem.textContent=

String(i+1)+": "+facts[c][0];
thingElem.style.top = String(my)+"px";
thingElem.style.left = String(mx)+"px";

Here, my and mx are numbers. Setting style.top and style.left requires a string, so
our code converts the numbers to strings and adds the "px" at the ends of the strings.

Responding to Player Moves

In the pickelement function, you'll see code for responding and keeping track of the
player’s moves. The pickelement header has a single parameter called ev. However,
there also is what we can call an implicit parameter. The function is called because of
action on a specific element. The term this within the code refers to that element.

In the code, this refers to the current instance, namely, the element that the player
clicked. We set up listening for the event for each element, so when pickelement is
executed, the code can refer to the specific element that heard the click using the this.
When the player clicks a block holding the name John Quincy Adams, the code knows
it, where by “knows” I am anthropomorphizing the program more than I would like.
Putting it another way, the same pickElement function will be invoked for all the blocks
we have placed on the screen, but, by using this, the code can refer to the specific one
that the player clicks each time. The pickElement code extracts the ID from the element
and the first character in the textContent. The information from the ID is used to
populate an array, named slots, that will be used to check the player’s ordering. The
character from the textContent, 1 or 2 or 3 or 4, will be used to display to the player what
choices have been made.

237

CHAPTER6 QUIZ

We want to change the color of a box when the player clicks it. We can do this pretty
much as when changing the top and left to reposition the block. However, the name of
the attribute for JavaScript is slightly different than the one in the CSS: there is no dash.

this.style.backgroundColor = "gold";

The gold is one of the set of established colors, including red, white, blue, etc.,
that can be referred to by name. Alternatively, you can use the hexadecimal RGB values
available from a program such as Adobe Photoshop or an online site such as pixlr.com.

The pickElement function performs another task, and I think it is useful, though
embarrassing, to say that this was a late addition. What if the player, let’s call him the
pesky player, clicks a block more than once? In my testing, I never tried this, but my
technical reviewer pointed it out. You need to expect and plan for players and users in
general to do strange things. The fix is simple. I use the code to stop listening for the click
event. The statement is

this.removeEventListener('click',functionReference);

The functionReference variable has been set to point to pickElement.

The pickElement function extracts and converts to a number the original numeric
portion of the block ID. This is added (pushed) onto an array named slots. When the
length of the slots array is equal to ng, the checkOrder function is called.

Tip You can specify a font in the style section. You can put “safe web fonts” in
any search engine and get a list of fonts purported to be available on all browsers
and all computers. However, an alternative approach is to specify an ordered list
of fonts so if the first one is not available, the browser will attempt to find the next.
See Chapter 8 for more information.

Presenting Audio and Video

HTMLS5 provides the audio and video elements for presenting audio and video, either as
part of a static HTML document or under the control of JavaScript.

In brief, audio and video comes in different file types, just like images do. The file
types vary based on the containers for the video and the associated audio, and audio by
itself, as well as on how the video and the audio are encoded. The browser needs to know

238

http://pixlr.com
http://dx.doi.org/10.1007/978-1-4842-4155-4_8

CHAPTER6 QUIZ

how to handle the container and how to decode the video to display the frames—the still
images making up the video—in succession on the screen and how to decode the audio
to send the sound to the computer speakers.

Videos involve a considerable amount of data, so people still are working on the
best ways to compress the information, taking advantage, for example, of what is similar
between frames without losing too much quality. Websites are now displayed on small
screens on cell phones as well as large high-definition TV screens, so it’s important to
take advantage of any knowledge of what the display device will be. With this in mind,
though we can hope that browser makers standardize on one format in the future, the
HTMLS5 video element provides a way to work around the lack of standardization by
referencing multiple files. Developers, therefore, need to produce different versions of
the same video (that includes those of us creating this quiz application).

I downloaded a Fourth of July fireworks video clip and then used a free tool (Miro
video converter) to create three different versions with different formatting of the same
short video clip. I then used the new HTML5 video element as well as the source
element to code references to all three video files. The codecs attribute in the source
element provides information on what the encoding is for the file specified in the src
attribute. I then decided that I did not want to use the audio with the fireworks video,
but instead use the song “Ruffles and Flourishes,” which is traditionally played for
U.S. presidents. Luckily, the video tag comes with an attribute called muted that mutes
the audio for the video. I do not need the video and audio to be synced exactly, so this
approach works. In the body, I have

<audio id="ruffles" controls="controls" preload="auto" alt="Hail to
the Chief">

<source src="hail_to_the_chief.mp3" type="audio/mpeg">

<source src="hail_to_the_chief.ogg" type="audio/ogg">
Your browser does not accept the audio tag.

</audio>

<video id="vid" preload="auto" width="50%" alt="Fireworks video" muted>
<source src="sfire3.webmvp8.webm" type='video/webm; codec="vp8, vorbis"'>
<source src="sfire3.mpg">

<source src="sfire3.theora.ogv" type='video/ogg; codecs="theora, vorbis"'>

Including controls="controls" puts the familiar controls on the screen to allow the
player/user to start or pause the audio clip. I do not provide controls for the video.

239

CHAPTER6 QUIZ

The text starting “Your browser...” appears only if the browser does not
recognize audio.

At this point, you may be asking: where is the video and the audio control when the
quiz starts? The answer is that I use CSS to make the two not display:

audio {visibility: hidden;}
video {visibility: hidden; display: none; position:absolute;}

You also may ask why I don’t write code to create the video and audio elements
dynamically but have them in the HTML document. The answer to that is that I want
to make sure the audio and video files are downloaded completely. Since human play
does take some time, this probably would happen with no special work, but itis a good
precaution to take.

Tip CSS has its own language, sometimes involving hyphens in terms. The
CSS term for expressing how elements are layered on the screen is z-index; the
JavaScript term is zIndex.

Checking the Player’s Answer

The checkOrder function performs the task of checking if the player has clicked the
blocks in the correct order. It was not immediately obvious to me, butI did realize that
my program did not need to order the set of selected names. Instead, my code checks if
the player’s list as represented in the slots array is out of order. The slots array will
hold the index position of each president as ordered by the player. The code iterates
through the items to see if any item is greater than the following item. This for loop
accomplishes the task:

var ok = true;
for (var i=0;i<ng-1;i++){
if (slots[i]>slots[i+1]){
ok = false;
break;

240

CHAPTER6 QUIZ

The ok variable starts out as true, and the code in the for loop will change the value
of ok to false if there is any discrepancy from a correct ordering. The break statement
causes control to leave the for loop if and when this happens. If ok is set to false, the
for loop is exited. The next step is to provide either the audio/video reward along with
displaying the result CORRECT or displaying the result WRONG.

if (ok){
res.innerHTML= "CORRECT";
song.style.visibility="visible";
song.currentTime = 4; //prevent seconds of no sound
song.play();
v.style.visibility="visible";
v.currentTime=0;
v.style.display="block";
v.play();

}
else {

res.innerHTML = "WRONG";
}

With this background on JavaScript, HTML, and CSS, we are now ready to describe
the coding of the quiz application.

Building the Application and Making It Your Own

The knowledge base for the quiz is represented in the facts variable, which is an array
of arrays. If you want to change the quiz to another topic, one that consists of pairs of
names or other text, you just need to change facts. Of course, you also need to change
the text that appears as an h1 element in the body element to let the player know the
category of questions. I defined a variable named ng, the number in each quiz (the
number of pairs to appear on the screen), to be 4. You can, of course, change this value
if you want to present a different number of pairs to the player. The other variables are
used for the original positions of the blocks and to hold status information, such as
whether it’s a first click or a second click.

241

CHAPTER6 QUIZ

I created four functions for this application: init, setupGame, pickElement, and
checkOrder. I could have combined init and setupGame and combined pickElement
with checkOrder but made them separate to facilitate a Replay button and also for
general principles. Defining distinct functions for distinct tasks is a good practice.
Table 6-3 describes these functions and what they call or are called by.

Table 6-3. Functions in the Quiz Application

Function Invoked By/Called By Calls

init Invoked by the action of the onLoad in the <body> tag setupGame

setupGame init

pickElement Invoked as a result of the addEventListener calls in checkOrder
setupGame

checkOrder pickElement

The setupGame function is where the HTML is created for the blocks. Briefly, an
expression using Math.random is evaluated to pick one of the rows in the facts array. If
that row has been used, the code tries again. When an unused row is found, it is marked
as used (the third element, index value 2), and the blocks are created.

The pickElement function is invoked when a block is clicked. It adds to the string
that is displayed on Your Order and adds to the slots array, which will be used by
checkOrder. The checkOrder function does the checking. It displays either WRONG or
CORRECT and, if the order was correct, makes the audio control and the video visible and
starts playing both.

Note that there is redundant code in my program. I did this to ease the effort to
enable repeat play without reloading or “do overs.

Table 6-4 supplies a line-by-line explanation of the code.

242

CHAPTER6 QUIZ

Table 6-4. The Complete Code for the Presidents Quiz

<htmly

HTML tag.

<meta charset="UTF-8">

<head>

<title>Ordering Quiz with Rewards</title>

<style>

.thing {position:absolute; left: opx;
top: Opx; border: 2px; border-style:
double; background-color: white; margin:

5px; padding: 5px; }
audio {visibility: hidden;}

video {visibility: hidden; display: none;

position:absolute;}
</style>

<script type="text/javascript">

var facts = |

["George Washington",false],

"John Adams",false],

'Thomas Jefferson",false],

[

[

["James Madison",false],
["James Monroe",false],
[

"John Quincy Adams",false],

Defines the charset, in this case a form of
Unicode. It can be omitted, and | do omit it
in many examples, but | include it here to

let you see it.

Head tag.
Complete title element.
Style tag.

Formatting for what | have termed the
blocks with the name of a president.

Starts off audio control as hidden. Default
positioning.

Starts off video as hidden.

Close style element.

Script tag, starting script element, with
JavaScript specified.

Declaration of facts array.

Name and indication that this name is not
used.

(continued)

243

CHAPTER6 QUIZ

Table 6-4. (continued)

<htmly HTML tag.

"Andrew Jackson",false],

'Martin Van Buren",false],

'William Harrison",false],
"John Tyler",false],

"James Polk", false],

'Zachary Taylor",false],
"Millard Fillmore",false],

Franklin Pierce",false],

'James Buchanan",false],

'Abraham Lincoln",false],

'Andrew Johnson",false],

'‘Ulysses Grant",false],

Rutherford Hayes",false],

[
[
[
[
[
[
[
[
[
[
[
[
[
["James Garfield",false],
["Chester Arthur",false],
[

"Grover Cleveland (1)",false], This is how | chose to represent Grover
Cleveland’s first term in office.

["Benjamin Harrison",false],

["Grover Cleveland (2)",false], This is how | chose to represent Grover
Cleveland’s second term in office, which
was not consecutive with his first.

["William McKinley",false],

["Theodore Roosevelt",false],

["William Taft",false],
["Woodrow Wilson",false],
g

'Warren Harding",false],

(continued)

244

Table 6-4. (continued)

CHAPTER6 QUIZ

<htmly HTML tag.

"Calvin Coolidge",false],

'Herbert Hoover",false],

Franklin Roosevelt",false],

Harry Truman",false],

'‘Dwight Eisenhower",false],

John Kennedy",false],

Lyndon Johnson",false],

Richard Nixon",false],

Jimmy Carter",false],

Ronald Reagan",false],
"George H. W. Bush",false],
"Bill Clinton",false],

'George W. Bush",false],

[

[

[

[

[

[

[

[

["Gerald Ford",false],
[

[

[

[

[

["Barack Obama",false],
[

"Donald Trump",false],
["Joseph Biden",false]

What | added for this edition.

15
var
var
var
var
var
var

var

thingelem;
ng = 4;

col1l = 20;
rowl = 200;
rowsize = 50;
slots = [];

answertext=

)

Close facts array.

Used to hold created elements.

Number of facts presented.

Horizontal position of column of names.
Vertical position of first name.

Spacing allocated for each block.

Used in checking to hold indices into facts.

Initial value of answer.

(continued)

245

CHAPTER6 QUIZ

Table 6-4. (continued)

<html>

HTML tag.

var song;
var functionReference;
var v;
var res;
var ans;
function init(){
res = document.getElementById("results");
ans = document.getElementById("answer");
functionReference = pickElement;

song = document.
getElementById("ruffles");

v = document.getElementById("vid");
rowl= .5% window.innerHeight;
setupGame();

}

function setupGame() {

slots=[];

answertext="";

var i;
var c;
var mx = coli;
var my = rowl;
var d;

Will hold reference to audio element.
Will hold reference to pickelement.
Will hold reference to video element.
Will hold reference to place for result.
Will hold reference to place for answer.
Header init function.

Get the reference.

Get the reference.

Set to be used to remove event handling.

Get the reference.

Get the reference.
Adapt to window height.
Invoke setupGame.
Close init.

Header setupgame

Initialize slots. Redundant, but done here
to prepare for enhancements.

Initialize answertext. Redundant, but
done here to prepare for enhancements.

Indexing variable.

Will hold index to facts.

Initial horizontal setting. It will not change.
Initial vertical setting. This will change.

Holds newly created element.

246

(continued)

Table 6-4. (continued)

CHAPTER6 QUIZ

<html>

HTML tag.

var uniqueid;

for (i=0;i<facts.length;i++) {

}

facts[i][2] = false;

for(i=0;i<ng;i++) {

do {c = Math.floor(Math.

random()*facts.length);}

while (facts[c][1]==true);

facts[c][1]=true;

uniqueid = "p"+String(c);

d = document.createElement('pres');
d.innerHTML =

"<div class="thing"
id=""+uniqueid+""'>placeholder</div>";

document.body.appendChild(d);

thingelem = document.
getElementById(uniqueid);

thingelem.textContent=String(i+1)+":

"+facts[c][0];

thingelem.style.top =
String(my)+"px";

Will hold the ID. It will be generated from
the random index into facts.

for loop to mark all facts as not being
used.

Mark fact as not used.
Close the for loop.

for loop to select and create the four
boxes with names of presidents.

Get a random selection.

If it has been selected already, repeat the
do clause.

Now set this fact as being used.

Create a unique ID by affixing "p" to the
index converted to a String.

Create an element.
Set its innerHTML to...

...be adiv, class="thing",and ID the
generated unqueid.

Append this to the body. This action makes
it visible.

Get a reference to it.

Make its content by the number followed
by the name.

Position it vertically.

(continued)

247

CHAPTER6 QUIZ

Table 6-4. (continued)

<htmly

HTML tag.

}

thingelem.style.left =
String(mx)+"px";

thingelem.addEventListener('click"’,

pickElement);

my +=rowsize;

function pickElement(ev) {

var answert;
var positiont;
var positionn;

positiont = this.id.substring(1);

answert= this.textContent.
substring(0,1);

answertext = answertext+answert+

ans.innerHTML= answertext;

positionn = Number(positiont);

this.style.backgroundColor = "gold";

this.removeEventListener('click',
functionReference);

Position it horizontally.

Enable response to click.

Increment my for the vertical positioning.
Close the for loop.
Close setupGame.

Header for pickElement. Invoked when
player clicks a block. Note: ev is not used
but necessary for event handlers. What is
used is the this term.

Will hold the number 1, 2, etc.
Will hold position in original array as text.
Will hold position as number.

Create position by removing the first letter
of ID.

Create what will be added to answer

by taking the first character of the
textContent. Note: Works if fewer than
10 choices.

Add the answer for this to what there is
already.

Display answertext.
Generate the number.
Make block gold.

Remove event handling

248

(continued)

Table 6-4. (continued)

CHAPTER6 QUIZ

<htmly

HTML tag.

slots.push(positionn);

if (slots.length==nq) {
checkorder();

}

}
function checkOrder(){

var ok = true;
for (var i=0;i<ng-1;i++){

if (slots[i]>slots[i+1]){

ok = false;

break;

}

}
if (ok){

res.innerHTML= "CORRECT";

song.style.visibility="visible";

song.currentTime = 4;

song.play();

Add positionn to the slots array to be
used in the checking.

Have there been nq clicks on block?
If so, invoke checkorder.

Close if.

Close the pickelement function.
Header for checkorder.

Start off with ok set to true.

Loop through all elements in slots.

If the ith slot is more than the (i+1)th
slot.

Set ok to false. The answer is not in
order.

Leave the for loop.
Close if.
Close the for loop.

The ok variable holds true or false. If
true...

...display CORRECT.

Make the song element, that is, the
controls, visible.

This audio clip has some seconds
ofsilence, so this prevents seconds of no
sound.

Play the song.

(continued)

249

CHAPTER6 QUIZ

Table 6-4. (continued)

<html>

HTML tag.

v.style.visibility="visible";
v.currentTime=0;

v.style.display="block";

v.play();
}

else {

res.innerHTML = "WRONG";

}
}

</script>
</head>
<body onload="init();">

<audio id="ruffles" controls="controls"
preload="auto" alt="Hail to the Chief">

<source src="hail to_the chief.mp3"
type="audio/mpeg">

<source src="hail to_the chief.ogg"
type="audio/ogg">

Your browser does not accept the audio
tag.

</audio>

<video id="vid" preload="auto"
width="50%" alt="Fireworks video" muted>

<source src="sfire3.webmvp8.webm"
type="video/webm; codec="vp8, vorbis"'>

<source src="sfire3.mp4">

Set the video to visible.

Set to start at the start.

Make visible (may be redundant).
Start to play video.

Close the if ok true clause.
else.

Display WRONG.

Close else.

Close the checkorder function.
Close the script element.
Close the head element.

Body tag. Note setting of onload.
Audio tag.

The MP3 source.

The 0GG source.

Done for older browsers.

Close the audio element.
Video tag. Note the muted attribute.

The WEBM source.

The MP4 sources.

250

(continued)

Table 6-4. (continued)

CHAPTER 6

Quiz

<htmly

HTML tag.

<source src="sfire3.theora.ogv"
type="video/ogg; codecs="theora,

vorbis"'>

Your browser does not accept the video

tag.

</video>

<h1>0rder the Presidents</hi1>

This is a challenge to put the presidents
displayed in the right order in terms of
time of term in office.
Click on the
boxes in the order you believe correct.

Reload for new game.

Your order:

<div id="answer"></div>

Result: <div id="results"></div>

</body>
</html>

The 0GG source.

For older browsers.

Close the video element.
Heading.

Instructions.

Line break.

More instructions.

Line break.

Heading for player’s answers.
Place for player’s answers.
Will hold result.

Close body

Close html.

The first step to making this application your own is to choose the content of your

quiz. The values here are names, held in text, but they could be descriptions of events,

mathematical expressions, or names of songs. You also could create img tags and use the

information kept in the array to set the src values of img elements. More complicated,

but still doable, is to incorporate audio. Start simple, with something resembling the list

of U.S. presidents, and then be more daring. My personal view is being able to put events

in order is more important than knowing dates.

You can change the look of the application by modifying the original HTML and/or
the created HTML. You can modify or add to the CSS section.

251

CHAPTER6 QUIZ

You can easily change the number of questions (but can’t have more than 9), or
change the four-question game to a four-question round and make a new round happen
automatically after a certain number of guesses or when clicking a button. You would
need to decide if presidents are to be repeated from round to round.

You can also incorporate a timing feature. There are two general approaches: keep
track of time and simply display it when the player completes a game/round successfully
(see the memory games in Chapter 5) or impose a time limit. The first approach allows
someone to compete with themselves but imposes no significant pressure. The second
does put pressure on the player, and you can decrease the allowed time for successive
rounds. It could be implemented using the setTimeout command.

You can identify links to websites that discuss the facts or to Google map locations as
mini-awards for correct answers—or as clues.

You may not like the way the quiz blocks remain on the screen while the video is
showing. You can remove them using a loop that makes each element invisible.

Testing and Uploading the Application

The random feature of the game does not impact the testing. If you want, you can
substitute fixed choices after the Math.random coding, do the bulk of the testing, and
then remove these lines of code and test again. The important thing to do for this and
similar games is to make sure your testing involves both correct guesses and incorrect
guesses, as well as bad behavior on the part of the player, like clicking on a choice
already made.

The presidents game is complete in the HTML file, but the audio and video clips are
distinct files. If you make your own quiz, you are not obliged to use both an audio clip
and a video clip. For media, you need to do the following:

o Create or acquire the video and/or audio

e Produce the different versions, assuming you want to support the
different browsers

e Upload all the files to the server

252

http://dx.doi.org/10.1007/978-1-4842-4155-4_5

CHAPTER6 QUIZ

You may need to work with your server staff to make sure the different video types
are properly specified. This involves something called the htaccess file. HTML5 has now
been around for a time, and this way of featuring video on web pages should be familiar
to server staff.

Alternatively, you can identify video and/or audio already online and use absolute
URLSs as the src attributes in the source elements in the media elements.

Summary

In this chapter, we implemented a simple quiz that asked a player to put a small set
chosen randomly from the complete list of U.S. presidents in order. Putting events in
chronological order is a reasonable topic for a quiz, but the main lesson of this chapter
is the distinct techniques used. The application used the following programming
techniques and HTMLS5 features:

o Creating HTML during runtime using document.createElement,
document.getElementById, and document.body.appendChild

e Setting up event handling for the mouse click event using
addEventListener

e Removing event handling for the mouse click event using
removeEventListener

o Changing the color of objects on the screen using code to change CSS
settings

o Creating an array of arrays to hold the quiz content
o Using for loops for iterating over the array

e Usingdo-while loops to make a random choice of an unused
question set

o Using substring for extracting strings to be used in the checking
e Turning a string into a number using the Number function

o Using video and audio elements for displaying video and audio
encoded in formats acceptable by different browsers

253

CHAPTER6 QUIZ

You can use dynamically created and repositioned HTML along with the drawing on
canvas that you learned in the previous chapters. For the third edition, I decided to add
a program using video to Chapter 3, so now you have seen two examples of video in use.
You can use video and audio as a small part of an application, as was done here, or as the
major part of a website. In the next chapter, we return to drawing on canvas as we build a
maze and then travel through the maze without crossing the walls.

254

CHAPTER 7

Mazes

Keywords

KeyDown; Lastdate; Mouse Events; Arrow Keys; keyCode

In this chapter, we cover the following:

Responding to mouse events

Calculating collisions between circles and lines
Responding to the arrow keys

Form input

Encoding, saving, decoding, and restoring information from local
storage using try and catch to test whether coding is recognized

Using join and split to encode and decode information
Using javascript: in a button to invoke functions

Radio buttons

Introduction

In this chapter, we'll continue our exploration of programming techniques and HTML5

and JavaScript features, this time using programs that build and traverse mazes. Players

will have the ability to draw a set of walls to make up a maze. They will be able to save
and load their mazes and to traverse them using collision detection to make sure they

don’t cross any walls.

© Jeanine Meyer 2023
J. Meyer, The Essential Guide to HTMLS5, https://doi.org/10.1007/978-1-4842-8722-4_7

255

https://doi.org/10.1007/978-1-4842-8722-4_7

CHAPTER7 MAZES

The general programming techniques include using arrays for everything that needs
to be drawn on the canvas as well as a separate array for the set of walls in the maze.

The number of walls is not known before play starts, so a flexible approach is required.
Once the maze is constructed, we’ll see how to respond to presses of the arrow keys
and how to detect collisions between the playing piece—a pentagon-shaped token—
and the walls. With HTML5, we can handle mouse events so the player can press the
mouse button down and then drag and release the button to define each wall of a maze;
respond to the arrow keys to move the token; and save and retrieve the layout of walls
on the local computer. As usual, we'll build more than one version of the application.

In the first, everything is contained in one HTML file. That is, the player builds a maze,
can travel through it, and can optionally save it to the local computer or restore a set of
walls saved earlier. In the second version, there’s one program to create the mazes and
a second file that offers the player a choice of specific mazes to traverse, using radio
buttons. Perhaps one person might build the mazes on a given computer and then ask a
friend to try traversing them.

HTMLS5’s local storage facility accepts only strings of characters, so we’ll look at how
we can use JavaScript to encode the maze information into a character string and then
decode it back to rebuild the walls of the maze. The saved information will remain on the
computer even after it is turned off.

The individual capabilities we’ll discuss in this chapter—building structures, using
the arrow keys to move a game piece, checking for collisions, and encoding, saving, and
restoring data on the user’s computer—can all be reused in a variety of games and design
applications.

Note HTML files are generally called scripts, while the term program is typically
reserved for languages such as Java or C. This is because JavaScript is an
interpreted language: the statements are translated one at a time at execution
time. In contrast, Java and C programs are compiled, that is, completely translated
all at once, with the result stored for later use. Some of us are not so strict and
use the terms script, program, application, or simply file or document for HTML
documents with JavaScript.

256

CHAPTER7 MAZES

Figure 7-1 shows the opening screen building and traveling and saving and

retrieving a maze.

a

Press mouse button down, drag and release to make a wall. Use arrow keys to move token.
Pressing any other key will stop key capture and allow you to save the maze locally.

To save your maze, enter in a name and click on the SAVE WALLS button.

Name: :maze_name | | SAVE WALLS |

To add_ old walls, enter in the name and click on the GET SAVED WALLS button.
Narme: maze_name || GET SAVED WALLS |

Figure 7-1. Opening screen for the maze game

Figure 7-2 shows the screen after some fairly sloppy walls have been placed on

the canvas.

257

CHAPTER7 MAZES

a

|
—
|

Press mouse button down, drag and release to make a wall. Use arrow keys to move token.
Pressing any other key will stop key capture and allow you to save the maze locally.

To save your maze, enter in a name and click on the SAVE WALLS button.

Name: | maze_name ‘ | SAVE WALLS |

To add‘ old walls, enter in the name and click on the GET SAVED WALLS button.
Name: |maze_name |[GET SAVED WALLS |

Figure 7-2. Walls for a maze

Figure 7-3 shows the screen after the player has used the arrow keys to move the
token into the maze.

258

CHAPTER7 MAZES

¢

Press mouse button down, drag and release to make a wall. Use arrow keys to move token.
Pressing any other key will stop key capture and allow you to save the maze locally.

To save your maze, enter in a name and click on the SAVE WALLS button.

Name: Tmaze_name] | SAVE WALLS |

To addl old walls, enter in the name and click on the GET SAVED WALLS button.
Nane: |maze_name |[GET SAVEDWALLS |

Figure 7-3. Moving the token inside the maze

If the player wants to save a set of walls, he or she types in a name and clicks the
button. To retrieve the walls, which are added to whatever is currently on the canvas,
the player types in a name and presses the GET SAVED WALLS button. If there’s nothing
saved under that name, nothing happens.

The second script presents the player with a choice. Figure 7-4 shows the opening
screen. To repeat: the travelmaze program assumes that you have built and saved mazes
with the names easymaze, moderatemaze, and hardmaze, on your computer, using the
same browser. You can change and/or add to these names.

259

CHAPTER7 MAZES

a

Choose level and click GET MAZE button to get a maze:

OHard
O Moderate
O Easy

Use arrow keys to move token.

Figure 7-4. Opening screen of the travelmaze script

I do this to demonstrate the local storage facility of HTML5, which is similar to
cookies—a way for web application developers to store information about users.

Note Cookies, and now HTMLS5 localStorage, are the basis of what is termed
behavioral marketing. They bring convenience to us—we don’t have to remember
certain items of information such as passwords—nbut they are also a way to be
tracked and the target of sales. | am not taking a position here, just noting the

facility.

260

CHAPTER7 MAZES

Figure 7-5 shows an easy maze.

Choose level and click GET MAZE button to get a maze:

OHard
O Moderate
®Easy

Use arrow keys to move token.

Figure 7-5. An easy maze

Figure 7-6 shows a slightly more difficult maze.

261

CHAPTER7 MAZES

Choose level and click GET MAZE button to get a maze:

O Hard
® Moderate
O Easy

Use arrow keys to move token.

Figure 7-6. A moderate maze

Figure 7-7 shows a more difficult maze, more difficult mainly because the player
needs to move away from the first entry point toward the bottom of the maze to make it

through. Of course, it is up to the player/creator to design the mazes.

262

CHAPTER7 MAZES

Choose level and click GET MAZE button to get a maze:

@ Hard
O Moderate
OEasy

Use arrow keys to move token.

Figure 7-7. A harder maze

One important feature is that in the two-script application, clicking the GET maze
button forces the current maze to be erased and the newly selected maze to be drawn.
This is different from what happens in either buildmaze program when old walls
are added to what is present. As has been the case for the other examples, these are
just stubs of programs, created to demonstrate HTMLS5 features and programming
techniques. There is much opportunity for improvement to make the projects your own.

Critical Requirements

The maze application requires the display of a constantly updated game board, as new
walls are erected and the token is moved.

The maze-building task requires responding to mouse events to collect the
information needed to build a wall. The application displays the wall being built.

The maze-traveling task requires responding to the arrow keys to move the token.
The game must not allow the token to cross any wall.

263

CHAPTER7 MAZES

The save and retrieve operations require the program to encode the wall
information, save it on the local computer, and then retrieve it and use it to create and
display the saved walls. Mazes are moderately complex structures: a set of some number
of walls, with each wall defined by starting and ending coordinates, that is, pairs of
numbers representing X,y positions on the canvas. For the local storage facility to be
used, this information has to be turned into a single string of characters.

The two-document version uses radio buttons to select a maze.

HTML5, CSS, and JavaScript Features

Now let’s look at the specific features of HTML5 and JavaScript that provide what we
need to implement the maze application. This builds on material covered in previous
chapters: the general structure of an HTML document; using programmer-defined
functions, including programmer-defined objects; drawing paths made up of line
segments on a canvas element; programmer objects; and arrays. Previous chapters
have addressed mouse events on the canvas (the cannonball and slingshot games in
Chapter 4 and the memory game in Chapter 5) and mouse events on HTML elements
(the quiz games in Chapter 6). New features we’ll be covering include a different type of
event: getting input from a player pressing the arrow keys, called keystroke capture; and
using local storage to save information on the local computer, even after the browser
has been closed and the computer turned off. Remember, you can skip ahead to the
“Building the Application” section to see all the code with comments and return to this
section to read explanations of individual features and techniques.

Representation of Walls and the Token

To start, we'll define a function, Wall, to define a wall object, and another function,
Token, to define a token object. We'll define these functions in a more general manner
than required by this application, but I believe this is okay: the generality does not affect
much, if anything, in terms of performance, while giving us the freedom to use the code
for other applications, such as a game with different playing pieces. I chose the pentagon
shape because I liked it and use myPent as the variable name for the playing piece.

264

http://dx.doi.org/10.1007/978-1-4842-4155-4_4
http://dx.doi.org/10.1007/978-1-4842-4155-4_5
http://dx.doi.org/10.1007/978-1-4842-4155-4_6

CHAPTER7 MAZES

The properties defined for a wall consist of the start and finish points specified
by the mouse actions. I name these sx, sy, fx, and fy. The wall also has awidth and a
strokeStyle string, and a draw method is specified as drawAline. The reason this is more
general than necessary is because all walls will have the same width and style string, and
all will use the drawAline function. When it comes time to save the walls to local storage,
I save only the sx, sy, fx, and fy values. You can use the same techniques to encode more
information if and when you write other programs and need to store values.

The token that moves around the maze is defined by a call to the Token function.
This function is similar to the Polygon function defined for the polygon memory game.
The Token function stores the center of the token, sx and sy, along with a radius (rad),
number of sides (n), and a TillStyle, and it links to the drawToken function for the draw
method and the moveToken function for the moveit method. In addition, a property
named angle is computed immediately as (2*Math.PI)/n. Recall that in the radian
system for measuring angles, 2*Math.PI represents a full circle, so this number divided
by the number of sides will be the angle from the center to the ends of each side.

As was the case with previous applications (see Chapter 4), after an object is created,
the code adds it to the everything array. I also add all walls to the walls array. It is this
array that is used to save the wall information to local storage.

Mouse Events to Build and Position a Wall

Recall that in previous chapters we used HTML5 and JavaScript to define an event and
specify an event handler. The init function contains code that sets up event handling for
the player pressing the main mouse button, moving the mouse, and releasing the button.

canvasl = document.getElementById('canvas');
canvasl.addEventListener('mousedown',startWall,false);
canvasl.addEventListener('mousemove',stretchiWall,false);
canvasl.addEventListener("'mouseup',finish,false);

We'll also use a variable called inMotion to keep track of whether the mouse button
is down. The startWall function determines the mouse coordinates (see Chapters 4
and 5 for accessing the mouse coordinates after an event), creates a new Wall object with
areference stored in the global variable curiWall, adds the wall to the everything array,
draws all the items in everything, and sets inMotion to be true. If inMotion is not true,
then the stretchWall function returns immediately without doing anything. If inMotion
is true, the code gets the mouse coordinates and uses them to set the fx and fy values

265

http://dx.doi.org/10.1007/978-1-4842-4155-4_4
http://dx.doi.org/10.1007/978-1-4842-4155-4_4
http://dx.doi.org/10.1007/978-1-4842-4155-4_5

CHAPTER7 MAZES

of curhall. This happens over and over as the player moves the mouse with the button
pressed down. When the button is released, the function finish is called. This function
sets inMotion back to false and adds the curWall to an array called walls.

Detecting the Arrow Keys

Detecting that a key on the keyboard has been pressed and which one it is is called capturing
a key stroke. This is another type of event that HTML5 and JavaScript can handle. We need

to set up a response to a key event, which is analogous to setting up a response to a mouse
event. The response to any key down will be a function I wrote named getKeyAndMove,
explained soon. Setting up the event involves invoking the addEventListener method, this
time for the window, the built-in HTML object that holds the HTML file:

window.addEventListener('keydown',getkeyAndMove,false);

The statement specifies the event, keyDown, in the first parameter and the handler for
the event, getkeyAndMove, in the second parameter. The third parameter, which could
be omitted because false is the default, relates to the order of responding to the event by
other objects. It isn’t an issue for this application.

This means the getkeyAndMove function will be invoked if and when a key is pressed.

Tip Event handling is a big part of programming. Event-based programming is
often more complex than demonstrated in this book. For example, you may need
to consider if a contained object or a containing object also should respond to the
event or what to do if the user has multiple windows open. Devices such as cell
phones can detect events such as tilting or shaking or using your fingers to stroke
the screen. Incorporating video may involve invoking certain actions when the
video is complete. HTML5 JavaScript is not totally consistent in handling events
(setting up a timeout or a time interval does not use addEventListener), but

at this point, you know enough to do research to identify the event you want, try
multiple possibilities to figure out what the event needs to be associated with (e.g.,
the window or a canvas element or some other object), and then write the function
to be the event handler. Note also that some event handling uses the term callback.
The invoking of the specified function is called a callback.

266

CHAPTER7 MAZES

Now, as you may expect at this point, the coding to get the information for which
key was pressed involves different code for different browsers. The following code, with
two ways to get the number corresponding to the key, works in all current browsers
recognizing other new features in HTML5:

if(event == null)
{
keyCode = window.event.keyCode;
window.event.preventDefault();

}

else

{

keyCode = event.keyCode;
event.preventDefault();

The preventDefault method does what it sounds like: prevents any default action,
such as a special shortcut action that is associated with the particular key in the
particular browser. The only keys of interest in this application are the arrow keys. The
following switch statement moves the Token referenced by the variable myPent; that is,
the location information is changed so that the next time everything is drawn, the token
will move. (This isn't quite true. The moveit function contains a collision check to make
sure we don’t hit any walls first, but that will be described later.)

switch(keyCode)
{
case 37: //left arrow
mypent.moveit(-unit,0);
break;
case 38: //up arrow
mypent.moveit(0,-unit);
break;
case 39: //right arrow
mypent.moveit(unit,0);
break;
case 40: //down arrow
mypent.moveit(0,unit);

267

CHAPTER7 MAZES

break;
default:
window.removeEventListener('keydown',getkeyAndMove,false);

Tip Do put comments in your code as demonstrated by the comments indicating
the keyCode for the different arrow keys. The examples in this book don’t have
many comments because I've supplied an explanation for every line of code in

the relevant tables, so this is a case of do as | say, not as | do here in this text.
Comments are critical for team projects and for reminding you of what’s going on
when you return to old work. In JavaScript, you can use the // to indicate that the
rest of the line is a comment or surround multiple lines with /* and */. Comments
are ignored by the JavaScript interpreter.

How did I know that the key code for the left arrow was 37? You can look up key
codes on the Web (for example, www.w3.0rg/2002/09/tests/keys.html), or you can
write code that issues an alert statement.

alert(" You just pressed keycode "+keyCode);

The default action for our maze application, which occurs when the key is not one
of the four arrow keys, stops event handling on key strokes. The assumption here is
that the player wants to type in a name to save or retrieve wall information to or from
local storage. In many applications, the appropriate action to take would be a message,
possibly using alert, to let the user know what the expected keys are.

Collision Detection: Token and Any Wall

To traverse a maze, the player must not move the token across any wall. We will enforce
this restriction by writing a function, intersect, that returns true if a circle with a given
center and radius intersects a line segment. For this task, we need to be exacting in

our language: a line segment is part of a line, going from sx, sy to fx, fy.Each wall
corresponds to a finite line segment. The line itself is infinite. The intersect function is
called for each wall in the array walls.

268

http://www.w3.org/2002/09/tests/keys.html

CHAPTER7 MAZES

Tip My explanation of the mathematics in the intersection calculation is fairly
brief but may be daunting if you haven’t done any math in a while. Feel free to skip
over it and accept the coding as is if you don’t want to work through it.

The intersect function is based on the idea of a parameterized line. Specifically,
the parameterized form of a line is as follows using mathematical formula, as opposed to
code (it is actually a hybrid format because I do use * for multiplication):

Equation a: x = sx + t*(fx-sx);
Equation b: y = sy + t*(fy-sy);

The (sx,sy) and (fx, fy) represent the ends of the line segment. I will use sx, sy,
etc., as variable names and not go to something like startX because it is understandable.
As parameter t goes from 0 to 1, the x and y take on the corresponding values of x, y
on the line segment. The goal is to determine if a circle with center cx, cy and radius
rad overlaps the line segment. One way to do this is to determine the closest point on
the line to cx, cy and see if the distance from that point is less than rad. In Figure 7-8,
you see a sketch of part of a line with the line segment depicted with a solid line and the
rest of what is shown of the line indicated by dots. The value of t at one end is 0, and the
other end is 1. There are two points c1x,c1y and c2x, c2y.The c1x,c1y pointis closest
to the line outside the critical line segment. The point c2x, c2y is closest somewhere in
the middle of the line segment. The value of t would be between 0 and 1.

.
*
0..
*, =0
clzcly
/ t=1
C2E,C2Y
.0
*
.
*

Figure 7-8. A line segment and two points

269

CHAPTER7 MAZES
The formula for the distance between the two points (x,y) and (cx,cy) is
distance = Square Root(((cx-x)*(cx-x)+(cy-y)*(cy-y)))
Substituting for x and for y using equations a and b, we get a formula for distance.

Equation c: distance = Square Root(((cx-sx+t*(fx-sx))*(cx- sx + t*
(fx-sx))+(cy- sy + t*(fy-sy))*(cy- sy + t*(fy-sy))))

For our purposes, we want to determine the value of t when distance is at a
minimum. Lessons from calculus and reasoning about minimum versus maximum in
this situation tell us first that we can use the distance squared in place of the distance
and so avoid taking square roots. Moreover, the value is at a minimum when the
derivative (with respect to t) is zero. Taking the derivative and setting that expression
to zero produces the value of t at which the cx, cy is closest to the line. In the code, we
define two extra variables, dx and dy, to make the expressions simpler.

dx = fx-sx

dy = fy-sy;
t= 0.0 -((sx-cx)*dx+(xy-cy)*dy)/((dx*dx)+(dy*dy))

This will produce a value for t. The 0.0 is used to force the calculations to be done
as floating-point numbers (numbers with fractional parts, not restricted to whole
numbers).

We use equations a and b to get the x, y point corresponding to the value of t. This is
the x,y closest to cx, cy. If the value of t is less than 0, we check the value for t = 0, and if
it is more than 1, we check the value for t = 1. This means that the closest point was not
a point on the line segment, so we will check the appropriate end of the line segment
closest to that point.

Is the distance from cx, cy to the closest point close enough to be called a collision?
We again use distance squared and not distance. We evaluate the distance squared from
cX, cyto the computed X, Y. Ifitis less than the radius squared, there is an intersection
of the circle with the line segment. If not, there is no intersection. Using the distance
squared does not make a difference: if there is a minimum for the value squared, then
there is a minimum for the value.

Now the very good news here is that most of the equations are not part of the
coding. I did the work beforehand of determining the expression for the derivative. The
intersect function follows, with comments:

270

CHAPTER7 MAZES

function intersect(sx,sy,fx,fy,cx,cy,rad) {
var dx;
var dy;
var t;
var rt;
dx = fx-sx;

dy = fy-sy;

t =0.0-((sx-cx)*dx+(sy-cy)*dy)/((dx*dx)+(dy*dy)); //closest t
if (t<0.0) { //closest beyond the line segment at the start
t=0.0; }

else if (t>1.0) { //closest beyond the line segment at the end
t =1.0;

}
dx = (sx+t*(fx-sx))-cx; // use t to define an x coordinate
dy = (sy +t*(fy-sy))-cy; // use t to define a y coordinate

rt = (dx*dx) +(dy*dy); //distance squared
if (rt<(rad*rad)) { // closer than radius squared?
return true; } // intersect
else {
return false;} // does not intersect

In our application, the player presses an arrow key, and based on that key, the next
position of the token is calculated. We call the intersect function to see if there would
be an intersection of the token (approximated as a circle) and a wall. If intersect
returns true, the token is not moved. The checking stops as soon as there is an
intersection. This is a common technique for collision checking.

Using Local Storage

The Web was originally designed for files being downloaded from the server to the
local, so-called client computer for viewing, but with no permanent storage on the
local computer. Over time, people and organizations building websites decided that
some sort of local storage would be advantageous. So, someone came up with the idea
of using small files called cookies to keep track of things, such as user IDs stored for

271

CHAPTER7 MAZES

the convenience of the user as well as the website owner. The use of cookies in other
programming languages and now the HTMLS5 local storage has grown considerably with
the commercial Web. Unlike the situation for the applications shown here, the user often
does not know that information is being stored and by whom, and for what purpose the
information is accessed.

The localStorage facility of HTMLS5 is browser-specific. That is, a maze saved using
Chrome is not available to someone using Safari.

Let’s take a closer look at using local storage by examining a small application that
saves date and time information. Local storage and the Date function, introduced in
Chapter 1, provide a way to store date/time information. Think of local storage as a
database in which strings of characters are stored, each under a specific name. The
name is called the key, the string itself is the value, and the system is called key-value
pairs. The fact that local storage just stores strings is a restriction, but the next section
shows how to work around it.

Figure 7-9 shows the opening screen of a simple date-saving application.

| Store date info | [Retrieve date info | | Remove date info |

Figure 7-9. A simple save date application

The user has three options: store information on the current date and time, retrieve
the last information saved, and remove the date information. Figure 7-10 shows what
happens when clicking Retrieve Date Info the very first time using this application (or
after the date has been removed).

| Store date info | | Retrieve date info | | Remove date info |

“Javascri pt Ale rt

Stored null

Figure 7-10. Data not yet saved or after removal

272

http://dx.doi.org/10.1007/978-1-4842-4155-4_1

CHAPTER7 MAZES

Our application uses a JavaScript alert box to show a message. The user needs to
click the OK button to remove the alert box from the screen.
Figure 7-11 shows the message after a user clicks the Store Date Info button.

| Store date info | | Retrieve date info | [Remove date info |

'-Javascript Alert

Stored: Sun Sep 26 2010 17:48:39 GMT-0400 (Eastern Daylight
Time)

Figure 7-11. After storing date information

If the user later clicks the Retrieve Date Info button, they’ll see a message similar to
Figure 7-12.

| Store date info | | Retrieve date info | [Remove date info |

“Javascript Alert

Stored Sun Sep 26 2010 17:48:39 GMT-0400 (Eastern Daylight
Time)

Figure 7-12. Retrieving the stored date information

You can give your players a way to remove the stored information using a Remove
Date Info button. Figure 7-13 shows the result.

273

CHAPTER7 MAZES

| Store date info | | Retrieve date info | | Remove date info |

‘Javascript Alert

Removed date stored.

Figure 7-13. After removing stored information

HTMLS lets you save, fetch, and remove a key-value pair, using methods for the built-
in object localStorage.

The command localStorage.setItem("lastdate",oldDate) sets up a new key-
value pair or replaces any previous one with the key equal to lastdate. The statement

last = localStorage.getItem("lastdate");

assigns the fetched value to the variable last. In the code for our simple example,
we just display the results. You can also check for something being null and provide a
friendlier message.

The command localStorage.removeItem("lastdate") removes the key-value pair
with lastdate as the key.

For our simple date application, we set the onClick attribute of each button object to
be some JavaScript code. For example:

<button onClick="javascript:store();">Store date info. </button>

causes store() to be invoked when the button is clicked.

You may be wondering if anyone can read any of the saved information in local
storage. The answer is that access to each key-value pair in localStorage (and in other
types of cookies) is restricted to the website that stored the information. This is a security
feature.

The Chrome browser allows testing of local storage with HTMLS5 scripts stored on the
local computer. At the time of writing for the first edition, Firefox did not, but required
files to be uploaded to a server to use local storage. Though localStorage appears to be
recognized by all browsers now, I mention this to prepare you for browsers being different.

274

CHAPTER7 MAZES

Because there may be other problems such as exceeding limits set by the user for
local storage and cookies, it is a good practice to include some error checking. You can
use the JavaScript function typeof to check if localStorage is accepted by the browser:

if (typeof(localStorage)=="undefined")

Figure 7-14 shows the result of loading the date application and clicking the Store
Date Info button in an old version of Internet Explorer. (By the time you read this book,
the latest version of IE may be out, and this will not be a problem.)

[Store date info][Retrieve date info][Remove date info]

Message from webpage @

! E Browser does not recognize HTML local storage. [%

Figure 7-14. The browser didn’t recognize localStorage

JavaScript also provides a general mechanism for avoiding the display of errors. The
compound statement try and catch will try to execute some code, and if it doesn’t work,
it will go to the catch clause.

try {
oldDate = new Date();

localStorage.setItem("lastdate",oldDate);
alert("Stored: "+oldDate);

}

catch(e) {
alert("Error with use of local storage: "+e);}

If you removed the if (typeof(localStorage) test and tried the code in the old IE,
you’d see the message shown in Figure 7-15.

275

CHAPTER7 MAZES

[Store date info ”

Retrieve date info ”

Remove date info

Message from webpage E]

! E Error with use of local storage: [object Error]

Figure 7-15. Browser error, caught in a try/catch

Table 7-1 shows the complete date application. Remember, you may need to upload

this to a server to test it.

Table 7-1. Complete Code for the Date Application

Code Explanation
<html> Opening html tag.
<head> Opening head tag.
<title>local Storage test</title> Complete title

<script>
function store() {

if (typeof(localStorage) ==
"undefined") {

alert("Browser does not recognize HTML
local storage.");

}

else {

try {
oldDate = new Date();

Opening script.
Store function header.

Check if localStorage is recognized.

Display alert message.

Close if clause.
Else.
Set up the try clause.

Define new Date.

276

(continued)

Table 7-1. (continued)

CHAPTER7 MAZES

Code

Explanation

localStorage.
setItem("lastdate",oldDate);

alert("Stored: "+oldDate);

}
catch(e) {

alert("Error with use of local
storage: "+e);}

}

return false;

}

function remove() {

if (typeof(localStorage) ==
"undefined") {

alert("Browser does not recognize

HTML local storage.");
}

else {

localStorage.removeItem('lastdate’);

alert("Removed date stored.");

}

return false;

Store in local storage using the key
"lastdate".

Display message to show what was stored.
Close the try clause.

Start the catch clause: if there was a
problem.

Display a message.

Close the try clause.

Return false to prevent any page refresh.
Close the function.

Remove the function header.

Check if localStorage is recognized.

Display the alert message.

Close the if clause.
Else.

Remove the item stored using the key
'lastdate’.

Display the message indicating what was
done.

Close the clause.
Return false to prevent a page refresh.

Close the function.

(continued)

277

CHAPTER7 MAZES

Table 7-1. (continued)

Code

Explanation

function fetch() {

if (typeof(localStorage) ==
"undefined") {

alert("Browser does not recognize
HTML local storage.");

}
else {

alert("Stored "+localStorage.
getItem('lastdate"));

}

return false;

}

</script>
</head>
<body>

<button onClick="javascript:store();">

Store date info </button>

<button onClick="javascript:fetch();">

Retrieve date info </button>

<button onClick="javascript:remove();">

Remove date info </button>
</body>
</html>

Fetch the function header.

Check if localStorage recognized

Display an alert message.

Close the if clause.
Else.

Fetch the item stored under the key
'lastdate’ and display it.

Close the clause.

Return false to prevent a page refresh.
Close the function.

Close the script element.

Close the head element.
Opening body tag.

Button for storing.

Button for retrieving, that is, fetching the
stored data.

Button for removing.

Closing body tag.
Closing html tag.

278

CHAPTER7 MAZES

Combining the Date function with localStorage lets you do many things. For
example, you can calculate the elapsed time between a player’s current and last use of
the application or, perhaps, the player winning two games. In Chapter 5, we used Date
to compute the elapsed time using the getTime method. Recall that getTime stores the
number of milliseconds from January 1, 1970. You can convert that value to a string,
store it, and then when you fetch it back, do arithmetic to calculate the elapsed time.

The localStorage key-value pairs last until they are removed, unlike JavaScript
cookies, for which you can set a duration.

Encoding Data for Local Storage

For simplicity’s sake, the first application consists of just one HTML document. You can
use this version to create mazes, store and retrieve them, and move the token through
the maze. The second version of the application involves two HTML documents. One
script is the same as the first application and can be used for building, traversing, and
saving mazes as well as traveling each maze. The second script is just for traveling one
of a fixed list of saved mazes. A set of radio buttons allows the player to pick from easy,
moderate, and hard options, assuming someone has created and saved mazes with

the names easymaze, moderatemaze, and hardmaze. You can change these names to
anything you want and/or add as many as you want. You just need to be consistent
between what you create, name, and save in the build program and what you reference
in the travel program.

Now let’s address the issue that localStorage just stores character strings. The
applications described here must store enough information about the walls so that these
walls can be added to the canvas. In the one-document version, the old walls are actually
added to whatever is on the canvas. The two-document version erases any old maze and
loads the requested one. I use two forms, each with an input field for the name and a
submit button. The player chooses the name for saving a maze and must remember it for
retrieving.

The data to be stored is a character string, that is, a piece of text. We will create the
text holding the information for a set of walls by doing the following for each wall:

o Combine the sx, sy, fx, fyintoan array called w for a single wall.
o Using the join method, use the w array to generate a string separated

by + signs.

279

http://dx.doi.org/10.1007/978-1-4842-4155-4_5

CHAPTER7 MAZES

e Add each of these strings to an array called allw, for all the walls.

o Using the join method again, use the allw array to produce a string
called sw.

The sw string variable will hold all the coordinates (four numbers for each wall) for
all the walls. The next step is to use the localStorage.setItem method to store sw under
the name given by the player. We do this using the try and catch construction explained
in the previous section.

try {
localStorage.setItem(1lsname,sw);

}
catch (e) {

alert("data not saved, error given: "+e);

}

This is a general technique that will try something, suppress any error message, and
if there is an error, will invoke the code in the catch block.

Note This may not always work as you intend. For example, when executing

this application on Firefox directly on a computer, as opposed to a file downloaded
from a server, the localStorage statement does not cause an error, but nothing
is stored. This code works when the HTML file is downloaded from a server using
Firefox, and the creation script works both as a local file and when downloaded
using Chrome. The two-script version must be tested using a server for each of the
browsers.

Retrieving the information works in a corresponding way. The code extracts the
name given by the player to set the variable 1sname and then uses

swalls = localStorage.getItem(lsname);

to set the variable swalls. If this is not null, we use the string method split to do the
opposite of join: split the string on the symbol given (we split at every semicolon) and
assign the values to the successive elements of an array. The relevant lines are

wallstgs = swalls.split(";");

280

CHAPTER7 MAZES
and
sw = wallstgs[i].split("+");

Next, the code uses the information just retrieved and the fixed information for wall
width and wall style to create a new Wall object:

curWall = new Wall(sx,sy,fx,fy,wallWidth,wallStyle);

Finally, there is code to add curWall to both the everything array and the
walls array.

Radio Buttons

Radio buttons are sets of buttons in which only one member of the set can be selected.
If the player makes a new choice, the old choice is deselected. They are an appropriate
choice for the hard/moderate/easy selection for this application. Here’s the HTML
markup in the <body> section:

<form name="gf" onSubmit="return getWalls()" >

<input type="radio" value="hard" name="level" />Hard

<input type="radio" value="moderate" name="level" />Moderate

<input type="radio" value="easy" name="level" />Easy

<input type="submit" value="GET maze"/>

</form>

Notice that all three input elements have the same name. This is what defines one
group of radio buttons of which only one may be selected. In this case, the markup
creates an array called level. The gethWalls function will be shown in full in the next
section. It is similar to the function in the all-in-one script. However, in this case, the
name of the localStorage item is determined from the radio buttons. The code is

for (i=0;i<document.gf.level.length;i++) {
if (document.gf.level[i].checked) {
1sname= document.gf.level[i].value+"maze";
break;

}
}

281

CHAPTER7 MAZES

The for loop iterates over all the input items. The if test is based on the checked
attribute. When it detects a true condition, the variable 1sname is constructed from the
value attribute of that item, and the break; statement causes execution to leave the for
loop. If you want your radio buttons to start with one of the items checked, use code
like this:

<input type="radio" value="easy" name="level" checked />
Or this:

<input type="radio" value="easy" name="level" checked="true" />

Building the Application and Making It Your Own

Now let’s take a look at the coding for the maze applications, first the all-in-one script
and then the second script of the two-script version.

Table 7-2 shows the functions in the script for creating, saving, retrieving, and
traveling the maze. Notice that much of the invoking of functions is done through event
handling: the onLoad, onSubmit, and addEventListener calls. These do not invoke the
functions directly or immediately, but set up the call to be made when the indicated

event occurs.

282

Table 7-2. Functions in the Maze Application

CHAPTER7 MAZES

Function Invoked By/Called By Calls

init Invoked by action of onLoad in body tag drawAll

drawAll initstartWallstretchWallgetkeyAndMovegethalls draw method for
Walls and for
token: drawToken
and drawAline

Token var statement declaring mypent

Wall startWall, getWalls

drawToken drawAll using draw method for the token object in the

everything array
moveToken getkeyAndMove using the moveit method for myPent intersect
drawAline drawAll using draw method for Wall objects in the
everything array

starthall Invoked by action of an addEventListener callin init drawAll, Wall

stretchWall Invoked by action of an addEventListener callin init drawAll

finish Invoked by action of an addEventListener call in init

getkeyAndMove Invoked by action of an addEventListener call in init moveToken
using the moveit
method for myPent

savelalls Invoked by action of onSubmit for the st form

gethalls Invoked by action of onSubmit for the gf form drawAll, Wall

Table 7-3 shows the complete code for the maze application, with explanations.

283

CHAPTER7 MAZES

Table 7-3. Complete Code for the All-in-One Maze Application

Code Explanation
<html> Opening html tag.
<head> Opening head tag.

<title>Build maze & travel maze</
title>

<script type="text/javascript">

var cwidth = 900;

var cheight = 350;
var ctx;

var everything = [];
var curlall;

var wallWidth = 5;
var wallStyle =

"rgh(200,0,200)";
var walls = [];
var inMotion = false;
var unit = 10;

function
Token(sx,sy,rad,styleString,n) {

this.sx = sx;

this.sy = sy;

this.rad = rad;
this.draw = drawToken;
this.n = n;

this.angle = (2*Math.PI)/n ;

Complete title element.

Opening script tag.

To clear the canvas.

To clear the canvas.

To hold the canvas context.
To hold everything.

For wall in progress.

Fixed wall width.

Fixed wall color.

Hold all the walls.
Flag while wall is being built by dragging.
Unit of movement for token.

Function header to build token.

Set the sx property.

Set the sy property.

Set the rad property (radius).
Set the draw method.

Set the n number of sides.

Compute and set the angle.

284

(continued)

Table 7-3. (continued)

CHAPTER7 MAZES

Code

Explanation

this.moveit = moveToken;
this.fillstyle = styleString;
}
function drawToken() {
ctx.fillStyle=this.fillstyle;
var i;
var rad = this.rad;
ctx.beginPath();

ctx.moveTo(this.sx+rad*Math.cos

(-.5*%this.angle), this.sy+rad*Math.

sin(-.5*this.angle));

for (i=1;i<this.n;i++) {

ctx.lineTo(this.sx+rad*Math.
cos(i-.5)*this.angle),this.
sy+rad*Math.sin((i-.5)*this.
angle));
}
ctx.fill();

}

function moveToken(dx,dy) {
this.sx +=dx;
this.sy +=dy;
var i;
var wall;

for(i=0;i<walls.length;i++) {

Set the moveit method.

Set the color.
Close the function.
Function header drawToken
Set the color.

Index.

Set rad.

Begin path.

Move to the first vertex of the token polygon (which
is a pentagon).

for loop to draw the n sides of the token: five sides
in this case.

Specify line to next vertex, setting up the drawing of
a side of the pentagon.

Close for.

Draw token.

Close function.
Function header.
Increment x value.
Increment y value.
Index.

Used for each wall.

Loop over all walls.

(continued)

285

CHAPTER7 MAZES

Table 7-3. (continued)

Code

Explanation

wall = walls[i];

if (intersect(wall.sx,wall.
sy,wall.fx,wall.fy,this.
sx,this.sy,this.rad)) {

this.sx -=dx;
this.sy -=dy;

break;

}
}

}
function Wall(sx,sy,fx,fy,width,
styleString) {

this.sx

SX;
this.sy = sy;
this.fx = fx;
this.fy = fy;
this.width = width;
this.draw = drawAline;
this.strokestyle = styleString;
}
function drawAline() {
ctx.lineWidth = this.width;

ctx.strokeStyle = this.
strokestyle;

ctx.beginPath();

Extract 1™ wall.

Check for intersect. If there is an intersection
between the new position of the token and this
specific wall.

Change x back—don’t make this move.
Change y back—don’t make this move.

Leave for loop because it isn’t necessary to do any
more checking if there is a collision with one wall.

Close the if true clause.
Close the for loop.
Close the function.

Function header to make Wall.

Set up the sx property.
Set up sy.

Set up fx.

Set up fy.

Set up width.

Set the draw method.
Set strokestyle.
Close the function.
Function header drawAline
Set the line width.

Set the strokestyle.

Begin path.

286

(continued)

Table 7-3. (continued)

CHAPTER7 MAZES

Code

Explanation

ctx.moveTo(this.sx,this.sy);
ctx.lineTo(this.fx,this.fy);
ctx.stroke();

}

var mypent = new Token(100,100,
20,"rgh(0,0,250)",5);

everything.push(mypent);
function init(){

ctx = document.
getElementById('canvas').
getContext('2d");

canvasl = document.
getElementById('canvas');

canvasi.addEventListener
("mousedown',startWall,false);

canvasi.addEventListener

("mousemove',stretchhWall,false);

canvasi.addEventListener
("mouseup',finish,false);

window.addEventListener('keydown',

getkeyAndMove, false);
drawAll();
}
function startWall(ev) {
var mx;

var my;

Move to start of line.
Set line to finish.
Draw the line.

Close function.

Set up mypent as a pentagonal shape to be the
playing piece.

Add to everything.
Function header init.

Define the ctx (context) for all drawing.

Define canvasi, used for events

Set up handling for mousedown.

Set up handling for mousemove.

Set up handling for mouseup.

Set up handling for use of the arrow keys.

Draw everything.

Close function.
Function header startWall
Hold mouse x.

Hold mouse y.

(continued)

287

CHAPTER7 MAZES

Table 7-3. (continued)

Code Explanation
mx = ev.pageX; Set mx.
my = ev.pageY; Set my.

curall = new Wall(mx,my,mx+1,
my+1,wallWidth,wallStyle);

inMotion = true;
everything.push(curiall);
drawAll();

}
function stretchWall(ev) {

if (inMotion) {
var mx;
var my;
mx = ev.pageX;
my
curWall.fx = mx;

ev.pageY;

curlWall.fy = my;
drawAll();

}
}

function finish(ev) {
inMotion = false;
walls.push(curiWall);
}

Create a new wall. It is small at this point.

Set inMotion to true.
Add curWall to everything.
Draw everything.

Close function.

Function header stretchWall to that uses the
dragging of the mouse to stretch out a wall while the
mouse is dragged.

Check if inMotion

Hold mouse x.

Hold mouse y.

Set mx.

Setmy.

Change curWall. fx to mx.
Change curWall.fy tomy.
Draw everything (will show growing wall).
Close if inMotion

Close function.

Function header finish
Set inMotion to false.
Add curiWall towalls.

Close function.

288

(continued)

CHAPTER7 MAZES
Table 7-3. (continued)
Code Explanation
function drawAll() { Function header drawAl1l.
ctx.clearRect(0,0,cwidth, Erase whole canvas.
cheight);
var i; Index.
for (i=0;i<everything. Loop through everything.
length;i++) {
everything[i].draw(); Draw everything.
} Close loop.
} Close function.
function getKeyAndMove(event) { Function header getKeyAndMove.
var keyCode; Hold keyCode.
if(event == null) { If event null.
keyCode = window.event.keyCode; Get keyCode using window.event.
window.event.preventDefault(); Stop default action.
} Close clause.
else { Else.
keyCode = event.keyCode; Get keyCode from event.
event.preventDefault(); Stop default action.
} Close clause.
switch(keyCode) { Switch on keyCode.
case 37: If left arrow.
mypent.moveit(-unit,0); Move back horizontally.
break; Leave switch.
case 38: If up arrow.
mypent.moveit(0,-unit); Move up screen.
break; Leave switch.
(continued)

289

CHAPTER7 MAZES

Table 7-3. (continued)

Code

Explanation

case 39:
mypent.moveit(unit,0);
break;

case 40:
mypent.moveit(0,unit);
break;

default:

window.removeEventListener

("keydown',getkeyAndMove,false);

}
drawAll();

}

function intersect(sx,sy,fx,fy,
cx,cy,rad) {

var dx;

var dy;

var t;

var rt;

dx = fx-sx;

dy = fy-sy;

t =0.0-((sx-cx)*dx+(sy-cy)*dy)/
((dx*dx)+(dy*dy));

if (t<0.0) {
t=0.0; }
else if (t>1.0) {

If right arrow.

Move left.

Leave switch.

If down arrow.
Move down screen.
Leave switch.
Anything else.

Stop listening for keys. Assume player trying to save
to local storage or retrieve from local storage.

Close switch.
Draw everything.
Close function.

Function header intersect.

For intermediate value.

For intermediate value.

For expression in t.

For holding distance squared.
Set x difference.

Set y difference.

This line is derived from taking the formula for the
distance squared from each point to cx, cy. Then
taking the derivative and solving for 0.

If closestisat t <o.
Check at 0 (this will be further).

If closest is at t>1.

290

(continued)

CHAPTER7 MAZES
Table 7-3. (continued)
Code Explanation
t = 1.0; Check at 1 (this will be further).
} Close clause.
dx = (sx+t*(fx-sx))-cx; Compute the difference at this value of t.
dy = (sy +t*(fy-sy))-cy; Compute the difference at this value of t.
rt = (dx*dx) +(dy*dy); Compute the distance squared.
if (rt<(rad*rad)) { Compare to rad squared.
return true; } Return true.
else { Else.
return false;} Return false.
} Close function.
function saveWalls() { Function saveWalls header.
var w = []; Temporary array.
var allw=[]; Temporary array.
var sw; Hold final string.
var onelall; Hold intermediate string.
var i; Index.
var lsname = document.sf.slname. Extract player’s name for the local storage.
value;
for (i=0;i<walls.length;i++) { Loop over all walls.
w.push(walls[i].sx); Add sx to the w array.
w.push(walls[i].sy); Add sy to the w array.
w.push(walls[i].fx); Add fx to the w array.
w.push(walls[i].fy); Add fy to the w array.
onewall = w.join("+"); Make a string.
allw.push(onewall); Add to the allw array.
(continued)

291

CHAPTER7 MAZES
Table 7-3. (continued)
Code Explanation
w=[]; Reset w to the empty array.
} Close the loop.
sw = allw.join(";"); Now make allw into a string.
try { Try.
localStorage.setItem(1lsname,sw); Save localStorage.
} End try.
catch (e) { If a catchable error.
alert("data not saved, error Display message.
given: "+e);
} End the catch clause.
return false; Return false to avoid refresh.
} Close the function.
function getWalls() { Function header getWalls.
var swalls; Temporary storage.
Var sw; Temporary storage.
var i; Index.
var sx; Hold the sw value.
var sy; Hold the sy value.
var fx; Hold the fx value.
var fy; Hold the fy value.
var curlall; Hold walls being created.
var lsname = document.gf.glname. Exiract the player’s name for storage to be retrieved.
value;
swalls=localStorage. Get the storage.
getItem(1sname);

292

(continued)

Table 7-3. (continued)

CHAPTER7 MAZES

Code

Explanation

if (swalls!=null) {

nmomy
))

wallstgs = swalls.split(

for (i=0;i<wallstgs.length;i++)

{

sw = wallstgs[i].split("+");
sx = Number(sw[0]);
sy = Number(sw[1]);
fx = Number(sw[2]);
fy = Number(sw[3]);

curWall = new Wall(sx,sy,fx,fy,
wallWidth,wallStyle);

walls.push(curiWall);
everything.push(curiall);

}
drawAll();

}
else {
alert("No data retrieved.");

}

window.addEventListener('keydown',
woetkeyAndMove, false);

return false;
}
</script>
</head>

If something was fetched.
Split to make an array.

Loop through this array.

Split individual item.

Extract 0™ value and convert to a number.
Extract 1=t and convert to a number.
Extract 2" and convert to a number.
Extract 3" and convert to a number.

Create new Wall using the extracted and fixed
values.

Add to the walls array.

Add to the everything array.
Close the loop.

Draw everything.

Close if not null.

Was null.

No data.

Close clause.

Set up the keydown action.

Return false to prevent a refresh.

Close the function.

End the head element.

(continued)

293

CHAPTER7 MAZES

Table 7-3. (continued)

Code

Explanation

<body onLoad="init();" »

<canvas id="canvas" width="900"
height="350">

Your browser doesn't support the
HTML5 element canvas.

</canvas>

Press mouse button down, drag and
release to make a wall.

Use arrow keys to move token.

Pressing any other key will stop
key capture and allow you to save
the maze locally.

<form name="sf" onSubmit="return
savelWalls()" >

To save your maze, enter in a
name and click on the SAVE WALLS
button.

Use the names easymaze</
em>, moderatemaze, and
hardmaze for use in the
travelmaze program.

Name: <input name="slname"
value="maze name" type="text">

<input type="submit" value="SAVE
WALLS"/>

Start body; set up call to init.

Canvas tag.

Warning for certain browser.

Close canvas.
Line break.

Instructions.

Instructions and line break.

Instructions.

Form tag; set up call to saveWalls.

Instructions.

Extra instructions in the buildmaze program. These
names must match what are used in travelmaze.

Label and input field.

Submit button.

294

(continued)

Table 7-3. (continued)

CHAPTER 7

MAZES

Code

Explanation

</form>

<form name="gf" onSubmit="return
getWalls()" >

To add old walls, enter in the
name and click on the GET SAVED
WALLS button.

Name: <input name="glname"
value="maze name" type="text">

<input type="submit" value="GET
SAVED WALLS"/>

</formy
</body>
</html>

Close form.

Form tag; set up call to getWalls.

Instructions.

Label and input field.

Submit button.

Close form.
Close body
Close HTML.

Creating the Travel Maze Application

The localStorage data can be accessed by a different HTML document from the one

that created the data, as long as it is on the same server. This is a security feature, as

mentioned previously, restricting readers of local storage to scripts on the same server.

The second script is based on this feature. Table 7-4 shows the functions calling or

being called; it is a subset of the previous one.

295

CHAPTER7 MAZES

Table 7-4. Functions in the Travel Maze Script

Function Invoked By/Called By Calls
init Invoked by action of onLoad in body tag drawAll
drawAll InitstartWallstretchWallgetkeyAndMovegetiWalls draw method for

Walls and for token:
drawToken and

drawAline
Token var statement declaring mypent
Wall startWall, getWalls
drawToken drawAll using draw method for the token object in the
everything array
moveToken getKeyAndMove using the moveit method for mypent intersect

drawAline drawAll using draw method for Wall objects in the
everything array

getkeyAndMove Invoked by action of an addEventListener call in init moveToken using
the moveit method
for mypent

gethalls Invoked by action of onSubmit for the gf form drawAll, Wall

intersect moveToken

The functions are the same as in the all-in-one script with one exception, the
getWalls function, so I've commented on only the new or changed code. This
application also has radio buttons in place of the form input fields. Table 7-5 shows the
complete code for the travelmaze application.

296

Table 7-5. Complete Code for the Travel Maze Script

CHAPTER7 MAZES

Code Explanation
<html>
<head>

<title>Travel maze</title> Travel maze.

<script type="text/javascript">
var cwidth = 900;

var cheight = 700;

var ctx;

var everything = [];

var curlall;

var wallWidth

55

var wallStyle = "rgb(200,0,200)";

var walls = [];

var inMotion = false;

var unit = 10 ;
function Token(sx,sy,rad,styleString,n)
{

this.sx = sx;

this.sy = sy;

this.rad = rad;
this.draw = drawToken;
this.n = n;
this.angle = (2*Math.PI)/n
this.moveit = moveToken;

this.fillStyle = styleString;
}

(continued)

297

CHAPTER7 MAZES

Table 7-5. (continued)

Code

Explanation

function drawToken() {
ctx.fillStyle=this.fillStyle;
ctx.beginPath();
var i;
var rad = this.rad ;
ctx.beginPath();

ctx.moveTo(this.sx+rad*Math.

cos(-.5*this.angle),this.sy+rad*Math.

sin(-.5*this.angle));
for (i=1;i<this.n;i++) {

ctx.lineTo(this.sx+rad*Math.
cos((i-.5)*this.angle),this.
sy+rad*Math.sin((i-.5)*this.angle));

}
ctx.fill();

}

function moveToken(dx,dy) {
this.sx +=dx;
this.sy +=dy;
var i;
var wall;
for(i=0;i<walls.length;i++) {
wall = walls[i];

if (intersect(wall.sx,wall.sy,wall.

fx,wall.fy,this.sx,this.sy,
this.rad)) {

298

(continued)

Table 7-5. (continued)

CHAPTER7 MAZES

Code

Explanation

this.sx -=dx;

this.sy -=dy ;

break;

}
}
}

function Wall(sx,sy,fx,fy,width,
styleString) {

this.sx

SX;

this.sy = sy;
this.fx = fx;
this.fy = fy;
this.width = width;

this.draw = drawAline;

this.strokestyle = styleString;

}

function drawAline() {

ctx.
ctx.
ctx.
ctx.
ctx.

ctx.

lineWidth = this.width;
strokeStyle = this.strokestyle;
beginPath();
moveTo(this.sx,this.sy);
lineTo(this.fx,this.fy);
stroke() ;

(continued)

299

CHAPTER7 MAZES

Table 7-5. (continued)

Code Explanation

var mypent = new Token(100,100,20,
"rgb(0,0,250)",5);
everything.push(mypent);

function init(){

ctx = document.
getElementById('canvas').
getContext('2d");

window.addEventListener('keydown',
getkeyAndMove, false);

drawAll();

}

function drawAll() {
ctx.clearRect(0,0,cWidth,cHeight);
var i;

for (i=0;i<everything.length;i++) {

everything[i].draw() ;

}

}
function getKeyAndMove(event) {

var keyCode;

if(event == null)

{

keyCode = window.event.keyCode;

window.event.preventDefault();

}

(continued)

300

Table 7-5. (continued)

CHAPTER7 MAZES

Code Explanation

else

{

keyCode = event.keyCode;
event.preventDefault();

}
switch(keyCode)

{
case 37: //left arrow
mypent.moveit(-unit,0);
break ;
case 38: //up arrow
mypent.moveit(0,-unit);
break;
case 39: //right arrow
mypent.moveit(unit,0);
break;
case 40: //down arrow
mypent.moveit(0,unit);
break;
default:

window.removeEventListener('keydown',
getkeyAndMove, false);

}
drawAll();

}

(continued)

301

CHAPTER7 MAZES

Table 7-5. (continued)

Code

Explanation

function intersect(sx,sy,fx,fy,cx,cy,
rad) {

var dx;

var dy;

var t

var rt;
dx = fx-sx;
dy = fy-sy;
t =0.0-((sx-cx)*dx+(sy-cy)*dy)/
((dx*dx)+(dy*dy));
if (t<0.0) {

t=0.0; }
else if (t>1.0) {

t =1.0;

}
dx

(sx+t*(fx-sx))-cx;
dy = (sy +t*(fy-sy))-cy;
rt = (dx*dx) +(dy*dy);
if (rt<(rad*rad)) {

return true; }

else {
return false;}
}
function getWalls() {

var swalls ;

302

(continued)

CHAPTER7 MAZES

Table 7-5. (continued)

Code Explanation

var sw;
var i;

var sx;

var sy;

var fx;

var fy;

var curlall;
var lsname;

for (i=0;i<document.gf.level.
length;i++) {
if (document.gf.level[i].checked) {

lsname= document.gf.level[i].
value+"maze";

break;

}

swalls=localStorage.getItem(lsname);
if (swalls!=null) {

wallstgs = swalls.split(";");

walls = [];

everything = [];

everything.push(mypent);

Iterate through the radio buttons in the g
form, group named level.

Is this radio button checked?

If so, construct the local storage name using
the value attribute of the radio button
element.

Leave the for loop

Close if.

Close for.

Fetch this item from local storage.

If it is not null, it is good data.

Extract the string for each wall.

Remove any old walls from the walls array.

Remove any old walls from the
everything array.

Add the pentagon-shaped token called
mypent to everything.

(continued)

303

CHAPTER7 MAZES

Table 7-5. (continued)

Code Explanation
for (i=0;i<wallstgs.length;i++) { Proceed to decode each wall. The remaining

code is the same as the all-in-one
application.

sw = wallstgs[i].split("+");

sx = Number(sw[0]);

sy = Number(sw[1]);

fx = Number(sw[2]);

fy = Number(sw[3]);

curWall = new Wall(sx,sy,fx,fy,
wallWidth,wallStyle);

walls.push(curiWall);
everything.push(curiall);

}
drawAll();

}
else {
alert("No data retrieved.");

}

window.addEventListener('keydown',
getkeyAndMove, false);

return false ;
}
</script>
</head>

(continued)

304

Table 7-5. (continued)

CHAPTER7 MAZES

Code

Explanation

<body onLoad="init();" >

<canvas id="canvas" width="900"
height="700">

Your browser doesn't support the HTML5

element canvas.
</canvas>

Choose level and click GET MAZE button

to get a maze

<form name="gf" onSubmit="return
getWalls()" >

<input type="radio" value="hard"
name="level" />Hard

<input type="radio" value="moderate"
name="level" />Moderate

<input type="radio" value="easy"
name="level" />Easy

<input type="submit" value="GET
maze"/>

</form>

<p>

Use arrow keys to move token.
</p>

</body>

</html>

Set up the radio button, common level; value
hard.

Set up the radio button, common level; value
moderate.

Set up the radio button, common level; value
easy.

305

CHAPTER7 MAZES

There are a number of ways you can make this application your own.

Some applications in which the user places objects on the screen by dragging limit
the possibilities by doing what is termed snapping the endpoints to grid points, perhaps
even limiting the walls for a maze to be strictly horizontal or vertical.

The second application has two levels of user: the creator of the mazes and the
player who attempts to traverse the mazes. You may want to design very intricate mazes,
and for that you would want an editing facility. Another great addition would be a timing
feature. Look back at the timing for the memory game in Chapter 5 for ways to calculate
elapsed time.

Just as we added a video treat for the quiz show in Chapter 6, you could play a video
when someone completes a maze.

The ability to save to local storage is a powerful feature. For this, and any game or
activity that takes a fair amount of time, you may want to add the ability to save the
current state. Another common use for local storage is to save the best scores.

Do understand that I wanted to demonstrate the use of local storage for intricate
data, and these applications did do that. However, you may want to develop maze
programs using something other than local storage. To build on this application, you
need to define the sequence of starting and stopping points, four numbers in all, for
each wall, and define walls accordingly. Look ahead to the word list implemented as an
external script file in the guess-a-word game in Chapter 9.

This chapter and the previous one demonstrated events and event handling for
mouse, keys, and timing. New devices provide new events, such as shaking a phone or
using multiple touches on a screen. With the knowledge and experience you've acquired
here, you'll be able to put together many different interactive applications.

Testing and Uploading Application

The first application is complete in one HTML document, buildmazesavelocally.
html. The second application uses two files, buildmazes.html and travelmaze.html.
The buildmazesavelocally.html and buildmaze.html files are identical, except for the
titles, and buildmaze has additional instructions made with the following HTML.:

Use the names easymaze, moderatemaze, and hardmaze</
em> for use in the travelmaze program.

306

http://dx.doi.org/10.1007/978-1-4842-4155-4_5
http://dx.doi.org/10.1007/978-1-4842-4155-4_6
http://dx.doi.org/10.1007/978-1-4842-4155-4_9

CHAPTER7 MAZES

It is possible to travel a maze in all three programs. All three files are available with
the source code along with the document demonstrating local storage using Date. Please
note that travelmaze.html will not work until you create mazes and save them using
local storage on your own computer.

The two HTML documents for the two-script version work locally for modern
browsers, but must both be uploaded to the same server to test that mazes saved by the
building program on a server can be used by the traveling program on a server.

Some internet service providers may limit the use of local storage and cookies. There
are differences between these constructs. Using any of this in a production application
requires considerable work. The ultimate fallback is to store information on the server
using a language such as PHP.

If you have multiple applications open, you need to realize that “the computer,” that
is, the operating system, needs to determine which program is to handle any pushing
down on a key. The term used is focus. You may need to use the mouse to click the window
holding the maze program. This sets the focus, and then clicking the arrow keys will work.

Summary

In this chapter, you learned how to implement a program to support building a maze of
walls and to store it on the local computer. You also learned how to create a maze travel
game. We used the following programming techniques and HTMLS5 features:

e Programmer-defined objects

o Capturing key strokes; that is, setting up event handling for key
presses and deciphering which key was pressed

o localStorage for saving the layout of the walls of the maze on the
player’s computer

o tryand catch to checkif certain coding is acceptable
e The join method for arrays and the split method for strings
e Mouse events

e Mathematical calculations for determining collisions between the
token and the walls of the maze

o Radio buttons to present a choice to the player

307

CHAPTER7 MAZES

The use of local storage was fairly intricate for this application, requiring the
encoding and decoding of the maze information. A simpler use could serve for
storing the highest score or the current score on any game. You can refer to the
localstoragedate.html for a guide. You can go back to previous chapters and see if
you can incorporate this feature. Remember that localStorage is tied to the browser. In
the next chapter, you learn how to implement the rock-paper-scissors game and how to

incorporate audio in your application.

308

CHAPTER 8

Rock, Paper, Scissors

In this chapter, we cover the following:
o Playing against a computer
o Creating graphics to serve as buttons
e Arrays of arrays for game rules
o The font-family property
o Inherited style settings

e Audio

Introduction

This chapter combines programming techniques with HTMLS5 JavaScript features to
implement the familiar rock-paper-scissors game. In the schoolyard version of this game,
each player uses hand symbols to indicate one of the three possibilities: rock, paper, or
scissors. The terminology is that a player throws one of the three options. The game rules
are stated this way:

e Rock crushes scissors
o Paper covers rock
o Scissors cuts paper

So, each symbol beats one other symbol: rock beats scissors; paper beats rock; and
scissors beats paper. If both players throw the same thing, it’s a tie.

Since this is a two-player game that our player will play against the computer, we
have to create the computer’s moves. We will generate random moves, and the player
needs to trust that the program is doing this and not basing its move on what the player
threw. The presentation must reinforce this trust.

309
© Jeanine Meyer 2023

J. Meyer, The Essential Guide to HTMLS5, https://doi.org/10.1007/978-1-4842-8722-4_8

https://doi.org/10.1007/978-1-4842-8722-4_8

CHAPTER 8 ROCK, PAPER, SCISSORS

The first version of our game just uses the visuals you'll see here. The second version
adds audio: four different clips governed by the three winning events plus the tie option.
You can use either the sound files provided with the source code or your own sounds.
Note that you'll need to change the file names in the code to match any new sound files
you use.

This is a situation in which we want to use special graphics for the player moves.
Figure 8-1 shows the opening screen of the application, consisting of three graphics that
serve as buttons, as well as a field labeled with the string "Score:" that holds an initial

value of zero.

p
70

Score: 0|
Figure 8-1. The rock-paper-scissors opening screen

The player makes a move by clicking one of the symbols. Let’s look at an example
with the player clicking the rock icon. We’ll assume the computer chose scissors. After
a short animated sequence in which a scissors symbol starts small and grows on the
screen, a text message appears, as shown in Figure 8-2. In the version with added audio,
the audio clip would play a sound corresponding to a rock crushing a scissors. Notice
that the score is now 1.

310

CHAPTER 8 ROCK, PAPER, SCISSORS

You win: rock crushes scissors.

2
0

[]

g
7an-

Score: | 1‘_
Figure 8-2. The player threw rock, and the computer threw scissors

Next in the game, the player and the computer tie, as shown in Figure 8-3. There’s no
change in the score when a tie occurs, so the score is still 1.

TIE: you both threw scissors.

4
7

E
50

Score: 1

Figure 8-3. A tie

311

CHAPTER 8 ROCK, PAPER, SCISSORS

Later, the game has been even, but the player loses, and the score falls to negative 1,
meaning the player is behind, as Figure 8-4 shows.

¢

You lose: paper covers rock.

\|
J\o

Score: | -1

Figure 8-4. Later in the game, a losing move

This application, like all the examples in this book, is only a start. Both the plain and
audio versions keep a running score for the player in which a loss results in a decrease.
An alternative approach is to keep individual scores for player and computer, with only
wins counted for either side. You could display a separate count of the games played.
This is preferable if you don’t want to show negative numbers. You could also save the
player’s score using localStorage, as described in the maze game in Chapter 7.

A more elaborate enhancement might feature video clips (look back at Chapter 6)
or animated GIFs that show rock crushing scissors, paper covering rock, and scissors
cutting paper. You can also look at this as a model for many different games. In all cases,
you need to determine how to capture the player’s moves and how to generate the
computer’s moves; you need to represent and implement the rules of the game; and
you need to maintain the state of the game and display it for the player. The rock-paper-
scissors game has no state information except for the running score. Putting it another
way, a game consists of just one turn. This is in contrast to the dice game described

312

http://dx.doi.org/10.1007/978-1-4842-4155-4_7
http://dx.doi.org/10.1007/978-1-4842-4155-4_6

CHAPTER 8 ROCK, PAPER, SCISSORS

in Chapter 2, in which a game can involve one to any number of throws of the dice, or
the memory/concentration game described in Chapter 5, in which a turn consists of
two selections of cards and a completed game can take any number of turns with the
minimum equal to half the number of cards.

Note There are competitions for rock-paper-scissors and also computer systems
in which the computer makes moves based on the player’s history of moves. There
even are computer versus computer events.

Critical Requirements

The implementation of rock-paper-scissors uses many HTML5 and JavaScript constructs
demonstrated in earlier chapters, put together here in different ways. Programming is
similar to writing. It is putting the representation of ideas together in some logical order,
just like combining words into sentences and the sentences into paragraphs, and so on.
While reading this chapter, think back to what you have learned about drawing rectangles,
images, and text on the canvas, detecting where the player has clicked the mouse, setting
up a timing event using setInterval to produce animation, and using arrays to hold
information. These are the building blocks for the rock-paper-scissors application.

In planning this application, I knew I wanted our player to click buttons, one button
for each of the types of throws in the game. Once the player makes a throw, I wanted
the program to make its own move, namely, a random choice, and have a picture
corresponding to that move appear on the screen. The program would then apply the
rules of the game to display the outcome. A sound would play, corresponding to the three
possible situations in which one throw beats another, plus a groan when there was a tie.

This application starts off with what appear as buttons or icons on the screen. These
are pictures that the player can click to make their move. There is also a box for the score.

The application must generate the computer move randomly and then display it in a
way that appears as if the computer and the player are throwing their moves at the same
time. My idea for this is to have the appropriate symbol start small on the screen and
then get larger, seemingly emerging from the screen as if the computer were making its
throw toward the player. This action starts right after the player clicks one of the three
possible throws, but it is soon enough to give the impression that the two happened at

the same time.

313

http://dx.doi.org/10.1007/978-1-4842-4155-4_2
http://dx.doi.org/10.1007/978-1-4842-4155-4_5

CHAPTER 8 ROCK, PAPER, SCISSORS

The rules of the game must be obeyed! This includes both what beats what and the
folksy message displayed to explain it—“rock crushes scissors,” “paper covers rock,” and
“scissors cuts paper.” The score displayed goes up by one, down by one, or stays the same
depending on whether the turn is a win, loss, or tie.

The audio-enhanced version of the game must play one of four audio clips

depending on the situation.

HTML5, CSS, and JavaScript Features

Now let’s take a look at the specific features of HTML5, CSS, and JavaScript that provide
what we need to implement the game. Except for basic HTML tags and functions and
variables, the explanations here are complete. If you've read the other chapters, you'll
notice that much of this chapter repeats explanations given previously.

We certainly could have used the types of buttons demonstrated in the other
chapters, but I wanted these buttons to look like the throws they represent. As you’ll
see, the way we implement the buttons is built on the concepts demonstrated in prior
chapters. And we again use JavaScript pseudorandom processing for defining the
computer move, and setInterval for animating the display of the computer move.

Our rock-paper-scissors game will demonstrate HTML5's native audio facility. This
means the browser supports audio just using the features of HTML5 and JavaScript. We
will integrate coding for audio with applying the rules of the game.

Providing Graphical Buttons for the Player

There are two aspects to producing clickable buttons or icons on the screen: drawing
the graphics on the canvas and detecting when the player has moved the mouse over a
button and clicked the primary mouse button.

The buttons or icons we’ll produce consist of the outline (stroke) of a rectangle, a
solid rectangle, and then an image on top of the rectangle with a vertical and horizontal
margin. Since the similar operations will occur for all three buttons, we can use the
approach first introduced in the cannonball and slingshot games in Chapter 4. We
will set up a programmer-defined class of objects by writing a function named Throw.
Recall that objects consist of data and coding grouped together. The function, described

314

http://dx.doi.org/10.1007/978-1-4842-4155-4_4

CHAPTER 8 ROCK, PAPER, SCISSORS

as a constructor function, will be used with the operator new to create a new object of
type Throw. The term this is used within the function to set the values associated with
each object.

function Throw(sx,sy, sMargin,sWidth,sHeight,rectColor,picture) {
this.sx = sx;

this.sy = sy;

this.sWidth = sWidth;

this.bWidth = sWidth + 2*sMargin;

this.bHeight = sHeight + 2*sMargin;

this.sHeight = sHeight;

this.fillStyle = rectColor;

this.draw = drawThrow;

this.img = new Image();

this.img.src = picture;
this.sMargin

sMargin;

The parameters of the function hold all the information. The selection of names
sX, sy, and so on, avoids built-in terms by making a simple modification: putting s, for
stored, in front. The location of the button is at sx, sy. The color of the rectangle is
represented by rectColor. The file name for the image is held by picture. What we can
think of as the inner and outer widths and the inner and outer heights are calculated
based on the inputs sMargin, sHeight, and sWidth. The b in bHeight and bWidth
stands for big. The s stands for small and stored. Don't get too hung up on the proper
name—there is no such thing. The names are up to you, and if a name works, meaning
you remember it, it works. (A name having meaning for you is more important than size:
don’t try to make function and variable names short to save on typing.)

The img attribute of a Throw object is an Image object. The src of that Image object is
what points to the file name that was passed to the function in the picture parameter.

Notice that the attribute this.draw is set to be drawThrow. This sets up the drawThrow
function to be used as the draw method for all objects of type Throw. The coding is more
general than it needs to be: each of the three graphics has the same margin and width
and height. However, there’s no harm in making the coding general, and if you want to
build on this application to make one in which objects representing the player’s choices
are more complex, much of this code would work.

315

CHAPTER 8 ROCK, PAPER, SCISSORS

Tip Don’t worry when writing programs if you have code such as this.draw

= drawThrow; and you haven’t written the drawThrow function yet. You will.
Sometimes it is impossible to avoid referencing a function or variable before it
has been created. The critical factor is that all this coding is done before you try to
execute the program.

Here’s the drawThrow method:

function drawThrow() {
ctx.strokeStyle = "rgb(0,0,0)";
ctx.strokeRect(this.sx,this.sy,this.bWidth,this.bHeight);
ctx.fillStyle = this.fillstyle;
ctx.fillRect(this.sx,this.sy,this.bWidth,this.bHeight);
ctx.drawImage(this.img,this.sx+this.sMargin,this.sy+this.sMargin,
this.sWidth,this.sHeight);

As promised, this draws an outline of a rectangle using black for the color
rgb(0,0,0). Recall that ctx is the variable set with the property of the canvas element
that is used for drawing. Black is actually the default color, making this line unnecessary.
However, we'll put it in just in case you reuse this code in an application where the color
has been changed previously. Next, the function draws a filled-in rectangle using the
rectColor passed in for this particular object. Lastly, the code draws an image on top of
the rectangle, offset by the margin amount horizontally and vertically. The bWwidth and
bHeight are calculated to be bigger than the sWidth and sHeight, respectively, by twice
the sMargin value. This in effect centers the image inside the rectangle.

The three buttons are created as Throw objects through the use of var statements, in
which the variable is initialized using the new operator and a call to the Throw constructor
function. To make this work, we need pictures of rock, paper, and scissors, which I've
acquired by a variety of means. The three image files are located in the same folder as the
HTML file.

var rockb = new Throw(rockbx,rockby,8,50,50,"rgh(250,0,0)", " "rock.jpg");
var paperb = new Throw(paperbx,paperby,8,50,50,"rgh(0,200,200)","paper.gif");
var scib = new Throw(scissorsbx,scissorsby,8,50,50,"rgh(0,0,200)",

"scissors.jpg");

316

CHAPTER 8 ROCK, PAPER, SCISSORS

As in our previous applications, an array named everything is declared and
initialized to the empty array. We push all three variables onto the everything array so
we can treat them systematically.

everything.push(rockb);
everything.push(paperb);
everything.push(scib);

For example, to draw all the buttons, we use a function called drawAll that iterates
over the elements in the everything array.

function drawAll() {
ctx.clearRect(0,0,chWidth,cHeight);
var i;

for (i=0;i<everything.length;i++) {
everything[i].draw();

}

}

Again, this is more general than required, but it’s useful, especially when it comes to
object-oriented programming, to keep things as general as possible.

But how do we make these graphics act as clickable buttons? Because these are
drawn on the canvas, the code needs to set up the click event handling for the whole
canvas and then use coding to check which, if any, button was clicked.

In the slingshot game described in Chapter 4, you saw code in which the function
handling the mousedown event for the whole canvas made a calculation to see if the
mouse cursor was on the ball. In the quiz show described in Chapter 6, we set up
event handling for each country and capital block. The built-in JavaScript mechanism
indicated which object had received, so to speak, the click event. This application is like
the slingshot.

We set up the event handling in the init function, explained in full in the next
section. The task is to get JavaScript to listen for the mouse click event and then do
what we specify when the click happens. What we want is for the function choose to be
invoked. The following two lines accomplish this task:

canvasl = document.getElementById('canvas');
canvasl.addEventListener('click',choose,false);

317

http://dx.doi.org/10.1007/978-1-4842-4155-4_4
http://dx.doi.org/10.1007/978-1-4842-4155-4_6

CHAPTER 8 ROCK, PAPER, SCISSORS

Tip Our code needs to distinguish between the element with the id canvas and
the property of this element returned by getContext('2d"). That's just the way
the HTMLS5 folks decided to do it. It is not something you could have deduced on
your own.

The choose function has the tasks of determining which type of throw was selected,
generating the computer move and setting up the display of that move, and applying the
rules of the game. Right now, we’re just going to look at the code that determines what
button has been clicked.

In my implementation, I did not provide for any pesky player clicking one of the
choices while the computer move was emerging, that is, getting bigger and bigger on the
screen. My able first technical reviewer, who knows how to act like a misbehaving player,
came up with the solution. We use a global variable, called inMotion, and initialize it to
be false.

var inMotion = false;

The choose function does nothing if inMotion is true. The variable is set to true
in the flyin function and also set back to false when the animation is determined to
be done.

The code starts by obtaining the coordinates of the mouse from the ev variable
holding the event information. You have seen this in previous chapters:

function choose(ev) {
if (!'inMotion) {

var mx;

var my;

mx = ev.pageX;

my = ev.pageY;

The next section of code iterates through the elements of everything (there are
three elements, but that’s not mentioned explicitly) to see if the cursor is on any of the
rectangles. The variable ch holds a reference to a Throw and so all the Throw attributes,
namely, sx, sy, bWidth, and bHeight, can be used in the compare statements. This is
shorthand for all the choices of throws held in the everything array.

318

CHAPTER 8 ROCK, PAPER, SCISSORS

var i;
for (i=0;i<everything.length;i++){

var ch = everything[i];

if ((mx>ch.sx)8&&(mx<ch.sx+ch.bWidth)&&
(my>ch.sy)8&(my<ch.sy+ch.bHeight)) {

break;

}
}

The <. ..> indicates coding to be explained later. The compound condition
compares the point mx, my with the left side, right side, top, and bottom of the outer
rectangle of each of the three objects representing possible throws by the player. Each
of these four conditions must be true for the point to be within the rectangle. This is
indicated by the && operator. Though long, this is a standard way to check for points
inside rectangles, and you will become accustomed to using it.

So that’s how the graphics are drawn on the canvas and how they serve as buttons.
Notice that if the player clicks outside of any button, nothing happens. Some people
might recommend providing feedback to the player at this point, such as an alert box
saying the following:

Please make your move by clicking on the rock, paper, or scissors!

Others would tell you to avoid cluttering on the screen and assume that the player
will figure out what to do.

Generating the Computer Move

Generating the computer move is similar to generating a throw of the dice, as we did in
the dice game in Chapter 2. In the rock-paper-scissors game, we want a random selection
from three possible throws instead of six possible die faces. We get that number with

this line:

var compch = Math.floor(Math.random()*3);

The call to the built-in method Math.random() produces a number from zero up
to, but not including, 1. Multiplying this by 3 produces a number from 0 up to, but not
including, 3. Applying Math.floor produces a whole number not larger than its argument.

319

http://dx.doi.org/10.1007/978-1-4842-4155-4_2

CHAPTER 8 ROCK, PAPER, SCISSORS

It rounds the number down, knocking off any values over the highest integer floor.
Therefore, the expression on the right produces 0, 1, or 2, which is exactly what we want.
This value is assigned to compch, which is declared (set up) as a variable.

The code takes the computer move, one of the numbers 0, 1, or 2 chosen by the
calculation involving the random function, and uses it as an index for the choices array:

var choices = ["rock.jpg","paper.gif","scissors.jpg"];

These three elements refer to the same three pictures used in the buttons.

At this point, just in case you were concerned, the ordering of rock, paper, scissors
is arbitrary. We need to be consistent, but the ordering does not matter. If, at every
instance, we made the ordering paper, scissors, rock, everything would still work. The
player never sees the encoding of 0 for rock, 1 for paper, and 2 for scissors.

The next lines in the choose function extract one of the file names and assign it to the
src attribute of an Image variable compimg.

var compchn = choices[compch];
compimg.src

compchn;

The name of the local variable, compchn, stands for computer choice name. The
compimg variable is a global variable holding an Image object. The code sets its src
property to the name of the appropriate image file, which will be used to display the
computer move.

To implement the rules of the game, I set up two arrays:

var beats = [
["TIE: you both threw rock.","You win: paper covers rock.",
"You lose: rock crushes scissors."],
["You lose: paper covers rock.","TIE: you both threw paper.”,
"You win: scissors cuts paper."],

["You win: rock crushes scissors.”,"You lose: scissors cuts paper.”,
"TIE: you both threw scissors"]];

320

CHAPTER 8 ROCK, PAPER, SCISSORS
And:

var points = [
[0)1)'1]:
['1:0)1])
[1)'1)01];

Each of these is an array of arrays. The two arrays together are called parallel
structures, meaning the elements correspond to each other. When I explain the addition
of sounds, I will describe another parallel structures, a third array of arrays. The beats
array holds all the messages, and the points array holds the amount to add to the score
of the player. Adding 1 increases the player’s score. Adding a -1 decreases the player’s
score by 1, which is the effect we want when the player loses a round. Adding 0 leaves
the score as is. Now, you may think that it would be easier to do nothing in the case of
ties rather than add zero, but handling this in a uniform way is the easier approach in
terms of coding, and adding 0 may actually take less time than doing an if test to see if it
was a tie.

The first index into each array will come from the computer move, compch, and the
second index, i, indicating the element in the inner array, will come from the player
move. The beats and points arrays are called parallel structures. The beats array is for
the text message, and the points array is for the scoring. Let’s check that the information
is correct by picking a computer move, say scissors, which corresponds to 2, and picking
a player move, say rock, which corresponds to 0. In the beats array, the value for the
computer move tells us to go to the array with index value 2. (I am avoiding saying the
second array, since arrays start with index 0, not with 1. The value indicated by 2 is the
third element of the array.) The element is as follows:

["You win: rock crushes scissors.","You lose: scissors cuts paper.”,
"TIE: you both threw scissors"]];

Now use the player value, namely, 0, to index this array. The result is "You win:
rock crushes scissors.", and this is exactly what we want. Doing the same thing with
the points array, the element with index 2 is as follows:

[1:'1)0]

321

CHAPTER 8 ROCK, PAPER, SCISSORS

and the value with index 0 into this array is 1, also exactly what we want: the player’s
score will be adjusted by 1.

result = beats[compch][i];

newScore +=points[compch][i];
Recall that the operator += in a statement
a += b;
is interpreted as follows:
Get the value of the variable a
Apply the + operator to this value and the value of the expression b
Assign the result back to the variable a

The second step is written in a general way since this could apply to + interpreted as
addition of numbers as well as concatenation of strings. In this particular situation, the
second step is as follows:

Addaandb

This result gets assigned back to the variable a.

The two variables, result and newScore, are global variables. This means they
are available to other functions and this is how we use them: set in one function and
referenced for use in another.

The score is presented using a form element in the body element of the HTML
document.

<form name="f">
Score: <input name="score" value="0" size="3"/>
</form>

Just to show you how these things are done, we'll use styles for the score field. We set
up two styles, one for the form and one for the input field.

form {

color: blue;

font-family: Georgia, "Times New Roman", Times, serif;
font-size:16px;

322

CHAPTER 8 ROCK, PAPER, SCISSORS

}

input {
text-align:right;
font:inherit;
color:inherit;

}

We set the color for the text in the form to blue and specified the font using the font-
family property. This is a way to specify a particular font and backups if that font doesn’t
exist on the client computer. This is a powerful feature because it means you can be as
specific as you want in terms of fonts and, with work, still make sure that everyone can
read the material.

Tip You can research online for web-safe fonts to see which fonts are widely
available. Then you can pick your favorite font for the first choice, pick one of the
web-safe fonts for the second, and make the last choice either serif or sans-serif.

You can even specify more than three choices if you want. Check out http://
en.wikipedia.org/wiki/Web typography for ideas. Another option is to acquire
a font and put the file on your server and use the CSS @font-face rule to download it
with the other files (see https://www.w3schools.com/css/css3_fonts.asp).

In this style, we specify the font named Georgia, then "Times New Roman", then
Times, and then whatever the standard font with serifs is on the computer. Serifs are the
little extra flags on letters. The quotation marks around Times New Roman are necessary
because the name involves multiple terms. Quotation marks wouldn’t be wrong around
the other font names, but they aren’t necessary. We also specify the size as 16 pixels.
The input field inherits the font, including size, and the color from the form element,
its parent. However, because the score is a number, we use the text-align property to
indicate right alignment in the field. The label Score is in the form element. The actual
score is in the input element. Using the inherit setting for the input style properties
makes the two display in the same font, size, and color.

The value in the input field will be extracted and set using its name, score.

For example,

newScore = Number(document.f.score.value);

323

http://en.wikipedia.org/wiki/Web_typography
http://en.wikipedia.org/wiki/Web_typography
https://www.w3schools.com/css/css3_fonts.asp

CHAPTER 8 ROCK, PAPER, SCISSORS

Number is required here to produce the number represented by the text in the
field; that is 0 as opposed to “0” (the character). If we left the value as a string and the
code used a plus sign to add 1 to a string, this would not be addition; it would instead
be the concatenation of strings. (This is termed operator overloading, by the way: the
plus sign indicates different operations depending on the data type of the operands.)
Concatenating a “1” onto a “0” would yield “01.” You might think this is okay, but the next
time around, we would get “011” or “010” or “01-1.” Ugh. We don’t want that, so we write
the code to make sure the value is converted to a number.

To place an adjusted new score back into the field, the code is

document.f.score.value = String(newScore);

Now, as I frequently tell my students, I am compelled to tell you the truth. In fact,
String may not be necessary here. JavaScript sometimes does these conversions, also
termed casts, automatically. However, sometimes it doesn’t, so it is good practice to
make it explicit.

The size of the field is the maximum required for three characters. The Georgia font
is not a monospace font—all characters are not the same size—so this is the largest
space that might be necessary. You might notice different amounts of space left over
depending on the text in the field.

Note JavaScript uses parentheses, curly brackets, and square brackets. They
are not interchangeable. The parentheses are used in function headers and in
function and method calls; in if, for, switch, and while statement headers;
and for specifying the order of operations in complex expressions. The curly
brackets are used to delimit the definition of functions and the clauses of if, for,
switch, and while statements. The square brackets are used to define arrays
and to return specific members of arrays. The language of Cascading Style Sheets
puts curly brackets around each style. HTML markup includes < and >, often called
pointy brackets or angle brackets.

324

CHAPTER 8 ROCK, PAPER, SCISSORS

Displaying Results Using Animation

You've seen examples of animation in the bouncing ball application in Chapter 3 and the
cannonball and slingshot in Chapter 4. To recap, animation is produced by displaying

a sequence of still pictures in quick succession. The individual pictures are called
frames. In what is called computed animation, new positions for objects on the screen
are calculated for each successive frame. One way to produce animation is to use the
setInterval command to set up an interval event, like so:

tid = setInterval(flyin,100);

This causes the flyin function to be invoked every 100 milliseconds (10 times per
second). The variable tid, for timer identifier, is set so the code can turn the interval
event off. The flyin function will create Throw objects of increasing size holding the
appropriate image. When an object reaches a designated size, the code displays the
result and adjusts the score. This is why the variables result and newScore must be
global variables—they are set in choose and used in flyin.

The flyin function also uses a global variable named size that starts off at 15 and is
incremented by 5 each time flyin is invoked. When size exceeds 50, the timing event is
stopped, the result message displayed, and the score changed.

function flyin() {
inMotion = true;
ctx.drawImage(compimg, 70,100,size,size);
size +=5;
if (size»>50) {
clearInterval(tid);
ctx.fillText(result,200,100,250);
document.f.score.value = String(newScore);
inMotion = false;
}
}

Notice that the flyin function sets inMotion to be true each time it is invoked,
which means that inMotion is set to true when it already is true. This is fine and is the
way to do it. It does not make sense to do any checking. Notice that it is set to false just
one time.

325

http://dx.doi.org/10.1007/978-1-4842-4155-4_3
http://dx.doi.org/10.1007/978-1-4842-4155-4_4

CHAPTER 8 ROCK, PAPER, SCISSORS

By the way, I had to modify the code to grab these screenshots. Figure 8-5 is the
screen after the very first invocation of flyin.

@

8l ¢

Score: El

Figure 8-5. First call of flyin, with a tiny image representing the computer move

After a different modification of the code, Figure 8-6 shows the animation halted at a
later step.

326

CHAPTER 8 ROCK, PAPER, SCISSORS

m
0

Score: El

Figure 8-6. A step further in the animation

Figure 8-7 shows the animation completed, but just before the text messages with
the results.

327

CHAPTER 8 ROCK, PAPER, SCISSORS

Figure 8-7. Just before text displayed on results

Now, here’s a confession that should be informative. You may need to skip ahead or
wait until you read through all the code to appreciate it. When I created this application
the first time, I had the code for displaying the message and adjusting the score in the
choose function. After all, that’s where the code determined the values. However, this
had a very bad effect. The player saw the results before seeing the computer move
emerge out of the screen in the animation. It looked like the game was fixed! When
I realized what the problem was, I changed the code in choose to store the message
and the new score values in global variables and display only the message and set the
updated score in the form input field after the animation was complete. Don’t assume
you can know everything about your application before you start. Do assume you will
find problems and be able to resolve them. Companies have whole groups devoted
solely to quality assurance. I will refrain from mentioning any names, but there are
professional, commercial games that display some of the results of computer moves
prematurely.

328

CHAPTER 8 ROCK, PAPER, SCISSORS

Audio and DOM Processing

The situation with audio is quite similar to the one with video (see Chapter 6). Again,
the bad news is that browsers don'’t all recognize the same formats. And again, the good
news is that HTMLS5 provides the <audio> element, and JavaScript supplies features for
playing audio along with ways of referencing different formats for the audio accepted by
the different browsers. Moreover, tools are available for converting from one format to
another. The two formats I use for these examples are MP3 and OGG, which appear to be
sufficient for Chrome, Firefox, and Safari. I used free sources for audio clips and found
acceptable samples in WAV and MP3. I then used the Miro converter I had downloaded
previously for working with video to produce MP3 and OGG for the WAV file and OGG
for the others. The Miro name for the OGG was theor.ogv, and I changed it just to keep
things simple. Many alternatives exist for doing audio conversions. The main point here
is that this approach requires two versions of each sound file.

Caution The order of the audio file references should not be important, but |
found warnings that Firefox will not work if MP3 is listed first. That is, it won’t go
on to try and work with another file. | do not work with Firefox now, but consider
this a warning. This problem may have gone away by now, as browsers work to be
more robust in handling media.

The <audio> element has attributes I didn’t use in the rock-paper-scissors game.
The autoplay attribute starts playing immediately on loading, though you do need to
remember that with large files, loading is not instantaneous. The src attribute specifies
the source. However, good practice is to not use the src attribute in the <audio> tag,
but to specify multiple sources using the <source> element as a child of the <audio>
element. The loop attribute specifies looping, that is, repeating the clip. The controls
attribute puts controls on the screen. This may be a good thing to do because the clips
can be very loud. To make the audio a surprise, though, and to not add clutter to the
visual presentation, I chose not to do this.

Here’s a simple example for you to try. You will need to download sword.mp3 from
the book’s download page or find your own audio file and reference it by name here. If
you open the following HTML in Chrome, you'll see what’s shown in Figure 8-8.

329

http://dx.doi.org/10.1007/978-1-4842-4155-4_6

CHAPTER 8 ROCK, PAPER, SCISSORS

Audio example

<audio src="sword.mp3" autoplay controls>
Your browser doesn't recognize audio
</audio>

Audio example

1! [00:00 @
Figure 8-8. Audio tag with controls

Remember, for our game, we will play audio for the rock crushing the scissors, the
paper covering the rock, the scissors cutting the paper, and a sigh for any tie. Here is the
coding for the four audio clips in rock-paper-scissors:

<audio preload= "auto">
<source src="hithard.ogg" />
<source src="hithard.mp3" />
</audio>

<audio preload= "auto">
<source src="inhale.ogg" />
<source src="inhale.mp3" />
</audio>

<audio preload= "auto">
<source src="sword.ogg" />
<source src="sword.mp3" />
</audio>

<audio preload= "auto"r>
<source src="crowdohh.ogg" />
<source src="crowdohh.mp3" />
</audio>

This should appear reasonable for describing four sets of audio files, but you may be
wondering how the code knows which one to play. We could insert id attributes in each
<audio> tag. However, let’s do something else instead to demonstrate more JavaScript

330

CHAPTER 8 ROCK, PAPER, SCISSORS

that’s useful in many situations. You have seen the method document.getElementById
There is a similar method: document.getElementsByTagname. The line:

musicElements = document.getElementsByTagName("audio");

extracts all elements of the tag name indicated by the parameter and creates an array,
which, in this line of code, assigns the array to a variable named musicElements. We
use this line in the init function so it’s performed at the very start of the application.
We construct another array of arrays, this one called music, and add two more global
variables, for a total of three global variables for handling sounds.

var music = [
[3:1)01:
[1,3,2],
[0,2,3]];

var musicElements;

var musicch;

You can check that music and beats are parallel structures with 0 standing for rock
crushing scissors, 1 for paper covering rock, 2 for scissors cutting paper, and 3 for a tie.
The choose function will have this extra line:

musicch = music[compch][i];

The musicch variable—the name stands for choice for music—will hold 0, 1, 2, or 3.
This sets up something to happen in the flyin function when the animation is complete.
We don't play the clip immediately, as explained in my confession.

musicelEments[musicch].play();

The zeroth, first, second, or third element in musicElements is referenced by the
indexing using musicch; then its play method is invoked, and the clip is played.

Starting Off

The application starts by setting up a call to a function in the onLoad attribute of the <body>
tag. This has been the practice in the other games. The init function performs several
tasks. It sets the initial score value to 0. This is necessary just in case the player reloads

the document; it is a quirk of HTML that form data may not be reset by the browser.

331

CHAPTER 8 ROCK, PAPER, SCISSORS

The function extracts values from the canvas element to be used for drawing (ctx) and
for the event handling (canvas1). This needs to happen after the whole document is
loaded because until then the canvas element does not exist. The function draws the
three buttons and sets up the font for the text drawn on the canvas and the fill style. After
that, nothing happens unless and until the player clicks the mouse button over one of
the three symbols.

Now that we’ve examined the specific features of HTML5 and JavaScript used for this
game, along with some programming techniques, such as the use of arrays of arrays, let’s
take a closer look at the code.

Building the Application and Making It Your Own

The basic rock-paper-scissors applications use styles, global variables, six functions,
and HTML markup. The six functions are described in Table 8-1. I follow the convention
that functions start with lowercase letters unless the function is a constructor for a
programmer-defined object. I present the basic application first and then show the
modifications necessary to add audio.

Table 8-1. Functions in the Basic Rock-Paper-Scissors Application

Function Invoked/Called By Calls
init Invoked by action of the onLoad in the <body> drawAll
tag
drawAll init, choose Invokes the draw method of each

object, which in this application is
always in the function drawThrow

Throw var statements for global variables

drawThrow drawAll using the draw method of the Throw

objects

choose Invoked by action of addEventListener call drawAll
ininit

flyin Action of setInterval in choose

332

CHAPTER 8 ROCK, PAPER, SCISSORS

As you can see from the table, most of the invocation of functions is done implicitly—

by event handling, for example—as opposed to one function invoking another. After the

init function does the setup, the main work is performed by the choose function. The

critical information for the rules of the games is held in the two arrays of arrays.

Table 8-2 shows the code for the basic application, with comments for each line.

Table 8-2. Complete Code for the Basic Rock-Paper-Scissors Application

Code Explanation
<html> Starting html tag.
<head> Starting head tag.

<title>Rock Paper Scissors</title>
<style>

form {

color: blue;

font-family: Georgia, "Times New
Roman", Times, serif;

font-size:16px;

}
input {

text-align:right;

font:inherit ;

color:inherit;

Complete title element.
Starting style section.

Style specified for all form elements. There is
just one in this document.

Color of text set to blue, one of the 16 colors
known by name.

Set up the fonts to try to use.

Set size of characters.
Close style.

Style specified for all input elements. There is
just one.

Make the text align to the right, appropriate for
numbers.

Inherit any font information from parent,
namely, form.

Inherit color of text from parent, namely, form.

Close style.

(continued)

333

CHAPTER 8 ROCK, PAPER, SCISSORS

Table 8-2. (continued)

Code Explanation
</style> Close the style element.
<script > Start the script element.

var cWidth = 600;

var cHeight = 400;

var ctx;

var everything = [];
var rockbx = 50;

var rockby = 300;

var paperbx = 150;
var paperby = 300;
var scissorsbx = 250;
var scissorsby = 300;
var canvasil;

var newScore;

var size = 15;

var result;

var choices = ["rock.jpg","paper.
gif","scissors.jpg"];
var compimg = new Image();

var beats = [

["TIE: you both threw rock","You
win: computer played rock","You

lose: computer threw rock"],

Canvas width, used for clearing.
Canvas height, used for clearing.
Canvas ctx, used for all drawing.
Holds the three graphics.

Horizontal position of rock symbol.
Vertical position of rock symbol.
Horizontal position of paper symbol.
Vertical position of paper symbol.
Horizontal position of scissors symbol.
Vertical position of scissors symbol.

Reference for setting up click event listening
for canvas.

Value to be set for new score.

Initial size for changing image for computer
move.

Value to be displayed as result message.

Names for symbol images.

Image element used for each computer move.

Start of declaration of array holding all the
messages.

The set of messages when the computer
throws rock.

334

(continued)

Table 8-2. (continued)

CHAPTER 8 ROCK, PAPER, SCISSORS

Code

Explanation

["You lose: computer threw

paper","TIE: you both threw

paper","You win: computer threw
paper"],

["You win: computer threw

scissors”,"You lose: computer
threw scissors","TIE: you both

threw scissors"]];

var points = [

[0)1)'1])

['1)0)1]:

[1)'1)0]];

Var inMotion = false;

function Throw(sx,sy, sMargin,
sWidth, sHeight,rectColor,picture) {

this.sx

SX;

this.sy

SYs
this.sWidth = sWidth;

The set of messages when the computer
throws paper.

The set of messages when the computer
throws scissors.

Start of declaration of array holding the
increments for the score: 0 for a tie, 1 for the
player winning, -1 for the player losing.

The set of increments when the computer
throws rock.

The set of increments when the computer
throws paper.

The set of increments when the computer
throws scissors.

Used to prevent response to a player making a
move while computer move is emerging.

Header for constructor function to be used for
the three game symbols. Parameters include

x and y coordinates, margin, inner width and
height, color for the rectangle, and the picture
file.

Assign the sx attribute.

Assign the sy attribute.

Assign the sWidth attribute.

(continued)

335

CHAPTER 8 ROCK, PAPER, SCISSORS

Table 8-2. (continued)

Code Explanation

this.bWidth = sWidth + 2*sMargin; Calculate and assign the outer width. This is
the inner width plus two times the margin.

this.bHeight = sHeight + 2*sMargin; Calculate and assign the outer height. This is
the inner height plus two times the margin.

this.sHeight = sHeight; Assign the sHeight attribute.

this.fillStyle = rectColor; Assign the fillstyle attribute.

this.draw = drawThrow; Assign the draw method to be drawThrow

this.img = new Image();
this.img.src = picture;
this.sMargin = sMargin;
}

function drawThrow() {
ctx.strokeStyle = "rgh(0,0,0)";

ctx.strokeRect(this.sx,this.sy,this.
bWidth, this.bHeight);
ctx.fillStyle = this.fillStyle;

ctx.fillRect(this.sx,this.sy,this.
bWidth,this.bHeight);

ctx.drawImage(this.img,this.sx+this.
sMargin,this.sy+this.sMargin,this.
sWidth,this.sHeight);

}

function choose(ev) {

If (!inMotion) {

Create a new Image object.
Set its src to be the picture file.

Assign the sMargin attribute. It is still needed
for drawing.

Close the function.
Header for function to draw the symbols.
Set the style for the rectangle outline to black.

Draw the rectangle outline.

Set the style for the filled rectangle.

Draw the rectangle.

Draw the image offset inside the rectangle.

Close the function.
Header for function called upon a click event.

Respond only if computer move is not
emerging (in motion).

336

(continued)

Table 8-2. (continued)

CHAPTER 8 ROCK, PAPER, SCISSORS

Code

Explanation

var compch = Math.floor (Math.
random()*3);

var compchn

choices[compch];

compimg.src

compchn;

var mx;
var my;
mx= ev.pageX;
my = ev.pageyY;
var i;

for (i=0;i<everything.length;i++){

var ch = everything[i];

if ((mx>ch.sx)&8&(mx<ch.sx+ch .
bWidth)&&(my>ch.sy)8&(my<ch.
sy+ch.bHeight)) {

drawAll();

size = 15;
tid = setInterval (flyin,100);

result = beats [compch][i];

Generate computer move based on random
processing.

Pick out the image file.

Set the src of the already created Image
object.

Used for mouse x.

Used for mouse y.

Set mx.

Set my.

Used for indexing over the different symbols.

for header for indexing over the elements
in the everything array, namely the three
symbols.

Get the ith element.

Check if the mx, my position is within the
bounds (the outer rectangle bounds) for this
symbol.

If so, invoke the drawAl1 function, which will
erase everything and then draw everything in
the everything array.

Initial size of computer-move image.
Set up timed event.

Set the result message. See the section after
the table for the addition for audio.

(continued)

337

CHAPTER 8 ROCK, PAPER, SCISSORS

Table 8-2. (continued)

Code

Explanation

newScore = Number(document.

f.score.value);

newScore += points[compch][i];

break;

}

}

}
function flyin() {

InMotion = true;

ctx.drawImage(compimg,
70,100,size,size);

size +=5;

if (size>50) {

clearInterval(tid);

ctx.fillText(result,
200,100,250);

document.f.score.value =
String(newScore);

inMotion = false;

}

Get the current score, converted to a number.

Add the adjustment and save to be displayed
later.

Leave the for loop.

End the if clause.

End the for loop.

End true class for inMotion being false.
End the function.

Header for the function handling the timed
interval event.

Computer move emerging. This is set to true
multiple times.

Draw the computer-move image on the screen at
the indicated place and with dimensions indicated.

Change the value of the dimensions by
incrementing size.

Use the size variable to see if the process has
gone on long enough.

Stop the timing event.

Display the message.

Display the new score. See the section after
the table for the addition for audio.

Set back to initial setting.
Close the if true clause.

Close the function.

338

(continued)

Table 8-2. (continued)

CHAPTER 8 ROCK, PAPER, SCISSORS

Code

Explanation

var rockb = new

throw(rockbx,rockby, 8,50,

50, "rgh(250,0,0)", "rock.jpg");

var paperb = new Throw(paperbx,paper

by, 8,50,50, "rgb(0,200,200)",

"paper.gif");

var scib = new Throw(scissorsbx,

scissorsby,8,50,50, "rgh(0,0,200)",

"scissors.jpg");
everything.push(rockb);

everything.push(paperb);

everything.push(scib);

function init(){

document.f.score.value = "0";

ctx = document.
getElementById ('canvas').
getContext('2d");

canvasl = document.
getElementById ('canvas');

canvasi.addEvent
Listener ('click',choose,false);

drawAll();

Create the rock object.

Create the paper object.

Create the scissors object.

Add the rock object to the everything array.

Add the paper object to the everything
array.

Add the scissors object to the everything
array.

Header for function called on load of the
document.

Set score to zero. | also could use

...= String(0);

(and it actually isn’t necessary since
JavaScript will convert a number to a string in
this situation).

Set the variable to be used for all drawing.

Set the variable to be used for the mouse click
event handling.

Set up click event handling.

Draw everything.

(continued)

339

CHAPTER 8 ROCK, PAPER, SCISSORS

Table 8-2. (continued)

Code

Explanation

ctx.font="bold 16pt Georgia";

ctx.fillStyle = "blue";

}
function drawAll() {

ctx.clearRect(0,0,cWidth,cHeight);

var i;

for (i=0;i<everything.length;i++) {

everything[i].draw();
}
}

</script>
</head>

<body onlLoad="init();">

<canvas id="canvas" width="600"
height="400">

Your browser doesn't support the HTML5

element canvas.
</canvas>

<form name="f">

Score: <input name="score" value="0"
size="3"/>

</formy
</body>
</html>

Set the font to be used for the result
messages.

Set the color.
Close the function.

Header for the function.
Clear the canvas.
Variable for indexing.

lterate through the everything array.
Draw the individual elements.
Close the for loop.
Close the function.

Close the script element.
Close the head element.

Starting body tag. Set up call to the init
function.

Starting canvas tag.

Message for noncompliant browsers.

Closing tag.
Line break.
Starting tag for form, giving form a name.

Label and then input field, with initial value and
size.

Closing tag for form.
Closing tag for body.
Closing tag for HTML document.

340

The audio enhanced version required three more global variables along with
additions in the init, choose, and flyin functions. The new global variables are

var music = [
[3,1,0],
[1,3,2],
[0,2,3]];

var musicelements;

var musicch;

The init function needs the following statement:
musicElements = document.getElementsByTagName("audio");

The document method getElementsByTagName produces an array of all the audio
elements in the document, which is exactly what we need for musicelements.
Here is the clause in the choose function with the new line highlighted:

if ((mx>ch.sx)8&&(mx<ch.sx+ch.bWidth)&&(my>ch.sy)&&(my<ch.sy+ch.bHeight)) {
drawAll();

size = 15;

tid = setInterval(flyin,100);

result = beats[compch][i];

musicch = music[compch][i];

newScore = Number(document.f.score.value);

newScore +=points[compch][i];

break;

Similarly, here’s the complete flyin function with the new line in bold:

function flyin() {
inMotion = true;
ctx.drawImage(compimg, 70,100,size,size);
size +=5;
if (size>50) {
clearInterval(tid);
ctx.fillText(result,200,100,250);
document.f.score.value = String(newScore);

CHAPTER 8 ROCK, PAPER, SCISSORS

musicelements[musicch].play();
inMotion = false;

}

}

Adding the audio enhancement, like adding video, provides an exercise in examining
just what needs to be changed and what remains the same. It certainly makes sense to
develop a basic application first.

My idea was to make sounds for the four results. You could also have applause for
any player win, booing for any player loss, and something in between for the ties.

Some people like to include additional possible moves, with funny remarks
describing what beats what, or even replacing rock, paper, and scissors with three
or more other possibilities. A few students of mine have produced this game using a
different language, such as Spanish. The more challenging task is to make the application
multilingual in a systematic way, by isolating the spoken language components. One
approach would involve changing the beats array to an array of arrays of arrays, with
the first index corresponding to the language. The label in the markup that holds the
word Score also would need to change, which you could accomplish by making it an
input field and using CSS to remove its border. Preparing applications for what is termed
localization has emerged as an important area of development for the Web.

Testing and Uploading the Application

You need to create or acquire (a polite term for finding something and copying the file

to your computer—please respect intellectual property!) the three images to represent
rock, paper, and scissors. If you decide to enhance the application by adding sounds,
you need to produce or find appropriate audio clips; convert, if necessary, the files to the
two common formats; and upload all the sounds: this is four files times two formats for a
total of eight files.

Because this application involves a random element, make a concerted effort to do
all the testing. You want to test a player throwing each of the three possibilities versus
each of the three computer moves. You also want to test that the score goes up and down
and stays the same as the situation dictates. Typically, my testing routine is to make
the rock throw repeatedly until I see all three computer moves at least two times. Then
I move on to paper, and then scissors, and then I keep changing my throw, say, paper,
rock, paper, scissors.

342

CHAPTER 8 ROCK, PAPER, SCISSORS

Test the basic program and then decide on what enhancements you'd like to make
to the presentation and to the scoring. The images and the HTML document need to be
uploaded when you've tested the program on your local computer and decide to upload
it to a server. If you decide to use different images for computer moves than for player
moves, you'll have to find and upload even more. Some people like to put images and
audio files in subfolders. If you do this, don’t forget to use the correct names in the code.

Summary

In this chapter, you learned how to implement a familiar game using features of HTMLS5,
JavaScript, and CSS, along with general programming techniques. These included the
following:

o Styles, in particular the font-family property

e Form and input fields for displaying the score

o Event handling using addEventListener for the mouse click event
e Animation using setInterval and clearInterval

e audio elements for sound and source elements for working with
different browsers

o getElementsByTagName and play for specific control of audio clips

e Programmer-defined objects for drawing programmer-created
buttons on the screen, with logic for determining if the mouse cursor
was clicked on a specific button

e Arrays of arrays for game rules, which were organized in parallel
structures

The next chapter describes a guess-a-word game. It combines techniques for
working with strings of letter, implementing rules of a game, drawing on the canvas, and
creating HTML elements using code that you have learned in previous chapters, along
with some new CSS and JavaScript features.

343

CHAPTER 9

Guess a Word

In this chapter, we cover the following:
e Using CSS styles

e Generating markup for alphabet buttons and display of partially
hidden word

o Drawing based on calculations
o Using a character string for the secret word
o C(Creating an external script file for the word list

o Setting up and removing event handling

Introduction

The goal for this chapter is to continue demonstrating programming techniques and the
features of HTML5, Cascading Style Sheets (CSS), and JavaScript, combining dynamic
creation of HTML markup along with drawing visual representations and displaying text
on the canvas to provide feedback on the state of the game. The example for this chapter
is a generic game for guessing a word by trying individual letters.

The game is played as follows: the program selects a word, termed the secret word,
and writes out dashes to let the player know how many letters are in that word. The
player guesses individual letters. If the letter appears in the word, the program replaces
the symbols representing each occurrence of the guessed letter with the actual letter.
This is the approach I have chosen here. In some word-guessing games, the player
must repeat a letter for multiple occurrences. If the letter does not appear in the secret
word, this is considered an error. The player has a limited number of allowed errors.

345
© Jeanine Meyer 2023

J. Meyer, The Essential Guide to HTMLS5, https://doi.org/10.1007/978-1-4842-8722-4_9

https://doi.org/10.1007/978-1-4842-8722-4_9

CHAPTER9 GUESS A WORD

Feedback is provided to the player with a drawing and text showing the remaining
number of allowed errors. The game is over when the number of allowed errors is
exceeded or the player guesses all the letters of the secret word.

In our game, the computer picks the secret word from a word list (in this case
an admittedly very short list). You may use my list. When you make your own game,
use your own. It makes sense to start small and, once you are happy with your game,
make a longer list. My technique of using an external file for the word list supports this
approach.

For the user interface, I chose to place blocks with each letter of the alphabet on the
screen. The player chooses a letter by clicking a block. After a letter is selected, its block
disappears. This decision was influenced by the fact that most people playing the pencil-
and-paper version of these games write out the alphabet and cross out the letters as they
are chosen.

Figure 9-1 shows the opening screen. The computer has selected a word with four
letters. Notice also that buttons appear on the screen with the letters of the alphabet.

Guess a Word

[2lelelalel=lslE Rk lmls[elal=l sl 5]z

Figure 9-1. Opening screen

One advantage to using a small word bank is that I know what the word is now, even
though my coding uses a random process to select the word. This means I can develop
the game without the stress of playing it! I decided to select an a first by clicking the a
button. As Figure 9-2 shows, this letter does not appear in the secret word.

346

CHAPTER9 GUESS A WORD

Guess a Word

6 wrong guesses remain.

Figure 9-2. After guessing an a

Working through the vowels, I guess an e, with results shown in Figure 9-3. I am not
suggesting that this is a good strategy.

Guess a Word

E 5 wrong guesses remain.

Figure 9-3. The game after guessing an e

Next, I guess an i, resulting in my third wrong move, as shown in Figure 9-4.

Guess a Word

E 4 wrong guesses remain.

Figure 9-4. The game screen after three incorrect selections

347

CHAPTER9 GUESS A WORD

Now, I guess an o, and this turns out to be correct (as I knew since I have insider
information), and an o appears as the third letter in the word, as shown in Figure 9-5.

Guess a Word

==Q=

4 wrong guesses remain.

Figure 9-5. A correct guess of o

I try the next vowel, i, and that is correct, also, as Figure 9-6 indicates.

Guess a Word

E 4 wrong guesses remain.

Figure 9-6. Two letters have been identified

I now make some more guesses, first a ¢, as shown in Figure 9-7.

Guess a Word

3 wrong guesses remain.

Figure 9-7. Another wrong guess trying t

348

CHAPTER9 GUESS A WORD

Then, I make another wrong guess, this time, an s, as shown in Figure 9-8.

Guess a Word

E 2 wrong guesses remain.

Figure 9-8. After a wrong guess of s

Figure 9-9 shows yet another wrong guess.

Guess a Word

1 wrong guesses remain.

Figure 9-9. After a wrong guess of d

I decide to make a correct guess (remember I know all the words), namely, m.
Figure 9-10 shows three identified letters and most of the person drawn on the screen.

Guess a Word

m & 2

1 wrong guesses remain.

]
Blel sl e

Figure 9-10. After a correct guess of m

349

CHAPTER9 GUESS A WORD

At this point, I am trying to lose, so I guess b. This results in what is depicted in
Figure 9-11. The game is not lost, but it will be if the next letter guessed also does not
appear in the word.

Guess a Word

1/ - SO o L —

0 wrong guesses remain.

B o BlelE EREE

Figure 9-11. Game not yet lost

At this point, perhaps you, dear reader, can guess the word. However, I will play
ignorant and guess a g.

Guess a Word

m u 9o

You lost! Reload the page to try again.

[flar] (1]] (] (2] [elwlsl]

Figure 9-12. Game lost

The complete secret word is revealed, and a message appears telling the player that
the game is lost and to reload to try again.

Figure 9-13 shows a screenshot from another game, and the computer has
responded to a guess of the letter e by showing it in two positions. Handling letters
appearing more than once in a word is not difficult, but that certainly was not obvious to
me before I started the programming.

350

CHAPTER9 GUESS A WORD

BV B T R S S E S

Figure 9-13. In this game, e appears in two spots

I make some other guesses and finally get this word correct. Again, the list from
which the choices are made is not very long, so I can guess the words from the number
of letters. Figure 9-14 shows the screenshot from this winning game. Notice that there are

two e’s and three f’s in the secret word.

Guess a Word
k e r £

u £ £ 1 e

You won! Reload the page to try again.

alplela lolnls]s [mlalolplal [slc| [v]u] v]

Figure 9-14. Winning the game

The programming techniques and language features include manipulating character
strings; using an array holding the letters of the English alphabet; creating markup
elements to hold the alphabet and the spaces that represent the secret word, which
may or may not be replaced by letters; handling events for the created alphabet blocks;
and drawing a stack of rectangles representing the remaining number of allowed
wrong answers. This implementation also demonstrates the use of external script files
for holding the word list. This game has turns within a game, unlike, say, rock-paper-
scissors, so the program must manage the game state internally as well as display it on

the screen.

351

CHAPTER9 GUESS A WORD

Critical Requirements

As was true in the previous chapter, the implementation of this game uses many HTML5
and JavaScript constructs demonstrated in earlier chapters, but they are put together
here in different ways. Programming is similar to writing. In programming, you put
together various constructs, just like you write sentences composed of words that you
know and then put these into paragraphs, and so on. While reading this chapter, think
back to what you have learned about drawing on the canvas; creating new HTML
markup; setting up a mouse click event for markup on the screen; and using if and for
statements.

To implement this or other word-guessing games, we need access to a list of words. I
did not need to start with a list of all words that a player could possibly guess. That is, for
this game, the computer/player chooses a word. Other games may require that the word
list contain all the words a player may want to use. Creating and testing the program
does not require a long list, which could be substituted later. I decided to make it a
requirement that the word list be separate from the program. My word list is held in the
file words1.js, shown later in the section.

The user interface for player moves could have manifested in one of several ways,
for example, an input field in a form. However, I decided a better approach was to make
the interface include graphics representing the letters of the alphabet. It was necessary
to make each of the graphics act as a clickable button and provide a way to make each
letter disappear after it has been selected. This approach has the additional benefit of
preventing a mischievous player from clicking a correctly guessed letter multiple times.

The secret word must be represented on the screen, initially as all blanks and
then filled in with any correctly identified letters. I chose to use double lines as
blanks, because I wanted identified letters to be underlined. An alternative could be
question marks.

Last, the program must monitor the progress of the game and correctly determine
when the player has lost and when the player has won. The game state is visible to
the player, but the program must set up and check internal variables to make the
determination that the game is won or lost.

352

CHAPTER9 GUESS A WORD

HTML5, CSS, and JavaScript Features

Let’s now look at the specific features of HTML5, CSS, and JavaScript that provide what
we need to implement the guess-a-word game. Except for basic HTML tags and the
workings of functions and variables, the explanations here are complete. However, much
of this chapter repeats explanations given in earlier chapters. As before, you may choose
to look at all the code in the “Building the Application” section and return to this section
if you need explanations of specific features.

Storing a Word List as an Array Defined
in an External Script File

The guess-a-word game requires access to a list of acceptable words, which can be called
the word bank. It would be a pretty sure bet to say that one approach is to use an array.
The short array we'll use for this initial example is defined with this code:

var words = |
"muon", "blight","kerfuffle","qat"

15

Notice that the words are all different lengths. This means that we can use the
random processing code that we will want for the final version and still know what word
has been selected when we're testing. We’ll make sure the code uses words . length so
that when you substitute a bigger array, the coding still works.

Now, the question is how to use different arrays for this purpose if we want to
bring in a different list of words. It certainly is possible to change the HTML document.
However, in HTMLS5 (or previous versions of HTML), it is possible to include a reference
to an external script file in place of or in addition to a script element in the HTML
document. We can take the three lines that declare and define the variable words and
place them in a file named words1. js. We can include this file with the rest of the
document using the following line of code:

<script src="wordsi.js" defer></script>

The defer method will cause this file to be loaded while the browser is continuing with
the rest of the base HTML document. We could not load these two files simultaneously if
the external file contained part of the body, but it works in this situation.

353

CHAPTER9 GUESS A WORD

I did incorporate a longer list in a version of the program I prepared for my classes.
It was the official spelling bee list for middle school in a specific state. I did need to do
some manipulation in Excel to produce the JavaScript. An enhanced program could
include multiple files with code for the player to select from among different levels or
languages.

Generating and Positioning HTML Markup, Then
Changing the Markup to Buttons, and Then
Disabling the Buttons

The creation of the alphabet buttons and the secret word dashes is done with a
combination of JavaScript and CSS.

We'll write code to create HTML markup for two parts of the program: the alphabet
icons and the blanks for the secret word. (You can go to the quiz game in Chapter 6 for

more on creating HTML markup as well as the appendix.) In each case, HTML markup is
created using the following built-in methods:

o document.createElement(x): Creates HTML markup for the new
element type x

o document.body.appendChild (d): Adds the d element as another
child element of the body element

o document.getElementById(id): Extracts the element with ID the
value of id

The HTML is created to include a unique ID for each element. The code involves
setting certain properties:

o d.innerHTML is set to hold the HTML
o thingelem.style.top is set to hold the vertical position

o thingelem.style.left is set to hold the horizontal position

354

http://dx.doi.org/10.1007/978-1-4842-4155-4_6

CHAPTER9 GUESS A WORD

With this background, here is the coding for setting up the alphabet buttons. We first
declare a global variable alphabet:

var alphabet = "abcdefghijklmnopgrstuvwxyz";
The setupGame function has this code for making the alphabet buttons:

var i;

var Xx;

var y;

var uniqueid;

var an = alphabet.length;

for(i=0;i<an;i++) {
uniqueid = "a"+String(i);
d = document.createElement('alphabet');
d.innerHTML = (

"<div class="letters" id='"+uniqueid+"'>"+alphabet[i]+"</div>");

document.body.appendChild(d);

thingelem = document.getElementById(uniqueid);

x = alphabetx + alphabetWidth*i;
y = alphabety;
thingelem.style.top = String(y)+"px";
thingelem.style.left = String(x)+"px";
thingelem.addEventListener('click',pickElement,false);

}

The variable i is used for iterating over the alphabet string. The unique ID is a
concatenated with the index value, which will go from 0 to 25. The HTML inserted into
the created element is a div with text containing the letter. The string is surrounded by
double quotation marks, and the attributes inside this string are surrounded by single
quotation marks. The elements are spaced across the screen, starting at the position
alphabetx, alphabety (each global variable is declared earlier in the document), and
incremented horizontally by alphabetWidth. The top and left attributes need to be set
to strings and end with "px", for pixels. The last step is to set up event handling so these
elements act as buttons.

355

CHAPTER9 GUESS A WORD

The creation of the elements for the secret word is similar. A difference is that each
of these elements has two underscores as its text content. On the screen, these two
underscores look like one long underscore. The assignment to ch (for choice) is how our
program selects the secret word. Notice that length is an attribute of objects of datatype
String as well as arrays. In this case, I am using length for the words list. If my list were
longer than four elements, this code would still work.

var ch = Math.floor(Math.random()* words.length);
secret = words[ch];
for (i=0;i<secret.length;i++) {
uniqueid = "s"+String(i);
d = document.createElement('secret');
d.innerHTML = (
"<div class="blanks" id=""+uniqueid+"'> __ </div>");
document.body.appendChild(d);
thingelem = document.getElementById(uniqueid);
X = secretx + secretwidth*i;
y = secrety;
thingelem.style.top = String(y)+"px";
thingelem.style.left = String(x)+"px";
}

At this point, you may be asking, how did the alphabet icons get to be letters inside
blocks with borders? The answer is that I used CSS. The usefulness of CSS goes far
beyond fonts and colors. The styles provide the look and feel of critical parts of the
game. Notice that the alphabet div elements have a class setting of ' letters', and the
secret word letter div elements have a setting of 'blanks'. The style section contains the
following two styles, which I have grouped for ease in reading. The line breaks have no
significance for the browser.

<style>

.letters {

position:absolute;

left: opx; top: Opx;

border: 2px; border-style: double;
margin: 5px; padding: 5px;
font-size: 24px;

356

CHAPTER9 GUESS A WORD

color:#F00; background-color:#0FC;
font-family:"Courier New", Courier, monospace;
}

.blanks {

position:absolute;

left: opx; top: Opx;

border:none; margin: 5px; padding: 5px;
color:#006; background-color:white;
font-family:"Courier New", Courier, monospace;
text-decoration:underline;

color: black; font-size:24px;

}
</style>

The designation of a dot followed by a name means this style applies to all elements
of that class. This is in contrast to just a name, such as formin the previous chapter, in
which a style was applied to all form elements, or to a # followed by a name that refers
to the one element in the document with an ID of that name. Notice that the style for
letters includes a border, a color, and a background color. Specifying a font family is a
way to pick your favorite font for the task and then specify backups if that font is not
available. This feature of CSS provides wide latitude to designers. My choices here are
"Courier New", with a second choice of Courier, and a third choice of any monospace
font available (in a monospace font, all the letters are the same width). I decided to use
a monospace font to facilitate making icons that are the same in size and space nicely
across the screen. The margin attribute sets to the spacing outside the border, and
padding refers to the spacing between the text and the border.

We want the buttons representing letters of the alphabet to disappear after they
are clicked. The code in the pickElement function can use the term this to refer to the
clicked object. These two statements (which could be squeezed into one) make this
happen by setting the display attribute:

var id = this.id;
document.getElementById(id).style.display = "none";

357

CHAPTER9 GUESS A WORD

When the game is over, either through a win or a loss, we remove the click event
handling for all the letters by iterating over all the elements:

for (j=0;j<alphabet.length;j++) {
uniqueid = "a"+String(j);
thingelem = document.getElementById(uniqueid);
thingelem.removeEventListener('click',pickElement,false);

}

The removeEventListener event does what it sounds like: it removes the event
handling.

Creating the Feedback About Remaining
Wrong Letters

I decided that the feedback to the player should be by both text and pictures. Text can be
read by a screen reader, and a picture can be forceful. I decided on a stack of rectangles
representing the remaining allowed wrong letters. The text and the stack of rectangles
are on the canvas. Positioning, displaying, and then erasing took some fiddling with
coordinate values but was eased considerably by the alphabet buttons and the secret
word not being written on the canvas.

The code to draw the stack of rectangles is as follows:

function drawRemain(remain){
ctx.rect(startRx,startRy,unitX+10,5);
var ypos=startRy-unitY;
for (i=0;i<remain;i++){
ctx.strokeRect(startRx,ypos,unitX,unitY);
ypos=ypos-unitY;
}

Tip If you haven’t done so already (or even if you have), experiment with drawing.
Create another way to communicate the number of remaining wrong guesses.

358

CHAPTER9 GUESS A WORD

Maintaining the Game State and Determining
a Win or Loss

The requirement to encode and maintain the state of an application is a common one in
programming. In Chapter 2, our program kept track of whether the next move was a first
throw or a follow-up throw of the dice. The state of the guess a word game includes the
identity of the hidden word, what letters in the word have been correctly guessed, what
letters of the alphabet have been tried, and the number of remaining allowed wrong
guesses.

The pickElement function, invoked when the player clicks on an alphabet block, is
where the critical action takes place, and it performs the following tasks:

o Checkif the player’s guess, kept in the variable picked, matches any
of the letters in the secret word held in the variable secret. For each
match, the corresponding letter in the blank elements is revealed by
setting textContent to that letter.

o Keep track of how many letters have been guessed using the variable
lettersGuessed.

e Checkif the game has been won by comparing lettersGuessed to
secret.length. If the game is won, remove event handling for the
alphabet buttons and display the appropriate messages.

o Ifthe selected letter did not match any letters in the secret word (if
the variable not is still true), increment the variable cur.

o Checkif the game has been lost by comparing cur to guessLimit. If
cur is greater or equal, reveal all the letters, remove event handling,
and give appropriate feedback.

e Whether or not there is a match, make the clicked alphabet button
disappear by setting the display attribute to none and remove the
event handling.

These tasks are performed using if and for statements. The check to see if the
game has been won is done after determining that a letter has been guessed correctly.
Similarly, the check to see if the game has been lost is done only when it is determined
that a letter has not been correctly identified and the hanging has advanced. The state of

359

http://dx.doi.org/10.1007/978-1-4842-4155-4_2

CHAPTER9 GUESS A WORD

the game is represented in the code by the secret, lettersGuessed, and cur variables.
The player sees the underscores and filled-in letters of the secret word and the remaining
alphabet blocks.

The code for the whole HTML document with line-by-line comments is in the
“Building the Application” section. The next section describes the critical first task of
handling a player’s guess. One general tactic to keep in mind is that several tasks are
accomplished by doing something for every member of an array even if it may not be
necessary for certain elements of the array. For example, when the task is to reveal all the
letters in the secret word, all have the textContent changed even if some of them have
already been revealed. Similarly, the variable not may be set to false multiple times.

Checking a Guess and Revealing Letters
in the Secret Word by Setting textContent

The player makes a move by clicking a letter. The pickElement function is set up as

the event handler for each letter icon. Therefore, within the function, we can use the
term this to refer to the object that received (listened for and heard) the click event.
Consequently, the expression this.textContent will hold the selected letter. Therefore,
the statement

var picked = this.textContent;

assigns to the local variable picked the specific letter of the alphabet the player is
guessing. The code then iterates over all the letters in the secret word held in the variable
secret and compares each letter to the guess of the player. The created markup that
starts out being the double underlines corresponds to the letters in the secret word, so
when there is a correct guess, the corresponding element will be changed; that is, its
textContent will be set to the letter guessed by the player, which is held in picked.

for (i=0;i<secret.length;i++) {
if (picked==secret[i]) {
id = "s"+String(i);
document.getElementById(id).textContent = picked;
not = false;
lettersGuessed++;

360

CHAPTER9 GUESS A WORD

The iteration does not stop when a guess is correct; it keeps going. This means that
all instances of any one letter will be discovered and revealed. The variable not is set to
false each time there is a match. If there were two or more instances of the same letter,
this variable is set more than once, which is not a problem. I included the word kerfuffle
to make sure that repeated letters were handled correctly (besides the fact that I like the
word). You can examine all the code in the next section.

Building the Application and Making It Your Own

The guess-a-word application makes use of CSS styles, HTML markup created by
JavaScript, and JavaScript coding. There are two initializing and setup functions (init
and setupGame), the function that does most of the work (pickElement), plus two more
functions to give feedback. The functions are described in Table 9-1.

Table 9-1. Functions Invoked or Called by Calls

Function Invoked/Called By Calls
init Invoked by the action of onLoad in the setupGame
<body> tag
setupGame init Sets up the alphabet and picks the
secret word

pickElement Invoked by the action of the
addEventListener calls in setupGame

showProgress pickElement drawRemain

drawRemain showProgress

Table 9-2 shows the complete implementation of the guess-a-word game.

361

CHAPTER9 GUESS A WORD

Table 9-2. The Complete Implementation of the Guess-a-Word Program, Code,

and Explanation

Code Explanation
<html> Opening html tag.
<head> Opening head tag.

<title>Word Guess</title>
<style>

.letters {position:absolute;left:
Opx; top: Opx; border: 2px; border-
style: double;margin: 5px; padding:

5px; color:#F00;background-color:#0FC;

font-family:"Courier New", Courier,
monospace;

}

.blanks {position:absolute;left:

Opx; top: Opx; border:none; margin:
5px; padding: 5px; color:#006;
background-color: white; font-
family:"Courier New", Courier,
monospace; text-decoration:underline;
color: black;

}
</style>

<script src="wordsi.js" defer></
script>

<script >

var ctx;

Completes the title element.
Opens the style element.

Specifies styling for any element with
designated class letters, including the border,
colors, and font.

Closing style directive.

Specifies styling for any element with
designated class blanks, including the
border, spacing, color, and font, and puts in
underlines.

Closing style directive.
Closes the style element.

Element calling for inclusion of the word
list held in an external file with the name
words1.js, with directive to load the file at
the same time as the rest of this document.

Opening tag for the script element.

Variable used for all drawing.

362

(continued)

Table 9-2. (continued)

CHAPTER9 GUESS A WORD

Code Explanation

var thingelem; Variable used for created elements.

var alphabet = "abcdefghijkl Defines letters of the alphabet, used for
mnopqgrstuvwxyz"; alphabet buttons.

var alphabety = 300; Vertical position for all alphabet buttons.
var alphabetx = 20; Starting alphabet horizontal position.

var alphabetWidth = 25; Width allocated for the alphabet elements.
var secret; Will hold the secret word.

var lettersGuessed = 0; Keeps count of letters guessed.

var

var

var

var

var

var

var

var

var

var

var

var

var

secretx = 160;
secrety = 50;

secretwidth = 50;

cur = 0;

guessLimit = 7;

msgx = 100;
msgy = 120;

clearX = 0;

clearY= 0;

clearW= 600;
clearH= 400;
startRx = 10;

startRy= alphabety-150;

Horizontal starting position for secret word.
Vertical position for secret word.

Width allocated for each letter in display of
secret word.

Initialize cur.

You can change this if you want to change the
number of allowed wrong guesses.

Horizontal coordinate for a message.
Vertical coordinate for a message.

Horizontal coordinate of canvas upper-left
corner.

Vertical coordinate of canvas upper-left corner.
Width of canvas.

Height of canvas.

Starting x for stack of rectangles.

Calculate starting y to be above alphabet.

(continued)

363

CHAPTER9 GUESS A WORD

Table 9-2. (continued)

Code Explanation
var unity = 140 / guessLimit; Calculate height of rectangle.
var unitX = 40; Set the variable holding the width of rectangle.

function init(){

ctx = document.
getElementById('canvas').
getContext('2d");

setupGame();
ctx.font="bold 20pt Ariel";
}

function setupGame() {

var i;
var x;
var y;

var uniqueid;

var an = alphabet.length;
for(i=0;i<an;i++) {
uniqueid = "a"+String(i);

d = document.
createElement('alphabet');

d.innerHTML = (

Header for the function called on document
load.

Sets up the variable for all drawing on canvas.

Invokes the function that sets up the game.
Sets the font.
Closes the function.

Header for the function that sets up the
alphabet buttons and the secret word.

Creates the variable for iterations.
Creates the variable for position.
Creates the variable for position.

Creates the variable for each set of created
HTML elements.

Will be 26.
lterates to create alphabet buttons.
Creates a unique identifier.

Creates an element of type alphabet.

Defines the contents as specified in the next
line.

364

(continued)

CHAPTER9 GUESS A WORD

Table 9-2. (continued)

Code Explanation

"<div class="letters" id='"+uniqueid
+"'>"+alphabet[i]+"</div>");

document.body.appendChild(d);

thingelem =
(uniqueid);

alphabetx + alphabetWidth*i;

document.getElementById

X

y = alphabety;

thingelem.style.top = String(y)+"px";
thingelem.style.left =
String(x)+"px";
thingelem.addEventListener('click’,
pickElement,false);

}

var ch = Math.floor(Math.
random()*words.length);

secret = words[ch];

for (i=0;i<secret.length;i++) {
uniqueid = "s"+String(i);
d = document.createElement('secret');

d.innerHTML = ("<div class="blanks"
id="" +uniqueid+"'> _ </div>");

document.body.appendChild(d);

Specifies a div of class letters with a unique
identifier and text content, which is the ith
letter of the alphabet.

Adds to body.
Gets the element with the ID.

Computes its horizontal position.
Sets the vertical position.
Using the style top; sets the vertical position.

Using the style 1eft; sets the horizontal
position

Sets up event handling for the mouse click
event.

Closes the for loop for the alphabet letters.

Chooses, at random, an index for one of the
words.

Set the global variable secret to be this
word.

lterates for the length of the secret word.
Creates a unique identifier for the word.
Creates an element for the word.

Sets the contents to be a div of class blanks,
with the ID of the word the uniqueid

just created. The text content will be an
underscore.

Appends the created element as a child of the
body.

(continued)

365

CHAPTER9 GUESS A WORD

Table 9-2. (continued)

Code

Explanation

thingelem = document.getElementById
(uniqueid);

x = secretx + secretwidth*i;

y = secrety;

thingelem.style.top = String(y)+"px";

thingelem.style.left =
String(x)+"px";

}

return false;

}
function pickElement(ev) {

var not = true;

var picked = this.textContent;

var i;

var j;

var uniqueid;

var thingelem;

var out;

for (i=0;i<secret.length;i++) {

if (picked==secret[i]) {

id = "s"+String(i);

Gets the created element.

Calculates the element’s horizontal position.
Sets its vertical position.
Using the style top, sets the vertical position.

Using the style 1eft, sets the horizontal
position.

Closes the for loop.

Returns false to prevent any refreshing of
the HTML page.

Closes the function.

Header for the function invoked as a result of
a click.

Sets not to true, which may or may not be
changed.

Extracts the text content, namely, the letter,
from the object this references.

Iterates.

Iterates.

Used to create unique identifiers for elements.
Holds the element.

Displays a message.

lterates over the letters in the secret word.

Says, “If the player guessed letter is equal to
this letter in secret....”

Constructs the identifier for this letter.

366

(continued)

Table 9-2. (continued)

CHAPTER9 GUESS A WORD

Code

Explanation

document.getElementById(id).
textContent = picked;

not = false;

lettersGuessed++;

if (lettersGuessed==secret.length) {

ctx.fillStyle=gallowsColor;

out = "You won!";

ctx.fillText(out,200,80);

ctx.fillText("Re-load the page to try

again.",200,120);
for (j=0;j<alphabet.length;j++) {

uniqueid = "a"+String(j);

thingelem = document.getElementById

(uniqueid);

thingelem.removeEventListener('click’,

pickElement,false);

}
}

Changes the text content to be the letter.

Sets not to false.

Increment the number of letters identified
correctly.

Says, “If the whole secret word has been
guessed....”

Sets the color, which uses the brown of the
gallows, but could be anything

Sets the message.
Displays the message.

Displays another message.

lterates over the whole alphabet.
Constructs the identifier.

Gets the element.

Removes the event handling.

Closes the j for loop iteration.

Closes if (lettersGuessed....),thatis,
the all-done test.

Closes the if (picked==secret[i])
true clause.

Closes the for loop over letters in the secret
word iteration.

(continued)

367

CHAPTER9 GUESS A WORD

Table 9-2. (continued)

Code Explanation
if (not) { Checks if no letters were identified.
CUT++; Increments the counter.
showProgress(cur); Feedback text and drawing

if (cur>=guessLimit) {

for (i=0;i<secret.length;i++) {

id = "s"+String(i);

document.getElementById(id).
textContent = secret[i];

}

ctx.fillStyle="red”;

out = "You lost! Reload the page to
try again.";
ctx.clearRect(clearX,clearY,clearW,
clearH);

ctx.fillText (out,msgx,msgy)

for (j=0;j<alphabet.length;j++) {
uniqueid = "a"+String(j);
thingelem = document.getElementById
(uniqueid);

thingelem.remove
EventListener('click’,
pickElement,false);

}

Checks to see if all steps are finished.

Starts a new iteration over the letters in the
secret word to reveal all the letters.

Constructs the identifier.

Obtains a reference to the element and sets it
to that letter in the secret word.

Close the iteration.
Sets the color.

Sets the message.

Erase the canvas.

Displays the out message.
Iterates over all of the letters in the alphabet.
Constructs the unique identifier.

Gets the element.

Removes the event handling for this element.

Closes the j loop
Closes if cur >guessLimit

Closes the if (not) test (bad guess by
player).

368

(continued)

Table 9-2. (continued)

CHAPTER9 GUESS A WORD

Code

Explanation

var id = this.id;

thingelem = document.
getElementById(id);

thingelem.style.display = "none";

thingelem.removeEvenListener('click"’,
pickElement,false);

}
function showProgress(cur) {

ctx.clearRect(clearX,clearY,clearW,
clearH);

var remain = guessLimit-cur;
drawRemain(remain);

out = String(remain)+" wrong guesses
remain.";

ctx.fillText(out,msgx,msgy);
}
function drawRemain(remain) {
var ypos = startRy-unitY;
for (i=0;i<remain;i++){
ctx.strokeRect(startRx,ypos,unitX,
unity):

ypos = ypos - unity;

Extracts the identifier for this element.

Get the element reference.

Makes this particular alphabet button
disappear.

Remove event handling

Closes the pickElement function
Header for showProgress.

Clear the canvas.

Calculate number remaining.
Go to another function to do the drawing.

Prepare the text.

Display the text.

Close showProgress.
Header for drawRemain.

Determine starting vertical point (lowest).
Loop to draw rectangles.

Draw rectangle.

Decrement ypos.
Close the loop

Close the drawRemain function

(continued)

369

CHAPTER9 GUESS A WORD

Table 9-2. (continued)

Code Explanation

</script> Closes the script.

</head> Closes the head.

<body onLoad="init();"> Opening tag that sets up call to init.
<h1>Word Guess</h1> Puts the name of game in big letters.

<p> Opening tag for paragraph.

<canvas id="canvas" width="600" Opening tag for canvas element. Includes
height="400"> dimensions.

Your browser doesn't support the HTML5 Message for people using browsers that don’t
element canvas. recognize canvas.

</canvas> Closing tag for canvas.

</body> Closes the body.

</html> Closes the document.

A variation of guessing letters to reveal a word is guessing words to reveal a common
saying. Building on this game to create that one is a challenge for you. The critical steps
are handling of blanks between the words and the punctuation. You probably want to
reveal each instance of blanks between words and periods, commas, and question marks
immediately, making these things hints to the player. This means that you need to make
sure that lettersGuessed starts off with the correct count. Do not be concerned that the
selected letters are compared to blanks or punctuation.

Another variation would be to change the alphabet and, of course, the word list. I
carefully replaced all the instances of 26 with alphabet.length. You would also need
to change the language for the messages for winning and losing. Of course, this is not
applicable for languages that have characters as opposed to letters.

A suitable enhancement of the game is to make a New Word button. To do so, you need
to split up the workings of the setupGame button into two functions. One function creates
new alphabet icons and the positions for the longest possible secret word. The other makes
sure all the alphabet icons are visible and set up for event handling and then selects and
sets up the blanks for the secret word, making sure the appropriate number are visible. If
you do this, you may want to display a score and a number of games.

370

CHAPTER9 GUESS A WORD

Continuing with the educational idea and assuming you use unusual words, you may
want to include definitions. The definition can be revealed at the end, by writing text
on the canvas. Or you can make a button to click to reveal the definition as a hint to the
player. Alternatively, you could create a link to a site, such as Dictionary.com.

Testing and Uploading the Application

To test this application, you can download my word list or create your own. If you

create your own, start off with a short word list prepared as plain text, giving it the name
words1.js. When testing, do not always guess in the same pattern, such as choosing the
vowels in order. Misbehave and try to keep guessing after the game is over. When you are
satisfied with the coding, create a longer word list and save it under the name words1. js.
Both the HTML and words1. js files need to be uploaded to your server.

Summary

In this chapter, you learned how to implement a familiar game using features of HTMLS5,
JavaScript, and CSS along with general programming techniques, which included the
following:

e Creating HTML markup dynamically

e Setting up and removing event handling using addEventListener
and removeEventListener for individual elements

¢ Using styles to remove elements from display and removing event
handling

e Manipulating variables to maintain the state of the game, with
calculations to determine if there is a win or a loss

o Creating an external script file to hold the word list for increased
flexibility

e Using CSS, including font-family for the selection of fonts, color,
and display

371

http://dictionary.com

CHAPTER9 GUESS A WORD

Games like this one are appealing examples for demonstrating programming
concepts, and I use something similar in Programming 101: The How and Why of
Programming Revealed Using the Processing Programming Language (also published by
Apress).

The next and final chapter of this book describes the implementation of the card
game blackjack, which is also called 21. It will build on what you have learned and
describe some new techniques in programming, elements added to HTML5, and
more CSS.

372

CHAPTER 10

Blackjack

In this chapter, we cover the following:
e The footer and header tags, which are new to HTML5
o Capturing key presses
e Programmer-defined objects
o Generating Image elements using a set of external image files

o Shulffling a deck of cards

Introduction

The objective of this chapter is to combine programming techniques and HTML5
and JavaScript features to implement the card game blackjack, also called the 21 card
game. The implementation will use new tags introduced in HTML5, namely, footer
and header. We will use the footer to give credit to the source for the card images
and the website we are using for the shuffling algorithm. The cards are created using
programmer-defined objects and Image objects, with coding to generate the names of
the image files. The player makes moves using key presses.

The rules of blackjack are as follows:

The player plays against the dealer (also known as the house). The player
and dealer are each dealt two cards. The first card of the dealer is hidden
from the player, but the other is visible. The value of a card is its face value
for the numbered cards, 10 for a jack, queen, or king, and either 1 or 11 for
an ace. The value of a hand is the sum of the cards. The object of the game
is to have a hand with a value as close to 21 as possible without going over
and to have a value greater than the other person. Thus, an ace and a face
card count as 21, a winning hand. The actions the player can take are to
request another card or to hold.

373
© Jeanine Meyer 2023

J. Meyer, The Essential Guide to HTMLS5, https://doi.org/10.1007/978-1-4842-8722-4_10

https://doi.org/10.1007/978-1-4842-8722-4_10

CHAPTER 10 BLACKJACK

Since this is a two-person game, our player will play against “the computer,” and,
as was the case with rock-paper-scissors, we have the task of generating the computer
moves. However, we are guided by the practice of casinos—the dealer (house) will use
a fixed strategy. Our dealer will request another card if the value of the hand is under 17
(the game strategy in casinos may be slightly more complicated and may be dependent
on the presence of aces). Similarly, our game does declare a tie if the player and house
have the same total if the total is under 21; some casinos may have a different practice.

An opening screenshot is shown in Figure 10-1.

Press n for a new game (same deck), d for deal 1 more card, h for hold. Reload for a new
deck and then press n for a new game.

Card images obtained courtesy of the American Contract Bridge League, 52 playing cards,
Shuffle explained at The intuition behind Fisher-Yates shuffling

Figure 10-1. Opening screen for blackjack

After the user presses the n key, the next screen would look something like
Figure 10-2. Remember that there are random processes involved, so this same set of
cards is not guaranteed to appear each time.

374

CHAPTER 10 BLACKJACK

Press n for a new game (same deck), d for deal 1 more card, h for hold. Reload for a new
deck and then press n for a new game.

<«
> ¢ ¢

et 3

[I

LA
4

Card images obtained courtesy of the American Contract Bridge League, 52 playing cards,
Shuffle explained at The intuition behind Fisher-Yates shuffling

Figure 10-2. Cards dealt

Figure 10-2 shows what the player sees: all of their own hand and all but one card of
the dealer’s hard. The virtual dealer does not have knowledge of the player’s hand. In this
situation, the player’s hand has a value of 2 plus 10 for a total of 12. The dealer is showing
a 3. The player asks for another card by pressing d. Figure 10-3 shows the result.

375

CHAPTER 10 BLACKJACK

Press n for a new game (same deck), d for deal 1 more card, h for hold. Reload for a new
deck and then press n for a new game.

e &
& &
v ¥
Jg2 8
44g o.’.
0’0
* e

Card images obtained courtesy of the American Contract Bridge League, 52 playing cards,
Shuffie explained at The intuition behind Fisher-Yates shuffling

Figure 10-3. Player with 20

The player now has a hand with value 20 and presses h for hold to stop play and to
see what the dealer has. The result is shown in Figure 10-4.

Press n for a new game (same deck), d for deal 1 more card, h for hold. Reload for a new
deck and then press n for a new game.

You won. House went over.

Card images obtained courtesy of the American Contract Bridge League, 52 playing cards,
Shuffie explained at The intuition behind Fisher-Yates shuffling

Figure 10-4. Player wins with 20 and the house goes over

376

CHAPTER 10 BLACKJACK

The player wins since the house went over and the player did not.

The player can start a new game by pressing the n key or reloading the document.
Reloading the document would mean starting with a complete, freshly shuffled deck.
Pressing the n key continues with the current deck. Anyone who wants to practice
card counting, a way of keeping track of what still is in the deck and varying your play
accordingly, should opt to press the n key.

Figure 10-5 shows a new game.

Press n for a new game (same deck), d for deal 1 more card, h for hold. Reload for a new
deck and then press n for a new game.

‘e 4
vty
v v

Card images obtained courtesy of the American Contract Bridge League, 52 playing cards,
Shuffie explained at The intuition behind Fisher-Yates shuffling

Figure 10-5. A new game

This time, the player presses h for hold, and Figure 10-6 shows the result.

377

CHAPTER 10 BLACKJACK

Press n for a new game (same deck), d for deal 1 more card, h for hold. Reload for a new
deck and then press n for a new game.

You lost. :
A3DT

- &*ﬂn

SRS

¥ *Z
e s
vty
LI A 21

Card images obtained courtesy of the American Contract Bridge League, 52 playing cards,
Shuffie explained at The intuition behind Fisher-Yates shuffling

Figure 10-6. The player loses.

The dealer was holding four cards for a total of 21. Remember that an ace counts as 1
or 11. The player had 14 and, consequently, lost.

Figure 10-7 shows the results of another game. The initial deal to the player was two
face cards for a total of 20. The player pressed h for hold, and the house played two more
cards and went over.

378

CHAPTER 10 BLACKJACK

Press n for a new game (same deck), d for deal 1 more card, h for hold. Reload for a new
deck and then press n for a new game.

You won. House went over.

Card images obtained courtesy of the American Contract Bridge League, 52 playing cards,
Shuffie explained at The intuition behind Fisher-Yates shuffling

Figure 10-7. The player wins

The actual practices of dealers at casinos may be different from this. This is an
opportunity for research! The player also can bluff the House by going over and not
revealing it. This may lead the house to request another card and go over also. The game
is decided if and only if the player clicks the h key to hold and thus stops drawing cards.

You may want to provide feedback to the player when a key thatis notd, h, or nis
pressed, as shown in Figure 10-8.

379

CHAPTER 10 BLACKJACK

Press n for a new game (sam Thispage says ir hold. Reload for a new
deck and then press n for a r eressdhorn

Card images obtained courtesy of the American Contract Bridge League, 52 playing cards,
Shuffle explained at The intuition behind Fisher-Yates shuffling

Figure 10-8. Feedback when a wrong key is pressed

Critical Requirements

The blackjack game will use many of the HTMLS5, CSS, and JavaScript features described
for the previous games.

The first issue I had when starting the implementation was to find a source of images
for the card faces. I knew I could make my own drawings, but I preferred something
more polished than I could produce.

The next challenge was how to design what a card was in programming terms so
that I could implement dealing cards, showing the back or the face. I also wanted to
investigate how to shuffle the deck.

Another challenge was implementing the way a player would play the game. I chose
to use key presses: d to deal, h to hold, and n to begin a new game. There are, of course,
alternatives, for example, displaying buttons with words or graphics or using other keys,
such as the arrow keys. The absence of a clear, intuitive interface made it necessary to
display the directions on the screen.

The last challenges are the general ones of maintaining the state of the game, the
visible display, and internal information; generating the computer moves; and following
the rules.

380

CHAPTER 10 BLACKJACK

HTML5, CSS, and JavaScript Features

Let’s now look at the specific features of HTML5, CSS, and JavaScript that provide

what we need to implement the blackjack card game. Except for basic HTML tags and
functions and variables, the explanations here are complete. If you have read the other
chapters, you will notice that much of this chapter repeats explanations given previously.
Remember that you can skip ahead to the “Building the Application” section to see the
complete code for the game with comments and then return to this section for more
explanation.

Source for Images for Card Faces and Setting
Up the Image Objects

When working on the first edition, I did find an excellent source for the card faces,
which came with a Creative Commons license, and was happy to show the link and the
license, but the site no longer exists. I found another source, at the American Contract
Bridge League. The digital files were labeled as free, but I still did ask for and received
permission, and you can see from the screenshots that I indicated the source of the
digital files on the web page.

After copying the files to your computer, you need a way to access the 52 card face
image files without writing 52 different statements. (Note that the card back image file
is accessed in a different place, namely, the init function.) This can be accomplished
because the file names follow a pattern. The pattern for the new card images was slightly
different than the original one, and the coding was actually easier. The buildDeck
function is as follows:

function buildDeck() {
var n;
var si; //used for indexing over the suits
var suitnames =["C","H","S","D"];
var i;
i=0;
var pickName;
var nums=["A","2","3","4","s","6","7","8","9","10","3","0Q"," "K"];

for (si=0;si<4;si++) {

381

CHAPTER 10 BLACKJACK

for (n=0;n<13;n++) {
pickName=nums[n]+suitnames[si]+".png";
deck[i]=new MCard(n+1,suitnames[si],pickName);
i++;

Notice the nested for loops. The outer loop handles the suits and the inner loops the
13 cards in a suit.

In this function, the outer loop manages the suits and the inner loop the cards within
each suit. The pickName variable will be set to the names of the files that we downloaded
from the source. The MCard function is the constructor function to create a MCard object,
that is, objects of the class we defined as a programmer-defined class of objects. n+1 will
be used as the value of the card, and there will be some adjustment for the face cards.

Note The three statements in the nested for loops could be combined into
deck[i++]=new MCard(n+1,suitnames[si], suitnames[si]+"-
"+nums[n]+".png");.

This is because the ++ iteration operator takes place after the value has been generated
for indexing the deck array. However, I recommend that in this learning example you don’t
do it! Using three statements is much easier to write and to understand.

Creating the Programmer-Defined Object
for the Cards

As we have seen in previous chapters, for example, Chapter 4 for the slingshot game,
JavaScript provides a way for programmers to create programmer-defined objects to
group together data; the different pieces of data called attributes or properties, and we
use dot notation to get at the different attributes. It is also possible to associate code
with the data by defining methods, but we don’t need to do that in this example. As
areminder, the function setting up the new object is called the constructor function.

382

http://dx.doi.org/10.1007/978-1-4842-4155-4_4

CHAPTER 10 BLACKJACK

For cards, I defined MCard as the constructor, which was shown in use in the previous
section in the buildDeck function. The definition of this function follows:

function MCard(n, s, pickName){
//stands for card number, suit, picture
this.num = n;
if (n>10) n = 10;
this.value = n;
this.suit = s;
this.picture = new Image();
this.picture.src = pickName;
this.dealt = 0;

The line of the function
if (n>10) n = 10;

will be triggered by the face cards (jack, queen, and king). Remember, the value of
each is 10. This line corrects the value to be 10 in these cases.

Notice that this if statement is structurally different from previous if statements.
There are not any opening and closing curly brackets setting off the if-true clause. The
single-statement clause is a legitimate form of the if statement. I generally avoid this
form because if I later decide to add another statement, I will need to insert the curly
brackets. However, I decided that it was okay in this situation. I also realized that you will
see both variations when examining code, so it makes sense to show you the format here.
Notice that nothing special is done when n equals 1. The rule for two possible values for
an ace is handled elsewhere in the program.

The properties of MCard objects include a newly created Image object with its src
attribute set to the pickName passed in. The last attribute, dealt, initialized to 0, will be
set to 1 or 2 depending on whether the card goes to the player or the dealer.

Starting a Game

For my implementation of the game, the player chooses to start a new game with the
current deck by pressing the n key. If the player wants to start with a new deck, the
player reloads the HTML document. In fact, in the casinos, the dealer, not the player,

383

CHAPTER 10 BLACKJACK

decides when to use a new deck. Making this change would be a good addition to the
implementation. I should also note that some casinos use multiple decks to discourage a
practice called card counting. It occurs to me that an application could be built providing
players a way to practice card counting.

Another issue concerns player behavior. As I have revealed, I tend to assume that
players will behave properly. What should be done if a player clicks d for dealing one
more card or h for holding when a game has not been started? In situations like this
involving player nonstandard behavior, the choices we as application builders face
include displaying a message; trying to guess what the player wants to do, for example,
start a new game; or do nothing. I decided to display a message. To keep track of whether
a game has been started, I use a global variable, gamestart, which is initialized to
false. By the way, a term for such variables is flag. It is present in four functions (deal,
dealFromDeck, playerdone, and newGame), and you can examine them in context in the
code tables.

Dealing the Cards

The buildDeck function constructs the deck array of MCard objects. The player’s hand
is kept in an array called playerhand with pi holding the index of the next position.
Similarly, the dealer’s hand is kept in an array called househand with hi holding

the index of the next position. An example showing the syntax (punctuation) for
referencing an attribute of an MCard object when the object is an element of an array is
playerhand[pi].picture.

The dealStart function has the task of dealing the first four cards: two to the player
and two to the dealer. One of the dealer’s cards is not shown; that is, the card’s back is
shown. The deal function is invoked when the player requests a new card (see later in
this section). The deal function will deal a card to the player and see if the dealer is to
get a new card. Both dealStart and deal accomplish the actual dealing by invoking the
dealFromDeck function, adding the cards to the playerhand and househand arrays and
drawing the cards on the canvas. Formally, the dealFromDeck is a function that returns a
value of type MCard. Its call appears on the right side of assignment statements. If the face
of the card is to show, the Image object drawn is referenced by the card. If the back of the
card is to show, the Image object is held in the variable back.

Here is the dealStart function. Cards are added to the playerhand array and the
househand array. Elements can be added to an array two distinct ways. One way is to

384

CHAPTER 10 BLACKJACK

use the push method. Another way, which is what I demonstrate here, uses an index
value where the index value is the current length of the array. That is, this places the
value in the next position in the array. Notice the four similar sets of statements: get the
card, draw the image, increment the x position for the next time, and increase indexing
variable, pi or hi, are used to deal out the four cards, two for the player and two for

the house.

function dealStart() {
playerhand[pi] = dealFromDeck(1);

ctx.drawImage(playerhand[pi].picture,playerxp,playeryp,cardw,cardh);

playerxp = playerxp + 30;
pit+;
househand[hi] = dealFromDeck(2);

ctx.drawImage(back,houseXp,houseYp,cardw,cardh);

houseXp = houseXp+20;
hi++;
playerhand[pi] = dealFromDeck(1);

ctx.drawImage(playerhand[pi].picture,playerxp,playeryp,cardw,cardh);

playerxp = playerxp+30;
pit+;
househand[hi] = dealFromDeck(2);

ctx.drawImage(househand[hi].picture,houseXp,houseYp,cardw,cardh);

houseXp = houseXp+20;
hi++;

The deal function is similar. A card is added to the player’s hand and to the house if
more_to_house returns true

function deal() {
if (gamestart) {
playerhand[pi] = dealFromDeck(1);
ctx.drawImage(playerhand[pi].picture,playerxp,playeryp,cardw,cardh);

385

CHAPTER 10 BLACKJACK

playerxp = playerxp+30;
pit+;
if (more_to house()) {
househand[hi] = dealFromDeck(2);
ctx.drawImage(househand[hi].picture,houseXp,houseYp,cardw,cardh);
houseXp = houseXp+20;
hi++;
}
}

else{
alert("Press n to start a new game with the same deck.\n
Reload page to start a game with a new deck.");

Note thatmore_to_house is a function that generates a true or false value. This
value will be based on a calculation of the dealer’s total. If the total is 17 or greater, the
value returned will be false; otherwise, it will be true. The function call is used as the
condition of an if statement, so ifmore_to_house returns true, the statements within
the if clause will be executed. The more_to_house code could be put inside the deal
function, but dividing up large tasks into smaller ones is good practice. It means I can
keep working on the deal function and postpone temporarily writing the more_to_house
function. If you want to refine the more_to_house calculation, you know exactly where
todoit.

Determining the specific card from the deck is the task of the dealFromDeck function.
Again, I make this well-defined task its own function. The parameter is the recipient of
the card. We don’t need to keep track of which recipient in this application, but we’ll
keep that information in the code in to prepare for building other card games. What is
critical is that the card has been dealt to someone. The dealt attribute changes from 0.
Notice the line return card;, which does the work of making an MCard object be the
result of invoking the function.

function dealFromDeck(who) {

var card;

var ch = 0;

while ((deck[ch].dealt>0)&&(ch<51)) {

386

CHAPTER 10 BLACKJACK

ch++;
}
if (ch>=51) {
ctx.fillText("NO MORE CARDS IN DECK. Reload. ",200,200);
ch = 51;
gamestart = false;
}
deck[ch].dealt = who;
card = deck[ch];
return card;

Keep in mind that the deck array is indexed from 0 to 51. A while statement is another
type of looping construction. In most computer programming languages, awhile loop is a
control flow statement that allows code to be executed repeatedly based on a given Boolean
condition; the while loop can be thought of as a repeating if statement. The statements
inside the curly brackets will execute as long as the condition inside the parentheses
remains true. It is up to the programmer to make sure that this will happen—that the loop
won’t go on forever. The while loop in our application stops when a card is identified that
has not been dealt, that is, its dealt attribute is 0. This function will say there are no more
cards when the last card, the 51st card, is available and dealt. If the player ignores the
message and asks for another card again, the last card will be dealt again.

As an aside, the issue of when the dealer chooses to gather the used cards together
or go to a new deck is significant for card counters attempting to figure out what cards
remain. At many casinos, dealers use multiple decks of cards to impede card counting.
My program does not give the house that capability. You can build on this program to
simulate these effects if you want a program to practice card counting. You can put the
number of decks under player control, use random processing, wait until the count of
remaining cards is under a fixed amount, or perhaps do something else.

The dealer may request another card when the player requests another card or when
the player decides to hold. As mentioned earlier, the function to evaluate if the dealer
asks for another card is more_to_house. The calculation is to add up the values of the
hand. If there are any aces, the function adds an extra 10 points if that will make the total
21 or less—that is, it makes 1 ace count as 11. Then, it evaluates if the sum is less than 17.
Ifitis, it returns true, which tells the calling function to request a new card. If the value
exceeds 17, itreturns false.

387

CHAPTER 10 BLACKJACK

function more to house(){
var ac = 0; //count of aces
var i;
var sumUp = 0; //will hold point value of house hand
for (i=0;i<hi;i++) {
sumUp += houseHand[i].value;
if (houseHand[i].value==1) {ac++;}
}
if (ac»0) {
if ((sumUp+10)<=21) {
sumUp += 10;
}
}

houseTotal = sumUp;
if (sumUp<17) {
return true;

}
else {

return false;

}
}

If you want to experiment with a different strategy for the house, more_to_house is
the function you change.

Starting a new game can be a challenge for programmers. First, it is necessary to
understand what starting again means. For this implementation of blackjack, I provide
an option to the player for starting a new hand, which means continuing with the same
deck. To start with a fresh deck that has no cards dealt out, the player must reload the
document. My name for the function that is invoked when the player presses the n key
is newGame. The required actions are to clear the canvas and reset the pointers for the
player’s and dealer’s hands, as well as the variables holding the horizontal position for
the next card. This function closes with a call to dealStart.

function newGame() {
if (!gameStart) {
gameStart = true;
ctx.clearRect(0,0,cwidth,cheight);

388

CHAPTER 10 BLACKJACK

pi=0;

hi=0;

playerXp = 100;
houseXp= 500;
dealStart();

Shuffling the Deck

The technique for shuffling featured in the concentration game (see Chapter 5)
represented an implementation of what my children and I did when playing the game:
we spread out the cards and seized pairs and switched their places.

For blackjack, a friend pointed me to a website by Eli Bendersky (http://eli.
thegreenplace.net/2010/05/28/the-intuition-behind-fisher-yates-shuffling/)
explaining the Fisher-Yates algorithm. The strategy of this algorithm is to make a random
determination for each position in the deck, starting from the end and working toward
the start. The calculation determines a random position in the deck from 0 up to and
including the current position and does a swap. The main shuffle function follows:

function shuffle() {
var i = deck.length - 1;
var s;
while (i>0) {
s = Math.floor(Math.random()*(i+1));
swapinDeck(s,i);
i--5
}
}

Recall that Math.random() * Nreturns a number from zero up to but not including
N. Taking Math.floor of the result returns an integer from zero up to N. So if we want
anumber from 0 to i, we need to write Math.floor(Math.random()*(i+1)). To make
the shuffle function easier to read, I made a separate function called swapindeck
that swaps the two cards that are located at the positions indicated by the parameters

389

http://dx.doi.org/10.1007/978-1-4842-4155-4_5
http://eli.thegreenplace.net/2010/05/28/the-intuition-behind-fisher-yates-shuffling/
http://eli.thegreenplace.net/2010/05/28/the-intuition-behind-fisher-yates-shuffling/

CHAPTER 10 BLACKJACK

to the function. To perform a swap, an extra place is needed, and this is the variable
hold. This extra place is needed because the two assignment statements cannot be
accomplished at the same time.

function swapinDeck(j,k) {

var hold = new MCard(deck[j].num,deck[j].suit,deck[j].picture.src);
deck[j] = deck[k];

deck[k] = hold;

}

Capturing Key Presses

The use of the arrow keys was described in the maze game in Chapter 7. This essentially
is a repeat of that explanation.

Detecting that a key on the keyboard has been pressed and determining which key is
termed capturing the key strokes. The code must set up the response to a key event and is
analogous to setting up a response to a mouse event. The coding starts with invoking the
addEventListener method, this time for the window for this application.

window.addEventListener('keydown',getkey,false);

This means the getkey function will be invoked if and when a key is pressed.

Note There also are keyup and keypress events. The keydown and keyup fire
only once. The keypress event will occur again after some amount of time if the
player holds down the key.

Now, as you may expect at this point, the coding to get the information for which
key involves code for different browsers. The following code, with two ways to get the
number corresponding to the key, works for Chrome, Firefox, and Safari:

if(event == null)
{

keyCode = window.event.keyCode;
window.event.preventDefault();

}

390

http://dx.doi.org/10.1007/978-1-4842-4155-4_7

CHAPTER 10 BLACKJACK

else

{

keyCode = event.keyCode;
event.preventDefault();

}

The preventDefault function does what it sounds like: it prevents any default
action, such as special shortcut actions associated with particular keys. The only keys of
interest in this application are the three keys d, h, and n. The following switch statement
determines which key is pressed and invokes the correct function: deal, playerdone, or
newGame. A switch statement compares the value in the parentheses with the values after
the term case and starts executing the statements with the first one that matches. The
break; statement causes execution to jump out of the switch statement. The default
clause is what it sounds like. It is not necessary, but if it is present, the statement or
statements following default: are executed if nothing matches the case values provided.

switch(keyCode) {

case 68: //d
deal();
break;

case 72: //h
playerdone();
break;

case 78: //n
newGame();
break;

default:
alert ("Press d, h, or n.");

Recall that you can determine the key code of any key by modifying the whole
switch statement to have just the following line in the default case:

alert(" You just pressed keycode "+keyCode);

and doing the experiment of pressing the key and writing down what number
shows up

391

CHAPTER 10 BLACKJACK

Caution If, like | sometimes do, you move among different windows on your
computer, you may find that when you return to the blackjack game and press a
key, the program does not respond. You will need to click the mouse on the window
holding the blackjack document. This lets the operating system restore the focus
on the blackjack document so the listening for the key press can take place.

Using Header and Footer Element Types

HTML5 added some new built-in element types, including header and footer. The
rationale behind these and other new elements (for example, article and nav) was

to provide elements that serve standard purposes so that search engines and other
programs would know how to treat the material, though it still is necessary to specify the
formatting. These are the styles we will use in this example:

footer {
display:block;
font-family:Tahoma, Geneva, sans-serif;
text-align: center;
font-style:oblique;
}
header {
width:100%;
display:block;
}

The display setting can be block or inline. Setting these to block forces a line
break. Note that forcing the line break may not be necessary for certain browsers, but
using it does not hurt. The font-family attribute is a way to specify choices of fonts. If
Tahoma is available on the user’s computer, it will be used. The next font to try will be
Geneva. If neither one is present, the browser will use the sans-serif font set up as the
default. The text-align and font-style settings are what they appear to be. The width
setting sets this element to be the whole width of the containing element, in this case the
body. Feel free to experiment!

Note that you cannot assume the footer is at the bottom of the screen, nor the header
at the top. I made that happen by using positioning in the HTML document.

392

CHAPTER 10 BLACKJACK

I used the footer to display the sources for the card images and the shuffle algorithm.

Providing credit, showing copyright, and displaying contact information are all typical

uses of footer element, but there are no restrictions on how you use any of these new

elements or on where you put them in the HTML document and how you format them.

Building the Application and Making It Your Own

Table 10-1 describes the functions used in this game.

Table 10-1. The Blackjack Functions

Function Invoked/Called by Calls

init Invoked by the onLoad functionin ~ buildDeck, shuffle, and
the <body> tag dealStart

getKey Invoked by the window. deal, playerDone, and newGame
addEventListener call in init

dealStart init dealFromDeck four times

deal getKey Two calls to dealFromDeck and one

more_to_house
dealFromDeck
buildDeck
MCard

add up player

playerDone

newGame
showHouse
shuffle

swapInDeck

deal, playerDone

deal, dealStart, playerDone
init

buildDeck, swapInDeck
playerDone

getKey

getKey
playerDone
init

shuffle

call tomore_to_house

MCard

more_to_house, dealFromDeck
showHouse, and add_up_player

dealStart

swapInDeck

MCard

393

CHAPTER 10 BLACKJACK

The functions in this example feature a pattern of procedural calls with only init

and getKey invoked as a result of events. Please appreciate the fact that there are many

ways to program an application, including the definition of functions. Generally, it is

a good practice to split up code into small functions, but it is not necessary. There are

many places where similar lines of codes are repeated, so there is opportunity to define

more functions. The annotated document follows in Table 10-2.

Table 10-2. The Annotated Code for the Blackjack Game

Code Explanation
<html> Opening html tag.
<head> Opening head tag.

<title>Black Jack</title>
<style>

body {
background-color:white;
color: black;
font-size:18px;

font-family:Verdana,
Geneva, sans-serif;

}
footer {
display:block;

font-family:Tahoma,
Geneva, sans-serif;

text-align: center;
font-style:oblique;
}

header {

Complete the title element.

Opening style tag.

Specifies the style for the body element.
Sets the background color.

Sets the color of the text.

Sets the font size.

Sets the font family.

Closes the style.
Specifies the style for the footer.
Treats this element as a block

Sets the font family.

Aligns the text in the center.
Makes the text slanted.
Closes style.

Specifies the style for the header.

394

(continued)

Table 10-2. (continued)

CHAPTER 10 BLACKJACK

Code

Explanation

width:100%;
display:block;

}

</style>

<script>
var cwidth = 800;
var cheight = 500;

var cardw

75;

var cardh = 107;

var playerXp = 100;

var playerYp

300;

var houseXp

500;

var houseYp = 100;

var houseTotal;

var playerTotal;

var pi = 0;

var hi = 0;

var deck = [];

var playerHand = [];
var houseHand = [];

var back = new Image();

var ctx;

var gameStart = false;

Makes it take up the whole window.

Treats it as a block.

Closes style.

Closes the style element.

Starts the script element.

Sets the width of the canvas; used when clearing the canvas.
Sets the height of the canvas; used when clearing the canvas.
Sets the width of each card.

Sets the height of each card.

Sets the starting horizontal position for the cards in the
player’s hand.

Sets the vertical position for the cards in the player’s hand.

Sets the starting horizontal position for the cards in the
dealer’s hand.

Sets the vertical position for the cards in the dealer’s hand.
For the total value of the dealer’s hand.

For the total value of the player’s hand.

Index for the next card in player’s hand.

Index for the next card in the dealer’s hand.
Holds all the cards.

Holds the cards for the player.

Holds the cards for the dealer.

Used for the card back.

Used to hold canvas context.

Used to check if game has started.

(continued)

395

CHAPTER 10 BLACKJACK

Table 10-2. (continued)

Code

Explanation

function init() {

ctx = document.
getElementById('canvas').
getContext('2d");

ctx.font="italic 20pt
Georgia";

ctx.fillStyle = "blue";
buildDeck();

back.src ="cardback.png";

canvasl = document.
getElementById('canvas');

window.addEventListener
("keydown',getkey,false);

shuffle();

dealStart();

}

function getKey(event) {
var keyCode;

if(event == null)

{

keyCode = window.event.
keyCode;

window.event.
preventDefault();

Function called by onLoad in body to perform initialization
tasks.

Sets the variable used for all drawing.

Sets the font.

Sets the color.
Invokes the function to build the deck of cards.

Specifies the image for the back of card (note that only one
back appears: the dealer’s hidden card).

Sets the variable for event handling.

Sets up event handling for keydown presses.

Invokes the function to shuffle.

Invokes the function to deal out the first four cards.
Closes the function

Function to respond to keydown events.

Holds the code designating the key.

Browser-specific code to determine if the event is null.
Open clause.

Gets the key code from window. event.keyCode.

Stops other key responses.

396

(continued)

Table 10-2. (continued)

CHAPTER 10 BLACKJACK

Code Explanation
} Closes the clause.
else { Clause.

keyCode = event.keyCode;

event.preventDefault();
}

switch(keyCode) {
case 68:

deal();

break;

case 72:
playerDone();
break;

case 78:
newGame();
break;

default:

alert("Press d, h, or
n.");
}

}
function dealStart() {

playerHand[pi] =
dealFromDeck(1);

Picks up the key code from event.keyCode.

Stops other key responses.

Closes the clause.

Header for the switch statement based on keyCode.
The d key has been pressed.

Deals out another card to the player and maybe to the dealer.
Leaves the switch.

The h key has been pressed.

Invokes the playerdone function.

Leaves the switch.

The n key has been pressed.

Invokes the newGame function.

Leaves the switch.

Default choice, which may be appropriate to remove if you
don’t feel the need to provide feedback to players if they use
an unrecognized key.

Feedback message.

Closes the switch.
Closes the function.
Header for the function for initially dealing cards.

Gets the first card for player.

(continued)

397

CHAPTER 10 BLACKJACK

Table 10-2. (continued)

Code

Explanation

ctx.
drawImage(playerhand[pi].
picture,playerXp,playerYp,
cardw,cardh);

playerXp = playerXp+30;
pit+;

houseHand[hi] =
dealFromDeck(2);

ctx.drawImage(back,houseXp,
houseYp, cardw, cardh);

houseXp = houseXp+20;
hi++;

playerHand[pi] =
dealFromDeck(1);

ctx.
drawImage(playerhand[pi].
picture,playerxp,playeryp,
cardw, cardh);

playerXp = playerXp+30;
pit++;

houseHand[hi] =
dealFromDeck(2);

ctx.
drawImage(househand[hi].
picture,houseXp,houseYp,
cardw, cardh);

houseXp = houseXp+20;

Draws on the canvas.

Adjusts the horizontal pointer.
Increases the count of cards to the player.

Gets the first card for the dealer.

Draws a card’s back on the canvas.

Adjusts the horizontal pointer.
Increases the count of cards to the dealer.

Deals a second card to the player.

Draws on canvas.

Adjusts the horizontal pointer.
Increases the count of cards to the player.

Deals a second card to the dealer.

Draws on the canvas.

Adjusts the horizontal pointer.

398

(continued)

CHAPTER 10 BLACKJACK

Table 10-2. (continued)

Code Explanation
hi++; Increases the count of cards to the House.
} Closes the function.

function deal() {
if (gameStart) {

playerHand[pi] =
dealFromDeck(1);

ctx.
drawImage(playerhand[pi].

picture,playerxp,playeryp,

cardw,cardh);

playerXp = playerXp+30;
pi++;

if (more to house()) {

houseHand[hi] =
dealFromDeck(2);

ctx.
drawImage(househand[hi].
picture,houseXp,houseYp,
cardw,cardh);

houseXp = houseXp+20;
hi++;

}

Header for the function for dealing through the game.
Checks if game has been started.

Deals a card to the player.

Draws on the canvas.

Adjusts the horizontal pointer.
Increases the count of cards to the player.
if function to say there should be more cards for the dealer.

Deals a card to the house.

Draws a card on canvas.

Adjusts the horizontal pointer.
Increases the count of cards to the dealer.
Closes the if true clause.

Closes if true clause for if(gamestart).

(continued)

399

CHAPTER 10 BLACKJACK

Table 10-2. (continued)

Code Explanation

else{ Prints out message to player to start a new game or reload to
alert("Press n to start getnew deck.
a new game with the
same deck.\n Reload
page to start a game
with a new deck.");

} Closes else for game not started.
} Closes the function.

function more to house(){ Header for the function determining the dealer’s moves.

var ac = 0; Variable to hold the count of aces.

var i; Variable for iteration

var sumUp = O; Initializes the variable for the sum.

for (i=0;i<hi;i++) { Iterates over all the cards.

sumUp += houseHand[i]. Adds value of cards in the dealer’s hand.
value;

if (houseHand[i].value==1) Keeps track of the number of aces.

{ac++;}
} Closes the for loop.
if (ac»0) { if statement to determine if there were any aces.
if ((sumUp+10)<=21) { If so, asks if making one of the aces take on the value of 11
still yield a total less than 21.
sumUp +=10; If yes, do it.
} Closes inner if.
} Closes outer if.
houseTotal = sumUp; Sets the global variable to be the sum.
if (sumUp<17) { Asks if the sum is under 17.

(continued)

400

Table 10-2. (continued)

CHAPTER 10 BLACKJACK

Code

Explanation

return true;
}
else {

return false;

}
}

function dealFromDeck(who)

{

var card;
var ch = 0;

while ((deck[ch].
dealt>0)88(ch<51)) {

ch++;

}
if (ch»=51) {
ctx.fillText("NO MORE

CARDS IN DECK. Reload.

200,250);
ch = 51;
gameStart = false;

}
deck[ch].dealt = who;

card = deck[ch];

return card;

Returns true if so, meaning it's OK to get one more card.
Closes clause.

Begins else clause.

Returns false, meaning the dealer won’t get another card.
Closes the else clause.

Closes the function.

Header for the function to deal from the deck.

Holds the card.
Holds the index for the next undealt card.

Asks if this card has been dealt.

Increases ch to go on to the next card.
Closes the while loop.
Asks if there were no undealt cards.

Displays a message directly on the canvas.

Sets ch to 51 to make this function work.
Prevents response to any player call for new card.
Closes the if true clause.

Stores who, a nonzero value, so this card is marked as having
been dealt.

Sets a card.

Returns a card.

(continued)

401

CHAPTER 10 BLACKJACK

Table 10-2. (continued)

Code Explanation

} Closes the function.

function buildDeck() { Header for the function that builds the MCaxd objects.
var n; Variable used for inner iteration.

var si; Variable used for outer iteration, over the suits.

var suitnames= ["clubs",

"hearts","spades”,
"diamonds"];

var i;

i=0;

var pickName;

Var nums=[llall,Il2ll,ll3ll,ll4ll,
ll5ll)ll6ll’II7II’ll8ll)ll9ll’llloll’

"jll)"q",llk"];
for (si=0;si<4;si++) {

for (n=0;n<13;n++) {

pickName=suitNames[si]+"-

"+nums[n]+"-75.png";

deck[i]=new MCard(n+1,

suitNames[si],pickName);

i++;
}

}

}

function MCard(n, s,
pickName){

this.num = n;

Names of suits.

Keeps track of elements put into the deck array.
Initializes the array to 0.
Simplifies the coding.

The names for all the cards.

[terates over the suits.
[terates over the cards in a suit.

Constructs the name of the file.

Constructs an MCard with the indicated values.

Increments 1.

Closes the inner for loop.
Closes the outer for loop.
Closes the function.

Header for the constructor function for making objects.

Sets the num value.

402

(continued)

Table 10-2. (continued)

CHAPTER 10 BLACKJACK

Code

Explanation

if (n»10) n = 10;
this.value = n;
this.suit = s;
this.picture = new
Image();

this.picture.src =
pickName;
this.dealt = 0;

}

function add up player() {

var ac = 0;
var i;
var sumUp = 0;

for (i=0;i<pi;i++) {

sumUp += playerHand[i].

value;

if (playerHand[i].
value==1)

{ac++;

}

}

if (ac>0) {

if ((sumUp+10)<=21) {
sumUp +=10;

Makes an adjustment in the case of the face cards.
Sets the value.
Sets the suit.

Creates a new Image object and assigns it as an attribute.

Sets the sxc attribute of this Image object to the picture file
name.

Initializes the dealt attribute to 0.
Closes the function

Header for the function determining the value of player’s
hand.

Holds the count of aces.

For iteration.

Initializes the sum.

Loops over the cards in the player’s hand.

Increments the value of the player’s hand.

Asks if the card is an ace.

Increments the count of aces.
Closes the if statement.
Closes the for loop.

Asks if there were any aces.

If this doesn’t make sum go over.

Makes one ace an 11.

(continued)

403

CHAPTER 10 BLACKJACK

Table 10-2. (continued)

Code Explanation

} Closes the inner if.
} Closes the outer if.
return sumUp; Returns the total.
} Closes the function.

function playerDone() {
If (gameStart) {

while(more to house()) {

houseHand[hi] =
dealFromDeck(2);

ctx.drawImage(back,houseXp,
houseYp, cardw,cardh);

houseXp = houseXp+20;
hi++;

}

showHouse();
playerTotal = add up_
player();

if (playerTotal>21){
if (houseTotal»21) {
ctx.fillText("You

and house both went
over.",30,100);

}

else {

Header for the function invoked when player says hold.
Checks if game has been started.

The more_to_house function indicates the dealer should get
another card.

Deals a card to the dealer.

Draws the card on the canvas.

Adjusts the horizontal pointer.

Increases the index for the dealer’s hand.
Closes the while loop.

Reveals the dealer’s hand.

Determines the player’s total.

Asks if the player was over.
Asks if the house was over.

Displays a message.

Closes the inner if statement.

Begins else clause.

404

(continued)

Table 10-2. (continued)

CHAPTER 10 BLACKJACK

Code

Explanation

ctx.fillText("You went
over and lost.",30,100);

}

}

else

if (houseTotal»>21) {

ctx.fillText("You won.
House went over.",30,100);

}

else

if
(playerTotal>=houseTotal) {
if
(playerTotal>houseTotal) {
ctx.fillText("You
won.",30,100);

}

else {
ctx.fillText("TIE!",
30,100);

}

}

else
if (houseTotal<=21) {

ctx.fillText("You lost.",
30,100);

}

Displays a message.

Closes the else clause.

Closes the outer clause (player is over).
else the player is not over.

Asks if the dealer was over.

Displays a message.

Closes the clause.
Else.

Compares the two amounts.

Performs a more specific comparison.

Displays the winner message.

Closes the inner clause.
Begins the else clause.

Displays a message.

Closes the else clause.
Closes the outer clause.
Else.

Checks if the dealer is under.

Displays a message.

Closes the clause.

(continued)
405

CHAPTER 10 BLACKJACK

Table 10-2. (continued)

Code

Explanation

else {
ctx.fillText("You won
because house went over.");

}

gameStart = false;

}

else{
alert("Press n to start
a new game with the same
deck.\n Reload for a new
deck and then press n to
start a game.");
}

}

function newGame() {

ctx.clearRect(0,0,cwidth,c
height);

pi=0;
hi=0;

playerXp = 100;

houseXp= 500;
dealStart();

}

function showHouse() {
var i;

houseXp = 500;

Begins the else clause.

Displays a message (player under, house over).

Closes the clause.
Resets gamestart.
Closes if true class for if(gamestart).

Message to player.

Closes the function
Header for the function for a new game.

Clears the canvas.

Resets the index for the player.
Resets the index for the dealer.

Resets the horizontal position for the first card of the player’s
hand.

Resets the horizontal position for the dealer’s hand.
Calls the function to initially deal the cards.
Closes the function.

Header for the function to reveal the dealer’s hand.
For iteration.

Resets the horizontal position.

406

(continued)

Table 10-2. (continued)

CHAPTER 10 BLACKJACK

Code

Explanation

for (i=0;i<hij;i++) {

ctx.

drawImage(househand[i].pic
ture, houseXp,houseYp, cardw

,cardh);

houseXp = houseXp+20;

}
}

function shuffle() {

var i = deck.length - 1;

var s;

while (i>0) {

s = Math.floor(Math.

random()*(i+1));

swapindeck(s,i);

i--;
b
t

function swapInDeck(j,k) {

var hold = new

MCard(deck[j].num,deck[]].
suit,deck[j].picture.src);

deck[]j]
deck[k]
}

</script>

deck[k];
hold;

for loop over the hand.

Draws the card.

Adjusts the pointer.

Closes the for loop.

Closes the function

Header for the shuffle.

Sets the initial value for the i variable to point to the last card.
Variable used for the random choice.

As long as i is greater than zero.

Makes a random pick.

Swaps with the card in the i position.
Decrements.

Closes the while loop.
Closes the function

Helper function for the swapping.

Saves the card in position j.

Assigns the card in the k position to the j position.
Assigns the hold to card in the k position.
Closes the function

Closes the script element.

(continued)

407

CHAPTER 10 BLACKJACK

Table 10-2. (continued)

Code

Explanation

</head>
<body onlLoad="init();">

<header>

Press n for a new
game (same deck), d
for deal 1 more card, h</
b> for hold. Reload for a
new deck and then press n
for a new game.
</header>

<canvas id="canvas"
width="800" height="500">

Your browser doesn't
support the HTML5 element
canvas.

</canvas>

<footer>Card images obtained
courtesy of the American
Contract Bridge Association,
<a href="http://acbl.
mybigcommerce.com/52-
playing-cards/">52 playing
cards

Fisher-Yates shuffle
explained at http://
eli.thegreenplace.
net/2010/05/28/the-
intuition-behind-fisher-
yates-shuffling

Closes the head element.

Opening tag to set the call to init.

Header element containing instructions.

Canvas opener.

Warning to noncompliant browsers.

Closes the element.

Opens the footer element, which gives credit and a link to the

source for the playing card images.

Adds the credit for article on the shuffle algorithm.

408

(continued)

http://eli.thegreenplace.net/2010/05/28/the-intuition-behind-fisher-yates-shuffling
http://eli.thegreenplace.net/2010/05/28/the-intuition-behind-fisher-yates-shuffling
http://eli.thegreenplace.net/2010/05/28/the-intuition-behind-fisher-yates-shuffling
http://eli.thegreenplace.net/2010/05/28/the-intuition-behind-fisher-yates-shuffling
http://eli.thegreenplace.net/2010/05/28/the-intuition-behind-fisher-yates-shuffling

CHAPTER 10 BLACKJACK

Table 10-2. (continued)

Code Explanation
</footer> Closes the footer.
</body> Closes the body.
</html> Closes the HTML file.

You can change the look and feel of this game in many ways, including offering
different ways for the player to request to be dealt a new card, to hold with the current
hand, or to request a new hand. You can create or acquire your own set of card images.
Keeping score from hand to hand, perhaps including some kind of betting, would be a fine
enhancement. Changing the rules for the dealer’s play is possible. As I indicated earlier,
implementing that starting a new deck is under computer/dealer control, based on a score
or done by a calculation involving random processing, is an idea to consider. Another
way to make the game more difficult is to use multiple decks. Keeping score is an obvious
feature, and one approach is to add a wallet feature, starting off with some amount of
money, which is reduced at each game (pay to play) and increased upon wins. Scores
and/or more complete results can be stored on the local computer using localStorage.

Testing and Uploading the Application

This program requires considerable testing. Remember that the testing is not finished
when you, acting as tester, have won. It is finished when you have gone through many
different scenarios. I did my first testing of the game with an unshuffled deck. I then
put in the shuffling and kept track of the cases that the testing revealed. I pressed the d
key for dealing one more card, the h for holding, and the n for a new game in different
circumstances. This is definitely a situation when you want to bring in other people to
test your application.

Uploading the application requires uploading all the images. You will need to
change the buildDeck function to construct the appropriate names for the files if you use
something different than what I demonstrate here.

409

CHAPTER 10 BLACKJACK

Summary

In this chapter, you learned how to implement a card game using features of HTMLS5,
JavaScript, and CSS along with general programming techniques. These included the
following:

e Generating a set of Image objects based on names of external files.

¢ Designing a programmer-defined class of objects for cards and
incorporating the Image elements, the card suit, and the card value.

o Drawing images and text on the screen.
e Using for, while, and if to implement the logic of blackjack.
e Using calculations and logic to generate the computer’s moves.

o Establishing event handling for the keydown event so that the player
could indicate a request to deal a new card, hold, or start a new game
and using switch to distinguish between the keys.

e Using the header and footer elements, new to HTMLS5, for directions
and giving credit to sources. With the footer, this included a way to
give credit to the source of the card face images.

This is the last chapter of this book. However, I have added an appendix, with
examples focused on techniques for drawing, including use of mathematics (algebra and
geometry) and Scalar Vector Graphics.

I hope you take what you have learned and produce enhanced versions of these
games and games of your own invention. Enjoy!

My HTMLS5 and JavaScript Projects (2™ edition) book has been updated to include an
implementation of a game called Add to 15, the use of new media, and an introduction
to tools to make your projects responsive to different devices with different screen
dimensions and touch as opposed to mouse events or accessible to people constrained
to just using the keyboard. In terms of programming techniques, it is an appropriate next
book for you. If you want to explore a different programming language, please consider
Programming 101: The How and Why of Programming Revealed Using the Processing
Programming Language. This is being updated now for its second edition.

410

APPENDIX

More Techniques
for Drawing

This book was planned to be an introduction to programming using the combined

tools of Hypertext Markup Language, Cascading Style Sheets and JavaScript, with the
most attention given to JavaScript. However, we decided for the third edition that some
additional, more advanced material, would be appreciated. As always, my choice of
examples was influenced by experiences with colleagues and students. What follows

are applications of mathematics (algebra and geometry) along with a tool called Scalar
Vector Graphics. The applications are complete so that you see the techniques in
context. However, as in the presentation of games in the first 10 chapters, the purpose of
the text is to teach programming concepts and the technical features of HTML, CSS, and
JavaScript, not how to build the specific games and applications. Some of this exposition
will repeat material from the previous ten chapters. You can use these individual
concepts and techniques to build a project of your own design.

Circles and Arrows

The program starts with three circles connected by arrows. Note: I often call the arrows
links. Figure A-1 shows the opening screen.

411
© Jeanine Meyer 2023

J. Meyer, The Essential Guide to HTMLS5, https://doi.org/10.1007/978-1-4842-8722-4

https://doi.org/10.1007/978-1-4842-8722-4

APPENDIX MORE TECHNIQUES FOR DRAWING

Figure A-1. Opening screen

The user/player can drag any of the circles. The arrows move to maintain the
connections. Figure A-2 shows the screen after some manipulation. If you copy the code
exactly as it is and open the document, you will see Figure A-1, but if you drag on the
circles, you most likely will produce something different, as shown in Figure A-2.

412

APPENDIX MORE TECHNIQUES FOR DRAWING

Figure A-2. Screen after some manipulation

My original motivation for building this program was to create an editor for diagrams
representing articles referencing other articles. You can use it for something similar, and
you may find other uses for the individual techniques.

Overview

The tasks required for this example include drawing circles connected by arrows;
dragging, that is, moving, the arrows using mouse actions; and maintaining the proper
positioning of the connecting arrows. My program accomplishes these tasks using
the features of HTML and JavaScript along with some mathematics for drawing the
connecting lines and arrowheads. One tricky issue is handling vertical lines.

An HTML document is organized into what is termed the Document Object Model,
aka the document tree. In this example, the HTML defines the body element, which,
in turn, contains one canvas element. My JavaScript code creates individual canvas
elements, one for each circle. These elements are made visible by being appended to

413

APPENDIX MORE TECHNIQUES FOR DRAWING

the body element in the document tree. The circles are displayed on top of the original
canvas. Their locations are specified by setting the text of the style element’s left and
top attributes. The links (arrows) are drawn directly on the original canvas.

The arrows are constructed to lie on a line defined as going from the center of
one circle to the center of another. However, the lines start and stop at the boundaries
(circumferences) of the circles. In particular, the arrowhead ends at the boundary
of the second circle. Each arrowhead is constructed to be a triangle with the base
perpendicular to the line. This all requires calculations, including special casing for
vertical and horizontal lines.

Details of Implementation

Note The examples in the appendix follow the now recommended practice of
starting each document with <!DOCTYPE html>. | also use a meta tag to declare
the character encoding. These are matters to investigate in your reading. Accept
them as is for now. The <!.... > structure is the way to write comments in
HTML. Comments in JavaScript are indicated by // for the rest of the line and

/* ... and */ for multiline comments.

As indicated already, the body part of the document holds one canvas element. The
single line of text within the canvas element appears if the browser does not recognize
canvas. It makes the situation less mysterious for older browsers and is considered good
practice. The size of the canvas is specified as taking up the whole window by setting the
width to 100 percent and the height to 100 percent.

<body onload="init();" onresize="init();">
<canvas id="canvas" width="100%" height="100%">
Your browser does not recognize canvas
</canvas>

</body>

You already have seen this sort of thing in this book. Similarly, you have seen
dynamic creation of html elements, such as in Chapter 6. The init function, invoked
at the time the page is loaded and after any resizing of the window, invokes the
buildCircles function to create new canvas elements, one for each circle, and then

414

APPENDIX MORE TECHNIQUES FOR DRAWING

invokes the drawLinks function to draw the arrows (links). The specifications of the
circles and links are contained in the variable declarations at the start of the script
element.

var circles=[
[200,300,20,"red"],
[400,300,40, "blue"],
[200,500,80, "purple"],
[100,100,40, "pink"]

15

var links =[

The circles and links arrays represent parallel structures. Each item in the
circles array is itself an array holding the location (horizontal and vertical coordinate),
radius, and color. Each item in the links array is an array containing references to the
circles array. So, links[0] indicates an arrow going from the 0% circle to the 1* circle.
Remember, arrays are indexed starting at 0. The horizontal and vertical coordinates held
in the circles array will be changed when the circle is moved. One step to explore this
program would be to add to the circles and 1inks arrays. You need to use one of the
standard colors to specify the color of a circle.

Returning to the init function, it sets certain variables, makes sure the canvas is
the correct size for the window, and invokes buildCircles and then drawlLinks. The
buildCircles function does what the name implies. Using a for loop, for each circle
described in the circles array, it creates a canvas element and appends it to the body
element to make it part of the document. It sets it to be visible. It draws a circle on this
canvas element of the specified size and fills it with the specified color. Each of these
canvas elements is pushed to make up the canvases array, one for each circle. A new
attribute is added to each of the newly created canvas elements, named aindex, to refer
to the item in the circles array. This is used to change the location. The function also
invokes addEventListener for the “mousedown” event, with the event handler specified

415

APPENDIX MORE TECHNIQUES FOR DRAWING

to be the function startDragging. That is, it sets up the event handling for when the
player pressed down on the mouse button on top of the particular object.

The startDragging function invokes addEventListener twice for the object for
which the event has been triggered: one of the canvas elements. One time the event
is mousemove and the event handler is the function moving. The other time the event is
mouseup, and the event handler is the function stopmove. The moving function moves
the object, that is, the canvas containing the circle. Keep in mind, as I wrote before,
that the location of objects is specified by the left and top attributes. This means that
the String function is used to change numbers into strings, the + operator is used to
concatenate these strings with px, and the parseInt function is used to extract the
numerical value. The drawLinks function is invoked multiple times to redraw the
links (arrows) since the moving function is invoked multiple times by the underlying
JavaScript program responding to the event. The movement appears smooth. I think it
is theoretically possible to give the event handling too much work to do, but I have not
encountered this situation.

I split the drawing of the links into two functions, drawLinks and drawAdjustedLink,
to isolate the special casing for vertical or horizontal lines. It always is good to divide a
large task into some number of smaller tasks.

Table A-1 lists each function and indicates how it is invoked and which, if any,
function it invokes or sets up event handling to invoke.

416

APPENDIX MORE TECHNIQUES FOR DRAWING

Table A-1. Invoked/Invoking Function Table for Circles and Arrows

Function Invoked By Invoked by Event Invokes Set Up Event
Handling Handling
init onlLoad, buildCircles,
onResize drawlLinks
buildCircles init mouseDown
event handler
startDragging
drawLinks init, drawAdjustedLink
moving,
stopMove
startDragging mouseDown set in MouseMove event
buildCircles handler moving,
mouseUp event
handler stopMove
moving mouseMove setin drawlLinks
startDragging
stopMove mouseUp setin drawlLinks

drawAdjustedlLink drawlLinks

startDragging

Notice (and appreciate) that we do not have to write code to determine which circle

is under the mouse! The event handling for the object does the work.

The complete code, with explanations, appears in Table A-2.

417

APPENDIX MORE TECHNIQUES FOR DRAWING

Table A-2. Code for Circles and Arrows

Code Statement

Explanation

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8">

<meta name="viewport"
content="initial-scale=1">

<title>Circles and arrows
</title>

<style>

body {font-
family:Garamond, serif;

font-size: 24px;
position:absolute;
}
canvas {position:absolute;}
</style>
<script>

var circles=|

[200,300,20,"red"],
[400,300,40,"blue"],
[200,500,80, "purple"],
[100,100,40, "pink"]

15

var links =[

DOCTYPE comment.
Opening html tag.
Opening head tag.
Indicates the standard character set.

Standard meta tag.

Sets the title, which will appear in the tab in a browser.

Opening style tag.
Opening body tag, indicating font family...

...font size.

...positioning.

Closes body style specifications.
Style specification for canvas.
Closes style.

Opening script tag.

Start of declaration and setting for circles array: an
array of arrays.

Red circle.
Blue circle.
Purple circle.
Pink circle.
Closes array.

Start of declaration and setting of 1inks array: an array of
arrays.

418

(continued)

Table A-2. (continued)

APPENDIX MORE TECHNIQUES FOR DRAWING

Code Statement

Explanation

var

var

var

var

var

var

var

var

canvases = new Array();

canvas;
ctx;

cWidth;

cHeight;
movingObject;
movingObjectIndex;
oldx;

oldy;

function init(){

canvas = document.

getElementById("canvas");

ctx = canvas.
getContext("2d");

cWidth = window.innerWidth;

Closes 1inks array.

Declaration and initialization of the canvases array. It will
be populated by the created canvases holding the circles.

Will hold reference to the original canvas.

Will hold reference to the context of the original canvas.
Will hold canvas width.

Will hold canvas height.

Will hold reference to the moving object. This will change.
Will hold the index into canvases for the moving object.

Will hold the former x coordinate. Used in the moving
function. Set in startDragging and reset in moving.

Will hold the former y coordinate. Used in the moving
function. Set in startDragging and reset in moving.

Header init function.

Get a reference to the original canvas.

Get a reference to the context of the original canvas. This
is used for all drawing.

Get the width of the window.

(continued)

419

APPENDIX MORE TECHNIQUES FOR DRAWING

Table A-2. (continued)

Code Statement

Explanation

cHeight = window.
innerHeight;

canvas.width = cWidth;
canvas.height= cHeight;
ctx.strokeStyle="black";

ctx.strokeRect(0,0,cWidth,
cHeight);

buildCircles();
drawLinks();

function buildCircles() {
var i;

var can;

var circle;

var diam;

var rad;

for (i=0;i<canvases.
length;i++) {

can = canvases[i];

document.body.
removeChild(can);

}
canvases = [];

for (i=0;i<circles.
length;i++){

Get the height of the window.

Reset the canvas to take up the whole screen: width.

...height.
Set the stroke to black.

Draw the boundary lines of the canvas.

Build the circles.
Draw the links.

Close the init function.

Header buildCircles function.

Used in for loops.

Used as reference to each new canvas.

Hold the circle information.

The diameter of the circle to be created.

The radius of the circle to be created.

for loop to remove any previously built circles. Happens

with resize or reload.
Need to know what to remove.

Remove from the document tree.

Close of the for loop.

Reset canvases to empty array.

for loop to create canvases holding the circles.

420

(continued)

Table A-2. (continued)

APPENDIX MORE TECHNIQUES FOR DRAWING

Code Statement

Explanation

circle = circles[i];

can = document.
createElement('canvas');

can.aindex = i;

ctxc = can.getContext('2d");
rad = circle[2];

diam = 2*rad;

can.width = diam;
can.height= diam;
ctxc.fillStyle=circle[3];
ctxc.beginPath();

ctxc.arc(rad,rad,rad,0,
2*Math.PI,true);

ctxc.closePath();
ctxc.fill();

circle[0] = Math.
min(circle[0],cWidth-rad);
circle[1] = Math.
min(circle[1],cHeight-rad);
can.style.left =
String(circle[o]-rad)+"px";

can.style.top =
String(circle[1]-rad)+"px";

Get inner array for the ith elementin circles.

Create a canvas element.

Add a new attribute to refer back to circles.
Set the context.

Extract the radius value from the array.
Compute the diameter.

Use diam for the width.

...and height of the just created canvas.

Set the fillStyle.

Start the drawing of the circle on the new canvas as a
path.

Draw an arc.

Close the path.
Fill in the color.

Prepare values for the new canvas left coordinate, to fit
into the original canvas.

...for the top coordinate.

Set the 1eft attribute as a String with the addition of
px, which stands for pixels.

Set the top.

can.addEventListener('moused Set up event handling for the new canvas.

own',startDragging,false);

(continued)

421

APPENDIX MORE TECHNIQUES FOR DRAWING

Table A-2. (continued)

Code Statement

Explanation

canvases.push(can);

document.body.
appendChild(can);

can.style.visibility =
'visible';

}

}

function startDragging(ev) {
movingObj = ev.target;

movingObjectIndex =

movingObj.aindex;

oldx = parseInt(ev.pageX);

oldy = parseInt(ev.pageY);

movingobj.addEventListener
("mousemove",moving,false);

movingobj.addEventListener
("mouseup", stopmove,false);

function moving(ev) {

if(movingObj) {

newx = parselnt(ev.pageX);

Add the new canvas to the canvases array.

Add a new canvas to the document tree.

Make visible.

Close the for loop.

Close the buildCircles function.

Header startDragging function. The ev has information
on the event, including reference to the object.

Set movingObj to be the canvas/circle object.

Extract the index into the circles array.

Extract the x coordinate at the time of the mousedown
event.

Extract the y coordinate at the time of the mousedown
event.

Now set up the mousemove event.

...and the mouseup event.

Close startDragging.

Header for the moving function. The ev has information on
the event, including references to the location.

Check if there is a moving object.

Extract the x coordinate.

422

(continued)

Table A-2. (continued)

APPENDIX MORE TECHNIQUES FOR DRAWING

Code Statement

Explanation

newy

parseInt(ev.pageY);
delx = newx-oldx;

dely = newy-oldy;

oldx = newx;

oldy = newy;

curx = parseInt(movingObj.
style.left);

cury = parselnt(movingObj.
style.top);

movingObj.style.left =
String(curx+delx)+"px";

movingObj.style.top =
String(cury+dely)+"px";

circles[movingObjectIndex]
[0] += delx;

circles[movingObjectIndex]
[1] += dely;

drawLinks();

function stopMove(ev){

Extract the y coordinate.

Calculate the change in the x coordinate.
...and the y coordinate.

Reset oldx to point to newx.

Reset oldy to point to newy.

Extract the number value from the current 1eft attribute.

Extract the number value from the current top value.

Do the calculation and convert the sum to a string and add
the px to get an updated value for the left. The px stands
for “pixel.”

Do the calculation and convert the sum to a string and add
the px to get an updated value for the top. The px stands
for pixel.

Update the value of the x coordinate back in the circles
array.

Update the value of the y coordinate back in the circles
array.

Invoke drawLinks to redraw all the links, using the new
position of one circle.

Close if there is @ movingObj.

Close the moving function.

Header for stopmove. Parameter ev is set in
eventHandling.

(continued)

423

APPENDIX MORE TECHNIQUES FOR DRAWING

Table A-2. (continued)

Code Statement

Explanation

movingObj.removeEventListener
("mousemove" ,moving,false);

movingObj.removeEventListener
("mouseup", stopmove, false);

movingObj=null;
drawLinks();

function drawLinks() {

ctx.clearRect(0,0,cWidth,
cHeight);

ctx.strokeStyle="black";
ctx.fillStyle = "black";
for (i=0;i<links.length;i++)
{

link = links[i];

circle1l = circles[link[0]];

circle2 = circles[link[1]];
startx = circlei[o0];
starty = circlei[1];

endx = circle2[0];
endy = circle2[1];
drawAdjustedLink(startx,

starty,circle1[2],endx,
endy,circle2[2]);

Remove event listening.

Remove event listening.

Set movingobj to null.
Draw links.

Close for stopmove.

Header for the drawLinks function.

Clear the canvas.

Set the stroke to black.
Set the fill to black.

Loop through all the links (arrows).

Set the link to simplify the code that follows.
Define the first circle.

Define the second circle.

Set the starting x.

Set the starting y.

Set the ending x.

Set the ending y.

Invoke drawAdjustedLink for more detailed work.

Close the for loop.

424

(continued)

Table A-2. (continued)

APPENDIX MORE TECHNIQUES FOR DRAWING

Code Statement

Explanation

}

function drawAdjustedLink
(x1,y1,rad1,x2,y2,rad2) {

var tix;

var tiy;
var t2x;
var tay;
var bx;
var by;
var mp;
var sx;
var sy;

var ex;

var ey;

var dx

X2-X1;

var dy

y2-y1;
var dis;

var ah

.3333*rad2;

if (dx==0) {
dis = Math.abs(y2-y1);

sx = x1;

Close drawlLinks.

Header for drawAdjustedLink. Parameters are the x
and y of the starting circle, its radius, the x and y of the
ending circle, and its radius.

Sets these to be local variables. The t1 and t2 points are
the ends of the arrowhead base.

The b point is the middle of the arrowhead base.

Slope of arrow.

The s point is the start of the arrow.

The e point is the end of the arrow (the tip of the
arrowhead).

Compute the x change.
Compute the y change.
Will hold the distance.

The height of arrowhead is set to about a third of the
target circle rad.

If this is a vertical line.
Compute the dis as the absolute different in the y values.

Start of arrow, x coordinate.

(continued)

425

APPENDIX MORE TECHNIQUES FOR DRAWING

Table A-2. (continued)

Code Statement Explanation
sy = yl+(rad1/dis)*dy; Start of arrrow, y coordinate changed to be at the circle
boundary.
ex = Xx2; End of arrow, x.
ey = y2-(rad2/dis)*dy; End of arrow, y, adjusted to the end at the boundary.
ctx.beginPath(); Start the path.
ctx.moveTo(sx,sy); Start of the arrow.
ctx.lineTo(ex,ey); Move to end—touching the circle.
ctx.closePath(); Close the path.
ctx.stroke(); Draw the line using the stroke.
tix = sx+ah; One side of the line.
t2x = sx-ah; Other side of the line.
t1ly = y2-((rad2+ah)/ Calculating coordinates for the base of the arrowhead.
dis)*dy;
t2y = tiy; Samey.
ctx.beginPath(); Draw a triangle representing the arrowhead.
ctx.moveTo(ex,ey); From the point of the arrowhead.
ctx.lineTo(t1x,t1y); ...to one side of the base.
ctx.lineTo(t2x,t2y); ...to the other side of the base.
ctx.closePath(); Close the path.
ctx.fill(); Draw the arrowhead using fill.
}
else if (dy==0) { Check for a horizontal line.
dis = Math.abs(x2-x1); Distance of absolute difference of x values.
sx = x1+(rad1/dis)*dx; Start of arrow; x is at boundary.
sy =yl ;

(continued)

426

APPENDIX MORE TECHNIQUES FOR DRAWING

Table A-2. (continued)

Code Statement Explanation
ex = x2-(rad2/dis)*dx; End of arrow; x is at boundary.
ey =y2;
ctx.beginPath();
ctx.moveTo(sx,sy); Start of drawing of line.

ctx.lineTo(ex,ey);
ctx.closePath();
ctx.stroke();

t1ly = sy+ah;

t2y = sy-ah;
tix = x2-((rad2+ah)/
dis)*dx;
t2x = tix;
ctx.beginPath();
ctx.moveTo(ex,ey);
ctx.lineTo(t1x,t1y);
ctx.lineTo(t2x,t2y);
ctx.closePath();
ctx.fill();

}

else {

dis = Math.
sqrt (dx*dx+dy*dy);

sx = x1+(rad1/dis)*dx;

sy = y1l+(rad1/dis)*dy;

End of line.
Close the path.
Draw the line.

Now compute vertices of the arrowhead (triangle). The y
value is at one side for one vertex.

The y value is at the other side for the other vertex.

The x values are just off the boundary of the second circle.

Shares the same x coordinate.
Arrowhead triangle.

Start drawing the arrowhead.
Line to one vertex.

Line to other vertex.

Close the path.

Draw the filled-in arrowhead.
Close the horizontal case.
Neither vertical nor horizontal.

Compute distance.

General case. The arrowhead is at an angle. Compute the
starting point x.

Compute the starting point y.

(continued)

427

APPENDIX MORE TECHNIQUES FOR DRAWING

Table A-2. (continued)

Code Statement Explanation

x2-(rad2/dis)*dx;

y2-(rad2/dis)*dy;

ex

ey
ctx.beginPath();
ctx.moveTo(sx,sy);
ctx.lineTo(ex,ey);
ctx.closePath();
Ctx.stroke();

-dx/dy ;
x2-((rad2+ah)/dis)*dx;

mp
bx

by = y2-((rad2+ah)/dis)*dy;
bb = by - mp*bx;

d = 1-bx;

c = bx*bx -ah*ah/
(1+mp*mp) ;

b = -2%bx;

a=1;

sqterm = Math.sqrt(b*b-
4*a*c);

tix = (-b+sqterm)/2;

Compute the ending point x
Compute the ending point y

Draw the arrow line.

Move to the start.

Draw the line to the end.

Close the path.

Draw the line.

The slope of the line is = dy/dx, where dx is not zero.
The slope of the perpendicular dy is not zero.

Start to define values for perpendicular x coordinate.

Start to define values for perpendicular y coordinate.

Equation of perpendicularisy = mp * (x-bx) + by.

Equation of perpendicularisy = mp*x + bb.

Solve intersection of line with circle centered at bx, by,
radius ah.

Quadratic formula with standard a, b, c:

//x¥x - 2*x_bx + bx*bx - ah*ah/((mp*mp)
(1-bx)*(1-bx))

Solving the equations.

See the previous rows and the text about the equations for
the next few lines.

428

(continued)

Table A-2. (continued)

APPENDIX MORE TECHNIQUES FOR DRAWING

Code Statement Explanation
t2x = (-b-sqterm)/2;
tly = mp*tix + bb;
t2y = mp*t2x + bb;
ctx.beginPath(); Start the path for drawing the arrowhead.

ctx.moveTo(ex,ey);

ctx.lineTo(t1x,t1y);
ctx.lineTo(t2x,t2y);
ctx.closePath();
ctx.fill();

}
}

</script>
</head>

<body onload="init();"
onresize="init();">

<canvas id="canvas"
width="100%" height="100%">

Your browser does not
recognize canvas

</canvas>
</body>
</html>

Move to the e point; where the line touches the second
circle.

Line to one vertex.
Line to other vertex.
Close the path.

Draw the filled-in arrowhead.

Close the else for being neither vertical nor horizontal.

Close drawAdjustedLinks.
Close the script element.
Close head.

Opening body element. Set up a call to init.

canvas tag. Set the size to 100 percent of the window.

Standard warning for older browsers.

Close canvas.
Close body
Close html.

429

APPENDIX MORE TECHNIQUES FOR DRAWING

What You Learned

This example makes use of the Document Object Model for HTML. The coding adds
new elements. Event handling, that is, responding the mouse events, is what implements
the functionality of allowing the user/player to drag a circle and have the circle and any
connected arrows to move. The coding worked with numbers and strings containing
numbers. The mathematics required is basic algebra for dealing with lines.

Crossing a Line (Jumping a Fence)

A colleague working on a game asked me to give him a function for determining whether
a token moving from position A to position B had crossed over a fixed-line segment. We
can think of the line segment as representing a fence. What I produced for this challenge
had ways to define positions A and B as well as the line segment—the fence. In one way,
the user/player presses the mouse button at the first position, drags the mouse, and
releases the button at the second position. Alternatively, the player can enter coordinates
of the two positions and the line into a form. Yet another possibility is to position the line
segment randomly in the window. The program indicates if the line segment was crossed
and draws a mark indicating the intersection point on the line. My colleague did not
need all this pre- and post-processing, but I needed it to test the function performing the
check. Figure A-3 shows the opening screen.

430

APPENDIX MORE TECHNIQUES FOR DRAWING

Mouse down to mark first position; drag and mouse up to mark the second. | Change the fence randomly

OR set positions yourself using coordinate values. Blanks are treated as 0Os.

Fence start px: 200 py: 200

Fence end gx: 500 qy: 400

Ball travel start ax: ay:

Ball travel end bx: by: |_ || Enter coordinates
Result:

Figure A-3. Opening screen for jumping the fence

Figure A-4 shows the results of setting the two positions by mousedown, drag, and
mouseup. The calculation has been done; a message appears in the Result field; and red,
blue, and purple boxes appear. The purple box on the line indicates the intersection
point of the line segment from position A to position B and the line segment representing
the fence.

431

APPENDIX MORE TECHNIQUES FOR DRAWING

Mouse down to mark first position; drag and mouse up to mark the second. Change the fence randomly

OR set positions yourself using coordinate values. Blanks are treated as Os.

Fence start px: 200 py: 200

Fence end gx: 500 qy: 400

Ball travel start ax: 386 |ay: 495

Ball travel end bx: [434 by: 271 Enter coordinates

Result: Jumped the Fence

Figure A-4. Screen after changing the fence and marking the two positions

It could be that the line connecting the two positions intersects with the line
containing the line segment, but the line segment connecting the two positions and the
line segment representing the fence do not cross. Figure A-5 shows a situation where the
intersection of the line segment from the first position to the second crosses the line but
not on the line segment denoting the fence.

432

APPENDIX MORE TECHNIQUES FOR DRAWING

Mouse down to mark first position; drag and mouse up to mark the sec{md.| Change the fence randomly |

OR set positions yourself using coordinate values. Blanks are treated as 0s.

Fence start px: 200 | py: |200

Fence end gx: 500 qy: 400

Ball travel start ax: 559 Tay:[579 |

Ball travel end bx: 798 by: 380 || Enter coordinates |

Result: did NOT Jump the Fence

Figure A-5. Situation with intersection not on the fence

The code must detect this situation as well as others that are potentially
problematic, such as vertical lines. It was for the purpose of testing for these different
situations that I felt the need to build a form in which users could enter exact coordinate
values. Figure A-6 shows the use of the form to specify a line segment that is vertical.

433

APPENDIX MORE TECHNIQUES FOR DRAWING

Mouse down to mark first position; drag and mouse up to mark the second. | Change the fence randomly |

OR set positions yourself using coordinate values. Blanks are treated as 0s.

Fence start px: 414 |py: 195

Fence end gqx: 497 qy: 88

Ball travel start ax: 440] ay: 579

Ball travel end bx: [440 by: 100 || Enter coordinates |

Result: | Jumped the Fence

Figure A-6. Vertical line segment representing the jump

Overview

I begin the overview with a refresher from algebra and/or analytical geometry class to
describe the calculations. Then I will describe preparing the data and lastly presenting
feedback to the user/player.

Mathematics Refresher

Let's start with two points, each point represented by two values: (ax, ay) represents
the point with horizontal coordinate ax and vertical coordinate ay, and (bx, by)
represents the point with horizontal coordinate bx and vertical coordinate by. An
equation representing all points, x, Yy, on the line between (ax, ay) and (bx, by) isas
follows:

y - ay = ((by-ay) / (bx-ax)) * (x-ax)

434

APPENDIX MORE TECHNIQUES FOR DRAWING

This can be solved for y, that is, rewritten to have the symbol by itself on one side of
the equation.

Equation 1:y = ((by-ay) / (bx-ax)) * (x-ax) + ay

Note These are mathematical equations, not programming statements. The = symbol
stands for equality. However, | am including the * symbol for multiplication. All pairs
(x,y) that satisfy this equation are on the line. You can see a potential problem here:
what if bx is the same as ax? This would be the case for a vertical line. Let’s assume
now that it is not the case, but keep in mind that the program must check for this
situation. To address the challenge of finding out whether a ball going from point a to
point b crosses a line segment, the fence, that goes from point p to point q, assuming
neither line is vertical (bx does not equal ax and px does not equal gx), | did some
mathematics. | wrote the equation for the p-q line with y on one side, as follows:

Equation 2: y = ((qy-py) / (4x-px)) * (x-px) + py

What I will show now are the steps I took to get ideas for the code to put into my
program. I set the two expressions for y equal to each other.

((by-ay) / (bx-ax)) * (x-ax) + ay = ((qy-py) / (qx-px)) * (x-px) + py

Now, I do the usual manipulation to solve for x. However, first I define new variables,

abslope = ((by-ay) / (bx-ax))andpqgslope = ((qy-py) / (gx-px)).This
simplifies the calculation.

abslope * (x-ax) +ay = pgslope * (x-px) + py
I complete the multiplications on both sides.
abslope * x - abslope*ax + ay = pgslope * x - pgslope*px + py

My goal now is to get the terms involving x on one side of the equal sign and
everything else on the other side.

(abslope -pgslope) * x = abslope*ax - ay -pgslope*px +py

435

APPENDIX MORE TECHNIQUES FOR DRAWING
Dividing both sides:

Equation 3: x= (abslope*ax-ay-pqslope*px+py) / (abslope-pgslope)

The values of all the variables on the right side of the equation are known to the
program. This means I can use what is a mathematical equation to write code. However,
before I use Equation 3 as a line of code, I needed to write code that checked if abslope
was equal to pgslope. If it was, would not let the program execute that line! If abslope
is equal to pgsloope, the two lines are parallel and, perhaps, even the same line. For this
situation, I need to address the problem in a different way. If this is not the case, then my
program solves for x by executing Equation 3 as a line of code.

The next step is to put that value of x in either one of the two equations to get the
value of y. That is, the value of y at the intersection of the two lines. We are making
progress here, but we are not done. What I have described so far is the calculation of the
intersection of two lines, neither of which is vertical and which do not have the same
slope. The next step is to see if this intersection is on both of the line segments. To put it
another way, it is like the situation shown in Figure A-4 or Figure A-5. The way I chose to
do this is to calculate where x is in terms of the line segment from a to b and where it is in
the line segment from p to q. The coding is as follows:

tab = (x-ax)/(bx-ax);
tpg = (x-px)/(qx-px);
if ((tab>=0) && (tab<=1) && (tpg>=0) &&(tpg<=1))
{
retv = true;
}
else
{
retv = false;
}

I'will be using the variable retv later to indicate if the fence was jumped. In each of
the two cases, x values on the line segment go from 0 to 1. This is true if ax is less than bx
or if ax is greater than bx. The same reasoning holds for the p to q line segment. However,
I only need to do the check for x.

What I am calling the normal case is done. Now I briefly describe other situations.

436

APPENDIX MORE TECHNIQUES FOR DRAWING

The following cases require special treatment:
o Exactly one of the two line segments, a to b and p to g, are vertical.
e Both the ato b line segment and the p to q line segment are vertical.
o Neither is vertical, but the slopes are the same.

For the first case, you will see in the coding of the oneVertical function thatI
essentially determine the bounding box that holds the line segment by taking Math.
min and Math.max of the endpoints. The code then checks if the vertical line segment is
outside the box.

If both the a to b line and the p to q line are vertical (look at the coding of
bothVertical), there is no overlap if ax is not equal to px. If these two values are equal, I
say there is jumping of the fence, if the p to q line segment is totally within the a to b line
segment. This also makes use of the bounding box.

The same slopes case consists of two possibilities: the lines are not the same line.

In this case, they are parallel and do not meet or they are the same line. My code
determines that they are the same line if the y intercepts are the same. A y-intercept is
where the line crosses the y-axis. It is the value of the line expression when x is zero. If
they are not the same line, then they are parallel and do not meet, so there is no jumping
of the fence. If they are the same line, my code indicates jumping if the a to b segment is
entirely over the p to q segment, that is, the fence.

Preparing Data

With the mathematics out of the way, let’s turn to the implementation. We can think of

it as having two additional tasks after the calculations: preparing the information and
presenting the information. As you will have gathered from the screenshots, my program
starts with a fence in a specific position. The user/player can define a jump, what I have
been calling a move from point a (ax,ay) tob (bx, by) by pressing the mouse button,
dragging, and then releasing the mouse button. This produces the data upon which

the calculation is made. I provide alternative ways to define the data. One way is to
position the fence based on calls to the random function. One term for this is stochastic
processing. The last method is for the user/player to enter the coordinates for all four
points: 3, b, p, g. This is eight numbers. The bulk of the coding for preparing the data is in
the HTML.

437

APPENDIX MORE TECHNIQUES FOR DRAWING

<body onload="init();">
Mouse down to mark first position; drag and mouse up to mark the second.
<button onClick="changelLine();">Change the fence randomly </button>

<canvas id="canvas" width="1200" height="600" style="border: 1px solid black;">
no canvas support
</canvas>

OR set positions yourself using coordinate values. Blanks are treated as
0s.

<form onSubmit="setValues(); return false;" name="f">
Fence start px: <input name="pxv"/> py: <input name="pyv"/>

Fence end gx: <input name="gxv"/> qy: <input name="qyv"/>

Ball travel start ax: <input name="axv"/> ay: <input name="ayv"/>

Ball travel end bx: <input name="bxv"/> by: <input name="byv"/>
<input type="submit" value="Enter coordinates"/>

Result: <input type="text" name="results" style="width: 400px;"/>
</form>
</body>

The HTML code contains calls (invocations) of JavaScript functions. These will be
described in detail in Table A-3 and Table A-4.

Feedback to User/Player

The line representing the fence is drawn by the drawLine function. Small boxes are
displayed to indicate the start and stop of the a to b line segment, that is, the jump. The a
position is drawn by firstPosition and the b position by secondPosition. The results
are provided graphically by the appearance of a small purple box at the intersection

of the two lines if such an intersection is found. If the line segments intersect, then the
purple box will be on the fence itself.

Details of Implementation

The JavaScript functions can be invoked by direct function calls or by event handling
setup in other functions or in HTML. This is the power of the combination of HTML and
JavaScript.

438

APPENDIX MORE TECHNIQUES FOR DRAWING

Table A-3. Invoked/Invoking Table for Jumping the Fence

Function Invoked by Invoked Invokes Set Up Event
by Event Handling
Handling
init onload, drawlLine mousedown,
onresize mouseup
drawlLine Init, setValues
firstPosition mousedown
setupin
init
secondPosition mouseup set
upininit
changeline Button in
HTML
setValues onSubmitin drawlLine,
HTML crossOverlLine
crossOverLine secondPosition, bothVertical
setValues oneVertical
parallellines

parallellines crossOverLine
bothVertical crossOverlLine

OneVertical crossOverlLine

As is the case for most if not all programming tasks, there are different possibilities
for defining what will be in each function. My approach is to make smaller functions
out of large ones or put off work. You will see that the crossOverLine function calls the
functions oneVertical, bothVertical, and parallellines. I wanted to get the first case
done before I worried about each of the others, which is good practice.

439

APPENDIX MORE TECHNIQUES FOR DRAWING

Table A-4. Code for Jumping the Fence

Code Statement Explanation

<!DOCTYPE html> DOCTYPE comment.
<html> Open html tag.

<head> Open head.
<title>Crossing the line</title> title element.
<script> Open script.

var px = 200; Initial values for the fence.
var py = 200;

var gx = 500;

var qy = 400;
var ctx; Will hold the context, which is what is to be
used for drawing on the canvas.
var canvas; Will be set to hold a reference to the
canvas element.
var ax; Will hold the starting and ending points for
the jump.
var ay;
var bx;
var by;
function changeline() { Header for changeLine.
px = 100 + Math.floor(Math. Compute random values.
random()*1000);
py = 50 + Math.floor(Math.random()*
500);
gx = 100 + Math.floor(Math.
random()*1000);

(continued)

440

Table A-4. (continued)

APPENDIX MORE TECHNIQUES FOR DRAWING

Code Statement Explanation
gy = 50 + Math.floor(Math.random()*
500);
drawLine(); Draw the line.
document.f.pxv.value = String(px); Put the coordinates back into the form.
document.f.pyv.value = String(py);
document.f.gxv.value = String(gx);
document.f.qyv.value = String(qy);

}

function init() {

canvas = document.
getElementById("canvas");

ctx = canvas.getContext("2d");

canvas.addEventListener("mousedown",
firstPosition,false);

canvas.addEventListener("mouseup",
secondPosition,false);

ctx.strokeStyle = "black";
ctx.lineWidth = 3;

drawLine();

function drawLine() {

ctx.clearRect(0,0,1200,800);
ctx.beginPath();

Close changeLine.
Header for init.

Set the reference to the canvas.

Set the context, used for all drawing.

Set up event handling for mousedown.

Set up event handling for mouseup.

Set the stroke.
Set the line width.
Draw the line.

Close init.

Header for drawLIne.
Note: it uses the current value of px, py,

gx, qy.
Clear the canvas.

Draw the line as defined by global
variables.

(continued)
441

APPENDIX MORE TECHNIQUES FOR DRAWING

Table A-4. (continued)

Code Statement Explanation
ctx.moveTo(px,py); Move to point p.
ctx.lineTo(gx,qy); Line to point g.
ctx.closePath(); Close the path.
ctx.stroke(); Draw a line using the stroke.
document.f.pxv.value = String(px); Insert values converted to character strings
into the form.
document.f.pyv.value = String(py);
document.f.gxv.value = String(qx);
document.f.qyv.value = String(qy);
document.f.results.value = "";
} Close of drawLine.
function firstPosition(ev) { Header for firstPosition. The ev is set
by the event handler.
ax = ev.pageX; Extract the x value.
ay = ev.pagey; Extract the y value.
ctx.fillStyle = "red"; Set the fill to red for this first position.
ctx.fillRect(ax,ay,10,10); Draw a small rectangle.
document.f.axv.value = String(ax); Store the x value, converted to string, into
the form.
document.f.ayv.value = String(ay); ...y value.
} Close firstPosition.
function secondPosition(ev) { Header for secondPosition.
bx = ev.pageX; Extract the x coordinate.
by = ev.pageY; ...y coordinate.
ctx.fillStyle = "blue"; Set the fill for this rectangle to blue.
(continued)

442

Table A-4. (continued)

APPENDIX MORE TECHNIQUES FOR DRAWING

Code Statement

Explanation

ctx.fillRect(bx,by,10,10);
document.f.bxv.value = String(bx);
String(by);
if ((bx==ax)8&&(by==ay)) {

alert("Start and end points are the

document.f.byv.value

same. Try again: mouse down, drag,
"y,
then mouse up.");

}

else crossOverLine(px,py,qx,qy,ax,ay,
bx,by);

function crossOverLine (px, py, gx, qy,
aXJ ay) bx) by) {

var retv = true;

if ((ax==bx) && (px==gx))

{

retv = bothVertical(ax,ay,bx,by,px,
PYy,ax,ay);
}

else if (ax==bx)

{

retv = oneVertical(ax,ay,by,px,py,
q9x,qy);

Draw the small rectangle.

Store the x value into the form.
...y value.

Check if the points are the same.

Output feedback for player.

Close if true.

Invoke the crossOverLine function.

Close secondPosition.

Header for crossOverLine. Parameters
are the data specifying the line (fence) and
the jump.

Initialize rety to true.

Check for both line segments being
vertical.

Invoke the function for checking in this
situation.

Check for the a-b line being vertical.

Invoke oneVertical with these
parameters.

(continued)

443

APPENDIX MORE TECHNIQUES FOR DRAWING

Table A-4. (continued)

Code Statement

Explanation

else if (px==gx)
{

retv = oneVertical(px,py,qy, ax,
ay, bx, by);
}

else {

abslope= (by-ay)/(bx-ax);
pgslope = (qy-py)/(gx-px);

if (abslope==pgslope) {

retv = parallellines(abslope,
ax,ay, bx, by, px,py,qx,qy);
}

else {

x = (abslope*ax-ay - pgslope*px+py)/

(abslope-pgslope);
y = abslope * (x-ax)+ay;

ctx.fillStyle="purple";

ctx.fillRect(x,y,10,10);

Check for the p-q line being vertical.

Invoke oneVertical with these other
parameters.

Continue with “normal” situation: neither
line vertical.

Set the abslope.
Set the pgslope.

Are the lines parallel? This includes being
the same line.

Invoke the appropriate function for this
situaiton.

| call this the normal case.

Solve for x.

Use x to solve fory.

Set the color for the intersection to be
purple.

Draw the rectangle. Note: this may be off-
screen.

444

(continued)

Table A-4. (continued)

APPENDIX MORE TECHNIQUES FOR DRAWING

Code Statement Explanation
Now check for the intersection on both line
segments. Neither line is vertical.

tab = (x-ax)/(bx-ax); Set the proportion of x along the ab line.

tpg = (x-px)/(gx-px);
if ((tab>=0) && (tab<=1) && (tpg>=0)
&8 (tpg<=1))

{
retv = true;
}
else
{
retv = false;
}
}
}
if (retv) {

document.f.results.value = "Jumped the
Fence";

}
else {

document.f.results.value = "did NOT
Jump the Fence";

Set the proportion of x along the pq line.

If these two numbers are within the
bounds 0 to 1.

Return true.

Return false.

Closing slopes not equal.
Closing normal case before slopes check.

Now display result in the form. The retv is
set in multiple places.

Close of crossOverLine.

(continued)

445

APPENDIX MORE TECHNIQUES FOR DRAWING

Table A-4. (continued)

Code Statement

Explanation

function setValues() {

ax = Number(document.f.axv.value);

document.f.axv.value =String(ax);

ay = Number(document.

document.f.ayv.value

bx = Number(document.

document.f.bxv.value

by = Number (document.

document.f.byv.value

px = Number(document.

document.f.pxv.value

py = Number(document.

.ayv.value);

String(ay);

.bxv.value);

String(bx);

.byv.value);

String(by);

.pxv.value);

String(px);

.pyv.value);

document.f.pyv.value = String(py);
gx = Number(document.f.gxv.value);
document.f.gxv.value = String(qgx);
qy = Number(document.f.qyv.value);
document.f.qyv.value = String(qy);
drawLine();

ctx.fillStyle = "red";

ctx.fillRect(ax,ay,10,10);

ctx.fillStyle = "blue";

ctx.fillRect(bx,by,10,10);

Header of setValues.
Extract ax.

Set back into document. This will set a
blank as zero.

Extract ay.

Extract bx.

Extract by.

Extract px.

Extract py.

Extract gx.

Extract qy.

Draw line using the values just set.

Set color red

Draw small rectangle at start of the ab line
segment.

Set color blue

Draw small rectangle at end of the ab line
segment.

446

(continued)

Table A-4. (continued)

APPENDIX MORE TECHNIQUES FOR DRAWING

Code Statement

Explanation

document.f.results.value="results will
be here";

if ((bx==ax)8&&(by==ay)) {

alert("Start and end points are the
same. Try again: mouse down, drag,
then mouse up.");

return false;

}
else {
crossOverLine(px,py,qx,qy,ax,
ay, bx,by);
return false;
}
}

function oneVertical(vx,vy,wy,sx,sy,tx,
ty){

minvwy = Math.min(vy,wy);
maxvwy = Math.max(vy,wy);
minstx = Math.min(sx,tx);

Display message. Will not be visible for
long.

Check for same start and stop. This will
happen if player lets up mouse button at
the start.

Display message to the player.

Invoke crossOverLine to do the
calculation.

Output false to present the page refresh.
Close else.

Close setValues.

Header called if one of the two line
segments is vertical and the other is not.
The parameters start with the vertical line
(notice only three numbers) and then the
nonvertical line.

Calculating min and max values makes
other computations easier.

(continued)

447

APPENDIX MORE TECHNIQUES FOR DRAWING

Table A-4. (continued)

Code Statement Explanation
maxstx = Math.max(sx,tx);
minsty = Math.min(sy,ty);

maxsty

Math.max(sy,ty);
slope = (ty-sy)/(tx-sx);
y

X = VX;

slope * (vx-tx) + ty;

ctx.fillStyle="purple";
ctx.fillRect(x,y,10,10);

if (vx<minstx) {return false;}

if (vx>maxstx) {return false;}
if (maxvwy<minsty) {return false;}
if (minvwy>maxsty) {return false;}

return true;

}

function bothVertical(ax,ay,bx,by,px,py,
gx,qy) {
if (ax!=px){

return false;

minaby = Math.min(ay,by);

Slope nonvertical line.
Solve for y.

Set to use x and y for drawing intersection
of lines (not line segments).

Set to draw purple rectangle.
Draw the rectangle.

If vx is lower than the min value, return no
intersection.

...or greater than the max.

Or if the max is less than the min.
Or the min is greater than the max.
Otherwise, return true.

Close the oneVertical function.

Header for bothVertical.

If these are two distinct vertical lines, there
iS no overlap.

Compute max and min values to use in
checking for overlap.

448

(continued)

Table A-4. (continued)

APPENDIX MORE TECHNIQUES FOR DRAWING

Code Statement Explanation
maxaby = Math.max(ay,by);
minpqy = Math.min(py,qy);

maxpqy = Math.max(py,qy);

if ((minaby<minpqy)8&&(maxaby>maxpqy))
{return true;}
else {return false;}

}

function parallellines(slope,
ax,ay,bx, by, px,py,qx,qy){

yl = slope * (-ax)+ay;
y2 = slope * (-px)+py;

if (y1!=y2) {return false;}

jumpax = (ax - qx)/(px-gx);
jumpbx = (bx - qx)/(px-qx);
if ((jumpax<0)&&(jumpbx>1)) {

return true;

}

else {

return false;

Must jump entirely over the fence segment.

Close bothVertical.

Header for parallellines. Parameters
are the shared slope, and the a-b and p-q
coordinates.

Solve for y intercept for the a-b line.
Solve for y intercept for the p-q line.
Parallel lines, not the same line.

Return true only if a to b jumps totally over
p to g.
Determine using x values where ax...
...and bx lie on the p-q line.

If ax is below (along the line segment) and
bx lies above.

Return true.

Return false.

Close parallellines.

(continued)

449

APPENDIX MORE TECHNIQUES FOR DRAWING

Table A-4. (continued)

Code Statement

Explanation

</script>
</head>
<body onload="init();">

Mouse down to mark first position;
drag and mouse up to mark the second.
<button onClick="changelLine();">Change
the fence randomly </button>

<canvas id="canvas" width="1200"
height="600" style="border: 1px solid
black;">

no canvas support
</canvas>

OR set positions yourself using
coordinate values. Blanks are treated as
0s.

<form onSubmit="setValues(); return

false;" name="f">

Fence start px: <input name="pxv"/> py:
<input name="pyv"/>

Fence end qgx: <input name="qxv"/> qy:

<input name="qyv"/>

Ball travel start ax: <input name="axv"/>

ay: <input name="ayv"/>

Ball travel end
by: <input name="byv"/>

<input type="submit" value="Enter
coordinates"/>

bx: <input name="bxv"/>

Set up event to invoke init.

Instructions.

Define canvas.

Close canvas.

More instructions

Start of form. Submitting will invoke
setValues

450

(continued)

APPENDIX MORE TECHNIQUES FOR DRAWING

Table A-4. (continued)

Code Statement Explanation

Result: <input type="text" name="results"
style="width: 400px;"/>

</form> Close form.
</body> Close body.
</html> Close html.
What You Learned

This example demonstrated the use of the combination of algebra and geometry termed
analytic geometry. What I did to produce the JavaScript code was not the typical solving
of equations but did the trick of doing the calculation. The example made use of a form
and different ways of drawing on canvas. I would not call the interface elegant, but it did
the job of providing ways to prepare data for testing the calculations and demonstrated
the uses of JavaScript.

Using Scalar Vector Graphics

Scalar Vector Graphics (SVG) is a system for defining graphics. It is independent of any
programming language. Instead of creating and maintaining a record of the graphic
pixel by pixel, possibly in a compressed format, SVG is a set of instructions. The format
for the instructions is eXtended Markup Language (XML), like HTML. SVG can be part
of an HTML document, and JavaScript can be used to modify the SVG. The benefits of
using SVG include the small size with no sacrifice of resolution. Tools exist for producing
SVG, but for these examples, you can use the editor you use for creating HTML/CSS/
JavaScript document. The examples shown here include polygons, lines, curves, and
text. You can find out about different ways to fill in spaces, including gradients, and
different things to do with colors. There are many sources online for learning more about
SVG. My adpvice is to have specific examples in mind when reading the many different
possibilities. In this appendix, I describe a static depiction of the HTMLS5 logo; the
HTMLS5 logo with an option to change the size; and a cartoon figure I call the daddy logo
that includes options to add to the original graphic, move it on the screen, and change
the position. It is these options that show the power of SVG.

451

APPENDIX MORE TECHNIQUES FOR DRAWING

SVG, as an XML language, consists of markup elements. Each element of markup has
a type and either has an opening and closing tag, with contents in the middle, or has a /
ending the opening tag. The opening tag may contain attributes. Attributes have names
associated with the element type and values surrounded by quotation marks. Here are
some examples:

<svg id="wholesvg" height="600" width="800" xmlns="http://www.w3.0rg/2000/
svg" > ... </svg>

<polygon points="139 51, 139 82, 213 82, 216 51" fill="#FFFFFF";/>

<text x="75" y="60" font-family=""'Trebuchet MS', 'Arial Bold', Helvetica,
sans-serif"; font-size="54"; font-weight: bold; >HTML</text>

The three dots, .. ., indicate the presence of all the SVG content. The xmlns attribute,
what is termed a namespace designation, points to the svg standard.

An important aspect of SVG is that the markup must be “well-formed.” This means
that if a closing tag is omitted, the opening tag must have the closing slash. Attribute
values must be surrounded by quotation marks. The nesting of markup items must be
correct. This means you cannot have the following:

<a>

The SVG elements are part of the document tree, and the structure could be
important for the coding.

It is good practice to obey these rules for HTML, but it is not required, so we may
need to change our habits.

An SVG graphic is not like drawing on canvas in that the elements retain their
identity. However, it is somewhat like painting on canvas in that elements drawn on top
or partially on top of elements appearing earlier do cover up the earlier elements. This
will be demonstrated in the HTML5 logo examples.

Using SVG to Draw the HTML5 Logo

The first example displays a static rendition of the HTMLS5 logo, as shown in Figure A-7.
It consists of polygons, filled in with different colors, along with text and a line. The
example also includes use of semantic tags, specifically footer and abbr. The semantic
tags, which was an addition to HTML for HTMLS5, represents a set of common features of

452

APPENDIX MORE TECHNIQUES FOR DRAWING

documents. They do not come with any specific formatting or usage. Their presence in
the standard is (only) suggestive of usage and may help individuals and groups working
together. It is an important practice to provide references, and therefore mentioning the
World Wide Web Consortium, known as W3C, was my motivation for the footer. Note
that the font for HTML is not the one shown on the W3C website. In fact, the ownership
of the HTML standard is complicated. Please feel free to explore it.

HTML

HTML5 Logo by W3C.

Figure A-7. SVG plain HTML5 logo

I'will explain the coding for the plain HTML5 logo. However, to provide interaction
and, more importantly, further demonstrate the power of SVG, I am including another
example. This program provides a way to change the size of the graphic. Notice that in
Figure A-8, the slider on the opening screen is not all the way to the right.

453

APPENDIX MORE TECHNIQUES FOR DRAWING

Scale percentage: ss——g

HTML

HTML5 Logo by W3C.
Figure A-8. Opening screen for scalable HTML5 logo

Moving the slider to the end produces the screen shown in Figure A-9.

454

APPENDIX MORE TECHNIQUES FOR DRAWING

Scale percentage: e——

HTML

HTML5 Logo by W3C.

Figure A-9. Scalable HTMLS5 logo, showing the maximum size

Moving the slide back toward the left side produces a smaller version, as shown in
Figure A-10.

455

APPENDIX MORE TECHNIQUES FOR DRAWING

Scale percentage: =@
HTML

5|

HTML5 Logo by W3C.

Figure A-10. Smaller version of HTML5 logo

Overview

The tasks required for both the HTMLS5 logo examples include the specification of
polygons, the use of certain colors for the fill of each polygon, text, and, at the bottom
on both examples, a reference to the W3C organization. The scalable example features
arange control for changing the size of the logo. A JavaScript function, referenced in the
range control, performs the change.

456

APPENDIX MORE TECHNIQUES FOR DRAWING

Details of Implementation

Let’s get into the SVG.
The tree structure for the HTML5 logo examples looks like this:

e Ansvgelement, id ="whilesvg", with one child node.
e Agelement,id = "logo". This element has two child nodes.
o Atextelement.

e Agelement, id = "shield", with six child nodes, each a
polygon element.

o Polygon elements.

There are multiple ways to produce the shield. The order of drawing matters:
polygons are drawn on top of prior polygons. The line down the center is an illusion
produced by the change in color. The code is as follows:

<svg id="wholesvg" height="600" width="800" xmlns="http://www.
w3.0rg/2000/svg" >
<g id="logo">
<text x="75" y="60" font-family=""'Arial Bold', sans-serif";
font-size="54"; font-weight: bold; > HTML</text>
<g id="shield" transform="translate(0,80)">
<polygon points="39 250, 17 0, 262 0, 239 250, 139 278"
fill= "#E34C26"; />
<polygon points="139 257, 220 234, 239 20, 139 20"
fill="#F06529"; />
<polygon points="139 113, 98 113, 96 82, 139 82, 139 51, 62 51, 70
144, 139 144"
fill= "#EBEBEB"; />
<polygon points="139 193, 105 184, 103 159, 72 159, 76 207, 139 225"
fill="#EBEBEB"; />
<polygon points="139 113, 139 144, 177 144, 173 184, 139 193, 139
225, 202 207, 210 113"
fill= "H#FFFFFF"; />

457

APPENDIX MORE TECHNIQUES FOR DRAWING

<polygon points="139 51, 139 82, 213 82, 216 51"
fill="#FFFFFF";/>
</g>
</g>
</svg>

The indentation is ignored by the browser, as is the case with regular HTML, but is a
good practice.

Please note that the id values are not used in this example but are present here to
encourage good practices in thinking about the structure of a design and to prepare for
possible future modifications.

The svg element has attributes indicating the width and height. As mentioned in
the previous short list of svg examples, the xmlns attribute serves as a pointer to the svg
standard. It is critical.

The first g element specifies that the logo has two parts: the text, which is indicated
in the contents of the text element (that is, between the opening tag and the closing tag)
and is HTML, and the graphic representing the shield. The shield consists of the six
polygons. The second g element, with id = "shield", has a transform attribute. The
value, translate(0,80), sets what follows with 0 adjustment horizontally and 80 pixels
vertically. You are encouraged to change these two numbers. The six polygon elements
have two attributes each. One attribute, points, gives the coordinates of the points
making up the polygon. Each pair of numbers represents the horizontal (x) and vertical
(y) values and pairs are separated by commas. The number of pairs differ because the
polygons have different numbers of vertices. The fill attribute specifies a color, using
the RGB (red, green, blue) system. You are strongly encouraged to experiment with these
numbers. I did not make them up but got them from the W3C site. Each polygon element
is a singleton: there is just the opening tag, and it ends with />. Notice the closing two
</g> tags and the closing </svg> tag.

Separate from SVG, I decided to make use of semantic elements.

The scalable version of the HTMLS5 logo features a control of type range.

Scale percentage: <input id="slide" type="range" min="0" max="150"
value="100" onChange="changeScale(this.value)" step="10"/>

The effect of the min, max, and value attributes is to produce the opening screen with
the control two-thirds of the way to the right. The setting of onChange is what causes my
JavaScript function changeScale to be invoked when the user/player changes the value.

458

APPENDIX MORE TECHNIQUES FOR DRAWING

The JavaScript function is called with a parameter with the current value held in the

control. The term this refers to this input control. The step attribute set to 10 means

that the value changes by 10. You can experiment with this. I decided that making it 10

would produce a reasonably smooth transition.

The last thing to explain is the CSS for the footer and article elements. I make use

of the technique of providing a sequence of font types in the order in which I want the

font to be. The browser takes the first one available on the computer interpreting the

document. The display attribute specifies line breaks before and after. The font-weight

in the footer style is set to bold. The border-top produces the orange line above the

footer. The margin in the article style is set to 5px. The code for the static HTML5 logo is

shown in Table A-5. I have omitted the function invoked/invoking table because there

are no functions.

Table A-5. Code for Static HTML5 Logo

Code Statement

Explanation

<!DOCTYPE html>

<html>

<head>

<title>HTML5 Logo </title>

<meta charset="UTF-8">

<style>

footer {display:block; border-top: 1px solid
orange; margin: 10px; font-family: "Trebuchet
MS", 'Arial Bold', Helvetica, sans-serif;
font-weight: bold;}

</style>

</head>

DOCTYPE comment.
The html tag.
The head tag.
Complete title.

This is a meta tag. It declares the
character encoding.

The style tag.

The footer element is used to
display the reference to the World
Wide Web Consortium.

Close the style element.

Close the head element.

(continued)

459

APPENDIX MORE TECHNIQUES FOR DRAWING

Table A-5. (continued)

Code Statement Explanation

<body> Start the body element.

<svg id="wholesvg" height="600" width="800" Starting tag for an svg element.
xmlns="http://www.w3.0rg/2000/svg" > Notice the link to the namespace.
<g id="logo"> A g element for the group.

<text x="75" y="60" font-family=""Trebuchet The logo contains a text element.
MS', 'Arial Bold', Helvetica, sans-serif";

font-size="54"; font-weight: bold; >HTML

</text>

<g id="shield" transform="translate(0,80)"> ...and a group with an id shield
and a transform that translates
down the screen for the graphic.

<polygon points="39 250, 17 0, 262 O, There are several polygons.

239 250, 139 278"

fill= "#E34C26"; /> You can look up these colors. | got
them from the W3C site.

<polygon points="139 257, 220 234, 239 20, The entire shield.
139 20"

fill="#F06529"; />

<polygon points="139 113, 98 113, 96 82, The lighter part on the right.
139 82, 139 51, 62 51, 70 144, 139 144"

fill= "#EBEBEB"; />

<polygon points="139 193, 105 184, 103 159, The very light gray on the left, on
72 159, 76 207, 139 225" the top.

fill="#EBEBEB"; />

<polygon points="139 113, 139 144, 177 144, The very light gray on the left, on
173 184, 139 193, 139 225, 202 207, 210 113" the bottom.

(continued)

460

http://www.w3.org/2000/svg

APPENDIX MORE TECHNIQUES FOR DRAWING

Table A-5. (continued)

Code Statement Explanation

fill= "#FFFFFF"; />

<polygon points="139 51, 139 82, 213 82, The white on the right, on bottom.
216 51"

fill="#FFFFFF";/>

</g> The white on the right, on top.
</g> Close the outer g.
</svg> Close the svg element.
<footer>HTML5 Logo by <a href="http://www. Footer with the text. It is of the style
w3.org/"><abbr title="World Wide Web abbr. This is not given any special
Consortium">W3C</abbr>. formatting.
</footer> Close footer.
</body> Close body.
</html> Close html.

For the scalable HTMLS5 logo, I made use of an init function to set a variable to point
to the point in the SVG tree to change the scale. The change is done in the changeScale
function. Invoking information for the two functions is described in Table A-6.

Table A-6. Invoked/Invoking Functions for Scalable HTML5 Logo.

Function Invoked by Invoked by Event Handling Invokes Set Up Event Handling
Init onlLoad
changeScale onChange

The scalable HTML5 logo document is essentially the static HTML5 logo with the
addition of the two functions. For completeness sake, I provide all the code, but I leave
the explanations of the lines in common blank. Please refer to Table A-7.

461

http://www.w3.org/
http://www.w3.org/

APPENDIX MORE TECHNIQUES FOR DRAWING

Table A-7. Code for Scalable HTML5 Logo.

Code Statement

Explanation

<!DOCTYPE html>

<html>

<head>

<title>HTML5 Logo </title>

<meta charset="UTF-8">

<style>

footer {display:block; border-top: 1px
solid orange; margin: 10px; font-family:
"Trebuchet MS", 'Arial Bold', Helvetica,
sans-serif; font-weight: bold;}

article {display:block; font-family:
Georgia, "Times New Roman", Times, serif;
margin: 5px;}

</style>

<script language="Javascript">

var factorvalue = 1;

var logo;

function init() {

logo = document.getElementById("logo");

function changeScale(val) {

factorValue = val/100;

DOCTYPE comment.
Start of html.
Start of head.
Complete title.

A meta tag stating the character
encoding.

Start of style.

The formatting for the footer.

Formatting for the article.

Close style.

Start of script element.

Used to change the scale.

Will be set with a pointer into the SVG.
Header for the init function

Sets the variable logo.

Close init.

Header for the changeScale function.
The argument val will hold the value
set by the range control.

Calculate factorValue as a
percentage.

462

(continued)

APPENDIX MORE TECHNIQUES FOR DRAWING

Table A-7. (continued)

Code Statement Explanation

var factorValues = String(factorValue); Now convert factorValue to a string.

var trans = "translate(0,0) Produce the trans value to put in the
scale("+factorValues+")"; SVG.
logo.setAttributeNS(null, "transform", Set the attribute.
trans);
} Close the changeScale function.
</script> Close script.
</head> Close head.
<body onLoad="init();"> The body element. Set up a call to the
init function.
<article> Start of the article.
Scale percentage: <input id="slide" Define the range control, what we can
type="range" min="0" max="150" value="100" call a slider. Set up the invocation of the
onChange="changeScale(this.value)" changeScale function using the value
step="10"/> in the control.
</article> Close the article.

<svg id="wholesvg" height="600" width="800" The svg is the same as the static case.
xmlns="http://www.w3.0rg/2000/svg" >

<g id="logo">
<text x="75" y="60" font-family=""Arial
Bold', sans-serif"; font-size="54";
font-weight: bold; > HTML</text>

<g id="shield"

transform="translate(0,80)">

<polygon points="39 250, 17 0, 262 0, The entire shield.
239 250, 139 278"

fill= "#E34C26"; />

(continued)

463

http://www.w3.org/2000/svg

APPENDIX MORE TECHNIQUES FOR DRAWING

Table A-7. (continued)

Code Statement

Explanation

<polygon points="139 257, 220 234, 239
20, 139 20"

fill="#F06529"; />

<polygon points="139 113, 98 113, 96
82, 139 82, 139 51, 62 51, 70 144, 139
144u

fill= "#EBEBEB"; />

<polygon points="139 193, 105 184, 103
159, 72 159, 76 207, 139 225"

fill="#EBEBEB"; />

<polygon points="139 113, 139 144, 177
144, 173 184, 139 193, 139 225, 202
207, 210 113"

fill= "HFFFFFF"; />

<polygon points="139 51, 139 82, 213
82, 216 51"

fill="#FFFFFF";/>
</g>
</g>

</svg>

<footer>HTML5 Logo by <a href="http://www.

w3.org/"><abbr title="World Wide Web
Consortium">W3C</abbr>.

</footer>
</body>
</html>

The lighter part on the right.

The very light gray on the top left.

The very light gray on the bottom left.

The white on the bottom right.

The white on the top right.

Same as static case.

Close footer.
Close body
Close html.

The next example shows more interactions leading to modification of the SVG.

464

http://www.w3.org/
http://www.w3.org/

APPENDIX MORE TECHNIQUES FOR DRAWING

Using SVG to Draw and Modify a Cartoon

The second SVG example features a cartoon figure that my father used when signing
notes to the family. It is a peanut-shaped head with simple eyes, nose, and smile, and a
single hair. To demonstrate the flexibility of SVG, my program starts with only a peanut
shape together with buttons and a range control indicating possibilities for modifying
the graphic. Figure A-11 shows the opening screen.

| Move horizontally || Move vertically || Add face || Add Text | Head scale ===

Figure A-11. Opening screen for daddy logo

The program provides options for adding the face, adding text, moving the head
incrementally down or to the right, and changing the size of the head and the text.
Figure A-12 shows the changes.

465

APPENDIX MORE TECHNIQUES FOR DRAWING

My Daddy Joe

| Move horizontally || Move vertically || Add face || Add Text | Head scale s====@

Figure A-12. Face, hair, text added, with change in size and position

Overview

The tasks required for this program include coding the SVG elements for the peanut-
shaped head and, to be added after user interaction, eyes, nose, smile, hair, and text. The
interface includes a range control, as shown in the HTML5 logo example. In addition,

as in that example, a player uses it to make the head and, if present, the face and text
larger or smaller. Buttons provide ways to invoke functions that add the face (eyes,

nose, mouth, and hair) and the text, and move the graphic down or to the right. Moving
the graphic up and left is left as an exercise for you. Note that I also decided to provide
feedback to the player in the form of an alert statement if they tried to add text or add the
face after doing it once.

The initial graphic, the head, is defined in the HTML. One of these SVG elements is g
(for group), with an ID of head. The other elements are defined and created dynamically
and appended to the head. The init function, involved upon the onload event, uses the
following statement to set the variable myhead:

myHead = document.getElementById("head");

The newly created elements are appended to myHead.

466

APPENDIX MORE TECHNIQUES FOR DRAWING

The components of the face include some of the possibilities that SVG provides for
curves, specifically ellipses for the eyes, Bezier cubic curves for the mouth and hair, and
aline and arc combination for the nose. Bezier curves, named after creator Pierre Bezier,
make use of endpoints and control points. The curve goes through—starts and stops at
the endpoints—and the resulting curve is tangent to the line segment from endpoint to
control point. Table A-8 shows some of the symbols. Note that uppercase and lowercase
are used. Uppercase means absolute values, and lowercase means relative values
(changed from the last value).

Table A-8. Symbols Used in SVG Path Elements

Symbol Use

M Move to

A Elliptical arc

C Cubic Bezier curve

L Line to

S Shortcut designation; indicated next control point is reflection of the last

My suggestion for growing your understanding is, first, to examine and make small
adjustments to the code here. You may end up with strange faces. After doing this, do a
rough design of something you want to produce, such as a figure with one or two curves.
With a goal in mind, go to one of several online Bezier editors. These all produce the data
to use in your SVG code.

As was the case with the HTML5 logo, it is critical to organize the SVG elements
in a tree so that they can be moved and the size changed as you want. To repeat, the
specific coordinates do not have to be changed to make a larger head, with appropriate
positioned face and hair, and the text.

Details of Implementation

In the daddy logo app, the svg tag in the body does not have a namespace declaration.
My code checks that the default namespace is the right one. I did this to be different from
the HTML logo examples since you may see both ways of doing the same thing.

467

APPENDIX MORE TECHNIQUES FOR DRAWING

The peanut shape is made using what I would call a trick. It consists of three circles.
The middle circle serves to erase the boundary (stroke) curves.

Creating dynamic SVG elements requires creating the elements, setting attributes,
and appending the newly created element to something already part of the document
tree. One somewhat tricky aspect is that the attributes are strings. This means thatin a
few cases, an integer value must be converted to a string using the String function.

All the functions in this example, except one, are invoked by event handling, as
shown in Table A-9.1 could have combined createFace and setattributesface but
made the separation following the practice of dividing larger functions into smaller ones.

Table A-9. Functions Invoked/Invoking Table

Function Invoked by Invoked by Event Invokes Set Up Event
Handling Handling

init onload in the body
tag

changeScale onChange in the
range tag

moveOvalh onClick inthe
Move Horizontally
button

moveOvalv onClick inthe
Move Vertically
button

createFace onClick inthe Add setAttributesface
Face button

addText onClick in the Add
Text button

setAttributesface createFace

With overview and general comments done, in the following table I present all the
code for the daddy logo example, with comments for each statement:

468

APPENDIX MORE TECHNIQUES FOR DRAWING

Code Statement

Explanation

<IDOCTYPE html>
<html>

<head>

<title>Little guy Joe</title>

<script>

var

var

var

var

var

var

var

var

var

var

var

var

var

var

var

var

var

svgNS

headx

0;

heady

0;

cheadx = 60;

cheady

rx = 50;

ry = 50;

hairy=cheady - 2.2*ry;

scaleFactor
fillColor =

strokeColor

myUpper;

myMiddle;
myLower;
myHead;
myNose;

myLeftEye;

"http://www.w3.0rg/2000/svg";

100+ 20;

1;

"tan“;

IInonell;

DOCTYPE comment.

Start of html.

Start of head.

Complete title.

Start of script.

Set to hold the namespace reference.

Used in moving the head (and face and
text); hold location of head x.

Hold locaton of head y.

Used in positioning hair. Center of head
horizontally.

Center of head vertically.

Used for drawing the eye. This is an
ellipse, so a horizontal and vertical
diameter must be given. It is a circle.

...vertical diameter.

Location of the single hair.

Initial scale factor.

Color of skin.

No outline for circles that are the peanut.

The next variables will hold references to
parts of the face, here the upper part.

Middle.
Lower.
Reference to the head.
Reference to the nose.

Reference to the left eye.

(continued)

469

http://www.w3.org/2000/svg

APPENDIX MORE TECHNIQUES FOR DRAWING

Code Statement Explanation

var myRightEye; Reference to the right eye.

var myMouth; Reference to the mouth.

var myHair; Reference to the hair.

var faceadded=false; Boolean indicating the face has not been
added.

var textadded=false; Boolean indicating the text has not been
added.

var nosedatatail="1 15 22 a 20200 0 1 Details for nose: a line and then an arc.
-15 4";

var hairdatatail = "c -50 30, 0 25, 15 Details for the hair: a cubic Bezier curve.
30 s 2 12 -20 30";

var upperradius = 50; Radius of the upper circle.
var lowerradius = 50; Radius of the lower circle.
var middleradius = 40; Radius of the middle circle (that erases the
boundaries).
var myPlace; Reference to the whole drawing.
var myText; Reference to the text.
function init() { Header for init.
myHead = document. Sets myHEad.

getElementById("head");

if(myHead.namespaceURI != "http://www. Check on namespace.
w3.0rg/2000/svg")

alert("Inline SVG in HTML5 is not Alert the user if their browser does not
supported. This document requires a support SVG.

browser that supports HTML5 inline

SVG.");

myPlace = document. Set myPlace.
getElementById("place");

(continued)

470

http://www.w3.org/2000/svg
http://www.w3.org/2000/svg

APPENDIX MORE TECHNIQUES FOR DRAWING

Code Statement Explanation

myUpper = document. Set myUpper.
getElementById("upper");

myLower = document. Set myLower.
getElementById("lower");

myMiddle = document. Set myMiddle
getElementById("middle");
} Close init.
function createFace() { Header for createFace
if (faceAdded) { Check if already done and, if so...
alert("face already added"); Message to player.
return;} return.
myNose = document. Create new element and set myNose.

createElementNS(svgNS, "path");

myMouth = document.createElementNS Create a new element and set myMouth.
(svgNS, "path");

myLeftEye = document.create Create a new element and set
ElementNS(svgNS, "ellipse"); myLeftEye
myRightEye = document.create Create a new element and set
ElementNS(svgNS, "ellipse"); myRightEye

myMouth = document.createElement Create a new element and set myMouth.
NS(svgNsS, "path");

myHair = document.createElementNS Create a new element and set myHair.
(svgNs, "path");

myLeftEye.setAttributeNS(null, This statement and the following sets the
"id","myLeftEye"); attributes.

myLeftEye.setAttributeNS(null,
"fill","blue");

(continued)

471

APPENDIX MORE TECHNIQUES FOR DRAWING

Code Statement Explanation

myLeftEye.setAttributeNS(null,
"stroke","black");

myRightEye.setAttributeNS(null,
"id","myRightEye");
myRightEye.setAttributeNS(null,
"fill","blue");
myRightEye.setAttributeNS(null,
"stroke","black");

myMouth.setAttributeNS(null,"id",
"myMouth");

myMouth.setAttributeNS(null,
"stroke","red");

myMouth.setAttributeNS(null,
"fill","transparent");

myMouth.setAttributeNS(null,
"stroke-width",3);

myNose.setAttributeNS(null,"id",
"myNose");

myNose.setAttributeNS(null,
"stroke","black");

myNose.setAttributeNS(null,
"fill","transparent");

myHair.setAttributeNS(null,
"stroke","black");

myHair.setAttributeNS(null,
"fill","transparent");

setAttributesFace(); Invoke the function to finish the task of

setting the attributes.

(continued)

472

APPENDIX MORE TECHNIQUES FOR DRAWING

Code Statement Explanation
myHead.appendChild(myNose); Make these elements visible by appending
to myHead.

myHead.appendChild(myLeftEye);
myHead.appendChild(myRightEye);
myHead.appendChild(myMouth);
myHead.appendChild(myHair);

faceAdded = true; Set faceAdded to true.
} Close createFace
function setAttributesFace() { Header for setAttributesfFace. Made
this distinct function just to divide the
coding.
var nosedata = "M"+String(cheadx)+" Define nosedata. This includes
"+String(cheady)+" "+nosedatatail; converting numbers to strings.
var mouthxl = cheadx - .25*%rx; Starting x.
var mouthy = cheady + ry; Starting y.
var mouthx2 = cheadx+.25%rx; Endpoint x.
var mouthyc = mouthy + .25*ry; Control point y.
var mouthxic = mouthxi+.15%rx; Left control point x.
var mouthx2c = mouthx2-.15%rx; Right control point x.

var mouthdata = "M"+String(mouthx1)+ Now can set mouthdata

+ String(mouthy)+" C"

+ String(mouthxic) +"

+ String(mouthyc)+",

+String(mouthx2c)+"

+String(mouthyc)+",

+String(mouthx2)+"

(continued)

473

APPENDIX MORE TECHNIQUES FOR DRAWING

Code Statement

Explanation

+String(mouthy);
myMouth.setAttributeNS(null,"d",mouthdata);
myNose.setAttributeNS(null,"d",nosedata);

var hairdata = "M" +String(cheadx)+"

"+String(hairy)+" "+hairdatatail;
myHair.setAttributeNS(null,"d",hairdata);

var leftx = cheadx - .5*rx;

var eyey = cheady ;
var rightx = cheadx + .5*rx;
var ex = .2*rx;

var ey = .5%ex;

myLeftEye.setAttributeNS(null,"cx",
leftx);
myLeftEye.setAttributeNS(null,"cy",
eyey);
myLeftEye.setAttributeNS(null, "rx",ex);
myLeftEye.setAttributeNS(null,"ry",ey);

myRightEye.setAttributeNS(null,"cx",
rightx);
myRightEye.setAttributeNS(null,"cy",
eyey);
myRightEye.setAttributeNS(null, "rx",ex);
myRightEye.setAttributeNS(null,"ry",ey);

}

Set the d attribute for myMouth.
Set the d attribute for myNose.

Define hairdata.

Set the d attribute for myHair.

Prepare variables for use in the eye
elements. Set leftx

Set attributes for myLeftEye.

Set attributes for myRightEye.

Close setattributesface.

474

(continued)

APPENDIX MORE TECHNIQUES FOR DRAWING

Code Statement

Explanation

function moveOvalh() {

headx +=10;

if (headx>300) {headx = 0;}

var trans = "translate("+String(headx)+",
"+String(heady)+") scale("+String(scale
factor)+")";

myHead.setAttributeNS(null, "transform",

trans);

}
function moveOvalv() {
heady +=10;
if (heady>100) {heady = 0;}
var trans = "translate("+String(headx)+",

"+String(heady)+") scale("+String(scale
factor)+")";

myHead.setAttributeNS(null, "transform",
trans);

}

function changeScale(val) {

scaleFactor = val/100;

var trans = "translate("+String(headx)+",
"+String(heady)+") scale("+String(scale
factor)+")";

Header for moveOvalh.

Increment the headx value for the
horizontal move.

Check for being too far over. The 300 is
arbitrary. Set back to the start.

Set up the transform string.

Set the transform attribute to be trans.

Close the moveOvalh function.
Header moveOvalv.

Increment heady.

Check if too big. If so, set back to 0.

Set up the trans variable.

Set the transform attribute of myHead
using trans.

Close moveOvalv.

Header for changeScale. Parameter will
be used to set the scale factor.

Set scaleFactor to be fraction out of
100.

Define trans.

(continued)

475

APPENDIX MORE TECHNIQUES FOR DRAWING

Code Statement

Explanation

myHead.setAttributeNS(null, "transform",
trans);

}
function addText() {
if (textAdded) {
alert("text already added ");
return;}

myText = document.
createElementNS(svgNS, "text");
myText.setAttributeNS
(null,"x",110);
myText.setAttributeNS
(null,"y",12);
myText.setAttributeNS(null,

"font-family","serif");
myText.setAttributeNS(null,
"font-size",16);
myText.setAttributeNS(null,
"font-weight","bold");

myText.appendChild(document.
createTextNode("My Daddy Joe"));

myHead.appendChild(myText);
textAdded = true;

}

</script>

</head>

Set the transform attribute of myHead
using trans.

Close changeScale.
Header for addText.

Check if already added. If so...
Put out message.

Return. Close clause.

Create a new element of type text and
set myText.

Set attributes.

Make visible by appending to myHead.
Set textAdded to true.

Close addText.

Close the script element.

Close the head element.

476

(continued)

APPENDIX MORE TECHNIQUES FOR DRAWING

Code Statement

Explanation

<body onload="init();">
<svg id="place" height="400" width="600">

<g id="head">

<circle id="upper" cx="60" cy="100"
r="50" fill="tan" stroke="black"/>

<circle id="lower" cx="60" cy="154"
r="50" fill="tan" stroke="black"/>

<circle id="middle" cx="60" cy="125"
r="40" fill="tan" stroke="transparent"/>
</g>

</svg>

<button onClick="moveOvalh();">Move
horizontally </button> <button
onClick="moveOvalv();">Move vertically
</button>

<button onClick="createFace();">Add face
</button>

<button onClick="addText();">Add Text
</button>

Head scale <input type="range"
onChange="changeScale(this.value)"
min="10" max="300" value="100"/>
</body>

</html>

The body tag. Sets up call to init.
Trimmed-down svg element.

Subelement is of type g for group. The id
is head.

The upper circle.

The lower circle.

The middle circle. This must be drawn last

Close the g element.
Close svg.
Regular line break element.

Buttons for moving.

Button for creating the face.

Button for adding the text.

The range input element for changing the
size.

Close body
Close html.

477

APPENDIX MORE TECHNIQUES FOR DRAWING

What You Learned

The three examples in this appendix introduced you to Scalar Vector Graphics. This
included a demonstration of how to produce static graphics as well as possibilities for
adding to the graphics based on player/user interactions.

My goal in this appendix and with other additions made for this edition was to
show you the power of using HTML and JavaScript together, as well as with algebra and
geometry and the more specialized tool of Scalar Vector Graphics. In general, be willing
to define functions, use names for variables and functions that have meaning for you,
and use algebra and geometry. Anything you do is limited only by your imagination.

478

Index

A

addEventListener, 235, 253, 332, 361, 371,
390, 415
Alphabet buttons, 354, 355, 358, 359,
363, 369
Analytic geometry, 451
Animation, 81, 82, 104-105, 131, 325-328
appendChild, 234, 235, 354
Arrows, 411-429
Attributes, 5, 6, 25, 253, 318, 330, 382
Autoplay, 225, 226

Blackjack
annotates code, 394
functions, 393
key strokes, 390
opening screen, 374
rules, 373
testing/uploading, 409
Boolean values, 37
Bouncing ball
arrays, 91
family variable, 92
for loop, 94
gpa variable, 94
grad variable, 95
grades variable, 94
inner/outer, 92
manipulation, 94
numeric values, 93

© Jeanine Meyer 2023

product names/costs, 93

RGB values, 93

square brackets, 95
code, 107-111
collision detection, 98-100, 102
CSS, 87
drawing/images

attributes, 89

background image, 90, 91

changes, 90

circle, 88

constructor, 89

ctx variable, 89

erase everything, 90

file names, 89

HTML, 89, 90

Image(), 88

pixels, 91

rectangle, 88

statement, 88

stroke, 88

task, 90
form with fields, 82
functions, 106

gradient-filled walls/images, 111-116

gradients
assignment statement, 95
character strings, 95
code, 91
color stops, 91, 95
feature, 93
fillStyle property, 91

J. Meyer, The Essential Guide to HTMLS5, https://doi.org/10.1007/978-1-4842-8722-4

479

https://doi.org/10.1007/978-1-4842-8722-4

INDEX

Bouncing ball (cont.) code, 152, 159, 160, 170
hue array, 95 CSS features, 136
linear, 91 distance between points, 150
HTML, 105 functions, 151, 159, 168, 169
HTMLS5, 87 HTMLS5 features, 136
images JavaScript features, 136
preloading, 105 line segments, 145-147
replacement, 83 mouse events, pulling, 147-149
input, 83 mouse to set parameters of flight, 168
JavaScript, 87 programmer-defined objects,
new position, 98-100, 102 137-139, 151
rectangles, 95 rectangle, 131
requirements, 86, 87 requirements, 135, 136
search function, 128 rotating cannon, 133
slows down, 129 screen opening, 134
stopping/resuming, 104, 105 speed, 132, 158, 167
testing, 129 target hitting, 134
timing events, 96-98 testing/uploading, 179, 180
uploading, 129 translations/rotations,
validation, 102, 116-120 drawing, 139-143
Bouncing cotton candy game, 84, 85, canvas element, 27, 40, 136, 199, 266,
106, 120 332,414
Bouncing video, 85, 86 Card objects, 190, 191
code, 123-128 Card counting, 377, 384, 387
functions, 123 Cascading Style Sheets (CSS), 1, 10-13,
Browsers, 1, 103, 105, 129, 267, 307, 390 236, 345, 353, 356, 357, 361, 371
buildCircles function, 414, 415 changeScale function, 458, 461-463
buildDeck function, 381, 383, 384, 409 checkOrder function, 238, 240

Chrome browser, 5, 8, 225, 226, 274
Circles, 411-415, 417-429

C Client computer, 105, 271, 323
Cannonball and slingshot application Collision detection

angle, 132, 158, 167 application, 271

arrays, 137-139 floating-point numbers, 270

array splice, 149, 150 intersect function, 269

ball lands, ground, 132 player, 268

bouncing ball applications, 135 points, 270

cannon, 134, 158, 167 square roots, 270

480

Computed animation, 82, 325
Constructor function, 89, 137, 315, 382
Cotton candy game, 85, 120-122
crossOverLine function, 439

CSS styles, 4, 13, 361

D

Daddy logo, 451, 465, 467, 468
Date function, 14, 15, 180, 272, 279
Date application, 272, 274-276
deal function, 384-386
dealFromDeck function, 384, 386
dealStart function, 384, 388
defer method, 353
Dice game
assignment statements, 34, 35
building, 52, 53
canvas, drawing
arcs, 44-46
browser window, 42
closePath command, 47, 48, 50
colors, 43, 44, 49
commands, 50
ctx variable, 41
ctx.fill(), 48
fill/stroke, 50
frown, 46, 47
graphs, 42
HTML, 40
init function, 41
line segments, 44
pixels, 42
radians, 44, 45
rectangles, 42, 43
tags, 40, 41
2d context, 41
complete craps application, 68-76

INDEX

conditional statements
if statement, 37-39
switch statement, 38, 39
CSS, 31
HTMLS5, 31
JavaScript, 31
making, 76-78
mathematical expressions, 32, 33
programmer-defined
functions, 35, 36
pseudorandom processing, 32, 33
requirements, 30
results, 28
rules, 27, 30
single die
code, 55-60
comments, 60, 61
functions, 54
testing, 78, 79
text output, form, 51
two dice
code, 62-68
functions, 61, 62
uploading, 78, 79
variables, 33-35
document.body.appendChild (d), 354
document.createElement(x), 354
document.getElementByld, 331
document.getElementByld(id), 354
document.getElementsByTagname, 331
Document Object Model, 413
drawAdjustedLink function, 416
drawBall function, 138, 151, 159, 169
drawlmage method, 121, 190
drawLine function, 438
drawLinks function, 415, 416
drawSling function, 146
drawThrow function, 315, 316

481

INDEX

E

Event-driven programming, 84, 104, 151

Event handling, 355, 358, 359, 367, 369,
370, 430

Everything array, 137, 139, 143, 150,
158, 317

Execution time/runtime, 234

eXtended Markup Language (XML), 232,
451, 452

F

Facts array, 231-233, 235, 242
findBall function, 147, 148, 169
Fisher-Yates algorithm, 389
Flags/toggles, 200

flipBack function, 190, 193, 200
flyin function, 318, 325, 331, 341
Footer, 373, 392-393

Frames, 239, 325
functionReference variable, 238

G

getElementsByTagName method, 341, 343
getkeyAndMove function, 266, 283, 296
Guess-a-word game, 345

acceptable words, 353

arrays, 353

Building the Application, 360

character strings, 351

correct guess, 348, 349

feedback, 346, 358

functions, 361

guessing letters, 370

handling letters, 350

HTMLS5, CSS and JavaScript

features, 353

482

HTML markup, 354
implementation, 361, 362
incorrect selections, 347
opening screen, 346
requirements, 352
testing/uploading, 371
expression this.textContent, 360
winning game, 351

wrong guess, 348, 349

H

Harder maze, 263
Header, 373, 392-393
Househand array, 384
htaccess file, 253
HTMLS5, 345, 353, 371, 392
canvas element, 140
features, 136, 142, 180
moveTo and lineTo methods, 146
scripts, 274
storage facility, 256
translation/rotation, drawings, 139
HTMLS5 logo, 457
invoke, 461
scalable code, 462
static code, 459
Hypertext Markup Language (HTML), 139
annotated links, games, 19-22
CSS, 4
documents, 1, 279, 306, 307
elements, 224
fair use, 25
favorite sites, 2, 3, 22-25
files, 19
games, 2, 3
HTMLS5, 2, 4
JavaScript, 4

requirements, 4
structure/tags
attributes, 6
concepts, 7
document, 4
elements, 5, 9
file management, 7
hyperlinks, 6, 8
images, 8
Purchase College website, 6, 8
semantic tags, 9
singleton tag, 8
text/images/links, 9
title, 5
web addresses, 7
tags, 1, 381
testing, 25
text editor, 16, 17
uploading, 25

if, for, switch, and while statements, 324
Image object, 149, 167, 190, 191, 315, 320
Image source, 381-382

init function, 147, 414, 415, 466

J

JavaScript, 1, 2, 14, 15, 345, 352-354,
361, 371
JavaScript alert box, 273
Jumping the fence, 431
code, 440
feedback, 438
intersection, 433
invoke, 439
mathematics, 435-437
positions, marking, 432

INDEX

preparing data, 437
vertical line, 434

K

Keystroke capture, 264
Key-value pairs, 272, 274, 279

L

Localization, 342
localStorage facility, 272

makeDeck function, 191
Math.floor method, 35, 192
Math.max method, 231
Math.random method, 32, 33, 61, 242, 319
Maze applications, 263, 264, 268, 282-295
Maze-building task, 263
Mazes
application, 263, 268
detecting, 266
function, 265
games/design applications, 256
HTML5 and JavaScript, 264, 265, 267
HTML file, 256
inMotion, 265
keyDown, 266
opening screen, 259
player, 259
player/creator, 255, 262
programming techniques, 255, 256
properties, 265
screen building, 257
travelmaze script, 260
two-document version, 264
wall object, 264

483

INDEX

Maze-traveling task, 263 N
MCard function, 382
MCard object, 382-384
Memory (concentration) game
application, 187 (@)
cards, 181
cheating, prevention, 200, 201
click event, 199, 200

Number function, 253

Operator overloading, 196, 324

critical requirements, 188, 189 P
date for timing, 191, 192 padding setting, 236
face cards, 181 Paper covers rock, 309, 314
HTMLS5 and JavaScript Parallel structures, 321, 331, 415
features, 189 pickElement function, 235, 237, 238, 242,
images, 185 357, 359, 360
match, 183 Player
pause, 192, 193 behavior, 384
pictures version feedback, 380
code, 214 loses, 378
functions, 213 wins, 376, 379
information, 223 playerhand array, 384
items/concepts, 223 Polygons, 181, 185, 188-191, 196-198
time limit, 223 preventDefault function, 267, 391
player, 182 Programmer-defined functions, 14, 35-36,
polygons, 196-198 224, 264
complete code, 202 Programmer-defined objects, 137-139,
functions, 201 180, 190, 307
representing cards, 190, 191 Projectile motion, 131
shuffle cards, 198, 199 Pseudorandom processing, 31-33, 314
testing/uploading, 223, 224 push method, 233, 385

text, 193-196
Version 2, 185

more_to_house function, 386, 388 Q
Mouse events, 147-149, 256, Quiz application

264-266, 307 array of arrays, 226
moveit method, 265 audio and video, 238-240
moveTo method, 197 autoplay, 226
moving function, 416 Boolean variable, 233

484

code, 243

CSS, 235, 237-251

facts variable, 241

functions, 242

HTMLS5, CSS, and JavaScript, 231

HTML creation, 234, 235

HTML markup, 225

one-dimensional arrays, 232

player’s answer, 240, 241

players choices, 227

player’s order, 229, 230

prices array, 232

programming techniques, 253

pseudocode, 233

requirements, 230

response, player moves, 237, 238

screen opening, 226

storing/retrieving information, arrays,
231, 232

testing/uploading, 252, 253

third-party plugins, 225

timing feature, 252

R

Radio buttons, 281
application, 281
checked attribute, 282
elements, 281
localStorage item, 281
removeEventListener, 253, 358, 371
Rock crushes scissors, 314
Rock-paper-scissors application
animation, 325-328
audio/DOM processing, 329-331
audio enhancement, 342

INDEX

code, 333

computer move, 319-324

computer threw scissors, 311

functions, 332, 333

graphical buttons, 314-319

HTML5, CSS and JavaScript features,
314, 343

player threw rock, 311

requirements, 313

screen opening, 310

starting off, 331

testing/uploading, 342, 343

throws, 313

tie, 311

S

sans-serif, 195
Scalar Vector Graphics (SVG), 411,
451, 452
cartoon, 465, 466
functions, 468
HTMLS5 logo, 452-456, 461
Scissors cuts paper, 314
setInterval function, 96, 98, 104, 105, 149,
192, 313,314
setTimeout function, 96, 98, 192, 193
setupGame function, 242, 355, 361
shuffle function, 198, 201, 213, 389
Shuffling, 198-199, 389-390
Sling function, 139, 145, 146
startDragging function, 416, 417
Stochastic processing, 437
stretchWall function, 265, 283
String function, 416, 468
swapindeck function, 389, 393

485

INDEX

T

textContent, 360-361
Token function, 265
Travel maze application
applications, 306
code, 297
functions, 296

u,v

User engagement, 226

486

W

W3C organization, 456

Word bank, 346, 353

Word-guessing game (see Guess-a-
word game)

wordsl1.js files, 352, 353, 362, 371

XY, Z

XHTML, 139

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: The Basics
	Keywords
	Introduction
	Critical Requirements
	HTML5, CSS, and JavaScript Features
	Basic HTML Structure and Tags
	Using Cascading Style Sheets
	JavaScript Programming
	Using a Text Editor
	Building the Applications
	Testing and Uploading the Application
	Summary

	Chapter 2: Dice Game
	Introduction
	Critical Requirements
	HTML5, CSS, and JavaScript Features
	Pseudorandom Processing and Mathematical Expressions
	Variables and Assignment Statements
	Programmer-Defined Functions
	Conditional Statements: if and switch
	Drawing on the Canvas
	Displaying Text Output Using a Form
	Building the Application and Making It Your Own
	Throwing a Single Die
	Throwing Two Dice
	The Complete Game of Craps
	Making the Application Your Own
	Testing and Uploading the Application
	Summary

	Chapter 3: Bouncing Ball
	Introduction
	Critical Requirements
	HTML5, CSS, and JavaScript Features
	Drawing a Ball or an Image or Images
	Gradients with a Side Trip to Explain Arrays
	Setting Up a Timing Event
	Calculating a New Position and Collision Detection
	Starting, Positioning and Restarting the video with use of an anonymous function

	Validation
	Stopping and Resuming Animation Triggered by Buttons
	HTML Page Reload
	Preloading Images
	Building the Application and Making It Your Own
	Testing and Uploading the Application
	Summary

	Chapter 4: Cannonball and Slingshot
	Introduction
	Critical Requirements
	HTML5, CSS, and JavaScript Features
	Arrays and Programmer-Defined Objects
	Rotations and Translations for Drawing
	Drawing Line Segments
	Mouse Events for Pulling on the Slingshot
	Changing the List of Items Displayed Using Array Splice
	Distance Between Points
	Building the Application and Making It Your Own
	Cannonball: With Cannon, Angle, and Speed
	Slingshot: Using a Mouse to Set Parameters of Flight
	Testing and Uploading the Application
	Summary

	Chapter 5: The Memory (aka Concentration) Game
	Introduction
	Critical Requirements
	HTML5, CSS, JavaScript Features
	Representing Cards
	Using Date for Timing
	Providing a Pause
	Drawing Text
	Drawing Polygons
	Shuffling Cards
	Implementing Clicking on a Card
	Preventing Certain Types of Cheating
	Building the Application and Making It Your Own
	Testing and Uploading the Application
	Summary

	Chapter 6: Quiz
	Introduction
	Critical Requirements for a Quiz Game
	HTML5, CSS, and JavaScript Features
	Storing and Retrieving Information in Arrays
	Creating HTML During Program Execution
	Using CSS in the Style Element
	Responding to Player Moves
	Presenting Audio and Video
	Checking the Player’s Answer
	Building the Application and Making It Your Own
	Testing and Uploading the Application
	Summary

	Chapter 7: Mazes
	Keywords
	Introduction
	Critical Requirements
	HTML5, CSS, and JavaScript Features
	Representation of Walls and the Token
	Mouse Events to Build and Position a Wall
	Detecting the Arrow Keys
	Collision Detection: Token and Any Wall
	Using Local Storage
	Encoding Data for Local Storage
	Radio Buttons
	Building the Application and Making It Your Own
	Creating the Travel Maze Application
	Testing and Uploading Application
	Summary

	Chapter 8: Rock, Paper, Scissors
	Introduction
	Critical Requirements
	HTML5, CSS, and JavaScript Features
	Providing Graphical Buttons for the Player
	Generating the Computer Move
	Displaying Results Using Animation
	Audio and DOM Processing
	Starting Off
	Building the Application and Making It Your Own
	Testing and Uploading the Application
	Summary

	Chapter 9: Guess a Word
	Introduction
	Critical Requirements
	HTML5, CSS, and JavaScript Features
	Storing a Word List as an Array Defined in an External Script File
	Generating and Positioning HTML Markup, Then Changing the Markup to Buttons, and Then Disabling the Buttons
	Creating the Feedback About Remaining Wrong Letters
	Maintaining the Game State and Determining a Win or Loss
	Checking a Guess and Revealing Letters in the Secret Word by Setting textContent
	Building the Application and Making It Your Own
	Testing and Uploading the Application
	Summary

	Chapter 10: Blackjack
	Introduction
	Critical Requirements
	HTML5, CSS, and JavaScript Features
	Source for Images for Card Faces and Setting Up the Image Objects
	Creating the Programmer-Defined Object for the Cards
	Starting a Game
	Dealing the Cards
	Shuffling the Deck
	Capturing Key Presses
	Using Header and Footer Element Types
	Building the Application and Making It Your Own
	Testing and Uploading the Application
	Summary

	Appendix: More Techniques for Drawing
	Circles and Arrows
	Overview
	Details of Implementation
	What You Learned

	Crossing a Line (Jumping a Fence)
	Overview
	Mathematics Refresher
	Preparing Data
	Feedback to User/Player

	Details of Implementation
	What You Learned

	Using Scalar Vector Graphics
	Using SVG to Draw the HTML5 Logo
	Overview
	Details of Implementation

	Using SVG to Draw and Modify a Cartoon
	Overview
	Details of Implementation
	What You Learned

	Index

